xref: /linux/drivers/net/ethernet/intel/igc/igc_ptp.c (revision 429508c84d95811dd1300181dfe84743caff9a38)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 #include <net/xdp_sock_drv.h>
15 
16 #define INCVALUE_MASK		0x7fffffff
17 #define ISGN			0x80000000
18 
19 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
20 
21 #define IGC_PTM_STAT_SLEEP		2
22 #define IGC_PTM_STAT_TIMEOUT		100
23 
24 /* SYSTIM read access for I225 */
25 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
26 {
27 	struct igc_hw *hw = &adapter->hw;
28 	u32 sec, nsec;
29 
30 	/* The timestamp is latched when SYSTIML is read. */
31 	nsec = rd32(IGC_SYSTIML);
32 	sec = rd32(IGC_SYSTIMH);
33 
34 	ts->tv_sec = sec;
35 	ts->tv_nsec = nsec;
36 }
37 
38 static void igc_ptp_write_i225(struct igc_adapter *adapter,
39 			       const struct timespec64 *ts)
40 {
41 	struct igc_hw *hw = &adapter->hw;
42 
43 	wr32(IGC_SYSTIML, ts->tv_nsec);
44 	wr32(IGC_SYSTIMH, ts->tv_sec);
45 }
46 
47 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
48 {
49 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
50 					       ptp_caps);
51 	struct igc_hw *hw = &igc->hw;
52 	int neg_adj = 0;
53 	u64 rate;
54 	u32 inca;
55 
56 	if (scaled_ppm < 0) {
57 		neg_adj = 1;
58 		scaled_ppm = -scaled_ppm;
59 	}
60 	rate = scaled_ppm;
61 	rate <<= 14;
62 	rate = div_u64(rate, 78125);
63 
64 	inca = rate & INCVALUE_MASK;
65 	if (neg_adj)
66 		inca |= ISGN;
67 
68 	wr32(IGC_TIMINCA, inca);
69 
70 	return 0;
71 }
72 
73 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
74 {
75 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
76 					       ptp_caps);
77 	struct timespec64 now, then = ns_to_timespec64(delta);
78 	unsigned long flags;
79 
80 	spin_lock_irqsave(&igc->tmreg_lock, flags);
81 
82 	igc_ptp_read(igc, &now);
83 	now = timespec64_add(now, then);
84 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
85 
86 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
87 
88 	return 0;
89 }
90 
91 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
92 				   struct timespec64 *ts,
93 				   struct ptp_system_timestamp *sts)
94 {
95 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
96 					       ptp_caps);
97 	struct igc_hw *hw = &igc->hw;
98 	unsigned long flags;
99 
100 	spin_lock_irqsave(&igc->tmreg_lock, flags);
101 
102 	ptp_read_system_prets(sts);
103 	ts->tv_nsec = rd32(IGC_SYSTIML);
104 	ts->tv_sec = rd32(IGC_SYSTIMH);
105 	ptp_read_system_postts(sts);
106 
107 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
108 
109 	return 0;
110 }
111 
112 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
113 				const struct timespec64 *ts)
114 {
115 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
116 					       ptp_caps);
117 	unsigned long flags;
118 
119 	spin_lock_irqsave(&igc->tmreg_lock, flags);
120 
121 	igc_ptp_write_i225(igc, ts);
122 
123 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
124 
125 	return 0;
126 }
127 
128 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
129 {
130 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
131 	static const u32 mask[IGC_N_SDP] = {
132 		IGC_CTRL_SDP0_DIR,
133 		IGC_CTRL_SDP1_DIR,
134 		IGC_CTRL_EXT_SDP2_DIR,
135 		IGC_CTRL_EXT_SDP3_DIR,
136 	};
137 
138 	if (input)
139 		*ptr &= ~mask[pin];
140 	else
141 		*ptr |= mask[pin];
142 }
143 
144 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
145 {
146 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
147 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
148 	};
149 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
150 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
151 	};
152 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
153 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
154 	};
155 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
156 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
157 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
158 	};
159 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
160 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
161 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
162 	};
163 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
164 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
165 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
166 	};
167 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
168 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
169 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
170 	};
171 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
172 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
173 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
174 	};
175 	struct igc_hw *hw = &igc->hw;
176 	u32 ctrl, ctrl_ext, tssdp = 0;
177 
178 	ctrl = rd32(IGC_CTRL);
179 	ctrl_ext = rd32(IGC_CTRL_EXT);
180 	tssdp = rd32(IGC_TSSDP);
181 
182 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
183 
184 	/* Make sure this pin is not enabled as an input. */
185 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
186 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
187 
188 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
189 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
190 
191 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
192 	if (freq) {
193 		if (chan == 1)
194 			tssdp |= igc_ts_sdp_sel_fc1[pin];
195 		else
196 			tssdp |= igc_ts_sdp_sel_fc0[pin];
197 	} else {
198 		if (chan == 1)
199 			tssdp |= igc_ts_sdp_sel_tt1[pin];
200 		else
201 			tssdp |= igc_ts_sdp_sel_tt0[pin];
202 	}
203 	tssdp |= igc_ts_sdp_en[pin];
204 
205 	wr32(IGC_TSSDP, tssdp);
206 	wr32(IGC_CTRL, ctrl);
207 	wr32(IGC_CTRL_EXT, ctrl_ext);
208 }
209 
210 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
211 {
212 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
213 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
214 	};
215 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
216 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
217 	};
218 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
219 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
220 	};
221 	struct igc_hw *hw = &igc->hw;
222 	u32 ctrl, ctrl_ext, tssdp = 0;
223 
224 	ctrl = rd32(IGC_CTRL);
225 	ctrl_ext = rd32(IGC_CTRL_EXT);
226 	tssdp = rd32(IGC_TSSDP);
227 
228 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
229 
230 	/* Make sure this pin is not enabled as an output. */
231 	tssdp &= ~igc_ts_sdp_en[pin];
232 
233 	if (chan == 1) {
234 		tssdp &= ~IGC_AUX1_SEL_SDP3;
235 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
236 	} else {
237 		tssdp &= ~IGC_AUX0_SEL_SDP3;
238 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
239 	}
240 
241 	wr32(IGC_TSSDP, tssdp);
242 	wr32(IGC_CTRL, ctrl);
243 	wr32(IGC_CTRL_EXT, ctrl_ext);
244 }
245 
246 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
247 				       struct ptp_clock_request *rq, int on)
248 {
249 	struct igc_adapter *igc =
250 		container_of(ptp, struct igc_adapter, ptp_caps);
251 	struct igc_hw *hw = &igc->hw;
252 	unsigned long flags;
253 	struct timespec64 ts;
254 	int use_freq = 0, pin = -1;
255 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
256 	s64 ns;
257 
258 	switch (rq->type) {
259 	case PTP_CLK_REQ_EXTTS:
260 		/* Reject requests with unsupported flags */
261 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
262 					PTP_RISING_EDGE |
263 					PTP_FALLING_EDGE |
264 					PTP_STRICT_FLAGS))
265 			return -EOPNOTSUPP;
266 
267 		/* Reject requests failing to enable both edges. */
268 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
269 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
270 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
271 			return -EOPNOTSUPP;
272 
273 		if (on) {
274 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
275 					   rq->extts.index);
276 			if (pin < 0)
277 				return -EBUSY;
278 		}
279 		if (rq->extts.index == 1) {
280 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
281 			tsim_mask = IGC_TSICR_AUTT1;
282 		} else {
283 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
284 			tsim_mask = IGC_TSICR_AUTT0;
285 		}
286 		spin_lock_irqsave(&igc->tmreg_lock, flags);
287 		tsauxc = rd32(IGC_TSAUXC);
288 		tsim = rd32(IGC_TSIM);
289 		if (on) {
290 			igc_pin_extts(igc, rq->extts.index, pin);
291 			tsauxc |= tsauxc_mask;
292 			tsim |= tsim_mask;
293 		} else {
294 			tsauxc &= ~tsauxc_mask;
295 			tsim &= ~tsim_mask;
296 		}
297 		wr32(IGC_TSAUXC, tsauxc);
298 		wr32(IGC_TSIM, tsim);
299 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
300 		return 0;
301 
302 	case PTP_CLK_REQ_PEROUT:
303 		/* Reject requests with unsupported flags */
304 		if (rq->perout.flags)
305 			return -EOPNOTSUPP;
306 
307 		if (on) {
308 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
309 					   rq->perout.index);
310 			if (pin < 0)
311 				return -EBUSY;
312 		}
313 		ts.tv_sec = rq->perout.period.sec;
314 		ts.tv_nsec = rq->perout.period.nsec;
315 		ns = timespec64_to_ns(&ts);
316 		ns = ns >> 1;
317 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
318 			   ns == 250000000LL || ns == 500000000LL)) {
319 			if (ns < 8LL)
320 				return -EINVAL;
321 			use_freq = 1;
322 		}
323 		ts = ns_to_timespec64(ns);
324 		if (rq->perout.index == 1) {
325 			if (use_freq) {
326 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
327 				tsim_mask = 0;
328 			} else {
329 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
330 				tsim_mask = IGC_TSICR_TT1;
331 			}
332 			trgttiml = IGC_TRGTTIML1;
333 			trgttimh = IGC_TRGTTIMH1;
334 			freqout = IGC_FREQOUT1;
335 		} else {
336 			if (use_freq) {
337 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
338 				tsim_mask = 0;
339 			} else {
340 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
341 				tsim_mask = IGC_TSICR_TT0;
342 			}
343 			trgttiml = IGC_TRGTTIML0;
344 			trgttimh = IGC_TRGTTIMH0;
345 			freqout = IGC_FREQOUT0;
346 		}
347 		spin_lock_irqsave(&igc->tmreg_lock, flags);
348 		tsauxc = rd32(IGC_TSAUXC);
349 		tsim = rd32(IGC_TSIM);
350 		if (rq->perout.index == 1) {
351 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
352 				    IGC_TSAUXC_ST1);
353 			tsim &= ~IGC_TSICR_TT1;
354 		} else {
355 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
356 				    IGC_TSAUXC_ST0);
357 			tsim &= ~IGC_TSICR_TT0;
358 		}
359 		if (on) {
360 			struct timespec64 safe_start;
361 			int i = rq->perout.index;
362 
363 			igc_pin_perout(igc, i, pin, use_freq);
364 			igc_ptp_read(igc, &safe_start);
365 
366 			/* PPS output start time is triggered by Target time(TT)
367 			 * register. Programming any past time value into TT
368 			 * register will cause PPS to never start. Need to make
369 			 * sure we program the TT register a time ahead in
370 			 * future. There isn't a stringent need to fire PPS out
371 			 * right away. Adding +2 seconds should take care of
372 			 * corner cases. Let's say if the SYSTIML is close to
373 			 * wrap up and the timer keeps ticking as we program the
374 			 * register, adding +2seconds is safe bet.
375 			 */
376 			safe_start.tv_sec += 2;
377 
378 			if (rq->perout.start.sec < safe_start.tv_sec)
379 				igc->perout[i].start.tv_sec = safe_start.tv_sec;
380 			else
381 				igc->perout[i].start.tv_sec = rq->perout.start.sec;
382 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
383 			igc->perout[i].period.tv_sec = ts.tv_sec;
384 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
385 			wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
386 			/* For now, always select timer 0 as source. */
387 			wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
388 					     IGC_TT_IO_TIMER_SEL_SYSTIM0));
389 			if (use_freq)
390 				wr32(freqout, ns);
391 			tsauxc |= tsauxc_mask;
392 			tsim |= tsim_mask;
393 		}
394 		wr32(IGC_TSAUXC, tsauxc);
395 		wr32(IGC_TSIM, tsim);
396 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
397 		return 0;
398 
399 	case PTP_CLK_REQ_PPS:
400 		spin_lock_irqsave(&igc->tmreg_lock, flags);
401 		tsim = rd32(IGC_TSIM);
402 		if (on)
403 			tsim |= IGC_TSICR_SYS_WRAP;
404 		else
405 			tsim &= ~IGC_TSICR_SYS_WRAP;
406 		igc->pps_sys_wrap_on = on;
407 		wr32(IGC_TSIM, tsim);
408 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
409 		return 0;
410 
411 	default:
412 		break;
413 	}
414 
415 	return -EOPNOTSUPP;
416 }
417 
418 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
419 			      enum ptp_pin_function func, unsigned int chan)
420 {
421 	switch (func) {
422 	case PTP_PF_NONE:
423 	case PTP_PF_EXTTS:
424 	case PTP_PF_PEROUT:
425 		break;
426 	case PTP_PF_PHYSYNC:
427 		return -1;
428 	}
429 	return 0;
430 }
431 
432 /**
433  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
434  * @adapter: board private structure
435  * @hwtstamps: timestamp structure to update
436  * @systim: unsigned 64bit system time value
437  *
438  * We need to convert the system time value stored in the RX/TXSTMP registers
439  * into a hwtstamp which can be used by the upper level timestamping functions.
440  *
441  * Returns 0 on success.
442  **/
443 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
444 				      struct skb_shared_hwtstamps *hwtstamps,
445 				      u64 systim)
446 {
447 	switch (adapter->hw.mac.type) {
448 	case igc_i225:
449 		memset(hwtstamps, 0, sizeof(*hwtstamps));
450 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
451 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
452 						systim & 0xFFFFFFFF);
453 		break;
454 	default:
455 		return -EINVAL;
456 	}
457 	return 0;
458 }
459 
460 /**
461  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
462  * @adapter: Pointer to adapter the packet buffer belongs to
463  * @buf: Pointer to start of timestamp in HW format (2 32-bit words)
464  *
465  * This function retrieves and converts the timestamp stored at @buf
466  * to ktime_t, adjusting for hardware latencies.
467  *
468  * Returns timestamp value.
469  */
470 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
471 {
472 	ktime_t timestamp;
473 	u32 secs, nsecs;
474 	int adjust;
475 
476 	nsecs = le32_to_cpu(buf[0]);
477 	secs = le32_to_cpu(buf[1]);
478 
479 	timestamp = ktime_set(secs, nsecs);
480 
481 	/* Adjust timestamp for the RX latency based on link speed */
482 	switch (adapter->link_speed) {
483 	case SPEED_10:
484 		adjust = IGC_I225_RX_LATENCY_10;
485 		break;
486 	case SPEED_100:
487 		adjust = IGC_I225_RX_LATENCY_100;
488 		break;
489 	case SPEED_1000:
490 		adjust = IGC_I225_RX_LATENCY_1000;
491 		break;
492 	case SPEED_2500:
493 		adjust = IGC_I225_RX_LATENCY_2500;
494 		break;
495 	default:
496 		adjust = 0;
497 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
498 		break;
499 	}
500 
501 	return ktime_sub_ns(timestamp, adjust);
502 }
503 
504 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
505 {
506 	struct igc_hw *hw = &adapter->hw;
507 	u32 val;
508 	int i;
509 
510 	wr32(IGC_TSYNCRXCTL, 0);
511 
512 	for (i = 0; i < adapter->num_rx_queues; i++) {
513 		val = rd32(IGC_SRRCTL(i));
514 		val &= ~IGC_SRRCTL_TIMESTAMP;
515 		wr32(IGC_SRRCTL(i), val);
516 	}
517 
518 	val = rd32(IGC_RXPBS);
519 	val &= ~IGC_RXPBS_CFG_TS_EN;
520 	wr32(IGC_RXPBS, val);
521 }
522 
523 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
524 {
525 	struct igc_hw *hw = &adapter->hw;
526 	u32 val;
527 	int i;
528 
529 	val = rd32(IGC_RXPBS);
530 	val |= IGC_RXPBS_CFG_TS_EN;
531 	wr32(IGC_RXPBS, val);
532 
533 	for (i = 0; i < adapter->num_rx_queues; i++) {
534 		val = rd32(IGC_SRRCTL(i));
535 		/* Enable retrieving timestamps from timer 0, the
536 		 * "adjustable clock" and timer 1 the "free running
537 		 * clock".
538 		 */
539 		val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
540 		       IGC_SRRCTL_TIMESTAMP;
541 		wr32(IGC_SRRCTL(i), val);
542 	}
543 
544 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
545 	      IGC_TSYNCRXCTL_RXSYNSIG;
546 	wr32(IGC_TSYNCRXCTL, val);
547 }
548 
549 static void igc_ptp_free_tx_buffer(struct igc_adapter *adapter,
550 				   struct igc_tx_timestamp_request *tstamp)
551 {
552 	if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
553 		/* Release the transmit completion */
554 		tstamp->xsk_tx_buffer->xsk_pending_ts = false;
555 
556 		/* Note: tstamp->skb and tstamp->xsk_tx_buffer are in union.
557 		 * By setting tstamp->xsk_tx_buffer to NULL, tstamp->skb will
558 		 * become NULL as well.
559 		 */
560 		tstamp->xsk_tx_buffer = NULL;
561 		tstamp->buffer_type = 0;
562 
563 		/* Trigger txrx interrupt for transmit completion */
564 		igc_xsk_wakeup(adapter->netdev, tstamp->xsk_queue_index, 0);
565 
566 		return;
567 	}
568 
569 	dev_kfree_skb_any(tstamp->skb);
570 	tstamp->skb = NULL;
571 }
572 
573 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
574 {
575 	unsigned long flags;
576 	int i;
577 
578 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
579 
580 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
581 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
582 
583 		if (tstamp->skb)
584 			igc_ptp_free_tx_buffer(adapter, tstamp);
585 	}
586 
587 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
588 }
589 
590 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
591 {
592 	struct igc_hw *hw = &adapter->hw;
593 	int i;
594 
595 	/* Clear the flags first to avoid new packets to be enqueued
596 	 * for TX timestamping.
597 	 */
598 	for (i = 0; i < adapter->num_tx_queues; i++) {
599 		struct igc_ring *tx_ring = adapter->tx_ring[i];
600 
601 		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
602 	}
603 
604 	/* Now we can clean the pending TX timestamp requests. */
605 	igc_ptp_clear_tx_tstamp(adapter);
606 
607 	wr32(IGC_TSYNCTXCTL, 0);
608 }
609 
610 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
611 {
612 	struct igc_hw *hw = &adapter->hw;
613 	int i;
614 
615 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
616 
617 	/* Read TXSTMP registers to discard any timestamp previously stored. */
618 	rd32(IGC_TXSTMPL);
619 	rd32(IGC_TXSTMPH);
620 
621 	/* The hardware is ready to accept TX timestamp requests,
622 	 * notify the transmit path.
623 	 */
624 	for (i = 0; i < adapter->num_tx_queues; i++) {
625 		struct igc_ring *tx_ring = adapter->tx_ring[i];
626 
627 		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
628 	}
629 
630 }
631 
632 /**
633  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
634  * @adapter: networking device structure
635  * @config: hwtstamp configuration
636  *
637  * Return: 0 in case of success, negative errno code otherwise.
638  */
639 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
640 				      struct hwtstamp_config *config)
641 {
642 	switch (config->tx_type) {
643 	case HWTSTAMP_TX_OFF:
644 		igc_ptp_disable_tx_timestamp(adapter);
645 		break;
646 	case HWTSTAMP_TX_ON:
647 		igc_ptp_enable_tx_timestamp(adapter);
648 		break;
649 	default:
650 		return -ERANGE;
651 	}
652 
653 	switch (config->rx_filter) {
654 	case HWTSTAMP_FILTER_NONE:
655 		igc_ptp_disable_rx_timestamp(adapter);
656 		break;
657 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
658 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
659 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
660 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
661 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
662 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
663 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
664 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
665 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
666 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
667 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
668 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
669 	case HWTSTAMP_FILTER_NTP_ALL:
670 	case HWTSTAMP_FILTER_ALL:
671 		igc_ptp_enable_rx_timestamp(adapter);
672 		config->rx_filter = HWTSTAMP_FILTER_ALL;
673 		break;
674 	default:
675 		return -ERANGE;
676 	}
677 
678 	return 0;
679 }
680 
681 /* Requires adapter->ptp_tx_lock held by caller. */
682 static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
683 			       struct igc_tx_timestamp_request *tstamp)
684 {
685 	if (tstamp->skb)
686 		igc_ptp_free_tx_buffer(adapter, tstamp);
687 
688 	adapter->tx_hwtstamp_timeouts++;
689 
690 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
691 }
692 
693 void igc_ptp_tx_hang(struct igc_adapter *adapter)
694 {
695 	struct igc_tx_timestamp_request *tstamp;
696 	struct igc_hw *hw = &adapter->hw;
697 	unsigned long flags;
698 	bool found = false;
699 	int i;
700 
701 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
702 
703 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
704 		tstamp = &adapter->tx_tstamp[i];
705 
706 		if (!tstamp->skb)
707 			continue;
708 
709 		if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
710 			continue;
711 
712 		igc_ptp_tx_timeout(adapter, tstamp);
713 		found = true;
714 	}
715 
716 	if (found) {
717 		/* Reading the high register of the first set of timestamp registers
718 		 * clears all the equivalent bits in the TSYNCTXCTL register.
719 		 */
720 		rd32(IGC_TXSTMPH_0);
721 	}
722 
723 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
724 }
725 
726 static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
727 				    struct igc_tx_timestamp_request *tstamp, u64 regval)
728 {
729 	struct skb_shared_hwtstamps shhwtstamps;
730 	struct sk_buff *skb;
731 	int adjust = 0;
732 
733 	skb = tstamp->skb;
734 	if (!skb)
735 		return;
736 
737 	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
738 		return;
739 
740 	switch (adapter->link_speed) {
741 	case SPEED_10:
742 		adjust = IGC_I225_TX_LATENCY_10;
743 		break;
744 	case SPEED_100:
745 		adjust = IGC_I225_TX_LATENCY_100;
746 		break;
747 	case SPEED_1000:
748 		adjust = IGC_I225_TX_LATENCY_1000;
749 		break;
750 	case SPEED_2500:
751 		adjust = IGC_I225_TX_LATENCY_2500;
752 		break;
753 	}
754 
755 	shhwtstamps.hwtstamp =
756 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
757 
758 	/* Copy the tx hardware timestamp into xdp metadata or skb */
759 	if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
760 		struct xsk_buff_pool *xsk_pool;
761 
762 		xsk_pool = adapter->tx_ring[tstamp->xsk_queue_index]->xsk_pool;
763 		if (xsk_pool && xp_tx_metadata_enabled(xsk_pool)) {
764 			xsk_tx_metadata_complete(&tstamp->xsk_meta,
765 						 &igc_xsk_tx_metadata_ops,
766 						 &shhwtstamps.hwtstamp);
767 		}
768 	} else {
769 		skb_tstamp_tx(skb, &shhwtstamps);
770 	}
771 
772 	igc_ptp_free_tx_buffer(adapter, tstamp);
773 }
774 
775 /**
776  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
777  * @adapter: Board private structure
778  *
779  * Check against the ready mask for which of the timestamp register
780  * sets are ready to be retrieved, then retrieve that and notify the
781  * rest of the stack.
782  *
783  * Context: Expects adapter->ptp_tx_lock to be held by caller.
784  */
785 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
786 {
787 	struct igc_hw *hw = &adapter->hw;
788 	u64 regval;
789 	u32 mask;
790 	int i;
791 
792 	mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
793 	if (mask & IGC_TSYNCTXCTL_TXTT_0) {
794 		regval = rd32(IGC_TXSTMPL);
795 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
796 	} else {
797 		/* There's a bug in the hardware that could cause
798 		 * missing interrupts for TX timestamping. The issue
799 		 * is that for new interrupts to be triggered, the
800 		 * IGC_TXSTMPH_0 register must be read.
801 		 *
802 		 * To avoid discarding a valid timestamp that just
803 		 * happened at the "wrong" time, we need to confirm
804 		 * that there was no timestamp captured, we do that by
805 		 * assuming that no two timestamps in sequence have
806 		 * the same nanosecond value.
807 		 *
808 		 * So, we read the "low" register, read the "high"
809 		 * register (to latch a new timestamp) and read the
810 		 * "low" register again, if "old" and "new" versions
811 		 * of the "low" register are different, a valid
812 		 * timestamp was captured, we can read the "high"
813 		 * register again.
814 		 */
815 		u32 txstmpl_old, txstmpl_new;
816 
817 		txstmpl_old = rd32(IGC_TXSTMPL);
818 		rd32(IGC_TXSTMPH);
819 		txstmpl_new = rd32(IGC_TXSTMPL);
820 
821 		if (txstmpl_old == txstmpl_new)
822 			goto done;
823 
824 		regval = txstmpl_new;
825 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
826 	}
827 
828 	igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
829 
830 done:
831 	/* Now that the problematic first register was handled, we can
832 	 * use retrieve the timestamps from the other registers
833 	 * (starting from '1') with less complications.
834 	 */
835 	for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
836 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
837 
838 		if (!(tstamp->mask & mask))
839 			continue;
840 
841 		regval = rd32(tstamp->regl);
842 		regval |= (u64)rd32(tstamp->regh) << 32;
843 
844 		igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
845 	}
846 }
847 
848 /**
849  * igc_ptp_tx_tstamp_event
850  * @adapter: board private structure
851  *
852  * Called when a TX timestamp interrupt happens to retrieve the
853  * timestamp and send it up to the socket.
854  */
855 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
856 {
857 	unsigned long flags;
858 
859 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
860 
861 	igc_ptp_tx_hwtstamp(adapter);
862 
863 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
864 }
865 
866 /**
867  * igc_ptp_set_ts_config - set hardware time stamping config
868  * @netdev: network interface device structure
869  * @ifr: interface request data
870  *
871  **/
872 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
873 {
874 	struct igc_adapter *adapter = netdev_priv(netdev);
875 	struct hwtstamp_config config;
876 	int err;
877 
878 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
879 		return -EFAULT;
880 
881 	err = igc_ptp_set_timestamp_mode(adapter, &config);
882 	if (err)
883 		return err;
884 
885 	/* save these settings for future reference */
886 	memcpy(&adapter->tstamp_config, &config,
887 	       sizeof(adapter->tstamp_config));
888 
889 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
890 		-EFAULT : 0;
891 }
892 
893 /**
894  * igc_ptp_get_ts_config - get hardware time stamping config
895  * @netdev: network interface device structure
896  * @ifr: interface request data
897  *
898  * Get the hwtstamp_config settings to return to the user. Rather than attempt
899  * to deconstruct the settings from the registers, just return a shadow copy
900  * of the last known settings.
901  **/
902 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
903 {
904 	struct igc_adapter *adapter = netdev_priv(netdev);
905 	struct hwtstamp_config *config = &adapter->tstamp_config;
906 
907 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
908 		-EFAULT : 0;
909 }
910 
911 /* The two conditions below must be met for cross timestamping via
912  * PCIe PTM:
913  *
914  * 1. We have an way to convert the timestamps in the PTM messages
915  *    to something related to the system clocks (right now, only
916  *    X86 systems with support for the Always Running Timer allow that);
917  *
918  * 2. We have PTM enabled in the path from the device to the PCIe root port.
919  */
920 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
921 {
922 	if (!IS_ENABLED(CONFIG_X86_TSC))
923 		return false;
924 
925 	/* FIXME: it was noticed that enabling support for PCIe PTM in
926 	 * some i225-V models could cause lockups when bringing the
927 	 * interface up/down. There should be no downsides to
928 	 * disabling crosstimestamping support for i225-V, as it
929 	 * doesn't have any PTP support. That way we gain some time
930 	 * while root causing the issue.
931 	 */
932 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
933 		return false;
934 
935 	return pcie_ptm_enabled(adapter->pdev);
936 }
937 
938 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
939 {
940 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
941 	return convert_art_ns_to_tsc(tstamp);
942 #else
943 	return (struct system_counterval_t) { };
944 #endif
945 }
946 
947 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
948 {
949 	struct net_device *netdev = adapter->netdev;
950 
951 	switch (ptm_stat) {
952 	case IGC_PTM_STAT_RET_ERR:
953 		netdev_err(netdev, "PTM Error: Root port timeout\n");
954 		break;
955 	case IGC_PTM_STAT_BAD_PTM_RES:
956 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
957 		break;
958 	case IGC_PTM_STAT_T4M1_OVFL:
959 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
960 		break;
961 	case IGC_PTM_STAT_ADJUST_1ST:
962 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
963 		break;
964 	case IGC_PTM_STAT_ADJUST_CYC:
965 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
966 		break;
967 	default:
968 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
969 		break;
970 	}
971 }
972 
973 static int igc_phc_get_syncdevicetime(ktime_t *device,
974 				      struct system_counterval_t *system,
975 				      void *ctx)
976 {
977 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
978 	struct igc_adapter *adapter = ctx;
979 	struct igc_hw *hw = &adapter->hw;
980 	int err, count = 100;
981 	ktime_t t1, t2_curr;
982 
983 	/* Get a snapshot of system clocks to use as historic value. */
984 	ktime_get_snapshot(&adapter->snapshot);
985 
986 	do {
987 		/* Doing this in a loop because in the event of a
988 		 * badly timed (ha!) system clock adjustment, we may
989 		 * get PTM errors from the PCI root, but these errors
990 		 * are transitory. Repeating the process returns valid
991 		 * data eventually.
992 		 */
993 
994 		/* To "manually" start the PTM cycle we need to clear and
995 		 * then set again the TRIG bit.
996 		 */
997 		ctrl = rd32(IGC_PTM_CTRL);
998 		ctrl &= ~IGC_PTM_CTRL_TRIG;
999 		wr32(IGC_PTM_CTRL, ctrl);
1000 		ctrl |= IGC_PTM_CTRL_TRIG;
1001 		wr32(IGC_PTM_CTRL, ctrl);
1002 
1003 		/* The cycle only starts "for real" when software notifies
1004 		 * that it has read the registers, this is done by setting
1005 		 * VALID bit.
1006 		 */
1007 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1008 
1009 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
1010 					 stat, IGC_PTM_STAT_SLEEP,
1011 					 IGC_PTM_STAT_TIMEOUT);
1012 		if (err < 0) {
1013 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
1014 			return err;
1015 		}
1016 
1017 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
1018 			break;
1019 
1020 		if (stat & ~IGC_PTM_STAT_VALID) {
1021 			/* An error occurred, log it. */
1022 			igc_ptm_log_error(adapter, stat);
1023 			/* The STAT register is write-1-to-clear (W1C),
1024 			 * so write the previous error status to clear it.
1025 			 */
1026 			wr32(IGC_PTM_STAT, stat);
1027 			continue;
1028 		}
1029 	} while (--count);
1030 
1031 	if (!count) {
1032 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
1033 		return -ETIMEDOUT;
1034 	}
1035 
1036 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1037 
1038 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1039 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1040 
1041 	/* FIXME: When the register that tells the endianness of the
1042 	 * PTM registers are implemented, check them here and add the
1043 	 * appropriate conversion.
1044 	 */
1045 	t2_curr_h = swab32(t2_curr_h);
1046 
1047 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1048 
1049 	*device = t1;
1050 	*system = igc_device_tstamp_to_system(t2_curr);
1051 
1052 	return 0;
1053 }
1054 
1055 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1056 				  struct system_device_crosststamp *cts)
1057 {
1058 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1059 						   ptp_caps);
1060 
1061 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1062 					     adapter, &adapter->snapshot, cts);
1063 }
1064 
1065 static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
1066 				struct timespec64 *ts,
1067 				struct ptp_system_timestamp *sts)
1068 {
1069 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
1070 	struct igc_hw *hw = &igc->hw;
1071 	unsigned long flags;
1072 
1073 	spin_lock_irqsave(&igc->free_timer_lock, flags);
1074 
1075 	ptp_read_system_prets(sts);
1076 	ts->tv_nsec = rd32(IGC_SYSTIML_1);
1077 	ts->tv_sec = rd32(IGC_SYSTIMH_1);
1078 	ptp_read_system_postts(sts);
1079 
1080 	spin_unlock_irqrestore(&igc->free_timer_lock, flags);
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * igc_ptp_init - Initialize PTP functionality
1087  * @adapter: Board private structure
1088  *
1089  * This function is called at device probe to initialize the PTP
1090  * functionality.
1091  */
1092 void igc_ptp_init(struct igc_adapter *adapter)
1093 {
1094 	struct net_device *netdev = adapter->netdev;
1095 	struct igc_tx_timestamp_request *tstamp;
1096 	struct igc_hw *hw = &adapter->hw;
1097 	int i;
1098 
1099 	tstamp = &adapter->tx_tstamp[0];
1100 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1101 	tstamp->regl = IGC_TXSTMPL_0;
1102 	tstamp->regh = IGC_TXSTMPH_0;
1103 	tstamp->flags = 0;
1104 
1105 	tstamp = &adapter->tx_tstamp[1];
1106 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1107 	tstamp->regl = IGC_TXSTMPL_1;
1108 	tstamp->regh = IGC_TXSTMPH_1;
1109 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1110 
1111 	tstamp = &adapter->tx_tstamp[2];
1112 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1113 	tstamp->regl = IGC_TXSTMPL_2;
1114 	tstamp->regh = IGC_TXSTMPH_2;
1115 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1116 
1117 	tstamp = &adapter->tx_tstamp[3];
1118 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1119 	tstamp->regl = IGC_TXSTMPL_3;
1120 	tstamp->regh = IGC_TXSTMPH_3;
1121 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1122 
1123 	switch (hw->mac.type) {
1124 	case igc_i225:
1125 		for (i = 0; i < IGC_N_SDP; i++) {
1126 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1127 
1128 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1129 			ppd->index = i;
1130 			ppd->func = PTP_PF_NONE;
1131 		}
1132 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1133 		adapter->ptp_caps.owner = THIS_MODULE;
1134 		adapter->ptp_caps.max_adj = 62499999;
1135 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1136 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1137 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1138 		adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
1139 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1140 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1141 		adapter->ptp_caps.pps = 1;
1142 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1143 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1144 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1145 		adapter->ptp_caps.n_pins = IGC_N_SDP;
1146 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1147 
1148 		if (!igc_is_crosststamp_supported(adapter))
1149 			break;
1150 
1151 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1152 		break;
1153 	default:
1154 		adapter->ptp_clock = NULL;
1155 		return;
1156 	}
1157 
1158 	spin_lock_init(&adapter->ptp_tx_lock);
1159 	spin_lock_init(&adapter->free_timer_lock);
1160 	spin_lock_init(&adapter->tmreg_lock);
1161 
1162 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1163 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1164 
1165 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1166 	adapter->ptp_reset_start = ktime_get();
1167 
1168 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1169 						&adapter->pdev->dev);
1170 	if (IS_ERR(adapter->ptp_clock)) {
1171 		adapter->ptp_clock = NULL;
1172 		netdev_err(netdev, "ptp_clock_register failed\n");
1173 	} else if (adapter->ptp_clock) {
1174 		netdev_info(netdev, "PHC added\n");
1175 		adapter->ptp_flags |= IGC_PTP_ENABLED;
1176 	}
1177 }
1178 
1179 static void igc_ptp_time_save(struct igc_adapter *adapter)
1180 {
1181 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1182 	adapter->ptp_reset_start = ktime_get();
1183 }
1184 
1185 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1186 {
1187 	struct timespec64 ts = adapter->prev_ptp_time;
1188 	ktime_t delta;
1189 
1190 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1191 
1192 	timespec64_add_ns(&ts, ktime_to_ns(delta));
1193 
1194 	igc_ptp_write_i225(adapter, &ts);
1195 }
1196 
1197 static void igc_ptm_stop(struct igc_adapter *adapter)
1198 {
1199 	struct igc_hw *hw = &adapter->hw;
1200 	u32 ctrl;
1201 
1202 	ctrl = rd32(IGC_PTM_CTRL);
1203 	ctrl &= ~IGC_PTM_CTRL_EN;
1204 
1205 	wr32(IGC_PTM_CTRL, ctrl);
1206 }
1207 
1208 /**
1209  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1210  * @adapter: Board private structure
1211  *
1212  * This function stops the overflow check work and PTP Tx timestamp work, and
1213  * will prepare the device for OS suspend.
1214  */
1215 void igc_ptp_suspend(struct igc_adapter *adapter)
1216 {
1217 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1218 		return;
1219 
1220 	igc_ptp_clear_tx_tstamp(adapter);
1221 
1222 	if (pci_device_is_present(adapter->pdev)) {
1223 		igc_ptp_time_save(adapter);
1224 		igc_ptm_stop(adapter);
1225 	}
1226 }
1227 
1228 /**
1229  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1230  * @adapter: Board private structure.
1231  *
1232  * This function stops the PTP support and cancels the delayed work.
1233  **/
1234 void igc_ptp_stop(struct igc_adapter *adapter)
1235 {
1236 	igc_ptp_suspend(adapter);
1237 
1238 	if (adapter->ptp_clock) {
1239 		ptp_clock_unregister(adapter->ptp_clock);
1240 		netdev_info(adapter->netdev, "PHC removed\n");
1241 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1242 	}
1243 }
1244 
1245 /**
1246  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1247  * @adapter: Board private structure.
1248  *
1249  * This function handles the reset work required to re-enable the PTP device.
1250  **/
1251 void igc_ptp_reset(struct igc_adapter *adapter)
1252 {
1253 	struct igc_hw *hw = &adapter->hw;
1254 	u32 cycle_ctrl, ctrl;
1255 	unsigned long flags;
1256 	u32 timadj;
1257 
1258 	/* reset the tstamp_config */
1259 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1260 
1261 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1262 
1263 	switch (adapter->hw.mac.type) {
1264 	case igc_i225:
1265 		timadj = rd32(IGC_TIMADJ);
1266 		timadj |= IGC_TIMADJ_ADJUST_METH;
1267 		wr32(IGC_TIMADJ, timadj);
1268 
1269 		wr32(IGC_TSAUXC, 0x0);
1270 		wr32(IGC_TSSDP, 0x0);
1271 		wr32(IGC_TSIM,
1272 		     IGC_TSICR_INTERRUPTS |
1273 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1274 		wr32(IGC_IMS, IGC_IMS_TS);
1275 
1276 		if (!igc_is_crosststamp_supported(adapter))
1277 			break;
1278 
1279 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1280 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1281 
1282 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1283 
1284 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1285 
1286 		ctrl = IGC_PTM_CTRL_EN |
1287 			IGC_PTM_CTRL_START_NOW |
1288 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1289 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1290 			IGC_PTM_CTRL_TRIG;
1291 
1292 		wr32(IGC_PTM_CTRL, ctrl);
1293 
1294 		/* Force the first cycle to run. */
1295 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1296 
1297 		break;
1298 	default:
1299 		/* No work to do. */
1300 		goto out;
1301 	}
1302 
1303 	/* Re-initialize the timer. */
1304 	if (hw->mac.type == igc_i225) {
1305 		igc_ptp_time_restore(adapter);
1306 	} else {
1307 		timecounter_init(&adapter->tc, &adapter->cc,
1308 				 ktime_to_ns(ktime_get_real()));
1309 	}
1310 out:
1311 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1312 
1313 	wrfl();
1314 }
1315