1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/tcp.h> 8 #include <linux/udp.h> 9 #include <linux/ip.h> 10 #include <linux/pm_runtime.h> 11 #include <net/pkt_sched.h> 12 #include <linux/bpf_trace.h> 13 #include <net/xdp_sock_drv.h> 14 #include <linux/pci.h> 15 #include <linux/mdio.h> 16 17 #include <net/ipv6.h> 18 19 #include "igc.h" 20 #include "igc_hw.h" 21 #include "igc_tsn.h" 22 #include "igc_xdp.h" 23 24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 25 26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 27 28 #define IGC_XDP_PASS 0 29 #define IGC_XDP_CONSUMED BIT(0) 30 #define IGC_XDP_TX BIT(1) 31 #define IGC_XDP_REDIRECT BIT(2) 32 33 static int debug = -1; 34 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 char igc_driver_name[] = "igc"; 41 static const char igc_driver_string[] = DRV_SUMMARY; 42 static const char igc_copyright[] = 43 "Copyright(c) 2018 Intel Corporation."; 44 45 static const struct igc_info *igc_info_tbl[] = { 46 [board_base] = &igc_base_info, 47 }; 48 49 static const struct pci_device_id igc_pci_tbl[] = { 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 66 /* required last entry */ 67 {0, } 68 }; 69 70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct net_device *dev = adapter->netdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 netdev_err(dev, "Error on hardware initialization\n"); 109 110 /* Re-establish EEE setting */ 111 igc_set_eee_i225(hw, true, true, true); 112 113 if (!netif_running(adapter->netdev)) 114 igc_power_down_phy_copper_base(&adapter->hw); 115 116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 117 wr32(IGC_VET, ETH_P_8021Q); 118 119 /* Re-enable PTP, where applicable. */ 120 igc_ptp_reset(adapter); 121 122 /* Re-enable TSN offloading, where applicable. */ 123 igc_tsn_reset(adapter); 124 125 igc_get_phy_info(hw); 126 } 127 128 /** 129 * igc_power_up_link - Power up the phy link 130 * @adapter: address of board private structure 131 */ 132 static void igc_power_up_link(struct igc_adapter *adapter) 133 { 134 igc_reset_phy(&adapter->hw); 135 136 igc_power_up_phy_copper(&adapter->hw); 137 138 igc_setup_link(&adapter->hw); 139 } 140 141 /** 142 * igc_release_hw_control - release control of the h/w to f/w 143 * @adapter: address of board private structure 144 * 145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 146 * For ASF and Pass Through versions of f/w this means that the 147 * driver is no longer loaded. 148 */ 149 static void igc_release_hw_control(struct igc_adapter *adapter) 150 { 151 struct igc_hw *hw = &adapter->hw; 152 u32 ctrl_ext; 153 154 if (!pci_device_is_present(adapter->pdev)) 155 return; 156 157 /* Let firmware take over control of h/w */ 158 ctrl_ext = rd32(IGC_CTRL_EXT); 159 wr32(IGC_CTRL_EXT, 160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 161 } 162 163 /** 164 * igc_get_hw_control - get control of the h/w from f/w 165 * @adapter: address of board private structure 166 * 167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 168 * For ASF and Pass Through versions of f/w this means that 169 * the driver is loaded. 170 */ 171 static void igc_get_hw_control(struct igc_adapter *adapter) 172 { 173 struct igc_hw *hw = &adapter->hw; 174 u32 ctrl_ext; 175 176 /* Let firmware know the driver has taken over */ 177 ctrl_ext = rd32(IGC_CTRL_EXT); 178 wr32(IGC_CTRL_EXT, 179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 180 } 181 182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 183 { 184 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 185 dma_unmap_len(buf, len), DMA_TO_DEVICE); 186 187 dma_unmap_len_set(buf, len, 0); 188 } 189 190 /** 191 * igc_clean_tx_ring - Free Tx Buffers 192 * @tx_ring: ring to be cleaned 193 */ 194 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 195 { 196 u16 i = tx_ring->next_to_clean; 197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 198 u32 xsk_frames = 0; 199 200 while (i != tx_ring->next_to_use) { 201 union igc_adv_tx_desc *eop_desc, *tx_desc; 202 203 switch (tx_buffer->type) { 204 case IGC_TX_BUFFER_TYPE_XSK: 205 xsk_frames++; 206 break; 207 case IGC_TX_BUFFER_TYPE_XDP: 208 xdp_return_frame(tx_buffer->xdpf); 209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 210 break; 211 case IGC_TX_BUFFER_TYPE_SKB: 212 dev_kfree_skb_any(tx_buffer->skb); 213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 214 break; 215 default: 216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 217 break; 218 } 219 220 /* check for eop_desc to determine the end of the packet */ 221 eop_desc = tx_buffer->next_to_watch; 222 tx_desc = IGC_TX_DESC(tx_ring, i); 223 224 /* unmap remaining buffers */ 225 while (tx_desc != eop_desc) { 226 tx_buffer++; 227 tx_desc++; 228 i++; 229 if (unlikely(i == tx_ring->count)) { 230 i = 0; 231 tx_buffer = tx_ring->tx_buffer_info; 232 tx_desc = IGC_TX_DESC(tx_ring, 0); 233 } 234 235 /* unmap any remaining paged data */ 236 if (dma_unmap_len(tx_buffer, len)) 237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 238 } 239 240 tx_buffer->next_to_watch = NULL; 241 242 /* move us one more past the eop_desc for start of next pkt */ 243 tx_buffer++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 } 249 } 250 251 if (tx_ring->xsk_pool && xsk_frames) 252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 253 254 /* reset BQL for queue */ 255 netdev_tx_reset_queue(txring_txq(tx_ring)); 256 257 /* Zero out the buffer ring */ 258 memset(tx_ring->tx_buffer_info, 0, 259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count); 260 261 /* Zero out the descriptor ring */ 262 memset(tx_ring->desc, 0, tx_ring->size); 263 264 /* reset next_to_use and next_to_clean */ 265 tx_ring->next_to_use = 0; 266 tx_ring->next_to_clean = 0; 267 } 268 269 /** 270 * igc_free_tx_resources - Free Tx Resources per Queue 271 * @tx_ring: Tx descriptor ring for a specific queue 272 * 273 * Free all transmit software resources 274 */ 275 void igc_free_tx_resources(struct igc_ring *tx_ring) 276 { 277 igc_disable_tx_ring(tx_ring); 278 279 vfree(tx_ring->tx_buffer_info); 280 tx_ring->tx_buffer_info = NULL; 281 282 /* if not set, then don't free */ 283 if (!tx_ring->desc) 284 return; 285 286 dma_free_coherent(tx_ring->dev, tx_ring->size, 287 tx_ring->desc, tx_ring->dma); 288 289 tx_ring->desc = NULL; 290 } 291 292 /** 293 * igc_free_all_tx_resources - Free Tx Resources for All Queues 294 * @adapter: board private structure 295 * 296 * Free all transmit software resources 297 */ 298 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 299 { 300 int i; 301 302 for (i = 0; i < adapter->num_tx_queues; i++) 303 igc_free_tx_resources(adapter->tx_ring[i]); 304 } 305 306 /** 307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 308 * @adapter: board private structure 309 */ 310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 311 { 312 int i; 313 314 for (i = 0; i < adapter->num_tx_queues; i++) 315 if (adapter->tx_ring[i]) 316 igc_clean_tx_ring(adapter->tx_ring[i]); 317 } 318 319 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 320 { 321 struct igc_hw *hw = &ring->q_vector->adapter->hw; 322 u8 idx = ring->reg_idx; 323 u32 txdctl; 324 325 txdctl = rd32(IGC_TXDCTL(idx)); 326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 327 txdctl |= IGC_TXDCTL_SWFLUSH; 328 wr32(IGC_TXDCTL(idx), txdctl); 329 } 330 331 /** 332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation 333 * @adapter: board private structure 334 */ 335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter) 336 { 337 int i; 338 339 for (i = 0; i < adapter->num_tx_queues; i++) { 340 struct igc_ring *tx_ring = adapter->tx_ring[i]; 341 342 igc_disable_tx_ring_hw(tx_ring); 343 } 344 } 345 346 /** 347 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 348 * @tx_ring: tx descriptor ring (for a specific queue) to setup 349 * 350 * Return 0 on success, negative on failure 351 */ 352 int igc_setup_tx_resources(struct igc_ring *tx_ring) 353 { 354 struct net_device *ndev = tx_ring->netdev; 355 struct device *dev = tx_ring->dev; 356 int size = 0; 357 358 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 359 tx_ring->tx_buffer_info = vzalloc(size); 360 if (!tx_ring->tx_buffer_info) 361 goto err; 362 363 /* round up to nearest 4K */ 364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 365 tx_ring->size = ALIGN(tx_ring->size, 4096); 366 367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 368 &tx_ring->dma, GFP_KERNEL); 369 370 if (!tx_ring->desc) 371 goto err; 372 373 tx_ring->next_to_use = 0; 374 tx_ring->next_to_clean = 0; 375 376 return 0; 377 378 err: 379 vfree(tx_ring->tx_buffer_info); 380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 381 return -ENOMEM; 382 } 383 384 /** 385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 386 * @adapter: board private structure 387 * 388 * Return 0 on success, negative on failure 389 */ 390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 391 { 392 struct net_device *dev = adapter->netdev; 393 int i, err = 0; 394 395 for (i = 0; i < adapter->num_tx_queues; i++) { 396 err = igc_setup_tx_resources(adapter->tx_ring[i]); 397 if (err) { 398 netdev_err(dev, "Error on Tx queue %u setup\n", i); 399 for (i--; i >= 0; i--) 400 igc_free_tx_resources(adapter->tx_ring[i]); 401 break; 402 } 403 } 404 405 return err; 406 } 407 408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 409 { 410 u16 i = rx_ring->next_to_clean; 411 412 dev_kfree_skb(rx_ring->skb); 413 rx_ring->skb = NULL; 414 415 /* Free all the Rx ring sk_buffs */ 416 while (i != rx_ring->next_to_alloc) { 417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 418 419 /* Invalidate cache lines that may have been written to by 420 * device so that we avoid corrupting memory. 421 */ 422 dma_sync_single_range_for_cpu(rx_ring->dev, 423 buffer_info->dma, 424 buffer_info->page_offset, 425 igc_rx_bufsz(rx_ring), 426 DMA_FROM_DEVICE); 427 428 /* free resources associated with mapping */ 429 dma_unmap_page_attrs(rx_ring->dev, 430 buffer_info->dma, 431 igc_rx_pg_size(rx_ring), 432 DMA_FROM_DEVICE, 433 IGC_RX_DMA_ATTR); 434 __page_frag_cache_drain(buffer_info->page, 435 buffer_info->pagecnt_bias); 436 437 i++; 438 if (i == rx_ring->count) 439 i = 0; 440 } 441 } 442 443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 444 { 445 struct igc_rx_buffer *bi; 446 u16 i; 447 448 for (i = 0; i < ring->count; i++) { 449 bi = &ring->rx_buffer_info[i]; 450 if (!bi->xdp) 451 continue; 452 453 xsk_buff_free(bi->xdp); 454 bi->xdp = NULL; 455 } 456 } 457 458 /** 459 * igc_clean_rx_ring - Free Rx Buffers per Queue 460 * @ring: ring to free buffers from 461 */ 462 static void igc_clean_rx_ring(struct igc_ring *ring) 463 { 464 if (ring->xsk_pool) 465 igc_clean_rx_ring_xsk_pool(ring); 466 else 467 igc_clean_rx_ring_page_shared(ring); 468 469 clear_ring_uses_large_buffer(ring); 470 471 ring->next_to_alloc = 0; 472 ring->next_to_clean = 0; 473 ring->next_to_use = 0; 474 } 475 476 /** 477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 478 * @adapter: board private structure 479 */ 480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 481 { 482 int i; 483 484 for (i = 0; i < adapter->num_rx_queues; i++) 485 if (adapter->rx_ring[i]) 486 igc_clean_rx_ring(adapter->rx_ring[i]); 487 } 488 489 /** 490 * igc_free_rx_resources - Free Rx Resources 491 * @rx_ring: ring to clean the resources from 492 * 493 * Free all receive software resources 494 */ 495 void igc_free_rx_resources(struct igc_ring *rx_ring) 496 { 497 igc_clean_rx_ring(rx_ring); 498 499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 500 501 vfree(rx_ring->rx_buffer_info); 502 rx_ring->rx_buffer_info = NULL; 503 504 /* if not set, then don't free */ 505 if (!rx_ring->desc) 506 return; 507 508 dma_free_coherent(rx_ring->dev, rx_ring->size, 509 rx_ring->desc, rx_ring->dma); 510 511 rx_ring->desc = NULL; 512 } 513 514 /** 515 * igc_free_all_rx_resources - Free Rx Resources for All Queues 516 * @adapter: board private structure 517 * 518 * Free all receive software resources 519 */ 520 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 521 { 522 int i; 523 524 for (i = 0; i < adapter->num_rx_queues; i++) 525 igc_free_rx_resources(adapter->rx_ring[i]); 526 } 527 528 /** 529 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 530 * @rx_ring: rx descriptor ring (for a specific queue) to setup 531 * 532 * Returns 0 on success, negative on failure 533 */ 534 int igc_setup_rx_resources(struct igc_ring *rx_ring) 535 { 536 struct net_device *ndev = rx_ring->netdev; 537 struct device *dev = rx_ring->dev; 538 u8 index = rx_ring->queue_index; 539 int size, desc_len, res; 540 541 /* XDP RX-queue info */ 542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 545 rx_ring->q_vector->napi.napi_id); 546 if (res < 0) { 547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 548 index); 549 return res; 550 } 551 552 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 553 rx_ring->rx_buffer_info = vzalloc(size); 554 if (!rx_ring->rx_buffer_info) 555 goto err; 556 557 desc_len = sizeof(union igc_adv_rx_desc); 558 559 /* Round up to nearest 4K */ 560 rx_ring->size = rx_ring->count * desc_len; 561 rx_ring->size = ALIGN(rx_ring->size, 4096); 562 563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 564 &rx_ring->dma, GFP_KERNEL); 565 566 if (!rx_ring->desc) 567 goto err; 568 569 rx_ring->next_to_alloc = 0; 570 rx_ring->next_to_clean = 0; 571 rx_ring->next_to_use = 0; 572 573 return 0; 574 575 err: 576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 577 vfree(rx_ring->rx_buffer_info); 578 rx_ring->rx_buffer_info = NULL; 579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 580 return -ENOMEM; 581 } 582 583 /** 584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 585 * (Descriptors) for all queues 586 * @adapter: board private structure 587 * 588 * Return 0 on success, negative on failure 589 */ 590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 591 { 592 struct net_device *dev = adapter->netdev; 593 int i, err = 0; 594 595 for (i = 0; i < adapter->num_rx_queues; i++) { 596 err = igc_setup_rx_resources(adapter->rx_ring[i]); 597 if (err) { 598 netdev_err(dev, "Error on Rx queue %u setup\n", i); 599 for (i--; i >= 0; i--) 600 igc_free_rx_resources(adapter->rx_ring[i]); 601 break; 602 } 603 } 604 605 return err; 606 } 607 608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 609 struct igc_ring *ring) 610 { 611 if (!igc_xdp_is_enabled(adapter) || 612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 613 return NULL; 614 615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 616 } 617 618 /** 619 * igc_configure_rx_ring - Configure a receive ring after Reset 620 * @adapter: board private structure 621 * @ring: receive ring to be configured 622 * 623 * Configure the Rx unit of the MAC after a reset. 624 */ 625 static void igc_configure_rx_ring(struct igc_adapter *adapter, 626 struct igc_ring *ring) 627 { 628 struct igc_hw *hw = &adapter->hw; 629 union igc_adv_rx_desc *rx_desc; 630 int reg_idx = ring->reg_idx; 631 u32 srrctl = 0, rxdctl = 0; 632 u64 rdba = ring->dma; 633 u32 buf_size; 634 635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 637 if (ring->xsk_pool) { 638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 639 MEM_TYPE_XSK_BUFF_POOL, 640 NULL)); 641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 642 } else { 643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 644 MEM_TYPE_PAGE_SHARED, 645 NULL)); 646 } 647 648 if (igc_xdp_is_enabled(adapter)) 649 set_ring_uses_large_buffer(ring); 650 651 /* disable the queue */ 652 wr32(IGC_RXDCTL(reg_idx), 0); 653 654 /* Set DMA base address registers */ 655 wr32(IGC_RDBAL(reg_idx), 656 rdba & 0x00000000ffffffffULL); 657 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 658 wr32(IGC_RDLEN(reg_idx), 659 ring->count * sizeof(union igc_adv_rx_desc)); 660 661 /* initialize head and tail */ 662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 663 wr32(IGC_RDH(reg_idx), 0); 664 writel(0, ring->tail); 665 666 /* reset next-to- use/clean to place SW in sync with hardware */ 667 ring->next_to_clean = 0; 668 ring->next_to_use = 0; 669 670 if (ring->xsk_pool) 671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 672 else if (ring_uses_large_buffer(ring)) 673 buf_size = IGC_RXBUFFER_3072; 674 else 675 buf_size = IGC_RXBUFFER_2048; 676 677 srrctl = rd32(IGC_SRRCTL(reg_idx)); 678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK | 679 IGC_SRRCTL_DESCTYPE_MASK); 680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN); 681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size); 682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 683 684 wr32(IGC_SRRCTL(reg_idx), srrctl); 685 686 rxdctl |= IGC_RX_PTHRESH; 687 rxdctl |= IGC_RX_HTHRESH << 8; 688 rxdctl |= IGC_RX_WTHRESH << 16; 689 690 /* initialize rx_buffer_info */ 691 memset(ring->rx_buffer_info, 0, 692 sizeof(struct igc_rx_buffer) * ring->count); 693 694 /* initialize Rx descriptor 0 */ 695 rx_desc = IGC_RX_DESC(ring, 0); 696 rx_desc->wb.upper.length = 0; 697 698 /* enable receive descriptor fetching */ 699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 700 701 wr32(IGC_RXDCTL(reg_idx), rxdctl); 702 } 703 704 /** 705 * igc_configure_rx - Configure receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 */ 710 static void igc_configure_rx(struct igc_adapter *adapter) 711 { 712 int i; 713 714 /* Setup the HW Rx Head and Tail Descriptor Pointers and 715 * the Base and Length of the Rx Descriptor Ring 716 */ 717 for (i = 0; i < adapter->num_rx_queues; i++) 718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 719 } 720 721 /** 722 * igc_configure_tx_ring - Configure transmit ring after Reset 723 * @adapter: board private structure 724 * @ring: tx ring to configure 725 * 726 * Configure a transmit ring after a reset. 727 */ 728 static void igc_configure_tx_ring(struct igc_adapter *adapter, 729 struct igc_ring *ring) 730 { 731 struct igc_hw *hw = &adapter->hw; 732 int reg_idx = ring->reg_idx; 733 u64 tdba = ring->dma; 734 u32 txdctl = 0; 735 736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 737 738 /* disable the queue */ 739 wr32(IGC_TXDCTL(reg_idx), 0); 740 wrfl(); 741 742 wr32(IGC_TDLEN(reg_idx), 743 ring->count * sizeof(union igc_adv_tx_desc)); 744 wr32(IGC_TDBAL(reg_idx), 745 tdba & 0x00000000ffffffffULL); 746 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 747 748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 749 wr32(IGC_TDH(reg_idx), 0); 750 writel(0, ring->tail); 751 752 txdctl |= IGC_TX_PTHRESH; 753 txdctl |= IGC_TX_HTHRESH << 8; 754 txdctl |= IGC_TX_WTHRESH << 16; 755 756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 757 wr32(IGC_TXDCTL(reg_idx), txdctl); 758 } 759 760 /** 761 * igc_configure_tx - Configure transmit Unit after Reset 762 * @adapter: board private structure 763 * 764 * Configure the Tx unit of the MAC after a reset. 765 */ 766 static void igc_configure_tx(struct igc_adapter *adapter) 767 { 768 int i; 769 770 for (i = 0; i < adapter->num_tx_queues; i++) 771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 772 } 773 774 /** 775 * igc_setup_mrqc - configure the multiple receive queue control registers 776 * @adapter: Board private structure 777 */ 778 static void igc_setup_mrqc(struct igc_adapter *adapter) 779 { 780 struct igc_hw *hw = &adapter->hw; 781 u32 j, num_rx_queues; 782 u32 mrqc, rxcsum; 783 u32 rss_key[10]; 784 785 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 786 for (j = 0; j < 10; j++) 787 wr32(IGC_RSSRK(j), rss_key[j]); 788 789 num_rx_queues = adapter->rss_queues; 790 791 if (adapter->rss_indir_tbl_init != num_rx_queues) { 792 for (j = 0; j < IGC_RETA_SIZE; j++) 793 adapter->rss_indir_tbl[j] = 794 (j * num_rx_queues) / IGC_RETA_SIZE; 795 adapter->rss_indir_tbl_init = num_rx_queues; 796 } 797 igc_write_rss_indir_tbl(adapter); 798 799 /* Disable raw packet checksumming so that RSS hash is placed in 800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 801 * offloads as they are enabled by default 802 */ 803 rxcsum = rd32(IGC_RXCSUM); 804 rxcsum |= IGC_RXCSUM_PCSD; 805 806 /* Enable Receive Checksum Offload for SCTP */ 807 rxcsum |= IGC_RXCSUM_CRCOFL; 808 809 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 810 wr32(IGC_RXCSUM, rxcsum); 811 812 /* Generate RSS hash based on packet types, TCP/UDP 813 * port numbers and/or IPv4/v6 src and dst addresses 814 */ 815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 816 IGC_MRQC_RSS_FIELD_IPV4_TCP | 817 IGC_MRQC_RSS_FIELD_IPV6 | 818 IGC_MRQC_RSS_FIELD_IPV6_TCP | 819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 820 821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 825 826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 827 828 wr32(IGC_MRQC, mrqc); 829 } 830 831 /** 832 * igc_setup_rctl - configure the receive control registers 833 * @adapter: Board private structure 834 */ 835 static void igc_setup_rctl(struct igc_adapter *adapter) 836 { 837 struct igc_hw *hw = &adapter->hw; 838 u32 rctl; 839 840 rctl = rd32(IGC_RCTL); 841 842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 844 845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 847 848 /* enable stripping of CRC. Newer features require 849 * that the HW strips the CRC. 850 */ 851 rctl |= IGC_RCTL_SECRC; 852 853 /* disable store bad packets and clear size bits. */ 854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 855 856 /* enable LPE to allow for reception of jumbo frames */ 857 rctl |= IGC_RCTL_LPE; 858 859 /* disable queue 0 to prevent tail write w/o re-config */ 860 wr32(IGC_RXDCTL(0), 0); 861 862 /* This is useful for sniffing bad packets. */ 863 if (adapter->netdev->features & NETIF_F_RXALL) { 864 /* UPE and MPE will be handled by normal PROMISC logic 865 * in set_rx_mode 866 */ 867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 868 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 870 871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 873 } 874 875 wr32(IGC_RCTL, rctl); 876 } 877 878 /** 879 * igc_setup_tctl - configure the transmit control registers 880 * @adapter: Board private structure 881 */ 882 static void igc_setup_tctl(struct igc_adapter *adapter) 883 { 884 struct igc_hw *hw = &adapter->hw; 885 u32 tctl; 886 887 /* disable queue 0 which icould be enabled by default */ 888 wr32(IGC_TXDCTL(0), 0); 889 890 /* Program the Transmit Control Register */ 891 tctl = rd32(IGC_TCTL); 892 tctl &= ~IGC_TCTL_CT; 893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 895 896 /* Enable transmits */ 897 tctl |= IGC_TCTL_EN; 898 899 wr32(IGC_TCTL, tctl); 900 } 901 902 /** 903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 904 * @adapter: Pointer to adapter where the filter should be set 905 * @index: Filter index 906 * @type: MAC address filter type (source or destination) 907 * @addr: MAC address 908 * @queue: If non-negative, queue assignment feature is enabled and frames 909 * matching the filter are enqueued onto 'queue'. Otherwise, queue 910 * assignment is disabled. 911 */ 912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 913 enum igc_mac_filter_type type, 914 const u8 *addr, int queue) 915 { 916 struct net_device *dev = adapter->netdev; 917 struct igc_hw *hw = &adapter->hw; 918 u32 ral, rah; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 ral = le32_to_cpup((__le32 *)(addr)); 924 rah = le16_to_cpup((__le16 *)(addr + 4)); 925 926 if (type == IGC_MAC_FILTER_TYPE_SRC) { 927 rah &= ~IGC_RAH_ASEL_MASK; 928 rah |= IGC_RAH_ASEL_SRC_ADDR; 929 } 930 931 if (queue >= 0) { 932 rah &= ~IGC_RAH_QSEL_MASK; 933 rah |= (queue << IGC_RAH_QSEL_SHIFT); 934 rah |= IGC_RAH_QSEL_ENABLE; 935 } 936 937 rah |= IGC_RAH_AV; 938 939 wr32(IGC_RAL(index), ral); 940 wr32(IGC_RAH(index), rah); 941 942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 943 } 944 945 /** 946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 947 * @adapter: Pointer to adapter where the filter should be cleared 948 * @index: Filter index 949 */ 950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 951 { 952 struct net_device *dev = adapter->netdev; 953 struct igc_hw *hw = &adapter->hw; 954 955 if (WARN_ON(index >= hw->mac.rar_entry_count)) 956 return; 957 958 wr32(IGC_RAL(index), 0); 959 wr32(IGC_RAH(index), 0); 960 961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 962 } 963 964 /* Set default MAC address for the PF in the first RAR entry */ 965 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 966 { 967 struct net_device *dev = adapter->netdev; 968 u8 *addr = adapter->hw.mac.addr; 969 970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 971 972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 973 } 974 975 /** 976 * igc_set_mac - Change the Ethernet Address of the NIC 977 * @netdev: network interface device structure 978 * @p: pointer to an address structure 979 * 980 * Returns 0 on success, negative on failure 981 */ 982 static int igc_set_mac(struct net_device *netdev, void *p) 983 { 984 struct igc_adapter *adapter = netdev_priv(netdev); 985 struct igc_hw *hw = &adapter->hw; 986 struct sockaddr *addr = p; 987 988 if (!is_valid_ether_addr(addr->sa_data)) 989 return -EADDRNOTAVAIL; 990 991 eth_hw_addr_set(netdev, addr->sa_data); 992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 993 994 /* set the correct pool for the new PF MAC address in entry 0 */ 995 igc_set_default_mac_filter(adapter); 996 997 return 0; 998 } 999 1000 /** 1001 * igc_write_mc_addr_list - write multicast addresses to MTA 1002 * @netdev: network interface device structure 1003 * 1004 * Writes multicast address list to the MTA hash table. 1005 * Returns: -ENOMEM on failure 1006 * 0 on no addresses written 1007 * X on writing X addresses to MTA 1008 **/ 1009 static int igc_write_mc_addr_list(struct net_device *netdev) 1010 { 1011 struct igc_adapter *adapter = netdev_priv(netdev); 1012 struct igc_hw *hw = &adapter->hw; 1013 struct netdev_hw_addr *ha; 1014 u8 *mta_list; 1015 int i; 1016 1017 if (netdev_mc_empty(netdev)) { 1018 /* nothing to program, so clear mc list */ 1019 igc_update_mc_addr_list(hw, NULL, 0); 1020 return 0; 1021 } 1022 1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 1024 if (!mta_list) 1025 return -ENOMEM; 1026 1027 /* The shared function expects a packed array of only addresses. */ 1028 i = 0; 1029 netdev_for_each_mc_addr(ha, netdev) 1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1031 1032 igc_update_mc_addr_list(hw, mta_list, i); 1033 kfree(mta_list); 1034 1035 return netdev_mc_count(netdev); 1036 } 1037 1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1039 bool *first_flag, bool *insert_empty) 1040 { 1041 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1042 ktime_t cycle_time = adapter->cycle_time; 1043 ktime_t base_time = adapter->base_time; 1044 ktime_t now = ktime_get_clocktai(); 1045 ktime_t baset_est, end_of_cycle; 1046 s32 launchtime; 1047 s64 n; 1048 1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1050 1051 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1053 1054 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1055 if (baset_est != ring->last_ff_cycle) { 1056 *first_flag = true; 1057 ring->last_ff_cycle = baset_est; 1058 1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0) 1060 *insert_empty = true; 1061 } 1062 } 1063 1064 /* Introducing a window at end of cycle on which packets 1065 * potentially not honor launchtime. Window of 5us chosen 1066 * considering software update the tail pointer and packets 1067 * are dma'ed to packet buffer. 1068 */ 1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1071 txtime); 1072 1073 ring->last_tx_cycle = end_of_cycle; 1074 1075 launchtime = ktime_sub_ns(txtime, baset_est); 1076 if (launchtime > 0) 1077 div_s64_rem(launchtime, cycle_time, &launchtime); 1078 else 1079 launchtime = 0; 1080 1081 return cpu_to_le32(launchtime); 1082 } 1083 1084 static int igc_init_empty_frame(struct igc_ring *ring, 1085 struct igc_tx_buffer *buffer, 1086 struct sk_buff *skb) 1087 { 1088 unsigned int size; 1089 dma_addr_t dma; 1090 1091 size = skb_headlen(skb); 1092 1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1094 if (dma_mapping_error(ring->dev, dma)) { 1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1096 return -ENOMEM; 1097 } 1098 1099 buffer->skb = skb; 1100 buffer->protocol = 0; 1101 buffer->bytecount = skb->len; 1102 buffer->gso_segs = 1; 1103 buffer->time_stamp = jiffies; 1104 dma_unmap_len_set(buffer, len, skb->len); 1105 dma_unmap_addr_set(buffer, dma, dma); 1106 1107 return 0; 1108 } 1109 1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1111 struct sk_buff *skb, 1112 struct igc_tx_buffer *first) 1113 { 1114 union igc_adv_tx_desc *desc; 1115 u32 cmd_type, olinfo_status; 1116 int err; 1117 1118 if (!igc_desc_unused(ring)) 1119 return -EBUSY; 1120 1121 err = igc_init_empty_frame(ring, first, skb); 1122 if (err) 1123 return err; 1124 1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1127 first->bytecount; 1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1129 1130 desc = IGC_TX_DESC(ring, ring->next_to_use); 1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1134 1135 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1136 1137 first->next_to_watch = desc; 1138 1139 ring->next_to_use++; 1140 if (ring->next_to_use == ring->count) 1141 ring->next_to_use = 0; 1142 1143 return 0; 1144 } 1145 1146 #define IGC_EMPTY_FRAME_SIZE 60 1147 1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1149 __le32 launch_time, bool first_flag, 1150 u32 vlan_macip_lens, u32 type_tucmd, 1151 u32 mss_l4len_idx) 1152 { 1153 struct igc_adv_tx_context_desc *context_desc; 1154 u16 i = tx_ring->next_to_use; 1155 1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1157 1158 i++; 1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1160 1161 /* set bits to identify this as an advanced context descriptor */ 1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1163 1164 /* For i225, context index must be unique per ring. */ 1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1166 mss_l4len_idx |= tx_ring->reg_idx << 4; 1167 1168 if (first_flag) 1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1170 1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1174 context_desc->launch_time = launch_time; 1175 } 1176 1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1178 __le32 launch_time, bool first_flag) 1179 { 1180 struct sk_buff *skb = first->skb; 1181 u32 vlan_macip_lens = 0; 1182 u32 type_tucmd = 0; 1183 1184 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1185 csum_failed: 1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1187 !tx_ring->launchtime_enable) 1188 return; 1189 goto no_csum; 1190 } 1191 1192 switch (skb->csum_offset) { 1193 case offsetof(struct tcphdr, check): 1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1195 fallthrough; 1196 case offsetof(struct udphdr, check): 1197 break; 1198 case offsetof(struct sctphdr, checksum): 1199 /* validate that this is actually an SCTP request */ 1200 if (skb_csum_is_sctp(skb)) { 1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1202 break; 1203 } 1204 fallthrough; 1205 default: 1206 skb_checksum_help(skb); 1207 goto csum_failed; 1208 } 1209 1210 /* update TX checksum flag */ 1211 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1212 vlan_macip_lens = skb_checksum_start_offset(skb) - 1213 skb_network_offset(skb); 1214 no_csum: 1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1217 1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1219 vlan_macip_lens, type_tucmd, 0); 1220 } 1221 1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1223 { 1224 struct net_device *netdev = tx_ring->netdev; 1225 1226 netif_stop_subqueue(netdev, tx_ring->queue_index); 1227 1228 /* memory barriier comment */ 1229 smp_mb(); 1230 1231 /* We need to check again in a case another CPU has just 1232 * made room available. 1233 */ 1234 if (igc_desc_unused(tx_ring) < size) 1235 return -EBUSY; 1236 1237 /* A reprieve! */ 1238 netif_wake_subqueue(netdev, tx_ring->queue_index); 1239 1240 u64_stats_update_begin(&tx_ring->tx_syncp2); 1241 tx_ring->tx_stats.restart_queue2++; 1242 u64_stats_update_end(&tx_ring->tx_syncp2); 1243 1244 return 0; 1245 } 1246 1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1248 { 1249 if (igc_desc_unused(tx_ring) >= size) 1250 return 0; 1251 return __igc_maybe_stop_tx(tx_ring, size); 1252 } 1253 1254 #define IGC_SET_FLAG(_input, _flag, _result) \ 1255 (((_flag) <= (_result)) ? \ 1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1258 1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1260 { 1261 /* set type for advanced descriptor with frame checksum insertion */ 1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1263 IGC_ADVTXD_DCMD_DEXT | 1264 IGC_ADVTXD_DCMD_IFCS; 1265 1266 /* set HW vlan bit if vlan is present */ 1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1268 IGC_ADVTXD_DCMD_VLE); 1269 1270 /* set segmentation bits for TSO */ 1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1272 (IGC_ADVTXD_DCMD_TSE)); 1273 1274 /* set timestamp bit if present, will select the register set 1275 * based on the _TSTAMP(_X) bit. 1276 */ 1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1278 (IGC_ADVTXD_MAC_TSTAMP)); 1279 1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1, 1281 (IGC_ADVTXD_TSTAMP_REG_1)); 1282 1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2, 1284 (IGC_ADVTXD_TSTAMP_REG_2)); 1285 1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3, 1287 (IGC_ADVTXD_TSTAMP_REG_3)); 1288 1289 /* insert frame checksum */ 1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1291 1292 return cmd_type; 1293 } 1294 1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1296 union igc_adv_tx_desc *tx_desc, 1297 u32 tx_flags, unsigned int paylen) 1298 { 1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1300 1301 /* insert L4 checksum */ 1302 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM, 1303 (IGC_TXD_POPTS_TXSM << 8)); 1304 1305 /* insert IPv4 checksum */ 1306 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4, 1307 (IGC_TXD_POPTS_IXSM << 8)); 1308 1309 /* Use the second timer (free running, in general) for the timestamp */ 1310 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1, 1311 IGC_TXD_PTP2_TIMER_1); 1312 1313 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1314 } 1315 1316 static int igc_tx_map(struct igc_ring *tx_ring, 1317 struct igc_tx_buffer *first, 1318 const u8 hdr_len) 1319 { 1320 struct sk_buff *skb = first->skb; 1321 struct igc_tx_buffer *tx_buffer; 1322 union igc_adv_tx_desc *tx_desc; 1323 u32 tx_flags = first->tx_flags; 1324 skb_frag_t *frag; 1325 u16 i = tx_ring->next_to_use; 1326 unsigned int data_len, size; 1327 dma_addr_t dma; 1328 u32 cmd_type; 1329 1330 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1331 tx_desc = IGC_TX_DESC(tx_ring, i); 1332 1333 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1334 1335 size = skb_headlen(skb); 1336 data_len = skb->data_len; 1337 1338 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1339 1340 tx_buffer = first; 1341 1342 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1343 if (dma_mapping_error(tx_ring->dev, dma)) 1344 goto dma_error; 1345 1346 /* record length, and DMA address */ 1347 dma_unmap_len_set(tx_buffer, len, size); 1348 dma_unmap_addr_set(tx_buffer, dma, dma); 1349 1350 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1351 1352 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1353 tx_desc->read.cmd_type_len = 1354 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1355 1356 i++; 1357 tx_desc++; 1358 if (i == tx_ring->count) { 1359 tx_desc = IGC_TX_DESC(tx_ring, 0); 1360 i = 0; 1361 } 1362 tx_desc->read.olinfo_status = 0; 1363 1364 dma += IGC_MAX_DATA_PER_TXD; 1365 size -= IGC_MAX_DATA_PER_TXD; 1366 1367 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1368 } 1369 1370 if (likely(!data_len)) 1371 break; 1372 1373 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1374 1375 i++; 1376 tx_desc++; 1377 if (i == tx_ring->count) { 1378 tx_desc = IGC_TX_DESC(tx_ring, 0); 1379 i = 0; 1380 } 1381 tx_desc->read.olinfo_status = 0; 1382 1383 size = skb_frag_size(frag); 1384 data_len -= size; 1385 1386 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1387 size, DMA_TO_DEVICE); 1388 1389 tx_buffer = &tx_ring->tx_buffer_info[i]; 1390 } 1391 1392 /* write last descriptor with RS and EOP bits */ 1393 cmd_type |= size | IGC_TXD_DCMD; 1394 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1395 1396 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1397 1398 /* set the timestamp */ 1399 first->time_stamp = jiffies; 1400 1401 skb_tx_timestamp(skb); 1402 1403 /* Force memory writes to complete before letting h/w know there 1404 * are new descriptors to fetch. (Only applicable for weak-ordered 1405 * memory model archs, such as IA-64). 1406 * 1407 * We also need this memory barrier to make certain all of the 1408 * status bits have been updated before next_to_watch is written. 1409 */ 1410 wmb(); 1411 1412 /* set next_to_watch value indicating a packet is present */ 1413 first->next_to_watch = tx_desc; 1414 1415 i++; 1416 if (i == tx_ring->count) 1417 i = 0; 1418 1419 tx_ring->next_to_use = i; 1420 1421 /* Make sure there is space in the ring for the next send. */ 1422 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1423 1424 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1425 writel(i, tx_ring->tail); 1426 } 1427 1428 return 0; 1429 dma_error: 1430 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1431 tx_buffer = &tx_ring->tx_buffer_info[i]; 1432 1433 /* clear dma mappings for failed tx_buffer_info map */ 1434 while (tx_buffer != first) { 1435 if (dma_unmap_len(tx_buffer, len)) 1436 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1437 1438 if (i-- == 0) 1439 i += tx_ring->count; 1440 tx_buffer = &tx_ring->tx_buffer_info[i]; 1441 } 1442 1443 if (dma_unmap_len(tx_buffer, len)) 1444 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1445 1446 dev_kfree_skb_any(tx_buffer->skb); 1447 tx_buffer->skb = NULL; 1448 1449 tx_ring->next_to_use = i; 1450 1451 return -1; 1452 } 1453 1454 static int igc_tso(struct igc_ring *tx_ring, 1455 struct igc_tx_buffer *first, 1456 __le32 launch_time, bool first_flag, 1457 u8 *hdr_len) 1458 { 1459 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1460 struct sk_buff *skb = first->skb; 1461 union { 1462 struct iphdr *v4; 1463 struct ipv6hdr *v6; 1464 unsigned char *hdr; 1465 } ip; 1466 union { 1467 struct tcphdr *tcp; 1468 struct udphdr *udp; 1469 unsigned char *hdr; 1470 } l4; 1471 u32 paylen, l4_offset; 1472 int err; 1473 1474 if (skb->ip_summed != CHECKSUM_PARTIAL) 1475 return 0; 1476 1477 if (!skb_is_gso(skb)) 1478 return 0; 1479 1480 err = skb_cow_head(skb, 0); 1481 if (err < 0) 1482 return err; 1483 1484 ip.hdr = skb_network_header(skb); 1485 l4.hdr = skb_checksum_start(skb); 1486 1487 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1488 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1489 1490 /* initialize outer IP header fields */ 1491 if (ip.v4->version == 4) { 1492 unsigned char *csum_start = skb_checksum_start(skb); 1493 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1494 1495 /* IP header will have to cancel out any data that 1496 * is not a part of the outer IP header 1497 */ 1498 ip.v4->check = csum_fold(csum_partial(trans_start, 1499 csum_start - trans_start, 1500 0)); 1501 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1502 1503 ip.v4->tot_len = 0; 1504 first->tx_flags |= IGC_TX_FLAGS_TSO | 1505 IGC_TX_FLAGS_CSUM | 1506 IGC_TX_FLAGS_IPV4; 1507 } else { 1508 ip.v6->payload_len = 0; 1509 first->tx_flags |= IGC_TX_FLAGS_TSO | 1510 IGC_TX_FLAGS_CSUM; 1511 } 1512 1513 /* determine offset of inner transport header */ 1514 l4_offset = l4.hdr - skb->data; 1515 1516 /* remove payload length from inner checksum */ 1517 paylen = skb->len - l4_offset; 1518 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1519 /* compute length of segmentation header */ 1520 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1521 csum_replace_by_diff(&l4.tcp->check, 1522 (__force __wsum)htonl(paylen)); 1523 } else { 1524 /* compute length of segmentation header */ 1525 *hdr_len = sizeof(*l4.udp) + l4_offset; 1526 csum_replace_by_diff(&l4.udp->check, 1527 (__force __wsum)htonl(paylen)); 1528 } 1529 1530 /* update gso size and bytecount with header size */ 1531 first->gso_segs = skb_shinfo(skb)->gso_segs; 1532 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1533 1534 /* MSS L4LEN IDX */ 1535 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1536 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1537 1538 /* VLAN MACLEN IPLEN */ 1539 vlan_macip_lens = l4.hdr - ip.hdr; 1540 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1541 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1542 1543 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1544 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1545 1546 return 1; 1547 } 1548 1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags) 1550 { 1551 int i; 1552 1553 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 1554 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 1555 1556 if (tstamp->skb) 1557 continue; 1558 1559 tstamp->skb = skb_get(skb); 1560 tstamp->start = jiffies; 1561 *flags = tstamp->flags; 1562 1563 return true; 1564 } 1565 1566 return false; 1567 } 1568 1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1570 struct igc_ring *tx_ring) 1571 { 1572 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1573 bool first_flag = false, insert_empty = false; 1574 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1575 __be16 protocol = vlan_get_protocol(skb); 1576 struct igc_tx_buffer *first; 1577 __le32 launch_time = 0; 1578 u32 tx_flags = 0; 1579 unsigned short f; 1580 ktime_t txtime; 1581 u8 hdr_len = 0; 1582 int tso = 0; 1583 1584 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1585 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1586 * + 2 desc gap to keep tail from touching head, 1587 * + 1 desc for context descriptor, 1588 * otherwise try next time 1589 */ 1590 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1591 count += TXD_USE_COUNT(skb_frag_size( 1592 &skb_shinfo(skb)->frags[f])); 1593 1594 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1595 /* this is a hard error */ 1596 return NETDEV_TX_BUSY; 1597 } 1598 1599 if (!tx_ring->launchtime_enable) 1600 goto done; 1601 1602 txtime = skb->tstamp; 1603 skb->tstamp = ktime_set(0, 0); 1604 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1605 1606 if (insert_empty) { 1607 struct igc_tx_buffer *empty_info; 1608 struct sk_buff *empty; 1609 void *data; 1610 1611 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1612 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1613 if (!empty) 1614 goto done; 1615 1616 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1617 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1618 1619 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1620 1621 if (igc_init_tx_empty_descriptor(tx_ring, 1622 empty, 1623 empty_info) < 0) 1624 dev_kfree_skb_any(empty); 1625 } 1626 1627 done: 1628 /* record the location of the first descriptor for this packet */ 1629 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1630 first->type = IGC_TX_BUFFER_TYPE_SKB; 1631 first->skb = skb; 1632 first->bytecount = skb->len; 1633 first->gso_segs = 1; 1634 1635 if (adapter->qbv_transition || tx_ring->oper_gate_closed) 1636 goto out_drop; 1637 1638 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) { 1639 adapter->stats.txdrop++; 1640 goto out_drop; 1641 } 1642 1643 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) && 1644 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1645 unsigned long flags; 1646 u32 tstamp_flags; 1647 1648 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 1649 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) { 1650 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1651 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags; 1652 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES) 1653 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1; 1654 } else { 1655 adapter->tx_hwtstamp_skipped++; 1656 } 1657 1658 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 1659 } 1660 1661 if (skb_vlan_tag_present(skb)) { 1662 tx_flags |= IGC_TX_FLAGS_VLAN; 1663 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1664 } 1665 1666 /* record initial flags and protocol */ 1667 first->tx_flags = tx_flags; 1668 first->protocol = protocol; 1669 1670 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1671 if (tso < 0) 1672 goto out_drop; 1673 else if (!tso) 1674 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1675 1676 igc_tx_map(tx_ring, first, hdr_len); 1677 1678 return NETDEV_TX_OK; 1679 1680 out_drop: 1681 dev_kfree_skb_any(first->skb); 1682 first->skb = NULL; 1683 1684 return NETDEV_TX_OK; 1685 } 1686 1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1688 struct sk_buff *skb) 1689 { 1690 unsigned int r_idx = skb->queue_mapping; 1691 1692 if (r_idx >= adapter->num_tx_queues) 1693 r_idx = r_idx % adapter->num_tx_queues; 1694 1695 return adapter->tx_ring[r_idx]; 1696 } 1697 1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1699 struct net_device *netdev) 1700 { 1701 struct igc_adapter *adapter = netdev_priv(netdev); 1702 1703 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1704 * in order to meet this minimum size requirement. 1705 */ 1706 if (skb->len < 17) { 1707 if (skb_padto(skb, 17)) 1708 return NETDEV_TX_OK; 1709 skb->len = 17; 1710 } 1711 1712 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1713 } 1714 1715 static void igc_rx_checksum(struct igc_ring *ring, 1716 union igc_adv_rx_desc *rx_desc, 1717 struct sk_buff *skb) 1718 { 1719 skb_checksum_none_assert(skb); 1720 1721 /* Ignore Checksum bit is set */ 1722 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1723 return; 1724 1725 /* Rx checksum disabled via ethtool */ 1726 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1727 return; 1728 1729 /* TCP/UDP checksum error bit is set */ 1730 if (igc_test_staterr(rx_desc, 1731 IGC_RXDEXT_STATERR_L4E | 1732 IGC_RXDEXT_STATERR_IPE)) { 1733 /* work around errata with sctp packets where the TCPE aka 1734 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1735 * packets (aka let the stack check the crc32c) 1736 */ 1737 if (!(skb->len == 60 && 1738 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1739 u64_stats_update_begin(&ring->rx_syncp); 1740 ring->rx_stats.csum_err++; 1741 u64_stats_update_end(&ring->rx_syncp); 1742 } 1743 /* let the stack verify checksum errors */ 1744 return; 1745 } 1746 /* It must be a TCP or UDP packet with a valid checksum */ 1747 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1748 IGC_RXD_STAT_UDPCS)) 1749 skb->ip_summed = CHECKSUM_UNNECESSARY; 1750 1751 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1752 le32_to_cpu(rx_desc->wb.upper.status_error)); 1753 } 1754 1755 /* Mapping HW RSS Type to enum pkt_hash_types */ 1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = { 1757 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2, 1758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4, 1759 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3, 1760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4, 1761 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3, 1762 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3, 1763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4, 1764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4, 1765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4, 1766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4, 1767 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 1768 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */ 1769 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */ 1770 [13] = PKT_HASH_TYPE_NONE, 1771 [14] = PKT_HASH_TYPE_NONE, 1772 [15] = PKT_HASH_TYPE_NONE, 1773 }; 1774 1775 static inline void igc_rx_hash(struct igc_ring *ring, 1776 union igc_adv_rx_desc *rx_desc, 1777 struct sk_buff *skb) 1778 { 1779 if (ring->netdev->features & NETIF_F_RXHASH) { 1780 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 1781 u32 rss_type = igc_rss_type(rx_desc); 1782 1783 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]); 1784 } 1785 } 1786 1787 static void igc_rx_vlan(struct igc_ring *rx_ring, 1788 union igc_adv_rx_desc *rx_desc, 1789 struct sk_buff *skb) 1790 { 1791 struct net_device *dev = rx_ring->netdev; 1792 u16 vid; 1793 1794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1795 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1796 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1797 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1798 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1799 else 1800 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1801 1802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1803 } 1804 } 1805 1806 /** 1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1808 * @rx_ring: rx descriptor ring packet is being transacted on 1809 * @rx_desc: pointer to the EOP Rx descriptor 1810 * @skb: pointer to current skb being populated 1811 * 1812 * This function checks the ring, descriptor, and packet information in order 1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1814 * skb. 1815 */ 1816 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1817 union igc_adv_rx_desc *rx_desc, 1818 struct sk_buff *skb) 1819 { 1820 igc_rx_hash(rx_ring, rx_desc, skb); 1821 1822 igc_rx_checksum(rx_ring, rx_desc, skb); 1823 1824 igc_rx_vlan(rx_ring, rx_desc, skb); 1825 1826 skb_record_rx_queue(skb, rx_ring->queue_index); 1827 1828 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1829 } 1830 1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1832 { 1833 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1834 struct igc_adapter *adapter = netdev_priv(netdev); 1835 struct igc_hw *hw = &adapter->hw; 1836 u32 ctrl; 1837 1838 ctrl = rd32(IGC_CTRL); 1839 1840 if (enable) { 1841 /* enable VLAN tag insert/strip */ 1842 ctrl |= IGC_CTRL_VME; 1843 } else { 1844 /* disable VLAN tag insert/strip */ 1845 ctrl &= ~IGC_CTRL_VME; 1846 } 1847 wr32(IGC_CTRL, ctrl); 1848 } 1849 1850 static void igc_restore_vlan(struct igc_adapter *adapter) 1851 { 1852 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1853 } 1854 1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1856 const unsigned int size, 1857 int *rx_buffer_pgcnt) 1858 { 1859 struct igc_rx_buffer *rx_buffer; 1860 1861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1862 *rx_buffer_pgcnt = 1863 #if (PAGE_SIZE < 8192) 1864 page_count(rx_buffer->page); 1865 #else 1866 0; 1867 #endif 1868 prefetchw(rx_buffer->page); 1869 1870 /* we are reusing so sync this buffer for CPU use */ 1871 dma_sync_single_range_for_cpu(rx_ring->dev, 1872 rx_buffer->dma, 1873 rx_buffer->page_offset, 1874 size, 1875 DMA_FROM_DEVICE); 1876 1877 rx_buffer->pagecnt_bias--; 1878 1879 return rx_buffer; 1880 } 1881 1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1883 unsigned int truesize) 1884 { 1885 #if (PAGE_SIZE < 8192) 1886 buffer->page_offset ^= truesize; 1887 #else 1888 buffer->page_offset += truesize; 1889 #endif 1890 } 1891 1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1893 unsigned int size) 1894 { 1895 unsigned int truesize; 1896 1897 #if (PAGE_SIZE < 8192) 1898 truesize = igc_rx_pg_size(ring) / 2; 1899 #else 1900 truesize = ring_uses_build_skb(ring) ? 1901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1902 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1903 SKB_DATA_ALIGN(size); 1904 #endif 1905 return truesize; 1906 } 1907 1908 /** 1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1910 * @rx_ring: rx descriptor ring to transact packets on 1911 * @rx_buffer: buffer containing page to add 1912 * @skb: sk_buff to place the data into 1913 * @size: size of buffer to be added 1914 * 1915 * This function will add the data contained in rx_buffer->page to the skb. 1916 */ 1917 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1918 struct igc_rx_buffer *rx_buffer, 1919 struct sk_buff *skb, 1920 unsigned int size) 1921 { 1922 unsigned int truesize; 1923 1924 #if (PAGE_SIZE < 8192) 1925 truesize = igc_rx_pg_size(rx_ring) / 2; 1926 #else 1927 truesize = ring_uses_build_skb(rx_ring) ? 1928 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1929 SKB_DATA_ALIGN(size); 1930 #endif 1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1932 rx_buffer->page_offset, size, truesize); 1933 1934 igc_rx_buffer_flip(rx_buffer, truesize); 1935 } 1936 1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1938 struct igc_rx_buffer *rx_buffer, 1939 struct xdp_buff *xdp) 1940 { 1941 unsigned int size = xdp->data_end - xdp->data; 1942 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1943 unsigned int metasize = xdp->data - xdp->data_meta; 1944 struct sk_buff *skb; 1945 1946 /* prefetch first cache line of first page */ 1947 net_prefetch(xdp->data_meta); 1948 1949 /* build an skb around the page buffer */ 1950 skb = napi_build_skb(xdp->data_hard_start, truesize); 1951 if (unlikely(!skb)) 1952 return NULL; 1953 1954 /* update pointers within the skb to store the data */ 1955 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1956 __skb_put(skb, size); 1957 if (metasize) 1958 skb_metadata_set(skb, metasize); 1959 1960 igc_rx_buffer_flip(rx_buffer, truesize); 1961 return skb; 1962 } 1963 1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1965 struct igc_rx_buffer *rx_buffer, 1966 struct igc_xdp_buff *ctx) 1967 { 1968 struct xdp_buff *xdp = &ctx->xdp; 1969 unsigned int metasize = xdp->data - xdp->data_meta; 1970 unsigned int size = xdp->data_end - xdp->data; 1971 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1972 void *va = xdp->data; 1973 unsigned int headlen; 1974 struct sk_buff *skb; 1975 1976 /* prefetch first cache line of first page */ 1977 net_prefetch(xdp->data_meta); 1978 1979 /* allocate a skb to store the frags */ 1980 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1981 IGC_RX_HDR_LEN + metasize); 1982 if (unlikely(!skb)) 1983 return NULL; 1984 1985 if (ctx->rx_ts) { 1986 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV; 1987 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts; 1988 } 1989 1990 /* Determine available headroom for copy */ 1991 headlen = size; 1992 if (headlen > IGC_RX_HDR_LEN) 1993 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1994 1995 /* align pull length to size of long to optimize memcpy performance */ 1996 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1997 ALIGN(headlen + metasize, sizeof(long))); 1998 1999 if (metasize) { 2000 skb_metadata_set(skb, metasize); 2001 __skb_pull(skb, metasize); 2002 } 2003 2004 /* update all of the pointers */ 2005 size -= headlen; 2006 if (size) { 2007 skb_add_rx_frag(skb, 0, rx_buffer->page, 2008 (va + headlen) - page_address(rx_buffer->page), 2009 size, truesize); 2010 igc_rx_buffer_flip(rx_buffer, truesize); 2011 } else { 2012 rx_buffer->pagecnt_bias++; 2013 } 2014 2015 return skb; 2016 } 2017 2018 /** 2019 * igc_reuse_rx_page - page flip buffer and store it back on the ring 2020 * @rx_ring: rx descriptor ring to store buffers on 2021 * @old_buff: donor buffer to have page reused 2022 * 2023 * Synchronizes page for reuse by the adapter 2024 */ 2025 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 2026 struct igc_rx_buffer *old_buff) 2027 { 2028 u16 nta = rx_ring->next_to_alloc; 2029 struct igc_rx_buffer *new_buff; 2030 2031 new_buff = &rx_ring->rx_buffer_info[nta]; 2032 2033 /* update, and store next to alloc */ 2034 nta++; 2035 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 2036 2037 /* Transfer page from old buffer to new buffer. 2038 * Move each member individually to avoid possible store 2039 * forwarding stalls. 2040 */ 2041 new_buff->dma = old_buff->dma; 2042 new_buff->page = old_buff->page; 2043 new_buff->page_offset = old_buff->page_offset; 2044 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 2045 } 2046 2047 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 2048 int rx_buffer_pgcnt) 2049 { 2050 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 2051 struct page *page = rx_buffer->page; 2052 2053 /* avoid re-using remote and pfmemalloc pages */ 2054 if (!dev_page_is_reusable(page)) 2055 return false; 2056 2057 #if (PAGE_SIZE < 8192) 2058 /* if we are only owner of page we can reuse it */ 2059 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 2060 return false; 2061 #else 2062 #define IGC_LAST_OFFSET \ 2063 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 2064 2065 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 2066 return false; 2067 #endif 2068 2069 /* If we have drained the page fragment pool we need to update 2070 * the pagecnt_bias and page count so that we fully restock the 2071 * number of references the driver holds. 2072 */ 2073 if (unlikely(pagecnt_bias == 1)) { 2074 page_ref_add(page, USHRT_MAX - 1); 2075 rx_buffer->pagecnt_bias = USHRT_MAX; 2076 } 2077 2078 return true; 2079 } 2080 2081 /** 2082 * igc_is_non_eop - process handling of non-EOP buffers 2083 * @rx_ring: Rx ring being processed 2084 * @rx_desc: Rx descriptor for current buffer 2085 * 2086 * This function updates next to clean. If the buffer is an EOP buffer 2087 * this function exits returning false, otherwise it will place the 2088 * sk_buff in the next buffer to be chained and return true indicating 2089 * that this is in fact a non-EOP buffer. 2090 */ 2091 static bool igc_is_non_eop(struct igc_ring *rx_ring, 2092 union igc_adv_rx_desc *rx_desc) 2093 { 2094 u32 ntc = rx_ring->next_to_clean + 1; 2095 2096 /* fetch, update, and store next to clean */ 2097 ntc = (ntc < rx_ring->count) ? ntc : 0; 2098 rx_ring->next_to_clean = ntc; 2099 2100 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2101 2102 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2103 return false; 2104 2105 return true; 2106 } 2107 2108 /** 2109 * igc_cleanup_headers - Correct corrupted or empty headers 2110 * @rx_ring: rx descriptor ring packet is being transacted on 2111 * @rx_desc: pointer to the EOP Rx descriptor 2112 * @skb: pointer to current skb being fixed 2113 * 2114 * Address the case where we are pulling data in on pages only 2115 * and as such no data is present in the skb header. 2116 * 2117 * In addition if skb is not at least 60 bytes we need to pad it so that 2118 * it is large enough to qualify as a valid Ethernet frame. 2119 * 2120 * Returns true if an error was encountered and skb was freed. 2121 */ 2122 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2123 union igc_adv_rx_desc *rx_desc, 2124 struct sk_buff *skb) 2125 { 2126 /* XDP packets use error pointer so abort at this point */ 2127 if (IS_ERR(skb)) 2128 return true; 2129 2130 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2131 struct net_device *netdev = rx_ring->netdev; 2132 2133 if (!(netdev->features & NETIF_F_RXALL)) { 2134 dev_kfree_skb_any(skb); 2135 return true; 2136 } 2137 } 2138 2139 /* if eth_skb_pad returns an error the skb was freed */ 2140 if (eth_skb_pad(skb)) 2141 return true; 2142 2143 return false; 2144 } 2145 2146 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2147 struct igc_rx_buffer *rx_buffer, 2148 int rx_buffer_pgcnt) 2149 { 2150 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2151 /* hand second half of page back to the ring */ 2152 igc_reuse_rx_page(rx_ring, rx_buffer); 2153 } else { 2154 /* We are not reusing the buffer so unmap it and free 2155 * any references we are holding to it 2156 */ 2157 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2158 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2159 IGC_RX_DMA_ATTR); 2160 __page_frag_cache_drain(rx_buffer->page, 2161 rx_buffer->pagecnt_bias); 2162 } 2163 2164 /* clear contents of rx_buffer */ 2165 rx_buffer->page = NULL; 2166 } 2167 2168 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2169 { 2170 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2171 2172 if (ring_uses_build_skb(rx_ring)) 2173 return IGC_SKB_PAD; 2174 if (igc_xdp_is_enabled(adapter)) 2175 return XDP_PACKET_HEADROOM; 2176 2177 return 0; 2178 } 2179 2180 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2181 struct igc_rx_buffer *bi) 2182 { 2183 struct page *page = bi->page; 2184 dma_addr_t dma; 2185 2186 /* since we are recycling buffers we should seldom need to alloc */ 2187 if (likely(page)) 2188 return true; 2189 2190 /* alloc new page for storage */ 2191 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2192 if (unlikely(!page)) { 2193 rx_ring->rx_stats.alloc_failed++; 2194 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags); 2195 return false; 2196 } 2197 2198 /* map page for use */ 2199 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2200 igc_rx_pg_size(rx_ring), 2201 DMA_FROM_DEVICE, 2202 IGC_RX_DMA_ATTR); 2203 2204 /* if mapping failed free memory back to system since 2205 * there isn't much point in holding memory we can't use 2206 */ 2207 if (dma_mapping_error(rx_ring->dev, dma)) { 2208 __free_page(page); 2209 2210 rx_ring->rx_stats.alloc_failed++; 2211 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags); 2212 return false; 2213 } 2214 2215 bi->dma = dma; 2216 bi->page = page; 2217 bi->page_offset = igc_rx_offset(rx_ring); 2218 page_ref_add(page, USHRT_MAX - 1); 2219 bi->pagecnt_bias = USHRT_MAX; 2220 2221 return true; 2222 } 2223 2224 /** 2225 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2226 * @rx_ring: rx descriptor ring 2227 * @cleaned_count: number of buffers to clean 2228 */ 2229 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2230 { 2231 union igc_adv_rx_desc *rx_desc; 2232 u16 i = rx_ring->next_to_use; 2233 struct igc_rx_buffer *bi; 2234 u16 bufsz; 2235 2236 /* nothing to do */ 2237 if (!cleaned_count) 2238 return; 2239 2240 rx_desc = IGC_RX_DESC(rx_ring, i); 2241 bi = &rx_ring->rx_buffer_info[i]; 2242 i -= rx_ring->count; 2243 2244 bufsz = igc_rx_bufsz(rx_ring); 2245 2246 do { 2247 if (!igc_alloc_mapped_page(rx_ring, bi)) 2248 break; 2249 2250 /* sync the buffer for use by the device */ 2251 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2252 bi->page_offset, bufsz, 2253 DMA_FROM_DEVICE); 2254 2255 /* Refresh the desc even if buffer_addrs didn't change 2256 * because each write-back erases this info. 2257 */ 2258 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2259 2260 rx_desc++; 2261 bi++; 2262 i++; 2263 if (unlikely(!i)) { 2264 rx_desc = IGC_RX_DESC(rx_ring, 0); 2265 bi = rx_ring->rx_buffer_info; 2266 i -= rx_ring->count; 2267 } 2268 2269 /* clear the length for the next_to_use descriptor */ 2270 rx_desc->wb.upper.length = 0; 2271 2272 cleaned_count--; 2273 } while (cleaned_count); 2274 2275 i += rx_ring->count; 2276 2277 if (rx_ring->next_to_use != i) { 2278 /* record the next descriptor to use */ 2279 rx_ring->next_to_use = i; 2280 2281 /* update next to alloc since we have filled the ring */ 2282 rx_ring->next_to_alloc = i; 2283 2284 /* Force memory writes to complete before letting h/w 2285 * know there are new descriptors to fetch. (Only 2286 * applicable for weak-ordered memory model archs, 2287 * such as IA-64). 2288 */ 2289 wmb(); 2290 writel(i, rx_ring->tail); 2291 } 2292 } 2293 2294 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2295 { 2296 union igc_adv_rx_desc *desc; 2297 u16 i = ring->next_to_use; 2298 struct igc_rx_buffer *bi; 2299 dma_addr_t dma; 2300 bool ok = true; 2301 2302 if (!count) 2303 return ok; 2304 2305 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff); 2306 2307 desc = IGC_RX_DESC(ring, i); 2308 bi = &ring->rx_buffer_info[i]; 2309 i -= ring->count; 2310 2311 do { 2312 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2313 if (!bi->xdp) { 2314 ok = false; 2315 break; 2316 } 2317 2318 dma = xsk_buff_xdp_get_dma(bi->xdp); 2319 desc->read.pkt_addr = cpu_to_le64(dma); 2320 2321 desc++; 2322 bi++; 2323 i++; 2324 if (unlikely(!i)) { 2325 desc = IGC_RX_DESC(ring, 0); 2326 bi = ring->rx_buffer_info; 2327 i -= ring->count; 2328 } 2329 2330 /* Clear the length for the next_to_use descriptor. */ 2331 desc->wb.upper.length = 0; 2332 2333 count--; 2334 } while (count); 2335 2336 i += ring->count; 2337 2338 if (ring->next_to_use != i) { 2339 ring->next_to_use = i; 2340 2341 /* Force memory writes to complete before letting h/w 2342 * know there are new descriptors to fetch. (Only 2343 * applicable for weak-ordered memory model archs, 2344 * such as IA-64). 2345 */ 2346 wmb(); 2347 writel(i, ring->tail); 2348 } 2349 2350 return ok; 2351 } 2352 2353 /* This function requires __netif_tx_lock is held by the caller. */ 2354 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2355 struct xdp_frame *xdpf) 2356 { 2357 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2358 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2359 u16 count, index = ring->next_to_use; 2360 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2361 struct igc_tx_buffer *buffer = head; 2362 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2363 u32 olinfo_status, len = xdpf->len, cmd_type; 2364 void *data = xdpf->data; 2365 u16 i; 2366 2367 count = TXD_USE_COUNT(len); 2368 for (i = 0; i < nr_frags; i++) 2369 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2370 2371 if (igc_maybe_stop_tx(ring, count + 3)) { 2372 /* this is a hard error */ 2373 return -EBUSY; 2374 } 2375 2376 i = 0; 2377 head->bytecount = xdp_get_frame_len(xdpf); 2378 head->type = IGC_TX_BUFFER_TYPE_XDP; 2379 head->gso_segs = 1; 2380 head->xdpf = xdpf; 2381 2382 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2383 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2384 2385 for (;;) { 2386 dma_addr_t dma; 2387 2388 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2389 if (dma_mapping_error(ring->dev, dma)) { 2390 netdev_err_once(ring->netdev, 2391 "Failed to map DMA for TX\n"); 2392 goto unmap; 2393 } 2394 2395 dma_unmap_len_set(buffer, len, len); 2396 dma_unmap_addr_set(buffer, dma, dma); 2397 2398 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2399 IGC_ADVTXD_DCMD_IFCS | len; 2400 2401 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2402 desc->read.buffer_addr = cpu_to_le64(dma); 2403 2404 buffer->protocol = 0; 2405 2406 if (++index == ring->count) 2407 index = 0; 2408 2409 if (i == nr_frags) 2410 break; 2411 2412 buffer = &ring->tx_buffer_info[index]; 2413 desc = IGC_TX_DESC(ring, index); 2414 desc->read.olinfo_status = 0; 2415 2416 data = skb_frag_address(&sinfo->frags[i]); 2417 len = skb_frag_size(&sinfo->frags[i]); 2418 i++; 2419 } 2420 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2421 2422 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2423 /* set the timestamp */ 2424 head->time_stamp = jiffies; 2425 /* set next_to_watch value indicating a packet is present */ 2426 head->next_to_watch = desc; 2427 ring->next_to_use = index; 2428 2429 return 0; 2430 2431 unmap: 2432 for (;;) { 2433 buffer = &ring->tx_buffer_info[index]; 2434 if (dma_unmap_len(buffer, len)) 2435 dma_unmap_page(ring->dev, 2436 dma_unmap_addr(buffer, dma), 2437 dma_unmap_len(buffer, len), 2438 DMA_TO_DEVICE); 2439 dma_unmap_len_set(buffer, len, 0); 2440 if (buffer == head) 2441 break; 2442 2443 if (!index) 2444 index += ring->count; 2445 index--; 2446 } 2447 2448 return -ENOMEM; 2449 } 2450 2451 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2452 int cpu) 2453 { 2454 int index = cpu; 2455 2456 if (unlikely(index < 0)) 2457 index = 0; 2458 2459 while (index >= adapter->num_tx_queues) 2460 index -= adapter->num_tx_queues; 2461 2462 return adapter->tx_ring[index]; 2463 } 2464 2465 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2466 { 2467 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2468 int cpu = smp_processor_id(); 2469 struct netdev_queue *nq; 2470 struct igc_ring *ring; 2471 int res; 2472 2473 if (unlikely(!xdpf)) 2474 return -EFAULT; 2475 2476 ring = igc_xdp_get_tx_ring(adapter, cpu); 2477 nq = txring_txq(ring); 2478 2479 __netif_tx_lock(nq, cpu); 2480 /* Avoid transmit queue timeout since we share it with the slow path */ 2481 txq_trans_cond_update(nq); 2482 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2483 __netif_tx_unlock(nq); 2484 return res; 2485 } 2486 2487 /* This function assumes rcu_read_lock() is held by the caller. */ 2488 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2489 struct bpf_prog *prog, 2490 struct xdp_buff *xdp) 2491 { 2492 u32 act = bpf_prog_run_xdp(prog, xdp); 2493 2494 switch (act) { 2495 case XDP_PASS: 2496 return IGC_XDP_PASS; 2497 case XDP_TX: 2498 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2499 goto out_failure; 2500 return IGC_XDP_TX; 2501 case XDP_REDIRECT: 2502 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2503 goto out_failure; 2504 return IGC_XDP_REDIRECT; 2505 break; 2506 default: 2507 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2508 fallthrough; 2509 case XDP_ABORTED: 2510 out_failure: 2511 trace_xdp_exception(adapter->netdev, prog, act); 2512 fallthrough; 2513 case XDP_DROP: 2514 return IGC_XDP_CONSUMED; 2515 } 2516 } 2517 2518 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2519 struct xdp_buff *xdp) 2520 { 2521 struct bpf_prog *prog; 2522 int res; 2523 2524 prog = READ_ONCE(adapter->xdp_prog); 2525 if (!prog) { 2526 res = IGC_XDP_PASS; 2527 goto out; 2528 } 2529 2530 res = __igc_xdp_run_prog(adapter, prog, xdp); 2531 2532 out: 2533 return ERR_PTR(-res); 2534 } 2535 2536 /* This function assumes __netif_tx_lock is held by the caller. */ 2537 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2538 { 2539 /* Once tail pointer is updated, hardware can fetch the descriptors 2540 * any time so we issue a write membar here to ensure all memory 2541 * writes are complete before the tail pointer is updated. 2542 */ 2543 wmb(); 2544 writel(ring->next_to_use, ring->tail); 2545 } 2546 2547 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2548 { 2549 int cpu = smp_processor_id(); 2550 struct netdev_queue *nq; 2551 struct igc_ring *ring; 2552 2553 if (status & IGC_XDP_TX) { 2554 ring = igc_xdp_get_tx_ring(adapter, cpu); 2555 nq = txring_txq(ring); 2556 2557 __netif_tx_lock(nq, cpu); 2558 igc_flush_tx_descriptors(ring); 2559 __netif_tx_unlock(nq); 2560 } 2561 2562 if (status & IGC_XDP_REDIRECT) 2563 xdp_do_flush(); 2564 } 2565 2566 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2567 unsigned int packets, unsigned int bytes) 2568 { 2569 struct igc_ring *ring = q_vector->rx.ring; 2570 2571 u64_stats_update_begin(&ring->rx_syncp); 2572 ring->rx_stats.packets += packets; 2573 ring->rx_stats.bytes += bytes; 2574 u64_stats_update_end(&ring->rx_syncp); 2575 2576 q_vector->rx.total_packets += packets; 2577 q_vector->rx.total_bytes += bytes; 2578 } 2579 2580 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2581 { 2582 unsigned int total_bytes = 0, total_packets = 0; 2583 struct igc_adapter *adapter = q_vector->adapter; 2584 struct igc_ring *rx_ring = q_vector->rx.ring; 2585 struct sk_buff *skb = rx_ring->skb; 2586 u16 cleaned_count = igc_desc_unused(rx_ring); 2587 int xdp_status = 0, rx_buffer_pgcnt; 2588 2589 while (likely(total_packets < budget)) { 2590 struct igc_xdp_buff ctx = { .rx_ts = NULL }; 2591 struct igc_rx_buffer *rx_buffer; 2592 union igc_adv_rx_desc *rx_desc; 2593 unsigned int size, truesize; 2594 int pkt_offset = 0; 2595 void *pktbuf; 2596 2597 /* return some buffers to hardware, one at a time is too slow */ 2598 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2599 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2600 cleaned_count = 0; 2601 } 2602 2603 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2604 size = le16_to_cpu(rx_desc->wb.upper.length); 2605 if (!size) 2606 break; 2607 2608 /* This memory barrier is needed to keep us from reading 2609 * any other fields out of the rx_desc until we know the 2610 * descriptor has been written back 2611 */ 2612 dma_rmb(); 2613 2614 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2615 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2616 2617 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2618 2619 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2620 ctx.rx_ts = pktbuf; 2621 pkt_offset = IGC_TS_HDR_LEN; 2622 size -= IGC_TS_HDR_LEN; 2623 } 2624 2625 if (!skb) { 2626 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq); 2627 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring), 2628 igc_rx_offset(rx_ring) + pkt_offset, 2629 size, true); 2630 xdp_buff_clear_frags_flag(&ctx.xdp); 2631 ctx.rx_desc = rx_desc; 2632 2633 skb = igc_xdp_run_prog(adapter, &ctx.xdp); 2634 } 2635 2636 if (IS_ERR(skb)) { 2637 unsigned int xdp_res = -PTR_ERR(skb); 2638 2639 switch (xdp_res) { 2640 case IGC_XDP_CONSUMED: 2641 rx_buffer->pagecnt_bias++; 2642 break; 2643 case IGC_XDP_TX: 2644 case IGC_XDP_REDIRECT: 2645 igc_rx_buffer_flip(rx_buffer, truesize); 2646 xdp_status |= xdp_res; 2647 break; 2648 } 2649 2650 total_packets++; 2651 total_bytes += size; 2652 } else if (skb) 2653 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2654 else if (ring_uses_build_skb(rx_ring)) 2655 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp); 2656 else 2657 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx); 2658 2659 /* exit if we failed to retrieve a buffer */ 2660 if (!skb) { 2661 rx_ring->rx_stats.alloc_failed++; 2662 rx_buffer->pagecnt_bias++; 2663 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags); 2664 break; 2665 } 2666 2667 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2668 cleaned_count++; 2669 2670 /* fetch next buffer in frame if non-eop */ 2671 if (igc_is_non_eop(rx_ring, rx_desc)) 2672 continue; 2673 2674 /* verify the packet layout is correct */ 2675 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2676 skb = NULL; 2677 continue; 2678 } 2679 2680 /* probably a little skewed due to removing CRC */ 2681 total_bytes += skb->len; 2682 2683 /* populate checksum, VLAN, and protocol */ 2684 igc_process_skb_fields(rx_ring, rx_desc, skb); 2685 2686 napi_gro_receive(&q_vector->napi, skb); 2687 2688 /* reset skb pointer */ 2689 skb = NULL; 2690 2691 /* update budget accounting */ 2692 total_packets++; 2693 } 2694 2695 if (xdp_status) 2696 igc_finalize_xdp(adapter, xdp_status); 2697 2698 /* place incomplete frames back on ring for completion */ 2699 rx_ring->skb = skb; 2700 2701 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2702 2703 if (cleaned_count) 2704 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2705 2706 return total_packets; 2707 } 2708 2709 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2710 struct xdp_buff *xdp) 2711 { 2712 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2713 unsigned int metasize = xdp->data - xdp->data_meta; 2714 struct sk_buff *skb; 2715 2716 net_prefetch(xdp->data_meta); 2717 2718 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize); 2719 if (unlikely(!skb)) 2720 return NULL; 2721 2722 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2723 ALIGN(totalsize, sizeof(long))); 2724 2725 if (metasize) { 2726 skb_metadata_set(skb, metasize); 2727 __skb_pull(skb, metasize); 2728 } 2729 2730 return skb; 2731 } 2732 2733 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2734 union igc_adv_rx_desc *desc, 2735 struct xdp_buff *xdp, 2736 ktime_t timestamp) 2737 { 2738 struct igc_ring *ring = q_vector->rx.ring; 2739 struct sk_buff *skb; 2740 2741 skb = igc_construct_skb_zc(ring, xdp); 2742 if (!skb) { 2743 ring->rx_stats.alloc_failed++; 2744 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags); 2745 return; 2746 } 2747 2748 if (timestamp) 2749 skb_hwtstamps(skb)->hwtstamp = timestamp; 2750 2751 if (igc_cleanup_headers(ring, desc, skb)) 2752 return; 2753 2754 igc_process_skb_fields(ring, desc, skb); 2755 napi_gro_receive(&q_vector->napi, skb); 2756 } 2757 2758 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp) 2759 { 2760 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The 2761 * igc_xdp_buff shares its layout with xdp_buff_xsk and private 2762 * igc_xdp_buff fields fall into xdp_buff_xsk->cb 2763 */ 2764 return (struct igc_xdp_buff *)xdp; 2765 } 2766 2767 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2768 { 2769 struct igc_adapter *adapter = q_vector->adapter; 2770 struct igc_ring *ring = q_vector->rx.ring; 2771 u16 cleaned_count = igc_desc_unused(ring); 2772 int total_bytes = 0, total_packets = 0; 2773 u16 ntc = ring->next_to_clean; 2774 struct bpf_prog *prog; 2775 bool failure = false; 2776 int xdp_status = 0; 2777 2778 rcu_read_lock(); 2779 2780 prog = READ_ONCE(adapter->xdp_prog); 2781 2782 while (likely(total_packets < budget)) { 2783 union igc_adv_rx_desc *desc; 2784 struct igc_rx_buffer *bi; 2785 struct igc_xdp_buff *ctx; 2786 ktime_t timestamp = 0; 2787 unsigned int size; 2788 int res; 2789 2790 desc = IGC_RX_DESC(ring, ntc); 2791 size = le16_to_cpu(desc->wb.upper.length); 2792 if (!size) 2793 break; 2794 2795 /* This memory barrier is needed to keep us from reading 2796 * any other fields out of the rx_desc until we know the 2797 * descriptor has been written back 2798 */ 2799 dma_rmb(); 2800 2801 bi = &ring->rx_buffer_info[ntc]; 2802 2803 ctx = xsk_buff_to_igc_ctx(bi->xdp); 2804 ctx->rx_desc = desc; 2805 2806 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2807 ctx->rx_ts = bi->xdp->data; 2808 2809 bi->xdp->data += IGC_TS_HDR_LEN; 2810 2811 /* HW timestamp has been copied into local variable. Metadata 2812 * length when XDP program is called should be 0. 2813 */ 2814 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2815 size -= IGC_TS_HDR_LEN; 2816 } 2817 2818 bi->xdp->data_end = bi->xdp->data + size; 2819 xsk_buff_dma_sync_for_cpu(bi->xdp); 2820 2821 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2822 switch (res) { 2823 case IGC_XDP_PASS: 2824 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2825 fallthrough; 2826 case IGC_XDP_CONSUMED: 2827 xsk_buff_free(bi->xdp); 2828 break; 2829 case IGC_XDP_TX: 2830 case IGC_XDP_REDIRECT: 2831 xdp_status |= res; 2832 break; 2833 } 2834 2835 bi->xdp = NULL; 2836 total_bytes += size; 2837 total_packets++; 2838 cleaned_count++; 2839 ntc++; 2840 if (ntc == ring->count) 2841 ntc = 0; 2842 } 2843 2844 ring->next_to_clean = ntc; 2845 rcu_read_unlock(); 2846 2847 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2848 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2849 2850 if (xdp_status) 2851 igc_finalize_xdp(adapter, xdp_status); 2852 2853 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2854 2855 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2856 if (failure || ring->next_to_clean == ring->next_to_use) 2857 xsk_set_rx_need_wakeup(ring->xsk_pool); 2858 else 2859 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2860 return total_packets; 2861 } 2862 2863 return failure ? budget : total_packets; 2864 } 2865 2866 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2867 unsigned int packets, unsigned int bytes) 2868 { 2869 struct igc_ring *ring = q_vector->tx.ring; 2870 2871 u64_stats_update_begin(&ring->tx_syncp); 2872 ring->tx_stats.bytes += bytes; 2873 ring->tx_stats.packets += packets; 2874 u64_stats_update_end(&ring->tx_syncp); 2875 2876 q_vector->tx.total_bytes += bytes; 2877 q_vector->tx.total_packets += packets; 2878 } 2879 2880 static void igc_xsk_request_timestamp(void *_priv) 2881 { 2882 struct igc_metadata_request *meta_req = _priv; 2883 struct igc_ring *tx_ring = meta_req->tx_ring; 2884 struct igc_tx_timestamp_request *tstamp; 2885 u32 tx_flags = IGC_TX_FLAGS_TSTAMP; 2886 struct igc_adapter *adapter; 2887 unsigned long lock_flags; 2888 bool found = false; 2889 int i; 2890 2891 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) { 2892 adapter = netdev_priv(tx_ring->netdev); 2893 2894 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags); 2895 2896 /* Search for available tstamp regs */ 2897 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 2898 tstamp = &adapter->tx_tstamp[i]; 2899 2900 /* tstamp->skb and tstamp->xsk_tx_buffer are in union. 2901 * When tstamp->skb is equal to NULL, 2902 * tstamp->xsk_tx_buffer is equal to NULL as well. 2903 * This condition means that the particular tstamp reg 2904 * is not occupied by other packet. 2905 */ 2906 if (!tstamp->skb) { 2907 found = true; 2908 break; 2909 } 2910 } 2911 2912 /* Return if no available tstamp regs */ 2913 if (!found) { 2914 adapter->tx_hwtstamp_skipped++; 2915 spin_unlock_irqrestore(&adapter->ptp_tx_lock, 2916 lock_flags); 2917 return; 2918 } 2919 2920 tstamp->start = jiffies; 2921 tstamp->xsk_queue_index = tx_ring->queue_index; 2922 tstamp->xsk_tx_buffer = meta_req->tx_buffer; 2923 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK; 2924 2925 /* Hold the transmit completion until timestamp is ready */ 2926 meta_req->tx_buffer->xsk_pending_ts = true; 2927 2928 /* Keep the pointer to tx_timestamp, which is located in XDP 2929 * metadata area. It is the location to store the value of 2930 * tx hardware timestamp. 2931 */ 2932 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta); 2933 2934 /* Set timestamp bit based on the _TSTAMP(_X) bit. */ 2935 tx_flags |= tstamp->flags; 2936 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2937 IGC_TX_FLAGS_TSTAMP, 2938 (IGC_ADVTXD_MAC_TSTAMP)); 2939 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2940 IGC_TX_FLAGS_TSTAMP_1, 2941 (IGC_ADVTXD_TSTAMP_REG_1)); 2942 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2943 IGC_TX_FLAGS_TSTAMP_2, 2944 (IGC_ADVTXD_TSTAMP_REG_2)); 2945 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2946 IGC_TX_FLAGS_TSTAMP_3, 2947 (IGC_ADVTXD_TSTAMP_REG_3)); 2948 2949 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags); 2950 } 2951 } 2952 2953 static u64 igc_xsk_fill_timestamp(void *_priv) 2954 { 2955 return *(u64 *)_priv; 2956 } 2957 2958 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = { 2959 .tmo_request_timestamp = igc_xsk_request_timestamp, 2960 .tmo_fill_timestamp = igc_xsk_fill_timestamp, 2961 }; 2962 2963 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2964 { 2965 struct xsk_buff_pool *pool = ring->xsk_pool; 2966 struct netdev_queue *nq = txring_txq(ring); 2967 union igc_adv_tx_desc *tx_desc = NULL; 2968 int cpu = smp_processor_id(); 2969 struct xdp_desc xdp_desc; 2970 u16 budget, ntu; 2971 2972 if (!netif_carrier_ok(ring->netdev)) 2973 return; 2974 2975 __netif_tx_lock(nq, cpu); 2976 2977 /* Avoid transmit queue timeout since we share it with the slow path */ 2978 txq_trans_cond_update(nq); 2979 2980 ntu = ring->next_to_use; 2981 budget = igc_desc_unused(ring); 2982 2983 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2984 struct igc_metadata_request meta_req; 2985 struct xsk_tx_metadata *meta = NULL; 2986 struct igc_tx_buffer *bi; 2987 u32 olinfo_status; 2988 dma_addr_t dma; 2989 2990 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA | 2991 IGC_ADVTXD_DCMD_DEXT | 2992 IGC_ADVTXD_DCMD_IFCS | 2993 IGC_TXD_DCMD | xdp_desc.len; 2994 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2995 2996 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2997 meta = xsk_buff_get_metadata(pool, xdp_desc.addr); 2998 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2999 bi = &ring->tx_buffer_info[ntu]; 3000 3001 meta_req.tx_ring = ring; 3002 meta_req.tx_buffer = bi; 3003 meta_req.meta = meta; 3004 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops, 3005 &meta_req); 3006 3007 tx_desc = IGC_TX_DESC(ring, ntu); 3008 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type); 3009 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 3010 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3011 3012 bi->type = IGC_TX_BUFFER_TYPE_XSK; 3013 bi->protocol = 0; 3014 bi->bytecount = xdp_desc.len; 3015 bi->gso_segs = 1; 3016 bi->time_stamp = jiffies; 3017 bi->next_to_watch = tx_desc; 3018 3019 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 3020 3021 ntu++; 3022 if (ntu == ring->count) 3023 ntu = 0; 3024 } 3025 3026 ring->next_to_use = ntu; 3027 if (tx_desc) { 3028 igc_flush_tx_descriptors(ring); 3029 xsk_tx_release(pool); 3030 } 3031 3032 __netif_tx_unlock(nq); 3033 } 3034 3035 /** 3036 * igc_clean_tx_irq - Reclaim resources after transmit completes 3037 * @q_vector: pointer to q_vector containing needed info 3038 * @napi_budget: Used to determine if we are in netpoll 3039 * 3040 * returns true if ring is completely cleaned 3041 */ 3042 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 3043 { 3044 struct igc_adapter *adapter = q_vector->adapter; 3045 unsigned int total_bytes = 0, total_packets = 0; 3046 unsigned int budget = q_vector->tx.work_limit; 3047 struct igc_ring *tx_ring = q_vector->tx.ring; 3048 unsigned int i = tx_ring->next_to_clean; 3049 struct igc_tx_buffer *tx_buffer; 3050 union igc_adv_tx_desc *tx_desc; 3051 u32 xsk_frames = 0; 3052 3053 if (test_bit(__IGC_DOWN, &adapter->state)) 3054 return true; 3055 3056 tx_buffer = &tx_ring->tx_buffer_info[i]; 3057 tx_desc = IGC_TX_DESC(tx_ring, i); 3058 i -= tx_ring->count; 3059 3060 do { 3061 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 3062 3063 /* if next_to_watch is not set then there is no work pending */ 3064 if (!eop_desc) 3065 break; 3066 3067 /* prevent any other reads prior to eop_desc */ 3068 smp_rmb(); 3069 3070 /* if DD is not set pending work has not been completed */ 3071 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 3072 break; 3073 3074 /* Hold the completions while there's a pending tx hardware 3075 * timestamp request from XDP Tx metadata. 3076 */ 3077 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK && 3078 tx_buffer->xsk_pending_ts) 3079 break; 3080 3081 /* clear next_to_watch to prevent false hangs */ 3082 tx_buffer->next_to_watch = NULL; 3083 3084 /* update the statistics for this packet */ 3085 total_bytes += tx_buffer->bytecount; 3086 total_packets += tx_buffer->gso_segs; 3087 3088 switch (tx_buffer->type) { 3089 case IGC_TX_BUFFER_TYPE_XSK: 3090 xsk_frames++; 3091 break; 3092 case IGC_TX_BUFFER_TYPE_XDP: 3093 xdp_return_frame(tx_buffer->xdpf); 3094 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3095 break; 3096 case IGC_TX_BUFFER_TYPE_SKB: 3097 napi_consume_skb(tx_buffer->skb, napi_budget); 3098 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3099 break; 3100 default: 3101 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 3102 break; 3103 } 3104 3105 /* clear last DMA location and unmap remaining buffers */ 3106 while (tx_desc != eop_desc) { 3107 tx_buffer++; 3108 tx_desc++; 3109 i++; 3110 if (unlikely(!i)) { 3111 i -= tx_ring->count; 3112 tx_buffer = tx_ring->tx_buffer_info; 3113 tx_desc = IGC_TX_DESC(tx_ring, 0); 3114 } 3115 3116 /* unmap any remaining paged data */ 3117 if (dma_unmap_len(tx_buffer, len)) 3118 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3119 } 3120 3121 /* move us one more past the eop_desc for start of next pkt */ 3122 tx_buffer++; 3123 tx_desc++; 3124 i++; 3125 if (unlikely(!i)) { 3126 i -= tx_ring->count; 3127 tx_buffer = tx_ring->tx_buffer_info; 3128 tx_desc = IGC_TX_DESC(tx_ring, 0); 3129 } 3130 3131 /* issue prefetch for next Tx descriptor */ 3132 prefetch(tx_desc); 3133 3134 /* update budget accounting */ 3135 budget--; 3136 } while (likely(budget)); 3137 3138 netdev_tx_completed_queue(txring_txq(tx_ring), 3139 total_packets, total_bytes); 3140 3141 i += tx_ring->count; 3142 tx_ring->next_to_clean = i; 3143 3144 igc_update_tx_stats(q_vector, total_packets, total_bytes); 3145 3146 if (tx_ring->xsk_pool) { 3147 if (xsk_frames) 3148 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 3149 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 3150 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 3151 igc_xdp_xmit_zc(tx_ring); 3152 } 3153 3154 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 3155 struct igc_hw *hw = &adapter->hw; 3156 3157 /* Detect a transmit hang in hardware, this serializes the 3158 * check with the clearing of time_stamp and movement of i 3159 */ 3160 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 3161 if (tx_buffer->next_to_watch && 3162 time_after(jiffies, tx_buffer->time_stamp + 3163 (adapter->tx_timeout_factor * HZ)) && 3164 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 3165 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) && 3166 !tx_ring->oper_gate_closed) { 3167 /* detected Tx unit hang */ 3168 netdev_err(tx_ring->netdev, 3169 "Detected Tx Unit Hang\n" 3170 " Tx Queue <%d>\n" 3171 " TDH <%x>\n" 3172 " TDT <%x>\n" 3173 " next_to_use <%x>\n" 3174 " next_to_clean <%x>\n" 3175 "buffer_info[next_to_clean]\n" 3176 " time_stamp <%lx>\n" 3177 " next_to_watch <%p>\n" 3178 " jiffies <%lx>\n" 3179 " desc.status <%x>\n", 3180 tx_ring->queue_index, 3181 rd32(IGC_TDH(tx_ring->reg_idx)), 3182 readl(tx_ring->tail), 3183 tx_ring->next_to_use, 3184 tx_ring->next_to_clean, 3185 tx_buffer->time_stamp, 3186 tx_buffer->next_to_watch, 3187 jiffies, 3188 tx_buffer->next_to_watch->wb.status); 3189 netif_stop_subqueue(tx_ring->netdev, 3190 tx_ring->queue_index); 3191 3192 /* we are about to reset, no point in enabling stuff */ 3193 return true; 3194 } 3195 } 3196 3197 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 3198 if (unlikely(total_packets && 3199 netif_carrier_ok(tx_ring->netdev) && 3200 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 3201 /* Make sure that anybody stopping the queue after this 3202 * sees the new next_to_clean. 3203 */ 3204 smp_mb(); 3205 if (__netif_subqueue_stopped(tx_ring->netdev, 3206 tx_ring->queue_index) && 3207 !(test_bit(__IGC_DOWN, &adapter->state))) { 3208 netif_wake_subqueue(tx_ring->netdev, 3209 tx_ring->queue_index); 3210 3211 u64_stats_update_begin(&tx_ring->tx_syncp); 3212 tx_ring->tx_stats.restart_queue++; 3213 u64_stats_update_end(&tx_ring->tx_syncp); 3214 } 3215 } 3216 3217 return !!budget; 3218 } 3219 3220 static int igc_find_mac_filter(struct igc_adapter *adapter, 3221 enum igc_mac_filter_type type, const u8 *addr) 3222 { 3223 struct igc_hw *hw = &adapter->hw; 3224 int max_entries = hw->mac.rar_entry_count; 3225 u32 ral, rah; 3226 int i; 3227 3228 for (i = 0; i < max_entries; i++) { 3229 ral = rd32(IGC_RAL(i)); 3230 rah = rd32(IGC_RAH(i)); 3231 3232 if (!(rah & IGC_RAH_AV)) 3233 continue; 3234 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3235 continue; 3236 if ((rah & IGC_RAH_RAH_MASK) != 3237 le16_to_cpup((__le16 *)(addr + 4))) 3238 continue; 3239 if (ral != le32_to_cpup((__le32 *)(addr))) 3240 continue; 3241 3242 return i; 3243 } 3244 3245 return -1; 3246 } 3247 3248 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3249 { 3250 struct igc_hw *hw = &adapter->hw; 3251 int max_entries = hw->mac.rar_entry_count; 3252 u32 rah; 3253 int i; 3254 3255 for (i = 0; i < max_entries; i++) { 3256 rah = rd32(IGC_RAH(i)); 3257 3258 if (!(rah & IGC_RAH_AV)) 3259 return i; 3260 } 3261 3262 return -1; 3263 } 3264 3265 /** 3266 * igc_add_mac_filter() - Add MAC address filter 3267 * @adapter: Pointer to adapter where the filter should be added 3268 * @type: MAC address filter type (source or destination) 3269 * @addr: MAC address 3270 * @queue: If non-negative, queue assignment feature is enabled and frames 3271 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3272 * assignment is disabled. 3273 * 3274 * Return: 0 in case of success, negative errno code otherwise. 3275 */ 3276 static int igc_add_mac_filter(struct igc_adapter *adapter, 3277 enum igc_mac_filter_type type, const u8 *addr, 3278 int queue) 3279 { 3280 struct net_device *dev = adapter->netdev; 3281 int index; 3282 3283 index = igc_find_mac_filter(adapter, type, addr); 3284 if (index >= 0) 3285 goto update_filter; 3286 3287 index = igc_get_avail_mac_filter_slot(adapter); 3288 if (index < 0) 3289 return -ENOSPC; 3290 3291 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3292 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3293 addr, queue); 3294 3295 update_filter: 3296 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3297 return 0; 3298 } 3299 3300 /** 3301 * igc_del_mac_filter() - Delete MAC address filter 3302 * @adapter: Pointer to adapter where the filter should be deleted from 3303 * @type: MAC address filter type (source or destination) 3304 * @addr: MAC address 3305 */ 3306 static void igc_del_mac_filter(struct igc_adapter *adapter, 3307 enum igc_mac_filter_type type, const u8 *addr) 3308 { 3309 struct net_device *dev = adapter->netdev; 3310 int index; 3311 3312 index = igc_find_mac_filter(adapter, type, addr); 3313 if (index < 0) 3314 return; 3315 3316 if (index == 0) { 3317 /* If this is the default filter, we don't actually delete it. 3318 * We just reset to its default value i.e. disable queue 3319 * assignment. 3320 */ 3321 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3322 3323 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3324 } else { 3325 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3326 index, 3327 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3328 addr); 3329 3330 igc_clear_mac_filter_hw(adapter, index); 3331 } 3332 } 3333 3334 /** 3335 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3336 * @adapter: Pointer to adapter where the filter should be added 3337 * @prio: VLAN priority value 3338 * @queue: Queue number which matching frames are assigned to 3339 * 3340 * Return: 0 in case of success, negative errno code otherwise. 3341 */ 3342 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3343 int queue) 3344 { 3345 struct net_device *dev = adapter->netdev; 3346 struct igc_hw *hw = &adapter->hw; 3347 u32 vlanpqf; 3348 3349 vlanpqf = rd32(IGC_VLANPQF); 3350 3351 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3352 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3353 return -EEXIST; 3354 } 3355 3356 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3357 vlanpqf |= IGC_VLANPQF_VALID(prio); 3358 3359 wr32(IGC_VLANPQF, vlanpqf); 3360 3361 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3362 prio, queue); 3363 return 0; 3364 } 3365 3366 /** 3367 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3368 * @adapter: Pointer to adapter where the filter should be deleted from 3369 * @prio: VLAN priority value 3370 */ 3371 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3372 { 3373 struct igc_hw *hw = &adapter->hw; 3374 u32 vlanpqf; 3375 3376 vlanpqf = rd32(IGC_VLANPQF); 3377 3378 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3379 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3380 3381 wr32(IGC_VLANPQF, vlanpqf); 3382 3383 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3384 prio); 3385 } 3386 3387 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3388 { 3389 struct igc_hw *hw = &adapter->hw; 3390 int i; 3391 3392 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3393 u32 etqf = rd32(IGC_ETQF(i)); 3394 3395 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3396 return i; 3397 } 3398 3399 return -1; 3400 } 3401 3402 /** 3403 * igc_add_etype_filter() - Add ethertype filter 3404 * @adapter: Pointer to adapter where the filter should be added 3405 * @etype: Ethertype value 3406 * @queue: If non-negative, queue assignment feature is enabled and frames 3407 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3408 * assignment is disabled. 3409 * 3410 * Return: 0 in case of success, negative errno code otherwise. 3411 */ 3412 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3413 int queue) 3414 { 3415 struct igc_hw *hw = &adapter->hw; 3416 int index; 3417 u32 etqf; 3418 3419 index = igc_get_avail_etype_filter_slot(adapter); 3420 if (index < 0) 3421 return -ENOSPC; 3422 3423 etqf = rd32(IGC_ETQF(index)); 3424 3425 etqf &= ~IGC_ETQF_ETYPE_MASK; 3426 etqf |= etype; 3427 3428 if (queue >= 0) { 3429 etqf &= ~IGC_ETQF_QUEUE_MASK; 3430 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3431 etqf |= IGC_ETQF_QUEUE_ENABLE; 3432 } 3433 3434 etqf |= IGC_ETQF_FILTER_ENABLE; 3435 3436 wr32(IGC_ETQF(index), etqf); 3437 3438 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3439 etype, queue); 3440 return 0; 3441 } 3442 3443 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3444 { 3445 struct igc_hw *hw = &adapter->hw; 3446 int i; 3447 3448 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3449 u32 etqf = rd32(IGC_ETQF(i)); 3450 3451 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3452 return i; 3453 } 3454 3455 return -1; 3456 } 3457 3458 /** 3459 * igc_del_etype_filter() - Delete ethertype filter 3460 * @adapter: Pointer to adapter where the filter should be deleted from 3461 * @etype: Ethertype value 3462 */ 3463 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3464 { 3465 struct igc_hw *hw = &adapter->hw; 3466 int index; 3467 3468 index = igc_find_etype_filter(adapter, etype); 3469 if (index < 0) 3470 return; 3471 3472 wr32(IGC_ETQF(index), 0); 3473 3474 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3475 etype); 3476 } 3477 3478 static int igc_flex_filter_select(struct igc_adapter *adapter, 3479 struct igc_flex_filter *input, 3480 u32 *fhft) 3481 { 3482 struct igc_hw *hw = &adapter->hw; 3483 u8 fhft_index; 3484 u32 fhftsl; 3485 3486 if (input->index >= MAX_FLEX_FILTER) { 3487 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n"); 3488 return -EINVAL; 3489 } 3490 3491 /* Indirect table select register */ 3492 fhftsl = rd32(IGC_FHFTSL); 3493 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3494 switch (input->index) { 3495 case 0 ... 7: 3496 fhftsl |= 0x00; 3497 break; 3498 case 8 ... 15: 3499 fhftsl |= 0x01; 3500 break; 3501 case 16 ... 23: 3502 fhftsl |= 0x02; 3503 break; 3504 case 24 ... 31: 3505 fhftsl |= 0x03; 3506 break; 3507 } 3508 wr32(IGC_FHFTSL, fhftsl); 3509 3510 /* Normalize index down to host table register */ 3511 fhft_index = input->index % 8; 3512 3513 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3514 IGC_FHFT_EXT(fhft_index - 4); 3515 3516 return 0; 3517 } 3518 3519 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3520 struct igc_flex_filter *input) 3521 { 3522 struct igc_hw *hw = &adapter->hw; 3523 u8 *data = input->data; 3524 u8 *mask = input->mask; 3525 u32 queuing; 3526 u32 fhft; 3527 u32 wufc; 3528 int ret; 3529 int i; 3530 3531 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3532 * out early to avoid surprises later. 3533 */ 3534 if (input->length % 8 != 0) { 3535 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n"); 3536 return -EINVAL; 3537 } 3538 3539 /* Select corresponding flex filter register and get base for host table. */ 3540 ret = igc_flex_filter_select(adapter, input, &fhft); 3541 if (ret) 3542 return ret; 3543 3544 /* When adding a filter globally disable flex filter feature. That is 3545 * recommended within the datasheet. 3546 */ 3547 wufc = rd32(IGC_WUFC); 3548 wufc &= ~IGC_WUFC_FLEX_HQ; 3549 wr32(IGC_WUFC, wufc); 3550 3551 /* Configure filter */ 3552 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3553 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue); 3554 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio); 3555 3556 if (input->immediate_irq) 3557 queuing |= IGC_FHFT_IMM_INT; 3558 3559 if (input->drop) 3560 queuing |= IGC_FHFT_DROP; 3561 3562 wr32(fhft + 0xFC, queuing); 3563 3564 /* Write data (128 byte) and mask (128 bit) */ 3565 for (i = 0; i < 16; ++i) { 3566 const size_t data_idx = i * 8; 3567 const size_t row_idx = i * 16; 3568 u32 dw0 = 3569 (data[data_idx + 0] << 0) | 3570 (data[data_idx + 1] << 8) | 3571 (data[data_idx + 2] << 16) | 3572 (data[data_idx + 3] << 24); 3573 u32 dw1 = 3574 (data[data_idx + 4] << 0) | 3575 (data[data_idx + 5] << 8) | 3576 (data[data_idx + 6] << 16) | 3577 (data[data_idx + 7] << 24); 3578 u32 tmp; 3579 3580 /* Write row: dw0, dw1 and mask */ 3581 wr32(fhft + row_idx, dw0); 3582 wr32(fhft + row_idx + 4, dw1); 3583 3584 /* mask is only valid for MASK(7, 0) */ 3585 tmp = rd32(fhft + row_idx + 8); 3586 tmp &= ~GENMASK(7, 0); 3587 tmp |= mask[i]; 3588 wr32(fhft + row_idx + 8, tmp); 3589 } 3590 3591 /* Enable filter. */ 3592 wufc |= IGC_WUFC_FLEX_HQ; 3593 if (input->index > 8) { 3594 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3595 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3596 3597 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3598 3599 wr32(IGC_WUFC_EXT, wufc_ext); 3600 } else { 3601 wufc |= (IGC_WUFC_FLX0 << input->index); 3602 } 3603 wr32(IGC_WUFC, wufc); 3604 3605 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n", 3606 input->index); 3607 3608 return 0; 3609 } 3610 3611 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3612 const void *src, unsigned int offset, 3613 size_t len, const void *mask) 3614 { 3615 int i; 3616 3617 /* data */ 3618 memcpy(&flex->data[offset], src, len); 3619 3620 /* mask */ 3621 for (i = 0; i < len; ++i) { 3622 const unsigned int idx = i + offset; 3623 const u8 *ptr = mask; 3624 3625 if (mask) { 3626 if (ptr[i] & 0xff) 3627 flex->mask[idx / 8] |= BIT(idx % 8); 3628 3629 continue; 3630 } 3631 3632 flex->mask[idx / 8] |= BIT(idx % 8); 3633 } 3634 } 3635 3636 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3637 { 3638 struct igc_hw *hw = &adapter->hw; 3639 u32 wufc, wufc_ext; 3640 int i; 3641 3642 wufc = rd32(IGC_WUFC); 3643 wufc_ext = rd32(IGC_WUFC_EXT); 3644 3645 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3646 if (i < 8) { 3647 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3648 return i; 3649 } else { 3650 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3651 return i; 3652 } 3653 } 3654 3655 return -ENOSPC; 3656 } 3657 3658 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3659 { 3660 struct igc_hw *hw = &adapter->hw; 3661 u32 wufc, wufc_ext; 3662 3663 wufc = rd32(IGC_WUFC); 3664 wufc_ext = rd32(IGC_WUFC_EXT); 3665 3666 if (wufc & IGC_WUFC_FILTER_MASK) 3667 return true; 3668 3669 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3670 return true; 3671 3672 return false; 3673 } 3674 3675 static int igc_add_flex_filter(struct igc_adapter *adapter, 3676 struct igc_nfc_rule *rule) 3677 { 3678 struct igc_nfc_filter *filter = &rule->filter; 3679 unsigned int eth_offset, user_offset; 3680 struct igc_flex_filter flex = { }; 3681 int ret, index; 3682 bool vlan; 3683 3684 index = igc_find_avail_flex_filter_slot(adapter); 3685 if (index < 0) 3686 return -ENOSPC; 3687 3688 /* Construct the flex filter: 3689 * -> dest_mac [6] 3690 * -> src_mac [6] 3691 * -> tpid [2] 3692 * -> vlan tci [2] 3693 * -> ether type [2] 3694 * -> user data [8] 3695 * -> = 26 bytes => 32 length 3696 */ 3697 flex.index = index; 3698 flex.length = 32; 3699 flex.rx_queue = rule->action; 3700 3701 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3702 eth_offset = vlan ? 16 : 12; 3703 user_offset = vlan ? 18 : 14; 3704 3705 /* Add destination MAC */ 3706 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3707 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3708 ETH_ALEN, NULL); 3709 3710 /* Add source MAC */ 3711 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3712 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3713 ETH_ALEN, NULL); 3714 3715 /* Add VLAN etype */ 3716 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) { 3717 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype); 3718 3719 igc_flex_filter_add_field(&flex, &vlan_etype, 12, 3720 sizeof(vlan_etype), NULL); 3721 } 3722 3723 /* Add VLAN TCI */ 3724 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3725 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3726 sizeof(filter->vlan_tci), NULL); 3727 3728 /* Add Ether type */ 3729 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3730 __be16 etype = cpu_to_be16(filter->etype); 3731 3732 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3733 sizeof(etype), NULL); 3734 } 3735 3736 /* Add user data */ 3737 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3738 igc_flex_filter_add_field(&flex, &filter->user_data, 3739 user_offset, 3740 sizeof(filter->user_data), 3741 filter->user_mask); 3742 3743 /* Add it down to the hardware and enable it. */ 3744 ret = igc_write_flex_filter_ll(adapter, &flex); 3745 if (ret) 3746 return ret; 3747 3748 filter->flex_index = index; 3749 3750 return 0; 3751 } 3752 3753 static void igc_del_flex_filter(struct igc_adapter *adapter, 3754 u16 reg_index) 3755 { 3756 struct igc_hw *hw = &adapter->hw; 3757 u32 wufc; 3758 3759 /* Just disable the filter. The filter table itself is kept 3760 * intact. Another flex_filter_add() should override the "old" data 3761 * then. 3762 */ 3763 if (reg_index > 8) { 3764 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3765 3766 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3767 wr32(IGC_WUFC_EXT, wufc_ext); 3768 } else { 3769 wufc = rd32(IGC_WUFC); 3770 3771 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3772 wr32(IGC_WUFC, wufc); 3773 } 3774 3775 if (igc_flex_filter_in_use(adapter)) 3776 return; 3777 3778 /* No filters are in use, we may disable flex filters */ 3779 wufc = rd32(IGC_WUFC); 3780 wufc &= ~IGC_WUFC_FLEX_HQ; 3781 wr32(IGC_WUFC, wufc); 3782 } 3783 3784 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3785 struct igc_nfc_rule *rule) 3786 { 3787 int err; 3788 3789 if (rule->flex) { 3790 return igc_add_flex_filter(adapter, rule); 3791 } 3792 3793 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3794 err = igc_add_etype_filter(adapter, rule->filter.etype, 3795 rule->action); 3796 if (err) 3797 return err; 3798 } 3799 3800 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3801 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3802 rule->filter.src_addr, rule->action); 3803 if (err) 3804 return err; 3805 } 3806 3807 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3808 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3809 rule->filter.dst_addr, rule->action); 3810 if (err) 3811 return err; 3812 } 3813 3814 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3815 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci); 3816 3817 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3818 if (err) 3819 return err; 3820 } 3821 3822 return 0; 3823 } 3824 3825 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3826 const struct igc_nfc_rule *rule) 3827 { 3828 if (rule->flex) { 3829 igc_del_flex_filter(adapter, rule->filter.flex_index); 3830 return; 3831 } 3832 3833 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3834 igc_del_etype_filter(adapter, rule->filter.etype); 3835 3836 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3837 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci); 3838 3839 igc_del_vlan_prio_filter(adapter, prio); 3840 } 3841 3842 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3843 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3844 rule->filter.src_addr); 3845 3846 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3847 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3848 rule->filter.dst_addr); 3849 } 3850 3851 /** 3852 * igc_get_nfc_rule() - Get NFC rule 3853 * @adapter: Pointer to adapter 3854 * @location: Rule location 3855 * 3856 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3857 * 3858 * Return: Pointer to NFC rule at @location. If not found, NULL. 3859 */ 3860 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3861 u32 location) 3862 { 3863 struct igc_nfc_rule *rule; 3864 3865 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3866 if (rule->location == location) 3867 return rule; 3868 if (rule->location > location) 3869 break; 3870 } 3871 3872 return NULL; 3873 } 3874 3875 /** 3876 * igc_del_nfc_rule() - Delete NFC rule 3877 * @adapter: Pointer to adapter 3878 * @rule: Pointer to rule to be deleted 3879 * 3880 * Disable NFC rule in hardware and delete it from adapter. 3881 * 3882 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3883 */ 3884 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3885 { 3886 igc_disable_nfc_rule(adapter, rule); 3887 3888 list_del(&rule->list); 3889 adapter->nfc_rule_count--; 3890 3891 kfree(rule); 3892 } 3893 3894 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3895 { 3896 struct igc_nfc_rule *rule, *tmp; 3897 3898 mutex_lock(&adapter->nfc_rule_lock); 3899 3900 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3901 igc_del_nfc_rule(adapter, rule); 3902 3903 mutex_unlock(&adapter->nfc_rule_lock); 3904 } 3905 3906 /** 3907 * igc_add_nfc_rule() - Add NFC rule 3908 * @adapter: Pointer to adapter 3909 * @rule: Pointer to rule to be added 3910 * 3911 * Enable NFC rule in hardware and add it to adapter. 3912 * 3913 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3914 * 3915 * Return: 0 on success, negative errno on failure. 3916 */ 3917 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3918 { 3919 struct igc_nfc_rule *pred, *cur; 3920 int err; 3921 3922 err = igc_enable_nfc_rule(adapter, rule); 3923 if (err) 3924 return err; 3925 3926 pred = NULL; 3927 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3928 if (cur->location >= rule->location) 3929 break; 3930 pred = cur; 3931 } 3932 3933 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3934 adapter->nfc_rule_count++; 3935 return 0; 3936 } 3937 3938 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3939 { 3940 struct igc_nfc_rule *rule; 3941 3942 mutex_lock(&adapter->nfc_rule_lock); 3943 3944 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3945 igc_enable_nfc_rule(adapter, rule); 3946 3947 mutex_unlock(&adapter->nfc_rule_lock); 3948 } 3949 3950 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3951 { 3952 struct igc_adapter *adapter = netdev_priv(netdev); 3953 3954 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3955 } 3956 3957 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3958 { 3959 struct igc_adapter *adapter = netdev_priv(netdev); 3960 3961 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3962 return 0; 3963 } 3964 3965 /** 3966 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3967 * @netdev: network interface device structure 3968 * 3969 * The set_rx_mode entry point is called whenever the unicast or multicast 3970 * address lists or the network interface flags are updated. This routine is 3971 * responsible for configuring the hardware for proper unicast, multicast, 3972 * promiscuous mode, and all-multi behavior. 3973 */ 3974 static void igc_set_rx_mode(struct net_device *netdev) 3975 { 3976 struct igc_adapter *adapter = netdev_priv(netdev); 3977 struct igc_hw *hw = &adapter->hw; 3978 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3979 int count; 3980 3981 /* Check for Promiscuous and All Multicast modes */ 3982 if (netdev->flags & IFF_PROMISC) { 3983 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3984 } else { 3985 if (netdev->flags & IFF_ALLMULTI) { 3986 rctl |= IGC_RCTL_MPE; 3987 } else { 3988 /* Write addresses to the MTA, if the attempt fails 3989 * then we should just turn on promiscuous mode so 3990 * that we can at least receive multicast traffic 3991 */ 3992 count = igc_write_mc_addr_list(netdev); 3993 if (count < 0) 3994 rctl |= IGC_RCTL_MPE; 3995 } 3996 } 3997 3998 /* Write addresses to available RAR registers, if there is not 3999 * sufficient space to store all the addresses then enable 4000 * unicast promiscuous mode 4001 */ 4002 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 4003 rctl |= IGC_RCTL_UPE; 4004 4005 /* update state of unicast and multicast */ 4006 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 4007 wr32(IGC_RCTL, rctl); 4008 4009 #if (PAGE_SIZE < 8192) 4010 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 4011 rlpml = IGC_MAX_FRAME_BUILD_SKB; 4012 #endif 4013 wr32(IGC_RLPML, rlpml); 4014 } 4015 4016 /** 4017 * igc_configure - configure the hardware for RX and TX 4018 * @adapter: private board structure 4019 */ 4020 static void igc_configure(struct igc_adapter *adapter) 4021 { 4022 struct net_device *netdev = adapter->netdev; 4023 int i = 0; 4024 4025 igc_get_hw_control(adapter); 4026 igc_set_rx_mode(netdev); 4027 4028 igc_restore_vlan(adapter); 4029 4030 igc_setup_tctl(adapter); 4031 igc_setup_mrqc(adapter); 4032 igc_setup_rctl(adapter); 4033 4034 igc_set_default_mac_filter(adapter); 4035 igc_restore_nfc_rules(adapter); 4036 4037 igc_configure_tx(adapter); 4038 igc_configure_rx(adapter); 4039 4040 igc_rx_fifo_flush_base(&adapter->hw); 4041 4042 /* call igc_desc_unused which always leaves 4043 * at least 1 descriptor unused to make sure 4044 * next_to_use != next_to_clean 4045 */ 4046 for (i = 0; i < adapter->num_rx_queues; i++) { 4047 struct igc_ring *ring = adapter->rx_ring[i]; 4048 4049 if (ring->xsk_pool) 4050 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 4051 else 4052 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 4053 } 4054 } 4055 4056 /** 4057 * igc_write_ivar - configure ivar for given MSI-X vector 4058 * @hw: pointer to the HW structure 4059 * @msix_vector: vector number we are allocating to a given ring 4060 * @index: row index of IVAR register to write within IVAR table 4061 * @offset: column offset of in IVAR, should be multiple of 8 4062 * 4063 * The IVAR table consists of 2 columns, 4064 * each containing an cause allocation for an Rx and Tx ring, and a 4065 * variable number of rows depending on the number of queues supported. 4066 */ 4067 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 4068 int index, int offset) 4069 { 4070 u32 ivar = array_rd32(IGC_IVAR0, index); 4071 4072 /* clear any bits that are currently set */ 4073 ivar &= ~((u32)0xFF << offset); 4074 4075 /* write vector and valid bit */ 4076 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 4077 4078 array_wr32(IGC_IVAR0, index, ivar); 4079 } 4080 4081 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 4082 { 4083 struct igc_adapter *adapter = q_vector->adapter; 4084 struct igc_hw *hw = &adapter->hw; 4085 int rx_queue = IGC_N0_QUEUE; 4086 int tx_queue = IGC_N0_QUEUE; 4087 4088 if (q_vector->rx.ring) 4089 rx_queue = q_vector->rx.ring->reg_idx; 4090 if (q_vector->tx.ring) 4091 tx_queue = q_vector->tx.ring->reg_idx; 4092 4093 switch (hw->mac.type) { 4094 case igc_i225: 4095 if (rx_queue > IGC_N0_QUEUE) 4096 igc_write_ivar(hw, msix_vector, 4097 rx_queue >> 1, 4098 (rx_queue & 0x1) << 4); 4099 if (tx_queue > IGC_N0_QUEUE) 4100 igc_write_ivar(hw, msix_vector, 4101 tx_queue >> 1, 4102 ((tx_queue & 0x1) << 4) + 8); 4103 q_vector->eims_value = BIT(msix_vector); 4104 break; 4105 default: 4106 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 4107 break; 4108 } 4109 4110 /* add q_vector eims value to global eims_enable_mask */ 4111 adapter->eims_enable_mask |= q_vector->eims_value; 4112 4113 /* configure q_vector to set itr on first interrupt */ 4114 q_vector->set_itr = 1; 4115 } 4116 4117 /** 4118 * igc_configure_msix - Configure MSI-X hardware 4119 * @adapter: Pointer to adapter structure 4120 * 4121 * igc_configure_msix sets up the hardware to properly 4122 * generate MSI-X interrupts. 4123 */ 4124 static void igc_configure_msix(struct igc_adapter *adapter) 4125 { 4126 struct igc_hw *hw = &adapter->hw; 4127 int i, vector = 0; 4128 u32 tmp; 4129 4130 adapter->eims_enable_mask = 0; 4131 4132 /* set vector for other causes, i.e. link changes */ 4133 switch (hw->mac.type) { 4134 case igc_i225: 4135 /* Turn on MSI-X capability first, or our settings 4136 * won't stick. And it will take days to debug. 4137 */ 4138 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 4139 IGC_GPIE_PBA | IGC_GPIE_EIAME | 4140 IGC_GPIE_NSICR); 4141 4142 /* enable msix_other interrupt */ 4143 adapter->eims_other = BIT(vector); 4144 tmp = (vector++ | IGC_IVAR_VALID) << 8; 4145 4146 wr32(IGC_IVAR_MISC, tmp); 4147 break; 4148 default: 4149 /* do nothing, since nothing else supports MSI-X */ 4150 break; 4151 } /* switch (hw->mac.type) */ 4152 4153 adapter->eims_enable_mask |= adapter->eims_other; 4154 4155 for (i = 0; i < adapter->num_q_vectors; i++) 4156 igc_assign_vector(adapter->q_vector[i], vector++); 4157 4158 wrfl(); 4159 } 4160 4161 /** 4162 * igc_irq_enable - Enable default interrupt generation settings 4163 * @adapter: board private structure 4164 */ 4165 static void igc_irq_enable(struct igc_adapter *adapter) 4166 { 4167 struct igc_hw *hw = &adapter->hw; 4168 4169 if (adapter->msix_entries) { 4170 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 4171 u32 regval = rd32(IGC_EIAC); 4172 4173 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 4174 regval = rd32(IGC_EIAM); 4175 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 4176 wr32(IGC_EIMS, adapter->eims_enable_mask); 4177 wr32(IGC_IMS, ims); 4178 } else { 4179 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4180 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4181 } 4182 } 4183 4184 /** 4185 * igc_irq_disable - Mask off interrupt generation on the NIC 4186 * @adapter: board private structure 4187 */ 4188 static void igc_irq_disable(struct igc_adapter *adapter) 4189 { 4190 struct igc_hw *hw = &adapter->hw; 4191 4192 if (adapter->msix_entries) { 4193 u32 regval = rd32(IGC_EIAM); 4194 4195 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 4196 wr32(IGC_EIMC, adapter->eims_enable_mask); 4197 regval = rd32(IGC_EIAC); 4198 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 4199 } 4200 4201 wr32(IGC_IAM, 0); 4202 wr32(IGC_IMC, ~0); 4203 wrfl(); 4204 4205 if (adapter->msix_entries) { 4206 int vector = 0, i; 4207 4208 synchronize_irq(adapter->msix_entries[vector++].vector); 4209 4210 for (i = 0; i < adapter->num_q_vectors; i++) 4211 synchronize_irq(adapter->msix_entries[vector++].vector); 4212 } else { 4213 synchronize_irq(adapter->pdev->irq); 4214 } 4215 } 4216 4217 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4218 const u32 max_rss_queues) 4219 { 4220 /* Determine if we need to pair queues. */ 4221 /* If rss_queues > half of max_rss_queues, pair the queues in 4222 * order to conserve interrupts due to limited supply. 4223 */ 4224 if (adapter->rss_queues > (max_rss_queues / 2)) 4225 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4226 else 4227 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4228 } 4229 4230 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4231 { 4232 return IGC_MAX_RX_QUEUES; 4233 } 4234 4235 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4236 { 4237 u32 max_rss_queues; 4238 4239 max_rss_queues = igc_get_max_rss_queues(adapter); 4240 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4241 4242 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4243 } 4244 4245 /** 4246 * igc_reset_q_vector - Reset config for interrupt vector 4247 * @adapter: board private structure to initialize 4248 * @v_idx: Index of vector to be reset 4249 * 4250 * If NAPI is enabled it will delete any references to the 4251 * NAPI struct. This is preparation for igc_free_q_vector. 4252 */ 4253 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4254 { 4255 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4256 4257 /* if we're coming from igc_set_interrupt_capability, the vectors are 4258 * not yet allocated 4259 */ 4260 if (!q_vector) 4261 return; 4262 4263 if (q_vector->tx.ring) 4264 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4265 4266 if (q_vector->rx.ring) 4267 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4268 4269 netif_napi_del(&q_vector->napi); 4270 } 4271 4272 /** 4273 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4274 * @adapter: board private structure to initialize 4275 * @v_idx: Index of vector to be freed 4276 * 4277 * This function frees the memory allocated to the q_vector. 4278 */ 4279 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4280 { 4281 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4282 4283 adapter->q_vector[v_idx] = NULL; 4284 4285 /* igc_get_stats64() might access the rings on this vector, 4286 * we must wait a grace period before freeing it. 4287 */ 4288 if (q_vector) 4289 kfree_rcu(q_vector, rcu); 4290 } 4291 4292 /** 4293 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4294 * @adapter: board private structure to initialize 4295 * 4296 * This function frees the memory allocated to the q_vectors. In addition if 4297 * NAPI is enabled it will delete any references to the NAPI struct prior 4298 * to freeing the q_vector. 4299 */ 4300 static void igc_free_q_vectors(struct igc_adapter *adapter) 4301 { 4302 int v_idx = adapter->num_q_vectors; 4303 4304 adapter->num_tx_queues = 0; 4305 adapter->num_rx_queues = 0; 4306 adapter->num_q_vectors = 0; 4307 4308 while (v_idx--) { 4309 igc_reset_q_vector(adapter, v_idx); 4310 igc_free_q_vector(adapter, v_idx); 4311 } 4312 } 4313 4314 /** 4315 * igc_update_itr - update the dynamic ITR value based on statistics 4316 * @q_vector: pointer to q_vector 4317 * @ring_container: ring info to update the itr for 4318 * 4319 * Stores a new ITR value based on packets and byte 4320 * counts during the last interrupt. The advantage of per interrupt 4321 * computation is faster updates and more accurate ITR for the current 4322 * traffic pattern. Constants in this function were computed 4323 * based on theoretical maximum wire speed and thresholds were set based 4324 * on testing data as well as attempting to minimize response time 4325 * while increasing bulk throughput. 4326 * NOTE: These calculations are only valid when operating in a single- 4327 * queue environment. 4328 */ 4329 static void igc_update_itr(struct igc_q_vector *q_vector, 4330 struct igc_ring_container *ring_container) 4331 { 4332 unsigned int packets = ring_container->total_packets; 4333 unsigned int bytes = ring_container->total_bytes; 4334 u8 itrval = ring_container->itr; 4335 4336 /* no packets, exit with status unchanged */ 4337 if (packets == 0) 4338 return; 4339 4340 switch (itrval) { 4341 case lowest_latency: 4342 /* handle TSO and jumbo frames */ 4343 if (bytes / packets > 8000) 4344 itrval = bulk_latency; 4345 else if ((packets < 5) && (bytes > 512)) 4346 itrval = low_latency; 4347 break; 4348 case low_latency: /* 50 usec aka 20000 ints/s */ 4349 if (bytes > 10000) { 4350 /* this if handles the TSO accounting */ 4351 if (bytes / packets > 8000) 4352 itrval = bulk_latency; 4353 else if ((packets < 10) || ((bytes / packets) > 1200)) 4354 itrval = bulk_latency; 4355 else if ((packets > 35)) 4356 itrval = lowest_latency; 4357 } else if (bytes / packets > 2000) { 4358 itrval = bulk_latency; 4359 } else if (packets <= 2 && bytes < 512) { 4360 itrval = lowest_latency; 4361 } 4362 break; 4363 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4364 if (bytes > 25000) { 4365 if (packets > 35) 4366 itrval = low_latency; 4367 } else if (bytes < 1500) { 4368 itrval = low_latency; 4369 } 4370 break; 4371 } 4372 4373 /* clear work counters since we have the values we need */ 4374 ring_container->total_bytes = 0; 4375 ring_container->total_packets = 0; 4376 4377 /* write updated itr to ring container */ 4378 ring_container->itr = itrval; 4379 } 4380 4381 static void igc_set_itr(struct igc_q_vector *q_vector) 4382 { 4383 struct igc_adapter *adapter = q_vector->adapter; 4384 u32 new_itr = q_vector->itr_val; 4385 u8 current_itr = 0; 4386 4387 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4388 switch (adapter->link_speed) { 4389 case SPEED_10: 4390 case SPEED_100: 4391 current_itr = 0; 4392 new_itr = IGC_4K_ITR; 4393 goto set_itr_now; 4394 default: 4395 break; 4396 } 4397 4398 igc_update_itr(q_vector, &q_vector->tx); 4399 igc_update_itr(q_vector, &q_vector->rx); 4400 4401 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4402 4403 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4404 if (current_itr == lowest_latency && 4405 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4406 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4407 current_itr = low_latency; 4408 4409 switch (current_itr) { 4410 /* counts and packets in update_itr are dependent on these numbers */ 4411 case lowest_latency: 4412 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4413 break; 4414 case low_latency: 4415 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4416 break; 4417 case bulk_latency: 4418 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4419 break; 4420 default: 4421 break; 4422 } 4423 4424 set_itr_now: 4425 if (new_itr != q_vector->itr_val) { 4426 /* this attempts to bias the interrupt rate towards Bulk 4427 * by adding intermediate steps when interrupt rate is 4428 * increasing 4429 */ 4430 new_itr = new_itr > q_vector->itr_val ? 4431 max((new_itr * q_vector->itr_val) / 4432 (new_itr + (q_vector->itr_val >> 2)), 4433 new_itr) : new_itr; 4434 /* Don't write the value here; it resets the adapter's 4435 * internal timer, and causes us to delay far longer than 4436 * we should between interrupts. Instead, we write the ITR 4437 * value at the beginning of the next interrupt so the timing 4438 * ends up being correct. 4439 */ 4440 q_vector->itr_val = new_itr; 4441 q_vector->set_itr = 1; 4442 } 4443 } 4444 4445 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4446 { 4447 int v_idx = adapter->num_q_vectors; 4448 4449 if (adapter->msix_entries) { 4450 pci_disable_msix(adapter->pdev); 4451 kfree(adapter->msix_entries); 4452 adapter->msix_entries = NULL; 4453 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4454 pci_disable_msi(adapter->pdev); 4455 } 4456 4457 while (v_idx--) 4458 igc_reset_q_vector(adapter, v_idx); 4459 } 4460 4461 /** 4462 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4463 * @adapter: Pointer to adapter structure 4464 * @msix: boolean value for MSI-X capability 4465 * 4466 * Attempt to configure interrupts using the best available 4467 * capabilities of the hardware and kernel. 4468 */ 4469 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4470 bool msix) 4471 { 4472 int numvecs, i; 4473 int err; 4474 4475 if (!msix) 4476 goto msi_only; 4477 adapter->flags |= IGC_FLAG_HAS_MSIX; 4478 4479 /* Number of supported queues. */ 4480 adapter->num_rx_queues = adapter->rss_queues; 4481 4482 adapter->num_tx_queues = adapter->rss_queues; 4483 4484 /* start with one vector for every Rx queue */ 4485 numvecs = adapter->num_rx_queues; 4486 4487 /* if Tx handler is separate add 1 for every Tx queue */ 4488 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4489 numvecs += adapter->num_tx_queues; 4490 4491 /* store the number of vectors reserved for queues */ 4492 adapter->num_q_vectors = numvecs; 4493 4494 /* add 1 vector for link status interrupts */ 4495 numvecs++; 4496 4497 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4498 GFP_KERNEL); 4499 4500 if (!adapter->msix_entries) 4501 return; 4502 4503 /* populate entry values */ 4504 for (i = 0; i < numvecs; i++) 4505 adapter->msix_entries[i].entry = i; 4506 4507 err = pci_enable_msix_range(adapter->pdev, 4508 adapter->msix_entries, 4509 numvecs, 4510 numvecs); 4511 if (err > 0) 4512 return; 4513 4514 kfree(adapter->msix_entries); 4515 adapter->msix_entries = NULL; 4516 4517 igc_reset_interrupt_capability(adapter); 4518 4519 msi_only: 4520 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4521 4522 adapter->rss_queues = 1; 4523 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4524 adapter->num_rx_queues = 1; 4525 adapter->num_tx_queues = 1; 4526 adapter->num_q_vectors = 1; 4527 if (!pci_enable_msi(adapter->pdev)) 4528 adapter->flags |= IGC_FLAG_HAS_MSI; 4529 } 4530 4531 /** 4532 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4533 * @q_vector: pointer to q_vector 4534 * 4535 * Stores a new ITR value based on strictly on packet size. This 4536 * algorithm is less sophisticated than that used in igc_update_itr, 4537 * due to the difficulty of synchronizing statistics across multiple 4538 * receive rings. The divisors and thresholds used by this function 4539 * were determined based on theoretical maximum wire speed and testing 4540 * data, in order to minimize response time while increasing bulk 4541 * throughput. 4542 * NOTE: This function is called only when operating in a multiqueue 4543 * receive environment. 4544 */ 4545 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4546 { 4547 struct igc_adapter *adapter = q_vector->adapter; 4548 int new_val = q_vector->itr_val; 4549 int avg_wire_size = 0; 4550 unsigned int packets; 4551 4552 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4553 * ints/sec - ITR timer value of 120 ticks. 4554 */ 4555 switch (adapter->link_speed) { 4556 case SPEED_10: 4557 case SPEED_100: 4558 new_val = IGC_4K_ITR; 4559 goto set_itr_val; 4560 default: 4561 break; 4562 } 4563 4564 packets = q_vector->rx.total_packets; 4565 if (packets) 4566 avg_wire_size = q_vector->rx.total_bytes / packets; 4567 4568 packets = q_vector->tx.total_packets; 4569 if (packets) 4570 avg_wire_size = max_t(u32, avg_wire_size, 4571 q_vector->tx.total_bytes / packets); 4572 4573 /* if avg_wire_size isn't set no work was done */ 4574 if (!avg_wire_size) 4575 goto clear_counts; 4576 4577 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4578 avg_wire_size += 24; 4579 4580 /* Don't starve jumbo frames */ 4581 avg_wire_size = min(avg_wire_size, 3000); 4582 4583 /* Give a little boost to mid-size frames */ 4584 if (avg_wire_size > 300 && avg_wire_size < 1200) 4585 new_val = avg_wire_size / 3; 4586 else 4587 new_val = avg_wire_size / 2; 4588 4589 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4590 if (new_val < IGC_20K_ITR && 4591 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4592 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4593 new_val = IGC_20K_ITR; 4594 4595 set_itr_val: 4596 if (new_val != q_vector->itr_val) { 4597 q_vector->itr_val = new_val; 4598 q_vector->set_itr = 1; 4599 } 4600 clear_counts: 4601 q_vector->rx.total_bytes = 0; 4602 q_vector->rx.total_packets = 0; 4603 q_vector->tx.total_bytes = 0; 4604 q_vector->tx.total_packets = 0; 4605 } 4606 4607 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4608 { 4609 struct igc_adapter *adapter = q_vector->adapter; 4610 struct igc_hw *hw = &adapter->hw; 4611 4612 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4613 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4614 if (adapter->num_q_vectors == 1) 4615 igc_set_itr(q_vector); 4616 else 4617 igc_update_ring_itr(q_vector); 4618 } 4619 4620 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4621 if (adapter->msix_entries) 4622 wr32(IGC_EIMS, q_vector->eims_value); 4623 else 4624 igc_irq_enable(adapter); 4625 } 4626 } 4627 4628 static void igc_add_ring(struct igc_ring *ring, 4629 struct igc_ring_container *head) 4630 { 4631 head->ring = ring; 4632 head->count++; 4633 } 4634 4635 /** 4636 * igc_cache_ring_register - Descriptor ring to register mapping 4637 * @adapter: board private structure to initialize 4638 * 4639 * Once we know the feature-set enabled for the device, we'll cache 4640 * the register offset the descriptor ring is assigned to. 4641 */ 4642 static void igc_cache_ring_register(struct igc_adapter *adapter) 4643 { 4644 int i = 0, j = 0; 4645 4646 switch (adapter->hw.mac.type) { 4647 case igc_i225: 4648 default: 4649 for (; i < adapter->num_rx_queues; i++) 4650 adapter->rx_ring[i]->reg_idx = i; 4651 for (; j < adapter->num_tx_queues; j++) 4652 adapter->tx_ring[j]->reg_idx = j; 4653 break; 4654 } 4655 } 4656 4657 /** 4658 * igc_poll - NAPI Rx polling callback 4659 * @napi: napi polling structure 4660 * @budget: count of how many packets we should handle 4661 */ 4662 static int igc_poll(struct napi_struct *napi, int budget) 4663 { 4664 struct igc_q_vector *q_vector = container_of(napi, 4665 struct igc_q_vector, 4666 napi); 4667 struct igc_ring *rx_ring = q_vector->rx.ring; 4668 bool clean_complete = true; 4669 int work_done = 0; 4670 4671 if (q_vector->tx.ring) 4672 clean_complete = igc_clean_tx_irq(q_vector, budget); 4673 4674 if (rx_ring) { 4675 int cleaned = rx_ring->xsk_pool ? 4676 igc_clean_rx_irq_zc(q_vector, budget) : 4677 igc_clean_rx_irq(q_vector, budget); 4678 4679 work_done += cleaned; 4680 if (cleaned >= budget) 4681 clean_complete = false; 4682 } 4683 4684 /* If all work not completed, return budget and keep polling */ 4685 if (!clean_complete) 4686 return budget; 4687 4688 /* Exit the polling mode, but don't re-enable interrupts if stack might 4689 * poll us due to busy-polling 4690 */ 4691 if (likely(napi_complete_done(napi, work_done))) 4692 igc_ring_irq_enable(q_vector); 4693 4694 return min(work_done, budget - 1); 4695 } 4696 4697 /** 4698 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4699 * @adapter: board private structure to initialize 4700 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4701 * @v_idx: index of vector in adapter struct 4702 * @txr_count: total number of Tx rings to allocate 4703 * @txr_idx: index of first Tx ring to allocate 4704 * @rxr_count: total number of Rx rings to allocate 4705 * @rxr_idx: index of first Rx ring to allocate 4706 * 4707 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4708 */ 4709 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4710 unsigned int v_count, unsigned int v_idx, 4711 unsigned int txr_count, unsigned int txr_idx, 4712 unsigned int rxr_count, unsigned int rxr_idx) 4713 { 4714 struct igc_q_vector *q_vector; 4715 struct igc_ring *ring; 4716 int ring_count; 4717 4718 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4719 if (txr_count > 1 || rxr_count > 1) 4720 return -ENOMEM; 4721 4722 ring_count = txr_count + rxr_count; 4723 4724 /* allocate q_vector and rings */ 4725 q_vector = adapter->q_vector[v_idx]; 4726 if (!q_vector) 4727 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4728 GFP_KERNEL); 4729 else 4730 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4731 if (!q_vector) 4732 return -ENOMEM; 4733 4734 /* initialize NAPI */ 4735 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4736 4737 /* tie q_vector and adapter together */ 4738 adapter->q_vector[v_idx] = q_vector; 4739 q_vector->adapter = adapter; 4740 4741 /* initialize work limits */ 4742 q_vector->tx.work_limit = adapter->tx_work_limit; 4743 4744 /* initialize ITR configuration */ 4745 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4746 q_vector->itr_val = IGC_START_ITR; 4747 4748 /* initialize pointer to rings */ 4749 ring = q_vector->ring; 4750 4751 /* initialize ITR */ 4752 if (rxr_count) { 4753 /* rx or rx/tx vector */ 4754 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4755 q_vector->itr_val = adapter->rx_itr_setting; 4756 } else { 4757 /* tx only vector */ 4758 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4759 q_vector->itr_val = adapter->tx_itr_setting; 4760 } 4761 4762 if (txr_count) { 4763 /* assign generic ring traits */ 4764 ring->dev = &adapter->pdev->dev; 4765 ring->netdev = adapter->netdev; 4766 4767 /* configure backlink on ring */ 4768 ring->q_vector = q_vector; 4769 4770 /* update q_vector Tx values */ 4771 igc_add_ring(ring, &q_vector->tx); 4772 4773 /* apply Tx specific ring traits */ 4774 ring->count = adapter->tx_ring_count; 4775 ring->queue_index = txr_idx; 4776 4777 /* assign ring to adapter */ 4778 adapter->tx_ring[txr_idx] = ring; 4779 4780 /* push pointer to next ring */ 4781 ring++; 4782 } 4783 4784 if (rxr_count) { 4785 /* assign generic ring traits */ 4786 ring->dev = &adapter->pdev->dev; 4787 ring->netdev = adapter->netdev; 4788 4789 /* configure backlink on ring */ 4790 ring->q_vector = q_vector; 4791 4792 /* update q_vector Rx values */ 4793 igc_add_ring(ring, &q_vector->rx); 4794 4795 /* apply Rx specific ring traits */ 4796 ring->count = adapter->rx_ring_count; 4797 ring->queue_index = rxr_idx; 4798 4799 /* assign ring to adapter */ 4800 adapter->rx_ring[rxr_idx] = ring; 4801 } 4802 4803 return 0; 4804 } 4805 4806 /** 4807 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4808 * @adapter: board private structure to initialize 4809 * 4810 * We allocate one q_vector per queue interrupt. If allocation fails we 4811 * return -ENOMEM. 4812 */ 4813 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4814 { 4815 int rxr_remaining = adapter->num_rx_queues; 4816 int txr_remaining = adapter->num_tx_queues; 4817 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4818 int q_vectors = adapter->num_q_vectors; 4819 int err; 4820 4821 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4822 for (; rxr_remaining; v_idx++) { 4823 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4824 0, 0, 1, rxr_idx); 4825 4826 if (err) 4827 goto err_out; 4828 4829 /* update counts and index */ 4830 rxr_remaining--; 4831 rxr_idx++; 4832 } 4833 } 4834 4835 for (; v_idx < q_vectors; v_idx++) { 4836 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4837 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4838 4839 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4840 tqpv, txr_idx, rqpv, rxr_idx); 4841 4842 if (err) 4843 goto err_out; 4844 4845 /* update counts and index */ 4846 rxr_remaining -= rqpv; 4847 txr_remaining -= tqpv; 4848 rxr_idx++; 4849 txr_idx++; 4850 } 4851 4852 return 0; 4853 4854 err_out: 4855 adapter->num_tx_queues = 0; 4856 adapter->num_rx_queues = 0; 4857 adapter->num_q_vectors = 0; 4858 4859 while (v_idx--) 4860 igc_free_q_vector(adapter, v_idx); 4861 4862 return -ENOMEM; 4863 } 4864 4865 /** 4866 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4867 * @adapter: Pointer to adapter structure 4868 * @msix: boolean for MSI-X capability 4869 * 4870 * This function initializes the interrupts and allocates all of the queues. 4871 */ 4872 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4873 { 4874 struct net_device *dev = adapter->netdev; 4875 int err = 0; 4876 4877 igc_set_interrupt_capability(adapter, msix); 4878 4879 err = igc_alloc_q_vectors(adapter); 4880 if (err) { 4881 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4882 goto err_alloc_q_vectors; 4883 } 4884 4885 igc_cache_ring_register(adapter); 4886 4887 return 0; 4888 4889 err_alloc_q_vectors: 4890 igc_reset_interrupt_capability(adapter); 4891 return err; 4892 } 4893 4894 /** 4895 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4896 * @adapter: board private structure to initialize 4897 * 4898 * igc_sw_init initializes the Adapter private data structure. 4899 * Fields are initialized based on PCI device information and 4900 * OS network device settings (MTU size). 4901 */ 4902 static int igc_sw_init(struct igc_adapter *adapter) 4903 { 4904 struct net_device *netdev = adapter->netdev; 4905 struct pci_dev *pdev = adapter->pdev; 4906 struct igc_hw *hw = &adapter->hw; 4907 4908 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4909 4910 /* set default ring sizes */ 4911 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4912 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4913 4914 /* set default ITR values */ 4915 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4916 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4917 4918 /* set default work limits */ 4919 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4920 4921 /* adjust max frame to be at least the size of a standard frame */ 4922 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4923 VLAN_HLEN; 4924 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4925 4926 mutex_init(&adapter->nfc_rule_lock); 4927 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4928 adapter->nfc_rule_count = 0; 4929 4930 spin_lock_init(&adapter->stats64_lock); 4931 spin_lock_init(&adapter->qbv_tx_lock); 4932 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4933 adapter->flags |= IGC_FLAG_HAS_MSIX; 4934 4935 igc_init_queue_configuration(adapter); 4936 4937 /* This call may decrease the number of queues */ 4938 if (igc_init_interrupt_scheme(adapter, true)) { 4939 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4940 return -ENOMEM; 4941 } 4942 4943 /* Explicitly disable IRQ since the NIC can be in any state. */ 4944 igc_irq_disable(adapter); 4945 4946 set_bit(__IGC_DOWN, &adapter->state); 4947 4948 return 0; 4949 } 4950 4951 /** 4952 * igc_up - Open the interface and prepare it to handle traffic 4953 * @adapter: board private structure 4954 */ 4955 void igc_up(struct igc_adapter *adapter) 4956 { 4957 struct igc_hw *hw = &adapter->hw; 4958 int i = 0; 4959 4960 /* hardware has been reset, we need to reload some things */ 4961 igc_configure(adapter); 4962 4963 clear_bit(__IGC_DOWN, &adapter->state); 4964 4965 for (i = 0; i < adapter->num_q_vectors; i++) 4966 napi_enable(&adapter->q_vector[i]->napi); 4967 4968 if (adapter->msix_entries) 4969 igc_configure_msix(adapter); 4970 else 4971 igc_assign_vector(adapter->q_vector[0], 0); 4972 4973 /* Clear any pending interrupts. */ 4974 rd32(IGC_ICR); 4975 igc_irq_enable(adapter); 4976 4977 netif_tx_start_all_queues(adapter->netdev); 4978 4979 /* start the watchdog. */ 4980 hw->mac.get_link_status = true; 4981 schedule_work(&adapter->watchdog_task); 4982 } 4983 4984 /** 4985 * igc_update_stats - Update the board statistics counters 4986 * @adapter: board private structure 4987 */ 4988 void igc_update_stats(struct igc_adapter *adapter) 4989 { 4990 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4991 struct pci_dev *pdev = adapter->pdev; 4992 struct igc_hw *hw = &adapter->hw; 4993 u64 _bytes, _packets; 4994 u64 bytes, packets; 4995 unsigned int start; 4996 u32 mpc; 4997 int i; 4998 4999 /* Prevent stats update while adapter is being reset, or if the pci 5000 * connection is down. 5001 */ 5002 if (adapter->link_speed == 0) 5003 return; 5004 if (pci_channel_offline(pdev)) 5005 return; 5006 5007 packets = 0; 5008 bytes = 0; 5009 5010 rcu_read_lock(); 5011 for (i = 0; i < adapter->num_rx_queues; i++) { 5012 struct igc_ring *ring = adapter->rx_ring[i]; 5013 u32 rqdpc = rd32(IGC_RQDPC(i)); 5014 5015 if (hw->mac.type >= igc_i225) 5016 wr32(IGC_RQDPC(i), 0); 5017 5018 if (rqdpc) { 5019 ring->rx_stats.drops += rqdpc; 5020 net_stats->rx_fifo_errors += rqdpc; 5021 } 5022 5023 do { 5024 start = u64_stats_fetch_begin(&ring->rx_syncp); 5025 _bytes = ring->rx_stats.bytes; 5026 _packets = ring->rx_stats.packets; 5027 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 5028 bytes += _bytes; 5029 packets += _packets; 5030 } 5031 5032 net_stats->rx_bytes = bytes; 5033 net_stats->rx_packets = packets; 5034 5035 packets = 0; 5036 bytes = 0; 5037 for (i = 0; i < adapter->num_tx_queues; i++) { 5038 struct igc_ring *ring = adapter->tx_ring[i]; 5039 5040 do { 5041 start = u64_stats_fetch_begin(&ring->tx_syncp); 5042 _bytes = ring->tx_stats.bytes; 5043 _packets = ring->tx_stats.packets; 5044 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 5045 bytes += _bytes; 5046 packets += _packets; 5047 } 5048 net_stats->tx_bytes = bytes; 5049 net_stats->tx_packets = packets; 5050 rcu_read_unlock(); 5051 5052 /* read stats registers */ 5053 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 5054 adapter->stats.gprc += rd32(IGC_GPRC); 5055 adapter->stats.gorc += rd32(IGC_GORCL); 5056 rd32(IGC_GORCH); /* clear GORCL */ 5057 adapter->stats.bprc += rd32(IGC_BPRC); 5058 adapter->stats.mprc += rd32(IGC_MPRC); 5059 adapter->stats.roc += rd32(IGC_ROC); 5060 5061 adapter->stats.prc64 += rd32(IGC_PRC64); 5062 adapter->stats.prc127 += rd32(IGC_PRC127); 5063 adapter->stats.prc255 += rd32(IGC_PRC255); 5064 adapter->stats.prc511 += rd32(IGC_PRC511); 5065 adapter->stats.prc1023 += rd32(IGC_PRC1023); 5066 adapter->stats.prc1522 += rd32(IGC_PRC1522); 5067 adapter->stats.tlpic += rd32(IGC_TLPIC); 5068 adapter->stats.rlpic += rd32(IGC_RLPIC); 5069 adapter->stats.hgptc += rd32(IGC_HGPTC); 5070 5071 mpc = rd32(IGC_MPC); 5072 adapter->stats.mpc += mpc; 5073 net_stats->rx_fifo_errors += mpc; 5074 adapter->stats.scc += rd32(IGC_SCC); 5075 adapter->stats.ecol += rd32(IGC_ECOL); 5076 adapter->stats.mcc += rd32(IGC_MCC); 5077 adapter->stats.latecol += rd32(IGC_LATECOL); 5078 adapter->stats.dc += rd32(IGC_DC); 5079 adapter->stats.rlec += rd32(IGC_RLEC); 5080 adapter->stats.xonrxc += rd32(IGC_XONRXC); 5081 adapter->stats.xontxc += rd32(IGC_XONTXC); 5082 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 5083 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 5084 adapter->stats.fcruc += rd32(IGC_FCRUC); 5085 adapter->stats.gptc += rd32(IGC_GPTC); 5086 adapter->stats.gotc += rd32(IGC_GOTCL); 5087 rd32(IGC_GOTCH); /* clear GOTCL */ 5088 adapter->stats.rnbc += rd32(IGC_RNBC); 5089 adapter->stats.ruc += rd32(IGC_RUC); 5090 adapter->stats.rfc += rd32(IGC_RFC); 5091 adapter->stats.rjc += rd32(IGC_RJC); 5092 adapter->stats.tor += rd32(IGC_TORH); 5093 adapter->stats.tot += rd32(IGC_TOTH); 5094 adapter->stats.tpr += rd32(IGC_TPR); 5095 5096 adapter->stats.ptc64 += rd32(IGC_PTC64); 5097 adapter->stats.ptc127 += rd32(IGC_PTC127); 5098 adapter->stats.ptc255 += rd32(IGC_PTC255); 5099 adapter->stats.ptc511 += rd32(IGC_PTC511); 5100 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 5101 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 5102 5103 adapter->stats.mptc += rd32(IGC_MPTC); 5104 adapter->stats.bptc += rd32(IGC_BPTC); 5105 5106 adapter->stats.tpt += rd32(IGC_TPT); 5107 adapter->stats.colc += rd32(IGC_COLC); 5108 adapter->stats.colc += rd32(IGC_RERC); 5109 5110 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 5111 5112 adapter->stats.tsctc += rd32(IGC_TSCTC); 5113 5114 adapter->stats.iac += rd32(IGC_IAC); 5115 5116 /* Fill out the OS statistics structure */ 5117 net_stats->multicast = adapter->stats.mprc; 5118 net_stats->collisions = adapter->stats.colc; 5119 5120 /* Rx Errors */ 5121 5122 /* RLEC on some newer hardware can be incorrect so build 5123 * our own version based on RUC and ROC 5124 */ 5125 net_stats->rx_errors = adapter->stats.rxerrc + 5126 adapter->stats.crcerrs + adapter->stats.algnerrc + 5127 adapter->stats.ruc + adapter->stats.roc + 5128 adapter->stats.cexterr; 5129 net_stats->rx_length_errors = adapter->stats.ruc + 5130 adapter->stats.roc; 5131 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5132 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5133 net_stats->rx_missed_errors = adapter->stats.mpc; 5134 5135 /* Tx Errors */ 5136 net_stats->tx_errors = adapter->stats.ecol + 5137 adapter->stats.latecol; 5138 net_stats->tx_aborted_errors = adapter->stats.ecol; 5139 net_stats->tx_window_errors = adapter->stats.latecol; 5140 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5141 5142 /* Tx Dropped */ 5143 net_stats->tx_dropped = adapter->stats.txdrop; 5144 5145 /* Management Stats */ 5146 adapter->stats.mgptc += rd32(IGC_MGTPTC); 5147 adapter->stats.mgprc += rd32(IGC_MGTPRC); 5148 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 5149 } 5150 5151 /** 5152 * igc_down - Close the interface 5153 * @adapter: board private structure 5154 */ 5155 void igc_down(struct igc_adapter *adapter) 5156 { 5157 struct net_device *netdev = adapter->netdev; 5158 struct igc_hw *hw = &adapter->hw; 5159 u32 tctl, rctl; 5160 int i = 0; 5161 5162 set_bit(__IGC_DOWN, &adapter->state); 5163 5164 igc_ptp_suspend(adapter); 5165 5166 if (pci_device_is_present(adapter->pdev)) { 5167 /* disable receives in the hardware */ 5168 rctl = rd32(IGC_RCTL); 5169 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 5170 /* flush and sleep below */ 5171 } 5172 /* set trans_start so we don't get spurious watchdogs during reset */ 5173 netif_trans_update(netdev); 5174 5175 netif_carrier_off(netdev); 5176 netif_tx_stop_all_queues(netdev); 5177 5178 if (pci_device_is_present(adapter->pdev)) { 5179 /* disable transmits in the hardware */ 5180 tctl = rd32(IGC_TCTL); 5181 tctl &= ~IGC_TCTL_EN; 5182 wr32(IGC_TCTL, tctl); 5183 /* flush both disables and wait for them to finish */ 5184 wrfl(); 5185 usleep_range(10000, 20000); 5186 5187 igc_irq_disable(adapter); 5188 } 5189 5190 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5191 5192 for (i = 0; i < adapter->num_q_vectors; i++) { 5193 if (adapter->q_vector[i]) { 5194 napi_synchronize(&adapter->q_vector[i]->napi); 5195 napi_disable(&adapter->q_vector[i]->napi); 5196 } 5197 } 5198 5199 del_timer_sync(&adapter->watchdog_timer); 5200 del_timer_sync(&adapter->phy_info_timer); 5201 5202 /* record the stats before reset*/ 5203 spin_lock(&adapter->stats64_lock); 5204 igc_update_stats(adapter); 5205 spin_unlock(&adapter->stats64_lock); 5206 5207 adapter->link_speed = 0; 5208 adapter->link_duplex = 0; 5209 5210 if (!pci_channel_offline(adapter->pdev)) 5211 igc_reset(adapter); 5212 5213 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 5214 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 5215 5216 igc_disable_all_tx_rings_hw(adapter); 5217 igc_clean_all_tx_rings(adapter); 5218 igc_clean_all_rx_rings(adapter); 5219 } 5220 5221 void igc_reinit_locked(struct igc_adapter *adapter) 5222 { 5223 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5224 usleep_range(1000, 2000); 5225 igc_down(adapter); 5226 igc_up(adapter); 5227 clear_bit(__IGC_RESETTING, &adapter->state); 5228 } 5229 5230 static void igc_reset_task(struct work_struct *work) 5231 { 5232 struct igc_adapter *adapter; 5233 5234 adapter = container_of(work, struct igc_adapter, reset_task); 5235 5236 rtnl_lock(); 5237 /* If we're already down or resetting, just bail */ 5238 if (test_bit(__IGC_DOWN, &adapter->state) || 5239 test_bit(__IGC_RESETTING, &adapter->state)) { 5240 rtnl_unlock(); 5241 return; 5242 } 5243 5244 igc_rings_dump(adapter); 5245 igc_regs_dump(adapter); 5246 netdev_err(adapter->netdev, "Reset adapter\n"); 5247 igc_reinit_locked(adapter); 5248 rtnl_unlock(); 5249 } 5250 5251 /** 5252 * igc_change_mtu - Change the Maximum Transfer Unit 5253 * @netdev: network interface device structure 5254 * @new_mtu: new value for maximum frame size 5255 * 5256 * Returns 0 on success, negative on failure 5257 */ 5258 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5259 { 5260 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5261 struct igc_adapter *adapter = netdev_priv(netdev); 5262 5263 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5264 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5265 return -EINVAL; 5266 } 5267 5268 /* adjust max frame to be at least the size of a standard frame */ 5269 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5270 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5271 5272 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5273 usleep_range(1000, 2000); 5274 5275 /* igc_down has a dependency on max_frame_size */ 5276 adapter->max_frame_size = max_frame; 5277 5278 if (netif_running(netdev)) 5279 igc_down(adapter); 5280 5281 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5282 WRITE_ONCE(netdev->mtu, new_mtu); 5283 5284 if (netif_running(netdev)) 5285 igc_up(adapter); 5286 else 5287 igc_reset(adapter); 5288 5289 clear_bit(__IGC_RESETTING, &adapter->state); 5290 5291 return 0; 5292 } 5293 5294 /** 5295 * igc_tx_timeout - Respond to a Tx Hang 5296 * @netdev: network interface device structure 5297 * @txqueue: queue number that timed out 5298 **/ 5299 static void igc_tx_timeout(struct net_device *netdev, 5300 unsigned int __always_unused txqueue) 5301 { 5302 struct igc_adapter *adapter = netdev_priv(netdev); 5303 struct igc_hw *hw = &adapter->hw; 5304 5305 /* Do the reset outside of interrupt context */ 5306 adapter->tx_timeout_count++; 5307 schedule_work(&adapter->reset_task); 5308 wr32(IGC_EICS, 5309 (adapter->eims_enable_mask & ~adapter->eims_other)); 5310 } 5311 5312 /** 5313 * igc_get_stats64 - Get System Network Statistics 5314 * @netdev: network interface device structure 5315 * @stats: rtnl_link_stats64 pointer 5316 * 5317 * Returns the address of the device statistics structure. 5318 * The statistics are updated here and also from the timer callback. 5319 */ 5320 static void igc_get_stats64(struct net_device *netdev, 5321 struct rtnl_link_stats64 *stats) 5322 { 5323 struct igc_adapter *adapter = netdev_priv(netdev); 5324 5325 spin_lock(&adapter->stats64_lock); 5326 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5327 igc_update_stats(adapter); 5328 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5329 spin_unlock(&adapter->stats64_lock); 5330 } 5331 5332 static netdev_features_t igc_fix_features(struct net_device *netdev, 5333 netdev_features_t features) 5334 { 5335 /* Since there is no support for separate Rx/Tx vlan accel 5336 * enable/disable make sure Tx flag is always in same state as Rx. 5337 */ 5338 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5339 features |= NETIF_F_HW_VLAN_CTAG_TX; 5340 else 5341 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5342 5343 return features; 5344 } 5345 5346 static int igc_set_features(struct net_device *netdev, 5347 netdev_features_t features) 5348 { 5349 netdev_features_t changed = netdev->features ^ features; 5350 struct igc_adapter *adapter = netdev_priv(netdev); 5351 5352 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5353 igc_vlan_mode(netdev, features); 5354 5355 /* Add VLAN support */ 5356 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5357 return 0; 5358 5359 if (!(features & NETIF_F_NTUPLE)) 5360 igc_flush_nfc_rules(adapter); 5361 5362 netdev->features = features; 5363 5364 if (netif_running(netdev)) 5365 igc_reinit_locked(adapter); 5366 else 5367 igc_reset(adapter); 5368 5369 return 1; 5370 } 5371 5372 static netdev_features_t 5373 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5374 netdev_features_t features) 5375 { 5376 unsigned int network_hdr_len, mac_hdr_len; 5377 5378 /* Make certain the headers can be described by a context descriptor */ 5379 mac_hdr_len = skb_network_offset(skb); 5380 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5381 return features & ~(NETIF_F_HW_CSUM | 5382 NETIF_F_SCTP_CRC | 5383 NETIF_F_HW_VLAN_CTAG_TX | 5384 NETIF_F_TSO | 5385 NETIF_F_TSO6); 5386 5387 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5388 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5389 return features & ~(NETIF_F_HW_CSUM | 5390 NETIF_F_SCTP_CRC | 5391 NETIF_F_TSO | 5392 NETIF_F_TSO6); 5393 5394 /* We can only support IPv4 TSO in tunnels if we can mangle the 5395 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5396 */ 5397 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5398 features &= ~NETIF_F_TSO; 5399 5400 return features; 5401 } 5402 5403 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5404 { 5405 struct igc_hw *hw = &adapter->hw; 5406 u32 tsauxc, sec, nsec, tsicr; 5407 struct ptp_clock_event event; 5408 struct timespec64 ts; 5409 5410 tsicr = rd32(IGC_TSICR); 5411 5412 if (tsicr & IGC_TSICR_SYS_WRAP) { 5413 event.type = PTP_CLOCK_PPS; 5414 if (adapter->ptp_caps.pps) 5415 ptp_clock_event(adapter->ptp_clock, &event); 5416 } 5417 5418 if (tsicr & IGC_TSICR_TXTS) { 5419 /* retrieve hardware timestamp */ 5420 igc_ptp_tx_tstamp_event(adapter); 5421 } 5422 5423 if (tsicr & IGC_TSICR_TT0) { 5424 spin_lock(&adapter->tmreg_lock); 5425 ts = timespec64_add(adapter->perout[0].start, 5426 adapter->perout[0].period); 5427 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5428 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5429 tsauxc = rd32(IGC_TSAUXC); 5430 tsauxc |= IGC_TSAUXC_EN_TT0; 5431 wr32(IGC_TSAUXC, tsauxc); 5432 adapter->perout[0].start = ts; 5433 spin_unlock(&adapter->tmreg_lock); 5434 } 5435 5436 if (tsicr & IGC_TSICR_TT1) { 5437 spin_lock(&adapter->tmreg_lock); 5438 ts = timespec64_add(adapter->perout[1].start, 5439 adapter->perout[1].period); 5440 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5441 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5442 tsauxc = rd32(IGC_TSAUXC); 5443 tsauxc |= IGC_TSAUXC_EN_TT1; 5444 wr32(IGC_TSAUXC, tsauxc); 5445 adapter->perout[1].start = ts; 5446 spin_unlock(&adapter->tmreg_lock); 5447 } 5448 5449 if (tsicr & IGC_TSICR_AUTT0) { 5450 nsec = rd32(IGC_AUXSTMPL0); 5451 sec = rd32(IGC_AUXSTMPH0); 5452 event.type = PTP_CLOCK_EXTTS; 5453 event.index = 0; 5454 event.timestamp = sec * NSEC_PER_SEC + nsec; 5455 ptp_clock_event(adapter->ptp_clock, &event); 5456 } 5457 5458 if (tsicr & IGC_TSICR_AUTT1) { 5459 nsec = rd32(IGC_AUXSTMPL1); 5460 sec = rd32(IGC_AUXSTMPH1); 5461 event.type = PTP_CLOCK_EXTTS; 5462 event.index = 1; 5463 event.timestamp = sec * NSEC_PER_SEC + nsec; 5464 ptp_clock_event(adapter->ptp_clock, &event); 5465 } 5466 } 5467 5468 /** 5469 * igc_msix_other - msix other interrupt handler 5470 * @irq: interrupt number 5471 * @data: pointer to a q_vector 5472 */ 5473 static irqreturn_t igc_msix_other(int irq, void *data) 5474 { 5475 struct igc_adapter *adapter = data; 5476 struct igc_hw *hw = &adapter->hw; 5477 u32 icr = rd32(IGC_ICR); 5478 5479 /* reading ICR causes bit 31 of EICR to be cleared */ 5480 if (icr & IGC_ICR_DRSTA) 5481 schedule_work(&adapter->reset_task); 5482 5483 if (icr & IGC_ICR_DOUTSYNC) { 5484 /* HW is reporting DMA is out of sync */ 5485 adapter->stats.doosync++; 5486 } 5487 5488 if (icr & IGC_ICR_LSC) { 5489 hw->mac.get_link_status = true; 5490 /* guard against interrupt when we're going down */ 5491 if (!test_bit(__IGC_DOWN, &adapter->state)) 5492 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5493 } 5494 5495 if (icr & IGC_ICR_TS) 5496 igc_tsync_interrupt(adapter); 5497 5498 wr32(IGC_EIMS, adapter->eims_other); 5499 5500 return IRQ_HANDLED; 5501 } 5502 5503 static void igc_write_itr(struct igc_q_vector *q_vector) 5504 { 5505 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5506 5507 if (!q_vector->set_itr) 5508 return; 5509 5510 if (!itr_val) 5511 itr_val = IGC_ITR_VAL_MASK; 5512 5513 itr_val |= IGC_EITR_CNT_IGNR; 5514 5515 writel(itr_val, q_vector->itr_register); 5516 q_vector->set_itr = 0; 5517 } 5518 5519 static irqreturn_t igc_msix_ring(int irq, void *data) 5520 { 5521 struct igc_q_vector *q_vector = data; 5522 5523 /* Write the ITR value calculated from the previous interrupt. */ 5524 igc_write_itr(q_vector); 5525 5526 napi_schedule(&q_vector->napi); 5527 5528 return IRQ_HANDLED; 5529 } 5530 5531 /** 5532 * igc_request_msix - Initialize MSI-X interrupts 5533 * @adapter: Pointer to adapter structure 5534 * 5535 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5536 * kernel. 5537 */ 5538 static int igc_request_msix(struct igc_adapter *adapter) 5539 { 5540 unsigned int num_q_vectors = adapter->num_q_vectors; 5541 int i = 0, err = 0, vector = 0, free_vector = 0; 5542 struct net_device *netdev = adapter->netdev; 5543 5544 err = request_irq(adapter->msix_entries[vector].vector, 5545 &igc_msix_other, 0, netdev->name, adapter); 5546 if (err) 5547 goto err_out; 5548 5549 if (num_q_vectors > MAX_Q_VECTORS) { 5550 num_q_vectors = MAX_Q_VECTORS; 5551 dev_warn(&adapter->pdev->dev, 5552 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5553 adapter->num_q_vectors, MAX_Q_VECTORS); 5554 } 5555 for (i = 0; i < num_q_vectors; i++) { 5556 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5557 5558 vector++; 5559 5560 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5561 5562 if (q_vector->rx.ring && q_vector->tx.ring) 5563 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5564 q_vector->rx.ring->queue_index); 5565 else if (q_vector->tx.ring) 5566 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5567 q_vector->tx.ring->queue_index); 5568 else if (q_vector->rx.ring) 5569 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5570 q_vector->rx.ring->queue_index); 5571 else 5572 sprintf(q_vector->name, "%s-unused", netdev->name); 5573 5574 err = request_irq(adapter->msix_entries[vector].vector, 5575 igc_msix_ring, 0, q_vector->name, 5576 q_vector); 5577 if (err) 5578 goto err_free; 5579 } 5580 5581 igc_configure_msix(adapter); 5582 return 0; 5583 5584 err_free: 5585 /* free already assigned IRQs */ 5586 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5587 5588 vector--; 5589 for (i = 0; i < vector; i++) { 5590 free_irq(adapter->msix_entries[free_vector++].vector, 5591 adapter->q_vector[i]); 5592 } 5593 err_out: 5594 return err; 5595 } 5596 5597 /** 5598 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5599 * @adapter: Pointer to adapter structure 5600 * 5601 * This function resets the device so that it has 0 rx queues, tx queues, and 5602 * MSI-X interrupts allocated. 5603 */ 5604 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5605 { 5606 igc_free_q_vectors(adapter); 5607 igc_reset_interrupt_capability(adapter); 5608 } 5609 5610 /* Need to wait a few seconds after link up to get diagnostic information from 5611 * the phy 5612 */ 5613 static void igc_update_phy_info(struct timer_list *t) 5614 { 5615 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5616 5617 igc_get_phy_info(&adapter->hw); 5618 } 5619 5620 /** 5621 * igc_has_link - check shared code for link and determine up/down 5622 * @adapter: pointer to driver private info 5623 */ 5624 bool igc_has_link(struct igc_adapter *adapter) 5625 { 5626 struct igc_hw *hw = &adapter->hw; 5627 bool link_active = false; 5628 5629 /* get_link_status is set on LSC (link status) interrupt or 5630 * rx sequence error interrupt. get_link_status will stay 5631 * false until the igc_check_for_link establishes link 5632 * for copper adapters ONLY 5633 */ 5634 if (!hw->mac.get_link_status) 5635 return true; 5636 hw->mac.ops.check_for_link(hw); 5637 link_active = !hw->mac.get_link_status; 5638 5639 if (hw->mac.type == igc_i225) { 5640 if (!netif_carrier_ok(adapter->netdev)) { 5641 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5642 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5643 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5644 adapter->link_check_timeout = jiffies; 5645 } 5646 } 5647 5648 return link_active; 5649 } 5650 5651 /** 5652 * igc_watchdog - Timer Call-back 5653 * @t: timer for the watchdog 5654 */ 5655 static void igc_watchdog(struct timer_list *t) 5656 { 5657 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5658 /* Do the rest outside of interrupt context */ 5659 schedule_work(&adapter->watchdog_task); 5660 } 5661 5662 static void igc_watchdog_task(struct work_struct *work) 5663 { 5664 struct igc_adapter *adapter = container_of(work, 5665 struct igc_adapter, 5666 watchdog_task); 5667 struct net_device *netdev = adapter->netdev; 5668 struct igc_hw *hw = &adapter->hw; 5669 struct igc_phy_info *phy = &hw->phy; 5670 u16 phy_data, retry_count = 20; 5671 u32 link; 5672 int i; 5673 5674 link = igc_has_link(adapter); 5675 5676 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5677 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5678 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5679 else 5680 link = false; 5681 } 5682 5683 if (link) { 5684 /* Cancel scheduled suspend requests. */ 5685 pm_runtime_resume(netdev->dev.parent); 5686 5687 if (!netif_carrier_ok(netdev)) { 5688 u32 ctrl; 5689 5690 hw->mac.ops.get_speed_and_duplex(hw, 5691 &adapter->link_speed, 5692 &adapter->link_duplex); 5693 5694 ctrl = rd32(IGC_CTRL); 5695 /* Link status message must follow this format */ 5696 netdev_info(netdev, 5697 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5698 adapter->link_speed, 5699 adapter->link_duplex == FULL_DUPLEX ? 5700 "Full" : "Half", 5701 (ctrl & IGC_CTRL_TFCE) && 5702 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5703 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5704 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5705 5706 /* disable EEE if enabled */ 5707 if ((adapter->flags & IGC_FLAG_EEE) && 5708 adapter->link_duplex == HALF_DUPLEX) { 5709 netdev_info(netdev, 5710 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5711 adapter->hw.dev_spec._base.eee_enable = false; 5712 adapter->flags &= ~IGC_FLAG_EEE; 5713 } 5714 5715 /* check if SmartSpeed worked */ 5716 igc_check_downshift(hw); 5717 if (phy->speed_downgraded) 5718 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5719 5720 /* adjust timeout factor according to speed/duplex */ 5721 adapter->tx_timeout_factor = 1; 5722 switch (adapter->link_speed) { 5723 case SPEED_10: 5724 adapter->tx_timeout_factor = 14; 5725 break; 5726 case SPEED_100: 5727 case SPEED_1000: 5728 case SPEED_2500: 5729 adapter->tx_timeout_factor = 1; 5730 break; 5731 } 5732 5733 /* Once the launch time has been set on the wire, there 5734 * is a delay before the link speed can be determined 5735 * based on link-up activity. Write into the register 5736 * as soon as we know the correct link speed. 5737 */ 5738 igc_tsn_adjust_txtime_offset(adapter); 5739 5740 if (adapter->link_speed != SPEED_1000) 5741 goto no_wait; 5742 5743 /* wait for Remote receiver status OK */ 5744 retry_read_status: 5745 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5746 &phy_data)) { 5747 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5748 retry_count) { 5749 msleep(100); 5750 retry_count--; 5751 goto retry_read_status; 5752 } else if (!retry_count) { 5753 netdev_err(netdev, "exceed max 2 second\n"); 5754 } 5755 } else { 5756 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5757 } 5758 no_wait: 5759 netif_carrier_on(netdev); 5760 5761 /* link state has changed, schedule phy info update */ 5762 if (!test_bit(__IGC_DOWN, &adapter->state)) 5763 mod_timer(&adapter->phy_info_timer, 5764 round_jiffies(jiffies + 2 * HZ)); 5765 } 5766 } else { 5767 if (netif_carrier_ok(netdev)) { 5768 adapter->link_speed = 0; 5769 adapter->link_duplex = 0; 5770 5771 /* Links status message must follow this format */ 5772 netdev_info(netdev, "NIC Link is Down\n"); 5773 netif_carrier_off(netdev); 5774 5775 /* link state has changed, schedule phy info update */ 5776 if (!test_bit(__IGC_DOWN, &adapter->state)) 5777 mod_timer(&adapter->phy_info_timer, 5778 round_jiffies(jiffies + 2 * HZ)); 5779 5780 pm_schedule_suspend(netdev->dev.parent, 5781 MSEC_PER_SEC * 5); 5782 } 5783 } 5784 5785 spin_lock(&adapter->stats64_lock); 5786 igc_update_stats(adapter); 5787 spin_unlock(&adapter->stats64_lock); 5788 5789 for (i = 0; i < adapter->num_tx_queues; i++) { 5790 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5791 5792 if (!netif_carrier_ok(netdev)) { 5793 /* We've lost link, so the controller stops DMA, 5794 * but we've got queued Tx work that's never going 5795 * to get done, so reset controller to flush Tx. 5796 * (Do the reset outside of interrupt context). 5797 */ 5798 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5799 adapter->tx_timeout_count++; 5800 schedule_work(&adapter->reset_task); 5801 /* return immediately since reset is imminent */ 5802 return; 5803 } 5804 } 5805 5806 /* Force detection of hung controller every watchdog period */ 5807 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5808 } 5809 5810 /* Cause software interrupt to ensure Rx ring is cleaned */ 5811 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5812 u32 eics = 0; 5813 5814 for (i = 0; i < adapter->num_q_vectors; i++) { 5815 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5816 struct igc_ring *rx_ring; 5817 5818 if (!q_vector->rx.ring) 5819 continue; 5820 5821 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index]; 5822 5823 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) { 5824 eics |= q_vector->eims_value; 5825 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags); 5826 } 5827 } 5828 if (eics) 5829 wr32(IGC_EICS, eics); 5830 } else { 5831 struct igc_ring *rx_ring = adapter->rx_ring[0]; 5832 5833 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) { 5834 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags); 5835 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5836 } 5837 } 5838 5839 igc_ptp_tx_hang(adapter); 5840 5841 /* Reset the timer */ 5842 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5843 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5844 mod_timer(&adapter->watchdog_timer, 5845 round_jiffies(jiffies + HZ)); 5846 else 5847 mod_timer(&adapter->watchdog_timer, 5848 round_jiffies(jiffies + 2 * HZ)); 5849 } 5850 } 5851 5852 /** 5853 * igc_intr_msi - Interrupt Handler 5854 * @irq: interrupt number 5855 * @data: pointer to a network interface device structure 5856 */ 5857 static irqreturn_t igc_intr_msi(int irq, void *data) 5858 { 5859 struct igc_adapter *adapter = data; 5860 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5861 struct igc_hw *hw = &adapter->hw; 5862 /* read ICR disables interrupts using IAM */ 5863 u32 icr = rd32(IGC_ICR); 5864 5865 igc_write_itr(q_vector); 5866 5867 if (icr & IGC_ICR_DRSTA) 5868 schedule_work(&adapter->reset_task); 5869 5870 if (icr & IGC_ICR_DOUTSYNC) { 5871 /* HW is reporting DMA is out of sync */ 5872 adapter->stats.doosync++; 5873 } 5874 5875 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5876 hw->mac.get_link_status = true; 5877 if (!test_bit(__IGC_DOWN, &adapter->state)) 5878 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5879 } 5880 5881 if (icr & IGC_ICR_TS) 5882 igc_tsync_interrupt(adapter); 5883 5884 napi_schedule(&q_vector->napi); 5885 5886 return IRQ_HANDLED; 5887 } 5888 5889 /** 5890 * igc_intr - Legacy Interrupt Handler 5891 * @irq: interrupt number 5892 * @data: pointer to a network interface device structure 5893 */ 5894 static irqreturn_t igc_intr(int irq, void *data) 5895 { 5896 struct igc_adapter *adapter = data; 5897 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5898 struct igc_hw *hw = &adapter->hw; 5899 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5900 * need for the IMC write 5901 */ 5902 u32 icr = rd32(IGC_ICR); 5903 5904 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5905 * not set, then the adapter didn't send an interrupt 5906 */ 5907 if (!(icr & IGC_ICR_INT_ASSERTED)) 5908 return IRQ_NONE; 5909 5910 igc_write_itr(q_vector); 5911 5912 if (icr & IGC_ICR_DRSTA) 5913 schedule_work(&adapter->reset_task); 5914 5915 if (icr & IGC_ICR_DOUTSYNC) { 5916 /* HW is reporting DMA is out of sync */ 5917 adapter->stats.doosync++; 5918 } 5919 5920 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5921 hw->mac.get_link_status = true; 5922 /* guard against interrupt when we're going down */ 5923 if (!test_bit(__IGC_DOWN, &adapter->state)) 5924 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5925 } 5926 5927 if (icr & IGC_ICR_TS) 5928 igc_tsync_interrupt(adapter); 5929 5930 napi_schedule(&q_vector->napi); 5931 5932 return IRQ_HANDLED; 5933 } 5934 5935 static void igc_free_irq(struct igc_adapter *adapter) 5936 { 5937 if (adapter->msix_entries) { 5938 int vector = 0, i; 5939 5940 free_irq(adapter->msix_entries[vector++].vector, adapter); 5941 5942 for (i = 0; i < adapter->num_q_vectors; i++) 5943 free_irq(adapter->msix_entries[vector++].vector, 5944 adapter->q_vector[i]); 5945 } else { 5946 free_irq(adapter->pdev->irq, adapter); 5947 } 5948 } 5949 5950 /** 5951 * igc_request_irq - initialize interrupts 5952 * @adapter: Pointer to adapter structure 5953 * 5954 * Attempts to configure interrupts using the best available 5955 * capabilities of the hardware and kernel. 5956 */ 5957 static int igc_request_irq(struct igc_adapter *adapter) 5958 { 5959 struct net_device *netdev = adapter->netdev; 5960 struct pci_dev *pdev = adapter->pdev; 5961 int err = 0; 5962 5963 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5964 err = igc_request_msix(adapter); 5965 if (!err) 5966 goto request_done; 5967 /* fall back to MSI */ 5968 igc_free_all_tx_resources(adapter); 5969 igc_free_all_rx_resources(adapter); 5970 5971 igc_clear_interrupt_scheme(adapter); 5972 err = igc_init_interrupt_scheme(adapter, false); 5973 if (err) 5974 goto request_done; 5975 igc_setup_all_tx_resources(adapter); 5976 igc_setup_all_rx_resources(adapter); 5977 igc_configure(adapter); 5978 } 5979 5980 igc_assign_vector(adapter->q_vector[0], 0); 5981 5982 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5983 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5984 netdev->name, adapter); 5985 if (!err) 5986 goto request_done; 5987 5988 /* fall back to legacy interrupts */ 5989 igc_reset_interrupt_capability(adapter); 5990 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5991 } 5992 5993 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5994 netdev->name, adapter); 5995 5996 if (err) 5997 netdev_err(netdev, "Error %d getting interrupt\n", err); 5998 5999 request_done: 6000 return err; 6001 } 6002 6003 /** 6004 * __igc_open - Called when a network interface is made active 6005 * @netdev: network interface device structure 6006 * @resuming: boolean indicating if the device is resuming 6007 * 6008 * Returns 0 on success, negative value on failure 6009 * 6010 * The open entry point is called when a network interface is made 6011 * active by the system (IFF_UP). At this point all resources needed 6012 * for transmit and receive operations are allocated, the interrupt 6013 * handler is registered with the OS, the watchdog timer is started, 6014 * and the stack is notified that the interface is ready. 6015 */ 6016 static int __igc_open(struct net_device *netdev, bool resuming) 6017 { 6018 struct igc_adapter *adapter = netdev_priv(netdev); 6019 struct pci_dev *pdev = adapter->pdev; 6020 struct igc_hw *hw = &adapter->hw; 6021 int err = 0; 6022 int i = 0; 6023 6024 /* disallow open during test */ 6025 6026 if (test_bit(__IGC_TESTING, &adapter->state)) { 6027 WARN_ON(resuming); 6028 return -EBUSY; 6029 } 6030 6031 if (!resuming) 6032 pm_runtime_get_sync(&pdev->dev); 6033 6034 netif_carrier_off(netdev); 6035 6036 /* allocate transmit descriptors */ 6037 err = igc_setup_all_tx_resources(adapter); 6038 if (err) 6039 goto err_setup_tx; 6040 6041 /* allocate receive descriptors */ 6042 err = igc_setup_all_rx_resources(adapter); 6043 if (err) 6044 goto err_setup_rx; 6045 6046 igc_power_up_link(adapter); 6047 6048 igc_configure(adapter); 6049 6050 err = igc_request_irq(adapter); 6051 if (err) 6052 goto err_req_irq; 6053 6054 clear_bit(__IGC_DOWN, &adapter->state); 6055 6056 for (i = 0; i < adapter->num_q_vectors; i++) 6057 napi_enable(&adapter->q_vector[i]->napi); 6058 6059 /* Clear any pending interrupts. */ 6060 rd32(IGC_ICR); 6061 igc_irq_enable(adapter); 6062 6063 if (!resuming) 6064 pm_runtime_put(&pdev->dev); 6065 6066 netif_tx_start_all_queues(netdev); 6067 6068 /* start the watchdog. */ 6069 hw->mac.get_link_status = true; 6070 schedule_work(&adapter->watchdog_task); 6071 6072 return IGC_SUCCESS; 6073 6074 err_req_irq: 6075 igc_release_hw_control(adapter); 6076 igc_power_down_phy_copper_base(&adapter->hw); 6077 igc_free_all_rx_resources(adapter); 6078 err_setup_rx: 6079 igc_free_all_tx_resources(adapter); 6080 err_setup_tx: 6081 igc_reset(adapter); 6082 if (!resuming) 6083 pm_runtime_put(&pdev->dev); 6084 6085 return err; 6086 } 6087 6088 int igc_open(struct net_device *netdev) 6089 { 6090 struct igc_adapter *adapter = netdev_priv(netdev); 6091 int err; 6092 6093 /* Notify the stack of the actual queue counts. */ 6094 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues, 6095 adapter->num_rx_queues); 6096 if (err) { 6097 netdev_err(netdev, "error setting real queue count\n"); 6098 return err; 6099 } 6100 6101 return __igc_open(netdev, false); 6102 } 6103 6104 /** 6105 * __igc_close - Disables a network interface 6106 * @netdev: network interface device structure 6107 * @suspending: boolean indicating the device is suspending 6108 * 6109 * Returns 0, this is not allowed to fail 6110 * 6111 * The close entry point is called when an interface is de-activated 6112 * by the OS. The hardware is still under the driver's control, but 6113 * needs to be disabled. A global MAC reset is issued to stop the 6114 * hardware, and all transmit and receive resources are freed. 6115 */ 6116 static int __igc_close(struct net_device *netdev, bool suspending) 6117 { 6118 struct igc_adapter *adapter = netdev_priv(netdev); 6119 struct pci_dev *pdev = adapter->pdev; 6120 6121 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 6122 6123 if (!suspending) 6124 pm_runtime_get_sync(&pdev->dev); 6125 6126 igc_down(adapter); 6127 6128 igc_release_hw_control(adapter); 6129 6130 igc_free_irq(adapter); 6131 6132 igc_free_all_tx_resources(adapter); 6133 igc_free_all_rx_resources(adapter); 6134 6135 if (!suspending) 6136 pm_runtime_put_sync(&pdev->dev); 6137 6138 return 0; 6139 } 6140 6141 int igc_close(struct net_device *netdev) 6142 { 6143 if (netif_device_present(netdev) || netdev->dismantle) 6144 return __igc_close(netdev, false); 6145 return 0; 6146 } 6147 6148 /** 6149 * igc_ioctl - Access the hwtstamp interface 6150 * @netdev: network interface device structure 6151 * @ifr: interface request data 6152 * @cmd: ioctl command 6153 **/ 6154 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6155 { 6156 switch (cmd) { 6157 case SIOCGHWTSTAMP: 6158 return igc_ptp_get_ts_config(netdev, ifr); 6159 case SIOCSHWTSTAMP: 6160 return igc_ptp_set_ts_config(netdev, ifr); 6161 default: 6162 return -EOPNOTSUPP; 6163 } 6164 } 6165 6166 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 6167 bool enable) 6168 { 6169 struct igc_ring *ring; 6170 6171 if (queue < 0 || queue >= adapter->num_tx_queues) 6172 return -EINVAL; 6173 6174 ring = adapter->tx_ring[queue]; 6175 ring->launchtime_enable = enable; 6176 6177 return 0; 6178 } 6179 6180 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 6181 { 6182 struct timespec64 b; 6183 6184 b = ktime_to_timespec64(base_time); 6185 6186 return timespec64_compare(now, &b) > 0; 6187 } 6188 6189 static bool validate_schedule(struct igc_adapter *adapter, 6190 const struct tc_taprio_qopt_offload *qopt) 6191 { 6192 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 6193 struct igc_hw *hw = &adapter->hw; 6194 struct timespec64 now; 6195 size_t n; 6196 6197 if (qopt->cycle_time_extension) 6198 return false; 6199 6200 igc_ptp_read(adapter, &now); 6201 6202 /* If we program the controller's BASET registers with a time 6203 * in the future, it will hold all the packets until that 6204 * time, causing a lot of TX Hangs, so to avoid that, we 6205 * reject schedules that would start in the future. 6206 * Note: Limitation above is no longer in i226. 6207 */ 6208 if (!is_base_time_past(qopt->base_time, &now) && 6209 igc_is_device_id_i225(hw)) 6210 return false; 6211 6212 for (n = 0; n < qopt->num_entries; n++) { 6213 const struct tc_taprio_sched_entry *e, *prev; 6214 int i; 6215 6216 prev = n ? &qopt->entries[n - 1] : NULL; 6217 e = &qopt->entries[n]; 6218 6219 /* i225 only supports "global" frame preemption 6220 * settings. 6221 */ 6222 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6223 return false; 6224 6225 for (i = 0; i < adapter->num_tx_queues; i++) 6226 if (e->gate_mask & BIT(i)) { 6227 queue_uses[i]++; 6228 6229 /* There are limitations: A single queue cannot 6230 * be opened and closed multiple times per cycle 6231 * unless the gate stays open. Check for it. 6232 */ 6233 if (queue_uses[i] > 1 && 6234 !(prev->gate_mask & BIT(i))) 6235 return false; 6236 } 6237 } 6238 6239 return true; 6240 } 6241 6242 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6243 struct tc_etf_qopt_offload *qopt) 6244 { 6245 struct igc_hw *hw = &adapter->hw; 6246 int err; 6247 6248 if (hw->mac.type != igc_i225) 6249 return -EOPNOTSUPP; 6250 6251 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6252 if (err) 6253 return err; 6254 6255 return igc_tsn_offload_apply(adapter); 6256 } 6257 6258 static int igc_qbv_clear_schedule(struct igc_adapter *adapter) 6259 { 6260 unsigned long flags; 6261 int i; 6262 6263 adapter->base_time = 0; 6264 adapter->cycle_time = NSEC_PER_SEC; 6265 adapter->taprio_offload_enable = false; 6266 adapter->qbv_config_change_errors = 0; 6267 adapter->qbv_count = 0; 6268 6269 for (i = 0; i < adapter->num_tx_queues; i++) { 6270 struct igc_ring *ring = adapter->tx_ring[i]; 6271 6272 ring->start_time = 0; 6273 ring->end_time = NSEC_PER_SEC; 6274 ring->max_sdu = 0; 6275 } 6276 6277 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6278 6279 adapter->qbv_transition = false; 6280 6281 for (i = 0; i < adapter->num_tx_queues; i++) { 6282 struct igc_ring *ring = adapter->tx_ring[i]; 6283 6284 ring->oper_gate_closed = false; 6285 ring->admin_gate_closed = false; 6286 } 6287 6288 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6289 6290 return 0; 6291 } 6292 6293 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6294 { 6295 igc_qbv_clear_schedule(adapter); 6296 6297 return 0; 6298 } 6299 6300 static void igc_taprio_stats(struct net_device *dev, 6301 struct tc_taprio_qopt_stats *stats) 6302 { 6303 /* When Strict_End is enabled, the tx_overruns counter 6304 * will always be zero. 6305 */ 6306 stats->tx_overruns = 0; 6307 } 6308 6309 static void igc_taprio_queue_stats(struct net_device *dev, 6310 struct tc_taprio_qopt_queue_stats *queue_stats) 6311 { 6312 struct tc_taprio_qopt_stats *stats = &queue_stats->stats; 6313 6314 /* When Strict_End is enabled, the tx_overruns counter 6315 * will always be zero. 6316 */ 6317 stats->tx_overruns = 0; 6318 } 6319 6320 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6321 struct tc_taprio_qopt_offload *qopt) 6322 { 6323 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6324 struct igc_hw *hw = &adapter->hw; 6325 u32 start_time = 0, end_time = 0; 6326 struct timespec64 now; 6327 unsigned long flags; 6328 size_t n; 6329 int i; 6330 6331 if (qopt->base_time < 0) 6332 return -ERANGE; 6333 6334 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable) 6335 return -EALREADY; 6336 6337 if (!validate_schedule(adapter, qopt)) 6338 return -EINVAL; 6339 6340 igc_ptp_read(adapter, &now); 6341 6342 if (igc_tsn_is_taprio_activated_by_user(adapter) && 6343 is_base_time_past(qopt->base_time, &now)) 6344 adapter->qbv_config_change_errors++; 6345 6346 adapter->cycle_time = qopt->cycle_time; 6347 adapter->base_time = qopt->base_time; 6348 adapter->taprio_offload_enable = true; 6349 6350 for (n = 0; n < qopt->num_entries; n++) { 6351 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6352 6353 end_time += e->interval; 6354 6355 /* If any of the conditions below are true, we need to manually 6356 * control the end time of the cycle. 6357 * 1. Qbv users can specify a cycle time that is not equal 6358 * to the total GCL intervals. Hence, recalculation is 6359 * necessary here to exclude the time interval that 6360 * exceeds the cycle time. 6361 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6362 * once the end of the list is reached, it will switch 6363 * to the END_OF_CYCLE state and leave the gates in the 6364 * same state until the next cycle is started. 6365 */ 6366 if (end_time > adapter->cycle_time || 6367 n + 1 == qopt->num_entries) 6368 end_time = adapter->cycle_time; 6369 6370 for (i = 0; i < adapter->num_tx_queues; i++) { 6371 struct igc_ring *ring = adapter->tx_ring[i]; 6372 6373 if (!(e->gate_mask & BIT(i))) 6374 continue; 6375 6376 /* Check whether a queue stays open for more than one 6377 * entry. If so, keep the start and advance the end 6378 * time. 6379 */ 6380 if (!queue_configured[i]) 6381 ring->start_time = start_time; 6382 ring->end_time = end_time; 6383 6384 if (ring->start_time >= adapter->cycle_time) 6385 queue_configured[i] = false; 6386 else 6387 queue_configured[i] = true; 6388 } 6389 6390 start_time += e->interval; 6391 } 6392 6393 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6394 6395 /* Check whether a queue gets configured. 6396 * If not, set the start and end time to be end time. 6397 */ 6398 for (i = 0; i < adapter->num_tx_queues; i++) { 6399 struct igc_ring *ring = adapter->tx_ring[i]; 6400 6401 if (!is_base_time_past(qopt->base_time, &now)) { 6402 ring->admin_gate_closed = false; 6403 } else { 6404 ring->oper_gate_closed = false; 6405 ring->admin_gate_closed = false; 6406 } 6407 6408 if (!queue_configured[i]) { 6409 if (!is_base_time_past(qopt->base_time, &now)) 6410 ring->admin_gate_closed = true; 6411 else 6412 ring->oper_gate_closed = true; 6413 6414 ring->start_time = end_time; 6415 ring->end_time = end_time; 6416 } 6417 } 6418 6419 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6420 6421 for (i = 0; i < adapter->num_tx_queues; i++) { 6422 struct igc_ring *ring = adapter->tx_ring[i]; 6423 struct net_device *dev = adapter->netdev; 6424 6425 if (qopt->max_sdu[i]) 6426 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN; 6427 else 6428 ring->max_sdu = 0; 6429 } 6430 6431 return 0; 6432 } 6433 6434 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6435 struct tc_taprio_qopt_offload *qopt) 6436 { 6437 struct igc_hw *hw = &adapter->hw; 6438 int err; 6439 6440 if (hw->mac.type != igc_i225) 6441 return -EOPNOTSUPP; 6442 6443 switch (qopt->cmd) { 6444 case TAPRIO_CMD_REPLACE: 6445 err = igc_save_qbv_schedule(adapter, qopt); 6446 break; 6447 case TAPRIO_CMD_DESTROY: 6448 err = igc_tsn_clear_schedule(adapter); 6449 break; 6450 case TAPRIO_CMD_STATS: 6451 igc_taprio_stats(adapter->netdev, &qopt->stats); 6452 return 0; 6453 case TAPRIO_CMD_QUEUE_STATS: 6454 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats); 6455 return 0; 6456 default: 6457 return -EOPNOTSUPP; 6458 } 6459 6460 if (err) 6461 return err; 6462 6463 return igc_tsn_offload_apply(adapter); 6464 } 6465 6466 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6467 bool enable, int idleslope, int sendslope, 6468 int hicredit, int locredit) 6469 { 6470 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6471 struct net_device *netdev = adapter->netdev; 6472 struct igc_ring *ring; 6473 int i; 6474 6475 /* i225 has two sets of credit-based shaper logic. 6476 * Supporting it only on the top two priority queues 6477 */ 6478 if (queue < 0 || queue > 1) 6479 return -EINVAL; 6480 6481 ring = adapter->tx_ring[queue]; 6482 6483 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6484 if (adapter->tx_ring[i]) 6485 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6486 6487 /* CBS should be enabled on the highest priority queue first in order 6488 * for the CBS algorithm to operate as intended. 6489 */ 6490 if (enable) { 6491 if (queue == 1 && !cbs_status[0]) { 6492 netdev_err(netdev, 6493 "Enabling CBS on queue1 before queue0\n"); 6494 return -EINVAL; 6495 } 6496 } else { 6497 if (queue == 0 && cbs_status[1]) { 6498 netdev_err(netdev, 6499 "Disabling CBS on queue0 before queue1\n"); 6500 return -EINVAL; 6501 } 6502 } 6503 6504 ring->cbs_enable = enable; 6505 ring->idleslope = idleslope; 6506 ring->sendslope = sendslope; 6507 ring->hicredit = hicredit; 6508 ring->locredit = locredit; 6509 6510 return 0; 6511 } 6512 6513 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6514 struct tc_cbs_qopt_offload *qopt) 6515 { 6516 struct igc_hw *hw = &adapter->hw; 6517 int err; 6518 6519 if (hw->mac.type != igc_i225) 6520 return -EOPNOTSUPP; 6521 6522 if (qopt->queue < 0 || qopt->queue > 1) 6523 return -EINVAL; 6524 6525 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6526 qopt->idleslope, qopt->sendslope, 6527 qopt->hicredit, qopt->locredit); 6528 if (err) 6529 return err; 6530 6531 return igc_tsn_offload_apply(adapter); 6532 } 6533 6534 static int igc_tc_query_caps(struct igc_adapter *adapter, 6535 struct tc_query_caps_base *base) 6536 { 6537 struct igc_hw *hw = &adapter->hw; 6538 6539 switch (base->type) { 6540 case TC_SETUP_QDISC_MQPRIO: { 6541 struct tc_mqprio_caps *caps = base->caps; 6542 6543 caps->validate_queue_counts = true; 6544 6545 return 0; 6546 } 6547 case TC_SETUP_QDISC_TAPRIO: { 6548 struct tc_taprio_caps *caps = base->caps; 6549 6550 caps->broken_mqprio = true; 6551 6552 if (hw->mac.type == igc_i225) { 6553 caps->supports_queue_max_sdu = true; 6554 caps->gate_mask_per_txq = true; 6555 } 6556 6557 return 0; 6558 } 6559 default: 6560 return -EOPNOTSUPP; 6561 } 6562 } 6563 6564 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc, 6565 u16 *offset) 6566 { 6567 int i; 6568 6569 adapter->strict_priority_enable = true; 6570 adapter->num_tc = num_tc; 6571 6572 for (i = 0; i < num_tc; i++) 6573 adapter->queue_per_tc[i] = offset[i]; 6574 } 6575 6576 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter, 6577 struct tc_mqprio_qopt_offload *mqprio) 6578 { 6579 struct igc_hw *hw = &adapter->hw; 6580 int i; 6581 6582 if (hw->mac.type != igc_i225) 6583 return -EOPNOTSUPP; 6584 6585 if (!mqprio->qopt.num_tc) { 6586 adapter->strict_priority_enable = false; 6587 goto apply; 6588 } 6589 6590 /* There are as many TCs as Tx queues. */ 6591 if (mqprio->qopt.num_tc != adapter->num_tx_queues) { 6592 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack, 6593 "Only %d traffic classes supported", 6594 adapter->num_tx_queues); 6595 return -EOPNOTSUPP; 6596 } 6597 6598 /* Only one queue per TC is supported. */ 6599 for (i = 0; i < mqprio->qopt.num_tc; i++) { 6600 if (mqprio->qopt.count[i] != 1) { 6601 NL_SET_ERR_MSG_MOD(mqprio->extack, 6602 "Only one queue per TC supported"); 6603 return -EOPNOTSUPP; 6604 } 6605 } 6606 6607 /* Preemption is not supported yet. */ 6608 if (mqprio->preemptible_tcs) { 6609 NL_SET_ERR_MSG_MOD(mqprio->extack, 6610 "Preemption is not supported yet"); 6611 return -EOPNOTSUPP; 6612 } 6613 6614 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc, 6615 mqprio->qopt.offset); 6616 6617 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS; 6618 6619 apply: 6620 return igc_tsn_offload_apply(adapter); 6621 } 6622 6623 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6624 void *type_data) 6625 { 6626 struct igc_adapter *adapter = netdev_priv(dev); 6627 6628 adapter->tc_setup_type = type; 6629 6630 switch (type) { 6631 case TC_QUERY_CAPS: 6632 return igc_tc_query_caps(adapter, type_data); 6633 case TC_SETUP_QDISC_TAPRIO: 6634 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6635 6636 case TC_SETUP_QDISC_ETF: 6637 return igc_tsn_enable_launchtime(adapter, type_data); 6638 6639 case TC_SETUP_QDISC_CBS: 6640 return igc_tsn_enable_cbs(adapter, type_data); 6641 6642 case TC_SETUP_QDISC_MQPRIO: 6643 return igc_tsn_enable_mqprio(adapter, type_data); 6644 6645 default: 6646 return -EOPNOTSUPP; 6647 } 6648 } 6649 6650 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6651 { 6652 struct igc_adapter *adapter = netdev_priv(dev); 6653 6654 switch (bpf->command) { 6655 case XDP_SETUP_PROG: 6656 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6657 case XDP_SETUP_XSK_POOL: 6658 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6659 bpf->xsk.queue_id); 6660 default: 6661 return -EOPNOTSUPP; 6662 } 6663 } 6664 6665 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6666 struct xdp_frame **frames, u32 flags) 6667 { 6668 struct igc_adapter *adapter = netdev_priv(dev); 6669 int cpu = smp_processor_id(); 6670 struct netdev_queue *nq; 6671 struct igc_ring *ring; 6672 int i, nxmit; 6673 6674 if (unlikely(!netif_carrier_ok(dev))) 6675 return -ENETDOWN; 6676 6677 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6678 return -EINVAL; 6679 6680 ring = igc_xdp_get_tx_ring(adapter, cpu); 6681 nq = txring_txq(ring); 6682 6683 __netif_tx_lock(nq, cpu); 6684 6685 /* Avoid transmit queue timeout since we share it with the slow path */ 6686 txq_trans_cond_update(nq); 6687 6688 nxmit = 0; 6689 for (i = 0; i < num_frames; i++) { 6690 int err; 6691 struct xdp_frame *xdpf = frames[i]; 6692 6693 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6694 if (err) 6695 break; 6696 nxmit++; 6697 } 6698 6699 if (flags & XDP_XMIT_FLUSH) 6700 igc_flush_tx_descriptors(ring); 6701 6702 __netif_tx_unlock(nq); 6703 6704 return nxmit; 6705 } 6706 6707 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6708 struct igc_q_vector *q_vector) 6709 { 6710 struct igc_hw *hw = &adapter->hw; 6711 u32 eics = 0; 6712 6713 eics |= q_vector->eims_value; 6714 wr32(IGC_EICS, eics); 6715 } 6716 6717 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6718 { 6719 struct igc_adapter *adapter = netdev_priv(dev); 6720 struct igc_q_vector *q_vector; 6721 struct igc_ring *ring; 6722 6723 if (test_bit(__IGC_DOWN, &adapter->state)) 6724 return -ENETDOWN; 6725 6726 if (!igc_xdp_is_enabled(adapter)) 6727 return -ENXIO; 6728 6729 if (queue_id >= adapter->num_rx_queues) 6730 return -EINVAL; 6731 6732 ring = adapter->rx_ring[queue_id]; 6733 6734 if (!ring->xsk_pool) 6735 return -ENXIO; 6736 6737 q_vector = adapter->q_vector[queue_id]; 6738 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6739 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6740 6741 return 0; 6742 } 6743 6744 static ktime_t igc_get_tstamp(struct net_device *dev, 6745 const struct skb_shared_hwtstamps *hwtstamps, 6746 bool cycles) 6747 { 6748 struct igc_adapter *adapter = netdev_priv(dev); 6749 struct igc_inline_rx_tstamps *tstamp; 6750 ktime_t timestamp; 6751 6752 tstamp = hwtstamps->netdev_data; 6753 6754 if (cycles) 6755 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1); 6756 else 6757 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0); 6758 6759 return timestamp; 6760 } 6761 6762 static const struct net_device_ops igc_netdev_ops = { 6763 .ndo_open = igc_open, 6764 .ndo_stop = igc_close, 6765 .ndo_start_xmit = igc_xmit_frame, 6766 .ndo_set_rx_mode = igc_set_rx_mode, 6767 .ndo_set_mac_address = igc_set_mac, 6768 .ndo_change_mtu = igc_change_mtu, 6769 .ndo_tx_timeout = igc_tx_timeout, 6770 .ndo_get_stats64 = igc_get_stats64, 6771 .ndo_fix_features = igc_fix_features, 6772 .ndo_set_features = igc_set_features, 6773 .ndo_features_check = igc_features_check, 6774 .ndo_eth_ioctl = igc_ioctl, 6775 .ndo_setup_tc = igc_setup_tc, 6776 .ndo_bpf = igc_bpf, 6777 .ndo_xdp_xmit = igc_xdp_xmit, 6778 .ndo_xsk_wakeup = igc_xsk_wakeup, 6779 .ndo_get_tstamp = igc_get_tstamp, 6780 }; 6781 6782 /* PCIe configuration access */ 6783 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6784 { 6785 struct igc_adapter *adapter = hw->back; 6786 6787 pci_read_config_word(adapter->pdev, reg, value); 6788 } 6789 6790 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6791 { 6792 struct igc_adapter *adapter = hw->back; 6793 6794 pci_write_config_word(adapter->pdev, reg, *value); 6795 } 6796 6797 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6798 { 6799 struct igc_adapter *adapter = hw->back; 6800 6801 if (!pci_is_pcie(adapter->pdev)) 6802 return -IGC_ERR_CONFIG; 6803 6804 pcie_capability_read_word(adapter->pdev, reg, value); 6805 6806 return IGC_SUCCESS; 6807 } 6808 6809 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6810 { 6811 struct igc_adapter *adapter = hw->back; 6812 6813 if (!pci_is_pcie(adapter->pdev)) 6814 return -IGC_ERR_CONFIG; 6815 6816 pcie_capability_write_word(adapter->pdev, reg, *value); 6817 6818 return IGC_SUCCESS; 6819 } 6820 6821 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6822 { 6823 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6824 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6825 u32 value = 0; 6826 6827 if (IGC_REMOVED(hw_addr)) 6828 return ~value; 6829 6830 value = readl(&hw_addr[reg]); 6831 6832 /* reads should not return all F's */ 6833 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6834 struct net_device *netdev = igc->netdev; 6835 6836 hw->hw_addr = NULL; 6837 netif_device_detach(netdev); 6838 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6839 WARN(pci_device_is_present(igc->pdev), 6840 "igc: Failed to read reg 0x%x!\n", reg); 6841 } 6842 6843 return value; 6844 } 6845 6846 /* Mapping HW RSS Type to enum xdp_rss_hash_type */ 6847 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = { 6848 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2, 6849 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP, 6850 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4, 6851 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP, 6852 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX, 6853 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6, 6854 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX, 6855 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP, 6856 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP, 6857 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX, 6858 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 6859 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */ 6860 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */ 6861 [13] = XDP_RSS_TYPE_NONE, 6862 [14] = XDP_RSS_TYPE_NONE, 6863 [15] = XDP_RSS_TYPE_NONE, 6864 }; 6865 6866 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash, 6867 enum xdp_rss_hash_type *rss_type) 6868 { 6869 const struct igc_xdp_buff *ctx = (void *)_ctx; 6870 6871 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH)) 6872 return -ENODATA; 6873 6874 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss); 6875 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)]; 6876 6877 return 0; 6878 } 6879 6880 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 6881 { 6882 const struct igc_xdp_buff *ctx = (void *)_ctx; 6883 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev); 6884 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts; 6885 6886 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) { 6887 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0); 6888 6889 return 0; 6890 } 6891 6892 return -ENODATA; 6893 } 6894 6895 static const struct xdp_metadata_ops igc_xdp_metadata_ops = { 6896 .xmo_rx_hash = igc_xdp_rx_hash, 6897 .xmo_rx_timestamp = igc_xdp_rx_timestamp, 6898 }; 6899 6900 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer) 6901 { 6902 struct igc_adapter *adapter = container_of(timer, struct igc_adapter, 6903 hrtimer); 6904 unsigned long flags; 6905 unsigned int i; 6906 6907 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6908 6909 adapter->qbv_transition = true; 6910 for (i = 0; i < adapter->num_tx_queues; i++) { 6911 struct igc_ring *tx_ring = adapter->tx_ring[i]; 6912 6913 if (tx_ring->admin_gate_closed) { 6914 tx_ring->admin_gate_closed = false; 6915 tx_ring->oper_gate_closed = true; 6916 } else { 6917 tx_ring->oper_gate_closed = false; 6918 } 6919 } 6920 adapter->qbv_transition = false; 6921 6922 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6923 6924 return HRTIMER_NORESTART; 6925 } 6926 6927 /** 6928 * igc_probe - Device Initialization Routine 6929 * @pdev: PCI device information struct 6930 * @ent: entry in igc_pci_tbl 6931 * 6932 * Returns 0 on success, negative on failure 6933 * 6934 * igc_probe initializes an adapter identified by a pci_dev structure. 6935 * The OS initialization, configuring the adapter private structure, 6936 * and a hardware reset occur. 6937 */ 6938 static int igc_probe(struct pci_dev *pdev, 6939 const struct pci_device_id *ent) 6940 { 6941 struct igc_adapter *adapter; 6942 struct net_device *netdev; 6943 struct igc_hw *hw; 6944 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6945 int err; 6946 6947 err = pci_enable_device_mem(pdev); 6948 if (err) 6949 return err; 6950 6951 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6952 if (err) { 6953 dev_err(&pdev->dev, 6954 "No usable DMA configuration, aborting\n"); 6955 goto err_dma; 6956 } 6957 6958 err = pci_request_mem_regions(pdev, igc_driver_name); 6959 if (err) 6960 goto err_pci_reg; 6961 6962 err = pci_enable_ptm(pdev, NULL); 6963 if (err < 0) 6964 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6965 6966 pci_set_master(pdev); 6967 6968 err = -ENOMEM; 6969 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6970 IGC_MAX_TX_QUEUES); 6971 6972 if (!netdev) 6973 goto err_alloc_etherdev; 6974 6975 SET_NETDEV_DEV(netdev, &pdev->dev); 6976 6977 pci_set_drvdata(pdev, netdev); 6978 adapter = netdev_priv(netdev); 6979 adapter->netdev = netdev; 6980 adapter->pdev = pdev; 6981 hw = &adapter->hw; 6982 hw->back = adapter; 6983 adapter->port_num = hw->bus.func; 6984 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6985 6986 err = pci_save_state(pdev); 6987 if (err) 6988 goto err_ioremap; 6989 6990 err = -EIO; 6991 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6992 pci_resource_len(pdev, 0)); 6993 if (!adapter->io_addr) 6994 goto err_ioremap; 6995 6996 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6997 hw->hw_addr = adapter->io_addr; 6998 6999 netdev->netdev_ops = &igc_netdev_ops; 7000 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops; 7001 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops; 7002 igc_ethtool_set_ops(netdev); 7003 netdev->watchdog_timeo = 5 * HZ; 7004 7005 netdev->mem_start = pci_resource_start(pdev, 0); 7006 netdev->mem_end = pci_resource_end(pdev, 0); 7007 7008 /* PCI config space info */ 7009 hw->vendor_id = pdev->vendor; 7010 hw->device_id = pdev->device; 7011 hw->revision_id = pdev->revision; 7012 hw->subsystem_vendor_id = pdev->subsystem_vendor; 7013 hw->subsystem_device_id = pdev->subsystem_device; 7014 7015 /* Copy the default MAC and PHY function pointers */ 7016 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 7017 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 7018 7019 /* Initialize skew-specific constants */ 7020 err = ei->get_invariants(hw); 7021 if (err) 7022 goto err_sw_init; 7023 7024 /* Add supported features to the features list*/ 7025 netdev->features |= NETIF_F_SG; 7026 netdev->features |= NETIF_F_TSO; 7027 netdev->features |= NETIF_F_TSO6; 7028 netdev->features |= NETIF_F_TSO_ECN; 7029 netdev->features |= NETIF_F_RXHASH; 7030 netdev->features |= NETIF_F_RXCSUM; 7031 netdev->features |= NETIF_F_HW_CSUM; 7032 netdev->features |= NETIF_F_SCTP_CRC; 7033 netdev->features |= NETIF_F_HW_TC; 7034 7035 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 7036 NETIF_F_GSO_GRE_CSUM | \ 7037 NETIF_F_GSO_IPXIP4 | \ 7038 NETIF_F_GSO_IPXIP6 | \ 7039 NETIF_F_GSO_UDP_TUNNEL | \ 7040 NETIF_F_GSO_UDP_TUNNEL_CSUM) 7041 7042 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 7043 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 7044 7045 /* setup the private structure */ 7046 err = igc_sw_init(adapter); 7047 if (err) 7048 goto err_sw_init; 7049 7050 /* copy netdev features into list of user selectable features */ 7051 netdev->hw_features |= NETIF_F_NTUPLE; 7052 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 7053 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 7054 netdev->hw_features |= netdev->features; 7055 7056 netdev->features |= NETIF_F_HIGHDMA; 7057 7058 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 7059 netdev->mpls_features |= NETIF_F_HW_CSUM; 7060 netdev->hw_enc_features |= netdev->vlan_features; 7061 7062 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 7063 NETDEV_XDP_ACT_XSK_ZEROCOPY; 7064 7065 /* MTU range: 68 - 9216 */ 7066 netdev->min_mtu = ETH_MIN_MTU; 7067 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 7068 7069 /* before reading the NVM, reset the controller to put the device in a 7070 * known good starting state 7071 */ 7072 hw->mac.ops.reset_hw(hw); 7073 7074 if (igc_get_flash_presence_i225(hw)) { 7075 if (hw->nvm.ops.validate(hw) < 0) { 7076 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 7077 err = -EIO; 7078 goto err_eeprom; 7079 } 7080 } 7081 7082 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 7083 /* copy the MAC address out of the NVM */ 7084 if (hw->mac.ops.read_mac_addr(hw)) 7085 dev_err(&pdev->dev, "NVM Read Error\n"); 7086 } 7087 7088 eth_hw_addr_set(netdev, hw->mac.addr); 7089 7090 if (!is_valid_ether_addr(netdev->dev_addr)) { 7091 dev_err(&pdev->dev, "Invalid MAC Address\n"); 7092 err = -EIO; 7093 goto err_eeprom; 7094 } 7095 7096 /* configure RXPBSIZE and TXPBSIZE */ 7097 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 7098 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 7099 7100 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 7101 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 7102 7103 INIT_WORK(&adapter->reset_task, igc_reset_task); 7104 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 7105 7106 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7107 adapter->hrtimer.function = &igc_qbv_scheduling_timer; 7108 7109 /* Initialize link properties that are user-changeable */ 7110 adapter->fc_autoneg = true; 7111 hw->phy.autoneg_advertised = 0xaf; 7112 7113 hw->fc.requested_mode = igc_fc_default; 7114 hw->fc.current_mode = igc_fc_default; 7115 7116 /* By default, support wake on port A */ 7117 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 7118 7119 /* initialize the wol settings based on the eeprom settings */ 7120 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 7121 adapter->wol |= IGC_WUFC_MAG; 7122 7123 device_set_wakeup_enable(&adapter->pdev->dev, 7124 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 7125 7126 igc_ptp_init(adapter); 7127 7128 igc_tsn_clear_schedule(adapter); 7129 7130 /* reset the hardware with the new settings */ 7131 igc_reset(adapter); 7132 7133 /* let the f/w know that the h/w is now under the control of the 7134 * driver. 7135 */ 7136 igc_get_hw_control(adapter); 7137 7138 strscpy(netdev->name, "eth%d", sizeof(netdev->name)); 7139 err = register_netdev(netdev); 7140 if (err) 7141 goto err_register; 7142 7143 /* carrier off reporting is important to ethtool even BEFORE open */ 7144 netif_carrier_off(netdev); 7145 7146 /* Check if Media Autosense is enabled */ 7147 adapter->ei = *ei; 7148 7149 /* print pcie link status and MAC address */ 7150 pcie_print_link_status(pdev); 7151 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 7152 7153 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 7154 /* Disable EEE for internal PHY devices */ 7155 hw->dev_spec._base.eee_enable = false; 7156 adapter->flags &= ~IGC_FLAG_EEE; 7157 igc_set_eee_i225(hw, false, false, false); 7158 7159 pm_runtime_put_noidle(&pdev->dev); 7160 7161 if (IS_ENABLED(CONFIG_IGC_LEDS)) { 7162 err = igc_led_setup(adapter); 7163 if (err) 7164 goto err_register; 7165 } 7166 7167 return 0; 7168 7169 err_register: 7170 igc_release_hw_control(adapter); 7171 err_eeprom: 7172 if (!igc_check_reset_block(hw)) 7173 igc_reset_phy(hw); 7174 err_sw_init: 7175 igc_clear_interrupt_scheme(adapter); 7176 iounmap(adapter->io_addr); 7177 err_ioremap: 7178 free_netdev(netdev); 7179 err_alloc_etherdev: 7180 pci_release_mem_regions(pdev); 7181 err_pci_reg: 7182 err_dma: 7183 pci_disable_device(pdev); 7184 return err; 7185 } 7186 7187 /** 7188 * igc_remove - Device Removal Routine 7189 * @pdev: PCI device information struct 7190 * 7191 * igc_remove is called by the PCI subsystem to alert the driver 7192 * that it should release a PCI device. This could be caused by a 7193 * Hot-Plug event, or because the driver is going to be removed from 7194 * memory. 7195 */ 7196 static void igc_remove(struct pci_dev *pdev) 7197 { 7198 struct net_device *netdev = pci_get_drvdata(pdev); 7199 struct igc_adapter *adapter = netdev_priv(netdev); 7200 7201 pm_runtime_get_noresume(&pdev->dev); 7202 7203 igc_flush_nfc_rules(adapter); 7204 7205 igc_ptp_stop(adapter); 7206 7207 pci_disable_ptm(pdev); 7208 pci_clear_master(pdev); 7209 7210 set_bit(__IGC_DOWN, &adapter->state); 7211 7212 del_timer_sync(&adapter->watchdog_timer); 7213 del_timer_sync(&adapter->phy_info_timer); 7214 7215 cancel_work_sync(&adapter->reset_task); 7216 cancel_work_sync(&adapter->watchdog_task); 7217 hrtimer_cancel(&adapter->hrtimer); 7218 7219 if (IS_ENABLED(CONFIG_IGC_LEDS)) 7220 igc_led_free(adapter); 7221 7222 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7223 * would have already happened in close and is redundant. 7224 */ 7225 igc_release_hw_control(adapter); 7226 unregister_netdev(netdev); 7227 7228 igc_clear_interrupt_scheme(adapter); 7229 pci_iounmap(pdev, adapter->io_addr); 7230 pci_release_mem_regions(pdev); 7231 7232 free_netdev(netdev); 7233 7234 pci_disable_device(pdev); 7235 } 7236 7237 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 7238 bool runtime) 7239 { 7240 struct net_device *netdev = pci_get_drvdata(pdev); 7241 struct igc_adapter *adapter = netdev_priv(netdev); 7242 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 7243 struct igc_hw *hw = &adapter->hw; 7244 u32 ctrl, rctl, status; 7245 bool wake; 7246 7247 rtnl_lock(); 7248 netif_device_detach(netdev); 7249 7250 if (netif_running(netdev)) 7251 __igc_close(netdev, true); 7252 7253 igc_ptp_suspend(adapter); 7254 7255 igc_clear_interrupt_scheme(adapter); 7256 rtnl_unlock(); 7257 7258 status = rd32(IGC_STATUS); 7259 if (status & IGC_STATUS_LU) 7260 wufc &= ~IGC_WUFC_LNKC; 7261 7262 if (wufc) { 7263 igc_setup_rctl(adapter); 7264 igc_set_rx_mode(netdev); 7265 7266 /* turn on all-multi mode if wake on multicast is enabled */ 7267 if (wufc & IGC_WUFC_MC) { 7268 rctl = rd32(IGC_RCTL); 7269 rctl |= IGC_RCTL_MPE; 7270 wr32(IGC_RCTL, rctl); 7271 } 7272 7273 ctrl = rd32(IGC_CTRL); 7274 ctrl |= IGC_CTRL_ADVD3WUC; 7275 wr32(IGC_CTRL, ctrl); 7276 7277 /* Allow time for pending master requests to run */ 7278 igc_disable_pcie_master(hw); 7279 7280 wr32(IGC_WUC, IGC_WUC_PME_EN); 7281 wr32(IGC_WUFC, wufc); 7282 } else { 7283 wr32(IGC_WUC, 0); 7284 wr32(IGC_WUFC, 0); 7285 } 7286 7287 wake = wufc || adapter->en_mng_pt; 7288 if (!wake) 7289 igc_power_down_phy_copper_base(&adapter->hw); 7290 else 7291 igc_power_up_link(adapter); 7292 7293 if (enable_wake) 7294 *enable_wake = wake; 7295 7296 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7297 * would have already happened in close and is redundant. 7298 */ 7299 igc_release_hw_control(adapter); 7300 7301 pci_disable_device(pdev); 7302 7303 return 0; 7304 } 7305 7306 static int igc_runtime_suspend(struct device *dev) 7307 { 7308 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 7309 } 7310 7311 static void igc_deliver_wake_packet(struct net_device *netdev) 7312 { 7313 struct igc_adapter *adapter = netdev_priv(netdev); 7314 struct igc_hw *hw = &adapter->hw; 7315 struct sk_buff *skb; 7316 u32 wupl; 7317 7318 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 7319 7320 /* WUPM stores only the first 128 bytes of the wake packet. 7321 * Read the packet only if we have the whole thing. 7322 */ 7323 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 7324 return; 7325 7326 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 7327 if (!skb) 7328 return; 7329 7330 skb_put(skb, wupl); 7331 7332 /* Ensure reads are 32-bit aligned */ 7333 wupl = roundup(wupl, 4); 7334 7335 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 7336 7337 skb->protocol = eth_type_trans(skb, netdev); 7338 netif_rx(skb); 7339 } 7340 7341 static int igc_resume(struct device *dev) 7342 { 7343 struct pci_dev *pdev = to_pci_dev(dev); 7344 struct net_device *netdev = pci_get_drvdata(pdev); 7345 struct igc_adapter *adapter = netdev_priv(netdev); 7346 struct igc_hw *hw = &adapter->hw; 7347 u32 err, val; 7348 7349 pci_set_power_state(pdev, PCI_D0); 7350 pci_restore_state(pdev); 7351 pci_save_state(pdev); 7352 7353 if (!pci_device_is_present(pdev)) 7354 return -ENODEV; 7355 err = pci_enable_device_mem(pdev); 7356 if (err) { 7357 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 7358 return err; 7359 } 7360 pci_set_master(pdev); 7361 7362 pci_enable_wake(pdev, PCI_D3hot, 0); 7363 pci_enable_wake(pdev, PCI_D3cold, 0); 7364 7365 if (igc_init_interrupt_scheme(adapter, true)) { 7366 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7367 return -ENOMEM; 7368 } 7369 7370 igc_reset(adapter); 7371 7372 /* let the f/w know that the h/w is now under the control of the 7373 * driver. 7374 */ 7375 igc_get_hw_control(adapter); 7376 7377 val = rd32(IGC_WUS); 7378 if (val & WAKE_PKT_WUS) 7379 igc_deliver_wake_packet(netdev); 7380 7381 wr32(IGC_WUS, ~0); 7382 7383 if (netif_running(netdev)) { 7384 err = __igc_open(netdev, true); 7385 if (!err) 7386 netif_device_attach(netdev); 7387 } 7388 7389 return err; 7390 } 7391 7392 static int igc_runtime_resume(struct device *dev) 7393 { 7394 return igc_resume(dev); 7395 } 7396 7397 static int igc_suspend(struct device *dev) 7398 { 7399 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 7400 } 7401 7402 static int __maybe_unused igc_runtime_idle(struct device *dev) 7403 { 7404 struct net_device *netdev = dev_get_drvdata(dev); 7405 struct igc_adapter *adapter = netdev_priv(netdev); 7406 7407 if (!igc_has_link(adapter)) 7408 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7409 7410 return -EBUSY; 7411 } 7412 7413 static void igc_shutdown(struct pci_dev *pdev) 7414 { 7415 bool wake; 7416 7417 __igc_shutdown(pdev, &wake, 0); 7418 7419 if (system_state == SYSTEM_POWER_OFF) { 7420 pci_wake_from_d3(pdev, wake); 7421 pci_set_power_state(pdev, PCI_D3hot); 7422 } 7423 } 7424 7425 /** 7426 * igc_io_error_detected - called when PCI error is detected 7427 * @pdev: Pointer to PCI device 7428 * @state: The current PCI connection state 7429 * 7430 * This function is called after a PCI bus error affecting 7431 * this device has been detected. 7432 **/ 7433 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 7434 pci_channel_state_t state) 7435 { 7436 struct net_device *netdev = pci_get_drvdata(pdev); 7437 struct igc_adapter *adapter = netdev_priv(netdev); 7438 7439 netif_device_detach(netdev); 7440 7441 if (state == pci_channel_io_perm_failure) 7442 return PCI_ERS_RESULT_DISCONNECT; 7443 7444 if (netif_running(netdev)) 7445 igc_down(adapter); 7446 pci_disable_device(pdev); 7447 7448 /* Request a slot reset. */ 7449 return PCI_ERS_RESULT_NEED_RESET; 7450 } 7451 7452 /** 7453 * igc_io_slot_reset - called after the PCI bus has been reset. 7454 * @pdev: Pointer to PCI device 7455 * 7456 * Restart the card from scratch, as if from a cold-boot. Implementation 7457 * resembles the first-half of the igc_resume routine. 7458 **/ 7459 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 7460 { 7461 struct net_device *netdev = pci_get_drvdata(pdev); 7462 struct igc_adapter *adapter = netdev_priv(netdev); 7463 struct igc_hw *hw = &adapter->hw; 7464 pci_ers_result_t result; 7465 7466 if (pci_enable_device_mem(pdev)) { 7467 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 7468 result = PCI_ERS_RESULT_DISCONNECT; 7469 } else { 7470 pci_set_master(pdev); 7471 pci_restore_state(pdev); 7472 pci_save_state(pdev); 7473 7474 pci_enable_wake(pdev, PCI_D3hot, 0); 7475 pci_enable_wake(pdev, PCI_D3cold, 0); 7476 7477 /* In case of PCI error, adapter loses its HW address 7478 * so we should re-assign it here. 7479 */ 7480 hw->hw_addr = adapter->io_addr; 7481 7482 igc_reset(adapter); 7483 wr32(IGC_WUS, ~0); 7484 result = PCI_ERS_RESULT_RECOVERED; 7485 } 7486 7487 return result; 7488 } 7489 7490 /** 7491 * igc_io_resume - called when traffic can start to flow again. 7492 * @pdev: Pointer to PCI device 7493 * 7494 * This callback is called when the error recovery driver tells us that 7495 * its OK to resume normal operation. Implementation resembles the 7496 * second-half of the igc_resume routine. 7497 */ 7498 static void igc_io_resume(struct pci_dev *pdev) 7499 { 7500 struct net_device *netdev = pci_get_drvdata(pdev); 7501 struct igc_adapter *adapter = netdev_priv(netdev); 7502 7503 rtnl_lock(); 7504 if (netif_running(netdev)) { 7505 if (igc_open(netdev)) { 7506 rtnl_unlock(); 7507 netdev_err(netdev, "igc_open failed after reset\n"); 7508 return; 7509 } 7510 } 7511 7512 netif_device_attach(netdev); 7513 7514 /* let the f/w know that the h/w is now under the control of the 7515 * driver. 7516 */ 7517 igc_get_hw_control(adapter); 7518 rtnl_unlock(); 7519 } 7520 7521 static const struct pci_error_handlers igc_err_handler = { 7522 .error_detected = igc_io_error_detected, 7523 .slot_reset = igc_io_slot_reset, 7524 .resume = igc_io_resume, 7525 }; 7526 7527 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume, 7528 igc_runtime_suspend, igc_runtime_resume, 7529 igc_runtime_idle); 7530 7531 static struct pci_driver igc_driver = { 7532 .name = igc_driver_name, 7533 .id_table = igc_pci_tbl, 7534 .probe = igc_probe, 7535 .remove = igc_remove, 7536 .driver.pm = pm_ptr(&igc_pm_ops), 7537 .shutdown = igc_shutdown, 7538 .err_handler = &igc_err_handler, 7539 }; 7540 7541 /** 7542 * igc_reinit_queues - return error 7543 * @adapter: pointer to adapter structure 7544 */ 7545 int igc_reinit_queues(struct igc_adapter *adapter) 7546 { 7547 struct net_device *netdev = adapter->netdev; 7548 int err = 0; 7549 7550 if (netif_running(netdev)) 7551 igc_close(netdev); 7552 7553 igc_reset_interrupt_capability(adapter); 7554 7555 if (igc_init_interrupt_scheme(adapter, true)) { 7556 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7557 return -ENOMEM; 7558 } 7559 7560 if (netif_running(netdev)) 7561 err = igc_open(netdev); 7562 7563 return err; 7564 } 7565 7566 /** 7567 * igc_get_hw_dev - return device 7568 * @hw: pointer to hardware structure 7569 * 7570 * used by hardware layer to print debugging information 7571 */ 7572 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7573 { 7574 struct igc_adapter *adapter = hw->back; 7575 7576 return adapter->netdev; 7577 } 7578 7579 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7580 { 7581 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7582 u8 idx = ring->reg_idx; 7583 u32 rxdctl; 7584 7585 rxdctl = rd32(IGC_RXDCTL(idx)); 7586 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7587 rxdctl |= IGC_RXDCTL_SWFLUSH; 7588 wr32(IGC_RXDCTL(idx), rxdctl); 7589 } 7590 7591 void igc_disable_rx_ring(struct igc_ring *ring) 7592 { 7593 igc_disable_rx_ring_hw(ring); 7594 igc_clean_rx_ring(ring); 7595 } 7596 7597 void igc_enable_rx_ring(struct igc_ring *ring) 7598 { 7599 struct igc_adapter *adapter = ring->q_vector->adapter; 7600 7601 igc_configure_rx_ring(adapter, ring); 7602 7603 if (ring->xsk_pool) 7604 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7605 else 7606 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7607 } 7608 7609 void igc_disable_tx_ring(struct igc_ring *ring) 7610 { 7611 igc_disable_tx_ring_hw(ring); 7612 igc_clean_tx_ring(ring); 7613 } 7614 7615 void igc_enable_tx_ring(struct igc_ring *ring) 7616 { 7617 struct igc_adapter *adapter = ring->q_vector->adapter; 7618 7619 igc_configure_tx_ring(adapter, ring); 7620 } 7621 7622 /** 7623 * igc_init_module - Driver Registration Routine 7624 * 7625 * igc_init_module is the first routine called when the driver is 7626 * loaded. All it does is register with the PCI subsystem. 7627 */ 7628 static int __init igc_init_module(void) 7629 { 7630 int ret; 7631 7632 pr_info("%s\n", igc_driver_string); 7633 pr_info("%s\n", igc_copyright); 7634 7635 ret = pci_register_driver(&igc_driver); 7636 return ret; 7637 } 7638 7639 module_init(igc_init_module); 7640 7641 /** 7642 * igc_exit_module - Driver Exit Cleanup Routine 7643 * 7644 * igc_exit_module is called just before the driver is removed 7645 * from memory. 7646 */ 7647 static void __exit igc_exit_module(void) 7648 { 7649 pci_unregister_driver(&igc_driver); 7650 } 7651 7652 module_exit(igc_exit_module); 7653 /* igc_main.c */ 7654