1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 9 #include "igc.h" 10 #include "igc_hw.h" 11 12 #define DRV_VERSION "0.0.1-k" 13 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 14 15 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 16 17 static int debug = -1; 18 19 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 20 MODULE_DESCRIPTION(DRV_SUMMARY); 21 MODULE_LICENSE("GPL v2"); 22 MODULE_VERSION(DRV_VERSION); 23 module_param(debug, int, 0); 24 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 25 26 char igc_driver_name[] = "igc"; 27 char igc_driver_version[] = DRV_VERSION; 28 static const char igc_driver_string[] = DRV_SUMMARY; 29 static const char igc_copyright[] = 30 "Copyright(c) 2018 Intel Corporation."; 31 32 static const struct igc_info *igc_info_tbl[] = { 33 [board_base] = &igc_base_info, 34 }; 35 36 static const struct pci_device_id igc_pci_tbl[] = { 37 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 38 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 39 /* required last entry */ 40 {0, } 41 }; 42 43 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 44 45 /* forward declaration */ 46 static void igc_clean_tx_ring(struct igc_ring *tx_ring); 47 static int igc_sw_init(struct igc_adapter *); 48 static void igc_configure(struct igc_adapter *adapter); 49 static void igc_power_down_link(struct igc_adapter *adapter); 50 static void igc_set_default_mac_filter(struct igc_adapter *adapter); 51 static void igc_set_rx_mode(struct net_device *netdev); 52 static void igc_write_itr(struct igc_q_vector *q_vector); 53 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector); 54 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx); 55 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 56 bool msix); 57 static void igc_free_q_vectors(struct igc_adapter *adapter); 58 static void igc_irq_disable(struct igc_adapter *adapter); 59 static void igc_irq_enable(struct igc_adapter *adapter); 60 static void igc_configure_msix(struct igc_adapter *adapter); 61 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 62 struct igc_rx_buffer *bi); 63 64 enum latency_range { 65 lowest_latency = 0, 66 low_latency = 1, 67 bulk_latency = 2, 68 latency_invalid = 255 69 }; 70 71 void igc_reset(struct igc_adapter *adapter) 72 { 73 struct pci_dev *pdev = adapter->pdev; 74 struct igc_hw *hw = &adapter->hw; 75 struct igc_fc_info *fc = &hw->fc; 76 u32 pba, hwm; 77 78 /* Repartition PBA for greater than 9k MTU if required */ 79 pba = IGC_PBA_34K; 80 81 /* flow control settings 82 * The high water mark must be low enough to fit one full frame 83 * after transmitting the pause frame. As such we must have enough 84 * space to allow for us to complete our current transmit and then 85 * receive the frame that is in progress from the link partner. 86 * Set it to: 87 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 88 */ 89 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 90 91 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 92 fc->low_water = fc->high_water - 16; 93 fc->pause_time = 0xFFFF; 94 fc->send_xon = 1; 95 fc->current_mode = fc->requested_mode; 96 97 hw->mac.ops.reset_hw(hw); 98 99 if (hw->mac.ops.init_hw(hw)) 100 dev_err(&pdev->dev, "Hardware Error\n"); 101 102 if (!netif_running(adapter->netdev)) 103 igc_power_down_link(adapter); 104 105 igc_get_phy_info(hw); 106 } 107 108 /** 109 * igc_power_up_link - Power up the phy/serdes link 110 * @adapter: address of board private structure 111 */ 112 static void igc_power_up_link(struct igc_adapter *adapter) 113 { 114 igc_reset_phy(&adapter->hw); 115 116 if (adapter->hw.phy.media_type == igc_media_type_copper) 117 igc_power_up_phy_copper(&adapter->hw); 118 119 igc_setup_link(&adapter->hw); 120 } 121 122 /** 123 * igc_power_down_link - Power down the phy/serdes link 124 * @adapter: address of board private structure 125 */ 126 static void igc_power_down_link(struct igc_adapter *adapter) 127 { 128 if (adapter->hw.phy.media_type == igc_media_type_copper) 129 igc_power_down_phy_copper_base(&adapter->hw); 130 } 131 132 /** 133 * igc_release_hw_control - release control of the h/w to f/w 134 * @adapter: address of board private structure 135 * 136 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 137 * For ASF and Pass Through versions of f/w this means that the 138 * driver is no longer loaded. 139 */ 140 static void igc_release_hw_control(struct igc_adapter *adapter) 141 { 142 struct igc_hw *hw = &adapter->hw; 143 u32 ctrl_ext; 144 145 /* Let firmware take over control of h/w */ 146 ctrl_ext = rd32(IGC_CTRL_EXT); 147 wr32(IGC_CTRL_EXT, 148 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 149 } 150 151 /** 152 * igc_get_hw_control - get control of the h/w from f/w 153 * @adapter: address of board private structure 154 * 155 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 156 * For ASF and Pass Through versions of f/w this means that 157 * the driver is loaded. 158 */ 159 static void igc_get_hw_control(struct igc_adapter *adapter) 160 { 161 struct igc_hw *hw = &adapter->hw; 162 u32 ctrl_ext; 163 164 /* Let firmware know the driver has taken over */ 165 ctrl_ext = rd32(IGC_CTRL_EXT); 166 wr32(IGC_CTRL_EXT, 167 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 168 } 169 170 /** 171 * igc_free_tx_resources - Free Tx Resources per Queue 172 * @tx_ring: Tx descriptor ring for a specific queue 173 * 174 * Free all transmit software resources 175 */ 176 void igc_free_tx_resources(struct igc_ring *tx_ring) 177 { 178 igc_clean_tx_ring(tx_ring); 179 180 vfree(tx_ring->tx_buffer_info); 181 tx_ring->tx_buffer_info = NULL; 182 183 /* if not set, then don't free */ 184 if (!tx_ring->desc) 185 return; 186 187 dma_free_coherent(tx_ring->dev, tx_ring->size, 188 tx_ring->desc, tx_ring->dma); 189 190 tx_ring->desc = NULL; 191 } 192 193 /** 194 * igc_free_all_tx_resources - Free Tx Resources for All Queues 195 * @adapter: board private structure 196 * 197 * Free all transmit software resources 198 */ 199 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 200 { 201 int i; 202 203 for (i = 0; i < adapter->num_tx_queues; i++) 204 igc_free_tx_resources(adapter->tx_ring[i]); 205 } 206 207 /** 208 * igc_clean_tx_ring - Free Tx Buffers 209 * @tx_ring: ring to be cleaned 210 */ 211 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 212 { 213 u16 i = tx_ring->next_to_clean; 214 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 215 216 while (i != tx_ring->next_to_use) { 217 union igc_adv_tx_desc *eop_desc, *tx_desc; 218 219 /* Free all the Tx ring sk_buffs */ 220 dev_kfree_skb_any(tx_buffer->skb); 221 222 /* unmap skb header data */ 223 dma_unmap_single(tx_ring->dev, 224 dma_unmap_addr(tx_buffer, dma), 225 dma_unmap_len(tx_buffer, len), 226 DMA_TO_DEVICE); 227 228 /* check for eop_desc to determine the end of the packet */ 229 eop_desc = tx_buffer->next_to_watch; 230 tx_desc = IGC_TX_DESC(tx_ring, i); 231 232 /* unmap remaining buffers */ 233 while (tx_desc != eop_desc) { 234 tx_buffer++; 235 tx_desc++; 236 i++; 237 if (unlikely(i == tx_ring->count)) { 238 i = 0; 239 tx_buffer = tx_ring->tx_buffer_info; 240 tx_desc = IGC_TX_DESC(tx_ring, 0); 241 } 242 243 /* unmap any remaining paged data */ 244 if (dma_unmap_len(tx_buffer, len)) 245 dma_unmap_page(tx_ring->dev, 246 dma_unmap_addr(tx_buffer, dma), 247 dma_unmap_len(tx_buffer, len), 248 DMA_TO_DEVICE); 249 } 250 251 /* move us one more past the eop_desc for start of next pkt */ 252 tx_buffer++; 253 i++; 254 if (unlikely(i == tx_ring->count)) { 255 i = 0; 256 tx_buffer = tx_ring->tx_buffer_info; 257 } 258 } 259 260 /* reset BQL for queue */ 261 netdev_tx_reset_queue(txring_txq(tx_ring)); 262 263 /* reset next_to_use and next_to_clean */ 264 tx_ring->next_to_use = 0; 265 tx_ring->next_to_clean = 0; 266 } 267 268 /** 269 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 270 * @adapter: board private structure 271 */ 272 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 273 { 274 int i; 275 276 for (i = 0; i < adapter->num_tx_queues; i++) 277 if (adapter->tx_ring[i]) 278 igc_clean_tx_ring(adapter->tx_ring[i]); 279 } 280 281 /** 282 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 283 * @tx_ring: tx descriptor ring (for a specific queue) to setup 284 * 285 * Return 0 on success, negative on failure 286 */ 287 int igc_setup_tx_resources(struct igc_ring *tx_ring) 288 { 289 struct device *dev = tx_ring->dev; 290 int size = 0; 291 292 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 293 tx_ring->tx_buffer_info = vzalloc(size); 294 if (!tx_ring->tx_buffer_info) 295 goto err; 296 297 /* round up to nearest 4K */ 298 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 299 tx_ring->size = ALIGN(tx_ring->size, 4096); 300 301 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 302 &tx_ring->dma, GFP_KERNEL); 303 304 if (!tx_ring->desc) 305 goto err; 306 307 tx_ring->next_to_use = 0; 308 tx_ring->next_to_clean = 0; 309 310 return 0; 311 312 err: 313 vfree(tx_ring->tx_buffer_info); 314 dev_err(dev, 315 "Unable to allocate memory for the transmit descriptor ring\n"); 316 return -ENOMEM; 317 } 318 319 /** 320 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 321 * @adapter: board private structure 322 * 323 * Return 0 on success, negative on failure 324 */ 325 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 326 { 327 struct pci_dev *pdev = adapter->pdev; 328 int i, err = 0; 329 330 for (i = 0; i < adapter->num_tx_queues; i++) { 331 err = igc_setup_tx_resources(adapter->tx_ring[i]); 332 if (err) { 333 dev_err(&pdev->dev, 334 "Allocation for Tx Queue %u failed\n", i); 335 for (i--; i >= 0; i--) 336 igc_free_tx_resources(adapter->tx_ring[i]); 337 break; 338 } 339 } 340 341 return err; 342 } 343 344 /** 345 * igc_clean_rx_ring - Free Rx Buffers per Queue 346 * @rx_ring: ring to free buffers from 347 */ 348 static void igc_clean_rx_ring(struct igc_ring *rx_ring) 349 { 350 u16 i = rx_ring->next_to_clean; 351 352 if (rx_ring->skb) 353 dev_kfree_skb(rx_ring->skb); 354 rx_ring->skb = NULL; 355 356 /* Free all the Rx ring sk_buffs */ 357 while (i != rx_ring->next_to_alloc) { 358 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 359 360 /* Invalidate cache lines that may have been written to by 361 * device so that we avoid corrupting memory. 362 */ 363 dma_sync_single_range_for_cpu(rx_ring->dev, 364 buffer_info->dma, 365 buffer_info->page_offset, 366 igc_rx_bufsz(rx_ring), 367 DMA_FROM_DEVICE); 368 369 /* free resources associated with mapping */ 370 dma_unmap_page_attrs(rx_ring->dev, 371 buffer_info->dma, 372 igc_rx_pg_size(rx_ring), 373 DMA_FROM_DEVICE, 374 IGC_RX_DMA_ATTR); 375 __page_frag_cache_drain(buffer_info->page, 376 buffer_info->pagecnt_bias); 377 378 i++; 379 if (i == rx_ring->count) 380 i = 0; 381 } 382 383 rx_ring->next_to_alloc = 0; 384 rx_ring->next_to_clean = 0; 385 rx_ring->next_to_use = 0; 386 } 387 388 /** 389 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 390 * @adapter: board private structure 391 */ 392 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 393 { 394 int i; 395 396 for (i = 0; i < adapter->num_rx_queues; i++) 397 if (adapter->rx_ring[i]) 398 igc_clean_rx_ring(adapter->rx_ring[i]); 399 } 400 401 /** 402 * igc_free_rx_resources - Free Rx Resources 403 * @rx_ring: ring to clean the resources from 404 * 405 * Free all receive software resources 406 */ 407 void igc_free_rx_resources(struct igc_ring *rx_ring) 408 { 409 igc_clean_rx_ring(rx_ring); 410 411 vfree(rx_ring->rx_buffer_info); 412 rx_ring->rx_buffer_info = NULL; 413 414 /* if not set, then don't free */ 415 if (!rx_ring->desc) 416 return; 417 418 dma_free_coherent(rx_ring->dev, rx_ring->size, 419 rx_ring->desc, rx_ring->dma); 420 421 rx_ring->desc = NULL; 422 } 423 424 /** 425 * igc_free_all_rx_resources - Free Rx Resources for All Queues 426 * @adapter: board private structure 427 * 428 * Free all receive software resources 429 */ 430 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 431 { 432 int i; 433 434 for (i = 0; i < adapter->num_rx_queues; i++) 435 igc_free_rx_resources(adapter->rx_ring[i]); 436 } 437 438 /** 439 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 440 * @rx_ring: rx descriptor ring (for a specific queue) to setup 441 * 442 * Returns 0 on success, negative on failure 443 */ 444 int igc_setup_rx_resources(struct igc_ring *rx_ring) 445 { 446 struct device *dev = rx_ring->dev; 447 int size, desc_len; 448 449 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 450 rx_ring->rx_buffer_info = vzalloc(size); 451 if (!rx_ring->rx_buffer_info) 452 goto err; 453 454 desc_len = sizeof(union igc_adv_rx_desc); 455 456 /* Round up to nearest 4K */ 457 rx_ring->size = rx_ring->count * desc_len; 458 rx_ring->size = ALIGN(rx_ring->size, 4096); 459 460 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 461 &rx_ring->dma, GFP_KERNEL); 462 463 if (!rx_ring->desc) 464 goto err; 465 466 rx_ring->next_to_alloc = 0; 467 rx_ring->next_to_clean = 0; 468 rx_ring->next_to_use = 0; 469 470 return 0; 471 472 err: 473 vfree(rx_ring->rx_buffer_info); 474 rx_ring->rx_buffer_info = NULL; 475 dev_err(dev, 476 "Unable to allocate memory for the receive descriptor ring\n"); 477 return -ENOMEM; 478 } 479 480 /** 481 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 482 * (Descriptors) for all queues 483 * @adapter: board private structure 484 * 485 * Return 0 on success, negative on failure 486 */ 487 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 488 { 489 struct pci_dev *pdev = adapter->pdev; 490 int i, err = 0; 491 492 for (i = 0; i < adapter->num_rx_queues; i++) { 493 err = igc_setup_rx_resources(adapter->rx_ring[i]); 494 if (err) { 495 dev_err(&pdev->dev, 496 "Allocation for Rx Queue %u failed\n", i); 497 for (i--; i >= 0; i--) 498 igc_free_rx_resources(adapter->rx_ring[i]); 499 break; 500 } 501 } 502 503 return err; 504 } 505 506 /** 507 * igc_configure_rx_ring - Configure a receive ring after Reset 508 * @adapter: board private structure 509 * @ring: receive ring to be configured 510 * 511 * Configure the Rx unit of the MAC after a reset. 512 */ 513 static void igc_configure_rx_ring(struct igc_adapter *adapter, 514 struct igc_ring *ring) 515 { 516 struct igc_hw *hw = &adapter->hw; 517 union igc_adv_rx_desc *rx_desc; 518 int reg_idx = ring->reg_idx; 519 u32 srrctl = 0, rxdctl = 0; 520 u64 rdba = ring->dma; 521 522 /* disable the queue */ 523 wr32(IGC_RXDCTL(reg_idx), 0); 524 525 /* Set DMA base address registers */ 526 wr32(IGC_RDBAL(reg_idx), 527 rdba & 0x00000000ffffffffULL); 528 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 529 wr32(IGC_RDLEN(reg_idx), 530 ring->count * sizeof(union igc_adv_rx_desc)); 531 532 /* initialize head and tail */ 533 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 534 wr32(IGC_RDH(reg_idx), 0); 535 writel(0, ring->tail); 536 537 /* reset next-to- use/clean to place SW in sync with hardware */ 538 ring->next_to_clean = 0; 539 ring->next_to_use = 0; 540 541 /* set descriptor configuration */ 542 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 543 if (ring_uses_large_buffer(ring)) 544 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 545 else 546 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 547 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 548 549 wr32(IGC_SRRCTL(reg_idx), srrctl); 550 551 rxdctl |= IGC_RX_PTHRESH; 552 rxdctl |= IGC_RX_HTHRESH << 8; 553 rxdctl |= IGC_RX_WTHRESH << 16; 554 555 /* initialize rx_buffer_info */ 556 memset(ring->rx_buffer_info, 0, 557 sizeof(struct igc_rx_buffer) * ring->count); 558 559 /* initialize Rx descriptor 0 */ 560 rx_desc = IGC_RX_DESC(ring, 0); 561 rx_desc->wb.upper.length = 0; 562 563 /* enable receive descriptor fetching */ 564 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 565 566 wr32(IGC_RXDCTL(reg_idx), rxdctl); 567 } 568 569 /** 570 * igc_configure_rx - Configure receive Unit after Reset 571 * @adapter: board private structure 572 * 573 * Configure the Rx unit of the MAC after a reset. 574 */ 575 static void igc_configure_rx(struct igc_adapter *adapter) 576 { 577 int i; 578 579 /* Setup the HW Rx Head and Tail Descriptor Pointers and 580 * the Base and Length of the Rx Descriptor Ring 581 */ 582 for (i = 0; i < adapter->num_rx_queues; i++) 583 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 584 } 585 586 /** 587 * igc_configure_tx_ring - Configure transmit ring after Reset 588 * @adapter: board private structure 589 * @ring: tx ring to configure 590 * 591 * Configure a transmit ring after a reset. 592 */ 593 static void igc_configure_tx_ring(struct igc_adapter *adapter, 594 struct igc_ring *ring) 595 { 596 struct igc_hw *hw = &adapter->hw; 597 int reg_idx = ring->reg_idx; 598 u64 tdba = ring->dma; 599 u32 txdctl = 0; 600 601 /* disable the queue */ 602 wr32(IGC_TXDCTL(reg_idx), 0); 603 wrfl(); 604 mdelay(10); 605 606 wr32(IGC_TDLEN(reg_idx), 607 ring->count * sizeof(union igc_adv_tx_desc)); 608 wr32(IGC_TDBAL(reg_idx), 609 tdba & 0x00000000ffffffffULL); 610 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 611 612 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 613 wr32(IGC_TDH(reg_idx), 0); 614 writel(0, ring->tail); 615 616 txdctl |= IGC_TX_PTHRESH; 617 txdctl |= IGC_TX_HTHRESH << 8; 618 txdctl |= IGC_TX_WTHRESH << 16; 619 620 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 621 wr32(IGC_TXDCTL(reg_idx), txdctl); 622 } 623 624 /** 625 * igc_configure_tx - Configure transmit Unit after Reset 626 * @adapter: board private structure 627 * 628 * Configure the Tx unit of the MAC after a reset. 629 */ 630 static void igc_configure_tx(struct igc_adapter *adapter) 631 { 632 int i; 633 634 for (i = 0; i < adapter->num_tx_queues; i++) 635 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 636 } 637 638 /** 639 * igc_setup_mrqc - configure the multiple receive queue control registers 640 * @adapter: Board private structure 641 */ 642 static void igc_setup_mrqc(struct igc_adapter *adapter) 643 { 644 struct igc_hw *hw = &adapter->hw; 645 u32 j, num_rx_queues; 646 u32 mrqc, rxcsum; 647 u32 rss_key[10]; 648 649 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 650 for (j = 0; j < 10; j++) 651 wr32(IGC_RSSRK(j), rss_key[j]); 652 653 num_rx_queues = adapter->rss_queues; 654 655 if (adapter->rss_indir_tbl_init != num_rx_queues) { 656 for (j = 0; j < IGC_RETA_SIZE; j++) 657 adapter->rss_indir_tbl[j] = 658 (j * num_rx_queues) / IGC_RETA_SIZE; 659 adapter->rss_indir_tbl_init = num_rx_queues; 660 } 661 igc_write_rss_indir_tbl(adapter); 662 663 /* Disable raw packet checksumming so that RSS hash is placed in 664 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 665 * offloads as they are enabled by default 666 */ 667 rxcsum = rd32(IGC_RXCSUM); 668 rxcsum |= IGC_RXCSUM_PCSD; 669 670 /* Enable Receive Checksum Offload for SCTP */ 671 rxcsum |= IGC_RXCSUM_CRCOFL; 672 673 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 674 wr32(IGC_RXCSUM, rxcsum); 675 676 /* Generate RSS hash based on packet types, TCP/UDP 677 * port numbers and/or IPv4/v6 src and dst addresses 678 */ 679 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 680 IGC_MRQC_RSS_FIELD_IPV4_TCP | 681 IGC_MRQC_RSS_FIELD_IPV6 | 682 IGC_MRQC_RSS_FIELD_IPV6_TCP | 683 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 684 685 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 686 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 687 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 688 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 689 690 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 691 692 wr32(IGC_MRQC, mrqc); 693 } 694 695 /** 696 * igc_setup_rctl - configure the receive control registers 697 * @adapter: Board private structure 698 */ 699 static void igc_setup_rctl(struct igc_adapter *adapter) 700 { 701 struct igc_hw *hw = &adapter->hw; 702 u32 rctl; 703 704 rctl = rd32(IGC_RCTL); 705 706 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 707 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 708 709 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 710 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 711 712 /* enable stripping of CRC. Newer features require 713 * that the HW strips the CRC. 714 */ 715 rctl |= IGC_RCTL_SECRC; 716 717 /* disable store bad packets and clear size bits. */ 718 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 719 720 /* enable LPE to allow for reception of jumbo frames */ 721 rctl |= IGC_RCTL_LPE; 722 723 /* disable queue 0 to prevent tail write w/o re-config */ 724 wr32(IGC_RXDCTL(0), 0); 725 726 /* This is useful for sniffing bad packets. */ 727 if (adapter->netdev->features & NETIF_F_RXALL) { 728 /* UPE and MPE will be handled by normal PROMISC logic 729 * in set_rx_mode 730 */ 731 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 732 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 733 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 734 735 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 736 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 737 } 738 739 wr32(IGC_RCTL, rctl); 740 } 741 742 /** 743 * igc_setup_tctl - configure the transmit control registers 744 * @adapter: Board private structure 745 */ 746 static void igc_setup_tctl(struct igc_adapter *adapter) 747 { 748 struct igc_hw *hw = &adapter->hw; 749 u32 tctl; 750 751 /* disable queue 0 which icould be enabled by default */ 752 wr32(IGC_TXDCTL(0), 0); 753 754 /* Program the Transmit Control Register */ 755 tctl = rd32(IGC_TCTL); 756 tctl &= ~IGC_TCTL_CT; 757 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 758 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 759 760 /* Enable transmits */ 761 tctl |= IGC_TCTL_EN; 762 763 wr32(IGC_TCTL, tctl); 764 } 765 766 /** 767 * igc_set_mac - Change the Ethernet Address of the NIC 768 * @netdev: network interface device structure 769 * @p: pointer to an address structure 770 * 771 * Returns 0 on success, negative on failure 772 */ 773 static int igc_set_mac(struct net_device *netdev, void *p) 774 { 775 struct igc_adapter *adapter = netdev_priv(netdev); 776 struct igc_hw *hw = &adapter->hw; 777 struct sockaddr *addr = p; 778 779 if (!is_valid_ether_addr(addr->sa_data)) 780 return -EADDRNOTAVAIL; 781 782 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 783 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 784 785 /* set the correct pool for the new PF MAC address in entry 0 */ 786 igc_set_default_mac_filter(adapter); 787 788 return 0; 789 } 790 791 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 792 { 793 } 794 795 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 796 { 797 struct net_device *netdev = tx_ring->netdev; 798 799 netif_stop_subqueue(netdev, tx_ring->queue_index); 800 801 /* memory barriier comment */ 802 smp_mb(); 803 804 /* We need to check again in a case another CPU has just 805 * made room available. 806 */ 807 if (igc_desc_unused(tx_ring) < size) 808 return -EBUSY; 809 810 /* A reprieve! */ 811 netif_wake_subqueue(netdev, tx_ring->queue_index); 812 813 u64_stats_update_begin(&tx_ring->tx_syncp2); 814 tx_ring->tx_stats.restart_queue2++; 815 u64_stats_update_end(&tx_ring->tx_syncp2); 816 817 return 0; 818 } 819 820 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 821 { 822 if (igc_desc_unused(tx_ring) >= size) 823 return 0; 824 return __igc_maybe_stop_tx(tx_ring, size); 825 } 826 827 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 828 { 829 /* set type for advanced descriptor with frame checksum insertion */ 830 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 831 IGC_ADVTXD_DCMD_DEXT | 832 IGC_ADVTXD_DCMD_IFCS; 833 834 return cmd_type; 835 } 836 837 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 838 union igc_adv_tx_desc *tx_desc, 839 u32 tx_flags, unsigned int paylen) 840 { 841 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 842 843 /* insert L4 checksum */ 844 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 845 ((IGC_TXD_POPTS_TXSM << 8) / 846 IGC_TX_FLAGS_CSUM); 847 848 /* insert IPv4 checksum */ 849 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 850 (((IGC_TXD_POPTS_IXSM << 8)) / 851 IGC_TX_FLAGS_IPV4); 852 853 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 854 } 855 856 static int igc_tx_map(struct igc_ring *tx_ring, 857 struct igc_tx_buffer *first, 858 const u8 hdr_len) 859 { 860 struct sk_buff *skb = first->skb; 861 struct igc_tx_buffer *tx_buffer; 862 union igc_adv_tx_desc *tx_desc; 863 u32 tx_flags = first->tx_flags; 864 struct skb_frag_struct *frag; 865 u16 i = tx_ring->next_to_use; 866 unsigned int data_len, size; 867 dma_addr_t dma; 868 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags); 869 870 tx_desc = IGC_TX_DESC(tx_ring, i); 871 872 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 873 874 size = skb_headlen(skb); 875 data_len = skb->data_len; 876 877 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 878 879 tx_buffer = first; 880 881 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 882 if (dma_mapping_error(tx_ring->dev, dma)) 883 goto dma_error; 884 885 /* record length, and DMA address */ 886 dma_unmap_len_set(tx_buffer, len, size); 887 dma_unmap_addr_set(tx_buffer, dma, dma); 888 889 tx_desc->read.buffer_addr = cpu_to_le64(dma); 890 891 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 892 tx_desc->read.cmd_type_len = 893 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 894 895 i++; 896 tx_desc++; 897 if (i == tx_ring->count) { 898 tx_desc = IGC_TX_DESC(tx_ring, 0); 899 i = 0; 900 } 901 tx_desc->read.olinfo_status = 0; 902 903 dma += IGC_MAX_DATA_PER_TXD; 904 size -= IGC_MAX_DATA_PER_TXD; 905 906 tx_desc->read.buffer_addr = cpu_to_le64(dma); 907 } 908 909 if (likely(!data_len)) 910 break; 911 912 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 913 914 i++; 915 tx_desc++; 916 if (i == tx_ring->count) { 917 tx_desc = IGC_TX_DESC(tx_ring, 0); 918 i = 0; 919 } 920 tx_desc->read.olinfo_status = 0; 921 922 size = skb_frag_size(frag); 923 data_len -= size; 924 925 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 926 size, DMA_TO_DEVICE); 927 928 tx_buffer = &tx_ring->tx_buffer_info[i]; 929 } 930 931 /* write last descriptor with RS and EOP bits */ 932 cmd_type |= size | IGC_TXD_DCMD; 933 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 934 935 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 936 937 /* set the timestamp */ 938 first->time_stamp = jiffies; 939 940 skb_tx_timestamp(skb); 941 942 /* Force memory writes to complete before letting h/w know there 943 * are new descriptors to fetch. (Only applicable for weak-ordered 944 * memory model archs, such as IA-64). 945 * 946 * We also need this memory barrier to make certain all of the 947 * status bits have been updated before next_to_watch is written. 948 */ 949 wmb(); 950 951 /* set next_to_watch value indicating a packet is present */ 952 first->next_to_watch = tx_desc; 953 954 i++; 955 if (i == tx_ring->count) 956 i = 0; 957 958 tx_ring->next_to_use = i; 959 960 /* Make sure there is space in the ring for the next send. */ 961 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 962 963 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 964 writel(i, tx_ring->tail); 965 } 966 967 return 0; 968 dma_error: 969 dev_err(tx_ring->dev, "TX DMA map failed\n"); 970 tx_buffer = &tx_ring->tx_buffer_info[i]; 971 972 /* clear dma mappings for failed tx_buffer_info map */ 973 while (tx_buffer != first) { 974 if (dma_unmap_len(tx_buffer, len)) 975 dma_unmap_page(tx_ring->dev, 976 dma_unmap_addr(tx_buffer, dma), 977 dma_unmap_len(tx_buffer, len), 978 DMA_TO_DEVICE); 979 dma_unmap_len_set(tx_buffer, len, 0); 980 981 if (i-- == 0) 982 i += tx_ring->count; 983 tx_buffer = &tx_ring->tx_buffer_info[i]; 984 } 985 986 if (dma_unmap_len(tx_buffer, len)) 987 dma_unmap_single(tx_ring->dev, 988 dma_unmap_addr(tx_buffer, dma), 989 dma_unmap_len(tx_buffer, len), 990 DMA_TO_DEVICE); 991 dma_unmap_len_set(tx_buffer, len, 0); 992 993 dev_kfree_skb_any(tx_buffer->skb); 994 tx_buffer->skb = NULL; 995 996 tx_ring->next_to_use = i; 997 998 return -1; 999 } 1000 1001 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1002 struct igc_ring *tx_ring) 1003 { 1004 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1005 __be16 protocol = vlan_get_protocol(skb); 1006 struct igc_tx_buffer *first; 1007 u32 tx_flags = 0; 1008 unsigned short f; 1009 u8 hdr_len = 0; 1010 1011 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1012 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1013 * + 2 desc gap to keep tail from touching head, 1014 * + 1 desc for context descriptor, 1015 * otherwise try next time 1016 */ 1017 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1018 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1019 1020 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 1021 /* this is a hard error */ 1022 return NETDEV_TX_BUSY; 1023 } 1024 1025 /* record the location of the first descriptor for this packet */ 1026 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1027 first->skb = skb; 1028 first->bytecount = skb->len; 1029 first->gso_segs = 1; 1030 1031 /* record initial flags and protocol */ 1032 first->tx_flags = tx_flags; 1033 first->protocol = protocol; 1034 1035 igc_tx_csum(tx_ring, first); 1036 1037 igc_tx_map(tx_ring, first, hdr_len); 1038 1039 return NETDEV_TX_OK; 1040 } 1041 1042 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1043 struct sk_buff *skb) 1044 { 1045 unsigned int r_idx = skb->queue_mapping; 1046 1047 if (r_idx >= adapter->num_tx_queues) 1048 r_idx = r_idx % adapter->num_tx_queues; 1049 1050 return adapter->tx_ring[r_idx]; 1051 } 1052 1053 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1054 struct net_device *netdev) 1055 { 1056 struct igc_adapter *adapter = netdev_priv(netdev); 1057 1058 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1059 * in order to meet this minimum size requirement. 1060 */ 1061 if (skb->len < 17) { 1062 if (skb_padto(skb, 17)) 1063 return NETDEV_TX_OK; 1064 skb->len = 17; 1065 } 1066 1067 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1068 } 1069 1070 static inline void igc_rx_hash(struct igc_ring *ring, 1071 union igc_adv_rx_desc *rx_desc, 1072 struct sk_buff *skb) 1073 { 1074 if (ring->netdev->features & NETIF_F_RXHASH) 1075 skb_set_hash(skb, 1076 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1077 PKT_HASH_TYPE_L3); 1078 } 1079 1080 /** 1081 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1082 * @rx_ring: rx descriptor ring packet is being transacted on 1083 * @rx_desc: pointer to the EOP Rx descriptor 1084 * @skb: pointer to current skb being populated 1085 * 1086 * This function checks the ring, descriptor, and packet information in 1087 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 1088 * other fields within the skb. 1089 */ 1090 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1091 union igc_adv_rx_desc *rx_desc, 1092 struct sk_buff *skb) 1093 { 1094 igc_rx_hash(rx_ring, rx_desc, skb); 1095 1096 skb_record_rx_queue(skb, rx_ring->queue_index); 1097 1098 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1099 } 1100 1101 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1102 const unsigned int size) 1103 { 1104 struct igc_rx_buffer *rx_buffer; 1105 1106 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1107 prefetchw(rx_buffer->page); 1108 1109 /* we are reusing so sync this buffer for CPU use */ 1110 dma_sync_single_range_for_cpu(rx_ring->dev, 1111 rx_buffer->dma, 1112 rx_buffer->page_offset, 1113 size, 1114 DMA_FROM_DEVICE); 1115 1116 rx_buffer->pagecnt_bias--; 1117 1118 return rx_buffer; 1119 } 1120 1121 /** 1122 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1123 * @rx_ring: rx descriptor ring to transact packets on 1124 * @rx_buffer: buffer containing page to add 1125 * @skb: sk_buff to place the data into 1126 * @size: size of buffer to be added 1127 * 1128 * This function will add the data contained in rx_buffer->page to the skb. 1129 */ 1130 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1131 struct igc_rx_buffer *rx_buffer, 1132 struct sk_buff *skb, 1133 unsigned int size) 1134 { 1135 #if (PAGE_SIZE < 8192) 1136 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1137 1138 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1139 rx_buffer->page_offset, size, truesize); 1140 rx_buffer->page_offset ^= truesize; 1141 #else 1142 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1143 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1144 SKB_DATA_ALIGN(size); 1145 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1146 rx_buffer->page_offset, size, truesize); 1147 rx_buffer->page_offset += truesize; 1148 #endif 1149 } 1150 1151 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1152 struct igc_rx_buffer *rx_buffer, 1153 union igc_adv_rx_desc *rx_desc, 1154 unsigned int size) 1155 { 1156 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1157 #if (PAGE_SIZE < 8192) 1158 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1159 #else 1160 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1161 SKB_DATA_ALIGN(IGC_SKB_PAD + size); 1162 #endif 1163 struct sk_buff *skb; 1164 1165 /* prefetch first cache line of first page */ 1166 prefetch(va); 1167 #if L1_CACHE_BYTES < 128 1168 prefetch(va + L1_CACHE_BYTES); 1169 #endif 1170 1171 /* build an skb around the page buffer */ 1172 skb = build_skb(va - IGC_SKB_PAD, truesize); 1173 if (unlikely(!skb)) 1174 return NULL; 1175 1176 /* update pointers within the skb to store the data */ 1177 skb_reserve(skb, IGC_SKB_PAD); 1178 __skb_put(skb, size); 1179 1180 /* update buffer offset */ 1181 #if (PAGE_SIZE < 8192) 1182 rx_buffer->page_offset ^= truesize; 1183 #else 1184 rx_buffer->page_offset += truesize; 1185 #endif 1186 1187 return skb; 1188 } 1189 1190 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1191 struct igc_rx_buffer *rx_buffer, 1192 union igc_adv_rx_desc *rx_desc, 1193 unsigned int size) 1194 { 1195 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1196 #if (PAGE_SIZE < 8192) 1197 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1198 #else 1199 unsigned int truesize = SKB_DATA_ALIGN(size); 1200 #endif 1201 unsigned int headlen; 1202 struct sk_buff *skb; 1203 1204 /* prefetch first cache line of first page */ 1205 prefetch(va); 1206 #if L1_CACHE_BYTES < 128 1207 prefetch(va + L1_CACHE_BYTES); 1208 #endif 1209 1210 /* allocate a skb to store the frags */ 1211 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN); 1212 if (unlikely(!skb)) 1213 return NULL; 1214 1215 /* Determine available headroom for copy */ 1216 headlen = size; 1217 if (headlen > IGC_RX_HDR_LEN) 1218 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1219 1220 /* align pull length to size of long to optimize memcpy performance */ 1221 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1222 1223 /* update all of the pointers */ 1224 size -= headlen; 1225 if (size) { 1226 skb_add_rx_frag(skb, 0, rx_buffer->page, 1227 (va + headlen) - page_address(rx_buffer->page), 1228 size, truesize); 1229 #if (PAGE_SIZE < 8192) 1230 rx_buffer->page_offset ^= truesize; 1231 #else 1232 rx_buffer->page_offset += truesize; 1233 #endif 1234 } else { 1235 rx_buffer->pagecnt_bias++; 1236 } 1237 1238 return skb; 1239 } 1240 1241 /** 1242 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1243 * @rx_ring: rx descriptor ring to store buffers on 1244 * @old_buff: donor buffer to have page reused 1245 * 1246 * Synchronizes page for reuse by the adapter 1247 */ 1248 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1249 struct igc_rx_buffer *old_buff) 1250 { 1251 u16 nta = rx_ring->next_to_alloc; 1252 struct igc_rx_buffer *new_buff; 1253 1254 new_buff = &rx_ring->rx_buffer_info[nta]; 1255 1256 /* update, and store next to alloc */ 1257 nta++; 1258 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1259 1260 /* Transfer page from old buffer to new buffer. 1261 * Move each member individually to avoid possible store 1262 * forwarding stalls. 1263 */ 1264 new_buff->dma = old_buff->dma; 1265 new_buff->page = old_buff->page; 1266 new_buff->page_offset = old_buff->page_offset; 1267 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1268 } 1269 1270 static inline bool igc_page_is_reserved(struct page *page) 1271 { 1272 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 1273 } 1274 1275 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer) 1276 { 1277 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1278 struct page *page = rx_buffer->page; 1279 1280 /* avoid re-using remote pages */ 1281 if (unlikely(igc_page_is_reserved(page))) 1282 return false; 1283 1284 #if (PAGE_SIZE < 8192) 1285 /* if we are only owner of page we can reuse it */ 1286 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 1287 return false; 1288 #else 1289 #define IGC_LAST_OFFSET \ 1290 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1291 1292 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1293 return false; 1294 #endif 1295 1296 /* If we have drained the page fragment pool we need to update 1297 * the pagecnt_bias and page count so that we fully restock the 1298 * number of references the driver holds. 1299 */ 1300 if (unlikely(!pagecnt_bias)) { 1301 page_ref_add(page, USHRT_MAX); 1302 rx_buffer->pagecnt_bias = USHRT_MAX; 1303 } 1304 1305 return true; 1306 } 1307 1308 /** 1309 * igc_is_non_eop - process handling of non-EOP buffers 1310 * @rx_ring: Rx ring being processed 1311 * @rx_desc: Rx descriptor for current buffer 1312 * @skb: current socket buffer containing buffer in progress 1313 * 1314 * This function updates next to clean. If the buffer is an EOP buffer 1315 * this function exits returning false, otherwise it will place the 1316 * sk_buff in the next buffer to be chained and return true indicating 1317 * that this is in fact a non-EOP buffer. 1318 */ 1319 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1320 union igc_adv_rx_desc *rx_desc) 1321 { 1322 u32 ntc = rx_ring->next_to_clean + 1; 1323 1324 /* fetch, update, and store next to clean */ 1325 ntc = (ntc < rx_ring->count) ? ntc : 0; 1326 rx_ring->next_to_clean = ntc; 1327 1328 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1329 1330 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1331 return false; 1332 1333 return true; 1334 } 1335 1336 /** 1337 * igc_cleanup_headers - Correct corrupted or empty headers 1338 * @rx_ring: rx descriptor ring packet is being transacted on 1339 * @rx_desc: pointer to the EOP Rx descriptor 1340 * @skb: pointer to current skb being fixed 1341 * 1342 * Address the case where we are pulling data in on pages only 1343 * and as such no data is present in the skb header. 1344 * 1345 * In addition if skb is not at least 60 bytes we need to pad it so that 1346 * it is large enough to qualify as a valid Ethernet frame. 1347 * 1348 * Returns true if an error was encountered and skb was freed. 1349 */ 1350 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1351 union igc_adv_rx_desc *rx_desc, 1352 struct sk_buff *skb) 1353 { 1354 if (unlikely((igc_test_staterr(rx_desc, 1355 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) { 1356 struct net_device *netdev = rx_ring->netdev; 1357 1358 if (!(netdev->features & NETIF_F_RXALL)) { 1359 dev_kfree_skb_any(skb); 1360 return true; 1361 } 1362 } 1363 1364 /* if eth_skb_pad returns an error the skb was freed */ 1365 if (eth_skb_pad(skb)) 1366 return true; 1367 1368 return false; 1369 } 1370 1371 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1372 struct igc_rx_buffer *rx_buffer) 1373 { 1374 if (igc_can_reuse_rx_page(rx_buffer)) { 1375 /* hand second half of page back to the ring */ 1376 igc_reuse_rx_page(rx_ring, rx_buffer); 1377 } else { 1378 /* We are not reusing the buffer so unmap it and free 1379 * any references we are holding to it 1380 */ 1381 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1382 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1383 IGC_RX_DMA_ATTR); 1384 __page_frag_cache_drain(rx_buffer->page, 1385 rx_buffer->pagecnt_bias); 1386 } 1387 1388 /* clear contents of rx_buffer */ 1389 rx_buffer->page = NULL; 1390 } 1391 1392 /** 1393 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 1394 * @adapter: address of board private structure 1395 */ 1396 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 1397 { 1398 union igc_adv_rx_desc *rx_desc; 1399 u16 i = rx_ring->next_to_use; 1400 struct igc_rx_buffer *bi; 1401 u16 bufsz; 1402 1403 /* nothing to do */ 1404 if (!cleaned_count) 1405 return; 1406 1407 rx_desc = IGC_RX_DESC(rx_ring, i); 1408 bi = &rx_ring->rx_buffer_info[i]; 1409 i -= rx_ring->count; 1410 1411 bufsz = igc_rx_bufsz(rx_ring); 1412 1413 do { 1414 if (!igc_alloc_mapped_page(rx_ring, bi)) 1415 break; 1416 1417 /* sync the buffer for use by the device */ 1418 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1419 bi->page_offset, bufsz, 1420 DMA_FROM_DEVICE); 1421 1422 /* Refresh the desc even if buffer_addrs didn't change 1423 * because each write-back erases this info. 1424 */ 1425 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1426 1427 rx_desc++; 1428 bi++; 1429 i++; 1430 if (unlikely(!i)) { 1431 rx_desc = IGC_RX_DESC(rx_ring, 0); 1432 bi = rx_ring->rx_buffer_info; 1433 i -= rx_ring->count; 1434 } 1435 1436 /* clear the length for the next_to_use descriptor */ 1437 rx_desc->wb.upper.length = 0; 1438 1439 cleaned_count--; 1440 } while (cleaned_count); 1441 1442 i += rx_ring->count; 1443 1444 if (rx_ring->next_to_use != i) { 1445 /* record the next descriptor to use */ 1446 rx_ring->next_to_use = i; 1447 1448 /* update next to alloc since we have filled the ring */ 1449 rx_ring->next_to_alloc = i; 1450 1451 /* Force memory writes to complete before letting h/w 1452 * know there are new descriptors to fetch. (Only 1453 * applicable for weak-ordered memory model archs, 1454 * such as IA-64). 1455 */ 1456 wmb(); 1457 writel(i, rx_ring->tail); 1458 } 1459 } 1460 1461 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 1462 { 1463 unsigned int total_bytes = 0, total_packets = 0; 1464 struct igc_ring *rx_ring = q_vector->rx.ring; 1465 struct sk_buff *skb = rx_ring->skb; 1466 u16 cleaned_count = igc_desc_unused(rx_ring); 1467 1468 while (likely(total_packets < budget)) { 1469 union igc_adv_rx_desc *rx_desc; 1470 struct igc_rx_buffer *rx_buffer; 1471 unsigned int size; 1472 1473 /* return some buffers to hardware, one at a time is too slow */ 1474 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 1475 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1476 cleaned_count = 0; 1477 } 1478 1479 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 1480 size = le16_to_cpu(rx_desc->wb.upper.length); 1481 if (!size) 1482 break; 1483 1484 /* This memory barrier is needed to keep us from reading 1485 * any other fields out of the rx_desc until we know the 1486 * descriptor has been written back 1487 */ 1488 dma_rmb(); 1489 1490 rx_buffer = igc_get_rx_buffer(rx_ring, size); 1491 1492 /* retrieve a buffer from the ring */ 1493 if (skb) 1494 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 1495 else if (ring_uses_build_skb(rx_ring)) 1496 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size); 1497 else 1498 skb = igc_construct_skb(rx_ring, rx_buffer, 1499 rx_desc, size); 1500 1501 /* exit if we failed to retrieve a buffer */ 1502 if (!skb) { 1503 rx_ring->rx_stats.alloc_failed++; 1504 rx_buffer->pagecnt_bias++; 1505 break; 1506 } 1507 1508 igc_put_rx_buffer(rx_ring, rx_buffer); 1509 cleaned_count++; 1510 1511 /* fetch next buffer in frame if non-eop */ 1512 if (igc_is_non_eop(rx_ring, rx_desc)) 1513 continue; 1514 1515 /* verify the packet layout is correct */ 1516 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 1517 skb = NULL; 1518 continue; 1519 } 1520 1521 /* probably a little skewed due to removing CRC */ 1522 total_bytes += skb->len; 1523 1524 /* populate checksum, timestamp, VLAN, and protocol */ 1525 igc_process_skb_fields(rx_ring, rx_desc, skb); 1526 1527 napi_gro_receive(&q_vector->napi, skb); 1528 1529 /* reset skb pointer */ 1530 skb = NULL; 1531 1532 /* update budget accounting */ 1533 total_packets++; 1534 } 1535 1536 /* place incomplete frames back on ring for completion */ 1537 rx_ring->skb = skb; 1538 1539 u64_stats_update_begin(&rx_ring->rx_syncp); 1540 rx_ring->rx_stats.packets += total_packets; 1541 rx_ring->rx_stats.bytes += total_bytes; 1542 u64_stats_update_end(&rx_ring->rx_syncp); 1543 q_vector->rx.total_packets += total_packets; 1544 q_vector->rx.total_bytes += total_bytes; 1545 1546 if (cleaned_count) 1547 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1548 1549 return total_packets; 1550 } 1551 1552 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1553 { 1554 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0; 1555 } 1556 1557 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1558 struct igc_rx_buffer *bi) 1559 { 1560 struct page *page = bi->page; 1561 dma_addr_t dma; 1562 1563 /* since we are recycling buffers we should seldom need to alloc */ 1564 if (likely(page)) 1565 return true; 1566 1567 /* alloc new page for storage */ 1568 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1569 if (unlikely(!page)) { 1570 rx_ring->rx_stats.alloc_failed++; 1571 return false; 1572 } 1573 1574 /* map page for use */ 1575 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1576 igc_rx_pg_size(rx_ring), 1577 DMA_FROM_DEVICE, 1578 IGC_RX_DMA_ATTR); 1579 1580 /* if mapping failed free memory back to system since 1581 * there isn't much point in holding memory we can't use 1582 */ 1583 if (dma_mapping_error(rx_ring->dev, dma)) { 1584 __free_page(page); 1585 1586 rx_ring->rx_stats.alloc_failed++; 1587 return false; 1588 } 1589 1590 bi->dma = dma; 1591 bi->page = page; 1592 bi->page_offset = igc_rx_offset(rx_ring); 1593 bi->pagecnt_bias = 1; 1594 1595 return true; 1596 } 1597 1598 /** 1599 * igc_clean_tx_irq - Reclaim resources after transmit completes 1600 * @q_vector: pointer to q_vector containing needed info 1601 * @napi_budget: Used to determine if we are in netpoll 1602 * 1603 * returns true if ring is completely cleaned 1604 */ 1605 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 1606 { 1607 struct igc_adapter *adapter = q_vector->adapter; 1608 unsigned int total_bytes = 0, total_packets = 0; 1609 unsigned int budget = q_vector->tx.work_limit; 1610 struct igc_ring *tx_ring = q_vector->tx.ring; 1611 unsigned int i = tx_ring->next_to_clean; 1612 struct igc_tx_buffer *tx_buffer; 1613 union igc_adv_tx_desc *tx_desc; 1614 1615 if (test_bit(__IGC_DOWN, &adapter->state)) 1616 return true; 1617 1618 tx_buffer = &tx_ring->tx_buffer_info[i]; 1619 tx_desc = IGC_TX_DESC(tx_ring, i); 1620 i -= tx_ring->count; 1621 1622 do { 1623 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 1624 1625 /* if next_to_watch is not set then there is no work pending */ 1626 if (!eop_desc) 1627 break; 1628 1629 /* prevent any other reads prior to eop_desc */ 1630 smp_rmb(); 1631 1632 /* if DD is not set pending work has not been completed */ 1633 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 1634 break; 1635 1636 /* clear next_to_watch to prevent false hangs */ 1637 tx_buffer->next_to_watch = NULL; 1638 1639 /* update the statistics for this packet */ 1640 total_bytes += tx_buffer->bytecount; 1641 total_packets += tx_buffer->gso_segs; 1642 1643 /* free the skb */ 1644 napi_consume_skb(tx_buffer->skb, napi_budget); 1645 1646 /* unmap skb header data */ 1647 dma_unmap_single(tx_ring->dev, 1648 dma_unmap_addr(tx_buffer, dma), 1649 dma_unmap_len(tx_buffer, len), 1650 DMA_TO_DEVICE); 1651 1652 /* clear tx_buffer data */ 1653 dma_unmap_len_set(tx_buffer, len, 0); 1654 1655 /* clear last DMA location and unmap remaining buffers */ 1656 while (tx_desc != eop_desc) { 1657 tx_buffer++; 1658 tx_desc++; 1659 i++; 1660 if (unlikely(!i)) { 1661 i -= tx_ring->count; 1662 tx_buffer = tx_ring->tx_buffer_info; 1663 tx_desc = IGC_TX_DESC(tx_ring, 0); 1664 } 1665 1666 /* unmap any remaining paged data */ 1667 if (dma_unmap_len(tx_buffer, len)) { 1668 dma_unmap_page(tx_ring->dev, 1669 dma_unmap_addr(tx_buffer, dma), 1670 dma_unmap_len(tx_buffer, len), 1671 DMA_TO_DEVICE); 1672 dma_unmap_len_set(tx_buffer, len, 0); 1673 } 1674 } 1675 1676 /* move us one more past the eop_desc for start of next pkt */ 1677 tx_buffer++; 1678 tx_desc++; 1679 i++; 1680 if (unlikely(!i)) { 1681 i -= tx_ring->count; 1682 tx_buffer = tx_ring->tx_buffer_info; 1683 tx_desc = IGC_TX_DESC(tx_ring, 0); 1684 } 1685 1686 /* issue prefetch for next Tx descriptor */ 1687 prefetch(tx_desc); 1688 1689 /* update budget accounting */ 1690 budget--; 1691 } while (likely(budget)); 1692 1693 netdev_tx_completed_queue(txring_txq(tx_ring), 1694 total_packets, total_bytes); 1695 1696 i += tx_ring->count; 1697 tx_ring->next_to_clean = i; 1698 u64_stats_update_begin(&tx_ring->tx_syncp); 1699 tx_ring->tx_stats.bytes += total_bytes; 1700 tx_ring->tx_stats.packets += total_packets; 1701 u64_stats_update_end(&tx_ring->tx_syncp); 1702 q_vector->tx.total_bytes += total_bytes; 1703 q_vector->tx.total_packets += total_packets; 1704 1705 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 1706 struct igc_hw *hw = &adapter->hw; 1707 1708 /* Detect a transmit hang in hardware, this serializes the 1709 * check with the clearing of time_stamp and movement of i 1710 */ 1711 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 1712 if (tx_buffer->next_to_watch && 1713 time_after(jiffies, tx_buffer->time_stamp + 1714 (adapter->tx_timeout_factor * HZ)) && 1715 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 1716 /* detected Tx unit hang */ 1717 dev_err(tx_ring->dev, 1718 "Detected Tx Unit Hang\n" 1719 " Tx Queue <%d>\n" 1720 " TDH <%x>\n" 1721 " TDT <%x>\n" 1722 " next_to_use <%x>\n" 1723 " next_to_clean <%x>\n" 1724 "buffer_info[next_to_clean]\n" 1725 " time_stamp <%lx>\n" 1726 " next_to_watch <%p>\n" 1727 " jiffies <%lx>\n" 1728 " desc.status <%x>\n", 1729 tx_ring->queue_index, 1730 rd32(IGC_TDH(tx_ring->reg_idx)), 1731 readl(tx_ring->tail), 1732 tx_ring->next_to_use, 1733 tx_ring->next_to_clean, 1734 tx_buffer->time_stamp, 1735 tx_buffer->next_to_watch, 1736 jiffies, 1737 tx_buffer->next_to_watch->wb.status); 1738 netif_stop_subqueue(tx_ring->netdev, 1739 tx_ring->queue_index); 1740 1741 /* we are about to reset, no point in enabling stuff */ 1742 return true; 1743 } 1744 } 1745 1746 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 1747 if (unlikely(total_packets && 1748 netif_carrier_ok(tx_ring->netdev) && 1749 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 1750 /* Make sure that anybody stopping the queue after this 1751 * sees the new next_to_clean. 1752 */ 1753 smp_mb(); 1754 if (__netif_subqueue_stopped(tx_ring->netdev, 1755 tx_ring->queue_index) && 1756 !(test_bit(__IGC_DOWN, &adapter->state))) { 1757 netif_wake_subqueue(tx_ring->netdev, 1758 tx_ring->queue_index); 1759 1760 u64_stats_update_begin(&tx_ring->tx_syncp); 1761 tx_ring->tx_stats.restart_queue++; 1762 u64_stats_update_end(&tx_ring->tx_syncp); 1763 } 1764 } 1765 1766 return !!budget; 1767 } 1768 1769 /** 1770 * igc_up - Open the interface and prepare it to handle traffic 1771 * @adapter: board private structure 1772 */ 1773 void igc_up(struct igc_adapter *adapter) 1774 { 1775 struct igc_hw *hw = &adapter->hw; 1776 int i = 0; 1777 1778 /* hardware has been reset, we need to reload some things */ 1779 igc_configure(adapter); 1780 1781 clear_bit(__IGC_DOWN, &adapter->state); 1782 1783 for (i = 0; i < adapter->num_q_vectors; i++) 1784 napi_enable(&adapter->q_vector[i]->napi); 1785 1786 if (adapter->msix_entries) 1787 igc_configure_msix(adapter); 1788 else 1789 igc_assign_vector(adapter->q_vector[0], 0); 1790 1791 /* Clear any pending interrupts. */ 1792 rd32(IGC_ICR); 1793 igc_irq_enable(adapter); 1794 1795 netif_tx_start_all_queues(adapter->netdev); 1796 1797 /* start the watchdog. */ 1798 hw->mac.get_link_status = 1; 1799 schedule_work(&adapter->watchdog_task); 1800 } 1801 1802 /** 1803 * igc_update_stats - Update the board statistics counters 1804 * @adapter: board private structure 1805 */ 1806 void igc_update_stats(struct igc_adapter *adapter) 1807 { 1808 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 1809 struct pci_dev *pdev = adapter->pdev; 1810 struct igc_hw *hw = &adapter->hw; 1811 u64 _bytes, _packets; 1812 u64 bytes, packets; 1813 unsigned int start; 1814 u32 mpc; 1815 int i; 1816 1817 /* Prevent stats update while adapter is being reset, or if the pci 1818 * connection is down. 1819 */ 1820 if (adapter->link_speed == 0) 1821 return; 1822 if (pci_channel_offline(pdev)) 1823 return; 1824 1825 packets = 0; 1826 bytes = 0; 1827 1828 rcu_read_lock(); 1829 for (i = 0; i < adapter->num_rx_queues; i++) { 1830 struct igc_ring *ring = adapter->rx_ring[i]; 1831 u32 rqdpc = rd32(IGC_RQDPC(i)); 1832 1833 if (hw->mac.type >= igc_i225) 1834 wr32(IGC_RQDPC(i), 0); 1835 1836 if (rqdpc) { 1837 ring->rx_stats.drops += rqdpc; 1838 net_stats->rx_fifo_errors += rqdpc; 1839 } 1840 1841 do { 1842 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 1843 _bytes = ring->rx_stats.bytes; 1844 _packets = ring->rx_stats.packets; 1845 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 1846 bytes += _bytes; 1847 packets += _packets; 1848 } 1849 1850 net_stats->rx_bytes = bytes; 1851 net_stats->rx_packets = packets; 1852 1853 packets = 0; 1854 bytes = 0; 1855 for (i = 0; i < adapter->num_tx_queues; i++) { 1856 struct igc_ring *ring = adapter->tx_ring[i]; 1857 1858 do { 1859 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 1860 _bytes = ring->tx_stats.bytes; 1861 _packets = ring->tx_stats.packets; 1862 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 1863 bytes += _bytes; 1864 packets += _packets; 1865 } 1866 net_stats->tx_bytes = bytes; 1867 net_stats->tx_packets = packets; 1868 rcu_read_unlock(); 1869 1870 /* read stats registers */ 1871 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 1872 adapter->stats.gprc += rd32(IGC_GPRC); 1873 adapter->stats.gorc += rd32(IGC_GORCL); 1874 rd32(IGC_GORCH); /* clear GORCL */ 1875 adapter->stats.bprc += rd32(IGC_BPRC); 1876 adapter->stats.mprc += rd32(IGC_MPRC); 1877 adapter->stats.roc += rd32(IGC_ROC); 1878 1879 adapter->stats.prc64 += rd32(IGC_PRC64); 1880 adapter->stats.prc127 += rd32(IGC_PRC127); 1881 adapter->stats.prc255 += rd32(IGC_PRC255); 1882 adapter->stats.prc511 += rd32(IGC_PRC511); 1883 adapter->stats.prc1023 += rd32(IGC_PRC1023); 1884 adapter->stats.prc1522 += rd32(IGC_PRC1522); 1885 adapter->stats.symerrs += rd32(IGC_SYMERRS); 1886 adapter->stats.sec += rd32(IGC_SEC); 1887 1888 mpc = rd32(IGC_MPC); 1889 adapter->stats.mpc += mpc; 1890 net_stats->rx_fifo_errors += mpc; 1891 adapter->stats.scc += rd32(IGC_SCC); 1892 adapter->stats.ecol += rd32(IGC_ECOL); 1893 adapter->stats.mcc += rd32(IGC_MCC); 1894 adapter->stats.latecol += rd32(IGC_LATECOL); 1895 adapter->stats.dc += rd32(IGC_DC); 1896 adapter->stats.rlec += rd32(IGC_RLEC); 1897 adapter->stats.xonrxc += rd32(IGC_XONRXC); 1898 adapter->stats.xontxc += rd32(IGC_XONTXC); 1899 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 1900 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 1901 adapter->stats.fcruc += rd32(IGC_FCRUC); 1902 adapter->stats.gptc += rd32(IGC_GPTC); 1903 adapter->stats.gotc += rd32(IGC_GOTCL); 1904 rd32(IGC_GOTCH); /* clear GOTCL */ 1905 adapter->stats.rnbc += rd32(IGC_RNBC); 1906 adapter->stats.ruc += rd32(IGC_RUC); 1907 adapter->stats.rfc += rd32(IGC_RFC); 1908 adapter->stats.rjc += rd32(IGC_RJC); 1909 adapter->stats.tor += rd32(IGC_TORH); 1910 adapter->stats.tot += rd32(IGC_TOTH); 1911 adapter->stats.tpr += rd32(IGC_TPR); 1912 1913 adapter->stats.ptc64 += rd32(IGC_PTC64); 1914 adapter->stats.ptc127 += rd32(IGC_PTC127); 1915 adapter->stats.ptc255 += rd32(IGC_PTC255); 1916 adapter->stats.ptc511 += rd32(IGC_PTC511); 1917 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 1918 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 1919 1920 adapter->stats.mptc += rd32(IGC_MPTC); 1921 adapter->stats.bptc += rd32(IGC_BPTC); 1922 1923 adapter->stats.tpt += rd32(IGC_TPT); 1924 adapter->stats.colc += rd32(IGC_COLC); 1925 1926 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 1927 1928 adapter->stats.tsctc += rd32(IGC_TSCTC); 1929 adapter->stats.tsctfc += rd32(IGC_TSCTFC); 1930 1931 adapter->stats.iac += rd32(IGC_IAC); 1932 adapter->stats.icrxoc += rd32(IGC_ICRXOC); 1933 adapter->stats.icrxptc += rd32(IGC_ICRXPTC); 1934 adapter->stats.icrxatc += rd32(IGC_ICRXATC); 1935 adapter->stats.ictxptc += rd32(IGC_ICTXPTC); 1936 adapter->stats.ictxatc += rd32(IGC_ICTXATC); 1937 adapter->stats.ictxqec += rd32(IGC_ICTXQEC); 1938 adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC); 1939 adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC); 1940 1941 /* Fill out the OS statistics structure */ 1942 net_stats->multicast = adapter->stats.mprc; 1943 net_stats->collisions = adapter->stats.colc; 1944 1945 /* Rx Errors */ 1946 1947 /* RLEC on some newer hardware can be incorrect so build 1948 * our own version based on RUC and ROC 1949 */ 1950 net_stats->rx_errors = adapter->stats.rxerrc + 1951 adapter->stats.crcerrs + adapter->stats.algnerrc + 1952 adapter->stats.ruc + adapter->stats.roc + 1953 adapter->stats.cexterr; 1954 net_stats->rx_length_errors = adapter->stats.ruc + 1955 adapter->stats.roc; 1956 net_stats->rx_crc_errors = adapter->stats.crcerrs; 1957 net_stats->rx_frame_errors = adapter->stats.algnerrc; 1958 net_stats->rx_missed_errors = adapter->stats.mpc; 1959 1960 /* Tx Errors */ 1961 net_stats->tx_errors = adapter->stats.ecol + 1962 adapter->stats.latecol; 1963 net_stats->tx_aborted_errors = adapter->stats.ecol; 1964 net_stats->tx_window_errors = adapter->stats.latecol; 1965 net_stats->tx_carrier_errors = adapter->stats.tncrs; 1966 1967 /* Tx Dropped needs to be maintained elsewhere */ 1968 1969 /* Management Stats */ 1970 adapter->stats.mgptc += rd32(IGC_MGTPTC); 1971 adapter->stats.mgprc += rd32(IGC_MGTPRC); 1972 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 1973 } 1974 1975 static void igc_nfc_filter_exit(struct igc_adapter *adapter) 1976 { 1977 struct igc_nfc_filter *rule; 1978 1979 spin_lock(&adapter->nfc_lock); 1980 1981 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 1982 igc_erase_filter(adapter, rule); 1983 1984 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) 1985 igc_erase_filter(adapter, rule); 1986 1987 spin_unlock(&adapter->nfc_lock); 1988 } 1989 1990 static void igc_nfc_filter_restore(struct igc_adapter *adapter) 1991 { 1992 struct igc_nfc_filter *rule; 1993 1994 spin_lock(&adapter->nfc_lock); 1995 1996 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 1997 igc_add_filter(adapter, rule); 1998 1999 spin_unlock(&adapter->nfc_lock); 2000 } 2001 2002 /** 2003 * igc_down - Close the interface 2004 * @adapter: board private structure 2005 */ 2006 void igc_down(struct igc_adapter *adapter) 2007 { 2008 struct net_device *netdev = adapter->netdev; 2009 struct igc_hw *hw = &adapter->hw; 2010 u32 tctl, rctl; 2011 int i = 0; 2012 2013 set_bit(__IGC_DOWN, &adapter->state); 2014 2015 /* disable receives in the hardware */ 2016 rctl = rd32(IGC_RCTL); 2017 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 2018 /* flush and sleep below */ 2019 2020 igc_nfc_filter_exit(adapter); 2021 2022 /* set trans_start so we don't get spurious watchdogs during reset */ 2023 netif_trans_update(netdev); 2024 2025 netif_carrier_off(netdev); 2026 netif_tx_stop_all_queues(netdev); 2027 2028 /* disable transmits in the hardware */ 2029 tctl = rd32(IGC_TCTL); 2030 tctl &= ~IGC_TCTL_EN; 2031 wr32(IGC_TCTL, tctl); 2032 /* flush both disables and wait for them to finish */ 2033 wrfl(); 2034 usleep_range(10000, 20000); 2035 2036 igc_irq_disable(adapter); 2037 2038 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2039 2040 for (i = 0; i < adapter->num_q_vectors; i++) { 2041 if (adapter->q_vector[i]) { 2042 napi_synchronize(&adapter->q_vector[i]->napi); 2043 napi_disable(&adapter->q_vector[i]->napi); 2044 } 2045 } 2046 2047 del_timer_sync(&adapter->watchdog_timer); 2048 del_timer_sync(&adapter->phy_info_timer); 2049 2050 /* record the stats before reset*/ 2051 spin_lock(&adapter->stats64_lock); 2052 igc_update_stats(adapter); 2053 spin_unlock(&adapter->stats64_lock); 2054 2055 adapter->link_speed = 0; 2056 adapter->link_duplex = 0; 2057 2058 if (!pci_channel_offline(adapter->pdev)) 2059 igc_reset(adapter); 2060 2061 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 2062 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 2063 2064 igc_clean_all_tx_rings(adapter); 2065 igc_clean_all_rx_rings(adapter); 2066 } 2067 2068 void igc_reinit_locked(struct igc_adapter *adapter) 2069 { 2070 WARN_ON(in_interrupt()); 2071 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 2072 usleep_range(1000, 2000); 2073 igc_down(adapter); 2074 igc_up(adapter); 2075 clear_bit(__IGC_RESETTING, &adapter->state); 2076 } 2077 2078 static void igc_reset_task(struct work_struct *work) 2079 { 2080 struct igc_adapter *adapter; 2081 2082 adapter = container_of(work, struct igc_adapter, reset_task); 2083 2084 netdev_err(adapter->netdev, "Reset adapter\n"); 2085 igc_reinit_locked(adapter); 2086 } 2087 2088 /** 2089 * igc_change_mtu - Change the Maximum Transfer Unit 2090 * @netdev: network interface device structure 2091 * @new_mtu: new value for maximum frame size 2092 * 2093 * Returns 0 on success, negative on failure 2094 */ 2095 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 2096 { 2097 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2098 struct igc_adapter *adapter = netdev_priv(netdev); 2099 struct pci_dev *pdev = adapter->pdev; 2100 2101 /* adjust max frame to be at least the size of a standard frame */ 2102 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 2103 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 2104 2105 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 2106 usleep_range(1000, 2000); 2107 2108 /* igc_down has a dependency on max_frame_size */ 2109 adapter->max_frame_size = max_frame; 2110 2111 if (netif_running(netdev)) 2112 igc_down(adapter); 2113 2114 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 2115 netdev->mtu, new_mtu); 2116 netdev->mtu = new_mtu; 2117 2118 if (netif_running(netdev)) 2119 igc_up(adapter); 2120 else 2121 igc_reset(adapter); 2122 2123 clear_bit(__IGC_RESETTING, &adapter->state); 2124 2125 return 0; 2126 } 2127 2128 /** 2129 * igc_get_stats - Get System Network Statistics 2130 * @netdev: network interface device structure 2131 * 2132 * Returns the address of the device statistics structure. 2133 * The statistics are updated here and also from the timer callback. 2134 */ 2135 static struct net_device_stats *igc_get_stats(struct net_device *netdev) 2136 { 2137 struct igc_adapter *adapter = netdev_priv(netdev); 2138 2139 if (!test_bit(__IGC_RESETTING, &adapter->state)) 2140 igc_update_stats(adapter); 2141 2142 /* only return the current stats */ 2143 return &netdev->stats; 2144 } 2145 2146 static netdev_features_t igc_fix_features(struct net_device *netdev, 2147 netdev_features_t features) 2148 { 2149 /* Since there is no support for separate Rx/Tx vlan accel 2150 * enable/disable make sure Tx flag is always in same state as Rx. 2151 */ 2152 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2153 features |= NETIF_F_HW_VLAN_CTAG_TX; 2154 else 2155 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2156 2157 return features; 2158 } 2159 2160 static int igc_set_features(struct net_device *netdev, 2161 netdev_features_t features) 2162 { 2163 netdev_features_t changed = netdev->features ^ features; 2164 struct igc_adapter *adapter = netdev_priv(netdev); 2165 2166 /* Add VLAN support */ 2167 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2168 return 0; 2169 2170 if (!(features & NETIF_F_NTUPLE)) { 2171 struct hlist_node *node2; 2172 struct igc_nfc_filter *rule; 2173 2174 spin_lock(&adapter->nfc_lock); 2175 hlist_for_each_entry_safe(rule, node2, 2176 &adapter->nfc_filter_list, nfc_node) { 2177 igc_erase_filter(adapter, rule); 2178 hlist_del(&rule->nfc_node); 2179 kfree(rule); 2180 } 2181 spin_unlock(&adapter->nfc_lock); 2182 adapter->nfc_filter_count = 0; 2183 } 2184 2185 netdev->features = features; 2186 2187 if (netif_running(netdev)) 2188 igc_reinit_locked(adapter); 2189 else 2190 igc_reset(adapter); 2191 2192 return 1; 2193 } 2194 2195 static netdev_features_t 2196 igc_features_check(struct sk_buff *skb, struct net_device *dev, 2197 netdev_features_t features) 2198 { 2199 unsigned int network_hdr_len, mac_hdr_len; 2200 2201 /* Make certain the headers can be described by a context descriptor */ 2202 mac_hdr_len = skb_network_header(skb) - skb->data; 2203 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 2204 return features & ~(NETIF_F_HW_CSUM | 2205 NETIF_F_SCTP_CRC | 2206 NETIF_F_HW_VLAN_CTAG_TX | 2207 NETIF_F_TSO | 2208 NETIF_F_TSO6); 2209 2210 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2211 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 2212 return features & ~(NETIF_F_HW_CSUM | 2213 NETIF_F_SCTP_CRC | 2214 NETIF_F_TSO | 2215 NETIF_F_TSO6); 2216 2217 /* We can only support IPv4 TSO in tunnels if we can mangle the 2218 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2219 */ 2220 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2221 features &= ~NETIF_F_TSO; 2222 2223 return features; 2224 } 2225 2226 /** 2227 * igc_configure - configure the hardware for RX and TX 2228 * @adapter: private board structure 2229 */ 2230 static void igc_configure(struct igc_adapter *adapter) 2231 { 2232 struct net_device *netdev = adapter->netdev; 2233 int i = 0; 2234 2235 igc_get_hw_control(adapter); 2236 igc_set_rx_mode(netdev); 2237 2238 igc_setup_tctl(adapter); 2239 igc_setup_mrqc(adapter); 2240 igc_setup_rctl(adapter); 2241 2242 igc_nfc_filter_restore(adapter); 2243 igc_configure_tx(adapter); 2244 igc_configure_rx(adapter); 2245 2246 igc_rx_fifo_flush_base(&adapter->hw); 2247 2248 /* call igc_desc_unused which always leaves 2249 * at least 1 descriptor unused to make sure 2250 * next_to_use != next_to_clean 2251 */ 2252 for (i = 0; i < adapter->num_rx_queues; i++) { 2253 struct igc_ring *ring = adapter->rx_ring[i]; 2254 2255 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 2256 } 2257 } 2258 2259 /** 2260 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 2261 * @adapter: address of board private structure 2262 * @index: Index of the RAR entry which need to be synced with MAC table 2263 */ 2264 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index) 2265 { 2266 u8 *addr = adapter->mac_table[index].addr; 2267 struct igc_hw *hw = &adapter->hw; 2268 u32 rar_low, rar_high; 2269 2270 /* HW expects these to be in network order when they are plugged 2271 * into the registers which are little endian. In order to guarantee 2272 * that ordering we need to do an leXX_to_cpup here in order to be 2273 * ready for the byteswap that occurs with writel 2274 */ 2275 rar_low = le32_to_cpup((__le32 *)(addr)); 2276 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 2277 2278 /* Indicate to hardware the Address is Valid. */ 2279 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) { 2280 if (is_valid_ether_addr(addr)) 2281 rar_high |= IGC_RAH_AV; 2282 2283 rar_high |= IGC_RAH_POOL_1 << 2284 adapter->mac_table[index].queue; 2285 } 2286 2287 wr32(IGC_RAL(index), rar_low); 2288 wrfl(); 2289 wr32(IGC_RAH(index), rar_high); 2290 wrfl(); 2291 } 2292 2293 /* Set default MAC address for the PF in the first RAR entry */ 2294 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 2295 { 2296 struct igc_mac_addr *mac_table = &adapter->mac_table[0]; 2297 2298 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 2299 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE; 2300 2301 igc_rar_set_index(adapter, 0); 2302 } 2303 2304 /* If the filter to be added and an already existing filter express 2305 * the same address and address type, it should be possible to only 2306 * override the other configurations, for example the queue to steer 2307 * traffic. 2308 */ 2309 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry, 2310 const u8 *addr, const u8 flags) 2311 { 2312 if (!(entry->state & IGC_MAC_STATE_IN_USE)) 2313 return true; 2314 2315 if ((entry->state & IGC_MAC_STATE_SRC_ADDR) != 2316 (flags & IGC_MAC_STATE_SRC_ADDR)) 2317 return false; 2318 2319 if (!ether_addr_equal(addr, entry->addr)) 2320 return false; 2321 2322 return true; 2323 } 2324 2325 /* Add a MAC filter for 'addr' directing matching traffic to 'queue', 2326 * 'flags' is used to indicate what kind of match is made, match is by 2327 * default for the destination address, if matching by source address 2328 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used. 2329 */ 2330 static int igc_add_mac_filter_flags(struct igc_adapter *adapter, 2331 const u8 *addr, const u8 queue, 2332 const u8 flags) 2333 { 2334 struct igc_hw *hw = &adapter->hw; 2335 int rar_entries = hw->mac.rar_entry_count; 2336 int i; 2337 2338 if (is_zero_ether_addr(addr)) 2339 return -EINVAL; 2340 2341 /* Search for the first empty entry in the MAC table. 2342 * Do not touch entries at the end of the table reserved for the VF MAC 2343 * addresses. 2344 */ 2345 for (i = 0; i < rar_entries; i++) { 2346 if (!igc_mac_entry_can_be_used(&adapter->mac_table[i], 2347 addr, flags)) 2348 continue; 2349 2350 ether_addr_copy(adapter->mac_table[i].addr, addr); 2351 adapter->mac_table[i].queue = queue; 2352 adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags; 2353 2354 igc_rar_set_index(adapter, i); 2355 return i; 2356 } 2357 2358 return -ENOSPC; 2359 } 2360 2361 int igc_add_mac_steering_filter(struct igc_adapter *adapter, 2362 const u8 *addr, u8 queue, u8 flags) 2363 { 2364 return igc_add_mac_filter_flags(adapter, addr, queue, 2365 IGC_MAC_STATE_QUEUE_STEERING | flags); 2366 } 2367 2368 /* Remove a MAC filter for 'addr' directing matching traffic to 2369 * 'queue', 'flags' is used to indicate what kind of match need to be 2370 * removed, match is by default for the destination address, if 2371 * matching by source address is to be removed the flag 2372 * IGC_MAC_STATE_SRC_ADDR can be used. 2373 */ 2374 static int igc_del_mac_filter_flags(struct igc_adapter *adapter, 2375 const u8 *addr, const u8 queue, 2376 const u8 flags) 2377 { 2378 struct igc_hw *hw = &adapter->hw; 2379 int rar_entries = hw->mac.rar_entry_count; 2380 int i; 2381 2382 if (is_zero_ether_addr(addr)) 2383 return -EINVAL; 2384 2385 /* Search for matching entry in the MAC table based on given address 2386 * and queue. Do not touch entries at the end of the table reserved 2387 * for the VF MAC addresses. 2388 */ 2389 for (i = 0; i < rar_entries; i++) { 2390 if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE)) 2391 continue; 2392 if ((adapter->mac_table[i].state & flags) != flags) 2393 continue; 2394 if (adapter->mac_table[i].queue != queue) 2395 continue; 2396 if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) 2397 continue; 2398 2399 /* When a filter for the default address is "deleted", 2400 * we return it to its initial configuration 2401 */ 2402 if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) { 2403 adapter->mac_table[i].state = 2404 IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE; 2405 } else { 2406 adapter->mac_table[i].state = 0; 2407 adapter->mac_table[i].queue = 0; 2408 memset(adapter->mac_table[i].addr, 0, ETH_ALEN); 2409 } 2410 2411 igc_rar_set_index(adapter, i); 2412 return 0; 2413 } 2414 2415 return -ENOENT; 2416 } 2417 2418 int igc_del_mac_steering_filter(struct igc_adapter *adapter, 2419 const u8 *addr, u8 queue, u8 flags) 2420 { 2421 return igc_del_mac_filter_flags(adapter, addr, queue, 2422 IGC_MAC_STATE_QUEUE_STEERING | flags); 2423 } 2424 2425 /** 2426 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2427 * @netdev: network interface device structure 2428 * 2429 * The set_rx_mode entry point is called whenever the unicast or multicast 2430 * address lists or the network interface flags are updated. This routine is 2431 * responsible for configuring the hardware for proper unicast, multicast, 2432 * promiscuous mode, and all-multi behavior. 2433 */ 2434 static void igc_set_rx_mode(struct net_device *netdev) 2435 { 2436 } 2437 2438 /** 2439 * igc_msix_other - msix other interrupt handler 2440 * @irq: interrupt number 2441 * @data: pointer to a q_vector 2442 */ 2443 static irqreturn_t igc_msix_other(int irq, void *data) 2444 { 2445 struct igc_adapter *adapter = data; 2446 struct igc_hw *hw = &adapter->hw; 2447 u32 icr = rd32(IGC_ICR); 2448 2449 /* reading ICR causes bit 31 of EICR to be cleared */ 2450 if (icr & IGC_ICR_DRSTA) 2451 schedule_work(&adapter->reset_task); 2452 2453 if (icr & IGC_ICR_DOUTSYNC) { 2454 /* HW is reporting DMA is out of sync */ 2455 adapter->stats.doosync++; 2456 } 2457 2458 if (icr & IGC_ICR_LSC) { 2459 hw->mac.get_link_status = 1; 2460 /* guard against interrupt when we're going down */ 2461 if (!test_bit(__IGC_DOWN, &adapter->state)) 2462 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2463 } 2464 2465 wr32(IGC_EIMS, adapter->eims_other); 2466 2467 return IRQ_HANDLED; 2468 } 2469 2470 /** 2471 * igc_write_ivar - configure ivar for given MSI-X vector 2472 * @hw: pointer to the HW structure 2473 * @msix_vector: vector number we are allocating to a given ring 2474 * @index: row index of IVAR register to write within IVAR table 2475 * @offset: column offset of in IVAR, should be multiple of 8 2476 * 2477 * The IVAR table consists of 2 columns, 2478 * each containing an cause allocation for an Rx and Tx ring, and a 2479 * variable number of rows depending on the number of queues supported. 2480 */ 2481 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 2482 int index, int offset) 2483 { 2484 u32 ivar = array_rd32(IGC_IVAR0, index); 2485 2486 /* clear any bits that are currently set */ 2487 ivar &= ~((u32)0xFF << offset); 2488 2489 /* write vector and valid bit */ 2490 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 2491 2492 array_wr32(IGC_IVAR0, index, ivar); 2493 } 2494 2495 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 2496 { 2497 struct igc_adapter *adapter = q_vector->adapter; 2498 struct igc_hw *hw = &adapter->hw; 2499 int rx_queue = IGC_N0_QUEUE; 2500 int tx_queue = IGC_N0_QUEUE; 2501 2502 if (q_vector->rx.ring) 2503 rx_queue = q_vector->rx.ring->reg_idx; 2504 if (q_vector->tx.ring) 2505 tx_queue = q_vector->tx.ring->reg_idx; 2506 2507 switch (hw->mac.type) { 2508 case igc_i225: 2509 if (rx_queue > IGC_N0_QUEUE) 2510 igc_write_ivar(hw, msix_vector, 2511 rx_queue >> 1, 2512 (rx_queue & 0x1) << 4); 2513 if (tx_queue > IGC_N0_QUEUE) 2514 igc_write_ivar(hw, msix_vector, 2515 tx_queue >> 1, 2516 ((tx_queue & 0x1) << 4) + 8); 2517 q_vector->eims_value = BIT(msix_vector); 2518 break; 2519 default: 2520 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 2521 break; 2522 } 2523 2524 /* add q_vector eims value to global eims_enable_mask */ 2525 adapter->eims_enable_mask |= q_vector->eims_value; 2526 2527 /* configure q_vector to set itr on first interrupt */ 2528 q_vector->set_itr = 1; 2529 } 2530 2531 /** 2532 * igc_configure_msix - Configure MSI-X hardware 2533 * @adapter: Pointer to adapter structure 2534 * 2535 * igc_configure_msix sets up the hardware to properly 2536 * generate MSI-X interrupts. 2537 */ 2538 static void igc_configure_msix(struct igc_adapter *adapter) 2539 { 2540 struct igc_hw *hw = &adapter->hw; 2541 int i, vector = 0; 2542 u32 tmp; 2543 2544 adapter->eims_enable_mask = 0; 2545 2546 /* set vector for other causes, i.e. link changes */ 2547 switch (hw->mac.type) { 2548 case igc_i225: 2549 /* Turn on MSI-X capability first, or our settings 2550 * won't stick. And it will take days to debug. 2551 */ 2552 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 2553 IGC_GPIE_PBA | IGC_GPIE_EIAME | 2554 IGC_GPIE_NSICR); 2555 2556 /* enable msix_other interrupt */ 2557 adapter->eims_other = BIT(vector); 2558 tmp = (vector++ | IGC_IVAR_VALID) << 8; 2559 2560 wr32(IGC_IVAR_MISC, tmp); 2561 break; 2562 default: 2563 /* do nothing, since nothing else supports MSI-X */ 2564 break; 2565 } /* switch (hw->mac.type) */ 2566 2567 adapter->eims_enable_mask |= adapter->eims_other; 2568 2569 for (i = 0; i < adapter->num_q_vectors; i++) 2570 igc_assign_vector(adapter->q_vector[i], vector++); 2571 2572 wrfl(); 2573 } 2574 2575 static irqreturn_t igc_msix_ring(int irq, void *data) 2576 { 2577 struct igc_q_vector *q_vector = data; 2578 2579 /* Write the ITR value calculated from the previous interrupt. */ 2580 igc_write_itr(q_vector); 2581 2582 napi_schedule(&q_vector->napi); 2583 2584 return IRQ_HANDLED; 2585 } 2586 2587 /** 2588 * igc_request_msix - Initialize MSI-X interrupts 2589 * @adapter: Pointer to adapter structure 2590 * 2591 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 2592 * kernel. 2593 */ 2594 static int igc_request_msix(struct igc_adapter *adapter) 2595 { 2596 int i = 0, err = 0, vector = 0, free_vector = 0; 2597 struct net_device *netdev = adapter->netdev; 2598 2599 err = request_irq(adapter->msix_entries[vector].vector, 2600 &igc_msix_other, 0, netdev->name, adapter); 2601 if (err) 2602 goto err_out; 2603 2604 for (i = 0; i < adapter->num_q_vectors; i++) { 2605 struct igc_q_vector *q_vector = adapter->q_vector[i]; 2606 2607 vector++; 2608 2609 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 2610 2611 if (q_vector->rx.ring && q_vector->tx.ring) 2612 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 2613 q_vector->rx.ring->queue_index); 2614 else if (q_vector->tx.ring) 2615 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 2616 q_vector->tx.ring->queue_index); 2617 else if (q_vector->rx.ring) 2618 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 2619 q_vector->rx.ring->queue_index); 2620 else 2621 sprintf(q_vector->name, "%s-unused", netdev->name); 2622 2623 err = request_irq(adapter->msix_entries[vector].vector, 2624 igc_msix_ring, 0, q_vector->name, 2625 q_vector); 2626 if (err) 2627 goto err_free; 2628 } 2629 2630 igc_configure_msix(adapter); 2631 return 0; 2632 2633 err_free: 2634 /* free already assigned IRQs */ 2635 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 2636 2637 vector--; 2638 for (i = 0; i < vector; i++) { 2639 free_irq(adapter->msix_entries[free_vector++].vector, 2640 adapter->q_vector[i]); 2641 } 2642 err_out: 2643 return err; 2644 } 2645 2646 /** 2647 * igc_reset_q_vector - Reset config for interrupt vector 2648 * @adapter: board private structure to initialize 2649 * @v_idx: Index of vector to be reset 2650 * 2651 * If NAPI is enabled it will delete any references to the 2652 * NAPI struct. This is preparation for igc_free_q_vector. 2653 */ 2654 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 2655 { 2656 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2657 2658 /* if we're coming from igc_set_interrupt_capability, the vectors are 2659 * not yet allocated 2660 */ 2661 if (!q_vector) 2662 return; 2663 2664 if (q_vector->tx.ring) 2665 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 2666 2667 if (q_vector->rx.ring) 2668 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 2669 2670 netif_napi_del(&q_vector->napi); 2671 } 2672 2673 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 2674 { 2675 int v_idx = adapter->num_q_vectors; 2676 2677 if (adapter->msix_entries) { 2678 pci_disable_msix(adapter->pdev); 2679 kfree(adapter->msix_entries); 2680 adapter->msix_entries = NULL; 2681 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 2682 pci_disable_msi(adapter->pdev); 2683 } 2684 2685 while (v_idx--) 2686 igc_reset_q_vector(adapter, v_idx); 2687 } 2688 2689 /** 2690 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 2691 * @adapter: Pointer to adapter structure 2692 * 2693 * This function resets the device so that it has 0 rx queues, tx queues, and 2694 * MSI-X interrupts allocated. 2695 */ 2696 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 2697 { 2698 igc_free_q_vectors(adapter); 2699 igc_reset_interrupt_capability(adapter); 2700 } 2701 2702 /** 2703 * igc_free_q_vectors - Free memory allocated for interrupt vectors 2704 * @adapter: board private structure to initialize 2705 * 2706 * This function frees the memory allocated to the q_vectors. In addition if 2707 * NAPI is enabled it will delete any references to the NAPI struct prior 2708 * to freeing the q_vector. 2709 */ 2710 static void igc_free_q_vectors(struct igc_adapter *adapter) 2711 { 2712 int v_idx = adapter->num_q_vectors; 2713 2714 adapter->num_tx_queues = 0; 2715 adapter->num_rx_queues = 0; 2716 adapter->num_q_vectors = 0; 2717 2718 while (v_idx--) { 2719 igc_reset_q_vector(adapter, v_idx); 2720 igc_free_q_vector(adapter, v_idx); 2721 } 2722 } 2723 2724 /** 2725 * igc_free_q_vector - Free memory allocated for specific interrupt vector 2726 * @adapter: board private structure to initialize 2727 * @v_idx: Index of vector to be freed 2728 * 2729 * This function frees the memory allocated to the q_vector. 2730 */ 2731 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 2732 { 2733 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2734 2735 adapter->q_vector[v_idx] = NULL; 2736 2737 /* igc_get_stats64() might access the rings on this vector, 2738 * we must wait a grace period before freeing it. 2739 */ 2740 if (q_vector) 2741 kfree_rcu(q_vector, rcu); 2742 } 2743 2744 /* Need to wait a few seconds after link up to get diagnostic information from 2745 * the phy 2746 */ 2747 static void igc_update_phy_info(struct timer_list *t) 2748 { 2749 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 2750 2751 igc_get_phy_info(&adapter->hw); 2752 } 2753 2754 /** 2755 * igc_has_link - check shared code for link and determine up/down 2756 * @adapter: pointer to driver private info 2757 */ 2758 bool igc_has_link(struct igc_adapter *adapter) 2759 { 2760 struct igc_hw *hw = &adapter->hw; 2761 bool link_active = false; 2762 2763 /* get_link_status is set on LSC (link status) interrupt or 2764 * rx sequence error interrupt. get_link_status will stay 2765 * false until the igc_check_for_link establishes link 2766 * for copper adapters ONLY 2767 */ 2768 switch (hw->phy.media_type) { 2769 case igc_media_type_copper: 2770 if (!hw->mac.get_link_status) 2771 return true; 2772 hw->mac.ops.check_for_link(hw); 2773 link_active = !hw->mac.get_link_status; 2774 break; 2775 default: 2776 case igc_media_type_unknown: 2777 break; 2778 } 2779 2780 if (hw->mac.type == igc_i225 && 2781 hw->phy.id == I225_I_PHY_ID) { 2782 if (!netif_carrier_ok(adapter->netdev)) { 2783 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2784 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 2785 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 2786 adapter->link_check_timeout = jiffies; 2787 } 2788 } 2789 2790 return link_active; 2791 } 2792 2793 /** 2794 * igc_watchdog - Timer Call-back 2795 * @data: pointer to adapter cast into an unsigned long 2796 */ 2797 static void igc_watchdog(struct timer_list *t) 2798 { 2799 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 2800 /* Do the rest outside of interrupt context */ 2801 schedule_work(&adapter->watchdog_task); 2802 } 2803 2804 static void igc_watchdog_task(struct work_struct *work) 2805 { 2806 struct igc_adapter *adapter = container_of(work, 2807 struct igc_adapter, 2808 watchdog_task); 2809 struct net_device *netdev = adapter->netdev; 2810 struct igc_hw *hw = &adapter->hw; 2811 struct igc_phy_info *phy = &hw->phy; 2812 u16 phy_data, retry_count = 20; 2813 u32 connsw; 2814 u32 link; 2815 int i; 2816 2817 link = igc_has_link(adapter); 2818 2819 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 2820 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 2821 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2822 else 2823 link = false; 2824 } 2825 2826 /* Force link down if we have fiber to swap to */ 2827 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 2828 if (hw->phy.media_type == igc_media_type_copper) { 2829 connsw = rd32(IGC_CONNSW); 2830 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN)) 2831 link = 0; 2832 } 2833 } 2834 if (link) { 2835 if (!netif_carrier_ok(netdev)) { 2836 u32 ctrl; 2837 2838 hw->mac.ops.get_speed_and_duplex(hw, 2839 &adapter->link_speed, 2840 &adapter->link_duplex); 2841 2842 ctrl = rd32(IGC_CTRL); 2843 /* Link status message must follow this format */ 2844 netdev_info(netdev, 2845 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 2846 netdev->name, 2847 adapter->link_speed, 2848 adapter->link_duplex == FULL_DUPLEX ? 2849 "Full" : "Half", 2850 (ctrl & IGC_CTRL_TFCE) && 2851 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 2852 (ctrl & IGC_CTRL_RFCE) ? "RX" : 2853 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 2854 2855 /* check if SmartSpeed worked */ 2856 igc_check_downshift(hw); 2857 if (phy->speed_downgraded) 2858 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 2859 2860 /* adjust timeout factor according to speed/duplex */ 2861 adapter->tx_timeout_factor = 1; 2862 switch (adapter->link_speed) { 2863 case SPEED_10: 2864 adapter->tx_timeout_factor = 14; 2865 break; 2866 case SPEED_100: 2867 /* maybe add some timeout factor ? */ 2868 break; 2869 } 2870 2871 if (adapter->link_speed != SPEED_1000) 2872 goto no_wait; 2873 2874 /* wait for Remote receiver status OK */ 2875 retry_read_status: 2876 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 2877 &phy_data)) { 2878 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 2879 retry_count) { 2880 msleep(100); 2881 retry_count--; 2882 goto retry_read_status; 2883 } else if (!retry_count) { 2884 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 2885 } 2886 } else { 2887 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 2888 } 2889 no_wait: 2890 netif_carrier_on(netdev); 2891 2892 /* link state has changed, schedule phy info update */ 2893 if (!test_bit(__IGC_DOWN, &adapter->state)) 2894 mod_timer(&adapter->phy_info_timer, 2895 round_jiffies(jiffies + 2 * HZ)); 2896 } 2897 } else { 2898 if (netif_carrier_ok(netdev)) { 2899 adapter->link_speed = 0; 2900 adapter->link_duplex = 0; 2901 2902 /* Links status message must follow this format */ 2903 netdev_info(netdev, "igc: %s NIC Link is Down\n", 2904 netdev->name); 2905 netif_carrier_off(netdev); 2906 2907 /* link state has changed, schedule phy info update */ 2908 if (!test_bit(__IGC_DOWN, &adapter->state)) 2909 mod_timer(&adapter->phy_info_timer, 2910 round_jiffies(jiffies + 2 * HZ)); 2911 2912 /* link is down, time to check for alternate media */ 2913 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 2914 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 2915 schedule_work(&adapter->reset_task); 2916 /* return immediately */ 2917 return; 2918 } 2919 } 2920 2921 /* also check for alternate media here */ 2922 } else if (!netif_carrier_ok(netdev) && 2923 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 2924 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 2925 schedule_work(&adapter->reset_task); 2926 /* return immediately */ 2927 return; 2928 } 2929 } 2930 } 2931 2932 spin_lock(&adapter->stats64_lock); 2933 igc_update_stats(adapter); 2934 spin_unlock(&adapter->stats64_lock); 2935 2936 for (i = 0; i < adapter->num_tx_queues; i++) { 2937 struct igc_ring *tx_ring = adapter->tx_ring[i]; 2938 2939 if (!netif_carrier_ok(netdev)) { 2940 /* We've lost link, so the controller stops DMA, 2941 * but we've got queued Tx work that's never going 2942 * to get done, so reset controller to flush Tx. 2943 * (Do the reset outside of interrupt context). 2944 */ 2945 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 2946 adapter->tx_timeout_count++; 2947 schedule_work(&adapter->reset_task); 2948 /* return immediately since reset is imminent */ 2949 return; 2950 } 2951 } 2952 2953 /* Force detection of hung controller every watchdog period */ 2954 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2955 } 2956 2957 /* Cause software interrupt to ensure Rx ring is cleaned */ 2958 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 2959 u32 eics = 0; 2960 2961 for (i = 0; i < adapter->num_q_vectors; i++) 2962 eics |= adapter->q_vector[i]->eims_value; 2963 wr32(IGC_EICS, eics); 2964 } else { 2965 wr32(IGC_ICS, IGC_ICS_RXDMT0); 2966 } 2967 2968 /* Reset the timer */ 2969 if (!test_bit(__IGC_DOWN, &adapter->state)) { 2970 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 2971 mod_timer(&adapter->watchdog_timer, 2972 round_jiffies(jiffies + HZ)); 2973 else 2974 mod_timer(&adapter->watchdog_timer, 2975 round_jiffies(jiffies + 2 * HZ)); 2976 } 2977 } 2978 2979 /** 2980 * igc_update_ring_itr - update the dynamic ITR value based on packet size 2981 * @q_vector: pointer to q_vector 2982 * 2983 * Stores a new ITR value based on strictly on packet size. This 2984 * algorithm is less sophisticated than that used in igc_update_itr, 2985 * due to the difficulty of synchronizing statistics across multiple 2986 * receive rings. The divisors and thresholds used by this function 2987 * were determined based on theoretical maximum wire speed and testing 2988 * data, in order to minimize response time while increasing bulk 2989 * throughput. 2990 * NOTE: This function is called only when operating in a multiqueue 2991 * receive environment. 2992 */ 2993 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 2994 { 2995 struct igc_adapter *adapter = q_vector->adapter; 2996 int new_val = q_vector->itr_val; 2997 int avg_wire_size = 0; 2998 unsigned int packets; 2999 3000 /* For non-gigabit speeds, just fix the interrupt rate at 4000 3001 * ints/sec - ITR timer value of 120 ticks. 3002 */ 3003 switch (adapter->link_speed) { 3004 case SPEED_10: 3005 case SPEED_100: 3006 new_val = IGC_4K_ITR; 3007 goto set_itr_val; 3008 default: 3009 break; 3010 } 3011 3012 packets = q_vector->rx.total_packets; 3013 if (packets) 3014 avg_wire_size = q_vector->rx.total_bytes / packets; 3015 3016 packets = q_vector->tx.total_packets; 3017 if (packets) 3018 avg_wire_size = max_t(u32, avg_wire_size, 3019 q_vector->tx.total_bytes / packets); 3020 3021 /* if avg_wire_size isn't set no work was done */ 3022 if (!avg_wire_size) 3023 goto clear_counts; 3024 3025 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 3026 avg_wire_size += 24; 3027 3028 /* Don't starve jumbo frames */ 3029 avg_wire_size = min(avg_wire_size, 3000); 3030 3031 /* Give a little boost to mid-size frames */ 3032 if (avg_wire_size > 300 && avg_wire_size < 1200) 3033 new_val = avg_wire_size / 3; 3034 else 3035 new_val = avg_wire_size / 2; 3036 3037 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 3038 if (new_val < IGC_20K_ITR && 3039 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 3040 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 3041 new_val = IGC_20K_ITR; 3042 3043 set_itr_val: 3044 if (new_val != q_vector->itr_val) { 3045 q_vector->itr_val = new_val; 3046 q_vector->set_itr = 1; 3047 } 3048 clear_counts: 3049 q_vector->rx.total_bytes = 0; 3050 q_vector->rx.total_packets = 0; 3051 q_vector->tx.total_bytes = 0; 3052 q_vector->tx.total_packets = 0; 3053 } 3054 3055 /** 3056 * igc_update_itr - update the dynamic ITR value based on statistics 3057 * @q_vector: pointer to q_vector 3058 * @ring_container: ring info to update the itr for 3059 * 3060 * Stores a new ITR value based on packets and byte 3061 * counts during the last interrupt. The advantage of per interrupt 3062 * computation is faster updates and more accurate ITR for the current 3063 * traffic pattern. Constants in this function were computed 3064 * based on theoretical maximum wire speed and thresholds were set based 3065 * on testing data as well as attempting to minimize response time 3066 * while increasing bulk throughput. 3067 * NOTE: These calculations are only valid when operating in a single- 3068 * queue environment. 3069 */ 3070 static void igc_update_itr(struct igc_q_vector *q_vector, 3071 struct igc_ring_container *ring_container) 3072 { 3073 unsigned int packets = ring_container->total_packets; 3074 unsigned int bytes = ring_container->total_bytes; 3075 u8 itrval = ring_container->itr; 3076 3077 /* no packets, exit with status unchanged */ 3078 if (packets == 0) 3079 return; 3080 3081 switch (itrval) { 3082 case lowest_latency: 3083 /* handle TSO and jumbo frames */ 3084 if (bytes / packets > 8000) 3085 itrval = bulk_latency; 3086 else if ((packets < 5) && (bytes > 512)) 3087 itrval = low_latency; 3088 break; 3089 case low_latency: /* 50 usec aka 20000 ints/s */ 3090 if (bytes > 10000) { 3091 /* this if handles the TSO accounting */ 3092 if (bytes / packets > 8000) 3093 itrval = bulk_latency; 3094 else if ((packets < 10) || ((bytes / packets) > 1200)) 3095 itrval = bulk_latency; 3096 else if ((packets > 35)) 3097 itrval = lowest_latency; 3098 } else if (bytes / packets > 2000) { 3099 itrval = bulk_latency; 3100 } else if (packets <= 2 && bytes < 512) { 3101 itrval = lowest_latency; 3102 } 3103 break; 3104 case bulk_latency: /* 250 usec aka 4000 ints/s */ 3105 if (bytes > 25000) { 3106 if (packets > 35) 3107 itrval = low_latency; 3108 } else if (bytes < 1500) { 3109 itrval = low_latency; 3110 } 3111 break; 3112 } 3113 3114 /* clear work counters since we have the values we need */ 3115 ring_container->total_bytes = 0; 3116 ring_container->total_packets = 0; 3117 3118 /* write updated itr to ring container */ 3119 ring_container->itr = itrval; 3120 } 3121 3122 /** 3123 * igc_intr_msi - Interrupt Handler 3124 * @irq: interrupt number 3125 * @data: pointer to a network interface device structure 3126 */ 3127 static irqreturn_t igc_intr_msi(int irq, void *data) 3128 { 3129 struct igc_adapter *adapter = data; 3130 struct igc_q_vector *q_vector = adapter->q_vector[0]; 3131 struct igc_hw *hw = &adapter->hw; 3132 /* read ICR disables interrupts using IAM */ 3133 u32 icr = rd32(IGC_ICR); 3134 3135 igc_write_itr(q_vector); 3136 3137 if (icr & IGC_ICR_DRSTA) 3138 schedule_work(&adapter->reset_task); 3139 3140 if (icr & IGC_ICR_DOUTSYNC) { 3141 /* HW is reporting DMA is out of sync */ 3142 adapter->stats.doosync++; 3143 } 3144 3145 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 3146 hw->mac.get_link_status = 1; 3147 if (!test_bit(__IGC_DOWN, &adapter->state)) 3148 mod_timer(&adapter->watchdog_timer, jiffies + 1); 3149 } 3150 3151 napi_schedule(&q_vector->napi); 3152 3153 return IRQ_HANDLED; 3154 } 3155 3156 /** 3157 * igc_intr - Legacy Interrupt Handler 3158 * @irq: interrupt number 3159 * @data: pointer to a network interface device structure 3160 */ 3161 static irqreturn_t igc_intr(int irq, void *data) 3162 { 3163 struct igc_adapter *adapter = data; 3164 struct igc_q_vector *q_vector = adapter->q_vector[0]; 3165 struct igc_hw *hw = &adapter->hw; 3166 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 3167 * need for the IMC write 3168 */ 3169 u32 icr = rd32(IGC_ICR); 3170 3171 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 3172 * not set, then the adapter didn't send an interrupt 3173 */ 3174 if (!(icr & IGC_ICR_INT_ASSERTED)) 3175 return IRQ_NONE; 3176 3177 igc_write_itr(q_vector); 3178 3179 if (icr & IGC_ICR_DRSTA) 3180 schedule_work(&adapter->reset_task); 3181 3182 if (icr & IGC_ICR_DOUTSYNC) { 3183 /* HW is reporting DMA is out of sync */ 3184 adapter->stats.doosync++; 3185 } 3186 3187 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 3188 hw->mac.get_link_status = 1; 3189 /* guard against interrupt when we're going down */ 3190 if (!test_bit(__IGC_DOWN, &adapter->state)) 3191 mod_timer(&adapter->watchdog_timer, jiffies + 1); 3192 } 3193 3194 napi_schedule(&q_vector->napi); 3195 3196 return IRQ_HANDLED; 3197 } 3198 3199 static void igc_set_itr(struct igc_q_vector *q_vector) 3200 { 3201 struct igc_adapter *adapter = q_vector->adapter; 3202 u32 new_itr = q_vector->itr_val; 3203 u8 current_itr = 0; 3204 3205 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 3206 switch (adapter->link_speed) { 3207 case SPEED_10: 3208 case SPEED_100: 3209 current_itr = 0; 3210 new_itr = IGC_4K_ITR; 3211 goto set_itr_now; 3212 default: 3213 break; 3214 } 3215 3216 igc_update_itr(q_vector, &q_vector->tx); 3217 igc_update_itr(q_vector, &q_vector->rx); 3218 3219 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 3220 3221 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 3222 if (current_itr == lowest_latency && 3223 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 3224 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 3225 current_itr = low_latency; 3226 3227 switch (current_itr) { 3228 /* counts and packets in update_itr are dependent on these numbers */ 3229 case lowest_latency: 3230 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 3231 break; 3232 case low_latency: 3233 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 3234 break; 3235 case bulk_latency: 3236 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 3237 break; 3238 default: 3239 break; 3240 } 3241 3242 set_itr_now: 3243 if (new_itr != q_vector->itr_val) { 3244 /* this attempts to bias the interrupt rate towards Bulk 3245 * by adding intermediate steps when interrupt rate is 3246 * increasing 3247 */ 3248 new_itr = new_itr > q_vector->itr_val ? 3249 max((new_itr * q_vector->itr_val) / 3250 (new_itr + (q_vector->itr_val >> 2)), 3251 new_itr) : new_itr; 3252 /* Don't write the value here; it resets the adapter's 3253 * internal timer, and causes us to delay far longer than 3254 * we should between interrupts. Instead, we write the ITR 3255 * value at the beginning of the next interrupt so the timing 3256 * ends up being correct. 3257 */ 3258 q_vector->itr_val = new_itr; 3259 q_vector->set_itr = 1; 3260 } 3261 } 3262 3263 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 3264 { 3265 struct igc_adapter *adapter = q_vector->adapter; 3266 struct igc_hw *hw = &adapter->hw; 3267 3268 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 3269 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 3270 if (adapter->num_q_vectors == 1) 3271 igc_set_itr(q_vector); 3272 else 3273 igc_update_ring_itr(q_vector); 3274 } 3275 3276 if (!test_bit(__IGC_DOWN, &adapter->state)) { 3277 if (adapter->msix_entries) 3278 wr32(IGC_EIMS, q_vector->eims_value); 3279 else 3280 igc_irq_enable(adapter); 3281 } 3282 } 3283 3284 /** 3285 * igc_poll - NAPI Rx polling callback 3286 * @napi: napi polling structure 3287 * @budget: count of how many packets we should handle 3288 */ 3289 static int igc_poll(struct napi_struct *napi, int budget) 3290 { 3291 struct igc_q_vector *q_vector = container_of(napi, 3292 struct igc_q_vector, 3293 napi); 3294 bool clean_complete = true; 3295 int work_done = 0; 3296 3297 if (q_vector->tx.ring) 3298 clean_complete = igc_clean_tx_irq(q_vector, budget); 3299 3300 if (q_vector->rx.ring) { 3301 int cleaned = igc_clean_rx_irq(q_vector, budget); 3302 3303 work_done += cleaned; 3304 if (cleaned >= budget) 3305 clean_complete = false; 3306 } 3307 3308 /* If all work not completed, return budget and keep polling */ 3309 if (!clean_complete) 3310 return budget; 3311 3312 /* Exit the polling mode, but don't re-enable interrupts if stack might 3313 * poll us due to busy-polling 3314 */ 3315 if (likely(napi_complete_done(napi, work_done))) 3316 igc_ring_irq_enable(q_vector); 3317 3318 return min(work_done, budget - 1); 3319 } 3320 3321 /** 3322 * igc_set_interrupt_capability - set MSI or MSI-X if supported 3323 * @adapter: Pointer to adapter structure 3324 * 3325 * Attempt to configure interrupts using the best available 3326 * capabilities of the hardware and kernel. 3327 */ 3328 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 3329 bool msix) 3330 { 3331 int numvecs, i; 3332 int err; 3333 3334 if (!msix) 3335 goto msi_only; 3336 adapter->flags |= IGC_FLAG_HAS_MSIX; 3337 3338 /* Number of supported queues. */ 3339 adapter->num_rx_queues = adapter->rss_queues; 3340 3341 adapter->num_tx_queues = adapter->rss_queues; 3342 3343 /* start with one vector for every Rx queue */ 3344 numvecs = adapter->num_rx_queues; 3345 3346 /* if Tx handler is separate add 1 for every Tx queue */ 3347 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 3348 numvecs += adapter->num_tx_queues; 3349 3350 /* store the number of vectors reserved for queues */ 3351 adapter->num_q_vectors = numvecs; 3352 3353 /* add 1 vector for link status interrupts */ 3354 numvecs++; 3355 3356 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 3357 GFP_KERNEL); 3358 3359 if (!adapter->msix_entries) 3360 return; 3361 3362 /* populate entry values */ 3363 for (i = 0; i < numvecs; i++) 3364 adapter->msix_entries[i].entry = i; 3365 3366 err = pci_enable_msix_range(adapter->pdev, 3367 adapter->msix_entries, 3368 numvecs, 3369 numvecs); 3370 if (err > 0) 3371 return; 3372 3373 kfree(adapter->msix_entries); 3374 adapter->msix_entries = NULL; 3375 3376 igc_reset_interrupt_capability(adapter); 3377 3378 msi_only: 3379 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 3380 3381 adapter->rss_queues = 1; 3382 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3383 adapter->num_rx_queues = 1; 3384 adapter->num_tx_queues = 1; 3385 adapter->num_q_vectors = 1; 3386 if (!pci_enable_msi(adapter->pdev)) 3387 adapter->flags |= IGC_FLAG_HAS_MSI; 3388 } 3389 3390 static void igc_add_ring(struct igc_ring *ring, 3391 struct igc_ring_container *head) 3392 { 3393 head->ring = ring; 3394 head->count++; 3395 } 3396 3397 /** 3398 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 3399 * @adapter: board private structure to initialize 3400 * @v_count: q_vectors allocated on adapter, used for ring interleaving 3401 * @v_idx: index of vector in adapter struct 3402 * @txr_count: total number of Tx rings to allocate 3403 * @txr_idx: index of first Tx ring to allocate 3404 * @rxr_count: total number of Rx rings to allocate 3405 * @rxr_idx: index of first Rx ring to allocate 3406 * 3407 * We allocate one q_vector. If allocation fails we return -ENOMEM. 3408 */ 3409 static int igc_alloc_q_vector(struct igc_adapter *adapter, 3410 unsigned int v_count, unsigned int v_idx, 3411 unsigned int txr_count, unsigned int txr_idx, 3412 unsigned int rxr_count, unsigned int rxr_idx) 3413 { 3414 struct igc_q_vector *q_vector; 3415 struct igc_ring *ring; 3416 int ring_count; 3417 3418 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 3419 if (txr_count > 1 || rxr_count > 1) 3420 return -ENOMEM; 3421 3422 ring_count = txr_count + rxr_count; 3423 3424 /* allocate q_vector and rings */ 3425 q_vector = adapter->q_vector[v_idx]; 3426 if (!q_vector) 3427 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 3428 GFP_KERNEL); 3429 else 3430 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 3431 if (!q_vector) 3432 return -ENOMEM; 3433 3434 /* initialize NAPI */ 3435 netif_napi_add(adapter->netdev, &q_vector->napi, 3436 igc_poll, 64); 3437 3438 /* tie q_vector and adapter together */ 3439 adapter->q_vector[v_idx] = q_vector; 3440 q_vector->adapter = adapter; 3441 3442 /* initialize work limits */ 3443 q_vector->tx.work_limit = adapter->tx_work_limit; 3444 3445 /* initialize ITR configuration */ 3446 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 3447 q_vector->itr_val = IGC_START_ITR; 3448 3449 /* initialize pointer to rings */ 3450 ring = q_vector->ring; 3451 3452 /* initialize ITR */ 3453 if (rxr_count) { 3454 /* rx or rx/tx vector */ 3455 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 3456 q_vector->itr_val = adapter->rx_itr_setting; 3457 } else { 3458 /* tx only vector */ 3459 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 3460 q_vector->itr_val = adapter->tx_itr_setting; 3461 } 3462 3463 if (txr_count) { 3464 /* assign generic ring traits */ 3465 ring->dev = &adapter->pdev->dev; 3466 ring->netdev = adapter->netdev; 3467 3468 /* configure backlink on ring */ 3469 ring->q_vector = q_vector; 3470 3471 /* update q_vector Tx values */ 3472 igc_add_ring(ring, &q_vector->tx); 3473 3474 /* apply Tx specific ring traits */ 3475 ring->count = adapter->tx_ring_count; 3476 ring->queue_index = txr_idx; 3477 3478 /* assign ring to adapter */ 3479 adapter->tx_ring[txr_idx] = ring; 3480 3481 /* push pointer to next ring */ 3482 ring++; 3483 } 3484 3485 if (rxr_count) { 3486 /* assign generic ring traits */ 3487 ring->dev = &adapter->pdev->dev; 3488 ring->netdev = adapter->netdev; 3489 3490 /* configure backlink on ring */ 3491 ring->q_vector = q_vector; 3492 3493 /* update q_vector Rx values */ 3494 igc_add_ring(ring, &q_vector->rx); 3495 3496 /* apply Rx specific ring traits */ 3497 ring->count = adapter->rx_ring_count; 3498 ring->queue_index = rxr_idx; 3499 3500 /* assign ring to adapter */ 3501 adapter->rx_ring[rxr_idx] = ring; 3502 } 3503 3504 return 0; 3505 } 3506 3507 /** 3508 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 3509 * @adapter: board private structure to initialize 3510 * 3511 * We allocate one q_vector per queue interrupt. If allocation fails we 3512 * return -ENOMEM. 3513 */ 3514 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 3515 { 3516 int rxr_remaining = adapter->num_rx_queues; 3517 int txr_remaining = adapter->num_tx_queues; 3518 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 3519 int q_vectors = adapter->num_q_vectors; 3520 int err; 3521 3522 if (q_vectors >= (rxr_remaining + txr_remaining)) { 3523 for (; rxr_remaining; v_idx++) { 3524 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3525 0, 0, 1, rxr_idx); 3526 3527 if (err) 3528 goto err_out; 3529 3530 /* update counts and index */ 3531 rxr_remaining--; 3532 rxr_idx++; 3533 } 3534 } 3535 3536 for (; v_idx < q_vectors; v_idx++) { 3537 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 3538 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 3539 3540 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3541 tqpv, txr_idx, rqpv, rxr_idx); 3542 3543 if (err) 3544 goto err_out; 3545 3546 /* update counts and index */ 3547 rxr_remaining -= rqpv; 3548 txr_remaining -= tqpv; 3549 rxr_idx++; 3550 txr_idx++; 3551 } 3552 3553 return 0; 3554 3555 err_out: 3556 adapter->num_tx_queues = 0; 3557 adapter->num_rx_queues = 0; 3558 adapter->num_q_vectors = 0; 3559 3560 while (v_idx--) 3561 igc_free_q_vector(adapter, v_idx); 3562 3563 return -ENOMEM; 3564 } 3565 3566 /** 3567 * igc_cache_ring_register - Descriptor ring to register mapping 3568 * @adapter: board private structure to initialize 3569 * 3570 * Once we know the feature-set enabled for the device, we'll cache 3571 * the register offset the descriptor ring is assigned to. 3572 */ 3573 static void igc_cache_ring_register(struct igc_adapter *adapter) 3574 { 3575 int i = 0, j = 0; 3576 3577 switch (adapter->hw.mac.type) { 3578 case igc_i225: 3579 /* Fall through */ 3580 default: 3581 for (; i < adapter->num_rx_queues; i++) 3582 adapter->rx_ring[i]->reg_idx = i; 3583 for (; j < adapter->num_tx_queues; j++) 3584 adapter->tx_ring[j]->reg_idx = j; 3585 break; 3586 } 3587 } 3588 3589 /** 3590 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 3591 * @adapter: Pointer to adapter structure 3592 * 3593 * This function initializes the interrupts and allocates all of the queues. 3594 */ 3595 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 3596 { 3597 struct pci_dev *pdev = adapter->pdev; 3598 int err = 0; 3599 3600 igc_set_interrupt_capability(adapter, msix); 3601 3602 err = igc_alloc_q_vectors(adapter); 3603 if (err) { 3604 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 3605 goto err_alloc_q_vectors; 3606 } 3607 3608 igc_cache_ring_register(adapter); 3609 3610 return 0; 3611 3612 err_alloc_q_vectors: 3613 igc_reset_interrupt_capability(adapter); 3614 return err; 3615 } 3616 3617 static void igc_free_irq(struct igc_adapter *adapter) 3618 { 3619 if (adapter->msix_entries) { 3620 int vector = 0, i; 3621 3622 free_irq(adapter->msix_entries[vector++].vector, adapter); 3623 3624 for (i = 0; i < adapter->num_q_vectors; i++) 3625 free_irq(adapter->msix_entries[vector++].vector, 3626 adapter->q_vector[i]); 3627 } else { 3628 free_irq(adapter->pdev->irq, adapter); 3629 } 3630 } 3631 3632 /** 3633 * igc_irq_disable - Mask off interrupt generation on the NIC 3634 * @adapter: board private structure 3635 */ 3636 static void igc_irq_disable(struct igc_adapter *adapter) 3637 { 3638 struct igc_hw *hw = &adapter->hw; 3639 3640 if (adapter->msix_entries) { 3641 u32 regval = rd32(IGC_EIAM); 3642 3643 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3644 wr32(IGC_EIMC, adapter->eims_enable_mask); 3645 regval = rd32(IGC_EIAC); 3646 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3647 } 3648 3649 wr32(IGC_IAM, 0); 3650 wr32(IGC_IMC, ~0); 3651 wrfl(); 3652 3653 if (adapter->msix_entries) { 3654 int vector = 0, i; 3655 3656 synchronize_irq(adapter->msix_entries[vector++].vector); 3657 3658 for (i = 0; i < adapter->num_q_vectors; i++) 3659 synchronize_irq(adapter->msix_entries[vector++].vector); 3660 } else { 3661 synchronize_irq(adapter->pdev->irq); 3662 } 3663 } 3664 3665 /** 3666 * igc_irq_enable - Enable default interrupt generation settings 3667 * @adapter: board private structure 3668 */ 3669 static void igc_irq_enable(struct igc_adapter *adapter) 3670 { 3671 struct igc_hw *hw = &adapter->hw; 3672 3673 if (adapter->msix_entries) { 3674 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3675 u32 regval = rd32(IGC_EIAC); 3676 3677 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3678 regval = rd32(IGC_EIAM); 3679 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3680 wr32(IGC_EIMS, adapter->eims_enable_mask); 3681 wr32(IGC_IMS, ims); 3682 } else { 3683 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3684 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3685 } 3686 } 3687 3688 /** 3689 * igc_request_irq - initialize interrupts 3690 * @adapter: Pointer to adapter structure 3691 * 3692 * Attempts to configure interrupts using the best available 3693 * capabilities of the hardware and kernel. 3694 */ 3695 static int igc_request_irq(struct igc_adapter *adapter) 3696 { 3697 struct net_device *netdev = adapter->netdev; 3698 struct pci_dev *pdev = adapter->pdev; 3699 int err = 0; 3700 3701 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 3702 err = igc_request_msix(adapter); 3703 if (!err) 3704 goto request_done; 3705 /* fall back to MSI */ 3706 igc_free_all_tx_resources(adapter); 3707 igc_free_all_rx_resources(adapter); 3708 3709 igc_clear_interrupt_scheme(adapter); 3710 err = igc_init_interrupt_scheme(adapter, false); 3711 if (err) 3712 goto request_done; 3713 igc_setup_all_tx_resources(adapter); 3714 igc_setup_all_rx_resources(adapter); 3715 igc_configure(adapter); 3716 } 3717 3718 igc_assign_vector(adapter->q_vector[0], 0); 3719 3720 if (adapter->flags & IGC_FLAG_HAS_MSI) { 3721 err = request_irq(pdev->irq, &igc_intr_msi, 0, 3722 netdev->name, adapter); 3723 if (!err) 3724 goto request_done; 3725 3726 /* fall back to legacy interrupts */ 3727 igc_reset_interrupt_capability(adapter); 3728 adapter->flags &= ~IGC_FLAG_HAS_MSI; 3729 } 3730 3731 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 3732 netdev->name, adapter); 3733 3734 if (err) 3735 dev_err(&pdev->dev, "Error %d getting interrupt\n", 3736 err); 3737 3738 request_done: 3739 return err; 3740 } 3741 3742 static void igc_write_itr(struct igc_q_vector *q_vector) 3743 { 3744 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 3745 3746 if (!q_vector->set_itr) 3747 return; 3748 3749 if (!itr_val) 3750 itr_val = IGC_ITR_VAL_MASK; 3751 3752 itr_val |= IGC_EITR_CNT_IGNR; 3753 3754 writel(itr_val, q_vector->itr_register); 3755 q_vector->set_itr = 0; 3756 } 3757 3758 /** 3759 * igc_open - Called when a network interface is made active 3760 * @netdev: network interface device structure 3761 * 3762 * Returns 0 on success, negative value on failure 3763 * 3764 * The open entry point is called when a network interface is made 3765 * active by the system (IFF_UP). At this point all resources needed 3766 * for transmit and receive operations are allocated, the interrupt 3767 * handler is registered with the OS, the watchdog timer is started, 3768 * and the stack is notified that the interface is ready. 3769 */ 3770 static int __igc_open(struct net_device *netdev, bool resuming) 3771 { 3772 struct igc_adapter *adapter = netdev_priv(netdev); 3773 struct igc_hw *hw = &adapter->hw; 3774 int err = 0; 3775 int i = 0; 3776 3777 /* disallow open during test */ 3778 3779 if (test_bit(__IGC_TESTING, &adapter->state)) { 3780 WARN_ON(resuming); 3781 return -EBUSY; 3782 } 3783 3784 netif_carrier_off(netdev); 3785 3786 /* allocate transmit descriptors */ 3787 err = igc_setup_all_tx_resources(adapter); 3788 if (err) 3789 goto err_setup_tx; 3790 3791 /* allocate receive descriptors */ 3792 err = igc_setup_all_rx_resources(adapter); 3793 if (err) 3794 goto err_setup_rx; 3795 3796 igc_power_up_link(adapter); 3797 3798 igc_configure(adapter); 3799 3800 err = igc_request_irq(adapter); 3801 if (err) 3802 goto err_req_irq; 3803 3804 /* Notify the stack of the actual queue counts. */ 3805 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3806 if (err) 3807 goto err_set_queues; 3808 3809 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3810 if (err) 3811 goto err_set_queues; 3812 3813 clear_bit(__IGC_DOWN, &adapter->state); 3814 3815 for (i = 0; i < adapter->num_q_vectors; i++) 3816 napi_enable(&adapter->q_vector[i]->napi); 3817 3818 /* Clear any pending interrupts. */ 3819 rd32(IGC_ICR); 3820 igc_irq_enable(adapter); 3821 3822 netif_tx_start_all_queues(netdev); 3823 3824 /* start the watchdog. */ 3825 hw->mac.get_link_status = 1; 3826 schedule_work(&adapter->watchdog_task); 3827 3828 return IGC_SUCCESS; 3829 3830 err_set_queues: 3831 igc_free_irq(adapter); 3832 err_req_irq: 3833 igc_release_hw_control(adapter); 3834 igc_power_down_link(adapter); 3835 igc_free_all_rx_resources(adapter); 3836 err_setup_rx: 3837 igc_free_all_tx_resources(adapter); 3838 err_setup_tx: 3839 igc_reset(adapter); 3840 3841 return err; 3842 } 3843 3844 static int igc_open(struct net_device *netdev) 3845 { 3846 return __igc_open(netdev, false); 3847 } 3848 3849 /** 3850 * igc_close - Disables a network interface 3851 * @netdev: network interface device structure 3852 * 3853 * Returns 0, this is not allowed to fail 3854 * 3855 * The close entry point is called when an interface is de-activated 3856 * by the OS. The hardware is still under the driver's control, but 3857 * needs to be disabled. A global MAC reset is issued to stop the 3858 * hardware, and all transmit and receive resources are freed. 3859 */ 3860 static int __igc_close(struct net_device *netdev, bool suspending) 3861 { 3862 struct igc_adapter *adapter = netdev_priv(netdev); 3863 3864 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 3865 3866 igc_down(adapter); 3867 3868 igc_release_hw_control(adapter); 3869 3870 igc_free_irq(adapter); 3871 3872 igc_free_all_tx_resources(adapter); 3873 igc_free_all_rx_resources(adapter); 3874 3875 return 0; 3876 } 3877 3878 static int igc_close(struct net_device *netdev) 3879 { 3880 if (netif_device_present(netdev) || netdev->dismantle) 3881 return __igc_close(netdev, false); 3882 return 0; 3883 } 3884 3885 static const struct net_device_ops igc_netdev_ops = { 3886 .ndo_open = igc_open, 3887 .ndo_stop = igc_close, 3888 .ndo_start_xmit = igc_xmit_frame, 3889 .ndo_set_mac_address = igc_set_mac, 3890 .ndo_change_mtu = igc_change_mtu, 3891 .ndo_get_stats = igc_get_stats, 3892 .ndo_fix_features = igc_fix_features, 3893 .ndo_set_features = igc_set_features, 3894 .ndo_features_check = igc_features_check, 3895 }; 3896 3897 /* PCIe configuration access */ 3898 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 3899 { 3900 struct igc_adapter *adapter = hw->back; 3901 3902 pci_read_config_word(adapter->pdev, reg, value); 3903 } 3904 3905 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 3906 { 3907 struct igc_adapter *adapter = hw->back; 3908 3909 pci_write_config_word(adapter->pdev, reg, *value); 3910 } 3911 3912 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 3913 { 3914 struct igc_adapter *adapter = hw->back; 3915 u16 cap_offset; 3916 3917 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 3918 if (!cap_offset) 3919 return -IGC_ERR_CONFIG; 3920 3921 pci_read_config_word(adapter->pdev, cap_offset + reg, value); 3922 3923 return IGC_SUCCESS; 3924 } 3925 3926 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 3927 { 3928 struct igc_adapter *adapter = hw->back; 3929 u16 cap_offset; 3930 3931 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 3932 if (!cap_offset) 3933 return -IGC_ERR_CONFIG; 3934 3935 pci_write_config_word(adapter->pdev, cap_offset + reg, *value); 3936 3937 return IGC_SUCCESS; 3938 } 3939 3940 u32 igc_rd32(struct igc_hw *hw, u32 reg) 3941 { 3942 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 3943 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 3944 u32 value = 0; 3945 3946 if (IGC_REMOVED(hw_addr)) 3947 return ~value; 3948 3949 value = readl(&hw_addr[reg]); 3950 3951 /* reads should not return all F's */ 3952 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 3953 struct net_device *netdev = igc->netdev; 3954 3955 hw->hw_addr = NULL; 3956 netif_device_detach(netdev); 3957 netdev_err(netdev, "PCIe link lost, device now detached\n"); 3958 WARN(1, "igc: Failed to read reg 0x%x!\n", reg); 3959 } 3960 3961 return value; 3962 } 3963 3964 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx) 3965 { 3966 struct pci_dev *pdev = adapter->pdev; 3967 struct igc_mac_info *mac = &adapter->hw.mac; 3968 3969 mac->autoneg = 0; 3970 3971 /* Make sure dplx is at most 1 bit and lsb of speed is not set 3972 * for the switch() below to work 3973 */ 3974 if ((spd & 1) || (dplx & ~1)) 3975 goto err_inval; 3976 3977 switch (spd + dplx) { 3978 case SPEED_10 + DUPLEX_HALF: 3979 mac->forced_speed_duplex = ADVERTISE_10_HALF; 3980 break; 3981 case SPEED_10 + DUPLEX_FULL: 3982 mac->forced_speed_duplex = ADVERTISE_10_FULL; 3983 break; 3984 case SPEED_100 + DUPLEX_HALF: 3985 mac->forced_speed_duplex = ADVERTISE_100_HALF; 3986 break; 3987 case SPEED_100 + DUPLEX_FULL: 3988 mac->forced_speed_duplex = ADVERTISE_100_FULL; 3989 break; 3990 case SPEED_1000 + DUPLEX_FULL: 3991 mac->autoneg = 1; 3992 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 3993 break; 3994 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 3995 goto err_inval; 3996 case SPEED_2500 + DUPLEX_FULL: 3997 mac->autoneg = 1; 3998 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL; 3999 break; 4000 case SPEED_2500 + DUPLEX_HALF: /* not supported */ 4001 default: 4002 goto err_inval; 4003 } 4004 4005 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 4006 adapter->hw.phy.mdix = AUTO_ALL_MODES; 4007 4008 return 0; 4009 4010 err_inval: 4011 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 4012 return -EINVAL; 4013 } 4014 4015 /** 4016 * igc_probe - Device Initialization Routine 4017 * @pdev: PCI device information struct 4018 * @ent: entry in igc_pci_tbl 4019 * 4020 * Returns 0 on success, negative on failure 4021 * 4022 * igc_probe initializes an adapter identified by a pci_dev structure. 4023 * The OS initialization, configuring the adapter private structure, 4024 * and a hardware reset occur. 4025 */ 4026 static int igc_probe(struct pci_dev *pdev, 4027 const struct pci_device_id *ent) 4028 { 4029 struct igc_adapter *adapter; 4030 struct net_device *netdev; 4031 struct igc_hw *hw; 4032 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 4033 int err; 4034 4035 err = pci_enable_device_mem(pdev); 4036 if (err) 4037 return err; 4038 4039 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 4040 if (!err) { 4041 err = dma_set_coherent_mask(&pdev->dev, 4042 DMA_BIT_MASK(64)); 4043 } else { 4044 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 4045 if (err) { 4046 err = dma_set_coherent_mask(&pdev->dev, 4047 DMA_BIT_MASK(32)); 4048 if (err) { 4049 dev_err(&pdev->dev, "igc: Wrong DMA config\n"); 4050 goto err_dma; 4051 } 4052 } 4053 } 4054 4055 err = pci_request_selected_regions(pdev, 4056 pci_select_bars(pdev, 4057 IORESOURCE_MEM), 4058 igc_driver_name); 4059 if (err) 4060 goto err_pci_reg; 4061 4062 pci_enable_pcie_error_reporting(pdev); 4063 4064 pci_set_master(pdev); 4065 4066 err = -ENOMEM; 4067 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 4068 IGC_MAX_TX_QUEUES); 4069 4070 if (!netdev) 4071 goto err_alloc_etherdev; 4072 4073 SET_NETDEV_DEV(netdev, &pdev->dev); 4074 4075 pci_set_drvdata(pdev, netdev); 4076 adapter = netdev_priv(netdev); 4077 adapter->netdev = netdev; 4078 adapter->pdev = pdev; 4079 hw = &adapter->hw; 4080 hw->back = adapter; 4081 adapter->port_num = hw->bus.func; 4082 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4083 4084 err = pci_save_state(pdev); 4085 if (err) 4086 goto err_ioremap; 4087 4088 err = -EIO; 4089 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 4090 pci_resource_len(pdev, 0)); 4091 if (!adapter->io_addr) 4092 goto err_ioremap; 4093 4094 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 4095 hw->hw_addr = adapter->io_addr; 4096 4097 netdev->netdev_ops = &igc_netdev_ops; 4098 igc_set_ethtool_ops(netdev); 4099 netdev->watchdog_timeo = 5 * HZ; 4100 4101 netdev->mem_start = pci_resource_start(pdev, 0); 4102 netdev->mem_end = pci_resource_end(pdev, 0); 4103 4104 /* PCI config space info */ 4105 hw->vendor_id = pdev->vendor; 4106 hw->device_id = pdev->device; 4107 hw->revision_id = pdev->revision; 4108 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4109 hw->subsystem_device_id = pdev->subsystem_device; 4110 4111 /* Copy the default MAC and PHY function pointers */ 4112 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 4113 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 4114 4115 /* Initialize skew-specific constants */ 4116 err = ei->get_invariants(hw); 4117 if (err) 4118 goto err_sw_init; 4119 4120 /* setup the private structure */ 4121 err = igc_sw_init(adapter); 4122 if (err) 4123 goto err_sw_init; 4124 4125 /* copy netdev features into list of user selectable features */ 4126 netdev->hw_features |= NETIF_F_NTUPLE; 4127 4128 /* MTU range: 68 - 9216 */ 4129 netdev->min_mtu = ETH_MIN_MTU; 4130 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 4131 4132 /* before reading the NVM, reset the controller to put the device in a 4133 * known good starting state 4134 */ 4135 hw->mac.ops.reset_hw(hw); 4136 4137 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 4138 /* copy the MAC address out of the NVM */ 4139 if (hw->mac.ops.read_mac_addr(hw)) 4140 dev_err(&pdev->dev, "NVM Read Error\n"); 4141 } 4142 4143 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 4144 4145 if (!is_valid_ether_addr(netdev->dev_addr)) { 4146 dev_err(&pdev->dev, "Invalid MAC Address\n"); 4147 err = -EIO; 4148 goto err_eeprom; 4149 } 4150 4151 /* configure RXPBSIZE and TXPBSIZE */ 4152 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 4153 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 4154 4155 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 4156 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 4157 4158 INIT_WORK(&adapter->reset_task, igc_reset_task); 4159 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 4160 4161 /* Initialize link properties that are user-changeable */ 4162 adapter->fc_autoneg = true; 4163 hw->mac.autoneg = true; 4164 hw->phy.autoneg_advertised = 0xaf; 4165 4166 hw->fc.requested_mode = igc_fc_default; 4167 hw->fc.current_mode = igc_fc_default; 4168 4169 /* reset the hardware with the new settings */ 4170 igc_reset(adapter); 4171 4172 /* let the f/w know that the h/w is now under the control of the 4173 * driver. 4174 */ 4175 igc_get_hw_control(adapter); 4176 4177 strncpy(netdev->name, "eth%d", IFNAMSIZ); 4178 err = register_netdev(netdev); 4179 if (err) 4180 goto err_register; 4181 4182 /* carrier off reporting is important to ethtool even BEFORE open */ 4183 netif_carrier_off(netdev); 4184 4185 /* Check if Media Autosense is enabled */ 4186 adapter->ei = *ei; 4187 4188 /* print pcie link status and MAC address */ 4189 pcie_print_link_status(pdev); 4190 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 4191 4192 return 0; 4193 4194 err_register: 4195 igc_release_hw_control(adapter); 4196 err_eeprom: 4197 if (!igc_check_reset_block(hw)) 4198 igc_reset_phy(hw); 4199 err_sw_init: 4200 igc_clear_interrupt_scheme(adapter); 4201 iounmap(adapter->io_addr); 4202 err_ioremap: 4203 free_netdev(netdev); 4204 err_alloc_etherdev: 4205 pci_release_selected_regions(pdev, 4206 pci_select_bars(pdev, IORESOURCE_MEM)); 4207 err_pci_reg: 4208 err_dma: 4209 pci_disable_device(pdev); 4210 return err; 4211 } 4212 4213 /** 4214 * igc_remove - Device Removal Routine 4215 * @pdev: PCI device information struct 4216 * 4217 * igc_remove is called by the PCI subsystem to alert the driver 4218 * that it should release a PCI device. This could be caused by a 4219 * Hot-Plug event, or because the driver is going to be removed from 4220 * memory. 4221 */ 4222 static void igc_remove(struct pci_dev *pdev) 4223 { 4224 struct net_device *netdev = pci_get_drvdata(pdev); 4225 struct igc_adapter *adapter = netdev_priv(netdev); 4226 4227 set_bit(__IGC_DOWN, &adapter->state); 4228 4229 del_timer_sync(&adapter->watchdog_timer); 4230 del_timer_sync(&adapter->phy_info_timer); 4231 4232 cancel_work_sync(&adapter->reset_task); 4233 cancel_work_sync(&adapter->watchdog_task); 4234 4235 /* Release control of h/w to f/w. If f/w is AMT enabled, this 4236 * would have already happened in close and is redundant. 4237 */ 4238 igc_release_hw_control(adapter); 4239 unregister_netdev(netdev); 4240 4241 igc_clear_interrupt_scheme(adapter); 4242 pci_iounmap(pdev, adapter->io_addr); 4243 pci_release_mem_regions(pdev); 4244 4245 kfree(adapter->mac_table); 4246 kfree(adapter->shadow_vfta); 4247 free_netdev(netdev); 4248 4249 pci_disable_pcie_error_reporting(pdev); 4250 4251 pci_disable_device(pdev); 4252 } 4253 4254 static struct pci_driver igc_driver = { 4255 .name = igc_driver_name, 4256 .id_table = igc_pci_tbl, 4257 .probe = igc_probe, 4258 .remove = igc_remove, 4259 }; 4260 4261 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4262 const u32 max_rss_queues) 4263 { 4264 /* Determine if we need to pair queues. */ 4265 /* If rss_queues > half of max_rss_queues, pair the queues in 4266 * order to conserve interrupts due to limited supply. 4267 */ 4268 if (adapter->rss_queues > (max_rss_queues / 2)) 4269 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4270 else 4271 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4272 } 4273 4274 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4275 { 4276 unsigned int max_rss_queues; 4277 4278 /* Determine the maximum number of RSS queues supported. */ 4279 max_rss_queues = IGC_MAX_RX_QUEUES; 4280 4281 return max_rss_queues; 4282 } 4283 4284 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4285 { 4286 u32 max_rss_queues; 4287 4288 max_rss_queues = igc_get_max_rss_queues(adapter); 4289 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4290 4291 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4292 } 4293 4294 /** 4295 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4296 * @adapter: board private structure to initialize 4297 * 4298 * igc_sw_init initializes the Adapter private data structure. 4299 * Fields are initialized based on PCI device information and 4300 * OS network device settings (MTU size). 4301 */ 4302 static int igc_sw_init(struct igc_adapter *adapter) 4303 { 4304 struct net_device *netdev = adapter->netdev; 4305 struct pci_dev *pdev = adapter->pdev; 4306 struct igc_hw *hw = &adapter->hw; 4307 4308 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count; 4309 4310 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4311 4312 /* set default ring sizes */ 4313 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4314 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4315 4316 /* set default ITR values */ 4317 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4318 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4319 4320 /* set default work limits */ 4321 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4322 4323 /* adjust max frame to be at least the size of a standard frame */ 4324 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4325 VLAN_HLEN; 4326 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4327 4328 spin_lock_init(&adapter->nfc_lock); 4329 spin_lock_init(&adapter->stats64_lock); 4330 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4331 adapter->flags |= IGC_FLAG_HAS_MSIX; 4332 4333 adapter->mac_table = kzalloc(size, GFP_ATOMIC); 4334 if (!adapter->mac_table) 4335 return -ENOMEM; 4336 4337 igc_init_queue_configuration(adapter); 4338 4339 /* This call may decrease the number of queues */ 4340 if (igc_init_interrupt_scheme(adapter, true)) { 4341 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4342 return -ENOMEM; 4343 } 4344 4345 /* Explicitly disable IRQ since the NIC can be in any state. */ 4346 igc_irq_disable(adapter); 4347 4348 set_bit(__IGC_DOWN, &adapter->state); 4349 4350 return 0; 4351 } 4352 4353 /** 4354 * igc_reinit_queues - return error 4355 * @adapter: pointer to adapter structure 4356 */ 4357 int igc_reinit_queues(struct igc_adapter *adapter) 4358 { 4359 struct net_device *netdev = adapter->netdev; 4360 struct pci_dev *pdev = adapter->pdev; 4361 int err = 0; 4362 4363 if (netif_running(netdev)) 4364 igc_close(netdev); 4365 4366 igc_reset_interrupt_capability(adapter); 4367 4368 if (igc_init_interrupt_scheme(adapter, true)) { 4369 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4370 return -ENOMEM; 4371 } 4372 4373 if (netif_running(netdev)) 4374 err = igc_open(netdev); 4375 4376 return err; 4377 } 4378 4379 /** 4380 * igc_get_hw_dev - return device 4381 * @hw: pointer to hardware structure 4382 * 4383 * used by hardware layer to print debugging information 4384 */ 4385 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 4386 { 4387 struct igc_adapter *adapter = hw->back; 4388 4389 return adapter->netdev; 4390 } 4391 4392 /** 4393 * igc_init_module - Driver Registration Routine 4394 * 4395 * igc_init_module is the first routine called when the driver is 4396 * loaded. All it does is register with the PCI subsystem. 4397 */ 4398 static int __init igc_init_module(void) 4399 { 4400 int ret; 4401 4402 pr_info("%s - version %s\n", 4403 igc_driver_string, igc_driver_version); 4404 4405 pr_info("%s\n", igc_copyright); 4406 4407 ret = pci_register_driver(&igc_driver); 4408 return ret; 4409 } 4410 4411 module_init(igc_init_module); 4412 4413 /** 4414 * igc_exit_module - Driver Exit Cleanup Routine 4415 * 4416 * igc_exit_module is called just before the driver is removed 4417 * from memory. 4418 */ 4419 static void __exit igc_exit_module(void) 4420 { 4421 pci_unregister_driver(&igc_driver); 4422 } 4423 4424 module_exit(igc_exit_module); 4425 /* igc_main.c */ 4426