xref: /linux/drivers/net/ethernet/intel/igc/igc_ptp.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 
15 #define INCVALUE_MASK		0x7fffffff
16 #define ISGN			0x80000000
17 
18 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19 
20 #define IGC_PTM_STAT_SLEEP		2
21 #define IGC_PTM_STAT_TIMEOUT		100
22 
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 	struct igc_hw *hw = &adapter->hw;
27 	u32 sec, nsec;
28 
29 	/* The timestamp is latched when SYSTIML is read. */
30 	nsec = rd32(IGC_SYSTIML);
31 	sec = rd32(IGC_SYSTIMH);
32 
33 	ts->tv_sec = sec;
34 	ts->tv_nsec = nsec;
35 }
36 
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 			       const struct timespec64 *ts)
39 {
40 	struct igc_hw *hw = &adapter->hw;
41 
42 	wr32(IGC_SYSTIML, ts->tv_nsec);
43 	wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45 
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 					       ptp_caps);
50 	struct igc_hw *hw = &igc->hw;
51 	int neg_adj = 0;
52 	u64 rate;
53 	u32 inca;
54 
55 	if (scaled_ppm < 0) {
56 		neg_adj = 1;
57 		scaled_ppm = -scaled_ppm;
58 	}
59 	rate = scaled_ppm;
60 	rate <<= 14;
61 	rate = div_u64(rate, 78125);
62 
63 	inca = rate & INCVALUE_MASK;
64 	if (neg_adj)
65 		inca |= ISGN;
66 
67 	wr32(IGC_TIMINCA, inca);
68 
69 	return 0;
70 }
71 
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 					       ptp_caps);
76 	struct timespec64 now, then = ns_to_timespec64(delta);
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&igc->tmreg_lock, flags);
80 
81 	igc_ptp_read(igc, &now);
82 	now = timespec64_add(now, then);
83 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84 
85 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86 
87 	return 0;
88 }
89 
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 				   struct timespec64 *ts,
92 				   struct ptp_system_timestamp *sts)
93 {
94 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 					       ptp_caps);
96 	struct igc_hw *hw = &igc->hw;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&igc->tmreg_lock, flags);
100 
101 	ptp_read_system_prets(sts);
102 	ts->tv_nsec = rd32(IGC_SYSTIML);
103 	ts->tv_sec = rd32(IGC_SYSTIMH);
104 	ptp_read_system_postts(sts);
105 
106 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107 
108 	return 0;
109 }
110 
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 				const struct timespec64 *ts)
113 {
114 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 					       ptp_caps);
116 	unsigned long flags;
117 
118 	spin_lock_irqsave(&igc->tmreg_lock, flags);
119 
120 	igc_ptp_write_i225(igc, ts);
121 
122 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123 
124 	return 0;
125 }
126 
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 	static const u32 mask[IGC_N_SDP] = {
131 		IGC_CTRL_SDP0_DIR,
132 		IGC_CTRL_SDP1_DIR,
133 		IGC_CTRL_EXT_SDP2_DIR,
134 		IGC_CTRL_EXT_SDP3_DIR,
135 	};
136 
137 	if (input)
138 		*ptr &= ~mask[pin];
139 	else
140 		*ptr |= mask[pin];
141 }
142 
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 	};
148 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 	};
151 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 	};
154 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 	};
158 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 	};
162 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 	};
166 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 	};
170 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 	};
174 	struct igc_hw *hw = &igc->hw;
175 	u32 ctrl, ctrl_ext, tssdp = 0;
176 
177 	ctrl = rd32(IGC_CTRL);
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	tssdp = rd32(IGC_TSSDP);
180 
181 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182 
183 	/* Make sure this pin is not enabled as an input. */
184 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186 
187 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189 
190 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 	if (freq) {
192 		if (chan == 1)
193 			tssdp |= igc_ts_sdp_sel_fc1[pin];
194 		else
195 			tssdp |= igc_ts_sdp_sel_fc0[pin];
196 	} else {
197 		if (chan == 1)
198 			tssdp |= igc_ts_sdp_sel_tt1[pin];
199 		else
200 			tssdp |= igc_ts_sdp_sel_tt0[pin];
201 	}
202 	tssdp |= igc_ts_sdp_en[pin];
203 
204 	wr32(IGC_TSSDP, tssdp);
205 	wr32(IGC_CTRL, ctrl);
206 	wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208 
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 	};
214 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 	};
217 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 	};
220 	struct igc_hw *hw = &igc->hw;
221 	u32 ctrl, ctrl_ext, tssdp = 0;
222 
223 	ctrl = rd32(IGC_CTRL);
224 	ctrl_ext = rd32(IGC_CTRL_EXT);
225 	tssdp = rd32(IGC_TSSDP);
226 
227 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228 
229 	/* Make sure this pin is not enabled as an output. */
230 	tssdp &= ~igc_ts_sdp_en[pin];
231 
232 	if (chan == 1) {
233 		tssdp &= ~IGC_AUX1_SEL_SDP3;
234 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 	} else {
236 		tssdp &= ~IGC_AUX0_SEL_SDP3;
237 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 	}
239 
240 	wr32(IGC_TSSDP, tssdp);
241 	wr32(IGC_CTRL, ctrl);
242 	wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244 
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 				       struct ptp_clock_request *rq, int on)
247 {
248 	struct igc_adapter *igc =
249 		container_of(ptp, struct igc_adapter, ptp_caps);
250 	struct igc_hw *hw = &igc->hw;
251 	unsigned long flags;
252 	struct timespec64 ts;
253 	int use_freq = 0, pin = -1;
254 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 	s64 ns;
256 
257 	switch (rq->type) {
258 	case PTP_CLK_REQ_EXTTS:
259 		/* Reject requests with unsupported flags */
260 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 					PTP_RISING_EDGE |
262 					PTP_FALLING_EDGE |
263 					PTP_STRICT_FLAGS))
264 			return -EOPNOTSUPP;
265 
266 		/* Reject requests failing to enable both edges. */
267 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 			return -EOPNOTSUPP;
271 
272 		if (on) {
273 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 					   rq->extts.index);
275 			if (pin < 0)
276 				return -EBUSY;
277 		}
278 		if (rq->extts.index == 1) {
279 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 			tsim_mask = IGC_TSICR_AUTT1;
281 		} else {
282 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 			tsim_mask = IGC_TSICR_AUTT0;
284 		}
285 		spin_lock_irqsave(&igc->tmreg_lock, flags);
286 		tsauxc = rd32(IGC_TSAUXC);
287 		tsim = rd32(IGC_TSIM);
288 		if (on) {
289 			igc_pin_extts(igc, rq->extts.index, pin);
290 			tsauxc |= tsauxc_mask;
291 			tsim |= tsim_mask;
292 		} else {
293 			tsauxc &= ~tsauxc_mask;
294 			tsim &= ~tsim_mask;
295 		}
296 		wr32(IGC_TSAUXC, tsauxc);
297 		wr32(IGC_TSIM, tsim);
298 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 		return 0;
300 
301 	case PTP_CLK_REQ_PEROUT:
302 		/* Reject requests with unsupported flags */
303 		if (rq->perout.flags)
304 			return -EOPNOTSUPP;
305 
306 		if (on) {
307 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 					   rq->perout.index);
309 			if (pin < 0)
310 				return -EBUSY;
311 		}
312 		ts.tv_sec = rq->perout.period.sec;
313 		ts.tv_nsec = rq->perout.period.nsec;
314 		ns = timespec64_to_ns(&ts);
315 		ns = ns >> 1;
316 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 			   ns == 250000000LL || ns == 500000000LL)) {
318 			if (ns < 8LL)
319 				return -EINVAL;
320 			use_freq = 1;
321 		}
322 		ts = ns_to_timespec64(ns);
323 		if (rq->perout.index == 1) {
324 			if (use_freq) {
325 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 				tsim_mask = 0;
327 			} else {
328 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 				tsim_mask = IGC_TSICR_TT1;
330 			}
331 			trgttiml = IGC_TRGTTIML1;
332 			trgttimh = IGC_TRGTTIMH1;
333 			freqout = IGC_FREQOUT1;
334 		} else {
335 			if (use_freq) {
336 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 				tsim_mask = 0;
338 			} else {
339 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 				tsim_mask = IGC_TSICR_TT0;
341 			}
342 			trgttiml = IGC_TRGTTIML0;
343 			trgttimh = IGC_TRGTTIMH0;
344 			freqout = IGC_FREQOUT0;
345 		}
346 		spin_lock_irqsave(&igc->tmreg_lock, flags);
347 		tsauxc = rd32(IGC_TSAUXC);
348 		tsim = rd32(IGC_TSIM);
349 		if (rq->perout.index == 1) {
350 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 				    IGC_TSAUXC_ST1);
352 			tsim &= ~IGC_TSICR_TT1;
353 		} else {
354 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 				    IGC_TSAUXC_ST0);
356 			tsim &= ~IGC_TSICR_TT0;
357 		}
358 		if (on) {
359 			struct timespec64 safe_start;
360 			int i = rq->perout.index;
361 
362 			igc_pin_perout(igc, i, pin, use_freq);
363 			igc_ptp_read(igc, &safe_start);
364 
365 			/* PPS output start time is triggered by Target time(TT)
366 			 * register. Programming any past time value into TT
367 			 * register will cause PPS to never start. Need to make
368 			 * sure we program the TT register a time ahead in
369 			 * future. There isn't a stringent need to fire PPS out
370 			 * right away. Adding +2 seconds should take care of
371 			 * corner cases. Let's say if the SYSTIML is close to
372 			 * wrap up and the timer keeps ticking as we program the
373 			 * register, adding +2seconds is safe bet.
374 			 */
375 			safe_start.tv_sec += 2;
376 
377 			if (rq->perout.start.sec < safe_start.tv_sec)
378 				igc->perout[i].start.tv_sec = safe_start.tv_sec;
379 			else
380 				igc->perout[i].start.tv_sec = rq->perout.start.sec;
381 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
382 			igc->perout[i].period.tv_sec = ts.tv_sec;
383 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
384 			wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
385 			/* For now, always select timer 0 as source. */
386 			wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
387 					     IGC_TT_IO_TIMER_SEL_SYSTIM0));
388 			if (use_freq)
389 				wr32(freqout, ns);
390 			tsauxc |= tsauxc_mask;
391 			tsim |= tsim_mask;
392 		}
393 		wr32(IGC_TSAUXC, tsauxc);
394 		wr32(IGC_TSIM, tsim);
395 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
396 		return 0;
397 
398 	case PTP_CLK_REQ_PPS:
399 		spin_lock_irqsave(&igc->tmreg_lock, flags);
400 		tsim = rd32(IGC_TSIM);
401 		if (on)
402 			tsim |= IGC_TSICR_SYS_WRAP;
403 		else
404 			tsim &= ~IGC_TSICR_SYS_WRAP;
405 		igc->pps_sys_wrap_on = on;
406 		wr32(IGC_TSIM, tsim);
407 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
408 		return 0;
409 
410 	default:
411 		break;
412 	}
413 
414 	return -EOPNOTSUPP;
415 }
416 
417 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
418 			      enum ptp_pin_function func, unsigned int chan)
419 {
420 	switch (func) {
421 	case PTP_PF_NONE:
422 	case PTP_PF_EXTTS:
423 	case PTP_PF_PEROUT:
424 		break;
425 	case PTP_PF_PHYSYNC:
426 		return -1;
427 	}
428 	return 0;
429 }
430 
431 /**
432  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
433  * @adapter: board private structure
434  * @hwtstamps: timestamp structure to update
435  * @systim: unsigned 64bit system time value
436  *
437  * We need to convert the system time value stored in the RX/TXSTMP registers
438  * into a hwtstamp which can be used by the upper level timestamping functions.
439  *
440  * Returns 0 on success.
441  **/
442 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
443 				      struct skb_shared_hwtstamps *hwtstamps,
444 				      u64 systim)
445 {
446 	switch (adapter->hw.mac.type) {
447 	case igc_i225:
448 		memset(hwtstamps, 0, sizeof(*hwtstamps));
449 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
450 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
451 						systim & 0xFFFFFFFF);
452 		break;
453 	default:
454 		return -EINVAL;
455 	}
456 	return 0;
457 }
458 
459 /**
460  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
461  * @adapter: Pointer to adapter the packet buffer belongs to
462  * @buf: Pointer to start of timestamp in HW format (2 32-bit words)
463  *
464  * This function retrieves and converts the timestamp stored at @buf
465  * to ktime_t, adjusting for hardware latencies.
466  *
467  * Returns timestamp value.
468  */
469 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
470 {
471 	ktime_t timestamp;
472 	u32 secs, nsecs;
473 	int adjust;
474 
475 	nsecs = le32_to_cpu(buf[0]);
476 	secs = le32_to_cpu(buf[1]);
477 
478 	timestamp = ktime_set(secs, nsecs);
479 
480 	/* Adjust timestamp for the RX latency based on link speed */
481 	switch (adapter->link_speed) {
482 	case SPEED_10:
483 		adjust = IGC_I225_RX_LATENCY_10;
484 		break;
485 	case SPEED_100:
486 		adjust = IGC_I225_RX_LATENCY_100;
487 		break;
488 	case SPEED_1000:
489 		adjust = IGC_I225_RX_LATENCY_1000;
490 		break;
491 	case SPEED_2500:
492 		adjust = IGC_I225_RX_LATENCY_2500;
493 		break;
494 	default:
495 		adjust = 0;
496 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
497 		break;
498 	}
499 
500 	return ktime_sub_ns(timestamp, adjust);
501 }
502 
503 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
504 {
505 	struct igc_hw *hw = &adapter->hw;
506 	u32 val;
507 	int i;
508 
509 	wr32(IGC_TSYNCRXCTL, 0);
510 
511 	for (i = 0; i < adapter->num_rx_queues; i++) {
512 		val = rd32(IGC_SRRCTL(i));
513 		val &= ~IGC_SRRCTL_TIMESTAMP;
514 		wr32(IGC_SRRCTL(i), val);
515 	}
516 
517 	val = rd32(IGC_RXPBS);
518 	val &= ~IGC_RXPBS_CFG_TS_EN;
519 	wr32(IGC_RXPBS, val);
520 }
521 
522 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
523 {
524 	struct igc_hw *hw = &adapter->hw;
525 	u32 val;
526 	int i;
527 
528 	val = rd32(IGC_RXPBS);
529 	val |= IGC_RXPBS_CFG_TS_EN;
530 	wr32(IGC_RXPBS, val);
531 
532 	for (i = 0; i < adapter->num_rx_queues; i++) {
533 		val = rd32(IGC_SRRCTL(i));
534 		/* Enable retrieving timestamps from timer 0, the
535 		 * "adjustable clock" and timer 1 the "free running
536 		 * clock".
537 		 */
538 		val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
539 		       IGC_SRRCTL_TIMESTAMP;
540 		wr32(IGC_SRRCTL(i), val);
541 	}
542 
543 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
544 	      IGC_TSYNCRXCTL_RXSYNSIG;
545 	wr32(IGC_TSYNCRXCTL, val);
546 }
547 
548 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
549 {
550 	unsigned long flags;
551 	int i;
552 
553 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
554 
555 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
556 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
557 
558 		dev_kfree_skb_any(tstamp->skb);
559 		tstamp->skb = NULL;
560 	}
561 
562 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
563 }
564 
565 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
566 {
567 	struct igc_hw *hw = &adapter->hw;
568 	int i;
569 
570 	/* Clear the flags first to avoid new packets to be enqueued
571 	 * for TX timestamping.
572 	 */
573 	for (i = 0; i < adapter->num_tx_queues; i++) {
574 		struct igc_ring *tx_ring = adapter->tx_ring[i];
575 
576 		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
577 	}
578 
579 	/* Now we can clean the pending TX timestamp requests. */
580 	igc_ptp_clear_tx_tstamp(adapter);
581 
582 	wr32(IGC_TSYNCTXCTL, 0);
583 }
584 
585 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
586 {
587 	struct igc_hw *hw = &adapter->hw;
588 	int i;
589 
590 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
591 
592 	/* Read TXSTMP registers to discard any timestamp previously stored. */
593 	rd32(IGC_TXSTMPL);
594 	rd32(IGC_TXSTMPH);
595 
596 	/* The hardware is ready to accept TX timestamp requests,
597 	 * notify the transmit path.
598 	 */
599 	for (i = 0; i < adapter->num_tx_queues; i++) {
600 		struct igc_ring *tx_ring = adapter->tx_ring[i];
601 
602 		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
603 	}
604 
605 }
606 
607 /**
608  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
609  * @adapter: networking device structure
610  * @config: hwtstamp configuration
611  *
612  * Return: 0 in case of success, negative errno code otherwise.
613  */
614 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
615 				      struct hwtstamp_config *config)
616 {
617 	switch (config->tx_type) {
618 	case HWTSTAMP_TX_OFF:
619 		igc_ptp_disable_tx_timestamp(adapter);
620 		break;
621 	case HWTSTAMP_TX_ON:
622 		igc_ptp_enable_tx_timestamp(adapter);
623 		break;
624 	default:
625 		return -ERANGE;
626 	}
627 
628 	switch (config->rx_filter) {
629 	case HWTSTAMP_FILTER_NONE:
630 		igc_ptp_disable_rx_timestamp(adapter);
631 		break;
632 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
633 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
634 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
635 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
636 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
637 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
638 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
639 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
640 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
641 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
642 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
643 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
644 	case HWTSTAMP_FILTER_NTP_ALL:
645 	case HWTSTAMP_FILTER_ALL:
646 		igc_ptp_enable_rx_timestamp(adapter);
647 		config->rx_filter = HWTSTAMP_FILTER_ALL;
648 		break;
649 	default:
650 		return -ERANGE;
651 	}
652 
653 	return 0;
654 }
655 
656 /* Requires adapter->ptp_tx_lock held by caller. */
657 static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
658 			       struct igc_tx_timestamp_request *tstamp)
659 {
660 	dev_kfree_skb_any(tstamp->skb);
661 	tstamp->skb = NULL;
662 	adapter->tx_hwtstamp_timeouts++;
663 
664 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
665 }
666 
667 void igc_ptp_tx_hang(struct igc_adapter *adapter)
668 {
669 	struct igc_tx_timestamp_request *tstamp;
670 	struct igc_hw *hw = &adapter->hw;
671 	unsigned long flags;
672 	bool found = false;
673 	int i;
674 
675 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
676 
677 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
678 		tstamp = &adapter->tx_tstamp[i];
679 
680 		if (!tstamp->skb)
681 			continue;
682 
683 		if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
684 			continue;
685 
686 		igc_ptp_tx_timeout(adapter, tstamp);
687 		found = true;
688 	}
689 
690 	if (found) {
691 		/* Reading the high register of the first set of timestamp registers
692 		 * clears all the equivalent bits in the TSYNCTXCTL register.
693 		 */
694 		rd32(IGC_TXSTMPH_0);
695 	}
696 
697 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
698 }
699 
700 static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
701 				    struct igc_tx_timestamp_request *tstamp, u64 regval)
702 {
703 	struct skb_shared_hwtstamps shhwtstamps;
704 	struct sk_buff *skb;
705 	int adjust = 0;
706 
707 	skb = tstamp->skb;
708 	if (!skb)
709 		return;
710 
711 	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
712 		return;
713 
714 	switch (adapter->link_speed) {
715 	case SPEED_10:
716 		adjust = IGC_I225_TX_LATENCY_10;
717 		break;
718 	case SPEED_100:
719 		adjust = IGC_I225_TX_LATENCY_100;
720 		break;
721 	case SPEED_1000:
722 		adjust = IGC_I225_TX_LATENCY_1000;
723 		break;
724 	case SPEED_2500:
725 		adjust = IGC_I225_TX_LATENCY_2500;
726 		break;
727 	}
728 
729 	shhwtstamps.hwtstamp =
730 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
731 
732 	tstamp->skb = NULL;
733 
734 	skb_tstamp_tx(skb, &shhwtstamps);
735 	dev_kfree_skb_any(skb);
736 }
737 
738 /**
739  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
740  * @adapter: Board private structure
741  *
742  * Check against the ready mask for which of the timestamp register
743  * sets are ready to be retrieved, then retrieve that and notify the
744  * rest of the stack.
745  *
746  * Context: Expects adapter->ptp_tx_lock to be held by caller.
747  */
748 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
749 {
750 	struct igc_hw *hw = &adapter->hw;
751 	u64 regval;
752 	u32 mask;
753 	int i;
754 
755 	mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
756 	if (mask & IGC_TSYNCTXCTL_TXTT_0) {
757 		regval = rd32(IGC_TXSTMPL);
758 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
759 	} else {
760 		/* There's a bug in the hardware that could cause
761 		 * missing interrupts for TX timestamping. The issue
762 		 * is that for new interrupts to be triggered, the
763 		 * IGC_TXSTMPH_0 register must be read.
764 		 *
765 		 * To avoid discarding a valid timestamp that just
766 		 * happened at the "wrong" time, we need to confirm
767 		 * that there was no timestamp captured, we do that by
768 		 * assuming that no two timestamps in sequence have
769 		 * the same nanosecond value.
770 		 *
771 		 * So, we read the "low" register, read the "high"
772 		 * register (to latch a new timestamp) and read the
773 		 * "low" register again, if "old" and "new" versions
774 		 * of the "low" register are different, a valid
775 		 * timestamp was captured, we can read the "high"
776 		 * register again.
777 		 */
778 		u32 txstmpl_old, txstmpl_new;
779 
780 		txstmpl_old = rd32(IGC_TXSTMPL);
781 		rd32(IGC_TXSTMPH);
782 		txstmpl_new = rd32(IGC_TXSTMPL);
783 
784 		if (txstmpl_old == txstmpl_new)
785 			goto done;
786 
787 		regval = txstmpl_new;
788 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
789 	}
790 
791 	igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
792 
793 done:
794 	/* Now that the problematic first register was handled, we can
795 	 * use retrieve the timestamps from the other registers
796 	 * (starting from '1') with less complications.
797 	 */
798 	for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
799 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
800 
801 		if (!(tstamp->mask & mask))
802 			continue;
803 
804 		regval = rd32(tstamp->regl);
805 		regval |= (u64)rd32(tstamp->regh) << 32;
806 
807 		igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
808 	}
809 }
810 
811 /**
812  * igc_ptp_tx_tstamp_event
813  * @adapter: board private structure
814  *
815  * Called when a TX timestamp interrupt happens to retrieve the
816  * timestamp and send it up to the socket.
817  */
818 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
819 {
820 	unsigned long flags;
821 
822 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
823 
824 	igc_ptp_tx_hwtstamp(adapter);
825 
826 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
827 }
828 
829 /**
830  * igc_ptp_set_ts_config - set hardware time stamping config
831  * @netdev: network interface device structure
832  * @ifr: interface request data
833  *
834  **/
835 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
836 {
837 	struct igc_adapter *adapter = netdev_priv(netdev);
838 	struct hwtstamp_config config;
839 	int err;
840 
841 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
842 		return -EFAULT;
843 
844 	err = igc_ptp_set_timestamp_mode(adapter, &config);
845 	if (err)
846 		return err;
847 
848 	/* save these settings for future reference */
849 	memcpy(&adapter->tstamp_config, &config,
850 	       sizeof(adapter->tstamp_config));
851 
852 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
853 		-EFAULT : 0;
854 }
855 
856 /**
857  * igc_ptp_get_ts_config - get hardware time stamping config
858  * @netdev: network interface device structure
859  * @ifr: interface request data
860  *
861  * Get the hwtstamp_config settings to return to the user. Rather than attempt
862  * to deconstruct the settings from the registers, just return a shadow copy
863  * of the last known settings.
864  **/
865 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
866 {
867 	struct igc_adapter *adapter = netdev_priv(netdev);
868 	struct hwtstamp_config *config = &adapter->tstamp_config;
869 
870 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
871 		-EFAULT : 0;
872 }
873 
874 /* The two conditions below must be met for cross timestamping via
875  * PCIe PTM:
876  *
877  * 1. We have an way to convert the timestamps in the PTM messages
878  *    to something related to the system clocks (right now, only
879  *    X86 systems with support for the Always Running Timer allow that);
880  *
881  * 2. We have PTM enabled in the path from the device to the PCIe root port.
882  */
883 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
884 {
885 	if (!IS_ENABLED(CONFIG_X86_TSC))
886 		return false;
887 
888 	/* FIXME: it was noticed that enabling support for PCIe PTM in
889 	 * some i225-V models could cause lockups when bringing the
890 	 * interface up/down. There should be no downsides to
891 	 * disabling crosstimestamping support for i225-V, as it
892 	 * doesn't have any PTP support. That way we gain some time
893 	 * while root causing the issue.
894 	 */
895 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
896 		return false;
897 
898 	return pcie_ptm_enabled(adapter->pdev);
899 }
900 
901 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
902 {
903 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
904 	return convert_art_ns_to_tsc(tstamp);
905 #else
906 	return (struct system_counterval_t) { };
907 #endif
908 }
909 
910 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
911 {
912 	struct net_device *netdev = adapter->netdev;
913 
914 	switch (ptm_stat) {
915 	case IGC_PTM_STAT_RET_ERR:
916 		netdev_err(netdev, "PTM Error: Root port timeout\n");
917 		break;
918 	case IGC_PTM_STAT_BAD_PTM_RES:
919 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
920 		break;
921 	case IGC_PTM_STAT_T4M1_OVFL:
922 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
923 		break;
924 	case IGC_PTM_STAT_ADJUST_1ST:
925 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
926 		break;
927 	case IGC_PTM_STAT_ADJUST_CYC:
928 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
929 		break;
930 	default:
931 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
932 		break;
933 	}
934 }
935 
936 static int igc_phc_get_syncdevicetime(ktime_t *device,
937 				      struct system_counterval_t *system,
938 				      void *ctx)
939 {
940 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
941 	struct igc_adapter *adapter = ctx;
942 	struct igc_hw *hw = &adapter->hw;
943 	int err, count = 100;
944 	ktime_t t1, t2_curr;
945 
946 	/* Get a snapshot of system clocks to use as historic value. */
947 	ktime_get_snapshot(&adapter->snapshot);
948 
949 	do {
950 		/* Doing this in a loop because in the event of a
951 		 * badly timed (ha!) system clock adjustment, we may
952 		 * get PTM errors from the PCI root, but these errors
953 		 * are transitory. Repeating the process returns valid
954 		 * data eventually.
955 		 */
956 
957 		/* To "manually" start the PTM cycle we need to clear and
958 		 * then set again the TRIG bit.
959 		 */
960 		ctrl = rd32(IGC_PTM_CTRL);
961 		ctrl &= ~IGC_PTM_CTRL_TRIG;
962 		wr32(IGC_PTM_CTRL, ctrl);
963 		ctrl |= IGC_PTM_CTRL_TRIG;
964 		wr32(IGC_PTM_CTRL, ctrl);
965 
966 		/* The cycle only starts "for real" when software notifies
967 		 * that it has read the registers, this is done by setting
968 		 * VALID bit.
969 		 */
970 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
971 
972 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
973 					 stat, IGC_PTM_STAT_SLEEP,
974 					 IGC_PTM_STAT_TIMEOUT);
975 		if (err < 0) {
976 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
977 			return err;
978 		}
979 
980 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
981 			break;
982 
983 		if (stat & ~IGC_PTM_STAT_VALID) {
984 			/* An error occurred, log it. */
985 			igc_ptm_log_error(adapter, stat);
986 			/* The STAT register is write-1-to-clear (W1C),
987 			 * so write the previous error status to clear it.
988 			 */
989 			wr32(IGC_PTM_STAT, stat);
990 			continue;
991 		}
992 	} while (--count);
993 
994 	if (!count) {
995 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
996 		return -ETIMEDOUT;
997 	}
998 
999 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1000 
1001 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1002 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1003 
1004 	/* FIXME: When the register that tells the endianness of the
1005 	 * PTM registers are implemented, check them here and add the
1006 	 * appropriate conversion.
1007 	 */
1008 	t2_curr_h = swab32(t2_curr_h);
1009 
1010 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1011 
1012 	*device = t1;
1013 	*system = igc_device_tstamp_to_system(t2_curr);
1014 
1015 	return 0;
1016 }
1017 
1018 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1019 				  struct system_device_crosststamp *cts)
1020 {
1021 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1022 						   ptp_caps);
1023 
1024 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1025 					     adapter, &adapter->snapshot, cts);
1026 }
1027 
1028 static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
1029 				struct timespec64 *ts,
1030 				struct ptp_system_timestamp *sts)
1031 {
1032 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
1033 	struct igc_hw *hw = &igc->hw;
1034 	unsigned long flags;
1035 
1036 	spin_lock_irqsave(&igc->free_timer_lock, flags);
1037 
1038 	ptp_read_system_prets(sts);
1039 	ts->tv_nsec = rd32(IGC_SYSTIML_1);
1040 	ts->tv_sec = rd32(IGC_SYSTIMH_1);
1041 	ptp_read_system_postts(sts);
1042 
1043 	spin_unlock_irqrestore(&igc->free_timer_lock, flags);
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  * igc_ptp_init - Initialize PTP functionality
1050  * @adapter: Board private structure
1051  *
1052  * This function is called at device probe to initialize the PTP
1053  * functionality.
1054  */
1055 void igc_ptp_init(struct igc_adapter *adapter)
1056 {
1057 	struct net_device *netdev = adapter->netdev;
1058 	struct igc_tx_timestamp_request *tstamp;
1059 	struct igc_hw *hw = &adapter->hw;
1060 	int i;
1061 
1062 	tstamp = &adapter->tx_tstamp[0];
1063 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1064 	tstamp->regl = IGC_TXSTMPL_0;
1065 	tstamp->regh = IGC_TXSTMPH_0;
1066 	tstamp->flags = 0;
1067 
1068 	tstamp = &adapter->tx_tstamp[1];
1069 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1070 	tstamp->regl = IGC_TXSTMPL_1;
1071 	tstamp->regh = IGC_TXSTMPH_1;
1072 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1073 
1074 	tstamp = &adapter->tx_tstamp[2];
1075 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1076 	tstamp->regl = IGC_TXSTMPL_2;
1077 	tstamp->regh = IGC_TXSTMPH_2;
1078 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1079 
1080 	tstamp = &adapter->tx_tstamp[3];
1081 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1082 	tstamp->regl = IGC_TXSTMPL_3;
1083 	tstamp->regh = IGC_TXSTMPH_3;
1084 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1085 
1086 	switch (hw->mac.type) {
1087 	case igc_i225:
1088 		for (i = 0; i < IGC_N_SDP; i++) {
1089 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1090 
1091 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1092 			ppd->index = i;
1093 			ppd->func = PTP_PF_NONE;
1094 		}
1095 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1096 		adapter->ptp_caps.owner = THIS_MODULE;
1097 		adapter->ptp_caps.max_adj = 62499999;
1098 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1099 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1100 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1101 		adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
1102 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1103 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1104 		adapter->ptp_caps.pps = 1;
1105 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1106 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1107 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1108 		adapter->ptp_caps.n_pins = IGC_N_SDP;
1109 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1110 
1111 		if (!igc_is_crosststamp_supported(adapter))
1112 			break;
1113 
1114 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1115 		break;
1116 	default:
1117 		adapter->ptp_clock = NULL;
1118 		return;
1119 	}
1120 
1121 	spin_lock_init(&adapter->ptp_tx_lock);
1122 	spin_lock_init(&adapter->free_timer_lock);
1123 	spin_lock_init(&adapter->tmreg_lock);
1124 
1125 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1126 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1127 
1128 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1129 	adapter->ptp_reset_start = ktime_get();
1130 
1131 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1132 						&adapter->pdev->dev);
1133 	if (IS_ERR(adapter->ptp_clock)) {
1134 		adapter->ptp_clock = NULL;
1135 		netdev_err(netdev, "ptp_clock_register failed\n");
1136 	} else if (adapter->ptp_clock) {
1137 		netdev_info(netdev, "PHC added\n");
1138 		adapter->ptp_flags |= IGC_PTP_ENABLED;
1139 	}
1140 }
1141 
1142 static void igc_ptp_time_save(struct igc_adapter *adapter)
1143 {
1144 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1145 	adapter->ptp_reset_start = ktime_get();
1146 }
1147 
1148 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1149 {
1150 	struct timespec64 ts = adapter->prev_ptp_time;
1151 	ktime_t delta;
1152 
1153 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1154 
1155 	timespec64_add_ns(&ts, ktime_to_ns(delta));
1156 
1157 	igc_ptp_write_i225(adapter, &ts);
1158 }
1159 
1160 static void igc_ptm_stop(struct igc_adapter *adapter)
1161 {
1162 	struct igc_hw *hw = &adapter->hw;
1163 	u32 ctrl;
1164 
1165 	ctrl = rd32(IGC_PTM_CTRL);
1166 	ctrl &= ~IGC_PTM_CTRL_EN;
1167 
1168 	wr32(IGC_PTM_CTRL, ctrl);
1169 }
1170 
1171 /**
1172  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1173  * @adapter: Board private structure
1174  *
1175  * This function stops the overflow check work and PTP Tx timestamp work, and
1176  * will prepare the device for OS suspend.
1177  */
1178 void igc_ptp_suspend(struct igc_adapter *adapter)
1179 {
1180 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1181 		return;
1182 
1183 	igc_ptp_clear_tx_tstamp(adapter);
1184 
1185 	if (pci_device_is_present(adapter->pdev)) {
1186 		igc_ptp_time_save(adapter);
1187 		igc_ptm_stop(adapter);
1188 	}
1189 }
1190 
1191 /**
1192  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1193  * @adapter: Board private structure.
1194  *
1195  * This function stops the PTP support and cancels the delayed work.
1196  **/
1197 void igc_ptp_stop(struct igc_adapter *adapter)
1198 {
1199 	igc_ptp_suspend(adapter);
1200 
1201 	if (adapter->ptp_clock) {
1202 		ptp_clock_unregister(adapter->ptp_clock);
1203 		netdev_info(adapter->netdev, "PHC removed\n");
1204 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1205 	}
1206 }
1207 
1208 /**
1209  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1210  * @adapter: Board private structure.
1211  *
1212  * This function handles the reset work required to re-enable the PTP device.
1213  **/
1214 void igc_ptp_reset(struct igc_adapter *adapter)
1215 {
1216 	struct igc_hw *hw = &adapter->hw;
1217 	u32 cycle_ctrl, ctrl;
1218 	unsigned long flags;
1219 	u32 timadj;
1220 
1221 	/* reset the tstamp_config */
1222 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1223 
1224 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1225 
1226 	switch (adapter->hw.mac.type) {
1227 	case igc_i225:
1228 		timadj = rd32(IGC_TIMADJ);
1229 		timadj |= IGC_TIMADJ_ADJUST_METH;
1230 		wr32(IGC_TIMADJ, timadj);
1231 
1232 		wr32(IGC_TSAUXC, 0x0);
1233 		wr32(IGC_TSSDP, 0x0);
1234 		wr32(IGC_TSIM,
1235 		     IGC_TSICR_INTERRUPTS |
1236 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1237 		wr32(IGC_IMS, IGC_IMS_TS);
1238 
1239 		if (!igc_is_crosststamp_supported(adapter))
1240 			break;
1241 
1242 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1243 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1244 
1245 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1246 
1247 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1248 
1249 		ctrl = IGC_PTM_CTRL_EN |
1250 			IGC_PTM_CTRL_START_NOW |
1251 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1252 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1253 			IGC_PTM_CTRL_TRIG;
1254 
1255 		wr32(IGC_PTM_CTRL, ctrl);
1256 
1257 		/* Force the first cycle to run. */
1258 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1259 
1260 		break;
1261 	default:
1262 		/* No work to do. */
1263 		goto out;
1264 	}
1265 
1266 	/* Re-initialize the timer. */
1267 	if (hw->mac.type == igc_i225) {
1268 		igc_ptp_time_restore(adapter);
1269 	} else {
1270 		timecounter_init(&adapter->tc, &adapter->cc,
1271 				 ktime_to_ns(ktime_get_real()));
1272 	}
1273 out:
1274 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1275 
1276 	wrfl();
1277 }
1278