xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision d9c5252295218df4cfe64353aa860d7b5c8700ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 
9 #include "igc.h"
10 #include "igc_hw.h"
11 
12 #define DRV_VERSION	"0.0.1-k"
13 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
14 
15 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
16 
17 static int debug = -1;
18 
19 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
20 MODULE_DESCRIPTION(DRV_SUMMARY);
21 MODULE_LICENSE("GPL v2");
22 MODULE_VERSION(DRV_VERSION);
23 module_param(debug, int, 0);
24 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
25 
26 char igc_driver_name[] = "igc";
27 char igc_driver_version[] = DRV_VERSION;
28 static const char igc_driver_string[] = DRV_SUMMARY;
29 static const char igc_copyright[] =
30 	"Copyright(c) 2018 Intel Corporation.";
31 
32 static const struct igc_info *igc_info_tbl[] = {
33 	[board_base] = &igc_base_info,
34 };
35 
36 static const struct pci_device_id igc_pci_tbl[] = {
37 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
38 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
39 	/* required last entry */
40 	{0, }
41 };
42 
43 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
44 
45 /* forward declaration */
46 static void igc_clean_tx_ring(struct igc_ring *tx_ring);
47 static int igc_sw_init(struct igc_adapter *);
48 static void igc_configure(struct igc_adapter *adapter);
49 static void igc_power_down_link(struct igc_adapter *adapter);
50 static void igc_set_default_mac_filter(struct igc_adapter *adapter);
51 static void igc_set_rx_mode(struct net_device *netdev);
52 static void igc_write_itr(struct igc_q_vector *q_vector);
53 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
54 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
55 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
56 					 bool msix);
57 static void igc_free_q_vectors(struct igc_adapter *adapter);
58 static void igc_irq_disable(struct igc_adapter *adapter);
59 static void igc_irq_enable(struct igc_adapter *adapter);
60 static void igc_configure_msix(struct igc_adapter *adapter);
61 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
62 				  struct igc_rx_buffer *bi);
63 
64 enum latency_range {
65 	lowest_latency = 0,
66 	low_latency = 1,
67 	bulk_latency = 2,
68 	latency_invalid = 255
69 };
70 
71 void igc_reset(struct igc_adapter *adapter)
72 {
73 	struct pci_dev *pdev = adapter->pdev;
74 	struct igc_hw *hw = &adapter->hw;
75 	struct igc_fc_info *fc = &hw->fc;
76 	u32 pba, hwm;
77 
78 	/* Repartition PBA for greater than 9k MTU if required */
79 	pba = IGC_PBA_34K;
80 
81 	/* flow control settings
82 	 * The high water mark must be low enough to fit one full frame
83 	 * after transmitting the pause frame.  As such we must have enough
84 	 * space to allow for us to complete our current transmit and then
85 	 * receive the frame that is in progress from the link partner.
86 	 * Set it to:
87 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
88 	 */
89 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
90 
91 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
92 	fc->low_water = fc->high_water - 16;
93 	fc->pause_time = 0xFFFF;
94 	fc->send_xon = 1;
95 	fc->current_mode = fc->requested_mode;
96 
97 	hw->mac.ops.reset_hw(hw);
98 
99 	if (hw->mac.ops.init_hw(hw))
100 		dev_err(&pdev->dev, "Hardware Error\n");
101 
102 	if (!netif_running(adapter->netdev))
103 		igc_power_down_link(adapter);
104 
105 	igc_get_phy_info(hw);
106 }
107 
108 /**
109  * igc_power_up_link - Power up the phy/serdes link
110  * @adapter: address of board private structure
111  */
112 static void igc_power_up_link(struct igc_adapter *adapter)
113 {
114 	igc_reset_phy(&adapter->hw);
115 
116 	if (adapter->hw.phy.media_type == igc_media_type_copper)
117 		igc_power_up_phy_copper(&adapter->hw);
118 
119 	igc_setup_link(&adapter->hw);
120 }
121 
122 /**
123  * igc_power_down_link - Power down the phy/serdes link
124  * @adapter: address of board private structure
125  */
126 static void igc_power_down_link(struct igc_adapter *adapter)
127 {
128 	if (adapter->hw.phy.media_type == igc_media_type_copper)
129 		igc_power_down_phy_copper_base(&adapter->hw);
130 }
131 
132 /**
133  * igc_release_hw_control - release control of the h/w to f/w
134  * @adapter: address of board private structure
135  *
136  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
137  * For ASF and Pass Through versions of f/w this means that the
138  * driver is no longer loaded.
139  */
140 static void igc_release_hw_control(struct igc_adapter *adapter)
141 {
142 	struct igc_hw *hw = &adapter->hw;
143 	u32 ctrl_ext;
144 
145 	/* Let firmware take over control of h/w */
146 	ctrl_ext = rd32(IGC_CTRL_EXT);
147 	wr32(IGC_CTRL_EXT,
148 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
149 }
150 
151 /**
152  * igc_get_hw_control - get control of the h/w from f/w
153  * @adapter: address of board private structure
154  *
155  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
156  * For ASF and Pass Through versions of f/w this means that
157  * the driver is loaded.
158  */
159 static void igc_get_hw_control(struct igc_adapter *adapter)
160 {
161 	struct igc_hw *hw = &adapter->hw;
162 	u32 ctrl_ext;
163 
164 	/* Let firmware know the driver has taken over */
165 	ctrl_ext = rd32(IGC_CTRL_EXT);
166 	wr32(IGC_CTRL_EXT,
167 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
168 }
169 
170 /**
171  * igc_free_tx_resources - Free Tx Resources per Queue
172  * @tx_ring: Tx descriptor ring for a specific queue
173  *
174  * Free all transmit software resources
175  */
176 void igc_free_tx_resources(struct igc_ring *tx_ring)
177 {
178 	igc_clean_tx_ring(tx_ring);
179 
180 	vfree(tx_ring->tx_buffer_info);
181 	tx_ring->tx_buffer_info = NULL;
182 
183 	/* if not set, then don't free */
184 	if (!tx_ring->desc)
185 		return;
186 
187 	dma_free_coherent(tx_ring->dev, tx_ring->size,
188 			  tx_ring->desc, tx_ring->dma);
189 
190 	tx_ring->desc = NULL;
191 }
192 
193 /**
194  * igc_free_all_tx_resources - Free Tx Resources for All Queues
195  * @adapter: board private structure
196  *
197  * Free all transmit software resources
198  */
199 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
200 {
201 	int i;
202 
203 	for (i = 0; i < adapter->num_tx_queues; i++)
204 		igc_free_tx_resources(adapter->tx_ring[i]);
205 }
206 
207 /**
208  * igc_clean_tx_ring - Free Tx Buffers
209  * @tx_ring: ring to be cleaned
210  */
211 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
212 {
213 	u16 i = tx_ring->next_to_clean;
214 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
215 
216 	while (i != tx_ring->next_to_use) {
217 		union igc_adv_tx_desc *eop_desc, *tx_desc;
218 
219 		/* Free all the Tx ring sk_buffs */
220 		dev_kfree_skb_any(tx_buffer->skb);
221 
222 		/* unmap skb header data */
223 		dma_unmap_single(tx_ring->dev,
224 				 dma_unmap_addr(tx_buffer, dma),
225 				 dma_unmap_len(tx_buffer, len),
226 				 DMA_TO_DEVICE);
227 
228 		/* check for eop_desc to determine the end of the packet */
229 		eop_desc = tx_buffer->next_to_watch;
230 		tx_desc = IGC_TX_DESC(tx_ring, i);
231 
232 		/* unmap remaining buffers */
233 		while (tx_desc != eop_desc) {
234 			tx_buffer++;
235 			tx_desc++;
236 			i++;
237 			if (unlikely(i == tx_ring->count)) {
238 				i = 0;
239 				tx_buffer = tx_ring->tx_buffer_info;
240 				tx_desc = IGC_TX_DESC(tx_ring, 0);
241 			}
242 
243 			/* unmap any remaining paged data */
244 			if (dma_unmap_len(tx_buffer, len))
245 				dma_unmap_page(tx_ring->dev,
246 					       dma_unmap_addr(tx_buffer, dma),
247 					       dma_unmap_len(tx_buffer, len),
248 					       DMA_TO_DEVICE);
249 		}
250 
251 		/* move us one more past the eop_desc for start of next pkt */
252 		tx_buffer++;
253 		i++;
254 		if (unlikely(i == tx_ring->count)) {
255 			i = 0;
256 			tx_buffer = tx_ring->tx_buffer_info;
257 		}
258 	}
259 
260 	/* reset BQL for queue */
261 	netdev_tx_reset_queue(txring_txq(tx_ring));
262 
263 	/* reset next_to_use and next_to_clean */
264 	tx_ring->next_to_use = 0;
265 	tx_ring->next_to_clean = 0;
266 }
267 
268 /**
269  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
270  * @adapter: board private structure
271  */
272 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
273 {
274 	int i;
275 
276 	for (i = 0; i < adapter->num_tx_queues; i++)
277 		if (adapter->tx_ring[i])
278 			igc_clean_tx_ring(adapter->tx_ring[i]);
279 }
280 
281 /**
282  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
283  * @tx_ring: tx descriptor ring (for a specific queue) to setup
284  *
285  * Return 0 on success, negative on failure
286  */
287 int igc_setup_tx_resources(struct igc_ring *tx_ring)
288 {
289 	struct device *dev = tx_ring->dev;
290 	int size = 0;
291 
292 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
293 	tx_ring->tx_buffer_info = vzalloc(size);
294 	if (!tx_ring->tx_buffer_info)
295 		goto err;
296 
297 	/* round up to nearest 4K */
298 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
299 	tx_ring->size = ALIGN(tx_ring->size, 4096);
300 
301 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
302 					   &tx_ring->dma, GFP_KERNEL);
303 
304 	if (!tx_ring->desc)
305 		goto err;
306 
307 	tx_ring->next_to_use = 0;
308 	tx_ring->next_to_clean = 0;
309 
310 	return 0;
311 
312 err:
313 	vfree(tx_ring->tx_buffer_info);
314 	dev_err(dev,
315 		"Unable to allocate memory for the transmit descriptor ring\n");
316 	return -ENOMEM;
317 }
318 
319 /**
320  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
321  * @adapter: board private structure
322  *
323  * Return 0 on success, negative on failure
324  */
325 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
326 {
327 	struct pci_dev *pdev = adapter->pdev;
328 	int i, err = 0;
329 
330 	for (i = 0; i < adapter->num_tx_queues; i++) {
331 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
332 		if (err) {
333 			dev_err(&pdev->dev,
334 				"Allocation for Tx Queue %u failed\n", i);
335 			for (i--; i >= 0; i--)
336 				igc_free_tx_resources(adapter->tx_ring[i]);
337 			break;
338 		}
339 	}
340 
341 	return err;
342 }
343 
344 /**
345  * igc_clean_rx_ring - Free Rx Buffers per Queue
346  * @rx_ring: ring to free buffers from
347  */
348 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
349 {
350 	u16 i = rx_ring->next_to_clean;
351 
352 	if (rx_ring->skb)
353 		dev_kfree_skb(rx_ring->skb);
354 	rx_ring->skb = NULL;
355 
356 	/* Free all the Rx ring sk_buffs */
357 	while (i != rx_ring->next_to_alloc) {
358 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
359 
360 		/* Invalidate cache lines that may have been written to by
361 		 * device so that we avoid corrupting memory.
362 		 */
363 		dma_sync_single_range_for_cpu(rx_ring->dev,
364 					      buffer_info->dma,
365 					      buffer_info->page_offset,
366 					      igc_rx_bufsz(rx_ring),
367 					      DMA_FROM_DEVICE);
368 
369 		/* free resources associated with mapping */
370 		dma_unmap_page_attrs(rx_ring->dev,
371 				     buffer_info->dma,
372 				     igc_rx_pg_size(rx_ring),
373 				     DMA_FROM_DEVICE,
374 				     IGC_RX_DMA_ATTR);
375 		__page_frag_cache_drain(buffer_info->page,
376 					buffer_info->pagecnt_bias);
377 
378 		i++;
379 		if (i == rx_ring->count)
380 			i = 0;
381 	}
382 
383 	rx_ring->next_to_alloc = 0;
384 	rx_ring->next_to_clean = 0;
385 	rx_ring->next_to_use = 0;
386 }
387 
388 /**
389  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
390  * @adapter: board private structure
391  */
392 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
393 {
394 	int i;
395 
396 	for (i = 0; i < adapter->num_rx_queues; i++)
397 		if (adapter->rx_ring[i])
398 			igc_clean_rx_ring(adapter->rx_ring[i]);
399 }
400 
401 /**
402  * igc_free_rx_resources - Free Rx Resources
403  * @rx_ring: ring to clean the resources from
404  *
405  * Free all receive software resources
406  */
407 void igc_free_rx_resources(struct igc_ring *rx_ring)
408 {
409 	igc_clean_rx_ring(rx_ring);
410 
411 	vfree(rx_ring->rx_buffer_info);
412 	rx_ring->rx_buffer_info = NULL;
413 
414 	/* if not set, then don't free */
415 	if (!rx_ring->desc)
416 		return;
417 
418 	dma_free_coherent(rx_ring->dev, rx_ring->size,
419 			  rx_ring->desc, rx_ring->dma);
420 
421 	rx_ring->desc = NULL;
422 }
423 
424 /**
425  * igc_free_all_rx_resources - Free Rx Resources for All Queues
426  * @adapter: board private structure
427  *
428  * Free all receive software resources
429  */
430 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
431 {
432 	int i;
433 
434 	for (i = 0; i < adapter->num_rx_queues; i++)
435 		igc_free_rx_resources(adapter->rx_ring[i]);
436 }
437 
438 /**
439  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
440  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
441  *
442  * Returns 0 on success, negative on failure
443  */
444 int igc_setup_rx_resources(struct igc_ring *rx_ring)
445 {
446 	struct device *dev = rx_ring->dev;
447 	int size, desc_len;
448 
449 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
450 	rx_ring->rx_buffer_info = vzalloc(size);
451 	if (!rx_ring->rx_buffer_info)
452 		goto err;
453 
454 	desc_len = sizeof(union igc_adv_rx_desc);
455 
456 	/* Round up to nearest 4K */
457 	rx_ring->size = rx_ring->count * desc_len;
458 	rx_ring->size = ALIGN(rx_ring->size, 4096);
459 
460 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
461 					   &rx_ring->dma, GFP_KERNEL);
462 
463 	if (!rx_ring->desc)
464 		goto err;
465 
466 	rx_ring->next_to_alloc = 0;
467 	rx_ring->next_to_clean = 0;
468 	rx_ring->next_to_use = 0;
469 
470 	return 0;
471 
472 err:
473 	vfree(rx_ring->rx_buffer_info);
474 	rx_ring->rx_buffer_info = NULL;
475 	dev_err(dev,
476 		"Unable to allocate memory for the receive descriptor ring\n");
477 	return -ENOMEM;
478 }
479 
480 /**
481  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
482  *                                (Descriptors) for all queues
483  * @adapter: board private structure
484  *
485  * Return 0 on success, negative on failure
486  */
487 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
488 {
489 	struct pci_dev *pdev = adapter->pdev;
490 	int i, err = 0;
491 
492 	for (i = 0; i < adapter->num_rx_queues; i++) {
493 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
494 		if (err) {
495 			dev_err(&pdev->dev,
496 				"Allocation for Rx Queue %u failed\n", i);
497 			for (i--; i >= 0; i--)
498 				igc_free_rx_resources(adapter->rx_ring[i]);
499 			break;
500 		}
501 	}
502 
503 	return err;
504 }
505 
506 /**
507  * igc_configure_rx_ring - Configure a receive ring after Reset
508  * @adapter: board private structure
509  * @ring: receive ring to be configured
510  *
511  * Configure the Rx unit of the MAC after a reset.
512  */
513 static void igc_configure_rx_ring(struct igc_adapter *adapter,
514 				  struct igc_ring *ring)
515 {
516 	struct igc_hw *hw = &adapter->hw;
517 	union igc_adv_rx_desc *rx_desc;
518 	int reg_idx = ring->reg_idx;
519 	u32 srrctl = 0, rxdctl = 0;
520 	u64 rdba = ring->dma;
521 
522 	/* disable the queue */
523 	wr32(IGC_RXDCTL(reg_idx), 0);
524 
525 	/* Set DMA base address registers */
526 	wr32(IGC_RDBAL(reg_idx),
527 	     rdba & 0x00000000ffffffffULL);
528 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
529 	wr32(IGC_RDLEN(reg_idx),
530 	     ring->count * sizeof(union igc_adv_rx_desc));
531 
532 	/* initialize head and tail */
533 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
534 	wr32(IGC_RDH(reg_idx), 0);
535 	writel(0, ring->tail);
536 
537 	/* reset next-to- use/clean to place SW in sync with hardware */
538 	ring->next_to_clean = 0;
539 	ring->next_to_use = 0;
540 
541 	/* set descriptor configuration */
542 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
543 	if (ring_uses_large_buffer(ring))
544 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
545 	else
546 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
547 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
548 
549 	wr32(IGC_SRRCTL(reg_idx), srrctl);
550 
551 	rxdctl |= IGC_RX_PTHRESH;
552 	rxdctl |= IGC_RX_HTHRESH << 8;
553 	rxdctl |= IGC_RX_WTHRESH << 16;
554 
555 	/* initialize rx_buffer_info */
556 	memset(ring->rx_buffer_info, 0,
557 	       sizeof(struct igc_rx_buffer) * ring->count);
558 
559 	/* initialize Rx descriptor 0 */
560 	rx_desc = IGC_RX_DESC(ring, 0);
561 	rx_desc->wb.upper.length = 0;
562 
563 	/* enable receive descriptor fetching */
564 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
565 
566 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
567 }
568 
569 /**
570  * igc_configure_rx - Configure receive Unit after Reset
571  * @adapter: board private structure
572  *
573  * Configure the Rx unit of the MAC after a reset.
574  */
575 static void igc_configure_rx(struct igc_adapter *adapter)
576 {
577 	int i;
578 
579 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
580 	 * the Base and Length of the Rx Descriptor Ring
581 	 */
582 	for (i = 0; i < adapter->num_rx_queues; i++)
583 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
584 }
585 
586 /**
587  * igc_configure_tx_ring - Configure transmit ring after Reset
588  * @adapter: board private structure
589  * @ring: tx ring to configure
590  *
591  * Configure a transmit ring after a reset.
592  */
593 static void igc_configure_tx_ring(struct igc_adapter *adapter,
594 				  struct igc_ring *ring)
595 {
596 	struct igc_hw *hw = &adapter->hw;
597 	int reg_idx = ring->reg_idx;
598 	u64 tdba = ring->dma;
599 	u32 txdctl = 0;
600 
601 	/* disable the queue */
602 	wr32(IGC_TXDCTL(reg_idx), 0);
603 	wrfl();
604 	mdelay(10);
605 
606 	wr32(IGC_TDLEN(reg_idx),
607 	     ring->count * sizeof(union igc_adv_tx_desc));
608 	wr32(IGC_TDBAL(reg_idx),
609 	     tdba & 0x00000000ffffffffULL);
610 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
611 
612 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
613 	wr32(IGC_TDH(reg_idx), 0);
614 	writel(0, ring->tail);
615 
616 	txdctl |= IGC_TX_PTHRESH;
617 	txdctl |= IGC_TX_HTHRESH << 8;
618 	txdctl |= IGC_TX_WTHRESH << 16;
619 
620 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
621 	wr32(IGC_TXDCTL(reg_idx), txdctl);
622 }
623 
624 /**
625  * igc_configure_tx - Configure transmit Unit after Reset
626  * @adapter: board private structure
627  *
628  * Configure the Tx unit of the MAC after a reset.
629  */
630 static void igc_configure_tx(struct igc_adapter *adapter)
631 {
632 	int i;
633 
634 	for (i = 0; i < adapter->num_tx_queues; i++)
635 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
636 }
637 
638 /**
639  * igc_setup_mrqc - configure the multiple receive queue control registers
640  * @adapter: Board private structure
641  */
642 static void igc_setup_mrqc(struct igc_adapter *adapter)
643 {
644 	struct igc_hw *hw = &adapter->hw;
645 	u32 j, num_rx_queues;
646 	u32 mrqc, rxcsum;
647 	u32 rss_key[10];
648 
649 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
650 	for (j = 0; j < 10; j++)
651 		wr32(IGC_RSSRK(j), rss_key[j]);
652 
653 	num_rx_queues = adapter->rss_queues;
654 
655 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
656 		for (j = 0; j < IGC_RETA_SIZE; j++)
657 			adapter->rss_indir_tbl[j] =
658 			(j * num_rx_queues) / IGC_RETA_SIZE;
659 		adapter->rss_indir_tbl_init = num_rx_queues;
660 	}
661 	igc_write_rss_indir_tbl(adapter);
662 
663 	/* Disable raw packet checksumming so that RSS hash is placed in
664 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
665 	 * offloads as they are enabled by default
666 	 */
667 	rxcsum = rd32(IGC_RXCSUM);
668 	rxcsum |= IGC_RXCSUM_PCSD;
669 
670 	/* Enable Receive Checksum Offload for SCTP */
671 	rxcsum |= IGC_RXCSUM_CRCOFL;
672 
673 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
674 	wr32(IGC_RXCSUM, rxcsum);
675 
676 	/* Generate RSS hash based on packet types, TCP/UDP
677 	 * port numbers and/or IPv4/v6 src and dst addresses
678 	 */
679 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
680 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
681 	       IGC_MRQC_RSS_FIELD_IPV6 |
682 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
683 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
684 
685 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
686 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
687 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
688 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
689 
690 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
691 
692 	wr32(IGC_MRQC, mrqc);
693 }
694 
695 /**
696  * igc_setup_rctl - configure the receive control registers
697  * @adapter: Board private structure
698  */
699 static void igc_setup_rctl(struct igc_adapter *adapter)
700 {
701 	struct igc_hw *hw = &adapter->hw;
702 	u32 rctl;
703 
704 	rctl = rd32(IGC_RCTL);
705 
706 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
707 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
708 
709 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
710 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
711 
712 	/* enable stripping of CRC. Newer features require
713 	 * that the HW strips the CRC.
714 	 */
715 	rctl |= IGC_RCTL_SECRC;
716 
717 	/* disable store bad packets and clear size bits. */
718 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
719 
720 	/* enable LPE to allow for reception of jumbo frames */
721 	rctl |= IGC_RCTL_LPE;
722 
723 	/* disable queue 0 to prevent tail write w/o re-config */
724 	wr32(IGC_RXDCTL(0), 0);
725 
726 	/* This is useful for sniffing bad packets. */
727 	if (adapter->netdev->features & NETIF_F_RXALL) {
728 		/* UPE and MPE will be handled by normal PROMISC logic
729 		 * in set_rx_mode
730 		 */
731 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
732 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
733 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
734 
735 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
736 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
737 	}
738 
739 	wr32(IGC_RCTL, rctl);
740 }
741 
742 /**
743  * igc_setup_tctl - configure the transmit control registers
744  * @adapter: Board private structure
745  */
746 static void igc_setup_tctl(struct igc_adapter *adapter)
747 {
748 	struct igc_hw *hw = &adapter->hw;
749 	u32 tctl;
750 
751 	/* disable queue 0 which icould be enabled by default */
752 	wr32(IGC_TXDCTL(0), 0);
753 
754 	/* Program the Transmit Control Register */
755 	tctl = rd32(IGC_TCTL);
756 	tctl &= ~IGC_TCTL_CT;
757 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
758 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
759 
760 	/* Enable transmits */
761 	tctl |= IGC_TCTL_EN;
762 
763 	wr32(IGC_TCTL, tctl);
764 }
765 
766 /**
767  * igc_set_mac - Change the Ethernet Address of the NIC
768  * @netdev: network interface device structure
769  * @p: pointer to an address structure
770  *
771  * Returns 0 on success, negative on failure
772  */
773 static int igc_set_mac(struct net_device *netdev, void *p)
774 {
775 	struct igc_adapter *adapter = netdev_priv(netdev);
776 	struct igc_hw *hw = &adapter->hw;
777 	struct sockaddr *addr = p;
778 
779 	if (!is_valid_ether_addr(addr->sa_data))
780 		return -EADDRNOTAVAIL;
781 
782 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
783 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
784 
785 	/* set the correct pool for the new PF MAC address in entry 0 */
786 	igc_set_default_mac_filter(adapter);
787 
788 	return 0;
789 }
790 
791 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
792 {
793 }
794 
795 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
796 {
797 	struct net_device *netdev = tx_ring->netdev;
798 
799 	netif_stop_subqueue(netdev, tx_ring->queue_index);
800 
801 	/* memory barriier comment */
802 	smp_mb();
803 
804 	/* We need to check again in a case another CPU has just
805 	 * made room available.
806 	 */
807 	if (igc_desc_unused(tx_ring) < size)
808 		return -EBUSY;
809 
810 	/* A reprieve! */
811 	netif_wake_subqueue(netdev, tx_ring->queue_index);
812 
813 	u64_stats_update_begin(&tx_ring->tx_syncp2);
814 	tx_ring->tx_stats.restart_queue2++;
815 	u64_stats_update_end(&tx_ring->tx_syncp2);
816 
817 	return 0;
818 }
819 
820 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
821 {
822 	if (igc_desc_unused(tx_ring) >= size)
823 		return 0;
824 	return __igc_maybe_stop_tx(tx_ring, size);
825 }
826 
827 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
828 {
829 	/* set type for advanced descriptor with frame checksum insertion */
830 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
831 		       IGC_ADVTXD_DCMD_DEXT |
832 		       IGC_ADVTXD_DCMD_IFCS;
833 
834 	return cmd_type;
835 }
836 
837 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
838 				 union igc_adv_tx_desc *tx_desc,
839 				 u32 tx_flags, unsigned int paylen)
840 {
841 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
842 
843 	/* insert L4 checksum */
844 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
845 			  ((IGC_TXD_POPTS_TXSM << 8) /
846 			  IGC_TX_FLAGS_CSUM);
847 
848 	/* insert IPv4 checksum */
849 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
850 			  (((IGC_TXD_POPTS_IXSM << 8)) /
851 			  IGC_TX_FLAGS_IPV4);
852 
853 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
854 }
855 
856 static int igc_tx_map(struct igc_ring *tx_ring,
857 		      struct igc_tx_buffer *first,
858 		      const u8 hdr_len)
859 {
860 	struct sk_buff *skb = first->skb;
861 	struct igc_tx_buffer *tx_buffer;
862 	union igc_adv_tx_desc *tx_desc;
863 	u32 tx_flags = first->tx_flags;
864 	struct skb_frag_struct *frag;
865 	u16 i = tx_ring->next_to_use;
866 	unsigned int data_len, size;
867 	dma_addr_t dma;
868 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
869 
870 	tx_desc = IGC_TX_DESC(tx_ring, i);
871 
872 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
873 
874 	size = skb_headlen(skb);
875 	data_len = skb->data_len;
876 
877 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
878 
879 	tx_buffer = first;
880 
881 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
882 		if (dma_mapping_error(tx_ring->dev, dma))
883 			goto dma_error;
884 
885 		/* record length, and DMA address */
886 		dma_unmap_len_set(tx_buffer, len, size);
887 		dma_unmap_addr_set(tx_buffer, dma, dma);
888 
889 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
890 
891 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
892 			tx_desc->read.cmd_type_len =
893 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
894 
895 			i++;
896 			tx_desc++;
897 			if (i == tx_ring->count) {
898 				tx_desc = IGC_TX_DESC(tx_ring, 0);
899 				i = 0;
900 			}
901 			tx_desc->read.olinfo_status = 0;
902 
903 			dma += IGC_MAX_DATA_PER_TXD;
904 			size -= IGC_MAX_DATA_PER_TXD;
905 
906 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
907 		}
908 
909 		if (likely(!data_len))
910 			break;
911 
912 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
913 
914 		i++;
915 		tx_desc++;
916 		if (i == tx_ring->count) {
917 			tx_desc = IGC_TX_DESC(tx_ring, 0);
918 			i = 0;
919 		}
920 		tx_desc->read.olinfo_status = 0;
921 
922 		size = skb_frag_size(frag);
923 		data_len -= size;
924 
925 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
926 				       size, DMA_TO_DEVICE);
927 
928 		tx_buffer = &tx_ring->tx_buffer_info[i];
929 	}
930 
931 	/* write last descriptor with RS and EOP bits */
932 	cmd_type |= size | IGC_TXD_DCMD;
933 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
934 
935 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
936 
937 	/* set the timestamp */
938 	first->time_stamp = jiffies;
939 
940 	skb_tx_timestamp(skb);
941 
942 	/* Force memory writes to complete before letting h/w know there
943 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
944 	 * memory model archs, such as IA-64).
945 	 *
946 	 * We also need this memory barrier to make certain all of the
947 	 * status bits have been updated before next_to_watch is written.
948 	 */
949 	wmb();
950 
951 	/* set next_to_watch value indicating a packet is present */
952 	first->next_to_watch = tx_desc;
953 
954 	i++;
955 	if (i == tx_ring->count)
956 		i = 0;
957 
958 	tx_ring->next_to_use = i;
959 
960 	/* Make sure there is space in the ring for the next send. */
961 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
962 
963 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
964 		writel(i, tx_ring->tail);
965 	}
966 
967 	return 0;
968 dma_error:
969 	dev_err(tx_ring->dev, "TX DMA map failed\n");
970 	tx_buffer = &tx_ring->tx_buffer_info[i];
971 
972 	/* clear dma mappings for failed tx_buffer_info map */
973 	while (tx_buffer != first) {
974 		if (dma_unmap_len(tx_buffer, len))
975 			dma_unmap_page(tx_ring->dev,
976 				       dma_unmap_addr(tx_buffer, dma),
977 				       dma_unmap_len(tx_buffer, len),
978 				       DMA_TO_DEVICE);
979 		dma_unmap_len_set(tx_buffer, len, 0);
980 
981 		if (i-- == 0)
982 			i += tx_ring->count;
983 		tx_buffer = &tx_ring->tx_buffer_info[i];
984 	}
985 
986 	if (dma_unmap_len(tx_buffer, len))
987 		dma_unmap_single(tx_ring->dev,
988 				 dma_unmap_addr(tx_buffer, dma),
989 				 dma_unmap_len(tx_buffer, len),
990 				 DMA_TO_DEVICE);
991 	dma_unmap_len_set(tx_buffer, len, 0);
992 
993 	dev_kfree_skb_any(tx_buffer->skb);
994 	tx_buffer->skb = NULL;
995 
996 	tx_ring->next_to_use = i;
997 
998 	return -1;
999 }
1000 
1001 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1002 				       struct igc_ring *tx_ring)
1003 {
1004 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1005 	__be16 protocol = vlan_get_protocol(skb);
1006 	struct igc_tx_buffer *first;
1007 	u32 tx_flags = 0;
1008 	unsigned short f;
1009 	u8 hdr_len = 0;
1010 
1011 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1012 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1013 	 *	+ 2 desc gap to keep tail from touching head,
1014 	 *	+ 1 desc for context descriptor,
1015 	 * otherwise try next time
1016 	 */
1017 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1018 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1019 
1020 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1021 		/* this is a hard error */
1022 		return NETDEV_TX_BUSY;
1023 	}
1024 
1025 	/* record the location of the first descriptor for this packet */
1026 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1027 	first->skb = skb;
1028 	first->bytecount = skb->len;
1029 	first->gso_segs = 1;
1030 
1031 	/* record initial flags and protocol */
1032 	first->tx_flags = tx_flags;
1033 	first->protocol = protocol;
1034 
1035 	igc_tx_csum(tx_ring, first);
1036 
1037 	igc_tx_map(tx_ring, first, hdr_len);
1038 
1039 	return NETDEV_TX_OK;
1040 }
1041 
1042 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1043 						    struct sk_buff *skb)
1044 {
1045 	unsigned int r_idx = skb->queue_mapping;
1046 
1047 	if (r_idx >= adapter->num_tx_queues)
1048 		r_idx = r_idx % adapter->num_tx_queues;
1049 
1050 	return adapter->tx_ring[r_idx];
1051 }
1052 
1053 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1054 				  struct net_device *netdev)
1055 {
1056 	struct igc_adapter *adapter = netdev_priv(netdev);
1057 
1058 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1059 	 * in order to meet this minimum size requirement.
1060 	 */
1061 	if (skb->len < 17) {
1062 		if (skb_padto(skb, 17))
1063 			return NETDEV_TX_OK;
1064 		skb->len = 17;
1065 	}
1066 
1067 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1068 }
1069 
1070 static inline void igc_rx_hash(struct igc_ring *ring,
1071 			       union igc_adv_rx_desc *rx_desc,
1072 			       struct sk_buff *skb)
1073 {
1074 	if (ring->netdev->features & NETIF_F_RXHASH)
1075 		skb_set_hash(skb,
1076 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1077 			     PKT_HASH_TYPE_L3);
1078 }
1079 
1080 /**
1081  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1082  * @rx_ring: rx descriptor ring packet is being transacted on
1083  * @rx_desc: pointer to the EOP Rx descriptor
1084  * @skb: pointer to current skb being populated
1085  *
1086  * This function checks the ring, descriptor, and packet information in
1087  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1088  * other fields within the skb.
1089  */
1090 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1091 				   union igc_adv_rx_desc *rx_desc,
1092 				   struct sk_buff *skb)
1093 {
1094 	igc_rx_hash(rx_ring, rx_desc, skb);
1095 
1096 	skb_record_rx_queue(skb, rx_ring->queue_index);
1097 
1098 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1099 }
1100 
1101 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1102 					       const unsigned int size)
1103 {
1104 	struct igc_rx_buffer *rx_buffer;
1105 
1106 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1107 	prefetchw(rx_buffer->page);
1108 
1109 	/* we are reusing so sync this buffer for CPU use */
1110 	dma_sync_single_range_for_cpu(rx_ring->dev,
1111 				      rx_buffer->dma,
1112 				      rx_buffer->page_offset,
1113 				      size,
1114 				      DMA_FROM_DEVICE);
1115 
1116 	rx_buffer->pagecnt_bias--;
1117 
1118 	return rx_buffer;
1119 }
1120 
1121 /**
1122  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1123  * @rx_ring: rx descriptor ring to transact packets on
1124  * @rx_buffer: buffer containing page to add
1125  * @skb: sk_buff to place the data into
1126  * @size: size of buffer to be added
1127  *
1128  * This function will add the data contained in rx_buffer->page to the skb.
1129  */
1130 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1131 			    struct igc_rx_buffer *rx_buffer,
1132 			    struct sk_buff *skb,
1133 			    unsigned int size)
1134 {
1135 #if (PAGE_SIZE < 8192)
1136 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1137 
1138 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1139 			rx_buffer->page_offset, size, truesize);
1140 	rx_buffer->page_offset ^= truesize;
1141 #else
1142 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1143 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1144 				SKB_DATA_ALIGN(size);
1145 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1146 			rx_buffer->page_offset, size, truesize);
1147 	rx_buffer->page_offset += truesize;
1148 #endif
1149 }
1150 
1151 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1152 				     struct igc_rx_buffer *rx_buffer,
1153 				     union igc_adv_rx_desc *rx_desc,
1154 				     unsigned int size)
1155 {
1156 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1157 #if (PAGE_SIZE < 8192)
1158 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1159 #else
1160 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1161 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1162 #endif
1163 	struct sk_buff *skb;
1164 
1165 	/* prefetch first cache line of first page */
1166 	prefetch(va);
1167 #if L1_CACHE_BYTES < 128
1168 	prefetch(va + L1_CACHE_BYTES);
1169 #endif
1170 
1171 	/* build an skb around the page buffer */
1172 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1173 	if (unlikely(!skb))
1174 		return NULL;
1175 
1176 	/* update pointers within the skb to store the data */
1177 	skb_reserve(skb, IGC_SKB_PAD);
1178 	__skb_put(skb, size);
1179 
1180 	/* update buffer offset */
1181 #if (PAGE_SIZE < 8192)
1182 	rx_buffer->page_offset ^= truesize;
1183 #else
1184 	rx_buffer->page_offset += truesize;
1185 #endif
1186 
1187 	return skb;
1188 }
1189 
1190 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1191 					 struct igc_rx_buffer *rx_buffer,
1192 					 union igc_adv_rx_desc *rx_desc,
1193 					 unsigned int size)
1194 {
1195 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1196 #if (PAGE_SIZE < 8192)
1197 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1198 #else
1199 	unsigned int truesize = SKB_DATA_ALIGN(size);
1200 #endif
1201 	unsigned int headlen;
1202 	struct sk_buff *skb;
1203 
1204 	/* prefetch first cache line of first page */
1205 	prefetch(va);
1206 #if L1_CACHE_BYTES < 128
1207 	prefetch(va + L1_CACHE_BYTES);
1208 #endif
1209 
1210 	/* allocate a skb to store the frags */
1211 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1212 	if (unlikely(!skb))
1213 		return NULL;
1214 
1215 	/* Determine available headroom for copy */
1216 	headlen = size;
1217 	if (headlen > IGC_RX_HDR_LEN)
1218 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1219 
1220 	/* align pull length to size of long to optimize memcpy performance */
1221 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1222 
1223 	/* update all of the pointers */
1224 	size -= headlen;
1225 	if (size) {
1226 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1227 				(va + headlen) - page_address(rx_buffer->page),
1228 				size, truesize);
1229 #if (PAGE_SIZE < 8192)
1230 		rx_buffer->page_offset ^= truesize;
1231 #else
1232 		rx_buffer->page_offset += truesize;
1233 #endif
1234 	} else {
1235 		rx_buffer->pagecnt_bias++;
1236 	}
1237 
1238 	return skb;
1239 }
1240 
1241 /**
1242  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1243  * @rx_ring: rx descriptor ring to store buffers on
1244  * @old_buff: donor buffer to have page reused
1245  *
1246  * Synchronizes page for reuse by the adapter
1247  */
1248 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1249 			      struct igc_rx_buffer *old_buff)
1250 {
1251 	u16 nta = rx_ring->next_to_alloc;
1252 	struct igc_rx_buffer *new_buff;
1253 
1254 	new_buff = &rx_ring->rx_buffer_info[nta];
1255 
1256 	/* update, and store next to alloc */
1257 	nta++;
1258 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1259 
1260 	/* Transfer page from old buffer to new buffer.
1261 	 * Move each member individually to avoid possible store
1262 	 * forwarding stalls.
1263 	 */
1264 	new_buff->dma		= old_buff->dma;
1265 	new_buff->page		= old_buff->page;
1266 	new_buff->page_offset	= old_buff->page_offset;
1267 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1268 }
1269 
1270 static inline bool igc_page_is_reserved(struct page *page)
1271 {
1272 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1273 }
1274 
1275 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1276 {
1277 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1278 	struct page *page = rx_buffer->page;
1279 
1280 	/* avoid re-using remote pages */
1281 	if (unlikely(igc_page_is_reserved(page)))
1282 		return false;
1283 
1284 #if (PAGE_SIZE < 8192)
1285 	/* if we are only owner of page we can reuse it */
1286 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1287 		return false;
1288 #else
1289 #define IGC_LAST_OFFSET \
1290 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1291 
1292 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1293 		return false;
1294 #endif
1295 
1296 	/* If we have drained the page fragment pool we need to update
1297 	 * the pagecnt_bias and page count so that we fully restock the
1298 	 * number of references the driver holds.
1299 	 */
1300 	if (unlikely(!pagecnt_bias)) {
1301 		page_ref_add(page, USHRT_MAX);
1302 		rx_buffer->pagecnt_bias = USHRT_MAX;
1303 	}
1304 
1305 	return true;
1306 }
1307 
1308 /**
1309  * igc_is_non_eop - process handling of non-EOP buffers
1310  * @rx_ring: Rx ring being processed
1311  * @rx_desc: Rx descriptor for current buffer
1312  * @skb: current socket buffer containing buffer in progress
1313  *
1314  * This function updates next to clean.  If the buffer is an EOP buffer
1315  * this function exits returning false, otherwise it will place the
1316  * sk_buff in the next buffer to be chained and return true indicating
1317  * that this is in fact a non-EOP buffer.
1318  */
1319 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1320 			   union igc_adv_rx_desc *rx_desc)
1321 {
1322 	u32 ntc = rx_ring->next_to_clean + 1;
1323 
1324 	/* fetch, update, and store next to clean */
1325 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1326 	rx_ring->next_to_clean = ntc;
1327 
1328 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1329 
1330 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1331 		return false;
1332 
1333 	return true;
1334 }
1335 
1336 /**
1337  * igc_cleanup_headers - Correct corrupted or empty headers
1338  * @rx_ring: rx descriptor ring packet is being transacted on
1339  * @rx_desc: pointer to the EOP Rx descriptor
1340  * @skb: pointer to current skb being fixed
1341  *
1342  * Address the case where we are pulling data in on pages only
1343  * and as such no data is present in the skb header.
1344  *
1345  * In addition if skb is not at least 60 bytes we need to pad it so that
1346  * it is large enough to qualify as a valid Ethernet frame.
1347  *
1348  * Returns true if an error was encountered and skb was freed.
1349  */
1350 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1351 				union igc_adv_rx_desc *rx_desc,
1352 				struct sk_buff *skb)
1353 {
1354 	if (unlikely((igc_test_staterr(rx_desc,
1355 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1356 		struct net_device *netdev = rx_ring->netdev;
1357 
1358 		if (!(netdev->features & NETIF_F_RXALL)) {
1359 			dev_kfree_skb_any(skb);
1360 			return true;
1361 		}
1362 	}
1363 
1364 	/* if eth_skb_pad returns an error the skb was freed */
1365 	if (eth_skb_pad(skb))
1366 		return true;
1367 
1368 	return false;
1369 }
1370 
1371 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1372 			      struct igc_rx_buffer *rx_buffer)
1373 {
1374 	if (igc_can_reuse_rx_page(rx_buffer)) {
1375 		/* hand second half of page back to the ring */
1376 		igc_reuse_rx_page(rx_ring, rx_buffer);
1377 	} else {
1378 		/* We are not reusing the buffer so unmap it and free
1379 		 * any references we are holding to it
1380 		 */
1381 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1382 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1383 				     IGC_RX_DMA_ATTR);
1384 		__page_frag_cache_drain(rx_buffer->page,
1385 					rx_buffer->pagecnt_bias);
1386 	}
1387 
1388 	/* clear contents of rx_buffer */
1389 	rx_buffer->page = NULL;
1390 }
1391 
1392 /**
1393  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1394  * @adapter: address of board private structure
1395  */
1396 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1397 {
1398 	union igc_adv_rx_desc *rx_desc;
1399 	u16 i = rx_ring->next_to_use;
1400 	struct igc_rx_buffer *bi;
1401 	u16 bufsz;
1402 
1403 	/* nothing to do */
1404 	if (!cleaned_count)
1405 		return;
1406 
1407 	rx_desc = IGC_RX_DESC(rx_ring, i);
1408 	bi = &rx_ring->rx_buffer_info[i];
1409 	i -= rx_ring->count;
1410 
1411 	bufsz = igc_rx_bufsz(rx_ring);
1412 
1413 	do {
1414 		if (!igc_alloc_mapped_page(rx_ring, bi))
1415 			break;
1416 
1417 		/* sync the buffer for use by the device */
1418 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1419 						 bi->page_offset, bufsz,
1420 						 DMA_FROM_DEVICE);
1421 
1422 		/* Refresh the desc even if buffer_addrs didn't change
1423 		 * because each write-back erases this info.
1424 		 */
1425 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1426 
1427 		rx_desc++;
1428 		bi++;
1429 		i++;
1430 		if (unlikely(!i)) {
1431 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1432 			bi = rx_ring->rx_buffer_info;
1433 			i -= rx_ring->count;
1434 		}
1435 
1436 		/* clear the length for the next_to_use descriptor */
1437 		rx_desc->wb.upper.length = 0;
1438 
1439 		cleaned_count--;
1440 	} while (cleaned_count);
1441 
1442 	i += rx_ring->count;
1443 
1444 	if (rx_ring->next_to_use != i) {
1445 		/* record the next descriptor to use */
1446 		rx_ring->next_to_use = i;
1447 
1448 		/* update next to alloc since we have filled the ring */
1449 		rx_ring->next_to_alloc = i;
1450 
1451 		/* Force memory writes to complete before letting h/w
1452 		 * know there are new descriptors to fetch.  (Only
1453 		 * applicable for weak-ordered memory model archs,
1454 		 * such as IA-64).
1455 		 */
1456 		wmb();
1457 		writel(i, rx_ring->tail);
1458 	}
1459 }
1460 
1461 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1462 {
1463 	unsigned int total_bytes = 0, total_packets = 0;
1464 	struct igc_ring *rx_ring = q_vector->rx.ring;
1465 	struct sk_buff *skb = rx_ring->skb;
1466 	u16 cleaned_count = igc_desc_unused(rx_ring);
1467 
1468 	while (likely(total_packets < budget)) {
1469 		union igc_adv_rx_desc *rx_desc;
1470 		struct igc_rx_buffer *rx_buffer;
1471 		unsigned int size;
1472 
1473 		/* return some buffers to hardware, one at a time is too slow */
1474 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1475 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1476 			cleaned_count = 0;
1477 		}
1478 
1479 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1480 		size = le16_to_cpu(rx_desc->wb.upper.length);
1481 		if (!size)
1482 			break;
1483 
1484 		/* This memory barrier is needed to keep us from reading
1485 		 * any other fields out of the rx_desc until we know the
1486 		 * descriptor has been written back
1487 		 */
1488 		dma_rmb();
1489 
1490 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1491 
1492 		/* retrieve a buffer from the ring */
1493 		if (skb)
1494 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1495 		else if (ring_uses_build_skb(rx_ring))
1496 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1497 		else
1498 			skb = igc_construct_skb(rx_ring, rx_buffer,
1499 						rx_desc, size);
1500 
1501 		/* exit if we failed to retrieve a buffer */
1502 		if (!skb) {
1503 			rx_ring->rx_stats.alloc_failed++;
1504 			rx_buffer->pagecnt_bias++;
1505 			break;
1506 		}
1507 
1508 		igc_put_rx_buffer(rx_ring, rx_buffer);
1509 		cleaned_count++;
1510 
1511 		/* fetch next buffer in frame if non-eop */
1512 		if (igc_is_non_eop(rx_ring, rx_desc))
1513 			continue;
1514 
1515 		/* verify the packet layout is correct */
1516 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1517 			skb = NULL;
1518 			continue;
1519 		}
1520 
1521 		/* probably a little skewed due to removing CRC */
1522 		total_bytes += skb->len;
1523 
1524 		/* populate checksum, timestamp, VLAN, and protocol */
1525 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1526 
1527 		napi_gro_receive(&q_vector->napi, skb);
1528 
1529 		/* reset skb pointer */
1530 		skb = NULL;
1531 
1532 		/* update budget accounting */
1533 		total_packets++;
1534 	}
1535 
1536 	/* place incomplete frames back on ring for completion */
1537 	rx_ring->skb = skb;
1538 
1539 	u64_stats_update_begin(&rx_ring->rx_syncp);
1540 	rx_ring->rx_stats.packets += total_packets;
1541 	rx_ring->rx_stats.bytes += total_bytes;
1542 	u64_stats_update_end(&rx_ring->rx_syncp);
1543 	q_vector->rx.total_packets += total_packets;
1544 	q_vector->rx.total_bytes += total_bytes;
1545 
1546 	if (cleaned_count)
1547 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1548 
1549 	return total_packets;
1550 }
1551 
1552 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1553 {
1554 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1555 }
1556 
1557 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1558 				  struct igc_rx_buffer *bi)
1559 {
1560 	struct page *page = bi->page;
1561 	dma_addr_t dma;
1562 
1563 	/* since we are recycling buffers we should seldom need to alloc */
1564 	if (likely(page))
1565 		return true;
1566 
1567 	/* alloc new page for storage */
1568 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1569 	if (unlikely(!page)) {
1570 		rx_ring->rx_stats.alloc_failed++;
1571 		return false;
1572 	}
1573 
1574 	/* map page for use */
1575 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1576 				 igc_rx_pg_size(rx_ring),
1577 				 DMA_FROM_DEVICE,
1578 				 IGC_RX_DMA_ATTR);
1579 
1580 	/* if mapping failed free memory back to system since
1581 	 * there isn't much point in holding memory we can't use
1582 	 */
1583 	if (dma_mapping_error(rx_ring->dev, dma)) {
1584 		__free_page(page);
1585 
1586 		rx_ring->rx_stats.alloc_failed++;
1587 		return false;
1588 	}
1589 
1590 	bi->dma = dma;
1591 	bi->page = page;
1592 	bi->page_offset = igc_rx_offset(rx_ring);
1593 	bi->pagecnt_bias = 1;
1594 
1595 	return true;
1596 }
1597 
1598 /**
1599  * igc_clean_tx_irq - Reclaim resources after transmit completes
1600  * @q_vector: pointer to q_vector containing needed info
1601  * @napi_budget: Used to determine if we are in netpoll
1602  *
1603  * returns true if ring is completely cleaned
1604  */
1605 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1606 {
1607 	struct igc_adapter *adapter = q_vector->adapter;
1608 	unsigned int total_bytes = 0, total_packets = 0;
1609 	unsigned int budget = q_vector->tx.work_limit;
1610 	struct igc_ring *tx_ring = q_vector->tx.ring;
1611 	unsigned int i = tx_ring->next_to_clean;
1612 	struct igc_tx_buffer *tx_buffer;
1613 	union igc_adv_tx_desc *tx_desc;
1614 
1615 	if (test_bit(__IGC_DOWN, &adapter->state))
1616 		return true;
1617 
1618 	tx_buffer = &tx_ring->tx_buffer_info[i];
1619 	tx_desc = IGC_TX_DESC(tx_ring, i);
1620 	i -= tx_ring->count;
1621 
1622 	do {
1623 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1624 
1625 		/* if next_to_watch is not set then there is no work pending */
1626 		if (!eop_desc)
1627 			break;
1628 
1629 		/* prevent any other reads prior to eop_desc */
1630 		smp_rmb();
1631 
1632 		/* if DD is not set pending work has not been completed */
1633 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1634 			break;
1635 
1636 		/* clear next_to_watch to prevent false hangs */
1637 		tx_buffer->next_to_watch = NULL;
1638 
1639 		/* update the statistics for this packet */
1640 		total_bytes += tx_buffer->bytecount;
1641 		total_packets += tx_buffer->gso_segs;
1642 
1643 		/* free the skb */
1644 		napi_consume_skb(tx_buffer->skb, napi_budget);
1645 
1646 		/* unmap skb header data */
1647 		dma_unmap_single(tx_ring->dev,
1648 				 dma_unmap_addr(tx_buffer, dma),
1649 				 dma_unmap_len(tx_buffer, len),
1650 				 DMA_TO_DEVICE);
1651 
1652 		/* clear tx_buffer data */
1653 		dma_unmap_len_set(tx_buffer, len, 0);
1654 
1655 		/* clear last DMA location and unmap remaining buffers */
1656 		while (tx_desc != eop_desc) {
1657 			tx_buffer++;
1658 			tx_desc++;
1659 			i++;
1660 			if (unlikely(!i)) {
1661 				i -= tx_ring->count;
1662 				tx_buffer = tx_ring->tx_buffer_info;
1663 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1664 			}
1665 
1666 			/* unmap any remaining paged data */
1667 			if (dma_unmap_len(tx_buffer, len)) {
1668 				dma_unmap_page(tx_ring->dev,
1669 					       dma_unmap_addr(tx_buffer, dma),
1670 					       dma_unmap_len(tx_buffer, len),
1671 					       DMA_TO_DEVICE);
1672 				dma_unmap_len_set(tx_buffer, len, 0);
1673 			}
1674 		}
1675 
1676 		/* move us one more past the eop_desc for start of next pkt */
1677 		tx_buffer++;
1678 		tx_desc++;
1679 		i++;
1680 		if (unlikely(!i)) {
1681 			i -= tx_ring->count;
1682 			tx_buffer = tx_ring->tx_buffer_info;
1683 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1684 		}
1685 
1686 		/* issue prefetch for next Tx descriptor */
1687 		prefetch(tx_desc);
1688 
1689 		/* update budget accounting */
1690 		budget--;
1691 	} while (likely(budget));
1692 
1693 	netdev_tx_completed_queue(txring_txq(tx_ring),
1694 				  total_packets, total_bytes);
1695 
1696 	i += tx_ring->count;
1697 	tx_ring->next_to_clean = i;
1698 	u64_stats_update_begin(&tx_ring->tx_syncp);
1699 	tx_ring->tx_stats.bytes += total_bytes;
1700 	tx_ring->tx_stats.packets += total_packets;
1701 	u64_stats_update_end(&tx_ring->tx_syncp);
1702 	q_vector->tx.total_bytes += total_bytes;
1703 	q_vector->tx.total_packets += total_packets;
1704 
1705 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1706 		struct igc_hw *hw = &adapter->hw;
1707 
1708 		/* Detect a transmit hang in hardware, this serializes the
1709 		 * check with the clearing of time_stamp and movement of i
1710 		 */
1711 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1712 		if (tx_buffer->next_to_watch &&
1713 		    time_after(jiffies, tx_buffer->time_stamp +
1714 		    (adapter->tx_timeout_factor * HZ)) &&
1715 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1716 			/* detected Tx unit hang */
1717 			dev_err(tx_ring->dev,
1718 				"Detected Tx Unit Hang\n"
1719 				"  Tx Queue             <%d>\n"
1720 				"  TDH                  <%x>\n"
1721 				"  TDT                  <%x>\n"
1722 				"  next_to_use          <%x>\n"
1723 				"  next_to_clean        <%x>\n"
1724 				"buffer_info[next_to_clean]\n"
1725 				"  time_stamp           <%lx>\n"
1726 				"  next_to_watch        <%p>\n"
1727 				"  jiffies              <%lx>\n"
1728 				"  desc.status          <%x>\n",
1729 				tx_ring->queue_index,
1730 				rd32(IGC_TDH(tx_ring->reg_idx)),
1731 				readl(tx_ring->tail),
1732 				tx_ring->next_to_use,
1733 				tx_ring->next_to_clean,
1734 				tx_buffer->time_stamp,
1735 				tx_buffer->next_to_watch,
1736 				jiffies,
1737 				tx_buffer->next_to_watch->wb.status);
1738 			netif_stop_subqueue(tx_ring->netdev,
1739 					    tx_ring->queue_index);
1740 
1741 			/* we are about to reset, no point in enabling stuff */
1742 			return true;
1743 		}
1744 	}
1745 
1746 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1747 	if (unlikely(total_packets &&
1748 		     netif_carrier_ok(tx_ring->netdev) &&
1749 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1750 		/* Make sure that anybody stopping the queue after this
1751 		 * sees the new next_to_clean.
1752 		 */
1753 		smp_mb();
1754 		if (__netif_subqueue_stopped(tx_ring->netdev,
1755 					     tx_ring->queue_index) &&
1756 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
1757 			netif_wake_subqueue(tx_ring->netdev,
1758 					    tx_ring->queue_index);
1759 
1760 			u64_stats_update_begin(&tx_ring->tx_syncp);
1761 			tx_ring->tx_stats.restart_queue++;
1762 			u64_stats_update_end(&tx_ring->tx_syncp);
1763 		}
1764 	}
1765 
1766 	return !!budget;
1767 }
1768 
1769 /**
1770  * igc_up - Open the interface and prepare it to handle traffic
1771  * @adapter: board private structure
1772  */
1773 void igc_up(struct igc_adapter *adapter)
1774 {
1775 	struct igc_hw *hw = &adapter->hw;
1776 	int i = 0;
1777 
1778 	/* hardware has been reset, we need to reload some things */
1779 	igc_configure(adapter);
1780 
1781 	clear_bit(__IGC_DOWN, &adapter->state);
1782 
1783 	for (i = 0; i < adapter->num_q_vectors; i++)
1784 		napi_enable(&adapter->q_vector[i]->napi);
1785 
1786 	if (adapter->msix_entries)
1787 		igc_configure_msix(adapter);
1788 	else
1789 		igc_assign_vector(adapter->q_vector[0], 0);
1790 
1791 	/* Clear any pending interrupts. */
1792 	rd32(IGC_ICR);
1793 	igc_irq_enable(adapter);
1794 
1795 	netif_tx_start_all_queues(adapter->netdev);
1796 
1797 	/* start the watchdog. */
1798 	hw->mac.get_link_status = 1;
1799 	schedule_work(&adapter->watchdog_task);
1800 }
1801 
1802 /**
1803  * igc_update_stats - Update the board statistics counters
1804  * @adapter: board private structure
1805  */
1806 void igc_update_stats(struct igc_adapter *adapter)
1807 {
1808 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1809 	struct pci_dev *pdev = adapter->pdev;
1810 	struct igc_hw *hw = &adapter->hw;
1811 	u64 _bytes, _packets;
1812 	u64 bytes, packets;
1813 	unsigned int start;
1814 	u32 mpc;
1815 	int i;
1816 
1817 	/* Prevent stats update while adapter is being reset, or if the pci
1818 	 * connection is down.
1819 	 */
1820 	if (adapter->link_speed == 0)
1821 		return;
1822 	if (pci_channel_offline(pdev))
1823 		return;
1824 
1825 	packets = 0;
1826 	bytes = 0;
1827 
1828 	rcu_read_lock();
1829 	for (i = 0; i < adapter->num_rx_queues; i++) {
1830 		struct igc_ring *ring = adapter->rx_ring[i];
1831 		u32 rqdpc = rd32(IGC_RQDPC(i));
1832 
1833 		if (hw->mac.type >= igc_i225)
1834 			wr32(IGC_RQDPC(i), 0);
1835 
1836 		if (rqdpc) {
1837 			ring->rx_stats.drops += rqdpc;
1838 			net_stats->rx_fifo_errors += rqdpc;
1839 		}
1840 
1841 		do {
1842 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1843 			_bytes = ring->rx_stats.bytes;
1844 			_packets = ring->rx_stats.packets;
1845 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1846 		bytes += _bytes;
1847 		packets += _packets;
1848 	}
1849 
1850 	net_stats->rx_bytes = bytes;
1851 	net_stats->rx_packets = packets;
1852 
1853 	packets = 0;
1854 	bytes = 0;
1855 	for (i = 0; i < adapter->num_tx_queues; i++) {
1856 		struct igc_ring *ring = adapter->tx_ring[i];
1857 
1858 		do {
1859 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1860 			_bytes = ring->tx_stats.bytes;
1861 			_packets = ring->tx_stats.packets;
1862 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1863 		bytes += _bytes;
1864 		packets += _packets;
1865 	}
1866 	net_stats->tx_bytes = bytes;
1867 	net_stats->tx_packets = packets;
1868 	rcu_read_unlock();
1869 
1870 	/* read stats registers */
1871 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1872 	adapter->stats.gprc += rd32(IGC_GPRC);
1873 	adapter->stats.gorc += rd32(IGC_GORCL);
1874 	rd32(IGC_GORCH); /* clear GORCL */
1875 	adapter->stats.bprc += rd32(IGC_BPRC);
1876 	adapter->stats.mprc += rd32(IGC_MPRC);
1877 	adapter->stats.roc += rd32(IGC_ROC);
1878 
1879 	adapter->stats.prc64 += rd32(IGC_PRC64);
1880 	adapter->stats.prc127 += rd32(IGC_PRC127);
1881 	adapter->stats.prc255 += rd32(IGC_PRC255);
1882 	adapter->stats.prc511 += rd32(IGC_PRC511);
1883 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
1884 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
1885 	adapter->stats.symerrs += rd32(IGC_SYMERRS);
1886 	adapter->stats.sec += rd32(IGC_SEC);
1887 
1888 	mpc = rd32(IGC_MPC);
1889 	adapter->stats.mpc += mpc;
1890 	net_stats->rx_fifo_errors += mpc;
1891 	adapter->stats.scc += rd32(IGC_SCC);
1892 	adapter->stats.ecol += rd32(IGC_ECOL);
1893 	adapter->stats.mcc += rd32(IGC_MCC);
1894 	adapter->stats.latecol += rd32(IGC_LATECOL);
1895 	adapter->stats.dc += rd32(IGC_DC);
1896 	adapter->stats.rlec += rd32(IGC_RLEC);
1897 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
1898 	adapter->stats.xontxc += rd32(IGC_XONTXC);
1899 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1900 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1901 	adapter->stats.fcruc += rd32(IGC_FCRUC);
1902 	adapter->stats.gptc += rd32(IGC_GPTC);
1903 	adapter->stats.gotc += rd32(IGC_GOTCL);
1904 	rd32(IGC_GOTCH); /* clear GOTCL */
1905 	adapter->stats.rnbc += rd32(IGC_RNBC);
1906 	adapter->stats.ruc += rd32(IGC_RUC);
1907 	adapter->stats.rfc += rd32(IGC_RFC);
1908 	adapter->stats.rjc += rd32(IGC_RJC);
1909 	adapter->stats.tor += rd32(IGC_TORH);
1910 	adapter->stats.tot += rd32(IGC_TOTH);
1911 	adapter->stats.tpr += rd32(IGC_TPR);
1912 
1913 	adapter->stats.ptc64 += rd32(IGC_PTC64);
1914 	adapter->stats.ptc127 += rd32(IGC_PTC127);
1915 	adapter->stats.ptc255 += rd32(IGC_PTC255);
1916 	adapter->stats.ptc511 += rd32(IGC_PTC511);
1917 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
1918 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
1919 
1920 	adapter->stats.mptc += rd32(IGC_MPTC);
1921 	adapter->stats.bptc += rd32(IGC_BPTC);
1922 
1923 	adapter->stats.tpt += rd32(IGC_TPT);
1924 	adapter->stats.colc += rd32(IGC_COLC);
1925 
1926 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
1927 
1928 	adapter->stats.tsctc += rd32(IGC_TSCTC);
1929 	adapter->stats.tsctfc += rd32(IGC_TSCTFC);
1930 
1931 	adapter->stats.iac += rd32(IGC_IAC);
1932 	adapter->stats.icrxoc += rd32(IGC_ICRXOC);
1933 	adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
1934 	adapter->stats.icrxatc += rd32(IGC_ICRXATC);
1935 	adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
1936 	adapter->stats.ictxatc += rd32(IGC_ICTXATC);
1937 	adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
1938 	adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
1939 	adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
1940 
1941 	/* Fill out the OS statistics structure */
1942 	net_stats->multicast = adapter->stats.mprc;
1943 	net_stats->collisions = adapter->stats.colc;
1944 
1945 	/* Rx Errors */
1946 
1947 	/* RLEC on some newer hardware can be incorrect so build
1948 	 * our own version based on RUC and ROC
1949 	 */
1950 	net_stats->rx_errors = adapter->stats.rxerrc +
1951 		adapter->stats.crcerrs + adapter->stats.algnerrc +
1952 		adapter->stats.ruc + adapter->stats.roc +
1953 		adapter->stats.cexterr;
1954 	net_stats->rx_length_errors = adapter->stats.ruc +
1955 				      adapter->stats.roc;
1956 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
1957 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
1958 	net_stats->rx_missed_errors = adapter->stats.mpc;
1959 
1960 	/* Tx Errors */
1961 	net_stats->tx_errors = adapter->stats.ecol +
1962 			       adapter->stats.latecol;
1963 	net_stats->tx_aborted_errors = adapter->stats.ecol;
1964 	net_stats->tx_window_errors = adapter->stats.latecol;
1965 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
1966 
1967 	/* Tx Dropped needs to be maintained elsewhere */
1968 
1969 	/* Management Stats */
1970 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
1971 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
1972 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
1973 }
1974 
1975 static void igc_nfc_filter_exit(struct igc_adapter *adapter)
1976 {
1977 	struct igc_nfc_filter *rule;
1978 
1979 	spin_lock(&adapter->nfc_lock);
1980 
1981 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
1982 		igc_erase_filter(adapter, rule);
1983 
1984 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
1985 		igc_erase_filter(adapter, rule);
1986 
1987 	spin_unlock(&adapter->nfc_lock);
1988 }
1989 
1990 static void igc_nfc_filter_restore(struct igc_adapter *adapter)
1991 {
1992 	struct igc_nfc_filter *rule;
1993 
1994 	spin_lock(&adapter->nfc_lock);
1995 
1996 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
1997 		igc_add_filter(adapter, rule);
1998 
1999 	spin_unlock(&adapter->nfc_lock);
2000 }
2001 
2002 /**
2003  * igc_down - Close the interface
2004  * @adapter: board private structure
2005  */
2006 void igc_down(struct igc_adapter *adapter)
2007 {
2008 	struct net_device *netdev = adapter->netdev;
2009 	struct igc_hw *hw = &adapter->hw;
2010 	u32 tctl, rctl;
2011 	int i = 0;
2012 
2013 	set_bit(__IGC_DOWN, &adapter->state);
2014 
2015 	/* disable receives in the hardware */
2016 	rctl = rd32(IGC_RCTL);
2017 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2018 	/* flush and sleep below */
2019 
2020 	igc_nfc_filter_exit(adapter);
2021 
2022 	/* set trans_start so we don't get spurious watchdogs during reset */
2023 	netif_trans_update(netdev);
2024 
2025 	netif_carrier_off(netdev);
2026 	netif_tx_stop_all_queues(netdev);
2027 
2028 	/* disable transmits in the hardware */
2029 	tctl = rd32(IGC_TCTL);
2030 	tctl &= ~IGC_TCTL_EN;
2031 	wr32(IGC_TCTL, tctl);
2032 	/* flush both disables and wait for them to finish */
2033 	wrfl();
2034 	usleep_range(10000, 20000);
2035 
2036 	igc_irq_disable(adapter);
2037 
2038 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2039 
2040 	for (i = 0; i < adapter->num_q_vectors; i++) {
2041 		if (adapter->q_vector[i]) {
2042 			napi_synchronize(&adapter->q_vector[i]->napi);
2043 			napi_disable(&adapter->q_vector[i]->napi);
2044 		}
2045 	}
2046 
2047 	del_timer_sync(&adapter->watchdog_timer);
2048 	del_timer_sync(&adapter->phy_info_timer);
2049 
2050 	/* record the stats before reset*/
2051 	spin_lock(&adapter->stats64_lock);
2052 	igc_update_stats(adapter);
2053 	spin_unlock(&adapter->stats64_lock);
2054 
2055 	adapter->link_speed = 0;
2056 	adapter->link_duplex = 0;
2057 
2058 	if (!pci_channel_offline(adapter->pdev))
2059 		igc_reset(adapter);
2060 
2061 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2062 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2063 
2064 	igc_clean_all_tx_rings(adapter);
2065 	igc_clean_all_rx_rings(adapter);
2066 }
2067 
2068 void igc_reinit_locked(struct igc_adapter *adapter)
2069 {
2070 	WARN_ON(in_interrupt());
2071 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2072 		usleep_range(1000, 2000);
2073 	igc_down(adapter);
2074 	igc_up(adapter);
2075 	clear_bit(__IGC_RESETTING, &adapter->state);
2076 }
2077 
2078 static void igc_reset_task(struct work_struct *work)
2079 {
2080 	struct igc_adapter *adapter;
2081 
2082 	adapter = container_of(work, struct igc_adapter, reset_task);
2083 
2084 	netdev_err(adapter->netdev, "Reset adapter\n");
2085 	igc_reinit_locked(adapter);
2086 }
2087 
2088 /**
2089  * igc_change_mtu - Change the Maximum Transfer Unit
2090  * @netdev: network interface device structure
2091  * @new_mtu: new value for maximum frame size
2092  *
2093  * Returns 0 on success, negative on failure
2094  */
2095 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2096 {
2097 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2098 	struct igc_adapter *adapter = netdev_priv(netdev);
2099 	struct pci_dev *pdev = adapter->pdev;
2100 
2101 	/* adjust max frame to be at least the size of a standard frame */
2102 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2103 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2104 
2105 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2106 		usleep_range(1000, 2000);
2107 
2108 	/* igc_down has a dependency on max_frame_size */
2109 	adapter->max_frame_size = max_frame;
2110 
2111 	if (netif_running(netdev))
2112 		igc_down(adapter);
2113 
2114 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2115 		 netdev->mtu, new_mtu);
2116 	netdev->mtu = new_mtu;
2117 
2118 	if (netif_running(netdev))
2119 		igc_up(adapter);
2120 	else
2121 		igc_reset(adapter);
2122 
2123 	clear_bit(__IGC_RESETTING, &adapter->state);
2124 
2125 	return 0;
2126 }
2127 
2128 /**
2129  * igc_get_stats - Get System Network Statistics
2130  * @netdev: network interface device structure
2131  *
2132  * Returns the address of the device statistics structure.
2133  * The statistics are updated here and also from the timer callback.
2134  */
2135 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2136 {
2137 	struct igc_adapter *adapter = netdev_priv(netdev);
2138 
2139 	if (!test_bit(__IGC_RESETTING, &adapter->state))
2140 		igc_update_stats(adapter);
2141 
2142 	/* only return the current stats */
2143 	return &netdev->stats;
2144 }
2145 
2146 static netdev_features_t igc_fix_features(struct net_device *netdev,
2147 					  netdev_features_t features)
2148 {
2149 	/* Since there is no support for separate Rx/Tx vlan accel
2150 	 * enable/disable make sure Tx flag is always in same state as Rx.
2151 	 */
2152 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2153 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2154 	else
2155 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2156 
2157 	return features;
2158 }
2159 
2160 static int igc_set_features(struct net_device *netdev,
2161 			    netdev_features_t features)
2162 {
2163 	netdev_features_t changed = netdev->features ^ features;
2164 	struct igc_adapter *adapter = netdev_priv(netdev);
2165 
2166 	/* Add VLAN support */
2167 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2168 		return 0;
2169 
2170 	if (!(features & NETIF_F_NTUPLE)) {
2171 		struct hlist_node *node2;
2172 		struct igc_nfc_filter *rule;
2173 
2174 		spin_lock(&adapter->nfc_lock);
2175 		hlist_for_each_entry_safe(rule, node2,
2176 					  &adapter->nfc_filter_list, nfc_node) {
2177 			igc_erase_filter(adapter, rule);
2178 			hlist_del(&rule->nfc_node);
2179 			kfree(rule);
2180 		}
2181 		spin_unlock(&adapter->nfc_lock);
2182 		adapter->nfc_filter_count = 0;
2183 	}
2184 
2185 	netdev->features = features;
2186 
2187 	if (netif_running(netdev))
2188 		igc_reinit_locked(adapter);
2189 	else
2190 		igc_reset(adapter);
2191 
2192 	return 1;
2193 }
2194 
2195 static netdev_features_t
2196 igc_features_check(struct sk_buff *skb, struct net_device *dev,
2197 		   netdev_features_t features)
2198 {
2199 	unsigned int network_hdr_len, mac_hdr_len;
2200 
2201 	/* Make certain the headers can be described by a context descriptor */
2202 	mac_hdr_len = skb_network_header(skb) - skb->data;
2203 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2204 		return features & ~(NETIF_F_HW_CSUM |
2205 				    NETIF_F_SCTP_CRC |
2206 				    NETIF_F_HW_VLAN_CTAG_TX |
2207 				    NETIF_F_TSO |
2208 				    NETIF_F_TSO6);
2209 
2210 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2211 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
2212 		return features & ~(NETIF_F_HW_CSUM |
2213 				    NETIF_F_SCTP_CRC |
2214 				    NETIF_F_TSO |
2215 				    NETIF_F_TSO6);
2216 
2217 	/* We can only support IPv4 TSO in tunnels if we can mangle the
2218 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2219 	 */
2220 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2221 		features &= ~NETIF_F_TSO;
2222 
2223 	return features;
2224 }
2225 
2226 /**
2227  * igc_configure - configure the hardware for RX and TX
2228  * @adapter: private board structure
2229  */
2230 static void igc_configure(struct igc_adapter *adapter)
2231 {
2232 	struct net_device *netdev = adapter->netdev;
2233 	int i = 0;
2234 
2235 	igc_get_hw_control(adapter);
2236 	igc_set_rx_mode(netdev);
2237 
2238 	igc_setup_tctl(adapter);
2239 	igc_setup_mrqc(adapter);
2240 	igc_setup_rctl(adapter);
2241 
2242 	igc_nfc_filter_restore(adapter);
2243 	igc_configure_tx(adapter);
2244 	igc_configure_rx(adapter);
2245 
2246 	igc_rx_fifo_flush_base(&adapter->hw);
2247 
2248 	/* call igc_desc_unused which always leaves
2249 	 * at least 1 descriptor unused to make sure
2250 	 * next_to_use != next_to_clean
2251 	 */
2252 	for (i = 0; i < adapter->num_rx_queues; i++) {
2253 		struct igc_ring *ring = adapter->rx_ring[i];
2254 
2255 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2256 	}
2257 }
2258 
2259 /**
2260  * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2261  * @adapter: address of board private structure
2262  * @index: Index of the RAR entry which need to be synced with MAC table
2263  */
2264 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2265 {
2266 	u8 *addr = adapter->mac_table[index].addr;
2267 	struct igc_hw *hw = &adapter->hw;
2268 	u32 rar_low, rar_high;
2269 
2270 	/* HW expects these to be in network order when they are plugged
2271 	 * into the registers which are little endian.  In order to guarantee
2272 	 * that ordering we need to do an leXX_to_cpup here in order to be
2273 	 * ready for the byteswap that occurs with writel
2274 	 */
2275 	rar_low = le32_to_cpup((__le32 *)(addr));
2276 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
2277 
2278 	/* Indicate to hardware the Address is Valid. */
2279 	if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2280 		if (is_valid_ether_addr(addr))
2281 			rar_high |= IGC_RAH_AV;
2282 
2283 		rar_high |= IGC_RAH_POOL_1 <<
2284 			adapter->mac_table[index].queue;
2285 	}
2286 
2287 	wr32(IGC_RAL(index), rar_low);
2288 	wrfl();
2289 	wr32(IGC_RAH(index), rar_high);
2290 	wrfl();
2291 }
2292 
2293 /* Set default MAC address for the PF in the first RAR entry */
2294 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2295 {
2296 	struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2297 
2298 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2299 	mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2300 
2301 	igc_rar_set_index(adapter, 0);
2302 }
2303 
2304 /* If the filter to be added and an already existing filter express
2305  * the same address and address type, it should be possible to only
2306  * override the other configurations, for example the queue to steer
2307  * traffic.
2308  */
2309 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2310 				      const u8 *addr, const u8 flags)
2311 {
2312 	if (!(entry->state & IGC_MAC_STATE_IN_USE))
2313 		return true;
2314 
2315 	if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2316 	    (flags & IGC_MAC_STATE_SRC_ADDR))
2317 		return false;
2318 
2319 	if (!ether_addr_equal(addr, entry->addr))
2320 		return false;
2321 
2322 	return true;
2323 }
2324 
2325 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2326  * 'flags' is used to indicate what kind of match is made, match is by
2327  * default for the destination address, if matching by source address
2328  * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2329  */
2330 static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2331 				    const u8 *addr, const u8 queue,
2332 				    const u8 flags)
2333 {
2334 	struct igc_hw *hw = &adapter->hw;
2335 	int rar_entries = hw->mac.rar_entry_count;
2336 	int i;
2337 
2338 	if (is_zero_ether_addr(addr))
2339 		return -EINVAL;
2340 
2341 	/* Search for the first empty entry in the MAC table.
2342 	 * Do not touch entries at the end of the table reserved for the VF MAC
2343 	 * addresses.
2344 	 */
2345 	for (i = 0; i < rar_entries; i++) {
2346 		if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2347 					       addr, flags))
2348 			continue;
2349 
2350 		ether_addr_copy(adapter->mac_table[i].addr, addr);
2351 		adapter->mac_table[i].queue = queue;
2352 		adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2353 
2354 		igc_rar_set_index(adapter, i);
2355 		return i;
2356 	}
2357 
2358 	return -ENOSPC;
2359 }
2360 
2361 int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2362 				const u8 *addr, u8 queue, u8 flags)
2363 {
2364 	return igc_add_mac_filter_flags(adapter, addr, queue,
2365 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2366 }
2367 
2368 /* Remove a MAC filter for 'addr' directing matching traffic to
2369  * 'queue', 'flags' is used to indicate what kind of match need to be
2370  * removed, match is by default for the destination address, if
2371  * matching by source address is to be removed the flag
2372  * IGC_MAC_STATE_SRC_ADDR can be used.
2373  */
2374 static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2375 				    const u8 *addr, const u8 queue,
2376 				    const u8 flags)
2377 {
2378 	struct igc_hw *hw = &adapter->hw;
2379 	int rar_entries = hw->mac.rar_entry_count;
2380 	int i;
2381 
2382 	if (is_zero_ether_addr(addr))
2383 		return -EINVAL;
2384 
2385 	/* Search for matching entry in the MAC table based on given address
2386 	 * and queue. Do not touch entries at the end of the table reserved
2387 	 * for the VF MAC addresses.
2388 	 */
2389 	for (i = 0; i < rar_entries; i++) {
2390 		if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2391 			continue;
2392 		if ((adapter->mac_table[i].state & flags) != flags)
2393 			continue;
2394 		if (adapter->mac_table[i].queue != queue)
2395 			continue;
2396 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2397 			continue;
2398 
2399 		/* When a filter for the default address is "deleted",
2400 		 * we return it to its initial configuration
2401 		 */
2402 		if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2403 			adapter->mac_table[i].state =
2404 				IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2405 		} else {
2406 			adapter->mac_table[i].state = 0;
2407 			adapter->mac_table[i].queue = 0;
2408 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2409 		}
2410 
2411 		igc_rar_set_index(adapter, i);
2412 		return 0;
2413 	}
2414 
2415 	return -ENOENT;
2416 }
2417 
2418 int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2419 				const u8 *addr, u8 queue, u8 flags)
2420 {
2421 	return igc_del_mac_filter_flags(adapter, addr, queue,
2422 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2423 }
2424 
2425 /**
2426  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2427  * @netdev: network interface device structure
2428  *
2429  * The set_rx_mode entry point is called whenever the unicast or multicast
2430  * address lists or the network interface flags are updated.  This routine is
2431  * responsible for configuring the hardware for proper unicast, multicast,
2432  * promiscuous mode, and all-multi behavior.
2433  */
2434 static void igc_set_rx_mode(struct net_device *netdev)
2435 {
2436 }
2437 
2438 /**
2439  * igc_msix_other - msix other interrupt handler
2440  * @irq: interrupt number
2441  * @data: pointer to a q_vector
2442  */
2443 static irqreturn_t igc_msix_other(int irq, void *data)
2444 {
2445 	struct igc_adapter *adapter = data;
2446 	struct igc_hw *hw = &adapter->hw;
2447 	u32 icr = rd32(IGC_ICR);
2448 
2449 	/* reading ICR causes bit 31 of EICR to be cleared */
2450 	if (icr & IGC_ICR_DRSTA)
2451 		schedule_work(&adapter->reset_task);
2452 
2453 	if (icr & IGC_ICR_DOUTSYNC) {
2454 		/* HW is reporting DMA is out of sync */
2455 		adapter->stats.doosync++;
2456 	}
2457 
2458 	if (icr & IGC_ICR_LSC) {
2459 		hw->mac.get_link_status = 1;
2460 		/* guard against interrupt when we're going down */
2461 		if (!test_bit(__IGC_DOWN, &adapter->state))
2462 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2463 	}
2464 
2465 	wr32(IGC_EIMS, adapter->eims_other);
2466 
2467 	return IRQ_HANDLED;
2468 }
2469 
2470 /**
2471  * igc_write_ivar - configure ivar for given MSI-X vector
2472  * @hw: pointer to the HW structure
2473  * @msix_vector: vector number we are allocating to a given ring
2474  * @index: row index of IVAR register to write within IVAR table
2475  * @offset: column offset of in IVAR, should be multiple of 8
2476  *
2477  * The IVAR table consists of 2 columns,
2478  * each containing an cause allocation for an Rx and Tx ring, and a
2479  * variable number of rows depending on the number of queues supported.
2480  */
2481 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2482 			   int index, int offset)
2483 {
2484 	u32 ivar = array_rd32(IGC_IVAR0, index);
2485 
2486 	/* clear any bits that are currently set */
2487 	ivar &= ~((u32)0xFF << offset);
2488 
2489 	/* write vector and valid bit */
2490 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2491 
2492 	array_wr32(IGC_IVAR0, index, ivar);
2493 }
2494 
2495 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2496 {
2497 	struct igc_adapter *adapter = q_vector->adapter;
2498 	struct igc_hw *hw = &adapter->hw;
2499 	int rx_queue = IGC_N0_QUEUE;
2500 	int tx_queue = IGC_N0_QUEUE;
2501 
2502 	if (q_vector->rx.ring)
2503 		rx_queue = q_vector->rx.ring->reg_idx;
2504 	if (q_vector->tx.ring)
2505 		tx_queue = q_vector->tx.ring->reg_idx;
2506 
2507 	switch (hw->mac.type) {
2508 	case igc_i225:
2509 		if (rx_queue > IGC_N0_QUEUE)
2510 			igc_write_ivar(hw, msix_vector,
2511 				       rx_queue >> 1,
2512 				       (rx_queue & 0x1) << 4);
2513 		if (tx_queue > IGC_N0_QUEUE)
2514 			igc_write_ivar(hw, msix_vector,
2515 				       tx_queue >> 1,
2516 				       ((tx_queue & 0x1) << 4) + 8);
2517 		q_vector->eims_value = BIT(msix_vector);
2518 		break;
2519 	default:
2520 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2521 		break;
2522 	}
2523 
2524 	/* add q_vector eims value to global eims_enable_mask */
2525 	adapter->eims_enable_mask |= q_vector->eims_value;
2526 
2527 	/* configure q_vector to set itr on first interrupt */
2528 	q_vector->set_itr = 1;
2529 }
2530 
2531 /**
2532  * igc_configure_msix - Configure MSI-X hardware
2533  * @adapter: Pointer to adapter structure
2534  *
2535  * igc_configure_msix sets up the hardware to properly
2536  * generate MSI-X interrupts.
2537  */
2538 static void igc_configure_msix(struct igc_adapter *adapter)
2539 {
2540 	struct igc_hw *hw = &adapter->hw;
2541 	int i, vector = 0;
2542 	u32 tmp;
2543 
2544 	adapter->eims_enable_mask = 0;
2545 
2546 	/* set vector for other causes, i.e. link changes */
2547 	switch (hw->mac.type) {
2548 	case igc_i225:
2549 		/* Turn on MSI-X capability first, or our settings
2550 		 * won't stick.  And it will take days to debug.
2551 		 */
2552 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2553 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2554 		     IGC_GPIE_NSICR);
2555 
2556 		/* enable msix_other interrupt */
2557 		adapter->eims_other = BIT(vector);
2558 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2559 
2560 		wr32(IGC_IVAR_MISC, tmp);
2561 		break;
2562 	default:
2563 		/* do nothing, since nothing else supports MSI-X */
2564 		break;
2565 	} /* switch (hw->mac.type) */
2566 
2567 	adapter->eims_enable_mask |= adapter->eims_other;
2568 
2569 	for (i = 0; i < adapter->num_q_vectors; i++)
2570 		igc_assign_vector(adapter->q_vector[i], vector++);
2571 
2572 	wrfl();
2573 }
2574 
2575 static irqreturn_t igc_msix_ring(int irq, void *data)
2576 {
2577 	struct igc_q_vector *q_vector = data;
2578 
2579 	/* Write the ITR value calculated from the previous interrupt. */
2580 	igc_write_itr(q_vector);
2581 
2582 	napi_schedule(&q_vector->napi);
2583 
2584 	return IRQ_HANDLED;
2585 }
2586 
2587 /**
2588  * igc_request_msix - Initialize MSI-X interrupts
2589  * @adapter: Pointer to adapter structure
2590  *
2591  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2592  * kernel.
2593  */
2594 static int igc_request_msix(struct igc_adapter *adapter)
2595 {
2596 	int i = 0, err = 0, vector = 0, free_vector = 0;
2597 	struct net_device *netdev = adapter->netdev;
2598 
2599 	err = request_irq(adapter->msix_entries[vector].vector,
2600 			  &igc_msix_other, 0, netdev->name, adapter);
2601 	if (err)
2602 		goto err_out;
2603 
2604 	for (i = 0; i < adapter->num_q_vectors; i++) {
2605 		struct igc_q_vector *q_vector = adapter->q_vector[i];
2606 
2607 		vector++;
2608 
2609 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2610 
2611 		if (q_vector->rx.ring && q_vector->tx.ring)
2612 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2613 				q_vector->rx.ring->queue_index);
2614 		else if (q_vector->tx.ring)
2615 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2616 				q_vector->tx.ring->queue_index);
2617 		else if (q_vector->rx.ring)
2618 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2619 				q_vector->rx.ring->queue_index);
2620 		else
2621 			sprintf(q_vector->name, "%s-unused", netdev->name);
2622 
2623 		err = request_irq(adapter->msix_entries[vector].vector,
2624 				  igc_msix_ring, 0, q_vector->name,
2625 				  q_vector);
2626 		if (err)
2627 			goto err_free;
2628 	}
2629 
2630 	igc_configure_msix(adapter);
2631 	return 0;
2632 
2633 err_free:
2634 	/* free already assigned IRQs */
2635 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2636 
2637 	vector--;
2638 	for (i = 0; i < vector; i++) {
2639 		free_irq(adapter->msix_entries[free_vector++].vector,
2640 			 adapter->q_vector[i]);
2641 	}
2642 err_out:
2643 	return err;
2644 }
2645 
2646 /**
2647  * igc_reset_q_vector - Reset config for interrupt vector
2648  * @adapter: board private structure to initialize
2649  * @v_idx: Index of vector to be reset
2650  *
2651  * If NAPI is enabled it will delete any references to the
2652  * NAPI struct. This is preparation for igc_free_q_vector.
2653  */
2654 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2655 {
2656 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2657 
2658 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2659 	 * not yet allocated
2660 	 */
2661 	if (!q_vector)
2662 		return;
2663 
2664 	if (q_vector->tx.ring)
2665 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2666 
2667 	if (q_vector->rx.ring)
2668 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2669 
2670 	netif_napi_del(&q_vector->napi);
2671 }
2672 
2673 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2674 {
2675 	int v_idx = adapter->num_q_vectors;
2676 
2677 	if (adapter->msix_entries) {
2678 		pci_disable_msix(adapter->pdev);
2679 		kfree(adapter->msix_entries);
2680 		adapter->msix_entries = NULL;
2681 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2682 		pci_disable_msi(adapter->pdev);
2683 	}
2684 
2685 	while (v_idx--)
2686 		igc_reset_q_vector(adapter, v_idx);
2687 }
2688 
2689 /**
2690  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2691  * @adapter: Pointer to adapter structure
2692  *
2693  * This function resets the device so that it has 0 rx queues, tx queues, and
2694  * MSI-X interrupts allocated.
2695  */
2696 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2697 {
2698 	igc_free_q_vectors(adapter);
2699 	igc_reset_interrupt_capability(adapter);
2700 }
2701 
2702 /**
2703  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2704  * @adapter: board private structure to initialize
2705  *
2706  * This function frees the memory allocated to the q_vectors.  In addition if
2707  * NAPI is enabled it will delete any references to the NAPI struct prior
2708  * to freeing the q_vector.
2709  */
2710 static void igc_free_q_vectors(struct igc_adapter *adapter)
2711 {
2712 	int v_idx = adapter->num_q_vectors;
2713 
2714 	adapter->num_tx_queues = 0;
2715 	adapter->num_rx_queues = 0;
2716 	adapter->num_q_vectors = 0;
2717 
2718 	while (v_idx--) {
2719 		igc_reset_q_vector(adapter, v_idx);
2720 		igc_free_q_vector(adapter, v_idx);
2721 	}
2722 }
2723 
2724 /**
2725  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2726  * @adapter: board private structure to initialize
2727  * @v_idx: Index of vector to be freed
2728  *
2729  * This function frees the memory allocated to the q_vector.
2730  */
2731 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2732 {
2733 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2734 
2735 	adapter->q_vector[v_idx] = NULL;
2736 
2737 	/* igc_get_stats64() might access the rings on this vector,
2738 	 * we must wait a grace period before freeing it.
2739 	 */
2740 	if (q_vector)
2741 		kfree_rcu(q_vector, rcu);
2742 }
2743 
2744 /* Need to wait a few seconds after link up to get diagnostic information from
2745  * the phy
2746  */
2747 static void igc_update_phy_info(struct timer_list *t)
2748 {
2749 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2750 
2751 	igc_get_phy_info(&adapter->hw);
2752 }
2753 
2754 /**
2755  * igc_has_link - check shared code for link and determine up/down
2756  * @adapter: pointer to driver private info
2757  */
2758 bool igc_has_link(struct igc_adapter *adapter)
2759 {
2760 	struct igc_hw *hw = &adapter->hw;
2761 	bool link_active = false;
2762 
2763 	/* get_link_status is set on LSC (link status) interrupt or
2764 	 * rx sequence error interrupt.  get_link_status will stay
2765 	 * false until the igc_check_for_link establishes link
2766 	 * for copper adapters ONLY
2767 	 */
2768 	switch (hw->phy.media_type) {
2769 	case igc_media_type_copper:
2770 		if (!hw->mac.get_link_status)
2771 			return true;
2772 		hw->mac.ops.check_for_link(hw);
2773 		link_active = !hw->mac.get_link_status;
2774 		break;
2775 	default:
2776 	case igc_media_type_unknown:
2777 		break;
2778 	}
2779 
2780 	if (hw->mac.type == igc_i225 &&
2781 	    hw->phy.id == I225_I_PHY_ID) {
2782 		if (!netif_carrier_ok(adapter->netdev)) {
2783 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2784 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2785 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2786 			adapter->link_check_timeout = jiffies;
2787 		}
2788 	}
2789 
2790 	return link_active;
2791 }
2792 
2793 /**
2794  * igc_watchdog - Timer Call-back
2795  * @data: pointer to adapter cast into an unsigned long
2796  */
2797 static void igc_watchdog(struct timer_list *t)
2798 {
2799 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2800 	/* Do the rest outside of interrupt context */
2801 	schedule_work(&adapter->watchdog_task);
2802 }
2803 
2804 static void igc_watchdog_task(struct work_struct *work)
2805 {
2806 	struct igc_adapter *adapter = container_of(work,
2807 						   struct igc_adapter,
2808 						   watchdog_task);
2809 	struct net_device *netdev = adapter->netdev;
2810 	struct igc_hw *hw = &adapter->hw;
2811 	struct igc_phy_info *phy = &hw->phy;
2812 	u16 phy_data, retry_count = 20;
2813 	u32 connsw;
2814 	u32 link;
2815 	int i;
2816 
2817 	link = igc_has_link(adapter);
2818 
2819 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2820 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2821 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2822 		else
2823 			link = false;
2824 	}
2825 
2826 	/* Force link down if we have fiber to swap to */
2827 	if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2828 		if (hw->phy.media_type == igc_media_type_copper) {
2829 			connsw = rd32(IGC_CONNSW);
2830 			if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2831 				link = 0;
2832 		}
2833 	}
2834 	if (link) {
2835 		if (!netif_carrier_ok(netdev)) {
2836 			u32 ctrl;
2837 
2838 			hw->mac.ops.get_speed_and_duplex(hw,
2839 							 &adapter->link_speed,
2840 							 &adapter->link_duplex);
2841 
2842 			ctrl = rd32(IGC_CTRL);
2843 			/* Link status message must follow this format */
2844 			netdev_info(netdev,
2845 				    "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2846 				    netdev->name,
2847 				    adapter->link_speed,
2848 				    adapter->link_duplex == FULL_DUPLEX ?
2849 				    "Full" : "Half",
2850 				    (ctrl & IGC_CTRL_TFCE) &&
2851 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2852 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
2853 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
2854 
2855 			/* check if SmartSpeed worked */
2856 			igc_check_downshift(hw);
2857 			if (phy->speed_downgraded)
2858 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2859 
2860 			/* adjust timeout factor according to speed/duplex */
2861 			adapter->tx_timeout_factor = 1;
2862 			switch (adapter->link_speed) {
2863 			case SPEED_10:
2864 				adapter->tx_timeout_factor = 14;
2865 				break;
2866 			case SPEED_100:
2867 				/* maybe add some timeout factor ? */
2868 				break;
2869 			}
2870 
2871 			if (adapter->link_speed != SPEED_1000)
2872 				goto no_wait;
2873 
2874 			/* wait for Remote receiver status OK */
2875 retry_read_status:
2876 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2877 					      &phy_data)) {
2878 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2879 				    retry_count) {
2880 					msleep(100);
2881 					retry_count--;
2882 					goto retry_read_status;
2883 				} else if (!retry_count) {
2884 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2885 				}
2886 			} else {
2887 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2888 			}
2889 no_wait:
2890 			netif_carrier_on(netdev);
2891 
2892 			/* link state has changed, schedule phy info update */
2893 			if (!test_bit(__IGC_DOWN, &adapter->state))
2894 				mod_timer(&adapter->phy_info_timer,
2895 					  round_jiffies(jiffies + 2 * HZ));
2896 		}
2897 	} else {
2898 		if (netif_carrier_ok(netdev)) {
2899 			adapter->link_speed = 0;
2900 			adapter->link_duplex = 0;
2901 
2902 			/* Links status message must follow this format */
2903 			netdev_info(netdev, "igc: %s NIC Link is Down\n",
2904 				    netdev->name);
2905 			netif_carrier_off(netdev);
2906 
2907 			/* link state has changed, schedule phy info update */
2908 			if (!test_bit(__IGC_DOWN, &adapter->state))
2909 				mod_timer(&adapter->phy_info_timer,
2910 					  round_jiffies(jiffies + 2 * HZ));
2911 
2912 			/* link is down, time to check for alternate media */
2913 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2914 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2915 					schedule_work(&adapter->reset_task);
2916 					/* return immediately */
2917 					return;
2918 				}
2919 			}
2920 
2921 		/* also check for alternate media here */
2922 		} else if (!netif_carrier_ok(netdev) &&
2923 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
2924 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2925 				schedule_work(&adapter->reset_task);
2926 				/* return immediately */
2927 				return;
2928 			}
2929 		}
2930 	}
2931 
2932 	spin_lock(&adapter->stats64_lock);
2933 	igc_update_stats(adapter);
2934 	spin_unlock(&adapter->stats64_lock);
2935 
2936 	for (i = 0; i < adapter->num_tx_queues; i++) {
2937 		struct igc_ring *tx_ring = adapter->tx_ring[i];
2938 
2939 		if (!netif_carrier_ok(netdev)) {
2940 			/* We've lost link, so the controller stops DMA,
2941 			 * but we've got queued Tx work that's never going
2942 			 * to get done, so reset controller to flush Tx.
2943 			 * (Do the reset outside of interrupt context).
2944 			 */
2945 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
2946 				adapter->tx_timeout_count++;
2947 				schedule_work(&adapter->reset_task);
2948 				/* return immediately since reset is imminent */
2949 				return;
2950 			}
2951 		}
2952 
2953 		/* Force detection of hung controller every watchdog period */
2954 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2955 	}
2956 
2957 	/* Cause software interrupt to ensure Rx ring is cleaned */
2958 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
2959 		u32 eics = 0;
2960 
2961 		for (i = 0; i < adapter->num_q_vectors; i++)
2962 			eics |= adapter->q_vector[i]->eims_value;
2963 		wr32(IGC_EICS, eics);
2964 	} else {
2965 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
2966 	}
2967 
2968 	/* Reset the timer */
2969 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
2970 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
2971 			mod_timer(&adapter->watchdog_timer,
2972 				  round_jiffies(jiffies +  HZ));
2973 		else
2974 			mod_timer(&adapter->watchdog_timer,
2975 				  round_jiffies(jiffies + 2 * HZ));
2976 	}
2977 }
2978 
2979 /**
2980  * igc_update_ring_itr - update the dynamic ITR value based on packet size
2981  * @q_vector: pointer to q_vector
2982  *
2983  * Stores a new ITR value based on strictly on packet size.  This
2984  * algorithm is less sophisticated than that used in igc_update_itr,
2985  * due to the difficulty of synchronizing statistics across multiple
2986  * receive rings.  The divisors and thresholds used by this function
2987  * were determined based on theoretical maximum wire speed and testing
2988  * data, in order to minimize response time while increasing bulk
2989  * throughput.
2990  * NOTE: This function is called only when operating in a multiqueue
2991  * receive environment.
2992  */
2993 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
2994 {
2995 	struct igc_adapter *adapter = q_vector->adapter;
2996 	int new_val = q_vector->itr_val;
2997 	int avg_wire_size = 0;
2998 	unsigned int packets;
2999 
3000 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3001 	 * ints/sec - ITR timer value of 120 ticks.
3002 	 */
3003 	switch (adapter->link_speed) {
3004 	case SPEED_10:
3005 	case SPEED_100:
3006 		new_val = IGC_4K_ITR;
3007 		goto set_itr_val;
3008 	default:
3009 		break;
3010 	}
3011 
3012 	packets = q_vector->rx.total_packets;
3013 	if (packets)
3014 		avg_wire_size = q_vector->rx.total_bytes / packets;
3015 
3016 	packets = q_vector->tx.total_packets;
3017 	if (packets)
3018 		avg_wire_size = max_t(u32, avg_wire_size,
3019 				      q_vector->tx.total_bytes / packets);
3020 
3021 	/* if avg_wire_size isn't set no work was done */
3022 	if (!avg_wire_size)
3023 		goto clear_counts;
3024 
3025 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3026 	avg_wire_size += 24;
3027 
3028 	/* Don't starve jumbo frames */
3029 	avg_wire_size = min(avg_wire_size, 3000);
3030 
3031 	/* Give a little boost to mid-size frames */
3032 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3033 		new_val = avg_wire_size / 3;
3034 	else
3035 		new_val = avg_wire_size / 2;
3036 
3037 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3038 	if (new_val < IGC_20K_ITR &&
3039 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3040 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3041 		new_val = IGC_20K_ITR;
3042 
3043 set_itr_val:
3044 	if (new_val != q_vector->itr_val) {
3045 		q_vector->itr_val = new_val;
3046 		q_vector->set_itr = 1;
3047 	}
3048 clear_counts:
3049 	q_vector->rx.total_bytes = 0;
3050 	q_vector->rx.total_packets = 0;
3051 	q_vector->tx.total_bytes = 0;
3052 	q_vector->tx.total_packets = 0;
3053 }
3054 
3055 /**
3056  * igc_update_itr - update the dynamic ITR value based on statistics
3057  * @q_vector: pointer to q_vector
3058  * @ring_container: ring info to update the itr for
3059  *
3060  * Stores a new ITR value based on packets and byte
3061  * counts during the last interrupt.  The advantage of per interrupt
3062  * computation is faster updates and more accurate ITR for the current
3063  * traffic pattern.  Constants in this function were computed
3064  * based on theoretical maximum wire speed and thresholds were set based
3065  * on testing data as well as attempting to minimize response time
3066  * while increasing bulk throughput.
3067  * NOTE: These calculations are only valid when operating in a single-
3068  * queue environment.
3069  */
3070 static void igc_update_itr(struct igc_q_vector *q_vector,
3071 			   struct igc_ring_container *ring_container)
3072 {
3073 	unsigned int packets = ring_container->total_packets;
3074 	unsigned int bytes = ring_container->total_bytes;
3075 	u8 itrval = ring_container->itr;
3076 
3077 	/* no packets, exit with status unchanged */
3078 	if (packets == 0)
3079 		return;
3080 
3081 	switch (itrval) {
3082 	case lowest_latency:
3083 		/* handle TSO and jumbo frames */
3084 		if (bytes / packets > 8000)
3085 			itrval = bulk_latency;
3086 		else if ((packets < 5) && (bytes > 512))
3087 			itrval = low_latency;
3088 		break;
3089 	case low_latency:  /* 50 usec aka 20000 ints/s */
3090 		if (bytes > 10000) {
3091 			/* this if handles the TSO accounting */
3092 			if (bytes / packets > 8000)
3093 				itrval = bulk_latency;
3094 			else if ((packets < 10) || ((bytes / packets) > 1200))
3095 				itrval = bulk_latency;
3096 			else if ((packets > 35))
3097 				itrval = lowest_latency;
3098 		} else if (bytes / packets > 2000) {
3099 			itrval = bulk_latency;
3100 		} else if (packets <= 2 && bytes < 512) {
3101 			itrval = lowest_latency;
3102 		}
3103 		break;
3104 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3105 		if (bytes > 25000) {
3106 			if (packets > 35)
3107 				itrval = low_latency;
3108 		} else if (bytes < 1500) {
3109 			itrval = low_latency;
3110 		}
3111 		break;
3112 	}
3113 
3114 	/* clear work counters since we have the values we need */
3115 	ring_container->total_bytes = 0;
3116 	ring_container->total_packets = 0;
3117 
3118 	/* write updated itr to ring container */
3119 	ring_container->itr = itrval;
3120 }
3121 
3122 /**
3123  * igc_intr_msi - Interrupt Handler
3124  * @irq: interrupt number
3125  * @data: pointer to a network interface device structure
3126  */
3127 static irqreturn_t igc_intr_msi(int irq, void *data)
3128 {
3129 	struct igc_adapter *adapter = data;
3130 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3131 	struct igc_hw *hw = &adapter->hw;
3132 	/* read ICR disables interrupts using IAM */
3133 	u32 icr = rd32(IGC_ICR);
3134 
3135 	igc_write_itr(q_vector);
3136 
3137 	if (icr & IGC_ICR_DRSTA)
3138 		schedule_work(&adapter->reset_task);
3139 
3140 	if (icr & IGC_ICR_DOUTSYNC) {
3141 		/* HW is reporting DMA is out of sync */
3142 		adapter->stats.doosync++;
3143 	}
3144 
3145 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3146 		hw->mac.get_link_status = 1;
3147 		if (!test_bit(__IGC_DOWN, &adapter->state))
3148 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3149 	}
3150 
3151 	napi_schedule(&q_vector->napi);
3152 
3153 	return IRQ_HANDLED;
3154 }
3155 
3156 /**
3157  * igc_intr - Legacy Interrupt Handler
3158  * @irq: interrupt number
3159  * @data: pointer to a network interface device structure
3160  */
3161 static irqreturn_t igc_intr(int irq, void *data)
3162 {
3163 	struct igc_adapter *adapter = data;
3164 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3165 	struct igc_hw *hw = &adapter->hw;
3166 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3167 	 * need for the IMC write
3168 	 */
3169 	u32 icr = rd32(IGC_ICR);
3170 
3171 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3172 	 * not set, then the adapter didn't send an interrupt
3173 	 */
3174 	if (!(icr & IGC_ICR_INT_ASSERTED))
3175 		return IRQ_NONE;
3176 
3177 	igc_write_itr(q_vector);
3178 
3179 	if (icr & IGC_ICR_DRSTA)
3180 		schedule_work(&adapter->reset_task);
3181 
3182 	if (icr & IGC_ICR_DOUTSYNC) {
3183 		/* HW is reporting DMA is out of sync */
3184 		adapter->stats.doosync++;
3185 	}
3186 
3187 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3188 		hw->mac.get_link_status = 1;
3189 		/* guard against interrupt when we're going down */
3190 		if (!test_bit(__IGC_DOWN, &adapter->state))
3191 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3192 	}
3193 
3194 	napi_schedule(&q_vector->napi);
3195 
3196 	return IRQ_HANDLED;
3197 }
3198 
3199 static void igc_set_itr(struct igc_q_vector *q_vector)
3200 {
3201 	struct igc_adapter *adapter = q_vector->adapter;
3202 	u32 new_itr = q_vector->itr_val;
3203 	u8 current_itr = 0;
3204 
3205 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3206 	switch (adapter->link_speed) {
3207 	case SPEED_10:
3208 	case SPEED_100:
3209 		current_itr = 0;
3210 		new_itr = IGC_4K_ITR;
3211 		goto set_itr_now;
3212 	default:
3213 		break;
3214 	}
3215 
3216 	igc_update_itr(q_vector, &q_vector->tx);
3217 	igc_update_itr(q_vector, &q_vector->rx);
3218 
3219 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3220 
3221 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3222 	if (current_itr == lowest_latency &&
3223 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3224 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3225 		current_itr = low_latency;
3226 
3227 	switch (current_itr) {
3228 	/* counts and packets in update_itr are dependent on these numbers */
3229 	case lowest_latency:
3230 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3231 		break;
3232 	case low_latency:
3233 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3234 		break;
3235 	case bulk_latency:
3236 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3237 		break;
3238 	default:
3239 		break;
3240 	}
3241 
3242 set_itr_now:
3243 	if (new_itr != q_vector->itr_val) {
3244 		/* this attempts to bias the interrupt rate towards Bulk
3245 		 * by adding intermediate steps when interrupt rate is
3246 		 * increasing
3247 		 */
3248 		new_itr = new_itr > q_vector->itr_val ?
3249 			  max((new_itr * q_vector->itr_val) /
3250 			  (new_itr + (q_vector->itr_val >> 2)),
3251 			  new_itr) : new_itr;
3252 		/* Don't write the value here; it resets the adapter's
3253 		 * internal timer, and causes us to delay far longer than
3254 		 * we should between interrupts.  Instead, we write the ITR
3255 		 * value at the beginning of the next interrupt so the timing
3256 		 * ends up being correct.
3257 		 */
3258 		q_vector->itr_val = new_itr;
3259 		q_vector->set_itr = 1;
3260 	}
3261 }
3262 
3263 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3264 {
3265 	struct igc_adapter *adapter = q_vector->adapter;
3266 	struct igc_hw *hw = &adapter->hw;
3267 
3268 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3269 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3270 		if (adapter->num_q_vectors == 1)
3271 			igc_set_itr(q_vector);
3272 		else
3273 			igc_update_ring_itr(q_vector);
3274 	}
3275 
3276 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3277 		if (adapter->msix_entries)
3278 			wr32(IGC_EIMS, q_vector->eims_value);
3279 		else
3280 			igc_irq_enable(adapter);
3281 	}
3282 }
3283 
3284 /**
3285  * igc_poll - NAPI Rx polling callback
3286  * @napi: napi polling structure
3287  * @budget: count of how many packets we should handle
3288  */
3289 static int igc_poll(struct napi_struct *napi, int budget)
3290 {
3291 	struct igc_q_vector *q_vector = container_of(napi,
3292 						     struct igc_q_vector,
3293 						     napi);
3294 	bool clean_complete = true;
3295 	int work_done = 0;
3296 
3297 	if (q_vector->tx.ring)
3298 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3299 
3300 	if (q_vector->rx.ring) {
3301 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3302 
3303 		work_done += cleaned;
3304 		if (cleaned >= budget)
3305 			clean_complete = false;
3306 	}
3307 
3308 	/* If all work not completed, return budget and keep polling */
3309 	if (!clean_complete)
3310 		return budget;
3311 
3312 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3313 	 * poll us due to busy-polling
3314 	 */
3315 	if (likely(napi_complete_done(napi, work_done)))
3316 		igc_ring_irq_enable(q_vector);
3317 
3318 	return min(work_done, budget - 1);
3319 }
3320 
3321 /**
3322  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3323  * @adapter: Pointer to adapter structure
3324  *
3325  * Attempt to configure interrupts using the best available
3326  * capabilities of the hardware and kernel.
3327  */
3328 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3329 					 bool msix)
3330 {
3331 	int numvecs, i;
3332 	int err;
3333 
3334 	if (!msix)
3335 		goto msi_only;
3336 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3337 
3338 	/* Number of supported queues. */
3339 	adapter->num_rx_queues = adapter->rss_queues;
3340 
3341 	adapter->num_tx_queues = adapter->rss_queues;
3342 
3343 	/* start with one vector for every Rx queue */
3344 	numvecs = adapter->num_rx_queues;
3345 
3346 	/* if Tx handler is separate add 1 for every Tx queue */
3347 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3348 		numvecs += adapter->num_tx_queues;
3349 
3350 	/* store the number of vectors reserved for queues */
3351 	adapter->num_q_vectors = numvecs;
3352 
3353 	/* add 1 vector for link status interrupts */
3354 	numvecs++;
3355 
3356 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3357 					GFP_KERNEL);
3358 
3359 	if (!adapter->msix_entries)
3360 		return;
3361 
3362 	/* populate entry values */
3363 	for (i = 0; i < numvecs; i++)
3364 		adapter->msix_entries[i].entry = i;
3365 
3366 	err = pci_enable_msix_range(adapter->pdev,
3367 				    adapter->msix_entries,
3368 				    numvecs,
3369 				    numvecs);
3370 	if (err > 0)
3371 		return;
3372 
3373 	kfree(adapter->msix_entries);
3374 	adapter->msix_entries = NULL;
3375 
3376 	igc_reset_interrupt_capability(adapter);
3377 
3378 msi_only:
3379 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3380 
3381 	adapter->rss_queues = 1;
3382 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3383 	adapter->num_rx_queues = 1;
3384 	adapter->num_tx_queues = 1;
3385 	adapter->num_q_vectors = 1;
3386 	if (!pci_enable_msi(adapter->pdev))
3387 		adapter->flags |= IGC_FLAG_HAS_MSI;
3388 }
3389 
3390 static void igc_add_ring(struct igc_ring *ring,
3391 			 struct igc_ring_container *head)
3392 {
3393 	head->ring = ring;
3394 	head->count++;
3395 }
3396 
3397 /**
3398  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3399  * @adapter: board private structure to initialize
3400  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3401  * @v_idx: index of vector in adapter struct
3402  * @txr_count: total number of Tx rings to allocate
3403  * @txr_idx: index of first Tx ring to allocate
3404  * @rxr_count: total number of Rx rings to allocate
3405  * @rxr_idx: index of first Rx ring to allocate
3406  *
3407  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3408  */
3409 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3410 			      unsigned int v_count, unsigned int v_idx,
3411 			      unsigned int txr_count, unsigned int txr_idx,
3412 			      unsigned int rxr_count, unsigned int rxr_idx)
3413 {
3414 	struct igc_q_vector *q_vector;
3415 	struct igc_ring *ring;
3416 	int ring_count;
3417 
3418 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3419 	if (txr_count > 1 || rxr_count > 1)
3420 		return -ENOMEM;
3421 
3422 	ring_count = txr_count + rxr_count;
3423 
3424 	/* allocate q_vector and rings */
3425 	q_vector = adapter->q_vector[v_idx];
3426 	if (!q_vector)
3427 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3428 				   GFP_KERNEL);
3429 	else
3430 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3431 	if (!q_vector)
3432 		return -ENOMEM;
3433 
3434 	/* initialize NAPI */
3435 	netif_napi_add(adapter->netdev, &q_vector->napi,
3436 		       igc_poll, 64);
3437 
3438 	/* tie q_vector and adapter together */
3439 	adapter->q_vector[v_idx] = q_vector;
3440 	q_vector->adapter = adapter;
3441 
3442 	/* initialize work limits */
3443 	q_vector->tx.work_limit = adapter->tx_work_limit;
3444 
3445 	/* initialize ITR configuration */
3446 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3447 	q_vector->itr_val = IGC_START_ITR;
3448 
3449 	/* initialize pointer to rings */
3450 	ring = q_vector->ring;
3451 
3452 	/* initialize ITR */
3453 	if (rxr_count) {
3454 		/* rx or rx/tx vector */
3455 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3456 			q_vector->itr_val = adapter->rx_itr_setting;
3457 	} else {
3458 		/* tx only vector */
3459 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3460 			q_vector->itr_val = adapter->tx_itr_setting;
3461 	}
3462 
3463 	if (txr_count) {
3464 		/* assign generic ring traits */
3465 		ring->dev = &adapter->pdev->dev;
3466 		ring->netdev = adapter->netdev;
3467 
3468 		/* configure backlink on ring */
3469 		ring->q_vector = q_vector;
3470 
3471 		/* update q_vector Tx values */
3472 		igc_add_ring(ring, &q_vector->tx);
3473 
3474 		/* apply Tx specific ring traits */
3475 		ring->count = adapter->tx_ring_count;
3476 		ring->queue_index = txr_idx;
3477 
3478 		/* assign ring to adapter */
3479 		adapter->tx_ring[txr_idx] = ring;
3480 
3481 		/* push pointer to next ring */
3482 		ring++;
3483 	}
3484 
3485 	if (rxr_count) {
3486 		/* assign generic ring traits */
3487 		ring->dev = &adapter->pdev->dev;
3488 		ring->netdev = adapter->netdev;
3489 
3490 		/* configure backlink on ring */
3491 		ring->q_vector = q_vector;
3492 
3493 		/* update q_vector Rx values */
3494 		igc_add_ring(ring, &q_vector->rx);
3495 
3496 		/* apply Rx specific ring traits */
3497 		ring->count = adapter->rx_ring_count;
3498 		ring->queue_index = rxr_idx;
3499 
3500 		/* assign ring to adapter */
3501 		adapter->rx_ring[rxr_idx] = ring;
3502 	}
3503 
3504 	return 0;
3505 }
3506 
3507 /**
3508  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3509  * @adapter: board private structure to initialize
3510  *
3511  * We allocate one q_vector per queue interrupt.  If allocation fails we
3512  * return -ENOMEM.
3513  */
3514 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3515 {
3516 	int rxr_remaining = adapter->num_rx_queues;
3517 	int txr_remaining = adapter->num_tx_queues;
3518 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3519 	int q_vectors = adapter->num_q_vectors;
3520 	int err;
3521 
3522 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3523 		for (; rxr_remaining; v_idx++) {
3524 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3525 						 0, 0, 1, rxr_idx);
3526 
3527 			if (err)
3528 				goto err_out;
3529 
3530 			/* update counts and index */
3531 			rxr_remaining--;
3532 			rxr_idx++;
3533 		}
3534 	}
3535 
3536 	for (; v_idx < q_vectors; v_idx++) {
3537 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3538 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3539 
3540 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3541 					 tqpv, txr_idx, rqpv, rxr_idx);
3542 
3543 		if (err)
3544 			goto err_out;
3545 
3546 		/* update counts and index */
3547 		rxr_remaining -= rqpv;
3548 		txr_remaining -= tqpv;
3549 		rxr_idx++;
3550 		txr_idx++;
3551 	}
3552 
3553 	return 0;
3554 
3555 err_out:
3556 	adapter->num_tx_queues = 0;
3557 	adapter->num_rx_queues = 0;
3558 	adapter->num_q_vectors = 0;
3559 
3560 	while (v_idx--)
3561 		igc_free_q_vector(adapter, v_idx);
3562 
3563 	return -ENOMEM;
3564 }
3565 
3566 /**
3567  * igc_cache_ring_register - Descriptor ring to register mapping
3568  * @adapter: board private structure to initialize
3569  *
3570  * Once we know the feature-set enabled for the device, we'll cache
3571  * the register offset the descriptor ring is assigned to.
3572  */
3573 static void igc_cache_ring_register(struct igc_adapter *adapter)
3574 {
3575 	int i = 0, j = 0;
3576 
3577 	switch (adapter->hw.mac.type) {
3578 	case igc_i225:
3579 	/* Fall through */
3580 	default:
3581 		for (; i < adapter->num_rx_queues; i++)
3582 			adapter->rx_ring[i]->reg_idx = i;
3583 		for (; j < adapter->num_tx_queues; j++)
3584 			adapter->tx_ring[j]->reg_idx = j;
3585 		break;
3586 	}
3587 }
3588 
3589 /**
3590  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3591  * @adapter: Pointer to adapter structure
3592  *
3593  * This function initializes the interrupts and allocates all of the queues.
3594  */
3595 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3596 {
3597 	struct pci_dev *pdev = adapter->pdev;
3598 	int err = 0;
3599 
3600 	igc_set_interrupt_capability(adapter, msix);
3601 
3602 	err = igc_alloc_q_vectors(adapter);
3603 	if (err) {
3604 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3605 		goto err_alloc_q_vectors;
3606 	}
3607 
3608 	igc_cache_ring_register(adapter);
3609 
3610 	return 0;
3611 
3612 err_alloc_q_vectors:
3613 	igc_reset_interrupt_capability(adapter);
3614 	return err;
3615 }
3616 
3617 static void igc_free_irq(struct igc_adapter *adapter)
3618 {
3619 	if (adapter->msix_entries) {
3620 		int vector = 0, i;
3621 
3622 		free_irq(adapter->msix_entries[vector++].vector, adapter);
3623 
3624 		for (i = 0; i < adapter->num_q_vectors; i++)
3625 			free_irq(adapter->msix_entries[vector++].vector,
3626 				 adapter->q_vector[i]);
3627 	} else {
3628 		free_irq(adapter->pdev->irq, adapter);
3629 	}
3630 }
3631 
3632 /**
3633  * igc_irq_disable - Mask off interrupt generation on the NIC
3634  * @adapter: board private structure
3635  */
3636 static void igc_irq_disable(struct igc_adapter *adapter)
3637 {
3638 	struct igc_hw *hw = &adapter->hw;
3639 
3640 	if (adapter->msix_entries) {
3641 		u32 regval = rd32(IGC_EIAM);
3642 
3643 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3644 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3645 		regval = rd32(IGC_EIAC);
3646 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3647 	}
3648 
3649 	wr32(IGC_IAM, 0);
3650 	wr32(IGC_IMC, ~0);
3651 	wrfl();
3652 
3653 	if (adapter->msix_entries) {
3654 		int vector = 0, i;
3655 
3656 		synchronize_irq(adapter->msix_entries[vector++].vector);
3657 
3658 		for (i = 0; i < adapter->num_q_vectors; i++)
3659 			synchronize_irq(adapter->msix_entries[vector++].vector);
3660 	} else {
3661 		synchronize_irq(adapter->pdev->irq);
3662 	}
3663 }
3664 
3665 /**
3666  * igc_irq_enable - Enable default interrupt generation settings
3667  * @adapter: board private structure
3668  */
3669 static void igc_irq_enable(struct igc_adapter *adapter)
3670 {
3671 	struct igc_hw *hw = &adapter->hw;
3672 
3673 	if (adapter->msix_entries) {
3674 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3675 		u32 regval = rd32(IGC_EIAC);
3676 
3677 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3678 		regval = rd32(IGC_EIAM);
3679 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3680 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3681 		wr32(IGC_IMS, ims);
3682 	} else {
3683 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3684 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3685 	}
3686 }
3687 
3688 /**
3689  * igc_request_irq - initialize interrupts
3690  * @adapter: Pointer to adapter structure
3691  *
3692  * Attempts to configure interrupts using the best available
3693  * capabilities of the hardware and kernel.
3694  */
3695 static int igc_request_irq(struct igc_adapter *adapter)
3696 {
3697 	struct net_device *netdev = adapter->netdev;
3698 	struct pci_dev *pdev = adapter->pdev;
3699 	int err = 0;
3700 
3701 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3702 		err = igc_request_msix(adapter);
3703 		if (!err)
3704 			goto request_done;
3705 		/* fall back to MSI */
3706 		igc_free_all_tx_resources(adapter);
3707 		igc_free_all_rx_resources(adapter);
3708 
3709 		igc_clear_interrupt_scheme(adapter);
3710 		err = igc_init_interrupt_scheme(adapter, false);
3711 		if (err)
3712 			goto request_done;
3713 		igc_setup_all_tx_resources(adapter);
3714 		igc_setup_all_rx_resources(adapter);
3715 		igc_configure(adapter);
3716 	}
3717 
3718 	igc_assign_vector(adapter->q_vector[0], 0);
3719 
3720 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
3721 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
3722 				  netdev->name, adapter);
3723 		if (!err)
3724 			goto request_done;
3725 
3726 		/* fall back to legacy interrupts */
3727 		igc_reset_interrupt_capability(adapter);
3728 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
3729 	}
3730 
3731 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3732 			  netdev->name, adapter);
3733 
3734 	if (err)
3735 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
3736 			err);
3737 
3738 request_done:
3739 	return err;
3740 }
3741 
3742 static void igc_write_itr(struct igc_q_vector *q_vector)
3743 {
3744 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3745 
3746 	if (!q_vector->set_itr)
3747 		return;
3748 
3749 	if (!itr_val)
3750 		itr_val = IGC_ITR_VAL_MASK;
3751 
3752 	itr_val |= IGC_EITR_CNT_IGNR;
3753 
3754 	writel(itr_val, q_vector->itr_register);
3755 	q_vector->set_itr = 0;
3756 }
3757 
3758 /**
3759  * igc_open - Called when a network interface is made active
3760  * @netdev: network interface device structure
3761  *
3762  * Returns 0 on success, negative value on failure
3763  *
3764  * The open entry point is called when a network interface is made
3765  * active by the system (IFF_UP).  At this point all resources needed
3766  * for transmit and receive operations are allocated, the interrupt
3767  * handler is registered with the OS, the watchdog timer is started,
3768  * and the stack is notified that the interface is ready.
3769  */
3770 static int __igc_open(struct net_device *netdev, bool resuming)
3771 {
3772 	struct igc_adapter *adapter = netdev_priv(netdev);
3773 	struct igc_hw *hw = &adapter->hw;
3774 	int err = 0;
3775 	int i = 0;
3776 
3777 	/* disallow open during test */
3778 
3779 	if (test_bit(__IGC_TESTING, &adapter->state)) {
3780 		WARN_ON(resuming);
3781 		return -EBUSY;
3782 	}
3783 
3784 	netif_carrier_off(netdev);
3785 
3786 	/* allocate transmit descriptors */
3787 	err = igc_setup_all_tx_resources(adapter);
3788 	if (err)
3789 		goto err_setup_tx;
3790 
3791 	/* allocate receive descriptors */
3792 	err = igc_setup_all_rx_resources(adapter);
3793 	if (err)
3794 		goto err_setup_rx;
3795 
3796 	igc_power_up_link(adapter);
3797 
3798 	igc_configure(adapter);
3799 
3800 	err = igc_request_irq(adapter);
3801 	if (err)
3802 		goto err_req_irq;
3803 
3804 	/* Notify the stack of the actual queue counts. */
3805 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3806 	if (err)
3807 		goto err_set_queues;
3808 
3809 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3810 	if (err)
3811 		goto err_set_queues;
3812 
3813 	clear_bit(__IGC_DOWN, &adapter->state);
3814 
3815 	for (i = 0; i < adapter->num_q_vectors; i++)
3816 		napi_enable(&adapter->q_vector[i]->napi);
3817 
3818 	/* Clear any pending interrupts. */
3819 	rd32(IGC_ICR);
3820 	igc_irq_enable(adapter);
3821 
3822 	netif_tx_start_all_queues(netdev);
3823 
3824 	/* start the watchdog. */
3825 	hw->mac.get_link_status = 1;
3826 	schedule_work(&adapter->watchdog_task);
3827 
3828 	return IGC_SUCCESS;
3829 
3830 err_set_queues:
3831 	igc_free_irq(adapter);
3832 err_req_irq:
3833 	igc_release_hw_control(adapter);
3834 	igc_power_down_link(adapter);
3835 	igc_free_all_rx_resources(adapter);
3836 err_setup_rx:
3837 	igc_free_all_tx_resources(adapter);
3838 err_setup_tx:
3839 	igc_reset(adapter);
3840 
3841 	return err;
3842 }
3843 
3844 static int igc_open(struct net_device *netdev)
3845 {
3846 	return __igc_open(netdev, false);
3847 }
3848 
3849 /**
3850  * igc_close - Disables a network interface
3851  * @netdev: network interface device structure
3852  *
3853  * Returns 0, this is not allowed to fail
3854  *
3855  * The close entry point is called when an interface is de-activated
3856  * by the OS.  The hardware is still under the driver's control, but
3857  * needs to be disabled.  A global MAC reset is issued to stop the
3858  * hardware, and all transmit and receive resources are freed.
3859  */
3860 static int __igc_close(struct net_device *netdev, bool suspending)
3861 {
3862 	struct igc_adapter *adapter = netdev_priv(netdev);
3863 
3864 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3865 
3866 	igc_down(adapter);
3867 
3868 	igc_release_hw_control(adapter);
3869 
3870 	igc_free_irq(adapter);
3871 
3872 	igc_free_all_tx_resources(adapter);
3873 	igc_free_all_rx_resources(adapter);
3874 
3875 	return 0;
3876 }
3877 
3878 static int igc_close(struct net_device *netdev)
3879 {
3880 	if (netif_device_present(netdev) || netdev->dismantle)
3881 		return __igc_close(netdev, false);
3882 	return 0;
3883 }
3884 
3885 static const struct net_device_ops igc_netdev_ops = {
3886 	.ndo_open		= igc_open,
3887 	.ndo_stop		= igc_close,
3888 	.ndo_start_xmit		= igc_xmit_frame,
3889 	.ndo_set_mac_address	= igc_set_mac,
3890 	.ndo_change_mtu		= igc_change_mtu,
3891 	.ndo_get_stats		= igc_get_stats,
3892 	.ndo_fix_features	= igc_fix_features,
3893 	.ndo_set_features	= igc_set_features,
3894 	.ndo_features_check	= igc_features_check,
3895 };
3896 
3897 /* PCIe configuration access */
3898 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3899 {
3900 	struct igc_adapter *adapter = hw->back;
3901 
3902 	pci_read_config_word(adapter->pdev, reg, value);
3903 }
3904 
3905 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3906 {
3907 	struct igc_adapter *adapter = hw->back;
3908 
3909 	pci_write_config_word(adapter->pdev, reg, *value);
3910 }
3911 
3912 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3913 {
3914 	struct igc_adapter *adapter = hw->back;
3915 	u16 cap_offset;
3916 
3917 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3918 	if (!cap_offset)
3919 		return -IGC_ERR_CONFIG;
3920 
3921 	pci_read_config_word(adapter->pdev, cap_offset + reg, value);
3922 
3923 	return IGC_SUCCESS;
3924 }
3925 
3926 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3927 {
3928 	struct igc_adapter *adapter = hw->back;
3929 	u16 cap_offset;
3930 
3931 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3932 	if (!cap_offset)
3933 		return -IGC_ERR_CONFIG;
3934 
3935 	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
3936 
3937 	return IGC_SUCCESS;
3938 }
3939 
3940 u32 igc_rd32(struct igc_hw *hw, u32 reg)
3941 {
3942 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
3943 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
3944 	u32 value = 0;
3945 
3946 	if (IGC_REMOVED(hw_addr))
3947 		return ~value;
3948 
3949 	value = readl(&hw_addr[reg]);
3950 
3951 	/* reads should not return all F's */
3952 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
3953 		struct net_device *netdev = igc->netdev;
3954 
3955 		hw->hw_addr = NULL;
3956 		netif_device_detach(netdev);
3957 		netdev_err(netdev, "PCIe link lost, device now detached\n");
3958 		WARN(1, "igc: Failed to read reg 0x%x!\n", reg);
3959 	}
3960 
3961 	return value;
3962 }
3963 
3964 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
3965 {
3966 	struct pci_dev *pdev = adapter->pdev;
3967 	struct igc_mac_info *mac = &adapter->hw.mac;
3968 
3969 	mac->autoneg = 0;
3970 
3971 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
3972 	 * for the switch() below to work
3973 	 */
3974 	if ((spd & 1) || (dplx & ~1))
3975 		goto err_inval;
3976 
3977 	switch (spd + dplx) {
3978 	case SPEED_10 + DUPLEX_HALF:
3979 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3980 		break;
3981 	case SPEED_10 + DUPLEX_FULL:
3982 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3983 		break;
3984 	case SPEED_100 + DUPLEX_HALF:
3985 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3986 		break;
3987 	case SPEED_100 + DUPLEX_FULL:
3988 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3989 		break;
3990 	case SPEED_1000 + DUPLEX_FULL:
3991 		mac->autoneg = 1;
3992 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3993 		break;
3994 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
3995 		goto err_inval;
3996 	case SPEED_2500 + DUPLEX_FULL:
3997 		mac->autoneg = 1;
3998 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
3999 		break;
4000 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
4001 	default:
4002 		goto err_inval;
4003 	}
4004 
4005 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4006 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
4007 
4008 	return 0;
4009 
4010 err_inval:
4011 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
4012 	return -EINVAL;
4013 }
4014 
4015 /**
4016  * igc_probe - Device Initialization Routine
4017  * @pdev: PCI device information struct
4018  * @ent: entry in igc_pci_tbl
4019  *
4020  * Returns 0 on success, negative on failure
4021  *
4022  * igc_probe initializes an adapter identified by a pci_dev structure.
4023  * The OS initialization, configuring the adapter private structure,
4024  * and a hardware reset occur.
4025  */
4026 static int igc_probe(struct pci_dev *pdev,
4027 		     const struct pci_device_id *ent)
4028 {
4029 	struct igc_adapter *adapter;
4030 	struct net_device *netdev;
4031 	struct igc_hw *hw;
4032 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4033 	int err;
4034 
4035 	err = pci_enable_device_mem(pdev);
4036 	if (err)
4037 		return err;
4038 
4039 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4040 	if (!err) {
4041 		err = dma_set_coherent_mask(&pdev->dev,
4042 					    DMA_BIT_MASK(64));
4043 	} else {
4044 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4045 		if (err) {
4046 			err = dma_set_coherent_mask(&pdev->dev,
4047 						    DMA_BIT_MASK(32));
4048 			if (err) {
4049 				dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4050 				goto err_dma;
4051 			}
4052 		}
4053 	}
4054 
4055 	err = pci_request_selected_regions(pdev,
4056 					   pci_select_bars(pdev,
4057 							   IORESOURCE_MEM),
4058 					   igc_driver_name);
4059 	if (err)
4060 		goto err_pci_reg;
4061 
4062 	pci_enable_pcie_error_reporting(pdev);
4063 
4064 	pci_set_master(pdev);
4065 
4066 	err = -ENOMEM;
4067 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4068 				   IGC_MAX_TX_QUEUES);
4069 
4070 	if (!netdev)
4071 		goto err_alloc_etherdev;
4072 
4073 	SET_NETDEV_DEV(netdev, &pdev->dev);
4074 
4075 	pci_set_drvdata(pdev, netdev);
4076 	adapter = netdev_priv(netdev);
4077 	adapter->netdev = netdev;
4078 	adapter->pdev = pdev;
4079 	hw = &adapter->hw;
4080 	hw->back = adapter;
4081 	adapter->port_num = hw->bus.func;
4082 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4083 
4084 	err = pci_save_state(pdev);
4085 	if (err)
4086 		goto err_ioremap;
4087 
4088 	err = -EIO;
4089 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4090 				   pci_resource_len(pdev, 0));
4091 	if (!adapter->io_addr)
4092 		goto err_ioremap;
4093 
4094 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4095 	hw->hw_addr = adapter->io_addr;
4096 
4097 	netdev->netdev_ops = &igc_netdev_ops;
4098 	igc_set_ethtool_ops(netdev);
4099 	netdev->watchdog_timeo = 5 * HZ;
4100 
4101 	netdev->mem_start = pci_resource_start(pdev, 0);
4102 	netdev->mem_end = pci_resource_end(pdev, 0);
4103 
4104 	/* PCI config space info */
4105 	hw->vendor_id = pdev->vendor;
4106 	hw->device_id = pdev->device;
4107 	hw->revision_id = pdev->revision;
4108 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4109 	hw->subsystem_device_id = pdev->subsystem_device;
4110 
4111 	/* Copy the default MAC and PHY function pointers */
4112 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4113 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4114 
4115 	/* Initialize skew-specific constants */
4116 	err = ei->get_invariants(hw);
4117 	if (err)
4118 		goto err_sw_init;
4119 
4120 	/* setup the private structure */
4121 	err = igc_sw_init(adapter);
4122 	if (err)
4123 		goto err_sw_init;
4124 
4125 	/* copy netdev features into list of user selectable features */
4126 	netdev->hw_features |= NETIF_F_NTUPLE;
4127 
4128 	/* MTU range: 68 - 9216 */
4129 	netdev->min_mtu = ETH_MIN_MTU;
4130 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4131 
4132 	/* before reading the NVM, reset the controller to put the device in a
4133 	 * known good starting state
4134 	 */
4135 	hw->mac.ops.reset_hw(hw);
4136 
4137 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4138 		/* copy the MAC address out of the NVM */
4139 		if (hw->mac.ops.read_mac_addr(hw))
4140 			dev_err(&pdev->dev, "NVM Read Error\n");
4141 	}
4142 
4143 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4144 
4145 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4146 		dev_err(&pdev->dev, "Invalid MAC Address\n");
4147 		err = -EIO;
4148 		goto err_eeprom;
4149 	}
4150 
4151 	/* configure RXPBSIZE and TXPBSIZE */
4152 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4153 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4154 
4155 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4156 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4157 
4158 	INIT_WORK(&adapter->reset_task, igc_reset_task);
4159 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4160 
4161 	/* Initialize link properties that are user-changeable */
4162 	adapter->fc_autoneg = true;
4163 	hw->mac.autoneg = true;
4164 	hw->phy.autoneg_advertised = 0xaf;
4165 
4166 	hw->fc.requested_mode = igc_fc_default;
4167 	hw->fc.current_mode = igc_fc_default;
4168 
4169 	/* reset the hardware with the new settings */
4170 	igc_reset(adapter);
4171 
4172 	/* let the f/w know that the h/w is now under the control of the
4173 	 * driver.
4174 	 */
4175 	igc_get_hw_control(adapter);
4176 
4177 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
4178 	err = register_netdev(netdev);
4179 	if (err)
4180 		goto err_register;
4181 
4182 	 /* carrier off reporting is important to ethtool even BEFORE open */
4183 	netif_carrier_off(netdev);
4184 
4185 	/* Check if Media Autosense is enabled */
4186 	adapter->ei = *ei;
4187 
4188 	/* print pcie link status and MAC address */
4189 	pcie_print_link_status(pdev);
4190 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4191 
4192 	return 0;
4193 
4194 err_register:
4195 	igc_release_hw_control(adapter);
4196 err_eeprom:
4197 	if (!igc_check_reset_block(hw))
4198 		igc_reset_phy(hw);
4199 err_sw_init:
4200 	igc_clear_interrupt_scheme(adapter);
4201 	iounmap(adapter->io_addr);
4202 err_ioremap:
4203 	free_netdev(netdev);
4204 err_alloc_etherdev:
4205 	pci_release_selected_regions(pdev,
4206 				     pci_select_bars(pdev, IORESOURCE_MEM));
4207 err_pci_reg:
4208 err_dma:
4209 	pci_disable_device(pdev);
4210 	return err;
4211 }
4212 
4213 /**
4214  * igc_remove - Device Removal Routine
4215  * @pdev: PCI device information struct
4216  *
4217  * igc_remove is called by the PCI subsystem to alert the driver
4218  * that it should release a PCI device.  This could be caused by a
4219  * Hot-Plug event, or because the driver is going to be removed from
4220  * memory.
4221  */
4222 static void igc_remove(struct pci_dev *pdev)
4223 {
4224 	struct net_device *netdev = pci_get_drvdata(pdev);
4225 	struct igc_adapter *adapter = netdev_priv(netdev);
4226 
4227 	set_bit(__IGC_DOWN, &adapter->state);
4228 
4229 	del_timer_sync(&adapter->watchdog_timer);
4230 	del_timer_sync(&adapter->phy_info_timer);
4231 
4232 	cancel_work_sync(&adapter->reset_task);
4233 	cancel_work_sync(&adapter->watchdog_task);
4234 
4235 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
4236 	 * would have already happened in close and is redundant.
4237 	 */
4238 	igc_release_hw_control(adapter);
4239 	unregister_netdev(netdev);
4240 
4241 	igc_clear_interrupt_scheme(adapter);
4242 	pci_iounmap(pdev, adapter->io_addr);
4243 	pci_release_mem_regions(pdev);
4244 
4245 	kfree(adapter->mac_table);
4246 	kfree(adapter->shadow_vfta);
4247 	free_netdev(netdev);
4248 
4249 	pci_disable_pcie_error_reporting(pdev);
4250 
4251 	pci_disable_device(pdev);
4252 }
4253 
4254 static struct pci_driver igc_driver = {
4255 	.name     = igc_driver_name,
4256 	.id_table = igc_pci_tbl,
4257 	.probe    = igc_probe,
4258 	.remove   = igc_remove,
4259 };
4260 
4261 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4262 			      const u32 max_rss_queues)
4263 {
4264 	/* Determine if we need to pair queues. */
4265 	/* If rss_queues > half of max_rss_queues, pair the queues in
4266 	 * order to conserve interrupts due to limited supply.
4267 	 */
4268 	if (adapter->rss_queues > (max_rss_queues / 2))
4269 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4270 	else
4271 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4272 }
4273 
4274 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4275 {
4276 	unsigned int max_rss_queues;
4277 
4278 	/* Determine the maximum number of RSS queues supported. */
4279 	max_rss_queues = IGC_MAX_RX_QUEUES;
4280 
4281 	return max_rss_queues;
4282 }
4283 
4284 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4285 {
4286 	u32 max_rss_queues;
4287 
4288 	max_rss_queues = igc_get_max_rss_queues(adapter);
4289 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4290 
4291 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4292 }
4293 
4294 /**
4295  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4296  * @adapter: board private structure to initialize
4297  *
4298  * igc_sw_init initializes the Adapter private data structure.
4299  * Fields are initialized based on PCI device information and
4300  * OS network device settings (MTU size).
4301  */
4302 static int igc_sw_init(struct igc_adapter *adapter)
4303 {
4304 	struct net_device *netdev = adapter->netdev;
4305 	struct pci_dev *pdev = adapter->pdev;
4306 	struct igc_hw *hw = &adapter->hw;
4307 
4308 	int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4309 
4310 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4311 
4312 	/* set default ring sizes */
4313 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4314 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4315 
4316 	/* set default ITR values */
4317 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4318 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4319 
4320 	/* set default work limits */
4321 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4322 
4323 	/* adjust max frame to be at least the size of a standard frame */
4324 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4325 				VLAN_HLEN;
4326 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4327 
4328 	spin_lock_init(&adapter->nfc_lock);
4329 	spin_lock_init(&adapter->stats64_lock);
4330 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4331 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4332 
4333 	adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4334 	if (!adapter->mac_table)
4335 		return -ENOMEM;
4336 
4337 	igc_init_queue_configuration(adapter);
4338 
4339 	/* This call may decrease the number of queues */
4340 	if (igc_init_interrupt_scheme(adapter, true)) {
4341 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4342 		return -ENOMEM;
4343 	}
4344 
4345 	/* Explicitly disable IRQ since the NIC can be in any state. */
4346 	igc_irq_disable(adapter);
4347 
4348 	set_bit(__IGC_DOWN, &adapter->state);
4349 
4350 	return 0;
4351 }
4352 
4353 /**
4354  * igc_reinit_queues - return error
4355  * @adapter: pointer to adapter structure
4356  */
4357 int igc_reinit_queues(struct igc_adapter *adapter)
4358 {
4359 	struct net_device *netdev = adapter->netdev;
4360 	struct pci_dev *pdev = adapter->pdev;
4361 	int err = 0;
4362 
4363 	if (netif_running(netdev))
4364 		igc_close(netdev);
4365 
4366 	igc_reset_interrupt_capability(adapter);
4367 
4368 	if (igc_init_interrupt_scheme(adapter, true)) {
4369 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4370 		return -ENOMEM;
4371 	}
4372 
4373 	if (netif_running(netdev))
4374 		err = igc_open(netdev);
4375 
4376 	return err;
4377 }
4378 
4379 /**
4380  * igc_get_hw_dev - return device
4381  * @hw: pointer to hardware structure
4382  *
4383  * used by hardware layer to print debugging information
4384  */
4385 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4386 {
4387 	struct igc_adapter *adapter = hw->back;
4388 
4389 	return adapter->netdev;
4390 }
4391 
4392 /**
4393  * igc_init_module - Driver Registration Routine
4394  *
4395  * igc_init_module is the first routine called when the driver is
4396  * loaded. All it does is register with the PCI subsystem.
4397  */
4398 static int __init igc_init_module(void)
4399 {
4400 	int ret;
4401 
4402 	pr_info("%s - version %s\n",
4403 		igc_driver_string, igc_driver_version);
4404 
4405 	pr_info("%s\n", igc_copyright);
4406 
4407 	ret = pci_register_driver(&igc_driver);
4408 	return ret;
4409 }
4410 
4411 module_init(igc_init_module);
4412 
4413 /**
4414  * igc_exit_module - Driver Exit Cleanup Routine
4415  *
4416  * igc_exit_module is called just before the driver is removed
4417  * from memory.
4418  */
4419 static void __exit igc_exit_module(void)
4420 {
4421 	pci_unregister_driver(&igc_driver);
4422 }
4423 
4424 module_exit(igc_exit_module);
4425 /* igc_main.c */
4426