1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/bitfield.h> 5 #include "igc_phy.h" 6 7 /** 8 * igc_check_reset_block - Check if PHY reset is blocked 9 * @hw: pointer to the HW structure 10 * 11 * Read the PHY management control register and check whether a PHY reset 12 * is blocked. If a reset is not blocked return 0, otherwise 13 * return IGC_ERR_BLK_PHY_RESET (12). 14 */ 15 s32 igc_check_reset_block(struct igc_hw *hw) 16 { 17 u32 manc; 18 19 manc = rd32(IGC_MANC); 20 21 return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ? 22 IGC_ERR_BLK_PHY_RESET : 0; 23 } 24 25 /** 26 * igc_get_phy_id - Retrieve the PHY ID and revision 27 * @hw: pointer to the HW structure 28 * 29 * Reads the PHY registers and stores the PHY ID and possibly the PHY 30 * revision in the hardware structure. 31 */ 32 s32 igc_get_phy_id(struct igc_hw *hw) 33 { 34 struct igc_phy_info *phy = &hw->phy; 35 s32 ret_val = 0; 36 u16 phy_id; 37 38 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 39 if (ret_val) 40 goto out; 41 42 phy->id = (u32)(phy_id << 16); 43 usleep_range(200, 500); 44 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 45 if (ret_val) 46 goto out; 47 48 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 49 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 50 51 out: 52 return ret_val; 53 } 54 55 /** 56 * igc_phy_has_link - Polls PHY for link 57 * @hw: pointer to the HW structure 58 * @iterations: number of times to poll for link 59 * @usec_interval: delay between polling attempts 60 * @success: pointer to whether polling was successful or not 61 * 62 * Polls the PHY status register for link, 'iterations' number of times. 63 */ 64 s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations, 65 u32 usec_interval, bool *success) 66 { 67 u16 i, phy_status; 68 s32 ret_val = 0; 69 70 for (i = 0; i < iterations; i++) { 71 /* Some PHYs require the PHY_STATUS register to be read 72 * twice due to the link bit being sticky. No harm doing 73 * it across the board. 74 */ 75 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 76 if (ret_val && usec_interval > 0) { 77 /* If the first read fails, another entity may have 78 * ownership of the resources, wait and try again to 79 * see if they have relinquished the resources yet. 80 */ 81 if (usec_interval >= 1000) 82 mdelay(usec_interval / 1000); 83 else 84 udelay(usec_interval); 85 } 86 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 87 if (ret_val) 88 break; 89 if (phy_status & MII_SR_LINK_STATUS) 90 break; 91 if (usec_interval >= 1000) 92 mdelay(usec_interval / 1000); 93 else 94 udelay(usec_interval); 95 } 96 97 *success = (i < iterations) ? true : false; 98 99 return ret_val; 100 } 101 102 /** 103 * igc_power_up_phy_copper - Restore copper link in case of PHY power down 104 * @hw: pointer to the HW structure 105 * 106 * In the case of a PHY power down to save power, or to turn off link during a 107 * driver unload, restore the link to previous settings. 108 */ 109 void igc_power_up_phy_copper(struct igc_hw *hw) 110 { 111 u16 mii_reg = 0; 112 113 /* The PHY will retain its settings across a power down/up cycle */ 114 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 115 mii_reg &= ~MII_CR_POWER_DOWN; 116 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 117 } 118 119 /** 120 * igc_power_down_phy_copper - Power down copper PHY 121 * @hw: pointer to the HW structure 122 * 123 * Power down PHY to save power when interface is down and wake on lan 124 * is not enabled. 125 */ 126 void igc_power_down_phy_copper(struct igc_hw *hw) 127 { 128 u16 mii_reg = 0; 129 130 /* The PHY will retain its settings across a power down/up cycle */ 131 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 132 mii_reg |= MII_CR_POWER_DOWN; 133 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 134 usleep_range(1000, 2000); 135 } 136 137 /** 138 * igc_check_downshift - Checks whether a downshift in speed occurred 139 * @hw: pointer to the HW structure 140 * 141 * A downshift is detected by querying the PHY link health. 142 */ 143 void igc_check_downshift(struct igc_hw *hw) 144 { 145 struct igc_phy_info *phy = &hw->phy; 146 147 /* speed downshift not supported */ 148 phy->speed_downgraded = false; 149 } 150 151 /** 152 * igc_phy_hw_reset - PHY hardware reset 153 * @hw: pointer to the HW structure 154 * 155 * Verify the reset block is not blocking us from resetting. Acquire 156 * semaphore (if necessary) and read/set/write the device control reset 157 * bit in the PHY. Wait the appropriate delay time for the device to 158 * reset and release the semaphore (if necessary). 159 */ 160 s32 igc_phy_hw_reset(struct igc_hw *hw) 161 { 162 struct igc_phy_info *phy = &hw->phy; 163 u32 phpm = 0, timeout = 10000; 164 s32 ret_val; 165 u32 ctrl; 166 167 ret_val = igc_check_reset_block(hw); 168 if (ret_val) { 169 ret_val = 0; 170 goto out; 171 } 172 173 ret_val = phy->ops.acquire(hw); 174 if (ret_val) 175 goto out; 176 177 phpm = rd32(IGC_I225_PHPM); 178 179 ctrl = rd32(IGC_CTRL); 180 wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST); 181 wrfl(); 182 183 udelay(phy->reset_delay_us); 184 185 wr32(IGC_CTRL, ctrl); 186 wrfl(); 187 188 /* SW should guarantee 100us for the completion of the PHY reset */ 189 usleep_range(100, 150); 190 do { 191 phpm = rd32(IGC_I225_PHPM); 192 timeout--; 193 udelay(1); 194 } while (!(phpm & IGC_PHY_RST_COMP) && timeout); 195 196 if (!timeout) 197 hw_dbg("Timeout is expired after a phy reset\n"); 198 199 usleep_range(100, 150); 200 201 phy->ops.release(hw); 202 203 out: 204 return ret_val; 205 } 206 207 /** 208 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation 209 * @hw: pointer to the HW structure 210 * 211 * Reads the MII auto-neg advertisement register and/or the 1000T control 212 * register and if the PHY is already setup for auto-negotiation, then 213 * return successful. Otherwise, setup advertisement and flow control to 214 * the appropriate values for the wanted auto-negotiation. 215 */ 216 static s32 igc_phy_setup_autoneg(struct igc_hw *hw) 217 { 218 struct igc_phy_info *phy = &hw->phy; 219 u16 aneg_multigbt_an_ctrl = 0; 220 u16 mii_1000t_ctrl_reg = 0; 221 u16 mii_autoneg_adv_reg; 222 s32 ret_val; 223 224 phy->autoneg_advertised &= phy->autoneg_mask; 225 226 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 227 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 228 if (ret_val) 229 return ret_val; 230 231 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 232 /* Read the MII 1000Base-T Control Register (Address 9). */ 233 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 234 &mii_1000t_ctrl_reg); 235 if (ret_val) 236 return ret_val; 237 } 238 239 if (phy->autoneg_mask & ADVERTISE_2500_FULL) { 240 /* Read the MULTI GBT AN Control Register - reg 7.32 */ 241 ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK << 242 MMD_DEVADDR_SHIFT) | 243 IGC_ANEG_MULTIGBT_AN_CTRL, 244 &aneg_multigbt_an_ctrl); 245 246 if (ret_val) 247 return ret_val; 248 } 249 250 /* Need to parse both autoneg_advertised and fc and set up 251 * the appropriate PHY registers. First we will parse for 252 * autoneg_advertised software override. Since we can advertise 253 * a plethora of combinations, we need to check each bit 254 * individually. 255 */ 256 257 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 258 * Advertisement Register (Address 4) and the 1000 mb speed bits in 259 * the 1000Base-T Control Register (Address 9). 260 */ 261 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 262 NWAY_AR_100TX_HD_CAPS | 263 NWAY_AR_10T_FD_CAPS | 264 NWAY_AR_10T_HD_CAPS); 265 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 266 267 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 268 269 /* Do we want to advertise 10 Mb Half Duplex? */ 270 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 271 hw_dbg("Advertise 10mb Half duplex\n"); 272 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 273 } 274 275 /* Do we want to advertise 10 Mb Full Duplex? */ 276 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 277 hw_dbg("Advertise 10mb Full duplex\n"); 278 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 279 } 280 281 /* Do we want to advertise 100 Mb Half Duplex? */ 282 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 283 hw_dbg("Advertise 100mb Half duplex\n"); 284 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 285 } 286 287 /* Do we want to advertise 100 Mb Full Duplex? */ 288 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 289 hw_dbg("Advertise 100mb Full duplex\n"); 290 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 291 } 292 293 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 294 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 295 hw_dbg("Advertise 1000mb Half duplex request denied!\n"); 296 297 /* Do we want to advertise 1000 Mb Full Duplex? */ 298 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 299 hw_dbg("Advertise 1000mb Full duplex\n"); 300 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 301 } 302 303 /* We do not allow the Phy to advertise 2500 Mb Half Duplex */ 304 if (phy->autoneg_advertised & ADVERTISE_2500_HALF) 305 hw_dbg("Advertise 2500mb Half duplex request denied!\n"); 306 307 /* Do we want to advertise 2500 Mb Full Duplex? */ 308 if (phy->autoneg_advertised & ADVERTISE_2500_FULL) { 309 hw_dbg("Advertise 2500mb Full duplex\n"); 310 aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS; 311 } else { 312 aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS; 313 } 314 315 /* Check for a software override of the flow control settings, and 316 * setup the PHY advertisement registers accordingly. If 317 * auto-negotiation is enabled, then software will have to set the 318 * "PAUSE" bits to the correct value in the Auto-Negotiation 319 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 320 * negotiation. 321 * 322 * The possible values of the "fc" parameter are: 323 * 0: Flow control is completely disabled 324 * 1: Rx flow control is enabled (we can receive pause frames 325 * but not send pause frames). 326 * 2: Tx flow control is enabled (we can send pause frames 327 * but we do not support receiving pause frames). 328 * 3: Both Rx and Tx flow control (symmetric) are enabled. 329 * other: No software override. The flow control configuration 330 * in the EEPROM is used. 331 */ 332 switch (hw->fc.current_mode) { 333 case igc_fc_none: 334 /* Flow control (Rx & Tx) is completely disabled by a 335 * software over-ride. 336 */ 337 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 338 break; 339 case igc_fc_rx_pause: 340 /* Rx Flow control is enabled, and Tx Flow control is 341 * disabled, by a software over-ride. 342 * 343 * Since there really isn't a way to advertise that we are 344 * capable of Rx Pause ONLY, we will advertise that we 345 * support both symmetric and asymmetric Rx PAUSE. Later 346 * (in igc_config_fc_after_link_up) we will disable the 347 * hw's ability to send PAUSE frames. 348 */ 349 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 350 break; 351 case igc_fc_tx_pause: 352 /* Tx Flow control is enabled, and Rx Flow control is 353 * disabled, by a software over-ride. 354 */ 355 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 356 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 357 break; 358 case igc_fc_full: 359 /* Flow control (both Rx and Tx) is enabled by a software 360 * over-ride. 361 */ 362 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 363 break; 364 default: 365 hw_dbg("Flow control param set incorrectly\n"); 366 return -IGC_ERR_CONFIG; 367 } 368 369 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 370 if (ret_val) 371 return ret_val; 372 373 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 374 375 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 376 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, 377 mii_1000t_ctrl_reg); 378 379 if (phy->autoneg_mask & ADVERTISE_2500_FULL) 380 ret_val = phy->ops.write_reg(hw, 381 (STANDARD_AN_REG_MASK << 382 MMD_DEVADDR_SHIFT) | 383 IGC_ANEG_MULTIGBT_AN_CTRL, 384 aneg_multigbt_an_ctrl); 385 386 return ret_val; 387 } 388 389 /** 390 * igc_wait_autoneg - Wait for auto-neg completion 391 * @hw: pointer to the HW structure 392 * 393 * Waits for auto-negotiation to complete or for the auto-negotiation time 394 * limit to expire, which ever happens first. 395 */ 396 static s32 igc_wait_autoneg(struct igc_hw *hw) 397 { 398 u16 i, phy_status; 399 s32 ret_val = 0; 400 401 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 402 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 403 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 404 if (ret_val) 405 break; 406 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 407 if (ret_val) 408 break; 409 if (phy_status & MII_SR_AUTONEG_COMPLETE) 410 break; 411 msleep(100); 412 } 413 414 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 415 * has completed. 416 */ 417 return ret_val; 418 } 419 420 /** 421 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link 422 * @hw: pointer to the HW structure 423 * 424 * Performs initial bounds checking on autoneg advertisement parameter, then 425 * configure to advertise the full capability. Setup the PHY to autoneg 426 * and restart the negotiation process between the link partner. If 427 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 428 */ 429 static s32 igc_copper_link_autoneg(struct igc_hw *hw) 430 { 431 struct igc_phy_info *phy = &hw->phy; 432 u16 phy_ctrl; 433 s32 ret_val; 434 435 /* Perform some bounds checking on the autoneg advertisement 436 * parameter. 437 */ 438 phy->autoneg_advertised &= phy->autoneg_mask; 439 440 /* If autoneg_advertised is zero, we assume it was not defaulted 441 * by the calling code so we set to advertise full capability. 442 */ 443 if (phy->autoneg_advertised == 0) 444 phy->autoneg_advertised = phy->autoneg_mask; 445 446 hw_dbg("Reconfiguring auto-neg advertisement params\n"); 447 ret_val = igc_phy_setup_autoneg(hw); 448 if (ret_val) { 449 hw_dbg("Error Setting up Auto-Negotiation\n"); 450 goto out; 451 } 452 hw_dbg("Restarting Auto-Neg\n"); 453 454 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 455 * the Auto Neg Restart bit in the PHY control register. 456 */ 457 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 458 if (ret_val) 459 goto out; 460 461 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 462 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 463 if (ret_val) 464 goto out; 465 466 /* Does the user want to wait for Auto-Neg to complete here, or 467 * check at a later time (for example, callback routine). 468 */ 469 if (phy->autoneg_wait_to_complete) { 470 ret_val = igc_wait_autoneg(hw); 471 if (ret_val) { 472 hw_dbg("Error while waiting for autoneg to complete\n"); 473 goto out; 474 } 475 } 476 477 hw->mac.get_link_status = true; 478 479 out: 480 return ret_val; 481 } 482 483 /** 484 * igc_setup_copper_link - Configure copper link settings 485 * @hw: pointer to the HW structure 486 * 487 * Calls the appropriate function to configure the link for auto-neg or forced 488 * speed and duplex. Then we check for link, once link is established calls 489 * to configure collision distance and flow control are called. If link is 490 * not established, we return -IGC_ERR_PHY (-2). 491 */ 492 s32 igc_setup_copper_link(struct igc_hw *hw) 493 { 494 s32 ret_val = 0; 495 bool link; 496 497 if (hw->mac.autoneg) { 498 /* Setup autoneg and flow control advertisement and perform 499 * autonegotiation. 500 */ 501 ret_val = igc_copper_link_autoneg(hw); 502 if (ret_val) 503 goto out; 504 } else { 505 /* PHY will be set to 10H, 10F, 100H or 100F 506 * depending on user settings. 507 */ 508 hw_dbg("Forcing Speed and Duplex\n"); 509 ret_val = hw->phy.ops.force_speed_duplex(hw); 510 if (ret_val) { 511 hw_dbg("Error Forcing Speed and Duplex\n"); 512 goto out; 513 } 514 } 515 516 /* Check link status. Wait up to 100 microseconds for link to become 517 * valid. 518 */ 519 ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); 520 if (ret_val) 521 goto out; 522 523 if (link) { 524 hw_dbg("Valid link established!!!\n"); 525 igc_config_collision_dist(hw); 526 ret_val = igc_config_fc_after_link_up(hw); 527 } else { 528 hw_dbg("Unable to establish link!!!\n"); 529 } 530 531 out: 532 return ret_val; 533 } 534 535 /** 536 * igc_read_phy_reg_mdic - Read MDI control register 537 * @hw: pointer to the HW structure 538 * @offset: register offset to be read 539 * @data: pointer to the read data 540 * 541 * Reads the MDI control register in the PHY at offset and stores the 542 * information read to data. 543 */ 544 static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data) 545 { 546 struct igc_phy_info *phy = &hw->phy; 547 u32 i, mdic = 0; 548 s32 ret_val = 0; 549 550 if (offset > MAX_PHY_REG_ADDRESS) { 551 hw_dbg("PHY Address %d is out of range\n", offset); 552 ret_val = -IGC_ERR_PARAM; 553 goto out; 554 } 555 556 /* Set up Op-code, Phy Address, and register offset in the MDI 557 * Control register. The MAC will take care of interfacing with the 558 * PHY to retrieve the desired data. 559 */ 560 mdic = ((offset << IGC_MDIC_REG_SHIFT) | 561 (phy->addr << IGC_MDIC_PHY_SHIFT) | 562 (IGC_MDIC_OP_READ)); 563 564 wr32(IGC_MDIC, mdic); 565 566 /* Poll the ready bit to see if the MDI read completed 567 * Increasing the time out as testing showed failures with 568 * the lower time out 569 */ 570 for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { 571 udelay(50); 572 mdic = rd32(IGC_MDIC); 573 if (mdic & IGC_MDIC_READY) 574 break; 575 } 576 if (!(mdic & IGC_MDIC_READY)) { 577 hw_dbg("MDI Read did not complete\n"); 578 ret_val = -IGC_ERR_PHY; 579 goto out; 580 } 581 if (mdic & IGC_MDIC_ERROR) { 582 hw_dbg("MDI Error\n"); 583 ret_val = -IGC_ERR_PHY; 584 goto out; 585 } 586 *data = (u16)mdic; 587 588 out: 589 return ret_val; 590 } 591 592 /** 593 * igc_write_phy_reg_mdic - Write MDI control register 594 * @hw: pointer to the HW structure 595 * @offset: register offset to write to 596 * @data: data to write to register at offset 597 * 598 * Writes data to MDI control register in the PHY at offset. 599 */ 600 static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data) 601 { 602 struct igc_phy_info *phy = &hw->phy; 603 u32 i, mdic = 0; 604 s32 ret_val = 0; 605 606 if (offset > MAX_PHY_REG_ADDRESS) { 607 hw_dbg("PHY Address %d is out of range\n", offset); 608 ret_val = -IGC_ERR_PARAM; 609 goto out; 610 } 611 612 /* Set up Op-code, Phy Address, and register offset in the MDI 613 * Control register. The MAC will take care of interfacing with the 614 * PHY to write the desired data. 615 */ 616 mdic = (((u32)data) | 617 (offset << IGC_MDIC_REG_SHIFT) | 618 (phy->addr << IGC_MDIC_PHY_SHIFT) | 619 (IGC_MDIC_OP_WRITE)); 620 621 wr32(IGC_MDIC, mdic); 622 623 /* Poll the ready bit to see if the MDI read completed 624 * Increasing the time out as testing showed failures with 625 * the lower time out 626 */ 627 for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { 628 udelay(50); 629 mdic = rd32(IGC_MDIC); 630 if (mdic & IGC_MDIC_READY) 631 break; 632 } 633 if (!(mdic & IGC_MDIC_READY)) { 634 hw_dbg("MDI Write did not complete\n"); 635 ret_val = -IGC_ERR_PHY; 636 goto out; 637 } 638 if (mdic & IGC_MDIC_ERROR) { 639 hw_dbg("MDI Error\n"); 640 ret_val = -IGC_ERR_PHY; 641 goto out; 642 } 643 644 out: 645 return ret_val; 646 } 647 648 /** 649 * __igc_access_xmdio_reg - Read/write XMDIO register 650 * @hw: pointer to the HW structure 651 * @address: XMDIO address to program 652 * @dev_addr: device address to program 653 * @data: pointer to value to read/write from/to the XMDIO address 654 * @read: boolean flag to indicate read or write 655 */ 656 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address, 657 u8 dev_addr, u16 *data, bool read) 658 { 659 s32 ret_val; 660 661 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr); 662 if (ret_val) 663 return ret_val; 664 665 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address); 666 if (ret_val) 667 return ret_val; 668 669 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA | 670 dev_addr); 671 if (ret_val) 672 return ret_val; 673 674 if (read) 675 ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data); 676 else 677 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data); 678 if (ret_val) 679 return ret_val; 680 681 /* Recalibrate the device back to 0 */ 682 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0); 683 if (ret_val) 684 return ret_val; 685 686 return ret_val; 687 } 688 689 /** 690 * igc_read_xmdio_reg - Read XMDIO register 691 * @hw: pointer to the HW structure 692 * @addr: XMDIO address to program 693 * @dev_addr: device address to program 694 * @data: value to be read from the EMI address 695 */ 696 static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, 697 u8 dev_addr, u16 *data) 698 { 699 return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true); 700 } 701 702 /** 703 * igc_write_xmdio_reg - Write XMDIO register 704 * @hw: pointer to the HW structure 705 * @addr: XMDIO address to program 706 * @dev_addr: device address to program 707 * @data: value to be written to the XMDIO address 708 */ 709 static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, 710 u8 dev_addr, u16 data) 711 { 712 return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false); 713 } 714 715 /** 716 * igc_write_phy_reg_gpy - Write GPY PHY register 717 * @hw: pointer to the HW structure 718 * @offset: register offset to write to 719 * @data: data to write at register offset 720 * 721 * Acquires semaphore, if necessary, then writes the data to PHY register 722 * at the offset. Release any acquired semaphores before exiting. 723 */ 724 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data) 725 { 726 u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset); 727 s32 ret_val; 728 729 offset = offset & GPY_REG_MASK; 730 731 if (!dev_addr) { 732 ret_val = hw->phy.ops.acquire(hw); 733 if (ret_val) 734 return ret_val; 735 ret_val = igc_write_phy_reg_mdic(hw, offset, data); 736 hw->phy.ops.release(hw); 737 } else { 738 ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr, 739 data); 740 } 741 742 return ret_val; 743 } 744 745 /** 746 * igc_read_phy_reg_gpy - Read GPY PHY register 747 * @hw: pointer to the HW structure 748 * @offset: lower half is register offset to read to 749 * upper half is MMD to use. 750 * @data: data to read at register offset 751 * 752 * Acquires semaphore, if necessary, then reads the data in the PHY register 753 * at the offset. Release any acquired semaphores before exiting. 754 */ 755 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data) 756 { 757 u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset); 758 s32 ret_val; 759 760 offset = offset & GPY_REG_MASK; 761 762 if (!dev_addr) { 763 ret_val = hw->phy.ops.acquire(hw); 764 if (ret_val) 765 return ret_val; 766 ret_val = igc_read_phy_reg_mdic(hw, offset, data); 767 hw->phy.ops.release(hw); 768 } else { 769 ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr, 770 data); 771 } 772 773 return ret_val; 774 } 775 776 /** 777 * igc_read_phy_fw_version - Read gPHY firmware version 778 * @hw: pointer to the HW structure 779 */ 780 u16 igc_read_phy_fw_version(struct igc_hw *hw) 781 { 782 struct igc_phy_info *phy = &hw->phy; 783 u16 gphy_version = 0; 784 u16 ret_val; 785 786 /* NVM image version is reported as firmware version for i225 device */ 787 ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version); 788 if (ret_val) 789 hw_dbg("igc_phy: read wrong gphy version\n"); 790 791 return gphy_version; 792 } 793