1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/tcp.h> 8 #include <linux/udp.h> 9 #include <linux/ip.h> 10 #include <linux/pm_runtime.h> 11 #include <net/pkt_sched.h> 12 #include <linux/bpf_trace.h> 13 #include <net/xdp_sock_drv.h> 14 #include <linux/pci.h> 15 #include <linux/mdio.h> 16 17 #include <net/ipv6.h> 18 19 #include "igc.h" 20 #include "igc_hw.h" 21 #include "igc_tsn.h" 22 #include "igc_xdp.h" 23 24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 25 26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 27 28 #define IGC_XDP_PASS 0 29 #define IGC_XDP_CONSUMED BIT(0) 30 #define IGC_XDP_TX BIT(1) 31 #define IGC_XDP_REDIRECT BIT(2) 32 33 static int debug = -1; 34 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 char igc_driver_name[] = "igc"; 41 static const char igc_driver_string[] = DRV_SUMMARY; 42 static const char igc_copyright[] = 43 "Copyright(c) 2018 Intel Corporation."; 44 45 static const struct igc_info *igc_info_tbl[] = { 46 [board_base] = &igc_base_info, 47 }; 48 49 static const struct pci_device_id igc_pci_tbl[] = { 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 66 /* required last entry */ 67 {0, } 68 }; 69 70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct net_device *dev = adapter->netdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 netdev_err(dev, "Error on hardware initialization\n"); 109 110 /* Re-establish EEE setting */ 111 igc_set_eee_i225(hw, true, true, true); 112 113 if (!netif_running(adapter->netdev)) 114 igc_power_down_phy_copper_base(&adapter->hw); 115 116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 117 wr32(IGC_VET, ETH_P_8021Q); 118 119 /* Re-enable PTP, where applicable. */ 120 igc_ptp_reset(adapter); 121 122 /* Re-enable TSN offloading, where applicable. */ 123 igc_tsn_reset(adapter); 124 125 igc_get_phy_info(hw); 126 } 127 128 /** 129 * igc_power_up_link - Power up the phy link 130 * @adapter: address of board private structure 131 */ 132 static void igc_power_up_link(struct igc_adapter *adapter) 133 { 134 igc_reset_phy(&adapter->hw); 135 136 igc_power_up_phy_copper(&adapter->hw); 137 138 igc_setup_link(&adapter->hw); 139 } 140 141 /** 142 * igc_release_hw_control - release control of the h/w to f/w 143 * @adapter: address of board private structure 144 * 145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 146 * For ASF and Pass Through versions of f/w this means that the 147 * driver is no longer loaded. 148 */ 149 static void igc_release_hw_control(struct igc_adapter *adapter) 150 { 151 struct igc_hw *hw = &adapter->hw; 152 u32 ctrl_ext; 153 154 if (!pci_device_is_present(adapter->pdev)) 155 return; 156 157 /* Let firmware take over control of h/w */ 158 ctrl_ext = rd32(IGC_CTRL_EXT); 159 wr32(IGC_CTRL_EXT, 160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 161 } 162 163 /** 164 * igc_get_hw_control - get control of the h/w from f/w 165 * @adapter: address of board private structure 166 * 167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 168 * For ASF and Pass Through versions of f/w this means that 169 * the driver is loaded. 170 */ 171 static void igc_get_hw_control(struct igc_adapter *adapter) 172 { 173 struct igc_hw *hw = &adapter->hw; 174 u32 ctrl_ext; 175 176 /* Let firmware know the driver has taken over */ 177 ctrl_ext = rd32(IGC_CTRL_EXT); 178 wr32(IGC_CTRL_EXT, 179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 180 } 181 182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 183 { 184 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 185 dma_unmap_len(buf, len), DMA_TO_DEVICE); 186 187 dma_unmap_len_set(buf, len, 0); 188 } 189 190 /** 191 * igc_clean_tx_ring - Free Tx Buffers 192 * @tx_ring: ring to be cleaned 193 */ 194 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 195 { 196 u16 i = tx_ring->next_to_clean; 197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 198 u32 xsk_frames = 0; 199 200 while (i != tx_ring->next_to_use) { 201 union igc_adv_tx_desc *eop_desc, *tx_desc; 202 203 switch (tx_buffer->type) { 204 case IGC_TX_BUFFER_TYPE_XSK: 205 xsk_frames++; 206 break; 207 case IGC_TX_BUFFER_TYPE_XDP: 208 xdp_return_frame(tx_buffer->xdpf); 209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 210 break; 211 case IGC_TX_BUFFER_TYPE_SKB: 212 dev_kfree_skb_any(tx_buffer->skb); 213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 214 break; 215 default: 216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 217 break; 218 } 219 220 /* check for eop_desc to determine the end of the packet */ 221 eop_desc = tx_buffer->next_to_watch; 222 tx_desc = IGC_TX_DESC(tx_ring, i); 223 224 /* unmap remaining buffers */ 225 while (tx_desc != eop_desc) { 226 tx_buffer++; 227 tx_desc++; 228 i++; 229 if (unlikely(i == tx_ring->count)) { 230 i = 0; 231 tx_buffer = tx_ring->tx_buffer_info; 232 tx_desc = IGC_TX_DESC(tx_ring, 0); 233 } 234 235 /* unmap any remaining paged data */ 236 if (dma_unmap_len(tx_buffer, len)) 237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 238 } 239 240 tx_buffer->next_to_watch = NULL; 241 242 /* move us one more past the eop_desc for start of next pkt */ 243 tx_buffer++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 } 249 } 250 251 if (tx_ring->xsk_pool && xsk_frames) 252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 253 254 /* reset BQL for queue */ 255 netdev_tx_reset_queue(txring_txq(tx_ring)); 256 257 /* Zero out the buffer ring */ 258 memset(tx_ring->tx_buffer_info, 0, 259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count); 260 261 /* Zero out the descriptor ring */ 262 memset(tx_ring->desc, 0, tx_ring->size); 263 264 /* reset next_to_use and next_to_clean */ 265 tx_ring->next_to_use = 0; 266 tx_ring->next_to_clean = 0; 267 } 268 269 /** 270 * igc_free_tx_resources - Free Tx Resources per Queue 271 * @tx_ring: Tx descriptor ring for a specific queue 272 * 273 * Free all transmit software resources 274 */ 275 void igc_free_tx_resources(struct igc_ring *tx_ring) 276 { 277 igc_disable_tx_ring(tx_ring); 278 279 vfree(tx_ring->tx_buffer_info); 280 tx_ring->tx_buffer_info = NULL; 281 282 /* if not set, then don't free */ 283 if (!tx_ring->desc) 284 return; 285 286 dma_free_coherent(tx_ring->dev, tx_ring->size, 287 tx_ring->desc, tx_ring->dma); 288 289 tx_ring->desc = NULL; 290 } 291 292 /** 293 * igc_free_all_tx_resources - Free Tx Resources for All Queues 294 * @adapter: board private structure 295 * 296 * Free all transmit software resources 297 */ 298 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 299 { 300 int i; 301 302 for (i = 0; i < adapter->num_tx_queues; i++) 303 igc_free_tx_resources(adapter->tx_ring[i]); 304 } 305 306 /** 307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 308 * @adapter: board private structure 309 */ 310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 311 { 312 int i; 313 314 for (i = 0; i < adapter->num_tx_queues; i++) 315 if (adapter->tx_ring[i]) 316 igc_clean_tx_ring(adapter->tx_ring[i]); 317 } 318 319 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 320 { 321 struct igc_hw *hw = &ring->q_vector->adapter->hw; 322 u8 idx = ring->reg_idx; 323 u32 txdctl; 324 325 txdctl = rd32(IGC_TXDCTL(idx)); 326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 327 txdctl |= IGC_TXDCTL_SWFLUSH; 328 wr32(IGC_TXDCTL(idx), txdctl); 329 } 330 331 /** 332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation 333 * @adapter: board private structure 334 */ 335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter) 336 { 337 int i; 338 339 for (i = 0; i < adapter->num_tx_queues; i++) { 340 struct igc_ring *tx_ring = adapter->tx_ring[i]; 341 342 igc_disable_tx_ring_hw(tx_ring); 343 } 344 } 345 346 /** 347 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 348 * @tx_ring: tx descriptor ring (for a specific queue) to setup 349 * 350 * Return 0 on success, negative on failure 351 */ 352 int igc_setup_tx_resources(struct igc_ring *tx_ring) 353 { 354 struct net_device *ndev = tx_ring->netdev; 355 struct device *dev = tx_ring->dev; 356 int size = 0; 357 358 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 359 tx_ring->tx_buffer_info = vzalloc(size); 360 if (!tx_ring->tx_buffer_info) 361 goto err; 362 363 /* round up to nearest 4K */ 364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 365 tx_ring->size = ALIGN(tx_ring->size, 4096); 366 367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 368 &tx_ring->dma, GFP_KERNEL); 369 370 if (!tx_ring->desc) 371 goto err; 372 373 tx_ring->next_to_use = 0; 374 tx_ring->next_to_clean = 0; 375 376 return 0; 377 378 err: 379 vfree(tx_ring->tx_buffer_info); 380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 381 return -ENOMEM; 382 } 383 384 /** 385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 386 * @adapter: board private structure 387 * 388 * Return 0 on success, negative on failure 389 */ 390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 391 { 392 struct net_device *dev = adapter->netdev; 393 int i, err = 0; 394 395 for (i = 0; i < adapter->num_tx_queues; i++) { 396 err = igc_setup_tx_resources(adapter->tx_ring[i]); 397 if (err) { 398 netdev_err(dev, "Error on Tx queue %u setup\n", i); 399 for (i--; i >= 0; i--) 400 igc_free_tx_resources(adapter->tx_ring[i]); 401 break; 402 } 403 } 404 405 return err; 406 } 407 408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 409 { 410 u16 i = rx_ring->next_to_clean; 411 412 dev_kfree_skb(rx_ring->skb); 413 rx_ring->skb = NULL; 414 415 /* Free all the Rx ring sk_buffs */ 416 while (i != rx_ring->next_to_alloc) { 417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 418 419 /* Invalidate cache lines that may have been written to by 420 * device so that we avoid corrupting memory. 421 */ 422 dma_sync_single_range_for_cpu(rx_ring->dev, 423 buffer_info->dma, 424 buffer_info->page_offset, 425 igc_rx_bufsz(rx_ring), 426 DMA_FROM_DEVICE); 427 428 /* free resources associated with mapping */ 429 dma_unmap_page_attrs(rx_ring->dev, 430 buffer_info->dma, 431 igc_rx_pg_size(rx_ring), 432 DMA_FROM_DEVICE, 433 IGC_RX_DMA_ATTR); 434 __page_frag_cache_drain(buffer_info->page, 435 buffer_info->pagecnt_bias); 436 437 i++; 438 if (i == rx_ring->count) 439 i = 0; 440 } 441 } 442 443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 444 { 445 struct igc_rx_buffer *bi; 446 u16 i; 447 448 for (i = 0; i < ring->count; i++) { 449 bi = &ring->rx_buffer_info[i]; 450 if (!bi->xdp) 451 continue; 452 453 xsk_buff_free(bi->xdp); 454 bi->xdp = NULL; 455 } 456 } 457 458 /** 459 * igc_clean_rx_ring - Free Rx Buffers per Queue 460 * @ring: ring to free buffers from 461 */ 462 static void igc_clean_rx_ring(struct igc_ring *ring) 463 { 464 if (ring->xsk_pool) 465 igc_clean_rx_ring_xsk_pool(ring); 466 else 467 igc_clean_rx_ring_page_shared(ring); 468 469 clear_ring_uses_large_buffer(ring); 470 471 ring->next_to_alloc = 0; 472 ring->next_to_clean = 0; 473 ring->next_to_use = 0; 474 } 475 476 /** 477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 478 * @adapter: board private structure 479 */ 480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 481 { 482 int i; 483 484 for (i = 0; i < adapter->num_rx_queues; i++) 485 if (adapter->rx_ring[i]) 486 igc_clean_rx_ring(adapter->rx_ring[i]); 487 } 488 489 /** 490 * igc_free_rx_resources - Free Rx Resources 491 * @rx_ring: ring to clean the resources from 492 * 493 * Free all receive software resources 494 */ 495 void igc_free_rx_resources(struct igc_ring *rx_ring) 496 { 497 igc_clean_rx_ring(rx_ring); 498 499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 500 501 vfree(rx_ring->rx_buffer_info); 502 rx_ring->rx_buffer_info = NULL; 503 504 /* if not set, then don't free */ 505 if (!rx_ring->desc) 506 return; 507 508 dma_free_coherent(rx_ring->dev, rx_ring->size, 509 rx_ring->desc, rx_ring->dma); 510 511 rx_ring->desc = NULL; 512 } 513 514 /** 515 * igc_free_all_rx_resources - Free Rx Resources for All Queues 516 * @adapter: board private structure 517 * 518 * Free all receive software resources 519 */ 520 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 521 { 522 int i; 523 524 for (i = 0; i < adapter->num_rx_queues; i++) 525 igc_free_rx_resources(adapter->rx_ring[i]); 526 } 527 528 /** 529 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 530 * @rx_ring: rx descriptor ring (for a specific queue) to setup 531 * 532 * Returns 0 on success, negative on failure 533 */ 534 int igc_setup_rx_resources(struct igc_ring *rx_ring) 535 { 536 struct net_device *ndev = rx_ring->netdev; 537 struct device *dev = rx_ring->dev; 538 u8 index = rx_ring->queue_index; 539 int size, desc_len, res; 540 541 /* XDP RX-queue info */ 542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 545 rx_ring->q_vector->napi.napi_id); 546 if (res < 0) { 547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 548 index); 549 return res; 550 } 551 552 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 553 rx_ring->rx_buffer_info = vzalloc(size); 554 if (!rx_ring->rx_buffer_info) 555 goto err; 556 557 desc_len = sizeof(union igc_adv_rx_desc); 558 559 /* Round up to nearest 4K */ 560 rx_ring->size = rx_ring->count * desc_len; 561 rx_ring->size = ALIGN(rx_ring->size, 4096); 562 563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 564 &rx_ring->dma, GFP_KERNEL); 565 566 if (!rx_ring->desc) 567 goto err; 568 569 rx_ring->next_to_alloc = 0; 570 rx_ring->next_to_clean = 0; 571 rx_ring->next_to_use = 0; 572 573 return 0; 574 575 err: 576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 577 vfree(rx_ring->rx_buffer_info); 578 rx_ring->rx_buffer_info = NULL; 579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 580 return -ENOMEM; 581 } 582 583 /** 584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 585 * (Descriptors) for all queues 586 * @adapter: board private structure 587 * 588 * Return 0 on success, negative on failure 589 */ 590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 591 { 592 struct net_device *dev = adapter->netdev; 593 int i, err = 0; 594 595 for (i = 0; i < adapter->num_rx_queues; i++) { 596 err = igc_setup_rx_resources(adapter->rx_ring[i]); 597 if (err) { 598 netdev_err(dev, "Error on Rx queue %u setup\n", i); 599 for (i--; i >= 0; i--) 600 igc_free_rx_resources(adapter->rx_ring[i]); 601 break; 602 } 603 } 604 605 return err; 606 } 607 608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 609 struct igc_ring *ring) 610 { 611 if (!igc_xdp_is_enabled(adapter) || 612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 613 return NULL; 614 615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 616 } 617 618 /** 619 * igc_configure_rx_ring - Configure a receive ring after Reset 620 * @adapter: board private structure 621 * @ring: receive ring to be configured 622 * 623 * Configure the Rx unit of the MAC after a reset. 624 */ 625 static void igc_configure_rx_ring(struct igc_adapter *adapter, 626 struct igc_ring *ring) 627 { 628 struct igc_hw *hw = &adapter->hw; 629 union igc_adv_rx_desc *rx_desc; 630 int reg_idx = ring->reg_idx; 631 u32 srrctl = 0, rxdctl = 0; 632 u64 rdba = ring->dma; 633 u32 buf_size; 634 635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 637 if (ring->xsk_pool) { 638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 639 MEM_TYPE_XSK_BUFF_POOL, 640 NULL)); 641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 642 } else { 643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 644 MEM_TYPE_PAGE_SHARED, 645 NULL)); 646 } 647 648 if (igc_xdp_is_enabled(adapter)) 649 set_ring_uses_large_buffer(ring); 650 651 /* disable the queue */ 652 wr32(IGC_RXDCTL(reg_idx), 0); 653 654 /* Set DMA base address registers */ 655 wr32(IGC_RDBAL(reg_idx), 656 rdba & 0x00000000ffffffffULL); 657 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 658 wr32(IGC_RDLEN(reg_idx), 659 ring->count * sizeof(union igc_adv_rx_desc)); 660 661 /* initialize head and tail */ 662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 663 wr32(IGC_RDH(reg_idx), 0); 664 writel(0, ring->tail); 665 666 /* reset next-to- use/clean to place SW in sync with hardware */ 667 ring->next_to_clean = 0; 668 ring->next_to_use = 0; 669 670 if (ring->xsk_pool) 671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 672 else if (ring_uses_large_buffer(ring)) 673 buf_size = IGC_RXBUFFER_3072; 674 else 675 buf_size = IGC_RXBUFFER_2048; 676 677 srrctl = rd32(IGC_SRRCTL(reg_idx)); 678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK | 679 IGC_SRRCTL_DESCTYPE_MASK); 680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN); 681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size); 682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 683 684 wr32(IGC_SRRCTL(reg_idx), srrctl); 685 686 rxdctl |= IGC_RX_PTHRESH; 687 rxdctl |= IGC_RX_HTHRESH << 8; 688 rxdctl |= IGC_RX_WTHRESH << 16; 689 690 /* initialize rx_buffer_info */ 691 memset(ring->rx_buffer_info, 0, 692 sizeof(struct igc_rx_buffer) * ring->count); 693 694 /* initialize Rx descriptor 0 */ 695 rx_desc = IGC_RX_DESC(ring, 0); 696 rx_desc->wb.upper.length = 0; 697 698 /* enable receive descriptor fetching */ 699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 700 701 wr32(IGC_RXDCTL(reg_idx), rxdctl); 702 } 703 704 /** 705 * igc_configure_rx - Configure receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 */ 710 static void igc_configure_rx(struct igc_adapter *adapter) 711 { 712 int i; 713 714 /* Setup the HW Rx Head and Tail Descriptor Pointers and 715 * the Base and Length of the Rx Descriptor Ring 716 */ 717 for (i = 0; i < adapter->num_rx_queues; i++) 718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 719 } 720 721 /** 722 * igc_configure_tx_ring - Configure transmit ring after Reset 723 * @adapter: board private structure 724 * @ring: tx ring to configure 725 * 726 * Configure a transmit ring after a reset. 727 */ 728 static void igc_configure_tx_ring(struct igc_adapter *adapter, 729 struct igc_ring *ring) 730 { 731 struct igc_hw *hw = &adapter->hw; 732 int reg_idx = ring->reg_idx; 733 u64 tdba = ring->dma; 734 u32 txdctl = 0; 735 736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 737 738 /* disable the queue */ 739 wr32(IGC_TXDCTL(reg_idx), 0); 740 wrfl(); 741 742 wr32(IGC_TDLEN(reg_idx), 743 ring->count * sizeof(union igc_adv_tx_desc)); 744 wr32(IGC_TDBAL(reg_idx), 745 tdba & 0x00000000ffffffffULL); 746 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 747 748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 749 wr32(IGC_TDH(reg_idx), 0); 750 writel(0, ring->tail); 751 752 txdctl |= IGC_TX_PTHRESH; 753 txdctl |= IGC_TX_HTHRESH << 8; 754 txdctl |= IGC_TX_WTHRESH << 16; 755 756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 757 wr32(IGC_TXDCTL(reg_idx), txdctl); 758 } 759 760 /** 761 * igc_configure_tx - Configure transmit Unit after Reset 762 * @adapter: board private structure 763 * 764 * Configure the Tx unit of the MAC after a reset. 765 */ 766 static void igc_configure_tx(struct igc_adapter *adapter) 767 { 768 int i; 769 770 for (i = 0; i < adapter->num_tx_queues; i++) 771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 772 } 773 774 /** 775 * igc_setup_mrqc - configure the multiple receive queue control registers 776 * @adapter: Board private structure 777 */ 778 static void igc_setup_mrqc(struct igc_adapter *adapter) 779 { 780 struct igc_hw *hw = &adapter->hw; 781 u32 j, num_rx_queues; 782 u32 mrqc, rxcsum; 783 u32 rss_key[10]; 784 785 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 786 for (j = 0; j < 10; j++) 787 wr32(IGC_RSSRK(j), rss_key[j]); 788 789 num_rx_queues = adapter->rss_queues; 790 791 if (adapter->rss_indir_tbl_init != num_rx_queues) { 792 for (j = 0; j < IGC_RETA_SIZE; j++) 793 adapter->rss_indir_tbl[j] = 794 (j * num_rx_queues) / IGC_RETA_SIZE; 795 adapter->rss_indir_tbl_init = num_rx_queues; 796 } 797 igc_write_rss_indir_tbl(adapter); 798 799 /* Disable raw packet checksumming so that RSS hash is placed in 800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 801 * offloads as they are enabled by default 802 */ 803 rxcsum = rd32(IGC_RXCSUM); 804 rxcsum |= IGC_RXCSUM_PCSD; 805 806 /* Enable Receive Checksum Offload for SCTP */ 807 rxcsum |= IGC_RXCSUM_CRCOFL; 808 809 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 810 wr32(IGC_RXCSUM, rxcsum); 811 812 /* Generate RSS hash based on packet types, TCP/UDP 813 * port numbers and/or IPv4/v6 src and dst addresses 814 */ 815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 816 IGC_MRQC_RSS_FIELD_IPV4_TCP | 817 IGC_MRQC_RSS_FIELD_IPV6 | 818 IGC_MRQC_RSS_FIELD_IPV6_TCP | 819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 820 821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 825 826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 827 828 wr32(IGC_MRQC, mrqc); 829 } 830 831 /** 832 * igc_setup_rctl - configure the receive control registers 833 * @adapter: Board private structure 834 */ 835 static void igc_setup_rctl(struct igc_adapter *adapter) 836 { 837 struct igc_hw *hw = &adapter->hw; 838 u32 rctl; 839 840 rctl = rd32(IGC_RCTL); 841 842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 844 845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 847 848 /* enable stripping of CRC. Newer features require 849 * that the HW strips the CRC. 850 */ 851 rctl |= IGC_RCTL_SECRC; 852 853 /* disable store bad packets and clear size bits. */ 854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 855 856 /* enable LPE to allow for reception of jumbo frames */ 857 rctl |= IGC_RCTL_LPE; 858 859 /* disable queue 0 to prevent tail write w/o re-config */ 860 wr32(IGC_RXDCTL(0), 0); 861 862 /* This is useful for sniffing bad packets. */ 863 if (adapter->netdev->features & NETIF_F_RXALL) { 864 /* UPE and MPE will be handled by normal PROMISC logic 865 * in set_rx_mode 866 */ 867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 868 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 870 871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 873 } 874 875 wr32(IGC_RCTL, rctl); 876 } 877 878 /** 879 * igc_setup_tctl - configure the transmit control registers 880 * @adapter: Board private structure 881 */ 882 static void igc_setup_tctl(struct igc_adapter *adapter) 883 { 884 struct igc_hw *hw = &adapter->hw; 885 u32 tctl; 886 887 /* disable queue 0 which icould be enabled by default */ 888 wr32(IGC_TXDCTL(0), 0); 889 890 /* Program the Transmit Control Register */ 891 tctl = rd32(IGC_TCTL); 892 tctl &= ~IGC_TCTL_CT; 893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 895 896 /* Enable transmits */ 897 tctl |= IGC_TCTL_EN; 898 899 wr32(IGC_TCTL, tctl); 900 } 901 902 /** 903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 904 * @adapter: Pointer to adapter where the filter should be set 905 * @index: Filter index 906 * @type: MAC address filter type (source or destination) 907 * @addr: MAC address 908 * @queue: If non-negative, queue assignment feature is enabled and frames 909 * matching the filter are enqueued onto 'queue'. Otherwise, queue 910 * assignment is disabled. 911 */ 912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 913 enum igc_mac_filter_type type, 914 const u8 *addr, int queue) 915 { 916 struct net_device *dev = adapter->netdev; 917 struct igc_hw *hw = &adapter->hw; 918 u32 ral, rah; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 ral = le32_to_cpup((__le32 *)(addr)); 924 rah = le16_to_cpup((__le16 *)(addr + 4)); 925 926 if (type == IGC_MAC_FILTER_TYPE_SRC) { 927 rah &= ~IGC_RAH_ASEL_MASK; 928 rah |= IGC_RAH_ASEL_SRC_ADDR; 929 } 930 931 if (queue >= 0) { 932 rah &= ~IGC_RAH_QSEL_MASK; 933 rah |= (queue << IGC_RAH_QSEL_SHIFT); 934 rah |= IGC_RAH_QSEL_ENABLE; 935 } 936 937 rah |= IGC_RAH_AV; 938 939 wr32(IGC_RAL(index), ral); 940 wr32(IGC_RAH(index), rah); 941 942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 943 } 944 945 /** 946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 947 * @adapter: Pointer to adapter where the filter should be cleared 948 * @index: Filter index 949 */ 950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 951 { 952 struct net_device *dev = adapter->netdev; 953 struct igc_hw *hw = &adapter->hw; 954 955 if (WARN_ON(index >= hw->mac.rar_entry_count)) 956 return; 957 958 wr32(IGC_RAL(index), 0); 959 wr32(IGC_RAH(index), 0); 960 961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 962 } 963 964 /* Set default MAC address for the PF in the first RAR entry */ 965 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 966 { 967 struct net_device *dev = adapter->netdev; 968 u8 *addr = adapter->hw.mac.addr; 969 970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 971 972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 973 } 974 975 /** 976 * igc_set_mac - Change the Ethernet Address of the NIC 977 * @netdev: network interface device structure 978 * @p: pointer to an address structure 979 * 980 * Returns 0 on success, negative on failure 981 */ 982 static int igc_set_mac(struct net_device *netdev, void *p) 983 { 984 struct igc_adapter *adapter = netdev_priv(netdev); 985 struct igc_hw *hw = &adapter->hw; 986 struct sockaddr *addr = p; 987 988 if (!is_valid_ether_addr(addr->sa_data)) 989 return -EADDRNOTAVAIL; 990 991 eth_hw_addr_set(netdev, addr->sa_data); 992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 993 994 /* set the correct pool for the new PF MAC address in entry 0 */ 995 igc_set_default_mac_filter(adapter); 996 997 return 0; 998 } 999 1000 /** 1001 * igc_write_mc_addr_list - write multicast addresses to MTA 1002 * @netdev: network interface device structure 1003 * 1004 * Writes multicast address list to the MTA hash table. 1005 * Returns: -ENOMEM on failure 1006 * 0 on no addresses written 1007 * X on writing X addresses to MTA 1008 **/ 1009 static int igc_write_mc_addr_list(struct net_device *netdev) 1010 { 1011 struct igc_adapter *adapter = netdev_priv(netdev); 1012 struct igc_hw *hw = &adapter->hw; 1013 struct netdev_hw_addr *ha; 1014 u8 *mta_list; 1015 int i; 1016 1017 if (netdev_mc_empty(netdev)) { 1018 /* nothing to program, so clear mc list */ 1019 igc_update_mc_addr_list(hw, NULL, 0); 1020 return 0; 1021 } 1022 1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 1024 if (!mta_list) 1025 return -ENOMEM; 1026 1027 /* The shared function expects a packed array of only addresses. */ 1028 i = 0; 1029 netdev_for_each_mc_addr(ha, netdev) 1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1031 1032 igc_update_mc_addr_list(hw, mta_list, i); 1033 kfree(mta_list); 1034 1035 return netdev_mc_count(netdev); 1036 } 1037 1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1039 bool *first_flag, bool *insert_empty) 1040 { 1041 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1042 ktime_t cycle_time = adapter->cycle_time; 1043 ktime_t base_time = adapter->base_time; 1044 ktime_t now = ktime_get_clocktai(); 1045 ktime_t baset_est, end_of_cycle; 1046 s32 launchtime; 1047 s64 n; 1048 1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1050 1051 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1053 1054 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1055 if (baset_est != ring->last_ff_cycle) { 1056 *first_flag = true; 1057 ring->last_ff_cycle = baset_est; 1058 1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0) 1060 *insert_empty = true; 1061 } 1062 } 1063 1064 /* Introducing a window at end of cycle on which packets 1065 * potentially not honor launchtime. Window of 5us chosen 1066 * considering software update the tail pointer and packets 1067 * are dma'ed to packet buffer. 1068 */ 1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1071 txtime); 1072 1073 ring->last_tx_cycle = end_of_cycle; 1074 1075 launchtime = ktime_sub_ns(txtime, baset_est); 1076 if (launchtime > 0) 1077 div_s64_rem(launchtime, cycle_time, &launchtime); 1078 else 1079 launchtime = 0; 1080 1081 return cpu_to_le32(launchtime); 1082 } 1083 1084 static int igc_init_empty_frame(struct igc_ring *ring, 1085 struct igc_tx_buffer *buffer, 1086 struct sk_buff *skb) 1087 { 1088 unsigned int size; 1089 dma_addr_t dma; 1090 1091 size = skb_headlen(skb); 1092 1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1094 if (dma_mapping_error(ring->dev, dma)) { 1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1096 return -ENOMEM; 1097 } 1098 1099 buffer->skb = skb; 1100 buffer->protocol = 0; 1101 buffer->bytecount = skb->len; 1102 buffer->gso_segs = 1; 1103 buffer->time_stamp = jiffies; 1104 dma_unmap_len_set(buffer, len, skb->len); 1105 dma_unmap_addr_set(buffer, dma, dma); 1106 1107 return 0; 1108 } 1109 1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1111 struct sk_buff *skb, 1112 struct igc_tx_buffer *first) 1113 { 1114 union igc_adv_tx_desc *desc; 1115 u32 cmd_type, olinfo_status; 1116 int err; 1117 1118 if (!igc_desc_unused(ring)) 1119 return -EBUSY; 1120 1121 err = igc_init_empty_frame(ring, first, skb); 1122 if (err) 1123 return err; 1124 1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1127 first->bytecount; 1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1129 1130 desc = IGC_TX_DESC(ring, ring->next_to_use); 1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1134 1135 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1136 1137 first->next_to_watch = desc; 1138 1139 ring->next_to_use++; 1140 if (ring->next_to_use == ring->count) 1141 ring->next_to_use = 0; 1142 1143 return 0; 1144 } 1145 1146 #define IGC_EMPTY_FRAME_SIZE 60 1147 1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1149 __le32 launch_time, bool first_flag, 1150 u32 vlan_macip_lens, u32 type_tucmd, 1151 u32 mss_l4len_idx) 1152 { 1153 struct igc_adv_tx_context_desc *context_desc; 1154 u16 i = tx_ring->next_to_use; 1155 1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1157 1158 i++; 1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1160 1161 /* set bits to identify this as an advanced context descriptor */ 1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1163 1164 /* For i225, context index must be unique per ring. */ 1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1166 mss_l4len_idx |= tx_ring->reg_idx << 4; 1167 1168 if (first_flag) 1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1170 1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1174 context_desc->launch_time = launch_time; 1175 } 1176 1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1178 __le32 launch_time, bool first_flag) 1179 { 1180 struct sk_buff *skb = first->skb; 1181 u32 vlan_macip_lens = 0; 1182 u32 type_tucmd = 0; 1183 1184 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1185 csum_failed: 1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1187 !tx_ring->launchtime_enable) 1188 return; 1189 goto no_csum; 1190 } 1191 1192 switch (skb->csum_offset) { 1193 case offsetof(struct tcphdr, check): 1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1195 fallthrough; 1196 case offsetof(struct udphdr, check): 1197 break; 1198 case offsetof(struct sctphdr, checksum): 1199 /* validate that this is actually an SCTP request */ 1200 if (skb_csum_is_sctp(skb)) { 1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1202 break; 1203 } 1204 fallthrough; 1205 default: 1206 skb_checksum_help(skb); 1207 goto csum_failed; 1208 } 1209 1210 /* update TX checksum flag */ 1211 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1212 vlan_macip_lens = skb_checksum_start_offset(skb) - 1213 skb_network_offset(skb); 1214 no_csum: 1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1217 1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1219 vlan_macip_lens, type_tucmd, 0); 1220 } 1221 1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1223 { 1224 struct net_device *netdev = tx_ring->netdev; 1225 1226 netif_stop_subqueue(netdev, tx_ring->queue_index); 1227 1228 /* memory barriier comment */ 1229 smp_mb(); 1230 1231 /* We need to check again in a case another CPU has just 1232 * made room available. 1233 */ 1234 if (igc_desc_unused(tx_ring) < size) 1235 return -EBUSY; 1236 1237 /* A reprieve! */ 1238 netif_wake_subqueue(netdev, tx_ring->queue_index); 1239 1240 u64_stats_update_begin(&tx_ring->tx_syncp2); 1241 tx_ring->tx_stats.restart_queue2++; 1242 u64_stats_update_end(&tx_ring->tx_syncp2); 1243 1244 return 0; 1245 } 1246 1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1248 { 1249 if (igc_desc_unused(tx_ring) >= size) 1250 return 0; 1251 return __igc_maybe_stop_tx(tx_ring, size); 1252 } 1253 1254 #define IGC_SET_FLAG(_input, _flag, _result) \ 1255 (((_flag) <= (_result)) ? \ 1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1258 1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1260 { 1261 /* set type for advanced descriptor with frame checksum insertion */ 1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1263 IGC_ADVTXD_DCMD_DEXT | 1264 IGC_ADVTXD_DCMD_IFCS; 1265 1266 /* set HW vlan bit if vlan is present */ 1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1268 IGC_ADVTXD_DCMD_VLE); 1269 1270 /* set segmentation bits for TSO */ 1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1272 (IGC_ADVTXD_DCMD_TSE)); 1273 1274 /* set timestamp bit if present, will select the register set 1275 * based on the _TSTAMP(_X) bit. 1276 */ 1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1278 (IGC_ADVTXD_MAC_TSTAMP)); 1279 1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1, 1281 (IGC_ADVTXD_TSTAMP_REG_1)); 1282 1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2, 1284 (IGC_ADVTXD_TSTAMP_REG_2)); 1285 1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3, 1287 (IGC_ADVTXD_TSTAMP_REG_3)); 1288 1289 /* insert frame checksum */ 1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1291 1292 return cmd_type; 1293 } 1294 1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1296 union igc_adv_tx_desc *tx_desc, 1297 u32 tx_flags, unsigned int paylen) 1298 { 1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1300 1301 /* insert L4 checksum */ 1302 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM, 1303 (IGC_TXD_POPTS_TXSM << 8)); 1304 1305 /* insert IPv4 checksum */ 1306 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4, 1307 (IGC_TXD_POPTS_IXSM << 8)); 1308 1309 /* Use the second timer (free running, in general) for the timestamp */ 1310 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1, 1311 IGC_TXD_PTP2_TIMER_1); 1312 1313 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1314 } 1315 1316 static int igc_tx_map(struct igc_ring *tx_ring, 1317 struct igc_tx_buffer *first, 1318 const u8 hdr_len) 1319 { 1320 struct sk_buff *skb = first->skb; 1321 struct igc_tx_buffer *tx_buffer; 1322 union igc_adv_tx_desc *tx_desc; 1323 u32 tx_flags = first->tx_flags; 1324 skb_frag_t *frag; 1325 u16 i = tx_ring->next_to_use; 1326 unsigned int data_len, size; 1327 dma_addr_t dma; 1328 u32 cmd_type; 1329 1330 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1331 tx_desc = IGC_TX_DESC(tx_ring, i); 1332 1333 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1334 1335 size = skb_headlen(skb); 1336 data_len = skb->data_len; 1337 1338 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1339 1340 tx_buffer = first; 1341 1342 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1343 if (dma_mapping_error(tx_ring->dev, dma)) 1344 goto dma_error; 1345 1346 /* record length, and DMA address */ 1347 dma_unmap_len_set(tx_buffer, len, size); 1348 dma_unmap_addr_set(tx_buffer, dma, dma); 1349 1350 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1351 1352 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1353 tx_desc->read.cmd_type_len = 1354 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1355 1356 i++; 1357 tx_desc++; 1358 if (i == tx_ring->count) { 1359 tx_desc = IGC_TX_DESC(tx_ring, 0); 1360 i = 0; 1361 } 1362 tx_desc->read.olinfo_status = 0; 1363 1364 dma += IGC_MAX_DATA_PER_TXD; 1365 size -= IGC_MAX_DATA_PER_TXD; 1366 1367 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1368 } 1369 1370 if (likely(!data_len)) 1371 break; 1372 1373 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1374 1375 i++; 1376 tx_desc++; 1377 if (i == tx_ring->count) { 1378 tx_desc = IGC_TX_DESC(tx_ring, 0); 1379 i = 0; 1380 } 1381 tx_desc->read.olinfo_status = 0; 1382 1383 size = skb_frag_size(frag); 1384 data_len -= size; 1385 1386 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1387 size, DMA_TO_DEVICE); 1388 1389 tx_buffer = &tx_ring->tx_buffer_info[i]; 1390 } 1391 1392 /* write last descriptor with RS and EOP bits */ 1393 cmd_type |= size | IGC_TXD_DCMD; 1394 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1395 1396 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1397 1398 /* set the timestamp */ 1399 first->time_stamp = jiffies; 1400 1401 skb_tx_timestamp(skb); 1402 1403 /* Force memory writes to complete before letting h/w know there 1404 * are new descriptors to fetch. (Only applicable for weak-ordered 1405 * memory model archs, such as IA-64). 1406 * 1407 * We also need this memory barrier to make certain all of the 1408 * status bits have been updated before next_to_watch is written. 1409 */ 1410 wmb(); 1411 1412 /* set next_to_watch value indicating a packet is present */ 1413 first->next_to_watch = tx_desc; 1414 1415 i++; 1416 if (i == tx_ring->count) 1417 i = 0; 1418 1419 tx_ring->next_to_use = i; 1420 1421 /* Make sure there is space in the ring for the next send. */ 1422 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1423 1424 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1425 writel(i, tx_ring->tail); 1426 } 1427 1428 return 0; 1429 dma_error: 1430 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1431 tx_buffer = &tx_ring->tx_buffer_info[i]; 1432 1433 /* clear dma mappings for failed tx_buffer_info map */ 1434 while (tx_buffer != first) { 1435 if (dma_unmap_len(tx_buffer, len)) 1436 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1437 1438 if (i-- == 0) 1439 i += tx_ring->count; 1440 tx_buffer = &tx_ring->tx_buffer_info[i]; 1441 } 1442 1443 if (dma_unmap_len(tx_buffer, len)) 1444 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1445 1446 dev_kfree_skb_any(tx_buffer->skb); 1447 tx_buffer->skb = NULL; 1448 1449 tx_ring->next_to_use = i; 1450 1451 return -1; 1452 } 1453 1454 static int igc_tso(struct igc_ring *tx_ring, 1455 struct igc_tx_buffer *first, 1456 __le32 launch_time, bool first_flag, 1457 u8 *hdr_len) 1458 { 1459 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1460 struct sk_buff *skb = first->skb; 1461 union { 1462 struct iphdr *v4; 1463 struct ipv6hdr *v6; 1464 unsigned char *hdr; 1465 } ip; 1466 union { 1467 struct tcphdr *tcp; 1468 struct udphdr *udp; 1469 unsigned char *hdr; 1470 } l4; 1471 u32 paylen, l4_offset; 1472 int err; 1473 1474 if (skb->ip_summed != CHECKSUM_PARTIAL) 1475 return 0; 1476 1477 if (!skb_is_gso(skb)) 1478 return 0; 1479 1480 err = skb_cow_head(skb, 0); 1481 if (err < 0) 1482 return err; 1483 1484 ip.hdr = skb_network_header(skb); 1485 l4.hdr = skb_checksum_start(skb); 1486 1487 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1488 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1489 1490 /* initialize outer IP header fields */ 1491 if (ip.v4->version == 4) { 1492 unsigned char *csum_start = skb_checksum_start(skb); 1493 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1494 1495 /* IP header will have to cancel out any data that 1496 * is not a part of the outer IP header 1497 */ 1498 ip.v4->check = csum_fold(csum_partial(trans_start, 1499 csum_start - trans_start, 1500 0)); 1501 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1502 1503 ip.v4->tot_len = 0; 1504 first->tx_flags |= IGC_TX_FLAGS_TSO | 1505 IGC_TX_FLAGS_CSUM | 1506 IGC_TX_FLAGS_IPV4; 1507 } else { 1508 ip.v6->payload_len = 0; 1509 first->tx_flags |= IGC_TX_FLAGS_TSO | 1510 IGC_TX_FLAGS_CSUM; 1511 } 1512 1513 /* determine offset of inner transport header */ 1514 l4_offset = l4.hdr - skb->data; 1515 1516 /* remove payload length from inner checksum */ 1517 paylen = skb->len - l4_offset; 1518 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1519 /* compute length of segmentation header */ 1520 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1521 csum_replace_by_diff(&l4.tcp->check, 1522 (__force __wsum)htonl(paylen)); 1523 } else { 1524 /* compute length of segmentation header */ 1525 *hdr_len = sizeof(*l4.udp) + l4_offset; 1526 csum_replace_by_diff(&l4.udp->check, 1527 (__force __wsum)htonl(paylen)); 1528 } 1529 1530 /* update gso size and bytecount with header size */ 1531 first->gso_segs = skb_shinfo(skb)->gso_segs; 1532 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1533 1534 /* MSS L4LEN IDX */ 1535 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1536 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1537 1538 /* VLAN MACLEN IPLEN */ 1539 vlan_macip_lens = l4.hdr - ip.hdr; 1540 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1541 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1542 1543 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1544 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1545 1546 return 1; 1547 } 1548 1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags) 1550 { 1551 int i; 1552 1553 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 1554 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 1555 1556 if (tstamp->skb) 1557 continue; 1558 1559 tstamp->skb = skb_get(skb); 1560 tstamp->start = jiffies; 1561 *flags = tstamp->flags; 1562 1563 return true; 1564 } 1565 1566 return false; 1567 } 1568 1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1570 struct igc_ring *tx_ring) 1571 { 1572 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1573 bool first_flag = false, insert_empty = false; 1574 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1575 __be16 protocol = vlan_get_protocol(skb); 1576 struct igc_tx_buffer *first; 1577 __le32 launch_time = 0; 1578 u32 tx_flags = 0; 1579 unsigned short f; 1580 ktime_t txtime; 1581 u8 hdr_len = 0; 1582 int tso = 0; 1583 1584 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1585 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1586 * + 2 desc gap to keep tail from touching head, 1587 * + 1 desc for context descriptor, 1588 * otherwise try next time 1589 */ 1590 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1591 count += TXD_USE_COUNT(skb_frag_size( 1592 &skb_shinfo(skb)->frags[f])); 1593 1594 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1595 /* this is a hard error */ 1596 return NETDEV_TX_BUSY; 1597 } 1598 1599 if (!tx_ring->launchtime_enable) 1600 goto done; 1601 1602 txtime = skb->tstamp; 1603 skb->tstamp = ktime_set(0, 0); 1604 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1605 1606 if (insert_empty) { 1607 struct igc_tx_buffer *empty_info; 1608 struct sk_buff *empty; 1609 void *data; 1610 1611 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1612 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1613 if (!empty) 1614 goto done; 1615 1616 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1617 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1618 1619 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1620 1621 if (igc_init_tx_empty_descriptor(tx_ring, 1622 empty, 1623 empty_info) < 0) 1624 dev_kfree_skb_any(empty); 1625 } 1626 1627 done: 1628 /* record the location of the first descriptor for this packet */ 1629 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1630 first->type = IGC_TX_BUFFER_TYPE_SKB; 1631 first->skb = skb; 1632 first->bytecount = skb->len; 1633 first->gso_segs = 1; 1634 1635 if (adapter->qbv_transition || tx_ring->oper_gate_closed) 1636 goto out_drop; 1637 1638 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) { 1639 adapter->stats.txdrop++; 1640 goto out_drop; 1641 } 1642 1643 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) && 1644 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1645 unsigned long flags; 1646 u32 tstamp_flags; 1647 1648 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 1649 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) { 1650 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1651 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags; 1652 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES) 1653 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1; 1654 } else { 1655 adapter->tx_hwtstamp_skipped++; 1656 } 1657 1658 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 1659 } 1660 1661 if (skb_vlan_tag_present(skb)) { 1662 tx_flags |= IGC_TX_FLAGS_VLAN; 1663 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1664 } 1665 1666 /* record initial flags and protocol */ 1667 first->tx_flags = tx_flags; 1668 first->protocol = protocol; 1669 1670 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1671 if (tso < 0) 1672 goto out_drop; 1673 else if (!tso) 1674 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1675 1676 igc_tx_map(tx_ring, first, hdr_len); 1677 1678 return NETDEV_TX_OK; 1679 1680 out_drop: 1681 dev_kfree_skb_any(first->skb); 1682 first->skb = NULL; 1683 1684 return NETDEV_TX_OK; 1685 } 1686 1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1688 struct sk_buff *skb) 1689 { 1690 unsigned int r_idx = skb->queue_mapping; 1691 1692 if (r_idx >= adapter->num_tx_queues) 1693 r_idx = r_idx % adapter->num_tx_queues; 1694 1695 return adapter->tx_ring[r_idx]; 1696 } 1697 1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1699 struct net_device *netdev) 1700 { 1701 struct igc_adapter *adapter = netdev_priv(netdev); 1702 1703 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1704 * in order to meet this minimum size requirement. 1705 */ 1706 if (skb->len < 17) { 1707 if (skb_padto(skb, 17)) 1708 return NETDEV_TX_OK; 1709 skb->len = 17; 1710 } 1711 1712 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1713 } 1714 1715 static void igc_rx_checksum(struct igc_ring *ring, 1716 union igc_adv_rx_desc *rx_desc, 1717 struct sk_buff *skb) 1718 { 1719 skb_checksum_none_assert(skb); 1720 1721 /* Ignore Checksum bit is set */ 1722 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1723 return; 1724 1725 /* Rx checksum disabled via ethtool */ 1726 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1727 return; 1728 1729 /* TCP/UDP checksum error bit is set */ 1730 if (igc_test_staterr(rx_desc, 1731 IGC_RXDEXT_STATERR_L4E | 1732 IGC_RXDEXT_STATERR_IPE)) { 1733 /* work around errata with sctp packets where the TCPE aka 1734 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1735 * packets (aka let the stack check the crc32c) 1736 */ 1737 if (!(skb->len == 60 && 1738 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1739 u64_stats_update_begin(&ring->rx_syncp); 1740 ring->rx_stats.csum_err++; 1741 u64_stats_update_end(&ring->rx_syncp); 1742 } 1743 /* let the stack verify checksum errors */ 1744 return; 1745 } 1746 /* It must be a TCP or UDP packet with a valid checksum */ 1747 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1748 IGC_RXD_STAT_UDPCS)) 1749 skb->ip_summed = CHECKSUM_UNNECESSARY; 1750 1751 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1752 le32_to_cpu(rx_desc->wb.upper.status_error)); 1753 } 1754 1755 /* Mapping HW RSS Type to enum pkt_hash_types */ 1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = { 1757 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2, 1758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4, 1759 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3, 1760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4, 1761 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3, 1762 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3, 1763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4, 1764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4, 1765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4, 1766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4, 1767 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 1768 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */ 1769 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */ 1770 [13] = PKT_HASH_TYPE_NONE, 1771 [14] = PKT_HASH_TYPE_NONE, 1772 [15] = PKT_HASH_TYPE_NONE, 1773 }; 1774 1775 static inline void igc_rx_hash(struct igc_ring *ring, 1776 union igc_adv_rx_desc *rx_desc, 1777 struct sk_buff *skb) 1778 { 1779 if (ring->netdev->features & NETIF_F_RXHASH) { 1780 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 1781 u32 rss_type = igc_rss_type(rx_desc); 1782 1783 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]); 1784 } 1785 } 1786 1787 static void igc_rx_vlan(struct igc_ring *rx_ring, 1788 union igc_adv_rx_desc *rx_desc, 1789 struct sk_buff *skb) 1790 { 1791 struct net_device *dev = rx_ring->netdev; 1792 u16 vid; 1793 1794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1795 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1796 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1797 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1798 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1799 else 1800 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1801 1802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1803 } 1804 } 1805 1806 /** 1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1808 * @rx_ring: rx descriptor ring packet is being transacted on 1809 * @rx_desc: pointer to the EOP Rx descriptor 1810 * @skb: pointer to current skb being populated 1811 * 1812 * This function checks the ring, descriptor, and packet information in order 1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1814 * skb. 1815 */ 1816 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1817 union igc_adv_rx_desc *rx_desc, 1818 struct sk_buff *skb) 1819 { 1820 igc_rx_hash(rx_ring, rx_desc, skb); 1821 1822 igc_rx_checksum(rx_ring, rx_desc, skb); 1823 1824 igc_rx_vlan(rx_ring, rx_desc, skb); 1825 1826 skb_record_rx_queue(skb, rx_ring->queue_index); 1827 1828 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1829 } 1830 1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1832 { 1833 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1834 struct igc_adapter *adapter = netdev_priv(netdev); 1835 struct igc_hw *hw = &adapter->hw; 1836 u32 ctrl; 1837 1838 ctrl = rd32(IGC_CTRL); 1839 1840 if (enable) { 1841 /* enable VLAN tag insert/strip */ 1842 ctrl |= IGC_CTRL_VME; 1843 } else { 1844 /* disable VLAN tag insert/strip */ 1845 ctrl &= ~IGC_CTRL_VME; 1846 } 1847 wr32(IGC_CTRL, ctrl); 1848 } 1849 1850 static void igc_restore_vlan(struct igc_adapter *adapter) 1851 { 1852 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1853 } 1854 1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1856 const unsigned int size, 1857 int *rx_buffer_pgcnt) 1858 { 1859 struct igc_rx_buffer *rx_buffer; 1860 1861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1862 *rx_buffer_pgcnt = 1863 #if (PAGE_SIZE < 8192) 1864 page_count(rx_buffer->page); 1865 #else 1866 0; 1867 #endif 1868 prefetchw(rx_buffer->page); 1869 1870 /* we are reusing so sync this buffer for CPU use */ 1871 dma_sync_single_range_for_cpu(rx_ring->dev, 1872 rx_buffer->dma, 1873 rx_buffer->page_offset, 1874 size, 1875 DMA_FROM_DEVICE); 1876 1877 rx_buffer->pagecnt_bias--; 1878 1879 return rx_buffer; 1880 } 1881 1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1883 unsigned int truesize) 1884 { 1885 #if (PAGE_SIZE < 8192) 1886 buffer->page_offset ^= truesize; 1887 #else 1888 buffer->page_offset += truesize; 1889 #endif 1890 } 1891 1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1893 unsigned int size) 1894 { 1895 unsigned int truesize; 1896 1897 #if (PAGE_SIZE < 8192) 1898 truesize = igc_rx_pg_size(ring) / 2; 1899 #else 1900 truesize = ring_uses_build_skb(ring) ? 1901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1902 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1903 SKB_DATA_ALIGN(size); 1904 #endif 1905 return truesize; 1906 } 1907 1908 /** 1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1910 * @rx_ring: rx descriptor ring to transact packets on 1911 * @rx_buffer: buffer containing page to add 1912 * @skb: sk_buff to place the data into 1913 * @size: size of buffer to be added 1914 * 1915 * This function will add the data contained in rx_buffer->page to the skb. 1916 */ 1917 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1918 struct igc_rx_buffer *rx_buffer, 1919 struct sk_buff *skb, 1920 unsigned int size) 1921 { 1922 unsigned int truesize; 1923 1924 #if (PAGE_SIZE < 8192) 1925 truesize = igc_rx_pg_size(rx_ring) / 2; 1926 #else 1927 truesize = ring_uses_build_skb(rx_ring) ? 1928 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1929 SKB_DATA_ALIGN(size); 1930 #endif 1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1932 rx_buffer->page_offset, size, truesize); 1933 1934 igc_rx_buffer_flip(rx_buffer, truesize); 1935 } 1936 1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1938 struct igc_rx_buffer *rx_buffer, 1939 struct xdp_buff *xdp) 1940 { 1941 unsigned int size = xdp->data_end - xdp->data; 1942 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1943 unsigned int metasize = xdp->data - xdp->data_meta; 1944 struct sk_buff *skb; 1945 1946 /* prefetch first cache line of first page */ 1947 net_prefetch(xdp->data_meta); 1948 1949 /* build an skb around the page buffer */ 1950 skb = napi_build_skb(xdp->data_hard_start, truesize); 1951 if (unlikely(!skb)) 1952 return NULL; 1953 1954 /* update pointers within the skb to store the data */ 1955 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1956 __skb_put(skb, size); 1957 if (metasize) 1958 skb_metadata_set(skb, metasize); 1959 1960 igc_rx_buffer_flip(rx_buffer, truesize); 1961 return skb; 1962 } 1963 1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1965 struct igc_rx_buffer *rx_buffer, 1966 struct igc_xdp_buff *ctx) 1967 { 1968 struct xdp_buff *xdp = &ctx->xdp; 1969 unsigned int metasize = xdp->data - xdp->data_meta; 1970 unsigned int size = xdp->data_end - xdp->data; 1971 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1972 void *va = xdp->data; 1973 unsigned int headlen; 1974 struct sk_buff *skb; 1975 1976 /* prefetch first cache line of first page */ 1977 net_prefetch(xdp->data_meta); 1978 1979 /* allocate a skb to store the frags */ 1980 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1981 IGC_RX_HDR_LEN + metasize); 1982 if (unlikely(!skb)) 1983 return NULL; 1984 1985 if (ctx->rx_ts) { 1986 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV; 1987 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts; 1988 } 1989 1990 /* Determine available headroom for copy */ 1991 headlen = size; 1992 if (headlen > IGC_RX_HDR_LEN) 1993 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1994 1995 /* align pull length to size of long to optimize memcpy performance */ 1996 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1997 ALIGN(headlen + metasize, sizeof(long))); 1998 1999 if (metasize) { 2000 skb_metadata_set(skb, metasize); 2001 __skb_pull(skb, metasize); 2002 } 2003 2004 /* update all of the pointers */ 2005 size -= headlen; 2006 if (size) { 2007 skb_add_rx_frag(skb, 0, rx_buffer->page, 2008 (va + headlen) - page_address(rx_buffer->page), 2009 size, truesize); 2010 igc_rx_buffer_flip(rx_buffer, truesize); 2011 } else { 2012 rx_buffer->pagecnt_bias++; 2013 } 2014 2015 return skb; 2016 } 2017 2018 /** 2019 * igc_reuse_rx_page - page flip buffer and store it back on the ring 2020 * @rx_ring: rx descriptor ring to store buffers on 2021 * @old_buff: donor buffer to have page reused 2022 * 2023 * Synchronizes page for reuse by the adapter 2024 */ 2025 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 2026 struct igc_rx_buffer *old_buff) 2027 { 2028 u16 nta = rx_ring->next_to_alloc; 2029 struct igc_rx_buffer *new_buff; 2030 2031 new_buff = &rx_ring->rx_buffer_info[nta]; 2032 2033 /* update, and store next to alloc */ 2034 nta++; 2035 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 2036 2037 /* Transfer page from old buffer to new buffer. 2038 * Move each member individually to avoid possible store 2039 * forwarding stalls. 2040 */ 2041 new_buff->dma = old_buff->dma; 2042 new_buff->page = old_buff->page; 2043 new_buff->page_offset = old_buff->page_offset; 2044 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 2045 } 2046 2047 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 2048 int rx_buffer_pgcnt) 2049 { 2050 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 2051 struct page *page = rx_buffer->page; 2052 2053 /* avoid re-using remote and pfmemalloc pages */ 2054 if (!dev_page_is_reusable(page)) 2055 return false; 2056 2057 #if (PAGE_SIZE < 8192) 2058 /* if we are only owner of page we can reuse it */ 2059 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 2060 return false; 2061 #else 2062 #define IGC_LAST_OFFSET \ 2063 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 2064 2065 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 2066 return false; 2067 #endif 2068 2069 /* If we have drained the page fragment pool we need to update 2070 * the pagecnt_bias and page count so that we fully restock the 2071 * number of references the driver holds. 2072 */ 2073 if (unlikely(pagecnt_bias == 1)) { 2074 page_ref_add(page, USHRT_MAX - 1); 2075 rx_buffer->pagecnt_bias = USHRT_MAX; 2076 } 2077 2078 return true; 2079 } 2080 2081 /** 2082 * igc_is_non_eop - process handling of non-EOP buffers 2083 * @rx_ring: Rx ring being processed 2084 * @rx_desc: Rx descriptor for current buffer 2085 * 2086 * This function updates next to clean. If the buffer is an EOP buffer 2087 * this function exits returning false, otherwise it will place the 2088 * sk_buff in the next buffer to be chained and return true indicating 2089 * that this is in fact a non-EOP buffer. 2090 */ 2091 static bool igc_is_non_eop(struct igc_ring *rx_ring, 2092 union igc_adv_rx_desc *rx_desc) 2093 { 2094 u32 ntc = rx_ring->next_to_clean + 1; 2095 2096 /* fetch, update, and store next to clean */ 2097 ntc = (ntc < rx_ring->count) ? ntc : 0; 2098 rx_ring->next_to_clean = ntc; 2099 2100 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2101 2102 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2103 return false; 2104 2105 return true; 2106 } 2107 2108 /** 2109 * igc_cleanup_headers - Correct corrupted or empty headers 2110 * @rx_ring: rx descriptor ring packet is being transacted on 2111 * @rx_desc: pointer to the EOP Rx descriptor 2112 * @skb: pointer to current skb being fixed 2113 * 2114 * Address the case where we are pulling data in on pages only 2115 * and as such no data is present in the skb header. 2116 * 2117 * In addition if skb is not at least 60 bytes we need to pad it so that 2118 * it is large enough to qualify as a valid Ethernet frame. 2119 * 2120 * Returns true if an error was encountered and skb was freed. 2121 */ 2122 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2123 union igc_adv_rx_desc *rx_desc, 2124 struct sk_buff *skb) 2125 { 2126 /* XDP packets use error pointer so abort at this point */ 2127 if (IS_ERR(skb)) 2128 return true; 2129 2130 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2131 struct net_device *netdev = rx_ring->netdev; 2132 2133 if (!(netdev->features & NETIF_F_RXALL)) { 2134 dev_kfree_skb_any(skb); 2135 return true; 2136 } 2137 } 2138 2139 /* if eth_skb_pad returns an error the skb was freed */ 2140 if (eth_skb_pad(skb)) 2141 return true; 2142 2143 return false; 2144 } 2145 2146 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2147 struct igc_rx_buffer *rx_buffer, 2148 int rx_buffer_pgcnt) 2149 { 2150 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2151 /* hand second half of page back to the ring */ 2152 igc_reuse_rx_page(rx_ring, rx_buffer); 2153 } else { 2154 /* We are not reusing the buffer so unmap it and free 2155 * any references we are holding to it 2156 */ 2157 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2158 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2159 IGC_RX_DMA_ATTR); 2160 __page_frag_cache_drain(rx_buffer->page, 2161 rx_buffer->pagecnt_bias); 2162 } 2163 2164 /* clear contents of rx_buffer */ 2165 rx_buffer->page = NULL; 2166 } 2167 2168 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2169 { 2170 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2171 2172 if (ring_uses_build_skb(rx_ring)) 2173 return IGC_SKB_PAD; 2174 if (igc_xdp_is_enabled(adapter)) 2175 return XDP_PACKET_HEADROOM; 2176 2177 return 0; 2178 } 2179 2180 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2181 struct igc_rx_buffer *bi) 2182 { 2183 struct page *page = bi->page; 2184 dma_addr_t dma; 2185 2186 /* since we are recycling buffers we should seldom need to alloc */ 2187 if (likely(page)) 2188 return true; 2189 2190 /* alloc new page for storage */ 2191 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2192 if (unlikely(!page)) { 2193 rx_ring->rx_stats.alloc_failed++; 2194 return false; 2195 } 2196 2197 /* map page for use */ 2198 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2199 igc_rx_pg_size(rx_ring), 2200 DMA_FROM_DEVICE, 2201 IGC_RX_DMA_ATTR); 2202 2203 /* if mapping failed free memory back to system since 2204 * there isn't much point in holding memory we can't use 2205 */ 2206 if (dma_mapping_error(rx_ring->dev, dma)) { 2207 __free_page(page); 2208 2209 rx_ring->rx_stats.alloc_failed++; 2210 return false; 2211 } 2212 2213 bi->dma = dma; 2214 bi->page = page; 2215 bi->page_offset = igc_rx_offset(rx_ring); 2216 page_ref_add(page, USHRT_MAX - 1); 2217 bi->pagecnt_bias = USHRT_MAX; 2218 2219 return true; 2220 } 2221 2222 /** 2223 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2224 * @rx_ring: rx descriptor ring 2225 * @cleaned_count: number of buffers to clean 2226 */ 2227 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2228 { 2229 union igc_adv_rx_desc *rx_desc; 2230 u16 i = rx_ring->next_to_use; 2231 struct igc_rx_buffer *bi; 2232 u16 bufsz; 2233 2234 /* nothing to do */ 2235 if (!cleaned_count) 2236 return; 2237 2238 rx_desc = IGC_RX_DESC(rx_ring, i); 2239 bi = &rx_ring->rx_buffer_info[i]; 2240 i -= rx_ring->count; 2241 2242 bufsz = igc_rx_bufsz(rx_ring); 2243 2244 do { 2245 if (!igc_alloc_mapped_page(rx_ring, bi)) 2246 break; 2247 2248 /* sync the buffer for use by the device */ 2249 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2250 bi->page_offset, bufsz, 2251 DMA_FROM_DEVICE); 2252 2253 /* Refresh the desc even if buffer_addrs didn't change 2254 * because each write-back erases this info. 2255 */ 2256 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2257 2258 rx_desc++; 2259 bi++; 2260 i++; 2261 if (unlikely(!i)) { 2262 rx_desc = IGC_RX_DESC(rx_ring, 0); 2263 bi = rx_ring->rx_buffer_info; 2264 i -= rx_ring->count; 2265 } 2266 2267 /* clear the length for the next_to_use descriptor */ 2268 rx_desc->wb.upper.length = 0; 2269 2270 cleaned_count--; 2271 } while (cleaned_count); 2272 2273 i += rx_ring->count; 2274 2275 if (rx_ring->next_to_use != i) { 2276 /* record the next descriptor to use */ 2277 rx_ring->next_to_use = i; 2278 2279 /* update next to alloc since we have filled the ring */ 2280 rx_ring->next_to_alloc = i; 2281 2282 /* Force memory writes to complete before letting h/w 2283 * know there are new descriptors to fetch. (Only 2284 * applicable for weak-ordered memory model archs, 2285 * such as IA-64). 2286 */ 2287 wmb(); 2288 writel(i, rx_ring->tail); 2289 } 2290 } 2291 2292 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2293 { 2294 union igc_adv_rx_desc *desc; 2295 u16 i = ring->next_to_use; 2296 struct igc_rx_buffer *bi; 2297 dma_addr_t dma; 2298 bool ok = true; 2299 2300 if (!count) 2301 return ok; 2302 2303 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff); 2304 2305 desc = IGC_RX_DESC(ring, i); 2306 bi = &ring->rx_buffer_info[i]; 2307 i -= ring->count; 2308 2309 do { 2310 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2311 if (!bi->xdp) { 2312 ok = false; 2313 break; 2314 } 2315 2316 dma = xsk_buff_xdp_get_dma(bi->xdp); 2317 desc->read.pkt_addr = cpu_to_le64(dma); 2318 2319 desc++; 2320 bi++; 2321 i++; 2322 if (unlikely(!i)) { 2323 desc = IGC_RX_DESC(ring, 0); 2324 bi = ring->rx_buffer_info; 2325 i -= ring->count; 2326 } 2327 2328 /* Clear the length for the next_to_use descriptor. */ 2329 desc->wb.upper.length = 0; 2330 2331 count--; 2332 } while (count); 2333 2334 i += ring->count; 2335 2336 if (ring->next_to_use != i) { 2337 ring->next_to_use = i; 2338 2339 /* Force memory writes to complete before letting h/w 2340 * know there are new descriptors to fetch. (Only 2341 * applicable for weak-ordered memory model archs, 2342 * such as IA-64). 2343 */ 2344 wmb(); 2345 writel(i, ring->tail); 2346 } 2347 2348 return ok; 2349 } 2350 2351 /* This function requires __netif_tx_lock is held by the caller. */ 2352 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2353 struct xdp_frame *xdpf) 2354 { 2355 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2356 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2357 u16 count, index = ring->next_to_use; 2358 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2359 struct igc_tx_buffer *buffer = head; 2360 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2361 u32 olinfo_status, len = xdpf->len, cmd_type; 2362 void *data = xdpf->data; 2363 u16 i; 2364 2365 count = TXD_USE_COUNT(len); 2366 for (i = 0; i < nr_frags; i++) 2367 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2368 2369 if (igc_maybe_stop_tx(ring, count + 3)) { 2370 /* this is a hard error */ 2371 return -EBUSY; 2372 } 2373 2374 i = 0; 2375 head->bytecount = xdp_get_frame_len(xdpf); 2376 head->type = IGC_TX_BUFFER_TYPE_XDP; 2377 head->gso_segs = 1; 2378 head->xdpf = xdpf; 2379 2380 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2381 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2382 2383 for (;;) { 2384 dma_addr_t dma; 2385 2386 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2387 if (dma_mapping_error(ring->dev, dma)) { 2388 netdev_err_once(ring->netdev, 2389 "Failed to map DMA for TX\n"); 2390 goto unmap; 2391 } 2392 2393 dma_unmap_len_set(buffer, len, len); 2394 dma_unmap_addr_set(buffer, dma, dma); 2395 2396 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2397 IGC_ADVTXD_DCMD_IFCS | len; 2398 2399 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2400 desc->read.buffer_addr = cpu_to_le64(dma); 2401 2402 buffer->protocol = 0; 2403 2404 if (++index == ring->count) 2405 index = 0; 2406 2407 if (i == nr_frags) 2408 break; 2409 2410 buffer = &ring->tx_buffer_info[index]; 2411 desc = IGC_TX_DESC(ring, index); 2412 desc->read.olinfo_status = 0; 2413 2414 data = skb_frag_address(&sinfo->frags[i]); 2415 len = skb_frag_size(&sinfo->frags[i]); 2416 i++; 2417 } 2418 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2419 2420 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2421 /* set the timestamp */ 2422 head->time_stamp = jiffies; 2423 /* set next_to_watch value indicating a packet is present */ 2424 head->next_to_watch = desc; 2425 ring->next_to_use = index; 2426 2427 return 0; 2428 2429 unmap: 2430 for (;;) { 2431 buffer = &ring->tx_buffer_info[index]; 2432 if (dma_unmap_len(buffer, len)) 2433 dma_unmap_page(ring->dev, 2434 dma_unmap_addr(buffer, dma), 2435 dma_unmap_len(buffer, len), 2436 DMA_TO_DEVICE); 2437 dma_unmap_len_set(buffer, len, 0); 2438 if (buffer == head) 2439 break; 2440 2441 if (!index) 2442 index += ring->count; 2443 index--; 2444 } 2445 2446 return -ENOMEM; 2447 } 2448 2449 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2450 int cpu) 2451 { 2452 int index = cpu; 2453 2454 if (unlikely(index < 0)) 2455 index = 0; 2456 2457 while (index >= adapter->num_tx_queues) 2458 index -= adapter->num_tx_queues; 2459 2460 return adapter->tx_ring[index]; 2461 } 2462 2463 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2464 { 2465 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2466 int cpu = smp_processor_id(); 2467 struct netdev_queue *nq; 2468 struct igc_ring *ring; 2469 int res; 2470 2471 if (unlikely(!xdpf)) 2472 return -EFAULT; 2473 2474 ring = igc_xdp_get_tx_ring(adapter, cpu); 2475 nq = txring_txq(ring); 2476 2477 __netif_tx_lock(nq, cpu); 2478 /* Avoid transmit queue timeout since we share it with the slow path */ 2479 txq_trans_cond_update(nq); 2480 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2481 __netif_tx_unlock(nq); 2482 return res; 2483 } 2484 2485 /* This function assumes rcu_read_lock() is held by the caller. */ 2486 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2487 struct bpf_prog *prog, 2488 struct xdp_buff *xdp) 2489 { 2490 u32 act = bpf_prog_run_xdp(prog, xdp); 2491 2492 switch (act) { 2493 case XDP_PASS: 2494 return IGC_XDP_PASS; 2495 case XDP_TX: 2496 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2497 goto out_failure; 2498 return IGC_XDP_TX; 2499 case XDP_REDIRECT: 2500 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2501 goto out_failure; 2502 return IGC_XDP_REDIRECT; 2503 break; 2504 default: 2505 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2506 fallthrough; 2507 case XDP_ABORTED: 2508 out_failure: 2509 trace_xdp_exception(adapter->netdev, prog, act); 2510 fallthrough; 2511 case XDP_DROP: 2512 return IGC_XDP_CONSUMED; 2513 } 2514 } 2515 2516 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2517 struct xdp_buff *xdp) 2518 { 2519 struct bpf_prog *prog; 2520 int res; 2521 2522 prog = READ_ONCE(adapter->xdp_prog); 2523 if (!prog) { 2524 res = IGC_XDP_PASS; 2525 goto out; 2526 } 2527 2528 res = __igc_xdp_run_prog(adapter, prog, xdp); 2529 2530 out: 2531 return ERR_PTR(-res); 2532 } 2533 2534 /* This function assumes __netif_tx_lock is held by the caller. */ 2535 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2536 { 2537 /* Once tail pointer is updated, hardware can fetch the descriptors 2538 * any time so we issue a write membar here to ensure all memory 2539 * writes are complete before the tail pointer is updated. 2540 */ 2541 wmb(); 2542 writel(ring->next_to_use, ring->tail); 2543 } 2544 2545 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2546 { 2547 int cpu = smp_processor_id(); 2548 struct netdev_queue *nq; 2549 struct igc_ring *ring; 2550 2551 if (status & IGC_XDP_TX) { 2552 ring = igc_xdp_get_tx_ring(adapter, cpu); 2553 nq = txring_txq(ring); 2554 2555 __netif_tx_lock(nq, cpu); 2556 igc_flush_tx_descriptors(ring); 2557 __netif_tx_unlock(nq); 2558 } 2559 2560 if (status & IGC_XDP_REDIRECT) 2561 xdp_do_flush(); 2562 } 2563 2564 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2565 unsigned int packets, unsigned int bytes) 2566 { 2567 struct igc_ring *ring = q_vector->rx.ring; 2568 2569 u64_stats_update_begin(&ring->rx_syncp); 2570 ring->rx_stats.packets += packets; 2571 ring->rx_stats.bytes += bytes; 2572 u64_stats_update_end(&ring->rx_syncp); 2573 2574 q_vector->rx.total_packets += packets; 2575 q_vector->rx.total_bytes += bytes; 2576 } 2577 2578 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2579 { 2580 unsigned int total_bytes = 0, total_packets = 0; 2581 struct igc_adapter *adapter = q_vector->adapter; 2582 struct igc_ring *rx_ring = q_vector->rx.ring; 2583 struct sk_buff *skb = rx_ring->skb; 2584 u16 cleaned_count = igc_desc_unused(rx_ring); 2585 int xdp_status = 0, rx_buffer_pgcnt; 2586 2587 while (likely(total_packets < budget)) { 2588 struct igc_xdp_buff ctx = { .rx_ts = NULL }; 2589 struct igc_rx_buffer *rx_buffer; 2590 union igc_adv_rx_desc *rx_desc; 2591 unsigned int size, truesize; 2592 int pkt_offset = 0; 2593 void *pktbuf; 2594 2595 /* return some buffers to hardware, one at a time is too slow */ 2596 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2597 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2598 cleaned_count = 0; 2599 } 2600 2601 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2602 size = le16_to_cpu(rx_desc->wb.upper.length); 2603 if (!size) 2604 break; 2605 2606 /* This memory barrier is needed to keep us from reading 2607 * any other fields out of the rx_desc until we know the 2608 * descriptor has been written back 2609 */ 2610 dma_rmb(); 2611 2612 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2613 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2614 2615 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2616 2617 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2618 ctx.rx_ts = pktbuf; 2619 pkt_offset = IGC_TS_HDR_LEN; 2620 size -= IGC_TS_HDR_LEN; 2621 } 2622 2623 if (!skb) { 2624 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq); 2625 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring), 2626 igc_rx_offset(rx_ring) + pkt_offset, 2627 size, true); 2628 xdp_buff_clear_frags_flag(&ctx.xdp); 2629 ctx.rx_desc = rx_desc; 2630 2631 skb = igc_xdp_run_prog(adapter, &ctx.xdp); 2632 } 2633 2634 if (IS_ERR(skb)) { 2635 unsigned int xdp_res = -PTR_ERR(skb); 2636 2637 switch (xdp_res) { 2638 case IGC_XDP_CONSUMED: 2639 rx_buffer->pagecnt_bias++; 2640 break; 2641 case IGC_XDP_TX: 2642 case IGC_XDP_REDIRECT: 2643 igc_rx_buffer_flip(rx_buffer, truesize); 2644 xdp_status |= xdp_res; 2645 break; 2646 } 2647 2648 total_packets++; 2649 total_bytes += size; 2650 } else if (skb) 2651 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2652 else if (ring_uses_build_skb(rx_ring)) 2653 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp); 2654 else 2655 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx); 2656 2657 /* exit if we failed to retrieve a buffer */ 2658 if (!skb) { 2659 rx_ring->rx_stats.alloc_failed++; 2660 rx_buffer->pagecnt_bias++; 2661 break; 2662 } 2663 2664 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2665 cleaned_count++; 2666 2667 /* fetch next buffer in frame if non-eop */ 2668 if (igc_is_non_eop(rx_ring, rx_desc)) 2669 continue; 2670 2671 /* verify the packet layout is correct */ 2672 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2673 skb = NULL; 2674 continue; 2675 } 2676 2677 /* probably a little skewed due to removing CRC */ 2678 total_bytes += skb->len; 2679 2680 /* populate checksum, VLAN, and protocol */ 2681 igc_process_skb_fields(rx_ring, rx_desc, skb); 2682 2683 napi_gro_receive(&q_vector->napi, skb); 2684 2685 /* reset skb pointer */ 2686 skb = NULL; 2687 2688 /* update budget accounting */ 2689 total_packets++; 2690 } 2691 2692 if (xdp_status) 2693 igc_finalize_xdp(adapter, xdp_status); 2694 2695 /* place incomplete frames back on ring for completion */ 2696 rx_ring->skb = skb; 2697 2698 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2699 2700 if (cleaned_count) 2701 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2702 2703 return total_packets; 2704 } 2705 2706 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2707 struct xdp_buff *xdp) 2708 { 2709 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2710 unsigned int metasize = xdp->data - xdp->data_meta; 2711 struct sk_buff *skb; 2712 2713 net_prefetch(xdp->data_meta); 2714 2715 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize); 2716 if (unlikely(!skb)) 2717 return NULL; 2718 2719 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2720 ALIGN(totalsize, sizeof(long))); 2721 2722 if (metasize) { 2723 skb_metadata_set(skb, metasize); 2724 __skb_pull(skb, metasize); 2725 } 2726 2727 return skb; 2728 } 2729 2730 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2731 union igc_adv_rx_desc *desc, 2732 struct xdp_buff *xdp, 2733 ktime_t timestamp) 2734 { 2735 struct igc_ring *ring = q_vector->rx.ring; 2736 struct sk_buff *skb; 2737 2738 skb = igc_construct_skb_zc(ring, xdp); 2739 if (!skb) { 2740 ring->rx_stats.alloc_failed++; 2741 return; 2742 } 2743 2744 if (timestamp) 2745 skb_hwtstamps(skb)->hwtstamp = timestamp; 2746 2747 if (igc_cleanup_headers(ring, desc, skb)) 2748 return; 2749 2750 igc_process_skb_fields(ring, desc, skb); 2751 napi_gro_receive(&q_vector->napi, skb); 2752 } 2753 2754 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp) 2755 { 2756 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The 2757 * igc_xdp_buff shares its layout with xdp_buff_xsk and private 2758 * igc_xdp_buff fields fall into xdp_buff_xsk->cb 2759 */ 2760 return (struct igc_xdp_buff *)xdp; 2761 } 2762 2763 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2764 { 2765 struct igc_adapter *adapter = q_vector->adapter; 2766 struct igc_ring *ring = q_vector->rx.ring; 2767 u16 cleaned_count = igc_desc_unused(ring); 2768 int total_bytes = 0, total_packets = 0; 2769 u16 ntc = ring->next_to_clean; 2770 struct bpf_prog *prog; 2771 bool failure = false; 2772 int xdp_status = 0; 2773 2774 rcu_read_lock(); 2775 2776 prog = READ_ONCE(adapter->xdp_prog); 2777 2778 while (likely(total_packets < budget)) { 2779 union igc_adv_rx_desc *desc; 2780 struct igc_rx_buffer *bi; 2781 struct igc_xdp_buff *ctx; 2782 ktime_t timestamp = 0; 2783 unsigned int size; 2784 int res; 2785 2786 desc = IGC_RX_DESC(ring, ntc); 2787 size = le16_to_cpu(desc->wb.upper.length); 2788 if (!size) 2789 break; 2790 2791 /* This memory barrier is needed to keep us from reading 2792 * any other fields out of the rx_desc until we know the 2793 * descriptor has been written back 2794 */ 2795 dma_rmb(); 2796 2797 bi = &ring->rx_buffer_info[ntc]; 2798 2799 ctx = xsk_buff_to_igc_ctx(bi->xdp); 2800 ctx->rx_desc = desc; 2801 2802 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2803 ctx->rx_ts = bi->xdp->data; 2804 2805 bi->xdp->data += IGC_TS_HDR_LEN; 2806 2807 /* HW timestamp has been copied into local variable. Metadata 2808 * length when XDP program is called should be 0. 2809 */ 2810 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2811 size -= IGC_TS_HDR_LEN; 2812 } 2813 2814 bi->xdp->data_end = bi->xdp->data + size; 2815 xsk_buff_dma_sync_for_cpu(bi->xdp); 2816 2817 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2818 switch (res) { 2819 case IGC_XDP_PASS: 2820 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2821 fallthrough; 2822 case IGC_XDP_CONSUMED: 2823 xsk_buff_free(bi->xdp); 2824 break; 2825 case IGC_XDP_TX: 2826 case IGC_XDP_REDIRECT: 2827 xdp_status |= res; 2828 break; 2829 } 2830 2831 bi->xdp = NULL; 2832 total_bytes += size; 2833 total_packets++; 2834 cleaned_count++; 2835 ntc++; 2836 if (ntc == ring->count) 2837 ntc = 0; 2838 } 2839 2840 ring->next_to_clean = ntc; 2841 rcu_read_unlock(); 2842 2843 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2844 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2845 2846 if (xdp_status) 2847 igc_finalize_xdp(adapter, xdp_status); 2848 2849 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2850 2851 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2852 if (failure || ring->next_to_clean == ring->next_to_use) 2853 xsk_set_rx_need_wakeup(ring->xsk_pool); 2854 else 2855 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2856 return total_packets; 2857 } 2858 2859 return failure ? budget : total_packets; 2860 } 2861 2862 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2863 unsigned int packets, unsigned int bytes) 2864 { 2865 struct igc_ring *ring = q_vector->tx.ring; 2866 2867 u64_stats_update_begin(&ring->tx_syncp); 2868 ring->tx_stats.bytes += bytes; 2869 ring->tx_stats.packets += packets; 2870 u64_stats_update_end(&ring->tx_syncp); 2871 2872 q_vector->tx.total_bytes += bytes; 2873 q_vector->tx.total_packets += packets; 2874 } 2875 2876 static void igc_xsk_request_timestamp(void *_priv) 2877 { 2878 struct igc_metadata_request *meta_req = _priv; 2879 struct igc_ring *tx_ring = meta_req->tx_ring; 2880 struct igc_tx_timestamp_request *tstamp; 2881 u32 tx_flags = IGC_TX_FLAGS_TSTAMP; 2882 struct igc_adapter *adapter; 2883 unsigned long lock_flags; 2884 bool found = false; 2885 int i; 2886 2887 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) { 2888 adapter = netdev_priv(tx_ring->netdev); 2889 2890 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags); 2891 2892 /* Search for available tstamp regs */ 2893 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 2894 tstamp = &adapter->tx_tstamp[i]; 2895 2896 /* tstamp->skb and tstamp->xsk_tx_buffer are in union. 2897 * When tstamp->skb is equal to NULL, 2898 * tstamp->xsk_tx_buffer is equal to NULL as well. 2899 * This condition means that the particular tstamp reg 2900 * is not occupied by other packet. 2901 */ 2902 if (!tstamp->skb) { 2903 found = true; 2904 break; 2905 } 2906 } 2907 2908 /* Return if no available tstamp regs */ 2909 if (!found) { 2910 adapter->tx_hwtstamp_skipped++; 2911 spin_unlock_irqrestore(&adapter->ptp_tx_lock, 2912 lock_flags); 2913 return; 2914 } 2915 2916 tstamp->start = jiffies; 2917 tstamp->xsk_queue_index = tx_ring->queue_index; 2918 tstamp->xsk_tx_buffer = meta_req->tx_buffer; 2919 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK; 2920 2921 /* Hold the transmit completion until timestamp is ready */ 2922 meta_req->tx_buffer->xsk_pending_ts = true; 2923 2924 /* Keep the pointer to tx_timestamp, which is located in XDP 2925 * metadata area. It is the location to store the value of 2926 * tx hardware timestamp. 2927 */ 2928 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta); 2929 2930 /* Set timestamp bit based on the _TSTAMP(_X) bit. */ 2931 tx_flags |= tstamp->flags; 2932 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2933 IGC_TX_FLAGS_TSTAMP, 2934 (IGC_ADVTXD_MAC_TSTAMP)); 2935 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2936 IGC_TX_FLAGS_TSTAMP_1, 2937 (IGC_ADVTXD_TSTAMP_REG_1)); 2938 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2939 IGC_TX_FLAGS_TSTAMP_2, 2940 (IGC_ADVTXD_TSTAMP_REG_2)); 2941 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags, 2942 IGC_TX_FLAGS_TSTAMP_3, 2943 (IGC_ADVTXD_TSTAMP_REG_3)); 2944 2945 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags); 2946 } 2947 } 2948 2949 static u64 igc_xsk_fill_timestamp(void *_priv) 2950 { 2951 return *(u64 *)_priv; 2952 } 2953 2954 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = { 2955 .tmo_request_timestamp = igc_xsk_request_timestamp, 2956 .tmo_fill_timestamp = igc_xsk_fill_timestamp, 2957 }; 2958 2959 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2960 { 2961 struct xsk_buff_pool *pool = ring->xsk_pool; 2962 struct netdev_queue *nq = txring_txq(ring); 2963 union igc_adv_tx_desc *tx_desc = NULL; 2964 int cpu = smp_processor_id(); 2965 struct xdp_desc xdp_desc; 2966 u16 budget, ntu; 2967 2968 if (!netif_carrier_ok(ring->netdev)) 2969 return; 2970 2971 __netif_tx_lock(nq, cpu); 2972 2973 /* Avoid transmit queue timeout since we share it with the slow path */ 2974 txq_trans_cond_update(nq); 2975 2976 ntu = ring->next_to_use; 2977 budget = igc_desc_unused(ring); 2978 2979 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2980 struct igc_metadata_request meta_req; 2981 struct xsk_tx_metadata *meta = NULL; 2982 struct igc_tx_buffer *bi; 2983 u32 olinfo_status; 2984 dma_addr_t dma; 2985 2986 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA | 2987 IGC_ADVTXD_DCMD_DEXT | 2988 IGC_ADVTXD_DCMD_IFCS | 2989 IGC_TXD_DCMD | xdp_desc.len; 2990 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2991 2992 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2993 meta = xsk_buff_get_metadata(pool, xdp_desc.addr); 2994 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2995 bi = &ring->tx_buffer_info[ntu]; 2996 2997 meta_req.tx_ring = ring; 2998 meta_req.tx_buffer = bi; 2999 meta_req.meta = meta; 3000 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops, 3001 &meta_req); 3002 3003 tx_desc = IGC_TX_DESC(ring, ntu); 3004 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type); 3005 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 3006 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3007 3008 bi->type = IGC_TX_BUFFER_TYPE_XSK; 3009 bi->protocol = 0; 3010 bi->bytecount = xdp_desc.len; 3011 bi->gso_segs = 1; 3012 bi->time_stamp = jiffies; 3013 bi->next_to_watch = tx_desc; 3014 3015 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 3016 3017 ntu++; 3018 if (ntu == ring->count) 3019 ntu = 0; 3020 } 3021 3022 ring->next_to_use = ntu; 3023 if (tx_desc) { 3024 igc_flush_tx_descriptors(ring); 3025 xsk_tx_release(pool); 3026 } 3027 3028 __netif_tx_unlock(nq); 3029 } 3030 3031 /** 3032 * igc_clean_tx_irq - Reclaim resources after transmit completes 3033 * @q_vector: pointer to q_vector containing needed info 3034 * @napi_budget: Used to determine if we are in netpoll 3035 * 3036 * returns true if ring is completely cleaned 3037 */ 3038 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 3039 { 3040 struct igc_adapter *adapter = q_vector->adapter; 3041 unsigned int total_bytes = 0, total_packets = 0; 3042 unsigned int budget = q_vector->tx.work_limit; 3043 struct igc_ring *tx_ring = q_vector->tx.ring; 3044 unsigned int i = tx_ring->next_to_clean; 3045 struct igc_tx_buffer *tx_buffer; 3046 union igc_adv_tx_desc *tx_desc; 3047 u32 xsk_frames = 0; 3048 3049 if (test_bit(__IGC_DOWN, &adapter->state)) 3050 return true; 3051 3052 tx_buffer = &tx_ring->tx_buffer_info[i]; 3053 tx_desc = IGC_TX_DESC(tx_ring, i); 3054 i -= tx_ring->count; 3055 3056 do { 3057 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 3058 3059 /* if next_to_watch is not set then there is no work pending */ 3060 if (!eop_desc) 3061 break; 3062 3063 /* prevent any other reads prior to eop_desc */ 3064 smp_rmb(); 3065 3066 /* if DD is not set pending work has not been completed */ 3067 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 3068 break; 3069 3070 /* Hold the completions while there's a pending tx hardware 3071 * timestamp request from XDP Tx metadata. 3072 */ 3073 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK && 3074 tx_buffer->xsk_pending_ts) 3075 break; 3076 3077 /* clear next_to_watch to prevent false hangs */ 3078 tx_buffer->next_to_watch = NULL; 3079 3080 /* update the statistics for this packet */ 3081 total_bytes += tx_buffer->bytecount; 3082 total_packets += tx_buffer->gso_segs; 3083 3084 switch (tx_buffer->type) { 3085 case IGC_TX_BUFFER_TYPE_XSK: 3086 xsk_frames++; 3087 break; 3088 case IGC_TX_BUFFER_TYPE_XDP: 3089 xdp_return_frame(tx_buffer->xdpf); 3090 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3091 break; 3092 case IGC_TX_BUFFER_TYPE_SKB: 3093 napi_consume_skb(tx_buffer->skb, napi_budget); 3094 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3095 break; 3096 default: 3097 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 3098 break; 3099 } 3100 3101 /* clear last DMA location and unmap remaining buffers */ 3102 while (tx_desc != eop_desc) { 3103 tx_buffer++; 3104 tx_desc++; 3105 i++; 3106 if (unlikely(!i)) { 3107 i -= tx_ring->count; 3108 tx_buffer = tx_ring->tx_buffer_info; 3109 tx_desc = IGC_TX_DESC(tx_ring, 0); 3110 } 3111 3112 /* unmap any remaining paged data */ 3113 if (dma_unmap_len(tx_buffer, len)) 3114 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3115 } 3116 3117 /* move us one more past the eop_desc for start of next pkt */ 3118 tx_buffer++; 3119 tx_desc++; 3120 i++; 3121 if (unlikely(!i)) { 3122 i -= tx_ring->count; 3123 tx_buffer = tx_ring->tx_buffer_info; 3124 tx_desc = IGC_TX_DESC(tx_ring, 0); 3125 } 3126 3127 /* issue prefetch for next Tx descriptor */ 3128 prefetch(tx_desc); 3129 3130 /* update budget accounting */ 3131 budget--; 3132 } while (likely(budget)); 3133 3134 netdev_tx_completed_queue(txring_txq(tx_ring), 3135 total_packets, total_bytes); 3136 3137 i += tx_ring->count; 3138 tx_ring->next_to_clean = i; 3139 3140 igc_update_tx_stats(q_vector, total_packets, total_bytes); 3141 3142 if (tx_ring->xsk_pool) { 3143 if (xsk_frames) 3144 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 3145 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 3146 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 3147 igc_xdp_xmit_zc(tx_ring); 3148 } 3149 3150 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 3151 struct igc_hw *hw = &adapter->hw; 3152 3153 /* Detect a transmit hang in hardware, this serializes the 3154 * check with the clearing of time_stamp and movement of i 3155 */ 3156 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 3157 if (tx_buffer->next_to_watch && 3158 time_after(jiffies, tx_buffer->time_stamp + 3159 (adapter->tx_timeout_factor * HZ)) && 3160 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 3161 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) && 3162 !tx_ring->oper_gate_closed) { 3163 /* detected Tx unit hang */ 3164 netdev_err(tx_ring->netdev, 3165 "Detected Tx Unit Hang\n" 3166 " Tx Queue <%d>\n" 3167 " TDH <%x>\n" 3168 " TDT <%x>\n" 3169 " next_to_use <%x>\n" 3170 " next_to_clean <%x>\n" 3171 "buffer_info[next_to_clean]\n" 3172 " time_stamp <%lx>\n" 3173 " next_to_watch <%p>\n" 3174 " jiffies <%lx>\n" 3175 " desc.status <%x>\n", 3176 tx_ring->queue_index, 3177 rd32(IGC_TDH(tx_ring->reg_idx)), 3178 readl(tx_ring->tail), 3179 tx_ring->next_to_use, 3180 tx_ring->next_to_clean, 3181 tx_buffer->time_stamp, 3182 tx_buffer->next_to_watch, 3183 jiffies, 3184 tx_buffer->next_to_watch->wb.status); 3185 netif_stop_subqueue(tx_ring->netdev, 3186 tx_ring->queue_index); 3187 3188 /* we are about to reset, no point in enabling stuff */ 3189 return true; 3190 } 3191 } 3192 3193 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 3194 if (unlikely(total_packets && 3195 netif_carrier_ok(tx_ring->netdev) && 3196 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 3197 /* Make sure that anybody stopping the queue after this 3198 * sees the new next_to_clean. 3199 */ 3200 smp_mb(); 3201 if (__netif_subqueue_stopped(tx_ring->netdev, 3202 tx_ring->queue_index) && 3203 !(test_bit(__IGC_DOWN, &adapter->state))) { 3204 netif_wake_subqueue(tx_ring->netdev, 3205 tx_ring->queue_index); 3206 3207 u64_stats_update_begin(&tx_ring->tx_syncp); 3208 tx_ring->tx_stats.restart_queue++; 3209 u64_stats_update_end(&tx_ring->tx_syncp); 3210 } 3211 } 3212 3213 return !!budget; 3214 } 3215 3216 static int igc_find_mac_filter(struct igc_adapter *adapter, 3217 enum igc_mac_filter_type type, const u8 *addr) 3218 { 3219 struct igc_hw *hw = &adapter->hw; 3220 int max_entries = hw->mac.rar_entry_count; 3221 u32 ral, rah; 3222 int i; 3223 3224 for (i = 0; i < max_entries; i++) { 3225 ral = rd32(IGC_RAL(i)); 3226 rah = rd32(IGC_RAH(i)); 3227 3228 if (!(rah & IGC_RAH_AV)) 3229 continue; 3230 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3231 continue; 3232 if ((rah & IGC_RAH_RAH_MASK) != 3233 le16_to_cpup((__le16 *)(addr + 4))) 3234 continue; 3235 if (ral != le32_to_cpup((__le32 *)(addr))) 3236 continue; 3237 3238 return i; 3239 } 3240 3241 return -1; 3242 } 3243 3244 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3245 { 3246 struct igc_hw *hw = &adapter->hw; 3247 int max_entries = hw->mac.rar_entry_count; 3248 u32 rah; 3249 int i; 3250 3251 for (i = 0; i < max_entries; i++) { 3252 rah = rd32(IGC_RAH(i)); 3253 3254 if (!(rah & IGC_RAH_AV)) 3255 return i; 3256 } 3257 3258 return -1; 3259 } 3260 3261 /** 3262 * igc_add_mac_filter() - Add MAC address filter 3263 * @adapter: Pointer to adapter where the filter should be added 3264 * @type: MAC address filter type (source or destination) 3265 * @addr: MAC address 3266 * @queue: If non-negative, queue assignment feature is enabled and frames 3267 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3268 * assignment is disabled. 3269 * 3270 * Return: 0 in case of success, negative errno code otherwise. 3271 */ 3272 static int igc_add_mac_filter(struct igc_adapter *adapter, 3273 enum igc_mac_filter_type type, const u8 *addr, 3274 int queue) 3275 { 3276 struct net_device *dev = adapter->netdev; 3277 int index; 3278 3279 index = igc_find_mac_filter(adapter, type, addr); 3280 if (index >= 0) 3281 goto update_filter; 3282 3283 index = igc_get_avail_mac_filter_slot(adapter); 3284 if (index < 0) 3285 return -ENOSPC; 3286 3287 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3288 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3289 addr, queue); 3290 3291 update_filter: 3292 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3293 return 0; 3294 } 3295 3296 /** 3297 * igc_del_mac_filter() - Delete MAC address filter 3298 * @adapter: Pointer to adapter where the filter should be deleted from 3299 * @type: MAC address filter type (source or destination) 3300 * @addr: MAC address 3301 */ 3302 static void igc_del_mac_filter(struct igc_adapter *adapter, 3303 enum igc_mac_filter_type type, const u8 *addr) 3304 { 3305 struct net_device *dev = adapter->netdev; 3306 int index; 3307 3308 index = igc_find_mac_filter(adapter, type, addr); 3309 if (index < 0) 3310 return; 3311 3312 if (index == 0) { 3313 /* If this is the default filter, we don't actually delete it. 3314 * We just reset to its default value i.e. disable queue 3315 * assignment. 3316 */ 3317 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3318 3319 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3320 } else { 3321 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3322 index, 3323 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3324 addr); 3325 3326 igc_clear_mac_filter_hw(adapter, index); 3327 } 3328 } 3329 3330 /** 3331 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3332 * @adapter: Pointer to adapter where the filter should be added 3333 * @prio: VLAN priority value 3334 * @queue: Queue number which matching frames are assigned to 3335 * 3336 * Return: 0 in case of success, negative errno code otherwise. 3337 */ 3338 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3339 int queue) 3340 { 3341 struct net_device *dev = adapter->netdev; 3342 struct igc_hw *hw = &adapter->hw; 3343 u32 vlanpqf; 3344 3345 vlanpqf = rd32(IGC_VLANPQF); 3346 3347 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3348 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3349 return -EEXIST; 3350 } 3351 3352 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3353 vlanpqf |= IGC_VLANPQF_VALID(prio); 3354 3355 wr32(IGC_VLANPQF, vlanpqf); 3356 3357 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3358 prio, queue); 3359 return 0; 3360 } 3361 3362 /** 3363 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3364 * @adapter: Pointer to adapter where the filter should be deleted from 3365 * @prio: VLAN priority value 3366 */ 3367 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3368 { 3369 struct igc_hw *hw = &adapter->hw; 3370 u32 vlanpqf; 3371 3372 vlanpqf = rd32(IGC_VLANPQF); 3373 3374 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3375 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3376 3377 wr32(IGC_VLANPQF, vlanpqf); 3378 3379 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3380 prio); 3381 } 3382 3383 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3384 { 3385 struct igc_hw *hw = &adapter->hw; 3386 int i; 3387 3388 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3389 u32 etqf = rd32(IGC_ETQF(i)); 3390 3391 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3392 return i; 3393 } 3394 3395 return -1; 3396 } 3397 3398 /** 3399 * igc_add_etype_filter() - Add ethertype filter 3400 * @adapter: Pointer to adapter where the filter should be added 3401 * @etype: Ethertype value 3402 * @queue: If non-negative, queue assignment feature is enabled and frames 3403 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3404 * assignment is disabled. 3405 * 3406 * Return: 0 in case of success, negative errno code otherwise. 3407 */ 3408 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3409 int queue) 3410 { 3411 struct igc_hw *hw = &adapter->hw; 3412 int index; 3413 u32 etqf; 3414 3415 index = igc_get_avail_etype_filter_slot(adapter); 3416 if (index < 0) 3417 return -ENOSPC; 3418 3419 etqf = rd32(IGC_ETQF(index)); 3420 3421 etqf &= ~IGC_ETQF_ETYPE_MASK; 3422 etqf |= etype; 3423 3424 if (queue >= 0) { 3425 etqf &= ~IGC_ETQF_QUEUE_MASK; 3426 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3427 etqf |= IGC_ETQF_QUEUE_ENABLE; 3428 } 3429 3430 etqf |= IGC_ETQF_FILTER_ENABLE; 3431 3432 wr32(IGC_ETQF(index), etqf); 3433 3434 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3435 etype, queue); 3436 return 0; 3437 } 3438 3439 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3440 { 3441 struct igc_hw *hw = &adapter->hw; 3442 int i; 3443 3444 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3445 u32 etqf = rd32(IGC_ETQF(i)); 3446 3447 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3448 return i; 3449 } 3450 3451 return -1; 3452 } 3453 3454 /** 3455 * igc_del_etype_filter() - Delete ethertype filter 3456 * @adapter: Pointer to adapter where the filter should be deleted from 3457 * @etype: Ethertype value 3458 */ 3459 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3460 { 3461 struct igc_hw *hw = &adapter->hw; 3462 int index; 3463 3464 index = igc_find_etype_filter(adapter, etype); 3465 if (index < 0) 3466 return; 3467 3468 wr32(IGC_ETQF(index), 0); 3469 3470 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3471 etype); 3472 } 3473 3474 static int igc_flex_filter_select(struct igc_adapter *adapter, 3475 struct igc_flex_filter *input, 3476 u32 *fhft) 3477 { 3478 struct igc_hw *hw = &adapter->hw; 3479 u8 fhft_index; 3480 u32 fhftsl; 3481 3482 if (input->index >= MAX_FLEX_FILTER) { 3483 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n"); 3484 return -EINVAL; 3485 } 3486 3487 /* Indirect table select register */ 3488 fhftsl = rd32(IGC_FHFTSL); 3489 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3490 switch (input->index) { 3491 case 0 ... 7: 3492 fhftsl |= 0x00; 3493 break; 3494 case 8 ... 15: 3495 fhftsl |= 0x01; 3496 break; 3497 case 16 ... 23: 3498 fhftsl |= 0x02; 3499 break; 3500 case 24 ... 31: 3501 fhftsl |= 0x03; 3502 break; 3503 } 3504 wr32(IGC_FHFTSL, fhftsl); 3505 3506 /* Normalize index down to host table register */ 3507 fhft_index = input->index % 8; 3508 3509 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3510 IGC_FHFT_EXT(fhft_index - 4); 3511 3512 return 0; 3513 } 3514 3515 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3516 struct igc_flex_filter *input) 3517 { 3518 struct igc_hw *hw = &adapter->hw; 3519 u8 *data = input->data; 3520 u8 *mask = input->mask; 3521 u32 queuing; 3522 u32 fhft; 3523 u32 wufc; 3524 int ret; 3525 int i; 3526 3527 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3528 * out early to avoid surprises later. 3529 */ 3530 if (input->length % 8 != 0) { 3531 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n"); 3532 return -EINVAL; 3533 } 3534 3535 /* Select corresponding flex filter register and get base for host table. */ 3536 ret = igc_flex_filter_select(adapter, input, &fhft); 3537 if (ret) 3538 return ret; 3539 3540 /* When adding a filter globally disable flex filter feature. That is 3541 * recommended within the datasheet. 3542 */ 3543 wufc = rd32(IGC_WUFC); 3544 wufc &= ~IGC_WUFC_FLEX_HQ; 3545 wr32(IGC_WUFC, wufc); 3546 3547 /* Configure filter */ 3548 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3549 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue); 3550 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio); 3551 3552 if (input->immediate_irq) 3553 queuing |= IGC_FHFT_IMM_INT; 3554 3555 if (input->drop) 3556 queuing |= IGC_FHFT_DROP; 3557 3558 wr32(fhft + 0xFC, queuing); 3559 3560 /* Write data (128 byte) and mask (128 bit) */ 3561 for (i = 0; i < 16; ++i) { 3562 const size_t data_idx = i * 8; 3563 const size_t row_idx = i * 16; 3564 u32 dw0 = 3565 (data[data_idx + 0] << 0) | 3566 (data[data_idx + 1] << 8) | 3567 (data[data_idx + 2] << 16) | 3568 (data[data_idx + 3] << 24); 3569 u32 dw1 = 3570 (data[data_idx + 4] << 0) | 3571 (data[data_idx + 5] << 8) | 3572 (data[data_idx + 6] << 16) | 3573 (data[data_idx + 7] << 24); 3574 u32 tmp; 3575 3576 /* Write row: dw0, dw1 and mask */ 3577 wr32(fhft + row_idx, dw0); 3578 wr32(fhft + row_idx + 4, dw1); 3579 3580 /* mask is only valid for MASK(7, 0) */ 3581 tmp = rd32(fhft + row_idx + 8); 3582 tmp &= ~GENMASK(7, 0); 3583 tmp |= mask[i]; 3584 wr32(fhft + row_idx + 8, tmp); 3585 } 3586 3587 /* Enable filter. */ 3588 wufc |= IGC_WUFC_FLEX_HQ; 3589 if (input->index > 8) { 3590 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3591 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3592 3593 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3594 3595 wr32(IGC_WUFC_EXT, wufc_ext); 3596 } else { 3597 wufc |= (IGC_WUFC_FLX0 << input->index); 3598 } 3599 wr32(IGC_WUFC, wufc); 3600 3601 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n", 3602 input->index); 3603 3604 return 0; 3605 } 3606 3607 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3608 const void *src, unsigned int offset, 3609 size_t len, const void *mask) 3610 { 3611 int i; 3612 3613 /* data */ 3614 memcpy(&flex->data[offset], src, len); 3615 3616 /* mask */ 3617 for (i = 0; i < len; ++i) { 3618 const unsigned int idx = i + offset; 3619 const u8 *ptr = mask; 3620 3621 if (mask) { 3622 if (ptr[i] & 0xff) 3623 flex->mask[idx / 8] |= BIT(idx % 8); 3624 3625 continue; 3626 } 3627 3628 flex->mask[idx / 8] |= BIT(idx % 8); 3629 } 3630 } 3631 3632 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3633 { 3634 struct igc_hw *hw = &adapter->hw; 3635 u32 wufc, wufc_ext; 3636 int i; 3637 3638 wufc = rd32(IGC_WUFC); 3639 wufc_ext = rd32(IGC_WUFC_EXT); 3640 3641 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3642 if (i < 8) { 3643 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3644 return i; 3645 } else { 3646 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3647 return i; 3648 } 3649 } 3650 3651 return -ENOSPC; 3652 } 3653 3654 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3655 { 3656 struct igc_hw *hw = &adapter->hw; 3657 u32 wufc, wufc_ext; 3658 3659 wufc = rd32(IGC_WUFC); 3660 wufc_ext = rd32(IGC_WUFC_EXT); 3661 3662 if (wufc & IGC_WUFC_FILTER_MASK) 3663 return true; 3664 3665 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3666 return true; 3667 3668 return false; 3669 } 3670 3671 static int igc_add_flex_filter(struct igc_adapter *adapter, 3672 struct igc_nfc_rule *rule) 3673 { 3674 struct igc_nfc_filter *filter = &rule->filter; 3675 unsigned int eth_offset, user_offset; 3676 struct igc_flex_filter flex = { }; 3677 int ret, index; 3678 bool vlan; 3679 3680 index = igc_find_avail_flex_filter_slot(adapter); 3681 if (index < 0) 3682 return -ENOSPC; 3683 3684 /* Construct the flex filter: 3685 * -> dest_mac [6] 3686 * -> src_mac [6] 3687 * -> tpid [2] 3688 * -> vlan tci [2] 3689 * -> ether type [2] 3690 * -> user data [8] 3691 * -> = 26 bytes => 32 length 3692 */ 3693 flex.index = index; 3694 flex.length = 32; 3695 flex.rx_queue = rule->action; 3696 3697 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3698 eth_offset = vlan ? 16 : 12; 3699 user_offset = vlan ? 18 : 14; 3700 3701 /* Add destination MAC */ 3702 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3703 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3704 ETH_ALEN, NULL); 3705 3706 /* Add source MAC */ 3707 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3708 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3709 ETH_ALEN, NULL); 3710 3711 /* Add VLAN etype */ 3712 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) { 3713 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype); 3714 3715 igc_flex_filter_add_field(&flex, &vlan_etype, 12, 3716 sizeof(vlan_etype), NULL); 3717 } 3718 3719 /* Add VLAN TCI */ 3720 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3721 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3722 sizeof(filter->vlan_tci), NULL); 3723 3724 /* Add Ether type */ 3725 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3726 __be16 etype = cpu_to_be16(filter->etype); 3727 3728 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3729 sizeof(etype), NULL); 3730 } 3731 3732 /* Add user data */ 3733 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3734 igc_flex_filter_add_field(&flex, &filter->user_data, 3735 user_offset, 3736 sizeof(filter->user_data), 3737 filter->user_mask); 3738 3739 /* Add it down to the hardware and enable it. */ 3740 ret = igc_write_flex_filter_ll(adapter, &flex); 3741 if (ret) 3742 return ret; 3743 3744 filter->flex_index = index; 3745 3746 return 0; 3747 } 3748 3749 static void igc_del_flex_filter(struct igc_adapter *adapter, 3750 u16 reg_index) 3751 { 3752 struct igc_hw *hw = &adapter->hw; 3753 u32 wufc; 3754 3755 /* Just disable the filter. The filter table itself is kept 3756 * intact. Another flex_filter_add() should override the "old" data 3757 * then. 3758 */ 3759 if (reg_index > 8) { 3760 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3761 3762 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3763 wr32(IGC_WUFC_EXT, wufc_ext); 3764 } else { 3765 wufc = rd32(IGC_WUFC); 3766 3767 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3768 wr32(IGC_WUFC, wufc); 3769 } 3770 3771 if (igc_flex_filter_in_use(adapter)) 3772 return; 3773 3774 /* No filters are in use, we may disable flex filters */ 3775 wufc = rd32(IGC_WUFC); 3776 wufc &= ~IGC_WUFC_FLEX_HQ; 3777 wr32(IGC_WUFC, wufc); 3778 } 3779 3780 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3781 struct igc_nfc_rule *rule) 3782 { 3783 int err; 3784 3785 if (rule->flex) { 3786 return igc_add_flex_filter(adapter, rule); 3787 } 3788 3789 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3790 err = igc_add_etype_filter(adapter, rule->filter.etype, 3791 rule->action); 3792 if (err) 3793 return err; 3794 } 3795 3796 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3797 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3798 rule->filter.src_addr, rule->action); 3799 if (err) 3800 return err; 3801 } 3802 3803 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3804 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3805 rule->filter.dst_addr, rule->action); 3806 if (err) 3807 return err; 3808 } 3809 3810 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3811 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci); 3812 3813 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3814 if (err) 3815 return err; 3816 } 3817 3818 return 0; 3819 } 3820 3821 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3822 const struct igc_nfc_rule *rule) 3823 { 3824 if (rule->flex) { 3825 igc_del_flex_filter(adapter, rule->filter.flex_index); 3826 return; 3827 } 3828 3829 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3830 igc_del_etype_filter(adapter, rule->filter.etype); 3831 3832 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3833 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci); 3834 3835 igc_del_vlan_prio_filter(adapter, prio); 3836 } 3837 3838 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3839 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3840 rule->filter.src_addr); 3841 3842 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3843 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3844 rule->filter.dst_addr); 3845 } 3846 3847 /** 3848 * igc_get_nfc_rule() - Get NFC rule 3849 * @adapter: Pointer to adapter 3850 * @location: Rule location 3851 * 3852 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3853 * 3854 * Return: Pointer to NFC rule at @location. If not found, NULL. 3855 */ 3856 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3857 u32 location) 3858 { 3859 struct igc_nfc_rule *rule; 3860 3861 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3862 if (rule->location == location) 3863 return rule; 3864 if (rule->location > location) 3865 break; 3866 } 3867 3868 return NULL; 3869 } 3870 3871 /** 3872 * igc_del_nfc_rule() - Delete NFC rule 3873 * @adapter: Pointer to adapter 3874 * @rule: Pointer to rule to be deleted 3875 * 3876 * Disable NFC rule in hardware and delete it from adapter. 3877 * 3878 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3879 */ 3880 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3881 { 3882 igc_disable_nfc_rule(adapter, rule); 3883 3884 list_del(&rule->list); 3885 adapter->nfc_rule_count--; 3886 3887 kfree(rule); 3888 } 3889 3890 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3891 { 3892 struct igc_nfc_rule *rule, *tmp; 3893 3894 mutex_lock(&adapter->nfc_rule_lock); 3895 3896 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3897 igc_del_nfc_rule(adapter, rule); 3898 3899 mutex_unlock(&adapter->nfc_rule_lock); 3900 } 3901 3902 /** 3903 * igc_add_nfc_rule() - Add NFC rule 3904 * @adapter: Pointer to adapter 3905 * @rule: Pointer to rule to be added 3906 * 3907 * Enable NFC rule in hardware and add it to adapter. 3908 * 3909 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3910 * 3911 * Return: 0 on success, negative errno on failure. 3912 */ 3913 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3914 { 3915 struct igc_nfc_rule *pred, *cur; 3916 int err; 3917 3918 err = igc_enable_nfc_rule(adapter, rule); 3919 if (err) 3920 return err; 3921 3922 pred = NULL; 3923 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3924 if (cur->location >= rule->location) 3925 break; 3926 pred = cur; 3927 } 3928 3929 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3930 adapter->nfc_rule_count++; 3931 return 0; 3932 } 3933 3934 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3935 { 3936 struct igc_nfc_rule *rule; 3937 3938 mutex_lock(&adapter->nfc_rule_lock); 3939 3940 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3941 igc_enable_nfc_rule(adapter, rule); 3942 3943 mutex_unlock(&adapter->nfc_rule_lock); 3944 } 3945 3946 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3947 { 3948 struct igc_adapter *adapter = netdev_priv(netdev); 3949 3950 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3951 } 3952 3953 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3954 { 3955 struct igc_adapter *adapter = netdev_priv(netdev); 3956 3957 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3958 return 0; 3959 } 3960 3961 /** 3962 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3963 * @netdev: network interface device structure 3964 * 3965 * The set_rx_mode entry point is called whenever the unicast or multicast 3966 * address lists or the network interface flags are updated. This routine is 3967 * responsible for configuring the hardware for proper unicast, multicast, 3968 * promiscuous mode, and all-multi behavior. 3969 */ 3970 static void igc_set_rx_mode(struct net_device *netdev) 3971 { 3972 struct igc_adapter *adapter = netdev_priv(netdev); 3973 struct igc_hw *hw = &adapter->hw; 3974 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3975 int count; 3976 3977 /* Check for Promiscuous and All Multicast modes */ 3978 if (netdev->flags & IFF_PROMISC) { 3979 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3980 } else { 3981 if (netdev->flags & IFF_ALLMULTI) { 3982 rctl |= IGC_RCTL_MPE; 3983 } else { 3984 /* Write addresses to the MTA, if the attempt fails 3985 * then we should just turn on promiscuous mode so 3986 * that we can at least receive multicast traffic 3987 */ 3988 count = igc_write_mc_addr_list(netdev); 3989 if (count < 0) 3990 rctl |= IGC_RCTL_MPE; 3991 } 3992 } 3993 3994 /* Write addresses to available RAR registers, if there is not 3995 * sufficient space to store all the addresses then enable 3996 * unicast promiscuous mode 3997 */ 3998 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3999 rctl |= IGC_RCTL_UPE; 4000 4001 /* update state of unicast and multicast */ 4002 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 4003 wr32(IGC_RCTL, rctl); 4004 4005 #if (PAGE_SIZE < 8192) 4006 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 4007 rlpml = IGC_MAX_FRAME_BUILD_SKB; 4008 #endif 4009 wr32(IGC_RLPML, rlpml); 4010 } 4011 4012 /** 4013 * igc_configure - configure the hardware for RX and TX 4014 * @adapter: private board structure 4015 */ 4016 static void igc_configure(struct igc_adapter *adapter) 4017 { 4018 struct net_device *netdev = adapter->netdev; 4019 int i = 0; 4020 4021 igc_get_hw_control(adapter); 4022 igc_set_rx_mode(netdev); 4023 4024 igc_restore_vlan(adapter); 4025 4026 igc_setup_tctl(adapter); 4027 igc_setup_mrqc(adapter); 4028 igc_setup_rctl(adapter); 4029 4030 igc_set_default_mac_filter(adapter); 4031 igc_restore_nfc_rules(adapter); 4032 4033 igc_configure_tx(adapter); 4034 igc_configure_rx(adapter); 4035 4036 igc_rx_fifo_flush_base(&adapter->hw); 4037 4038 /* call igc_desc_unused which always leaves 4039 * at least 1 descriptor unused to make sure 4040 * next_to_use != next_to_clean 4041 */ 4042 for (i = 0; i < adapter->num_rx_queues; i++) { 4043 struct igc_ring *ring = adapter->rx_ring[i]; 4044 4045 if (ring->xsk_pool) 4046 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 4047 else 4048 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 4049 } 4050 } 4051 4052 /** 4053 * igc_write_ivar - configure ivar for given MSI-X vector 4054 * @hw: pointer to the HW structure 4055 * @msix_vector: vector number we are allocating to a given ring 4056 * @index: row index of IVAR register to write within IVAR table 4057 * @offset: column offset of in IVAR, should be multiple of 8 4058 * 4059 * The IVAR table consists of 2 columns, 4060 * each containing an cause allocation for an Rx and Tx ring, and a 4061 * variable number of rows depending on the number of queues supported. 4062 */ 4063 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 4064 int index, int offset) 4065 { 4066 u32 ivar = array_rd32(IGC_IVAR0, index); 4067 4068 /* clear any bits that are currently set */ 4069 ivar &= ~((u32)0xFF << offset); 4070 4071 /* write vector and valid bit */ 4072 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 4073 4074 array_wr32(IGC_IVAR0, index, ivar); 4075 } 4076 4077 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 4078 { 4079 struct igc_adapter *adapter = q_vector->adapter; 4080 struct igc_hw *hw = &adapter->hw; 4081 int rx_queue = IGC_N0_QUEUE; 4082 int tx_queue = IGC_N0_QUEUE; 4083 4084 if (q_vector->rx.ring) 4085 rx_queue = q_vector->rx.ring->reg_idx; 4086 if (q_vector->tx.ring) 4087 tx_queue = q_vector->tx.ring->reg_idx; 4088 4089 switch (hw->mac.type) { 4090 case igc_i225: 4091 if (rx_queue > IGC_N0_QUEUE) 4092 igc_write_ivar(hw, msix_vector, 4093 rx_queue >> 1, 4094 (rx_queue & 0x1) << 4); 4095 if (tx_queue > IGC_N0_QUEUE) 4096 igc_write_ivar(hw, msix_vector, 4097 tx_queue >> 1, 4098 ((tx_queue & 0x1) << 4) + 8); 4099 q_vector->eims_value = BIT(msix_vector); 4100 break; 4101 default: 4102 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 4103 break; 4104 } 4105 4106 /* add q_vector eims value to global eims_enable_mask */ 4107 adapter->eims_enable_mask |= q_vector->eims_value; 4108 4109 /* configure q_vector to set itr on first interrupt */ 4110 q_vector->set_itr = 1; 4111 } 4112 4113 /** 4114 * igc_configure_msix - Configure MSI-X hardware 4115 * @adapter: Pointer to adapter structure 4116 * 4117 * igc_configure_msix sets up the hardware to properly 4118 * generate MSI-X interrupts. 4119 */ 4120 static void igc_configure_msix(struct igc_adapter *adapter) 4121 { 4122 struct igc_hw *hw = &adapter->hw; 4123 int i, vector = 0; 4124 u32 tmp; 4125 4126 adapter->eims_enable_mask = 0; 4127 4128 /* set vector for other causes, i.e. link changes */ 4129 switch (hw->mac.type) { 4130 case igc_i225: 4131 /* Turn on MSI-X capability first, or our settings 4132 * won't stick. And it will take days to debug. 4133 */ 4134 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 4135 IGC_GPIE_PBA | IGC_GPIE_EIAME | 4136 IGC_GPIE_NSICR); 4137 4138 /* enable msix_other interrupt */ 4139 adapter->eims_other = BIT(vector); 4140 tmp = (vector++ | IGC_IVAR_VALID) << 8; 4141 4142 wr32(IGC_IVAR_MISC, tmp); 4143 break; 4144 default: 4145 /* do nothing, since nothing else supports MSI-X */ 4146 break; 4147 } /* switch (hw->mac.type) */ 4148 4149 adapter->eims_enable_mask |= adapter->eims_other; 4150 4151 for (i = 0; i < adapter->num_q_vectors; i++) 4152 igc_assign_vector(adapter->q_vector[i], vector++); 4153 4154 wrfl(); 4155 } 4156 4157 /** 4158 * igc_irq_enable - Enable default interrupt generation settings 4159 * @adapter: board private structure 4160 */ 4161 static void igc_irq_enable(struct igc_adapter *adapter) 4162 { 4163 struct igc_hw *hw = &adapter->hw; 4164 4165 if (adapter->msix_entries) { 4166 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 4167 u32 regval = rd32(IGC_EIAC); 4168 4169 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 4170 regval = rd32(IGC_EIAM); 4171 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 4172 wr32(IGC_EIMS, adapter->eims_enable_mask); 4173 wr32(IGC_IMS, ims); 4174 } else { 4175 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4176 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4177 } 4178 } 4179 4180 /** 4181 * igc_irq_disable - Mask off interrupt generation on the NIC 4182 * @adapter: board private structure 4183 */ 4184 static void igc_irq_disable(struct igc_adapter *adapter) 4185 { 4186 struct igc_hw *hw = &adapter->hw; 4187 4188 if (adapter->msix_entries) { 4189 u32 regval = rd32(IGC_EIAM); 4190 4191 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 4192 wr32(IGC_EIMC, adapter->eims_enable_mask); 4193 regval = rd32(IGC_EIAC); 4194 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 4195 } 4196 4197 wr32(IGC_IAM, 0); 4198 wr32(IGC_IMC, ~0); 4199 wrfl(); 4200 4201 if (adapter->msix_entries) { 4202 int vector = 0, i; 4203 4204 synchronize_irq(adapter->msix_entries[vector++].vector); 4205 4206 for (i = 0; i < adapter->num_q_vectors; i++) 4207 synchronize_irq(adapter->msix_entries[vector++].vector); 4208 } else { 4209 synchronize_irq(adapter->pdev->irq); 4210 } 4211 } 4212 4213 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4214 const u32 max_rss_queues) 4215 { 4216 /* Determine if we need to pair queues. */ 4217 /* If rss_queues > half of max_rss_queues, pair the queues in 4218 * order to conserve interrupts due to limited supply. 4219 */ 4220 if (adapter->rss_queues > (max_rss_queues / 2)) 4221 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4222 else 4223 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4224 } 4225 4226 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4227 { 4228 return IGC_MAX_RX_QUEUES; 4229 } 4230 4231 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4232 { 4233 u32 max_rss_queues; 4234 4235 max_rss_queues = igc_get_max_rss_queues(adapter); 4236 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4237 4238 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4239 } 4240 4241 /** 4242 * igc_reset_q_vector - Reset config for interrupt vector 4243 * @adapter: board private structure to initialize 4244 * @v_idx: Index of vector to be reset 4245 * 4246 * If NAPI is enabled it will delete any references to the 4247 * NAPI struct. This is preparation for igc_free_q_vector. 4248 */ 4249 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4250 { 4251 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4252 4253 /* if we're coming from igc_set_interrupt_capability, the vectors are 4254 * not yet allocated 4255 */ 4256 if (!q_vector) 4257 return; 4258 4259 if (q_vector->tx.ring) 4260 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4261 4262 if (q_vector->rx.ring) 4263 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4264 4265 netif_napi_del(&q_vector->napi); 4266 } 4267 4268 /** 4269 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4270 * @adapter: board private structure to initialize 4271 * @v_idx: Index of vector to be freed 4272 * 4273 * This function frees the memory allocated to the q_vector. 4274 */ 4275 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4276 { 4277 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4278 4279 adapter->q_vector[v_idx] = NULL; 4280 4281 /* igc_get_stats64() might access the rings on this vector, 4282 * we must wait a grace period before freeing it. 4283 */ 4284 if (q_vector) 4285 kfree_rcu(q_vector, rcu); 4286 } 4287 4288 /** 4289 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4290 * @adapter: board private structure to initialize 4291 * 4292 * This function frees the memory allocated to the q_vectors. In addition if 4293 * NAPI is enabled it will delete any references to the NAPI struct prior 4294 * to freeing the q_vector. 4295 */ 4296 static void igc_free_q_vectors(struct igc_adapter *adapter) 4297 { 4298 int v_idx = adapter->num_q_vectors; 4299 4300 adapter->num_tx_queues = 0; 4301 adapter->num_rx_queues = 0; 4302 adapter->num_q_vectors = 0; 4303 4304 while (v_idx--) { 4305 igc_reset_q_vector(adapter, v_idx); 4306 igc_free_q_vector(adapter, v_idx); 4307 } 4308 } 4309 4310 /** 4311 * igc_update_itr - update the dynamic ITR value based on statistics 4312 * @q_vector: pointer to q_vector 4313 * @ring_container: ring info to update the itr for 4314 * 4315 * Stores a new ITR value based on packets and byte 4316 * counts during the last interrupt. The advantage of per interrupt 4317 * computation is faster updates and more accurate ITR for the current 4318 * traffic pattern. Constants in this function were computed 4319 * based on theoretical maximum wire speed and thresholds were set based 4320 * on testing data as well as attempting to minimize response time 4321 * while increasing bulk throughput. 4322 * NOTE: These calculations are only valid when operating in a single- 4323 * queue environment. 4324 */ 4325 static void igc_update_itr(struct igc_q_vector *q_vector, 4326 struct igc_ring_container *ring_container) 4327 { 4328 unsigned int packets = ring_container->total_packets; 4329 unsigned int bytes = ring_container->total_bytes; 4330 u8 itrval = ring_container->itr; 4331 4332 /* no packets, exit with status unchanged */ 4333 if (packets == 0) 4334 return; 4335 4336 switch (itrval) { 4337 case lowest_latency: 4338 /* handle TSO and jumbo frames */ 4339 if (bytes / packets > 8000) 4340 itrval = bulk_latency; 4341 else if ((packets < 5) && (bytes > 512)) 4342 itrval = low_latency; 4343 break; 4344 case low_latency: /* 50 usec aka 20000 ints/s */ 4345 if (bytes > 10000) { 4346 /* this if handles the TSO accounting */ 4347 if (bytes / packets > 8000) 4348 itrval = bulk_latency; 4349 else if ((packets < 10) || ((bytes / packets) > 1200)) 4350 itrval = bulk_latency; 4351 else if ((packets > 35)) 4352 itrval = lowest_latency; 4353 } else if (bytes / packets > 2000) { 4354 itrval = bulk_latency; 4355 } else if (packets <= 2 && bytes < 512) { 4356 itrval = lowest_latency; 4357 } 4358 break; 4359 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4360 if (bytes > 25000) { 4361 if (packets > 35) 4362 itrval = low_latency; 4363 } else if (bytes < 1500) { 4364 itrval = low_latency; 4365 } 4366 break; 4367 } 4368 4369 /* clear work counters since we have the values we need */ 4370 ring_container->total_bytes = 0; 4371 ring_container->total_packets = 0; 4372 4373 /* write updated itr to ring container */ 4374 ring_container->itr = itrval; 4375 } 4376 4377 static void igc_set_itr(struct igc_q_vector *q_vector) 4378 { 4379 struct igc_adapter *adapter = q_vector->adapter; 4380 u32 new_itr = q_vector->itr_val; 4381 u8 current_itr = 0; 4382 4383 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4384 switch (adapter->link_speed) { 4385 case SPEED_10: 4386 case SPEED_100: 4387 current_itr = 0; 4388 new_itr = IGC_4K_ITR; 4389 goto set_itr_now; 4390 default: 4391 break; 4392 } 4393 4394 igc_update_itr(q_vector, &q_vector->tx); 4395 igc_update_itr(q_vector, &q_vector->rx); 4396 4397 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4398 4399 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4400 if (current_itr == lowest_latency && 4401 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4402 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4403 current_itr = low_latency; 4404 4405 switch (current_itr) { 4406 /* counts and packets in update_itr are dependent on these numbers */ 4407 case lowest_latency: 4408 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4409 break; 4410 case low_latency: 4411 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4412 break; 4413 case bulk_latency: 4414 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4415 break; 4416 default: 4417 break; 4418 } 4419 4420 set_itr_now: 4421 if (new_itr != q_vector->itr_val) { 4422 /* this attempts to bias the interrupt rate towards Bulk 4423 * by adding intermediate steps when interrupt rate is 4424 * increasing 4425 */ 4426 new_itr = new_itr > q_vector->itr_val ? 4427 max((new_itr * q_vector->itr_val) / 4428 (new_itr + (q_vector->itr_val >> 2)), 4429 new_itr) : new_itr; 4430 /* Don't write the value here; it resets the adapter's 4431 * internal timer, and causes us to delay far longer than 4432 * we should between interrupts. Instead, we write the ITR 4433 * value at the beginning of the next interrupt so the timing 4434 * ends up being correct. 4435 */ 4436 q_vector->itr_val = new_itr; 4437 q_vector->set_itr = 1; 4438 } 4439 } 4440 4441 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4442 { 4443 int v_idx = adapter->num_q_vectors; 4444 4445 if (adapter->msix_entries) { 4446 pci_disable_msix(adapter->pdev); 4447 kfree(adapter->msix_entries); 4448 adapter->msix_entries = NULL; 4449 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4450 pci_disable_msi(adapter->pdev); 4451 } 4452 4453 while (v_idx--) 4454 igc_reset_q_vector(adapter, v_idx); 4455 } 4456 4457 /** 4458 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4459 * @adapter: Pointer to adapter structure 4460 * @msix: boolean value for MSI-X capability 4461 * 4462 * Attempt to configure interrupts using the best available 4463 * capabilities of the hardware and kernel. 4464 */ 4465 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4466 bool msix) 4467 { 4468 int numvecs, i; 4469 int err; 4470 4471 if (!msix) 4472 goto msi_only; 4473 adapter->flags |= IGC_FLAG_HAS_MSIX; 4474 4475 /* Number of supported queues. */ 4476 adapter->num_rx_queues = adapter->rss_queues; 4477 4478 adapter->num_tx_queues = adapter->rss_queues; 4479 4480 /* start with one vector for every Rx queue */ 4481 numvecs = adapter->num_rx_queues; 4482 4483 /* if Tx handler is separate add 1 for every Tx queue */ 4484 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4485 numvecs += adapter->num_tx_queues; 4486 4487 /* store the number of vectors reserved for queues */ 4488 adapter->num_q_vectors = numvecs; 4489 4490 /* add 1 vector for link status interrupts */ 4491 numvecs++; 4492 4493 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4494 GFP_KERNEL); 4495 4496 if (!adapter->msix_entries) 4497 return; 4498 4499 /* populate entry values */ 4500 for (i = 0; i < numvecs; i++) 4501 adapter->msix_entries[i].entry = i; 4502 4503 err = pci_enable_msix_range(adapter->pdev, 4504 adapter->msix_entries, 4505 numvecs, 4506 numvecs); 4507 if (err > 0) 4508 return; 4509 4510 kfree(adapter->msix_entries); 4511 adapter->msix_entries = NULL; 4512 4513 igc_reset_interrupt_capability(adapter); 4514 4515 msi_only: 4516 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4517 4518 adapter->rss_queues = 1; 4519 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4520 adapter->num_rx_queues = 1; 4521 adapter->num_tx_queues = 1; 4522 adapter->num_q_vectors = 1; 4523 if (!pci_enable_msi(adapter->pdev)) 4524 adapter->flags |= IGC_FLAG_HAS_MSI; 4525 } 4526 4527 /** 4528 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4529 * @q_vector: pointer to q_vector 4530 * 4531 * Stores a new ITR value based on strictly on packet size. This 4532 * algorithm is less sophisticated than that used in igc_update_itr, 4533 * due to the difficulty of synchronizing statistics across multiple 4534 * receive rings. The divisors and thresholds used by this function 4535 * were determined based on theoretical maximum wire speed and testing 4536 * data, in order to minimize response time while increasing bulk 4537 * throughput. 4538 * NOTE: This function is called only when operating in a multiqueue 4539 * receive environment. 4540 */ 4541 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4542 { 4543 struct igc_adapter *adapter = q_vector->adapter; 4544 int new_val = q_vector->itr_val; 4545 int avg_wire_size = 0; 4546 unsigned int packets; 4547 4548 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4549 * ints/sec - ITR timer value of 120 ticks. 4550 */ 4551 switch (adapter->link_speed) { 4552 case SPEED_10: 4553 case SPEED_100: 4554 new_val = IGC_4K_ITR; 4555 goto set_itr_val; 4556 default: 4557 break; 4558 } 4559 4560 packets = q_vector->rx.total_packets; 4561 if (packets) 4562 avg_wire_size = q_vector->rx.total_bytes / packets; 4563 4564 packets = q_vector->tx.total_packets; 4565 if (packets) 4566 avg_wire_size = max_t(u32, avg_wire_size, 4567 q_vector->tx.total_bytes / packets); 4568 4569 /* if avg_wire_size isn't set no work was done */ 4570 if (!avg_wire_size) 4571 goto clear_counts; 4572 4573 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4574 avg_wire_size += 24; 4575 4576 /* Don't starve jumbo frames */ 4577 avg_wire_size = min(avg_wire_size, 3000); 4578 4579 /* Give a little boost to mid-size frames */ 4580 if (avg_wire_size > 300 && avg_wire_size < 1200) 4581 new_val = avg_wire_size / 3; 4582 else 4583 new_val = avg_wire_size / 2; 4584 4585 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4586 if (new_val < IGC_20K_ITR && 4587 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4588 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4589 new_val = IGC_20K_ITR; 4590 4591 set_itr_val: 4592 if (new_val != q_vector->itr_val) { 4593 q_vector->itr_val = new_val; 4594 q_vector->set_itr = 1; 4595 } 4596 clear_counts: 4597 q_vector->rx.total_bytes = 0; 4598 q_vector->rx.total_packets = 0; 4599 q_vector->tx.total_bytes = 0; 4600 q_vector->tx.total_packets = 0; 4601 } 4602 4603 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4604 { 4605 struct igc_adapter *adapter = q_vector->adapter; 4606 struct igc_hw *hw = &adapter->hw; 4607 4608 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4609 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4610 if (adapter->num_q_vectors == 1) 4611 igc_set_itr(q_vector); 4612 else 4613 igc_update_ring_itr(q_vector); 4614 } 4615 4616 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4617 if (adapter->msix_entries) 4618 wr32(IGC_EIMS, q_vector->eims_value); 4619 else 4620 igc_irq_enable(adapter); 4621 } 4622 } 4623 4624 static void igc_add_ring(struct igc_ring *ring, 4625 struct igc_ring_container *head) 4626 { 4627 head->ring = ring; 4628 head->count++; 4629 } 4630 4631 /** 4632 * igc_cache_ring_register - Descriptor ring to register mapping 4633 * @adapter: board private structure to initialize 4634 * 4635 * Once we know the feature-set enabled for the device, we'll cache 4636 * the register offset the descriptor ring is assigned to. 4637 */ 4638 static void igc_cache_ring_register(struct igc_adapter *adapter) 4639 { 4640 int i = 0, j = 0; 4641 4642 switch (adapter->hw.mac.type) { 4643 case igc_i225: 4644 default: 4645 for (; i < adapter->num_rx_queues; i++) 4646 adapter->rx_ring[i]->reg_idx = i; 4647 for (; j < adapter->num_tx_queues; j++) 4648 adapter->tx_ring[j]->reg_idx = j; 4649 break; 4650 } 4651 } 4652 4653 /** 4654 * igc_poll - NAPI Rx polling callback 4655 * @napi: napi polling structure 4656 * @budget: count of how many packets we should handle 4657 */ 4658 static int igc_poll(struct napi_struct *napi, int budget) 4659 { 4660 struct igc_q_vector *q_vector = container_of(napi, 4661 struct igc_q_vector, 4662 napi); 4663 struct igc_ring *rx_ring = q_vector->rx.ring; 4664 bool clean_complete = true; 4665 int work_done = 0; 4666 4667 if (q_vector->tx.ring) 4668 clean_complete = igc_clean_tx_irq(q_vector, budget); 4669 4670 if (rx_ring) { 4671 int cleaned = rx_ring->xsk_pool ? 4672 igc_clean_rx_irq_zc(q_vector, budget) : 4673 igc_clean_rx_irq(q_vector, budget); 4674 4675 work_done += cleaned; 4676 if (cleaned >= budget) 4677 clean_complete = false; 4678 } 4679 4680 /* If all work not completed, return budget and keep polling */ 4681 if (!clean_complete) 4682 return budget; 4683 4684 /* Exit the polling mode, but don't re-enable interrupts if stack might 4685 * poll us due to busy-polling 4686 */ 4687 if (likely(napi_complete_done(napi, work_done))) 4688 igc_ring_irq_enable(q_vector); 4689 4690 return min(work_done, budget - 1); 4691 } 4692 4693 /** 4694 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4695 * @adapter: board private structure to initialize 4696 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4697 * @v_idx: index of vector in adapter struct 4698 * @txr_count: total number of Tx rings to allocate 4699 * @txr_idx: index of first Tx ring to allocate 4700 * @rxr_count: total number of Rx rings to allocate 4701 * @rxr_idx: index of first Rx ring to allocate 4702 * 4703 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4704 */ 4705 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4706 unsigned int v_count, unsigned int v_idx, 4707 unsigned int txr_count, unsigned int txr_idx, 4708 unsigned int rxr_count, unsigned int rxr_idx) 4709 { 4710 struct igc_q_vector *q_vector; 4711 struct igc_ring *ring; 4712 int ring_count; 4713 4714 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4715 if (txr_count > 1 || rxr_count > 1) 4716 return -ENOMEM; 4717 4718 ring_count = txr_count + rxr_count; 4719 4720 /* allocate q_vector and rings */ 4721 q_vector = adapter->q_vector[v_idx]; 4722 if (!q_vector) 4723 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4724 GFP_KERNEL); 4725 else 4726 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4727 if (!q_vector) 4728 return -ENOMEM; 4729 4730 /* initialize NAPI */ 4731 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4732 4733 /* tie q_vector and adapter together */ 4734 adapter->q_vector[v_idx] = q_vector; 4735 q_vector->adapter = adapter; 4736 4737 /* initialize work limits */ 4738 q_vector->tx.work_limit = adapter->tx_work_limit; 4739 4740 /* initialize ITR configuration */ 4741 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4742 q_vector->itr_val = IGC_START_ITR; 4743 4744 /* initialize pointer to rings */ 4745 ring = q_vector->ring; 4746 4747 /* initialize ITR */ 4748 if (rxr_count) { 4749 /* rx or rx/tx vector */ 4750 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4751 q_vector->itr_val = adapter->rx_itr_setting; 4752 } else { 4753 /* tx only vector */ 4754 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4755 q_vector->itr_val = adapter->tx_itr_setting; 4756 } 4757 4758 if (txr_count) { 4759 /* assign generic ring traits */ 4760 ring->dev = &adapter->pdev->dev; 4761 ring->netdev = adapter->netdev; 4762 4763 /* configure backlink on ring */ 4764 ring->q_vector = q_vector; 4765 4766 /* update q_vector Tx values */ 4767 igc_add_ring(ring, &q_vector->tx); 4768 4769 /* apply Tx specific ring traits */ 4770 ring->count = adapter->tx_ring_count; 4771 ring->queue_index = txr_idx; 4772 4773 /* assign ring to adapter */ 4774 adapter->tx_ring[txr_idx] = ring; 4775 4776 /* push pointer to next ring */ 4777 ring++; 4778 } 4779 4780 if (rxr_count) { 4781 /* assign generic ring traits */ 4782 ring->dev = &adapter->pdev->dev; 4783 ring->netdev = adapter->netdev; 4784 4785 /* configure backlink on ring */ 4786 ring->q_vector = q_vector; 4787 4788 /* update q_vector Rx values */ 4789 igc_add_ring(ring, &q_vector->rx); 4790 4791 /* apply Rx specific ring traits */ 4792 ring->count = adapter->rx_ring_count; 4793 ring->queue_index = rxr_idx; 4794 4795 /* assign ring to adapter */ 4796 adapter->rx_ring[rxr_idx] = ring; 4797 } 4798 4799 return 0; 4800 } 4801 4802 /** 4803 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4804 * @adapter: board private structure to initialize 4805 * 4806 * We allocate one q_vector per queue interrupt. If allocation fails we 4807 * return -ENOMEM. 4808 */ 4809 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4810 { 4811 int rxr_remaining = adapter->num_rx_queues; 4812 int txr_remaining = adapter->num_tx_queues; 4813 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4814 int q_vectors = adapter->num_q_vectors; 4815 int err; 4816 4817 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4818 for (; rxr_remaining; v_idx++) { 4819 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4820 0, 0, 1, rxr_idx); 4821 4822 if (err) 4823 goto err_out; 4824 4825 /* update counts and index */ 4826 rxr_remaining--; 4827 rxr_idx++; 4828 } 4829 } 4830 4831 for (; v_idx < q_vectors; v_idx++) { 4832 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4833 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4834 4835 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4836 tqpv, txr_idx, rqpv, rxr_idx); 4837 4838 if (err) 4839 goto err_out; 4840 4841 /* update counts and index */ 4842 rxr_remaining -= rqpv; 4843 txr_remaining -= tqpv; 4844 rxr_idx++; 4845 txr_idx++; 4846 } 4847 4848 return 0; 4849 4850 err_out: 4851 adapter->num_tx_queues = 0; 4852 adapter->num_rx_queues = 0; 4853 adapter->num_q_vectors = 0; 4854 4855 while (v_idx--) 4856 igc_free_q_vector(adapter, v_idx); 4857 4858 return -ENOMEM; 4859 } 4860 4861 /** 4862 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4863 * @adapter: Pointer to adapter structure 4864 * @msix: boolean for MSI-X capability 4865 * 4866 * This function initializes the interrupts and allocates all of the queues. 4867 */ 4868 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4869 { 4870 struct net_device *dev = adapter->netdev; 4871 int err = 0; 4872 4873 igc_set_interrupt_capability(adapter, msix); 4874 4875 err = igc_alloc_q_vectors(adapter); 4876 if (err) { 4877 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4878 goto err_alloc_q_vectors; 4879 } 4880 4881 igc_cache_ring_register(adapter); 4882 4883 return 0; 4884 4885 err_alloc_q_vectors: 4886 igc_reset_interrupt_capability(adapter); 4887 return err; 4888 } 4889 4890 /** 4891 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4892 * @adapter: board private structure to initialize 4893 * 4894 * igc_sw_init initializes the Adapter private data structure. 4895 * Fields are initialized based on PCI device information and 4896 * OS network device settings (MTU size). 4897 */ 4898 static int igc_sw_init(struct igc_adapter *adapter) 4899 { 4900 struct net_device *netdev = adapter->netdev; 4901 struct pci_dev *pdev = adapter->pdev; 4902 struct igc_hw *hw = &adapter->hw; 4903 4904 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4905 4906 /* set default ring sizes */ 4907 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4908 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4909 4910 /* set default ITR values */ 4911 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4912 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4913 4914 /* set default work limits */ 4915 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4916 4917 /* adjust max frame to be at least the size of a standard frame */ 4918 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4919 VLAN_HLEN; 4920 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4921 4922 mutex_init(&adapter->nfc_rule_lock); 4923 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4924 adapter->nfc_rule_count = 0; 4925 4926 spin_lock_init(&adapter->stats64_lock); 4927 spin_lock_init(&adapter->qbv_tx_lock); 4928 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4929 adapter->flags |= IGC_FLAG_HAS_MSIX; 4930 4931 igc_init_queue_configuration(adapter); 4932 4933 /* This call may decrease the number of queues */ 4934 if (igc_init_interrupt_scheme(adapter, true)) { 4935 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4936 return -ENOMEM; 4937 } 4938 4939 /* Explicitly disable IRQ since the NIC can be in any state. */ 4940 igc_irq_disable(adapter); 4941 4942 set_bit(__IGC_DOWN, &adapter->state); 4943 4944 return 0; 4945 } 4946 4947 /** 4948 * igc_up - Open the interface and prepare it to handle traffic 4949 * @adapter: board private structure 4950 */ 4951 void igc_up(struct igc_adapter *adapter) 4952 { 4953 struct igc_hw *hw = &adapter->hw; 4954 int i = 0; 4955 4956 /* hardware has been reset, we need to reload some things */ 4957 igc_configure(adapter); 4958 4959 clear_bit(__IGC_DOWN, &adapter->state); 4960 4961 for (i = 0; i < adapter->num_q_vectors; i++) 4962 napi_enable(&adapter->q_vector[i]->napi); 4963 4964 if (adapter->msix_entries) 4965 igc_configure_msix(adapter); 4966 else 4967 igc_assign_vector(adapter->q_vector[0], 0); 4968 4969 /* Clear any pending interrupts. */ 4970 rd32(IGC_ICR); 4971 igc_irq_enable(adapter); 4972 4973 netif_tx_start_all_queues(adapter->netdev); 4974 4975 /* start the watchdog. */ 4976 hw->mac.get_link_status = true; 4977 schedule_work(&adapter->watchdog_task); 4978 } 4979 4980 /** 4981 * igc_update_stats - Update the board statistics counters 4982 * @adapter: board private structure 4983 */ 4984 void igc_update_stats(struct igc_adapter *adapter) 4985 { 4986 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4987 struct pci_dev *pdev = adapter->pdev; 4988 struct igc_hw *hw = &adapter->hw; 4989 u64 _bytes, _packets; 4990 u64 bytes, packets; 4991 unsigned int start; 4992 u32 mpc; 4993 int i; 4994 4995 /* Prevent stats update while adapter is being reset, or if the pci 4996 * connection is down. 4997 */ 4998 if (adapter->link_speed == 0) 4999 return; 5000 if (pci_channel_offline(pdev)) 5001 return; 5002 5003 packets = 0; 5004 bytes = 0; 5005 5006 rcu_read_lock(); 5007 for (i = 0; i < adapter->num_rx_queues; i++) { 5008 struct igc_ring *ring = adapter->rx_ring[i]; 5009 u32 rqdpc = rd32(IGC_RQDPC(i)); 5010 5011 if (hw->mac.type >= igc_i225) 5012 wr32(IGC_RQDPC(i), 0); 5013 5014 if (rqdpc) { 5015 ring->rx_stats.drops += rqdpc; 5016 net_stats->rx_fifo_errors += rqdpc; 5017 } 5018 5019 do { 5020 start = u64_stats_fetch_begin(&ring->rx_syncp); 5021 _bytes = ring->rx_stats.bytes; 5022 _packets = ring->rx_stats.packets; 5023 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 5024 bytes += _bytes; 5025 packets += _packets; 5026 } 5027 5028 net_stats->rx_bytes = bytes; 5029 net_stats->rx_packets = packets; 5030 5031 packets = 0; 5032 bytes = 0; 5033 for (i = 0; i < adapter->num_tx_queues; i++) { 5034 struct igc_ring *ring = adapter->tx_ring[i]; 5035 5036 do { 5037 start = u64_stats_fetch_begin(&ring->tx_syncp); 5038 _bytes = ring->tx_stats.bytes; 5039 _packets = ring->tx_stats.packets; 5040 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 5041 bytes += _bytes; 5042 packets += _packets; 5043 } 5044 net_stats->tx_bytes = bytes; 5045 net_stats->tx_packets = packets; 5046 rcu_read_unlock(); 5047 5048 /* read stats registers */ 5049 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 5050 adapter->stats.gprc += rd32(IGC_GPRC); 5051 adapter->stats.gorc += rd32(IGC_GORCL); 5052 rd32(IGC_GORCH); /* clear GORCL */ 5053 adapter->stats.bprc += rd32(IGC_BPRC); 5054 adapter->stats.mprc += rd32(IGC_MPRC); 5055 adapter->stats.roc += rd32(IGC_ROC); 5056 5057 adapter->stats.prc64 += rd32(IGC_PRC64); 5058 adapter->stats.prc127 += rd32(IGC_PRC127); 5059 adapter->stats.prc255 += rd32(IGC_PRC255); 5060 adapter->stats.prc511 += rd32(IGC_PRC511); 5061 adapter->stats.prc1023 += rd32(IGC_PRC1023); 5062 adapter->stats.prc1522 += rd32(IGC_PRC1522); 5063 adapter->stats.tlpic += rd32(IGC_TLPIC); 5064 adapter->stats.rlpic += rd32(IGC_RLPIC); 5065 adapter->stats.hgptc += rd32(IGC_HGPTC); 5066 5067 mpc = rd32(IGC_MPC); 5068 adapter->stats.mpc += mpc; 5069 net_stats->rx_fifo_errors += mpc; 5070 adapter->stats.scc += rd32(IGC_SCC); 5071 adapter->stats.ecol += rd32(IGC_ECOL); 5072 adapter->stats.mcc += rd32(IGC_MCC); 5073 adapter->stats.latecol += rd32(IGC_LATECOL); 5074 adapter->stats.dc += rd32(IGC_DC); 5075 adapter->stats.rlec += rd32(IGC_RLEC); 5076 adapter->stats.xonrxc += rd32(IGC_XONRXC); 5077 adapter->stats.xontxc += rd32(IGC_XONTXC); 5078 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 5079 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 5080 adapter->stats.fcruc += rd32(IGC_FCRUC); 5081 adapter->stats.gptc += rd32(IGC_GPTC); 5082 adapter->stats.gotc += rd32(IGC_GOTCL); 5083 rd32(IGC_GOTCH); /* clear GOTCL */ 5084 adapter->stats.rnbc += rd32(IGC_RNBC); 5085 adapter->stats.ruc += rd32(IGC_RUC); 5086 adapter->stats.rfc += rd32(IGC_RFC); 5087 adapter->stats.rjc += rd32(IGC_RJC); 5088 adapter->stats.tor += rd32(IGC_TORH); 5089 adapter->stats.tot += rd32(IGC_TOTH); 5090 adapter->stats.tpr += rd32(IGC_TPR); 5091 5092 adapter->stats.ptc64 += rd32(IGC_PTC64); 5093 adapter->stats.ptc127 += rd32(IGC_PTC127); 5094 adapter->stats.ptc255 += rd32(IGC_PTC255); 5095 adapter->stats.ptc511 += rd32(IGC_PTC511); 5096 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 5097 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 5098 5099 adapter->stats.mptc += rd32(IGC_MPTC); 5100 adapter->stats.bptc += rd32(IGC_BPTC); 5101 5102 adapter->stats.tpt += rd32(IGC_TPT); 5103 adapter->stats.colc += rd32(IGC_COLC); 5104 adapter->stats.colc += rd32(IGC_RERC); 5105 5106 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 5107 5108 adapter->stats.tsctc += rd32(IGC_TSCTC); 5109 5110 adapter->stats.iac += rd32(IGC_IAC); 5111 5112 /* Fill out the OS statistics structure */ 5113 net_stats->multicast = adapter->stats.mprc; 5114 net_stats->collisions = adapter->stats.colc; 5115 5116 /* Rx Errors */ 5117 5118 /* RLEC on some newer hardware can be incorrect so build 5119 * our own version based on RUC and ROC 5120 */ 5121 net_stats->rx_errors = adapter->stats.rxerrc + 5122 adapter->stats.crcerrs + adapter->stats.algnerrc + 5123 adapter->stats.ruc + adapter->stats.roc + 5124 adapter->stats.cexterr; 5125 net_stats->rx_length_errors = adapter->stats.ruc + 5126 adapter->stats.roc; 5127 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5128 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5129 net_stats->rx_missed_errors = adapter->stats.mpc; 5130 5131 /* Tx Errors */ 5132 net_stats->tx_errors = adapter->stats.ecol + 5133 adapter->stats.latecol; 5134 net_stats->tx_aborted_errors = adapter->stats.ecol; 5135 net_stats->tx_window_errors = adapter->stats.latecol; 5136 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5137 5138 /* Tx Dropped */ 5139 net_stats->tx_dropped = adapter->stats.txdrop; 5140 5141 /* Management Stats */ 5142 adapter->stats.mgptc += rd32(IGC_MGTPTC); 5143 adapter->stats.mgprc += rd32(IGC_MGTPRC); 5144 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 5145 } 5146 5147 /** 5148 * igc_down - Close the interface 5149 * @adapter: board private structure 5150 */ 5151 void igc_down(struct igc_adapter *adapter) 5152 { 5153 struct net_device *netdev = adapter->netdev; 5154 struct igc_hw *hw = &adapter->hw; 5155 u32 tctl, rctl; 5156 int i = 0; 5157 5158 set_bit(__IGC_DOWN, &adapter->state); 5159 5160 igc_ptp_suspend(adapter); 5161 5162 if (pci_device_is_present(adapter->pdev)) { 5163 /* disable receives in the hardware */ 5164 rctl = rd32(IGC_RCTL); 5165 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 5166 /* flush and sleep below */ 5167 } 5168 /* set trans_start so we don't get spurious watchdogs during reset */ 5169 netif_trans_update(netdev); 5170 5171 netif_carrier_off(netdev); 5172 netif_tx_stop_all_queues(netdev); 5173 5174 if (pci_device_is_present(adapter->pdev)) { 5175 /* disable transmits in the hardware */ 5176 tctl = rd32(IGC_TCTL); 5177 tctl &= ~IGC_TCTL_EN; 5178 wr32(IGC_TCTL, tctl); 5179 /* flush both disables and wait for them to finish */ 5180 wrfl(); 5181 usleep_range(10000, 20000); 5182 5183 igc_irq_disable(adapter); 5184 } 5185 5186 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5187 5188 for (i = 0; i < adapter->num_q_vectors; i++) { 5189 if (adapter->q_vector[i]) { 5190 napi_synchronize(&adapter->q_vector[i]->napi); 5191 napi_disable(&adapter->q_vector[i]->napi); 5192 } 5193 } 5194 5195 del_timer_sync(&adapter->watchdog_timer); 5196 del_timer_sync(&adapter->phy_info_timer); 5197 5198 /* record the stats before reset*/ 5199 spin_lock(&adapter->stats64_lock); 5200 igc_update_stats(adapter); 5201 spin_unlock(&adapter->stats64_lock); 5202 5203 adapter->link_speed = 0; 5204 adapter->link_duplex = 0; 5205 5206 if (!pci_channel_offline(adapter->pdev)) 5207 igc_reset(adapter); 5208 5209 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 5210 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 5211 5212 igc_disable_all_tx_rings_hw(adapter); 5213 igc_clean_all_tx_rings(adapter); 5214 igc_clean_all_rx_rings(adapter); 5215 } 5216 5217 void igc_reinit_locked(struct igc_adapter *adapter) 5218 { 5219 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5220 usleep_range(1000, 2000); 5221 igc_down(adapter); 5222 igc_up(adapter); 5223 clear_bit(__IGC_RESETTING, &adapter->state); 5224 } 5225 5226 static void igc_reset_task(struct work_struct *work) 5227 { 5228 struct igc_adapter *adapter; 5229 5230 adapter = container_of(work, struct igc_adapter, reset_task); 5231 5232 rtnl_lock(); 5233 /* If we're already down or resetting, just bail */ 5234 if (test_bit(__IGC_DOWN, &adapter->state) || 5235 test_bit(__IGC_RESETTING, &adapter->state)) { 5236 rtnl_unlock(); 5237 return; 5238 } 5239 5240 igc_rings_dump(adapter); 5241 igc_regs_dump(adapter); 5242 netdev_err(adapter->netdev, "Reset adapter\n"); 5243 igc_reinit_locked(adapter); 5244 rtnl_unlock(); 5245 } 5246 5247 /** 5248 * igc_change_mtu - Change the Maximum Transfer Unit 5249 * @netdev: network interface device structure 5250 * @new_mtu: new value for maximum frame size 5251 * 5252 * Returns 0 on success, negative on failure 5253 */ 5254 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5255 { 5256 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5257 struct igc_adapter *adapter = netdev_priv(netdev); 5258 5259 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5260 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5261 return -EINVAL; 5262 } 5263 5264 /* adjust max frame to be at least the size of a standard frame */ 5265 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5266 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5267 5268 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5269 usleep_range(1000, 2000); 5270 5271 /* igc_down has a dependency on max_frame_size */ 5272 adapter->max_frame_size = max_frame; 5273 5274 if (netif_running(netdev)) 5275 igc_down(adapter); 5276 5277 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5278 WRITE_ONCE(netdev->mtu, new_mtu); 5279 5280 if (netif_running(netdev)) 5281 igc_up(adapter); 5282 else 5283 igc_reset(adapter); 5284 5285 clear_bit(__IGC_RESETTING, &adapter->state); 5286 5287 return 0; 5288 } 5289 5290 /** 5291 * igc_tx_timeout - Respond to a Tx Hang 5292 * @netdev: network interface device structure 5293 * @txqueue: queue number that timed out 5294 **/ 5295 static void igc_tx_timeout(struct net_device *netdev, 5296 unsigned int __always_unused txqueue) 5297 { 5298 struct igc_adapter *adapter = netdev_priv(netdev); 5299 struct igc_hw *hw = &adapter->hw; 5300 5301 /* Do the reset outside of interrupt context */ 5302 adapter->tx_timeout_count++; 5303 schedule_work(&adapter->reset_task); 5304 wr32(IGC_EICS, 5305 (adapter->eims_enable_mask & ~adapter->eims_other)); 5306 } 5307 5308 /** 5309 * igc_get_stats64 - Get System Network Statistics 5310 * @netdev: network interface device structure 5311 * @stats: rtnl_link_stats64 pointer 5312 * 5313 * Returns the address of the device statistics structure. 5314 * The statistics are updated here and also from the timer callback. 5315 */ 5316 static void igc_get_stats64(struct net_device *netdev, 5317 struct rtnl_link_stats64 *stats) 5318 { 5319 struct igc_adapter *adapter = netdev_priv(netdev); 5320 5321 spin_lock(&adapter->stats64_lock); 5322 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5323 igc_update_stats(adapter); 5324 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5325 spin_unlock(&adapter->stats64_lock); 5326 } 5327 5328 static netdev_features_t igc_fix_features(struct net_device *netdev, 5329 netdev_features_t features) 5330 { 5331 /* Since there is no support for separate Rx/Tx vlan accel 5332 * enable/disable make sure Tx flag is always in same state as Rx. 5333 */ 5334 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5335 features |= NETIF_F_HW_VLAN_CTAG_TX; 5336 else 5337 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5338 5339 return features; 5340 } 5341 5342 static int igc_set_features(struct net_device *netdev, 5343 netdev_features_t features) 5344 { 5345 netdev_features_t changed = netdev->features ^ features; 5346 struct igc_adapter *adapter = netdev_priv(netdev); 5347 5348 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5349 igc_vlan_mode(netdev, features); 5350 5351 /* Add VLAN support */ 5352 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5353 return 0; 5354 5355 if (!(features & NETIF_F_NTUPLE)) 5356 igc_flush_nfc_rules(adapter); 5357 5358 netdev->features = features; 5359 5360 if (netif_running(netdev)) 5361 igc_reinit_locked(adapter); 5362 else 5363 igc_reset(adapter); 5364 5365 return 1; 5366 } 5367 5368 static netdev_features_t 5369 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5370 netdev_features_t features) 5371 { 5372 unsigned int network_hdr_len, mac_hdr_len; 5373 5374 /* Make certain the headers can be described by a context descriptor */ 5375 mac_hdr_len = skb_network_offset(skb); 5376 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5377 return features & ~(NETIF_F_HW_CSUM | 5378 NETIF_F_SCTP_CRC | 5379 NETIF_F_HW_VLAN_CTAG_TX | 5380 NETIF_F_TSO | 5381 NETIF_F_TSO6); 5382 5383 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5384 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5385 return features & ~(NETIF_F_HW_CSUM | 5386 NETIF_F_SCTP_CRC | 5387 NETIF_F_TSO | 5388 NETIF_F_TSO6); 5389 5390 /* We can only support IPv4 TSO in tunnels if we can mangle the 5391 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5392 */ 5393 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5394 features &= ~NETIF_F_TSO; 5395 5396 return features; 5397 } 5398 5399 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5400 { 5401 struct igc_hw *hw = &adapter->hw; 5402 u32 tsauxc, sec, nsec, tsicr; 5403 struct ptp_clock_event event; 5404 struct timespec64 ts; 5405 5406 tsicr = rd32(IGC_TSICR); 5407 5408 if (tsicr & IGC_TSICR_SYS_WRAP) { 5409 event.type = PTP_CLOCK_PPS; 5410 if (adapter->ptp_caps.pps) 5411 ptp_clock_event(adapter->ptp_clock, &event); 5412 } 5413 5414 if (tsicr & IGC_TSICR_TXTS) { 5415 /* retrieve hardware timestamp */ 5416 igc_ptp_tx_tstamp_event(adapter); 5417 } 5418 5419 if (tsicr & IGC_TSICR_TT0) { 5420 spin_lock(&adapter->tmreg_lock); 5421 ts = timespec64_add(adapter->perout[0].start, 5422 adapter->perout[0].period); 5423 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5424 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5425 tsauxc = rd32(IGC_TSAUXC); 5426 tsauxc |= IGC_TSAUXC_EN_TT0; 5427 wr32(IGC_TSAUXC, tsauxc); 5428 adapter->perout[0].start = ts; 5429 spin_unlock(&adapter->tmreg_lock); 5430 } 5431 5432 if (tsicr & IGC_TSICR_TT1) { 5433 spin_lock(&adapter->tmreg_lock); 5434 ts = timespec64_add(adapter->perout[1].start, 5435 adapter->perout[1].period); 5436 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5437 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5438 tsauxc = rd32(IGC_TSAUXC); 5439 tsauxc |= IGC_TSAUXC_EN_TT1; 5440 wr32(IGC_TSAUXC, tsauxc); 5441 adapter->perout[1].start = ts; 5442 spin_unlock(&adapter->tmreg_lock); 5443 } 5444 5445 if (tsicr & IGC_TSICR_AUTT0) { 5446 nsec = rd32(IGC_AUXSTMPL0); 5447 sec = rd32(IGC_AUXSTMPH0); 5448 event.type = PTP_CLOCK_EXTTS; 5449 event.index = 0; 5450 event.timestamp = sec * NSEC_PER_SEC + nsec; 5451 ptp_clock_event(adapter->ptp_clock, &event); 5452 } 5453 5454 if (tsicr & IGC_TSICR_AUTT1) { 5455 nsec = rd32(IGC_AUXSTMPL1); 5456 sec = rd32(IGC_AUXSTMPH1); 5457 event.type = PTP_CLOCK_EXTTS; 5458 event.index = 1; 5459 event.timestamp = sec * NSEC_PER_SEC + nsec; 5460 ptp_clock_event(adapter->ptp_clock, &event); 5461 } 5462 } 5463 5464 /** 5465 * igc_msix_other - msix other interrupt handler 5466 * @irq: interrupt number 5467 * @data: pointer to a q_vector 5468 */ 5469 static irqreturn_t igc_msix_other(int irq, void *data) 5470 { 5471 struct igc_adapter *adapter = data; 5472 struct igc_hw *hw = &adapter->hw; 5473 u32 icr = rd32(IGC_ICR); 5474 5475 /* reading ICR causes bit 31 of EICR to be cleared */ 5476 if (icr & IGC_ICR_DRSTA) 5477 schedule_work(&adapter->reset_task); 5478 5479 if (icr & IGC_ICR_DOUTSYNC) { 5480 /* HW is reporting DMA is out of sync */ 5481 adapter->stats.doosync++; 5482 } 5483 5484 if (icr & IGC_ICR_LSC) { 5485 hw->mac.get_link_status = true; 5486 /* guard against interrupt when we're going down */ 5487 if (!test_bit(__IGC_DOWN, &adapter->state)) 5488 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5489 } 5490 5491 if (icr & IGC_ICR_TS) 5492 igc_tsync_interrupt(adapter); 5493 5494 wr32(IGC_EIMS, adapter->eims_other); 5495 5496 return IRQ_HANDLED; 5497 } 5498 5499 static void igc_write_itr(struct igc_q_vector *q_vector) 5500 { 5501 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5502 5503 if (!q_vector->set_itr) 5504 return; 5505 5506 if (!itr_val) 5507 itr_val = IGC_ITR_VAL_MASK; 5508 5509 itr_val |= IGC_EITR_CNT_IGNR; 5510 5511 writel(itr_val, q_vector->itr_register); 5512 q_vector->set_itr = 0; 5513 } 5514 5515 static irqreturn_t igc_msix_ring(int irq, void *data) 5516 { 5517 struct igc_q_vector *q_vector = data; 5518 5519 /* Write the ITR value calculated from the previous interrupt. */ 5520 igc_write_itr(q_vector); 5521 5522 napi_schedule(&q_vector->napi); 5523 5524 return IRQ_HANDLED; 5525 } 5526 5527 /** 5528 * igc_request_msix - Initialize MSI-X interrupts 5529 * @adapter: Pointer to adapter structure 5530 * 5531 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5532 * kernel. 5533 */ 5534 static int igc_request_msix(struct igc_adapter *adapter) 5535 { 5536 unsigned int num_q_vectors = adapter->num_q_vectors; 5537 int i = 0, err = 0, vector = 0, free_vector = 0; 5538 struct net_device *netdev = adapter->netdev; 5539 5540 err = request_irq(adapter->msix_entries[vector].vector, 5541 &igc_msix_other, 0, netdev->name, adapter); 5542 if (err) 5543 goto err_out; 5544 5545 if (num_q_vectors > MAX_Q_VECTORS) { 5546 num_q_vectors = MAX_Q_VECTORS; 5547 dev_warn(&adapter->pdev->dev, 5548 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5549 adapter->num_q_vectors, MAX_Q_VECTORS); 5550 } 5551 for (i = 0; i < num_q_vectors; i++) { 5552 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5553 5554 vector++; 5555 5556 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5557 5558 if (q_vector->rx.ring && q_vector->tx.ring) 5559 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5560 q_vector->rx.ring->queue_index); 5561 else if (q_vector->tx.ring) 5562 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5563 q_vector->tx.ring->queue_index); 5564 else if (q_vector->rx.ring) 5565 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5566 q_vector->rx.ring->queue_index); 5567 else 5568 sprintf(q_vector->name, "%s-unused", netdev->name); 5569 5570 err = request_irq(adapter->msix_entries[vector].vector, 5571 igc_msix_ring, 0, q_vector->name, 5572 q_vector); 5573 if (err) 5574 goto err_free; 5575 } 5576 5577 igc_configure_msix(adapter); 5578 return 0; 5579 5580 err_free: 5581 /* free already assigned IRQs */ 5582 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5583 5584 vector--; 5585 for (i = 0; i < vector; i++) { 5586 free_irq(adapter->msix_entries[free_vector++].vector, 5587 adapter->q_vector[i]); 5588 } 5589 err_out: 5590 return err; 5591 } 5592 5593 /** 5594 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5595 * @adapter: Pointer to adapter structure 5596 * 5597 * This function resets the device so that it has 0 rx queues, tx queues, and 5598 * MSI-X interrupts allocated. 5599 */ 5600 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5601 { 5602 igc_free_q_vectors(adapter); 5603 igc_reset_interrupt_capability(adapter); 5604 } 5605 5606 /* Need to wait a few seconds after link up to get diagnostic information from 5607 * the phy 5608 */ 5609 static void igc_update_phy_info(struct timer_list *t) 5610 { 5611 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5612 5613 igc_get_phy_info(&adapter->hw); 5614 } 5615 5616 /** 5617 * igc_has_link - check shared code for link and determine up/down 5618 * @adapter: pointer to driver private info 5619 */ 5620 bool igc_has_link(struct igc_adapter *adapter) 5621 { 5622 struct igc_hw *hw = &adapter->hw; 5623 bool link_active = false; 5624 5625 /* get_link_status is set on LSC (link status) interrupt or 5626 * rx sequence error interrupt. get_link_status will stay 5627 * false until the igc_check_for_link establishes link 5628 * for copper adapters ONLY 5629 */ 5630 if (!hw->mac.get_link_status) 5631 return true; 5632 hw->mac.ops.check_for_link(hw); 5633 link_active = !hw->mac.get_link_status; 5634 5635 if (hw->mac.type == igc_i225) { 5636 if (!netif_carrier_ok(adapter->netdev)) { 5637 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5638 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5639 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5640 adapter->link_check_timeout = jiffies; 5641 } 5642 } 5643 5644 return link_active; 5645 } 5646 5647 /** 5648 * igc_watchdog - Timer Call-back 5649 * @t: timer for the watchdog 5650 */ 5651 static void igc_watchdog(struct timer_list *t) 5652 { 5653 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5654 /* Do the rest outside of interrupt context */ 5655 schedule_work(&adapter->watchdog_task); 5656 } 5657 5658 static void igc_watchdog_task(struct work_struct *work) 5659 { 5660 struct igc_adapter *adapter = container_of(work, 5661 struct igc_adapter, 5662 watchdog_task); 5663 struct net_device *netdev = adapter->netdev; 5664 struct igc_hw *hw = &adapter->hw; 5665 struct igc_phy_info *phy = &hw->phy; 5666 u16 phy_data, retry_count = 20; 5667 u32 link; 5668 int i; 5669 5670 link = igc_has_link(adapter); 5671 5672 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5673 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5674 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5675 else 5676 link = false; 5677 } 5678 5679 if (link) { 5680 /* Cancel scheduled suspend requests. */ 5681 pm_runtime_resume(netdev->dev.parent); 5682 5683 if (!netif_carrier_ok(netdev)) { 5684 u32 ctrl; 5685 5686 hw->mac.ops.get_speed_and_duplex(hw, 5687 &adapter->link_speed, 5688 &adapter->link_duplex); 5689 5690 ctrl = rd32(IGC_CTRL); 5691 /* Link status message must follow this format */ 5692 netdev_info(netdev, 5693 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5694 adapter->link_speed, 5695 adapter->link_duplex == FULL_DUPLEX ? 5696 "Full" : "Half", 5697 (ctrl & IGC_CTRL_TFCE) && 5698 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5699 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5700 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5701 5702 /* disable EEE if enabled */ 5703 if ((adapter->flags & IGC_FLAG_EEE) && 5704 adapter->link_duplex == HALF_DUPLEX) { 5705 netdev_info(netdev, 5706 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5707 adapter->hw.dev_spec._base.eee_enable = false; 5708 adapter->flags &= ~IGC_FLAG_EEE; 5709 } 5710 5711 /* check if SmartSpeed worked */ 5712 igc_check_downshift(hw); 5713 if (phy->speed_downgraded) 5714 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5715 5716 /* adjust timeout factor according to speed/duplex */ 5717 adapter->tx_timeout_factor = 1; 5718 switch (adapter->link_speed) { 5719 case SPEED_10: 5720 adapter->tx_timeout_factor = 14; 5721 break; 5722 case SPEED_100: 5723 case SPEED_1000: 5724 case SPEED_2500: 5725 adapter->tx_timeout_factor = 1; 5726 break; 5727 } 5728 5729 /* Once the launch time has been set on the wire, there 5730 * is a delay before the link speed can be determined 5731 * based on link-up activity. Write into the register 5732 * as soon as we know the correct link speed. 5733 */ 5734 igc_tsn_adjust_txtime_offset(adapter); 5735 5736 if (adapter->link_speed != SPEED_1000) 5737 goto no_wait; 5738 5739 /* wait for Remote receiver status OK */ 5740 retry_read_status: 5741 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5742 &phy_data)) { 5743 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5744 retry_count) { 5745 msleep(100); 5746 retry_count--; 5747 goto retry_read_status; 5748 } else if (!retry_count) { 5749 netdev_err(netdev, "exceed max 2 second\n"); 5750 } 5751 } else { 5752 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5753 } 5754 no_wait: 5755 netif_carrier_on(netdev); 5756 5757 /* link state has changed, schedule phy info update */ 5758 if (!test_bit(__IGC_DOWN, &adapter->state)) 5759 mod_timer(&adapter->phy_info_timer, 5760 round_jiffies(jiffies + 2 * HZ)); 5761 } 5762 } else { 5763 if (netif_carrier_ok(netdev)) { 5764 adapter->link_speed = 0; 5765 adapter->link_duplex = 0; 5766 5767 /* Links status message must follow this format */ 5768 netdev_info(netdev, "NIC Link is Down\n"); 5769 netif_carrier_off(netdev); 5770 5771 /* link state has changed, schedule phy info update */ 5772 if (!test_bit(__IGC_DOWN, &adapter->state)) 5773 mod_timer(&adapter->phy_info_timer, 5774 round_jiffies(jiffies + 2 * HZ)); 5775 5776 pm_schedule_suspend(netdev->dev.parent, 5777 MSEC_PER_SEC * 5); 5778 } 5779 } 5780 5781 spin_lock(&adapter->stats64_lock); 5782 igc_update_stats(adapter); 5783 spin_unlock(&adapter->stats64_lock); 5784 5785 for (i = 0; i < adapter->num_tx_queues; i++) { 5786 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5787 5788 if (!netif_carrier_ok(netdev)) { 5789 /* We've lost link, so the controller stops DMA, 5790 * but we've got queued Tx work that's never going 5791 * to get done, so reset controller to flush Tx. 5792 * (Do the reset outside of interrupt context). 5793 */ 5794 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5795 adapter->tx_timeout_count++; 5796 schedule_work(&adapter->reset_task); 5797 /* return immediately since reset is imminent */ 5798 return; 5799 } 5800 } 5801 5802 /* Force detection of hung controller every watchdog period */ 5803 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5804 } 5805 5806 /* Cause software interrupt to ensure Rx ring is cleaned */ 5807 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5808 u32 eics = 0; 5809 5810 for (i = 0; i < adapter->num_q_vectors; i++) 5811 eics |= adapter->q_vector[i]->eims_value; 5812 wr32(IGC_EICS, eics); 5813 } else { 5814 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5815 } 5816 5817 igc_ptp_tx_hang(adapter); 5818 5819 /* Reset the timer */ 5820 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5821 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5822 mod_timer(&adapter->watchdog_timer, 5823 round_jiffies(jiffies + HZ)); 5824 else 5825 mod_timer(&adapter->watchdog_timer, 5826 round_jiffies(jiffies + 2 * HZ)); 5827 } 5828 } 5829 5830 /** 5831 * igc_intr_msi - Interrupt Handler 5832 * @irq: interrupt number 5833 * @data: pointer to a network interface device structure 5834 */ 5835 static irqreturn_t igc_intr_msi(int irq, void *data) 5836 { 5837 struct igc_adapter *adapter = data; 5838 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5839 struct igc_hw *hw = &adapter->hw; 5840 /* read ICR disables interrupts using IAM */ 5841 u32 icr = rd32(IGC_ICR); 5842 5843 igc_write_itr(q_vector); 5844 5845 if (icr & IGC_ICR_DRSTA) 5846 schedule_work(&adapter->reset_task); 5847 5848 if (icr & IGC_ICR_DOUTSYNC) { 5849 /* HW is reporting DMA is out of sync */ 5850 adapter->stats.doosync++; 5851 } 5852 5853 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5854 hw->mac.get_link_status = true; 5855 if (!test_bit(__IGC_DOWN, &adapter->state)) 5856 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5857 } 5858 5859 if (icr & IGC_ICR_TS) 5860 igc_tsync_interrupt(adapter); 5861 5862 napi_schedule(&q_vector->napi); 5863 5864 return IRQ_HANDLED; 5865 } 5866 5867 /** 5868 * igc_intr - Legacy Interrupt Handler 5869 * @irq: interrupt number 5870 * @data: pointer to a network interface device structure 5871 */ 5872 static irqreturn_t igc_intr(int irq, void *data) 5873 { 5874 struct igc_adapter *adapter = data; 5875 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5876 struct igc_hw *hw = &adapter->hw; 5877 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5878 * need for the IMC write 5879 */ 5880 u32 icr = rd32(IGC_ICR); 5881 5882 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5883 * not set, then the adapter didn't send an interrupt 5884 */ 5885 if (!(icr & IGC_ICR_INT_ASSERTED)) 5886 return IRQ_NONE; 5887 5888 igc_write_itr(q_vector); 5889 5890 if (icr & IGC_ICR_DRSTA) 5891 schedule_work(&adapter->reset_task); 5892 5893 if (icr & IGC_ICR_DOUTSYNC) { 5894 /* HW is reporting DMA is out of sync */ 5895 adapter->stats.doosync++; 5896 } 5897 5898 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5899 hw->mac.get_link_status = true; 5900 /* guard against interrupt when we're going down */ 5901 if (!test_bit(__IGC_DOWN, &adapter->state)) 5902 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5903 } 5904 5905 if (icr & IGC_ICR_TS) 5906 igc_tsync_interrupt(adapter); 5907 5908 napi_schedule(&q_vector->napi); 5909 5910 return IRQ_HANDLED; 5911 } 5912 5913 static void igc_free_irq(struct igc_adapter *adapter) 5914 { 5915 if (adapter->msix_entries) { 5916 int vector = 0, i; 5917 5918 free_irq(adapter->msix_entries[vector++].vector, adapter); 5919 5920 for (i = 0; i < adapter->num_q_vectors; i++) 5921 free_irq(adapter->msix_entries[vector++].vector, 5922 adapter->q_vector[i]); 5923 } else { 5924 free_irq(adapter->pdev->irq, adapter); 5925 } 5926 } 5927 5928 /** 5929 * igc_request_irq - initialize interrupts 5930 * @adapter: Pointer to adapter structure 5931 * 5932 * Attempts to configure interrupts using the best available 5933 * capabilities of the hardware and kernel. 5934 */ 5935 static int igc_request_irq(struct igc_adapter *adapter) 5936 { 5937 struct net_device *netdev = adapter->netdev; 5938 struct pci_dev *pdev = adapter->pdev; 5939 int err = 0; 5940 5941 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5942 err = igc_request_msix(adapter); 5943 if (!err) 5944 goto request_done; 5945 /* fall back to MSI */ 5946 igc_free_all_tx_resources(adapter); 5947 igc_free_all_rx_resources(adapter); 5948 5949 igc_clear_interrupt_scheme(adapter); 5950 err = igc_init_interrupt_scheme(adapter, false); 5951 if (err) 5952 goto request_done; 5953 igc_setup_all_tx_resources(adapter); 5954 igc_setup_all_rx_resources(adapter); 5955 igc_configure(adapter); 5956 } 5957 5958 igc_assign_vector(adapter->q_vector[0], 0); 5959 5960 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5961 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5962 netdev->name, adapter); 5963 if (!err) 5964 goto request_done; 5965 5966 /* fall back to legacy interrupts */ 5967 igc_reset_interrupt_capability(adapter); 5968 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5969 } 5970 5971 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5972 netdev->name, adapter); 5973 5974 if (err) 5975 netdev_err(netdev, "Error %d getting interrupt\n", err); 5976 5977 request_done: 5978 return err; 5979 } 5980 5981 /** 5982 * __igc_open - Called when a network interface is made active 5983 * @netdev: network interface device structure 5984 * @resuming: boolean indicating if the device is resuming 5985 * 5986 * Returns 0 on success, negative value on failure 5987 * 5988 * The open entry point is called when a network interface is made 5989 * active by the system (IFF_UP). At this point all resources needed 5990 * for transmit and receive operations are allocated, the interrupt 5991 * handler is registered with the OS, the watchdog timer is started, 5992 * and the stack is notified that the interface is ready. 5993 */ 5994 static int __igc_open(struct net_device *netdev, bool resuming) 5995 { 5996 struct igc_adapter *adapter = netdev_priv(netdev); 5997 struct pci_dev *pdev = adapter->pdev; 5998 struct igc_hw *hw = &adapter->hw; 5999 int err = 0; 6000 int i = 0; 6001 6002 /* disallow open during test */ 6003 6004 if (test_bit(__IGC_TESTING, &adapter->state)) { 6005 WARN_ON(resuming); 6006 return -EBUSY; 6007 } 6008 6009 if (!resuming) 6010 pm_runtime_get_sync(&pdev->dev); 6011 6012 netif_carrier_off(netdev); 6013 6014 /* allocate transmit descriptors */ 6015 err = igc_setup_all_tx_resources(adapter); 6016 if (err) 6017 goto err_setup_tx; 6018 6019 /* allocate receive descriptors */ 6020 err = igc_setup_all_rx_resources(adapter); 6021 if (err) 6022 goto err_setup_rx; 6023 6024 igc_power_up_link(adapter); 6025 6026 igc_configure(adapter); 6027 6028 err = igc_request_irq(adapter); 6029 if (err) 6030 goto err_req_irq; 6031 6032 clear_bit(__IGC_DOWN, &adapter->state); 6033 6034 for (i = 0; i < adapter->num_q_vectors; i++) 6035 napi_enable(&adapter->q_vector[i]->napi); 6036 6037 /* Clear any pending interrupts. */ 6038 rd32(IGC_ICR); 6039 igc_irq_enable(adapter); 6040 6041 if (!resuming) 6042 pm_runtime_put(&pdev->dev); 6043 6044 netif_tx_start_all_queues(netdev); 6045 6046 /* start the watchdog. */ 6047 hw->mac.get_link_status = true; 6048 schedule_work(&adapter->watchdog_task); 6049 6050 return IGC_SUCCESS; 6051 6052 err_req_irq: 6053 igc_release_hw_control(adapter); 6054 igc_power_down_phy_copper_base(&adapter->hw); 6055 igc_free_all_rx_resources(adapter); 6056 err_setup_rx: 6057 igc_free_all_tx_resources(adapter); 6058 err_setup_tx: 6059 igc_reset(adapter); 6060 if (!resuming) 6061 pm_runtime_put(&pdev->dev); 6062 6063 return err; 6064 } 6065 6066 int igc_open(struct net_device *netdev) 6067 { 6068 struct igc_adapter *adapter = netdev_priv(netdev); 6069 int err; 6070 6071 /* Notify the stack of the actual queue counts. */ 6072 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues, 6073 adapter->num_rx_queues); 6074 if (err) { 6075 netdev_err(netdev, "error setting real queue count\n"); 6076 return err; 6077 } 6078 6079 return __igc_open(netdev, false); 6080 } 6081 6082 /** 6083 * __igc_close - Disables a network interface 6084 * @netdev: network interface device structure 6085 * @suspending: boolean indicating the device is suspending 6086 * 6087 * Returns 0, this is not allowed to fail 6088 * 6089 * The close entry point is called when an interface is de-activated 6090 * by the OS. The hardware is still under the driver's control, but 6091 * needs to be disabled. A global MAC reset is issued to stop the 6092 * hardware, and all transmit and receive resources are freed. 6093 */ 6094 static int __igc_close(struct net_device *netdev, bool suspending) 6095 { 6096 struct igc_adapter *adapter = netdev_priv(netdev); 6097 struct pci_dev *pdev = adapter->pdev; 6098 6099 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 6100 6101 if (!suspending) 6102 pm_runtime_get_sync(&pdev->dev); 6103 6104 igc_down(adapter); 6105 6106 igc_release_hw_control(adapter); 6107 6108 igc_free_irq(adapter); 6109 6110 igc_free_all_tx_resources(adapter); 6111 igc_free_all_rx_resources(adapter); 6112 6113 if (!suspending) 6114 pm_runtime_put_sync(&pdev->dev); 6115 6116 return 0; 6117 } 6118 6119 int igc_close(struct net_device *netdev) 6120 { 6121 if (netif_device_present(netdev) || netdev->dismantle) 6122 return __igc_close(netdev, false); 6123 return 0; 6124 } 6125 6126 /** 6127 * igc_ioctl - Access the hwtstamp interface 6128 * @netdev: network interface device structure 6129 * @ifr: interface request data 6130 * @cmd: ioctl command 6131 **/ 6132 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6133 { 6134 switch (cmd) { 6135 case SIOCGHWTSTAMP: 6136 return igc_ptp_get_ts_config(netdev, ifr); 6137 case SIOCSHWTSTAMP: 6138 return igc_ptp_set_ts_config(netdev, ifr); 6139 default: 6140 return -EOPNOTSUPP; 6141 } 6142 } 6143 6144 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 6145 bool enable) 6146 { 6147 struct igc_ring *ring; 6148 6149 if (queue < 0 || queue >= adapter->num_tx_queues) 6150 return -EINVAL; 6151 6152 ring = adapter->tx_ring[queue]; 6153 ring->launchtime_enable = enable; 6154 6155 return 0; 6156 } 6157 6158 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 6159 { 6160 struct timespec64 b; 6161 6162 b = ktime_to_timespec64(base_time); 6163 6164 return timespec64_compare(now, &b) > 0; 6165 } 6166 6167 static bool validate_schedule(struct igc_adapter *adapter, 6168 const struct tc_taprio_qopt_offload *qopt) 6169 { 6170 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 6171 struct igc_hw *hw = &adapter->hw; 6172 struct timespec64 now; 6173 size_t n; 6174 6175 if (qopt->cycle_time_extension) 6176 return false; 6177 6178 igc_ptp_read(adapter, &now); 6179 6180 /* If we program the controller's BASET registers with a time 6181 * in the future, it will hold all the packets until that 6182 * time, causing a lot of TX Hangs, so to avoid that, we 6183 * reject schedules that would start in the future. 6184 * Note: Limitation above is no longer in i226. 6185 */ 6186 if (!is_base_time_past(qopt->base_time, &now) && 6187 igc_is_device_id_i225(hw)) 6188 return false; 6189 6190 for (n = 0; n < qopt->num_entries; n++) { 6191 const struct tc_taprio_sched_entry *e, *prev; 6192 int i; 6193 6194 prev = n ? &qopt->entries[n - 1] : NULL; 6195 e = &qopt->entries[n]; 6196 6197 /* i225 only supports "global" frame preemption 6198 * settings. 6199 */ 6200 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6201 return false; 6202 6203 for (i = 0; i < adapter->num_tx_queues; i++) 6204 if (e->gate_mask & BIT(i)) { 6205 queue_uses[i]++; 6206 6207 /* There are limitations: A single queue cannot 6208 * be opened and closed multiple times per cycle 6209 * unless the gate stays open. Check for it. 6210 */ 6211 if (queue_uses[i] > 1 && 6212 !(prev->gate_mask & BIT(i))) 6213 return false; 6214 } 6215 } 6216 6217 return true; 6218 } 6219 6220 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6221 struct tc_etf_qopt_offload *qopt) 6222 { 6223 struct igc_hw *hw = &adapter->hw; 6224 int err; 6225 6226 if (hw->mac.type != igc_i225) 6227 return -EOPNOTSUPP; 6228 6229 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6230 if (err) 6231 return err; 6232 6233 return igc_tsn_offload_apply(adapter); 6234 } 6235 6236 static int igc_qbv_clear_schedule(struct igc_adapter *adapter) 6237 { 6238 unsigned long flags; 6239 int i; 6240 6241 adapter->base_time = 0; 6242 adapter->cycle_time = NSEC_PER_SEC; 6243 adapter->taprio_offload_enable = false; 6244 adapter->qbv_config_change_errors = 0; 6245 adapter->qbv_count = 0; 6246 6247 for (i = 0; i < adapter->num_tx_queues; i++) { 6248 struct igc_ring *ring = adapter->tx_ring[i]; 6249 6250 ring->start_time = 0; 6251 ring->end_time = NSEC_PER_SEC; 6252 ring->max_sdu = 0; 6253 } 6254 6255 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6256 6257 adapter->qbv_transition = false; 6258 6259 for (i = 0; i < adapter->num_tx_queues; i++) { 6260 struct igc_ring *ring = adapter->tx_ring[i]; 6261 6262 ring->oper_gate_closed = false; 6263 ring->admin_gate_closed = false; 6264 } 6265 6266 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6267 6268 return 0; 6269 } 6270 6271 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6272 { 6273 igc_qbv_clear_schedule(adapter); 6274 6275 return 0; 6276 } 6277 6278 static void igc_taprio_stats(struct net_device *dev, 6279 struct tc_taprio_qopt_stats *stats) 6280 { 6281 /* When Strict_End is enabled, the tx_overruns counter 6282 * will always be zero. 6283 */ 6284 stats->tx_overruns = 0; 6285 } 6286 6287 static void igc_taprio_queue_stats(struct net_device *dev, 6288 struct tc_taprio_qopt_queue_stats *queue_stats) 6289 { 6290 struct tc_taprio_qopt_stats *stats = &queue_stats->stats; 6291 6292 /* When Strict_End is enabled, the tx_overruns counter 6293 * will always be zero. 6294 */ 6295 stats->tx_overruns = 0; 6296 } 6297 6298 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6299 struct tc_taprio_qopt_offload *qopt) 6300 { 6301 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6302 struct igc_hw *hw = &adapter->hw; 6303 u32 start_time = 0, end_time = 0; 6304 struct timespec64 now; 6305 unsigned long flags; 6306 size_t n; 6307 int i; 6308 6309 if (qopt->base_time < 0) 6310 return -ERANGE; 6311 6312 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable) 6313 return -EALREADY; 6314 6315 if (!validate_schedule(adapter, qopt)) 6316 return -EINVAL; 6317 6318 igc_ptp_read(adapter, &now); 6319 6320 if (igc_tsn_is_taprio_activated_by_user(adapter) && 6321 is_base_time_past(qopt->base_time, &now)) 6322 adapter->qbv_config_change_errors++; 6323 6324 adapter->cycle_time = qopt->cycle_time; 6325 adapter->base_time = qopt->base_time; 6326 adapter->taprio_offload_enable = true; 6327 6328 for (n = 0; n < qopt->num_entries; n++) { 6329 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6330 6331 end_time += e->interval; 6332 6333 /* If any of the conditions below are true, we need to manually 6334 * control the end time of the cycle. 6335 * 1. Qbv users can specify a cycle time that is not equal 6336 * to the total GCL intervals. Hence, recalculation is 6337 * necessary here to exclude the time interval that 6338 * exceeds the cycle time. 6339 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6340 * once the end of the list is reached, it will switch 6341 * to the END_OF_CYCLE state and leave the gates in the 6342 * same state until the next cycle is started. 6343 */ 6344 if (end_time > adapter->cycle_time || 6345 n + 1 == qopt->num_entries) 6346 end_time = adapter->cycle_time; 6347 6348 for (i = 0; i < adapter->num_tx_queues; i++) { 6349 struct igc_ring *ring = adapter->tx_ring[i]; 6350 6351 if (!(e->gate_mask & BIT(i))) 6352 continue; 6353 6354 /* Check whether a queue stays open for more than one 6355 * entry. If so, keep the start and advance the end 6356 * time. 6357 */ 6358 if (!queue_configured[i]) 6359 ring->start_time = start_time; 6360 ring->end_time = end_time; 6361 6362 if (ring->start_time >= adapter->cycle_time) 6363 queue_configured[i] = false; 6364 else 6365 queue_configured[i] = true; 6366 } 6367 6368 start_time += e->interval; 6369 } 6370 6371 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6372 6373 /* Check whether a queue gets configured. 6374 * If not, set the start and end time to be end time. 6375 */ 6376 for (i = 0; i < adapter->num_tx_queues; i++) { 6377 struct igc_ring *ring = adapter->tx_ring[i]; 6378 6379 if (!is_base_time_past(qopt->base_time, &now)) { 6380 ring->admin_gate_closed = false; 6381 } else { 6382 ring->oper_gate_closed = false; 6383 ring->admin_gate_closed = false; 6384 } 6385 6386 if (!queue_configured[i]) { 6387 if (!is_base_time_past(qopt->base_time, &now)) 6388 ring->admin_gate_closed = true; 6389 else 6390 ring->oper_gate_closed = true; 6391 6392 ring->start_time = end_time; 6393 ring->end_time = end_time; 6394 } 6395 } 6396 6397 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6398 6399 for (i = 0; i < adapter->num_tx_queues; i++) { 6400 struct igc_ring *ring = adapter->tx_ring[i]; 6401 struct net_device *dev = adapter->netdev; 6402 6403 if (qopt->max_sdu[i]) 6404 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN; 6405 else 6406 ring->max_sdu = 0; 6407 } 6408 6409 return 0; 6410 } 6411 6412 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6413 struct tc_taprio_qopt_offload *qopt) 6414 { 6415 struct igc_hw *hw = &adapter->hw; 6416 int err; 6417 6418 if (hw->mac.type != igc_i225) 6419 return -EOPNOTSUPP; 6420 6421 switch (qopt->cmd) { 6422 case TAPRIO_CMD_REPLACE: 6423 err = igc_save_qbv_schedule(adapter, qopt); 6424 break; 6425 case TAPRIO_CMD_DESTROY: 6426 err = igc_tsn_clear_schedule(adapter); 6427 break; 6428 case TAPRIO_CMD_STATS: 6429 igc_taprio_stats(adapter->netdev, &qopt->stats); 6430 return 0; 6431 case TAPRIO_CMD_QUEUE_STATS: 6432 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats); 6433 return 0; 6434 default: 6435 return -EOPNOTSUPP; 6436 } 6437 6438 if (err) 6439 return err; 6440 6441 return igc_tsn_offload_apply(adapter); 6442 } 6443 6444 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6445 bool enable, int idleslope, int sendslope, 6446 int hicredit, int locredit) 6447 { 6448 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6449 struct net_device *netdev = adapter->netdev; 6450 struct igc_ring *ring; 6451 int i; 6452 6453 /* i225 has two sets of credit-based shaper logic. 6454 * Supporting it only on the top two priority queues 6455 */ 6456 if (queue < 0 || queue > 1) 6457 return -EINVAL; 6458 6459 ring = adapter->tx_ring[queue]; 6460 6461 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6462 if (adapter->tx_ring[i]) 6463 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6464 6465 /* CBS should be enabled on the highest priority queue first in order 6466 * for the CBS algorithm to operate as intended. 6467 */ 6468 if (enable) { 6469 if (queue == 1 && !cbs_status[0]) { 6470 netdev_err(netdev, 6471 "Enabling CBS on queue1 before queue0\n"); 6472 return -EINVAL; 6473 } 6474 } else { 6475 if (queue == 0 && cbs_status[1]) { 6476 netdev_err(netdev, 6477 "Disabling CBS on queue0 before queue1\n"); 6478 return -EINVAL; 6479 } 6480 } 6481 6482 ring->cbs_enable = enable; 6483 ring->idleslope = idleslope; 6484 ring->sendslope = sendslope; 6485 ring->hicredit = hicredit; 6486 ring->locredit = locredit; 6487 6488 return 0; 6489 } 6490 6491 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6492 struct tc_cbs_qopt_offload *qopt) 6493 { 6494 struct igc_hw *hw = &adapter->hw; 6495 int err; 6496 6497 if (hw->mac.type != igc_i225) 6498 return -EOPNOTSUPP; 6499 6500 if (qopt->queue < 0 || qopt->queue > 1) 6501 return -EINVAL; 6502 6503 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6504 qopt->idleslope, qopt->sendslope, 6505 qopt->hicredit, qopt->locredit); 6506 if (err) 6507 return err; 6508 6509 return igc_tsn_offload_apply(adapter); 6510 } 6511 6512 static int igc_tc_query_caps(struct igc_adapter *adapter, 6513 struct tc_query_caps_base *base) 6514 { 6515 struct igc_hw *hw = &adapter->hw; 6516 6517 switch (base->type) { 6518 case TC_SETUP_QDISC_TAPRIO: { 6519 struct tc_taprio_caps *caps = base->caps; 6520 6521 caps->broken_mqprio = true; 6522 6523 if (hw->mac.type == igc_i225) { 6524 caps->supports_queue_max_sdu = true; 6525 caps->gate_mask_per_txq = true; 6526 } 6527 6528 return 0; 6529 } 6530 default: 6531 return -EOPNOTSUPP; 6532 } 6533 } 6534 6535 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6536 void *type_data) 6537 { 6538 struct igc_adapter *adapter = netdev_priv(dev); 6539 6540 adapter->tc_setup_type = type; 6541 6542 switch (type) { 6543 case TC_QUERY_CAPS: 6544 return igc_tc_query_caps(adapter, type_data); 6545 case TC_SETUP_QDISC_TAPRIO: 6546 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6547 6548 case TC_SETUP_QDISC_ETF: 6549 return igc_tsn_enable_launchtime(adapter, type_data); 6550 6551 case TC_SETUP_QDISC_CBS: 6552 return igc_tsn_enable_cbs(adapter, type_data); 6553 6554 default: 6555 return -EOPNOTSUPP; 6556 } 6557 } 6558 6559 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6560 { 6561 struct igc_adapter *adapter = netdev_priv(dev); 6562 6563 switch (bpf->command) { 6564 case XDP_SETUP_PROG: 6565 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6566 case XDP_SETUP_XSK_POOL: 6567 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6568 bpf->xsk.queue_id); 6569 default: 6570 return -EOPNOTSUPP; 6571 } 6572 } 6573 6574 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6575 struct xdp_frame **frames, u32 flags) 6576 { 6577 struct igc_adapter *adapter = netdev_priv(dev); 6578 int cpu = smp_processor_id(); 6579 struct netdev_queue *nq; 6580 struct igc_ring *ring; 6581 int i, nxmit; 6582 6583 if (unlikely(!netif_carrier_ok(dev))) 6584 return -ENETDOWN; 6585 6586 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6587 return -EINVAL; 6588 6589 ring = igc_xdp_get_tx_ring(adapter, cpu); 6590 nq = txring_txq(ring); 6591 6592 __netif_tx_lock(nq, cpu); 6593 6594 /* Avoid transmit queue timeout since we share it with the slow path */ 6595 txq_trans_cond_update(nq); 6596 6597 nxmit = 0; 6598 for (i = 0; i < num_frames; i++) { 6599 int err; 6600 struct xdp_frame *xdpf = frames[i]; 6601 6602 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6603 if (err) 6604 break; 6605 nxmit++; 6606 } 6607 6608 if (flags & XDP_XMIT_FLUSH) 6609 igc_flush_tx_descriptors(ring); 6610 6611 __netif_tx_unlock(nq); 6612 6613 return nxmit; 6614 } 6615 6616 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6617 struct igc_q_vector *q_vector) 6618 { 6619 struct igc_hw *hw = &adapter->hw; 6620 u32 eics = 0; 6621 6622 eics |= q_vector->eims_value; 6623 wr32(IGC_EICS, eics); 6624 } 6625 6626 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6627 { 6628 struct igc_adapter *adapter = netdev_priv(dev); 6629 struct igc_q_vector *q_vector; 6630 struct igc_ring *ring; 6631 6632 if (test_bit(__IGC_DOWN, &adapter->state)) 6633 return -ENETDOWN; 6634 6635 if (!igc_xdp_is_enabled(adapter)) 6636 return -ENXIO; 6637 6638 if (queue_id >= adapter->num_rx_queues) 6639 return -EINVAL; 6640 6641 ring = adapter->rx_ring[queue_id]; 6642 6643 if (!ring->xsk_pool) 6644 return -ENXIO; 6645 6646 q_vector = adapter->q_vector[queue_id]; 6647 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6648 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6649 6650 return 0; 6651 } 6652 6653 static ktime_t igc_get_tstamp(struct net_device *dev, 6654 const struct skb_shared_hwtstamps *hwtstamps, 6655 bool cycles) 6656 { 6657 struct igc_adapter *adapter = netdev_priv(dev); 6658 struct igc_inline_rx_tstamps *tstamp; 6659 ktime_t timestamp; 6660 6661 tstamp = hwtstamps->netdev_data; 6662 6663 if (cycles) 6664 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1); 6665 else 6666 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0); 6667 6668 return timestamp; 6669 } 6670 6671 static const struct net_device_ops igc_netdev_ops = { 6672 .ndo_open = igc_open, 6673 .ndo_stop = igc_close, 6674 .ndo_start_xmit = igc_xmit_frame, 6675 .ndo_set_rx_mode = igc_set_rx_mode, 6676 .ndo_set_mac_address = igc_set_mac, 6677 .ndo_change_mtu = igc_change_mtu, 6678 .ndo_tx_timeout = igc_tx_timeout, 6679 .ndo_get_stats64 = igc_get_stats64, 6680 .ndo_fix_features = igc_fix_features, 6681 .ndo_set_features = igc_set_features, 6682 .ndo_features_check = igc_features_check, 6683 .ndo_eth_ioctl = igc_ioctl, 6684 .ndo_setup_tc = igc_setup_tc, 6685 .ndo_bpf = igc_bpf, 6686 .ndo_xdp_xmit = igc_xdp_xmit, 6687 .ndo_xsk_wakeup = igc_xsk_wakeup, 6688 .ndo_get_tstamp = igc_get_tstamp, 6689 }; 6690 6691 /* PCIe configuration access */ 6692 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6693 { 6694 struct igc_adapter *adapter = hw->back; 6695 6696 pci_read_config_word(adapter->pdev, reg, value); 6697 } 6698 6699 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6700 { 6701 struct igc_adapter *adapter = hw->back; 6702 6703 pci_write_config_word(adapter->pdev, reg, *value); 6704 } 6705 6706 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6707 { 6708 struct igc_adapter *adapter = hw->back; 6709 6710 if (!pci_is_pcie(adapter->pdev)) 6711 return -IGC_ERR_CONFIG; 6712 6713 pcie_capability_read_word(adapter->pdev, reg, value); 6714 6715 return IGC_SUCCESS; 6716 } 6717 6718 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6719 { 6720 struct igc_adapter *adapter = hw->back; 6721 6722 if (!pci_is_pcie(adapter->pdev)) 6723 return -IGC_ERR_CONFIG; 6724 6725 pcie_capability_write_word(adapter->pdev, reg, *value); 6726 6727 return IGC_SUCCESS; 6728 } 6729 6730 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6731 { 6732 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6733 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6734 u32 value = 0; 6735 6736 if (IGC_REMOVED(hw_addr)) 6737 return ~value; 6738 6739 value = readl(&hw_addr[reg]); 6740 6741 /* reads should not return all F's */ 6742 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6743 struct net_device *netdev = igc->netdev; 6744 6745 hw->hw_addr = NULL; 6746 netif_device_detach(netdev); 6747 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6748 WARN(pci_device_is_present(igc->pdev), 6749 "igc: Failed to read reg 0x%x!\n", reg); 6750 } 6751 6752 return value; 6753 } 6754 6755 /* Mapping HW RSS Type to enum xdp_rss_hash_type */ 6756 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = { 6757 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2, 6758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP, 6759 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4, 6760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP, 6761 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX, 6762 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6, 6763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX, 6764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP, 6765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP, 6766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX, 6767 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 6768 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */ 6769 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */ 6770 [13] = XDP_RSS_TYPE_NONE, 6771 [14] = XDP_RSS_TYPE_NONE, 6772 [15] = XDP_RSS_TYPE_NONE, 6773 }; 6774 6775 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash, 6776 enum xdp_rss_hash_type *rss_type) 6777 { 6778 const struct igc_xdp_buff *ctx = (void *)_ctx; 6779 6780 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH)) 6781 return -ENODATA; 6782 6783 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss); 6784 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)]; 6785 6786 return 0; 6787 } 6788 6789 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 6790 { 6791 const struct igc_xdp_buff *ctx = (void *)_ctx; 6792 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev); 6793 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts; 6794 6795 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) { 6796 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0); 6797 6798 return 0; 6799 } 6800 6801 return -ENODATA; 6802 } 6803 6804 static const struct xdp_metadata_ops igc_xdp_metadata_ops = { 6805 .xmo_rx_hash = igc_xdp_rx_hash, 6806 .xmo_rx_timestamp = igc_xdp_rx_timestamp, 6807 }; 6808 6809 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer) 6810 { 6811 struct igc_adapter *adapter = container_of(timer, struct igc_adapter, 6812 hrtimer); 6813 unsigned long flags; 6814 unsigned int i; 6815 6816 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6817 6818 adapter->qbv_transition = true; 6819 for (i = 0; i < adapter->num_tx_queues; i++) { 6820 struct igc_ring *tx_ring = adapter->tx_ring[i]; 6821 6822 if (tx_ring->admin_gate_closed) { 6823 tx_ring->admin_gate_closed = false; 6824 tx_ring->oper_gate_closed = true; 6825 } else { 6826 tx_ring->oper_gate_closed = false; 6827 } 6828 } 6829 adapter->qbv_transition = false; 6830 6831 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6832 6833 return HRTIMER_NORESTART; 6834 } 6835 6836 /** 6837 * igc_probe - Device Initialization Routine 6838 * @pdev: PCI device information struct 6839 * @ent: entry in igc_pci_tbl 6840 * 6841 * Returns 0 on success, negative on failure 6842 * 6843 * igc_probe initializes an adapter identified by a pci_dev structure. 6844 * The OS initialization, configuring the adapter private structure, 6845 * and a hardware reset occur. 6846 */ 6847 static int igc_probe(struct pci_dev *pdev, 6848 const struct pci_device_id *ent) 6849 { 6850 struct igc_adapter *adapter; 6851 struct net_device *netdev; 6852 struct igc_hw *hw; 6853 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6854 int err; 6855 6856 err = pci_enable_device_mem(pdev); 6857 if (err) 6858 return err; 6859 6860 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6861 if (err) { 6862 dev_err(&pdev->dev, 6863 "No usable DMA configuration, aborting\n"); 6864 goto err_dma; 6865 } 6866 6867 err = pci_request_mem_regions(pdev, igc_driver_name); 6868 if (err) 6869 goto err_pci_reg; 6870 6871 err = pci_enable_ptm(pdev, NULL); 6872 if (err < 0) 6873 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6874 6875 pci_set_master(pdev); 6876 6877 err = -ENOMEM; 6878 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6879 IGC_MAX_TX_QUEUES); 6880 6881 if (!netdev) 6882 goto err_alloc_etherdev; 6883 6884 SET_NETDEV_DEV(netdev, &pdev->dev); 6885 6886 pci_set_drvdata(pdev, netdev); 6887 adapter = netdev_priv(netdev); 6888 adapter->netdev = netdev; 6889 adapter->pdev = pdev; 6890 hw = &adapter->hw; 6891 hw->back = adapter; 6892 adapter->port_num = hw->bus.func; 6893 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6894 6895 err = pci_save_state(pdev); 6896 if (err) 6897 goto err_ioremap; 6898 6899 err = -EIO; 6900 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6901 pci_resource_len(pdev, 0)); 6902 if (!adapter->io_addr) 6903 goto err_ioremap; 6904 6905 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6906 hw->hw_addr = adapter->io_addr; 6907 6908 netdev->netdev_ops = &igc_netdev_ops; 6909 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops; 6910 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops; 6911 igc_ethtool_set_ops(netdev); 6912 netdev->watchdog_timeo = 5 * HZ; 6913 6914 netdev->mem_start = pci_resource_start(pdev, 0); 6915 netdev->mem_end = pci_resource_end(pdev, 0); 6916 6917 /* PCI config space info */ 6918 hw->vendor_id = pdev->vendor; 6919 hw->device_id = pdev->device; 6920 hw->revision_id = pdev->revision; 6921 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6922 hw->subsystem_device_id = pdev->subsystem_device; 6923 6924 /* Copy the default MAC and PHY function pointers */ 6925 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6926 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6927 6928 /* Initialize skew-specific constants */ 6929 err = ei->get_invariants(hw); 6930 if (err) 6931 goto err_sw_init; 6932 6933 /* Add supported features to the features list*/ 6934 netdev->features |= NETIF_F_SG; 6935 netdev->features |= NETIF_F_TSO; 6936 netdev->features |= NETIF_F_TSO6; 6937 netdev->features |= NETIF_F_TSO_ECN; 6938 netdev->features |= NETIF_F_RXHASH; 6939 netdev->features |= NETIF_F_RXCSUM; 6940 netdev->features |= NETIF_F_HW_CSUM; 6941 netdev->features |= NETIF_F_SCTP_CRC; 6942 netdev->features |= NETIF_F_HW_TC; 6943 6944 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6945 NETIF_F_GSO_GRE_CSUM | \ 6946 NETIF_F_GSO_IPXIP4 | \ 6947 NETIF_F_GSO_IPXIP6 | \ 6948 NETIF_F_GSO_UDP_TUNNEL | \ 6949 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6950 6951 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6952 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6953 6954 /* setup the private structure */ 6955 err = igc_sw_init(adapter); 6956 if (err) 6957 goto err_sw_init; 6958 6959 /* copy netdev features into list of user selectable features */ 6960 netdev->hw_features |= NETIF_F_NTUPLE; 6961 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6962 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6963 netdev->hw_features |= netdev->features; 6964 6965 netdev->features |= NETIF_F_HIGHDMA; 6966 6967 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6968 netdev->mpls_features |= NETIF_F_HW_CSUM; 6969 netdev->hw_enc_features |= netdev->vlan_features; 6970 6971 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 6972 NETDEV_XDP_ACT_XSK_ZEROCOPY; 6973 6974 /* MTU range: 68 - 9216 */ 6975 netdev->min_mtu = ETH_MIN_MTU; 6976 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6977 6978 /* before reading the NVM, reset the controller to put the device in a 6979 * known good starting state 6980 */ 6981 hw->mac.ops.reset_hw(hw); 6982 6983 if (igc_get_flash_presence_i225(hw)) { 6984 if (hw->nvm.ops.validate(hw) < 0) { 6985 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6986 err = -EIO; 6987 goto err_eeprom; 6988 } 6989 } 6990 6991 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6992 /* copy the MAC address out of the NVM */ 6993 if (hw->mac.ops.read_mac_addr(hw)) 6994 dev_err(&pdev->dev, "NVM Read Error\n"); 6995 } 6996 6997 eth_hw_addr_set(netdev, hw->mac.addr); 6998 6999 if (!is_valid_ether_addr(netdev->dev_addr)) { 7000 dev_err(&pdev->dev, "Invalid MAC Address\n"); 7001 err = -EIO; 7002 goto err_eeprom; 7003 } 7004 7005 /* configure RXPBSIZE and TXPBSIZE */ 7006 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 7007 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 7008 7009 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 7010 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 7011 7012 INIT_WORK(&adapter->reset_task, igc_reset_task); 7013 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 7014 7015 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7016 adapter->hrtimer.function = &igc_qbv_scheduling_timer; 7017 7018 /* Initialize link properties that are user-changeable */ 7019 adapter->fc_autoneg = true; 7020 hw->mac.autoneg = true; 7021 hw->phy.autoneg_advertised = 0xaf; 7022 7023 hw->fc.requested_mode = igc_fc_default; 7024 hw->fc.current_mode = igc_fc_default; 7025 7026 /* By default, support wake on port A */ 7027 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 7028 7029 /* initialize the wol settings based on the eeprom settings */ 7030 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 7031 adapter->wol |= IGC_WUFC_MAG; 7032 7033 device_set_wakeup_enable(&adapter->pdev->dev, 7034 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 7035 7036 igc_ptp_init(adapter); 7037 7038 igc_tsn_clear_schedule(adapter); 7039 7040 /* reset the hardware with the new settings */ 7041 igc_reset(adapter); 7042 7043 /* let the f/w know that the h/w is now under the control of the 7044 * driver. 7045 */ 7046 igc_get_hw_control(adapter); 7047 7048 strscpy(netdev->name, "eth%d", sizeof(netdev->name)); 7049 err = register_netdev(netdev); 7050 if (err) 7051 goto err_register; 7052 7053 /* carrier off reporting is important to ethtool even BEFORE open */ 7054 netif_carrier_off(netdev); 7055 7056 /* Check if Media Autosense is enabled */ 7057 adapter->ei = *ei; 7058 7059 /* print pcie link status and MAC address */ 7060 pcie_print_link_status(pdev); 7061 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 7062 7063 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 7064 /* Disable EEE for internal PHY devices */ 7065 hw->dev_spec._base.eee_enable = false; 7066 adapter->flags &= ~IGC_FLAG_EEE; 7067 igc_set_eee_i225(hw, false, false, false); 7068 7069 pm_runtime_put_noidle(&pdev->dev); 7070 7071 if (IS_ENABLED(CONFIG_IGC_LEDS)) { 7072 err = igc_led_setup(adapter); 7073 if (err) 7074 goto err_register; 7075 } 7076 7077 return 0; 7078 7079 err_register: 7080 igc_release_hw_control(adapter); 7081 err_eeprom: 7082 if (!igc_check_reset_block(hw)) 7083 igc_reset_phy(hw); 7084 err_sw_init: 7085 igc_clear_interrupt_scheme(adapter); 7086 iounmap(adapter->io_addr); 7087 err_ioremap: 7088 free_netdev(netdev); 7089 err_alloc_etherdev: 7090 pci_release_mem_regions(pdev); 7091 err_pci_reg: 7092 err_dma: 7093 pci_disable_device(pdev); 7094 return err; 7095 } 7096 7097 /** 7098 * igc_remove - Device Removal Routine 7099 * @pdev: PCI device information struct 7100 * 7101 * igc_remove is called by the PCI subsystem to alert the driver 7102 * that it should release a PCI device. This could be caused by a 7103 * Hot-Plug event, or because the driver is going to be removed from 7104 * memory. 7105 */ 7106 static void igc_remove(struct pci_dev *pdev) 7107 { 7108 struct net_device *netdev = pci_get_drvdata(pdev); 7109 struct igc_adapter *adapter = netdev_priv(netdev); 7110 7111 pm_runtime_get_noresume(&pdev->dev); 7112 7113 igc_flush_nfc_rules(adapter); 7114 7115 igc_ptp_stop(adapter); 7116 7117 pci_disable_ptm(pdev); 7118 pci_clear_master(pdev); 7119 7120 set_bit(__IGC_DOWN, &adapter->state); 7121 7122 del_timer_sync(&adapter->watchdog_timer); 7123 del_timer_sync(&adapter->phy_info_timer); 7124 7125 cancel_work_sync(&adapter->reset_task); 7126 cancel_work_sync(&adapter->watchdog_task); 7127 hrtimer_cancel(&adapter->hrtimer); 7128 7129 if (IS_ENABLED(CONFIG_IGC_LEDS)) 7130 igc_led_free(adapter); 7131 7132 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7133 * would have already happened in close and is redundant. 7134 */ 7135 igc_release_hw_control(adapter); 7136 unregister_netdev(netdev); 7137 7138 igc_clear_interrupt_scheme(adapter); 7139 pci_iounmap(pdev, adapter->io_addr); 7140 pci_release_mem_regions(pdev); 7141 7142 free_netdev(netdev); 7143 7144 pci_disable_device(pdev); 7145 } 7146 7147 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 7148 bool runtime) 7149 { 7150 struct net_device *netdev = pci_get_drvdata(pdev); 7151 struct igc_adapter *adapter = netdev_priv(netdev); 7152 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 7153 struct igc_hw *hw = &adapter->hw; 7154 u32 ctrl, rctl, status; 7155 bool wake; 7156 7157 rtnl_lock(); 7158 netif_device_detach(netdev); 7159 7160 if (netif_running(netdev)) 7161 __igc_close(netdev, true); 7162 7163 igc_ptp_suspend(adapter); 7164 7165 igc_clear_interrupt_scheme(adapter); 7166 rtnl_unlock(); 7167 7168 status = rd32(IGC_STATUS); 7169 if (status & IGC_STATUS_LU) 7170 wufc &= ~IGC_WUFC_LNKC; 7171 7172 if (wufc) { 7173 igc_setup_rctl(adapter); 7174 igc_set_rx_mode(netdev); 7175 7176 /* turn on all-multi mode if wake on multicast is enabled */ 7177 if (wufc & IGC_WUFC_MC) { 7178 rctl = rd32(IGC_RCTL); 7179 rctl |= IGC_RCTL_MPE; 7180 wr32(IGC_RCTL, rctl); 7181 } 7182 7183 ctrl = rd32(IGC_CTRL); 7184 ctrl |= IGC_CTRL_ADVD3WUC; 7185 wr32(IGC_CTRL, ctrl); 7186 7187 /* Allow time for pending master requests to run */ 7188 igc_disable_pcie_master(hw); 7189 7190 wr32(IGC_WUC, IGC_WUC_PME_EN); 7191 wr32(IGC_WUFC, wufc); 7192 } else { 7193 wr32(IGC_WUC, 0); 7194 wr32(IGC_WUFC, 0); 7195 } 7196 7197 wake = wufc || adapter->en_mng_pt; 7198 if (!wake) 7199 igc_power_down_phy_copper_base(&adapter->hw); 7200 else 7201 igc_power_up_link(adapter); 7202 7203 if (enable_wake) 7204 *enable_wake = wake; 7205 7206 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7207 * would have already happened in close and is redundant. 7208 */ 7209 igc_release_hw_control(adapter); 7210 7211 pci_disable_device(pdev); 7212 7213 return 0; 7214 } 7215 7216 static int igc_runtime_suspend(struct device *dev) 7217 { 7218 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 7219 } 7220 7221 static void igc_deliver_wake_packet(struct net_device *netdev) 7222 { 7223 struct igc_adapter *adapter = netdev_priv(netdev); 7224 struct igc_hw *hw = &adapter->hw; 7225 struct sk_buff *skb; 7226 u32 wupl; 7227 7228 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 7229 7230 /* WUPM stores only the first 128 bytes of the wake packet. 7231 * Read the packet only if we have the whole thing. 7232 */ 7233 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 7234 return; 7235 7236 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 7237 if (!skb) 7238 return; 7239 7240 skb_put(skb, wupl); 7241 7242 /* Ensure reads are 32-bit aligned */ 7243 wupl = roundup(wupl, 4); 7244 7245 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 7246 7247 skb->protocol = eth_type_trans(skb, netdev); 7248 netif_rx(skb); 7249 } 7250 7251 static int igc_resume(struct device *dev) 7252 { 7253 struct pci_dev *pdev = to_pci_dev(dev); 7254 struct net_device *netdev = pci_get_drvdata(pdev); 7255 struct igc_adapter *adapter = netdev_priv(netdev); 7256 struct igc_hw *hw = &adapter->hw; 7257 u32 err, val; 7258 7259 pci_set_power_state(pdev, PCI_D0); 7260 pci_restore_state(pdev); 7261 pci_save_state(pdev); 7262 7263 if (!pci_device_is_present(pdev)) 7264 return -ENODEV; 7265 err = pci_enable_device_mem(pdev); 7266 if (err) { 7267 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 7268 return err; 7269 } 7270 pci_set_master(pdev); 7271 7272 pci_enable_wake(pdev, PCI_D3hot, 0); 7273 pci_enable_wake(pdev, PCI_D3cold, 0); 7274 7275 if (igc_init_interrupt_scheme(adapter, true)) { 7276 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7277 return -ENOMEM; 7278 } 7279 7280 igc_reset(adapter); 7281 7282 /* let the f/w know that the h/w is now under the control of the 7283 * driver. 7284 */ 7285 igc_get_hw_control(adapter); 7286 7287 val = rd32(IGC_WUS); 7288 if (val & WAKE_PKT_WUS) 7289 igc_deliver_wake_packet(netdev); 7290 7291 wr32(IGC_WUS, ~0); 7292 7293 if (netif_running(netdev)) { 7294 err = __igc_open(netdev, true); 7295 if (!err) 7296 netif_device_attach(netdev); 7297 } 7298 7299 return err; 7300 } 7301 7302 static int igc_runtime_resume(struct device *dev) 7303 { 7304 return igc_resume(dev); 7305 } 7306 7307 static int igc_suspend(struct device *dev) 7308 { 7309 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 7310 } 7311 7312 static int __maybe_unused igc_runtime_idle(struct device *dev) 7313 { 7314 struct net_device *netdev = dev_get_drvdata(dev); 7315 struct igc_adapter *adapter = netdev_priv(netdev); 7316 7317 if (!igc_has_link(adapter)) 7318 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7319 7320 return -EBUSY; 7321 } 7322 7323 static void igc_shutdown(struct pci_dev *pdev) 7324 { 7325 bool wake; 7326 7327 __igc_shutdown(pdev, &wake, 0); 7328 7329 if (system_state == SYSTEM_POWER_OFF) { 7330 pci_wake_from_d3(pdev, wake); 7331 pci_set_power_state(pdev, PCI_D3hot); 7332 } 7333 } 7334 7335 /** 7336 * igc_io_error_detected - called when PCI error is detected 7337 * @pdev: Pointer to PCI device 7338 * @state: The current PCI connection state 7339 * 7340 * This function is called after a PCI bus error affecting 7341 * this device has been detected. 7342 **/ 7343 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 7344 pci_channel_state_t state) 7345 { 7346 struct net_device *netdev = pci_get_drvdata(pdev); 7347 struct igc_adapter *adapter = netdev_priv(netdev); 7348 7349 netif_device_detach(netdev); 7350 7351 if (state == pci_channel_io_perm_failure) 7352 return PCI_ERS_RESULT_DISCONNECT; 7353 7354 if (netif_running(netdev)) 7355 igc_down(adapter); 7356 pci_disable_device(pdev); 7357 7358 /* Request a slot reset. */ 7359 return PCI_ERS_RESULT_NEED_RESET; 7360 } 7361 7362 /** 7363 * igc_io_slot_reset - called after the PCI bus has been reset. 7364 * @pdev: Pointer to PCI device 7365 * 7366 * Restart the card from scratch, as if from a cold-boot. Implementation 7367 * resembles the first-half of the igc_resume routine. 7368 **/ 7369 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 7370 { 7371 struct net_device *netdev = pci_get_drvdata(pdev); 7372 struct igc_adapter *adapter = netdev_priv(netdev); 7373 struct igc_hw *hw = &adapter->hw; 7374 pci_ers_result_t result; 7375 7376 if (pci_enable_device_mem(pdev)) { 7377 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 7378 result = PCI_ERS_RESULT_DISCONNECT; 7379 } else { 7380 pci_set_master(pdev); 7381 pci_restore_state(pdev); 7382 pci_save_state(pdev); 7383 7384 pci_enable_wake(pdev, PCI_D3hot, 0); 7385 pci_enable_wake(pdev, PCI_D3cold, 0); 7386 7387 /* In case of PCI error, adapter loses its HW address 7388 * so we should re-assign it here. 7389 */ 7390 hw->hw_addr = adapter->io_addr; 7391 7392 igc_reset(adapter); 7393 wr32(IGC_WUS, ~0); 7394 result = PCI_ERS_RESULT_RECOVERED; 7395 } 7396 7397 return result; 7398 } 7399 7400 /** 7401 * igc_io_resume - called when traffic can start to flow again. 7402 * @pdev: Pointer to PCI device 7403 * 7404 * This callback is called when the error recovery driver tells us that 7405 * its OK to resume normal operation. Implementation resembles the 7406 * second-half of the igc_resume routine. 7407 */ 7408 static void igc_io_resume(struct pci_dev *pdev) 7409 { 7410 struct net_device *netdev = pci_get_drvdata(pdev); 7411 struct igc_adapter *adapter = netdev_priv(netdev); 7412 7413 rtnl_lock(); 7414 if (netif_running(netdev)) { 7415 if (igc_open(netdev)) { 7416 netdev_err(netdev, "igc_open failed after reset\n"); 7417 return; 7418 } 7419 } 7420 7421 netif_device_attach(netdev); 7422 7423 /* let the f/w know that the h/w is now under the control of the 7424 * driver. 7425 */ 7426 igc_get_hw_control(adapter); 7427 rtnl_unlock(); 7428 } 7429 7430 static const struct pci_error_handlers igc_err_handler = { 7431 .error_detected = igc_io_error_detected, 7432 .slot_reset = igc_io_slot_reset, 7433 .resume = igc_io_resume, 7434 }; 7435 7436 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume, 7437 igc_runtime_suspend, igc_runtime_resume, 7438 igc_runtime_idle); 7439 7440 static struct pci_driver igc_driver = { 7441 .name = igc_driver_name, 7442 .id_table = igc_pci_tbl, 7443 .probe = igc_probe, 7444 .remove = igc_remove, 7445 .driver.pm = pm_ptr(&igc_pm_ops), 7446 .shutdown = igc_shutdown, 7447 .err_handler = &igc_err_handler, 7448 }; 7449 7450 /** 7451 * igc_reinit_queues - return error 7452 * @adapter: pointer to adapter structure 7453 */ 7454 int igc_reinit_queues(struct igc_adapter *adapter) 7455 { 7456 struct net_device *netdev = adapter->netdev; 7457 int err = 0; 7458 7459 if (netif_running(netdev)) 7460 igc_close(netdev); 7461 7462 igc_reset_interrupt_capability(adapter); 7463 7464 if (igc_init_interrupt_scheme(adapter, true)) { 7465 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7466 return -ENOMEM; 7467 } 7468 7469 if (netif_running(netdev)) 7470 err = igc_open(netdev); 7471 7472 return err; 7473 } 7474 7475 /** 7476 * igc_get_hw_dev - return device 7477 * @hw: pointer to hardware structure 7478 * 7479 * used by hardware layer to print debugging information 7480 */ 7481 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7482 { 7483 struct igc_adapter *adapter = hw->back; 7484 7485 return adapter->netdev; 7486 } 7487 7488 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7489 { 7490 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7491 u8 idx = ring->reg_idx; 7492 u32 rxdctl; 7493 7494 rxdctl = rd32(IGC_RXDCTL(idx)); 7495 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7496 rxdctl |= IGC_RXDCTL_SWFLUSH; 7497 wr32(IGC_RXDCTL(idx), rxdctl); 7498 } 7499 7500 void igc_disable_rx_ring(struct igc_ring *ring) 7501 { 7502 igc_disable_rx_ring_hw(ring); 7503 igc_clean_rx_ring(ring); 7504 } 7505 7506 void igc_enable_rx_ring(struct igc_ring *ring) 7507 { 7508 struct igc_adapter *adapter = ring->q_vector->adapter; 7509 7510 igc_configure_rx_ring(adapter, ring); 7511 7512 if (ring->xsk_pool) 7513 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7514 else 7515 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7516 } 7517 7518 void igc_disable_tx_ring(struct igc_ring *ring) 7519 { 7520 igc_disable_tx_ring_hw(ring); 7521 igc_clean_tx_ring(ring); 7522 } 7523 7524 void igc_enable_tx_ring(struct igc_ring *ring) 7525 { 7526 struct igc_adapter *adapter = ring->q_vector->adapter; 7527 7528 igc_configure_tx_ring(adapter, ring); 7529 } 7530 7531 /** 7532 * igc_init_module - Driver Registration Routine 7533 * 7534 * igc_init_module is the first routine called when the driver is 7535 * loaded. All it does is register with the PCI subsystem. 7536 */ 7537 static int __init igc_init_module(void) 7538 { 7539 int ret; 7540 7541 pr_info("%s\n", igc_driver_string); 7542 pr_info("%s\n", igc_copyright); 7543 7544 ret = pci_register_driver(&igc_driver); 7545 return ret; 7546 } 7547 7548 module_init(igc_init_module); 7549 7550 /** 7551 * igc_exit_module - Driver Exit Cleanup Routine 7552 * 7553 * igc_exit_module is called just before the driver is removed 7554 * from memory. 7555 */ 7556 static void __exit igc_exit_module(void) 7557 { 7558 pci_unregister_driver(&igc_driver); 7559 } 7560 7561 module_exit(igc_exit_module); 7562 /* igc_main.c */ 7563