1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/ip.h> 11 #include <linux/pm_runtime.h> 12 #include <net/pkt_sched.h> 13 #include <linux/bpf_trace.h> 14 #include <net/xdp_sock_drv.h> 15 #include <linux/pci.h> 16 17 #include <net/ipv6.h> 18 19 #include "igc.h" 20 #include "igc_hw.h" 21 #include "igc_tsn.h" 22 #include "igc_xdp.h" 23 24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 25 26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 27 28 #define IGC_XDP_PASS 0 29 #define IGC_XDP_CONSUMED BIT(0) 30 #define IGC_XDP_TX BIT(1) 31 #define IGC_XDP_REDIRECT BIT(2) 32 33 static int debug = -1; 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 module_param(debug, int, 0); 39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 40 41 char igc_driver_name[] = "igc"; 42 static const char igc_driver_string[] = DRV_SUMMARY; 43 static const char igc_copyright[] = 44 "Copyright(c) 2018 Intel Corporation."; 45 46 static const struct igc_info *igc_info_tbl[] = { 47 [board_base] = &igc_base_info, 48 }; 49 50 static const struct pci_device_id igc_pci_tbl[] = { 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 66 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 67 /* required last entry */ 68 {0, } 69 }; 70 71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 72 73 enum latency_range { 74 lowest_latency = 0, 75 low_latency = 1, 76 bulk_latency = 2, 77 latency_invalid = 255 78 }; 79 80 void igc_reset(struct igc_adapter *adapter) 81 { 82 struct net_device *dev = adapter->netdev; 83 struct igc_hw *hw = &adapter->hw; 84 struct igc_fc_info *fc = &hw->fc; 85 u32 pba, hwm; 86 87 /* Repartition PBA for greater than 9k MTU if required */ 88 pba = IGC_PBA_34K; 89 90 /* flow control settings 91 * The high water mark must be low enough to fit one full frame 92 * after transmitting the pause frame. As such we must have enough 93 * space to allow for us to complete our current transmit and then 94 * receive the frame that is in progress from the link partner. 95 * Set it to: 96 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 97 */ 98 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 99 100 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 101 fc->low_water = fc->high_water - 16; 102 fc->pause_time = 0xFFFF; 103 fc->send_xon = 1; 104 fc->current_mode = fc->requested_mode; 105 106 hw->mac.ops.reset_hw(hw); 107 108 if (hw->mac.ops.init_hw(hw)) 109 netdev_err(dev, "Error on hardware initialization\n"); 110 111 /* Re-establish EEE setting */ 112 igc_set_eee_i225(hw, true, true, true); 113 114 if (!netif_running(adapter->netdev)) 115 igc_power_down_phy_copper_base(&adapter->hw); 116 117 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 118 wr32(IGC_VET, ETH_P_8021Q); 119 120 /* Re-enable PTP, where applicable. */ 121 igc_ptp_reset(adapter); 122 123 /* Re-enable TSN offloading, where applicable. */ 124 igc_tsn_reset(adapter); 125 126 igc_get_phy_info(hw); 127 } 128 129 /** 130 * igc_power_up_link - Power up the phy link 131 * @adapter: address of board private structure 132 */ 133 static void igc_power_up_link(struct igc_adapter *adapter) 134 { 135 igc_reset_phy(&adapter->hw); 136 137 igc_power_up_phy_copper(&adapter->hw); 138 139 igc_setup_link(&adapter->hw); 140 } 141 142 /** 143 * igc_release_hw_control - release control of the h/w to f/w 144 * @adapter: address of board private structure 145 * 146 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 147 * For ASF and Pass Through versions of f/w this means that the 148 * driver is no longer loaded. 149 */ 150 static void igc_release_hw_control(struct igc_adapter *adapter) 151 { 152 struct igc_hw *hw = &adapter->hw; 153 u32 ctrl_ext; 154 155 if (!pci_device_is_present(adapter->pdev)) 156 return; 157 158 /* Let firmware take over control of h/w */ 159 ctrl_ext = rd32(IGC_CTRL_EXT); 160 wr32(IGC_CTRL_EXT, 161 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 162 } 163 164 /** 165 * igc_get_hw_control - get control of the h/w from f/w 166 * @adapter: address of board private structure 167 * 168 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 169 * For ASF and Pass Through versions of f/w this means that 170 * the driver is loaded. 171 */ 172 static void igc_get_hw_control(struct igc_adapter *adapter) 173 { 174 struct igc_hw *hw = &adapter->hw; 175 u32 ctrl_ext; 176 177 /* Let firmware know the driver has taken over */ 178 ctrl_ext = rd32(IGC_CTRL_EXT); 179 wr32(IGC_CTRL_EXT, 180 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 181 } 182 183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 184 { 185 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 186 dma_unmap_len(buf, len), DMA_TO_DEVICE); 187 188 dma_unmap_len_set(buf, len, 0); 189 } 190 191 /** 192 * igc_clean_tx_ring - Free Tx Buffers 193 * @tx_ring: ring to be cleaned 194 */ 195 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 196 { 197 u16 i = tx_ring->next_to_clean; 198 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 199 u32 xsk_frames = 0; 200 201 while (i != tx_ring->next_to_use) { 202 union igc_adv_tx_desc *eop_desc, *tx_desc; 203 204 switch (tx_buffer->type) { 205 case IGC_TX_BUFFER_TYPE_XSK: 206 xsk_frames++; 207 break; 208 case IGC_TX_BUFFER_TYPE_XDP: 209 xdp_return_frame(tx_buffer->xdpf); 210 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 211 break; 212 case IGC_TX_BUFFER_TYPE_SKB: 213 dev_kfree_skb_any(tx_buffer->skb); 214 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 215 break; 216 default: 217 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 218 break; 219 } 220 221 /* check for eop_desc to determine the end of the packet */ 222 eop_desc = tx_buffer->next_to_watch; 223 tx_desc = IGC_TX_DESC(tx_ring, i); 224 225 /* unmap remaining buffers */ 226 while (tx_desc != eop_desc) { 227 tx_buffer++; 228 tx_desc++; 229 i++; 230 if (unlikely(i == tx_ring->count)) { 231 i = 0; 232 tx_buffer = tx_ring->tx_buffer_info; 233 tx_desc = IGC_TX_DESC(tx_ring, 0); 234 } 235 236 /* unmap any remaining paged data */ 237 if (dma_unmap_len(tx_buffer, len)) 238 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 239 } 240 241 tx_buffer->next_to_watch = NULL; 242 243 /* move us one more past the eop_desc for start of next pkt */ 244 tx_buffer++; 245 i++; 246 if (unlikely(i == tx_ring->count)) { 247 i = 0; 248 tx_buffer = tx_ring->tx_buffer_info; 249 } 250 } 251 252 if (tx_ring->xsk_pool && xsk_frames) 253 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 254 255 /* reset BQL for queue */ 256 netdev_tx_reset_queue(txring_txq(tx_ring)); 257 258 /* reset next_to_use and next_to_clean */ 259 tx_ring->next_to_use = 0; 260 tx_ring->next_to_clean = 0; 261 } 262 263 /** 264 * igc_free_tx_resources - Free Tx Resources per Queue 265 * @tx_ring: Tx descriptor ring for a specific queue 266 * 267 * Free all transmit software resources 268 */ 269 void igc_free_tx_resources(struct igc_ring *tx_ring) 270 { 271 igc_clean_tx_ring(tx_ring); 272 273 vfree(tx_ring->tx_buffer_info); 274 tx_ring->tx_buffer_info = NULL; 275 276 /* if not set, then don't free */ 277 if (!tx_ring->desc) 278 return; 279 280 dma_free_coherent(tx_ring->dev, tx_ring->size, 281 tx_ring->desc, tx_ring->dma); 282 283 tx_ring->desc = NULL; 284 } 285 286 /** 287 * igc_free_all_tx_resources - Free Tx Resources for All Queues 288 * @adapter: board private structure 289 * 290 * Free all transmit software resources 291 */ 292 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 293 { 294 int i; 295 296 for (i = 0; i < adapter->num_tx_queues; i++) 297 igc_free_tx_resources(adapter->tx_ring[i]); 298 } 299 300 /** 301 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 302 * @adapter: board private structure 303 */ 304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 305 { 306 int i; 307 308 for (i = 0; i < adapter->num_tx_queues; i++) 309 if (adapter->tx_ring[i]) 310 igc_clean_tx_ring(adapter->tx_ring[i]); 311 } 312 313 /** 314 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 315 * @tx_ring: tx descriptor ring (for a specific queue) to setup 316 * 317 * Return 0 on success, negative on failure 318 */ 319 int igc_setup_tx_resources(struct igc_ring *tx_ring) 320 { 321 struct net_device *ndev = tx_ring->netdev; 322 struct device *dev = tx_ring->dev; 323 int size = 0; 324 325 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 326 tx_ring->tx_buffer_info = vzalloc(size); 327 if (!tx_ring->tx_buffer_info) 328 goto err; 329 330 /* round up to nearest 4K */ 331 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 332 tx_ring->size = ALIGN(tx_ring->size, 4096); 333 334 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 335 &tx_ring->dma, GFP_KERNEL); 336 337 if (!tx_ring->desc) 338 goto err; 339 340 tx_ring->next_to_use = 0; 341 tx_ring->next_to_clean = 0; 342 343 return 0; 344 345 err: 346 vfree(tx_ring->tx_buffer_info); 347 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 348 return -ENOMEM; 349 } 350 351 /** 352 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 353 * @adapter: board private structure 354 * 355 * Return 0 on success, negative on failure 356 */ 357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 358 { 359 struct net_device *dev = adapter->netdev; 360 int i, err = 0; 361 362 for (i = 0; i < adapter->num_tx_queues; i++) { 363 err = igc_setup_tx_resources(adapter->tx_ring[i]); 364 if (err) { 365 netdev_err(dev, "Error on Tx queue %u setup\n", i); 366 for (i--; i >= 0; i--) 367 igc_free_tx_resources(adapter->tx_ring[i]); 368 break; 369 } 370 } 371 372 return err; 373 } 374 375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 376 { 377 u16 i = rx_ring->next_to_clean; 378 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 382 /* Free all the Rx ring sk_buffs */ 383 while (i != rx_ring->next_to_alloc) { 384 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 385 386 /* Invalidate cache lines that may have been written to by 387 * device so that we avoid corrupting memory. 388 */ 389 dma_sync_single_range_for_cpu(rx_ring->dev, 390 buffer_info->dma, 391 buffer_info->page_offset, 392 igc_rx_bufsz(rx_ring), 393 DMA_FROM_DEVICE); 394 395 /* free resources associated with mapping */ 396 dma_unmap_page_attrs(rx_ring->dev, 397 buffer_info->dma, 398 igc_rx_pg_size(rx_ring), 399 DMA_FROM_DEVICE, 400 IGC_RX_DMA_ATTR); 401 __page_frag_cache_drain(buffer_info->page, 402 buffer_info->pagecnt_bias); 403 404 i++; 405 if (i == rx_ring->count) 406 i = 0; 407 } 408 } 409 410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 411 { 412 struct igc_rx_buffer *bi; 413 u16 i; 414 415 for (i = 0; i < ring->count; i++) { 416 bi = &ring->rx_buffer_info[i]; 417 if (!bi->xdp) 418 continue; 419 420 xsk_buff_free(bi->xdp); 421 bi->xdp = NULL; 422 } 423 } 424 425 /** 426 * igc_clean_rx_ring - Free Rx Buffers per Queue 427 * @ring: ring to free buffers from 428 */ 429 static void igc_clean_rx_ring(struct igc_ring *ring) 430 { 431 if (ring->xsk_pool) 432 igc_clean_rx_ring_xsk_pool(ring); 433 else 434 igc_clean_rx_ring_page_shared(ring); 435 436 clear_ring_uses_large_buffer(ring); 437 438 ring->next_to_alloc = 0; 439 ring->next_to_clean = 0; 440 ring->next_to_use = 0; 441 } 442 443 /** 444 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 445 * @adapter: board private structure 446 */ 447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 448 { 449 int i; 450 451 for (i = 0; i < adapter->num_rx_queues; i++) 452 if (adapter->rx_ring[i]) 453 igc_clean_rx_ring(adapter->rx_ring[i]); 454 } 455 456 /** 457 * igc_free_rx_resources - Free Rx Resources 458 * @rx_ring: ring to clean the resources from 459 * 460 * Free all receive software resources 461 */ 462 void igc_free_rx_resources(struct igc_ring *rx_ring) 463 { 464 igc_clean_rx_ring(rx_ring); 465 466 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 467 468 vfree(rx_ring->rx_buffer_info); 469 rx_ring->rx_buffer_info = NULL; 470 471 /* if not set, then don't free */ 472 if (!rx_ring->desc) 473 return; 474 475 dma_free_coherent(rx_ring->dev, rx_ring->size, 476 rx_ring->desc, rx_ring->dma); 477 478 rx_ring->desc = NULL; 479 } 480 481 /** 482 * igc_free_all_rx_resources - Free Rx Resources for All Queues 483 * @adapter: board private structure 484 * 485 * Free all receive software resources 486 */ 487 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 488 { 489 int i; 490 491 for (i = 0; i < adapter->num_rx_queues; i++) 492 igc_free_rx_resources(adapter->rx_ring[i]); 493 } 494 495 /** 496 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 497 * @rx_ring: rx descriptor ring (for a specific queue) to setup 498 * 499 * Returns 0 on success, negative on failure 500 */ 501 int igc_setup_rx_resources(struct igc_ring *rx_ring) 502 { 503 struct net_device *ndev = rx_ring->netdev; 504 struct device *dev = rx_ring->dev; 505 u8 index = rx_ring->queue_index; 506 int size, desc_len, res; 507 508 /* XDP RX-queue info */ 509 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 510 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 511 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 512 rx_ring->q_vector->napi.napi_id); 513 if (res < 0) { 514 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 515 index); 516 return res; 517 } 518 519 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 520 rx_ring->rx_buffer_info = vzalloc(size); 521 if (!rx_ring->rx_buffer_info) 522 goto err; 523 524 desc_len = sizeof(union igc_adv_rx_desc); 525 526 /* Round up to nearest 4K */ 527 rx_ring->size = rx_ring->count * desc_len; 528 rx_ring->size = ALIGN(rx_ring->size, 4096); 529 530 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 531 &rx_ring->dma, GFP_KERNEL); 532 533 if (!rx_ring->desc) 534 goto err; 535 536 rx_ring->next_to_alloc = 0; 537 rx_ring->next_to_clean = 0; 538 rx_ring->next_to_use = 0; 539 540 return 0; 541 542 err: 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 vfree(rx_ring->rx_buffer_info); 545 rx_ring->rx_buffer_info = NULL; 546 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 547 return -ENOMEM; 548 } 549 550 /** 551 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 552 * (Descriptors) for all queues 553 * @adapter: board private structure 554 * 555 * Return 0 on success, negative on failure 556 */ 557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 558 { 559 struct net_device *dev = adapter->netdev; 560 int i, err = 0; 561 562 for (i = 0; i < adapter->num_rx_queues; i++) { 563 err = igc_setup_rx_resources(adapter->rx_ring[i]); 564 if (err) { 565 netdev_err(dev, "Error on Rx queue %u setup\n", i); 566 for (i--; i >= 0; i--) 567 igc_free_rx_resources(adapter->rx_ring[i]); 568 break; 569 } 570 } 571 572 return err; 573 } 574 575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 576 struct igc_ring *ring) 577 { 578 if (!igc_xdp_is_enabled(adapter) || 579 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 580 return NULL; 581 582 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 583 } 584 585 /** 586 * igc_configure_rx_ring - Configure a receive ring after Reset 587 * @adapter: board private structure 588 * @ring: receive ring to be configured 589 * 590 * Configure the Rx unit of the MAC after a reset. 591 */ 592 static void igc_configure_rx_ring(struct igc_adapter *adapter, 593 struct igc_ring *ring) 594 { 595 struct igc_hw *hw = &adapter->hw; 596 union igc_adv_rx_desc *rx_desc; 597 int reg_idx = ring->reg_idx; 598 u32 srrctl = 0, rxdctl = 0; 599 u64 rdba = ring->dma; 600 u32 buf_size; 601 602 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 603 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 604 if (ring->xsk_pool) { 605 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 606 MEM_TYPE_XSK_BUFF_POOL, 607 NULL)); 608 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 609 } else { 610 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 611 MEM_TYPE_PAGE_SHARED, 612 NULL)); 613 } 614 615 if (igc_xdp_is_enabled(adapter)) 616 set_ring_uses_large_buffer(ring); 617 618 /* disable the queue */ 619 wr32(IGC_RXDCTL(reg_idx), 0); 620 621 /* Set DMA base address registers */ 622 wr32(IGC_RDBAL(reg_idx), 623 rdba & 0x00000000ffffffffULL); 624 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 625 wr32(IGC_RDLEN(reg_idx), 626 ring->count * sizeof(union igc_adv_rx_desc)); 627 628 /* initialize head and tail */ 629 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 630 wr32(IGC_RDH(reg_idx), 0); 631 writel(0, ring->tail); 632 633 /* reset next-to- use/clean to place SW in sync with hardware */ 634 ring->next_to_clean = 0; 635 ring->next_to_use = 0; 636 637 if (ring->xsk_pool) 638 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 639 else if (ring_uses_large_buffer(ring)) 640 buf_size = IGC_RXBUFFER_3072; 641 else 642 buf_size = IGC_RXBUFFER_2048; 643 644 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 645 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT; 646 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 647 648 wr32(IGC_SRRCTL(reg_idx), srrctl); 649 650 rxdctl |= IGC_RX_PTHRESH; 651 rxdctl |= IGC_RX_HTHRESH << 8; 652 rxdctl |= IGC_RX_WTHRESH << 16; 653 654 /* initialize rx_buffer_info */ 655 memset(ring->rx_buffer_info, 0, 656 sizeof(struct igc_rx_buffer) * ring->count); 657 658 /* initialize Rx descriptor 0 */ 659 rx_desc = IGC_RX_DESC(ring, 0); 660 rx_desc->wb.upper.length = 0; 661 662 /* enable receive descriptor fetching */ 663 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 664 665 wr32(IGC_RXDCTL(reg_idx), rxdctl); 666 } 667 668 /** 669 * igc_configure_rx - Configure receive Unit after Reset 670 * @adapter: board private structure 671 * 672 * Configure the Rx unit of the MAC after a reset. 673 */ 674 static void igc_configure_rx(struct igc_adapter *adapter) 675 { 676 int i; 677 678 /* Setup the HW Rx Head and Tail Descriptor Pointers and 679 * the Base and Length of the Rx Descriptor Ring 680 */ 681 for (i = 0; i < adapter->num_rx_queues; i++) 682 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 683 } 684 685 /** 686 * igc_configure_tx_ring - Configure transmit ring after Reset 687 * @adapter: board private structure 688 * @ring: tx ring to configure 689 * 690 * Configure a transmit ring after a reset. 691 */ 692 static void igc_configure_tx_ring(struct igc_adapter *adapter, 693 struct igc_ring *ring) 694 { 695 struct igc_hw *hw = &adapter->hw; 696 int reg_idx = ring->reg_idx; 697 u64 tdba = ring->dma; 698 u32 txdctl = 0; 699 700 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 701 702 /* disable the queue */ 703 wr32(IGC_TXDCTL(reg_idx), 0); 704 wrfl(); 705 mdelay(10); 706 707 wr32(IGC_TDLEN(reg_idx), 708 ring->count * sizeof(union igc_adv_tx_desc)); 709 wr32(IGC_TDBAL(reg_idx), 710 tdba & 0x00000000ffffffffULL); 711 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 712 713 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 714 wr32(IGC_TDH(reg_idx), 0); 715 writel(0, ring->tail); 716 717 txdctl |= IGC_TX_PTHRESH; 718 txdctl |= IGC_TX_HTHRESH << 8; 719 txdctl |= IGC_TX_WTHRESH << 16; 720 721 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 722 wr32(IGC_TXDCTL(reg_idx), txdctl); 723 } 724 725 /** 726 * igc_configure_tx - Configure transmit Unit after Reset 727 * @adapter: board private structure 728 * 729 * Configure the Tx unit of the MAC after a reset. 730 */ 731 static void igc_configure_tx(struct igc_adapter *adapter) 732 { 733 int i; 734 735 for (i = 0; i < adapter->num_tx_queues; i++) 736 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 737 } 738 739 /** 740 * igc_setup_mrqc - configure the multiple receive queue control registers 741 * @adapter: Board private structure 742 */ 743 static void igc_setup_mrqc(struct igc_adapter *adapter) 744 { 745 struct igc_hw *hw = &adapter->hw; 746 u32 j, num_rx_queues; 747 u32 mrqc, rxcsum; 748 u32 rss_key[10]; 749 750 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 751 for (j = 0; j < 10; j++) 752 wr32(IGC_RSSRK(j), rss_key[j]); 753 754 num_rx_queues = adapter->rss_queues; 755 756 if (adapter->rss_indir_tbl_init != num_rx_queues) { 757 for (j = 0; j < IGC_RETA_SIZE; j++) 758 adapter->rss_indir_tbl[j] = 759 (j * num_rx_queues) / IGC_RETA_SIZE; 760 adapter->rss_indir_tbl_init = num_rx_queues; 761 } 762 igc_write_rss_indir_tbl(adapter); 763 764 /* Disable raw packet checksumming so that RSS hash is placed in 765 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 766 * offloads as they are enabled by default 767 */ 768 rxcsum = rd32(IGC_RXCSUM); 769 rxcsum |= IGC_RXCSUM_PCSD; 770 771 /* Enable Receive Checksum Offload for SCTP */ 772 rxcsum |= IGC_RXCSUM_CRCOFL; 773 774 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 775 wr32(IGC_RXCSUM, rxcsum); 776 777 /* Generate RSS hash based on packet types, TCP/UDP 778 * port numbers and/or IPv4/v6 src and dst addresses 779 */ 780 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 781 IGC_MRQC_RSS_FIELD_IPV4_TCP | 782 IGC_MRQC_RSS_FIELD_IPV6 | 783 IGC_MRQC_RSS_FIELD_IPV6_TCP | 784 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 785 786 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 787 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 788 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 789 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 790 791 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 792 793 wr32(IGC_MRQC, mrqc); 794 } 795 796 /** 797 * igc_setup_rctl - configure the receive control registers 798 * @adapter: Board private structure 799 */ 800 static void igc_setup_rctl(struct igc_adapter *adapter) 801 { 802 struct igc_hw *hw = &adapter->hw; 803 u32 rctl; 804 805 rctl = rd32(IGC_RCTL); 806 807 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 808 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 809 810 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 811 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 812 813 /* enable stripping of CRC. Newer features require 814 * that the HW strips the CRC. 815 */ 816 rctl |= IGC_RCTL_SECRC; 817 818 /* disable store bad packets and clear size bits. */ 819 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 820 821 /* enable LPE to allow for reception of jumbo frames */ 822 rctl |= IGC_RCTL_LPE; 823 824 /* disable queue 0 to prevent tail write w/o re-config */ 825 wr32(IGC_RXDCTL(0), 0); 826 827 /* This is useful for sniffing bad packets. */ 828 if (adapter->netdev->features & NETIF_F_RXALL) { 829 /* UPE and MPE will be handled by normal PROMISC logic 830 * in set_rx_mode 831 */ 832 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 833 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 834 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 835 836 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 837 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 838 } 839 840 wr32(IGC_RCTL, rctl); 841 } 842 843 /** 844 * igc_setup_tctl - configure the transmit control registers 845 * @adapter: Board private structure 846 */ 847 static void igc_setup_tctl(struct igc_adapter *adapter) 848 { 849 struct igc_hw *hw = &adapter->hw; 850 u32 tctl; 851 852 /* disable queue 0 which icould be enabled by default */ 853 wr32(IGC_TXDCTL(0), 0); 854 855 /* Program the Transmit Control Register */ 856 tctl = rd32(IGC_TCTL); 857 tctl &= ~IGC_TCTL_CT; 858 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 859 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 860 861 /* Enable transmits */ 862 tctl |= IGC_TCTL_EN; 863 864 wr32(IGC_TCTL, tctl); 865 } 866 867 /** 868 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 869 * @adapter: Pointer to adapter where the filter should be set 870 * @index: Filter index 871 * @type: MAC address filter type (source or destination) 872 * @addr: MAC address 873 * @queue: If non-negative, queue assignment feature is enabled and frames 874 * matching the filter are enqueued onto 'queue'. Otherwise, queue 875 * assignment is disabled. 876 */ 877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 878 enum igc_mac_filter_type type, 879 const u8 *addr, int queue) 880 { 881 struct net_device *dev = adapter->netdev; 882 struct igc_hw *hw = &adapter->hw; 883 u32 ral, rah; 884 885 if (WARN_ON(index >= hw->mac.rar_entry_count)) 886 return; 887 888 ral = le32_to_cpup((__le32 *)(addr)); 889 rah = le16_to_cpup((__le16 *)(addr + 4)); 890 891 if (type == IGC_MAC_FILTER_TYPE_SRC) { 892 rah &= ~IGC_RAH_ASEL_MASK; 893 rah |= IGC_RAH_ASEL_SRC_ADDR; 894 } 895 896 if (queue >= 0) { 897 rah &= ~IGC_RAH_QSEL_MASK; 898 rah |= (queue << IGC_RAH_QSEL_SHIFT); 899 rah |= IGC_RAH_QSEL_ENABLE; 900 } 901 902 rah |= IGC_RAH_AV; 903 904 wr32(IGC_RAL(index), ral); 905 wr32(IGC_RAH(index), rah); 906 907 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 908 } 909 910 /** 911 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 912 * @adapter: Pointer to adapter where the filter should be cleared 913 * @index: Filter index 914 */ 915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 916 { 917 struct net_device *dev = adapter->netdev; 918 struct igc_hw *hw = &adapter->hw; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 wr32(IGC_RAL(index), 0); 924 wr32(IGC_RAH(index), 0); 925 926 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 927 } 928 929 /* Set default MAC address for the PF in the first RAR entry */ 930 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 931 { 932 struct net_device *dev = adapter->netdev; 933 u8 *addr = adapter->hw.mac.addr; 934 935 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 936 937 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 938 } 939 940 /** 941 * igc_set_mac - Change the Ethernet Address of the NIC 942 * @netdev: network interface device structure 943 * @p: pointer to an address structure 944 * 945 * Returns 0 on success, negative on failure 946 */ 947 static int igc_set_mac(struct net_device *netdev, void *p) 948 { 949 struct igc_adapter *adapter = netdev_priv(netdev); 950 struct igc_hw *hw = &adapter->hw; 951 struct sockaddr *addr = p; 952 953 if (!is_valid_ether_addr(addr->sa_data)) 954 return -EADDRNOTAVAIL; 955 956 eth_hw_addr_set(netdev, addr->sa_data); 957 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 958 959 /* set the correct pool for the new PF MAC address in entry 0 */ 960 igc_set_default_mac_filter(adapter); 961 962 return 0; 963 } 964 965 /** 966 * igc_write_mc_addr_list - write multicast addresses to MTA 967 * @netdev: network interface device structure 968 * 969 * Writes multicast address list to the MTA hash table. 970 * Returns: -ENOMEM on failure 971 * 0 on no addresses written 972 * X on writing X addresses to MTA 973 **/ 974 static int igc_write_mc_addr_list(struct net_device *netdev) 975 { 976 struct igc_adapter *adapter = netdev_priv(netdev); 977 struct igc_hw *hw = &adapter->hw; 978 struct netdev_hw_addr *ha; 979 u8 *mta_list; 980 int i; 981 982 if (netdev_mc_empty(netdev)) { 983 /* nothing to program, so clear mc list */ 984 igc_update_mc_addr_list(hw, NULL, 0); 985 return 0; 986 } 987 988 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 989 if (!mta_list) 990 return -ENOMEM; 991 992 /* The shared function expects a packed array of only addresses. */ 993 i = 0; 994 netdev_for_each_mc_addr(ha, netdev) 995 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 996 997 igc_update_mc_addr_list(hw, mta_list, i); 998 kfree(mta_list); 999 1000 return netdev_mc_count(netdev); 1001 } 1002 1003 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1004 bool *first_flag, bool *insert_empty) 1005 { 1006 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1007 ktime_t cycle_time = adapter->cycle_time; 1008 ktime_t base_time = adapter->base_time; 1009 ktime_t now = ktime_get_clocktai(); 1010 ktime_t baset_est, end_of_cycle; 1011 u32 launchtime; 1012 s64 n; 1013 1014 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1015 1016 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1017 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1018 1019 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1020 if (baset_est != ring->last_ff_cycle) { 1021 *first_flag = true; 1022 ring->last_ff_cycle = baset_est; 1023 1024 if (ktime_compare(txtime, ring->last_tx_cycle) > 0) 1025 *insert_empty = true; 1026 } 1027 } 1028 1029 /* Introducing a window at end of cycle on which packets 1030 * potentially not honor launchtime. Window of 5us chosen 1031 * considering software update the tail pointer and packets 1032 * are dma'ed to packet buffer. 1033 */ 1034 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1035 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1036 txtime); 1037 1038 ring->last_tx_cycle = end_of_cycle; 1039 1040 launchtime = ktime_sub_ns(txtime, baset_est); 1041 if (launchtime > 0) 1042 div_s64_rem(launchtime, cycle_time, &launchtime); 1043 else 1044 launchtime = 0; 1045 1046 return cpu_to_le32(launchtime); 1047 } 1048 1049 static int igc_init_empty_frame(struct igc_ring *ring, 1050 struct igc_tx_buffer *buffer, 1051 struct sk_buff *skb) 1052 { 1053 unsigned int size; 1054 dma_addr_t dma; 1055 1056 size = skb_headlen(skb); 1057 1058 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1059 if (dma_mapping_error(ring->dev, dma)) { 1060 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1061 return -ENOMEM; 1062 } 1063 1064 buffer->skb = skb; 1065 buffer->protocol = 0; 1066 buffer->bytecount = skb->len; 1067 buffer->gso_segs = 1; 1068 buffer->time_stamp = jiffies; 1069 dma_unmap_len_set(buffer, len, skb->len); 1070 dma_unmap_addr_set(buffer, dma, dma); 1071 1072 return 0; 1073 } 1074 1075 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1076 struct sk_buff *skb, 1077 struct igc_tx_buffer *first) 1078 { 1079 union igc_adv_tx_desc *desc; 1080 u32 cmd_type, olinfo_status; 1081 int err; 1082 1083 if (!igc_desc_unused(ring)) 1084 return -EBUSY; 1085 1086 err = igc_init_empty_frame(ring, first, skb); 1087 if (err) 1088 return err; 1089 1090 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1091 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1092 first->bytecount; 1093 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1094 1095 desc = IGC_TX_DESC(ring, ring->next_to_use); 1096 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1097 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1098 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1099 1100 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1101 1102 first->next_to_watch = desc; 1103 1104 ring->next_to_use++; 1105 if (ring->next_to_use == ring->count) 1106 ring->next_to_use = 0; 1107 1108 return 0; 1109 } 1110 1111 #define IGC_EMPTY_FRAME_SIZE 60 1112 1113 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1114 __le32 launch_time, bool first_flag, 1115 u32 vlan_macip_lens, u32 type_tucmd, 1116 u32 mss_l4len_idx) 1117 { 1118 struct igc_adv_tx_context_desc *context_desc; 1119 u16 i = tx_ring->next_to_use; 1120 1121 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1122 1123 i++; 1124 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1125 1126 /* set bits to identify this as an advanced context descriptor */ 1127 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1128 1129 /* For i225, context index must be unique per ring. */ 1130 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1131 mss_l4len_idx |= tx_ring->reg_idx << 4; 1132 1133 if (first_flag) 1134 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1135 1136 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1137 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1138 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1139 context_desc->launch_time = launch_time; 1140 } 1141 1142 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1143 __le32 launch_time, bool first_flag) 1144 { 1145 struct sk_buff *skb = first->skb; 1146 u32 vlan_macip_lens = 0; 1147 u32 type_tucmd = 0; 1148 1149 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1150 csum_failed: 1151 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1152 !tx_ring->launchtime_enable) 1153 return; 1154 goto no_csum; 1155 } 1156 1157 switch (skb->csum_offset) { 1158 case offsetof(struct tcphdr, check): 1159 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1160 fallthrough; 1161 case offsetof(struct udphdr, check): 1162 break; 1163 case offsetof(struct sctphdr, checksum): 1164 /* validate that this is actually an SCTP request */ 1165 if (skb_csum_is_sctp(skb)) { 1166 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1167 break; 1168 } 1169 fallthrough; 1170 default: 1171 skb_checksum_help(skb); 1172 goto csum_failed; 1173 } 1174 1175 /* update TX checksum flag */ 1176 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1177 vlan_macip_lens = skb_checksum_start_offset(skb) - 1178 skb_network_offset(skb); 1179 no_csum: 1180 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1181 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1182 1183 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1184 vlan_macip_lens, type_tucmd, 0); 1185 } 1186 1187 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1188 { 1189 struct net_device *netdev = tx_ring->netdev; 1190 1191 netif_stop_subqueue(netdev, tx_ring->queue_index); 1192 1193 /* memory barriier comment */ 1194 smp_mb(); 1195 1196 /* We need to check again in a case another CPU has just 1197 * made room available. 1198 */ 1199 if (igc_desc_unused(tx_ring) < size) 1200 return -EBUSY; 1201 1202 /* A reprieve! */ 1203 netif_wake_subqueue(netdev, tx_ring->queue_index); 1204 1205 u64_stats_update_begin(&tx_ring->tx_syncp2); 1206 tx_ring->tx_stats.restart_queue2++; 1207 u64_stats_update_end(&tx_ring->tx_syncp2); 1208 1209 return 0; 1210 } 1211 1212 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1213 { 1214 if (igc_desc_unused(tx_ring) >= size) 1215 return 0; 1216 return __igc_maybe_stop_tx(tx_ring, size); 1217 } 1218 1219 #define IGC_SET_FLAG(_input, _flag, _result) \ 1220 (((_flag) <= (_result)) ? \ 1221 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1222 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1223 1224 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1225 { 1226 /* set type for advanced descriptor with frame checksum insertion */ 1227 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1228 IGC_ADVTXD_DCMD_DEXT | 1229 IGC_ADVTXD_DCMD_IFCS; 1230 1231 /* set HW vlan bit if vlan is present */ 1232 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1233 IGC_ADVTXD_DCMD_VLE); 1234 1235 /* set segmentation bits for TSO */ 1236 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1237 (IGC_ADVTXD_DCMD_TSE)); 1238 1239 /* set timestamp bit if present */ 1240 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1241 (IGC_ADVTXD_MAC_TSTAMP)); 1242 1243 /* insert frame checksum */ 1244 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1245 1246 return cmd_type; 1247 } 1248 1249 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1250 union igc_adv_tx_desc *tx_desc, 1251 u32 tx_flags, unsigned int paylen) 1252 { 1253 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1254 1255 /* insert L4 checksum */ 1256 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1257 ((IGC_TXD_POPTS_TXSM << 8) / 1258 IGC_TX_FLAGS_CSUM); 1259 1260 /* insert IPv4 checksum */ 1261 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1262 (((IGC_TXD_POPTS_IXSM << 8)) / 1263 IGC_TX_FLAGS_IPV4); 1264 1265 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1266 } 1267 1268 static int igc_tx_map(struct igc_ring *tx_ring, 1269 struct igc_tx_buffer *first, 1270 const u8 hdr_len) 1271 { 1272 struct sk_buff *skb = first->skb; 1273 struct igc_tx_buffer *tx_buffer; 1274 union igc_adv_tx_desc *tx_desc; 1275 u32 tx_flags = first->tx_flags; 1276 skb_frag_t *frag; 1277 u16 i = tx_ring->next_to_use; 1278 unsigned int data_len, size; 1279 dma_addr_t dma; 1280 u32 cmd_type; 1281 1282 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1283 tx_desc = IGC_TX_DESC(tx_ring, i); 1284 1285 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1286 1287 size = skb_headlen(skb); 1288 data_len = skb->data_len; 1289 1290 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1291 1292 tx_buffer = first; 1293 1294 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1295 if (dma_mapping_error(tx_ring->dev, dma)) 1296 goto dma_error; 1297 1298 /* record length, and DMA address */ 1299 dma_unmap_len_set(tx_buffer, len, size); 1300 dma_unmap_addr_set(tx_buffer, dma, dma); 1301 1302 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1303 1304 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1305 tx_desc->read.cmd_type_len = 1306 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1307 1308 i++; 1309 tx_desc++; 1310 if (i == tx_ring->count) { 1311 tx_desc = IGC_TX_DESC(tx_ring, 0); 1312 i = 0; 1313 } 1314 tx_desc->read.olinfo_status = 0; 1315 1316 dma += IGC_MAX_DATA_PER_TXD; 1317 size -= IGC_MAX_DATA_PER_TXD; 1318 1319 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1320 } 1321 1322 if (likely(!data_len)) 1323 break; 1324 1325 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1326 1327 i++; 1328 tx_desc++; 1329 if (i == tx_ring->count) { 1330 tx_desc = IGC_TX_DESC(tx_ring, 0); 1331 i = 0; 1332 } 1333 tx_desc->read.olinfo_status = 0; 1334 1335 size = skb_frag_size(frag); 1336 data_len -= size; 1337 1338 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1339 size, DMA_TO_DEVICE); 1340 1341 tx_buffer = &tx_ring->tx_buffer_info[i]; 1342 } 1343 1344 /* write last descriptor with RS and EOP bits */ 1345 cmd_type |= size | IGC_TXD_DCMD; 1346 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1347 1348 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1349 1350 /* set the timestamp */ 1351 first->time_stamp = jiffies; 1352 1353 skb_tx_timestamp(skb); 1354 1355 /* Force memory writes to complete before letting h/w know there 1356 * are new descriptors to fetch. (Only applicable for weak-ordered 1357 * memory model archs, such as IA-64). 1358 * 1359 * We also need this memory barrier to make certain all of the 1360 * status bits have been updated before next_to_watch is written. 1361 */ 1362 wmb(); 1363 1364 /* set next_to_watch value indicating a packet is present */ 1365 first->next_to_watch = tx_desc; 1366 1367 i++; 1368 if (i == tx_ring->count) 1369 i = 0; 1370 1371 tx_ring->next_to_use = i; 1372 1373 /* Make sure there is space in the ring for the next send. */ 1374 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1375 1376 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1377 writel(i, tx_ring->tail); 1378 } 1379 1380 return 0; 1381 dma_error: 1382 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1383 tx_buffer = &tx_ring->tx_buffer_info[i]; 1384 1385 /* clear dma mappings for failed tx_buffer_info map */ 1386 while (tx_buffer != first) { 1387 if (dma_unmap_len(tx_buffer, len)) 1388 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1389 1390 if (i-- == 0) 1391 i += tx_ring->count; 1392 tx_buffer = &tx_ring->tx_buffer_info[i]; 1393 } 1394 1395 if (dma_unmap_len(tx_buffer, len)) 1396 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1397 1398 dev_kfree_skb_any(tx_buffer->skb); 1399 tx_buffer->skb = NULL; 1400 1401 tx_ring->next_to_use = i; 1402 1403 return -1; 1404 } 1405 1406 static int igc_tso(struct igc_ring *tx_ring, 1407 struct igc_tx_buffer *first, 1408 __le32 launch_time, bool first_flag, 1409 u8 *hdr_len) 1410 { 1411 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1412 struct sk_buff *skb = first->skb; 1413 union { 1414 struct iphdr *v4; 1415 struct ipv6hdr *v6; 1416 unsigned char *hdr; 1417 } ip; 1418 union { 1419 struct tcphdr *tcp; 1420 struct udphdr *udp; 1421 unsigned char *hdr; 1422 } l4; 1423 u32 paylen, l4_offset; 1424 int err; 1425 1426 if (skb->ip_summed != CHECKSUM_PARTIAL) 1427 return 0; 1428 1429 if (!skb_is_gso(skb)) 1430 return 0; 1431 1432 err = skb_cow_head(skb, 0); 1433 if (err < 0) 1434 return err; 1435 1436 ip.hdr = skb_network_header(skb); 1437 l4.hdr = skb_checksum_start(skb); 1438 1439 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1440 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1441 1442 /* initialize outer IP header fields */ 1443 if (ip.v4->version == 4) { 1444 unsigned char *csum_start = skb_checksum_start(skb); 1445 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1446 1447 /* IP header will have to cancel out any data that 1448 * is not a part of the outer IP header 1449 */ 1450 ip.v4->check = csum_fold(csum_partial(trans_start, 1451 csum_start - trans_start, 1452 0)); 1453 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1454 1455 ip.v4->tot_len = 0; 1456 first->tx_flags |= IGC_TX_FLAGS_TSO | 1457 IGC_TX_FLAGS_CSUM | 1458 IGC_TX_FLAGS_IPV4; 1459 } else { 1460 ip.v6->payload_len = 0; 1461 first->tx_flags |= IGC_TX_FLAGS_TSO | 1462 IGC_TX_FLAGS_CSUM; 1463 } 1464 1465 /* determine offset of inner transport header */ 1466 l4_offset = l4.hdr - skb->data; 1467 1468 /* remove payload length from inner checksum */ 1469 paylen = skb->len - l4_offset; 1470 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1471 /* compute length of segmentation header */ 1472 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1473 csum_replace_by_diff(&l4.tcp->check, 1474 (__force __wsum)htonl(paylen)); 1475 } else { 1476 /* compute length of segmentation header */ 1477 *hdr_len = sizeof(*l4.udp) + l4_offset; 1478 csum_replace_by_diff(&l4.udp->check, 1479 (__force __wsum)htonl(paylen)); 1480 } 1481 1482 /* update gso size and bytecount with header size */ 1483 first->gso_segs = skb_shinfo(skb)->gso_segs; 1484 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1485 1486 /* MSS L4LEN IDX */ 1487 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1488 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1489 1490 /* VLAN MACLEN IPLEN */ 1491 vlan_macip_lens = l4.hdr - ip.hdr; 1492 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1493 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1494 1495 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1496 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1497 1498 return 1; 1499 } 1500 1501 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1502 struct igc_ring *tx_ring) 1503 { 1504 bool first_flag = false, insert_empty = false; 1505 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1506 __be16 protocol = vlan_get_protocol(skb); 1507 struct igc_tx_buffer *first; 1508 __le32 launch_time = 0; 1509 u32 tx_flags = 0; 1510 unsigned short f; 1511 ktime_t txtime; 1512 u8 hdr_len = 0; 1513 int tso = 0; 1514 1515 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1516 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1517 * + 2 desc gap to keep tail from touching head, 1518 * + 1 desc for context descriptor, 1519 * otherwise try next time 1520 */ 1521 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1522 count += TXD_USE_COUNT(skb_frag_size( 1523 &skb_shinfo(skb)->frags[f])); 1524 1525 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1526 /* this is a hard error */ 1527 return NETDEV_TX_BUSY; 1528 } 1529 1530 if (!tx_ring->launchtime_enable) 1531 goto done; 1532 1533 txtime = skb->tstamp; 1534 skb->tstamp = ktime_set(0, 0); 1535 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1536 1537 if (insert_empty) { 1538 struct igc_tx_buffer *empty_info; 1539 struct sk_buff *empty; 1540 void *data; 1541 1542 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1543 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1544 if (!empty) 1545 goto done; 1546 1547 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1548 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1549 1550 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1551 1552 if (igc_init_tx_empty_descriptor(tx_ring, 1553 empty, 1554 empty_info) < 0) 1555 dev_kfree_skb_any(empty); 1556 } 1557 1558 done: 1559 /* record the location of the first descriptor for this packet */ 1560 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1561 first->type = IGC_TX_BUFFER_TYPE_SKB; 1562 first->skb = skb; 1563 first->bytecount = skb->len; 1564 first->gso_segs = 1; 1565 1566 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1567 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1568 1569 /* FIXME: add support for retrieving timestamps from 1570 * the other timer registers before skipping the 1571 * timestamping request. 1572 */ 1573 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1574 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1575 &adapter->state)) { 1576 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1577 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1578 1579 adapter->ptp_tx_skb = skb_get(skb); 1580 adapter->ptp_tx_start = jiffies; 1581 } else { 1582 adapter->tx_hwtstamp_skipped++; 1583 } 1584 } 1585 1586 if (skb_vlan_tag_present(skb)) { 1587 tx_flags |= IGC_TX_FLAGS_VLAN; 1588 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1589 } 1590 1591 /* record initial flags and protocol */ 1592 first->tx_flags = tx_flags; 1593 first->protocol = protocol; 1594 1595 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1596 if (tso < 0) 1597 goto out_drop; 1598 else if (!tso) 1599 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1600 1601 igc_tx_map(tx_ring, first, hdr_len); 1602 1603 return NETDEV_TX_OK; 1604 1605 out_drop: 1606 dev_kfree_skb_any(first->skb); 1607 first->skb = NULL; 1608 1609 return NETDEV_TX_OK; 1610 } 1611 1612 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1613 struct sk_buff *skb) 1614 { 1615 unsigned int r_idx = skb->queue_mapping; 1616 1617 if (r_idx >= adapter->num_tx_queues) 1618 r_idx = r_idx % adapter->num_tx_queues; 1619 1620 return adapter->tx_ring[r_idx]; 1621 } 1622 1623 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1624 struct net_device *netdev) 1625 { 1626 struct igc_adapter *adapter = netdev_priv(netdev); 1627 1628 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1629 * in order to meet this minimum size requirement. 1630 */ 1631 if (skb->len < 17) { 1632 if (skb_padto(skb, 17)) 1633 return NETDEV_TX_OK; 1634 skb->len = 17; 1635 } 1636 1637 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1638 } 1639 1640 static void igc_rx_checksum(struct igc_ring *ring, 1641 union igc_adv_rx_desc *rx_desc, 1642 struct sk_buff *skb) 1643 { 1644 skb_checksum_none_assert(skb); 1645 1646 /* Ignore Checksum bit is set */ 1647 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1648 return; 1649 1650 /* Rx checksum disabled via ethtool */ 1651 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1652 return; 1653 1654 /* TCP/UDP checksum error bit is set */ 1655 if (igc_test_staterr(rx_desc, 1656 IGC_RXDEXT_STATERR_L4E | 1657 IGC_RXDEXT_STATERR_IPE)) { 1658 /* work around errata with sctp packets where the TCPE aka 1659 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1660 * packets (aka let the stack check the crc32c) 1661 */ 1662 if (!(skb->len == 60 && 1663 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1664 u64_stats_update_begin(&ring->rx_syncp); 1665 ring->rx_stats.csum_err++; 1666 u64_stats_update_end(&ring->rx_syncp); 1667 } 1668 /* let the stack verify checksum errors */ 1669 return; 1670 } 1671 /* It must be a TCP or UDP packet with a valid checksum */ 1672 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1673 IGC_RXD_STAT_UDPCS)) 1674 skb->ip_summed = CHECKSUM_UNNECESSARY; 1675 1676 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1677 le32_to_cpu(rx_desc->wb.upper.status_error)); 1678 } 1679 1680 static inline void igc_rx_hash(struct igc_ring *ring, 1681 union igc_adv_rx_desc *rx_desc, 1682 struct sk_buff *skb) 1683 { 1684 if (ring->netdev->features & NETIF_F_RXHASH) 1685 skb_set_hash(skb, 1686 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1687 PKT_HASH_TYPE_L3); 1688 } 1689 1690 static void igc_rx_vlan(struct igc_ring *rx_ring, 1691 union igc_adv_rx_desc *rx_desc, 1692 struct sk_buff *skb) 1693 { 1694 struct net_device *dev = rx_ring->netdev; 1695 u16 vid; 1696 1697 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1698 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1699 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1700 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1701 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1702 else 1703 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1704 1705 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1706 } 1707 } 1708 1709 /** 1710 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1711 * @rx_ring: rx descriptor ring packet is being transacted on 1712 * @rx_desc: pointer to the EOP Rx descriptor 1713 * @skb: pointer to current skb being populated 1714 * 1715 * This function checks the ring, descriptor, and packet information in order 1716 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1717 * skb. 1718 */ 1719 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1720 union igc_adv_rx_desc *rx_desc, 1721 struct sk_buff *skb) 1722 { 1723 igc_rx_hash(rx_ring, rx_desc, skb); 1724 1725 igc_rx_checksum(rx_ring, rx_desc, skb); 1726 1727 igc_rx_vlan(rx_ring, rx_desc, skb); 1728 1729 skb_record_rx_queue(skb, rx_ring->queue_index); 1730 1731 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1732 } 1733 1734 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1735 { 1736 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1737 struct igc_adapter *adapter = netdev_priv(netdev); 1738 struct igc_hw *hw = &adapter->hw; 1739 u32 ctrl; 1740 1741 ctrl = rd32(IGC_CTRL); 1742 1743 if (enable) { 1744 /* enable VLAN tag insert/strip */ 1745 ctrl |= IGC_CTRL_VME; 1746 } else { 1747 /* disable VLAN tag insert/strip */ 1748 ctrl &= ~IGC_CTRL_VME; 1749 } 1750 wr32(IGC_CTRL, ctrl); 1751 } 1752 1753 static void igc_restore_vlan(struct igc_adapter *adapter) 1754 { 1755 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1756 } 1757 1758 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1759 const unsigned int size, 1760 int *rx_buffer_pgcnt) 1761 { 1762 struct igc_rx_buffer *rx_buffer; 1763 1764 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1765 *rx_buffer_pgcnt = 1766 #if (PAGE_SIZE < 8192) 1767 page_count(rx_buffer->page); 1768 #else 1769 0; 1770 #endif 1771 prefetchw(rx_buffer->page); 1772 1773 /* we are reusing so sync this buffer for CPU use */ 1774 dma_sync_single_range_for_cpu(rx_ring->dev, 1775 rx_buffer->dma, 1776 rx_buffer->page_offset, 1777 size, 1778 DMA_FROM_DEVICE); 1779 1780 rx_buffer->pagecnt_bias--; 1781 1782 return rx_buffer; 1783 } 1784 1785 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1786 unsigned int truesize) 1787 { 1788 #if (PAGE_SIZE < 8192) 1789 buffer->page_offset ^= truesize; 1790 #else 1791 buffer->page_offset += truesize; 1792 #endif 1793 } 1794 1795 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1796 unsigned int size) 1797 { 1798 unsigned int truesize; 1799 1800 #if (PAGE_SIZE < 8192) 1801 truesize = igc_rx_pg_size(ring) / 2; 1802 #else 1803 truesize = ring_uses_build_skb(ring) ? 1804 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1805 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1806 SKB_DATA_ALIGN(size); 1807 #endif 1808 return truesize; 1809 } 1810 1811 /** 1812 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1813 * @rx_ring: rx descriptor ring to transact packets on 1814 * @rx_buffer: buffer containing page to add 1815 * @skb: sk_buff to place the data into 1816 * @size: size of buffer to be added 1817 * 1818 * This function will add the data contained in rx_buffer->page to the skb. 1819 */ 1820 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1821 struct igc_rx_buffer *rx_buffer, 1822 struct sk_buff *skb, 1823 unsigned int size) 1824 { 1825 unsigned int truesize; 1826 1827 #if (PAGE_SIZE < 8192) 1828 truesize = igc_rx_pg_size(rx_ring) / 2; 1829 #else 1830 truesize = ring_uses_build_skb(rx_ring) ? 1831 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1832 SKB_DATA_ALIGN(size); 1833 #endif 1834 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1835 rx_buffer->page_offset, size, truesize); 1836 1837 igc_rx_buffer_flip(rx_buffer, truesize); 1838 } 1839 1840 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1841 struct igc_rx_buffer *rx_buffer, 1842 struct xdp_buff *xdp) 1843 { 1844 unsigned int size = xdp->data_end - xdp->data; 1845 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1846 unsigned int metasize = xdp->data - xdp->data_meta; 1847 struct sk_buff *skb; 1848 1849 /* prefetch first cache line of first page */ 1850 net_prefetch(xdp->data_meta); 1851 1852 /* build an skb around the page buffer */ 1853 skb = napi_build_skb(xdp->data_hard_start, truesize); 1854 if (unlikely(!skb)) 1855 return NULL; 1856 1857 /* update pointers within the skb to store the data */ 1858 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1859 __skb_put(skb, size); 1860 if (metasize) 1861 skb_metadata_set(skb, metasize); 1862 1863 igc_rx_buffer_flip(rx_buffer, truesize); 1864 return skb; 1865 } 1866 1867 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1868 struct igc_rx_buffer *rx_buffer, 1869 struct xdp_buff *xdp, 1870 ktime_t timestamp) 1871 { 1872 unsigned int metasize = xdp->data - xdp->data_meta; 1873 unsigned int size = xdp->data_end - xdp->data; 1874 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1875 void *va = xdp->data; 1876 unsigned int headlen; 1877 struct sk_buff *skb; 1878 1879 /* prefetch first cache line of first page */ 1880 net_prefetch(xdp->data_meta); 1881 1882 /* allocate a skb to store the frags */ 1883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1884 IGC_RX_HDR_LEN + metasize); 1885 if (unlikely(!skb)) 1886 return NULL; 1887 1888 if (timestamp) 1889 skb_hwtstamps(skb)->hwtstamp = timestamp; 1890 1891 /* Determine available headroom for copy */ 1892 headlen = size; 1893 if (headlen > IGC_RX_HDR_LEN) 1894 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1895 1896 /* align pull length to size of long to optimize memcpy performance */ 1897 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1898 ALIGN(headlen + metasize, sizeof(long))); 1899 1900 if (metasize) { 1901 skb_metadata_set(skb, metasize); 1902 __skb_pull(skb, metasize); 1903 } 1904 1905 /* update all of the pointers */ 1906 size -= headlen; 1907 if (size) { 1908 skb_add_rx_frag(skb, 0, rx_buffer->page, 1909 (va + headlen) - page_address(rx_buffer->page), 1910 size, truesize); 1911 igc_rx_buffer_flip(rx_buffer, truesize); 1912 } else { 1913 rx_buffer->pagecnt_bias++; 1914 } 1915 1916 return skb; 1917 } 1918 1919 /** 1920 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1921 * @rx_ring: rx descriptor ring to store buffers on 1922 * @old_buff: donor buffer to have page reused 1923 * 1924 * Synchronizes page for reuse by the adapter 1925 */ 1926 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1927 struct igc_rx_buffer *old_buff) 1928 { 1929 u16 nta = rx_ring->next_to_alloc; 1930 struct igc_rx_buffer *new_buff; 1931 1932 new_buff = &rx_ring->rx_buffer_info[nta]; 1933 1934 /* update, and store next to alloc */ 1935 nta++; 1936 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1937 1938 /* Transfer page from old buffer to new buffer. 1939 * Move each member individually to avoid possible store 1940 * forwarding stalls. 1941 */ 1942 new_buff->dma = old_buff->dma; 1943 new_buff->page = old_buff->page; 1944 new_buff->page_offset = old_buff->page_offset; 1945 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1946 } 1947 1948 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1949 int rx_buffer_pgcnt) 1950 { 1951 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1952 struct page *page = rx_buffer->page; 1953 1954 /* avoid re-using remote and pfmemalloc pages */ 1955 if (!dev_page_is_reusable(page)) 1956 return false; 1957 1958 #if (PAGE_SIZE < 8192) 1959 /* if we are only owner of page we can reuse it */ 1960 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1961 return false; 1962 #else 1963 #define IGC_LAST_OFFSET \ 1964 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1965 1966 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1967 return false; 1968 #endif 1969 1970 /* If we have drained the page fragment pool we need to update 1971 * the pagecnt_bias and page count so that we fully restock the 1972 * number of references the driver holds. 1973 */ 1974 if (unlikely(pagecnt_bias == 1)) { 1975 page_ref_add(page, USHRT_MAX - 1); 1976 rx_buffer->pagecnt_bias = USHRT_MAX; 1977 } 1978 1979 return true; 1980 } 1981 1982 /** 1983 * igc_is_non_eop - process handling of non-EOP buffers 1984 * @rx_ring: Rx ring being processed 1985 * @rx_desc: Rx descriptor for current buffer 1986 * 1987 * This function updates next to clean. If the buffer is an EOP buffer 1988 * this function exits returning false, otherwise it will place the 1989 * sk_buff in the next buffer to be chained and return true indicating 1990 * that this is in fact a non-EOP buffer. 1991 */ 1992 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1993 union igc_adv_rx_desc *rx_desc) 1994 { 1995 u32 ntc = rx_ring->next_to_clean + 1; 1996 1997 /* fetch, update, and store next to clean */ 1998 ntc = (ntc < rx_ring->count) ? ntc : 0; 1999 rx_ring->next_to_clean = ntc; 2000 2001 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2002 2003 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2004 return false; 2005 2006 return true; 2007 } 2008 2009 /** 2010 * igc_cleanup_headers - Correct corrupted or empty headers 2011 * @rx_ring: rx descriptor ring packet is being transacted on 2012 * @rx_desc: pointer to the EOP Rx descriptor 2013 * @skb: pointer to current skb being fixed 2014 * 2015 * Address the case where we are pulling data in on pages only 2016 * and as such no data is present in the skb header. 2017 * 2018 * In addition if skb is not at least 60 bytes we need to pad it so that 2019 * it is large enough to qualify as a valid Ethernet frame. 2020 * 2021 * Returns true if an error was encountered and skb was freed. 2022 */ 2023 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2024 union igc_adv_rx_desc *rx_desc, 2025 struct sk_buff *skb) 2026 { 2027 /* XDP packets use error pointer so abort at this point */ 2028 if (IS_ERR(skb)) 2029 return true; 2030 2031 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2032 struct net_device *netdev = rx_ring->netdev; 2033 2034 if (!(netdev->features & NETIF_F_RXALL)) { 2035 dev_kfree_skb_any(skb); 2036 return true; 2037 } 2038 } 2039 2040 /* if eth_skb_pad returns an error the skb was freed */ 2041 if (eth_skb_pad(skb)) 2042 return true; 2043 2044 return false; 2045 } 2046 2047 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2048 struct igc_rx_buffer *rx_buffer, 2049 int rx_buffer_pgcnt) 2050 { 2051 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2052 /* hand second half of page back to the ring */ 2053 igc_reuse_rx_page(rx_ring, rx_buffer); 2054 } else { 2055 /* We are not reusing the buffer so unmap it and free 2056 * any references we are holding to it 2057 */ 2058 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2059 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2060 IGC_RX_DMA_ATTR); 2061 __page_frag_cache_drain(rx_buffer->page, 2062 rx_buffer->pagecnt_bias); 2063 } 2064 2065 /* clear contents of rx_buffer */ 2066 rx_buffer->page = NULL; 2067 } 2068 2069 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2070 { 2071 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2072 2073 if (ring_uses_build_skb(rx_ring)) 2074 return IGC_SKB_PAD; 2075 if (igc_xdp_is_enabled(adapter)) 2076 return XDP_PACKET_HEADROOM; 2077 2078 return 0; 2079 } 2080 2081 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2082 struct igc_rx_buffer *bi) 2083 { 2084 struct page *page = bi->page; 2085 dma_addr_t dma; 2086 2087 /* since we are recycling buffers we should seldom need to alloc */ 2088 if (likely(page)) 2089 return true; 2090 2091 /* alloc new page for storage */ 2092 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2093 if (unlikely(!page)) { 2094 rx_ring->rx_stats.alloc_failed++; 2095 return false; 2096 } 2097 2098 /* map page for use */ 2099 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2100 igc_rx_pg_size(rx_ring), 2101 DMA_FROM_DEVICE, 2102 IGC_RX_DMA_ATTR); 2103 2104 /* if mapping failed free memory back to system since 2105 * there isn't much point in holding memory we can't use 2106 */ 2107 if (dma_mapping_error(rx_ring->dev, dma)) { 2108 __free_page(page); 2109 2110 rx_ring->rx_stats.alloc_failed++; 2111 return false; 2112 } 2113 2114 bi->dma = dma; 2115 bi->page = page; 2116 bi->page_offset = igc_rx_offset(rx_ring); 2117 page_ref_add(page, USHRT_MAX - 1); 2118 bi->pagecnt_bias = USHRT_MAX; 2119 2120 return true; 2121 } 2122 2123 /** 2124 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2125 * @rx_ring: rx descriptor ring 2126 * @cleaned_count: number of buffers to clean 2127 */ 2128 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2129 { 2130 union igc_adv_rx_desc *rx_desc; 2131 u16 i = rx_ring->next_to_use; 2132 struct igc_rx_buffer *bi; 2133 u16 bufsz; 2134 2135 /* nothing to do */ 2136 if (!cleaned_count) 2137 return; 2138 2139 rx_desc = IGC_RX_DESC(rx_ring, i); 2140 bi = &rx_ring->rx_buffer_info[i]; 2141 i -= rx_ring->count; 2142 2143 bufsz = igc_rx_bufsz(rx_ring); 2144 2145 do { 2146 if (!igc_alloc_mapped_page(rx_ring, bi)) 2147 break; 2148 2149 /* sync the buffer for use by the device */ 2150 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2151 bi->page_offset, bufsz, 2152 DMA_FROM_DEVICE); 2153 2154 /* Refresh the desc even if buffer_addrs didn't change 2155 * because each write-back erases this info. 2156 */ 2157 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2158 2159 rx_desc++; 2160 bi++; 2161 i++; 2162 if (unlikely(!i)) { 2163 rx_desc = IGC_RX_DESC(rx_ring, 0); 2164 bi = rx_ring->rx_buffer_info; 2165 i -= rx_ring->count; 2166 } 2167 2168 /* clear the length for the next_to_use descriptor */ 2169 rx_desc->wb.upper.length = 0; 2170 2171 cleaned_count--; 2172 } while (cleaned_count); 2173 2174 i += rx_ring->count; 2175 2176 if (rx_ring->next_to_use != i) { 2177 /* record the next descriptor to use */ 2178 rx_ring->next_to_use = i; 2179 2180 /* update next to alloc since we have filled the ring */ 2181 rx_ring->next_to_alloc = i; 2182 2183 /* Force memory writes to complete before letting h/w 2184 * know there are new descriptors to fetch. (Only 2185 * applicable for weak-ordered memory model archs, 2186 * such as IA-64). 2187 */ 2188 wmb(); 2189 writel(i, rx_ring->tail); 2190 } 2191 } 2192 2193 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2194 { 2195 union igc_adv_rx_desc *desc; 2196 u16 i = ring->next_to_use; 2197 struct igc_rx_buffer *bi; 2198 dma_addr_t dma; 2199 bool ok = true; 2200 2201 if (!count) 2202 return ok; 2203 2204 desc = IGC_RX_DESC(ring, i); 2205 bi = &ring->rx_buffer_info[i]; 2206 i -= ring->count; 2207 2208 do { 2209 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2210 if (!bi->xdp) { 2211 ok = false; 2212 break; 2213 } 2214 2215 dma = xsk_buff_xdp_get_dma(bi->xdp); 2216 desc->read.pkt_addr = cpu_to_le64(dma); 2217 2218 desc++; 2219 bi++; 2220 i++; 2221 if (unlikely(!i)) { 2222 desc = IGC_RX_DESC(ring, 0); 2223 bi = ring->rx_buffer_info; 2224 i -= ring->count; 2225 } 2226 2227 /* Clear the length for the next_to_use descriptor. */ 2228 desc->wb.upper.length = 0; 2229 2230 count--; 2231 } while (count); 2232 2233 i += ring->count; 2234 2235 if (ring->next_to_use != i) { 2236 ring->next_to_use = i; 2237 2238 /* Force memory writes to complete before letting h/w 2239 * know there are new descriptors to fetch. (Only 2240 * applicable for weak-ordered memory model archs, 2241 * such as IA-64). 2242 */ 2243 wmb(); 2244 writel(i, ring->tail); 2245 } 2246 2247 return ok; 2248 } 2249 2250 /* This function requires __netif_tx_lock is held by the caller. */ 2251 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2252 struct xdp_frame *xdpf) 2253 { 2254 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2255 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2256 u16 count, index = ring->next_to_use; 2257 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2258 struct igc_tx_buffer *buffer = head; 2259 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2260 u32 olinfo_status, len = xdpf->len, cmd_type; 2261 void *data = xdpf->data; 2262 u16 i; 2263 2264 count = TXD_USE_COUNT(len); 2265 for (i = 0; i < nr_frags; i++) 2266 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2267 2268 if (igc_maybe_stop_tx(ring, count + 3)) { 2269 /* this is a hard error */ 2270 return -EBUSY; 2271 } 2272 2273 i = 0; 2274 head->bytecount = xdp_get_frame_len(xdpf); 2275 head->type = IGC_TX_BUFFER_TYPE_XDP; 2276 head->gso_segs = 1; 2277 head->xdpf = xdpf; 2278 2279 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2280 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2281 2282 for (;;) { 2283 dma_addr_t dma; 2284 2285 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2286 if (dma_mapping_error(ring->dev, dma)) { 2287 netdev_err_once(ring->netdev, 2288 "Failed to map DMA for TX\n"); 2289 goto unmap; 2290 } 2291 2292 dma_unmap_len_set(buffer, len, len); 2293 dma_unmap_addr_set(buffer, dma, dma); 2294 2295 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2296 IGC_ADVTXD_DCMD_IFCS | len; 2297 2298 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2299 desc->read.buffer_addr = cpu_to_le64(dma); 2300 2301 buffer->protocol = 0; 2302 2303 if (++index == ring->count) 2304 index = 0; 2305 2306 if (i == nr_frags) 2307 break; 2308 2309 buffer = &ring->tx_buffer_info[index]; 2310 desc = IGC_TX_DESC(ring, index); 2311 desc->read.olinfo_status = 0; 2312 2313 data = skb_frag_address(&sinfo->frags[i]); 2314 len = skb_frag_size(&sinfo->frags[i]); 2315 i++; 2316 } 2317 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2318 2319 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2320 /* set the timestamp */ 2321 head->time_stamp = jiffies; 2322 /* set next_to_watch value indicating a packet is present */ 2323 head->next_to_watch = desc; 2324 ring->next_to_use = index; 2325 2326 return 0; 2327 2328 unmap: 2329 for (;;) { 2330 buffer = &ring->tx_buffer_info[index]; 2331 if (dma_unmap_len(buffer, len)) 2332 dma_unmap_page(ring->dev, 2333 dma_unmap_addr(buffer, dma), 2334 dma_unmap_len(buffer, len), 2335 DMA_TO_DEVICE); 2336 dma_unmap_len_set(buffer, len, 0); 2337 if (buffer == head) 2338 break; 2339 2340 if (!index) 2341 index += ring->count; 2342 index--; 2343 } 2344 2345 return -ENOMEM; 2346 } 2347 2348 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2349 int cpu) 2350 { 2351 int index = cpu; 2352 2353 if (unlikely(index < 0)) 2354 index = 0; 2355 2356 while (index >= adapter->num_tx_queues) 2357 index -= adapter->num_tx_queues; 2358 2359 return adapter->tx_ring[index]; 2360 } 2361 2362 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2363 { 2364 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2365 int cpu = smp_processor_id(); 2366 struct netdev_queue *nq; 2367 struct igc_ring *ring; 2368 int res; 2369 2370 if (unlikely(!xdpf)) 2371 return -EFAULT; 2372 2373 ring = igc_xdp_get_tx_ring(adapter, cpu); 2374 nq = txring_txq(ring); 2375 2376 __netif_tx_lock(nq, cpu); 2377 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2378 __netif_tx_unlock(nq); 2379 return res; 2380 } 2381 2382 /* This function assumes rcu_read_lock() is held by the caller. */ 2383 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2384 struct bpf_prog *prog, 2385 struct xdp_buff *xdp) 2386 { 2387 u32 act = bpf_prog_run_xdp(prog, xdp); 2388 2389 switch (act) { 2390 case XDP_PASS: 2391 return IGC_XDP_PASS; 2392 case XDP_TX: 2393 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2394 goto out_failure; 2395 return IGC_XDP_TX; 2396 case XDP_REDIRECT: 2397 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2398 goto out_failure; 2399 return IGC_XDP_REDIRECT; 2400 break; 2401 default: 2402 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2403 fallthrough; 2404 case XDP_ABORTED: 2405 out_failure: 2406 trace_xdp_exception(adapter->netdev, prog, act); 2407 fallthrough; 2408 case XDP_DROP: 2409 return IGC_XDP_CONSUMED; 2410 } 2411 } 2412 2413 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2414 struct xdp_buff *xdp) 2415 { 2416 struct bpf_prog *prog; 2417 int res; 2418 2419 prog = READ_ONCE(adapter->xdp_prog); 2420 if (!prog) { 2421 res = IGC_XDP_PASS; 2422 goto out; 2423 } 2424 2425 res = __igc_xdp_run_prog(adapter, prog, xdp); 2426 2427 out: 2428 return ERR_PTR(-res); 2429 } 2430 2431 /* This function assumes __netif_tx_lock is held by the caller. */ 2432 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2433 { 2434 /* Once tail pointer is updated, hardware can fetch the descriptors 2435 * any time so we issue a write membar here to ensure all memory 2436 * writes are complete before the tail pointer is updated. 2437 */ 2438 wmb(); 2439 writel(ring->next_to_use, ring->tail); 2440 } 2441 2442 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2443 { 2444 int cpu = smp_processor_id(); 2445 struct netdev_queue *nq; 2446 struct igc_ring *ring; 2447 2448 if (status & IGC_XDP_TX) { 2449 ring = igc_xdp_get_tx_ring(adapter, cpu); 2450 nq = txring_txq(ring); 2451 2452 __netif_tx_lock(nq, cpu); 2453 igc_flush_tx_descriptors(ring); 2454 __netif_tx_unlock(nq); 2455 } 2456 2457 if (status & IGC_XDP_REDIRECT) 2458 xdp_do_flush(); 2459 } 2460 2461 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2462 unsigned int packets, unsigned int bytes) 2463 { 2464 struct igc_ring *ring = q_vector->rx.ring; 2465 2466 u64_stats_update_begin(&ring->rx_syncp); 2467 ring->rx_stats.packets += packets; 2468 ring->rx_stats.bytes += bytes; 2469 u64_stats_update_end(&ring->rx_syncp); 2470 2471 q_vector->rx.total_packets += packets; 2472 q_vector->rx.total_bytes += bytes; 2473 } 2474 2475 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2476 { 2477 unsigned int total_bytes = 0, total_packets = 0; 2478 struct igc_adapter *adapter = q_vector->adapter; 2479 struct igc_ring *rx_ring = q_vector->rx.ring; 2480 struct sk_buff *skb = rx_ring->skb; 2481 u16 cleaned_count = igc_desc_unused(rx_ring); 2482 int xdp_status = 0, rx_buffer_pgcnt; 2483 2484 while (likely(total_packets < budget)) { 2485 union igc_adv_rx_desc *rx_desc; 2486 struct igc_rx_buffer *rx_buffer; 2487 unsigned int size, truesize; 2488 ktime_t timestamp = 0; 2489 struct xdp_buff xdp; 2490 int pkt_offset = 0; 2491 void *pktbuf; 2492 2493 /* return some buffers to hardware, one at a time is too slow */ 2494 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2495 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2496 cleaned_count = 0; 2497 } 2498 2499 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2500 size = le16_to_cpu(rx_desc->wb.upper.length); 2501 if (!size) 2502 break; 2503 2504 /* This memory barrier is needed to keep us from reading 2505 * any other fields out of the rx_desc until we know the 2506 * descriptor has been written back 2507 */ 2508 dma_rmb(); 2509 2510 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2511 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2512 2513 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2514 2515 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2516 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2517 pktbuf); 2518 pkt_offset = IGC_TS_HDR_LEN; 2519 size -= IGC_TS_HDR_LEN; 2520 } 2521 2522 if (!skb) { 2523 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); 2524 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), 2525 igc_rx_offset(rx_ring) + pkt_offset, 2526 size, true); 2527 xdp_buff_clear_frags_flag(&xdp); 2528 2529 skb = igc_xdp_run_prog(adapter, &xdp); 2530 } 2531 2532 if (IS_ERR(skb)) { 2533 unsigned int xdp_res = -PTR_ERR(skb); 2534 2535 switch (xdp_res) { 2536 case IGC_XDP_CONSUMED: 2537 rx_buffer->pagecnt_bias++; 2538 break; 2539 case IGC_XDP_TX: 2540 case IGC_XDP_REDIRECT: 2541 igc_rx_buffer_flip(rx_buffer, truesize); 2542 xdp_status |= xdp_res; 2543 break; 2544 } 2545 2546 total_packets++; 2547 total_bytes += size; 2548 } else if (skb) 2549 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2550 else if (ring_uses_build_skb(rx_ring)) 2551 skb = igc_build_skb(rx_ring, rx_buffer, &xdp); 2552 else 2553 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, 2554 timestamp); 2555 2556 /* exit if we failed to retrieve a buffer */ 2557 if (!skb) { 2558 rx_ring->rx_stats.alloc_failed++; 2559 rx_buffer->pagecnt_bias++; 2560 break; 2561 } 2562 2563 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2564 cleaned_count++; 2565 2566 /* fetch next buffer in frame if non-eop */ 2567 if (igc_is_non_eop(rx_ring, rx_desc)) 2568 continue; 2569 2570 /* verify the packet layout is correct */ 2571 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2572 skb = NULL; 2573 continue; 2574 } 2575 2576 /* probably a little skewed due to removing CRC */ 2577 total_bytes += skb->len; 2578 2579 /* populate checksum, VLAN, and protocol */ 2580 igc_process_skb_fields(rx_ring, rx_desc, skb); 2581 2582 napi_gro_receive(&q_vector->napi, skb); 2583 2584 /* reset skb pointer */ 2585 skb = NULL; 2586 2587 /* update budget accounting */ 2588 total_packets++; 2589 } 2590 2591 if (xdp_status) 2592 igc_finalize_xdp(adapter, xdp_status); 2593 2594 /* place incomplete frames back on ring for completion */ 2595 rx_ring->skb = skb; 2596 2597 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2598 2599 if (cleaned_count) 2600 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2601 2602 return total_packets; 2603 } 2604 2605 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2606 struct xdp_buff *xdp) 2607 { 2608 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2609 unsigned int metasize = xdp->data - xdp->data_meta; 2610 struct sk_buff *skb; 2611 2612 net_prefetch(xdp->data_meta); 2613 2614 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2615 GFP_ATOMIC | __GFP_NOWARN); 2616 if (unlikely(!skb)) 2617 return NULL; 2618 2619 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2620 ALIGN(totalsize, sizeof(long))); 2621 2622 if (metasize) { 2623 skb_metadata_set(skb, metasize); 2624 __skb_pull(skb, metasize); 2625 } 2626 2627 return skb; 2628 } 2629 2630 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2631 union igc_adv_rx_desc *desc, 2632 struct xdp_buff *xdp, 2633 ktime_t timestamp) 2634 { 2635 struct igc_ring *ring = q_vector->rx.ring; 2636 struct sk_buff *skb; 2637 2638 skb = igc_construct_skb_zc(ring, xdp); 2639 if (!skb) { 2640 ring->rx_stats.alloc_failed++; 2641 return; 2642 } 2643 2644 if (timestamp) 2645 skb_hwtstamps(skb)->hwtstamp = timestamp; 2646 2647 if (igc_cleanup_headers(ring, desc, skb)) 2648 return; 2649 2650 igc_process_skb_fields(ring, desc, skb); 2651 napi_gro_receive(&q_vector->napi, skb); 2652 } 2653 2654 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2655 { 2656 struct igc_adapter *adapter = q_vector->adapter; 2657 struct igc_ring *ring = q_vector->rx.ring; 2658 u16 cleaned_count = igc_desc_unused(ring); 2659 int total_bytes = 0, total_packets = 0; 2660 u16 ntc = ring->next_to_clean; 2661 struct bpf_prog *prog; 2662 bool failure = false; 2663 int xdp_status = 0; 2664 2665 rcu_read_lock(); 2666 2667 prog = READ_ONCE(adapter->xdp_prog); 2668 2669 while (likely(total_packets < budget)) { 2670 union igc_adv_rx_desc *desc; 2671 struct igc_rx_buffer *bi; 2672 ktime_t timestamp = 0; 2673 unsigned int size; 2674 int res; 2675 2676 desc = IGC_RX_DESC(ring, ntc); 2677 size = le16_to_cpu(desc->wb.upper.length); 2678 if (!size) 2679 break; 2680 2681 /* This memory barrier is needed to keep us from reading 2682 * any other fields out of the rx_desc until we know the 2683 * descriptor has been written back 2684 */ 2685 dma_rmb(); 2686 2687 bi = &ring->rx_buffer_info[ntc]; 2688 2689 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2690 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2691 bi->xdp->data); 2692 2693 bi->xdp->data += IGC_TS_HDR_LEN; 2694 2695 /* HW timestamp has been copied into local variable. Metadata 2696 * length when XDP program is called should be 0. 2697 */ 2698 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2699 size -= IGC_TS_HDR_LEN; 2700 } 2701 2702 bi->xdp->data_end = bi->xdp->data + size; 2703 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2704 2705 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2706 switch (res) { 2707 case IGC_XDP_PASS: 2708 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2709 fallthrough; 2710 case IGC_XDP_CONSUMED: 2711 xsk_buff_free(bi->xdp); 2712 break; 2713 case IGC_XDP_TX: 2714 case IGC_XDP_REDIRECT: 2715 xdp_status |= res; 2716 break; 2717 } 2718 2719 bi->xdp = NULL; 2720 total_bytes += size; 2721 total_packets++; 2722 cleaned_count++; 2723 ntc++; 2724 if (ntc == ring->count) 2725 ntc = 0; 2726 } 2727 2728 ring->next_to_clean = ntc; 2729 rcu_read_unlock(); 2730 2731 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2732 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2733 2734 if (xdp_status) 2735 igc_finalize_xdp(adapter, xdp_status); 2736 2737 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2738 2739 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2740 if (failure || ring->next_to_clean == ring->next_to_use) 2741 xsk_set_rx_need_wakeup(ring->xsk_pool); 2742 else 2743 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2744 return total_packets; 2745 } 2746 2747 return failure ? budget : total_packets; 2748 } 2749 2750 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2751 unsigned int packets, unsigned int bytes) 2752 { 2753 struct igc_ring *ring = q_vector->tx.ring; 2754 2755 u64_stats_update_begin(&ring->tx_syncp); 2756 ring->tx_stats.bytes += bytes; 2757 ring->tx_stats.packets += packets; 2758 u64_stats_update_end(&ring->tx_syncp); 2759 2760 q_vector->tx.total_bytes += bytes; 2761 q_vector->tx.total_packets += packets; 2762 } 2763 2764 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2765 { 2766 struct xsk_buff_pool *pool = ring->xsk_pool; 2767 struct netdev_queue *nq = txring_txq(ring); 2768 union igc_adv_tx_desc *tx_desc = NULL; 2769 int cpu = smp_processor_id(); 2770 u16 ntu = ring->next_to_use; 2771 struct xdp_desc xdp_desc; 2772 u16 budget; 2773 2774 if (!netif_carrier_ok(ring->netdev)) 2775 return; 2776 2777 __netif_tx_lock(nq, cpu); 2778 2779 budget = igc_desc_unused(ring); 2780 2781 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2782 u32 cmd_type, olinfo_status; 2783 struct igc_tx_buffer *bi; 2784 dma_addr_t dma; 2785 2786 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2787 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2788 xdp_desc.len; 2789 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2790 2791 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2792 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2793 2794 tx_desc = IGC_TX_DESC(ring, ntu); 2795 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2796 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2797 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2798 2799 bi = &ring->tx_buffer_info[ntu]; 2800 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2801 bi->protocol = 0; 2802 bi->bytecount = xdp_desc.len; 2803 bi->gso_segs = 1; 2804 bi->time_stamp = jiffies; 2805 bi->next_to_watch = tx_desc; 2806 2807 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2808 2809 ntu++; 2810 if (ntu == ring->count) 2811 ntu = 0; 2812 } 2813 2814 ring->next_to_use = ntu; 2815 if (tx_desc) { 2816 igc_flush_tx_descriptors(ring); 2817 xsk_tx_release(pool); 2818 } 2819 2820 __netif_tx_unlock(nq); 2821 } 2822 2823 /** 2824 * igc_clean_tx_irq - Reclaim resources after transmit completes 2825 * @q_vector: pointer to q_vector containing needed info 2826 * @napi_budget: Used to determine if we are in netpoll 2827 * 2828 * returns true if ring is completely cleaned 2829 */ 2830 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2831 { 2832 struct igc_adapter *adapter = q_vector->adapter; 2833 unsigned int total_bytes = 0, total_packets = 0; 2834 unsigned int budget = q_vector->tx.work_limit; 2835 struct igc_ring *tx_ring = q_vector->tx.ring; 2836 unsigned int i = tx_ring->next_to_clean; 2837 struct igc_tx_buffer *tx_buffer; 2838 union igc_adv_tx_desc *tx_desc; 2839 u32 xsk_frames = 0; 2840 2841 if (test_bit(__IGC_DOWN, &adapter->state)) 2842 return true; 2843 2844 tx_buffer = &tx_ring->tx_buffer_info[i]; 2845 tx_desc = IGC_TX_DESC(tx_ring, i); 2846 i -= tx_ring->count; 2847 2848 do { 2849 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2850 2851 /* if next_to_watch is not set then there is no work pending */ 2852 if (!eop_desc) 2853 break; 2854 2855 /* prevent any other reads prior to eop_desc */ 2856 smp_rmb(); 2857 2858 /* if DD is not set pending work has not been completed */ 2859 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2860 break; 2861 2862 /* clear next_to_watch to prevent false hangs */ 2863 tx_buffer->next_to_watch = NULL; 2864 2865 /* update the statistics for this packet */ 2866 total_bytes += tx_buffer->bytecount; 2867 total_packets += tx_buffer->gso_segs; 2868 2869 switch (tx_buffer->type) { 2870 case IGC_TX_BUFFER_TYPE_XSK: 2871 xsk_frames++; 2872 break; 2873 case IGC_TX_BUFFER_TYPE_XDP: 2874 xdp_return_frame(tx_buffer->xdpf); 2875 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2876 break; 2877 case IGC_TX_BUFFER_TYPE_SKB: 2878 napi_consume_skb(tx_buffer->skb, napi_budget); 2879 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2880 break; 2881 default: 2882 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2883 break; 2884 } 2885 2886 /* clear last DMA location and unmap remaining buffers */ 2887 while (tx_desc != eop_desc) { 2888 tx_buffer++; 2889 tx_desc++; 2890 i++; 2891 if (unlikely(!i)) { 2892 i -= tx_ring->count; 2893 tx_buffer = tx_ring->tx_buffer_info; 2894 tx_desc = IGC_TX_DESC(tx_ring, 0); 2895 } 2896 2897 /* unmap any remaining paged data */ 2898 if (dma_unmap_len(tx_buffer, len)) 2899 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2900 } 2901 2902 /* move us one more past the eop_desc for start of next pkt */ 2903 tx_buffer++; 2904 tx_desc++; 2905 i++; 2906 if (unlikely(!i)) { 2907 i -= tx_ring->count; 2908 tx_buffer = tx_ring->tx_buffer_info; 2909 tx_desc = IGC_TX_DESC(tx_ring, 0); 2910 } 2911 2912 /* issue prefetch for next Tx descriptor */ 2913 prefetch(tx_desc); 2914 2915 /* update budget accounting */ 2916 budget--; 2917 } while (likely(budget)); 2918 2919 netdev_tx_completed_queue(txring_txq(tx_ring), 2920 total_packets, total_bytes); 2921 2922 i += tx_ring->count; 2923 tx_ring->next_to_clean = i; 2924 2925 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2926 2927 if (tx_ring->xsk_pool) { 2928 if (xsk_frames) 2929 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2930 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2931 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2932 igc_xdp_xmit_zc(tx_ring); 2933 } 2934 2935 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2936 struct igc_hw *hw = &adapter->hw; 2937 2938 /* Detect a transmit hang in hardware, this serializes the 2939 * check with the clearing of time_stamp and movement of i 2940 */ 2941 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2942 if (tx_buffer->next_to_watch && 2943 time_after(jiffies, tx_buffer->time_stamp + 2944 (adapter->tx_timeout_factor * HZ)) && 2945 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 2946 (rd32(IGC_TDH(tx_ring->reg_idx)) != 2947 readl(tx_ring->tail))) { 2948 /* detected Tx unit hang */ 2949 netdev_err(tx_ring->netdev, 2950 "Detected Tx Unit Hang\n" 2951 " Tx Queue <%d>\n" 2952 " TDH <%x>\n" 2953 " TDT <%x>\n" 2954 " next_to_use <%x>\n" 2955 " next_to_clean <%x>\n" 2956 "buffer_info[next_to_clean]\n" 2957 " time_stamp <%lx>\n" 2958 " next_to_watch <%p>\n" 2959 " jiffies <%lx>\n" 2960 " desc.status <%x>\n", 2961 tx_ring->queue_index, 2962 rd32(IGC_TDH(tx_ring->reg_idx)), 2963 readl(tx_ring->tail), 2964 tx_ring->next_to_use, 2965 tx_ring->next_to_clean, 2966 tx_buffer->time_stamp, 2967 tx_buffer->next_to_watch, 2968 jiffies, 2969 tx_buffer->next_to_watch->wb.status); 2970 netif_stop_subqueue(tx_ring->netdev, 2971 tx_ring->queue_index); 2972 2973 /* we are about to reset, no point in enabling stuff */ 2974 return true; 2975 } 2976 } 2977 2978 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2979 if (unlikely(total_packets && 2980 netif_carrier_ok(tx_ring->netdev) && 2981 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 2982 /* Make sure that anybody stopping the queue after this 2983 * sees the new next_to_clean. 2984 */ 2985 smp_mb(); 2986 if (__netif_subqueue_stopped(tx_ring->netdev, 2987 tx_ring->queue_index) && 2988 !(test_bit(__IGC_DOWN, &adapter->state))) { 2989 netif_wake_subqueue(tx_ring->netdev, 2990 tx_ring->queue_index); 2991 2992 u64_stats_update_begin(&tx_ring->tx_syncp); 2993 tx_ring->tx_stats.restart_queue++; 2994 u64_stats_update_end(&tx_ring->tx_syncp); 2995 } 2996 } 2997 2998 return !!budget; 2999 } 3000 3001 static int igc_find_mac_filter(struct igc_adapter *adapter, 3002 enum igc_mac_filter_type type, const u8 *addr) 3003 { 3004 struct igc_hw *hw = &adapter->hw; 3005 int max_entries = hw->mac.rar_entry_count; 3006 u32 ral, rah; 3007 int i; 3008 3009 for (i = 0; i < max_entries; i++) { 3010 ral = rd32(IGC_RAL(i)); 3011 rah = rd32(IGC_RAH(i)); 3012 3013 if (!(rah & IGC_RAH_AV)) 3014 continue; 3015 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3016 continue; 3017 if ((rah & IGC_RAH_RAH_MASK) != 3018 le16_to_cpup((__le16 *)(addr + 4))) 3019 continue; 3020 if (ral != le32_to_cpup((__le32 *)(addr))) 3021 continue; 3022 3023 return i; 3024 } 3025 3026 return -1; 3027 } 3028 3029 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3030 { 3031 struct igc_hw *hw = &adapter->hw; 3032 int max_entries = hw->mac.rar_entry_count; 3033 u32 rah; 3034 int i; 3035 3036 for (i = 0; i < max_entries; i++) { 3037 rah = rd32(IGC_RAH(i)); 3038 3039 if (!(rah & IGC_RAH_AV)) 3040 return i; 3041 } 3042 3043 return -1; 3044 } 3045 3046 /** 3047 * igc_add_mac_filter() - Add MAC address filter 3048 * @adapter: Pointer to adapter where the filter should be added 3049 * @type: MAC address filter type (source or destination) 3050 * @addr: MAC address 3051 * @queue: If non-negative, queue assignment feature is enabled and frames 3052 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3053 * assignment is disabled. 3054 * 3055 * Return: 0 in case of success, negative errno code otherwise. 3056 */ 3057 static int igc_add_mac_filter(struct igc_adapter *adapter, 3058 enum igc_mac_filter_type type, const u8 *addr, 3059 int queue) 3060 { 3061 struct net_device *dev = adapter->netdev; 3062 int index; 3063 3064 index = igc_find_mac_filter(adapter, type, addr); 3065 if (index >= 0) 3066 goto update_filter; 3067 3068 index = igc_get_avail_mac_filter_slot(adapter); 3069 if (index < 0) 3070 return -ENOSPC; 3071 3072 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3073 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3074 addr, queue); 3075 3076 update_filter: 3077 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3078 return 0; 3079 } 3080 3081 /** 3082 * igc_del_mac_filter() - Delete MAC address filter 3083 * @adapter: Pointer to adapter where the filter should be deleted from 3084 * @type: MAC address filter type (source or destination) 3085 * @addr: MAC address 3086 */ 3087 static void igc_del_mac_filter(struct igc_adapter *adapter, 3088 enum igc_mac_filter_type type, const u8 *addr) 3089 { 3090 struct net_device *dev = adapter->netdev; 3091 int index; 3092 3093 index = igc_find_mac_filter(adapter, type, addr); 3094 if (index < 0) 3095 return; 3096 3097 if (index == 0) { 3098 /* If this is the default filter, we don't actually delete it. 3099 * We just reset to its default value i.e. disable queue 3100 * assignment. 3101 */ 3102 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3103 3104 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3105 } else { 3106 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3107 index, 3108 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3109 addr); 3110 3111 igc_clear_mac_filter_hw(adapter, index); 3112 } 3113 } 3114 3115 /** 3116 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3117 * @adapter: Pointer to adapter where the filter should be added 3118 * @prio: VLAN priority value 3119 * @queue: Queue number which matching frames are assigned to 3120 * 3121 * Return: 0 in case of success, negative errno code otherwise. 3122 */ 3123 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3124 int queue) 3125 { 3126 struct net_device *dev = adapter->netdev; 3127 struct igc_hw *hw = &adapter->hw; 3128 u32 vlanpqf; 3129 3130 vlanpqf = rd32(IGC_VLANPQF); 3131 3132 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3133 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3134 return -EEXIST; 3135 } 3136 3137 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3138 vlanpqf |= IGC_VLANPQF_VALID(prio); 3139 3140 wr32(IGC_VLANPQF, vlanpqf); 3141 3142 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3143 prio, queue); 3144 return 0; 3145 } 3146 3147 /** 3148 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3149 * @adapter: Pointer to adapter where the filter should be deleted from 3150 * @prio: VLAN priority value 3151 */ 3152 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3153 { 3154 struct igc_hw *hw = &adapter->hw; 3155 u32 vlanpqf; 3156 3157 vlanpqf = rd32(IGC_VLANPQF); 3158 3159 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3160 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3161 3162 wr32(IGC_VLANPQF, vlanpqf); 3163 3164 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3165 prio); 3166 } 3167 3168 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3169 { 3170 struct igc_hw *hw = &adapter->hw; 3171 int i; 3172 3173 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3174 u32 etqf = rd32(IGC_ETQF(i)); 3175 3176 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3177 return i; 3178 } 3179 3180 return -1; 3181 } 3182 3183 /** 3184 * igc_add_etype_filter() - Add ethertype filter 3185 * @adapter: Pointer to adapter where the filter should be added 3186 * @etype: Ethertype value 3187 * @queue: If non-negative, queue assignment feature is enabled and frames 3188 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3189 * assignment is disabled. 3190 * 3191 * Return: 0 in case of success, negative errno code otherwise. 3192 */ 3193 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3194 int queue) 3195 { 3196 struct igc_hw *hw = &adapter->hw; 3197 int index; 3198 u32 etqf; 3199 3200 index = igc_get_avail_etype_filter_slot(adapter); 3201 if (index < 0) 3202 return -ENOSPC; 3203 3204 etqf = rd32(IGC_ETQF(index)); 3205 3206 etqf &= ~IGC_ETQF_ETYPE_MASK; 3207 etqf |= etype; 3208 3209 if (queue >= 0) { 3210 etqf &= ~IGC_ETQF_QUEUE_MASK; 3211 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3212 etqf |= IGC_ETQF_QUEUE_ENABLE; 3213 } 3214 3215 etqf |= IGC_ETQF_FILTER_ENABLE; 3216 3217 wr32(IGC_ETQF(index), etqf); 3218 3219 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3220 etype, queue); 3221 return 0; 3222 } 3223 3224 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3225 { 3226 struct igc_hw *hw = &adapter->hw; 3227 int i; 3228 3229 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3230 u32 etqf = rd32(IGC_ETQF(i)); 3231 3232 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3233 return i; 3234 } 3235 3236 return -1; 3237 } 3238 3239 /** 3240 * igc_del_etype_filter() - Delete ethertype filter 3241 * @adapter: Pointer to adapter where the filter should be deleted from 3242 * @etype: Ethertype value 3243 */ 3244 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3245 { 3246 struct igc_hw *hw = &adapter->hw; 3247 int index; 3248 3249 index = igc_find_etype_filter(adapter, etype); 3250 if (index < 0) 3251 return; 3252 3253 wr32(IGC_ETQF(index), 0); 3254 3255 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3256 etype); 3257 } 3258 3259 static int igc_flex_filter_select(struct igc_adapter *adapter, 3260 struct igc_flex_filter *input, 3261 u32 *fhft) 3262 { 3263 struct igc_hw *hw = &adapter->hw; 3264 u8 fhft_index; 3265 u32 fhftsl; 3266 3267 if (input->index >= MAX_FLEX_FILTER) { 3268 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3269 return -EINVAL; 3270 } 3271 3272 /* Indirect table select register */ 3273 fhftsl = rd32(IGC_FHFTSL); 3274 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3275 switch (input->index) { 3276 case 0 ... 7: 3277 fhftsl |= 0x00; 3278 break; 3279 case 8 ... 15: 3280 fhftsl |= 0x01; 3281 break; 3282 case 16 ... 23: 3283 fhftsl |= 0x02; 3284 break; 3285 case 24 ... 31: 3286 fhftsl |= 0x03; 3287 break; 3288 } 3289 wr32(IGC_FHFTSL, fhftsl); 3290 3291 /* Normalize index down to host table register */ 3292 fhft_index = input->index % 8; 3293 3294 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3295 IGC_FHFT_EXT(fhft_index - 4); 3296 3297 return 0; 3298 } 3299 3300 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3301 struct igc_flex_filter *input) 3302 { 3303 struct device *dev = &adapter->pdev->dev; 3304 struct igc_hw *hw = &adapter->hw; 3305 u8 *data = input->data; 3306 u8 *mask = input->mask; 3307 u32 queuing; 3308 u32 fhft; 3309 u32 wufc; 3310 int ret; 3311 int i; 3312 3313 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3314 * out early to avoid surprises later. 3315 */ 3316 if (input->length % 8 != 0) { 3317 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3318 return -EINVAL; 3319 } 3320 3321 /* Select corresponding flex filter register and get base for host table. */ 3322 ret = igc_flex_filter_select(adapter, input, &fhft); 3323 if (ret) 3324 return ret; 3325 3326 /* When adding a filter globally disable flex filter feature. That is 3327 * recommended within the datasheet. 3328 */ 3329 wufc = rd32(IGC_WUFC); 3330 wufc &= ~IGC_WUFC_FLEX_HQ; 3331 wr32(IGC_WUFC, wufc); 3332 3333 /* Configure filter */ 3334 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3335 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3336 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3337 3338 if (input->immediate_irq) 3339 queuing |= IGC_FHFT_IMM_INT; 3340 3341 if (input->drop) 3342 queuing |= IGC_FHFT_DROP; 3343 3344 wr32(fhft + 0xFC, queuing); 3345 3346 /* Write data (128 byte) and mask (128 bit) */ 3347 for (i = 0; i < 16; ++i) { 3348 const size_t data_idx = i * 8; 3349 const size_t row_idx = i * 16; 3350 u32 dw0 = 3351 (data[data_idx + 0] << 0) | 3352 (data[data_idx + 1] << 8) | 3353 (data[data_idx + 2] << 16) | 3354 (data[data_idx + 3] << 24); 3355 u32 dw1 = 3356 (data[data_idx + 4] << 0) | 3357 (data[data_idx + 5] << 8) | 3358 (data[data_idx + 6] << 16) | 3359 (data[data_idx + 7] << 24); 3360 u32 tmp; 3361 3362 /* Write row: dw0, dw1 and mask */ 3363 wr32(fhft + row_idx, dw0); 3364 wr32(fhft + row_idx + 4, dw1); 3365 3366 /* mask is only valid for MASK(7, 0) */ 3367 tmp = rd32(fhft + row_idx + 8); 3368 tmp &= ~GENMASK(7, 0); 3369 tmp |= mask[i]; 3370 wr32(fhft + row_idx + 8, tmp); 3371 } 3372 3373 /* Enable filter. */ 3374 wufc |= IGC_WUFC_FLEX_HQ; 3375 if (input->index > 8) { 3376 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3377 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3378 3379 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3380 3381 wr32(IGC_WUFC_EXT, wufc_ext); 3382 } else { 3383 wufc |= (IGC_WUFC_FLX0 << input->index); 3384 } 3385 wr32(IGC_WUFC, wufc); 3386 3387 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3388 input->index); 3389 3390 return 0; 3391 } 3392 3393 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3394 const void *src, unsigned int offset, 3395 size_t len, const void *mask) 3396 { 3397 int i; 3398 3399 /* data */ 3400 memcpy(&flex->data[offset], src, len); 3401 3402 /* mask */ 3403 for (i = 0; i < len; ++i) { 3404 const unsigned int idx = i + offset; 3405 const u8 *ptr = mask; 3406 3407 if (mask) { 3408 if (ptr[i] & 0xff) 3409 flex->mask[idx / 8] |= BIT(idx % 8); 3410 3411 continue; 3412 } 3413 3414 flex->mask[idx / 8] |= BIT(idx % 8); 3415 } 3416 } 3417 3418 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3419 { 3420 struct igc_hw *hw = &adapter->hw; 3421 u32 wufc, wufc_ext; 3422 int i; 3423 3424 wufc = rd32(IGC_WUFC); 3425 wufc_ext = rd32(IGC_WUFC_EXT); 3426 3427 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3428 if (i < 8) { 3429 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3430 return i; 3431 } else { 3432 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3433 return i; 3434 } 3435 } 3436 3437 return -ENOSPC; 3438 } 3439 3440 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3441 { 3442 struct igc_hw *hw = &adapter->hw; 3443 u32 wufc, wufc_ext; 3444 3445 wufc = rd32(IGC_WUFC); 3446 wufc_ext = rd32(IGC_WUFC_EXT); 3447 3448 if (wufc & IGC_WUFC_FILTER_MASK) 3449 return true; 3450 3451 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3452 return true; 3453 3454 return false; 3455 } 3456 3457 static int igc_add_flex_filter(struct igc_adapter *adapter, 3458 struct igc_nfc_rule *rule) 3459 { 3460 struct igc_flex_filter flex = { }; 3461 struct igc_nfc_filter *filter = &rule->filter; 3462 unsigned int eth_offset, user_offset; 3463 int ret, index; 3464 bool vlan; 3465 3466 index = igc_find_avail_flex_filter_slot(adapter); 3467 if (index < 0) 3468 return -ENOSPC; 3469 3470 /* Construct the flex filter: 3471 * -> dest_mac [6] 3472 * -> src_mac [6] 3473 * -> tpid [2] 3474 * -> vlan tci [2] 3475 * -> ether type [2] 3476 * -> user data [8] 3477 * -> = 26 bytes => 32 length 3478 */ 3479 flex.index = index; 3480 flex.length = 32; 3481 flex.rx_queue = rule->action; 3482 3483 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3484 eth_offset = vlan ? 16 : 12; 3485 user_offset = vlan ? 18 : 14; 3486 3487 /* Add destination MAC */ 3488 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3489 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3490 ETH_ALEN, NULL); 3491 3492 /* Add source MAC */ 3493 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3494 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3495 ETH_ALEN, NULL); 3496 3497 /* Add VLAN etype */ 3498 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3499 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3500 sizeof(filter->vlan_etype), 3501 NULL); 3502 3503 /* Add VLAN TCI */ 3504 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3505 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3506 sizeof(filter->vlan_tci), NULL); 3507 3508 /* Add Ether type */ 3509 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3510 __be16 etype = cpu_to_be16(filter->etype); 3511 3512 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3513 sizeof(etype), NULL); 3514 } 3515 3516 /* Add user data */ 3517 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3518 igc_flex_filter_add_field(&flex, &filter->user_data, 3519 user_offset, 3520 sizeof(filter->user_data), 3521 filter->user_mask); 3522 3523 /* Add it down to the hardware and enable it. */ 3524 ret = igc_write_flex_filter_ll(adapter, &flex); 3525 if (ret) 3526 return ret; 3527 3528 filter->flex_index = index; 3529 3530 return 0; 3531 } 3532 3533 static void igc_del_flex_filter(struct igc_adapter *adapter, 3534 u16 reg_index) 3535 { 3536 struct igc_hw *hw = &adapter->hw; 3537 u32 wufc; 3538 3539 /* Just disable the filter. The filter table itself is kept 3540 * intact. Another flex_filter_add() should override the "old" data 3541 * then. 3542 */ 3543 if (reg_index > 8) { 3544 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3545 3546 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3547 wr32(IGC_WUFC_EXT, wufc_ext); 3548 } else { 3549 wufc = rd32(IGC_WUFC); 3550 3551 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3552 wr32(IGC_WUFC, wufc); 3553 } 3554 3555 if (igc_flex_filter_in_use(adapter)) 3556 return; 3557 3558 /* No filters are in use, we may disable flex filters */ 3559 wufc = rd32(IGC_WUFC); 3560 wufc &= ~IGC_WUFC_FLEX_HQ; 3561 wr32(IGC_WUFC, wufc); 3562 } 3563 3564 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3565 struct igc_nfc_rule *rule) 3566 { 3567 int err; 3568 3569 if (rule->flex) { 3570 return igc_add_flex_filter(adapter, rule); 3571 } 3572 3573 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3574 err = igc_add_etype_filter(adapter, rule->filter.etype, 3575 rule->action); 3576 if (err) 3577 return err; 3578 } 3579 3580 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3581 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3582 rule->filter.src_addr, rule->action); 3583 if (err) 3584 return err; 3585 } 3586 3587 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3588 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3589 rule->filter.dst_addr, rule->action); 3590 if (err) 3591 return err; 3592 } 3593 3594 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3595 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3596 VLAN_PRIO_SHIFT; 3597 3598 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3599 if (err) 3600 return err; 3601 } 3602 3603 return 0; 3604 } 3605 3606 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3607 const struct igc_nfc_rule *rule) 3608 { 3609 if (rule->flex) { 3610 igc_del_flex_filter(adapter, rule->filter.flex_index); 3611 return; 3612 } 3613 3614 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3615 igc_del_etype_filter(adapter, rule->filter.etype); 3616 3617 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3618 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3619 VLAN_PRIO_SHIFT; 3620 3621 igc_del_vlan_prio_filter(adapter, prio); 3622 } 3623 3624 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3625 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3626 rule->filter.src_addr); 3627 3628 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3629 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3630 rule->filter.dst_addr); 3631 } 3632 3633 /** 3634 * igc_get_nfc_rule() - Get NFC rule 3635 * @adapter: Pointer to adapter 3636 * @location: Rule location 3637 * 3638 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3639 * 3640 * Return: Pointer to NFC rule at @location. If not found, NULL. 3641 */ 3642 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3643 u32 location) 3644 { 3645 struct igc_nfc_rule *rule; 3646 3647 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3648 if (rule->location == location) 3649 return rule; 3650 if (rule->location > location) 3651 break; 3652 } 3653 3654 return NULL; 3655 } 3656 3657 /** 3658 * igc_del_nfc_rule() - Delete NFC rule 3659 * @adapter: Pointer to adapter 3660 * @rule: Pointer to rule to be deleted 3661 * 3662 * Disable NFC rule in hardware and delete it from adapter. 3663 * 3664 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3665 */ 3666 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3667 { 3668 igc_disable_nfc_rule(adapter, rule); 3669 3670 list_del(&rule->list); 3671 adapter->nfc_rule_count--; 3672 3673 kfree(rule); 3674 } 3675 3676 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3677 { 3678 struct igc_nfc_rule *rule, *tmp; 3679 3680 mutex_lock(&adapter->nfc_rule_lock); 3681 3682 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3683 igc_del_nfc_rule(adapter, rule); 3684 3685 mutex_unlock(&adapter->nfc_rule_lock); 3686 } 3687 3688 /** 3689 * igc_add_nfc_rule() - Add NFC rule 3690 * @adapter: Pointer to adapter 3691 * @rule: Pointer to rule to be added 3692 * 3693 * Enable NFC rule in hardware and add it to adapter. 3694 * 3695 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3696 * 3697 * Return: 0 on success, negative errno on failure. 3698 */ 3699 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3700 { 3701 struct igc_nfc_rule *pred, *cur; 3702 int err; 3703 3704 err = igc_enable_nfc_rule(adapter, rule); 3705 if (err) 3706 return err; 3707 3708 pred = NULL; 3709 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3710 if (cur->location >= rule->location) 3711 break; 3712 pred = cur; 3713 } 3714 3715 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3716 adapter->nfc_rule_count++; 3717 return 0; 3718 } 3719 3720 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3721 { 3722 struct igc_nfc_rule *rule; 3723 3724 mutex_lock(&adapter->nfc_rule_lock); 3725 3726 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3727 igc_enable_nfc_rule(adapter, rule); 3728 3729 mutex_unlock(&adapter->nfc_rule_lock); 3730 } 3731 3732 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3733 { 3734 struct igc_adapter *adapter = netdev_priv(netdev); 3735 3736 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3737 } 3738 3739 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3740 { 3741 struct igc_adapter *adapter = netdev_priv(netdev); 3742 3743 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3744 return 0; 3745 } 3746 3747 /** 3748 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3749 * @netdev: network interface device structure 3750 * 3751 * The set_rx_mode entry point is called whenever the unicast or multicast 3752 * address lists or the network interface flags are updated. This routine is 3753 * responsible for configuring the hardware for proper unicast, multicast, 3754 * promiscuous mode, and all-multi behavior. 3755 */ 3756 static void igc_set_rx_mode(struct net_device *netdev) 3757 { 3758 struct igc_adapter *adapter = netdev_priv(netdev); 3759 struct igc_hw *hw = &adapter->hw; 3760 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3761 int count; 3762 3763 /* Check for Promiscuous and All Multicast modes */ 3764 if (netdev->flags & IFF_PROMISC) { 3765 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3766 } else { 3767 if (netdev->flags & IFF_ALLMULTI) { 3768 rctl |= IGC_RCTL_MPE; 3769 } else { 3770 /* Write addresses to the MTA, if the attempt fails 3771 * then we should just turn on promiscuous mode so 3772 * that we can at least receive multicast traffic 3773 */ 3774 count = igc_write_mc_addr_list(netdev); 3775 if (count < 0) 3776 rctl |= IGC_RCTL_MPE; 3777 } 3778 } 3779 3780 /* Write addresses to available RAR registers, if there is not 3781 * sufficient space to store all the addresses then enable 3782 * unicast promiscuous mode 3783 */ 3784 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3785 rctl |= IGC_RCTL_UPE; 3786 3787 /* update state of unicast and multicast */ 3788 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3789 wr32(IGC_RCTL, rctl); 3790 3791 #if (PAGE_SIZE < 8192) 3792 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3793 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3794 #endif 3795 wr32(IGC_RLPML, rlpml); 3796 } 3797 3798 /** 3799 * igc_configure - configure the hardware for RX and TX 3800 * @adapter: private board structure 3801 */ 3802 static void igc_configure(struct igc_adapter *adapter) 3803 { 3804 struct net_device *netdev = adapter->netdev; 3805 int i = 0; 3806 3807 igc_get_hw_control(adapter); 3808 igc_set_rx_mode(netdev); 3809 3810 igc_restore_vlan(adapter); 3811 3812 igc_setup_tctl(adapter); 3813 igc_setup_mrqc(adapter); 3814 igc_setup_rctl(adapter); 3815 3816 igc_set_default_mac_filter(adapter); 3817 igc_restore_nfc_rules(adapter); 3818 3819 igc_configure_tx(adapter); 3820 igc_configure_rx(adapter); 3821 3822 igc_rx_fifo_flush_base(&adapter->hw); 3823 3824 /* call igc_desc_unused which always leaves 3825 * at least 1 descriptor unused to make sure 3826 * next_to_use != next_to_clean 3827 */ 3828 for (i = 0; i < adapter->num_rx_queues; i++) { 3829 struct igc_ring *ring = adapter->rx_ring[i]; 3830 3831 if (ring->xsk_pool) 3832 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3833 else 3834 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3835 } 3836 } 3837 3838 /** 3839 * igc_write_ivar - configure ivar for given MSI-X vector 3840 * @hw: pointer to the HW structure 3841 * @msix_vector: vector number we are allocating to a given ring 3842 * @index: row index of IVAR register to write within IVAR table 3843 * @offset: column offset of in IVAR, should be multiple of 8 3844 * 3845 * The IVAR table consists of 2 columns, 3846 * each containing an cause allocation for an Rx and Tx ring, and a 3847 * variable number of rows depending on the number of queues supported. 3848 */ 3849 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3850 int index, int offset) 3851 { 3852 u32 ivar = array_rd32(IGC_IVAR0, index); 3853 3854 /* clear any bits that are currently set */ 3855 ivar &= ~((u32)0xFF << offset); 3856 3857 /* write vector and valid bit */ 3858 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3859 3860 array_wr32(IGC_IVAR0, index, ivar); 3861 } 3862 3863 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3864 { 3865 struct igc_adapter *adapter = q_vector->adapter; 3866 struct igc_hw *hw = &adapter->hw; 3867 int rx_queue = IGC_N0_QUEUE; 3868 int tx_queue = IGC_N0_QUEUE; 3869 3870 if (q_vector->rx.ring) 3871 rx_queue = q_vector->rx.ring->reg_idx; 3872 if (q_vector->tx.ring) 3873 tx_queue = q_vector->tx.ring->reg_idx; 3874 3875 switch (hw->mac.type) { 3876 case igc_i225: 3877 if (rx_queue > IGC_N0_QUEUE) 3878 igc_write_ivar(hw, msix_vector, 3879 rx_queue >> 1, 3880 (rx_queue & 0x1) << 4); 3881 if (tx_queue > IGC_N0_QUEUE) 3882 igc_write_ivar(hw, msix_vector, 3883 tx_queue >> 1, 3884 ((tx_queue & 0x1) << 4) + 8); 3885 q_vector->eims_value = BIT(msix_vector); 3886 break; 3887 default: 3888 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3889 break; 3890 } 3891 3892 /* add q_vector eims value to global eims_enable_mask */ 3893 adapter->eims_enable_mask |= q_vector->eims_value; 3894 3895 /* configure q_vector to set itr on first interrupt */ 3896 q_vector->set_itr = 1; 3897 } 3898 3899 /** 3900 * igc_configure_msix - Configure MSI-X hardware 3901 * @adapter: Pointer to adapter structure 3902 * 3903 * igc_configure_msix sets up the hardware to properly 3904 * generate MSI-X interrupts. 3905 */ 3906 static void igc_configure_msix(struct igc_adapter *adapter) 3907 { 3908 struct igc_hw *hw = &adapter->hw; 3909 int i, vector = 0; 3910 u32 tmp; 3911 3912 adapter->eims_enable_mask = 0; 3913 3914 /* set vector for other causes, i.e. link changes */ 3915 switch (hw->mac.type) { 3916 case igc_i225: 3917 /* Turn on MSI-X capability first, or our settings 3918 * won't stick. And it will take days to debug. 3919 */ 3920 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3921 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3922 IGC_GPIE_NSICR); 3923 3924 /* enable msix_other interrupt */ 3925 adapter->eims_other = BIT(vector); 3926 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3927 3928 wr32(IGC_IVAR_MISC, tmp); 3929 break; 3930 default: 3931 /* do nothing, since nothing else supports MSI-X */ 3932 break; 3933 } /* switch (hw->mac.type) */ 3934 3935 adapter->eims_enable_mask |= adapter->eims_other; 3936 3937 for (i = 0; i < adapter->num_q_vectors; i++) 3938 igc_assign_vector(adapter->q_vector[i], vector++); 3939 3940 wrfl(); 3941 } 3942 3943 /** 3944 * igc_irq_enable - Enable default interrupt generation settings 3945 * @adapter: board private structure 3946 */ 3947 static void igc_irq_enable(struct igc_adapter *adapter) 3948 { 3949 struct igc_hw *hw = &adapter->hw; 3950 3951 if (adapter->msix_entries) { 3952 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3953 u32 regval = rd32(IGC_EIAC); 3954 3955 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3956 regval = rd32(IGC_EIAM); 3957 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3958 wr32(IGC_EIMS, adapter->eims_enable_mask); 3959 wr32(IGC_IMS, ims); 3960 } else { 3961 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3962 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3963 } 3964 } 3965 3966 /** 3967 * igc_irq_disable - Mask off interrupt generation on the NIC 3968 * @adapter: board private structure 3969 */ 3970 static void igc_irq_disable(struct igc_adapter *adapter) 3971 { 3972 struct igc_hw *hw = &adapter->hw; 3973 3974 if (adapter->msix_entries) { 3975 u32 regval = rd32(IGC_EIAM); 3976 3977 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3978 wr32(IGC_EIMC, adapter->eims_enable_mask); 3979 regval = rd32(IGC_EIAC); 3980 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3981 } 3982 3983 wr32(IGC_IAM, 0); 3984 wr32(IGC_IMC, ~0); 3985 wrfl(); 3986 3987 if (adapter->msix_entries) { 3988 int vector = 0, i; 3989 3990 synchronize_irq(adapter->msix_entries[vector++].vector); 3991 3992 for (i = 0; i < adapter->num_q_vectors; i++) 3993 synchronize_irq(adapter->msix_entries[vector++].vector); 3994 } else { 3995 synchronize_irq(adapter->pdev->irq); 3996 } 3997 } 3998 3999 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4000 const u32 max_rss_queues) 4001 { 4002 /* Determine if we need to pair queues. */ 4003 /* If rss_queues > half of max_rss_queues, pair the queues in 4004 * order to conserve interrupts due to limited supply. 4005 */ 4006 if (adapter->rss_queues > (max_rss_queues / 2)) 4007 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4008 else 4009 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4010 } 4011 4012 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4013 { 4014 return IGC_MAX_RX_QUEUES; 4015 } 4016 4017 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4018 { 4019 u32 max_rss_queues; 4020 4021 max_rss_queues = igc_get_max_rss_queues(adapter); 4022 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4023 4024 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4025 } 4026 4027 /** 4028 * igc_reset_q_vector - Reset config for interrupt vector 4029 * @adapter: board private structure to initialize 4030 * @v_idx: Index of vector to be reset 4031 * 4032 * If NAPI is enabled it will delete any references to the 4033 * NAPI struct. This is preparation for igc_free_q_vector. 4034 */ 4035 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4036 { 4037 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4038 4039 /* if we're coming from igc_set_interrupt_capability, the vectors are 4040 * not yet allocated 4041 */ 4042 if (!q_vector) 4043 return; 4044 4045 if (q_vector->tx.ring) 4046 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4047 4048 if (q_vector->rx.ring) 4049 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4050 4051 netif_napi_del(&q_vector->napi); 4052 } 4053 4054 /** 4055 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4056 * @adapter: board private structure to initialize 4057 * @v_idx: Index of vector to be freed 4058 * 4059 * This function frees the memory allocated to the q_vector. 4060 */ 4061 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4062 { 4063 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4064 4065 adapter->q_vector[v_idx] = NULL; 4066 4067 /* igc_get_stats64() might access the rings on this vector, 4068 * we must wait a grace period before freeing it. 4069 */ 4070 if (q_vector) 4071 kfree_rcu(q_vector, rcu); 4072 } 4073 4074 /** 4075 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4076 * @adapter: board private structure to initialize 4077 * 4078 * This function frees the memory allocated to the q_vectors. In addition if 4079 * NAPI is enabled it will delete any references to the NAPI struct prior 4080 * to freeing the q_vector. 4081 */ 4082 static void igc_free_q_vectors(struct igc_adapter *adapter) 4083 { 4084 int v_idx = adapter->num_q_vectors; 4085 4086 adapter->num_tx_queues = 0; 4087 adapter->num_rx_queues = 0; 4088 adapter->num_q_vectors = 0; 4089 4090 while (v_idx--) { 4091 igc_reset_q_vector(adapter, v_idx); 4092 igc_free_q_vector(adapter, v_idx); 4093 } 4094 } 4095 4096 /** 4097 * igc_update_itr - update the dynamic ITR value based on statistics 4098 * @q_vector: pointer to q_vector 4099 * @ring_container: ring info to update the itr for 4100 * 4101 * Stores a new ITR value based on packets and byte 4102 * counts during the last interrupt. The advantage of per interrupt 4103 * computation is faster updates and more accurate ITR for the current 4104 * traffic pattern. Constants in this function were computed 4105 * based on theoretical maximum wire speed and thresholds were set based 4106 * on testing data as well as attempting to minimize response time 4107 * while increasing bulk throughput. 4108 * NOTE: These calculations are only valid when operating in a single- 4109 * queue environment. 4110 */ 4111 static void igc_update_itr(struct igc_q_vector *q_vector, 4112 struct igc_ring_container *ring_container) 4113 { 4114 unsigned int packets = ring_container->total_packets; 4115 unsigned int bytes = ring_container->total_bytes; 4116 u8 itrval = ring_container->itr; 4117 4118 /* no packets, exit with status unchanged */ 4119 if (packets == 0) 4120 return; 4121 4122 switch (itrval) { 4123 case lowest_latency: 4124 /* handle TSO and jumbo frames */ 4125 if (bytes / packets > 8000) 4126 itrval = bulk_latency; 4127 else if ((packets < 5) && (bytes > 512)) 4128 itrval = low_latency; 4129 break; 4130 case low_latency: /* 50 usec aka 20000 ints/s */ 4131 if (bytes > 10000) { 4132 /* this if handles the TSO accounting */ 4133 if (bytes / packets > 8000) 4134 itrval = bulk_latency; 4135 else if ((packets < 10) || ((bytes / packets) > 1200)) 4136 itrval = bulk_latency; 4137 else if ((packets > 35)) 4138 itrval = lowest_latency; 4139 } else if (bytes / packets > 2000) { 4140 itrval = bulk_latency; 4141 } else if (packets <= 2 && bytes < 512) { 4142 itrval = lowest_latency; 4143 } 4144 break; 4145 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4146 if (bytes > 25000) { 4147 if (packets > 35) 4148 itrval = low_latency; 4149 } else if (bytes < 1500) { 4150 itrval = low_latency; 4151 } 4152 break; 4153 } 4154 4155 /* clear work counters since we have the values we need */ 4156 ring_container->total_bytes = 0; 4157 ring_container->total_packets = 0; 4158 4159 /* write updated itr to ring container */ 4160 ring_container->itr = itrval; 4161 } 4162 4163 static void igc_set_itr(struct igc_q_vector *q_vector) 4164 { 4165 struct igc_adapter *adapter = q_vector->adapter; 4166 u32 new_itr = q_vector->itr_val; 4167 u8 current_itr = 0; 4168 4169 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4170 switch (adapter->link_speed) { 4171 case SPEED_10: 4172 case SPEED_100: 4173 current_itr = 0; 4174 new_itr = IGC_4K_ITR; 4175 goto set_itr_now; 4176 default: 4177 break; 4178 } 4179 4180 igc_update_itr(q_vector, &q_vector->tx); 4181 igc_update_itr(q_vector, &q_vector->rx); 4182 4183 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4184 4185 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4186 if (current_itr == lowest_latency && 4187 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4188 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4189 current_itr = low_latency; 4190 4191 switch (current_itr) { 4192 /* counts and packets in update_itr are dependent on these numbers */ 4193 case lowest_latency: 4194 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4195 break; 4196 case low_latency: 4197 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4198 break; 4199 case bulk_latency: 4200 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4201 break; 4202 default: 4203 break; 4204 } 4205 4206 set_itr_now: 4207 if (new_itr != q_vector->itr_val) { 4208 /* this attempts to bias the interrupt rate towards Bulk 4209 * by adding intermediate steps when interrupt rate is 4210 * increasing 4211 */ 4212 new_itr = new_itr > q_vector->itr_val ? 4213 max((new_itr * q_vector->itr_val) / 4214 (new_itr + (q_vector->itr_val >> 2)), 4215 new_itr) : new_itr; 4216 /* Don't write the value here; it resets the adapter's 4217 * internal timer, and causes us to delay far longer than 4218 * we should between interrupts. Instead, we write the ITR 4219 * value at the beginning of the next interrupt so the timing 4220 * ends up being correct. 4221 */ 4222 q_vector->itr_val = new_itr; 4223 q_vector->set_itr = 1; 4224 } 4225 } 4226 4227 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4228 { 4229 int v_idx = adapter->num_q_vectors; 4230 4231 if (adapter->msix_entries) { 4232 pci_disable_msix(adapter->pdev); 4233 kfree(adapter->msix_entries); 4234 adapter->msix_entries = NULL; 4235 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4236 pci_disable_msi(adapter->pdev); 4237 } 4238 4239 while (v_idx--) 4240 igc_reset_q_vector(adapter, v_idx); 4241 } 4242 4243 /** 4244 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4245 * @adapter: Pointer to adapter structure 4246 * @msix: boolean value for MSI-X capability 4247 * 4248 * Attempt to configure interrupts using the best available 4249 * capabilities of the hardware and kernel. 4250 */ 4251 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4252 bool msix) 4253 { 4254 int numvecs, i; 4255 int err; 4256 4257 if (!msix) 4258 goto msi_only; 4259 adapter->flags |= IGC_FLAG_HAS_MSIX; 4260 4261 /* Number of supported queues. */ 4262 adapter->num_rx_queues = adapter->rss_queues; 4263 4264 adapter->num_tx_queues = adapter->rss_queues; 4265 4266 /* start with one vector for every Rx queue */ 4267 numvecs = adapter->num_rx_queues; 4268 4269 /* if Tx handler is separate add 1 for every Tx queue */ 4270 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4271 numvecs += adapter->num_tx_queues; 4272 4273 /* store the number of vectors reserved for queues */ 4274 adapter->num_q_vectors = numvecs; 4275 4276 /* add 1 vector for link status interrupts */ 4277 numvecs++; 4278 4279 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4280 GFP_KERNEL); 4281 4282 if (!adapter->msix_entries) 4283 return; 4284 4285 /* populate entry values */ 4286 for (i = 0; i < numvecs; i++) 4287 adapter->msix_entries[i].entry = i; 4288 4289 err = pci_enable_msix_range(adapter->pdev, 4290 adapter->msix_entries, 4291 numvecs, 4292 numvecs); 4293 if (err > 0) 4294 return; 4295 4296 kfree(adapter->msix_entries); 4297 adapter->msix_entries = NULL; 4298 4299 igc_reset_interrupt_capability(adapter); 4300 4301 msi_only: 4302 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4303 4304 adapter->rss_queues = 1; 4305 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4306 adapter->num_rx_queues = 1; 4307 adapter->num_tx_queues = 1; 4308 adapter->num_q_vectors = 1; 4309 if (!pci_enable_msi(adapter->pdev)) 4310 adapter->flags |= IGC_FLAG_HAS_MSI; 4311 } 4312 4313 /** 4314 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4315 * @q_vector: pointer to q_vector 4316 * 4317 * Stores a new ITR value based on strictly on packet size. This 4318 * algorithm is less sophisticated than that used in igc_update_itr, 4319 * due to the difficulty of synchronizing statistics across multiple 4320 * receive rings. The divisors and thresholds used by this function 4321 * were determined based on theoretical maximum wire speed and testing 4322 * data, in order to minimize response time while increasing bulk 4323 * throughput. 4324 * NOTE: This function is called only when operating in a multiqueue 4325 * receive environment. 4326 */ 4327 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4328 { 4329 struct igc_adapter *adapter = q_vector->adapter; 4330 int new_val = q_vector->itr_val; 4331 int avg_wire_size = 0; 4332 unsigned int packets; 4333 4334 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4335 * ints/sec - ITR timer value of 120 ticks. 4336 */ 4337 switch (adapter->link_speed) { 4338 case SPEED_10: 4339 case SPEED_100: 4340 new_val = IGC_4K_ITR; 4341 goto set_itr_val; 4342 default: 4343 break; 4344 } 4345 4346 packets = q_vector->rx.total_packets; 4347 if (packets) 4348 avg_wire_size = q_vector->rx.total_bytes / packets; 4349 4350 packets = q_vector->tx.total_packets; 4351 if (packets) 4352 avg_wire_size = max_t(u32, avg_wire_size, 4353 q_vector->tx.total_bytes / packets); 4354 4355 /* if avg_wire_size isn't set no work was done */ 4356 if (!avg_wire_size) 4357 goto clear_counts; 4358 4359 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4360 avg_wire_size += 24; 4361 4362 /* Don't starve jumbo frames */ 4363 avg_wire_size = min(avg_wire_size, 3000); 4364 4365 /* Give a little boost to mid-size frames */ 4366 if (avg_wire_size > 300 && avg_wire_size < 1200) 4367 new_val = avg_wire_size / 3; 4368 else 4369 new_val = avg_wire_size / 2; 4370 4371 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4372 if (new_val < IGC_20K_ITR && 4373 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4374 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4375 new_val = IGC_20K_ITR; 4376 4377 set_itr_val: 4378 if (new_val != q_vector->itr_val) { 4379 q_vector->itr_val = new_val; 4380 q_vector->set_itr = 1; 4381 } 4382 clear_counts: 4383 q_vector->rx.total_bytes = 0; 4384 q_vector->rx.total_packets = 0; 4385 q_vector->tx.total_bytes = 0; 4386 q_vector->tx.total_packets = 0; 4387 } 4388 4389 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4390 { 4391 struct igc_adapter *adapter = q_vector->adapter; 4392 struct igc_hw *hw = &adapter->hw; 4393 4394 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4395 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4396 if (adapter->num_q_vectors == 1) 4397 igc_set_itr(q_vector); 4398 else 4399 igc_update_ring_itr(q_vector); 4400 } 4401 4402 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4403 if (adapter->msix_entries) 4404 wr32(IGC_EIMS, q_vector->eims_value); 4405 else 4406 igc_irq_enable(adapter); 4407 } 4408 } 4409 4410 static void igc_add_ring(struct igc_ring *ring, 4411 struct igc_ring_container *head) 4412 { 4413 head->ring = ring; 4414 head->count++; 4415 } 4416 4417 /** 4418 * igc_cache_ring_register - Descriptor ring to register mapping 4419 * @adapter: board private structure to initialize 4420 * 4421 * Once we know the feature-set enabled for the device, we'll cache 4422 * the register offset the descriptor ring is assigned to. 4423 */ 4424 static void igc_cache_ring_register(struct igc_adapter *adapter) 4425 { 4426 int i = 0, j = 0; 4427 4428 switch (adapter->hw.mac.type) { 4429 case igc_i225: 4430 default: 4431 for (; i < adapter->num_rx_queues; i++) 4432 adapter->rx_ring[i]->reg_idx = i; 4433 for (; j < adapter->num_tx_queues; j++) 4434 adapter->tx_ring[j]->reg_idx = j; 4435 break; 4436 } 4437 } 4438 4439 /** 4440 * igc_poll - NAPI Rx polling callback 4441 * @napi: napi polling structure 4442 * @budget: count of how many packets we should handle 4443 */ 4444 static int igc_poll(struct napi_struct *napi, int budget) 4445 { 4446 struct igc_q_vector *q_vector = container_of(napi, 4447 struct igc_q_vector, 4448 napi); 4449 struct igc_ring *rx_ring = q_vector->rx.ring; 4450 bool clean_complete = true; 4451 int work_done = 0; 4452 4453 if (q_vector->tx.ring) 4454 clean_complete = igc_clean_tx_irq(q_vector, budget); 4455 4456 if (rx_ring) { 4457 int cleaned = rx_ring->xsk_pool ? 4458 igc_clean_rx_irq_zc(q_vector, budget) : 4459 igc_clean_rx_irq(q_vector, budget); 4460 4461 work_done += cleaned; 4462 if (cleaned >= budget) 4463 clean_complete = false; 4464 } 4465 4466 /* If all work not completed, return budget and keep polling */ 4467 if (!clean_complete) 4468 return budget; 4469 4470 /* Exit the polling mode, but don't re-enable interrupts if stack might 4471 * poll us due to busy-polling 4472 */ 4473 if (likely(napi_complete_done(napi, work_done))) 4474 igc_ring_irq_enable(q_vector); 4475 4476 return min(work_done, budget - 1); 4477 } 4478 4479 /** 4480 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4481 * @adapter: board private structure to initialize 4482 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4483 * @v_idx: index of vector in adapter struct 4484 * @txr_count: total number of Tx rings to allocate 4485 * @txr_idx: index of first Tx ring to allocate 4486 * @rxr_count: total number of Rx rings to allocate 4487 * @rxr_idx: index of first Rx ring to allocate 4488 * 4489 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4490 */ 4491 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4492 unsigned int v_count, unsigned int v_idx, 4493 unsigned int txr_count, unsigned int txr_idx, 4494 unsigned int rxr_count, unsigned int rxr_idx) 4495 { 4496 struct igc_q_vector *q_vector; 4497 struct igc_ring *ring; 4498 int ring_count; 4499 4500 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4501 if (txr_count > 1 || rxr_count > 1) 4502 return -ENOMEM; 4503 4504 ring_count = txr_count + rxr_count; 4505 4506 /* allocate q_vector and rings */ 4507 q_vector = adapter->q_vector[v_idx]; 4508 if (!q_vector) 4509 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4510 GFP_KERNEL); 4511 else 4512 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4513 if (!q_vector) 4514 return -ENOMEM; 4515 4516 /* initialize NAPI */ 4517 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4518 4519 /* tie q_vector and adapter together */ 4520 adapter->q_vector[v_idx] = q_vector; 4521 q_vector->adapter = adapter; 4522 4523 /* initialize work limits */ 4524 q_vector->tx.work_limit = adapter->tx_work_limit; 4525 4526 /* initialize ITR configuration */ 4527 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4528 q_vector->itr_val = IGC_START_ITR; 4529 4530 /* initialize pointer to rings */ 4531 ring = q_vector->ring; 4532 4533 /* initialize ITR */ 4534 if (rxr_count) { 4535 /* rx or rx/tx vector */ 4536 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4537 q_vector->itr_val = adapter->rx_itr_setting; 4538 } else { 4539 /* tx only vector */ 4540 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4541 q_vector->itr_val = adapter->tx_itr_setting; 4542 } 4543 4544 if (txr_count) { 4545 /* assign generic ring traits */ 4546 ring->dev = &adapter->pdev->dev; 4547 ring->netdev = adapter->netdev; 4548 4549 /* configure backlink on ring */ 4550 ring->q_vector = q_vector; 4551 4552 /* update q_vector Tx values */ 4553 igc_add_ring(ring, &q_vector->tx); 4554 4555 /* apply Tx specific ring traits */ 4556 ring->count = adapter->tx_ring_count; 4557 ring->queue_index = txr_idx; 4558 4559 /* assign ring to adapter */ 4560 adapter->tx_ring[txr_idx] = ring; 4561 4562 /* push pointer to next ring */ 4563 ring++; 4564 } 4565 4566 if (rxr_count) { 4567 /* assign generic ring traits */ 4568 ring->dev = &adapter->pdev->dev; 4569 ring->netdev = adapter->netdev; 4570 4571 /* configure backlink on ring */ 4572 ring->q_vector = q_vector; 4573 4574 /* update q_vector Rx values */ 4575 igc_add_ring(ring, &q_vector->rx); 4576 4577 /* apply Rx specific ring traits */ 4578 ring->count = adapter->rx_ring_count; 4579 ring->queue_index = rxr_idx; 4580 4581 /* assign ring to adapter */ 4582 adapter->rx_ring[rxr_idx] = ring; 4583 } 4584 4585 return 0; 4586 } 4587 4588 /** 4589 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4590 * @adapter: board private structure to initialize 4591 * 4592 * We allocate one q_vector per queue interrupt. If allocation fails we 4593 * return -ENOMEM. 4594 */ 4595 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4596 { 4597 int rxr_remaining = adapter->num_rx_queues; 4598 int txr_remaining = adapter->num_tx_queues; 4599 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4600 int q_vectors = adapter->num_q_vectors; 4601 int err; 4602 4603 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4604 for (; rxr_remaining; v_idx++) { 4605 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4606 0, 0, 1, rxr_idx); 4607 4608 if (err) 4609 goto err_out; 4610 4611 /* update counts and index */ 4612 rxr_remaining--; 4613 rxr_idx++; 4614 } 4615 } 4616 4617 for (; v_idx < q_vectors; v_idx++) { 4618 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4619 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4620 4621 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4622 tqpv, txr_idx, rqpv, rxr_idx); 4623 4624 if (err) 4625 goto err_out; 4626 4627 /* update counts and index */ 4628 rxr_remaining -= rqpv; 4629 txr_remaining -= tqpv; 4630 rxr_idx++; 4631 txr_idx++; 4632 } 4633 4634 return 0; 4635 4636 err_out: 4637 adapter->num_tx_queues = 0; 4638 adapter->num_rx_queues = 0; 4639 adapter->num_q_vectors = 0; 4640 4641 while (v_idx--) 4642 igc_free_q_vector(adapter, v_idx); 4643 4644 return -ENOMEM; 4645 } 4646 4647 /** 4648 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4649 * @adapter: Pointer to adapter structure 4650 * @msix: boolean for MSI-X capability 4651 * 4652 * This function initializes the interrupts and allocates all of the queues. 4653 */ 4654 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4655 { 4656 struct net_device *dev = adapter->netdev; 4657 int err = 0; 4658 4659 igc_set_interrupt_capability(adapter, msix); 4660 4661 err = igc_alloc_q_vectors(adapter); 4662 if (err) { 4663 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4664 goto err_alloc_q_vectors; 4665 } 4666 4667 igc_cache_ring_register(adapter); 4668 4669 return 0; 4670 4671 err_alloc_q_vectors: 4672 igc_reset_interrupt_capability(adapter); 4673 return err; 4674 } 4675 4676 /** 4677 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4678 * @adapter: board private structure to initialize 4679 * 4680 * igc_sw_init initializes the Adapter private data structure. 4681 * Fields are initialized based on PCI device information and 4682 * OS network device settings (MTU size). 4683 */ 4684 static int igc_sw_init(struct igc_adapter *adapter) 4685 { 4686 struct net_device *netdev = adapter->netdev; 4687 struct pci_dev *pdev = adapter->pdev; 4688 struct igc_hw *hw = &adapter->hw; 4689 4690 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4691 4692 /* set default ring sizes */ 4693 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4694 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4695 4696 /* set default ITR values */ 4697 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4698 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4699 4700 /* set default work limits */ 4701 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4702 4703 /* adjust max frame to be at least the size of a standard frame */ 4704 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4705 VLAN_HLEN; 4706 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4707 4708 mutex_init(&adapter->nfc_rule_lock); 4709 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4710 adapter->nfc_rule_count = 0; 4711 4712 spin_lock_init(&adapter->stats64_lock); 4713 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4714 adapter->flags |= IGC_FLAG_HAS_MSIX; 4715 4716 igc_init_queue_configuration(adapter); 4717 4718 /* This call may decrease the number of queues */ 4719 if (igc_init_interrupt_scheme(adapter, true)) { 4720 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4721 return -ENOMEM; 4722 } 4723 4724 /* Explicitly disable IRQ since the NIC can be in any state. */ 4725 igc_irq_disable(adapter); 4726 4727 set_bit(__IGC_DOWN, &adapter->state); 4728 4729 return 0; 4730 } 4731 4732 /** 4733 * igc_up - Open the interface and prepare it to handle traffic 4734 * @adapter: board private structure 4735 */ 4736 void igc_up(struct igc_adapter *adapter) 4737 { 4738 struct igc_hw *hw = &adapter->hw; 4739 int i = 0; 4740 4741 /* hardware has been reset, we need to reload some things */ 4742 igc_configure(adapter); 4743 4744 clear_bit(__IGC_DOWN, &adapter->state); 4745 4746 for (i = 0; i < adapter->num_q_vectors; i++) 4747 napi_enable(&adapter->q_vector[i]->napi); 4748 4749 if (adapter->msix_entries) 4750 igc_configure_msix(adapter); 4751 else 4752 igc_assign_vector(adapter->q_vector[0], 0); 4753 4754 /* Clear any pending interrupts. */ 4755 rd32(IGC_ICR); 4756 igc_irq_enable(adapter); 4757 4758 netif_tx_start_all_queues(adapter->netdev); 4759 4760 /* start the watchdog. */ 4761 hw->mac.get_link_status = true; 4762 schedule_work(&adapter->watchdog_task); 4763 } 4764 4765 /** 4766 * igc_update_stats - Update the board statistics counters 4767 * @adapter: board private structure 4768 */ 4769 void igc_update_stats(struct igc_adapter *adapter) 4770 { 4771 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4772 struct pci_dev *pdev = adapter->pdev; 4773 struct igc_hw *hw = &adapter->hw; 4774 u64 _bytes, _packets; 4775 u64 bytes, packets; 4776 unsigned int start; 4777 u32 mpc; 4778 int i; 4779 4780 /* Prevent stats update while adapter is being reset, or if the pci 4781 * connection is down. 4782 */ 4783 if (adapter->link_speed == 0) 4784 return; 4785 if (pci_channel_offline(pdev)) 4786 return; 4787 4788 packets = 0; 4789 bytes = 0; 4790 4791 rcu_read_lock(); 4792 for (i = 0; i < adapter->num_rx_queues; i++) { 4793 struct igc_ring *ring = adapter->rx_ring[i]; 4794 u32 rqdpc = rd32(IGC_RQDPC(i)); 4795 4796 if (hw->mac.type >= igc_i225) 4797 wr32(IGC_RQDPC(i), 0); 4798 4799 if (rqdpc) { 4800 ring->rx_stats.drops += rqdpc; 4801 net_stats->rx_fifo_errors += rqdpc; 4802 } 4803 4804 do { 4805 start = u64_stats_fetch_begin(&ring->rx_syncp); 4806 _bytes = ring->rx_stats.bytes; 4807 _packets = ring->rx_stats.packets; 4808 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4809 bytes += _bytes; 4810 packets += _packets; 4811 } 4812 4813 net_stats->rx_bytes = bytes; 4814 net_stats->rx_packets = packets; 4815 4816 packets = 0; 4817 bytes = 0; 4818 for (i = 0; i < adapter->num_tx_queues; i++) { 4819 struct igc_ring *ring = adapter->tx_ring[i]; 4820 4821 do { 4822 start = u64_stats_fetch_begin(&ring->tx_syncp); 4823 _bytes = ring->tx_stats.bytes; 4824 _packets = ring->tx_stats.packets; 4825 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4826 bytes += _bytes; 4827 packets += _packets; 4828 } 4829 net_stats->tx_bytes = bytes; 4830 net_stats->tx_packets = packets; 4831 rcu_read_unlock(); 4832 4833 /* read stats registers */ 4834 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4835 adapter->stats.gprc += rd32(IGC_GPRC); 4836 adapter->stats.gorc += rd32(IGC_GORCL); 4837 rd32(IGC_GORCH); /* clear GORCL */ 4838 adapter->stats.bprc += rd32(IGC_BPRC); 4839 adapter->stats.mprc += rd32(IGC_MPRC); 4840 adapter->stats.roc += rd32(IGC_ROC); 4841 4842 adapter->stats.prc64 += rd32(IGC_PRC64); 4843 adapter->stats.prc127 += rd32(IGC_PRC127); 4844 adapter->stats.prc255 += rd32(IGC_PRC255); 4845 adapter->stats.prc511 += rd32(IGC_PRC511); 4846 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4847 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4848 adapter->stats.tlpic += rd32(IGC_TLPIC); 4849 adapter->stats.rlpic += rd32(IGC_RLPIC); 4850 adapter->stats.hgptc += rd32(IGC_HGPTC); 4851 4852 mpc = rd32(IGC_MPC); 4853 adapter->stats.mpc += mpc; 4854 net_stats->rx_fifo_errors += mpc; 4855 adapter->stats.scc += rd32(IGC_SCC); 4856 adapter->stats.ecol += rd32(IGC_ECOL); 4857 adapter->stats.mcc += rd32(IGC_MCC); 4858 adapter->stats.latecol += rd32(IGC_LATECOL); 4859 adapter->stats.dc += rd32(IGC_DC); 4860 adapter->stats.rlec += rd32(IGC_RLEC); 4861 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4862 adapter->stats.xontxc += rd32(IGC_XONTXC); 4863 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4864 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4865 adapter->stats.fcruc += rd32(IGC_FCRUC); 4866 adapter->stats.gptc += rd32(IGC_GPTC); 4867 adapter->stats.gotc += rd32(IGC_GOTCL); 4868 rd32(IGC_GOTCH); /* clear GOTCL */ 4869 adapter->stats.rnbc += rd32(IGC_RNBC); 4870 adapter->stats.ruc += rd32(IGC_RUC); 4871 adapter->stats.rfc += rd32(IGC_RFC); 4872 adapter->stats.rjc += rd32(IGC_RJC); 4873 adapter->stats.tor += rd32(IGC_TORH); 4874 adapter->stats.tot += rd32(IGC_TOTH); 4875 adapter->stats.tpr += rd32(IGC_TPR); 4876 4877 adapter->stats.ptc64 += rd32(IGC_PTC64); 4878 adapter->stats.ptc127 += rd32(IGC_PTC127); 4879 adapter->stats.ptc255 += rd32(IGC_PTC255); 4880 adapter->stats.ptc511 += rd32(IGC_PTC511); 4881 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4882 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4883 4884 adapter->stats.mptc += rd32(IGC_MPTC); 4885 adapter->stats.bptc += rd32(IGC_BPTC); 4886 4887 adapter->stats.tpt += rd32(IGC_TPT); 4888 adapter->stats.colc += rd32(IGC_COLC); 4889 adapter->stats.colc += rd32(IGC_RERC); 4890 4891 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4892 4893 adapter->stats.tsctc += rd32(IGC_TSCTC); 4894 4895 adapter->stats.iac += rd32(IGC_IAC); 4896 4897 /* Fill out the OS statistics structure */ 4898 net_stats->multicast = adapter->stats.mprc; 4899 net_stats->collisions = adapter->stats.colc; 4900 4901 /* Rx Errors */ 4902 4903 /* RLEC on some newer hardware can be incorrect so build 4904 * our own version based on RUC and ROC 4905 */ 4906 net_stats->rx_errors = adapter->stats.rxerrc + 4907 adapter->stats.crcerrs + adapter->stats.algnerrc + 4908 adapter->stats.ruc + adapter->stats.roc + 4909 adapter->stats.cexterr; 4910 net_stats->rx_length_errors = adapter->stats.ruc + 4911 adapter->stats.roc; 4912 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4913 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4914 net_stats->rx_missed_errors = adapter->stats.mpc; 4915 4916 /* Tx Errors */ 4917 net_stats->tx_errors = adapter->stats.ecol + 4918 adapter->stats.latecol; 4919 net_stats->tx_aborted_errors = adapter->stats.ecol; 4920 net_stats->tx_window_errors = adapter->stats.latecol; 4921 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4922 4923 /* Tx Dropped needs to be maintained elsewhere */ 4924 4925 /* Management Stats */ 4926 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4927 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4928 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4929 } 4930 4931 /** 4932 * igc_down - Close the interface 4933 * @adapter: board private structure 4934 */ 4935 void igc_down(struct igc_adapter *adapter) 4936 { 4937 struct net_device *netdev = adapter->netdev; 4938 struct igc_hw *hw = &adapter->hw; 4939 u32 tctl, rctl; 4940 int i = 0; 4941 4942 set_bit(__IGC_DOWN, &adapter->state); 4943 4944 igc_ptp_suspend(adapter); 4945 4946 if (pci_device_is_present(adapter->pdev)) { 4947 /* disable receives in the hardware */ 4948 rctl = rd32(IGC_RCTL); 4949 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 4950 /* flush and sleep below */ 4951 } 4952 /* set trans_start so we don't get spurious watchdogs during reset */ 4953 netif_trans_update(netdev); 4954 4955 netif_carrier_off(netdev); 4956 netif_tx_stop_all_queues(netdev); 4957 4958 if (pci_device_is_present(adapter->pdev)) { 4959 /* disable transmits in the hardware */ 4960 tctl = rd32(IGC_TCTL); 4961 tctl &= ~IGC_TCTL_EN; 4962 wr32(IGC_TCTL, tctl); 4963 /* flush both disables and wait for them to finish */ 4964 wrfl(); 4965 usleep_range(10000, 20000); 4966 4967 igc_irq_disable(adapter); 4968 } 4969 4970 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4971 4972 for (i = 0; i < adapter->num_q_vectors; i++) { 4973 if (adapter->q_vector[i]) { 4974 napi_synchronize(&adapter->q_vector[i]->napi); 4975 napi_disable(&adapter->q_vector[i]->napi); 4976 } 4977 } 4978 4979 del_timer_sync(&adapter->watchdog_timer); 4980 del_timer_sync(&adapter->phy_info_timer); 4981 4982 /* record the stats before reset*/ 4983 spin_lock(&adapter->stats64_lock); 4984 igc_update_stats(adapter); 4985 spin_unlock(&adapter->stats64_lock); 4986 4987 adapter->link_speed = 0; 4988 adapter->link_duplex = 0; 4989 4990 if (!pci_channel_offline(adapter->pdev)) 4991 igc_reset(adapter); 4992 4993 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 4994 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 4995 4996 igc_clean_all_tx_rings(adapter); 4997 igc_clean_all_rx_rings(adapter); 4998 } 4999 5000 void igc_reinit_locked(struct igc_adapter *adapter) 5001 { 5002 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5003 usleep_range(1000, 2000); 5004 igc_down(adapter); 5005 igc_up(adapter); 5006 clear_bit(__IGC_RESETTING, &adapter->state); 5007 } 5008 5009 static void igc_reset_task(struct work_struct *work) 5010 { 5011 struct igc_adapter *adapter; 5012 5013 adapter = container_of(work, struct igc_adapter, reset_task); 5014 5015 rtnl_lock(); 5016 /* If we're already down or resetting, just bail */ 5017 if (test_bit(__IGC_DOWN, &adapter->state) || 5018 test_bit(__IGC_RESETTING, &adapter->state)) { 5019 rtnl_unlock(); 5020 return; 5021 } 5022 5023 igc_rings_dump(adapter); 5024 igc_regs_dump(adapter); 5025 netdev_err(adapter->netdev, "Reset adapter\n"); 5026 igc_reinit_locked(adapter); 5027 rtnl_unlock(); 5028 } 5029 5030 /** 5031 * igc_change_mtu - Change the Maximum Transfer Unit 5032 * @netdev: network interface device structure 5033 * @new_mtu: new value for maximum frame size 5034 * 5035 * Returns 0 on success, negative on failure 5036 */ 5037 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5038 { 5039 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5040 struct igc_adapter *adapter = netdev_priv(netdev); 5041 5042 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5043 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5044 return -EINVAL; 5045 } 5046 5047 /* adjust max frame to be at least the size of a standard frame */ 5048 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5049 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5050 5051 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5052 usleep_range(1000, 2000); 5053 5054 /* igc_down has a dependency on max_frame_size */ 5055 adapter->max_frame_size = max_frame; 5056 5057 if (netif_running(netdev)) 5058 igc_down(adapter); 5059 5060 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5061 netdev->mtu = new_mtu; 5062 5063 if (netif_running(netdev)) 5064 igc_up(adapter); 5065 else 5066 igc_reset(adapter); 5067 5068 clear_bit(__IGC_RESETTING, &adapter->state); 5069 5070 return 0; 5071 } 5072 5073 /** 5074 * igc_tx_timeout - Respond to a Tx Hang 5075 * @netdev: network interface device structure 5076 * @txqueue: queue number that timed out 5077 **/ 5078 static void igc_tx_timeout(struct net_device *netdev, 5079 unsigned int __always_unused txqueue) 5080 { 5081 struct igc_adapter *adapter = netdev_priv(netdev); 5082 struct igc_hw *hw = &adapter->hw; 5083 5084 /* Do the reset outside of interrupt context */ 5085 adapter->tx_timeout_count++; 5086 schedule_work(&adapter->reset_task); 5087 wr32(IGC_EICS, 5088 (adapter->eims_enable_mask & ~adapter->eims_other)); 5089 } 5090 5091 /** 5092 * igc_get_stats64 - Get System Network Statistics 5093 * @netdev: network interface device structure 5094 * @stats: rtnl_link_stats64 pointer 5095 * 5096 * Returns the address of the device statistics structure. 5097 * The statistics are updated here and also from the timer callback. 5098 */ 5099 static void igc_get_stats64(struct net_device *netdev, 5100 struct rtnl_link_stats64 *stats) 5101 { 5102 struct igc_adapter *adapter = netdev_priv(netdev); 5103 5104 spin_lock(&adapter->stats64_lock); 5105 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5106 igc_update_stats(adapter); 5107 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5108 spin_unlock(&adapter->stats64_lock); 5109 } 5110 5111 static netdev_features_t igc_fix_features(struct net_device *netdev, 5112 netdev_features_t features) 5113 { 5114 /* Since there is no support for separate Rx/Tx vlan accel 5115 * enable/disable make sure Tx flag is always in same state as Rx. 5116 */ 5117 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5118 features |= NETIF_F_HW_VLAN_CTAG_TX; 5119 else 5120 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5121 5122 return features; 5123 } 5124 5125 static int igc_set_features(struct net_device *netdev, 5126 netdev_features_t features) 5127 { 5128 netdev_features_t changed = netdev->features ^ features; 5129 struct igc_adapter *adapter = netdev_priv(netdev); 5130 5131 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5132 igc_vlan_mode(netdev, features); 5133 5134 /* Add VLAN support */ 5135 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5136 return 0; 5137 5138 if (!(features & NETIF_F_NTUPLE)) 5139 igc_flush_nfc_rules(adapter); 5140 5141 netdev->features = features; 5142 5143 if (netif_running(netdev)) 5144 igc_reinit_locked(adapter); 5145 else 5146 igc_reset(adapter); 5147 5148 return 1; 5149 } 5150 5151 static netdev_features_t 5152 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5153 netdev_features_t features) 5154 { 5155 unsigned int network_hdr_len, mac_hdr_len; 5156 5157 /* Make certain the headers can be described by a context descriptor */ 5158 mac_hdr_len = skb_network_header(skb) - skb->data; 5159 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5160 return features & ~(NETIF_F_HW_CSUM | 5161 NETIF_F_SCTP_CRC | 5162 NETIF_F_HW_VLAN_CTAG_TX | 5163 NETIF_F_TSO | 5164 NETIF_F_TSO6); 5165 5166 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5167 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5168 return features & ~(NETIF_F_HW_CSUM | 5169 NETIF_F_SCTP_CRC | 5170 NETIF_F_TSO | 5171 NETIF_F_TSO6); 5172 5173 /* We can only support IPv4 TSO in tunnels if we can mangle the 5174 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5175 */ 5176 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5177 features &= ~NETIF_F_TSO; 5178 5179 return features; 5180 } 5181 5182 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5183 { 5184 u32 ack, tsauxc, sec, nsec, tsicr; 5185 struct igc_hw *hw = &adapter->hw; 5186 struct ptp_clock_event event; 5187 struct timespec64 ts; 5188 5189 tsicr = rd32(IGC_TSICR); 5190 ack = 0; 5191 5192 if (tsicr & IGC_TSICR_SYS_WRAP) { 5193 event.type = PTP_CLOCK_PPS; 5194 if (adapter->ptp_caps.pps) 5195 ptp_clock_event(adapter->ptp_clock, &event); 5196 ack |= IGC_TSICR_SYS_WRAP; 5197 } 5198 5199 if (tsicr & IGC_TSICR_TXTS) { 5200 /* retrieve hardware timestamp */ 5201 schedule_work(&adapter->ptp_tx_work); 5202 ack |= IGC_TSICR_TXTS; 5203 } 5204 5205 if (tsicr & IGC_TSICR_TT0) { 5206 spin_lock(&adapter->tmreg_lock); 5207 ts = timespec64_add(adapter->perout[0].start, 5208 adapter->perout[0].period); 5209 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5210 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5211 tsauxc = rd32(IGC_TSAUXC); 5212 tsauxc |= IGC_TSAUXC_EN_TT0; 5213 wr32(IGC_TSAUXC, tsauxc); 5214 adapter->perout[0].start = ts; 5215 spin_unlock(&adapter->tmreg_lock); 5216 ack |= IGC_TSICR_TT0; 5217 } 5218 5219 if (tsicr & IGC_TSICR_TT1) { 5220 spin_lock(&adapter->tmreg_lock); 5221 ts = timespec64_add(adapter->perout[1].start, 5222 adapter->perout[1].period); 5223 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5224 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5225 tsauxc = rd32(IGC_TSAUXC); 5226 tsauxc |= IGC_TSAUXC_EN_TT1; 5227 wr32(IGC_TSAUXC, tsauxc); 5228 adapter->perout[1].start = ts; 5229 spin_unlock(&adapter->tmreg_lock); 5230 ack |= IGC_TSICR_TT1; 5231 } 5232 5233 if (tsicr & IGC_TSICR_AUTT0) { 5234 nsec = rd32(IGC_AUXSTMPL0); 5235 sec = rd32(IGC_AUXSTMPH0); 5236 event.type = PTP_CLOCK_EXTTS; 5237 event.index = 0; 5238 event.timestamp = sec * NSEC_PER_SEC + nsec; 5239 ptp_clock_event(adapter->ptp_clock, &event); 5240 ack |= IGC_TSICR_AUTT0; 5241 } 5242 5243 if (tsicr & IGC_TSICR_AUTT1) { 5244 nsec = rd32(IGC_AUXSTMPL1); 5245 sec = rd32(IGC_AUXSTMPH1); 5246 event.type = PTP_CLOCK_EXTTS; 5247 event.index = 1; 5248 event.timestamp = sec * NSEC_PER_SEC + nsec; 5249 ptp_clock_event(adapter->ptp_clock, &event); 5250 ack |= IGC_TSICR_AUTT1; 5251 } 5252 5253 /* acknowledge the interrupts */ 5254 wr32(IGC_TSICR, ack); 5255 } 5256 5257 /** 5258 * igc_msix_other - msix other interrupt handler 5259 * @irq: interrupt number 5260 * @data: pointer to a q_vector 5261 */ 5262 static irqreturn_t igc_msix_other(int irq, void *data) 5263 { 5264 struct igc_adapter *adapter = data; 5265 struct igc_hw *hw = &adapter->hw; 5266 u32 icr = rd32(IGC_ICR); 5267 5268 /* reading ICR causes bit 31 of EICR to be cleared */ 5269 if (icr & IGC_ICR_DRSTA) 5270 schedule_work(&adapter->reset_task); 5271 5272 if (icr & IGC_ICR_DOUTSYNC) { 5273 /* HW is reporting DMA is out of sync */ 5274 adapter->stats.doosync++; 5275 } 5276 5277 if (icr & IGC_ICR_LSC) { 5278 hw->mac.get_link_status = true; 5279 /* guard against interrupt when we're going down */ 5280 if (!test_bit(__IGC_DOWN, &adapter->state)) 5281 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5282 } 5283 5284 if (icr & IGC_ICR_TS) 5285 igc_tsync_interrupt(adapter); 5286 5287 wr32(IGC_EIMS, adapter->eims_other); 5288 5289 return IRQ_HANDLED; 5290 } 5291 5292 static void igc_write_itr(struct igc_q_vector *q_vector) 5293 { 5294 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5295 5296 if (!q_vector->set_itr) 5297 return; 5298 5299 if (!itr_val) 5300 itr_val = IGC_ITR_VAL_MASK; 5301 5302 itr_val |= IGC_EITR_CNT_IGNR; 5303 5304 writel(itr_val, q_vector->itr_register); 5305 q_vector->set_itr = 0; 5306 } 5307 5308 static irqreturn_t igc_msix_ring(int irq, void *data) 5309 { 5310 struct igc_q_vector *q_vector = data; 5311 5312 /* Write the ITR value calculated from the previous interrupt. */ 5313 igc_write_itr(q_vector); 5314 5315 napi_schedule(&q_vector->napi); 5316 5317 return IRQ_HANDLED; 5318 } 5319 5320 /** 5321 * igc_request_msix - Initialize MSI-X interrupts 5322 * @adapter: Pointer to adapter structure 5323 * 5324 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5325 * kernel. 5326 */ 5327 static int igc_request_msix(struct igc_adapter *adapter) 5328 { 5329 unsigned int num_q_vectors = adapter->num_q_vectors; 5330 int i = 0, err = 0, vector = 0, free_vector = 0; 5331 struct net_device *netdev = adapter->netdev; 5332 5333 err = request_irq(adapter->msix_entries[vector].vector, 5334 &igc_msix_other, 0, netdev->name, adapter); 5335 if (err) 5336 goto err_out; 5337 5338 if (num_q_vectors > MAX_Q_VECTORS) { 5339 num_q_vectors = MAX_Q_VECTORS; 5340 dev_warn(&adapter->pdev->dev, 5341 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5342 adapter->num_q_vectors, MAX_Q_VECTORS); 5343 } 5344 for (i = 0; i < num_q_vectors; i++) { 5345 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5346 5347 vector++; 5348 5349 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5350 5351 if (q_vector->rx.ring && q_vector->tx.ring) 5352 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5353 q_vector->rx.ring->queue_index); 5354 else if (q_vector->tx.ring) 5355 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5356 q_vector->tx.ring->queue_index); 5357 else if (q_vector->rx.ring) 5358 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5359 q_vector->rx.ring->queue_index); 5360 else 5361 sprintf(q_vector->name, "%s-unused", netdev->name); 5362 5363 err = request_irq(adapter->msix_entries[vector].vector, 5364 igc_msix_ring, 0, q_vector->name, 5365 q_vector); 5366 if (err) 5367 goto err_free; 5368 } 5369 5370 igc_configure_msix(adapter); 5371 return 0; 5372 5373 err_free: 5374 /* free already assigned IRQs */ 5375 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5376 5377 vector--; 5378 for (i = 0; i < vector; i++) { 5379 free_irq(adapter->msix_entries[free_vector++].vector, 5380 adapter->q_vector[i]); 5381 } 5382 err_out: 5383 return err; 5384 } 5385 5386 /** 5387 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5388 * @adapter: Pointer to adapter structure 5389 * 5390 * This function resets the device so that it has 0 rx queues, tx queues, and 5391 * MSI-X interrupts allocated. 5392 */ 5393 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5394 { 5395 igc_free_q_vectors(adapter); 5396 igc_reset_interrupt_capability(adapter); 5397 } 5398 5399 /* Need to wait a few seconds after link up to get diagnostic information from 5400 * the phy 5401 */ 5402 static void igc_update_phy_info(struct timer_list *t) 5403 { 5404 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5405 5406 igc_get_phy_info(&adapter->hw); 5407 } 5408 5409 /** 5410 * igc_has_link - check shared code for link and determine up/down 5411 * @adapter: pointer to driver private info 5412 */ 5413 bool igc_has_link(struct igc_adapter *adapter) 5414 { 5415 struct igc_hw *hw = &adapter->hw; 5416 bool link_active = false; 5417 5418 /* get_link_status is set on LSC (link status) interrupt or 5419 * rx sequence error interrupt. get_link_status will stay 5420 * false until the igc_check_for_link establishes link 5421 * for copper adapters ONLY 5422 */ 5423 if (!hw->mac.get_link_status) 5424 return true; 5425 hw->mac.ops.check_for_link(hw); 5426 link_active = !hw->mac.get_link_status; 5427 5428 if (hw->mac.type == igc_i225) { 5429 if (!netif_carrier_ok(adapter->netdev)) { 5430 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5431 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5432 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5433 adapter->link_check_timeout = jiffies; 5434 } 5435 } 5436 5437 return link_active; 5438 } 5439 5440 /** 5441 * igc_watchdog - Timer Call-back 5442 * @t: timer for the watchdog 5443 */ 5444 static void igc_watchdog(struct timer_list *t) 5445 { 5446 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5447 /* Do the rest outside of interrupt context */ 5448 schedule_work(&adapter->watchdog_task); 5449 } 5450 5451 static void igc_watchdog_task(struct work_struct *work) 5452 { 5453 struct igc_adapter *adapter = container_of(work, 5454 struct igc_adapter, 5455 watchdog_task); 5456 struct net_device *netdev = adapter->netdev; 5457 struct igc_hw *hw = &adapter->hw; 5458 struct igc_phy_info *phy = &hw->phy; 5459 u16 phy_data, retry_count = 20; 5460 u32 link; 5461 int i; 5462 5463 link = igc_has_link(adapter); 5464 5465 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5466 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5467 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5468 else 5469 link = false; 5470 } 5471 5472 if (link) { 5473 /* Cancel scheduled suspend requests. */ 5474 pm_runtime_resume(netdev->dev.parent); 5475 5476 if (!netif_carrier_ok(netdev)) { 5477 u32 ctrl; 5478 5479 hw->mac.ops.get_speed_and_duplex(hw, 5480 &adapter->link_speed, 5481 &adapter->link_duplex); 5482 5483 ctrl = rd32(IGC_CTRL); 5484 /* Link status message must follow this format */ 5485 netdev_info(netdev, 5486 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5487 adapter->link_speed, 5488 adapter->link_duplex == FULL_DUPLEX ? 5489 "Full" : "Half", 5490 (ctrl & IGC_CTRL_TFCE) && 5491 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5492 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5493 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5494 5495 /* disable EEE if enabled */ 5496 if ((adapter->flags & IGC_FLAG_EEE) && 5497 adapter->link_duplex == HALF_DUPLEX) { 5498 netdev_info(netdev, 5499 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5500 adapter->hw.dev_spec._base.eee_enable = false; 5501 adapter->flags &= ~IGC_FLAG_EEE; 5502 } 5503 5504 /* check if SmartSpeed worked */ 5505 igc_check_downshift(hw); 5506 if (phy->speed_downgraded) 5507 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5508 5509 /* adjust timeout factor according to speed/duplex */ 5510 adapter->tx_timeout_factor = 1; 5511 switch (adapter->link_speed) { 5512 case SPEED_10: 5513 adapter->tx_timeout_factor = 14; 5514 break; 5515 case SPEED_100: 5516 case SPEED_1000: 5517 case SPEED_2500: 5518 adapter->tx_timeout_factor = 1; 5519 break; 5520 } 5521 5522 /* Once the launch time has been set on the wire, there 5523 * is a delay before the link speed can be determined 5524 * based on link-up activity. Write into the register 5525 * as soon as we know the correct link speed. 5526 */ 5527 igc_tsn_adjust_txtime_offset(adapter); 5528 5529 if (adapter->link_speed != SPEED_1000) 5530 goto no_wait; 5531 5532 /* wait for Remote receiver status OK */ 5533 retry_read_status: 5534 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5535 &phy_data)) { 5536 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5537 retry_count) { 5538 msleep(100); 5539 retry_count--; 5540 goto retry_read_status; 5541 } else if (!retry_count) { 5542 netdev_err(netdev, "exceed max 2 second\n"); 5543 } 5544 } else { 5545 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5546 } 5547 no_wait: 5548 netif_carrier_on(netdev); 5549 5550 /* link state has changed, schedule phy info update */ 5551 if (!test_bit(__IGC_DOWN, &adapter->state)) 5552 mod_timer(&adapter->phy_info_timer, 5553 round_jiffies(jiffies + 2 * HZ)); 5554 } 5555 } else { 5556 if (netif_carrier_ok(netdev)) { 5557 adapter->link_speed = 0; 5558 adapter->link_duplex = 0; 5559 5560 /* Links status message must follow this format */ 5561 netdev_info(netdev, "NIC Link is Down\n"); 5562 netif_carrier_off(netdev); 5563 5564 /* link state has changed, schedule phy info update */ 5565 if (!test_bit(__IGC_DOWN, &adapter->state)) 5566 mod_timer(&adapter->phy_info_timer, 5567 round_jiffies(jiffies + 2 * HZ)); 5568 5569 /* link is down, time to check for alternate media */ 5570 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 5571 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5572 schedule_work(&adapter->reset_task); 5573 /* return immediately */ 5574 return; 5575 } 5576 } 5577 pm_schedule_suspend(netdev->dev.parent, 5578 MSEC_PER_SEC * 5); 5579 5580 /* also check for alternate media here */ 5581 } else if (!netif_carrier_ok(netdev) && 5582 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 5583 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5584 schedule_work(&adapter->reset_task); 5585 /* return immediately */ 5586 return; 5587 } 5588 } 5589 } 5590 5591 spin_lock(&adapter->stats64_lock); 5592 igc_update_stats(adapter); 5593 spin_unlock(&adapter->stats64_lock); 5594 5595 for (i = 0; i < adapter->num_tx_queues; i++) { 5596 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5597 5598 if (!netif_carrier_ok(netdev)) { 5599 /* We've lost link, so the controller stops DMA, 5600 * but we've got queued Tx work that's never going 5601 * to get done, so reset controller to flush Tx. 5602 * (Do the reset outside of interrupt context). 5603 */ 5604 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5605 adapter->tx_timeout_count++; 5606 schedule_work(&adapter->reset_task); 5607 /* return immediately since reset is imminent */ 5608 return; 5609 } 5610 } 5611 5612 /* Force detection of hung controller every watchdog period */ 5613 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5614 } 5615 5616 /* Cause software interrupt to ensure Rx ring is cleaned */ 5617 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5618 u32 eics = 0; 5619 5620 for (i = 0; i < adapter->num_q_vectors; i++) 5621 eics |= adapter->q_vector[i]->eims_value; 5622 wr32(IGC_EICS, eics); 5623 } else { 5624 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5625 } 5626 5627 igc_ptp_tx_hang(adapter); 5628 5629 /* Reset the timer */ 5630 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5631 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5632 mod_timer(&adapter->watchdog_timer, 5633 round_jiffies(jiffies + HZ)); 5634 else 5635 mod_timer(&adapter->watchdog_timer, 5636 round_jiffies(jiffies + 2 * HZ)); 5637 } 5638 } 5639 5640 /** 5641 * igc_intr_msi - Interrupt Handler 5642 * @irq: interrupt number 5643 * @data: pointer to a network interface device structure 5644 */ 5645 static irqreturn_t igc_intr_msi(int irq, void *data) 5646 { 5647 struct igc_adapter *adapter = data; 5648 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5649 struct igc_hw *hw = &adapter->hw; 5650 /* read ICR disables interrupts using IAM */ 5651 u32 icr = rd32(IGC_ICR); 5652 5653 igc_write_itr(q_vector); 5654 5655 if (icr & IGC_ICR_DRSTA) 5656 schedule_work(&adapter->reset_task); 5657 5658 if (icr & IGC_ICR_DOUTSYNC) { 5659 /* HW is reporting DMA is out of sync */ 5660 adapter->stats.doosync++; 5661 } 5662 5663 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5664 hw->mac.get_link_status = true; 5665 if (!test_bit(__IGC_DOWN, &adapter->state)) 5666 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5667 } 5668 5669 if (icr & IGC_ICR_TS) 5670 igc_tsync_interrupt(adapter); 5671 5672 napi_schedule(&q_vector->napi); 5673 5674 return IRQ_HANDLED; 5675 } 5676 5677 /** 5678 * igc_intr - Legacy Interrupt Handler 5679 * @irq: interrupt number 5680 * @data: pointer to a network interface device structure 5681 */ 5682 static irqreturn_t igc_intr(int irq, void *data) 5683 { 5684 struct igc_adapter *adapter = data; 5685 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5686 struct igc_hw *hw = &adapter->hw; 5687 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5688 * need for the IMC write 5689 */ 5690 u32 icr = rd32(IGC_ICR); 5691 5692 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5693 * not set, then the adapter didn't send an interrupt 5694 */ 5695 if (!(icr & IGC_ICR_INT_ASSERTED)) 5696 return IRQ_NONE; 5697 5698 igc_write_itr(q_vector); 5699 5700 if (icr & IGC_ICR_DRSTA) 5701 schedule_work(&adapter->reset_task); 5702 5703 if (icr & IGC_ICR_DOUTSYNC) { 5704 /* HW is reporting DMA is out of sync */ 5705 adapter->stats.doosync++; 5706 } 5707 5708 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5709 hw->mac.get_link_status = true; 5710 /* guard against interrupt when we're going down */ 5711 if (!test_bit(__IGC_DOWN, &adapter->state)) 5712 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5713 } 5714 5715 if (icr & IGC_ICR_TS) 5716 igc_tsync_interrupt(adapter); 5717 5718 napi_schedule(&q_vector->napi); 5719 5720 return IRQ_HANDLED; 5721 } 5722 5723 static void igc_free_irq(struct igc_adapter *adapter) 5724 { 5725 if (adapter->msix_entries) { 5726 int vector = 0, i; 5727 5728 free_irq(adapter->msix_entries[vector++].vector, adapter); 5729 5730 for (i = 0; i < adapter->num_q_vectors; i++) 5731 free_irq(adapter->msix_entries[vector++].vector, 5732 adapter->q_vector[i]); 5733 } else { 5734 free_irq(adapter->pdev->irq, adapter); 5735 } 5736 } 5737 5738 /** 5739 * igc_request_irq - initialize interrupts 5740 * @adapter: Pointer to adapter structure 5741 * 5742 * Attempts to configure interrupts using the best available 5743 * capabilities of the hardware and kernel. 5744 */ 5745 static int igc_request_irq(struct igc_adapter *adapter) 5746 { 5747 struct net_device *netdev = adapter->netdev; 5748 struct pci_dev *pdev = adapter->pdev; 5749 int err = 0; 5750 5751 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5752 err = igc_request_msix(adapter); 5753 if (!err) 5754 goto request_done; 5755 /* fall back to MSI */ 5756 igc_free_all_tx_resources(adapter); 5757 igc_free_all_rx_resources(adapter); 5758 5759 igc_clear_interrupt_scheme(adapter); 5760 err = igc_init_interrupt_scheme(adapter, false); 5761 if (err) 5762 goto request_done; 5763 igc_setup_all_tx_resources(adapter); 5764 igc_setup_all_rx_resources(adapter); 5765 igc_configure(adapter); 5766 } 5767 5768 igc_assign_vector(adapter->q_vector[0], 0); 5769 5770 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5771 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5772 netdev->name, adapter); 5773 if (!err) 5774 goto request_done; 5775 5776 /* fall back to legacy interrupts */ 5777 igc_reset_interrupt_capability(adapter); 5778 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5779 } 5780 5781 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5782 netdev->name, adapter); 5783 5784 if (err) 5785 netdev_err(netdev, "Error %d getting interrupt\n", err); 5786 5787 request_done: 5788 return err; 5789 } 5790 5791 /** 5792 * __igc_open - Called when a network interface is made active 5793 * @netdev: network interface device structure 5794 * @resuming: boolean indicating if the device is resuming 5795 * 5796 * Returns 0 on success, negative value on failure 5797 * 5798 * The open entry point is called when a network interface is made 5799 * active by the system (IFF_UP). At this point all resources needed 5800 * for transmit and receive operations are allocated, the interrupt 5801 * handler is registered with the OS, the watchdog timer is started, 5802 * and the stack is notified that the interface is ready. 5803 */ 5804 static int __igc_open(struct net_device *netdev, bool resuming) 5805 { 5806 struct igc_adapter *adapter = netdev_priv(netdev); 5807 struct pci_dev *pdev = adapter->pdev; 5808 struct igc_hw *hw = &adapter->hw; 5809 int err = 0; 5810 int i = 0; 5811 5812 /* disallow open during test */ 5813 5814 if (test_bit(__IGC_TESTING, &adapter->state)) { 5815 WARN_ON(resuming); 5816 return -EBUSY; 5817 } 5818 5819 if (!resuming) 5820 pm_runtime_get_sync(&pdev->dev); 5821 5822 netif_carrier_off(netdev); 5823 5824 /* allocate transmit descriptors */ 5825 err = igc_setup_all_tx_resources(adapter); 5826 if (err) 5827 goto err_setup_tx; 5828 5829 /* allocate receive descriptors */ 5830 err = igc_setup_all_rx_resources(adapter); 5831 if (err) 5832 goto err_setup_rx; 5833 5834 igc_power_up_link(adapter); 5835 5836 igc_configure(adapter); 5837 5838 err = igc_request_irq(adapter); 5839 if (err) 5840 goto err_req_irq; 5841 5842 /* Notify the stack of the actual queue counts. */ 5843 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5844 if (err) 5845 goto err_set_queues; 5846 5847 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5848 if (err) 5849 goto err_set_queues; 5850 5851 clear_bit(__IGC_DOWN, &adapter->state); 5852 5853 for (i = 0; i < adapter->num_q_vectors; i++) 5854 napi_enable(&adapter->q_vector[i]->napi); 5855 5856 /* Clear any pending interrupts. */ 5857 rd32(IGC_ICR); 5858 igc_irq_enable(adapter); 5859 5860 if (!resuming) 5861 pm_runtime_put(&pdev->dev); 5862 5863 netif_tx_start_all_queues(netdev); 5864 5865 /* start the watchdog. */ 5866 hw->mac.get_link_status = true; 5867 schedule_work(&adapter->watchdog_task); 5868 5869 return IGC_SUCCESS; 5870 5871 err_set_queues: 5872 igc_free_irq(adapter); 5873 err_req_irq: 5874 igc_release_hw_control(adapter); 5875 igc_power_down_phy_copper_base(&adapter->hw); 5876 igc_free_all_rx_resources(adapter); 5877 err_setup_rx: 5878 igc_free_all_tx_resources(adapter); 5879 err_setup_tx: 5880 igc_reset(adapter); 5881 if (!resuming) 5882 pm_runtime_put(&pdev->dev); 5883 5884 return err; 5885 } 5886 5887 int igc_open(struct net_device *netdev) 5888 { 5889 return __igc_open(netdev, false); 5890 } 5891 5892 /** 5893 * __igc_close - Disables a network interface 5894 * @netdev: network interface device structure 5895 * @suspending: boolean indicating the device is suspending 5896 * 5897 * Returns 0, this is not allowed to fail 5898 * 5899 * The close entry point is called when an interface is de-activated 5900 * by the OS. The hardware is still under the driver's control, but 5901 * needs to be disabled. A global MAC reset is issued to stop the 5902 * hardware, and all transmit and receive resources are freed. 5903 */ 5904 static int __igc_close(struct net_device *netdev, bool suspending) 5905 { 5906 struct igc_adapter *adapter = netdev_priv(netdev); 5907 struct pci_dev *pdev = adapter->pdev; 5908 5909 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5910 5911 if (!suspending) 5912 pm_runtime_get_sync(&pdev->dev); 5913 5914 igc_down(adapter); 5915 5916 igc_release_hw_control(adapter); 5917 5918 igc_free_irq(adapter); 5919 5920 igc_free_all_tx_resources(adapter); 5921 igc_free_all_rx_resources(adapter); 5922 5923 if (!suspending) 5924 pm_runtime_put_sync(&pdev->dev); 5925 5926 return 0; 5927 } 5928 5929 int igc_close(struct net_device *netdev) 5930 { 5931 if (netif_device_present(netdev) || netdev->dismantle) 5932 return __igc_close(netdev, false); 5933 return 0; 5934 } 5935 5936 /** 5937 * igc_ioctl - Access the hwtstamp interface 5938 * @netdev: network interface device structure 5939 * @ifr: interface request data 5940 * @cmd: ioctl command 5941 **/ 5942 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5943 { 5944 switch (cmd) { 5945 case SIOCGHWTSTAMP: 5946 return igc_ptp_get_ts_config(netdev, ifr); 5947 case SIOCSHWTSTAMP: 5948 return igc_ptp_set_ts_config(netdev, ifr); 5949 default: 5950 return -EOPNOTSUPP; 5951 } 5952 } 5953 5954 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 5955 bool enable) 5956 { 5957 struct igc_ring *ring; 5958 5959 if (queue < 0 || queue >= adapter->num_tx_queues) 5960 return -EINVAL; 5961 5962 ring = adapter->tx_ring[queue]; 5963 ring->launchtime_enable = enable; 5964 5965 return 0; 5966 } 5967 5968 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 5969 { 5970 struct timespec64 b; 5971 5972 b = ktime_to_timespec64(base_time); 5973 5974 return timespec64_compare(now, &b) > 0; 5975 } 5976 5977 static bool validate_schedule(struct igc_adapter *adapter, 5978 const struct tc_taprio_qopt_offload *qopt) 5979 { 5980 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 5981 struct igc_hw *hw = &adapter->hw; 5982 struct timespec64 now; 5983 size_t n; 5984 5985 if (qopt->cycle_time_extension) 5986 return false; 5987 5988 igc_ptp_read(adapter, &now); 5989 5990 /* If we program the controller's BASET registers with a time 5991 * in the future, it will hold all the packets until that 5992 * time, causing a lot of TX Hangs, so to avoid that, we 5993 * reject schedules that would start in the future. 5994 * Note: Limitation above is no longer in i226. 5995 */ 5996 if (!is_base_time_past(qopt->base_time, &now) && 5997 igc_is_device_id_i225(hw)) 5998 return false; 5999 6000 for (n = 0; n < qopt->num_entries; n++) { 6001 const struct tc_taprio_sched_entry *e, *prev; 6002 int i; 6003 6004 prev = n ? &qopt->entries[n - 1] : NULL; 6005 e = &qopt->entries[n]; 6006 6007 /* i225 only supports "global" frame preemption 6008 * settings. 6009 */ 6010 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6011 return false; 6012 6013 for (i = 0; i < adapter->num_tx_queues; i++) { 6014 if (e->gate_mask & BIT(i)) 6015 queue_uses[i]++; 6016 6017 /* There are limitations: A single queue cannot be 6018 * opened and closed multiple times per cycle unless the 6019 * gate stays open. Check for it. 6020 */ 6021 if (queue_uses[i] > 1 && 6022 !(prev->gate_mask & BIT(i))) 6023 return false; 6024 } 6025 } 6026 6027 return true; 6028 } 6029 6030 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6031 struct tc_etf_qopt_offload *qopt) 6032 { 6033 struct igc_hw *hw = &adapter->hw; 6034 int err; 6035 6036 if (hw->mac.type != igc_i225) 6037 return -EOPNOTSUPP; 6038 6039 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6040 if (err) 6041 return err; 6042 6043 return igc_tsn_offload_apply(adapter); 6044 } 6045 6046 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6047 { 6048 int i; 6049 6050 adapter->base_time = 0; 6051 adapter->cycle_time = NSEC_PER_SEC; 6052 6053 for (i = 0; i < adapter->num_tx_queues; i++) { 6054 struct igc_ring *ring = adapter->tx_ring[i]; 6055 6056 ring->start_time = 0; 6057 ring->end_time = NSEC_PER_SEC; 6058 } 6059 6060 return 0; 6061 } 6062 6063 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6064 struct tc_taprio_qopt_offload *qopt) 6065 { 6066 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6067 struct igc_hw *hw = &adapter->hw; 6068 u32 start_time = 0, end_time = 0; 6069 size_t n; 6070 int i; 6071 6072 adapter->qbv_enable = qopt->enable; 6073 6074 if (!qopt->enable) 6075 return igc_tsn_clear_schedule(adapter); 6076 6077 if (qopt->base_time < 0) 6078 return -ERANGE; 6079 6080 if (igc_is_device_id_i225(hw) && adapter->base_time) 6081 return -EALREADY; 6082 6083 if (!validate_schedule(adapter, qopt)) 6084 return -EINVAL; 6085 6086 adapter->cycle_time = qopt->cycle_time; 6087 adapter->base_time = qopt->base_time; 6088 6089 for (n = 0; n < qopt->num_entries; n++) { 6090 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6091 6092 end_time += e->interval; 6093 6094 /* If any of the conditions below are true, we need to manually 6095 * control the end time of the cycle. 6096 * 1. Qbv users can specify a cycle time that is not equal 6097 * to the total GCL intervals. Hence, recalculation is 6098 * necessary here to exclude the time interval that 6099 * exceeds the cycle time. 6100 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6101 * once the end of the list is reached, it will switch 6102 * to the END_OF_CYCLE state and leave the gates in the 6103 * same state until the next cycle is started. 6104 */ 6105 if (end_time > adapter->cycle_time || 6106 n + 1 == qopt->num_entries) 6107 end_time = adapter->cycle_time; 6108 6109 for (i = 0; i < adapter->num_tx_queues; i++) { 6110 struct igc_ring *ring = adapter->tx_ring[i]; 6111 6112 if (!(e->gate_mask & BIT(i))) 6113 continue; 6114 6115 /* Check whether a queue stays open for more than one 6116 * entry. If so, keep the start and advance the end 6117 * time. 6118 */ 6119 if (!queue_configured[i]) 6120 ring->start_time = start_time; 6121 ring->end_time = end_time; 6122 6123 queue_configured[i] = true; 6124 } 6125 6126 start_time += e->interval; 6127 } 6128 6129 /* Check whether a queue gets configured. 6130 * If not, set the start and end time to be end time. 6131 */ 6132 for (i = 0; i < adapter->num_tx_queues; i++) { 6133 if (!queue_configured[i]) { 6134 struct igc_ring *ring = adapter->tx_ring[i]; 6135 6136 ring->start_time = end_time; 6137 ring->end_time = end_time; 6138 } 6139 } 6140 6141 return 0; 6142 } 6143 6144 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6145 struct tc_taprio_qopt_offload *qopt) 6146 { 6147 struct igc_hw *hw = &adapter->hw; 6148 int err; 6149 6150 if (hw->mac.type != igc_i225) 6151 return -EOPNOTSUPP; 6152 6153 err = igc_save_qbv_schedule(adapter, qopt); 6154 if (err) 6155 return err; 6156 6157 return igc_tsn_offload_apply(adapter); 6158 } 6159 6160 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6161 bool enable, int idleslope, int sendslope, 6162 int hicredit, int locredit) 6163 { 6164 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6165 struct net_device *netdev = adapter->netdev; 6166 struct igc_ring *ring; 6167 int i; 6168 6169 /* i225 has two sets of credit-based shaper logic. 6170 * Supporting it only on the top two priority queues 6171 */ 6172 if (queue < 0 || queue > 1) 6173 return -EINVAL; 6174 6175 ring = adapter->tx_ring[queue]; 6176 6177 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6178 if (adapter->tx_ring[i]) 6179 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6180 6181 /* CBS should be enabled on the highest priority queue first in order 6182 * for the CBS algorithm to operate as intended. 6183 */ 6184 if (enable) { 6185 if (queue == 1 && !cbs_status[0]) { 6186 netdev_err(netdev, 6187 "Enabling CBS on queue1 before queue0\n"); 6188 return -EINVAL; 6189 } 6190 } else { 6191 if (queue == 0 && cbs_status[1]) { 6192 netdev_err(netdev, 6193 "Disabling CBS on queue0 before queue1\n"); 6194 return -EINVAL; 6195 } 6196 } 6197 6198 ring->cbs_enable = enable; 6199 ring->idleslope = idleslope; 6200 ring->sendslope = sendslope; 6201 ring->hicredit = hicredit; 6202 ring->locredit = locredit; 6203 6204 return 0; 6205 } 6206 6207 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6208 struct tc_cbs_qopt_offload *qopt) 6209 { 6210 struct igc_hw *hw = &adapter->hw; 6211 int err; 6212 6213 if (hw->mac.type != igc_i225) 6214 return -EOPNOTSUPP; 6215 6216 if (qopt->queue < 0 || qopt->queue > 1) 6217 return -EINVAL; 6218 6219 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6220 qopt->idleslope, qopt->sendslope, 6221 qopt->hicredit, qopt->locredit); 6222 if (err) 6223 return err; 6224 6225 return igc_tsn_offload_apply(adapter); 6226 } 6227 6228 static int igc_tc_query_caps(struct igc_adapter *adapter, 6229 struct tc_query_caps_base *base) 6230 { 6231 struct igc_hw *hw = &adapter->hw; 6232 6233 switch (base->type) { 6234 case TC_SETUP_QDISC_TAPRIO: { 6235 struct tc_taprio_caps *caps = base->caps; 6236 6237 caps->broken_mqprio = true; 6238 6239 if (hw->mac.type == igc_i225) 6240 caps->gate_mask_per_txq = true; 6241 6242 return 0; 6243 } 6244 default: 6245 return -EOPNOTSUPP; 6246 } 6247 } 6248 6249 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6250 void *type_data) 6251 { 6252 struct igc_adapter *adapter = netdev_priv(dev); 6253 6254 switch (type) { 6255 case TC_QUERY_CAPS: 6256 return igc_tc_query_caps(adapter, type_data); 6257 case TC_SETUP_QDISC_TAPRIO: 6258 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6259 6260 case TC_SETUP_QDISC_ETF: 6261 return igc_tsn_enable_launchtime(adapter, type_data); 6262 6263 case TC_SETUP_QDISC_CBS: 6264 return igc_tsn_enable_cbs(adapter, type_data); 6265 6266 default: 6267 return -EOPNOTSUPP; 6268 } 6269 } 6270 6271 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6272 { 6273 struct igc_adapter *adapter = netdev_priv(dev); 6274 6275 switch (bpf->command) { 6276 case XDP_SETUP_PROG: 6277 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6278 case XDP_SETUP_XSK_POOL: 6279 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6280 bpf->xsk.queue_id); 6281 default: 6282 return -EOPNOTSUPP; 6283 } 6284 } 6285 6286 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6287 struct xdp_frame **frames, u32 flags) 6288 { 6289 struct igc_adapter *adapter = netdev_priv(dev); 6290 int cpu = smp_processor_id(); 6291 struct netdev_queue *nq; 6292 struct igc_ring *ring; 6293 int i, drops; 6294 6295 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6296 return -ENETDOWN; 6297 6298 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6299 return -EINVAL; 6300 6301 ring = igc_xdp_get_tx_ring(adapter, cpu); 6302 nq = txring_txq(ring); 6303 6304 __netif_tx_lock(nq, cpu); 6305 6306 drops = 0; 6307 for (i = 0; i < num_frames; i++) { 6308 int err; 6309 struct xdp_frame *xdpf = frames[i]; 6310 6311 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6312 if (err) { 6313 xdp_return_frame_rx_napi(xdpf); 6314 drops++; 6315 } 6316 } 6317 6318 if (flags & XDP_XMIT_FLUSH) 6319 igc_flush_tx_descriptors(ring); 6320 6321 __netif_tx_unlock(nq); 6322 6323 return num_frames - drops; 6324 } 6325 6326 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6327 struct igc_q_vector *q_vector) 6328 { 6329 struct igc_hw *hw = &adapter->hw; 6330 u32 eics = 0; 6331 6332 eics |= q_vector->eims_value; 6333 wr32(IGC_EICS, eics); 6334 } 6335 6336 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6337 { 6338 struct igc_adapter *adapter = netdev_priv(dev); 6339 struct igc_q_vector *q_vector; 6340 struct igc_ring *ring; 6341 6342 if (test_bit(__IGC_DOWN, &adapter->state)) 6343 return -ENETDOWN; 6344 6345 if (!igc_xdp_is_enabled(adapter)) 6346 return -ENXIO; 6347 6348 if (queue_id >= adapter->num_rx_queues) 6349 return -EINVAL; 6350 6351 ring = adapter->rx_ring[queue_id]; 6352 6353 if (!ring->xsk_pool) 6354 return -ENXIO; 6355 6356 q_vector = adapter->q_vector[queue_id]; 6357 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6358 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6359 6360 return 0; 6361 } 6362 6363 static const struct net_device_ops igc_netdev_ops = { 6364 .ndo_open = igc_open, 6365 .ndo_stop = igc_close, 6366 .ndo_start_xmit = igc_xmit_frame, 6367 .ndo_set_rx_mode = igc_set_rx_mode, 6368 .ndo_set_mac_address = igc_set_mac, 6369 .ndo_change_mtu = igc_change_mtu, 6370 .ndo_tx_timeout = igc_tx_timeout, 6371 .ndo_get_stats64 = igc_get_stats64, 6372 .ndo_fix_features = igc_fix_features, 6373 .ndo_set_features = igc_set_features, 6374 .ndo_features_check = igc_features_check, 6375 .ndo_eth_ioctl = igc_ioctl, 6376 .ndo_setup_tc = igc_setup_tc, 6377 .ndo_bpf = igc_bpf, 6378 .ndo_xdp_xmit = igc_xdp_xmit, 6379 .ndo_xsk_wakeup = igc_xsk_wakeup, 6380 }; 6381 6382 /* PCIe configuration access */ 6383 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6384 { 6385 struct igc_adapter *adapter = hw->back; 6386 6387 pci_read_config_word(adapter->pdev, reg, value); 6388 } 6389 6390 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6391 { 6392 struct igc_adapter *adapter = hw->back; 6393 6394 pci_write_config_word(adapter->pdev, reg, *value); 6395 } 6396 6397 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6398 { 6399 struct igc_adapter *adapter = hw->back; 6400 6401 if (!pci_is_pcie(adapter->pdev)) 6402 return -IGC_ERR_CONFIG; 6403 6404 pcie_capability_read_word(adapter->pdev, reg, value); 6405 6406 return IGC_SUCCESS; 6407 } 6408 6409 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6410 { 6411 struct igc_adapter *adapter = hw->back; 6412 6413 if (!pci_is_pcie(adapter->pdev)) 6414 return -IGC_ERR_CONFIG; 6415 6416 pcie_capability_write_word(adapter->pdev, reg, *value); 6417 6418 return IGC_SUCCESS; 6419 } 6420 6421 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6422 { 6423 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6424 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6425 u32 value = 0; 6426 6427 if (IGC_REMOVED(hw_addr)) 6428 return ~value; 6429 6430 value = readl(&hw_addr[reg]); 6431 6432 /* reads should not return all F's */ 6433 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6434 struct net_device *netdev = igc->netdev; 6435 6436 hw->hw_addr = NULL; 6437 netif_device_detach(netdev); 6438 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6439 WARN(pci_device_is_present(igc->pdev), 6440 "igc: Failed to read reg 0x%x!\n", reg); 6441 } 6442 6443 return value; 6444 } 6445 6446 /** 6447 * igc_probe - Device Initialization Routine 6448 * @pdev: PCI device information struct 6449 * @ent: entry in igc_pci_tbl 6450 * 6451 * Returns 0 on success, negative on failure 6452 * 6453 * igc_probe initializes an adapter identified by a pci_dev structure. 6454 * The OS initialization, configuring the adapter private structure, 6455 * and a hardware reset occur. 6456 */ 6457 static int igc_probe(struct pci_dev *pdev, 6458 const struct pci_device_id *ent) 6459 { 6460 struct igc_adapter *adapter; 6461 struct net_device *netdev; 6462 struct igc_hw *hw; 6463 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6464 int err; 6465 6466 err = pci_enable_device_mem(pdev); 6467 if (err) 6468 return err; 6469 6470 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6471 if (err) { 6472 dev_err(&pdev->dev, 6473 "No usable DMA configuration, aborting\n"); 6474 goto err_dma; 6475 } 6476 6477 err = pci_request_mem_regions(pdev, igc_driver_name); 6478 if (err) 6479 goto err_pci_reg; 6480 6481 err = pci_enable_ptm(pdev, NULL); 6482 if (err < 0) 6483 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6484 6485 pci_set_master(pdev); 6486 6487 err = -ENOMEM; 6488 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6489 IGC_MAX_TX_QUEUES); 6490 6491 if (!netdev) 6492 goto err_alloc_etherdev; 6493 6494 SET_NETDEV_DEV(netdev, &pdev->dev); 6495 6496 pci_set_drvdata(pdev, netdev); 6497 adapter = netdev_priv(netdev); 6498 adapter->netdev = netdev; 6499 adapter->pdev = pdev; 6500 hw = &adapter->hw; 6501 hw->back = adapter; 6502 adapter->port_num = hw->bus.func; 6503 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6504 6505 err = pci_save_state(pdev); 6506 if (err) 6507 goto err_ioremap; 6508 6509 err = -EIO; 6510 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6511 pci_resource_len(pdev, 0)); 6512 if (!adapter->io_addr) 6513 goto err_ioremap; 6514 6515 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6516 hw->hw_addr = adapter->io_addr; 6517 6518 netdev->netdev_ops = &igc_netdev_ops; 6519 igc_ethtool_set_ops(netdev); 6520 netdev->watchdog_timeo = 5 * HZ; 6521 6522 netdev->mem_start = pci_resource_start(pdev, 0); 6523 netdev->mem_end = pci_resource_end(pdev, 0); 6524 6525 /* PCI config space info */ 6526 hw->vendor_id = pdev->vendor; 6527 hw->device_id = pdev->device; 6528 hw->revision_id = pdev->revision; 6529 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6530 hw->subsystem_device_id = pdev->subsystem_device; 6531 6532 /* Copy the default MAC and PHY function pointers */ 6533 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6534 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6535 6536 /* Initialize skew-specific constants */ 6537 err = ei->get_invariants(hw); 6538 if (err) 6539 goto err_sw_init; 6540 6541 /* Add supported features to the features list*/ 6542 netdev->features |= NETIF_F_SG; 6543 netdev->features |= NETIF_F_TSO; 6544 netdev->features |= NETIF_F_TSO6; 6545 netdev->features |= NETIF_F_TSO_ECN; 6546 netdev->features |= NETIF_F_RXCSUM; 6547 netdev->features |= NETIF_F_HW_CSUM; 6548 netdev->features |= NETIF_F_SCTP_CRC; 6549 netdev->features |= NETIF_F_HW_TC; 6550 6551 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6552 NETIF_F_GSO_GRE_CSUM | \ 6553 NETIF_F_GSO_IPXIP4 | \ 6554 NETIF_F_GSO_IPXIP6 | \ 6555 NETIF_F_GSO_UDP_TUNNEL | \ 6556 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6557 6558 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6559 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6560 6561 /* setup the private structure */ 6562 err = igc_sw_init(adapter); 6563 if (err) 6564 goto err_sw_init; 6565 6566 /* copy netdev features into list of user selectable features */ 6567 netdev->hw_features |= NETIF_F_NTUPLE; 6568 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6569 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6570 netdev->hw_features |= netdev->features; 6571 6572 netdev->features |= NETIF_F_HIGHDMA; 6573 6574 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6575 netdev->mpls_features |= NETIF_F_HW_CSUM; 6576 netdev->hw_enc_features |= netdev->vlan_features; 6577 6578 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 6579 NETDEV_XDP_ACT_XSK_ZEROCOPY; 6580 6581 /* MTU range: 68 - 9216 */ 6582 netdev->min_mtu = ETH_MIN_MTU; 6583 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6584 6585 /* before reading the NVM, reset the controller to put the device in a 6586 * known good starting state 6587 */ 6588 hw->mac.ops.reset_hw(hw); 6589 6590 if (igc_get_flash_presence_i225(hw)) { 6591 if (hw->nvm.ops.validate(hw) < 0) { 6592 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6593 err = -EIO; 6594 goto err_eeprom; 6595 } 6596 } 6597 6598 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6599 /* copy the MAC address out of the NVM */ 6600 if (hw->mac.ops.read_mac_addr(hw)) 6601 dev_err(&pdev->dev, "NVM Read Error\n"); 6602 } 6603 6604 eth_hw_addr_set(netdev, hw->mac.addr); 6605 6606 if (!is_valid_ether_addr(netdev->dev_addr)) { 6607 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6608 err = -EIO; 6609 goto err_eeprom; 6610 } 6611 6612 /* configure RXPBSIZE and TXPBSIZE */ 6613 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6614 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6615 6616 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6617 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6618 6619 INIT_WORK(&adapter->reset_task, igc_reset_task); 6620 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6621 6622 /* Initialize link properties that are user-changeable */ 6623 adapter->fc_autoneg = true; 6624 hw->mac.autoneg = true; 6625 hw->phy.autoneg_advertised = 0xaf; 6626 6627 hw->fc.requested_mode = igc_fc_default; 6628 hw->fc.current_mode = igc_fc_default; 6629 6630 /* By default, support wake on port A */ 6631 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6632 6633 /* initialize the wol settings based on the eeprom settings */ 6634 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6635 adapter->wol |= IGC_WUFC_MAG; 6636 6637 device_set_wakeup_enable(&adapter->pdev->dev, 6638 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6639 6640 igc_ptp_init(adapter); 6641 6642 igc_tsn_clear_schedule(adapter); 6643 6644 /* reset the hardware with the new settings */ 6645 igc_reset(adapter); 6646 6647 /* let the f/w know that the h/w is now under the control of the 6648 * driver. 6649 */ 6650 igc_get_hw_control(adapter); 6651 6652 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6653 err = register_netdev(netdev); 6654 if (err) 6655 goto err_register; 6656 6657 /* carrier off reporting is important to ethtool even BEFORE open */ 6658 netif_carrier_off(netdev); 6659 6660 /* Check if Media Autosense is enabled */ 6661 adapter->ei = *ei; 6662 6663 /* print pcie link status and MAC address */ 6664 pcie_print_link_status(pdev); 6665 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6666 6667 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6668 /* Disable EEE for internal PHY devices */ 6669 hw->dev_spec._base.eee_enable = false; 6670 adapter->flags &= ~IGC_FLAG_EEE; 6671 igc_set_eee_i225(hw, false, false, false); 6672 6673 pm_runtime_put_noidle(&pdev->dev); 6674 6675 return 0; 6676 6677 err_register: 6678 igc_release_hw_control(adapter); 6679 err_eeprom: 6680 if (!igc_check_reset_block(hw)) 6681 igc_reset_phy(hw); 6682 err_sw_init: 6683 igc_clear_interrupt_scheme(adapter); 6684 iounmap(adapter->io_addr); 6685 err_ioremap: 6686 free_netdev(netdev); 6687 err_alloc_etherdev: 6688 pci_release_mem_regions(pdev); 6689 err_pci_reg: 6690 err_dma: 6691 pci_disable_device(pdev); 6692 return err; 6693 } 6694 6695 /** 6696 * igc_remove - Device Removal Routine 6697 * @pdev: PCI device information struct 6698 * 6699 * igc_remove is called by the PCI subsystem to alert the driver 6700 * that it should release a PCI device. This could be caused by a 6701 * Hot-Plug event, or because the driver is going to be removed from 6702 * memory. 6703 */ 6704 static void igc_remove(struct pci_dev *pdev) 6705 { 6706 struct net_device *netdev = pci_get_drvdata(pdev); 6707 struct igc_adapter *adapter = netdev_priv(netdev); 6708 6709 pm_runtime_get_noresume(&pdev->dev); 6710 6711 igc_flush_nfc_rules(adapter); 6712 6713 igc_ptp_stop(adapter); 6714 6715 set_bit(__IGC_DOWN, &adapter->state); 6716 6717 del_timer_sync(&adapter->watchdog_timer); 6718 del_timer_sync(&adapter->phy_info_timer); 6719 6720 cancel_work_sync(&adapter->reset_task); 6721 cancel_work_sync(&adapter->watchdog_task); 6722 6723 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6724 * would have already happened in close and is redundant. 6725 */ 6726 igc_release_hw_control(adapter); 6727 unregister_netdev(netdev); 6728 6729 igc_clear_interrupt_scheme(adapter); 6730 pci_iounmap(pdev, adapter->io_addr); 6731 pci_release_mem_regions(pdev); 6732 6733 free_netdev(netdev); 6734 6735 pci_disable_device(pdev); 6736 } 6737 6738 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6739 bool runtime) 6740 { 6741 struct net_device *netdev = pci_get_drvdata(pdev); 6742 struct igc_adapter *adapter = netdev_priv(netdev); 6743 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6744 struct igc_hw *hw = &adapter->hw; 6745 u32 ctrl, rctl, status; 6746 bool wake; 6747 6748 rtnl_lock(); 6749 netif_device_detach(netdev); 6750 6751 if (netif_running(netdev)) 6752 __igc_close(netdev, true); 6753 6754 igc_ptp_suspend(adapter); 6755 6756 igc_clear_interrupt_scheme(adapter); 6757 rtnl_unlock(); 6758 6759 status = rd32(IGC_STATUS); 6760 if (status & IGC_STATUS_LU) 6761 wufc &= ~IGC_WUFC_LNKC; 6762 6763 if (wufc) { 6764 igc_setup_rctl(adapter); 6765 igc_set_rx_mode(netdev); 6766 6767 /* turn on all-multi mode if wake on multicast is enabled */ 6768 if (wufc & IGC_WUFC_MC) { 6769 rctl = rd32(IGC_RCTL); 6770 rctl |= IGC_RCTL_MPE; 6771 wr32(IGC_RCTL, rctl); 6772 } 6773 6774 ctrl = rd32(IGC_CTRL); 6775 ctrl |= IGC_CTRL_ADVD3WUC; 6776 wr32(IGC_CTRL, ctrl); 6777 6778 /* Allow time for pending master requests to run */ 6779 igc_disable_pcie_master(hw); 6780 6781 wr32(IGC_WUC, IGC_WUC_PME_EN); 6782 wr32(IGC_WUFC, wufc); 6783 } else { 6784 wr32(IGC_WUC, 0); 6785 wr32(IGC_WUFC, 0); 6786 } 6787 6788 wake = wufc || adapter->en_mng_pt; 6789 if (!wake) 6790 igc_power_down_phy_copper_base(&adapter->hw); 6791 else 6792 igc_power_up_link(adapter); 6793 6794 if (enable_wake) 6795 *enable_wake = wake; 6796 6797 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6798 * would have already happened in close and is redundant. 6799 */ 6800 igc_release_hw_control(adapter); 6801 6802 pci_disable_device(pdev); 6803 6804 return 0; 6805 } 6806 6807 #ifdef CONFIG_PM 6808 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6809 { 6810 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6811 } 6812 6813 static void igc_deliver_wake_packet(struct net_device *netdev) 6814 { 6815 struct igc_adapter *adapter = netdev_priv(netdev); 6816 struct igc_hw *hw = &adapter->hw; 6817 struct sk_buff *skb; 6818 u32 wupl; 6819 6820 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6821 6822 /* WUPM stores only the first 128 bytes of the wake packet. 6823 * Read the packet only if we have the whole thing. 6824 */ 6825 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6826 return; 6827 6828 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6829 if (!skb) 6830 return; 6831 6832 skb_put(skb, wupl); 6833 6834 /* Ensure reads are 32-bit aligned */ 6835 wupl = roundup(wupl, 4); 6836 6837 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6838 6839 skb->protocol = eth_type_trans(skb, netdev); 6840 netif_rx(skb); 6841 } 6842 6843 static int __maybe_unused igc_resume(struct device *dev) 6844 { 6845 struct pci_dev *pdev = to_pci_dev(dev); 6846 struct net_device *netdev = pci_get_drvdata(pdev); 6847 struct igc_adapter *adapter = netdev_priv(netdev); 6848 struct igc_hw *hw = &adapter->hw; 6849 u32 err, val; 6850 6851 pci_set_power_state(pdev, PCI_D0); 6852 pci_restore_state(pdev); 6853 pci_save_state(pdev); 6854 6855 if (!pci_device_is_present(pdev)) 6856 return -ENODEV; 6857 err = pci_enable_device_mem(pdev); 6858 if (err) { 6859 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6860 return err; 6861 } 6862 pci_set_master(pdev); 6863 6864 pci_enable_wake(pdev, PCI_D3hot, 0); 6865 pci_enable_wake(pdev, PCI_D3cold, 0); 6866 6867 if (igc_init_interrupt_scheme(adapter, true)) { 6868 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6869 return -ENOMEM; 6870 } 6871 6872 igc_reset(adapter); 6873 6874 /* let the f/w know that the h/w is now under the control of the 6875 * driver. 6876 */ 6877 igc_get_hw_control(adapter); 6878 6879 val = rd32(IGC_WUS); 6880 if (val & WAKE_PKT_WUS) 6881 igc_deliver_wake_packet(netdev); 6882 6883 wr32(IGC_WUS, ~0); 6884 6885 rtnl_lock(); 6886 if (!err && netif_running(netdev)) 6887 err = __igc_open(netdev, true); 6888 6889 if (!err) 6890 netif_device_attach(netdev); 6891 rtnl_unlock(); 6892 6893 return err; 6894 } 6895 6896 static int __maybe_unused igc_runtime_resume(struct device *dev) 6897 { 6898 return igc_resume(dev); 6899 } 6900 6901 static int __maybe_unused igc_suspend(struct device *dev) 6902 { 6903 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 6904 } 6905 6906 static int __maybe_unused igc_runtime_idle(struct device *dev) 6907 { 6908 struct net_device *netdev = dev_get_drvdata(dev); 6909 struct igc_adapter *adapter = netdev_priv(netdev); 6910 6911 if (!igc_has_link(adapter)) 6912 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 6913 6914 return -EBUSY; 6915 } 6916 #endif /* CONFIG_PM */ 6917 6918 static void igc_shutdown(struct pci_dev *pdev) 6919 { 6920 bool wake; 6921 6922 __igc_shutdown(pdev, &wake, 0); 6923 6924 if (system_state == SYSTEM_POWER_OFF) { 6925 pci_wake_from_d3(pdev, wake); 6926 pci_set_power_state(pdev, PCI_D3hot); 6927 } 6928 } 6929 6930 /** 6931 * igc_io_error_detected - called when PCI error is detected 6932 * @pdev: Pointer to PCI device 6933 * @state: The current PCI connection state 6934 * 6935 * This function is called after a PCI bus error affecting 6936 * this device has been detected. 6937 **/ 6938 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 6939 pci_channel_state_t state) 6940 { 6941 struct net_device *netdev = pci_get_drvdata(pdev); 6942 struct igc_adapter *adapter = netdev_priv(netdev); 6943 6944 netif_device_detach(netdev); 6945 6946 if (state == pci_channel_io_perm_failure) 6947 return PCI_ERS_RESULT_DISCONNECT; 6948 6949 if (netif_running(netdev)) 6950 igc_down(adapter); 6951 pci_disable_device(pdev); 6952 6953 /* Request a slot reset. */ 6954 return PCI_ERS_RESULT_NEED_RESET; 6955 } 6956 6957 /** 6958 * igc_io_slot_reset - called after the PCI bus has been reset. 6959 * @pdev: Pointer to PCI device 6960 * 6961 * Restart the card from scratch, as if from a cold-boot. Implementation 6962 * resembles the first-half of the igc_resume routine. 6963 **/ 6964 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 6965 { 6966 struct net_device *netdev = pci_get_drvdata(pdev); 6967 struct igc_adapter *adapter = netdev_priv(netdev); 6968 struct igc_hw *hw = &adapter->hw; 6969 pci_ers_result_t result; 6970 6971 if (pci_enable_device_mem(pdev)) { 6972 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 6973 result = PCI_ERS_RESULT_DISCONNECT; 6974 } else { 6975 pci_set_master(pdev); 6976 pci_restore_state(pdev); 6977 pci_save_state(pdev); 6978 6979 pci_enable_wake(pdev, PCI_D3hot, 0); 6980 pci_enable_wake(pdev, PCI_D3cold, 0); 6981 6982 /* In case of PCI error, adapter loses its HW address 6983 * so we should re-assign it here. 6984 */ 6985 hw->hw_addr = adapter->io_addr; 6986 6987 igc_reset(adapter); 6988 wr32(IGC_WUS, ~0); 6989 result = PCI_ERS_RESULT_RECOVERED; 6990 } 6991 6992 return result; 6993 } 6994 6995 /** 6996 * igc_io_resume - called when traffic can start to flow again. 6997 * @pdev: Pointer to PCI device 6998 * 6999 * This callback is called when the error recovery driver tells us that 7000 * its OK to resume normal operation. Implementation resembles the 7001 * second-half of the igc_resume routine. 7002 */ 7003 static void igc_io_resume(struct pci_dev *pdev) 7004 { 7005 struct net_device *netdev = pci_get_drvdata(pdev); 7006 struct igc_adapter *adapter = netdev_priv(netdev); 7007 7008 rtnl_lock(); 7009 if (netif_running(netdev)) { 7010 if (igc_open(netdev)) { 7011 netdev_err(netdev, "igc_open failed after reset\n"); 7012 return; 7013 } 7014 } 7015 7016 netif_device_attach(netdev); 7017 7018 /* let the f/w know that the h/w is now under the control of the 7019 * driver. 7020 */ 7021 igc_get_hw_control(adapter); 7022 rtnl_unlock(); 7023 } 7024 7025 static const struct pci_error_handlers igc_err_handler = { 7026 .error_detected = igc_io_error_detected, 7027 .slot_reset = igc_io_slot_reset, 7028 .resume = igc_io_resume, 7029 }; 7030 7031 #ifdef CONFIG_PM 7032 static const struct dev_pm_ops igc_pm_ops = { 7033 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 7034 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 7035 igc_runtime_idle) 7036 }; 7037 #endif 7038 7039 static struct pci_driver igc_driver = { 7040 .name = igc_driver_name, 7041 .id_table = igc_pci_tbl, 7042 .probe = igc_probe, 7043 .remove = igc_remove, 7044 #ifdef CONFIG_PM 7045 .driver.pm = &igc_pm_ops, 7046 #endif 7047 .shutdown = igc_shutdown, 7048 .err_handler = &igc_err_handler, 7049 }; 7050 7051 /** 7052 * igc_reinit_queues - return error 7053 * @adapter: pointer to adapter structure 7054 */ 7055 int igc_reinit_queues(struct igc_adapter *adapter) 7056 { 7057 struct net_device *netdev = adapter->netdev; 7058 int err = 0; 7059 7060 if (netif_running(netdev)) 7061 igc_close(netdev); 7062 7063 igc_reset_interrupt_capability(adapter); 7064 7065 if (igc_init_interrupt_scheme(adapter, true)) { 7066 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7067 return -ENOMEM; 7068 } 7069 7070 if (netif_running(netdev)) 7071 err = igc_open(netdev); 7072 7073 return err; 7074 } 7075 7076 /** 7077 * igc_get_hw_dev - return device 7078 * @hw: pointer to hardware structure 7079 * 7080 * used by hardware layer to print debugging information 7081 */ 7082 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7083 { 7084 struct igc_adapter *adapter = hw->back; 7085 7086 return adapter->netdev; 7087 } 7088 7089 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7090 { 7091 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7092 u8 idx = ring->reg_idx; 7093 u32 rxdctl; 7094 7095 rxdctl = rd32(IGC_RXDCTL(idx)); 7096 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7097 rxdctl |= IGC_RXDCTL_SWFLUSH; 7098 wr32(IGC_RXDCTL(idx), rxdctl); 7099 } 7100 7101 void igc_disable_rx_ring(struct igc_ring *ring) 7102 { 7103 igc_disable_rx_ring_hw(ring); 7104 igc_clean_rx_ring(ring); 7105 } 7106 7107 void igc_enable_rx_ring(struct igc_ring *ring) 7108 { 7109 struct igc_adapter *adapter = ring->q_vector->adapter; 7110 7111 igc_configure_rx_ring(adapter, ring); 7112 7113 if (ring->xsk_pool) 7114 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7115 else 7116 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7117 } 7118 7119 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 7120 { 7121 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7122 u8 idx = ring->reg_idx; 7123 u32 txdctl; 7124 7125 txdctl = rd32(IGC_TXDCTL(idx)); 7126 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 7127 txdctl |= IGC_TXDCTL_SWFLUSH; 7128 wr32(IGC_TXDCTL(idx), txdctl); 7129 } 7130 7131 void igc_disable_tx_ring(struct igc_ring *ring) 7132 { 7133 igc_disable_tx_ring_hw(ring); 7134 igc_clean_tx_ring(ring); 7135 } 7136 7137 void igc_enable_tx_ring(struct igc_ring *ring) 7138 { 7139 struct igc_adapter *adapter = ring->q_vector->adapter; 7140 7141 igc_configure_tx_ring(adapter, ring); 7142 } 7143 7144 /** 7145 * igc_init_module - Driver Registration Routine 7146 * 7147 * igc_init_module is the first routine called when the driver is 7148 * loaded. All it does is register with the PCI subsystem. 7149 */ 7150 static int __init igc_init_module(void) 7151 { 7152 int ret; 7153 7154 pr_info("%s\n", igc_driver_string); 7155 pr_info("%s\n", igc_copyright); 7156 7157 ret = pci_register_driver(&igc_driver); 7158 return ret; 7159 } 7160 7161 module_init(igc_init_module); 7162 7163 /** 7164 * igc_exit_module - Driver Exit Cleanup Routine 7165 * 7166 * igc_exit_module is called just before the driver is removed 7167 * from memory. 7168 */ 7169 static void __exit igc_exit_module(void) 7170 { 7171 pci_unregister_driver(&igc_driver); 7172 } 7173 7174 module_exit(igc_exit_module); 7175 /* igc_main.c */ 7176