xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <net/ipv6.h>
16 
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 #include "igc_xdp.h"
21 
22 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
23 
24 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25 
26 #define IGC_XDP_PASS		0
27 #define IGC_XDP_CONSUMED	BIT(0)
28 #define IGC_XDP_TX		BIT(1)
29 #define IGC_XDP_REDIRECT	BIT(2)
30 
31 static int debug = -1;
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 
39 char igc_driver_name[] = "igc";
40 static const char igc_driver_string[] = DRV_SUMMARY;
41 static const char igc_copyright[] =
42 	"Copyright(c) 2018 Intel Corporation.";
43 
44 static const struct igc_info *igc_info_tbl[] = {
45 	[board_base] = &igc_base_info,
46 };
47 
48 static const struct pci_device_id igc_pci_tbl[] = {
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64 	/* required last entry */
65 	{0, }
66 };
67 
68 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69 
70 enum latency_range {
71 	lowest_latency = 0,
72 	low_latency = 1,
73 	bulk_latency = 2,
74 	latency_invalid = 255
75 };
76 
77 void igc_reset(struct igc_adapter *adapter)
78 {
79 	struct net_device *dev = adapter->netdev;
80 	struct igc_hw *hw = &adapter->hw;
81 	struct igc_fc_info *fc = &hw->fc;
82 	u32 pba, hwm;
83 
84 	/* Repartition PBA for greater than 9k MTU if required */
85 	pba = IGC_PBA_34K;
86 
87 	/* flow control settings
88 	 * The high water mark must be low enough to fit one full frame
89 	 * after transmitting the pause frame.  As such we must have enough
90 	 * space to allow for us to complete our current transmit and then
91 	 * receive the frame that is in progress from the link partner.
92 	 * Set it to:
93 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 	 */
95 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96 
97 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
98 	fc->low_water = fc->high_water - 16;
99 	fc->pause_time = 0xFFFF;
100 	fc->send_xon = 1;
101 	fc->current_mode = fc->requested_mode;
102 
103 	hw->mac.ops.reset_hw(hw);
104 
105 	if (hw->mac.ops.init_hw(hw))
106 		netdev_err(dev, "Error on hardware initialization\n");
107 
108 	/* Re-establish EEE setting */
109 	igc_set_eee_i225(hw, true, true, true);
110 
111 	if (!netif_running(adapter->netdev))
112 		igc_power_down_phy_copper_base(&adapter->hw);
113 
114 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
115 	wr32(IGC_VET, ETH_P_8021Q);
116 
117 	/* Re-enable PTP, where applicable. */
118 	igc_ptp_reset(adapter);
119 
120 	/* Re-enable TSN offloading, where applicable. */
121 	igc_tsn_offload_apply(adapter);
122 
123 	igc_get_phy_info(hw);
124 }
125 
126 /**
127  * igc_power_up_link - Power up the phy link
128  * @adapter: address of board private structure
129  */
130 static void igc_power_up_link(struct igc_adapter *adapter)
131 {
132 	igc_reset_phy(&adapter->hw);
133 
134 	igc_power_up_phy_copper(&adapter->hw);
135 
136 	igc_setup_link(&adapter->hw);
137 }
138 
139 /**
140  * igc_release_hw_control - release control of the h/w to f/w
141  * @adapter: address of board private structure
142  *
143  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
144  * For ASF and Pass Through versions of f/w this means that the
145  * driver is no longer loaded.
146  */
147 static void igc_release_hw_control(struct igc_adapter *adapter)
148 {
149 	struct igc_hw *hw = &adapter->hw;
150 	u32 ctrl_ext;
151 
152 	/* Let firmware take over control of h/w */
153 	ctrl_ext = rd32(IGC_CTRL_EXT);
154 	wr32(IGC_CTRL_EXT,
155 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
156 }
157 
158 /**
159  * igc_get_hw_control - get control of the h/w from f/w
160  * @adapter: address of board private structure
161  *
162  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
163  * For ASF and Pass Through versions of f/w this means that
164  * the driver is loaded.
165  */
166 static void igc_get_hw_control(struct igc_adapter *adapter)
167 {
168 	struct igc_hw *hw = &adapter->hw;
169 	u32 ctrl_ext;
170 
171 	/* Let firmware know the driver has taken over */
172 	ctrl_ext = rd32(IGC_CTRL_EXT);
173 	wr32(IGC_CTRL_EXT,
174 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
175 }
176 
177 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
178 {
179 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
180 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
181 
182 	dma_unmap_len_set(buf, len, 0);
183 }
184 
185 /**
186  * igc_clean_tx_ring - Free Tx Buffers
187  * @tx_ring: ring to be cleaned
188  */
189 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
190 {
191 	u16 i = tx_ring->next_to_clean;
192 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
193 	u32 xsk_frames = 0;
194 
195 	while (i != tx_ring->next_to_use) {
196 		union igc_adv_tx_desc *eop_desc, *tx_desc;
197 
198 		switch (tx_buffer->type) {
199 		case IGC_TX_BUFFER_TYPE_XSK:
200 			xsk_frames++;
201 			break;
202 		case IGC_TX_BUFFER_TYPE_XDP:
203 			xdp_return_frame(tx_buffer->xdpf);
204 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
205 			break;
206 		case IGC_TX_BUFFER_TYPE_SKB:
207 			dev_kfree_skb_any(tx_buffer->skb);
208 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
209 			break;
210 		default:
211 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
212 			break;
213 		}
214 
215 		/* check for eop_desc to determine the end of the packet */
216 		eop_desc = tx_buffer->next_to_watch;
217 		tx_desc = IGC_TX_DESC(tx_ring, i);
218 
219 		/* unmap remaining buffers */
220 		while (tx_desc != eop_desc) {
221 			tx_buffer++;
222 			tx_desc++;
223 			i++;
224 			if (unlikely(i == tx_ring->count)) {
225 				i = 0;
226 				tx_buffer = tx_ring->tx_buffer_info;
227 				tx_desc = IGC_TX_DESC(tx_ring, 0);
228 			}
229 
230 			/* unmap any remaining paged data */
231 			if (dma_unmap_len(tx_buffer, len))
232 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
233 		}
234 
235 		tx_buffer->next_to_watch = NULL;
236 
237 		/* move us one more past the eop_desc for start of next pkt */
238 		tx_buffer++;
239 		i++;
240 		if (unlikely(i == tx_ring->count)) {
241 			i = 0;
242 			tx_buffer = tx_ring->tx_buffer_info;
243 		}
244 	}
245 
246 	if (tx_ring->xsk_pool && xsk_frames)
247 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
248 
249 	/* reset BQL for queue */
250 	netdev_tx_reset_queue(txring_txq(tx_ring));
251 
252 	/* reset next_to_use and next_to_clean */
253 	tx_ring->next_to_use = 0;
254 	tx_ring->next_to_clean = 0;
255 }
256 
257 /**
258  * igc_free_tx_resources - Free Tx Resources per Queue
259  * @tx_ring: Tx descriptor ring for a specific queue
260  *
261  * Free all transmit software resources
262  */
263 void igc_free_tx_resources(struct igc_ring *tx_ring)
264 {
265 	igc_clean_tx_ring(tx_ring);
266 
267 	vfree(tx_ring->tx_buffer_info);
268 	tx_ring->tx_buffer_info = NULL;
269 
270 	/* if not set, then don't free */
271 	if (!tx_ring->desc)
272 		return;
273 
274 	dma_free_coherent(tx_ring->dev, tx_ring->size,
275 			  tx_ring->desc, tx_ring->dma);
276 
277 	tx_ring->desc = NULL;
278 }
279 
280 /**
281  * igc_free_all_tx_resources - Free Tx Resources for All Queues
282  * @adapter: board private structure
283  *
284  * Free all transmit software resources
285  */
286 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
287 {
288 	int i;
289 
290 	for (i = 0; i < adapter->num_tx_queues; i++)
291 		igc_free_tx_resources(adapter->tx_ring[i]);
292 }
293 
294 /**
295  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
296  * @adapter: board private structure
297  */
298 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		if (adapter->tx_ring[i])
304 			igc_clean_tx_ring(adapter->tx_ring[i]);
305 }
306 
307 /**
308  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
309  * @tx_ring: tx descriptor ring (for a specific queue) to setup
310  *
311  * Return 0 on success, negative on failure
312  */
313 int igc_setup_tx_resources(struct igc_ring *tx_ring)
314 {
315 	struct net_device *ndev = tx_ring->netdev;
316 	struct device *dev = tx_ring->dev;
317 	int size = 0;
318 
319 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
320 	tx_ring->tx_buffer_info = vzalloc(size);
321 	if (!tx_ring->tx_buffer_info)
322 		goto err;
323 
324 	/* round up to nearest 4K */
325 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
326 	tx_ring->size = ALIGN(tx_ring->size, 4096);
327 
328 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
329 					   &tx_ring->dma, GFP_KERNEL);
330 
331 	if (!tx_ring->desc)
332 		goto err;
333 
334 	tx_ring->next_to_use = 0;
335 	tx_ring->next_to_clean = 0;
336 
337 	return 0;
338 
339 err:
340 	vfree(tx_ring->tx_buffer_info);
341 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
342 	return -ENOMEM;
343 }
344 
345 /**
346  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
347  * @adapter: board private structure
348  *
349  * Return 0 on success, negative on failure
350  */
351 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
352 {
353 	struct net_device *dev = adapter->netdev;
354 	int i, err = 0;
355 
356 	for (i = 0; i < adapter->num_tx_queues; i++) {
357 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
358 		if (err) {
359 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
360 			for (i--; i >= 0; i--)
361 				igc_free_tx_resources(adapter->tx_ring[i]);
362 			break;
363 		}
364 	}
365 
366 	return err;
367 }
368 
369 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
370 {
371 	u16 i = rx_ring->next_to_clean;
372 
373 	dev_kfree_skb(rx_ring->skb);
374 	rx_ring->skb = NULL;
375 
376 	/* Free all the Rx ring sk_buffs */
377 	while (i != rx_ring->next_to_alloc) {
378 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
379 
380 		/* Invalidate cache lines that may have been written to by
381 		 * device so that we avoid corrupting memory.
382 		 */
383 		dma_sync_single_range_for_cpu(rx_ring->dev,
384 					      buffer_info->dma,
385 					      buffer_info->page_offset,
386 					      igc_rx_bufsz(rx_ring),
387 					      DMA_FROM_DEVICE);
388 
389 		/* free resources associated with mapping */
390 		dma_unmap_page_attrs(rx_ring->dev,
391 				     buffer_info->dma,
392 				     igc_rx_pg_size(rx_ring),
393 				     DMA_FROM_DEVICE,
394 				     IGC_RX_DMA_ATTR);
395 		__page_frag_cache_drain(buffer_info->page,
396 					buffer_info->pagecnt_bias);
397 
398 		i++;
399 		if (i == rx_ring->count)
400 			i = 0;
401 	}
402 }
403 
404 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
405 {
406 	struct igc_rx_buffer *bi;
407 	u16 i;
408 
409 	for (i = 0; i < ring->count; i++) {
410 		bi = &ring->rx_buffer_info[i];
411 		if (!bi->xdp)
412 			continue;
413 
414 		xsk_buff_free(bi->xdp);
415 		bi->xdp = NULL;
416 	}
417 }
418 
419 /**
420  * igc_clean_rx_ring - Free Rx Buffers per Queue
421  * @ring: ring to free buffers from
422  */
423 static void igc_clean_rx_ring(struct igc_ring *ring)
424 {
425 	if (ring->xsk_pool)
426 		igc_clean_rx_ring_xsk_pool(ring);
427 	else
428 		igc_clean_rx_ring_page_shared(ring);
429 
430 	clear_ring_uses_large_buffer(ring);
431 
432 	ring->next_to_alloc = 0;
433 	ring->next_to_clean = 0;
434 	ring->next_to_use = 0;
435 }
436 
437 /**
438  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
439  * @adapter: board private structure
440  */
441 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
442 {
443 	int i;
444 
445 	for (i = 0; i < adapter->num_rx_queues; i++)
446 		if (adapter->rx_ring[i])
447 			igc_clean_rx_ring(adapter->rx_ring[i]);
448 }
449 
450 /**
451  * igc_free_rx_resources - Free Rx Resources
452  * @rx_ring: ring to clean the resources from
453  *
454  * Free all receive software resources
455  */
456 void igc_free_rx_resources(struct igc_ring *rx_ring)
457 {
458 	igc_clean_rx_ring(rx_ring);
459 
460 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
461 
462 	vfree(rx_ring->rx_buffer_info);
463 	rx_ring->rx_buffer_info = NULL;
464 
465 	/* if not set, then don't free */
466 	if (!rx_ring->desc)
467 		return;
468 
469 	dma_free_coherent(rx_ring->dev, rx_ring->size,
470 			  rx_ring->desc, rx_ring->dma);
471 
472 	rx_ring->desc = NULL;
473 }
474 
475 /**
476  * igc_free_all_rx_resources - Free Rx Resources for All Queues
477  * @adapter: board private structure
478  *
479  * Free all receive software resources
480  */
481 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
482 {
483 	int i;
484 
485 	for (i = 0; i < adapter->num_rx_queues; i++)
486 		igc_free_rx_resources(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
491  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
492  *
493  * Returns 0 on success, negative on failure
494  */
495 int igc_setup_rx_resources(struct igc_ring *rx_ring)
496 {
497 	struct net_device *ndev = rx_ring->netdev;
498 	struct device *dev = rx_ring->dev;
499 	u8 index = rx_ring->queue_index;
500 	int size, desc_len, res;
501 
502 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
503 			       rx_ring->q_vector->napi.napi_id);
504 	if (res < 0) {
505 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
506 			   index);
507 		return res;
508 	}
509 
510 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
511 	rx_ring->rx_buffer_info = vzalloc(size);
512 	if (!rx_ring->rx_buffer_info)
513 		goto err;
514 
515 	desc_len = sizeof(union igc_adv_rx_desc);
516 
517 	/* Round up to nearest 4K */
518 	rx_ring->size = rx_ring->count * desc_len;
519 	rx_ring->size = ALIGN(rx_ring->size, 4096);
520 
521 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
522 					   &rx_ring->dma, GFP_KERNEL);
523 
524 	if (!rx_ring->desc)
525 		goto err;
526 
527 	rx_ring->next_to_alloc = 0;
528 	rx_ring->next_to_clean = 0;
529 	rx_ring->next_to_use = 0;
530 
531 	return 0;
532 
533 err:
534 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
535 	vfree(rx_ring->rx_buffer_info);
536 	rx_ring->rx_buffer_info = NULL;
537 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
538 	return -ENOMEM;
539 }
540 
541 /**
542  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
543  *                                (Descriptors) for all queues
544  * @adapter: board private structure
545  *
546  * Return 0 on success, negative on failure
547  */
548 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
549 {
550 	struct net_device *dev = adapter->netdev;
551 	int i, err = 0;
552 
553 	for (i = 0; i < adapter->num_rx_queues; i++) {
554 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
555 		if (err) {
556 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
557 			for (i--; i >= 0; i--)
558 				igc_free_rx_resources(adapter->rx_ring[i]);
559 			break;
560 		}
561 	}
562 
563 	return err;
564 }
565 
566 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
567 					      struct igc_ring *ring)
568 {
569 	if (!igc_xdp_is_enabled(adapter) ||
570 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
571 		return NULL;
572 
573 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
574 }
575 
576 /**
577  * igc_configure_rx_ring - Configure a receive ring after Reset
578  * @adapter: board private structure
579  * @ring: receive ring to be configured
580  *
581  * Configure the Rx unit of the MAC after a reset.
582  */
583 static void igc_configure_rx_ring(struct igc_adapter *adapter,
584 				  struct igc_ring *ring)
585 {
586 	struct igc_hw *hw = &adapter->hw;
587 	union igc_adv_rx_desc *rx_desc;
588 	int reg_idx = ring->reg_idx;
589 	u32 srrctl = 0, rxdctl = 0;
590 	u64 rdba = ring->dma;
591 	u32 buf_size;
592 
593 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
594 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
595 	if (ring->xsk_pool) {
596 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
597 						   MEM_TYPE_XSK_BUFF_POOL,
598 						   NULL));
599 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
600 	} else {
601 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
602 						   MEM_TYPE_PAGE_SHARED,
603 						   NULL));
604 	}
605 
606 	if (igc_xdp_is_enabled(adapter))
607 		set_ring_uses_large_buffer(ring);
608 
609 	/* disable the queue */
610 	wr32(IGC_RXDCTL(reg_idx), 0);
611 
612 	/* Set DMA base address registers */
613 	wr32(IGC_RDBAL(reg_idx),
614 	     rdba & 0x00000000ffffffffULL);
615 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
616 	wr32(IGC_RDLEN(reg_idx),
617 	     ring->count * sizeof(union igc_adv_rx_desc));
618 
619 	/* initialize head and tail */
620 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
621 	wr32(IGC_RDH(reg_idx), 0);
622 	writel(0, ring->tail);
623 
624 	/* reset next-to- use/clean to place SW in sync with hardware */
625 	ring->next_to_clean = 0;
626 	ring->next_to_use = 0;
627 
628 	if (ring->xsk_pool)
629 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
630 	else if (ring_uses_large_buffer(ring))
631 		buf_size = IGC_RXBUFFER_3072;
632 	else
633 		buf_size = IGC_RXBUFFER_2048;
634 
635 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
636 	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
637 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
638 
639 	wr32(IGC_SRRCTL(reg_idx), srrctl);
640 
641 	rxdctl |= IGC_RX_PTHRESH;
642 	rxdctl |= IGC_RX_HTHRESH << 8;
643 	rxdctl |= IGC_RX_WTHRESH << 16;
644 
645 	/* initialize rx_buffer_info */
646 	memset(ring->rx_buffer_info, 0,
647 	       sizeof(struct igc_rx_buffer) * ring->count);
648 
649 	/* initialize Rx descriptor 0 */
650 	rx_desc = IGC_RX_DESC(ring, 0);
651 	rx_desc->wb.upper.length = 0;
652 
653 	/* enable receive descriptor fetching */
654 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
655 
656 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
657 }
658 
659 /**
660  * igc_configure_rx - Configure receive Unit after Reset
661  * @adapter: board private structure
662  *
663  * Configure the Rx unit of the MAC after a reset.
664  */
665 static void igc_configure_rx(struct igc_adapter *adapter)
666 {
667 	int i;
668 
669 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
670 	 * the Base and Length of the Rx Descriptor Ring
671 	 */
672 	for (i = 0; i < adapter->num_rx_queues; i++)
673 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
674 }
675 
676 /**
677  * igc_configure_tx_ring - Configure transmit ring after Reset
678  * @adapter: board private structure
679  * @ring: tx ring to configure
680  *
681  * Configure a transmit ring after a reset.
682  */
683 static void igc_configure_tx_ring(struct igc_adapter *adapter,
684 				  struct igc_ring *ring)
685 {
686 	struct igc_hw *hw = &adapter->hw;
687 	int reg_idx = ring->reg_idx;
688 	u64 tdba = ring->dma;
689 	u32 txdctl = 0;
690 
691 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
692 
693 	/* disable the queue */
694 	wr32(IGC_TXDCTL(reg_idx), 0);
695 	wrfl();
696 	mdelay(10);
697 
698 	wr32(IGC_TDLEN(reg_idx),
699 	     ring->count * sizeof(union igc_adv_tx_desc));
700 	wr32(IGC_TDBAL(reg_idx),
701 	     tdba & 0x00000000ffffffffULL);
702 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
703 
704 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
705 	wr32(IGC_TDH(reg_idx), 0);
706 	writel(0, ring->tail);
707 
708 	txdctl |= IGC_TX_PTHRESH;
709 	txdctl |= IGC_TX_HTHRESH << 8;
710 	txdctl |= IGC_TX_WTHRESH << 16;
711 
712 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
713 	wr32(IGC_TXDCTL(reg_idx), txdctl);
714 }
715 
716 /**
717  * igc_configure_tx - Configure transmit Unit after Reset
718  * @adapter: board private structure
719  *
720  * Configure the Tx unit of the MAC after a reset.
721  */
722 static void igc_configure_tx(struct igc_adapter *adapter)
723 {
724 	int i;
725 
726 	for (i = 0; i < adapter->num_tx_queues; i++)
727 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
728 }
729 
730 /**
731  * igc_setup_mrqc - configure the multiple receive queue control registers
732  * @adapter: Board private structure
733  */
734 static void igc_setup_mrqc(struct igc_adapter *adapter)
735 {
736 	struct igc_hw *hw = &adapter->hw;
737 	u32 j, num_rx_queues;
738 	u32 mrqc, rxcsum;
739 	u32 rss_key[10];
740 
741 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
742 	for (j = 0; j < 10; j++)
743 		wr32(IGC_RSSRK(j), rss_key[j]);
744 
745 	num_rx_queues = adapter->rss_queues;
746 
747 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
748 		for (j = 0; j < IGC_RETA_SIZE; j++)
749 			adapter->rss_indir_tbl[j] =
750 			(j * num_rx_queues) / IGC_RETA_SIZE;
751 		adapter->rss_indir_tbl_init = num_rx_queues;
752 	}
753 	igc_write_rss_indir_tbl(adapter);
754 
755 	/* Disable raw packet checksumming so that RSS hash is placed in
756 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
757 	 * offloads as they are enabled by default
758 	 */
759 	rxcsum = rd32(IGC_RXCSUM);
760 	rxcsum |= IGC_RXCSUM_PCSD;
761 
762 	/* Enable Receive Checksum Offload for SCTP */
763 	rxcsum |= IGC_RXCSUM_CRCOFL;
764 
765 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
766 	wr32(IGC_RXCSUM, rxcsum);
767 
768 	/* Generate RSS hash based on packet types, TCP/UDP
769 	 * port numbers and/or IPv4/v6 src and dst addresses
770 	 */
771 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
772 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
773 	       IGC_MRQC_RSS_FIELD_IPV6 |
774 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
775 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
776 
777 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
778 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
779 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
780 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
781 
782 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
783 
784 	wr32(IGC_MRQC, mrqc);
785 }
786 
787 /**
788  * igc_setup_rctl - configure the receive control registers
789  * @adapter: Board private structure
790  */
791 static void igc_setup_rctl(struct igc_adapter *adapter)
792 {
793 	struct igc_hw *hw = &adapter->hw;
794 	u32 rctl;
795 
796 	rctl = rd32(IGC_RCTL);
797 
798 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
799 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
800 
801 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
802 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
803 
804 	/* enable stripping of CRC. Newer features require
805 	 * that the HW strips the CRC.
806 	 */
807 	rctl |= IGC_RCTL_SECRC;
808 
809 	/* disable store bad packets and clear size bits. */
810 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
811 
812 	/* enable LPE to allow for reception of jumbo frames */
813 	rctl |= IGC_RCTL_LPE;
814 
815 	/* disable queue 0 to prevent tail write w/o re-config */
816 	wr32(IGC_RXDCTL(0), 0);
817 
818 	/* This is useful for sniffing bad packets. */
819 	if (adapter->netdev->features & NETIF_F_RXALL) {
820 		/* UPE and MPE will be handled by normal PROMISC logic
821 		 * in set_rx_mode
822 		 */
823 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
824 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
825 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
826 
827 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
828 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
829 	}
830 
831 	wr32(IGC_RCTL, rctl);
832 }
833 
834 /**
835  * igc_setup_tctl - configure the transmit control registers
836  * @adapter: Board private structure
837  */
838 static void igc_setup_tctl(struct igc_adapter *adapter)
839 {
840 	struct igc_hw *hw = &adapter->hw;
841 	u32 tctl;
842 
843 	/* disable queue 0 which icould be enabled by default */
844 	wr32(IGC_TXDCTL(0), 0);
845 
846 	/* Program the Transmit Control Register */
847 	tctl = rd32(IGC_TCTL);
848 	tctl &= ~IGC_TCTL_CT;
849 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
850 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
851 
852 	/* Enable transmits */
853 	tctl |= IGC_TCTL_EN;
854 
855 	wr32(IGC_TCTL, tctl);
856 }
857 
858 /**
859  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
860  * @adapter: Pointer to adapter where the filter should be set
861  * @index: Filter index
862  * @type: MAC address filter type (source or destination)
863  * @addr: MAC address
864  * @queue: If non-negative, queue assignment feature is enabled and frames
865  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
866  *         assignment is disabled.
867  */
868 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
869 				  enum igc_mac_filter_type type,
870 				  const u8 *addr, int queue)
871 {
872 	struct net_device *dev = adapter->netdev;
873 	struct igc_hw *hw = &adapter->hw;
874 	u32 ral, rah;
875 
876 	if (WARN_ON(index >= hw->mac.rar_entry_count))
877 		return;
878 
879 	ral = le32_to_cpup((__le32 *)(addr));
880 	rah = le16_to_cpup((__le16 *)(addr + 4));
881 
882 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
883 		rah &= ~IGC_RAH_ASEL_MASK;
884 		rah |= IGC_RAH_ASEL_SRC_ADDR;
885 	}
886 
887 	if (queue >= 0) {
888 		rah &= ~IGC_RAH_QSEL_MASK;
889 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
890 		rah |= IGC_RAH_QSEL_ENABLE;
891 	}
892 
893 	rah |= IGC_RAH_AV;
894 
895 	wr32(IGC_RAL(index), ral);
896 	wr32(IGC_RAH(index), rah);
897 
898 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
899 }
900 
901 /**
902  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
903  * @adapter: Pointer to adapter where the filter should be cleared
904  * @index: Filter index
905  */
906 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
907 {
908 	struct net_device *dev = adapter->netdev;
909 	struct igc_hw *hw = &adapter->hw;
910 
911 	if (WARN_ON(index >= hw->mac.rar_entry_count))
912 		return;
913 
914 	wr32(IGC_RAL(index), 0);
915 	wr32(IGC_RAH(index), 0);
916 
917 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
918 }
919 
920 /* Set default MAC address for the PF in the first RAR entry */
921 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
922 {
923 	struct net_device *dev = adapter->netdev;
924 	u8 *addr = adapter->hw.mac.addr;
925 
926 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
927 
928 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
929 }
930 
931 /**
932  * igc_set_mac - Change the Ethernet Address of the NIC
933  * @netdev: network interface device structure
934  * @p: pointer to an address structure
935  *
936  * Returns 0 on success, negative on failure
937  */
938 static int igc_set_mac(struct net_device *netdev, void *p)
939 {
940 	struct igc_adapter *adapter = netdev_priv(netdev);
941 	struct igc_hw *hw = &adapter->hw;
942 	struct sockaddr *addr = p;
943 
944 	if (!is_valid_ether_addr(addr->sa_data))
945 		return -EADDRNOTAVAIL;
946 
947 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
948 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
949 
950 	/* set the correct pool for the new PF MAC address in entry 0 */
951 	igc_set_default_mac_filter(adapter);
952 
953 	return 0;
954 }
955 
956 /**
957  *  igc_write_mc_addr_list - write multicast addresses to MTA
958  *  @netdev: network interface device structure
959  *
960  *  Writes multicast address list to the MTA hash table.
961  *  Returns: -ENOMEM on failure
962  *           0 on no addresses written
963  *           X on writing X addresses to MTA
964  **/
965 static int igc_write_mc_addr_list(struct net_device *netdev)
966 {
967 	struct igc_adapter *adapter = netdev_priv(netdev);
968 	struct igc_hw *hw = &adapter->hw;
969 	struct netdev_hw_addr *ha;
970 	u8  *mta_list;
971 	int i;
972 
973 	if (netdev_mc_empty(netdev)) {
974 		/* nothing to program, so clear mc list */
975 		igc_update_mc_addr_list(hw, NULL, 0);
976 		return 0;
977 	}
978 
979 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
980 	if (!mta_list)
981 		return -ENOMEM;
982 
983 	/* The shared function expects a packed array of only addresses. */
984 	i = 0;
985 	netdev_for_each_mc_addr(ha, netdev)
986 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
987 
988 	igc_update_mc_addr_list(hw, mta_list, i);
989 	kfree(mta_list);
990 
991 	return netdev_mc_count(netdev);
992 }
993 
994 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
995 {
996 	ktime_t cycle_time = adapter->cycle_time;
997 	ktime_t base_time = adapter->base_time;
998 	u32 launchtime;
999 
1000 	/* FIXME: when using ETF together with taprio, we may have a
1001 	 * case where 'delta' is larger than the cycle_time, this may
1002 	 * cause problems if we don't read the current value of
1003 	 * IGC_BASET, as the value writen into the launchtime
1004 	 * descriptor field may be misinterpreted.
1005 	 */
1006 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1007 
1008 	return cpu_to_le32(launchtime);
1009 }
1010 
1011 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1012 			    struct igc_tx_buffer *first,
1013 			    u32 vlan_macip_lens, u32 type_tucmd,
1014 			    u32 mss_l4len_idx)
1015 {
1016 	struct igc_adv_tx_context_desc *context_desc;
1017 	u16 i = tx_ring->next_to_use;
1018 
1019 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1020 
1021 	i++;
1022 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1023 
1024 	/* set bits to identify this as an advanced context descriptor */
1025 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1026 
1027 	/* For i225, context index must be unique per ring. */
1028 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1029 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1030 
1031 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1032 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1033 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1034 
1035 	/* We assume there is always a valid Tx time available. Invalid times
1036 	 * should have been handled by the upper layers.
1037 	 */
1038 	if (tx_ring->launchtime_enable) {
1039 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1040 		ktime_t txtime = first->skb->tstamp;
1041 
1042 		skb_txtime_consumed(first->skb);
1043 		context_desc->launch_time = igc_tx_launchtime(adapter,
1044 							      txtime);
1045 	} else {
1046 		context_desc->launch_time = 0;
1047 	}
1048 }
1049 
1050 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1051 {
1052 	struct sk_buff *skb = first->skb;
1053 	u32 vlan_macip_lens = 0;
1054 	u32 type_tucmd = 0;
1055 
1056 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1057 csum_failed:
1058 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1059 		    !tx_ring->launchtime_enable)
1060 			return;
1061 		goto no_csum;
1062 	}
1063 
1064 	switch (skb->csum_offset) {
1065 	case offsetof(struct tcphdr, check):
1066 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1067 		fallthrough;
1068 	case offsetof(struct udphdr, check):
1069 		break;
1070 	case offsetof(struct sctphdr, checksum):
1071 		/* validate that this is actually an SCTP request */
1072 		if (skb_csum_is_sctp(skb)) {
1073 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1074 			break;
1075 		}
1076 		fallthrough;
1077 	default:
1078 		skb_checksum_help(skb);
1079 		goto csum_failed;
1080 	}
1081 
1082 	/* update TX checksum flag */
1083 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1084 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1085 			  skb_network_offset(skb);
1086 no_csum:
1087 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1088 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1089 
1090 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1091 }
1092 
1093 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1094 {
1095 	struct net_device *netdev = tx_ring->netdev;
1096 
1097 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1098 
1099 	/* memory barriier comment */
1100 	smp_mb();
1101 
1102 	/* We need to check again in a case another CPU has just
1103 	 * made room available.
1104 	 */
1105 	if (igc_desc_unused(tx_ring) < size)
1106 		return -EBUSY;
1107 
1108 	/* A reprieve! */
1109 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1110 
1111 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1112 	tx_ring->tx_stats.restart_queue2++;
1113 	u64_stats_update_end(&tx_ring->tx_syncp2);
1114 
1115 	return 0;
1116 }
1117 
1118 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1119 {
1120 	if (igc_desc_unused(tx_ring) >= size)
1121 		return 0;
1122 	return __igc_maybe_stop_tx(tx_ring, size);
1123 }
1124 
1125 #define IGC_SET_FLAG(_input, _flag, _result) \
1126 	(((_flag) <= (_result)) ?				\
1127 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1128 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1129 
1130 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1131 {
1132 	/* set type for advanced descriptor with frame checksum insertion */
1133 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1134 		       IGC_ADVTXD_DCMD_DEXT |
1135 		       IGC_ADVTXD_DCMD_IFCS;
1136 
1137 	/* set HW vlan bit if vlan is present */
1138 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1139 				 IGC_ADVTXD_DCMD_VLE);
1140 
1141 	/* set segmentation bits for TSO */
1142 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1143 				 (IGC_ADVTXD_DCMD_TSE));
1144 
1145 	/* set timestamp bit if present */
1146 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1147 				 (IGC_ADVTXD_MAC_TSTAMP));
1148 
1149 	/* insert frame checksum */
1150 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1151 
1152 	return cmd_type;
1153 }
1154 
1155 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1156 				 union igc_adv_tx_desc *tx_desc,
1157 				 u32 tx_flags, unsigned int paylen)
1158 {
1159 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1160 
1161 	/* insert L4 checksum */
1162 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1163 			  ((IGC_TXD_POPTS_TXSM << 8) /
1164 			  IGC_TX_FLAGS_CSUM);
1165 
1166 	/* insert IPv4 checksum */
1167 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1168 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1169 			  IGC_TX_FLAGS_IPV4);
1170 
1171 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1172 }
1173 
1174 static int igc_tx_map(struct igc_ring *tx_ring,
1175 		      struct igc_tx_buffer *first,
1176 		      const u8 hdr_len)
1177 {
1178 	struct sk_buff *skb = first->skb;
1179 	struct igc_tx_buffer *tx_buffer;
1180 	union igc_adv_tx_desc *tx_desc;
1181 	u32 tx_flags = first->tx_flags;
1182 	skb_frag_t *frag;
1183 	u16 i = tx_ring->next_to_use;
1184 	unsigned int data_len, size;
1185 	dma_addr_t dma;
1186 	u32 cmd_type;
1187 
1188 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1189 	tx_desc = IGC_TX_DESC(tx_ring, i);
1190 
1191 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1192 
1193 	size = skb_headlen(skb);
1194 	data_len = skb->data_len;
1195 
1196 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1197 
1198 	tx_buffer = first;
1199 
1200 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1201 		if (dma_mapping_error(tx_ring->dev, dma))
1202 			goto dma_error;
1203 
1204 		/* record length, and DMA address */
1205 		dma_unmap_len_set(tx_buffer, len, size);
1206 		dma_unmap_addr_set(tx_buffer, dma, dma);
1207 
1208 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1209 
1210 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1211 			tx_desc->read.cmd_type_len =
1212 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1213 
1214 			i++;
1215 			tx_desc++;
1216 			if (i == tx_ring->count) {
1217 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1218 				i = 0;
1219 			}
1220 			tx_desc->read.olinfo_status = 0;
1221 
1222 			dma += IGC_MAX_DATA_PER_TXD;
1223 			size -= IGC_MAX_DATA_PER_TXD;
1224 
1225 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1226 		}
1227 
1228 		if (likely(!data_len))
1229 			break;
1230 
1231 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1232 
1233 		i++;
1234 		tx_desc++;
1235 		if (i == tx_ring->count) {
1236 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1237 			i = 0;
1238 		}
1239 		tx_desc->read.olinfo_status = 0;
1240 
1241 		size = skb_frag_size(frag);
1242 		data_len -= size;
1243 
1244 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1245 				       size, DMA_TO_DEVICE);
1246 
1247 		tx_buffer = &tx_ring->tx_buffer_info[i];
1248 	}
1249 
1250 	/* write last descriptor with RS and EOP bits */
1251 	cmd_type |= size | IGC_TXD_DCMD;
1252 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1253 
1254 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1255 
1256 	/* set the timestamp */
1257 	first->time_stamp = jiffies;
1258 
1259 	skb_tx_timestamp(skb);
1260 
1261 	/* Force memory writes to complete before letting h/w know there
1262 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1263 	 * memory model archs, such as IA-64).
1264 	 *
1265 	 * We also need this memory barrier to make certain all of the
1266 	 * status bits have been updated before next_to_watch is written.
1267 	 */
1268 	wmb();
1269 
1270 	/* set next_to_watch value indicating a packet is present */
1271 	first->next_to_watch = tx_desc;
1272 
1273 	i++;
1274 	if (i == tx_ring->count)
1275 		i = 0;
1276 
1277 	tx_ring->next_to_use = i;
1278 
1279 	/* Make sure there is space in the ring for the next send. */
1280 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1281 
1282 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1283 		writel(i, tx_ring->tail);
1284 	}
1285 
1286 	return 0;
1287 dma_error:
1288 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1289 	tx_buffer = &tx_ring->tx_buffer_info[i];
1290 
1291 	/* clear dma mappings for failed tx_buffer_info map */
1292 	while (tx_buffer != first) {
1293 		if (dma_unmap_len(tx_buffer, len))
1294 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1295 
1296 		if (i-- == 0)
1297 			i += tx_ring->count;
1298 		tx_buffer = &tx_ring->tx_buffer_info[i];
1299 	}
1300 
1301 	if (dma_unmap_len(tx_buffer, len))
1302 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1303 
1304 	dev_kfree_skb_any(tx_buffer->skb);
1305 	tx_buffer->skb = NULL;
1306 
1307 	tx_ring->next_to_use = i;
1308 
1309 	return -1;
1310 }
1311 
1312 static int igc_tso(struct igc_ring *tx_ring,
1313 		   struct igc_tx_buffer *first,
1314 		   u8 *hdr_len)
1315 {
1316 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1317 	struct sk_buff *skb = first->skb;
1318 	union {
1319 		struct iphdr *v4;
1320 		struct ipv6hdr *v6;
1321 		unsigned char *hdr;
1322 	} ip;
1323 	union {
1324 		struct tcphdr *tcp;
1325 		struct udphdr *udp;
1326 		unsigned char *hdr;
1327 	} l4;
1328 	u32 paylen, l4_offset;
1329 	int err;
1330 
1331 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1332 		return 0;
1333 
1334 	if (!skb_is_gso(skb))
1335 		return 0;
1336 
1337 	err = skb_cow_head(skb, 0);
1338 	if (err < 0)
1339 		return err;
1340 
1341 	ip.hdr = skb_network_header(skb);
1342 	l4.hdr = skb_checksum_start(skb);
1343 
1344 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1345 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1346 
1347 	/* initialize outer IP header fields */
1348 	if (ip.v4->version == 4) {
1349 		unsigned char *csum_start = skb_checksum_start(skb);
1350 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1351 
1352 		/* IP header will have to cancel out any data that
1353 		 * is not a part of the outer IP header
1354 		 */
1355 		ip.v4->check = csum_fold(csum_partial(trans_start,
1356 						      csum_start - trans_start,
1357 						      0));
1358 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1359 
1360 		ip.v4->tot_len = 0;
1361 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1362 				   IGC_TX_FLAGS_CSUM |
1363 				   IGC_TX_FLAGS_IPV4;
1364 	} else {
1365 		ip.v6->payload_len = 0;
1366 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1367 				   IGC_TX_FLAGS_CSUM;
1368 	}
1369 
1370 	/* determine offset of inner transport header */
1371 	l4_offset = l4.hdr - skb->data;
1372 
1373 	/* remove payload length from inner checksum */
1374 	paylen = skb->len - l4_offset;
1375 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1376 		/* compute length of segmentation header */
1377 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1378 		csum_replace_by_diff(&l4.tcp->check,
1379 				     (__force __wsum)htonl(paylen));
1380 	} else {
1381 		/* compute length of segmentation header */
1382 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1383 		csum_replace_by_diff(&l4.udp->check,
1384 				     (__force __wsum)htonl(paylen));
1385 	}
1386 
1387 	/* update gso size and bytecount with header size */
1388 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1389 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1390 
1391 	/* MSS L4LEN IDX */
1392 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1393 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1394 
1395 	/* VLAN MACLEN IPLEN */
1396 	vlan_macip_lens = l4.hdr - ip.hdr;
1397 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1398 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1399 
1400 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1401 			type_tucmd, mss_l4len_idx);
1402 
1403 	return 1;
1404 }
1405 
1406 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1407 				       struct igc_ring *tx_ring)
1408 {
1409 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1410 	__be16 protocol = vlan_get_protocol(skb);
1411 	struct igc_tx_buffer *first;
1412 	u32 tx_flags = 0;
1413 	unsigned short f;
1414 	u8 hdr_len = 0;
1415 	int tso = 0;
1416 
1417 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1418 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1419 	 *	+ 2 desc gap to keep tail from touching head,
1420 	 *	+ 1 desc for context descriptor,
1421 	 * otherwise try next time
1422 	 */
1423 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1424 		count += TXD_USE_COUNT(skb_frag_size(
1425 						&skb_shinfo(skb)->frags[f]));
1426 
1427 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1428 		/* this is a hard error */
1429 		return NETDEV_TX_BUSY;
1430 	}
1431 
1432 	/* record the location of the first descriptor for this packet */
1433 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1434 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1435 	first->skb = skb;
1436 	first->bytecount = skb->len;
1437 	first->gso_segs = 1;
1438 
1439 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1440 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1441 
1442 		/* FIXME: add support for retrieving timestamps from
1443 		 * the other timer registers before skipping the
1444 		 * timestamping request.
1445 		 */
1446 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1447 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1448 					   &adapter->state)) {
1449 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1450 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1451 
1452 			adapter->ptp_tx_skb = skb_get(skb);
1453 			adapter->ptp_tx_start = jiffies;
1454 		} else {
1455 			adapter->tx_hwtstamp_skipped++;
1456 		}
1457 	}
1458 
1459 	if (skb_vlan_tag_present(skb)) {
1460 		tx_flags |= IGC_TX_FLAGS_VLAN;
1461 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1462 	}
1463 
1464 	/* record initial flags and protocol */
1465 	first->tx_flags = tx_flags;
1466 	first->protocol = protocol;
1467 
1468 	tso = igc_tso(tx_ring, first, &hdr_len);
1469 	if (tso < 0)
1470 		goto out_drop;
1471 	else if (!tso)
1472 		igc_tx_csum(tx_ring, first);
1473 
1474 	igc_tx_map(tx_ring, first, hdr_len);
1475 
1476 	return NETDEV_TX_OK;
1477 
1478 out_drop:
1479 	dev_kfree_skb_any(first->skb);
1480 	first->skb = NULL;
1481 
1482 	return NETDEV_TX_OK;
1483 }
1484 
1485 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1486 						    struct sk_buff *skb)
1487 {
1488 	unsigned int r_idx = skb->queue_mapping;
1489 
1490 	if (r_idx >= adapter->num_tx_queues)
1491 		r_idx = r_idx % adapter->num_tx_queues;
1492 
1493 	return adapter->tx_ring[r_idx];
1494 }
1495 
1496 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1497 				  struct net_device *netdev)
1498 {
1499 	struct igc_adapter *adapter = netdev_priv(netdev);
1500 
1501 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1502 	 * in order to meet this minimum size requirement.
1503 	 */
1504 	if (skb->len < 17) {
1505 		if (skb_padto(skb, 17))
1506 			return NETDEV_TX_OK;
1507 		skb->len = 17;
1508 	}
1509 
1510 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1511 }
1512 
1513 static void igc_rx_checksum(struct igc_ring *ring,
1514 			    union igc_adv_rx_desc *rx_desc,
1515 			    struct sk_buff *skb)
1516 {
1517 	skb_checksum_none_assert(skb);
1518 
1519 	/* Ignore Checksum bit is set */
1520 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1521 		return;
1522 
1523 	/* Rx checksum disabled via ethtool */
1524 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1525 		return;
1526 
1527 	/* TCP/UDP checksum error bit is set */
1528 	if (igc_test_staterr(rx_desc,
1529 			     IGC_RXDEXT_STATERR_L4E |
1530 			     IGC_RXDEXT_STATERR_IPE)) {
1531 		/* work around errata with sctp packets where the TCPE aka
1532 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1533 		 * packets (aka let the stack check the crc32c)
1534 		 */
1535 		if (!(skb->len == 60 &&
1536 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1537 			u64_stats_update_begin(&ring->rx_syncp);
1538 			ring->rx_stats.csum_err++;
1539 			u64_stats_update_end(&ring->rx_syncp);
1540 		}
1541 		/* let the stack verify checksum errors */
1542 		return;
1543 	}
1544 	/* It must be a TCP or UDP packet with a valid checksum */
1545 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1546 				      IGC_RXD_STAT_UDPCS))
1547 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1548 
1549 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1550 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1551 }
1552 
1553 static inline void igc_rx_hash(struct igc_ring *ring,
1554 			       union igc_adv_rx_desc *rx_desc,
1555 			       struct sk_buff *skb)
1556 {
1557 	if (ring->netdev->features & NETIF_F_RXHASH)
1558 		skb_set_hash(skb,
1559 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1560 			     PKT_HASH_TYPE_L3);
1561 }
1562 
1563 static void igc_rx_vlan(struct igc_ring *rx_ring,
1564 			union igc_adv_rx_desc *rx_desc,
1565 			struct sk_buff *skb)
1566 {
1567 	struct net_device *dev = rx_ring->netdev;
1568 	u16 vid;
1569 
1570 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1571 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1572 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1573 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1574 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1575 		else
1576 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1577 
1578 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1579 	}
1580 }
1581 
1582 /**
1583  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1584  * @rx_ring: rx descriptor ring packet is being transacted on
1585  * @rx_desc: pointer to the EOP Rx descriptor
1586  * @skb: pointer to current skb being populated
1587  *
1588  * This function checks the ring, descriptor, and packet information in order
1589  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1590  * skb.
1591  */
1592 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1593 				   union igc_adv_rx_desc *rx_desc,
1594 				   struct sk_buff *skb)
1595 {
1596 	igc_rx_hash(rx_ring, rx_desc, skb);
1597 
1598 	igc_rx_checksum(rx_ring, rx_desc, skb);
1599 
1600 	igc_rx_vlan(rx_ring, rx_desc, skb);
1601 
1602 	skb_record_rx_queue(skb, rx_ring->queue_index);
1603 
1604 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1605 }
1606 
1607 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1608 {
1609 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1610 	struct igc_adapter *adapter = netdev_priv(netdev);
1611 	struct igc_hw *hw = &adapter->hw;
1612 	u32 ctrl;
1613 
1614 	ctrl = rd32(IGC_CTRL);
1615 
1616 	if (enable) {
1617 		/* enable VLAN tag insert/strip */
1618 		ctrl |= IGC_CTRL_VME;
1619 	} else {
1620 		/* disable VLAN tag insert/strip */
1621 		ctrl &= ~IGC_CTRL_VME;
1622 	}
1623 	wr32(IGC_CTRL, ctrl);
1624 }
1625 
1626 static void igc_restore_vlan(struct igc_adapter *adapter)
1627 {
1628 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1629 }
1630 
1631 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1632 					       const unsigned int size,
1633 					       int *rx_buffer_pgcnt)
1634 {
1635 	struct igc_rx_buffer *rx_buffer;
1636 
1637 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1638 	*rx_buffer_pgcnt =
1639 #if (PAGE_SIZE < 8192)
1640 		page_count(rx_buffer->page);
1641 #else
1642 		0;
1643 #endif
1644 	prefetchw(rx_buffer->page);
1645 
1646 	/* we are reusing so sync this buffer for CPU use */
1647 	dma_sync_single_range_for_cpu(rx_ring->dev,
1648 				      rx_buffer->dma,
1649 				      rx_buffer->page_offset,
1650 				      size,
1651 				      DMA_FROM_DEVICE);
1652 
1653 	rx_buffer->pagecnt_bias--;
1654 
1655 	return rx_buffer;
1656 }
1657 
1658 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1659 			       unsigned int truesize)
1660 {
1661 #if (PAGE_SIZE < 8192)
1662 	buffer->page_offset ^= truesize;
1663 #else
1664 	buffer->page_offset += truesize;
1665 #endif
1666 }
1667 
1668 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1669 					      unsigned int size)
1670 {
1671 	unsigned int truesize;
1672 
1673 #if (PAGE_SIZE < 8192)
1674 	truesize = igc_rx_pg_size(ring) / 2;
1675 #else
1676 	truesize = ring_uses_build_skb(ring) ?
1677 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1678 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1679 		   SKB_DATA_ALIGN(size);
1680 #endif
1681 	return truesize;
1682 }
1683 
1684 /**
1685  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1686  * @rx_ring: rx descriptor ring to transact packets on
1687  * @rx_buffer: buffer containing page to add
1688  * @skb: sk_buff to place the data into
1689  * @size: size of buffer to be added
1690  *
1691  * This function will add the data contained in rx_buffer->page to the skb.
1692  */
1693 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1694 			    struct igc_rx_buffer *rx_buffer,
1695 			    struct sk_buff *skb,
1696 			    unsigned int size)
1697 {
1698 	unsigned int truesize;
1699 
1700 #if (PAGE_SIZE < 8192)
1701 	truesize = igc_rx_pg_size(rx_ring) / 2;
1702 #else
1703 	truesize = ring_uses_build_skb(rx_ring) ?
1704 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1705 		   SKB_DATA_ALIGN(size);
1706 #endif
1707 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1708 			rx_buffer->page_offset, size, truesize);
1709 
1710 	igc_rx_buffer_flip(rx_buffer, truesize);
1711 }
1712 
1713 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1714 				     struct igc_rx_buffer *rx_buffer,
1715 				     union igc_adv_rx_desc *rx_desc,
1716 				     unsigned int size)
1717 {
1718 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1719 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1720 	struct sk_buff *skb;
1721 
1722 	/* prefetch first cache line of first page */
1723 	net_prefetch(va);
1724 
1725 	/* build an skb around the page buffer */
1726 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1727 	if (unlikely(!skb))
1728 		return NULL;
1729 
1730 	/* update pointers within the skb to store the data */
1731 	skb_reserve(skb, IGC_SKB_PAD);
1732 	__skb_put(skb, size);
1733 
1734 	igc_rx_buffer_flip(rx_buffer, truesize);
1735 	return skb;
1736 }
1737 
1738 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1739 					 struct igc_rx_buffer *rx_buffer,
1740 					 struct xdp_buff *xdp,
1741 					 ktime_t timestamp)
1742 {
1743 	unsigned int size = xdp->data_end - xdp->data;
1744 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1745 	void *va = xdp->data;
1746 	unsigned int headlen;
1747 	struct sk_buff *skb;
1748 
1749 	/* prefetch first cache line of first page */
1750 	net_prefetch(va);
1751 
1752 	/* allocate a skb to store the frags */
1753 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1754 	if (unlikely(!skb))
1755 		return NULL;
1756 
1757 	if (timestamp)
1758 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1759 
1760 	/* Determine available headroom for copy */
1761 	headlen = size;
1762 	if (headlen > IGC_RX_HDR_LEN)
1763 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1764 
1765 	/* align pull length to size of long to optimize memcpy performance */
1766 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1767 
1768 	/* update all of the pointers */
1769 	size -= headlen;
1770 	if (size) {
1771 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1772 				(va + headlen) - page_address(rx_buffer->page),
1773 				size, truesize);
1774 		igc_rx_buffer_flip(rx_buffer, truesize);
1775 	} else {
1776 		rx_buffer->pagecnt_bias++;
1777 	}
1778 
1779 	return skb;
1780 }
1781 
1782 /**
1783  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1784  * @rx_ring: rx descriptor ring to store buffers on
1785  * @old_buff: donor buffer to have page reused
1786  *
1787  * Synchronizes page for reuse by the adapter
1788  */
1789 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1790 			      struct igc_rx_buffer *old_buff)
1791 {
1792 	u16 nta = rx_ring->next_to_alloc;
1793 	struct igc_rx_buffer *new_buff;
1794 
1795 	new_buff = &rx_ring->rx_buffer_info[nta];
1796 
1797 	/* update, and store next to alloc */
1798 	nta++;
1799 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1800 
1801 	/* Transfer page from old buffer to new buffer.
1802 	 * Move each member individually to avoid possible store
1803 	 * forwarding stalls.
1804 	 */
1805 	new_buff->dma		= old_buff->dma;
1806 	new_buff->page		= old_buff->page;
1807 	new_buff->page_offset	= old_buff->page_offset;
1808 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1809 }
1810 
1811 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1812 				  int rx_buffer_pgcnt)
1813 {
1814 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1815 	struct page *page = rx_buffer->page;
1816 
1817 	/* avoid re-using remote and pfmemalloc pages */
1818 	if (!dev_page_is_reusable(page))
1819 		return false;
1820 
1821 #if (PAGE_SIZE < 8192)
1822 	/* if we are only owner of page we can reuse it */
1823 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1824 		return false;
1825 #else
1826 #define IGC_LAST_OFFSET \
1827 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1828 
1829 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1830 		return false;
1831 #endif
1832 
1833 	/* If we have drained the page fragment pool we need to update
1834 	 * the pagecnt_bias and page count so that we fully restock the
1835 	 * number of references the driver holds.
1836 	 */
1837 	if (unlikely(pagecnt_bias == 1)) {
1838 		page_ref_add(page, USHRT_MAX - 1);
1839 		rx_buffer->pagecnt_bias = USHRT_MAX;
1840 	}
1841 
1842 	return true;
1843 }
1844 
1845 /**
1846  * igc_is_non_eop - process handling of non-EOP buffers
1847  * @rx_ring: Rx ring being processed
1848  * @rx_desc: Rx descriptor for current buffer
1849  *
1850  * This function updates next to clean.  If the buffer is an EOP buffer
1851  * this function exits returning false, otherwise it will place the
1852  * sk_buff in the next buffer to be chained and return true indicating
1853  * that this is in fact a non-EOP buffer.
1854  */
1855 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1856 			   union igc_adv_rx_desc *rx_desc)
1857 {
1858 	u32 ntc = rx_ring->next_to_clean + 1;
1859 
1860 	/* fetch, update, and store next to clean */
1861 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1862 	rx_ring->next_to_clean = ntc;
1863 
1864 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1865 
1866 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1867 		return false;
1868 
1869 	return true;
1870 }
1871 
1872 /**
1873  * igc_cleanup_headers - Correct corrupted or empty headers
1874  * @rx_ring: rx descriptor ring packet is being transacted on
1875  * @rx_desc: pointer to the EOP Rx descriptor
1876  * @skb: pointer to current skb being fixed
1877  *
1878  * Address the case where we are pulling data in on pages only
1879  * and as such no data is present in the skb header.
1880  *
1881  * In addition if skb is not at least 60 bytes we need to pad it so that
1882  * it is large enough to qualify as a valid Ethernet frame.
1883  *
1884  * Returns true if an error was encountered and skb was freed.
1885  */
1886 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1887 				union igc_adv_rx_desc *rx_desc,
1888 				struct sk_buff *skb)
1889 {
1890 	/* XDP packets use error pointer so abort at this point */
1891 	if (IS_ERR(skb))
1892 		return true;
1893 
1894 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1895 		struct net_device *netdev = rx_ring->netdev;
1896 
1897 		if (!(netdev->features & NETIF_F_RXALL)) {
1898 			dev_kfree_skb_any(skb);
1899 			return true;
1900 		}
1901 	}
1902 
1903 	/* if eth_skb_pad returns an error the skb was freed */
1904 	if (eth_skb_pad(skb))
1905 		return true;
1906 
1907 	return false;
1908 }
1909 
1910 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1911 			      struct igc_rx_buffer *rx_buffer,
1912 			      int rx_buffer_pgcnt)
1913 {
1914 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1915 		/* hand second half of page back to the ring */
1916 		igc_reuse_rx_page(rx_ring, rx_buffer);
1917 	} else {
1918 		/* We are not reusing the buffer so unmap it and free
1919 		 * any references we are holding to it
1920 		 */
1921 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1922 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1923 				     IGC_RX_DMA_ATTR);
1924 		__page_frag_cache_drain(rx_buffer->page,
1925 					rx_buffer->pagecnt_bias);
1926 	}
1927 
1928 	/* clear contents of rx_buffer */
1929 	rx_buffer->page = NULL;
1930 }
1931 
1932 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1933 {
1934 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1935 
1936 	if (ring_uses_build_skb(rx_ring))
1937 		return IGC_SKB_PAD;
1938 	if (igc_xdp_is_enabled(adapter))
1939 		return XDP_PACKET_HEADROOM;
1940 
1941 	return 0;
1942 }
1943 
1944 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1945 				  struct igc_rx_buffer *bi)
1946 {
1947 	struct page *page = bi->page;
1948 	dma_addr_t dma;
1949 
1950 	/* since we are recycling buffers we should seldom need to alloc */
1951 	if (likely(page))
1952 		return true;
1953 
1954 	/* alloc new page for storage */
1955 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1956 	if (unlikely(!page)) {
1957 		rx_ring->rx_stats.alloc_failed++;
1958 		return false;
1959 	}
1960 
1961 	/* map page for use */
1962 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1963 				 igc_rx_pg_size(rx_ring),
1964 				 DMA_FROM_DEVICE,
1965 				 IGC_RX_DMA_ATTR);
1966 
1967 	/* if mapping failed free memory back to system since
1968 	 * there isn't much point in holding memory we can't use
1969 	 */
1970 	if (dma_mapping_error(rx_ring->dev, dma)) {
1971 		__free_page(page);
1972 
1973 		rx_ring->rx_stats.alloc_failed++;
1974 		return false;
1975 	}
1976 
1977 	bi->dma = dma;
1978 	bi->page = page;
1979 	bi->page_offset = igc_rx_offset(rx_ring);
1980 	page_ref_add(page, USHRT_MAX - 1);
1981 	bi->pagecnt_bias = USHRT_MAX;
1982 
1983 	return true;
1984 }
1985 
1986 /**
1987  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1988  * @rx_ring: rx descriptor ring
1989  * @cleaned_count: number of buffers to clean
1990  */
1991 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1992 {
1993 	union igc_adv_rx_desc *rx_desc;
1994 	u16 i = rx_ring->next_to_use;
1995 	struct igc_rx_buffer *bi;
1996 	u16 bufsz;
1997 
1998 	/* nothing to do */
1999 	if (!cleaned_count)
2000 		return;
2001 
2002 	rx_desc = IGC_RX_DESC(rx_ring, i);
2003 	bi = &rx_ring->rx_buffer_info[i];
2004 	i -= rx_ring->count;
2005 
2006 	bufsz = igc_rx_bufsz(rx_ring);
2007 
2008 	do {
2009 		if (!igc_alloc_mapped_page(rx_ring, bi))
2010 			break;
2011 
2012 		/* sync the buffer for use by the device */
2013 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2014 						 bi->page_offset, bufsz,
2015 						 DMA_FROM_DEVICE);
2016 
2017 		/* Refresh the desc even if buffer_addrs didn't change
2018 		 * because each write-back erases this info.
2019 		 */
2020 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2021 
2022 		rx_desc++;
2023 		bi++;
2024 		i++;
2025 		if (unlikely(!i)) {
2026 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2027 			bi = rx_ring->rx_buffer_info;
2028 			i -= rx_ring->count;
2029 		}
2030 
2031 		/* clear the length for the next_to_use descriptor */
2032 		rx_desc->wb.upper.length = 0;
2033 
2034 		cleaned_count--;
2035 	} while (cleaned_count);
2036 
2037 	i += rx_ring->count;
2038 
2039 	if (rx_ring->next_to_use != i) {
2040 		/* record the next descriptor to use */
2041 		rx_ring->next_to_use = i;
2042 
2043 		/* update next to alloc since we have filled the ring */
2044 		rx_ring->next_to_alloc = i;
2045 
2046 		/* Force memory writes to complete before letting h/w
2047 		 * know there are new descriptors to fetch.  (Only
2048 		 * applicable for weak-ordered memory model archs,
2049 		 * such as IA-64).
2050 		 */
2051 		wmb();
2052 		writel(i, rx_ring->tail);
2053 	}
2054 }
2055 
2056 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2057 {
2058 	union igc_adv_rx_desc *desc;
2059 	u16 i = ring->next_to_use;
2060 	struct igc_rx_buffer *bi;
2061 	dma_addr_t dma;
2062 	bool ok = true;
2063 
2064 	if (!count)
2065 		return ok;
2066 
2067 	desc = IGC_RX_DESC(ring, i);
2068 	bi = &ring->rx_buffer_info[i];
2069 	i -= ring->count;
2070 
2071 	do {
2072 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2073 		if (!bi->xdp) {
2074 			ok = false;
2075 			break;
2076 		}
2077 
2078 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2079 		desc->read.pkt_addr = cpu_to_le64(dma);
2080 
2081 		desc++;
2082 		bi++;
2083 		i++;
2084 		if (unlikely(!i)) {
2085 			desc = IGC_RX_DESC(ring, 0);
2086 			bi = ring->rx_buffer_info;
2087 			i -= ring->count;
2088 		}
2089 
2090 		/* Clear the length for the next_to_use descriptor. */
2091 		desc->wb.upper.length = 0;
2092 
2093 		count--;
2094 	} while (count);
2095 
2096 	i += ring->count;
2097 
2098 	if (ring->next_to_use != i) {
2099 		ring->next_to_use = i;
2100 
2101 		/* Force memory writes to complete before letting h/w
2102 		 * know there are new descriptors to fetch.  (Only
2103 		 * applicable for weak-ordered memory model archs,
2104 		 * such as IA-64).
2105 		 */
2106 		wmb();
2107 		writel(i, ring->tail);
2108 	}
2109 
2110 	return ok;
2111 }
2112 
2113 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2114 				  struct xdp_frame *xdpf,
2115 				  struct igc_ring *ring)
2116 {
2117 	dma_addr_t dma;
2118 
2119 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2120 	if (dma_mapping_error(ring->dev, dma)) {
2121 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2122 		return -ENOMEM;
2123 	}
2124 
2125 	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2126 	buffer->xdpf = xdpf;
2127 	buffer->protocol = 0;
2128 	buffer->bytecount = xdpf->len;
2129 	buffer->gso_segs = 1;
2130 	buffer->time_stamp = jiffies;
2131 	dma_unmap_len_set(buffer, len, xdpf->len);
2132 	dma_unmap_addr_set(buffer, dma, dma);
2133 	return 0;
2134 }
2135 
2136 /* This function requires __netif_tx_lock is held by the caller. */
2137 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2138 				      struct xdp_frame *xdpf)
2139 {
2140 	struct igc_tx_buffer *buffer;
2141 	union igc_adv_tx_desc *desc;
2142 	u32 cmd_type, olinfo_status;
2143 	int err;
2144 
2145 	if (!igc_desc_unused(ring))
2146 		return -EBUSY;
2147 
2148 	buffer = &ring->tx_buffer_info[ring->next_to_use];
2149 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2150 	if (err)
2151 		return err;
2152 
2153 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2154 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2155 		   buffer->bytecount;
2156 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2157 
2158 	desc = IGC_TX_DESC(ring, ring->next_to_use);
2159 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2160 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2161 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2162 
2163 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2164 
2165 	buffer->next_to_watch = desc;
2166 
2167 	ring->next_to_use++;
2168 	if (ring->next_to_use == ring->count)
2169 		ring->next_to_use = 0;
2170 
2171 	return 0;
2172 }
2173 
2174 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2175 					    int cpu)
2176 {
2177 	int index = cpu;
2178 
2179 	if (unlikely(index < 0))
2180 		index = 0;
2181 
2182 	while (index >= adapter->num_tx_queues)
2183 		index -= adapter->num_tx_queues;
2184 
2185 	return adapter->tx_ring[index];
2186 }
2187 
2188 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2189 {
2190 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2191 	int cpu = smp_processor_id();
2192 	struct netdev_queue *nq;
2193 	struct igc_ring *ring;
2194 	int res;
2195 
2196 	if (unlikely(!xdpf))
2197 		return -EFAULT;
2198 
2199 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2200 	nq = txring_txq(ring);
2201 
2202 	__netif_tx_lock(nq, cpu);
2203 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2204 	__netif_tx_unlock(nq);
2205 	return res;
2206 }
2207 
2208 /* This function assumes rcu_read_lock() is held by the caller. */
2209 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2210 			      struct bpf_prog *prog,
2211 			      struct xdp_buff *xdp)
2212 {
2213 	u32 act = bpf_prog_run_xdp(prog, xdp);
2214 
2215 	switch (act) {
2216 	case XDP_PASS:
2217 		return IGC_XDP_PASS;
2218 	case XDP_TX:
2219 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2220 			goto out_failure;
2221 		return IGC_XDP_TX;
2222 	case XDP_REDIRECT:
2223 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2224 			goto out_failure;
2225 		return IGC_XDP_REDIRECT;
2226 		break;
2227 	default:
2228 		bpf_warn_invalid_xdp_action(act);
2229 		fallthrough;
2230 	case XDP_ABORTED:
2231 out_failure:
2232 		trace_xdp_exception(adapter->netdev, prog, act);
2233 		fallthrough;
2234 	case XDP_DROP:
2235 		return IGC_XDP_CONSUMED;
2236 	}
2237 }
2238 
2239 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2240 					struct xdp_buff *xdp)
2241 {
2242 	struct bpf_prog *prog;
2243 	int res;
2244 
2245 	prog = READ_ONCE(adapter->xdp_prog);
2246 	if (!prog) {
2247 		res = IGC_XDP_PASS;
2248 		goto out;
2249 	}
2250 
2251 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2252 
2253 out:
2254 	return ERR_PTR(-res);
2255 }
2256 
2257 /* This function assumes __netif_tx_lock is held by the caller. */
2258 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2259 {
2260 	/* Once tail pointer is updated, hardware can fetch the descriptors
2261 	 * any time so we issue a write membar here to ensure all memory
2262 	 * writes are complete before the tail pointer is updated.
2263 	 */
2264 	wmb();
2265 	writel(ring->next_to_use, ring->tail);
2266 }
2267 
2268 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2269 {
2270 	int cpu = smp_processor_id();
2271 	struct netdev_queue *nq;
2272 	struct igc_ring *ring;
2273 
2274 	if (status & IGC_XDP_TX) {
2275 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2276 		nq = txring_txq(ring);
2277 
2278 		__netif_tx_lock(nq, cpu);
2279 		igc_flush_tx_descriptors(ring);
2280 		__netif_tx_unlock(nq);
2281 	}
2282 
2283 	if (status & IGC_XDP_REDIRECT)
2284 		xdp_do_flush();
2285 }
2286 
2287 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2288 				unsigned int packets, unsigned int bytes)
2289 {
2290 	struct igc_ring *ring = q_vector->rx.ring;
2291 
2292 	u64_stats_update_begin(&ring->rx_syncp);
2293 	ring->rx_stats.packets += packets;
2294 	ring->rx_stats.bytes += bytes;
2295 	u64_stats_update_end(&ring->rx_syncp);
2296 
2297 	q_vector->rx.total_packets += packets;
2298 	q_vector->rx.total_bytes += bytes;
2299 }
2300 
2301 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2302 {
2303 	unsigned int total_bytes = 0, total_packets = 0;
2304 	struct igc_adapter *adapter = q_vector->adapter;
2305 	struct igc_ring *rx_ring = q_vector->rx.ring;
2306 	struct sk_buff *skb = rx_ring->skb;
2307 	u16 cleaned_count = igc_desc_unused(rx_ring);
2308 	int xdp_status = 0, rx_buffer_pgcnt;
2309 
2310 	while (likely(total_packets < budget)) {
2311 		union igc_adv_rx_desc *rx_desc;
2312 		struct igc_rx_buffer *rx_buffer;
2313 		unsigned int size, truesize;
2314 		ktime_t timestamp = 0;
2315 		struct xdp_buff xdp;
2316 		int pkt_offset = 0;
2317 		void *pktbuf;
2318 
2319 		/* return some buffers to hardware, one at a time is too slow */
2320 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2321 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2322 			cleaned_count = 0;
2323 		}
2324 
2325 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2326 		size = le16_to_cpu(rx_desc->wb.upper.length);
2327 		if (!size)
2328 			break;
2329 
2330 		/* This memory barrier is needed to keep us from reading
2331 		 * any other fields out of the rx_desc until we know the
2332 		 * descriptor has been written back
2333 		 */
2334 		dma_rmb();
2335 
2336 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2337 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2338 
2339 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2340 
2341 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2342 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2343 							pktbuf);
2344 			pkt_offset = IGC_TS_HDR_LEN;
2345 			size -= IGC_TS_HDR_LEN;
2346 		}
2347 
2348 		if (!skb) {
2349 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2350 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2351 					 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2352 
2353 			skb = igc_xdp_run_prog(adapter, &xdp);
2354 		}
2355 
2356 		if (IS_ERR(skb)) {
2357 			unsigned int xdp_res = -PTR_ERR(skb);
2358 
2359 			switch (xdp_res) {
2360 			case IGC_XDP_CONSUMED:
2361 				rx_buffer->pagecnt_bias++;
2362 				break;
2363 			case IGC_XDP_TX:
2364 			case IGC_XDP_REDIRECT:
2365 				igc_rx_buffer_flip(rx_buffer, truesize);
2366 				xdp_status |= xdp_res;
2367 				break;
2368 			}
2369 
2370 			total_packets++;
2371 			total_bytes += size;
2372 		} else if (skb)
2373 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2374 		else if (ring_uses_build_skb(rx_ring))
2375 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2376 		else
2377 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2378 						timestamp);
2379 
2380 		/* exit if we failed to retrieve a buffer */
2381 		if (!skb) {
2382 			rx_ring->rx_stats.alloc_failed++;
2383 			rx_buffer->pagecnt_bias++;
2384 			break;
2385 		}
2386 
2387 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2388 		cleaned_count++;
2389 
2390 		/* fetch next buffer in frame if non-eop */
2391 		if (igc_is_non_eop(rx_ring, rx_desc))
2392 			continue;
2393 
2394 		/* verify the packet layout is correct */
2395 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2396 			skb = NULL;
2397 			continue;
2398 		}
2399 
2400 		/* probably a little skewed due to removing CRC */
2401 		total_bytes += skb->len;
2402 
2403 		/* populate checksum, VLAN, and protocol */
2404 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2405 
2406 		napi_gro_receive(&q_vector->napi, skb);
2407 
2408 		/* reset skb pointer */
2409 		skb = NULL;
2410 
2411 		/* update budget accounting */
2412 		total_packets++;
2413 	}
2414 
2415 	if (xdp_status)
2416 		igc_finalize_xdp(adapter, xdp_status);
2417 
2418 	/* place incomplete frames back on ring for completion */
2419 	rx_ring->skb = skb;
2420 
2421 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2422 
2423 	if (cleaned_count)
2424 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2425 
2426 	return total_packets;
2427 }
2428 
2429 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2430 					    struct xdp_buff *xdp)
2431 {
2432 	unsigned int metasize = xdp->data - xdp->data_meta;
2433 	unsigned int datasize = xdp->data_end - xdp->data;
2434 	unsigned int totalsize = metasize + datasize;
2435 	struct sk_buff *skb;
2436 
2437 	skb = __napi_alloc_skb(&ring->q_vector->napi,
2438 			       xdp->data_end - xdp->data_hard_start,
2439 			       GFP_ATOMIC | __GFP_NOWARN);
2440 	if (unlikely(!skb))
2441 		return NULL;
2442 
2443 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2444 	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2445 	if (metasize)
2446 		skb_metadata_set(skb, metasize);
2447 
2448 	return skb;
2449 }
2450 
2451 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2452 				union igc_adv_rx_desc *desc,
2453 				struct xdp_buff *xdp,
2454 				ktime_t timestamp)
2455 {
2456 	struct igc_ring *ring = q_vector->rx.ring;
2457 	struct sk_buff *skb;
2458 
2459 	skb = igc_construct_skb_zc(ring, xdp);
2460 	if (!skb) {
2461 		ring->rx_stats.alloc_failed++;
2462 		return;
2463 	}
2464 
2465 	if (timestamp)
2466 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2467 
2468 	if (igc_cleanup_headers(ring, desc, skb))
2469 		return;
2470 
2471 	igc_process_skb_fields(ring, desc, skb);
2472 	napi_gro_receive(&q_vector->napi, skb);
2473 }
2474 
2475 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2476 {
2477 	struct igc_adapter *adapter = q_vector->adapter;
2478 	struct igc_ring *ring = q_vector->rx.ring;
2479 	u16 cleaned_count = igc_desc_unused(ring);
2480 	int total_bytes = 0, total_packets = 0;
2481 	u16 ntc = ring->next_to_clean;
2482 	struct bpf_prog *prog;
2483 	bool failure = false;
2484 	int xdp_status = 0;
2485 
2486 	rcu_read_lock();
2487 
2488 	prog = READ_ONCE(adapter->xdp_prog);
2489 
2490 	while (likely(total_packets < budget)) {
2491 		union igc_adv_rx_desc *desc;
2492 		struct igc_rx_buffer *bi;
2493 		ktime_t timestamp = 0;
2494 		unsigned int size;
2495 		int res;
2496 
2497 		desc = IGC_RX_DESC(ring, ntc);
2498 		size = le16_to_cpu(desc->wb.upper.length);
2499 		if (!size)
2500 			break;
2501 
2502 		/* This memory barrier is needed to keep us from reading
2503 		 * any other fields out of the rx_desc until we know the
2504 		 * descriptor has been written back
2505 		 */
2506 		dma_rmb();
2507 
2508 		bi = &ring->rx_buffer_info[ntc];
2509 
2510 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2511 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2512 							bi->xdp->data);
2513 
2514 			bi->xdp->data += IGC_TS_HDR_LEN;
2515 
2516 			/* HW timestamp has been copied into local variable. Metadata
2517 			 * length when XDP program is called should be 0.
2518 			 */
2519 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2520 			size -= IGC_TS_HDR_LEN;
2521 		}
2522 
2523 		bi->xdp->data_end = bi->xdp->data + size;
2524 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2525 
2526 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2527 		switch (res) {
2528 		case IGC_XDP_PASS:
2529 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2530 			fallthrough;
2531 		case IGC_XDP_CONSUMED:
2532 			xsk_buff_free(bi->xdp);
2533 			break;
2534 		case IGC_XDP_TX:
2535 		case IGC_XDP_REDIRECT:
2536 			xdp_status |= res;
2537 			break;
2538 		}
2539 
2540 		bi->xdp = NULL;
2541 		total_bytes += size;
2542 		total_packets++;
2543 		cleaned_count++;
2544 		ntc++;
2545 		if (ntc == ring->count)
2546 			ntc = 0;
2547 	}
2548 
2549 	ring->next_to_clean = ntc;
2550 	rcu_read_unlock();
2551 
2552 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2553 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2554 
2555 	if (xdp_status)
2556 		igc_finalize_xdp(adapter, xdp_status);
2557 
2558 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2559 
2560 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2561 		if (failure || ring->next_to_clean == ring->next_to_use)
2562 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2563 		else
2564 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2565 		return total_packets;
2566 	}
2567 
2568 	return failure ? budget : total_packets;
2569 }
2570 
2571 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2572 				unsigned int packets, unsigned int bytes)
2573 {
2574 	struct igc_ring *ring = q_vector->tx.ring;
2575 
2576 	u64_stats_update_begin(&ring->tx_syncp);
2577 	ring->tx_stats.bytes += bytes;
2578 	ring->tx_stats.packets += packets;
2579 	u64_stats_update_end(&ring->tx_syncp);
2580 
2581 	q_vector->tx.total_bytes += bytes;
2582 	q_vector->tx.total_packets += packets;
2583 }
2584 
2585 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2586 {
2587 	struct xsk_buff_pool *pool = ring->xsk_pool;
2588 	struct netdev_queue *nq = txring_txq(ring);
2589 	union igc_adv_tx_desc *tx_desc = NULL;
2590 	int cpu = smp_processor_id();
2591 	u16 ntu = ring->next_to_use;
2592 	struct xdp_desc xdp_desc;
2593 	u16 budget;
2594 
2595 	if (!netif_carrier_ok(ring->netdev))
2596 		return;
2597 
2598 	__netif_tx_lock(nq, cpu);
2599 
2600 	budget = igc_desc_unused(ring);
2601 
2602 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2603 		u32 cmd_type, olinfo_status;
2604 		struct igc_tx_buffer *bi;
2605 		dma_addr_t dma;
2606 
2607 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2608 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2609 			   xdp_desc.len;
2610 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2611 
2612 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2613 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2614 
2615 		tx_desc = IGC_TX_DESC(ring, ntu);
2616 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2617 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2618 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2619 
2620 		bi = &ring->tx_buffer_info[ntu];
2621 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2622 		bi->protocol = 0;
2623 		bi->bytecount = xdp_desc.len;
2624 		bi->gso_segs = 1;
2625 		bi->time_stamp = jiffies;
2626 		bi->next_to_watch = tx_desc;
2627 
2628 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2629 
2630 		ntu++;
2631 		if (ntu == ring->count)
2632 			ntu = 0;
2633 	}
2634 
2635 	ring->next_to_use = ntu;
2636 	if (tx_desc) {
2637 		igc_flush_tx_descriptors(ring);
2638 		xsk_tx_release(pool);
2639 	}
2640 
2641 	__netif_tx_unlock(nq);
2642 }
2643 
2644 /**
2645  * igc_clean_tx_irq - Reclaim resources after transmit completes
2646  * @q_vector: pointer to q_vector containing needed info
2647  * @napi_budget: Used to determine if we are in netpoll
2648  *
2649  * returns true if ring is completely cleaned
2650  */
2651 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2652 {
2653 	struct igc_adapter *adapter = q_vector->adapter;
2654 	unsigned int total_bytes = 0, total_packets = 0;
2655 	unsigned int budget = q_vector->tx.work_limit;
2656 	struct igc_ring *tx_ring = q_vector->tx.ring;
2657 	unsigned int i = tx_ring->next_to_clean;
2658 	struct igc_tx_buffer *tx_buffer;
2659 	union igc_adv_tx_desc *tx_desc;
2660 	u32 xsk_frames = 0;
2661 
2662 	if (test_bit(__IGC_DOWN, &adapter->state))
2663 		return true;
2664 
2665 	tx_buffer = &tx_ring->tx_buffer_info[i];
2666 	tx_desc = IGC_TX_DESC(tx_ring, i);
2667 	i -= tx_ring->count;
2668 
2669 	do {
2670 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2671 
2672 		/* if next_to_watch is not set then there is no work pending */
2673 		if (!eop_desc)
2674 			break;
2675 
2676 		/* prevent any other reads prior to eop_desc */
2677 		smp_rmb();
2678 
2679 		/* if DD is not set pending work has not been completed */
2680 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2681 			break;
2682 
2683 		/* clear next_to_watch to prevent false hangs */
2684 		tx_buffer->next_to_watch = NULL;
2685 
2686 		/* update the statistics for this packet */
2687 		total_bytes += tx_buffer->bytecount;
2688 		total_packets += tx_buffer->gso_segs;
2689 
2690 		switch (tx_buffer->type) {
2691 		case IGC_TX_BUFFER_TYPE_XSK:
2692 			xsk_frames++;
2693 			break;
2694 		case IGC_TX_BUFFER_TYPE_XDP:
2695 			xdp_return_frame(tx_buffer->xdpf);
2696 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2697 			break;
2698 		case IGC_TX_BUFFER_TYPE_SKB:
2699 			napi_consume_skb(tx_buffer->skb, napi_budget);
2700 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2701 			break;
2702 		default:
2703 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2704 			break;
2705 		}
2706 
2707 		/* clear last DMA location and unmap remaining buffers */
2708 		while (tx_desc != eop_desc) {
2709 			tx_buffer++;
2710 			tx_desc++;
2711 			i++;
2712 			if (unlikely(!i)) {
2713 				i -= tx_ring->count;
2714 				tx_buffer = tx_ring->tx_buffer_info;
2715 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2716 			}
2717 
2718 			/* unmap any remaining paged data */
2719 			if (dma_unmap_len(tx_buffer, len))
2720 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2721 		}
2722 
2723 		/* move us one more past the eop_desc for start of next pkt */
2724 		tx_buffer++;
2725 		tx_desc++;
2726 		i++;
2727 		if (unlikely(!i)) {
2728 			i -= tx_ring->count;
2729 			tx_buffer = tx_ring->tx_buffer_info;
2730 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2731 		}
2732 
2733 		/* issue prefetch for next Tx descriptor */
2734 		prefetch(tx_desc);
2735 
2736 		/* update budget accounting */
2737 		budget--;
2738 	} while (likely(budget));
2739 
2740 	netdev_tx_completed_queue(txring_txq(tx_ring),
2741 				  total_packets, total_bytes);
2742 
2743 	i += tx_ring->count;
2744 	tx_ring->next_to_clean = i;
2745 
2746 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2747 
2748 	if (tx_ring->xsk_pool) {
2749 		if (xsk_frames)
2750 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2751 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2752 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2753 		igc_xdp_xmit_zc(tx_ring);
2754 	}
2755 
2756 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2757 		struct igc_hw *hw = &adapter->hw;
2758 
2759 		/* Detect a transmit hang in hardware, this serializes the
2760 		 * check with the clearing of time_stamp and movement of i
2761 		 */
2762 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2763 		if (tx_buffer->next_to_watch &&
2764 		    time_after(jiffies, tx_buffer->time_stamp +
2765 		    (adapter->tx_timeout_factor * HZ)) &&
2766 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2767 			/* detected Tx unit hang */
2768 			netdev_err(tx_ring->netdev,
2769 				   "Detected Tx Unit Hang\n"
2770 				   "  Tx Queue             <%d>\n"
2771 				   "  TDH                  <%x>\n"
2772 				   "  TDT                  <%x>\n"
2773 				   "  next_to_use          <%x>\n"
2774 				   "  next_to_clean        <%x>\n"
2775 				   "buffer_info[next_to_clean]\n"
2776 				   "  time_stamp           <%lx>\n"
2777 				   "  next_to_watch        <%p>\n"
2778 				   "  jiffies              <%lx>\n"
2779 				   "  desc.status          <%x>\n",
2780 				   tx_ring->queue_index,
2781 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2782 				   readl(tx_ring->tail),
2783 				   tx_ring->next_to_use,
2784 				   tx_ring->next_to_clean,
2785 				   tx_buffer->time_stamp,
2786 				   tx_buffer->next_to_watch,
2787 				   jiffies,
2788 				   tx_buffer->next_to_watch->wb.status);
2789 			netif_stop_subqueue(tx_ring->netdev,
2790 					    tx_ring->queue_index);
2791 
2792 			/* we are about to reset, no point in enabling stuff */
2793 			return true;
2794 		}
2795 	}
2796 
2797 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2798 	if (unlikely(total_packets &&
2799 		     netif_carrier_ok(tx_ring->netdev) &&
2800 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2801 		/* Make sure that anybody stopping the queue after this
2802 		 * sees the new next_to_clean.
2803 		 */
2804 		smp_mb();
2805 		if (__netif_subqueue_stopped(tx_ring->netdev,
2806 					     tx_ring->queue_index) &&
2807 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2808 			netif_wake_subqueue(tx_ring->netdev,
2809 					    tx_ring->queue_index);
2810 
2811 			u64_stats_update_begin(&tx_ring->tx_syncp);
2812 			tx_ring->tx_stats.restart_queue++;
2813 			u64_stats_update_end(&tx_ring->tx_syncp);
2814 		}
2815 	}
2816 
2817 	return !!budget;
2818 }
2819 
2820 static int igc_find_mac_filter(struct igc_adapter *adapter,
2821 			       enum igc_mac_filter_type type, const u8 *addr)
2822 {
2823 	struct igc_hw *hw = &adapter->hw;
2824 	int max_entries = hw->mac.rar_entry_count;
2825 	u32 ral, rah;
2826 	int i;
2827 
2828 	for (i = 0; i < max_entries; i++) {
2829 		ral = rd32(IGC_RAL(i));
2830 		rah = rd32(IGC_RAH(i));
2831 
2832 		if (!(rah & IGC_RAH_AV))
2833 			continue;
2834 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2835 			continue;
2836 		if ((rah & IGC_RAH_RAH_MASK) !=
2837 		    le16_to_cpup((__le16 *)(addr + 4)))
2838 			continue;
2839 		if (ral != le32_to_cpup((__le32 *)(addr)))
2840 			continue;
2841 
2842 		return i;
2843 	}
2844 
2845 	return -1;
2846 }
2847 
2848 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2849 {
2850 	struct igc_hw *hw = &adapter->hw;
2851 	int max_entries = hw->mac.rar_entry_count;
2852 	u32 rah;
2853 	int i;
2854 
2855 	for (i = 0; i < max_entries; i++) {
2856 		rah = rd32(IGC_RAH(i));
2857 
2858 		if (!(rah & IGC_RAH_AV))
2859 			return i;
2860 	}
2861 
2862 	return -1;
2863 }
2864 
2865 /**
2866  * igc_add_mac_filter() - Add MAC address filter
2867  * @adapter: Pointer to adapter where the filter should be added
2868  * @type: MAC address filter type (source or destination)
2869  * @addr: MAC address
2870  * @queue: If non-negative, queue assignment feature is enabled and frames
2871  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2872  *         assignment is disabled.
2873  *
2874  * Return: 0 in case of success, negative errno code otherwise.
2875  */
2876 static int igc_add_mac_filter(struct igc_adapter *adapter,
2877 			      enum igc_mac_filter_type type, const u8 *addr,
2878 			      int queue)
2879 {
2880 	struct net_device *dev = adapter->netdev;
2881 	int index;
2882 
2883 	index = igc_find_mac_filter(adapter, type, addr);
2884 	if (index >= 0)
2885 		goto update_filter;
2886 
2887 	index = igc_get_avail_mac_filter_slot(adapter);
2888 	if (index < 0)
2889 		return -ENOSPC;
2890 
2891 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2892 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2893 		   addr, queue);
2894 
2895 update_filter:
2896 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2897 	return 0;
2898 }
2899 
2900 /**
2901  * igc_del_mac_filter() - Delete MAC address filter
2902  * @adapter: Pointer to adapter where the filter should be deleted from
2903  * @type: MAC address filter type (source or destination)
2904  * @addr: MAC address
2905  */
2906 static void igc_del_mac_filter(struct igc_adapter *adapter,
2907 			       enum igc_mac_filter_type type, const u8 *addr)
2908 {
2909 	struct net_device *dev = adapter->netdev;
2910 	int index;
2911 
2912 	index = igc_find_mac_filter(adapter, type, addr);
2913 	if (index < 0)
2914 		return;
2915 
2916 	if (index == 0) {
2917 		/* If this is the default filter, we don't actually delete it.
2918 		 * We just reset to its default value i.e. disable queue
2919 		 * assignment.
2920 		 */
2921 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2922 
2923 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2924 	} else {
2925 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2926 			   index,
2927 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2928 			   addr);
2929 
2930 		igc_clear_mac_filter_hw(adapter, index);
2931 	}
2932 }
2933 
2934 /**
2935  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2936  * @adapter: Pointer to adapter where the filter should be added
2937  * @prio: VLAN priority value
2938  * @queue: Queue number which matching frames are assigned to
2939  *
2940  * Return: 0 in case of success, negative errno code otherwise.
2941  */
2942 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2943 				    int queue)
2944 {
2945 	struct net_device *dev = adapter->netdev;
2946 	struct igc_hw *hw = &adapter->hw;
2947 	u32 vlanpqf;
2948 
2949 	vlanpqf = rd32(IGC_VLANPQF);
2950 
2951 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2952 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2953 		return -EEXIST;
2954 	}
2955 
2956 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2957 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2958 
2959 	wr32(IGC_VLANPQF, vlanpqf);
2960 
2961 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2962 		   prio, queue);
2963 	return 0;
2964 }
2965 
2966 /**
2967  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2968  * @adapter: Pointer to adapter where the filter should be deleted from
2969  * @prio: VLAN priority value
2970  */
2971 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2972 {
2973 	struct igc_hw *hw = &adapter->hw;
2974 	u32 vlanpqf;
2975 
2976 	vlanpqf = rd32(IGC_VLANPQF);
2977 
2978 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2979 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2980 
2981 	wr32(IGC_VLANPQF, vlanpqf);
2982 
2983 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2984 		   prio);
2985 }
2986 
2987 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2988 {
2989 	struct igc_hw *hw = &adapter->hw;
2990 	int i;
2991 
2992 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2993 		u32 etqf = rd32(IGC_ETQF(i));
2994 
2995 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2996 			return i;
2997 	}
2998 
2999 	return -1;
3000 }
3001 
3002 /**
3003  * igc_add_etype_filter() - Add ethertype filter
3004  * @adapter: Pointer to adapter where the filter should be added
3005  * @etype: Ethertype value
3006  * @queue: If non-negative, queue assignment feature is enabled and frames
3007  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3008  *         assignment is disabled.
3009  *
3010  * Return: 0 in case of success, negative errno code otherwise.
3011  */
3012 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3013 				int queue)
3014 {
3015 	struct igc_hw *hw = &adapter->hw;
3016 	int index;
3017 	u32 etqf;
3018 
3019 	index = igc_get_avail_etype_filter_slot(adapter);
3020 	if (index < 0)
3021 		return -ENOSPC;
3022 
3023 	etqf = rd32(IGC_ETQF(index));
3024 
3025 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3026 	etqf |= etype;
3027 
3028 	if (queue >= 0) {
3029 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3030 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3031 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3032 	}
3033 
3034 	etqf |= IGC_ETQF_FILTER_ENABLE;
3035 
3036 	wr32(IGC_ETQF(index), etqf);
3037 
3038 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3039 		   etype, queue);
3040 	return 0;
3041 }
3042 
3043 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3044 {
3045 	struct igc_hw *hw = &adapter->hw;
3046 	int i;
3047 
3048 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3049 		u32 etqf = rd32(IGC_ETQF(i));
3050 
3051 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3052 			return i;
3053 	}
3054 
3055 	return -1;
3056 }
3057 
3058 /**
3059  * igc_del_etype_filter() - Delete ethertype filter
3060  * @adapter: Pointer to adapter where the filter should be deleted from
3061  * @etype: Ethertype value
3062  */
3063 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3064 {
3065 	struct igc_hw *hw = &adapter->hw;
3066 	int index;
3067 
3068 	index = igc_find_etype_filter(adapter, etype);
3069 	if (index < 0)
3070 		return;
3071 
3072 	wr32(IGC_ETQF(index), 0);
3073 
3074 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3075 		   etype);
3076 }
3077 
3078 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3079 			       const struct igc_nfc_rule *rule)
3080 {
3081 	int err;
3082 
3083 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3084 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3085 					   rule->action);
3086 		if (err)
3087 			return err;
3088 	}
3089 
3090 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3091 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3092 					 rule->filter.src_addr, rule->action);
3093 		if (err)
3094 			return err;
3095 	}
3096 
3097 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3098 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3099 					 rule->filter.dst_addr, rule->action);
3100 		if (err)
3101 			return err;
3102 	}
3103 
3104 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3105 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3106 			   VLAN_PRIO_SHIFT;
3107 
3108 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3109 		if (err)
3110 			return err;
3111 	}
3112 
3113 	return 0;
3114 }
3115 
3116 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3117 				 const struct igc_nfc_rule *rule)
3118 {
3119 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3120 		igc_del_etype_filter(adapter, rule->filter.etype);
3121 
3122 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3123 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3124 			   VLAN_PRIO_SHIFT;
3125 
3126 		igc_del_vlan_prio_filter(adapter, prio);
3127 	}
3128 
3129 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3130 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3131 				   rule->filter.src_addr);
3132 
3133 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3134 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3135 				   rule->filter.dst_addr);
3136 }
3137 
3138 /**
3139  * igc_get_nfc_rule() - Get NFC rule
3140  * @adapter: Pointer to adapter
3141  * @location: Rule location
3142  *
3143  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3144  *
3145  * Return: Pointer to NFC rule at @location. If not found, NULL.
3146  */
3147 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3148 				      u32 location)
3149 {
3150 	struct igc_nfc_rule *rule;
3151 
3152 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3153 		if (rule->location == location)
3154 			return rule;
3155 		if (rule->location > location)
3156 			break;
3157 	}
3158 
3159 	return NULL;
3160 }
3161 
3162 /**
3163  * igc_del_nfc_rule() - Delete NFC rule
3164  * @adapter: Pointer to adapter
3165  * @rule: Pointer to rule to be deleted
3166  *
3167  * Disable NFC rule in hardware and delete it from adapter.
3168  *
3169  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3170  */
3171 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3172 {
3173 	igc_disable_nfc_rule(adapter, rule);
3174 
3175 	list_del(&rule->list);
3176 	adapter->nfc_rule_count--;
3177 
3178 	kfree(rule);
3179 }
3180 
3181 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3182 {
3183 	struct igc_nfc_rule *rule, *tmp;
3184 
3185 	mutex_lock(&adapter->nfc_rule_lock);
3186 
3187 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3188 		igc_del_nfc_rule(adapter, rule);
3189 
3190 	mutex_unlock(&adapter->nfc_rule_lock);
3191 }
3192 
3193 /**
3194  * igc_add_nfc_rule() - Add NFC rule
3195  * @adapter: Pointer to adapter
3196  * @rule: Pointer to rule to be added
3197  *
3198  * Enable NFC rule in hardware and add it to adapter.
3199  *
3200  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3201  *
3202  * Return: 0 on success, negative errno on failure.
3203  */
3204 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3205 {
3206 	struct igc_nfc_rule *pred, *cur;
3207 	int err;
3208 
3209 	err = igc_enable_nfc_rule(adapter, rule);
3210 	if (err)
3211 		return err;
3212 
3213 	pred = NULL;
3214 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3215 		if (cur->location >= rule->location)
3216 			break;
3217 		pred = cur;
3218 	}
3219 
3220 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3221 	adapter->nfc_rule_count++;
3222 	return 0;
3223 }
3224 
3225 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3226 {
3227 	struct igc_nfc_rule *rule;
3228 
3229 	mutex_lock(&adapter->nfc_rule_lock);
3230 
3231 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3232 		igc_enable_nfc_rule(adapter, rule);
3233 
3234 	mutex_unlock(&adapter->nfc_rule_lock);
3235 }
3236 
3237 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3238 {
3239 	struct igc_adapter *adapter = netdev_priv(netdev);
3240 
3241 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3242 }
3243 
3244 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3245 {
3246 	struct igc_adapter *adapter = netdev_priv(netdev);
3247 
3248 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3249 	return 0;
3250 }
3251 
3252 /**
3253  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3254  * @netdev: network interface device structure
3255  *
3256  * The set_rx_mode entry point is called whenever the unicast or multicast
3257  * address lists or the network interface flags are updated.  This routine is
3258  * responsible for configuring the hardware for proper unicast, multicast,
3259  * promiscuous mode, and all-multi behavior.
3260  */
3261 static void igc_set_rx_mode(struct net_device *netdev)
3262 {
3263 	struct igc_adapter *adapter = netdev_priv(netdev);
3264 	struct igc_hw *hw = &adapter->hw;
3265 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3266 	int count;
3267 
3268 	/* Check for Promiscuous and All Multicast modes */
3269 	if (netdev->flags & IFF_PROMISC) {
3270 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3271 	} else {
3272 		if (netdev->flags & IFF_ALLMULTI) {
3273 			rctl |= IGC_RCTL_MPE;
3274 		} else {
3275 			/* Write addresses to the MTA, if the attempt fails
3276 			 * then we should just turn on promiscuous mode so
3277 			 * that we can at least receive multicast traffic
3278 			 */
3279 			count = igc_write_mc_addr_list(netdev);
3280 			if (count < 0)
3281 				rctl |= IGC_RCTL_MPE;
3282 		}
3283 	}
3284 
3285 	/* Write addresses to available RAR registers, if there is not
3286 	 * sufficient space to store all the addresses then enable
3287 	 * unicast promiscuous mode
3288 	 */
3289 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3290 		rctl |= IGC_RCTL_UPE;
3291 
3292 	/* update state of unicast and multicast */
3293 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3294 	wr32(IGC_RCTL, rctl);
3295 
3296 #if (PAGE_SIZE < 8192)
3297 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3298 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3299 #endif
3300 	wr32(IGC_RLPML, rlpml);
3301 }
3302 
3303 /**
3304  * igc_configure - configure the hardware for RX and TX
3305  * @adapter: private board structure
3306  */
3307 static void igc_configure(struct igc_adapter *adapter)
3308 {
3309 	struct net_device *netdev = adapter->netdev;
3310 	int i = 0;
3311 
3312 	igc_get_hw_control(adapter);
3313 	igc_set_rx_mode(netdev);
3314 
3315 	igc_restore_vlan(adapter);
3316 
3317 	igc_setup_tctl(adapter);
3318 	igc_setup_mrqc(adapter);
3319 	igc_setup_rctl(adapter);
3320 
3321 	igc_set_default_mac_filter(adapter);
3322 	igc_restore_nfc_rules(adapter);
3323 
3324 	igc_configure_tx(adapter);
3325 	igc_configure_rx(adapter);
3326 
3327 	igc_rx_fifo_flush_base(&adapter->hw);
3328 
3329 	/* call igc_desc_unused which always leaves
3330 	 * at least 1 descriptor unused to make sure
3331 	 * next_to_use != next_to_clean
3332 	 */
3333 	for (i = 0; i < adapter->num_rx_queues; i++) {
3334 		struct igc_ring *ring = adapter->rx_ring[i];
3335 
3336 		if (ring->xsk_pool)
3337 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3338 		else
3339 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3340 	}
3341 }
3342 
3343 /**
3344  * igc_write_ivar - configure ivar for given MSI-X vector
3345  * @hw: pointer to the HW structure
3346  * @msix_vector: vector number we are allocating to a given ring
3347  * @index: row index of IVAR register to write within IVAR table
3348  * @offset: column offset of in IVAR, should be multiple of 8
3349  *
3350  * The IVAR table consists of 2 columns,
3351  * each containing an cause allocation for an Rx and Tx ring, and a
3352  * variable number of rows depending on the number of queues supported.
3353  */
3354 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3355 			   int index, int offset)
3356 {
3357 	u32 ivar = array_rd32(IGC_IVAR0, index);
3358 
3359 	/* clear any bits that are currently set */
3360 	ivar &= ~((u32)0xFF << offset);
3361 
3362 	/* write vector and valid bit */
3363 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3364 
3365 	array_wr32(IGC_IVAR0, index, ivar);
3366 }
3367 
3368 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3369 {
3370 	struct igc_adapter *adapter = q_vector->adapter;
3371 	struct igc_hw *hw = &adapter->hw;
3372 	int rx_queue = IGC_N0_QUEUE;
3373 	int tx_queue = IGC_N0_QUEUE;
3374 
3375 	if (q_vector->rx.ring)
3376 		rx_queue = q_vector->rx.ring->reg_idx;
3377 	if (q_vector->tx.ring)
3378 		tx_queue = q_vector->tx.ring->reg_idx;
3379 
3380 	switch (hw->mac.type) {
3381 	case igc_i225:
3382 		if (rx_queue > IGC_N0_QUEUE)
3383 			igc_write_ivar(hw, msix_vector,
3384 				       rx_queue >> 1,
3385 				       (rx_queue & 0x1) << 4);
3386 		if (tx_queue > IGC_N0_QUEUE)
3387 			igc_write_ivar(hw, msix_vector,
3388 				       tx_queue >> 1,
3389 				       ((tx_queue & 0x1) << 4) + 8);
3390 		q_vector->eims_value = BIT(msix_vector);
3391 		break;
3392 	default:
3393 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3394 		break;
3395 	}
3396 
3397 	/* add q_vector eims value to global eims_enable_mask */
3398 	adapter->eims_enable_mask |= q_vector->eims_value;
3399 
3400 	/* configure q_vector to set itr on first interrupt */
3401 	q_vector->set_itr = 1;
3402 }
3403 
3404 /**
3405  * igc_configure_msix - Configure MSI-X hardware
3406  * @adapter: Pointer to adapter structure
3407  *
3408  * igc_configure_msix sets up the hardware to properly
3409  * generate MSI-X interrupts.
3410  */
3411 static void igc_configure_msix(struct igc_adapter *adapter)
3412 {
3413 	struct igc_hw *hw = &adapter->hw;
3414 	int i, vector = 0;
3415 	u32 tmp;
3416 
3417 	adapter->eims_enable_mask = 0;
3418 
3419 	/* set vector for other causes, i.e. link changes */
3420 	switch (hw->mac.type) {
3421 	case igc_i225:
3422 		/* Turn on MSI-X capability first, or our settings
3423 		 * won't stick.  And it will take days to debug.
3424 		 */
3425 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3426 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3427 		     IGC_GPIE_NSICR);
3428 
3429 		/* enable msix_other interrupt */
3430 		adapter->eims_other = BIT(vector);
3431 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3432 
3433 		wr32(IGC_IVAR_MISC, tmp);
3434 		break;
3435 	default:
3436 		/* do nothing, since nothing else supports MSI-X */
3437 		break;
3438 	} /* switch (hw->mac.type) */
3439 
3440 	adapter->eims_enable_mask |= adapter->eims_other;
3441 
3442 	for (i = 0; i < adapter->num_q_vectors; i++)
3443 		igc_assign_vector(adapter->q_vector[i], vector++);
3444 
3445 	wrfl();
3446 }
3447 
3448 /**
3449  * igc_irq_enable - Enable default interrupt generation settings
3450  * @adapter: board private structure
3451  */
3452 static void igc_irq_enable(struct igc_adapter *adapter)
3453 {
3454 	struct igc_hw *hw = &adapter->hw;
3455 
3456 	if (adapter->msix_entries) {
3457 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3458 		u32 regval = rd32(IGC_EIAC);
3459 
3460 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3461 		regval = rd32(IGC_EIAM);
3462 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3463 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3464 		wr32(IGC_IMS, ims);
3465 	} else {
3466 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3467 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3468 	}
3469 }
3470 
3471 /**
3472  * igc_irq_disable - Mask off interrupt generation on the NIC
3473  * @adapter: board private structure
3474  */
3475 static void igc_irq_disable(struct igc_adapter *adapter)
3476 {
3477 	struct igc_hw *hw = &adapter->hw;
3478 
3479 	if (adapter->msix_entries) {
3480 		u32 regval = rd32(IGC_EIAM);
3481 
3482 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3483 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3484 		regval = rd32(IGC_EIAC);
3485 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3486 	}
3487 
3488 	wr32(IGC_IAM, 0);
3489 	wr32(IGC_IMC, ~0);
3490 	wrfl();
3491 
3492 	if (adapter->msix_entries) {
3493 		int vector = 0, i;
3494 
3495 		synchronize_irq(adapter->msix_entries[vector++].vector);
3496 
3497 		for (i = 0; i < adapter->num_q_vectors; i++)
3498 			synchronize_irq(adapter->msix_entries[vector++].vector);
3499 	} else {
3500 		synchronize_irq(adapter->pdev->irq);
3501 	}
3502 }
3503 
3504 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3505 			      const u32 max_rss_queues)
3506 {
3507 	/* Determine if we need to pair queues. */
3508 	/* If rss_queues > half of max_rss_queues, pair the queues in
3509 	 * order to conserve interrupts due to limited supply.
3510 	 */
3511 	if (adapter->rss_queues > (max_rss_queues / 2))
3512 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3513 	else
3514 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3515 }
3516 
3517 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3518 {
3519 	return IGC_MAX_RX_QUEUES;
3520 }
3521 
3522 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3523 {
3524 	u32 max_rss_queues;
3525 
3526 	max_rss_queues = igc_get_max_rss_queues(adapter);
3527 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3528 
3529 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3530 }
3531 
3532 /**
3533  * igc_reset_q_vector - Reset config for interrupt vector
3534  * @adapter: board private structure to initialize
3535  * @v_idx: Index of vector to be reset
3536  *
3537  * If NAPI is enabled it will delete any references to the
3538  * NAPI struct. This is preparation for igc_free_q_vector.
3539  */
3540 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3541 {
3542 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3543 
3544 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3545 	 * not yet allocated
3546 	 */
3547 	if (!q_vector)
3548 		return;
3549 
3550 	if (q_vector->tx.ring)
3551 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3552 
3553 	if (q_vector->rx.ring)
3554 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3555 
3556 	netif_napi_del(&q_vector->napi);
3557 }
3558 
3559 /**
3560  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3561  * @adapter: board private structure to initialize
3562  * @v_idx: Index of vector to be freed
3563  *
3564  * This function frees the memory allocated to the q_vector.
3565  */
3566 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3567 {
3568 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3569 
3570 	adapter->q_vector[v_idx] = NULL;
3571 
3572 	/* igc_get_stats64() might access the rings on this vector,
3573 	 * we must wait a grace period before freeing it.
3574 	 */
3575 	if (q_vector)
3576 		kfree_rcu(q_vector, rcu);
3577 }
3578 
3579 /**
3580  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3581  * @adapter: board private structure to initialize
3582  *
3583  * This function frees the memory allocated to the q_vectors.  In addition if
3584  * NAPI is enabled it will delete any references to the NAPI struct prior
3585  * to freeing the q_vector.
3586  */
3587 static void igc_free_q_vectors(struct igc_adapter *adapter)
3588 {
3589 	int v_idx = adapter->num_q_vectors;
3590 
3591 	adapter->num_tx_queues = 0;
3592 	adapter->num_rx_queues = 0;
3593 	adapter->num_q_vectors = 0;
3594 
3595 	while (v_idx--) {
3596 		igc_reset_q_vector(adapter, v_idx);
3597 		igc_free_q_vector(adapter, v_idx);
3598 	}
3599 }
3600 
3601 /**
3602  * igc_update_itr - update the dynamic ITR value based on statistics
3603  * @q_vector: pointer to q_vector
3604  * @ring_container: ring info to update the itr for
3605  *
3606  * Stores a new ITR value based on packets and byte
3607  * counts during the last interrupt.  The advantage of per interrupt
3608  * computation is faster updates and more accurate ITR for the current
3609  * traffic pattern.  Constants in this function were computed
3610  * based on theoretical maximum wire speed and thresholds were set based
3611  * on testing data as well as attempting to minimize response time
3612  * while increasing bulk throughput.
3613  * NOTE: These calculations are only valid when operating in a single-
3614  * queue environment.
3615  */
3616 static void igc_update_itr(struct igc_q_vector *q_vector,
3617 			   struct igc_ring_container *ring_container)
3618 {
3619 	unsigned int packets = ring_container->total_packets;
3620 	unsigned int bytes = ring_container->total_bytes;
3621 	u8 itrval = ring_container->itr;
3622 
3623 	/* no packets, exit with status unchanged */
3624 	if (packets == 0)
3625 		return;
3626 
3627 	switch (itrval) {
3628 	case lowest_latency:
3629 		/* handle TSO and jumbo frames */
3630 		if (bytes / packets > 8000)
3631 			itrval = bulk_latency;
3632 		else if ((packets < 5) && (bytes > 512))
3633 			itrval = low_latency;
3634 		break;
3635 	case low_latency:  /* 50 usec aka 20000 ints/s */
3636 		if (bytes > 10000) {
3637 			/* this if handles the TSO accounting */
3638 			if (bytes / packets > 8000)
3639 				itrval = bulk_latency;
3640 			else if ((packets < 10) || ((bytes / packets) > 1200))
3641 				itrval = bulk_latency;
3642 			else if ((packets > 35))
3643 				itrval = lowest_latency;
3644 		} else if (bytes / packets > 2000) {
3645 			itrval = bulk_latency;
3646 		} else if (packets <= 2 && bytes < 512) {
3647 			itrval = lowest_latency;
3648 		}
3649 		break;
3650 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3651 		if (bytes > 25000) {
3652 			if (packets > 35)
3653 				itrval = low_latency;
3654 		} else if (bytes < 1500) {
3655 			itrval = low_latency;
3656 		}
3657 		break;
3658 	}
3659 
3660 	/* clear work counters since we have the values we need */
3661 	ring_container->total_bytes = 0;
3662 	ring_container->total_packets = 0;
3663 
3664 	/* write updated itr to ring container */
3665 	ring_container->itr = itrval;
3666 }
3667 
3668 static void igc_set_itr(struct igc_q_vector *q_vector)
3669 {
3670 	struct igc_adapter *adapter = q_vector->adapter;
3671 	u32 new_itr = q_vector->itr_val;
3672 	u8 current_itr = 0;
3673 
3674 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3675 	switch (adapter->link_speed) {
3676 	case SPEED_10:
3677 	case SPEED_100:
3678 		current_itr = 0;
3679 		new_itr = IGC_4K_ITR;
3680 		goto set_itr_now;
3681 	default:
3682 		break;
3683 	}
3684 
3685 	igc_update_itr(q_vector, &q_vector->tx);
3686 	igc_update_itr(q_vector, &q_vector->rx);
3687 
3688 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3689 
3690 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3691 	if (current_itr == lowest_latency &&
3692 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3693 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3694 		current_itr = low_latency;
3695 
3696 	switch (current_itr) {
3697 	/* counts and packets in update_itr are dependent on these numbers */
3698 	case lowest_latency:
3699 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3700 		break;
3701 	case low_latency:
3702 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3703 		break;
3704 	case bulk_latency:
3705 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3706 		break;
3707 	default:
3708 		break;
3709 	}
3710 
3711 set_itr_now:
3712 	if (new_itr != q_vector->itr_val) {
3713 		/* this attempts to bias the interrupt rate towards Bulk
3714 		 * by adding intermediate steps when interrupt rate is
3715 		 * increasing
3716 		 */
3717 		new_itr = new_itr > q_vector->itr_val ?
3718 			  max((new_itr * q_vector->itr_val) /
3719 			  (new_itr + (q_vector->itr_val >> 2)),
3720 			  new_itr) : new_itr;
3721 		/* Don't write the value here; it resets the adapter's
3722 		 * internal timer, and causes us to delay far longer than
3723 		 * we should between interrupts.  Instead, we write the ITR
3724 		 * value at the beginning of the next interrupt so the timing
3725 		 * ends up being correct.
3726 		 */
3727 		q_vector->itr_val = new_itr;
3728 		q_vector->set_itr = 1;
3729 	}
3730 }
3731 
3732 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3733 {
3734 	int v_idx = adapter->num_q_vectors;
3735 
3736 	if (adapter->msix_entries) {
3737 		pci_disable_msix(adapter->pdev);
3738 		kfree(adapter->msix_entries);
3739 		adapter->msix_entries = NULL;
3740 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3741 		pci_disable_msi(adapter->pdev);
3742 	}
3743 
3744 	while (v_idx--)
3745 		igc_reset_q_vector(adapter, v_idx);
3746 }
3747 
3748 /**
3749  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3750  * @adapter: Pointer to adapter structure
3751  * @msix: boolean value for MSI-X capability
3752  *
3753  * Attempt to configure interrupts using the best available
3754  * capabilities of the hardware and kernel.
3755  */
3756 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3757 					 bool msix)
3758 {
3759 	int numvecs, i;
3760 	int err;
3761 
3762 	if (!msix)
3763 		goto msi_only;
3764 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3765 
3766 	/* Number of supported queues. */
3767 	adapter->num_rx_queues = adapter->rss_queues;
3768 
3769 	adapter->num_tx_queues = adapter->rss_queues;
3770 
3771 	/* start with one vector for every Rx queue */
3772 	numvecs = adapter->num_rx_queues;
3773 
3774 	/* if Tx handler is separate add 1 for every Tx queue */
3775 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3776 		numvecs += adapter->num_tx_queues;
3777 
3778 	/* store the number of vectors reserved for queues */
3779 	adapter->num_q_vectors = numvecs;
3780 
3781 	/* add 1 vector for link status interrupts */
3782 	numvecs++;
3783 
3784 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3785 					GFP_KERNEL);
3786 
3787 	if (!adapter->msix_entries)
3788 		return;
3789 
3790 	/* populate entry values */
3791 	for (i = 0; i < numvecs; i++)
3792 		adapter->msix_entries[i].entry = i;
3793 
3794 	err = pci_enable_msix_range(adapter->pdev,
3795 				    adapter->msix_entries,
3796 				    numvecs,
3797 				    numvecs);
3798 	if (err > 0)
3799 		return;
3800 
3801 	kfree(adapter->msix_entries);
3802 	adapter->msix_entries = NULL;
3803 
3804 	igc_reset_interrupt_capability(adapter);
3805 
3806 msi_only:
3807 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3808 
3809 	adapter->rss_queues = 1;
3810 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3811 	adapter->num_rx_queues = 1;
3812 	adapter->num_tx_queues = 1;
3813 	adapter->num_q_vectors = 1;
3814 	if (!pci_enable_msi(adapter->pdev))
3815 		adapter->flags |= IGC_FLAG_HAS_MSI;
3816 }
3817 
3818 /**
3819  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3820  * @q_vector: pointer to q_vector
3821  *
3822  * Stores a new ITR value based on strictly on packet size.  This
3823  * algorithm is less sophisticated than that used in igc_update_itr,
3824  * due to the difficulty of synchronizing statistics across multiple
3825  * receive rings.  The divisors and thresholds used by this function
3826  * were determined based on theoretical maximum wire speed and testing
3827  * data, in order to minimize response time while increasing bulk
3828  * throughput.
3829  * NOTE: This function is called only when operating in a multiqueue
3830  * receive environment.
3831  */
3832 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3833 {
3834 	struct igc_adapter *adapter = q_vector->adapter;
3835 	int new_val = q_vector->itr_val;
3836 	int avg_wire_size = 0;
3837 	unsigned int packets;
3838 
3839 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3840 	 * ints/sec - ITR timer value of 120 ticks.
3841 	 */
3842 	switch (adapter->link_speed) {
3843 	case SPEED_10:
3844 	case SPEED_100:
3845 		new_val = IGC_4K_ITR;
3846 		goto set_itr_val;
3847 	default:
3848 		break;
3849 	}
3850 
3851 	packets = q_vector->rx.total_packets;
3852 	if (packets)
3853 		avg_wire_size = q_vector->rx.total_bytes / packets;
3854 
3855 	packets = q_vector->tx.total_packets;
3856 	if (packets)
3857 		avg_wire_size = max_t(u32, avg_wire_size,
3858 				      q_vector->tx.total_bytes / packets);
3859 
3860 	/* if avg_wire_size isn't set no work was done */
3861 	if (!avg_wire_size)
3862 		goto clear_counts;
3863 
3864 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3865 	avg_wire_size += 24;
3866 
3867 	/* Don't starve jumbo frames */
3868 	avg_wire_size = min(avg_wire_size, 3000);
3869 
3870 	/* Give a little boost to mid-size frames */
3871 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3872 		new_val = avg_wire_size / 3;
3873 	else
3874 		new_val = avg_wire_size / 2;
3875 
3876 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3877 	if (new_val < IGC_20K_ITR &&
3878 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3879 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3880 		new_val = IGC_20K_ITR;
3881 
3882 set_itr_val:
3883 	if (new_val != q_vector->itr_val) {
3884 		q_vector->itr_val = new_val;
3885 		q_vector->set_itr = 1;
3886 	}
3887 clear_counts:
3888 	q_vector->rx.total_bytes = 0;
3889 	q_vector->rx.total_packets = 0;
3890 	q_vector->tx.total_bytes = 0;
3891 	q_vector->tx.total_packets = 0;
3892 }
3893 
3894 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3895 {
3896 	struct igc_adapter *adapter = q_vector->adapter;
3897 	struct igc_hw *hw = &adapter->hw;
3898 
3899 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3900 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3901 		if (adapter->num_q_vectors == 1)
3902 			igc_set_itr(q_vector);
3903 		else
3904 			igc_update_ring_itr(q_vector);
3905 	}
3906 
3907 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3908 		if (adapter->msix_entries)
3909 			wr32(IGC_EIMS, q_vector->eims_value);
3910 		else
3911 			igc_irq_enable(adapter);
3912 	}
3913 }
3914 
3915 static void igc_add_ring(struct igc_ring *ring,
3916 			 struct igc_ring_container *head)
3917 {
3918 	head->ring = ring;
3919 	head->count++;
3920 }
3921 
3922 /**
3923  * igc_cache_ring_register - Descriptor ring to register mapping
3924  * @adapter: board private structure to initialize
3925  *
3926  * Once we know the feature-set enabled for the device, we'll cache
3927  * the register offset the descriptor ring is assigned to.
3928  */
3929 static void igc_cache_ring_register(struct igc_adapter *adapter)
3930 {
3931 	int i = 0, j = 0;
3932 
3933 	switch (adapter->hw.mac.type) {
3934 	case igc_i225:
3935 	default:
3936 		for (; i < adapter->num_rx_queues; i++)
3937 			adapter->rx_ring[i]->reg_idx = i;
3938 		for (; j < adapter->num_tx_queues; j++)
3939 			adapter->tx_ring[j]->reg_idx = j;
3940 		break;
3941 	}
3942 }
3943 
3944 /**
3945  * igc_poll - NAPI Rx polling callback
3946  * @napi: napi polling structure
3947  * @budget: count of how many packets we should handle
3948  */
3949 static int igc_poll(struct napi_struct *napi, int budget)
3950 {
3951 	struct igc_q_vector *q_vector = container_of(napi,
3952 						     struct igc_q_vector,
3953 						     napi);
3954 	struct igc_ring *rx_ring = q_vector->rx.ring;
3955 	bool clean_complete = true;
3956 	int work_done = 0;
3957 
3958 	if (q_vector->tx.ring)
3959 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3960 
3961 	if (rx_ring) {
3962 		int cleaned = rx_ring->xsk_pool ?
3963 			      igc_clean_rx_irq_zc(q_vector, budget) :
3964 			      igc_clean_rx_irq(q_vector, budget);
3965 
3966 		work_done += cleaned;
3967 		if (cleaned >= budget)
3968 			clean_complete = false;
3969 	}
3970 
3971 	/* If all work not completed, return budget and keep polling */
3972 	if (!clean_complete)
3973 		return budget;
3974 
3975 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3976 	 * poll us due to busy-polling
3977 	 */
3978 	if (likely(napi_complete_done(napi, work_done)))
3979 		igc_ring_irq_enable(q_vector);
3980 
3981 	return min(work_done, budget - 1);
3982 }
3983 
3984 /**
3985  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3986  * @adapter: board private structure to initialize
3987  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3988  * @v_idx: index of vector in adapter struct
3989  * @txr_count: total number of Tx rings to allocate
3990  * @txr_idx: index of first Tx ring to allocate
3991  * @rxr_count: total number of Rx rings to allocate
3992  * @rxr_idx: index of first Rx ring to allocate
3993  *
3994  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3995  */
3996 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3997 			      unsigned int v_count, unsigned int v_idx,
3998 			      unsigned int txr_count, unsigned int txr_idx,
3999 			      unsigned int rxr_count, unsigned int rxr_idx)
4000 {
4001 	struct igc_q_vector *q_vector;
4002 	struct igc_ring *ring;
4003 	int ring_count;
4004 
4005 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4006 	if (txr_count > 1 || rxr_count > 1)
4007 		return -ENOMEM;
4008 
4009 	ring_count = txr_count + rxr_count;
4010 
4011 	/* allocate q_vector and rings */
4012 	q_vector = adapter->q_vector[v_idx];
4013 	if (!q_vector)
4014 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4015 				   GFP_KERNEL);
4016 	else
4017 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4018 	if (!q_vector)
4019 		return -ENOMEM;
4020 
4021 	/* initialize NAPI */
4022 	netif_napi_add(adapter->netdev, &q_vector->napi,
4023 		       igc_poll, 64);
4024 
4025 	/* tie q_vector and adapter together */
4026 	adapter->q_vector[v_idx] = q_vector;
4027 	q_vector->adapter = adapter;
4028 
4029 	/* initialize work limits */
4030 	q_vector->tx.work_limit = adapter->tx_work_limit;
4031 
4032 	/* initialize ITR configuration */
4033 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4034 	q_vector->itr_val = IGC_START_ITR;
4035 
4036 	/* initialize pointer to rings */
4037 	ring = q_vector->ring;
4038 
4039 	/* initialize ITR */
4040 	if (rxr_count) {
4041 		/* rx or rx/tx vector */
4042 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4043 			q_vector->itr_val = adapter->rx_itr_setting;
4044 	} else {
4045 		/* tx only vector */
4046 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4047 			q_vector->itr_val = adapter->tx_itr_setting;
4048 	}
4049 
4050 	if (txr_count) {
4051 		/* assign generic ring traits */
4052 		ring->dev = &adapter->pdev->dev;
4053 		ring->netdev = adapter->netdev;
4054 
4055 		/* configure backlink on ring */
4056 		ring->q_vector = q_vector;
4057 
4058 		/* update q_vector Tx values */
4059 		igc_add_ring(ring, &q_vector->tx);
4060 
4061 		/* apply Tx specific ring traits */
4062 		ring->count = adapter->tx_ring_count;
4063 		ring->queue_index = txr_idx;
4064 
4065 		/* assign ring to adapter */
4066 		adapter->tx_ring[txr_idx] = ring;
4067 
4068 		/* push pointer to next ring */
4069 		ring++;
4070 	}
4071 
4072 	if (rxr_count) {
4073 		/* assign generic ring traits */
4074 		ring->dev = &adapter->pdev->dev;
4075 		ring->netdev = adapter->netdev;
4076 
4077 		/* configure backlink on ring */
4078 		ring->q_vector = q_vector;
4079 
4080 		/* update q_vector Rx values */
4081 		igc_add_ring(ring, &q_vector->rx);
4082 
4083 		/* apply Rx specific ring traits */
4084 		ring->count = adapter->rx_ring_count;
4085 		ring->queue_index = rxr_idx;
4086 
4087 		/* assign ring to adapter */
4088 		adapter->rx_ring[rxr_idx] = ring;
4089 	}
4090 
4091 	return 0;
4092 }
4093 
4094 /**
4095  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4096  * @adapter: board private structure to initialize
4097  *
4098  * We allocate one q_vector per queue interrupt.  If allocation fails we
4099  * return -ENOMEM.
4100  */
4101 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4102 {
4103 	int rxr_remaining = adapter->num_rx_queues;
4104 	int txr_remaining = adapter->num_tx_queues;
4105 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4106 	int q_vectors = adapter->num_q_vectors;
4107 	int err;
4108 
4109 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4110 		for (; rxr_remaining; v_idx++) {
4111 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4112 						 0, 0, 1, rxr_idx);
4113 
4114 			if (err)
4115 				goto err_out;
4116 
4117 			/* update counts and index */
4118 			rxr_remaining--;
4119 			rxr_idx++;
4120 		}
4121 	}
4122 
4123 	for (; v_idx < q_vectors; v_idx++) {
4124 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4125 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4126 
4127 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4128 					 tqpv, txr_idx, rqpv, rxr_idx);
4129 
4130 		if (err)
4131 			goto err_out;
4132 
4133 		/* update counts and index */
4134 		rxr_remaining -= rqpv;
4135 		txr_remaining -= tqpv;
4136 		rxr_idx++;
4137 		txr_idx++;
4138 	}
4139 
4140 	return 0;
4141 
4142 err_out:
4143 	adapter->num_tx_queues = 0;
4144 	adapter->num_rx_queues = 0;
4145 	adapter->num_q_vectors = 0;
4146 
4147 	while (v_idx--)
4148 		igc_free_q_vector(adapter, v_idx);
4149 
4150 	return -ENOMEM;
4151 }
4152 
4153 /**
4154  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4155  * @adapter: Pointer to adapter structure
4156  * @msix: boolean for MSI-X capability
4157  *
4158  * This function initializes the interrupts and allocates all of the queues.
4159  */
4160 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4161 {
4162 	struct net_device *dev = adapter->netdev;
4163 	int err = 0;
4164 
4165 	igc_set_interrupt_capability(adapter, msix);
4166 
4167 	err = igc_alloc_q_vectors(adapter);
4168 	if (err) {
4169 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4170 		goto err_alloc_q_vectors;
4171 	}
4172 
4173 	igc_cache_ring_register(adapter);
4174 
4175 	return 0;
4176 
4177 err_alloc_q_vectors:
4178 	igc_reset_interrupt_capability(adapter);
4179 	return err;
4180 }
4181 
4182 /**
4183  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4184  * @adapter: board private structure to initialize
4185  *
4186  * igc_sw_init initializes the Adapter private data structure.
4187  * Fields are initialized based on PCI device information and
4188  * OS network device settings (MTU size).
4189  */
4190 static int igc_sw_init(struct igc_adapter *adapter)
4191 {
4192 	struct net_device *netdev = adapter->netdev;
4193 	struct pci_dev *pdev = adapter->pdev;
4194 	struct igc_hw *hw = &adapter->hw;
4195 
4196 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4197 
4198 	/* set default ring sizes */
4199 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4200 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4201 
4202 	/* set default ITR values */
4203 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4204 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4205 
4206 	/* set default work limits */
4207 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4208 
4209 	/* adjust max frame to be at least the size of a standard frame */
4210 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4211 				VLAN_HLEN;
4212 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4213 
4214 	mutex_init(&adapter->nfc_rule_lock);
4215 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4216 	adapter->nfc_rule_count = 0;
4217 
4218 	spin_lock_init(&adapter->stats64_lock);
4219 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4220 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4221 
4222 	igc_init_queue_configuration(adapter);
4223 
4224 	/* This call may decrease the number of queues */
4225 	if (igc_init_interrupt_scheme(adapter, true)) {
4226 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4227 		return -ENOMEM;
4228 	}
4229 
4230 	/* Explicitly disable IRQ since the NIC can be in any state. */
4231 	igc_irq_disable(adapter);
4232 
4233 	set_bit(__IGC_DOWN, &adapter->state);
4234 
4235 	return 0;
4236 }
4237 
4238 /**
4239  * igc_up - Open the interface and prepare it to handle traffic
4240  * @adapter: board private structure
4241  */
4242 void igc_up(struct igc_adapter *adapter)
4243 {
4244 	struct igc_hw *hw = &adapter->hw;
4245 	int i = 0;
4246 
4247 	/* hardware has been reset, we need to reload some things */
4248 	igc_configure(adapter);
4249 
4250 	clear_bit(__IGC_DOWN, &adapter->state);
4251 
4252 	for (i = 0; i < adapter->num_q_vectors; i++)
4253 		napi_enable(&adapter->q_vector[i]->napi);
4254 
4255 	if (adapter->msix_entries)
4256 		igc_configure_msix(adapter);
4257 	else
4258 		igc_assign_vector(adapter->q_vector[0], 0);
4259 
4260 	/* Clear any pending interrupts. */
4261 	rd32(IGC_ICR);
4262 	igc_irq_enable(adapter);
4263 
4264 	netif_tx_start_all_queues(adapter->netdev);
4265 
4266 	/* start the watchdog. */
4267 	hw->mac.get_link_status = true;
4268 	schedule_work(&adapter->watchdog_task);
4269 }
4270 
4271 /**
4272  * igc_update_stats - Update the board statistics counters
4273  * @adapter: board private structure
4274  */
4275 void igc_update_stats(struct igc_adapter *adapter)
4276 {
4277 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4278 	struct pci_dev *pdev = adapter->pdev;
4279 	struct igc_hw *hw = &adapter->hw;
4280 	u64 _bytes, _packets;
4281 	u64 bytes, packets;
4282 	unsigned int start;
4283 	u32 mpc;
4284 	int i;
4285 
4286 	/* Prevent stats update while adapter is being reset, or if the pci
4287 	 * connection is down.
4288 	 */
4289 	if (adapter->link_speed == 0)
4290 		return;
4291 	if (pci_channel_offline(pdev))
4292 		return;
4293 
4294 	packets = 0;
4295 	bytes = 0;
4296 
4297 	rcu_read_lock();
4298 	for (i = 0; i < adapter->num_rx_queues; i++) {
4299 		struct igc_ring *ring = adapter->rx_ring[i];
4300 		u32 rqdpc = rd32(IGC_RQDPC(i));
4301 
4302 		if (hw->mac.type >= igc_i225)
4303 			wr32(IGC_RQDPC(i), 0);
4304 
4305 		if (rqdpc) {
4306 			ring->rx_stats.drops += rqdpc;
4307 			net_stats->rx_fifo_errors += rqdpc;
4308 		}
4309 
4310 		do {
4311 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4312 			_bytes = ring->rx_stats.bytes;
4313 			_packets = ring->rx_stats.packets;
4314 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4315 		bytes += _bytes;
4316 		packets += _packets;
4317 	}
4318 
4319 	net_stats->rx_bytes = bytes;
4320 	net_stats->rx_packets = packets;
4321 
4322 	packets = 0;
4323 	bytes = 0;
4324 	for (i = 0; i < adapter->num_tx_queues; i++) {
4325 		struct igc_ring *ring = adapter->tx_ring[i];
4326 
4327 		do {
4328 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4329 			_bytes = ring->tx_stats.bytes;
4330 			_packets = ring->tx_stats.packets;
4331 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4332 		bytes += _bytes;
4333 		packets += _packets;
4334 	}
4335 	net_stats->tx_bytes = bytes;
4336 	net_stats->tx_packets = packets;
4337 	rcu_read_unlock();
4338 
4339 	/* read stats registers */
4340 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4341 	adapter->stats.gprc += rd32(IGC_GPRC);
4342 	adapter->stats.gorc += rd32(IGC_GORCL);
4343 	rd32(IGC_GORCH); /* clear GORCL */
4344 	adapter->stats.bprc += rd32(IGC_BPRC);
4345 	adapter->stats.mprc += rd32(IGC_MPRC);
4346 	adapter->stats.roc += rd32(IGC_ROC);
4347 
4348 	adapter->stats.prc64 += rd32(IGC_PRC64);
4349 	adapter->stats.prc127 += rd32(IGC_PRC127);
4350 	adapter->stats.prc255 += rd32(IGC_PRC255);
4351 	adapter->stats.prc511 += rd32(IGC_PRC511);
4352 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4353 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4354 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4355 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4356 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4357 
4358 	mpc = rd32(IGC_MPC);
4359 	adapter->stats.mpc += mpc;
4360 	net_stats->rx_fifo_errors += mpc;
4361 	adapter->stats.scc += rd32(IGC_SCC);
4362 	adapter->stats.ecol += rd32(IGC_ECOL);
4363 	adapter->stats.mcc += rd32(IGC_MCC);
4364 	adapter->stats.latecol += rd32(IGC_LATECOL);
4365 	adapter->stats.dc += rd32(IGC_DC);
4366 	adapter->stats.rlec += rd32(IGC_RLEC);
4367 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4368 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4369 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4370 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4371 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4372 	adapter->stats.gptc += rd32(IGC_GPTC);
4373 	adapter->stats.gotc += rd32(IGC_GOTCL);
4374 	rd32(IGC_GOTCH); /* clear GOTCL */
4375 	adapter->stats.rnbc += rd32(IGC_RNBC);
4376 	adapter->stats.ruc += rd32(IGC_RUC);
4377 	adapter->stats.rfc += rd32(IGC_RFC);
4378 	adapter->stats.rjc += rd32(IGC_RJC);
4379 	adapter->stats.tor += rd32(IGC_TORH);
4380 	adapter->stats.tot += rd32(IGC_TOTH);
4381 	adapter->stats.tpr += rd32(IGC_TPR);
4382 
4383 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4384 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4385 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4386 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4387 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4388 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4389 
4390 	adapter->stats.mptc += rd32(IGC_MPTC);
4391 	adapter->stats.bptc += rd32(IGC_BPTC);
4392 
4393 	adapter->stats.tpt += rd32(IGC_TPT);
4394 	adapter->stats.colc += rd32(IGC_COLC);
4395 	adapter->stats.colc += rd32(IGC_RERC);
4396 
4397 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4398 
4399 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4400 
4401 	adapter->stats.iac += rd32(IGC_IAC);
4402 
4403 	/* Fill out the OS statistics structure */
4404 	net_stats->multicast = adapter->stats.mprc;
4405 	net_stats->collisions = adapter->stats.colc;
4406 
4407 	/* Rx Errors */
4408 
4409 	/* RLEC on some newer hardware can be incorrect so build
4410 	 * our own version based on RUC and ROC
4411 	 */
4412 	net_stats->rx_errors = adapter->stats.rxerrc +
4413 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4414 		adapter->stats.ruc + adapter->stats.roc +
4415 		adapter->stats.cexterr;
4416 	net_stats->rx_length_errors = adapter->stats.ruc +
4417 				      adapter->stats.roc;
4418 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4419 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4420 	net_stats->rx_missed_errors = adapter->stats.mpc;
4421 
4422 	/* Tx Errors */
4423 	net_stats->tx_errors = adapter->stats.ecol +
4424 			       adapter->stats.latecol;
4425 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4426 	net_stats->tx_window_errors = adapter->stats.latecol;
4427 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4428 
4429 	/* Tx Dropped needs to be maintained elsewhere */
4430 
4431 	/* Management Stats */
4432 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4433 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4434 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4435 }
4436 
4437 /**
4438  * igc_down - Close the interface
4439  * @adapter: board private structure
4440  */
4441 void igc_down(struct igc_adapter *adapter)
4442 {
4443 	struct net_device *netdev = adapter->netdev;
4444 	struct igc_hw *hw = &adapter->hw;
4445 	u32 tctl, rctl;
4446 	int i = 0;
4447 
4448 	set_bit(__IGC_DOWN, &adapter->state);
4449 
4450 	igc_ptp_suspend(adapter);
4451 
4452 	/* disable receives in the hardware */
4453 	rctl = rd32(IGC_RCTL);
4454 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4455 	/* flush and sleep below */
4456 
4457 	/* set trans_start so we don't get spurious watchdogs during reset */
4458 	netif_trans_update(netdev);
4459 
4460 	netif_carrier_off(netdev);
4461 	netif_tx_stop_all_queues(netdev);
4462 
4463 	/* disable transmits in the hardware */
4464 	tctl = rd32(IGC_TCTL);
4465 	tctl &= ~IGC_TCTL_EN;
4466 	wr32(IGC_TCTL, tctl);
4467 	/* flush both disables and wait for them to finish */
4468 	wrfl();
4469 	usleep_range(10000, 20000);
4470 
4471 	igc_irq_disable(adapter);
4472 
4473 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4474 
4475 	for (i = 0; i < adapter->num_q_vectors; i++) {
4476 		if (adapter->q_vector[i]) {
4477 			napi_synchronize(&adapter->q_vector[i]->napi);
4478 			napi_disable(&adapter->q_vector[i]->napi);
4479 		}
4480 	}
4481 
4482 	del_timer_sync(&adapter->watchdog_timer);
4483 	del_timer_sync(&adapter->phy_info_timer);
4484 
4485 	/* record the stats before reset*/
4486 	spin_lock(&adapter->stats64_lock);
4487 	igc_update_stats(adapter);
4488 	spin_unlock(&adapter->stats64_lock);
4489 
4490 	adapter->link_speed = 0;
4491 	adapter->link_duplex = 0;
4492 
4493 	if (!pci_channel_offline(adapter->pdev))
4494 		igc_reset(adapter);
4495 
4496 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4497 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4498 
4499 	igc_clean_all_tx_rings(adapter);
4500 	igc_clean_all_rx_rings(adapter);
4501 }
4502 
4503 void igc_reinit_locked(struct igc_adapter *adapter)
4504 {
4505 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4506 		usleep_range(1000, 2000);
4507 	igc_down(adapter);
4508 	igc_up(adapter);
4509 	clear_bit(__IGC_RESETTING, &adapter->state);
4510 }
4511 
4512 static void igc_reset_task(struct work_struct *work)
4513 {
4514 	struct igc_adapter *adapter;
4515 
4516 	adapter = container_of(work, struct igc_adapter, reset_task);
4517 
4518 	rtnl_lock();
4519 	/* If we're already down or resetting, just bail */
4520 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4521 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4522 		rtnl_unlock();
4523 		return;
4524 	}
4525 
4526 	igc_rings_dump(adapter);
4527 	igc_regs_dump(adapter);
4528 	netdev_err(adapter->netdev, "Reset adapter\n");
4529 	igc_reinit_locked(adapter);
4530 	rtnl_unlock();
4531 }
4532 
4533 /**
4534  * igc_change_mtu - Change the Maximum Transfer Unit
4535  * @netdev: network interface device structure
4536  * @new_mtu: new value for maximum frame size
4537  *
4538  * Returns 0 on success, negative on failure
4539  */
4540 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4541 {
4542 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4543 	struct igc_adapter *adapter = netdev_priv(netdev);
4544 
4545 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4546 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4547 		return -EINVAL;
4548 	}
4549 
4550 	/* adjust max frame to be at least the size of a standard frame */
4551 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4552 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4553 
4554 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4555 		usleep_range(1000, 2000);
4556 
4557 	/* igc_down has a dependency on max_frame_size */
4558 	adapter->max_frame_size = max_frame;
4559 
4560 	if (netif_running(netdev))
4561 		igc_down(adapter);
4562 
4563 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4564 	netdev->mtu = new_mtu;
4565 
4566 	if (netif_running(netdev))
4567 		igc_up(adapter);
4568 	else
4569 		igc_reset(adapter);
4570 
4571 	clear_bit(__IGC_RESETTING, &adapter->state);
4572 
4573 	return 0;
4574 }
4575 
4576 /**
4577  * igc_get_stats64 - Get System Network Statistics
4578  * @netdev: network interface device structure
4579  * @stats: rtnl_link_stats64 pointer
4580  *
4581  * Returns the address of the device statistics structure.
4582  * The statistics are updated here and also from the timer callback.
4583  */
4584 static void igc_get_stats64(struct net_device *netdev,
4585 			    struct rtnl_link_stats64 *stats)
4586 {
4587 	struct igc_adapter *adapter = netdev_priv(netdev);
4588 
4589 	spin_lock(&adapter->stats64_lock);
4590 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4591 		igc_update_stats(adapter);
4592 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4593 	spin_unlock(&adapter->stats64_lock);
4594 }
4595 
4596 static netdev_features_t igc_fix_features(struct net_device *netdev,
4597 					  netdev_features_t features)
4598 {
4599 	/* Since there is no support for separate Rx/Tx vlan accel
4600 	 * enable/disable make sure Tx flag is always in same state as Rx.
4601 	 */
4602 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4603 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4604 	else
4605 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4606 
4607 	return features;
4608 }
4609 
4610 static int igc_set_features(struct net_device *netdev,
4611 			    netdev_features_t features)
4612 {
4613 	netdev_features_t changed = netdev->features ^ features;
4614 	struct igc_adapter *adapter = netdev_priv(netdev);
4615 
4616 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4617 		igc_vlan_mode(netdev, features);
4618 
4619 	/* Add VLAN support */
4620 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4621 		return 0;
4622 
4623 	if (!(features & NETIF_F_NTUPLE))
4624 		igc_flush_nfc_rules(adapter);
4625 
4626 	netdev->features = features;
4627 
4628 	if (netif_running(netdev))
4629 		igc_reinit_locked(adapter);
4630 	else
4631 		igc_reset(adapter);
4632 
4633 	return 1;
4634 }
4635 
4636 static netdev_features_t
4637 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4638 		   netdev_features_t features)
4639 {
4640 	unsigned int network_hdr_len, mac_hdr_len;
4641 
4642 	/* Make certain the headers can be described by a context descriptor */
4643 	mac_hdr_len = skb_network_header(skb) - skb->data;
4644 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4645 		return features & ~(NETIF_F_HW_CSUM |
4646 				    NETIF_F_SCTP_CRC |
4647 				    NETIF_F_HW_VLAN_CTAG_TX |
4648 				    NETIF_F_TSO |
4649 				    NETIF_F_TSO6);
4650 
4651 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4652 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4653 		return features & ~(NETIF_F_HW_CSUM |
4654 				    NETIF_F_SCTP_CRC |
4655 				    NETIF_F_TSO |
4656 				    NETIF_F_TSO6);
4657 
4658 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4659 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4660 	 */
4661 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4662 		features &= ~NETIF_F_TSO;
4663 
4664 	return features;
4665 }
4666 
4667 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4668 {
4669 	u32 ack, tsauxc, sec, nsec, tsicr;
4670 	struct igc_hw *hw = &adapter->hw;
4671 	struct ptp_clock_event event;
4672 	struct timespec64 ts;
4673 
4674 	tsicr = rd32(IGC_TSICR);
4675 	ack = 0;
4676 
4677 	if (tsicr & IGC_TSICR_SYS_WRAP) {
4678 		event.type = PTP_CLOCK_PPS;
4679 		if (adapter->ptp_caps.pps)
4680 			ptp_clock_event(adapter->ptp_clock, &event);
4681 		ack |= IGC_TSICR_SYS_WRAP;
4682 	}
4683 
4684 	if (tsicr & IGC_TSICR_TXTS) {
4685 		/* retrieve hardware timestamp */
4686 		schedule_work(&adapter->ptp_tx_work);
4687 		ack |= IGC_TSICR_TXTS;
4688 	}
4689 
4690 	if (tsicr & IGC_TSICR_TT0) {
4691 		spin_lock(&adapter->tmreg_lock);
4692 		ts = timespec64_add(adapter->perout[0].start,
4693 				    adapter->perout[0].period);
4694 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4695 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4696 		tsauxc = rd32(IGC_TSAUXC);
4697 		tsauxc |= IGC_TSAUXC_EN_TT0;
4698 		wr32(IGC_TSAUXC, tsauxc);
4699 		adapter->perout[0].start = ts;
4700 		spin_unlock(&adapter->tmreg_lock);
4701 		ack |= IGC_TSICR_TT0;
4702 	}
4703 
4704 	if (tsicr & IGC_TSICR_TT1) {
4705 		spin_lock(&adapter->tmreg_lock);
4706 		ts = timespec64_add(adapter->perout[1].start,
4707 				    adapter->perout[1].period);
4708 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4709 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4710 		tsauxc = rd32(IGC_TSAUXC);
4711 		tsauxc |= IGC_TSAUXC_EN_TT1;
4712 		wr32(IGC_TSAUXC, tsauxc);
4713 		adapter->perout[1].start = ts;
4714 		spin_unlock(&adapter->tmreg_lock);
4715 		ack |= IGC_TSICR_TT1;
4716 	}
4717 
4718 	if (tsicr & IGC_TSICR_AUTT0) {
4719 		nsec = rd32(IGC_AUXSTMPL0);
4720 		sec  = rd32(IGC_AUXSTMPH0);
4721 		event.type = PTP_CLOCK_EXTTS;
4722 		event.index = 0;
4723 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4724 		ptp_clock_event(adapter->ptp_clock, &event);
4725 		ack |= IGC_TSICR_AUTT0;
4726 	}
4727 
4728 	if (tsicr & IGC_TSICR_AUTT1) {
4729 		nsec = rd32(IGC_AUXSTMPL1);
4730 		sec  = rd32(IGC_AUXSTMPH1);
4731 		event.type = PTP_CLOCK_EXTTS;
4732 		event.index = 1;
4733 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4734 		ptp_clock_event(adapter->ptp_clock, &event);
4735 		ack |= IGC_TSICR_AUTT1;
4736 	}
4737 
4738 	/* acknowledge the interrupts */
4739 	wr32(IGC_TSICR, ack);
4740 }
4741 
4742 /**
4743  * igc_msix_other - msix other interrupt handler
4744  * @irq: interrupt number
4745  * @data: pointer to a q_vector
4746  */
4747 static irqreturn_t igc_msix_other(int irq, void *data)
4748 {
4749 	struct igc_adapter *adapter = data;
4750 	struct igc_hw *hw = &adapter->hw;
4751 	u32 icr = rd32(IGC_ICR);
4752 
4753 	/* reading ICR causes bit 31 of EICR to be cleared */
4754 	if (icr & IGC_ICR_DRSTA)
4755 		schedule_work(&adapter->reset_task);
4756 
4757 	if (icr & IGC_ICR_DOUTSYNC) {
4758 		/* HW is reporting DMA is out of sync */
4759 		adapter->stats.doosync++;
4760 	}
4761 
4762 	if (icr & IGC_ICR_LSC) {
4763 		hw->mac.get_link_status = true;
4764 		/* guard against interrupt when we're going down */
4765 		if (!test_bit(__IGC_DOWN, &adapter->state))
4766 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4767 	}
4768 
4769 	if (icr & IGC_ICR_TS)
4770 		igc_tsync_interrupt(adapter);
4771 
4772 	wr32(IGC_EIMS, adapter->eims_other);
4773 
4774 	return IRQ_HANDLED;
4775 }
4776 
4777 static void igc_write_itr(struct igc_q_vector *q_vector)
4778 {
4779 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4780 
4781 	if (!q_vector->set_itr)
4782 		return;
4783 
4784 	if (!itr_val)
4785 		itr_val = IGC_ITR_VAL_MASK;
4786 
4787 	itr_val |= IGC_EITR_CNT_IGNR;
4788 
4789 	writel(itr_val, q_vector->itr_register);
4790 	q_vector->set_itr = 0;
4791 }
4792 
4793 static irqreturn_t igc_msix_ring(int irq, void *data)
4794 {
4795 	struct igc_q_vector *q_vector = data;
4796 
4797 	/* Write the ITR value calculated from the previous interrupt. */
4798 	igc_write_itr(q_vector);
4799 
4800 	napi_schedule(&q_vector->napi);
4801 
4802 	return IRQ_HANDLED;
4803 }
4804 
4805 /**
4806  * igc_request_msix - Initialize MSI-X interrupts
4807  * @adapter: Pointer to adapter structure
4808  *
4809  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4810  * kernel.
4811  */
4812 static int igc_request_msix(struct igc_adapter *adapter)
4813 {
4814 	int i = 0, err = 0, vector = 0, free_vector = 0;
4815 	struct net_device *netdev = adapter->netdev;
4816 
4817 	err = request_irq(adapter->msix_entries[vector].vector,
4818 			  &igc_msix_other, 0, netdev->name, adapter);
4819 	if (err)
4820 		goto err_out;
4821 
4822 	for (i = 0; i < adapter->num_q_vectors; i++) {
4823 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4824 
4825 		vector++;
4826 
4827 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4828 
4829 		if (q_vector->rx.ring && q_vector->tx.ring)
4830 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4831 				q_vector->rx.ring->queue_index);
4832 		else if (q_vector->tx.ring)
4833 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4834 				q_vector->tx.ring->queue_index);
4835 		else if (q_vector->rx.ring)
4836 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4837 				q_vector->rx.ring->queue_index);
4838 		else
4839 			sprintf(q_vector->name, "%s-unused", netdev->name);
4840 
4841 		err = request_irq(adapter->msix_entries[vector].vector,
4842 				  igc_msix_ring, 0, q_vector->name,
4843 				  q_vector);
4844 		if (err)
4845 			goto err_free;
4846 	}
4847 
4848 	igc_configure_msix(adapter);
4849 	return 0;
4850 
4851 err_free:
4852 	/* free already assigned IRQs */
4853 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4854 
4855 	vector--;
4856 	for (i = 0; i < vector; i++) {
4857 		free_irq(adapter->msix_entries[free_vector++].vector,
4858 			 adapter->q_vector[i]);
4859 	}
4860 err_out:
4861 	return err;
4862 }
4863 
4864 /**
4865  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4866  * @adapter: Pointer to adapter structure
4867  *
4868  * This function resets the device so that it has 0 rx queues, tx queues, and
4869  * MSI-X interrupts allocated.
4870  */
4871 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4872 {
4873 	igc_free_q_vectors(adapter);
4874 	igc_reset_interrupt_capability(adapter);
4875 }
4876 
4877 /* Need to wait a few seconds after link up to get diagnostic information from
4878  * the phy
4879  */
4880 static void igc_update_phy_info(struct timer_list *t)
4881 {
4882 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4883 
4884 	igc_get_phy_info(&adapter->hw);
4885 }
4886 
4887 /**
4888  * igc_has_link - check shared code for link and determine up/down
4889  * @adapter: pointer to driver private info
4890  */
4891 bool igc_has_link(struct igc_adapter *adapter)
4892 {
4893 	struct igc_hw *hw = &adapter->hw;
4894 	bool link_active = false;
4895 
4896 	/* get_link_status is set on LSC (link status) interrupt or
4897 	 * rx sequence error interrupt.  get_link_status will stay
4898 	 * false until the igc_check_for_link establishes link
4899 	 * for copper adapters ONLY
4900 	 */
4901 	switch (hw->phy.media_type) {
4902 	case igc_media_type_copper:
4903 		if (!hw->mac.get_link_status)
4904 			return true;
4905 		hw->mac.ops.check_for_link(hw);
4906 		link_active = !hw->mac.get_link_status;
4907 		break;
4908 	default:
4909 	case igc_media_type_unknown:
4910 		break;
4911 	}
4912 
4913 	if (hw->mac.type == igc_i225 &&
4914 	    hw->phy.id == I225_I_PHY_ID) {
4915 		if (!netif_carrier_ok(adapter->netdev)) {
4916 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4917 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4918 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4919 			adapter->link_check_timeout = jiffies;
4920 		}
4921 	}
4922 
4923 	return link_active;
4924 }
4925 
4926 /**
4927  * igc_watchdog - Timer Call-back
4928  * @t: timer for the watchdog
4929  */
4930 static void igc_watchdog(struct timer_list *t)
4931 {
4932 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4933 	/* Do the rest outside of interrupt context */
4934 	schedule_work(&adapter->watchdog_task);
4935 }
4936 
4937 static void igc_watchdog_task(struct work_struct *work)
4938 {
4939 	struct igc_adapter *adapter = container_of(work,
4940 						   struct igc_adapter,
4941 						   watchdog_task);
4942 	struct net_device *netdev = adapter->netdev;
4943 	struct igc_hw *hw = &adapter->hw;
4944 	struct igc_phy_info *phy = &hw->phy;
4945 	u16 phy_data, retry_count = 20;
4946 	u32 link;
4947 	int i;
4948 
4949 	link = igc_has_link(adapter);
4950 
4951 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4952 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4953 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4954 		else
4955 			link = false;
4956 	}
4957 
4958 	if (link) {
4959 		/* Cancel scheduled suspend requests. */
4960 		pm_runtime_resume(netdev->dev.parent);
4961 
4962 		if (!netif_carrier_ok(netdev)) {
4963 			u32 ctrl;
4964 
4965 			hw->mac.ops.get_speed_and_duplex(hw,
4966 							 &adapter->link_speed,
4967 							 &adapter->link_duplex);
4968 
4969 			ctrl = rd32(IGC_CTRL);
4970 			/* Link status message must follow this format */
4971 			netdev_info(netdev,
4972 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4973 				    adapter->link_speed,
4974 				    adapter->link_duplex == FULL_DUPLEX ?
4975 				    "Full" : "Half",
4976 				    (ctrl & IGC_CTRL_TFCE) &&
4977 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4978 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4979 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4980 
4981 			/* disable EEE if enabled */
4982 			if ((adapter->flags & IGC_FLAG_EEE) &&
4983 			    adapter->link_duplex == HALF_DUPLEX) {
4984 				netdev_info(netdev,
4985 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4986 				adapter->hw.dev_spec._base.eee_enable = false;
4987 				adapter->flags &= ~IGC_FLAG_EEE;
4988 			}
4989 
4990 			/* check if SmartSpeed worked */
4991 			igc_check_downshift(hw);
4992 			if (phy->speed_downgraded)
4993 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4994 
4995 			/* adjust timeout factor according to speed/duplex */
4996 			adapter->tx_timeout_factor = 1;
4997 			switch (adapter->link_speed) {
4998 			case SPEED_10:
4999 				adapter->tx_timeout_factor = 14;
5000 				break;
5001 			case SPEED_100:
5002 				/* maybe add some timeout factor ? */
5003 				break;
5004 			}
5005 
5006 			if (adapter->link_speed != SPEED_1000)
5007 				goto no_wait;
5008 
5009 			/* wait for Remote receiver status OK */
5010 retry_read_status:
5011 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5012 					      &phy_data)) {
5013 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5014 				    retry_count) {
5015 					msleep(100);
5016 					retry_count--;
5017 					goto retry_read_status;
5018 				} else if (!retry_count) {
5019 					netdev_err(netdev, "exceed max 2 second\n");
5020 				}
5021 			} else {
5022 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5023 			}
5024 no_wait:
5025 			netif_carrier_on(netdev);
5026 
5027 			/* link state has changed, schedule phy info update */
5028 			if (!test_bit(__IGC_DOWN, &adapter->state))
5029 				mod_timer(&adapter->phy_info_timer,
5030 					  round_jiffies(jiffies + 2 * HZ));
5031 		}
5032 	} else {
5033 		if (netif_carrier_ok(netdev)) {
5034 			adapter->link_speed = 0;
5035 			adapter->link_duplex = 0;
5036 
5037 			/* Links status message must follow this format */
5038 			netdev_info(netdev, "NIC Link is Down\n");
5039 			netif_carrier_off(netdev);
5040 
5041 			/* link state has changed, schedule phy info update */
5042 			if (!test_bit(__IGC_DOWN, &adapter->state))
5043 				mod_timer(&adapter->phy_info_timer,
5044 					  round_jiffies(jiffies + 2 * HZ));
5045 
5046 			/* link is down, time to check for alternate media */
5047 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5048 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5049 					schedule_work(&adapter->reset_task);
5050 					/* return immediately */
5051 					return;
5052 				}
5053 			}
5054 			pm_schedule_suspend(netdev->dev.parent,
5055 					    MSEC_PER_SEC * 5);
5056 
5057 		/* also check for alternate media here */
5058 		} else if (!netif_carrier_ok(netdev) &&
5059 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5060 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5061 				schedule_work(&adapter->reset_task);
5062 				/* return immediately */
5063 				return;
5064 			}
5065 		}
5066 	}
5067 
5068 	spin_lock(&adapter->stats64_lock);
5069 	igc_update_stats(adapter);
5070 	spin_unlock(&adapter->stats64_lock);
5071 
5072 	for (i = 0; i < adapter->num_tx_queues; i++) {
5073 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5074 
5075 		if (!netif_carrier_ok(netdev)) {
5076 			/* We've lost link, so the controller stops DMA,
5077 			 * but we've got queued Tx work that's never going
5078 			 * to get done, so reset controller to flush Tx.
5079 			 * (Do the reset outside of interrupt context).
5080 			 */
5081 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5082 				adapter->tx_timeout_count++;
5083 				schedule_work(&adapter->reset_task);
5084 				/* return immediately since reset is imminent */
5085 				return;
5086 			}
5087 		}
5088 
5089 		/* Force detection of hung controller every watchdog period */
5090 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5091 	}
5092 
5093 	/* Cause software interrupt to ensure Rx ring is cleaned */
5094 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5095 		u32 eics = 0;
5096 
5097 		for (i = 0; i < adapter->num_q_vectors; i++)
5098 			eics |= adapter->q_vector[i]->eims_value;
5099 		wr32(IGC_EICS, eics);
5100 	} else {
5101 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5102 	}
5103 
5104 	igc_ptp_tx_hang(adapter);
5105 
5106 	/* Reset the timer */
5107 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5108 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5109 			mod_timer(&adapter->watchdog_timer,
5110 				  round_jiffies(jiffies +  HZ));
5111 		else
5112 			mod_timer(&adapter->watchdog_timer,
5113 				  round_jiffies(jiffies + 2 * HZ));
5114 	}
5115 }
5116 
5117 /**
5118  * igc_intr_msi - Interrupt Handler
5119  * @irq: interrupt number
5120  * @data: pointer to a network interface device structure
5121  */
5122 static irqreturn_t igc_intr_msi(int irq, void *data)
5123 {
5124 	struct igc_adapter *adapter = data;
5125 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5126 	struct igc_hw *hw = &adapter->hw;
5127 	/* read ICR disables interrupts using IAM */
5128 	u32 icr = rd32(IGC_ICR);
5129 
5130 	igc_write_itr(q_vector);
5131 
5132 	if (icr & IGC_ICR_DRSTA)
5133 		schedule_work(&adapter->reset_task);
5134 
5135 	if (icr & IGC_ICR_DOUTSYNC) {
5136 		/* HW is reporting DMA is out of sync */
5137 		adapter->stats.doosync++;
5138 	}
5139 
5140 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5141 		hw->mac.get_link_status = true;
5142 		if (!test_bit(__IGC_DOWN, &adapter->state))
5143 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5144 	}
5145 
5146 	napi_schedule(&q_vector->napi);
5147 
5148 	return IRQ_HANDLED;
5149 }
5150 
5151 /**
5152  * igc_intr - Legacy Interrupt Handler
5153  * @irq: interrupt number
5154  * @data: pointer to a network interface device structure
5155  */
5156 static irqreturn_t igc_intr(int irq, void *data)
5157 {
5158 	struct igc_adapter *adapter = data;
5159 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5160 	struct igc_hw *hw = &adapter->hw;
5161 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5162 	 * need for the IMC write
5163 	 */
5164 	u32 icr = rd32(IGC_ICR);
5165 
5166 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5167 	 * not set, then the adapter didn't send an interrupt
5168 	 */
5169 	if (!(icr & IGC_ICR_INT_ASSERTED))
5170 		return IRQ_NONE;
5171 
5172 	igc_write_itr(q_vector);
5173 
5174 	if (icr & IGC_ICR_DRSTA)
5175 		schedule_work(&adapter->reset_task);
5176 
5177 	if (icr & IGC_ICR_DOUTSYNC) {
5178 		/* HW is reporting DMA is out of sync */
5179 		adapter->stats.doosync++;
5180 	}
5181 
5182 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5183 		hw->mac.get_link_status = true;
5184 		/* guard against interrupt when we're going down */
5185 		if (!test_bit(__IGC_DOWN, &adapter->state))
5186 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5187 	}
5188 
5189 	napi_schedule(&q_vector->napi);
5190 
5191 	return IRQ_HANDLED;
5192 }
5193 
5194 static void igc_free_irq(struct igc_adapter *adapter)
5195 {
5196 	if (adapter->msix_entries) {
5197 		int vector = 0, i;
5198 
5199 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5200 
5201 		for (i = 0; i < adapter->num_q_vectors; i++)
5202 			free_irq(adapter->msix_entries[vector++].vector,
5203 				 adapter->q_vector[i]);
5204 	} else {
5205 		free_irq(adapter->pdev->irq, adapter);
5206 	}
5207 }
5208 
5209 /**
5210  * igc_request_irq - initialize interrupts
5211  * @adapter: Pointer to adapter structure
5212  *
5213  * Attempts to configure interrupts using the best available
5214  * capabilities of the hardware and kernel.
5215  */
5216 static int igc_request_irq(struct igc_adapter *adapter)
5217 {
5218 	struct net_device *netdev = adapter->netdev;
5219 	struct pci_dev *pdev = adapter->pdev;
5220 	int err = 0;
5221 
5222 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5223 		err = igc_request_msix(adapter);
5224 		if (!err)
5225 			goto request_done;
5226 		/* fall back to MSI */
5227 		igc_free_all_tx_resources(adapter);
5228 		igc_free_all_rx_resources(adapter);
5229 
5230 		igc_clear_interrupt_scheme(adapter);
5231 		err = igc_init_interrupt_scheme(adapter, false);
5232 		if (err)
5233 			goto request_done;
5234 		igc_setup_all_tx_resources(adapter);
5235 		igc_setup_all_rx_resources(adapter);
5236 		igc_configure(adapter);
5237 	}
5238 
5239 	igc_assign_vector(adapter->q_vector[0], 0);
5240 
5241 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5242 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5243 				  netdev->name, adapter);
5244 		if (!err)
5245 			goto request_done;
5246 
5247 		/* fall back to legacy interrupts */
5248 		igc_reset_interrupt_capability(adapter);
5249 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5250 	}
5251 
5252 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5253 			  netdev->name, adapter);
5254 
5255 	if (err)
5256 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5257 
5258 request_done:
5259 	return err;
5260 }
5261 
5262 /**
5263  * __igc_open - Called when a network interface is made active
5264  * @netdev: network interface device structure
5265  * @resuming: boolean indicating if the device is resuming
5266  *
5267  * Returns 0 on success, negative value on failure
5268  *
5269  * The open entry point is called when a network interface is made
5270  * active by the system (IFF_UP).  At this point all resources needed
5271  * for transmit and receive operations are allocated, the interrupt
5272  * handler is registered with the OS, the watchdog timer is started,
5273  * and the stack is notified that the interface is ready.
5274  */
5275 static int __igc_open(struct net_device *netdev, bool resuming)
5276 {
5277 	struct igc_adapter *adapter = netdev_priv(netdev);
5278 	struct pci_dev *pdev = adapter->pdev;
5279 	struct igc_hw *hw = &adapter->hw;
5280 	int err = 0;
5281 	int i = 0;
5282 
5283 	/* disallow open during test */
5284 
5285 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5286 		WARN_ON(resuming);
5287 		return -EBUSY;
5288 	}
5289 
5290 	if (!resuming)
5291 		pm_runtime_get_sync(&pdev->dev);
5292 
5293 	netif_carrier_off(netdev);
5294 
5295 	/* allocate transmit descriptors */
5296 	err = igc_setup_all_tx_resources(adapter);
5297 	if (err)
5298 		goto err_setup_tx;
5299 
5300 	/* allocate receive descriptors */
5301 	err = igc_setup_all_rx_resources(adapter);
5302 	if (err)
5303 		goto err_setup_rx;
5304 
5305 	igc_power_up_link(adapter);
5306 
5307 	igc_configure(adapter);
5308 
5309 	err = igc_request_irq(adapter);
5310 	if (err)
5311 		goto err_req_irq;
5312 
5313 	/* Notify the stack of the actual queue counts. */
5314 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5315 	if (err)
5316 		goto err_set_queues;
5317 
5318 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5319 	if (err)
5320 		goto err_set_queues;
5321 
5322 	clear_bit(__IGC_DOWN, &adapter->state);
5323 
5324 	for (i = 0; i < adapter->num_q_vectors; i++)
5325 		napi_enable(&adapter->q_vector[i]->napi);
5326 
5327 	/* Clear any pending interrupts. */
5328 	rd32(IGC_ICR);
5329 	igc_irq_enable(adapter);
5330 
5331 	if (!resuming)
5332 		pm_runtime_put(&pdev->dev);
5333 
5334 	netif_tx_start_all_queues(netdev);
5335 
5336 	/* start the watchdog. */
5337 	hw->mac.get_link_status = true;
5338 	schedule_work(&adapter->watchdog_task);
5339 
5340 	return IGC_SUCCESS;
5341 
5342 err_set_queues:
5343 	igc_free_irq(adapter);
5344 err_req_irq:
5345 	igc_release_hw_control(adapter);
5346 	igc_power_down_phy_copper_base(&adapter->hw);
5347 	igc_free_all_rx_resources(adapter);
5348 err_setup_rx:
5349 	igc_free_all_tx_resources(adapter);
5350 err_setup_tx:
5351 	igc_reset(adapter);
5352 	if (!resuming)
5353 		pm_runtime_put(&pdev->dev);
5354 
5355 	return err;
5356 }
5357 
5358 int igc_open(struct net_device *netdev)
5359 {
5360 	return __igc_open(netdev, false);
5361 }
5362 
5363 /**
5364  * __igc_close - Disables a network interface
5365  * @netdev: network interface device structure
5366  * @suspending: boolean indicating the device is suspending
5367  *
5368  * Returns 0, this is not allowed to fail
5369  *
5370  * The close entry point is called when an interface is de-activated
5371  * by the OS.  The hardware is still under the driver's control, but
5372  * needs to be disabled.  A global MAC reset is issued to stop the
5373  * hardware, and all transmit and receive resources are freed.
5374  */
5375 static int __igc_close(struct net_device *netdev, bool suspending)
5376 {
5377 	struct igc_adapter *adapter = netdev_priv(netdev);
5378 	struct pci_dev *pdev = adapter->pdev;
5379 
5380 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5381 
5382 	if (!suspending)
5383 		pm_runtime_get_sync(&pdev->dev);
5384 
5385 	igc_down(adapter);
5386 
5387 	igc_release_hw_control(adapter);
5388 
5389 	igc_free_irq(adapter);
5390 
5391 	igc_free_all_tx_resources(adapter);
5392 	igc_free_all_rx_resources(adapter);
5393 
5394 	if (!suspending)
5395 		pm_runtime_put_sync(&pdev->dev);
5396 
5397 	return 0;
5398 }
5399 
5400 int igc_close(struct net_device *netdev)
5401 {
5402 	if (netif_device_present(netdev) || netdev->dismantle)
5403 		return __igc_close(netdev, false);
5404 	return 0;
5405 }
5406 
5407 /**
5408  * igc_ioctl - Access the hwtstamp interface
5409  * @netdev: network interface device structure
5410  * @ifr: interface request data
5411  * @cmd: ioctl command
5412  **/
5413 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5414 {
5415 	switch (cmd) {
5416 	case SIOCGHWTSTAMP:
5417 		return igc_ptp_get_ts_config(netdev, ifr);
5418 	case SIOCSHWTSTAMP:
5419 		return igc_ptp_set_ts_config(netdev, ifr);
5420 	default:
5421 		return -EOPNOTSUPP;
5422 	}
5423 }
5424 
5425 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5426 				      bool enable)
5427 {
5428 	struct igc_ring *ring;
5429 	int i;
5430 
5431 	if (queue < 0 || queue >= adapter->num_tx_queues)
5432 		return -EINVAL;
5433 
5434 	ring = adapter->tx_ring[queue];
5435 	ring->launchtime_enable = enable;
5436 
5437 	if (adapter->base_time)
5438 		return 0;
5439 
5440 	adapter->cycle_time = NSEC_PER_SEC;
5441 
5442 	for (i = 0; i < adapter->num_tx_queues; i++) {
5443 		ring = adapter->tx_ring[i];
5444 		ring->start_time = 0;
5445 		ring->end_time = NSEC_PER_SEC;
5446 	}
5447 
5448 	return 0;
5449 }
5450 
5451 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5452 {
5453 	struct timespec64 b;
5454 
5455 	b = ktime_to_timespec64(base_time);
5456 
5457 	return timespec64_compare(now, &b) > 0;
5458 }
5459 
5460 static bool validate_schedule(struct igc_adapter *adapter,
5461 			      const struct tc_taprio_qopt_offload *qopt)
5462 {
5463 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5464 	struct timespec64 now;
5465 	size_t n;
5466 
5467 	if (qopt->cycle_time_extension)
5468 		return false;
5469 
5470 	igc_ptp_read(adapter, &now);
5471 
5472 	/* If we program the controller's BASET registers with a time
5473 	 * in the future, it will hold all the packets until that
5474 	 * time, causing a lot of TX Hangs, so to avoid that, we
5475 	 * reject schedules that would start in the future.
5476 	 */
5477 	if (!is_base_time_past(qopt->base_time, &now))
5478 		return false;
5479 
5480 	for (n = 0; n < qopt->num_entries; n++) {
5481 		const struct tc_taprio_sched_entry *e;
5482 		int i;
5483 
5484 		e = &qopt->entries[n];
5485 
5486 		/* i225 only supports "global" frame preemption
5487 		 * settings.
5488 		 */
5489 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5490 			return false;
5491 
5492 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5493 			if (e->gate_mask & BIT(i))
5494 				queue_uses[i]++;
5495 
5496 			if (queue_uses[i] > 1)
5497 				return false;
5498 		}
5499 	}
5500 
5501 	return true;
5502 }
5503 
5504 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5505 				     struct tc_etf_qopt_offload *qopt)
5506 {
5507 	struct igc_hw *hw = &adapter->hw;
5508 	int err;
5509 
5510 	if (hw->mac.type != igc_i225)
5511 		return -EOPNOTSUPP;
5512 
5513 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5514 	if (err)
5515 		return err;
5516 
5517 	return igc_tsn_offload_apply(adapter);
5518 }
5519 
5520 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5521 				 struct tc_taprio_qopt_offload *qopt)
5522 {
5523 	u32 start_time = 0, end_time = 0;
5524 	size_t n;
5525 
5526 	if (!qopt->enable) {
5527 		adapter->base_time = 0;
5528 		return 0;
5529 	}
5530 
5531 	if (adapter->base_time)
5532 		return -EALREADY;
5533 
5534 	if (!validate_schedule(adapter, qopt))
5535 		return -EINVAL;
5536 
5537 	adapter->cycle_time = qopt->cycle_time;
5538 	adapter->base_time = qopt->base_time;
5539 
5540 	/* FIXME: be a little smarter about cases when the gate for a
5541 	 * queue stays open for more than one entry.
5542 	 */
5543 	for (n = 0; n < qopt->num_entries; n++) {
5544 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5545 		int i;
5546 
5547 		end_time += e->interval;
5548 
5549 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5550 			struct igc_ring *ring = adapter->tx_ring[i];
5551 
5552 			if (!(e->gate_mask & BIT(i)))
5553 				continue;
5554 
5555 			ring->start_time = start_time;
5556 			ring->end_time = end_time;
5557 		}
5558 
5559 		start_time += e->interval;
5560 	}
5561 
5562 	return 0;
5563 }
5564 
5565 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5566 					 struct tc_taprio_qopt_offload *qopt)
5567 {
5568 	struct igc_hw *hw = &adapter->hw;
5569 	int err;
5570 
5571 	if (hw->mac.type != igc_i225)
5572 		return -EOPNOTSUPP;
5573 
5574 	err = igc_save_qbv_schedule(adapter, qopt);
5575 	if (err)
5576 		return err;
5577 
5578 	return igc_tsn_offload_apply(adapter);
5579 }
5580 
5581 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5582 			void *type_data)
5583 {
5584 	struct igc_adapter *adapter = netdev_priv(dev);
5585 
5586 	switch (type) {
5587 	case TC_SETUP_QDISC_TAPRIO:
5588 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5589 
5590 	case TC_SETUP_QDISC_ETF:
5591 		return igc_tsn_enable_launchtime(adapter, type_data);
5592 
5593 	default:
5594 		return -EOPNOTSUPP;
5595 	}
5596 }
5597 
5598 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5599 {
5600 	struct igc_adapter *adapter = netdev_priv(dev);
5601 
5602 	switch (bpf->command) {
5603 	case XDP_SETUP_PROG:
5604 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5605 	case XDP_SETUP_XSK_POOL:
5606 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5607 					  bpf->xsk.queue_id);
5608 	default:
5609 		return -EOPNOTSUPP;
5610 	}
5611 }
5612 
5613 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5614 			struct xdp_frame **frames, u32 flags)
5615 {
5616 	struct igc_adapter *adapter = netdev_priv(dev);
5617 	int cpu = smp_processor_id();
5618 	struct netdev_queue *nq;
5619 	struct igc_ring *ring;
5620 	int i, drops;
5621 
5622 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5623 		return -ENETDOWN;
5624 
5625 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5626 		return -EINVAL;
5627 
5628 	ring = igc_xdp_get_tx_ring(adapter, cpu);
5629 	nq = txring_txq(ring);
5630 
5631 	__netif_tx_lock(nq, cpu);
5632 
5633 	drops = 0;
5634 	for (i = 0; i < num_frames; i++) {
5635 		int err;
5636 		struct xdp_frame *xdpf = frames[i];
5637 
5638 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
5639 		if (err) {
5640 			xdp_return_frame_rx_napi(xdpf);
5641 			drops++;
5642 		}
5643 	}
5644 
5645 	if (flags & XDP_XMIT_FLUSH)
5646 		igc_flush_tx_descriptors(ring);
5647 
5648 	__netif_tx_unlock(nq);
5649 
5650 	return num_frames - drops;
5651 }
5652 
5653 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5654 					struct igc_q_vector *q_vector)
5655 {
5656 	struct igc_hw *hw = &adapter->hw;
5657 	u32 eics = 0;
5658 
5659 	eics |= q_vector->eims_value;
5660 	wr32(IGC_EICS, eics);
5661 }
5662 
5663 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5664 {
5665 	struct igc_adapter *adapter = netdev_priv(dev);
5666 	struct igc_q_vector *q_vector;
5667 	struct igc_ring *ring;
5668 
5669 	if (test_bit(__IGC_DOWN, &adapter->state))
5670 		return -ENETDOWN;
5671 
5672 	if (!igc_xdp_is_enabled(adapter))
5673 		return -ENXIO;
5674 
5675 	if (queue_id >= adapter->num_rx_queues)
5676 		return -EINVAL;
5677 
5678 	ring = adapter->rx_ring[queue_id];
5679 
5680 	if (!ring->xsk_pool)
5681 		return -ENXIO;
5682 
5683 	q_vector = adapter->q_vector[queue_id];
5684 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
5685 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
5686 
5687 	return 0;
5688 }
5689 
5690 static const struct net_device_ops igc_netdev_ops = {
5691 	.ndo_open		= igc_open,
5692 	.ndo_stop		= igc_close,
5693 	.ndo_start_xmit		= igc_xmit_frame,
5694 	.ndo_set_rx_mode	= igc_set_rx_mode,
5695 	.ndo_set_mac_address	= igc_set_mac,
5696 	.ndo_change_mtu		= igc_change_mtu,
5697 	.ndo_get_stats64	= igc_get_stats64,
5698 	.ndo_fix_features	= igc_fix_features,
5699 	.ndo_set_features	= igc_set_features,
5700 	.ndo_features_check	= igc_features_check,
5701 	.ndo_do_ioctl		= igc_ioctl,
5702 	.ndo_setup_tc		= igc_setup_tc,
5703 	.ndo_bpf		= igc_bpf,
5704 	.ndo_xdp_xmit		= igc_xdp_xmit,
5705 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
5706 };
5707 
5708 /* PCIe configuration access */
5709 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5710 {
5711 	struct igc_adapter *adapter = hw->back;
5712 
5713 	pci_read_config_word(adapter->pdev, reg, value);
5714 }
5715 
5716 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5717 {
5718 	struct igc_adapter *adapter = hw->back;
5719 
5720 	pci_write_config_word(adapter->pdev, reg, *value);
5721 }
5722 
5723 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5724 {
5725 	struct igc_adapter *adapter = hw->back;
5726 
5727 	if (!pci_is_pcie(adapter->pdev))
5728 		return -IGC_ERR_CONFIG;
5729 
5730 	pcie_capability_read_word(adapter->pdev, reg, value);
5731 
5732 	return IGC_SUCCESS;
5733 }
5734 
5735 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5736 {
5737 	struct igc_adapter *adapter = hw->back;
5738 
5739 	if (!pci_is_pcie(adapter->pdev))
5740 		return -IGC_ERR_CONFIG;
5741 
5742 	pcie_capability_write_word(adapter->pdev, reg, *value);
5743 
5744 	return IGC_SUCCESS;
5745 }
5746 
5747 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5748 {
5749 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5750 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5751 	u32 value = 0;
5752 
5753 	value = readl(&hw_addr[reg]);
5754 
5755 	/* reads should not return all F's */
5756 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5757 		struct net_device *netdev = igc->netdev;
5758 
5759 		hw->hw_addr = NULL;
5760 		netif_device_detach(netdev);
5761 		netdev_err(netdev, "PCIe link lost, device now detached\n");
5762 		WARN(pci_device_is_present(igc->pdev),
5763 		     "igc: Failed to read reg 0x%x!\n", reg);
5764 	}
5765 
5766 	return value;
5767 }
5768 
5769 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5770 {
5771 	struct igc_mac_info *mac = &adapter->hw.mac;
5772 
5773 	mac->autoneg = false;
5774 
5775 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5776 	 * for the switch() below to work
5777 	 */
5778 	if ((spd & 1) || (dplx & ~1))
5779 		goto err_inval;
5780 
5781 	switch (spd + dplx) {
5782 	case SPEED_10 + DUPLEX_HALF:
5783 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
5784 		break;
5785 	case SPEED_10 + DUPLEX_FULL:
5786 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
5787 		break;
5788 	case SPEED_100 + DUPLEX_HALF:
5789 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
5790 		break;
5791 	case SPEED_100 + DUPLEX_FULL:
5792 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
5793 		break;
5794 	case SPEED_1000 + DUPLEX_FULL:
5795 		mac->autoneg = true;
5796 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5797 		break;
5798 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5799 		goto err_inval;
5800 	case SPEED_2500 + DUPLEX_FULL:
5801 		mac->autoneg = true;
5802 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5803 		break;
5804 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
5805 	default:
5806 		goto err_inval;
5807 	}
5808 
5809 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5810 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
5811 
5812 	return 0;
5813 
5814 err_inval:
5815 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5816 	return -EINVAL;
5817 }
5818 
5819 /**
5820  * igc_probe - Device Initialization Routine
5821  * @pdev: PCI device information struct
5822  * @ent: entry in igc_pci_tbl
5823  *
5824  * Returns 0 on success, negative on failure
5825  *
5826  * igc_probe initializes an adapter identified by a pci_dev structure.
5827  * The OS initialization, configuring the adapter private structure,
5828  * and a hardware reset occur.
5829  */
5830 static int igc_probe(struct pci_dev *pdev,
5831 		     const struct pci_device_id *ent)
5832 {
5833 	struct igc_adapter *adapter;
5834 	struct net_device *netdev;
5835 	struct igc_hw *hw;
5836 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5837 	int err, pci_using_dac;
5838 
5839 	err = pci_enable_device_mem(pdev);
5840 	if (err)
5841 		return err;
5842 
5843 	pci_using_dac = 0;
5844 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5845 	if (!err) {
5846 		pci_using_dac = 1;
5847 	} else {
5848 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5849 		if (err) {
5850 			dev_err(&pdev->dev,
5851 				"No usable DMA configuration, aborting\n");
5852 			goto err_dma;
5853 		}
5854 	}
5855 
5856 	err = pci_request_mem_regions(pdev, igc_driver_name);
5857 	if (err)
5858 		goto err_pci_reg;
5859 
5860 	pci_enable_pcie_error_reporting(pdev);
5861 
5862 	pci_set_master(pdev);
5863 
5864 	err = -ENOMEM;
5865 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5866 				   IGC_MAX_TX_QUEUES);
5867 
5868 	if (!netdev)
5869 		goto err_alloc_etherdev;
5870 
5871 	SET_NETDEV_DEV(netdev, &pdev->dev);
5872 
5873 	pci_set_drvdata(pdev, netdev);
5874 	adapter = netdev_priv(netdev);
5875 	adapter->netdev = netdev;
5876 	adapter->pdev = pdev;
5877 	hw = &adapter->hw;
5878 	hw->back = adapter;
5879 	adapter->port_num = hw->bus.func;
5880 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5881 
5882 	err = pci_save_state(pdev);
5883 	if (err)
5884 		goto err_ioremap;
5885 
5886 	err = -EIO;
5887 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5888 				   pci_resource_len(pdev, 0));
5889 	if (!adapter->io_addr)
5890 		goto err_ioremap;
5891 
5892 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5893 	hw->hw_addr = adapter->io_addr;
5894 
5895 	netdev->netdev_ops = &igc_netdev_ops;
5896 	igc_ethtool_set_ops(netdev);
5897 	netdev->watchdog_timeo = 5 * HZ;
5898 
5899 	netdev->mem_start = pci_resource_start(pdev, 0);
5900 	netdev->mem_end = pci_resource_end(pdev, 0);
5901 
5902 	/* PCI config space info */
5903 	hw->vendor_id = pdev->vendor;
5904 	hw->device_id = pdev->device;
5905 	hw->revision_id = pdev->revision;
5906 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5907 	hw->subsystem_device_id = pdev->subsystem_device;
5908 
5909 	/* Copy the default MAC and PHY function pointers */
5910 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5911 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5912 
5913 	/* Initialize skew-specific constants */
5914 	err = ei->get_invariants(hw);
5915 	if (err)
5916 		goto err_sw_init;
5917 
5918 	/* Add supported features to the features list*/
5919 	netdev->features |= NETIF_F_SG;
5920 	netdev->features |= NETIF_F_TSO;
5921 	netdev->features |= NETIF_F_TSO6;
5922 	netdev->features |= NETIF_F_TSO_ECN;
5923 	netdev->features |= NETIF_F_RXCSUM;
5924 	netdev->features |= NETIF_F_HW_CSUM;
5925 	netdev->features |= NETIF_F_SCTP_CRC;
5926 	netdev->features |= NETIF_F_HW_TC;
5927 
5928 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5929 				  NETIF_F_GSO_GRE_CSUM | \
5930 				  NETIF_F_GSO_IPXIP4 | \
5931 				  NETIF_F_GSO_IPXIP6 | \
5932 				  NETIF_F_GSO_UDP_TUNNEL | \
5933 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5934 
5935 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5936 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5937 
5938 	/* setup the private structure */
5939 	err = igc_sw_init(adapter);
5940 	if (err)
5941 		goto err_sw_init;
5942 
5943 	/* copy netdev features into list of user selectable features */
5944 	netdev->hw_features |= NETIF_F_NTUPLE;
5945 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
5946 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
5947 	netdev->hw_features |= netdev->features;
5948 
5949 	if (pci_using_dac)
5950 		netdev->features |= NETIF_F_HIGHDMA;
5951 
5952 	netdev->vlan_features |= netdev->features;
5953 
5954 	/* MTU range: 68 - 9216 */
5955 	netdev->min_mtu = ETH_MIN_MTU;
5956 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5957 
5958 	/* before reading the NVM, reset the controller to put the device in a
5959 	 * known good starting state
5960 	 */
5961 	hw->mac.ops.reset_hw(hw);
5962 
5963 	if (igc_get_flash_presence_i225(hw)) {
5964 		if (hw->nvm.ops.validate(hw) < 0) {
5965 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5966 			err = -EIO;
5967 			goto err_eeprom;
5968 		}
5969 	}
5970 
5971 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5972 		/* copy the MAC address out of the NVM */
5973 		if (hw->mac.ops.read_mac_addr(hw))
5974 			dev_err(&pdev->dev, "NVM Read Error\n");
5975 	}
5976 
5977 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5978 
5979 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5980 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5981 		err = -EIO;
5982 		goto err_eeprom;
5983 	}
5984 
5985 	/* configure RXPBSIZE and TXPBSIZE */
5986 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5987 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5988 
5989 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5990 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5991 
5992 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5993 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5994 
5995 	/* Initialize link properties that are user-changeable */
5996 	adapter->fc_autoneg = true;
5997 	hw->mac.autoneg = true;
5998 	hw->phy.autoneg_advertised = 0xaf;
5999 
6000 	hw->fc.requested_mode = igc_fc_default;
6001 	hw->fc.current_mode = igc_fc_default;
6002 
6003 	/* By default, support wake on port A */
6004 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6005 
6006 	/* initialize the wol settings based on the eeprom settings */
6007 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6008 		adapter->wol |= IGC_WUFC_MAG;
6009 
6010 	device_set_wakeup_enable(&adapter->pdev->dev,
6011 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6012 
6013 	igc_ptp_init(adapter);
6014 
6015 	/* reset the hardware with the new settings */
6016 	igc_reset(adapter);
6017 
6018 	/* let the f/w know that the h/w is now under the control of the
6019 	 * driver.
6020 	 */
6021 	igc_get_hw_control(adapter);
6022 
6023 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6024 	err = register_netdev(netdev);
6025 	if (err)
6026 		goto err_register;
6027 
6028 	 /* carrier off reporting is important to ethtool even BEFORE open */
6029 	netif_carrier_off(netdev);
6030 
6031 	/* Check if Media Autosense is enabled */
6032 	adapter->ei = *ei;
6033 
6034 	/* print pcie link status and MAC address */
6035 	pcie_print_link_status(pdev);
6036 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6037 
6038 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6039 	/* Disable EEE for internal PHY devices */
6040 	hw->dev_spec._base.eee_enable = false;
6041 	adapter->flags &= ~IGC_FLAG_EEE;
6042 	igc_set_eee_i225(hw, false, false, false);
6043 
6044 	pm_runtime_put_noidle(&pdev->dev);
6045 
6046 	return 0;
6047 
6048 err_register:
6049 	igc_release_hw_control(adapter);
6050 err_eeprom:
6051 	if (!igc_check_reset_block(hw))
6052 		igc_reset_phy(hw);
6053 err_sw_init:
6054 	igc_clear_interrupt_scheme(adapter);
6055 	iounmap(adapter->io_addr);
6056 err_ioremap:
6057 	free_netdev(netdev);
6058 err_alloc_etherdev:
6059 	pci_disable_pcie_error_reporting(pdev);
6060 	pci_release_mem_regions(pdev);
6061 err_pci_reg:
6062 err_dma:
6063 	pci_disable_device(pdev);
6064 	return err;
6065 }
6066 
6067 /**
6068  * igc_remove - Device Removal Routine
6069  * @pdev: PCI device information struct
6070  *
6071  * igc_remove is called by the PCI subsystem to alert the driver
6072  * that it should release a PCI device.  This could be caused by a
6073  * Hot-Plug event, or because the driver is going to be removed from
6074  * memory.
6075  */
6076 static void igc_remove(struct pci_dev *pdev)
6077 {
6078 	struct net_device *netdev = pci_get_drvdata(pdev);
6079 	struct igc_adapter *adapter = netdev_priv(netdev);
6080 
6081 	pm_runtime_get_noresume(&pdev->dev);
6082 
6083 	igc_flush_nfc_rules(adapter);
6084 
6085 	igc_ptp_stop(adapter);
6086 
6087 	set_bit(__IGC_DOWN, &adapter->state);
6088 
6089 	del_timer_sync(&adapter->watchdog_timer);
6090 	del_timer_sync(&adapter->phy_info_timer);
6091 
6092 	cancel_work_sync(&adapter->reset_task);
6093 	cancel_work_sync(&adapter->watchdog_task);
6094 
6095 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6096 	 * would have already happened in close and is redundant.
6097 	 */
6098 	igc_release_hw_control(adapter);
6099 	unregister_netdev(netdev);
6100 
6101 	igc_clear_interrupt_scheme(adapter);
6102 	pci_iounmap(pdev, adapter->io_addr);
6103 	pci_release_mem_regions(pdev);
6104 
6105 	free_netdev(netdev);
6106 
6107 	pci_disable_pcie_error_reporting(pdev);
6108 
6109 	pci_disable_device(pdev);
6110 }
6111 
6112 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6113 			  bool runtime)
6114 {
6115 	struct net_device *netdev = pci_get_drvdata(pdev);
6116 	struct igc_adapter *adapter = netdev_priv(netdev);
6117 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6118 	struct igc_hw *hw = &adapter->hw;
6119 	u32 ctrl, rctl, status;
6120 	bool wake;
6121 
6122 	rtnl_lock();
6123 	netif_device_detach(netdev);
6124 
6125 	if (netif_running(netdev))
6126 		__igc_close(netdev, true);
6127 
6128 	igc_ptp_suspend(adapter);
6129 
6130 	igc_clear_interrupt_scheme(adapter);
6131 	rtnl_unlock();
6132 
6133 	status = rd32(IGC_STATUS);
6134 	if (status & IGC_STATUS_LU)
6135 		wufc &= ~IGC_WUFC_LNKC;
6136 
6137 	if (wufc) {
6138 		igc_setup_rctl(adapter);
6139 		igc_set_rx_mode(netdev);
6140 
6141 		/* turn on all-multi mode if wake on multicast is enabled */
6142 		if (wufc & IGC_WUFC_MC) {
6143 			rctl = rd32(IGC_RCTL);
6144 			rctl |= IGC_RCTL_MPE;
6145 			wr32(IGC_RCTL, rctl);
6146 		}
6147 
6148 		ctrl = rd32(IGC_CTRL);
6149 		ctrl |= IGC_CTRL_ADVD3WUC;
6150 		wr32(IGC_CTRL, ctrl);
6151 
6152 		/* Allow time for pending master requests to run */
6153 		igc_disable_pcie_master(hw);
6154 
6155 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6156 		wr32(IGC_WUFC, wufc);
6157 	} else {
6158 		wr32(IGC_WUC, 0);
6159 		wr32(IGC_WUFC, 0);
6160 	}
6161 
6162 	wake = wufc || adapter->en_mng_pt;
6163 	if (!wake)
6164 		igc_power_down_phy_copper_base(&adapter->hw);
6165 	else
6166 		igc_power_up_link(adapter);
6167 
6168 	if (enable_wake)
6169 		*enable_wake = wake;
6170 
6171 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6172 	 * would have already happened in close and is redundant.
6173 	 */
6174 	igc_release_hw_control(adapter);
6175 
6176 	pci_disable_device(pdev);
6177 
6178 	return 0;
6179 }
6180 
6181 #ifdef CONFIG_PM
6182 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6183 {
6184 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6185 }
6186 
6187 static void igc_deliver_wake_packet(struct net_device *netdev)
6188 {
6189 	struct igc_adapter *adapter = netdev_priv(netdev);
6190 	struct igc_hw *hw = &adapter->hw;
6191 	struct sk_buff *skb;
6192 	u32 wupl;
6193 
6194 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6195 
6196 	/* WUPM stores only the first 128 bytes of the wake packet.
6197 	 * Read the packet only if we have the whole thing.
6198 	 */
6199 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6200 		return;
6201 
6202 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6203 	if (!skb)
6204 		return;
6205 
6206 	skb_put(skb, wupl);
6207 
6208 	/* Ensure reads are 32-bit aligned */
6209 	wupl = roundup(wupl, 4);
6210 
6211 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6212 
6213 	skb->protocol = eth_type_trans(skb, netdev);
6214 	netif_rx(skb);
6215 }
6216 
6217 static int __maybe_unused igc_resume(struct device *dev)
6218 {
6219 	struct pci_dev *pdev = to_pci_dev(dev);
6220 	struct net_device *netdev = pci_get_drvdata(pdev);
6221 	struct igc_adapter *adapter = netdev_priv(netdev);
6222 	struct igc_hw *hw = &adapter->hw;
6223 	u32 err, val;
6224 
6225 	pci_set_power_state(pdev, PCI_D0);
6226 	pci_restore_state(pdev);
6227 	pci_save_state(pdev);
6228 
6229 	if (!pci_device_is_present(pdev))
6230 		return -ENODEV;
6231 	err = pci_enable_device_mem(pdev);
6232 	if (err) {
6233 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6234 		return err;
6235 	}
6236 	pci_set_master(pdev);
6237 
6238 	pci_enable_wake(pdev, PCI_D3hot, 0);
6239 	pci_enable_wake(pdev, PCI_D3cold, 0);
6240 
6241 	if (igc_init_interrupt_scheme(adapter, true)) {
6242 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6243 		return -ENOMEM;
6244 	}
6245 
6246 	igc_reset(adapter);
6247 
6248 	/* let the f/w know that the h/w is now under the control of the
6249 	 * driver.
6250 	 */
6251 	igc_get_hw_control(adapter);
6252 
6253 	val = rd32(IGC_WUS);
6254 	if (val & WAKE_PKT_WUS)
6255 		igc_deliver_wake_packet(netdev);
6256 
6257 	wr32(IGC_WUS, ~0);
6258 
6259 	rtnl_lock();
6260 	if (!err && netif_running(netdev))
6261 		err = __igc_open(netdev, true);
6262 
6263 	if (!err)
6264 		netif_device_attach(netdev);
6265 	rtnl_unlock();
6266 
6267 	return err;
6268 }
6269 
6270 static int __maybe_unused igc_runtime_resume(struct device *dev)
6271 {
6272 	return igc_resume(dev);
6273 }
6274 
6275 static int __maybe_unused igc_suspend(struct device *dev)
6276 {
6277 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6278 }
6279 
6280 static int __maybe_unused igc_runtime_idle(struct device *dev)
6281 {
6282 	struct net_device *netdev = dev_get_drvdata(dev);
6283 	struct igc_adapter *adapter = netdev_priv(netdev);
6284 
6285 	if (!igc_has_link(adapter))
6286 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6287 
6288 	return -EBUSY;
6289 }
6290 #endif /* CONFIG_PM */
6291 
6292 static void igc_shutdown(struct pci_dev *pdev)
6293 {
6294 	bool wake;
6295 
6296 	__igc_shutdown(pdev, &wake, 0);
6297 
6298 	if (system_state == SYSTEM_POWER_OFF) {
6299 		pci_wake_from_d3(pdev, wake);
6300 		pci_set_power_state(pdev, PCI_D3hot);
6301 	}
6302 }
6303 
6304 /**
6305  *  igc_io_error_detected - called when PCI error is detected
6306  *  @pdev: Pointer to PCI device
6307  *  @state: The current PCI connection state
6308  *
6309  *  This function is called after a PCI bus error affecting
6310  *  this device has been detected.
6311  **/
6312 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6313 					      pci_channel_state_t state)
6314 {
6315 	struct net_device *netdev = pci_get_drvdata(pdev);
6316 	struct igc_adapter *adapter = netdev_priv(netdev);
6317 
6318 	netif_device_detach(netdev);
6319 
6320 	if (state == pci_channel_io_perm_failure)
6321 		return PCI_ERS_RESULT_DISCONNECT;
6322 
6323 	if (netif_running(netdev))
6324 		igc_down(adapter);
6325 	pci_disable_device(pdev);
6326 
6327 	/* Request a slot reset. */
6328 	return PCI_ERS_RESULT_NEED_RESET;
6329 }
6330 
6331 /**
6332  *  igc_io_slot_reset - called after the PCI bus has been reset.
6333  *  @pdev: Pointer to PCI device
6334  *
6335  *  Restart the card from scratch, as if from a cold-boot. Implementation
6336  *  resembles the first-half of the igc_resume routine.
6337  **/
6338 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6339 {
6340 	struct net_device *netdev = pci_get_drvdata(pdev);
6341 	struct igc_adapter *adapter = netdev_priv(netdev);
6342 	struct igc_hw *hw = &adapter->hw;
6343 	pci_ers_result_t result;
6344 
6345 	if (pci_enable_device_mem(pdev)) {
6346 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6347 		result = PCI_ERS_RESULT_DISCONNECT;
6348 	} else {
6349 		pci_set_master(pdev);
6350 		pci_restore_state(pdev);
6351 		pci_save_state(pdev);
6352 
6353 		pci_enable_wake(pdev, PCI_D3hot, 0);
6354 		pci_enable_wake(pdev, PCI_D3cold, 0);
6355 
6356 		/* In case of PCI error, adapter loses its HW address
6357 		 * so we should re-assign it here.
6358 		 */
6359 		hw->hw_addr = adapter->io_addr;
6360 
6361 		igc_reset(adapter);
6362 		wr32(IGC_WUS, ~0);
6363 		result = PCI_ERS_RESULT_RECOVERED;
6364 	}
6365 
6366 	return result;
6367 }
6368 
6369 /**
6370  *  igc_io_resume - called when traffic can start to flow again.
6371  *  @pdev: Pointer to PCI device
6372  *
6373  *  This callback is called when the error recovery driver tells us that
6374  *  its OK to resume normal operation. Implementation resembles the
6375  *  second-half of the igc_resume routine.
6376  */
6377 static void igc_io_resume(struct pci_dev *pdev)
6378 {
6379 	struct net_device *netdev = pci_get_drvdata(pdev);
6380 	struct igc_adapter *adapter = netdev_priv(netdev);
6381 
6382 	rtnl_lock();
6383 	if (netif_running(netdev)) {
6384 		if (igc_open(netdev)) {
6385 			netdev_err(netdev, "igc_open failed after reset\n");
6386 			return;
6387 		}
6388 	}
6389 
6390 	netif_device_attach(netdev);
6391 
6392 	/* let the f/w know that the h/w is now under the control of the
6393 	 * driver.
6394 	 */
6395 	igc_get_hw_control(adapter);
6396 	rtnl_unlock();
6397 }
6398 
6399 static const struct pci_error_handlers igc_err_handler = {
6400 	.error_detected = igc_io_error_detected,
6401 	.slot_reset = igc_io_slot_reset,
6402 	.resume = igc_io_resume,
6403 };
6404 
6405 #ifdef CONFIG_PM
6406 static const struct dev_pm_ops igc_pm_ops = {
6407 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6408 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6409 			   igc_runtime_idle)
6410 };
6411 #endif
6412 
6413 static struct pci_driver igc_driver = {
6414 	.name     = igc_driver_name,
6415 	.id_table = igc_pci_tbl,
6416 	.probe    = igc_probe,
6417 	.remove   = igc_remove,
6418 #ifdef CONFIG_PM
6419 	.driver.pm = &igc_pm_ops,
6420 #endif
6421 	.shutdown = igc_shutdown,
6422 	.err_handler = &igc_err_handler,
6423 };
6424 
6425 /**
6426  * igc_reinit_queues - return error
6427  * @adapter: pointer to adapter structure
6428  */
6429 int igc_reinit_queues(struct igc_adapter *adapter)
6430 {
6431 	struct net_device *netdev = adapter->netdev;
6432 	int err = 0;
6433 
6434 	if (netif_running(netdev))
6435 		igc_close(netdev);
6436 
6437 	igc_reset_interrupt_capability(adapter);
6438 
6439 	if (igc_init_interrupt_scheme(adapter, true)) {
6440 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6441 		return -ENOMEM;
6442 	}
6443 
6444 	if (netif_running(netdev))
6445 		err = igc_open(netdev);
6446 
6447 	return err;
6448 }
6449 
6450 /**
6451  * igc_get_hw_dev - return device
6452  * @hw: pointer to hardware structure
6453  *
6454  * used by hardware layer to print debugging information
6455  */
6456 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6457 {
6458 	struct igc_adapter *adapter = hw->back;
6459 
6460 	return adapter->netdev;
6461 }
6462 
6463 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6464 {
6465 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6466 	u8 idx = ring->reg_idx;
6467 	u32 rxdctl;
6468 
6469 	rxdctl = rd32(IGC_RXDCTL(idx));
6470 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6471 	rxdctl |= IGC_RXDCTL_SWFLUSH;
6472 	wr32(IGC_RXDCTL(idx), rxdctl);
6473 }
6474 
6475 void igc_disable_rx_ring(struct igc_ring *ring)
6476 {
6477 	igc_disable_rx_ring_hw(ring);
6478 	igc_clean_rx_ring(ring);
6479 }
6480 
6481 void igc_enable_rx_ring(struct igc_ring *ring)
6482 {
6483 	struct igc_adapter *adapter = ring->q_vector->adapter;
6484 
6485 	igc_configure_rx_ring(adapter, ring);
6486 
6487 	if (ring->xsk_pool)
6488 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6489 	else
6490 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6491 }
6492 
6493 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6494 {
6495 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6496 	u8 idx = ring->reg_idx;
6497 	u32 txdctl;
6498 
6499 	txdctl = rd32(IGC_TXDCTL(idx));
6500 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6501 	txdctl |= IGC_TXDCTL_SWFLUSH;
6502 	wr32(IGC_TXDCTL(idx), txdctl);
6503 }
6504 
6505 void igc_disable_tx_ring(struct igc_ring *ring)
6506 {
6507 	igc_disable_tx_ring_hw(ring);
6508 	igc_clean_tx_ring(ring);
6509 }
6510 
6511 void igc_enable_tx_ring(struct igc_ring *ring)
6512 {
6513 	struct igc_adapter *adapter = ring->q_vector->adapter;
6514 
6515 	igc_configure_tx_ring(adapter, ring);
6516 }
6517 
6518 /**
6519  * igc_init_module - Driver Registration Routine
6520  *
6521  * igc_init_module is the first routine called when the driver is
6522  * loaded. All it does is register with the PCI subsystem.
6523  */
6524 static int __init igc_init_module(void)
6525 {
6526 	int ret;
6527 
6528 	pr_info("%s\n", igc_driver_string);
6529 	pr_info("%s\n", igc_copyright);
6530 
6531 	ret = pci_register_driver(&igc_driver);
6532 	return ret;
6533 }
6534 
6535 module_init(igc_init_module);
6536 
6537 /**
6538  * igc_exit_module - Driver Exit Cleanup Routine
6539  *
6540  * igc_exit_module is called just before the driver is removed
6541  * from memory.
6542  */
6543 static void __exit igc_exit_module(void)
6544 {
6545 	pci_unregister_driver(&igc_driver);
6546 }
6547 
6548 module_exit(igc_exit_module);
6549 /* igc_main.c */
6550