1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 Intel Corporation */ 3 4 #include "igc.h" 5 6 #include <linux/module.h> 7 #include <linux/device.h> 8 #include <linux/pci.h> 9 #include <linux/ptp_classify.h> 10 #include <linux/clocksource.h> 11 #include <linux/ktime.h> 12 #include <linux/delay.h> 13 #include <linux/iopoll.h> 14 15 #define INCVALUE_MASK 0x7fffffff 16 #define ISGN 0x80000000 17 18 #define IGC_PTP_TX_TIMEOUT (HZ * 15) 19 20 #define IGC_PTM_STAT_SLEEP 2 21 #define IGC_PTM_STAT_TIMEOUT 100 22 23 /* SYSTIM read access for I225 */ 24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts) 25 { 26 struct igc_hw *hw = &adapter->hw; 27 u32 sec, nsec; 28 29 /* The timestamp is latched when SYSTIML is read. */ 30 nsec = rd32(IGC_SYSTIML); 31 sec = rd32(IGC_SYSTIMH); 32 33 ts->tv_sec = sec; 34 ts->tv_nsec = nsec; 35 } 36 37 static void igc_ptp_write_i225(struct igc_adapter *adapter, 38 const struct timespec64 *ts) 39 { 40 struct igc_hw *hw = &adapter->hw; 41 42 wr32(IGC_SYSTIML, ts->tv_nsec); 43 wr32(IGC_SYSTIMH, ts->tv_sec); 44 } 45 46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm) 47 { 48 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 49 ptp_caps); 50 struct igc_hw *hw = &igc->hw; 51 int neg_adj = 0; 52 u64 rate; 53 u32 inca; 54 55 if (scaled_ppm < 0) { 56 neg_adj = 1; 57 scaled_ppm = -scaled_ppm; 58 } 59 rate = scaled_ppm; 60 rate <<= 14; 61 rate = div_u64(rate, 78125); 62 63 inca = rate & INCVALUE_MASK; 64 if (neg_adj) 65 inca |= ISGN; 66 67 wr32(IGC_TIMINCA, inca); 68 69 return 0; 70 } 71 72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta) 73 { 74 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 75 ptp_caps); 76 struct timespec64 now, then = ns_to_timespec64(delta); 77 unsigned long flags; 78 79 spin_lock_irqsave(&igc->tmreg_lock, flags); 80 81 igc_ptp_read(igc, &now); 82 now = timespec64_add(now, then); 83 igc_ptp_write_i225(igc, (const struct timespec64 *)&now); 84 85 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 86 87 return 0; 88 } 89 90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp, 91 struct timespec64 *ts, 92 struct ptp_system_timestamp *sts) 93 { 94 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 95 ptp_caps); 96 struct igc_hw *hw = &igc->hw; 97 unsigned long flags; 98 99 spin_lock_irqsave(&igc->tmreg_lock, flags); 100 101 ptp_read_system_prets(sts); 102 ts->tv_nsec = rd32(IGC_SYSTIML); 103 ts->tv_sec = rd32(IGC_SYSTIMH); 104 ptp_read_system_postts(sts); 105 106 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 107 108 return 0; 109 } 110 111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp, 112 const struct timespec64 *ts) 113 { 114 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 115 ptp_caps); 116 unsigned long flags; 117 118 spin_lock_irqsave(&igc->tmreg_lock, flags); 119 120 igc_ptp_write_i225(igc, ts); 121 122 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 123 124 return 0; 125 } 126 127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) 128 { 129 u32 *ptr = pin < 2 ? ctrl : ctrl_ext; 130 static const u32 mask[IGC_N_SDP] = { 131 IGC_CTRL_SDP0_DIR, 132 IGC_CTRL_SDP1_DIR, 133 IGC_CTRL_EXT_SDP2_DIR, 134 IGC_CTRL_EXT_SDP3_DIR, 135 }; 136 137 if (input) 138 *ptr &= ~mask[pin]; 139 else 140 *ptr |= mask[pin]; 141 } 142 143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq) 144 { 145 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { 146 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, 147 }; 148 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { 149 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, 150 }; 151 static const u32 igc_ts_sdp_en[IGC_N_SDP] = { 152 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, 153 }; 154 static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = { 155 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0, 156 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0, 157 }; 158 static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = { 159 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1, 160 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1, 161 }; 162 static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = { 163 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0, 164 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0, 165 }; 166 static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = { 167 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, 168 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, 169 }; 170 static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = { 171 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, 172 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, 173 }; 174 struct igc_hw *hw = &igc->hw; 175 u32 ctrl, ctrl_ext, tssdp = 0; 176 177 ctrl = rd32(IGC_CTRL); 178 ctrl_ext = rd32(IGC_CTRL_EXT); 179 tssdp = rd32(IGC_TSSDP); 180 181 igc_pin_direction(pin, 0, &ctrl, &ctrl_ext); 182 183 /* Make sure this pin is not enabled as an input. */ 184 if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin]) 185 tssdp &= ~IGC_AUX0_TS_SDP_EN; 186 187 if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin]) 188 tssdp &= ~IGC_AUX1_TS_SDP_EN; 189 190 tssdp &= ~igc_ts_sdp_sel_clr[pin]; 191 if (freq) { 192 if (chan == 1) 193 tssdp |= igc_ts_sdp_sel_fc1[pin]; 194 else 195 tssdp |= igc_ts_sdp_sel_fc0[pin]; 196 } else { 197 if (chan == 1) 198 tssdp |= igc_ts_sdp_sel_tt1[pin]; 199 else 200 tssdp |= igc_ts_sdp_sel_tt0[pin]; 201 } 202 tssdp |= igc_ts_sdp_en[pin]; 203 204 wr32(IGC_TSSDP, tssdp); 205 wr32(IGC_CTRL, ctrl); 206 wr32(IGC_CTRL_EXT, ctrl_ext); 207 } 208 209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin) 210 { 211 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { 212 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, 213 }; 214 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { 215 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, 216 }; 217 static const u32 igc_ts_sdp_en[IGC_N_SDP] = { 218 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, 219 }; 220 struct igc_hw *hw = &igc->hw; 221 u32 ctrl, ctrl_ext, tssdp = 0; 222 223 ctrl = rd32(IGC_CTRL); 224 ctrl_ext = rd32(IGC_CTRL_EXT); 225 tssdp = rd32(IGC_TSSDP); 226 227 igc_pin_direction(pin, 1, &ctrl, &ctrl_ext); 228 229 /* Make sure this pin is not enabled as an output. */ 230 tssdp &= ~igc_ts_sdp_en[pin]; 231 232 if (chan == 1) { 233 tssdp &= ~IGC_AUX1_SEL_SDP3; 234 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN; 235 } else { 236 tssdp &= ~IGC_AUX0_SEL_SDP3; 237 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN; 238 } 239 240 wr32(IGC_TSSDP, tssdp); 241 wr32(IGC_CTRL, ctrl); 242 wr32(IGC_CTRL_EXT, ctrl_ext); 243 } 244 245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp, 246 struct ptp_clock_request *rq, int on) 247 { 248 struct igc_adapter *igc = 249 container_of(ptp, struct igc_adapter, ptp_caps); 250 struct igc_hw *hw = &igc->hw; 251 unsigned long flags; 252 struct timespec64 ts; 253 int use_freq = 0, pin = -1; 254 u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; 255 s64 ns; 256 257 switch (rq->type) { 258 case PTP_CLK_REQ_EXTTS: 259 /* Reject requests with unsupported flags */ 260 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 261 PTP_RISING_EDGE | 262 PTP_FALLING_EDGE | 263 PTP_STRICT_FLAGS)) 264 return -EOPNOTSUPP; 265 266 /* Reject requests failing to enable both edges. */ 267 if ((rq->extts.flags & PTP_STRICT_FLAGS) && 268 (rq->extts.flags & PTP_ENABLE_FEATURE) && 269 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) 270 return -EOPNOTSUPP; 271 272 if (on) { 273 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS, 274 rq->extts.index); 275 if (pin < 0) 276 return -EBUSY; 277 } 278 if (rq->extts.index == 1) { 279 tsauxc_mask = IGC_TSAUXC_EN_TS1; 280 tsim_mask = IGC_TSICR_AUTT1; 281 } else { 282 tsauxc_mask = IGC_TSAUXC_EN_TS0; 283 tsim_mask = IGC_TSICR_AUTT0; 284 } 285 spin_lock_irqsave(&igc->tmreg_lock, flags); 286 tsauxc = rd32(IGC_TSAUXC); 287 tsim = rd32(IGC_TSIM); 288 if (on) { 289 igc_pin_extts(igc, rq->extts.index, pin); 290 tsauxc |= tsauxc_mask; 291 tsim |= tsim_mask; 292 } else { 293 tsauxc &= ~tsauxc_mask; 294 tsim &= ~tsim_mask; 295 } 296 wr32(IGC_TSAUXC, tsauxc); 297 wr32(IGC_TSIM, tsim); 298 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 299 return 0; 300 301 case PTP_CLK_REQ_PEROUT: 302 /* Reject requests with unsupported flags */ 303 if (rq->perout.flags) 304 return -EOPNOTSUPP; 305 306 if (on) { 307 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT, 308 rq->perout.index); 309 if (pin < 0) 310 return -EBUSY; 311 } 312 ts.tv_sec = rq->perout.period.sec; 313 ts.tv_nsec = rq->perout.period.nsec; 314 ns = timespec64_to_ns(&ts); 315 ns = ns >> 1; 316 if (on && (ns <= 70000000LL || ns == 125000000LL || 317 ns == 250000000LL || ns == 500000000LL)) { 318 if (ns < 8LL) 319 return -EINVAL; 320 use_freq = 1; 321 } 322 ts = ns_to_timespec64(ns); 323 if (rq->perout.index == 1) { 324 if (use_freq) { 325 tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1; 326 tsim_mask = 0; 327 } else { 328 tsauxc_mask = IGC_TSAUXC_EN_TT1; 329 tsim_mask = IGC_TSICR_TT1; 330 } 331 trgttiml = IGC_TRGTTIML1; 332 trgttimh = IGC_TRGTTIMH1; 333 freqout = IGC_FREQOUT1; 334 } else { 335 if (use_freq) { 336 tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0; 337 tsim_mask = 0; 338 } else { 339 tsauxc_mask = IGC_TSAUXC_EN_TT0; 340 tsim_mask = IGC_TSICR_TT0; 341 } 342 trgttiml = IGC_TRGTTIML0; 343 trgttimh = IGC_TRGTTIMH0; 344 freqout = IGC_FREQOUT0; 345 } 346 spin_lock_irqsave(&igc->tmreg_lock, flags); 347 tsauxc = rd32(IGC_TSAUXC); 348 tsim = rd32(IGC_TSIM); 349 if (rq->perout.index == 1) { 350 tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 | 351 IGC_TSAUXC_ST1); 352 tsim &= ~IGC_TSICR_TT1; 353 } else { 354 tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 | 355 IGC_TSAUXC_ST0); 356 tsim &= ~IGC_TSICR_TT0; 357 } 358 if (on) { 359 struct timespec64 safe_start; 360 int i = rq->perout.index; 361 362 igc_pin_perout(igc, i, pin, use_freq); 363 igc_ptp_read(igc, &safe_start); 364 365 /* PPS output start time is triggered by Target time(TT) 366 * register. Programming any past time value into TT 367 * register will cause PPS to never start. Need to make 368 * sure we program the TT register a time ahead in 369 * future. There isn't a stringent need to fire PPS out 370 * right away. Adding +2 seconds should take care of 371 * corner cases. Let's say if the SYSTIML is close to 372 * wrap up and the timer keeps ticking as we program the 373 * register, adding +2seconds is safe bet. 374 */ 375 safe_start.tv_sec += 2; 376 377 if (rq->perout.start.sec < safe_start.tv_sec) 378 igc->perout[i].start.tv_sec = safe_start.tv_sec; 379 else 380 igc->perout[i].start.tv_sec = rq->perout.start.sec; 381 igc->perout[i].start.tv_nsec = rq->perout.start.nsec; 382 igc->perout[i].period.tv_sec = ts.tv_sec; 383 igc->perout[i].period.tv_nsec = ts.tv_nsec; 384 wr32(trgttimh, (u32)igc->perout[i].start.tv_sec); 385 /* For now, always select timer 0 as source. */ 386 wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec | 387 IGC_TT_IO_TIMER_SEL_SYSTIM0)); 388 if (use_freq) 389 wr32(freqout, ns); 390 tsauxc |= tsauxc_mask; 391 tsim |= tsim_mask; 392 } 393 wr32(IGC_TSAUXC, tsauxc); 394 wr32(IGC_TSIM, tsim); 395 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 396 return 0; 397 398 case PTP_CLK_REQ_PPS: 399 spin_lock_irqsave(&igc->tmreg_lock, flags); 400 tsim = rd32(IGC_TSIM); 401 if (on) 402 tsim |= IGC_TSICR_SYS_WRAP; 403 else 404 tsim &= ~IGC_TSICR_SYS_WRAP; 405 igc->pps_sys_wrap_on = on; 406 wr32(IGC_TSIM, tsim); 407 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 408 return 0; 409 410 default: 411 break; 412 } 413 414 return -EOPNOTSUPP; 415 } 416 417 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, 418 enum ptp_pin_function func, unsigned int chan) 419 { 420 switch (func) { 421 case PTP_PF_NONE: 422 case PTP_PF_EXTTS: 423 case PTP_PF_PEROUT: 424 break; 425 case PTP_PF_PHYSYNC: 426 return -1; 427 } 428 return 0; 429 } 430 431 /** 432 * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp 433 * @adapter: board private structure 434 * @hwtstamps: timestamp structure to update 435 * @systim: unsigned 64bit system time value 436 * 437 * We need to convert the system time value stored in the RX/TXSTMP registers 438 * into a hwtstamp which can be used by the upper level timestamping functions. 439 * 440 * Returns 0 on success. 441 **/ 442 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter, 443 struct skb_shared_hwtstamps *hwtstamps, 444 u64 systim) 445 { 446 switch (adapter->hw.mac.type) { 447 case igc_i225: 448 memset(hwtstamps, 0, sizeof(*hwtstamps)); 449 /* Upper 32 bits contain s, lower 32 bits contain ns. */ 450 hwtstamps->hwtstamp = ktime_set(systim >> 32, 451 systim & 0xFFFFFFFF); 452 break; 453 default: 454 return -EINVAL; 455 } 456 return 0; 457 } 458 459 /** 460 * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer 461 * @adapter: Pointer to adapter the packet buffer belongs to 462 * @buf: Pointer to start of timestamp in HW format (2 32-bit words) 463 * 464 * This function retrieves and converts the timestamp stored at @buf 465 * to ktime_t, adjusting for hardware latencies. 466 * 467 * Returns timestamp value. 468 */ 469 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf) 470 { 471 ktime_t timestamp; 472 u32 secs, nsecs; 473 int adjust; 474 475 nsecs = le32_to_cpu(buf[0]); 476 secs = le32_to_cpu(buf[1]); 477 478 timestamp = ktime_set(secs, nsecs); 479 480 /* Adjust timestamp for the RX latency based on link speed */ 481 switch (adapter->link_speed) { 482 case SPEED_10: 483 adjust = IGC_I225_RX_LATENCY_10; 484 break; 485 case SPEED_100: 486 adjust = IGC_I225_RX_LATENCY_100; 487 break; 488 case SPEED_1000: 489 adjust = IGC_I225_RX_LATENCY_1000; 490 break; 491 case SPEED_2500: 492 adjust = IGC_I225_RX_LATENCY_2500; 493 break; 494 default: 495 adjust = 0; 496 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n"); 497 break; 498 } 499 500 return ktime_sub_ns(timestamp, adjust); 501 } 502 503 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter) 504 { 505 struct igc_hw *hw = &adapter->hw; 506 u32 val; 507 int i; 508 509 wr32(IGC_TSYNCRXCTL, 0); 510 511 for (i = 0; i < adapter->num_rx_queues; i++) { 512 val = rd32(IGC_SRRCTL(i)); 513 val &= ~IGC_SRRCTL_TIMESTAMP; 514 wr32(IGC_SRRCTL(i), val); 515 } 516 517 val = rd32(IGC_RXPBS); 518 val &= ~IGC_RXPBS_CFG_TS_EN; 519 wr32(IGC_RXPBS, val); 520 } 521 522 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter) 523 { 524 struct igc_hw *hw = &adapter->hw; 525 u32 val; 526 int i; 527 528 val = rd32(IGC_RXPBS); 529 val |= IGC_RXPBS_CFG_TS_EN; 530 wr32(IGC_RXPBS, val); 531 532 for (i = 0; i < adapter->num_rx_queues; i++) { 533 val = rd32(IGC_SRRCTL(i)); 534 /* Enable retrieving timestamps from timer 0, the 535 * "adjustable clock" and timer 1 the "free running 536 * clock". 537 */ 538 val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) | 539 IGC_SRRCTL_TIMESTAMP; 540 wr32(IGC_SRRCTL(i), val); 541 } 542 543 val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL | 544 IGC_TSYNCRXCTL_RXSYNSIG; 545 wr32(IGC_TSYNCRXCTL, val); 546 } 547 548 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter) 549 { 550 unsigned long flags; 551 int i; 552 553 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 554 555 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 556 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 557 558 dev_kfree_skb_any(tstamp->skb); 559 tstamp->skb = NULL; 560 } 561 562 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 563 } 564 565 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter) 566 { 567 struct igc_hw *hw = &adapter->hw; 568 int i; 569 570 /* Clear the flags first to avoid new packets to be enqueued 571 * for TX timestamping. 572 */ 573 for (i = 0; i < adapter->num_tx_queues; i++) { 574 struct igc_ring *tx_ring = adapter->tx_ring[i]; 575 576 clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); 577 } 578 579 /* Now we can clean the pending TX timestamp requests. */ 580 igc_ptp_clear_tx_tstamp(adapter); 581 582 wr32(IGC_TSYNCTXCTL, 0); 583 } 584 585 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter) 586 { 587 struct igc_hw *hw = &adapter->hw; 588 int i; 589 590 wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG); 591 592 /* Read TXSTMP registers to discard any timestamp previously stored. */ 593 rd32(IGC_TXSTMPL); 594 rd32(IGC_TXSTMPH); 595 596 /* The hardware is ready to accept TX timestamp requests, 597 * notify the transmit path. 598 */ 599 for (i = 0; i < adapter->num_tx_queues; i++) { 600 struct igc_ring *tx_ring = adapter->tx_ring[i]; 601 602 set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); 603 } 604 605 } 606 607 /** 608 * igc_ptp_set_timestamp_mode - setup hardware for timestamping 609 * @adapter: networking device structure 610 * @config: hwtstamp configuration 611 * 612 * Return: 0 in case of success, negative errno code otherwise. 613 */ 614 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter, 615 struct hwtstamp_config *config) 616 { 617 switch (config->tx_type) { 618 case HWTSTAMP_TX_OFF: 619 igc_ptp_disable_tx_timestamp(adapter); 620 break; 621 case HWTSTAMP_TX_ON: 622 igc_ptp_enable_tx_timestamp(adapter); 623 break; 624 default: 625 return -ERANGE; 626 } 627 628 switch (config->rx_filter) { 629 case HWTSTAMP_FILTER_NONE: 630 igc_ptp_disable_rx_timestamp(adapter); 631 break; 632 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 633 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 634 case HWTSTAMP_FILTER_PTP_V2_EVENT: 635 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 636 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 637 case HWTSTAMP_FILTER_PTP_V2_SYNC: 638 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 639 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 640 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 641 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 642 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 643 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 644 case HWTSTAMP_FILTER_NTP_ALL: 645 case HWTSTAMP_FILTER_ALL: 646 igc_ptp_enable_rx_timestamp(adapter); 647 config->rx_filter = HWTSTAMP_FILTER_ALL; 648 break; 649 default: 650 return -ERANGE; 651 } 652 653 return 0; 654 } 655 656 /* Requires adapter->ptp_tx_lock held by caller. */ 657 static void igc_ptp_tx_timeout(struct igc_adapter *adapter, 658 struct igc_tx_timestamp_request *tstamp) 659 { 660 dev_kfree_skb_any(tstamp->skb); 661 tstamp->skb = NULL; 662 adapter->tx_hwtstamp_timeouts++; 663 664 netdev_warn(adapter->netdev, "Tx timestamp timeout\n"); 665 } 666 667 void igc_ptp_tx_hang(struct igc_adapter *adapter) 668 { 669 struct igc_tx_timestamp_request *tstamp; 670 struct igc_hw *hw = &adapter->hw; 671 unsigned long flags; 672 bool found = false; 673 int i; 674 675 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 676 677 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 678 tstamp = &adapter->tx_tstamp[i]; 679 680 if (!tstamp->skb) 681 continue; 682 683 if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT)) 684 continue; 685 686 igc_ptp_tx_timeout(adapter, tstamp); 687 found = true; 688 } 689 690 if (found) { 691 /* Reading the high register of the first set of timestamp registers 692 * clears all the equivalent bits in the TSYNCTXCTL register. 693 */ 694 rd32(IGC_TXSTMPH_0); 695 } 696 697 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 698 } 699 700 static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter, 701 struct igc_tx_timestamp_request *tstamp, u64 regval) 702 { 703 struct skb_shared_hwtstamps shhwtstamps; 704 struct sk_buff *skb; 705 int adjust = 0; 706 707 skb = tstamp->skb; 708 if (!skb) 709 return; 710 711 if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval)) 712 return; 713 714 switch (adapter->link_speed) { 715 case SPEED_10: 716 adjust = IGC_I225_TX_LATENCY_10; 717 break; 718 case SPEED_100: 719 adjust = IGC_I225_TX_LATENCY_100; 720 break; 721 case SPEED_1000: 722 adjust = IGC_I225_TX_LATENCY_1000; 723 break; 724 case SPEED_2500: 725 adjust = IGC_I225_TX_LATENCY_2500; 726 break; 727 } 728 729 shhwtstamps.hwtstamp = 730 ktime_add_ns(shhwtstamps.hwtstamp, adjust); 731 732 tstamp->skb = NULL; 733 734 skb_tstamp_tx(skb, &shhwtstamps); 735 dev_kfree_skb_any(skb); 736 } 737 738 /** 739 * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp 740 * @adapter: Board private structure 741 * 742 * Check against the ready mask for which of the timestamp register 743 * sets are ready to be retrieved, then retrieve that and notify the 744 * rest of the stack. 745 * 746 * Context: Expects adapter->ptp_tx_lock to be held by caller. 747 */ 748 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter) 749 { 750 struct igc_hw *hw = &adapter->hw; 751 u64 regval; 752 u32 mask; 753 int i; 754 755 mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY; 756 if (mask & IGC_TSYNCTXCTL_TXTT_0) { 757 regval = rd32(IGC_TXSTMPL); 758 regval |= (u64)rd32(IGC_TXSTMPH) << 32; 759 } else { 760 /* There's a bug in the hardware that could cause 761 * missing interrupts for TX timestamping. The issue 762 * is that for new interrupts to be triggered, the 763 * IGC_TXSTMPH_0 register must be read. 764 * 765 * To avoid discarding a valid timestamp that just 766 * happened at the "wrong" time, we need to confirm 767 * that there was no timestamp captured, we do that by 768 * assuming that no two timestamps in sequence have 769 * the same nanosecond value. 770 * 771 * So, we read the "low" register, read the "high" 772 * register (to latch a new timestamp) and read the 773 * "low" register again, if "old" and "new" versions 774 * of the "low" register are different, a valid 775 * timestamp was captured, we can read the "high" 776 * register again. 777 */ 778 u32 txstmpl_old, txstmpl_new; 779 780 txstmpl_old = rd32(IGC_TXSTMPL); 781 rd32(IGC_TXSTMPH); 782 txstmpl_new = rd32(IGC_TXSTMPL); 783 784 if (txstmpl_old == txstmpl_new) 785 goto done; 786 787 regval = txstmpl_new; 788 regval |= (u64)rd32(IGC_TXSTMPH) << 32; 789 } 790 791 igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval); 792 793 done: 794 /* Now that the problematic first register was handled, we can 795 * use retrieve the timestamps from the other registers 796 * (starting from '1') with less complications. 797 */ 798 for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 799 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 800 801 if (!(tstamp->mask & mask)) 802 continue; 803 804 regval = rd32(tstamp->regl); 805 regval |= (u64)rd32(tstamp->regh) << 32; 806 807 igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval); 808 } 809 } 810 811 /** 812 * igc_ptp_tx_tstamp_event 813 * @adapter: board private structure 814 * 815 * Called when a TX timestamp interrupt happens to retrieve the 816 * timestamp and send it up to the socket. 817 */ 818 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter) 819 { 820 unsigned long flags; 821 822 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 823 824 igc_ptp_tx_hwtstamp(adapter); 825 826 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 827 } 828 829 /** 830 * igc_ptp_set_ts_config - set hardware time stamping config 831 * @netdev: network interface device structure 832 * @ifr: interface request data 833 * 834 **/ 835 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) 836 { 837 struct igc_adapter *adapter = netdev_priv(netdev); 838 struct hwtstamp_config config; 839 int err; 840 841 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 842 return -EFAULT; 843 844 err = igc_ptp_set_timestamp_mode(adapter, &config); 845 if (err) 846 return err; 847 848 /* save these settings for future reference */ 849 memcpy(&adapter->tstamp_config, &config, 850 sizeof(adapter->tstamp_config)); 851 852 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 853 -EFAULT : 0; 854 } 855 856 /** 857 * igc_ptp_get_ts_config - get hardware time stamping config 858 * @netdev: network interface device structure 859 * @ifr: interface request data 860 * 861 * Get the hwtstamp_config settings to return to the user. Rather than attempt 862 * to deconstruct the settings from the registers, just return a shadow copy 863 * of the last known settings. 864 **/ 865 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) 866 { 867 struct igc_adapter *adapter = netdev_priv(netdev); 868 struct hwtstamp_config *config = &adapter->tstamp_config; 869 870 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 871 -EFAULT : 0; 872 } 873 874 /* The two conditions below must be met for cross timestamping via 875 * PCIe PTM: 876 * 877 * 1. We have an way to convert the timestamps in the PTM messages 878 * to something related to the system clocks (right now, only 879 * X86 systems with support for the Always Running Timer allow that); 880 * 881 * 2. We have PTM enabled in the path from the device to the PCIe root port. 882 */ 883 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter) 884 { 885 if (!IS_ENABLED(CONFIG_X86_TSC)) 886 return false; 887 888 /* FIXME: it was noticed that enabling support for PCIe PTM in 889 * some i225-V models could cause lockups when bringing the 890 * interface up/down. There should be no downsides to 891 * disabling crosstimestamping support for i225-V, as it 892 * doesn't have any PTP support. That way we gain some time 893 * while root causing the issue. 894 */ 895 if (adapter->pdev->device == IGC_DEV_ID_I225_V) 896 return false; 897 898 return pcie_ptm_enabled(adapter->pdev); 899 } 900 901 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp) 902 { 903 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML) 904 return convert_art_ns_to_tsc(tstamp); 905 #else 906 return (struct system_counterval_t) { }; 907 #endif 908 } 909 910 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat) 911 { 912 struct net_device *netdev = adapter->netdev; 913 914 switch (ptm_stat) { 915 case IGC_PTM_STAT_RET_ERR: 916 netdev_err(netdev, "PTM Error: Root port timeout\n"); 917 break; 918 case IGC_PTM_STAT_BAD_PTM_RES: 919 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n"); 920 break; 921 case IGC_PTM_STAT_T4M1_OVFL: 922 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n"); 923 break; 924 case IGC_PTM_STAT_ADJUST_1ST: 925 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n"); 926 break; 927 case IGC_PTM_STAT_ADJUST_CYC: 928 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n"); 929 break; 930 default: 931 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat); 932 break; 933 } 934 } 935 936 static int igc_phc_get_syncdevicetime(ktime_t *device, 937 struct system_counterval_t *system, 938 void *ctx) 939 { 940 u32 stat, t2_curr_h, t2_curr_l, ctrl; 941 struct igc_adapter *adapter = ctx; 942 struct igc_hw *hw = &adapter->hw; 943 int err, count = 100; 944 ktime_t t1, t2_curr; 945 946 /* Get a snapshot of system clocks to use as historic value. */ 947 ktime_get_snapshot(&adapter->snapshot); 948 949 do { 950 /* Doing this in a loop because in the event of a 951 * badly timed (ha!) system clock adjustment, we may 952 * get PTM errors from the PCI root, but these errors 953 * are transitory. Repeating the process returns valid 954 * data eventually. 955 */ 956 957 /* To "manually" start the PTM cycle we need to clear and 958 * then set again the TRIG bit. 959 */ 960 ctrl = rd32(IGC_PTM_CTRL); 961 ctrl &= ~IGC_PTM_CTRL_TRIG; 962 wr32(IGC_PTM_CTRL, ctrl); 963 ctrl |= IGC_PTM_CTRL_TRIG; 964 wr32(IGC_PTM_CTRL, ctrl); 965 966 /* The cycle only starts "for real" when software notifies 967 * that it has read the registers, this is done by setting 968 * VALID bit. 969 */ 970 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); 971 972 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat, 973 stat, IGC_PTM_STAT_SLEEP, 974 IGC_PTM_STAT_TIMEOUT); 975 if (err < 0) { 976 netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n"); 977 return err; 978 } 979 980 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID) 981 break; 982 983 if (stat & ~IGC_PTM_STAT_VALID) { 984 /* An error occurred, log it. */ 985 igc_ptm_log_error(adapter, stat); 986 /* The STAT register is write-1-to-clear (W1C), 987 * so write the previous error status to clear it. 988 */ 989 wr32(IGC_PTM_STAT, stat); 990 continue; 991 } 992 } while (--count); 993 994 if (!count) { 995 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n"); 996 return -ETIMEDOUT; 997 } 998 999 t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L)); 1000 1001 t2_curr_l = rd32(IGC_PTM_CURR_T2_L); 1002 t2_curr_h = rd32(IGC_PTM_CURR_T2_H); 1003 1004 /* FIXME: When the register that tells the endianness of the 1005 * PTM registers are implemented, check them here and add the 1006 * appropriate conversion. 1007 */ 1008 t2_curr_h = swab32(t2_curr_h); 1009 1010 t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l); 1011 1012 *device = t1; 1013 *system = igc_device_tstamp_to_system(t2_curr); 1014 1015 return 0; 1016 } 1017 1018 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp, 1019 struct system_device_crosststamp *cts) 1020 { 1021 struct igc_adapter *adapter = container_of(ptp, struct igc_adapter, 1022 ptp_caps); 1023 1024 return get_device_system_crosststamp(igc_phc_get_syncdevicetime, 1025 adapter, &adapter->snapshot, cts); 1026 } 1027 1028 static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp, 1029 struct timespec64 *ts, 1030 struct ptp_system_timestamp *sts) 1031 { 1032 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); 1033 struct igc_hw *hw = &igc->hw; 1034 unsigned long flags; 1035 1036 spin_lock_irqsave(&igc->free_timer_lock, flags); 1037 1038 ptp_read_system_prets(sts); 1039 ts->tv_nsec = rd32(IGC_SYSTIML_1); 1040 ts->tv_sec = rd32(IGC_SYSTIMH_1); 1041 ptp_read_system_postts(sts); 1042 1043 spin_unlock_irqrestore(&igc->free_timer_lock, flags); 1044 1045 return 0; 1046 } 1047 1048 /** 1049 * igc_ptp_init - Initialize PTP functionality 1050 * @adapter: Board private structure 1051 * 1052 * This function is called at device probe to initialize the PTP 1053 * functionality. 1054 */ 1055 void igc_ptp_init(struct igc_adapter *adapter) 1056 { 1057 struct net_device *netdev = adapter->netdev; 1058 struct igc_tx_timestamp_request *tstamp; 1059 struct igc_hw *hw = &adapter->hw; 1060 int i; 1061 1062 tstamp = &adapter->tx_tstamp[0]; 1063 tstamp->mask = IGC_TSYNCTXCTL_TXTT_0; 1064 tstamp->regl = IGC_TXSTMPL_0; 1065 tstamp->regh = IGC_TXSTMPH_0; 1066 tstamp->flags = 0; 1067 1068 tstamp = &adapter->tx_tstamp[1]; 1069 tstamp->mask = IGC_TSYNCTXCTL_TXTT_1; 1070 tstamp->regl = IGC_TXSTMPL_1; 1071 tstamp->regh = IGC_TXSTMPH_1; 1072 tstamp->flags = IGC_TX_FLAGS_TSTAMP_1; 1073 1074 tstamp = &adapter->tx_tstamp[2]; 1075 tstamp->mask = IGC_TSYNCTXCTL_TXTT_2; 1076 tstamp->regl = IGC_TXSTMPL_2; 1077 tstamp->regh = IGC_TXSTMPH_2; 1078 tstamp->flags = IGC_TX_FLAGS_TSTAMP_2; 1079 1080 tstamp = &adapter->tx_tstamp[3]; 1081 tstamp->mask = IGC_TSYNCTXCTL_TXTT_3; 1082 tstamp->regl = IGC_TXSTMPL_3; 1083 tstamp->regh = IGC_TXSTMPH_3; 1084 tstamp->flags = IGC_TX_FLAGS_TSTAMP_3; 1085 1086 switch (hw->mac.type) { 1087 case igc_i225: 1088 for (i = 0; i < IGC_N_SDP; i++) { 1089 struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; 1090 1091 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); 1092 ppd->index = i; 1093 ppd->func = PTP_PF_NONE; 1094 } 1095 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1096 adapter->ptp_caps.owner = THIS_MODULE; 1097 adapter->ptp_caps.max_adj = 62499999; 1098 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225; 1099 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225; 1100 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225; 1101 adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64; 1102 adapter->ptp_caps.settime64 = igc_ptp_settime_i225; 1103 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225; 1104 adapter->ptp_caps.pps = 1; 1105 adapter->ptp_caps.pin_config = adapter->sdp_config; 1106 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS; 1107 adapter->ptp_caps.n_per_out = IGC_N_PEROUT; 1108 adapter->ptp_caps.n_pins = IGC_N_SDP; 1109 adapter->ptp_caps.verify = igc_ptp_verify_pin; 1110 1111 if (!igc_is_crosststamp_supported(adapter)) 1112 break; 1113 1114 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp; 1115 break; 1116 default: 1117 adapter->ptp_clock = NULL; 1118 return; 1119 } 1120 1121 spin_lock_init(&adapter->ptp_tx_lock); 1122 spin_lock_init(&adapter->free_timer_lock); 1123 spin_lock_init(&adapter->tmreg_lock); 1124 1125 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1126 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1127 1128 adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real()); 1129 adapter->ptp_reset_start = ktime_get(); 1130 1131 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1132 &adapter->pdev->dev); 1133 if (IS_ERR(adapter->ptp_clock)) { 1134 adapter->ptp_clock = NULL; 1135 netdev_err(netdev, "ptp_clock_register failed\n"); 1136 } else if (adapter->ptp_clock) { 1137 netdev_info(netdev, "PHC added\n"); 1138 adapter->ptp_flags |= IGC_PTP_ENABLED; 1139 } 1140 } 1141 1142 static void igc_ptp_time_save(struct igc_adapter *adapter) 1143 { 1144 igc_ptp_read(adapter, &adapter->prev_ptp_time); 1145 adapter->ptp_reset_start = ktime_get(); 1146 } 1147 1148 static void igc_ptp_time_restore(struct igc_adapter *adapter) 1149 { 1150 struct timespec64 ts = adapter->prev_ptp_time; 1151 ktime_t delta; 1152 1153 delta = ktime_sub(ktime_get(), adapter->ptp_reset_start); 1154 1155 timespec64_add_ns(&ts, ktime_to_ns(delta)); 1156 1157 igc_ptp_write_i225(adapter, &ts); 1158 } 1159 1160 static void igc_ptm_stop(struct igc_adapter *adapter) 1161 { 1162 struct igc_hw *hw = &adapter->hw; 1163 u32 ctrl; 1164 1165 ctrl = rd32(IGC_PTM_CTRL); 1166 ctrl &= ~IGC_PTM_CTRL_EN; 1167 1168 wr32(IGC_PTM_CTRL, ctrl); 1169 } 1170 1171 /** 1172 * igc_ptp_suspend - Disable PTP work items and prepare for suspend 1173 * @adapter: Board private structure 1174 * 1175 * This function stops the overflow check work and PTP Tx timestamp work, and 1176 * will prepare the device for OS suspend. 1177 */ 1178 void igc_ptp_suspend(struct igc_adapter *adapter) 1179 { 1180 if (!(adapter->ptp_flags & IGC_PTP_ENABLED)) 1181 return; 1182 1183 igc_ptp_clear_tx_tstamp(adapter); 1184 1185 if (pci_device_is_present(adapter->pdev)) { 1186 igc_ptp_time_save(adapter); 1187 igc_ptm_stop(adapter); 1188 } 1189 } 1190 1191 /** 1192 * igc_ptp_stop - Disable PTP device and stop the overflow check. 1193 * @adapter: Board private structure. 1194 * 1195 * This function stops the PTP support and cancels the delayed work. 1196 **/ 1197 void igc_ptp_stop(struct igc_adapter *adapter) 1198 { 1199 igc_ptp_suspend(adapter); 1200 1201 if (adapter->ptp_clock) { 1202 ptp_clock_unregister(adapter->ptp_clock); 1203 netdev_info(adapter->netdev, "PHC removed\n"); 1204 adapter->ptp_flags &= ~IGC_PTP_ENABLED; 1205 } 1206 } 1207 1208 /** 1209 * igc_ptp_reset - Re-enable the adapter for PTP following a reset. 1210 * @adapter: Board private structure. 1211 * 1212 * This function handles the reset work required to re-enable the PTP device. 1213 **/ 1214 void igc_ptp_reset(struct igc_adapter *adapter) 1215 { 1216 struct igc_hw *hw = &adapter->hw; 1217 u32 cycle_ctrl, ctrl; 1218 unsigned long flags; 1219 u32 timadj; 1220 1221 /* reset the tstamp_config */ 1222 igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1223 1224 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1225 1226 switch (adapter->hw.mac.type) { 1227 case igc_i225: 1228 timadj = rd32(IGC_TIMADJ); 1229 timadj |= IGC_TIMADJ_ADJUST_METH; 1230 wr32(IGC_TIMADJ, timadj); 1231 1232 wr32(IGC_TSAUXC, 0x0); 1233 wr32(IGC_TSSDP, 0x0); 1234 wr32(IGC_TSIM, 1235 IGC_TSICR_INTERRUPTS | 1236 (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0)); 1237 wr32(IGC_IMS, IGC_IMS_TS); 1238 1239 if (!igc_is_crosststamp_supported(adapter)) 1240 break; 1241 1242 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT); 1243 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT); 1244 1245 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT); 1246 1247 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl); 1248 1249 ctrl = IGC_PTM_CTRL_EN | 1250 IGC_PTM_CTRL_START_NOW | 1251 IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) | 1252 IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) | 1253 IGC_PTM_CTRL_TRIG; 1254 1255 wr32(IGC_PTM_CTRL, ctrl); 1256 1257 /* Force the first cycle to run. */ 1258 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); 1259 1260 break; 1261 default: 1262 /* No work to do. */ 1263 goto out; 1264 } 1265 1266 /* Re-initialize the timer. */ 1267 if (hw->mac.type == igc_i225) { 1268 igc_ptp_time_restore(adapter); 1269 } else { 1270 timecounter_init(&adapter->tc, &adapter->cc, 1271 ktime_to_ns(ktime_get_real())); 1272 } 1273 out: 1274 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1275 1276 wrfl(); 1277 } 1278