1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 Intel Corporation */ 3 4 #include "igc.h" 5 6 #include <linux/module.h> 7 #include <linux/device.h> 8 #include <linux/pci.h> 9 #include <linux/ptp_classify.h> 10 #include <linux/clocksource.h> 11 #include <linux/ktime.h> 12 #include <linux/delay.h> 13 #include <linux/iopoll.h> 14 #include <net/xdp_sock_drv.h> 15 16 #define INCVALUE_MASK 0x7fffffff 17 #define ISGN 0x80000000 18 19 #define IGC_PTP_TX_TIMEOUT (HZ * 15) 20 21 #define IGC_PTM_STAT_SLEEP 2 22 #define IGC_PTM_STAT_TIMEOUT 100 23 24 /* SYSTIM read access for I225 */ 25 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts) 26 { 27 struct igc_hw *hw = &adapter->hw; 28 u32 sec, nsec; 29 30 /* The timestamp is latched when SYSTIML is read. */ 31 nsec = rd32(IGC_SYSTIML); 32 sec = rd32(IGC_SYSTIMH); 33 34 ts->tv_sec = sec; 35 ts->tv_nsec = nsec; 36 } 37 38 static void igc_ptp_write_i225(struct igc_adapter *adapter, 39 const struct timespec64 *ts) 40 { 41 struct igc_hw *hw = &adapter->hw; 42 43 wr32(IGC_SYSTIML, ts->tv_nsec); 44 wr32(IGC_SYSTIMH, ts->tv_sec); 45 } 46 47 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm) 48 { 49 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 50 ptp_caps); 51 struct igc_hw *hw = &igc->hw; 52 int neg_adj = 0; 53 u64 rate; 54 u32 inca; 55 56 if (scaled_ppm < 0) { 57 neg_adj = 1; 58 scaled_ppm = -scaled_ppm; 59 } 60 rate = scaled_ppm; 61 rate <<= 14; 62 rate = div_u64(rate, 78125); 63 64 inca = rate & INCVALUE_MASK; 65 if (neg_adj) 66 inca |= ISGN; 67 68 wr32(IGC_TIMINCA, inca); 69 70 return 0; 71 } 72 73 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta) 74 { 75 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 76 ptp_caps); 77 struct timespec64 now, then = ns_to_timespec64(delta); 78 unsigned long flags; 79 80 spin_lock_irqsave(&igc->tmreg_lock, flags); 81 82 igc_ptp_read(igc, &now); 83 now = timespec64_add(now, then); 84 igc_ptp_write_i225(igc, (const struct timespec64 *)&now); 85 86 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 87 88 return 0; 89 } 90 91 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp, 92 struct timespec64 *ts, 93 struct ptp_system_timestamp *sts) 94 { 95 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 96 ptp_caps); 97 struct igc_hw *hw = &igc->hw; 98 unsigned long flags; 99 100 spin_lock_irqsave(&igc->tmreg_lock, flags); 101 102 ptp_read_system_prets(sts); 103 ts->tv_nsec = rd32(IGC_SYSTIML); 104 ts->tv_sec = rd32(IGC_SYSTIMH); 105 ptp_read_system_postts(sts); 106 107 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 108 109 return 0; 110 } 111 112 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp, 113 const struct timespec64 *ts) 114 { 115 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, 116 ptp_caps); 117 unsigned long flags; 118 119 spin_lock_irqsave(&igc->tmreg_lock, flags); 120 121 igc_ptp_write_i225(igc, ts); 122 123 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 124 125 return 0; 126 } 127 128 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) 129 { 130 u32 *ptr = pin < 2 ? ctrl : ctrl_ext; 131 static const u32 mask[IGC_N_SDP] = { 132 IGC_CTRL_SDP0_DIR, 133 IGC_CTRL_SDP1_DIR, 134 IGC_CTRL_EXT_SDP2_DIR, 135 IGC_CTRL_EXT_SDP3_DIR, 136 }; 137 138 if (input) 139 *ptr &= ~mask[pin]; 140 else 141 *ptr |= mask[pin]; 142 } 143 144 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq) 145 { 146 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { 147 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, 148 }; 149 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { 150 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, 151 }; 152 static const u32 igc_ts_sdp_en[IGC_N_SDP] = { 153 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, 154 }; 155 static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = { 156 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0, 157 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0, 158 }; 159 static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = { 160 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1, 161 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1, 162 }; 163 static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = { 164 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0, 165 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0, 166 }; 167 static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = { 168 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, 169 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, 170 }; 171 static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = { 172 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, 173 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, 174 }; 175 struct igc_hw *hw = &igc->hw; 176 u32 ctrl, ctrl_ext, tssdp = 0; 177 178 ctrl = rd32(IGC_CTRL); 179 ctrl_ext = rd32(IGC_CTRL_EXT); 180 tssdp = rd32(IGC_TSSDP); 181 182 igc_pin_direction(pin, 0, &ctrl, &ctrl_ext); 183 184 /* Make sure this pin is not enabled as an input. */ 185 if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin]) 186 tssdp &= ~IGC_AUX0_TS_SDP_EN; 187 188 if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin]) 189 tssdp &= ~IGC_AUX1_TS_SDP_EN; 190 191 tssdp &= ~igc_ts_sdp_sel_clr[pin]; 192 if (freq) { 193 if (chan == 1) 194 tssdp |= igc_ts_sdp_sel_fc1[pin]; 195 else 196 tssdp |= igc_ts_sdp_sel_fc0[pin]; 197 } else { 198 if (chan == 1) 199 tssdp |= igc_ts_sdp_sel_tt1[pin]; 200 else 201 tssdp |= igc_ts_sdp_sel_tt0[pin]; 202 } 203 tssdp |= igc_ts_sdp_en[pin]; 204 205 wr32(IGC_TSSDP, tssdp); 206 wr32(IGC_CTRL, ctrl); 207 wr32(IGC_CTRL_EXT, ctrl_ext); 208 } 209 210 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin) 211 { 212 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { 213 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, 214 }; 215 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { 216 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, 217 }; 218 static const u32 igc_ts_sdp_en[IGC_N_SDP] = { 219 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, 220 }; 221 struct igc_hw *hw = &igc->hw; 222 u32 ctrl, ctrl_ext, tssdp = 0; 223 224 ctrl = rd32(IGC_CTRL); 225 ctrl_ext = rd32(IGC_CTRL_EXT); 226 tssdp = rd32(IGC_TSSDP); 227 228 igc_pin_direction(pin, 1, &ctrl, &ctrl_ext); 229 230 /* Make sure this pin is not enabled as an output. */ 231 tssdp &= ~igc_ts_sdp_en[pin]; 232 233 if (chan == 1) { 234 tssdp &= ~IGC_AUX1_SEL_SDP3; 235 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN; 236 } else { 237 tssdp &= ~IGC_AUX0_SEL_SDP3; 238 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN; 239 } 240 241 wr32(IGC_TSSDP, tssdp); 242 wr32(IGC_CTRL, ctrl); 243 wr32(IGC_CTRL_EXT, ctrl_ext); 244 } 245 246 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp, 247 struct ptp_clock_request *rq, int on) 248 { 249 struct igc_adapter *igc = 250 container_of(ptp, struct igc_adapter, ptp_caps); 251 struct igc_hw *hw = &igc->hw; 252 unsigned long flags; 253 struct timespec64 ts; 254 int use_freq = 0, pin = -1; 255 u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; 256 s64 ns; 257 258 switch (rq->type) { 259 case PTP_CLK_REQ_EXTTS: 260 /* Reject requests with unsupported flags */ 261 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 262 PTP_RISING_EDGE | 263 PTP_FALLING_EDGE | 264 PTP_STRICT_FLAGS)) 265 return -EOPNOTSUPP; 266 267 /* Reject requests failing to enable both edges. */ 268 if ((rq->extts.flags & PTP_STRICT_FLAGS) && 269 (rq->extts.flags & PTP_ENABLE_FEATURE) && 270 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) 271 return -EOPNOTSUPP; 272 273 if (on) { 274 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS, 275 rq->extts.index); 276 if (pin < 0) 277 return -EBUSY; 278 } 279 if (rq->extts.index == 1) { 280 tsauxc_mask = IGC_TSAUXC_EN_TS1; 281 tsim_mask = IGC_TSICR_AUTT1; 282 } else { 283 tsauxc_mask = IGC_TSAUXC_EN_TS0; 284 tsim_mask = IGC_TSICR_AUTT0; 285 } 286 spin_lock_irqsave(&igc->tmreg_lock, flags); 287 tsauxc = rd32(IGC_TSAUXC); 288 tsim = rd32(IGC_TSIM); 289 if (on) { 290 igc_pin_extts(igc, rq->extts.index, pin); 291 tsauxc |= tsauxc_mask; 292 tsim |= tsim_mask; 293 } else { 294 tsauxc &= ~tsauxc_mask; 295 tsim &= ~tsim_mask; 296 } 297 wr32(IGC_TSAUXC, tsauxc); 298 wr32(IGC_TSIM, tsim); 299 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 300 return 0; 301 302 case PTP_CLK_REQ_PEROUT: 303 /* Reject requests with unsupported flags */ 304 if (rq->perout.flags) 305 return -EOPNOTSUPP; 306 307 if (on) { 308 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT, 309 rq->perout.index); 310 if (pin < 0) 311 return -EBUSY; 312 } 313 ts.tv_sec = rq->perout.period.sec; 314 ts.tv_nsec = rq->perout.period.nsec; 315 ns = timespec64_to_ns(&ts); 316 ns = ns >> 1; 317 if (on && (ns <= 70000000LL || ns == 125000000LL || 318 ns == 250000000LL || ns == 500000000LL)) { 319 if (ns < 8LL) 320 return -EINVAL; 321 use_freq = 1; 322 } 323 ts = ns_to_timespec64(ns); 324 if (rq->perout.index == 1) { 325 if (use_freq) { 326 tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1; 327 tsim_mask = 0; 328 } else { 329 tsauxc_mask = IGC_TSAUXC_EN_TT1; 330 tsim_mask = IGC_TSICR_TT1; 331 } 332 trgttiml = IGC_TRGTTIML1; 333 trgttimh = IGC_TRGTTIMH1; 334 freqout = IGC_FREQOUT1; 335 } else { 336 if (use_freq) { 337 tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0; 338 tsim_mask = 0; 339 } else { 340 tsauxc_mask = IGC_TSAUXC_EN_TT0; 341 tsim_mask = IGC_TSICR_TT0; 342 } 343 trgttiml = IGC_TRGTTIML0; 344 trgttimh = IGC_TRGTTIMH0; 345 freqout = IGC_FREQOUT0; 346 } 347 spin_lock_irqsave(&igc->tmreg_lock, flags); 348 tsauxc = rd32(IGC_TSAUXC); 349 tsim = rd32(IGC_TSIM); 350 if (rq->perout.index == 1) { 351 tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 | 352 IGC_TSAUXC_ST1); 353 tsim &= ~IGC_TSICR_TT1; 354 } else { 355 tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 | 356 IGC_TSAUXC_ST0); 357 tsim &= ~IGC_TSICR_TT0; 358 } 359 if (on) { 360 struct timespec64 safe_start; 361 int i = rq->perout.index; 362 363 igc_pin_perout(igc, i, pin, use_freq); 364 igc_ptp_read(igc, &safe_start); 365 366 /* PPS output start time is triggered by Target time(TT) 367 * register. Programming any past time value into TT 368 * register will cause PPS to never start. Need to make 369 * sure we program the TT register a time ahead in 370 * future. There isn't a stringent need to fire PPS out 371 * right away. Adding +2 seconds should take care of 372 * corner cases. Let's say if the SYSTIML is close to 373 * wrap up and the timer keeps ticking as we program the 374 * register, adding +2seconds is safe bet. 375 */ 376 safe_start.tv_sec += 2; 377 378 if (rq->perout.start.sec < safe_start.tv_sec) 379 igc->perout[i].start.tv_sec = safe_start.tv_sec; 380 else 381 igc->perout[i].start.tv_sec = rq->perout.start.sec; 382 igc->perout[i].start.tv_nsec = rq->perout.start.nsec; 383 igc->perout[i].period.tv_sec = ts.tv_sec; 384 igc->perout[i].period.tv_nsec = ts.tv_nsec; 385 wr32(trgttimh, (u32)igc->perout[i].start.tv_sec); 386 /* For now, always select timer 0 as source. */ 387 wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec | 388 IGC_TT_IO_TIMER_SEL_SYSTIM0)); 389 if (use_freq) 390 wr32(freqout, ns); 391 tsauxc |= tsauxc_mask; 392 tsim |= tsim_mask; 393 } 394 wr32(IGC_TSAUXC, tsauxc); 395 wr32(IGC_TSIM, tsim); 396 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 397 return 0; 398 399 case PTP_CLK_REQ_PPS: 400 spin_lock_irqsave(&igc->tmreg_lock, flags); 401 tsim = rd32(IGC_TSIM); 402 if (on) 403 tsim |= IGC_TSICR_SYS_WRAP; 404 else 405 tsim &= ~IGC_TSICR_SYS_WRAP; 406 igc->pps_sys_wrap_on = on; 407 wr32(IGC_TSIM, tsim); 408 spin_unlock_irqrestore(&igc->tmreg_lock, flags); 409 return 0; 410 411 default: 412 break; 413 } 414 415 return -EOPNOTSUPP; 416 } 417 418 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, 419 enum ptp_pin_function func, unsigned int chan) 420 { 421 switch (func) { 422 case PTP_PF_NONE: 423 case PTP_PF_EXTTS: 424 case PTP_PF_PEROUT: 425 break; 426 case PTP_PF_PHYSYNC: 427 return -1; 428 } 429 return 0; 430 } 431 432 /** 433 * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp 434 * @adapter: board private structure 435 * @hwtstamps: timestamp structure to update 436 * @systim: unsigned 64bit system time value 437 * 438 * We need to convert the system time value stored in the RX/TXSTMP registers 439 * into a hwtstamp which can be used by the upper level timestamping functions. 440 * 441 * Returns 0 on success. 442 **/ 443 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter, 444 struct skb_shared_hwtstamps *hwtstamps, 445 u64 systim) 446 { 447 switch (adapter->hw.mac.type) { 448 case igc_i225: 449 memset(hwtstamps, 0, sizeof(*hwtstamps)); 450 /* Upper 32 bits contain s, lower 32 bits contain ns. */ 451 hwtstamps->hwtstamp = ktime_set(systim >> 32, 452 systim & 0xFFFFFFFF); 453 break; 454 default: 455 return -EINVAL; 456 } 457 return 0; 458 } 459 460 /** 461 * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer 462 * @adapter: Pointer to adapter the packet buffer belongs to 463 * @buf: Pointer to start of timestamp in HW format (2 32-bit words) 464 * 465 * This function retrieves and converts the timestamp stored at @buf 466 * to ktime_t, adjusting for hardware latencies. 467 * 468 * Returns timestamp value. 469 */ 470 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf) 471 { 472 ktime_t timestamp; 473 u32 secs, nsecs; 474 int adjust; 475 476 nsecs = le32_to_cpu(buf[0]); 477 secs = le32_to_cpu(buf[1]); 478 479 timestamp = ktime_set(secs, nsecs); 480 481 /* Adjust timestamp for the RX latency based on link speed */ 482 switch (adapter->link_speed) { 483 case SPEED_10: 484 adjust = IGC_I225_RX_LATENCY_10; 485 break; 486 case SPEED_100: 487 adjust = IGC_I225_RX_LATENCY_100; 488 break; 489 case SPEED_1000: 490 adjust = IGC_I225_RX_LATENCY_1000; 491 break; 492 case SPEED_2500: 493 adjust = IGC_I225_RX_LATENCY_2500; 494 break; 495 default: 496 adjust = 0; 497 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n"); 498 break; 499 } 500 501 return ktime_sub_ns(timestamp, adjust); 502 } 503 504 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter) 505 { 506 struct igc_hw *hw = &adapter->hw; 507 u32 val; 508 int i; 509 510 wr32(IGC_TSYNCRXCTL, 0); 511 512 for (i = 0; i < adapter->num_rx_queues; i++) { 513 val = rd32(IGC_SRRCTL(i)); 514 val &= ~IGC_SRRCTL_TIMESTAMP; 515 wr32(IGC_SRRCTL(i), val); 516 } 517 518 val = rd32(IGC_RXPBS); 519 val &= ~IGC_RXPBS_CFG_TS_EN; 520 wr32(IGC_RXPBS, val); 521 } 522 523 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter) 524 { 525 struct igc_hw *hw = &adapter->hw; 526 u32 val; 527 int i; 528 529 val = rd32(IGC_RXPBS); 530 val |= IGC_RXPBS_CFG_TS_EN; 531 wr32(IGC_RXPBS, val); 532 533 for (i = 0; i < adapter->num_rx_queues; i++) { 534 val = rd32(IGC_SRRCTL(i)); 535 /* Enable retrieving timestamps from timer 0, the 536 * "adjustable clock" and timer 1 the "free running 537 * clock". 538 */ 539 val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) | 540 IGC_SRRCTL_TIMESTAMP; 541 wr32(IGC_SRRCTL(i), val); 542 } 543 544 val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL | 545 IGC_TSYNCRXCTL_RXSYNSIG; 546 wr32(IGC_TSYNCRXCTL, val); 547 } 548 549 static void igc_ptp_free_tx_buffer(struct igc_adapter *adapter, 550 struct igc_tx_timestamp_request *tstamp) 551 { 552 if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) { 553 /* Release the transmit completion */ 554 tstamp->xsk_tx_buffer->xsk_pending_ts = false; 555 556 /* Note: tstamp->skb and tstamp->xsk_tx_buffer are in union. 557 * By setting tstamp->xsk_tx_buffer to NULL, tstamp->skb will 558 * become NULL as well. 559 */ 560 tstamp->xsk_tx_buffer = NULL; 561 tstamp->buffer_type = 0; 562 563 /* Trigger txrx interrupt for transmit completion */ 564 igc_xsk_wakeup(adapter->netdev, tstamp->xsk_queue_index, 0); 565 566 return; 567 } 568 569 dev_kfree_skb_any(tstamp->skb); 570 tstamp->skb = NULL; 571 } 572 573 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter) 574 { 575 unsigned long flags; 576 int i; 577 578 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 579 580 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 581 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 582 583 if (tstamp->skb) 584 igc_ptp_free_tx_buffer(adapter, tstamp); 585 } 586 587 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 588 } 589 590 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter) 591 { 592 struct igc_hw *hw = &adapter->hw; 593 int i; 594 595 /* Clear the flags first to avoid new packets to be enqueued 596 * for TX timestamping. 597 */ 598 for (i = 0; i < adapter->num_tx_queues; i++) { 599 struct igc_ring *tx_ring = adapter->tx_ring[i]; 600 601 clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); 602 } 603 604 /* Now we can clean the pending TX timestamp requests. */ 605 igc_ptp_clear_tx_tstamp(adapter); 606 607 wr32(IGC_TSYNCTXCTL, 0); 608 } 609 610 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter) 611 { 612 struct igc_hw *hw = &adapter->hw; 613 int i; 614 615 wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG); 616 617 /* Read TXSTMP registers to discard any timestamp previously stored. */ 618 rd32(IGC_TXSTMPL); 619 rd32(IGC_TXSTMPH); 620 621 /* The hardware is ready to accept TX timestamp requests, 622 * notify the transmit path. 623 */ 624 for (i = 0; i < adapter->num_tx_queues; i++) { 625 struct igc_ring *tx_ring = adapter->tx_ring[i]; 626 627 set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); 628 } 629 630 } 631 632 /** 633 * igc_ptp_set_timestamp_mode - setup hardware for timestamping 634 * @adapter: networking device structure 635 * @config: hwtstamp configuration 636 * 637 * Return: 0 in case of success, negative errno code otherwise. 638 */ 639 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter, 640 struct hwtstamp_config *config) 641 { 642 switch (config->tx_type) { 643 case HWTSTAMP_TX_OFF: 644 igc_ptp_disable_tx_timestamp(adapter); 645 break; 646 case HWTSTAMP_TX_ON: 647 igc_ptp_enable_tx_timestamp(adapter); 648 break; 649 default: 650 return -ERANGE; 651 } 652 653 switch (config->rx_filter) { 654 case HWTSTAMP_FILTER_NONE: 655 igc_ptp_disable_rx_timestamp(adapter); 656 break; 657 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 658 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 659 case HWTSTAMP_FILTER_PTP_V2_EVENT: 660 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 661 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 662 case HWTSTAMP_FILTER_PTP_V2_SYNC: 663 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 664 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 665 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 666 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 667 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 668 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 669 case HWTSTAMP_FILTER_NTP_ALL: 670 case HWTSTAMP_FILTER_ALL: 671 igc_ptp_enable_rx_timestamp(adapter); 672 config->rx_filter = HWTSTAMP_FILTER_ALL; 673 break; 674 default: 675 return -ERANGE; 676 } 677 678 return 0; 679 } 680 681 /* Requires adapter->ptp_tx_lock held by caller. */ 682 static void igc_ptp_tx_timeout(struct igc_adapter *adapter, 683 struct igc_tx_timestamp_request *tstamp) 684 { 685 if (tstamp->skb) 686 igc_ptp_free_tx_buffer(adapter, tstamp); 687 688 adapter->tx_hwtstamp_timeouts++; 689 690 netdev_warn(adapter->netdev, "Tx timestamp timeout\n"); 691 } 692 693 void igc_ptp_tx_hang(struct igc_adapter *adapter) 694 { 695 struct igc_tx_timestamp_request *tstamp; 696 struct igc_hw *hw = &adapter->hw; 697 unsigned long flags; 698 bool found = false; 699 int i; 700 701 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 702 703 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 704 tstamp = &adapter->tx_tstamp[i]; 705 706 if (!tstamp->skb) 707 continue; 708 709 if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT)) 710 continue; 711 712 igc_ptp_tx_timeout(adapter, tstamp); 713 found = true; 714 } 715 716 if (found) { 717 /* Reading the high register of the first set of timestamp registers 718 * clears all the equivalent bits in the TSYNCTXCTL register. 719 */ 720 rd32(IGC_TXSTMPH_0); 721 } 722 723 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 724 } 725 726 static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter, 727 struct igc_tx_timestamp_request *tstamp, u64 regval) 728 { 729 struct skb_shared_hwtstamps shhwtstamps; 730 struct sk_buff *skb; 731 int adjust = 0; 732 733 skb = tstamp->skb; 734 if (!skb) 735 return; 736 737 if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval)) 738 return; 739 740 switch (adapter->link_speed) { 741 case SPEED_10: 742 adjust = IGC_I225_TX_LATENCY_10; 743 break; 744 case SPEED_100: 745 adjust = IGC_I225_TX_LATENCY_100; 746 break; 747 case SPEED_1000: 748 adjust = IGC_I225_TX_LATENCY_1000; 749 break; 750 case SPEED_2500: 751 adjust = IGC_I225_TX_LATENCY_2500; 752 break; 753 } 754 755 shhwtstamps.hwtstamp = 756 ktime_add_ns(shhwtstamps.hwtstamp, adjust); 757 758 /* Copy the tx hardware timestamp into xdp metadata or skb */ 759 if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) { 760 struct xsk_buff_pool *xsk_pool; 761 762 xsk_pool = adapter->tx_ring[tstamp->xsk_queue_index]->xsk_pool; 763 if (xsk_pool && xp_tx_metadata_enabled(xsk_pool)) { 764 xsk_tx_metadata_complete(&tstamp->xsk_meta, 765 &igc_xsk_tx_metadata_ops, 766 &shhwtstamps.hwtstamp); 767 } 768 } else { 769 skb_tstamp_tx(skb, &shhwtstamps); 770 } 771 772 igc_ptp_free_tx_buffer(adapter, tstamp); 773 } 774 775 /** 776 * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp 777 * @adapter: Board private structure 778 * 779 * Check against the ready mask for which of the timestamp register 780 * sets are ready to be retrieved, then retrieve that and notify the 781 * rest of the stack. 782 * 783 * Context: Expects adapter->ptp_tx_lock to be held by caller. 784 */ 785 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter) 786 { 787 struct igc_hw *hw = &adapter->hw; 788 u64 regval; 789 u32 mask; 790 int i; 791 792 mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY; 793 if (mask & IGC_TSYNCTXCTL_TXTT_0) { 794 regval = rd32(IGC_TXSTMPL); 795 regval |= (u64)rd32(IGC_TXSTMPH) << 32; 796 } else { 797 /* There's a bug in the hardware that could cause 798 * missing interrupts for TX timestamping. The issue 799 * is that for new interrupts to be triggered, the 800 * IGC_TXSTMPH_0 register must be read. 801 * 802 * To avoid discarding a valid timestamp that just 803 * happened at the "wrong" time, we need to confirm 804 * that there was no timestamp captured, we do that by 805 * assuming that no two timestamps in sequence have 806 * the same nanosecond value. 807 * 808 * So, we read the "low" register, read the "high" 809 * register (to latch a new timestamp) and read the 810 * "low" register again, if "old" and "new" versions 811 * of the "low" register are different, a valid 812 * timestamp was captured, we can read the "high" 813 * register again. 814 */ 815 u32 txstmpl_old, txstmpl_new; 816 817 txstmpl_old = rd32(IGC_TXSTMPL); 818 rd32(IGC_TXSTMPH); 819 txstmpl_new = rd32(IGC_TXSTMPL); 820 821 if (txstmpl_old == txstmpl_new) 822 goto done; 823 824 regval = txstmpl_new; 825 regval |= (u64)rd32(IGC_TXSTMPH) << 32; 826 } 827 828 igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval); 829 830 done: 831 /* Now that the problematic first register was handled, we can 832 * use retrieve the timestamps from the other registers 833 * (starting from '1') with less complications. 834 */ 835 for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 836 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 837 838 if (!(tstamp->mask & mask)) 839 continue; 840 841 regval = rd32(tstamp->regl); 842 regval |= (u64)rd32(tstamp->regh) << 32; 843 844 igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval); 845 } 846 } 847 848 /** 849 * igc_ptp_tx_tstamp_event 850 * @adapter: board private structure 851 * 852 * Called when a TX timestamp interrupt happens to retrieve the 853 * timestamp and send it up to the socket. 854 */ 855 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter) 856 { 857 unsigned long flags; 858 859 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 860 861 igc_ptp_tx_hwtstamp(adapter); 862 863 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 864 } 865 866 /** 867 * igc_ptp_set_ts_config - set hardware time stamping config 868 * @netdev: network interface device structure 869 * @ifr: interface request data 870 * 871 **/ 872 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) 873 { 874 struct igc_adapter *adapter = netdev_priv(netdev); 875 struct hwtstamp_config config; 876 int err; 877 878 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 879 return -EFAULT; 880 881 err = igc_ptp_set_timestamp_mode(adapter, &config); 882 if (err) 883 return err; 884 885 /* save these settings for future reference */ 886 memcpy(&adapter->tstamp_config, &config, 887 sizeof(adapter->tstamp_config)); 888 889 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 890 -EFAULT : 0; 891 } 892 893 /** 894 * igc_ptp_get_ts_config - get hardware time stamping config 895 * @netdev: network interface device structure 896 * @ifr: interface request data 897 * 898 * Get the hwtstamp_config settings to return to the user. Rather than attempt 899 * to deconstruct the settings from the registers, just return a shadow copy 900 * of the last known settings. 901 **/ 902 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) 903 { 904 struct igc_adapter *adapter = netdev_priv(netdev); 905 struct hwtstamp_config *config = &adapter->tstamp_config; 906 907 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 908 -EFAULT : 0; 909 } 910 911 /* The two conditions below must be met for cross timestamping via 912 * PCIe PTM: 913 * 914 * 1. We have an way to convert the timestamps in the PTM messages 915 * to something related to the system clocks (right now, only 916 * X86 systems with support for the Always Running Timer allow that); 917 * 918 * 2. We have PTM enabled in the path from the device to the PCIe root port. 919 */ 920 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter) 921 { 922 if (!IS_ENABLED(CONFIG_X86_TSC)) 923 return false; 924 925 /* FIXME: it was noticed that enabling support for PCIe PTM in 926 * some i225-V models could cause lockups when bringing the 927 * interface up/down. There should be no downsides to 928 * disabling crosstimestamping support for i225-V, as it 929 * doesn't have any PTP support. That way we gain some time 930 * while root causing the issue. 931 */ 932 if (adapter->pdev->device == IGC_DEV_ID_I225_V) 933 return false; 934 935 return pcie_ptm_enabled(adapter->pdev); 936 } 937 938 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp) 939 { 940 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML) 941 return (struct system_counterval_t) { 942 .cs_id = CSID_X86_ART, 943 .cycles = tstamp, 944 .use_nsecs = true, 945 }; 946 #else 947 return (struct system_counterval_t) { }; 948 #endif 949 } 950 951 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat) 952 { 953 struct net_device *netdev = adapter->netdev; 954 955 switch (ptm_stat) { 956 case IGC_PTM_STAT_RET_ERR: 957 netdev_err(netdev, "PTM Error: Root port timeout\n"); 958 break; 959 case IGC_PTM_STAT_BAD_PTM_RES: 960 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n"); 961 break; 962 case IGC_PTM_STAT_T4M1_OVFL: 963 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n"); 964 break; 965 case IGC_PTM_STAT_ADJUST_1ST: 966 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n"); 967 break; 968 case IGC_PTM_STAT_ADJUST_CYC: 969 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n"); 970 break; 971 default: 972 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat); 973 break; 974 } 975 } 976 977 static int igc_phc_get_syncdevicetime(ktime_t *device, 978 struct system_counterval_t *system, 979 void *ctx) 980 { 981 u32 stat, t2_curr_h, t2_curr_l, ctrl; 982 struct igc_adapter *adapter = ctx; 983 struct igc_hw *hw = &adapter->hw; 984 int err, count = 100; 985 ktime_t t1, t2_curr; 986 987 /* Get a snapshot of system clocks to use as historic value. */ 988 ktime_get_snapshot(&adapter->snapshot); 989 990 do { 991 /* Doing this in a loop because in the event of a 992 * badly timed (ha!) system clock adjustment, we may 993 * get PTM errors from the PCI root, but these errors 994 * are transitory. Repeating the process returns valid 995 * data eventually. 996 */ 997 998 /* To "manually" start the PTM cycle we need to clear and 999 * then set again the TRIG bit. 1000 */ 1001 ctrl = rd32(IGC_PTM_CTRL); 1002 ctrl &= ~IGC_PTM_CTRL_TRIG; 1003 wr32(IGC_PTM_CTRL, ctrl); 1004 ctrl |= IGC_PTM_CTRL_TRIG; 1005 wr32(IGC_PTM_CTRL, ctrl); 1006 1007 /* The cycle only starts "for real" when software notifies 1008 * that it has read the registers, this is done by setting 1009 * VALID bit. 1010 */ 1011 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); 1012 1013 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat, 1014 stat, IGC_PTM_STAT_SLEEP, 1015 IGC_PTM_STAT_TIMEOUT); 1016 if (err < 0) { 1017 netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n"); 1018 return err; 1019 } 1020 1021 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID) 1022 break; 1023 1024 if (stat & ~IGC_PTM_STAT_VALID) { 1025 /* An error occurred, log it. */ 1026 igc_ptm_log_error(adapter, stat); 1027 /* The STAT register is write-1-to-clear (W1C), 1028 * so write the previous error status to clear it. 1029 */ 1030 wr32(IGC_PTM_STAT, stat); 1031 continue; 1032 } 1033 } while (--count); 1034 1035 if (!count) { 1036 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n"); 1037 return -ETIMEDOUT; 1038 } 1039 1040 t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L)); 1041 1042 t2_curr_l = rd32(IGC_PTM_CURR_T2_L); 1043 t2_curr_h = rd32(IGC_PTM_CURR_T2_H); 1044 1045 /* FIXME: When the register that tells the endianness of the 1046 * PTM registers are implemented, check them here and add the 1047 * appropriate conversion. 1048 */ 1049 t2_curr_h = swab32(t2_curr_h); 1050 1051 t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l); 1052 1053 *device = t1; 1054 *system = igc_device_tstamp_to_system(t2_curr); 1055 1056 return 0; 1057 } 1058 1059 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp, 1060 struct system_device_crosststamp *cts) 1061 { 1062 struct igc_adapter *adapter = container_of(ptp, struct igc_adapter, 1063 ptp_caps); 1064 1065 return get_device_system_crosststamp(igc_phc_get_syncdevicetime, 1066 adapter, &adapter->snapshot, cts); 1067 } 1068 1069 static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp, 1070 struct timespec64 *ts, 1071 struct ptp_system_timestamp *sts) 1072 { 1073 struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); 1074 struct igc_hw *hw = &igc->hw; 1075 unsigned long flags; 1076 1077 spin_lock_irqsave(&igc->free_timer_lock, flags); 1078 1079 ptp_read_system_prets(sts); 1080 ts->tv_nsec = rd32(IGC_SYSTIML_1); 1081 ts->tv_sec = rd32(IGC_SYSTIMH_1); 1082 ptp_read_system_postts(sts); 1083 1084 spin_unlock_irqrestore(&igc->free_timer_lock, flags); 1085 1086 return 0; 1087 } 1088 1089 /** 1090 * igc_ptp_init - Initialize PTP functionality 1091 * @adapter: Board private structure 1092 * 1093 * This function is called at device probe to initialize the PTP 1094 * functionality. 1095 */ 1096 void igc_ptp_init(struct igc_adapter *adapter) 1097 { 1098 struct net_device *netdev = adapter->netdev; 1099 struct igc_tx_timestamp_request *tstamp; 1100 struct igc_hw *hw = &adapter->hw; 1101 int i; 1102 1103 tstamp = &adapter->tx_tstamp[0]; 1104 tstamp->mask = IGC_TSYNCTXCTL_TXTT_0; 1105 tstamp->regl = IGC_TXSTMPL_0; 1106 tstamp->regh = IGC_TXSTMPH_0; 1107 tstamp->flags = 0; 1108 1109 tstamp = &adapter->tx_tstamp[1]; 1110 tstamp->mask = IGC_TSYNCTXCTL_TXTT_1; 1111 tstamp->regl = IGC_TXSTMPL_1; 1112 tstamp->regh = IGC_TXSTMPH_1; 1113 tstamp->flags = IGC_TX_FLAGS_TSTAMP_1; 1114 1115 tstamp = &adapter->tx_tstamp[2]; 1116 tstamp->mask = IGC_TSYNCTXCTL_TXTT_2; 1117 tstamp->regl = IGC_TXSTMPL_2; 1118 tstamp->regh = IGC_TXSTMPH_2; 1119 tstamp->flags = IGC_TX_FLAGS_TSTAMP_2; 1120 1121 tstamp = &adapter->tx_tstamp[3]; 1122 tstamp->mask = IGC_TSYNCTXCTL_TXTT_3; 1123 tstamp->regl = IGC_TXSTMPL_3; 1124 tstamp->regh = IGC_TXSTMPH_3; 1125 tstamp->flags = IGC_TX_FLAGS_TSTAMP_3; 1126 1127 switch (hw->mac.type) { 1128 case igc_i225: 1129 for (i = 0; i < IGC_N_SDP; i++) { 1130 struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; 1131 1132 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); 1133 ppd->index = i; 1134 ppd->func = PTP_PF_NONE; 1135 } 1136 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1137 adapter->ptp_caps.owner = THIS_MODULE; 1138 adapter->ptp_caps.max_adj = 62499999; 1139 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225; 1140 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225; 1141 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225; 1142 adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64; 1143 adapter->ptp_caps.settime64 = igc_ptp_settime_i225; 1144 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225; 1145 adapter->ptp_caps.pps = 1; 1146 adapter->ptp_caps.pin_config = adapter->sdp_config; 1147 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS; 1148 adapter->ptp_caps.n_per_out = IGC_N_PEROUT; 1149 adapter->ptp_caps.n_pins = IGC_N_SDP; 1150 adapter->ptp_caps.verify = igc_ptp_verify_pin; 1151 1152 if (!igc_is_crosststamp_supported(adapter)) 1153 break; 1154 1155 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp; 1156 break; 1157 default: 1158 adapter->ptp_clock = NULL; 1159 return; 1160 } 1161 1162 spin_lock_init(&adapter->ptp_tx_lock); 1163 spin_lock_init(&adapter->free_timer_lock); 1164 spin_lock_init(&adapter->tmreg_lock); 1165 1166 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1167 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1168 1169 adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real()); 1170 adapter->ptp_reset_start = ktime_get(); 1171 1172 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1173 &adapter->pdev->dev); 1174 if (IS_ERR(adapter->ptp_clock)) { 1175 adapter->ptp_clock = NULL; 1176 netdev_err(netdev, "ptp_clock_register failed\n"); 1177 } else if (adapter->ptp_clock) { 1178 netdev_info(netdev, "PHC added\n"); 1179 adapter->ptp_flags |= IGC_PTP_ENABLED; 1180 } 1181 } 1182 1183 static void igc_ptp_time_save(struct igc_adapter *adapter) 1184 { 1185 igc_ptp_read(adapter, &adapter->prev_ptp_time); 1186 adapter->ptp_reset_start = ktime_get(); 1187 } 1188 1189 static void igc_ptp_time_restore(struct igc_adapter *adapter) 1190 { 1191 struct timespec64 ts = adapter->prev_ptp_time; 1192 ktime_t delta; 1193 1194 delta = ktime_sub(ktime_get(), adapter->ptp_reset_start); 1195 1196 timespec64_add_ns(&ts, ktime_to_ns(delta)); 1197 1198 igc_ptp_write_i225(adapter, &ts); 1199 } 1200 1201 static void igc_ptm_stop(struct igc_adapter *adapter) 1202 { 1203 struct igc_hw *hw = &adapter->hw; 1204 u32 ctrl; 1205 1206 ctrl = rd32(IGC_PTM_CTRL); 1207 ctrl &= ~IGC_PTM_CTRL_EN; 1208 1209 wr32(IGC_PTM_CTRL, ctrl); 1210 } 1211 1212 /** 1213 * igc_ptp_suspend - Disable PTP work items and prepare for suspend 1214 * @adapter: Board private structure 1215 * 1216 * This function stops the overflow check work and PTP Tx timestamp work, and 1217 * will prepare the device for OS suspend. 1218 */ 1219 void igc_ptp_suspend(struct igc_adapter *adapter) 1220 { 1221 if (!(adapter->ptp_flags & IGC_PTP_ENABLED)) 1222 return; 1223 1224 igc_ptp_clear_tx_tstamp(adapter); 1225 1226 if (pci_device_is_present(adapter->pdev)) { 1227 igc_ptp_time_save(adapter); 1228 igc_ptm_stop(adapter); 1229 } 1230 } 1231 1232 /** 1233 * igc_ptp_stop - Disable PTP device and stop the overflow check. 1234 * @adapter: Board private structure. 1235 * 1236 * This function stops the PTP support and cancels the delayed work. 1237 **/ 1238 void igc_ptp_stop(struct igc_adapter *adapter) 1239 { 1240 igc_ptp_suspend(adapter); 1241 1242 if (adapter->ptp_clock) { 1243 ptp_clock_unregister(adapter->ptp_clock); 1244 netdev_info(adapter->netdev, "PHC removed\n"); 1245 adapter->ptp_flags &= ~IGC_PTP_ENABLED; 1246 } 1247 } 1248 1249 /** 1250 * igc_ptp_reset - Re-enable the adapter for PTP following a reset. 1251 * @adapter: Board private structure. 1252 * 1253 * This function handles the reset work required to re-enable the PTP device. 1254 **/ 1255 void igc_ptp_reset(struct igc_adapter *adapter) 1256 { 1257 struct igc_hw *hw = &adapter->hw; 1258 u32 cycle_ctrl, ctrl; 1259 unsigned long flags; 1260 u32 timadj; 1261 1262 /* reset the tstamp_config */ 1263 igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1264 1265 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1266 1267 switch (adapter->hw.mac.type) { 1268 case igc_i225: 1269 timadj = rd32(IGC_TIMADJ); 1270 timadj |= IGC_TIMADJ_ADJUST_METH; 1271 wr32(IGC_TIMADJ, timadj); 1272 1273 wr32(IGC_TSAUXC, 0x0); 1274 wr32(IGC_TSSDP, 0x0); 1275 wr32(IGC_TSIM, 1276 IGC_TSICR_INTERRUPTS | 1277 (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0)); 1278 wr32(IGC_IMS, IGC_IMS_TS); 1279 1280 if (!igc_is_crosststamp_supported(adapter)) 1281 break; 1282 1283 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT); 1284 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT); 1285 1286 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT); 1287 1288 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl); 1289 1290 ctrl = IGC_PTM_CTRL_EN | 1291 IGC_PTM_CTRL_START_NOW | 1292 IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) | 1293 IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) | 1294 IGC_PTM_CTRL_TRIG; 1295 1296 wr32(IGC_PTM_CTRL, ctrl); 1297 1298 /* Force the first cycle to run. */ 1299 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); 1300 1301 break; 1302 default: 1303 /* No work to do. */ 1304 goto out; 1305 } 1306 1307 /* Re-initialize the timer. */ 1308 if (hw->mac.type == igc_i225) { 1309 igc_ptp_time_restore(adapter); 1310 } else { 1311 timecounter_init(&adapter->tc, &adapter->cc, 1312 ktime_to_ns(ktime_get_real())); 1313 } 1314 out: 1315 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1316 1317 wrfl(); 1318 } 1319