xref: /linux/drivers/net/ethernet/intel/igc/igc_ptp.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 
15 #define INCVALUE_MASK		0x7fffffff
16 #define ISGN			0x80000000
17 
18 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19 
20 #define IGC_PTM_STAT_SLEEP		2
21 #define IGC_PTM_STAT_TIMEOUT		100
22 
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 	struct igc_hw *hw = &adapter->hw;
27 	u32 sec, nsec;
28 
29 	/* The timestamp is latched when SYSTIML is read. */
30 	nsec = rd32(IGC_SYSTIML);
31 	sec = rd32(IGC_SYSTIMH);
32 
33 	ts->tv_sec = sec;
34 	ts->tv_nsec = nsec;
35 }
36 
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 			       const struct timespec64 *ts)
39 {
40 	struct igc_hw *hw = &adapter->hw;
41 
42 	wr32(IGC_SYSTIML, ts->tv_nsec);
43 	wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45 
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 					       ptp_caps);
50 	struct igc_hw *hw = &igc->hw;
51 	int neg_adj = 0;
52 	u64 rate;
53 	u32 inca;
54 
55 	if (scaled_ppm < 0) {
56 		neg_adj = 1;
57 		scaled_ppm = -scaled_ppm;
58 	}
59 	rate = scaled_ppm;
60 	rate <<= 14;
61 	rate = div_u64(rate, 78125);
62 
63 	inca = rate & INCVALUE_MASK;
64 	if (neg_adj)
65 		inca |= ISGN;
66 
67 	wr32(IGC_TIMINCA, inca);
68 
69 	return 0;
70 }
71 
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 					       ptp_caps);
76 	struct timespec64 now, then = ns_to_timespec64(delta);
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&igc->tmreg_lock, flags);
80 
81 	igc_ptp_read(igc, &now);
82 	now = timespec64_add(now, then);
83 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84 
85 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86 
87 	return 0;
88 }
89 
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 				   struct timespec64 *ts,
92 				   struct ptp_system_timestamp *sts)
93 {
94 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 					       ptp_caps);
96 	struct igc_hw *hw = &igc->hw;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&igc->tmreg_lock, flags);
100 
101 	ptp_read_system_prets(sts);
102 	ts->tv_nsec = rd32(IGC_SYSTIML);
103 	ts->tv_sec = rd32(IGC_SYSTIMH);
104 	ptp_read_system_postts(sts);
105 
106 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107 
108 	return 0;
109 }
110 
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 				const struct timespec64 *ts)
113 {
114 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 					       ptp_caps);
116 	unsigned long flags;
117 
118 	spin_lock_irqsave(&igc->tmreg_lock, flags);
119 
120 	igc_ptp_write_i225(igc, ts);
121 
122 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123 
124 	return 0;
125 }
126 
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 	static const u32 mask[IGC_N_SDP] = {
131 		IGC_CTRL_SDP0_DIR,
132 		IGC_CTRL_SDP1_DIR,
133 		IGC_CTRL_EXT_SDP2_DIR,
134 		IGC_CTRL_EXT_SDP3_DIR,
135 	};
136 
137 	if (input)
138 		*ptr &= ~mask[pin];
139 	else
140 		*ptr |= mask[pin];
141 }
142 
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 	};
148 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 	};
151 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 	};
154 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 	};
158 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 	};
162 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 	};
166 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 	};
170 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 	};
174 	struct igc_hw *hw = &igc->hw;
175 	u32 ctrl, ctrl_ext, tssdp = 0;
176 
177 	ctrl = rd32(IGC_CTRL);
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	tssdp = rd32(IGC_TSSDP);
180 
181 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182 
183 	/* Make sure this pin is not enabled as an input. */
184 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186 
187 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189 
190 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 	if (freq) {
192 		if (chan == 1)
193 			tssdp |= igc_ts_sdp_sel_fc1[pin];
194 		else
195 			tssdp |= igc_ts_sdp_sel_fc0[pin];
196 	} else {
197 		if (chan == 1)
198 			tssdp |= igc_ts_sdp_sel_tt1[pin];
199 		else
200 			tssdp |= igc_ts_sdp_sel_tt0[pin];
201 	}
202 	tssdp |= igc_ts_sdp_en[pin];
203 
204 	wr32(IGC_TSSDP, tssdp);
205 	wr32(IGC_CTRL, ctrl);
206 	wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208 
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 	};
214 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 	};
217 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 	};
220 	struct igc_hw *hw = &igc->hw;
221 	u32 ctrl, ctrl_ext, tssdp = 0;
222 
223 	ctrl = rd32(IGC_CTRL);
224 	ctrl_ext = rd32(IGC_CTRL_EXT);
225 	tssdp = rd32(IGC_TSSDP);
226 
227 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228 
229 	/* Make sure this pin is not enabled as an output. */
230 	tssdp &= ~igc_ts_sdp_en[pin];
231 
232 	if (chan == 1) {
233 		tssdp &= ~IGC_AUX1_SEL_SDP3;
234 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 	} else {
236 		tssdp &= ~IGC_AUX0_SEL_SDP3;
237 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 	}
239 
240 	wr32(IGC_TSSDP, tssdp);
241 	wr32(IGC_CTRL, ctrl);
242 	wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244 
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 				       struct ptp_clock_request *rq, int on)
247 {
248 	struct igc_adapter *igc =
249 		container_of(ptp, struct igc_adapter, ptp_caps);
250 	struct igc_hw *hw = &igc->hw;
251 	unsigned long flags;
252 	struct timespec64 ts;
253 	int use_freq = 0, pin = -1;
254 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 	s64 ns;
256 
257 	switch (rq->type) {
258 	case PTP_CLK_REQ_EXTTS:
259 		/* Reject requests with unsupported flags */
260 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 					PTP_RISING_EDGE |
262 					PTP_FALLING_EDGE |
263 					PTP_STRICT_FLAGS))
264 			return -EOPNOTSUPP;
265 
266 		/* Reject requests failing to enable both edges. */
267 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 			return -EOPNOTSUPP;
271 
272 		if (on) {
273 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 					   rq->extts.index);
275 			if (pin < 0)
276 				return -EBUSY;
277 		}
278 		if (rq->extts.index == 1) {
279 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 			tsim_mask = IGC_TSICR_AUTT1;
281 		} else {
282 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 			tsim_mask = IGC_TSICR_AUTT0;
284 		}
285 		spin_lock_irqsave(&igc->tmreg_lock, flags);
286 		tsauxc = rd32(IGC_TSAUXC);
287 		tsim = rd32(IGC_TSIM);
288 		if (on) {
289 			igc_pin_extts(igc, rq->extts.index, pin);
290 			tsauxc |= tsauxc_mask;
291 			tsim |= tsim_mask;
292 		} else {
293 			tsauxc &= ~tsauxc_mask;
294 			tsim &= ~tsim_mask;
295 		}
296 		wr32(IGC_TSAUXC, tsauxc);
297 		wr32(IGC_TSIM, tsim);
298 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 		return 0;
300 
301 	case PTP_CLK_REQ_PEROUT:
302 		/* Reject requests with unsupported flags */
303 		if (rq->perout.flags)
304 			return -EOPNOTSUPP;
305 
306 		if (on) {
307 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 					   rq->perout.index);
309 			if (pin < 0)
310 				return -EBUSY;
311 		}
312 		ts.tv_sec = rq->perout.period.sec;
313 		ts.tv_nsec = rq->perout.period.nsec;
314 		ns = timespec64_to_ns(&ts);
315 		ns = ns >> 1;
316 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 			   ns == 250000000LL || ns == 500000000LL)) {
318 			if (ns < 8LL)
319 				return -EINVAL;
320 			use_freq = 1;
321 		}
322 		ts = ns_to_timespec64(ns);
323 		if (rq->perout.index == 1) {
324 			if (use_freq) {
325 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 				tsim_mask = 0;
327 			} else {
328 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 				tsim_mask = IGC_TSICR_TT1;
330 			}
331 			trgttiml = IGC_TRGTTIML1;
332 			trgttimh = IGC_TRGTTIMH1;
333 			freqout = IGC_FREQOUT1;
334 		} else {
335 			if (use_freq) {
336 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 				tsim_mask = 0;
338 			} else {
339 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 				tsim_mask = IGC_TSICR_TT0;
341 			}
342 			trgttiml = IGC_TRGTTIML0;
343 			trgttimh = IGC_TRGTTIMH0;
344 			freqout = IGC_FREQOUT0;
345 		}
346 		spin_lock_irqsave(&igc->tmreg_lock, flags);
347 		tsauxc = rd32(IGC_TSAUXC);
348 		tsim = rd32(IGC_TSIM);
349 		if (rq->perout.index == 1) {
350 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 				    IGC_TSAUXC_ST1);
352 			tsim &= ~IGC_TSICR_TT1;
353 		} else {
354 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 				    IGC_TSAUXC_ST0);
356 			tsim &= ~IGC_TSICR_TT0;
357 		}
358 		if (on) {
359 			struct timespec64 safe_start;
360 			int i = rq->perout.index;
361 
362 			igc_pin_perout(igc, i, pin, use_freq);
363 			igc_ptp_read(igc, &safe_start);
364 
365 			/* PPS output start time is triggered by Target time(TT)
366 			 * register. Programming any past time value into TT
367 			 * register will cause PPS to never start. Need to make
368 			 * sure we program the TT register a time ahead in
369 			 * future. There isn't a stringent need to fire PPS out
370 			 * right away. Adding +2 seconds should take care of
371 			 * corner cases. Let's say if the SYSTIML is close to
372 			 * wrap up and the timer keeps ticking as we program the
373 			 * register, adding +2seconds is safe bet.
374 			 */
375 			safe_start.tv_sec += 2;
376 
377 			if (rq->perout.start.sec < safe_start.tv_sec)
378 				igc->perout[i].start.tv_sec = safe_start.tv_sec;
379 			else
380 				igc->perout[i].start.tv_sec = rq->perout.start.sec;
381 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
382 			igc->perout[i].period.tv_sec = ts.tv_sec;
383 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
384 			wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
385 			/* For now, always select timer 0 as source. */
386 			wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
387 					     IGC_TT_IO_TIMER_SEL_SYSTIM0));
388 			if (use_freq)
389 				wr32(freqout, ns);
390 			tsauxc |= tsauxc_mask;
391 			tsim |= tsim_mask;
392 		}
393 		wr32(IGC_TSAUXC, tsauxc);
394 		wr32(IGC_TSIM, tsim);
395 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
396 		return 0;
397 
398 	case PTP_CLK_REQ_PPS:
399 		spin_lock_irqsave(&igc->tmreg_lock, flags);
400 		tsim = rd32(IGC_TSIM);
401 		if (on)
402 			tsim |= IGC_TSICR_SYS_WRAP;
403 		else
404 			tsim &= ~IGC_TSICR_SYS_WRAP;
405 		igc->pps_sys_wrap_on = on;
406 		wr32(IGC_TSIM, tsim);
407 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
408 		return 0;
409 
410 	default:
411 		break;
412 	}
413 
414 	return -EOPNOTSUPP;
415 }
416 
417 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
418 			      enum ptp_pin_function func, unsigned int chan)
419 {
420 	switch (func) {
421 	case PTP_PF_NONE:
422 	case PTP_PF_EXTTS:
423 	case PTP_PF_PEROUT:
424 		break;
425 	case PTP_PF_PHYSYNC:
426 		return -1;
427 	}
428 	return 0;
429 }
430 
431 /**
432  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
433  * @adapter: board private structure
434  * @hwtstamps: timestamp structure to update
435  * @systim: unsigned 64bit system time value
436  *
437  * We need to convert the system time value stored in the RX/TXSTMP registers
438  * into a hwtstamp which can be used by the upper level timestamping functions.
439  *
440  * Returns 0 on success.
441  **/
442 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
443 				      struct skb_shared_hwtstamps *hwtstamps,
444 				      u64 systim)
445 {
446 	switch (adapter->hw.mac.type) {
447 	case igc_i225:
448 		memset(hwtstamps, 0, sizeof(*hwtstamps));
449 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
450 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
451 						systim & 0xFFFFFFFF);
452 		break;
453 	default:
454 		return -EINVAL;
455 	}
456 	return 0;
457 }
458 
459 /**
460  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
461  * @adapter: Pointer to adapter the packet buffer belongs to
462  * @buf: Pointer to packet buffer
463  *
464  * This function retrieves the timestamp saved in the beginning of packet
465  * buffer. While two timestamps are available, one in timer0 reference and the
466  * other in timer1 reference, this function considers only the timestamp in
467  * timer0 reference.
468  *
469  * Returns timestamp value.
470  */
471 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
472 {
473 	ktime_t timestamp;
474 	u32 secs, nsecs;
475 	int adjust;
476 
477 	/* Timestamps are saved in little endian at the beginning of the packet
478 	 * buffer following the layout:
479 	 *
480 	 * DWORD: | 0              | 1              | 2              | 3              |
481 	 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
482 	 *
483 	 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
484 	 * part of the timestamp.
485 	 */
486 	nsecs = le32_to_cpu(buf[2]);
487 	secs = le32_to_cpu(buf[3]);
488 
489 	timestamp = ktime_set(secs, nsecs);
490 
491 	/* Adjust timestamp for the RX latency based on link speed */
492 	switch (adapter->link_speed) {
493 	case SPEED_10:
494 		adjust = IGC_I225_RX_LATENCY_10;
495 		break;
496 	case SPEED_100:
497 		adjust = IGC_I225_RX_LATENCY_100;
498 		break;
499 	case SPEED_1000:
500 		adjust = IGC_I225_RX_LATENCY_1000;
501 		break;
502 	case SPEED_2500:
503 		adjust = IGC_I225_RX_LATENCY_2500;
504 		break;
505 	default:
506 		adjust = 0;
507 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
508 		break;
509 	}
510 
511 	return ktime_sub_ns(timestamp, adjust);
512 }
513 
514 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
515 {
516 	struct igc_hw *hw = &adapter->hw;
517 	u32 val;
518 	int i;
519 
520 	wr32(IGC_TSYNCRXCTL, 0);
521 
522 	for (i = 0; i < adapter->num_rx_queues; i++) {
523 		val = rd32(IGC_SRRCTL(i));
524 		val &= ~IGC_SRRCTL_TIMESTAMP;
525 		wr32(IGC_SRRCTL(i), val);
526 	}
527 
528 	val = rd32(IGC_RXPBS);
529 	val &= ~IGC_RXPBS_CFG_TS_EN;
530 	wr32(IGC_RXPBS, val);
531 }
532 
533 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
534 {
535 	struct igc_hw *hw = &adapter->hw;
536 	u32 val;
537 	int i;
538 
539 	val = rd32(IGC_RXPBS);
540 	val |= IGC_RXPBS_CFG_TS_EN;
541 	wr32(IGC_RXPBS, val);
542 
543 	for (i = 0; i < adapter->num_rx_queues; i++) {
544 		val = rd32(IGC_SRRCTL(i));
545 		/* FIXME: For now, only support retrieving RX timestamps from
546 		 * timer 0.
547 		 */
548 		val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
549 		       IGC_SRRCTL_TIMESTAMP;
550 		wr32(IGC_SRRCTL(i), val);
551 	}
552 
553 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
554 	      IGC_TSYNCRXCTL_RXSYNSIG;
555 	wr32(IGC_TSYNCRXCTL, val);
556 }
557 
558 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
559 {
560 	unsigned long flags;
561 	int i;
562 
563 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
564 
565 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
566 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
567 
568 		dev_kfree_skb_any(tstamp->skb);
569 		tstamp->skb = NULL;
570 	}
571 
572 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
573 }
574 
575 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
576 {
577 	struct igc_hw *hw = &adapter->hw;
578 	int i;
579 
580 	/* Clear the flags first to avoid new packets to be enqueued
581 	 * for TX timestamping.
582 	 */
583 	for (i = 0; i < adapter->num_tx_queues; i++) {
584 		struct igc_ring *tx_ring = adapter->tx_ring[i];
585 
586 		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
587 	}
588 
589 	/* Now we can clean the pending TX timestamp requests. */
590 	igc_ptp_clear_tx_tstamp(adapter);
591 
592 	wr32(IGC_TSYNCTXCTL, 0);
593 }
594 
595 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
596 {
597 	struct igc_hw *hw = &adapter->hw;
598 	int i;
599 
600 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
601 
602 	/* Read TXSTMP registers to discard any timestamp previously stored. */
603 	rd32(IGC_TXSTMPL);
604 	rd32(IGC_TXSTMPH);
605 
606 	/* The hardware is ready to accept TX timestamp requests,
607 	 * notify the transmit path.
608 	 */
609 	for (i = 0; i < adapter->num_tx_queues; i++) {
610 		struct igc_ring *tx_ring = adapter->tx_ring[i];
611 
612 		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
613 	}
614 
615 }
616 
617 /**
618  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
619  * @adapter: networking device structure
620  * @config: hwtstamp configuration
621  *
622  * Return: 0 in case of success, negative errno code otherwise.
623  */
624 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
625 				      struct hwtstamp_config *config)
626 {
627 	switch (config->tx_type) {
628 	case HWTSTAMP_TX_OFF:
629 		igc_ptp_disable_tx_timestamp(adapter);
630 		break;
631 	case HWTSTAMP_TX_ON:
632 		igc_ptp_enable_tx_timestamp(adapter);
633 		break;
634 	default:
635 		return -ERANGE;
636 	}
637 
638 	switch (config->rx_filter) {
639 	case HWTSTAMP_FILTER_NONE:
640 		igc_ptp_disable_rx_timestamp(adapter);
641 		break;
642 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
643 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
644 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
645 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
646 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
647 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
648 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
649 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
650 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
652 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
653 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654 	case HWTSTAMP_FILTER_NTP_ALL:
655 	case HWTSTAMP_FILTER_ALL:
656 		igc_ptp_enable_rx_timestamp(adapter);
657 		config->rx_filter = HWTSTAMP_FILTER_ALL;
658 		break;
659 	default:
660 		return -ERANGE;
661 	}
662 
663 	return 0;
664 }
665 
666 /* Requires adapter->ptp_tx_lock held by caller. */
667 static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
668 			       struct igc_tx_timestamp_request *tstamp)
669 {
670 	dev_kfree_skb_any(tstamp->skb);
671 	tstamp->skb = NULL;
672 	adapter->tx_hwtstamp_timeouts++;
673 
674 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
675 }
676 
677 void igc_ptp_tx_hang(struct igc_adapter *adapter)
678 {
679 	struct igc_tx_timestamp_request *tstamp;
680 	struct igc_hw *hw = &adapter->hw;
681 	unsigned long flags;
682 	bool found = false;
683 	int i;
684 
685 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
686 
687 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
688 		tstamp = &adapter->tx_tstamp[i];
689 
690 		if (!tstamp->skb)
691 			continue;
692 
693 		if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
694 			continue;
695 
696 		igc_ptp_tx_timeout(adapter, tstamp);
697 		found = true;
698 	}
699 
700 	if (found) {
701 		/* Reading the high register of the first set of timestamp registers
702 		 * clears all the equivalent bits in the TSYNCTXCTL register.
703 		 */
704 		rd32(IGC_TXSTMPH_0);
705 	}
706 
707 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
708 }
709 
710 static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
711 				    struct igc_tx_timestamp_request *tstamp, u64 regval)
712 {
713 	struct skb_shared_hwtstamps shhwtstamps;
714 	struct sk_buff *skb;
715 	int adjust = 0;
716 
717 	skb = tstamp->skb;
718 	if (!skb)
719 		return;
720 
721 	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
722 		return;
723 
724 	switch (adapter->link_speed) {
725 	case SPEED_10:
726 		adjust = IGC_I225_TX_LATENCY_10;
727 		break;
728 	case SPEED_100:
729 		adjust = IGC_I225_TX_LATENCY_100;
730 		break;
731 	case SPEED_1000:
732 		adjust = IGC_I225_TX_LATENCY_1000;
733 		break;
734 	case SPEED_2500:
735 		adjust = IGC_I225_TX_LATENCY_2500;
736 		break;
737 	}
738 
739 	shhwtstamps.hwtstamp =
740 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
741 
742 	tstamp->skb = NULL;
743 
744 	skb_tstamp_tx(skb, &shhwtstamps);
745 	dev_kfree_skb_any(skb);
746 }
747 
748 /**
749  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
750  * @adapter: Board private structure
751  *
752  * Check against the ready mask for which of the timestamp register
753  * sets are ready to be retrieved, then retrieve that and notify the
754  * rest of the stack.
755  *
756  * Context: Expects adapter->ptp_tx_lock to be held by caller.
757  */
758 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
759 {
760 	struct igc_hw *hw = &adapter->hw;
761 	u64 regval;
762 	u32 mask;
763 	int i;
764 
765 	mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
766 	if (mask & IGC_TSYNCTXCTL_TXTT_0) {
767 		regval = rd32(IGC_TXSTMPL);
768 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
769 	} else {
770 		/* There's a bug in the hardware that could cause
771 		 * missing interrupts for TX timestamping. The issue
772 		 * is that for new interrupts to be triggered, the
773 		 * IGC_TXSTMPH_0 register must be read.
774 		 *
775 		 * To avoid discarding a valid timestamp that just
776 		 * happened at the "wrong" time, we need to confirm
777 		 * that there was no timestamp captured, we do that by
778 		 * assuming that no two timestamps in sequence have
779 		 * the same nanosecond value.
780 		 *
781 		 * So, we read the "low" register, read the "high"
782 		 * register (to latch a new timestamp) and read the
783 		 * "low" register again, if "old" and "new" versions
784 		 * of the "low" register are different, a valid
785 		 * timestamp was captured, we can read the "high"
786 		 * register again.
787 		 */
788 		u32 txstmpl_old, txstmpl_new;
789 
790 		txstmpl_old = rd32(IGC_TXSTMPL);
791 		rd32(IGC_TXSTMPH);
792 		txstmpl_new = rd32(IGC_TXSTMPL);
793 
794 		if (txstmpl_old == txstmpl_new)
795 			goto done;
796 
797 		regval = txstmpl_new;
798 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
799 	}
800 
801 	igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
802 
803 done:
804 	/* Now that the problematic first register was handled, we can
805 	 * use retrieve the timestamps from the other registers
806 	 * (starting from '1') with less complications.
807 	 */
808 	for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
809 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
810 
811 		if (!(tstamp->mask & mask))
812 			continue;
813 
814 		regval = rd32(tstamp->regl);
815 		regval |= (u64)rd32(tstamp->regh) << 32;
816 
817 		igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
818 	}
819 }
820 
821 /**
822  * igc_ptp_tx_tstamp_event
823  * @adapter: board private structure
824  *
825  * Called when a TX timestamp interrupt happens to retrieve the
826  * timestamp and send it up to the socket.
827  */
828 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
829 {
830 	unsigned long flags;
831 
832 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
833 
834 	igc_ptp_tx_hwtstamp(adapter);
835 
836 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
837 }
838 
839 /**
840  * igc_ptp_set_ts_config - set hardware time stamping config
841  * @netdev: network interface device structure
842  * @ifr: interface request data
843  *
844  **/
845 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
846 {
847 	struct igc_adapter *adapter = netdev_priv(netdev);
848 	struct hwtstamp_config config;
849 	int err;
850 
851 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
852 		return -EFAULT;
853 
854 	err = igc_ptp_set_timestamp_mode(adapter, &config);
855 	if (err)
856 		return err;
857 
858 	/* save these settings for future reference */
859 	memcpy(&adapter->tstamp_config, &config,
860 	       sizeof(adapter->tstamp_config));
861 
862 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
863 		-EFAULT : 0;
864 }
865 
866 /**
867  * igc_ptp_get_ts_config - get hardware time stamping config
868  * @netdev: network interface device structure
869  * @ifr: interface request data
870  *
871  * Get the hwtstamp_config settings to return to the user. Rather than attempt
872  * to deconstruct the settings from the registers, just return a shadow copy
873  * of the last known settings.
874  **/
875 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
876 {
877 	struct igc_adapter *adapter = netdev_priv(netdev);
878 	struct hwtstamp_config *config = &adapter->tstamp_config;
879 
880 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
881 		-EFAULT : 0;
882 }
883 
884 /* The two conditions below must be met for cross timestamping via
885  * PCIe PTM:
886  *
887  * 1. We have an way to convert the timestamps in the PTM messages
888  *    to something related to the system clocks (right now, only
889  *    X86 systems with support for the Always Running Timer allow that);
890  *
891  * 2. We have PTM enabled in the path from the device to the PCIe root port.
892  */
893 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
894 {
895 	if (!IS_ENABLED(CONFIG_X86_TSC))
896 		return false;
897 
898 	/* FIXME: it was noticed that enabling support for PCIe PTM in
899 	 * some i225-V models could cause lockups when bringing the
900 	 * interface up/down. There should be no downsides to
901 	 * disabling crosstimestamping support for i225-V, as it
902 	 * doesn't have any PTP support. That way we gain some time
903 	 * while root causing the issue.
904 	 */
905 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
906 		return false;
907 
908 	return pcie_ptm_enabled(adapter->pdev);
909 }
910 
911 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
912 {
913 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
914 	return convert_art_ns_to_tsc(tstamp);
915 #else
916 	return (struct system_counterval_t) { };
917 #endif
918 }
919 
920 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
921 {
922 	struct net_device *netdev = adapter->netdev;
923 
924 	switch (ptm_stat) {
925 	case IGC_PTM_STAT_RET_ERR:
926 		netdev_err(netdev, "PTM Error: Root port timeout\n");
927 		break;
928 	case IGC_PTM_STAT_BAD_PTM_RES:
929 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
930 		break;
931 	case IGC_PTM_STAT_T4M1_OVFL:
932 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
933 		break;
934 	case IGC_PTM_STAT_ADJUST_1ST:
935 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
936 		break;
937 	case IGC_PTM_STAT_ADJUST_CYC:
938 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
939 		break;
940 	default:
941 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
942 		break;
943 	}
944 }
945 
946 static int igc_phc_get_syncdevicetime(ktime_t *device,
947 				      struct system_counterval_t *system,
948 				      void *ctx)
949 {
950 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
951 	struct igc_adapter *adapter = ctx;
952 	struct igc_hw *hw = &adapter->hw;
953 	int err, count = 100;
954 	ktime_t t1, t2_curr;
955 
956 	/* Get a snapshot of system clocks to use as historic value. */
957 	ktime_get_snapshot(&adapter->snapshot);
958 
959 	do {
960 		/* Doing this in a loop because in the event of a
961 		 * badly timed (ha!) system clock adjustment, we may
962 		 * get PTM errors from the PCI root, but these errors
963 		 * are transitory. Repeating the process returns valid
964 		 * data eventually.
965 		 */
966 
967 		/* To "manually" start the PTM cycle we need to clear and
968 		 * then set again the TRIG bit.
969 		 */
970 		ctrl = rd32(IGC_PTM_CTRL);
971 		ctrl &= ~IGC_PTM_CTRL_TRIG;
972 		wr32(IGC_PTM_CTRL, ctrl);
973 		ctrl |= IGC_PTM_CTRL_TRIG;
974 		wr32(IGC_PTM_CTRL, ctrl);
975 
976 		/* The cycle only starts "for real" when software notifies
977 		 * that it has read the registers, this is done by setting
978 		 * VALID bit.
979 		 */
980 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
981 
982 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
983 					 stat, IGC_PTM_STAT_SLEEP,
984 					 IGC_PTM_STAT_TIMEOUT);
985 		if (err < 0) {
986 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
987 			return err;
988 		}
989 
990 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
991 			break;
992 
993 		if (stat & ~IGC_PTM_STAT_VALID) {
994 			/* An error occurred, log it. */
995 			igc_ptm_log_error(adapter, stat);
996 			/* The STAT register is write-1-to-clear (W1C),
997 			 * so write the previous error status to clear it.
998 			 */
999 			wr32(IGC_PTM_STAT, stat);
1000 			continue;
1001 		}
1002 	} while (--count);
1003 
1004 	if (!count) {
1005 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
1006 		return -ETIMEDOUT;
1007 	}
1008 
1009 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1010 
1011 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1012 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1013 
1014 	/* FIXME: When the register that tells the endianness of the
1015 	 * PTM registers are implemented, check them here and add the
1016 	 * appropriate conversion.
1017 	 */
1018 	t2_curr_h = swab32(t2_curr_h);
1019 
1020 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1021 
1022 	*device = t1;
1023 	*system = igc_device_tstamp_to_system(t2_curr);
1024 
1025 	return 0;
1026 }
1027 
1028 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1029 				  struct system_device_crosststamp *cts)
1030 {
1031 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1032 						   ptp_caps);
1033 
1034 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1035 					     adapter, &adapter->snapshot, cts);
1036 }
1037 
1038 /**
1039  * igc_ptp_init - Initialize PTP functionality
1040  * @adapter: Board private structure
1041  *
1042  * This function is called at device probe to initialize the PTP
1043  * functionality.
1044  */
1045 void igc_ptp_init(struct igc_adapter *adapter)
1046 {
1047 	struct net_device *netdev = adapter->netdev;
1048 	struct igc_tx_timestamp_request *tstamp;
1049 	struct igc_hw *hw = &adapter->hw;
1050 	int i;
1051 
1052 	tstamp = &adapter->tx_tstamp[0];
1053 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1054 	tstamp->regl = IGC_TXSTMPL_0;
1055 	tstamp->regh = IGC_TXSTMPH_0;
1056 	tstamp->flags = 0;
1057 
1058 	tstamp = &adapter->tx_tstamp[1];
1059 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1060 	tstamp->regl = IGC_TXSTMPL_1;
1061 	tstamp->regh = IGC_TXSTMPH_1;
1062 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1063 
1064 	tstamp = &adapter->tx_tstamp[2];
1065 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1066 	tstamp->regl = IGC_TXSTMPL_2;
1067 	tstamp->regh = IGC_TXSTMPH_2;
1068 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1069 
1070 	tstamp = &adapter->tx_tstamp[3];
1071 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1072 	tstamp->regl = IGC_TXSTMPL_3;
1073 	tstamp->regh = IGC_TXSTMPH_3;
1074 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1075 
1076 	switch (hw->mac.type) {
1077 	case igc_i225:
1078 		for (i = 0; i < IGC_N_SDP; i++) {
1079 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1080 
1081 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1082 			ppd->index = i;
1083 			ppd->func = PTP_PF_NONE;
1084 		}
1085 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1086 		adapter->ptp_caps.owner = THIS_MODULE;
1087 		adapter->ptp_caps.max_adj = 62499999;
1088 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1089 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1090 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1091 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1092 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1093 		adapter->ptp_caps.pps = 1;
1094 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1095 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1096 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1097 		adapter->ptp_caps.n_pins = IGC_N_SDP;
1098 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1099 
1100 		if (!igc_is_crosststamp_supported(adapter))
1101 			break;
1102 
1103 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1104 		break;
1105 	default:
1106 		adapter->ptp_clock = NULL;
1107 		return;
1108 	}
1109 
1110 	spin_lock_init(&adapter->ptp_tx_lock);
1111 	spin_lock_init(&adapter->tmreg_lock);
1112 
1113 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1114 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1115 
1116 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1117 	adapter->ptp_reset_start = ktime_get();
1118 
1119 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1120 						&adapter->pdev->dev);
1121 	if (IS_ERR(adapter->ptp_clock)) {
1122 		adapter->ptp_clock = NULL;
1123 		netdev_err(netdev, "ptp_clock_register failed\n");
1124 	} else if (adapter->ptp_clock) {
1125 		netdev_info(netdev, "PHC added\n");
1126 		adapter->ptp_flags |= IGC_PTP_ENABLED;
1127 	}
1128 }
1129 
1130 static void igc_ptp_time_save(struct igc_adapter *adapter)
1131 {
1132 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1133 	adapter->ptp_reset_start = ktime_get();
1134 }
1135 
1136 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1137 {
1138 	struct timespec64 ts = adapter->prev_ptp_time;
1139 	ktime_t delta;
1140 
1141 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1142 
1143 	timespec64_add_ns(&ts, ktime_to_ns(delta));
1144 
1145 	igc_ptp_write_i225(adapter, &ts);
1146 }
1147 
1148 static void igc_ptm_stop(struct igc_adapter *adapter)
1149 {
1150 	struct igc_hw *hw = &adapter->hw;
1151 	u32 ctrl;
1152 
1153 	ctrl = rd32(IGC_PTM_CTRL);
1154 	ctrl &= ~IGC_PTM_CTRL_EN;
1155 
1156 	wr32(IGC_PTM_CTRL, ctrl);
1157 }
1158 
1159 /**
1160  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1161  * @adapter: Board private structure
1162  *
1163  * This function stops the overflow check work and PTP Tx timestamp work, and
1164  * will prepare the device for OS suspend.
1165  */
1166 void igc_ptp_suspend(struct igc_adapter *adapter)
1167 {
1168 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1169 		return;
1170 
1171 	igc_ptp_clear_tx_tstamp(adapter);
1172 
1173 	if (pci_device_is_present(adapter->pdev)) {
1174 		igc_ptp_time_save(adapter);
1175 		igc_ptm_stop(adapter);
1176 	}
1177 }
1178 
1179 /**
1180  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1181  * @adapter: Board private structure.
1182  *
1183  * This function stops the PTP support and cancels the delayed work.
1184  **/
1185 void igc_ptp_stop(struct igc_adapter *adapter)
1186 {
1187 	igc_ptp_suspend(adapter);
1188 
1189 	if (adapter->ptp_clock) {
1190 		ptp_clock_unregister(adapter->ptp_clock);
1191 		netdev_info(adapter->netdev, "PHC removed\n");
1192 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1193 	}
1194 }
1195 
1196 /**
1197  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1198  * @adapter: Board private structure.
1199  *
1200  * This function handles the reset work required to re-enable the PTP device.
1201  **/
1202 void igc_ptp_reset(struct igc_adapter *adapter)
1203 {
1204 	struct igc_hw *hw = &adapter->hw;
1205 	u32 cycle_ctrl, ctrl;
1206 	unsigned long flags;
1207 	u32 timadj;
1208 
1209 	/* reset the tstamp_config */
1210 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1211 
1212 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1213 
1214 	switch (adapter->hw.mac.type) {
1215 	case igc_i225:
1216 		timadj = rd32(IGC_TIMADJ);
1217 		timadj |= IGC_TIMADJ_ADJUST_METH;
1218 		wr32(IGC_TIMADJ, timadj);
1219 
1220 		wr32(IGC_TSAUXC, 0x0);
1221 		wr32(IGC_TSSDP, 0x0);
1222 		wr32(IGC_TSIM,
1223 		     IGC_TSICR_INTERRUPTS |
1224 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1225 		wr32(IGC_IMS, IGC_IMS_TS);
1226 
1227 		if (!igc_is_crosststamp_supported(adapter))
1228 			break;
1229 
1230 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1231 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1232 
1233 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1234 
1235 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1236 
1237 		ctrl = IGC_PTM_CTRL_EN |
1238 			IGC_PTM_CTRL_START_NOW |
1239 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1240 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1241 			IGC_PTM_CTRL_TRIG;
1242 
1243 		wr32(IGC_PTM_CTRL, ctrl);
1244 
1245 		/* Force the first cycle to run. */
1246 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1247 
1248 		break;
1249 	default:
1250 		/* No work to do. */
1251 		goto out;
1252 	}
1253 
1254 	/* Re-initialize the timer. */
1255 	if (hw->mac.type == igc_i225) {
1256 		igc_ptp_time_restore(adapter);
1257 	} else {
1258 		timecounter_init(&adapter->tc, &adapter->cc,
1259 				 ktime_to_ns(ktime_get_real()));
1260 	}
1261 out:
1262 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1263 
1264 	wrfl();
1265 }
1266