xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision b6459415b384cb829f0b2a4268f211c789f6cf0b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40 
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 	"Copyright(c) 2018 Intel Corporation.";
45 
46 static const struct igc_info *igc_info_tbl[] = {
47 	[board_base] = &igc_base_info,
48 };
49 
50 static const struct pci_device_id igc_pci_tbl[] = {
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67 	/* required last entry */
68 	{0, }
69 };
70 
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72 
73 enum latency_range {
74 	lowest_latency = 0,
75 	low_latency = 1,
76 	bulk_latency = 2,
77 	latency_invalid = 255
78 };
79 
80 void igc_reset(struct igc_adapter *adapter)
81 {
82 	struct net_device *dev = adapter->netdev;
83 	struct igc_hw *hw = &adapter->hw;
84 	struct igc_fc_info *fc = &hw->fc;
85 	u32 pba, hwm;
86 
87 	/* Repartition PBA for greater than 9k MTU if required */
88 	pba = IGC_PBA_34K;
89 
90 	/* flow control settings
91 	 * The high water mark must be low enough to fit one full frame
92 	 * after transmitting the pause frame.  As such we must have enough
93 	 * space to allow for us to complete our current transmit and then
94 	 * receive the frame that is in progress from the link partner.
95 	 * Set it to:
96 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97 	 */
98 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99 
100 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
101 	fc->low_water = fc->high_water - 16;
102 	fc->pause_time = 0xFFFF;
103 	fc->send_xon = 1;
104 	fc->current_mode = fc->requested_mode;
105 
106 	hw->mac.ops.reset_hw(hw);
107 
108 	if (hw->mac.ops.init_hw(hw))
109 		netdev_err(dev, "Error on hardware initialization\n");
110 
111 	/* Re-establish EEE setting */
112 	igc_set_eee_i225(hw, true, true, true);
113 
114 	if (!netif_running(adapter->netdev))
115 		igc_power_down_phy_copper_base(&adapter->hw);
116 
117 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118 	wr32(IGC_VET, ETH_P_8021Q);
119 
120 	/* Re-enable PTP, where applicable. */
121 	igc_ptp_reset(adapter);
122 
123 	/* Re-enable TSN offloading, where applicable. */
124 	igc_tsn_reset(adapter);
125 
126 	igc_get_phy_info(hw);
127 }
128 
129 /**
130  * igc_power_up_link - Power up the phy link
131  * @adapter: address of board private structure
132  */
133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135 	igc_reset_phy(&adapter->hw);
136 
137 	igc_power_up_phy_copper(&adapter->hw);
138 
139 	igc_setup_link(&adapter->hw);
140 }
141 
142 /**
143  * igc_release_hw_control - release control of the h/w to f/w
144  * @adapter: address of board private structure
145  *
146  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that the
148  * driver is no longer loaded.
149  */
150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152 	struct igc_hw *hw = &adapter->hw;
153 	u32 ctrl_ext;
154 
155 	if (!pci_device_is_present(adapter->pdev))
156 		return;
157 
158 	/* Let firmware take over control of h/w */
159 	ctrl_ext = rd32(IGC_CTRL_EXT);
160 	wr32(IGC_CTRL_EXT,
161 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163 
164 /**
165  * igc_get_hw_control - get control of the h/w from f/w
166  * @adapter: address of board private structure
167  *
168  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169  * For ASF and Pass Through versions of f/w this means that
170  * the driver is loaded.
171  */
172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174 	struct igc_hw *hw = &adapter->hw;
175 	u32 ctrl_ext;
176 
177 	/* Let firmware know the driver has taken over */
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	wr32(IGC_CTRL_EXT,
180 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182 
183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
187 
188 	dma_unmap_len_set(buf, len, 0);
189 }
190 
191 /**
192  * igc_clean_tx_ring - Free Tx Buffers
193  * @tx_ring: ring to be cleaned
194  */
195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197 	u16 i = tx_ring->next_to_clean;
198 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199 	u32 xsk_frames = 0;
200 
201 	while (i != tx_ring->next_to_use) {
202 		union igc_adv_tx_desc *eop_desc, *tx_desc;
203 
204 		switch (tx_buffer->type) {
205 		case IGC_TX_BUFFER_TYPE_XSK:
206 			xsk_frames++;
207 			break;
208 		case IGC_TX_BUFFER_TYPE_XDP:
209 			xdp_return_frame(tx_buffer->xdpf);
210 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211 			break;
212 		case IGC_TX_BUFFER_TYPE_SKB:
213 			dev_kfree_skb_any(tx_buffer->skb);
214 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215 			break;
216 		default:
217 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218 			break;
219 		}
220 
221 		/* check for eop_desc to determine the end of the packet */
222 		eop_desc = tx_buffer->next_to_watch;
223 		tx_desc = IGC_TX_DESC(tx_ring, i);
224 
225 		/* unmap remaining buffers */
226 		while (tx_desc != eop_desc) {
227 			tx_buffer++;
228 			tx_desc++;
229 			i++;
230 			if (unlikely(i == tx_ring->count)) {
231 				i = 0;
232 				tx_buffer = tx_ring->tx_buffer_info;
233 				tx_desc = IGC_TX_DESC(tx_ring, 0);
234 			}
235 
236 			/* unmap any remaining paged data */
237 			if (dma_unmap_len(tx_buffer, len))
238 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239 		}
240 
241 		tx_buffer->next_to_watch = NULL;
242 
243 		/* move us one more past the eop_desc for start of next pkt */
244 		tx_buffer++;
245 		i++;
246 		if (unlikely(i == tx_ring->count)) {
247 			i = 0;
248 			tx_buffer = tx_ring->tx_buffer_info;
249 		}
250 	}
251 
252 	if (tx_ring->xsk_pool && xsk_frames)
253 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254 
255 	/* reset BQL for queue */
256 	netdev_tx_reset_queue(txring_txq(tx_ring));
257 
258 	/* reset next_to_use and next_to_clean */
259 	tx_ring->next_to_use = 0;
260 	tx_ring->next_to_clean = 0;
261 }
262 
263 /**
264  * igc_free_tx_resources - Free Tx Resources per Queue
265  * @tx_ring: Tx descriptor ring for a specific queue
266  *
267  * Free all transmit software resources
268  */
269 void igc_free_tx_resources(struct igc_ring *tx_ring)
270 {
271 	igc_clean_tx_ring(tx_ring);
272 
273 	vfree(tx_ring->tx_buffer_info);
274 	tx_ring->tx_buffer_info = NULL;
275 
276 	/* if not set, then don't free */
277 	if (!tx_ring->desc)
278 		return;
279 
280 	dma_free_coherent(tx_ring->dev, tx_ring->size,
281 			  tx_ring->desc, tx_ring->dma);
282 
283 	tx_ring->desc = NULL;
284 }
285 
286 /**
287  * igc_free_all_tx_resources - Free Tx Resources for All Queues
288  * @adapter: board private structure
289  *
290  * Free all transmit software resources
291  */
292 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
293 {
294 	int i;
295 
296 	for (i = 0; i < adapter->num_tx_queues; i++)
297 		igc_free_tx_resources(adapter->tx_ring[i]);
298 }
299 
300 /**
301  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
302  * @adapter: board private structure
303  */
304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
305 {
306 	int i;
307 
308 	for (i = 0; i < adapter->num_tx_queues; i++)
309 		if (adapter->tx_ring[i])
310 			igc_clean_tx_ring(adapter->tx_ring[i]);
311 }
312 
313 /**
314  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
315  * @tx_ring: tx descriptor ring (for a specific queue) to setup
316  *
317  * Return 0 on success, negative on failure
318  */
319 int igc_setup_tx_resources(struct igc_ring *tx_ring)
320 {
321 	struct net_device *ndev = tx_ring->netdev;
322 	struct device *dev = tx_ring->dev;
323 	int size = 0;
324 
325 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
326 	tx_ring->tx_buffer_info = vzalloc(size);
327 	if (!tx_ring->tx_buffer_info)
328 		goto err;
329 
330 	/* round up to nearest 4K */
331 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
332 	tx_ring->size = ALIGN(tx_ring->size, 4096);
333 
334 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
335 					   &tx_ring->dma, GFP_KERNEL);
336 
337 	if (!tx_ring->desc)
338 		goto err;
339 
340 	tx_ring->next_to_use = 0;
341 	tx_ring->next_to_clean = 0;
342 
343 	return 0;
344 
345 err:
346 	vfree(tx_ring->tx_buffer_info);
347 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
348 	return -ENOMEM;
349 }
350 
351 /**
352  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
353  * @adapter: board private structure
354  *
355  * Return 0 on success, negative on failure
356  */
357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
358 {
359 	struct net_device *dev = adapter->netdev;
360 	int i, err = 0;
361 
362 	for (i = 0; i < adapter->num_tx_queues; i++) {
363 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
364 		if (err) {
365 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
366 			for (i--; i >= 0; i--)
367 				igc_free_tx_resources(adapter->tx_ring[i]);
368 			break;
369 		}
370 	}
371 
372 	return err;
373 }
374 
375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
376 {
377 	u16 i = rx_ring->next_to_clean;
378 
379 	dev_kfree_skb(rx_ring->skb);
380 	rx_ring->skb = NULL;
381 
382 	/* Free all the Rx ring sk_buffs */
383 	while (i != rx_ring->next_to_alloc) {
384 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
385 
386 		/* Invalidate cache lines that may have been written to by
387 		 * device so that we avoid corrupting memory.
388 		 */
389 		dma_sync_single_range_for_cpu(rx_ring->dev,
390 					      buffer_info->dma,
391 					      buffer_info->page_offset,
392 					      igc_rx_bufsz(rx_ring),
393 					      DMA_FROM_DEVICE);
394 
395 		/* free resources associated with mapping */
396 		dma_unmap_page_attrs(rx_ring->dev,
397 				     buffer_info->dma,
398 				     igc_rx_pg_size(rx_ring),
399 				     DMA_FROM_DEVICE,
400 				     IGC_RX_DMA_ATTR);
401 		__page_frag_cache_drain(buffer_info->page,
402 					buffer_info->pagecnt_bias);
403 
404 		i++;
405 		if (i == rx_ring->count)
406 			i = 0;
407 	}
408 }
409 
410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
411 {
412 	struct igc_rx_buffer *bi;
413 	u16 i;
414 
415 	for (i = 0; i < ring->count; i++) {
416 		bi = &ring->rx_buffer_info[i];
417 		if (!bi->xdp)
418 			continue;
419 
420 		xsk_buff_free(bi->xdp);
421 		bi->xdp = NULL;
422 	}
423 }
424 
425 /**
426  * igc_clean_rx_ring - Free Rx Buffers per Queue
427  * @ring: ring to free buffers from
428  */
429 static void igc_clean_rx_ring(struct igc_ring *ring)
430 {
431 	if (ring->xsk_pool)
432 		igc_clean_rx_ring_xsk_pool(ring);
433 	else
434 		igc_clean_rx_ring_page_shared(ring);
435 
436 	clear_ring_uses_large_buffer(ring);
437 
438 	ring->next_to_alloc = 0;
439 	ring->next_to_clean = 0;
440 	ring->next_to_use = 0;
441 }
442 
443 /**
444  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
445  * @adapter: board private structure
446  */
447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
448 {
449 	int i;
450 
451 	for (i = 0; i < adapter->num_rx_queues; i++)
452 		if (adapter->rx_ring[i])
453 			igc_clean_rx_ring(adapter->rx_ring[i]);
454 }
455 
456 /**
457  * igc_free_rx_resources - Free Rx Resources
458  * @rx_ring: ring to clean the resources from
459  *
460  * Free all receive software resources
461  */
462 void igc_free_rx_resources(struct igc_ring *rx_ring)
463 {
464 	igc_clean_rx_ring(rx_ring);
465 
466 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
467 
468 	vfree(rx_ring->rx_buffer_info);
469 	rx_ring->rx_buffer_info = NULL;
470 
471 	/* if not set, then don't free */
472 	if (!rx_ring->desc)
473 		return;
474 
475 	dma_free_coherent(rx_ring->dev, rx_ring->size,
476 			  rx_ring->desc, rx_ring->dma);
477 
478 	rx_ring->desc = NULL;
479 }
480 
481 /**
482  * igc_free_all_rx_resources - Free Rx Resources for All Queues
483  * @adapter: board private structure
484  *
485  * Free all receive software resources
486  */
487 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
488 {
489 	int i;
490 
491 	for (i = 0; i < adapter->num_rx_queues; i++)
492 		igc_free_rx_resources(adapter->rx_ring[i]);
493 }
494 
495 /**
496  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
497  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
498  *
499  * Returns 0 on success, negative on failure
500  */
501 int igc_setup_rx_resources(struct igc_ring *rx_ring)
502 {
503 	struct net_device *ndev = rx_ring->netdev;
504 	struct device *dev = rx_ring->dev;
505 	u8 index = rx_ring->queue_index;
506 	int size, desc_len, res;
507 
508 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
509 			       rx_ring->q_vector->napi.napi_id);
510 	if (res < 0) {
511 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
512 			   index);
513 		return res;
514 	}
515 
516 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
517 	rx_ring->rx_buffer_info = vzalloc(size);
518 	if (!rx_ring->rx_buffer_info)
519 		goto err;
520 
521 	desc_len = sizeof(union igc_adv_rx_desc);
522 
523 	/* Round up to nearest 4K */
524 	rx_ring->size = rx_ring->count * desc_len;
525 	rx_ring->size = ALIGN(rx_ring->size, 4096);
526 
527 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
528 					   &rx_ring->dma, GFP_KERNEL);
529 
530 	if (!rx_ring->desc)
531 		goto err;
532 
533 	rx_ring->next_to_alloc = 0;
534 	rx_ring->next_to_clean = 0;
535 	rx_ring->next_to_use = 0;
536 
537 	return 0;
538 
539 err:
540 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
541 	vfree(rx_ring->rx_buffer_info);
542 	rx_ring->rx_buffer_info = NULL;
543 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
544 	return -ENOMEM;
545 }
546 
547 /**
548  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
549  *                                (Descriptors) for all queues
550  * @adapter: board private structure
551  *
552  * Return 0 on success, negative on failure
553  */
554 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
555 {
556 	struct net_device *dev = adapter->netdev;
557 	int i, err = 0;
558 
559 	for (i = 0; i < adapter->num_rx_queues; i++) {
560 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
561 		if (err) {
562 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
563 			for (i--; i >= 0; i--)
564 				igc_free_rx_resources(adapter->rx_ring[i]);
565 			break;
566 		}
567 	}
568 
569 	return err;
570 }
571 
572 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
573 					      struct igc_ring *ring)
574 {
575 	if (!igc_xdp_is_enabled(adapter) ||
576 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
577 		return NULL;
578 
579 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
580 }
581 
582 /**
583  * igc_configure_rx_ring - Configure a receive ring after Reset
584  * @adapter: board private structure
585  * @ring: receive ring to be configured
586  *
587  * Configure the Rx unit of the MAC after a reset.
588  */
589 static void igc_configure_rx_ring(struct igc_adapter *adapter,
590 				  struct igc_ring *ring)
591 {
592 	struct igc_hw *hw = &adapter->hw;
593 	union igc_adv_rx_desc *rx_desc;
594 	int reg_idx = ring->reg_idx;
595 	u32 srrctl = 0, rxdctl = 0;
596 	u64 rdba = ring->dma;
597 	u32 buf_size;
598 
599 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
600 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
601 	if (ring->xsk_pool) {
602 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
603 						   MEM_TYPE_XSK_BUFF_POOL,
604 						   NULL));
605 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
606 	} else {
607 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
608 						   MEM_TYPE_PAGE_SHARED,
609 						   NULL));
610 	}
611 
612 	if (igc_xdp_is_enabled(adapter))
613 		set_ring_uses_large_buffer(ring);
614 
615 	/* disable the queue */
616 	wr32(IGC_RXDCTL(reg_idx), 0);
617 
618 	/* Set DMA base address registers */
619 	wr32(IGC_RDBAL(reg_idx),
620 	     rdba & 0x00000000ffffffffULL);
621 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
622 	wr32(IGC_RDLEN(reg_idx),
623 	     ring->count * sizeof(union igc_adv_rx_desc));
624 
625 	/* initialize head and tail */
626 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
627 	wr32(IGC_RDH(reg_idx), 0);
628 	writel(0, ring->tail);
629 
630 	/* reset next-to- use/clean to place SW in sync with hardware */
631 	ring->next_to_clean = 0;
632 	ring->next_to_use = 0;
633 
634 	if (ring->xsk_pool)
635 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
636 	else if (ring_uses_large_buffer(ring))
637 		buf_size = IGC_RXBUFFER_3072;
638 	else
639 		buf_size = IGC_RXBUFFER_2048;
640 
641 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
642 	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
643 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
644 
645 	wr32(IGC_SRRCTL(reg_idx), srrctl);
646 
647 	rxdctl |= IGC_RX_PTHRESH;
648 	rxdctl |= IGC_RX_HTHRESH << 8;
649 	rxdctl |= IGC_RX_WTHRESH << 16;
650 
651 	/* initialize rx_buffer_info */
652 	memset(ring->rx_buffer_info, 0,
653 	       sizeof(struct igc_rx_buffer) * ring->count);
654 
655 	/* initialize Rx descriptor 0 */
656 	rx_desc = IGC_RX_DESC(ring, 0);
657 	rx_desc->wb.upper.length = 0;
658 
659 	/* enable receive descriptor fetching */
660 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
661 
662 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
663 }
664 
665 /**
666  * igc_configure_rx - Configure receive Unit after Reset
667  * @adapter: board private structure
668  *
669  * Configure the Rx unit of the MAC after a reset.
670  */
671 static void igc_configure_rx(struct igc_adapter *adapter)
672 {
673 	int i;
674 
675 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
676 	 * the Base and Length of the Rx Descriptor Ring
677 	 */
678 	for (i = 0; i < adapter->num_rx_queues; i++)
679 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
680 }
681 
682 /**
683  * igc_configure_tx_ring - Configure transmit ring after Reset
684  * @adapter: board private structure
685  * @ring: tx ring to configure
686  *
687  * Configure a transmit ring after a reset.
688  */
689 static void igc_configure_tx_ring(struct igc_adapter *adapter,
690 				  struct igc_ring *ring)
691 {
692 	struct igc_hw *hw = &adapter->hw;
693 	int reg_idx = ring->reg_idx;
694 	u64 tdba = ring->dma;
695 	u32 txdctl = 0;
696 
697 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
698 
699 	/* disable the queue */
700 	wr32(IGC_TXDCTL(reg_idx), 0);
701 	wrfl();
702 	mdelay(10);
703 
704 	wr32(IGC_TDLEN(reg_idx),
705 	     ring->count * sizeof(union igc_adv_tx_desc));
706 	wr32(IGC_TDBAL(reg_idx),
707 	     tdba & 0x00000000ffffffffULL);
708 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
709 
710 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
711 	wr32(IGC_TDH(reg_idx), 0);
712 	writel(0, ring->tail);
713 
714 	txdctl |= IGC_TX_PTHRESH;
715 	txdctl |= IGC_TX_HTHRESH << 8;
716 	txdctl |= IGC_TX_WTHRESH << 16;
717 
718 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
719 	wr32(IGC_TXDCTL(reg_idx), txdctl);
720 }
721 
722 /**
723  * igc_configure_tx - Configure transmit Unit after Reset
724  * @adapter: board private structure
725  *
726  * Configure the Tx unit of the MAC after a reset.
727  */
728 static void igc_configure_tx(struct igc_adapter *adapter)
729 {
730 	int i;
731 
732 	for (i = 0; i < adapter->num_tx_queues; i++)
733 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
734 }
735 
736 /**
737  * igc_setup_mrqc - configure the multiple receive queue control registers
738  * @adapter: Board private structure
739  */
740 static void igc_setup_mrqc(struct igc_adapter *adapter)
741 {
742 	struct igc_hw *hw = &adapter->hw;
743 	u32 j, num_rx_queues;
744 	u32 mrqc, rxcsum;
745 	u32 rss_key[10];
746 
747 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
748 	for (j = 0; j < 10; j++)
749 		wr32(IGC_RSSRK(j), rss_key[j]);
750 
751 	num_rx_queues = adapter->rss_queues;
752 
753 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
754 		for (j = 0; j < IGC_RETA_SIZE; j++)
755 			adapter->rss_indir_tbl[j] =
756 			(j * num_rx_queues) / IGC_RETA_SIZE;
757 		adapter->rss_indir_tbl_init = num_rx_queues;
758 	}
759 	igc_write_rss_indir_tbl(adapter);
760 
761 	/* Disable raw packet checksumming so that RSS hash is placed in
762 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
763 	 * offloads as they are enabled by default
764 	 */
765 	rxcsum = rd32(IGC_RXCSUM);
766 	rxcsum |= IGC_RXCSUM_PCSD;
767 
768 	/* Enable Receive Checksum Offload for SCTP */
769 	rxcsum |= IGC_RXCSUM_CRCOFL;
770 
771 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
772 	wr32(IGC_RXCSUM, rxcsum);
773 
774 	/* Generate RSS hash based on packet types, TCP/UDP
775 	 * port numbers and/or IPv4/v6 src and dst addresses
776 	 */
777 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
778 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
779 	       IGC_MRQC_RSS_FIELD_IPV6 |
780 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
781 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
782 
783 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
784 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
785 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
786 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
787 
788 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
789 
790 	wr32(IGC_MRQC, mrqc);
791 }
792 
793 /**
794  * igc_setup_rctl - configure the receive control registers
795  * @adapter: Board private structure
796  */
797 static void igc_setup_rctl(struct igc_adapter *adapter)
798 {
799 	struct igc_hw *hw = &adapter->hw;
800 	u32 rctl;
801 
802 	rctl = rd32(IGC_RCTL);
803 
804 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
805 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
806 
807 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
808 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
809 
810 	/* enable stripping of CRC. Newer features require
811 	 * that the HW strips the CRC.
812 	 */
813 	rctl |= IGC_RCTL_SECRC;
814 
815 	/* disable store bad packets and clear size bits. */
816 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
817 
818 	/* enable LPE to allow for reception of jumbo frames */
819 	rctl |= IGC_RCTL_LPE;
820 
821 	/* disable queue 0 to prevent tail write w/o re-config */
822 	wr32(IGC_RXDCTL(0), 0);
823 
824 	/* This is useful for sniffing bad packets. */
825 	if (adapter->netdev->features & NETIF_F_RXALL) {
826 		/* UPE and MPE will be handled by normal PROMISC logic
827 		 * in set_rx_mode
828 		 */
829 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
830 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
831 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
832 
833 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
834 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
835 	}
836 
837 	wr32(IGC_RCTL, rctl);
838 }
839 
840 /**
841  * igc_setup_tctl - configure the transmit control registers
842  * @adapter: Board private structure
843  */
844 static void igc_setup_tctl(struct igc_adapter *adapter)
845 {
846 	struct igc_hw *hw = &adapter->hw;
847 	u32 tctl;
848 
849 	/* disable queue 0 which icould be enabled by default */
850 	wr32(IGC_TXDCTL(0), 0);
851 
852 	/* Program the Transmit Control Register */
853 	tctl = rd32(IGC_TCTL);
854 	tctl &= ~IGC_TCTL_CT;
855 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
856 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
857 
858 	/* Enable transmits */
859 	tctl |= IGC_TCTL_EN;
860 
861 	wr32(IGC_TCTL, tctl);
862 }
863 
864 /**
865  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
866  * @adapter: Pointer to adapter where the filter should be set
867  * @index: Filter index
868  * @type: MAC address filter type (source or destination)
869  * @addr: MAC address
870  * @queue: If non-negative, queue assignment feature is enabled and frames
871  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
872  *         assignment is disabled.
873  */
874 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
875 				  enum igc_mac_filter_type type,
876 				  const u8 *addr, int queue)
877 {
878 	struct net_device *dev = adapter->netdev;
879 	struct igc_hw *hw = &adapter->hw;
880 	u32 ral, rah;
881 
882 	if (WARN_ON(index >= hw->mac.rar_entry_count))
883 		return;
884 
885 	ral = le32_to_cpup((__le32 *)(addr));
886 	rah = le16_to_cpup((__le16 *)(addr + 4));
887 
888 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
889 		rah &= ~IGC_RAH_ASEL_MASK;
890 		rah |= IGC_RAH_ASEL_SRC_ADDR;
891 	}
892 
893 	if (queue >= 0) {
894 		rah &= ~IGC_RAH_QSEL_MASK;
895 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
896 		rah |= IGC_RAH_QSEL_ENABLE;
897 	}
898 
899 	rah |= IGC_RAH_AV;
900 
901 	wr32(IGC_RAL(index), ral);
902 	wr32(IGC_RAH(index), rah);
903 
904 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
905 }
906 
907 /**
908  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
909  * @adapter: Pointer to adapter where the filter should be cleared
910  * @index: Filter index
911  */
912 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
913 {
914 	struct net_device *dev = adapter->netdev;
915 	struct igc_hw *hw = &adapter->hw;
916 
917 	if (WARN_ON(index >= hw->mac.rar_entry_count))
918 		return;
919 
920 	wr32(IGC_RAL(index), 0);
921 	wr32(IGC_RAH(index), 0);
922 
923 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
924 }
925 
926 /* Set default MAC address for the PF in the first RAR entry */
927 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
928 {
929 	struct net_device *dev = adapter->netdev;
930 	u8 *addr = adapter->hw.mac.addr;
931 
932 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
933 
934 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
935 }
936 
937 /**
938  * igc_set_mac - Change the Ethernet Address of the NIC
939  * @netdev: network interface device structure
940  * @p: pointer to an address structure
941  *
942  * Returns 0 on success, negative on failure
943  */
944 static int igc_set_mac(struct net_device *netdev, void *p)
945 {
946 	struct igc_adapter *adapter = netdev_priv(netdev);
947 	struct igc_hw *hw = &adapter->hw;
948 	struct sockaddr *addr = p;
949 
950 	if (!is_valid_ether_addr(addr->sa_data))
951 		return -EADDRNOTAVAIL;
952 
953 	eth_hw_addr_set(netdev, addr->sa_data);
954 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
955 
956 	/* set the correct pool for the new PF MAC address in entry 0 */
957 	igc_set_default_mac_filter(adapter);
958 
959 	return 0;
960 }
961 
962 /**
963  *  igc_write_mc_addr_list - write multicast addresses to MTA
964  *  @netdev: network interface device structure
965  *
966  *  Writes multicast address list to the MTA hash table.
967  *  Returns: -ENOMEM on failure
968  *           0 on no addresses written
969  *           X on writing X addresses to MTA
970  **/
971 static int igc_write_mc_addr_list(struct net_device *netdev)
972 {
973 	struct igc_adapter *adapter = netdev_priv(netdev);
974 	struct igc_hw *hw = &adapter->hw;
975 	struct netdev_hw_addr *ha;
976 	u8  *mta_list;
977 	int i;
978 
979 	if (netdev_mc_empty(netdev)) {
980 		/* nothing to program, so clear mc list */
981 		igc_update_mc_addr_list(hw, NULL, 0);
982 		return 0;
983 	}
984 
985 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
986 	if (!mta_list)
987 		return -ENOMEM;
988 
989 	/* The shared function expects a packed array of only addresses. */
990 	i = 0;
991 	netdev_for_each_mc_addr(ha, netdev)
992 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
993 
994 	igc_update_mc_addr_list(hw, mta_list, i);
995 	kfree(mta_list);
996 
997 	return netdev_mc_count(netdev);
998 }
999 
1000 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
1001 {
1002 	ktime_t cycle_time = adapter->cycle_time;
1003 	ktime_t base_time = adapter->base_time;
1004 	u32 launchtime;
1005 
1006 	/* FIXME: when using ETF together with taprio, we may have a
1007 	 * case where 'delta' is larger than the cycle_time, this may
1008 	 * cause problems if we don't read the current value of
1009 	 * IGC_BASET, as the value writen into the launchtime
1010 	 * descriptor field may be misinterpreted.
1011 	 */
1012 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1013 
1014 	return cpu_to_le32(launchtime);
1015 }
1016 
1017 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1018 			    struct igc_tx_buffer *first,
1019 			    u32 vlan_macip_lens, u32 type_tucmd,
1020 			    u32 mss_l4len_idx)
1021 {
1022 	struct igc_adv_tx_context_desc *context_desc;
1023 	u16 i = tx_ring->next_to_use;
1024 
1025 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1026 
1027 	i++;
1028 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1029 
1030 	/* set bits to identify this as an advanced context descriptor */
1031 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1032 
1033 	/* For i225, context index must be unique per ring. */
1034 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1035 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1036 
1037 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1038 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1039 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1040 
1041 	/* We assume there is always a valid Tx time available. Invalid times
1042 	 * should have been handled by the upper layers.
1043 	 */
1044 	if (tx_ring->launchtime_enable) {
1045 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1046 		ktime_t txtime = first->skb->tstamp;
1047 
1048 		skb_txtime_consumed(first->skb);
1049 		context_desc->launch_time = igc_tx_launchtime(adapter,
1050 							      txtime);
1051 	} else {
1052 		context_desc->launch_time = 0;
1053 	}
1054 }
1055 
1056 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1057 {
1058 	struct sk_buff *skb = first->skb;
1059 	u32 vlan_macip_lens = 0;
1060 	u32 type_tucmd = 0;
1061 
1062 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1063 csum_failed:
1064 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1065 		    !tx_ring->launchtime_enable)
1066 			return;
1067 		goto no_csum;
1068 	}
1069 
1070 	switch (skb->csum_offset) {
1071 	case offsetof(struct tcphdr, check):
1072 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1073 		fallthrough;
1074 	case offsetof(struct udphdr, check):
1075 		break;
1076 	case offsetof(struct sctphdr, checksum):
1077 		/* validate that this is actually an SCTP request */
1078 		if (skb_csum_is_sctp(skb)) {
1079 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1080 			break;
1081 		}
1082 		fallthrough;
1083 	default:
1084 		skb_checksum_help(skb);
1085 		goto csum_failed;
1086 	}
1087 
1088 	/* update TX checksum flag */
1089 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1090 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1091 			  skb_network_offset(skb);
1092 no_csum:
1093 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1094 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1095 
1096 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1097 }
1098 
1099 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1100 {
1101 	struct net_device *netdev = tx_ring->netdev;
1102 
1103 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1104 
1105 	/* memory barriier comment */
1106 	smp_mb();
1107 
1108 	/* We need to check again in a case another CPU has just
1109 	 * made room available.
1110 	 */
1111 	if (igc_desc_unused(tx_ring) < size)
1112 		return -EBUSY;
1113 
1114 	/* A reprieve! */
1115 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1116 
1117 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1118 	tx_ring->tx_stats.restart_queue2++;
1119 	u64_stats_update_end(&tx_ring->tx_syncp2);
1120 
1121 	return 0;
1122 }
1123 
1124 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1125 {
1126 	if (igc_desc_unused(tx_ring) >= size)
1127 		return 0;
1128 	return __igc_maybe_stop_tx(tx_ring, size);
1129 }
1130 
1131 #define IGC_SET_FLAG(_input, _flag, _result) \
1132 	(((_flag) <= (_result)) ?				\
1133 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1134 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1135 
1136 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1137 {
1138 	/* set type for advanced descriptor with frame checksum insertion */
1139 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1140 		       IGC_ADVTXD_DCMD_DEXT |
1141 		       IGC_ADVTXD_DCMD_IFCS;
1142 
1143 	/* set HW vlan bit if vlan is present */
1144 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1145 				 IGC_ADVTXD_DCMD_VLE);
1146 
1147 	/* set segmentation bits for TSO */
1148 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1149 				 (IGC_ADVTXD_DCMD_TSE));
1150 
1151 	/* set timestamp bit if present */
1152 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1153 				 (IGC_ADVTXD_MAC_TSTAMP));
1154 
1155 	/* insert frame checksum */
1156 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1157 
1158 	return cmd_type;
1159 }
1160 
1161 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1162 				 union igc_adv_tx_desc *tx_desc,
1163 				 u32 tx_flags, unsigned int paylen)
1164 {
1165 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1166 
1167 	/* insert L4 checksum */
1168 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1169 			  ((IGC_TXD_POPTS_TXSM << 8) /
1170 			  IGC_TX_FLAGS_CSUM);
1171 
1172 	/* insert IPv4 checksum */
1173 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1174 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1175 			  IGC_TX_FLAGS_IPV4);
1176 
1177 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1178 }
1179 
1180 static int igc_tx_map(struct igc_ring *tx_ring,
1181 		      struct igc_tx_buffer *first,
1182 		      const u8 hdr_len)
1183 {
1184 	struct sk_buff *skb = first->skb;
1185 	struct igc_tx_buffer *tx_buffer;
1186 	union igc_adv_tx_desc *tx_desc;
1187 	u32 tx_flags = first->tx_flags;
1188 	skb_frag_t *frag;
1189 	u16 i = tx_ring->next_to_use;
1190 	unsigned int data_len, size;
1191 	dma_addr_t dma;
1192 	u32 cmd_type;
1193 
1194 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1195 	tx_desc = IGC_TX_DESC(tx_ring, i);
1196 
1197 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1198 
1199 	size = skb_headlen(skb);
1200 	data_len = skb->data_len;
1201 
1202 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1203 
1204 	tx_buffer = first;
1205 
1206 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1207 		if (dma_mapping_error(tx_ring->dev, dma))
1208 			goto dma_error;
1209 
1210 		/* record length, and DMA address */
1211 		dma_unmap_len_set(tx_buffer, len, size);
1212 		dma_unmap_addr_set(tx_buffer, dma, dma);
1213 
1214 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1215 
1216 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1217 			tx_desc->read.cmd_type_len =
1218 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1219 
1220 			i++;
1221 			tx_desc++;
1222 			if (i == tx_ring->count) {
1223 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1224 				i = 0;
1225 			}
1226 			tx_desc->read.olinfo_status = 0;
1227 
1228 			dma += IGC_MAX_DATA_PER_TXD;
1229 			size -= IGC_MAX_DATA_PER_TXD;
1230 
1231 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1232 		}
1233 
1234 		if (likely(!data_len))
1235 			break;
1236 
1237 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1238 
1239 		i++;
1240 		tx_desc++;
1241 		if (i == tx_ring->count) {
1242 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1243 			i = 0;
1244 		}
1245 		tx_desc->read.olinfo_status = 0;
1246 
1247 		size = skb_frag_size(frag);
1248 		data_len -= size;
1249 
1250 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1251 				       size, DMA_TO_DEVICE);
1252 
1253 		tx_buffer = &tx_ring->tx_buffer_info[i];
1254 	}
1255 
1256 	/* write last descriptor with RS and EOP bits */
1257 	cmd_type |= size | IGC_TXD_DCMD;
1258 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1259 
1260 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1261 
1262 	/* set the timestamp */
1263 	first->time_stamp = jiffies;
1264 
1265 	skb_tx_timestamp(skb);
1266 
1267 	/* Force memory writes to complete before letting h/w know there
1268 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1269 	 * memory model archs, such as IA-64).
1270 	 *
1271 	 * We also need this memory barrier to make certain all of the
1272 	 * status bits have been updated before next_to_watch is written.
1273 	 */
1274 	wmb();
1275 
1276 	/* set next_to_watch value indicating a packet is present */
1277 	first->next_to_watch = tx_desc;
1278 
1279 	i++;
1280 	if (i == tx_ring->count)
1281 		i = 0;
1282 
1283 	tx_ring->next_to_use = i;
1284 
1285 	/* Make sure there is space in the ring for the next send. */
1286 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1287 
1288 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1289 		writel(i, tx_ring->tail);
1290 	}
1291 
1292 	return 0;
1293 dma_error:
1294 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1295 	tx_buffer = &tx_ring->tx_buffer_info[i];
1296 
1297 	/* clear dma mappings for failed tx_buffer_info map */
1298 	while (tx_buffer != first) {
1299 		if (dma_unmap_len(tx_buffer, len))
1300 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1301 
1302 		if (i-- == 0)
1303 			i += tx_ring->count;
1304 		tx_buffer = &tx_ring->tx_buffer_info[i];
1305 	}
1306 
1307 	if (dma_unmap_len(tx_buffer, len))
1308 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1309 
1310 	dev_kfree_skb_any(tx_buffer->skb);
1311 	tx_buffer->skb = NULL;
1312 
1313 	tx_ring->next_to_use = i;
1314 
1315 	return -1;
1316 }
1317 
1318 static int igc_tso(struct igc_ring *tx_ring,
1319 		   struct igc_tx_buffer *first,
1320 		   u8 *hdr_len)
1321 {
1322 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1323 	struct sk_buff *skb = first->skb;
1324 	union {
1325 		struct iphdr *v4;
1326 		struct ipv6hdr *v6;
1327 		unsigned char *hdr;
1328 	} ip;
1329 	union {
1330 		struct tcphdr *tcp;
1331 		struct udphdr *udp;
1332 		unsigned char *hdr;
1333 	} l4;
1334 	u32 paylen, l4_offset;
1335 	int err;
1336 
1337 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1338 		return 0;
1339 
1340 	if (!skb_is_gso(skb))
1341 		return 0;
1342 
1343 	err = skb_cow_head(skb, 0);
1344 	if (err < 0)
1345 		return err;
1346 
1347 	ip.hdr = skb_network_header(skb);
1348 	l4.hdr = skb_checksum_start(skb);
1349 
1350 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1351 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1352 
1353 	/* initialize outer IP header fields */
1354 	if (ip.v4->version == 4) {
1355 		unsigned char *csum_start = skb_checksum_start(skb);
1356 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1357 
1358 		/* IP header will have to cancel out any data that
1359 		 * is not a part of the outer IP header
1360 		 */
1361 		ip.v4->check = csum_fold(csum_partial(trans_start,
1362 						      csum_start - trans_start,
1363 						      0));
1364 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1365 
1366 		ip.v4->tot_len = 0;
1367 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1368 				   IGC_TX_FLAGS_CSUM |
1369 				   IGC_TX_FLAGS_IPV4;
1370 	} else {
1371 		ip.v6->payload_len = 0;
1372 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1373 				   IGC_TX_FLAGS_CSUM;
1374 	}
1375 
1376 	/* determine offset of inner transport header */
1377 	l4_offset = l4.hdr - skb->data;
1378 
1379 	/* remove payload length from inner checksum */
1380 	paylen = skb->len - l4_offset;
1381 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1382 		/* compute length of segmentation header */
1383 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1384 		csum_replace_by_diff(&l4.tcp->check,
1385 				     (__force __wsum)htonl(paylen));
1386 	} else {
1387 		/* compute length of segmentation header */
1388 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1389 		csum_replace_by_diff(&l4.udp->check,
1390 				     (__force __wsum)htonl(paylen));
1391 	}
1392 
1393 	/* update gso size and bytecount with header size */
1394 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1395 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1396 
1397 	/* MSS L4LEN IDX */
1398 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1399 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1400 
1401 	/* VLAN MACLEN IPLEN */
1402 	vlan_macip_lens = l4.hdr - ip.hdr;
1403 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1404 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1405 
1406 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1407 			type_tucmd, mss_l4len_idx);
1408 
1409 	return 1;
1410 }
1411 
1412 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1413 				       struct igc_ring *tx_ring)
1414 {
1415 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1416 	__be16 protocol = vlan_get_protocol(skb);
1417 	struct igc_tx_buffer *first;
1418 	u32 tx_flags = 0;
1419 	unsigned short f;
1420 	u8 hdr_len = 0;
1421 	int tso = 0;
1422 
1423 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1424 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1425 	 *	+ 2 desc gap to keep tail from touching head,
1426 	 *	+ 1 desc for context descriptor,
1427 	 * otherwise try next time
1428 	 */
1429 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1430 		count += TXD_USE_COUNT(skb_frag_size(
1431 						&skb_shinfo(skb)->frags[f]));
1432 
1433 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1434 		/* this is a hard error */
1435 		return NETDEV_TX_BUSY;
1436 	}
1437 
1438 	/* record the location of the first descriptor for this packet */
1439 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1440 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1441 	first->skb = skb;
1442 	first->bytecount = skb->len;
1443 	first->gso_segs = 1;
1444 
1445 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1446 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1447 
1448 		/* FIXME: add support for retrieving timestamps from
1449 		 * the other timer registers before skipping the
1450 		 * timestamping request.
1451 		 */
1452 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1453 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1454 					   &adapter->state)) {
1455 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1456 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1457 
1458 			adapter->ptp_tx_skb = skb_get(skb);
1459 			adapter->ptp_tx_start = jiffies;
1460 		} else {
1461 			adapter->tx_hwtstamp_skipped++;
1462 		}
1463 	}
1464 
1465 	if (skb_vlan_tag_present(skb)) {
1466 		tx_flags |= IGC_TX_FLAGS_VLAN;
1467 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1468 	}
1469 
1470 	/* record initial flags and protocol */
1471 	first->tx_flags = tx_flags;
1472 	first->protocol = protocol;
1473 
1474 	tso = igc_tso(tx_ring, first, &hdr_len);
1475 	if (tso < 0)
1476 		goto out_drop;
1477 	else if (!tso)
1478 		igc_tx_csum(tx_ring, first);
1479 
1480 	igc_tx_map(tx_ring, first, hdr_len);
1481 
1482 	return NETDEV_TX_OK;
1483 
1484 out_drop:
1485 	dev_kfree_skb_any(first->skb);
1486 	first->skb = NULL;
1487 
1488 	return NETDEV_TX_OK;
1489 }
1490 
1491 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1492 						    struct sk_buff *skb)
1493 {
1494 	unsigned int r_idx = skb->queue_mapping;
1495 
1496 	if (r_idx >= adapter->num_tx_queues)
1497 		r_idx = r_idx % adapter->num_tx_queues;
1498 
1499 	return adapter->tx_ring[r_idx];
1500 }
1501 
1502 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1503 				  struct net_device *netdev)
1504 {
1505 	struct igc_adapter *adapter = netdev_priv(netdev);
1506 
1507 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1508 	 * in order to meet this minimum size requirement.
1509 	 */
1510 	if (skb->len < 17) {
1511 		if (skb_padto(skb, 17))
1512 			return NETDEV_TX_OK;
1513 		skb->len = 17;
1514 	}
1515 
1516 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1517 }
1518 
1519 static void igc_rx_checksum(struct igc_ring *ring,
1520 			    union igc_adv_rx_desc *rx_desc,
1521 			    struct sk_buff *skb)
1522 {
1523 	skb_checksum_none_assert(skb);
1524 
1525 	/* Ignore Checksum bit is set */
1526 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1527 		return;
1528 
1529 	/* Rx checksum disabled via ethtool */
1530 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1531 		return;
1532 
1533 	/* TCP/UDP checksum error bit is set */
1534 	if (igc_test_staterr(rx_desc,
1535 			     IGC_RXDEXT_STATERR_L4E |
1536 			     IGC_RXDEXT_STATERR_IPE)) {
1537 		/* work around errata with sctp packets where the TCPE aka
1538 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1539 		 * packets (aka let the stack check the crc32c)
1540 		 */
1541 		if (!(skb->len == 60 &&
1542 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1543 			u64_stats_update_begin(&ring->rx_syncp);
1544 			ring->rx_stats.csum_err++;
1545 			u64_stats_update_end(&ring->rx_syncp);
1546 		}
1547 		/* let the stack verify checksum errors */
1548 		return;
1549 	}
1550 	/* It must be a TCP or UDP packet with a valid checksum */
1551 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1552 				      IGC_RXD_STAT_UDPCS))
1553 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1554 
1555 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1556 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1557 }
1558 
1559 static inline void igc_rx_hash(struct igc_ring *ring,
1560 			       union igc_adv_rx_desc *rx_desc,
1561 			       struct sk_buff *skb)
1562 {
1563 	if (ring->netdev->features & NETIF_F_RXHASH)
1564 		skb_set_hash(skb,
1565 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1566 			     PKT_HASH_TYPE_L3);
1567 }
1568 
1569 static void igc_rx_vlan(struct igc_ring *rx_ring,
1570 			union igc_adv_rx_desc *rx_desc,
1571 			struct sk_buff *skb)
1572 {
1573 	struct net_device *dev = rx_ring->netdev;
1574 	u16 vid;
1575 
1576 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1577 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1578 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1579 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1580 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1581 		else
1582 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1583 
1584 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1585 	}
1586 }
1587 
1588 /**
1589  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1590  * @rx_ring: rx descriptor ring packet is being transacted on
1591  * @rx_desc: pointer to the EOP Rx descriptor
1592  * @skb: pointer to current skb being populated
1593  *
1594  * This function checks the ring, descriptor, and packet information in order
1595  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1596  * skb.
1597  */
1598 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1599 				   union igc_adv_rx_desc *rx_desc,
1600 				   struct sk_buff *skb)
1601 {
1602 	igc_rx_hash(rx_ring, rx_desc, skb);
1603 
1604 	igc_rx_checksum(rx_ring, rx_desc, skb);
1605 
1606 	igc_rx_vlan(rx_ring, rx_desc, skb);
1607 
1608 	skb_record_rx_queue(skb, rx_ring->queue_index);
1609 
1610 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1611 }
1612 
1613 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1614 {
1615 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1616 	struct igc_adapter *adapter = netdev_priv(netdev);
1617 	struct igc_hw *hw = &adapter->hw;
1618 	u32 ctrl;
1619 
1620 	ctrl = rd32(IGC_CTRL);
1621 
1622 	if (enable) {
1623 		/* enable VLAN tag insert/strip */
1624 		ctrl |= IGC_CTRL_VME;
1625 	} else {
1626 		/* disable VLAN tag insert/strip */
1627 		ctrl &= ~IGC_CTRL_VME;
1628 	}
1629 	wr32(IGC_CTRL, ctrl);
1630 }
1631 
1632 static void igc_restore_vlan(struct igc_adapter *adapter)
1633 {
1634 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1635 }
1636 
1637 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1638 					       const unsigned int size,
1639 					       int *rx_buffer_pgcnt)
1640 {
1641 	struct igc_rx_buffer *rx_buffer;
1642 
1643 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1644 	*rx_buffer_pgcnt =
1645 #if (PAGE_SIZE < 8192)
1646 		page_count(rx_buffer->page);
1647 #else
1648 		0;
1649 #endif
1650 	prefetchw(rx_buffer->page);
1651 
1652 	/* we are reusing so sync this buffer for CPU use */
1653 	dma_sync_single_range_for_cpu(rx_ring->dev,
1654 				      rx_buffer->dma,
1655 				      rx_buffer->page_offset,
1656 				      size,
1657 				      DMA_FROM_DEVICE);
1658 
1659 	rx_buffer->pagecnt_bias--;
1660 
1661 	return rx_buffer;
1662 }
1663 
1664 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1665 			       unsigned int truesize)
1666 {
1667 #if (PAGE_SIZE < 8192)
1668 	buffer->page_offset ^= truesize;
1669 #else
1670 	buffer->page_offset += truesize;
1671 #endif
1672 }
1673 
1674 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1675 					      unsigned int size)
1676 {
1677 	unsigned int truesize;
1678 
1679 #if (PAGE_SIZE < 8192)
1680 	truesize = igc_rx_pg_size(ring) / 2;
1681 #else
1682 	truesize = ring_uses_build_skb(ring) ?
1683 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1684 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1685 		   SKB_DATA_ALIGN(size);
1686 #endif
1687 	return truesize;
1688 }
1689 
1690 /**
1691  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1692  * @rx_ring: rx descriptor ring to transact packets on
1693  * @rx_buffer: buffer containing page to add
1694  * @skb: sk_buff to place the data into
1695  * @size: size of buffer to be added
1696  *
1697  * This function will add the data contained in rx_buffer->page to the skb.
1698  */
1699 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1700 			    struct igc_rx_buffer *rx_buffer,
1701 			    struct sk_buff *skb,
1702 			    unsigned int size)
1703 {
1704 	unsigned int truesize;
1705 
1706 #if (PAGE_SIZE < 8192)
1707 	truesize = igc_rx_pg_size(rx_ring) / 2;
1708 #else
1709 	truesize = ring_uses_build_skb(rx_ring) ?
1710 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1711 		   SKB_DATA_ALIGN(size);
1712 #endif
1713 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1714 			rx_buffer->page_offset, size, truesize);
1715 
1716 	igc_rx_buffer_flip(rx_buffer, truesize);
1717 }
1718 
1719 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1720 				     struct igc_rx_buffer *rx_buffer,
1721 				     struct xdp_buff *xdp)
1722 {
1723 	unsigned int size = xdp->data_end - xdp->data;
1724 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1725 	unsigned int metasize = xdp->data - xdp->data_meta;
1726 	struct sk_buff *skb;
1727 
1728 	/* prefetch first cache line of first page */
1729 	net_prefetch(xdp->data_meta);
1730 
1731 	/* build an skb around the page buffer */
1732 	skb = build_skb(xdp->data_hard_start, truesize);
1733 	if (unlikely(!skb))
1734 		return NULL;
1735 
1736 	/* update pointers within the skb to store the data */
1737 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1738 	__skb_put(skb, size);
1739 	if (metasize)
1740 		skb_metadata_set(skb, metasize);
1741 
1742 	igc_rx_buffer_flip(rx_buffer, truesize);
1743 	return skb;
1744 }
1745 
1746 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1747 					 struct igc_rx_buffer *rx_buffer,
1748 					 struct xdp_buff *xdp,
1749 					 ktime_t timestamp)
1750 {
1751 	unsigned int metasize = xdp->data - xdp->data_meta;
1752 	unsigned int size = xdp->data_end - xdp->data;
1753 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1754 	void *va = xdp->data;
1755 	unsigned int headlen;
1756 	struct sk_buff *skb;
1757 
1758 	/* prefetch first cache line of first page */
1759 	net_prefetch(xdp->data_meta);
1760 
1761 	/* allocate a skb to store the frags */
1762 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1763 			     IGC_RX_HDR_LEN + metasize);
1764 	if (unlikely(!skb))
1765 		return NULL;
1766 
1767 	if (timestamp)
1768 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1769 
1770 	/* Determine available headroom for copy */
1771 	headlen = size;
1772 	if (headlen > IGC_RX_HDR_LEN)
1773 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1774 
1775 	/* align pull length to size of long to optimize memcpy performance */
1776 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1777 	       ALIGN(headlen + metasize, sizeof(long)));
1778 
1779 	if (metasize) {
1780 		skb_metadata_set(skb, metasize);
1781 		__skb_pull(skb, metasize);
1782 	}
1783 
1784 	/* update all of the pointers */
1785 	size -= headlen;
1786 	if (size) {
1787 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1788 				(va + headlen) - page_address(rx_buffer->page),
1789 				size, truesize);
1790 		igc_rx_buffer_flip(rx_buffer, truesize);
1791 	} else {
1792 		rx_buffer->pagecnt_bias++;
1793 	}
1794 
1795 	return skb;
1796 }
1797 
1798 /**
1799  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1800  * @rx_ring: rx descriptor ring to store buffers on
1801  * @old_buff: donor buffer to have page reused
1802  *
1803  * Synchronizes page for reuse by the adapter
1804  */
1805 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1806 			      struct igc_rx_buffer *old_buff)
1807 {
1808 	u16 nta = rx_ring->next_to_alloc;
1809 	struct igc_rx_buffer *new_buff;
1810 
1811 	new_buff = &rx_ring->rx_buffer_info[nta];
1812 
1813 	/* update, and store next to alloc */
1814 	nta++;
1815 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1816 
1817 	/* Transfer page from old buffer to new buffer.
1818 	 * Move each member individually to avoid possible store
1819 	 * forwarding stalls.
1820 	 */
1821 	new_buff->dma		= old_buff->dma;
1822 	new_buff->page		= old_buff->page;
1823 	new_buff->page_offset	= old_buff->page_offset;
1824 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1825 }
1826 
1827 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1828 				  int rx_buffer_pgcnt)
1829 {
1830 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1831 	struct page *page = rx_buffer->page;
1832 
1833 	/* avoid re-using remote and pfmemalloc pages */
1834 	if (!dev_page_is_reusable(page))
1835 		return false;
1836 
1837 #if (PAGE_SIZE < 8192)
1838 	/* if we are only owner of page we can reuse it */
1839 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1840 		return false;
1841 #else
1842 #define IGC_LAST_OFFSET \
1843 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1844 
1845 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1846 		return false;
1847 #endif
1848 
1849 	/* If we have drained the page fragment pool we need to update
1850 	 * the pagecnt_bias and page count so that we fully restock the
1851 	 * number of references the driver holds.
1852 	 */
1853 	if (unlikely(pagecnt_bias == 1)) {
1854 		page_ref_add(page, USHRT_MAX - 1);
1855 		rx_buffer->pagecnt_bias = USHRT_MAX;
1856 	}
1857 
1858 	return true;
1859 }
1860 
1861 /**
1862  * igc_is_non_eop - process handling of non-EOP buffers
1863  * @rx_ring: Rx ring being processed
1864  * @rx_desc: Rx descriptor for current buffer
1865  *
1866  * This function updates next to clean.  If the buffer is an EOP buffer
1867  * this function exits returning false, otherwise it will place the
1868  * sk_buff in the next buffer to be chained and return true indicating
1869  * that this is in fact a non-EOP buffer.
1870  */
1871 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1872 			   union igc_adv_rx_desc *rx_desc)
1873 {
1874 	u32 ntc = rx_ring->next_to_clean + 1;
1875 
1876 	/* fetch, update, and store next to clean */
1877 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1878 	rx_ring->next_to_clean = ntc;
1879 
1880 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1881 
1882 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1883 		return false;
1884 
1885 	return true;
1886 }
1887 
1888 /**
1889  * igc_cleanup_headers - Correct corrupted or empty headers
1890  * @rx_ring: rx descriptor ring packet is being transacted on
1891  * @rx_desc: pointer to the EOP Rx descriptor
1892  * @skb: pointer to current skb being fixed
1893  *
1894  * Address the case where we are pulling data in on pages only
1895  * and as such no data is present in the skb header.
1896  *
1897  * In addition if skb is not at least 60 bytes we need to pad it so that
1898  * it is large enough to qualify as a valid Ethernet frame.
1899  *
1900  * Returns true if an error was encountered and skb was freed.
1901  */
1902 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1903 				union igc_adv_rx_desc *rx_desc,
1904 				struct sk_buff *skb)
1905 {
1906 	/* XDP packets use error pointer so abort at this point */
1907 	if (IS_ERR(skb))
1908 		return true;
1909 
1910 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1911 		struct net_device *netdev = rx_ring->netdev;
1912 
1913 		if (!(netdev->features & NETIF_F_RXALL)) {
1914 			dev_kfree_skb_any(skb);
1915 			return true;
1916 		}
1917 	}
1918 
1919 	/* if eth_skb_pad returns an error the skb was freed */
1920 	if (eth_skb_pad(skb))
1921 		return true;
1922 
1923 	return false;
1924 }
1925 
1926 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1927 			      struct igc_rx_buffer *rx_buffer,
1928 			      int rx_buffer_pgcnt)
1929 {
1930 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1931 		/* hand second half of page back to the ring */
1932 		igc_reuse_rx_page(rx_ring, rx_buffer);
1933 	} else {
1934 		/* We are not reusing the buffer so unmap it and free
1935 		 * any references we are holding to it
1936 		 */
1937 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1938 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1939 				     IGC_RX_DMA_ATTR);
1940 		__page_frag_cache_drain(rx_buffer->page,
1941 					rx_buffer->pagecnt_bias);
1942 	}
1943 
1944 	/* clear contents of rx_buffer */
1945 	rx_buffer->page = NULL;
1946 }
1947 
1948 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1949 {
1950 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1951 
1952 	if (ring_uses_build_skb(rx_ring))
1953 		return IGC_SKB_PAD;
1954 	if (igc_xdp_is_enabled(adapter))
1955 		return XDP_PACKET_HEADROOM;
1956 
1957 	return 0;
1958 }
1959 
1960 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1961 				  struct igc_rx_buffer *bi)
1962 {
1963 	struct page *page = bi->page;
1964 	dma_addr_t dma;
1965 
1966 	/* since we are recycling buffers we should seldom need to alloc */
1967 	if (likely(page))
1968 		return true;
1969 
1970 	/* alloc new page for storage */
1971 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1972 	if (unlikely(!page)) {
1973 		rx_ring->rx_stats.alloc_failed++;
1974 		return false;
1975 	}
1976 
1977 	/* map page for use */
1978 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1979 				 igc_rx_pg_size(rx_ring),
1980 				 DMA_FROM_DEVICE,
1981 				 IGC_RX_DMA_ATTR);
1982 
1983 	/* if mapping failed free memory back to system since
1984 	 * there isn't much point in holding memory we can't use
1985 	 */
1986 	if (dma_mapping_error(rx_ring->dev, dma)) {
1987 		__free_page(page);
1988 
1989 		rx_ring->rx_stats.alloc_failed++;
1990 		return false;
1991 	}
1992 
1993 	bi->dma = dma;
1994 	bi->page = page;
1995 	bi->page_offset = igc_rx_offset(rx_ring);
1996 	page_ref_add(page, USHRT_MAX - 1);
1997 	bi->pagecnt_bias = USHRT_MAX;
1998 
1999 	return true;
2000 }
2001 
2002 /**
2003  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2004  * @rx_ring: rx descriptor ring
2005  * @cleaned_count: number of buffers to clean
2006  */
2007 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2008 {
2009 	union igc_adv_rx_desc *rx_desc;
2010 	u16 i = rx_ring->next_to_use;
2011 	struct igc_rx_buffer *bi;
2012 	u16 bufsz;
2013 
2014 	/* nothing to do */
2015 	if (!cleaned_count)
2016 		return;
2017 
2018 	rx_desc = IGC_RX_DESC(rx_ring, i);
2019 	bi = &rx_ring->rx_buffer_info[i];
2020 	i -= rx_ring->count;
2021 
2022 	bufsz = igc_rx_bufsz(rx_ring);
2023 
2024 	do {
2025 		if (!igc_alloc_mapped_page(rx_ring, bi))
2026 			break;
2027 
2028 		/* sync the buffer for use by the device */
2029 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2030 						 bi->page_offset, bufsz,
2031 						 DMA_FROM_DEVICE);
2032 
2033 		/* Refresh the desc even if buffer_addrs didn't change
2034 		 * because each write-back erases this info.
2035 		 */
2036 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2037 
2038 		rx_desc++;
2039 		bi++;
2040 		i++;
2041 		if (unlikely(!i)) {
2042 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2043 			bi = rx_ring->rx_buffer_info;
2044 			i -= rx_ring->count;
2045 		}
2046 
2047 		/* clear the length for the next_to_use descriptor */
2048 		rx_desc->wb.upper.length = 0;
2049 
2050 		cleaned_count--;
2051 	} while (cleaned_count);
2052 
2053 	i += rx_ring->count;
2054 
2055 	if (rx_ring->next_to_use != i) {
2056 		/* record the next descriptor to use */
2057 		rx_ring->next_to_use = i;
2058 
2059 		/* update next to alloc since we have filled the ring */
2060 		rx_ring->next_to_alloc = i;
2061 
2062 		/* Force memory writes to complete before letting h/w
2063 		 * know there are new descriptors to fetch.  (Only
2064 		 * applicable for weak-ordered memory model archs,
2065 		 * such as IA-64).
2066 		 */
2067 		wmb();
2068 		writel(i, rx_ring->tail);
2069 	}
2070 }
2071 
2072 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2073 {
2074 	union igc_adv_rx_desc *desc;
2075 	u16 i = ring->next_to_use;
2076 	struct igc_rx_buffer *bi;
2077 	dma_addr_t dma;
2078 	bool ok = true;
2079 
2080 	if (!count)
2081 		return ok;
2082 
2083 	desc = IGC_RX_DESC(ring, i);
2084 	bi = &ring->rx_buffer_info[i];
2085 	i -= ring->count;
2086 
2087 	do {
2088 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2089 		if (!bi->xdp) {
2090 			ok = false;
2091 			break;
2092 		}
2093 
2094 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2095 		desc->read.pkt_addr = cpu_to_le64(dma);
2096 
2097 		desc++;
2098 		bi++;
2099 		i++;
2100 		if (unlikely(!i)) {
2101 			desc = IGC_RX_DESC(ring, 0);
2102 			bi = ring->rx_buffer_info;
2103 			i -= ring->count;
2104 		}
2105 
2106 		/* Clear the length for the next_to_use descriptor. */
2107 		desc->wb.upper.length = 0;
2108 
2109 		count--;
2110 	} while (count);
2111 
2112 	i += ring->count;
2113 
2114 	if (ring->next_to_use != i) {
2115 		ring->next_to_use = i;
2116 
2117 		/* Force memory writes to complete before letting h/w
2118 		 * know there are new descriptors to fetch.  (Only
2119 		 * applicable for weak-ordered memory model archs,
2120 		 * such as IA-64).
2121 		 */
2122 		wmb();
2123 		writel(i, ring->tail);
2124 	}
2125 
2126 	return ok;
2127 }
2128 
2129 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2130 				  struct xdp_frame *xdpf,
2131 				  struct igc_ring *ring)
2132 {
2133 	dma_addr_t dma;
2134 
2135 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2136 	if (dma_mapping_error(ring->dev, dma)) {
2137 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2138 		return -ENOMEM;
2139 	}
2140 
2141 	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2142 	buffer->xdpf = xdpf;
2143 	buffer->protocol = 0;
2144 	buffer->bytecount = xdpf->len;
2145 	buffer->gso_segs = 1;
2146 	buffer->time_stamp = jiffies;
2147 	dma_unmap_len_set(buffer, len, xdpf->len);
2148 	dma_unmap_addr_set(buffer, dma, dma);
2149 	return 0;
2150 }
2151 
2152 /* This function requires __netif_tx_lock is held by the caller. */
2153 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2154 				      struct xdp_frame *xdpf)
2155 {
2156 	struct igc_tx_buffer *buffer;
2157 	union igc_adv_tx_desc *desc;
2158 	u32 cmd_type, olinfo_status;
2159 	int err;
2160 
2161 	if (!igc_desc_unused(ring))
2162 		return -EBUSY;
2163 
2164 	buffer = &ring->tx_buffer_info[ring->next_to_use];
2165 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2166 	if (err)
2167 		return err;
2168 
2169 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2170 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2171 		   buffer->bytecount;
2172 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2173 
2174 	desc = IGC_TX_DESC(ring, ring->next_to_use);
2175 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2176 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2177 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2178 
2179 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2180 
2181 	buffer->next_to_watch = desc;
2182 
2183 	ring->next_to_use++;
2184 	if (ring->next_to_use == ring->count)
2185 		ring->next_to_use = 0;
2186 
2187 	return 0;
2188 }
2189 
2190 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2191 					    int cpu)
2192 {
2193 	int index = cpu;
2194 
2195 	if (unlikely(index < 0))
2196 		index = 0;
2197 
2198 	while (index >= adapter->num_tx_queues)
2199 		index -= adapter->num_tx_queues;
2200 
2201 	return adapter->tx_ring[index];
2202 }
2203 
2204 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2205 {
2206 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2207 	int cpu = smp_processor_id();
2208 	struct netdev_queue *nq;
2209 	struct igc_ring *ring;
2210 	int res;
2211 
2212 	if (unlikely(!xdpf))
2213 		return -EFAULT;
2214 
2215 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2216 	nq = txring_txq(ring);
2217 
2218 	__netif_tx_lock(nq, cpu);
2219 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2220 	__netif_tx_unlock(nq);
2221 	return res;
2222 }
2223 
2224 /* This function assumes rcu_read_lock() is held by the caller. */
2225 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2226 			      struct bpf_prog *prog,
2227 			      struct xdp_buff *xdp)
2228 {
2229 	u32 act = bpf_prog_run_xdp(prog, xdp);
2230 
2231 	switch (act) {
2232 	case XDP_PASS:
2233 		return IGC_XDP_PASS;
2234 	case XDP_TX:
2235 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2236 			goto out_failure;
2237 		return IGC_XDP_TX;
2238 	case XDP_REDIRECT:
2239 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2240 			goto out_failure;
2241 		return IGC_XDP_REDIRECT;
2242 		break;
2243 	default:
2244 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2245 		fallthrough;
2246 	case XDP_ABORTED:
2247 out_failure:
2248 		trace_xdp_exception(adapter->netdev, prog, act);
2249 		fallthrough;
2250 	case XDP_DROP:
2251 		return IGC_XDP_CONSUMED;
2252 	}
2253 }
2254 
2255 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2256 					struct xdp_buff *xdp)
2257 {
2258 	struct bpf_prog *prog;
2259 	int res;
2260 
2261 	prog = READ_ONCE(adapter->xdp_prog);
2262 	if (!prog) {
2263 		res = IGC_XDP_PASS;
2264 		goto out;
2265 	}
2266 
2267 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2268 
2269 out:
2270 	return ERR_PTR(-res);
2271 }
2272 
2273 /* This function assumes __netif_tx_lock is held by the caller. */
2274 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2275 {
2276 	/* Once tail pointer is updated, hardware can fetch the descriptors
2277 	 * any time so we issue a write membar here to ensure all memory
2278 	 * writes are complete before the tail pointer is updated.
2279 	 */
2280 	wmb();
2281 	writel(ring->next_to_use, ring->tail);
2282 }
2283 
2284 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2285 {
2286 	int cpu = smp_processor_id();
2287 	struct netdev_queue *nq;
2288 	struct igc_ring *ring;
2289 
2290 	if (status & IGC_XDP_TX) {
2291 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2292 		nq = txring_txq(ring);
2293 
2294 		__netif_tx_lock(nq, cpu);
2295 		igc_flush_tx_descriptors(ring);
2296 		__netif_tx_unlock(nq);
2297 	}
2298 
2299 	if (status & IGC_XDP_REDIRECT)
2300 		xdp_do_flush();
2301 }
2302 
2303 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2304 				unsigned int packets, unsigned int bytes)
2305 {
2306 	struct igc_ring *ring = q_vector->rx.ring;
2307 
2308 	u64_stats_update_begin(&ring->rx_syncp);
2309 	ring->rx_stats.packets += packets;
2310 	ring->rx_stats.bytes += bytes;
2311 	u64_stats_update_end(&ring->rx_syncp);
2312 
2313 	q_vector->rx.total_packets += packets;
2314 	q_vector->rx.total_bytes += bytes;
2315 }
2316 
2317 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2318 {
2319 	unsigned int total_bytes = 0, total_packets = 0;
2320 	struct igc_adapter *adapter = q_vector->adapter;
2321 	struct igc_ring *rx_ring = q_vector->rx.ring;
2322 	struct sk_buff *skb = rx_ring->skb;
2323 	u16 cleaned_count = igc_desc_unused(rx_ring);
2324 	int xdp_status = 0, rx_buffer_pgcnt;
2325 
2326 	while (likely(total_packets < budget)) {
2327 		union igc_adv_rx_desc *rx_desc;
2328 		struct igc_rx_buffer *rx_buffer;
2329 		unsigned int size, truesize;
2330 		ktime_t timestamp = 0;
2331 		struct xdp_buff xdp;
2332 		int pkt_offset = 0;
2333 		void *pktbuf;
2334 
2335 		/* return some buffers to hardware, one at a time is too slow */
2336 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2337 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2338 			cleaned_count = 0;
2339 		}
2340 
2341 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2342 		size = le16_to_cpu(rx_desc->wb.upper.length);
2343 		if (!size)
2344 			break;
2345 
2346 		/* This memory barrier is needed to keep us from reading
2347 		 * any other fields out of the rx_desc until we know the
2348 		 * descriptor has been written back
2349 		 */
2350 		dma_rmb();
2351 
2352 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2353 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2354 
2355 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2356 
2357 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2358 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2359 							pktbuf);
2360 			pkt_offset = IGC_TS_HDR_LEN;
2361 			size -= IGC_TS_HDR_LEN;
2362 		}
2363 
2364 		if (!skb) {
2365 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2366 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2367 					 igc_rx_offset(rx_ring) + pkt_offset,
2368 					 size, true);
2369 
2370 			skb = igc_xdp_run_prog(adapter, &xdp);
2371 		}
2372 
2373 		if (IS_ERR(skb)) {
2374 			unsigned int xdp_res = -PTR_ERR(skb);
2375 
2376 			switch (xdp_res) {
2377 			case IGC_XDP_CONSUMED:
2378 				rx_buffer->pagecnt_bias++;
2379 				break;
2380 			case IGC_XDP_TX:
2381 			case IGC_XDP_REDIRECT:
2382 				igc_rx_buffer_flip(rx_buffer, truesize);
2383 				xdp_status |= xdp_res;
2384 				break;
2385 			}
2386 
2387 			total_packets++;
2388 			total_bytes += size;
2389 		} else if (skb)
2390 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2391 		else if (ring_uses_build_skb(rx_ring))
2392 			skb = igc_build_skb(rx_ring, rx_buffer, &xdp);
2393 		else
2394 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2395 						timestamp);
2396 
2397 		/* exit if we failed to retrieve a buffer */
2398 		if (!skb) {
2399 			rx_ring->rx_stats.alloc_failed++;
2400 			rx_buffer->pagecnt_bias++;
2401 			break;
2402 		}
2403 
2404 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2405 		cleaned_count++;
2406 
2407 		/* fetch next buffer in frame if non-eop */
2408 		if (igc_is_non_eop(rx_ring, rx_desc))
2409 			continue;
2410 
2411 		/* verify the packet layout is correct */
2412 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2413 			skb = NULL;
2414 			continue;
2415 		}
2416 
2417 		/* probably a little skewed due to removing CRC */
2418 		total_bytes += skb->len;
2419 
2420 		/* populate checksum, VLAN, and protocol */
2421 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2422 
2423 		napi_gro_receive(&q_vector->napi, skb);
2424 
2425 		/* reset skb pointer */
2426 		skb = NULL;
2427 
2428 		/* update budget accounting */
2429 		total_packets++;
2430 	}
2431 
2432 	if (xdp_status)
2433 		igc_finalize_xdp(adapter, xdp_status);
2434 
2435 	/* place incomplete frames back on ring for completion */
2436 	rx_ring->skb = skb;
2437 
2438 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2439 
2440 	if (cleaned_count)
2441 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2442 
2443 	return total_packets;
2444 }
2445 
2446 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2447 					    struct xdp_buff *xdp)
2448 {
2449 	unsigned int metasize = xdp->data - xdp->data_meta;
2450 	unsigned int datasize = xdp->data_end - xdp->data;
2451 	unsigned int totalsize = metasize + datasize;
2452 	struct sk_buff *skb;
2453 
2454 	skb = __napi_alloc_skb(&ring->q_vector->napi,
2455 			       xdp->data_end - xdp->data_hard_start,
2456 			       GFP_ATOMIC | __GFP_NOWARN);
2457 	if (unlikely(!skb))
2458 		return NULL;
2459 
2460 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2461 	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2462 	if (metasize) {
2463 		skb_metadata_set(skb, metasize);
2464 		__skb_pull(skb, metasize);
2465 	}
2466 
2467 	return skb;
2468 }
2469 
2470 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2471 				union igc_adv_rx_desc *desc,
2472 				struct xdp_buff *xdp,
2473 				ktime_t timestamp)
2474 {
2475 	struct igc_ring *ring = q_vector->rx.ring;
2476 	struct sk_buff *skb;
2477 
2478 	skb = igc_construct_skb_zc(ring, xdp);
2479 	if (!skb) {
2480 		ring->rx_stats.alloc_failed++;
2481 		return;
2482 	}
2483 
2484 	if (timestamp)
2485 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2486 
2487 	if (igc_cleanup_headers(ring, desc, skb))
2488 		return;
2489 
2490 	igc_process_skb_fields(ring, desc, skb);
2491 	napi_gro_receive(&q_vector->napi, skb);
2492 }
2493 
2494 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2495 {
2496 	struct igc_adapter *adapter = q_vector->adapter;
2497 	struct igc_ring *ring = q_vector->rx.ring;
2498 	u16 cleaned_count = igc_desc_unused(ring);
2499 	int total_bytes = 0, total_packets = 0;
2500 	u16 ntc = ring->next_to_clean;
2501 	struct bpf_prog *prog;
2502 	bool failure = false;
2503 	int xdp_status = 0;
2504 
2505 	rcu_read_lock();
2506 
2507 	prog = READ_ONCE(adapter->xdp_prog);
2508 
2509 	while (likely(total_packets < budget)) {
2510 		union igc_adv_rx_desc *desc;
2511 		struct igc_rx_buffer *bi;
2512 		ktime_t timestamp = 0;
2513 		unsigned int size;
2514 		int res;
2515 
2516 		desc = IGC_RX_DESC(ring, ntc);
2517 		size = le16_to_cpu(desc->wb.upper.length);
2518 		if (!size)
2519 			break;
2520 
2521 		/* This memory barrier is needed to keep us from reading
2522 		 * any other fields out of the rx_desc until we know the
2523 		 * descriptor has been written back
2524 		 */
2525 		dma_rmb();
2526 
2527 		bi = &ring->rx_buffer_info[ntc];
2528 
2529 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2530 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2531 							bi->xdp->data);
2532 
2533 			bi->xdp->data += IGC_TS_HDR_LEN;
2534 
2535 			/* HW timestamp has been copied into local variable. Metadata
2536 			 * length when XDP program is called should be 0.
2537 			 */
2538 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2539 			size -= IGC_TS_HDR_LEN;
2540 		}
2541 
2542 		bi->xdp->data_end = bi->xdp->data + size;
2543 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2544 
2545 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2546 		switch (res) {
2547 		case IGC_XDP_PASS:
2548 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2549 			fallthrough;
2550 		case IGC_XDP_CONSUMED:
2551 			xsk_buff_free(bi->xdp);
2552 			break;
2553 		case IGC_XDP_TX:
2554 		case IGC_XDP_REDIRECT:
2555 			xdp_status |= res;
2556 			break;
2557 		}
2558 
2559 		bi->xdp = NULL;
2560 		total_bytes += size;
2561 		total_packets++;
2562 		cleaned_count++;
2563 		ntc++;
2564 		if (ntc == ring->count)
2565 			ntc = 0;
2566 	}
2567 
2568 	ring->next_to_clean = ntc;
2569 	rcu_read_unlock();
2570 
2571 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2572 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2573 
2574 	if (xdp_status)
2575 		igc_finalize_xdp(adapter, xdp_status);
2576 
2577 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2578 
2579 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2580 		if (failure || ring->next_to_clean == ring->next_to_use)
2581 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2582 		else
2583 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2584 		return total_packets;
2585 	}
2586 
2587 	return failure ? budget : total_packets;
2588 }
2589 
2590 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2591 				unsigned int packets, unsigned int bytes)
2592 {
2593 	struct igc_ring *ring = q_vector->tx.ring;
2594 
2595 	u64_stats_update_begin(&ring->tx_syncp);
2596 	ring->tx_stats.bytes += bytes;
2597 	ring->tx_stats.packets += packets;
2598 	u64_stats_update_end(&ring->tx_syncp);
2599 
2600 	q_vector->tx.total_bytes += bytes;
2601 	q_vector->tx.total_packets += packets;
2602 }
2603 
2604 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2605 {
2606 	struct xsk_buff_pool *pool = ring->xsk_pool;
2607 	struct netdev_queue *nq = txring_txq(ring);
2608 	union igc_adv_tx_desc *tx_desc = NULL;
2609 	int cpu = smp_processor_id();
2610 	u16 ntu = ring->next_to_use;
2611 	struct xdp_desc xdp_desc;
2612 	u16 budget;
2613 
2614 	if (!netif_carrier_ok(ring->netdev))
2615 		return;
2616 
2617 	__netif_tx_lock(nq, cpu);
2618 
2619 	budget = igc_desc_unused(ring);
2620 
2621 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2622 		u32 cmd_type, olinfo_status;
2623 		struct igc_tx_buffer *bi;
2624 		dma_addr_t dma;
2625 
2626 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2627 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2628 			   xdp_desc.len;
2629 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2630 
2631 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2632 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2633 
2634 		tx_desc = IGC_TX_DESC(ring, ntu);
2635 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2636 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2637 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2638 
2639 		bi = &ring->tx_buffer_info[ntu];
2640 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2641 		bi->protocol = 0;
2642 		bi->bytecount = xdp_desc.len;
2643 		bi->gso_segs = 1;
2644 		bi->time_stamp = jiffies;
2645 		bi->next_to_watch = tx_desc;
2646 
2647 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2648 
2649 		ntu++;
2650 		if (ntu == ring->count)
2651 			ntu = 0;
2652 	}
2653 
2654 	ring->next_to_use = ntu;
2655 	if (tx_desc) {
2656 		igc_flush_tx_descriptors(ring);
2657 		xsk_tx_release(pool);
2658 	}
2659 
2660 	__netif_tx_unlock(nq);
2661 }
2662 
2663 /**
2664  * igc_clean_tx_irq - Reclaim resources after transmit completes
2665  * @q_vector: pointer to q_vector containing needed info
2666  * @napi_budget: Used to determine if we are in netpoll
2667  *
2668  * returns true if ring is completely cleaned
2669  */
2670 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2671 {
2672 	struct igc_adapter *adapter = q_vector->adapter;
2673 	unsigned int total_bytes = 0, total_packets = 0;
2674 	unsigned int budget = q_vector->tx.work_limit;
2675 	struct igc_ring *tx_ring = q_vector->tx.ring;
2676 	unsigned int i = tx_ring->next_to_clean;
2677 	struct igc_tx_buffer *tx_buffer;
2678 	union igc_adv_tx_desc *tx_desc;
2679 	u32 xsk_frames = 0;
2680 
2681 	if (test_bit(__IGC_DOWN, &adapter->state))
2682 		return true;
2683 
2684 	tx_buffer = &tx_ring->tx_buffer_info[i];
2685 	tx_desc = IGC_TX_DESC(tx_ring, i);
2686 	i -= tx_ring->count;
2687 
2688 	do {
2689 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2690 
2691 		/* if next_to_watch is not set then there is no work pending */
2692 		if (!eop_desc)
2693 			break;
2694 
2695 		/* prevent any other reads prior to eop_desc */
2696 		smp_rmb();
2697 
2698 		/* if DD is not set pending work has not been completed */
2699 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2700 			break;
2701 
2702 		/* clear next_to_watch to prevent false hangs */
2703 		tx_buffer->next_to_watch = NULL;
2704 
2705 		/* update the statistics for this packet */
2706 		total_bytes += tx_buffer->bytecount;
2707 		total_packets += tx_buffer->gso_segs;
2708 
2709 		switch (tx_buffer->type) {
2710 		case IGC_TX_BUFFER_TYPE_XSK:
2711 			xsk_frames++;
2712 			break;
2713 		case IGC_TX_BUFFER_TYPE_XDP:
2714 			xdp_return_frame(tx_buffer->xdpf);
2715 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2716 			break;
2717 		case IGC_TX_BUFFER_TYPE_SKB:
2718 			napi_consume_skb(tx_buffer->skb, napi_budget);
2719 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2720 			break;
2721 		default:
2722 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2723 			break;
2724 		}
2725 
2726 		/* clear last DMA location and unmap remaining buffers */
2727 		while (tx_desc != eop_desc) {
2728 			tx_buffer++;
2729 			tx_desc++;
2730 			i++;
2731 			if (unlikely(!i)) {
2732 				i -= tx_ring->count;
2733 				tx_buffer = tx_ring->tx_buffer_info;
2734 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2735 			}
2736 
2737 			/* unmap any remaining paged data */
2738 			if (dma_unmap_len(tx_buffer, len))
2739 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2740 		}
2741 
2742 		/* move us one more past the eop_desc for start of next pkt */
2743 		tx_buffer++;
2744 		tx_desc++;
2745 		i++;
2746 		if (unlikely(!i)) {
2747 			i -= tx_ring->count;
2748 			tx_buffer = tx_ring->tx_buffer_info;
2749 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2750 		}
2751 
2752 		/* issue prefetch for next Tx descriptor */
2753 		prefetch(tx_desc);
2754 
2755 		/* update budget accounting */
2756 		budget--;
2757 	} while (likely(budget));
2758 
2759 	netdev_tx_completed_queue(txring_txq(tx_ring),
2760 				  total_packets, total_bytes);
2761 
2762 	i += tx_ring->count;
2763 	tx_ring->next_to_clean = i;
2764 
2765 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2766 
2767 	if (tx_ring->xsk_pool) {
2768 		if (xsk_frames)
2769 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2770 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2771 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2772 		igc_xdp_xmit_zc(tx_ring);
2773 	}
2774 
2775 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2776 		struct igc_hw *hw = &adapter->hw;
2777 
2778 		/* Detect a transmit hang in hardware, this serializes the
2779 		 * check with the clearing of time_stamp and movement of i
2780 		 */
2781 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2782 		if (tx_buffer->next_to_watch &&
2783 		    time_after(jiffies, tx_buffer->time_stamp +
2784 		    (adapter->tx_timeout_factor * HZ)) &&
2785 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2786 			/* detected Tx unit hang */
2787 			netdev_err(tx_ring->netdev,
2788 				   "Detected Tx Unit Hang\n"
2789 				   "  Tx Queue             <%d>\n"
2790 				   "  TDH                  <%x>\n"
2791 				   "  TDT                  <%x>\n"
2792 				   "  next_to_use          <%x>\n"
2793 				   "  next_to_clean        <%x>\n"
2794 				   "buffer_info[next_to_clean]\n"
2795 				   "  time_stamp           <%lx>\n"
2796 				   "  next_to_watch        <%p>\n"
2797 				   "  jiffies              <%lx>\n"
2798 				   "  desc.status          <%x>\n",
2799 				   tx_ring->queue_index,
2800 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2801 				   readl(tx_ring->tail),
2802 				   tx_ring->next_to_use,
2803 				   tx_ring->next_to_clean,
2804 				   tx_buffer->time_stamp,
2805 				   tx_buffer->next_to_watch,
2806 				   jiffies,
2807 				   tx_buffer->next_to_watch->wb.status);
2808 			netif_stop_subqueue(tx_ring->netdev,
2809 					    tx_ring->queue_index);
2810 
2811 			/* we are about to reset, no point in enabling stuff */
2812 			return true;
2813 		}
2814 	}
2815 
2816 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2817 	if (unlikely(total_packets &&
2818 		     netif_carrier_ok(tx_ring->netdev) &&
2819 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2820 		/* Make sure that anybody stopping the queue after this
2821 		 * sees the new next_to_clean.
2822 		 */
2823 		smp_mb();
2824 		if (__netif_subqueue_stopped(tx_ring->netdev,
2825 					     tx_ring->queue_index) &&
2826 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2827 			netif_wake_subqueue(tx_ring->netdev,
2828 					    tx_ring->queue_index);
2829 
2830 			u64_stats_update_begin(&tx_ring->tx_syncp);
2831 			tx_ring->tx_stats.restart_queue++;
2832 			u64_stats_update_end(&tx_ring->tx_syncp);
2833 		}
2834 	}
2835 
2836 	return !!budget;
2837 }
2838 
2839 static int igc_find_mac_filter(struct igc_adapter *adapter,
2840 			       enum igc_mac_filter_type type, const u8 *addr)
2841 {
2842 	struct igc_hw *hw = &adapter->hw;
2843 	int max_entries = hw->mac.rar_entry_count;
2844 	u32 ral, rah;
2845 	int i;
2846 
2847 	for (i = 0; i < max_entries; i++) {
2848 		ral = rd32(IGC_RAL(i));
2849 		rah = rd32(IGC_RAH(i));
2850 
2851 		if (!(rah & IGC_RAH_AV))
2852 			continue;
2853 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2854 			continue;
2855 		if ((rah & IGC_RAH_RAH_MASK) !=
2856 		    le16_to_cpup((__le16 *)(addr + 4)))
2857 			continue;
2858 		if (ral != le32_to_cpup((__le32 *)(addr)))
2859 			continue;
2860 
2861 		return i;
2862 	}
2863 
2864 	return -1;
2865 }
2866 
2867 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2868 {
2869 	struct igc_hw *hw = &adapter->hw;
2870 	int max_entries = hw->mac.rar_entry_count;
2871 	u32 rah;
2872 	int i;
2873 
2874 	for (i = 0; i < max_entries; i++) {
2875 		rah = rd32(IGC_RAH(i));
2876 
2877 		if (!(rah & IGC_RAH_AV))
2878 			return i;
2879 	}
2880 
2881 	return -1;
2882 }
2883 
2884 /**
2885  * igc_add_mac_filter() - Add MAC address filter
2886  * @adapter: Pointer to adapter where the filter should be added
2887  * @type: MAC address filter type (source or destination)
2888  * @addr: MAC address
2889  * @queue: If non-negative, queue assignment feature is enabled and frames
2890  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2891  *         assignment is disabled.
2892  *
2893  * Return: 0 in case of success, negative errno code otherwise.
2894  */
2895 static int igc_add_mac_filter(struct igc_adapter *adapter,
2896 			      enum igc_mac_filter_type type, const u8 *addr,
2897 			      int queue)
2898 {
2899 	struct net_device *dev = adapter->netdev;
2900 	int index;
2901 
2902 	index = igc_find_mac_filter(adapter, type, addr);
2903 	if (index >= 0)
2904 		goto update_filter;
2905 
2906 	index = igc_get_avail_mac_filter_slot(adapter);
2907 	if (index < 0)
2908 		return -ENOSPC;
2909 
2910 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2911 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2912 		   addr, queue);
2913 
2914 update_filter:
2915 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2916 	return 0;
2917 }
2918 
2919 /**
2920  * igc_del_mac_filter() - Delete MAC address filter
2921  * @adapter: Pointer to adapter where the filter should be deleted from
2922  * @type: MAC address filter type (source or destination)
2923  * @addr: MAC address
2924  */
2925 static void igc_del_mac_filter(struct igc_adapter *adapter,
2926 			       enum igc_mac_filter_type type, const u8 *addr)
2927 {
2928 	struct net_device *dev = adapter->netdev;
2929 	int index;
2930 
2931 	index = igc_find_mac_filter(adapter, type, addr);
2932 	if (index < 0)
2933 		return;
2934 
2935 	if (index == 0) {
2936 		/* If this is the default filter, we don't actually delete it.
2937 		 * We just reset to its default value i.e. disable queue
2938 		 * assignment.
2939 		 */
2940 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2941 
2942 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2943 	} else {
2944 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2945 			   index,
2946 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2947 			   addr);
2948 
2949 		igc_clear_mac_filter_hw(adapter, index);
2950 	}
2951 }
2952 
2953 /**
2954  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2955  * @adapter: Pointer to adapter where the filter should be added
2956  * @prio: VLAN priority value
2957  * @queue: Queue number which matching frames are assigned to
2958  *
2959  * Return: 0 in case of success, negative errno code otherwise.
2960  */
2961 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2962 				    int queue)
2963 {
2964 	struct net_device *dev = adapter->netdev;
2965 	struct igc_hw *hw = &adapter->hw;
2966 	u32 vlanpqf;
2967 
2968 	vlanpqf = rd32(IGC_VLANPQF);
2969 
2970 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2971 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2972 		return -EEXIST;
2973 	}
2974 
2975 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2976 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2977 
2978 	wr32(IGC_VLANPQF, vlanpqf);
2979 
2980 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2981 		   prio, queue);
2982 	return 0;
2983 }
2984 
2985 /**
2986  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2987  * @adapter: Pointer to adapter where the filter should be deleted from
2988  * @prio: VLAN priority value
2989  */
2990 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2991 {
2992 	struct igc_hw *hw = &adapter->hw;
2993 	u32 vlanpqf;
2994 
2995 	vlanpqf = rd32(IGC_VLANPQF);
2996 
2997 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2998 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2999 
3000 	wr32(IGC_VLANPQF, vlanpqf);
3001 
3002 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3003 		   prio);
3004 }
3005 
3006 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3007 {
3008 	struct igc_hw *hw = &adapter->hw;
3009 	int i;
3010 
3011 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3012 		u32 etqf = rd32(IGC_ETQF(i));
3013 
3014 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3015 			return i;
3016 	}
3017 
3018 	return -1;
3019 }
3020 
3021 /**
3022  * igc_add_etype_filter() - Add ethertype filter
3023  * @adapter: Pointer to adapter where the filter should be added
3024  * @etype: Ethertype value
3025  * @queue: If non-negative, queue assignment feature is enabled and frames
3026  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3027  *         assignment is disabled.
3028  *
3029  * Return: 0 in case of success, negative errno code otherwise.
3030  */
3031 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3032 				int queue)
3033 {
3034 	struct igc_hw *hw = &adapter->hw;
3035 	int index;
3036 	u32 etqf;
3037 
3038 	index = igc_get_avail_etype_filter_slot(adapter);
3039 	if (index < 0)
3040 		return -ENOSPC;
3041 
3042 	etqf = rd32(IGC_ETQF(index));
3043 
3044 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3045 	etqf |= etype;
3046 
3047 	if (queue >= 0) {
3048 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3049 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3050 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3051 	}
3052 
3053 	etqf |= IGC_ETQF_FILTER_ENABLE;
3054 
3055 	wr32(IGC_ETQF(index), etqf);
3056 
3057 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3058 		   etype, queue);
3059 	return 0;
3060 }
3061 
3062 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3063 {
3064 	struct igc_hw *hw = &adapter->hw;
3065 	int i;
3066 
3067 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3068 		u32 etqf = rd32(IGC_ETQF(i));
3069 
3070 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3071 			return i;
3072 	}
3073 
3074 	return -1;
3075 }
3076 
3077 /**
3078  * igc_del_etype_filter() - Delete ethertype filter
3079  * @adapter: Pointer to adapter where the filter should be deleted from
3080  * @etype: Ethertype value
3081  */
3082 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3083 {
3084 	struct igc_hw *hw = &adapter->hw;
3085 	int index;
3086 
3087 	index = igc_find_etype_filter(adapter, etype);
3088 	if (index < 0)
3089 		return;
3090 
3091 	wr32(IGC_ETQF(index), 0);
3092 
3093 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3094 		   etype);
3095 }
3096 
3097 static int igc_flex_filter_select(struct igc_adapter *adapter,
3098 				  struct igc_flex_filter *input,
3099 				  u32 *fhft)
3100 {
3101 	struct igc_hw *hw = &adapter->hw;
3102 	u8 fhft_index;
3103 	u32 fhftsl;
3104 
3105 	if (input->index >= MAX_FLEX_FILTER) {
3106 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3107 		return -EINVAL;
3108 	}
3109 
3110 	/* Indirect table select register */
3111 	fhftsl = rd32(IGC_FHFTSL);
3112 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3113 	switch (input->index) {
3114 	case 0 ... 7:
3115 		fhftsl |= 0x00;
3116 		break;
3117 	case 8 ... 15:
3118 		fhftsl |= 0x01;
3119 		break;
3120 	case 16 ... 23:
3121 		fhftsl |= 0x02;
3122 		break;
3123 	case 24 ... 31:
3124 		fhftsl |= 0x03;
3125 		break;
3126 	}
3127 	wr32(IGC_FHFTSL, fhftsl);
3128 
3129 	/* Normalize index down to host table register */
3130 	fhft_index = input->index % 8;
3131 
3132 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3133 		IGC_FHFT_EXT(fhft_index - 4);
3134 
3135 	return 0;
3136 }
3137 
3138 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3139 				    struct igc_flex_filter *input)
3140 {
3141 	struct device *dev = &adapter->pdev->dev;
3142 	struct igc_hw *hw = &adapter->hw;
3143 	u8 *data = input->data;
3144 	u8 *mask = input->mask;
3145 	u32 queuing;
3146 	u32 fhft;
3147 	u32 wufc;
3148 	int ret;
3149 	int i;
3150 
3151 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3152 	 * out early to avoid surprises later.
3153 	 */
3154 	if (input->length % 8 != 0) {
3155 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3156 		return -EINVAL;
3157 	}
3158 
3159 	/* Select corresponding flex filter register and get base for host table. */
3160 	ret = igc_flex_filter_select(adapter, input, &fhft);
3161 	if (ret)
3162 		return ret;
3163 
3164 	/* When adding a filter globally disable flex filter feature. That is
3165 	 * recommended within the datasheet.
3166 	 */
3167 	wufc = rd32(IGC_WUFC);
3168 	wufc &= ~IGC_WUFC_FLEX_HQ;
3169 	wr32(IGC_WUFC, wufc);
3170 
3171 	/* Configure filter */
3172 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3173 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3174 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3175 
3176 	if (input->immediate_irq)
3177 		queuing |= IGC_FHFT_IMM_INT;
3178 
3179 	if (input->drop)
3180 		queuing |= IGC_FHFT_DROP;
3181 
3182 	wr32(fhft + 0xFC, queuing);
3183 
3184 	/* Write data (128 byte) and mask (128 bit) */
3185 	for (i = 0; i < 16; ++i) {
3186 		const size_t data_idx = i * 8;
3187 		const size_t row_idx = i * 16;
3188 		u32 dw0 =
3189 			(data[data_idx + 0] << 0) |
3190 			(data[data_idx + 1] << 8) |
3191 			(data[data_idx + 2] << 16) |
3192 			(data[data_idx + 3] << 24);
3193 		u32 dw1 =
3194 			(data[data_idx + 4] << 0) |
3195 			(data[data_idx + 5] << 8) |
3196 			(data[data_idx + 6] << 16) |
3197 			(data[data_idx + 7] << 24);
3198 		u32 tmp;
3199 
3200 		/* Write row: dw0, dw1 and mask */
3201 		wr32(fhft + row_idx, dw0);
3202 		wr32(fhft + row_idx + 4, dw1);
3203 
3204 		/* mask is only valid for MASK(7, 0) */
3205 		tmp = rd32(fhft + row_idx + 8);
3206 		tmp &= ~GENMASK(7, 0);
3207 		tmp |= mask[i];
3208 		wr32(fhft + row_idx + 8, tmp);
3209 	}
3210 
3211 	/* Enable filter. */
3212 	wufc |= IGC_WUFC_FLEX_HQ;
3213 	if (input->index > 8) {
3214 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3215 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3216 
3217 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3218 
3219 		wr32(IGC_WUFC_EXT, wufc_ext);
3220 	} else {
3221 		wufc |= (IGC_WUFC_FLX0 << input->index);
3222 	}
3223 	wr32(IGC_WUFC, wufc);
3224 
3225 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3226 		input->index);
3227 
3228 	return 0;
3229 }
3230 
3231 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3232 				      const void *src, unsigned int offset,
3233 				      size_t len, const void *mask)
3234 {
3235 	int i;
3236 
3237 	/* data */
3238 	memcpy(&flex->data[offset], src, len);
3239 
3240 	/* mask */
3241 	for (i = 0; i < len; ++i) {
3242 		const unsigned int idx = i + offset;
3243 		const u8 *ptr = mask;
3244 
3245 		if (mask) {
3246 			if (ptr[i] & 0xff)
3247 				flex->mask[idx / 8] |= BIT(idx % 8);
3248 
3249 			continue;
3250 		}
3251 
3252 		flex->mask[idx / 8] |= BIT(idx % 8);
3253 	}
3254 }
3255 
3256 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3257 {
3258 	struct igc_hw *hw = &adapter->hw;
3259 	u32 wufc, wufc_ext;
3260 	int i;
3261 
3262 	wufc = rd32(IGC_WUFC);
3263 	wufc_ext = rd32(IGC_WUFC_EXT);
3264 
3265 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3266 		if (i < 8) {
3267 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3268 				return i;
3269 		} else {
3270 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3271 				return i;
3272 		}
3273 	}
3274 
3275 	return -ENOSPC;
3276 }
3277 
3278 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3279 {
3280 	struct igc_hw *hw = &adapter->hw;
3281 	u32 wufc, wufc_ext;
3282 
3283 	wufc = rd32(IGC_WUFC);
3284 	wufc_ext = rd32(IGC_WUFC_EXT);
3285 
3286 	if (wufc & IGC_WUFC_FILTER_MASK)
3287 		return true;
3288 
3289 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3290 		return true;
3291 
3292 	return false;
3293 }
3294 
3295 static int igc_add_flex_filter(struct igc_adapter *adapter,
3296 			       struct igc_nfc_rule *rule)
3297 {
3298 	struct igc_flex_filter flex = { };
3299 	struct igc_nfc_filter *filter = &rule->filter;
3300 	unsigned int eth_offset, user_offset;
3301 	int ret, index;
3302 	bool vlan;
3303 
3304 	index = igc_find_avail_flex_filter_slot(adapter);
3305 	if (index < 0)
3306 		return -ENOSPC;
3307 
3308 	/* Construct the flex filter:
3309 	 *  -> dest_mac [6]
3310 	 *  -> src_mac [6]
3311 	 *  -> tpid [2]
3312 	 *  -> vlan tci [2]
3313 	 *  -> ether type [2]
3314 	 *  -> user data [8]
3315 	 *  -> = 26 bytes => 32 length
3316 	 */
3317 	flex.index    = index;
3318 	flex.length   = 32;
3319 	flex.rx_queue = rule->action;
3320 
3321 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3322 	eth_offset = vlan ? 16 : 12;
3323 	user_offset = vlan ? 18 : 14;
3324 
3325 	/* Add destination MAC  */
3326 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3327 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3328 					  ETH_ALEN, NULL);
3329 
3330 	/* Add source MAC */
3331 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3332 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3333 					  ETH_ALEN, NULL);
3334 
3335 	/* Add VLAN etype */
3336 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3337 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3338 					  sizeof(filter->vlan_etype),
3339 					  NULL);
3340 
3341 	/* Add VLAN TCI */
3342 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3343 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3344 					  sizeof(filter->vlan_tci), NULL);
3345 
3346 	/* Add Ether type */
3347 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3348 		__be16 etype = cpu_to_be16(filter->etype);
3349 
3350 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3351 					  sizeof(etype), NULL);
3352 	}
3353 
3354 	/* Add user data */
3355 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3356 		igc_flex_filter_add_field(&flex, &filter->user_data,
3357 					  user_offset,
3358 					  sizeof(filter->user_data),
3359 					  filter->user_mask);
3360 
3361 	/* Add it down to the hardware and enable it. */
3362 	ret = igc_write_flex_filter_ll(adapter, &flex);
3363 	if (ret)
3364 		return ret;
3365 
3366 	filter->flex_index = index;
3367 
3368 	return 0;
3369 }
3370 
3371 static void igc_del_flex_filter(struct igc_adapter *adapter,
3372 				u16 reg_index)
3373 {
3374 	struct igc_hw *hw = &adapter->hw;
3375 	u32 wufc;
3376 
3377 	/* Just disable the filter. The filter table itself is kept
3378 	 * intact. Another flex_filter_add() should override the "old" data
3379 	 * then.
3380 	 */
3381 	if (reg_index > 8) {
3382 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3383 
3384 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3385 		wr32(IGC_WUFC_EXT, wufc_ext);
3386 	} else {
3387 		wufc = rd32(IGC_WUFC);
3388 
3389 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3390 		wr32(IGC_WUFC, wufc);
3391 	}
3392 
3393 	if (igc_flex_filter_in_use(adapter))
3394 		return;
3395 
3396 	/* No filters are in use, we may disable flex filters */
3397 	wufc = rd32(IGC_WUFC);
3398 	wufc &= ~IGC_WUFC_FLEX_HQ;
3399 	wr32(IGC_WUFC, wufc);
3400 }
3401 
3402 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3403 			       struct igc_nfc_rule *rule)
3404 {
3405 	int err;
3406 
3407 	if (rule->flex) {
3408 		return igc_add_flex_filter(adapter, rule);
3409 	}
3410 
3411 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3412 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3413 					   rule->action);
3414 		if (err)
3415 			return err;
3416 	}
3417 
3418 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3419 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3420 					 rule->filter.src_addr, rule->action);
3421 		if (err)
3422 			return err;
3423 	}
3424 
3425 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3426 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3427 					 rule->filter.dst_addr, rule->action);
3428 		if (err)
3429 			return err;
3430 	}
3431 
3432 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3433 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3434 			   VLAN_PRIO_SHIFT;
3435 
3436 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3437 		if (err)
3438 			return err;
3439 	}
3440 
3441 	return 0;
3442 }
3443 
3444 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3445 				 const struct igc_nfc_rule *rule)
3446 {
3447 	if (rule->flex) {
3448 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3449 		return;
3450 	}
3451 
3452 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3453 		igc_del_etype_filter(adapter, rule->filter.etype);
3454 
3455 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3456 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3457 			   VLAN_PRIO_SHIFT;
3458 
3459 		igc_del_vlan_prio_filter(adapter, prio);
3460 	}
3461 
3462 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3463 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3464 				   rule->filter.src_addr);
3465 
3466 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3467 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3468 				   rule->filter.dst_addr);
3469 }
3470 
3471 /**
3472  * igc_get_nfc_rule() - Get NFC rule
3473  * @adapter: Pointer to adapter
3474  * @location: Rule location
3475  *
3476  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3477  *
3478  * Return: Pointer to NFC rule at @location. If not found, NULL.
3479  */
3480 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3481 				      u32 location)
3482 {
3483 	struct igc_nfc_rule *rule;
3484 
3485 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3486 		if (rule->location == location)
3487 			return rule;
3488 		if (rule->location > location)
3489 			break;
3490 	}
3491 
3492 	return NULL;
3493 }
3494 
3495 /**
3496  * igc_del_nfc_rule() - Delete NFC rule
3497  * @adapter: Pointer to adapter
3498  * @rule: Pointer to rule to be deleted
3499  *
3500  * Disable NFC rule in hardware and delete it from adapter.
3501  *
3502  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3503  */
3504 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3505 {
3506 	igc_disable_nfc_rule(adapter, rule);
3507 
3508 	list_del(&rule->list);
3509 	adapter->nfc_rule_count--;
3510 
3511 	kfree(rule);
3512 }
3513 
3514 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3515 {
3516 	struct igc_nfc_rule *rule, *tmp;
3517 
3518 	mutex_lock(&adapter->nfc_rule_lock);
3519 
3520 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3521 		igc_del_nfc_rule(adapter, rule);
3522 
3523 	mutex_unlock(&adapter->nfc_rule_lock);
3524 }
3525 
3526 /**
3527  * igc_add_nfc_rule() - Add NFC rule
3528  * @adapter: Pointer to adapter
3529  * @rule: Pointer to rule to be added
3530  *
3531  * Enable NFC rule in hardware and add it to adapter.
3532  *
3533  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3534  *
3535  * Return: 0 on success, negative errno on failure.
3536  */
3537 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3538 {
3539 	struct igc_nfc_rule *pred, *cur;
3540 	int err;
3541 
3542 	err = igc_enable_nfc_rule(adapter, rule);
3543 	if (err)
3544 		return err;
3545 
3546 	pred = NULL;
3547 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3548 		if (cur->location >= rule->location)
3549 			break;
3550 		pred = cur;
3551 	}
3552 
3553 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3554 	adapter->nfc_rule_count++;
3555 	return 0;
3556 }
3557 
3558 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3559 {
3560 	struct igc_nfc_rule *rule;
3561 
3562 	mutex_lock(&adapter->nfc_rule_lock);
3563 
3564 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3565 		igc_enable_nfc_rule(adapter, rule);
3566 
3567 	mutex_unlock(&adapter->nfc_rule_lock);
3568 }
3569 
3570 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3571 {
3572 	struct igc_adapter *adapter = netdev_priv(netdev);
3573 
3574 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3575 }
3576 
3577 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3578 {
3579 	struct igc_adapter *adapter = netdev_priv(netdev);
3580 
3581 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3582 	return 0;
3583 }
3584 
3585 /**
3586  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3587  * @netdev: network interface device structure
3588  *
3589  * The set_rx_mode entry point is called whenever the unicast or multicast
3590  * address lists or the network interface flags are updated.  This routine is
3591  * responsible for configuring the hardware for proper unicast, multicast,
3592  * promiscuous mode, and all-multi behavior.
3593  */
3594 static void igc_set_rx_mode(struct net_device *netdev)
3595 {
3596 	struct igc_adapter *adapter = netdev_priv(netdev);
3597 	struct igc_hw *hw = &adapter->hw;
3598 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3599 	int count;
3600 
3601 	/* Check for Promiscuous and All Multicast modes */
3602 	if (netdev->flags & IFF_PROMISC) {
3603 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3604 	} else {
3605 		if (netdev->flags & IFF_ALLMULTI) {
3606 			rctl |= IGC_RCTL_MPE;
3607 		} else {
3608 			/* Write addresses to the MTA, if the attempt fails
3609 			 * then we should just turn on promiscuous mode so
3610 			 * that we can at least receive multicast traffic
3611 			 */
3612 			count = igc_write_mc_addr_list(netdev);
3613 			if (count < 0)
3614 				rctl |= IGC_RCTL_MPE;
3615 		}
3616 	}
3617 
3618 	/* Write addresses to available RAR registers, if there is not
3619 	 * sufficient space to store all the addresses then enable
3620 	 * unicast promiscuous mode
3621 	 */
3622 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3623 		rctl |= IGC_RCTL_UPE;
3624 
3625 	/* update state of unicast and multicast */
3626 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3627 	wr32(IGC_RCTL, rctl);
3628 
3629 #if (PAGE_SIZE < 8192)
3630 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3631 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3632 #endif
3633 	wr32(IGC_RLPML, rlpml);
3634 }
3635 
3636 /**
3637  * igc_configure - configure the hardware for RX and TX
3638  * @adapter: private board structure
3639  */
3640 static void igc_configure(struct igc_adapter *adapter)
3641 {
3642 	struct net_device *netdev = adapter->netdev;
3643 	int i = 0;
3644 
3645 	igc_get_hw_control(adapter);
3646 	igc_set_rx_mode(netdev);
3647 
3648 	igc_restore_vlan(adapter);
3649 
3650 	igc_setup_tctl(adapter);
3651 	igc_setup_mrqc(adapter);
3652 	igc_setup_rctl(adapter);
3653 
3654 	igc_set_default_mac_filter(adapter);
3655 	igc_restore_nfc_rules(adapter);
3656 
3657 	igc_configure_tx(adapter);
3658 	igc_configure_rx(adapter);
3659 
3660 	igc_rx_fifo_flush_base(&adapter->hw);
3661 
3662 	/* call igc_desc_unused which always leaves
3663 	 * at least 1 descriptor unused to make sure
3664 	 * next_to_use != next_to_clean
3665 	 */
3666 	for (i = 0; i < adapter->num_rx_queues; i++) {
3667 		struct igc_ring *ring = adapter->rx_ring[i];
3668 
3669 		if (ring->xsk_pool)
3670 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3671 		else
3672 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3673 	}
3674 }
3675 
3676 /**
3677  * igc_write_ivar - configure ivar for given MSI-X vector
3678  * @hw: pointer to the HW structure
3679  * @msix_vector: vector number we are allocating to a given ring
3680  * @index: row index of IVAR register to write within IVAR table
3681  * @offset: column offset of in IVAR, should be multiple of 8
3682  *
3683  * The IVAR table consists of 2 columns,
3684  * each containing an cause allocation for an Rx and Tx ring, and a
3685  * variable number of rows depending on the number of queues supported.
3686  */
3687 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3688 			   int index, int offset)
3689 {
3690 	u32 ivar = array_rd32(IGC_IVAR0, index);
3691 
3692 	/* clear any bits that are currently set */
3693 	ivar &= ~((u32)0xFF << offset);
3694 
3695 	/* write vector and valid bit */
3696 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3697 
3698 	array_wr32(IGC_IVAR0, index, ivar);
3699 }
3700 
3701 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3702 {
3703 	struct igc_adapter *adapter = q_vector->adapter;
3704 	struct igc_hw *hw = &adapter->hw;
3705 	int rx_queue = IGC_N0_QUEUE;
3706 	int tx_queue = IGC_N0_QUEUE;
3707 
3708 	if (q_vector->rx.ring)
3709 		rx_queue = q_vector->rx.ring->reg_idx;
3710 	if (q_vector->tx.ring)
3711 		tx_queue = q_vector->tx.ring->reg_idx;
3712 
3713 	switch (hw->mac.type) {
3714 	case igc_i225:
3715 		if (rx_queue > IGC_N0_QUEUE)
3716 			igc_write_ivar(hw, msix_vector,
3717 				       rx_queue >> 1,
3718 				       (rx_queue & 0x1) << 4);
3719 		if (tx_queue > IGC_N0_QUEUE)
3720 			igc_write_ivar(hw, msix_vector,
3721 				       tx_queue >> 1,
3722 				       ((tx_queue & 0x1) << 4) + 8);
3723 		q_vector->eims_value = BIT(msix_vector);
3724 		break;
3725 	default:
3726 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3727 		break;
3728 	}
3729 
3730 	/* add q_vector eims value to global eims_enable_mask */
3731 	adapter->eims_enable_mask |= q_vector->eims_value;
3732 
3733 	/* configure q_vector to set itr on first interrupt */
3734 	q_vector->set_itr = 1;
3735 }
3736 
3737 /**
3738  * igc_configure_msix - Configure MSI-X hardware
3739  * @adapter: Pointer to adapter structure
3740  *
3741  * igc_configure_msix sets up the hardware to properly
3742  * generate MSI-X interrupts.
3743  */
3744 static void igc_configure_msix(struct igc_adapter *adapter)
3745 {
3746 	struct igc_hw *hw = &adapter->hw;
3747 	int i, vector = 0;
3748 	u32 tmp;
3749 
3750 	adapter->eims_enable_mask = 0;
3751 
3752 	/* set vector for other causes, i.e. link changes */
3753 	switch (hw->mac.type) {
3754 	case igc_i225:
3755 		/* Turn on MSI-X capability first, or our settings
3756 		 * won't stick.  And it will take days to debug.
3757 		 */
3758 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3759 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3760 		     IGC_GPIE_NSICR);
3761 
3762 		/* enable msix_other interrupt */
3763 		adapter->eims_other = BIT(vector);
3764 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3765 
3766 		wr32(IGC_IVAR_MISC, tmp);
3767 		break;
3768 	default:
3769 		/* do nothing, since nothing else supports MSI-X */
3770 		break;
3771 	} /* switch (hw->mac.type) */
3772 
3773 	adapter->eims_enable_mask |= adapter->eims_other;
3774 
3775 	for (i = 0; i < adapter->num_q_vectors; i++)
3776 		igc_assign_vector(adapter->q_vector[i], vector++);
3777 
3778 	wrfl();
3779 }
3780 
3781 /**
3782  * igc_irq_enable - Enable default interrupt generation settings
3783  * @adapter: board private structure
3784  */
3785 static void igc_irq_enable(struct igc_adapter *adapter)
3786 {
3787 	struct igc_hw *hw = &adapter->hw;
3788 
3789 	if (adapter->msix_entries) {
3790 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3791 		u32 regval = rd32(IGC_EIAC);
3792 
3793 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3794 		regval = rd32(IGC_EIAM);
3795 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3796 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3797 		wr32(IGC_IMS, ims);
3798 	} else {
3799 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3800 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3801 	}
3802 }
3803 
3804 /**
3805  * igc_irq_disable - Mask off interrupt generation on the NIC
3806  * @adapter: board private structure
3807  */
3808 static void igc_irq_disable(struct igc_adapter *adapter)
3809 {
3810 	struct igc_hw *hw = &adapter->hw;
3811 
3812 	if (adapter->msix_entries) {
3813 		u32 regval = rd32(IGC_EIAM);
3814 
3815 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3816 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3817 		regval = rd32(IGC_EIAC);
3818 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3819 	}
3820 
3821 	wr32(IGC_IAM, 0);
3822 	wr32(IGC_IMC, ~0);
3823 	wrfl();
3824 
3825 	if (adapter->msix_entries) {
3826 		int vector = 0, i;
3827 
3828 		synchronize_irq(adapter->msix_entries[vector++].vector);
3829 
3830 		for (i = 0; i < adapter->num_q_vectors; i++)
3831 			synchronize_irq(adapter->msix_entries[vector++].vector);
3832 	} else {
3833 		synchronize_irq(adapter->pdev->irq);
3834 	}
3835 }
3836 
3837 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3838 			      const u32 max_rss_queues)
3839 {
3840 	/* Determine if we need to pair queues. */
3841 	/* If rss_queues > half of max_rss_queues, pair the queues in
3842 	 * order to conserve interrupts due to limited supply.
3843 	 */
3844 	if (adapter->rss_queues > (max_rss_queues / 2))
3845 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3846 	else
3847 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3848 }
3849 
3850 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3851 {
3852 	return IGC_MAX_RX_QUEUES;
3853 }
3854 
3855 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3856 {
3857 	u32 max_rss_queues;
3858 
3859 	max_rss_queues = igc_get_max_rss_queues(adapter);
3860 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3861 
3862 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3863 }
3864 
3865 /**
3866  * igc_reset_q_vector - Reset config for interrupt vector
3867  * @adapter: board private structure to initialize
3868  * @v_idx: Index of vector to be reset
3869  *
3870  * If NAPI is enabled it will delete any references to the
3871  * NAPI struct. This is preparation for igc_free_q_vector.
3872  */
3873 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3874 {
3875 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3876 
3877 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3878 	 * not yet allocated
3879 	 */
3880 	if (!q_vector)
3881 		return;
3882 
3883 	if (q_vector->tx.ring)
3884 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3885 
3886 	if (q_vector->rx.ring)
3887 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3888 
3889 	netif_napi_del(&q_vector->napi);
3890 }
3891 
3892 /**
3893  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3894  * @adapter: board private structure to initialize
3895  * @v_idx: Index of vector to be freed
3896  *
3897  * This function frees the memory allocated to the q_vector.
3898  */
3899 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3900 {
3901 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3902 
3903 	adapter->q_vector[v_idx] = NULL;
3904 
3905 	/* igc_get_stats64() might access the rings on this vector,
3906 	 * we must wait a grace period before freeing it.
3907 	 */
3908 	if (q_vector)
3909 		kfree_rcu(q_vector, rcu);
3910 }
3911 
3912 /**
3913  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3914  * @adapter: board private structure to initialize
3915  *
3916  * This function frees the memory allocated to the q_vectors.  In addition if
3917  * NAPI is enabled it will delete any references to the NAPI struct prior
3918  * to freeing the q_vector.
3919  */
3920 static void igc_free_q_vectors(struct igc_adapter *adapter)
3921 {
3922 	int v_idx = adapter->num_q_vectors;
3923 
3924 	adapter->num_tx_queues = 0;
3925 	adapter->num_rx_queues = 0;
3926 	adapter->num_q_vectors = 0;
3927 
3928 	while (v_idx--) {
3929 		igc_reset_q_vector(adapter, v_idx);
3930 		igc_free_q_vector(adapter, v_idx);
3931 	}
3932 }
3933 
3934 /**
3935  * igc_update_itr - update the dynamic ITR value based on statistics
3936  * @q_vector: pointer to q_vector
3937  * @ring_container: ring info to update the itr for
3938  *
3939  * Stores a new ITR value based on packets and byte
3940  * counts during the last interrupt.  The advantage of per interrupt
3941  * computation is faster updates and more accurate ITR for the current
3942  * traffic pattern.  Constants in this function were computed
3943  * based on theoretical maximum wire speed and thresholds were set based
3944  * on testing data as well as attempting to minimize response time
3945  * while increasing bulk throughput.
3946  * NOTE: These calculations are only valid when operating in a single-
3947  * queue environment.
3948  */
3949 static void igc_update_itr(struct igc_q_vector *q_vector,
3950 			   struct igc_ring_container *ring_container)
3951 {
3952 	unsigned int packets = ring_container->total_packets;
3953 	unsigned int bytes = ring_container->total_bytes;
3954 	u8 itrval = ring_container->itr;
3955 
3956 	/* no packets, exit with status unchanged */
3957 	if (packets == 0)
3958 		return;
3959 
3960 	switch (itrval) {
3961 	case lowest_latency:
3962 		/* handle TSO and jumbo frames */
3963 		if (bytes / packets > 8000)
3964 			itrval = bulk_latency;
3965 		else if ((packets < 5) && (bytes > 512))
3966 			itrval = low_latency;
3967 		break;
3968 	case low_latency:  /* 50 usec aka 20000 ints/s */
3969 		if (bytes > 10000) {
3970 			/* this if handles the TSO accounting */
3971 			if (bytes / packets > 8000)
3972 				itrval = bulk_latency;
3973 			else if ((packets < 10) || ((bytes / packets) > 1200))
3974 				itrval = bulk_latency;
3975 			else if ((packets > 35))
3976 				itrval = lowest_latency;
3977 		} else if (bytes / packets > 2000) {
3978 			itrval = bulk_latency;
3979 		} else if (packets <= 2 && bytes < 512) {
3980 			itrval = lowest_latency;
3981 		}
3982 		break;
3983 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3984 		if (bytes > 25000) {
3985 			if (packets > 35)
3986 				itrval = low_latency;
3987 		} else if (bytes < 1500) {
3988 			itrval = low_latency;
3989 		}
3990 		break;
3991 	}
3992 
3993 	/* clear work counters since we have the values we need */
3994 	ring_container->total_bytes = 0;
3995 	ring_container->total_packets = 0;
3996 
3997 	/* write updated itr to ring container */
3998 	ring_container->itr = itrval;
3999 }
4000 
4001 static void igc_set_itr(struct igc_q_vector *q_vector)
4002 {
4003 	struct igc_adapter *adapter = q_vector->adapter;
4004 	u32 new_itr = q_vector->itr_val;
4005 	u8 current_itr = 0;
4006 
4007 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4008 	switch (adapter->link_speed) {
4009 	case SPEED_10:
4010 	case SPEED_100:
4011 		current_itr = 0;
4012 		new_itr = IGC_4K_ITR;
4013 		goto set_itr_now;
4014 	default:
4015 		break;
4016 	}
4017 
4018 	igc_update_itr(q_vector, &q_vector->tx);
4019 	igc_update_itr(q_vector, &q_vector->rx);
4020 
4021 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4022 
4023 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4024 	if (current_itr == lowest_latency &&
4025 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4026 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4027 		current_itr = low_latency;
4028 
4029 	switch (current_itr) {
4030 	/* counts and packets in update_itr are dependent on these numbers */
4031 	case lowest_latency:
4032 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4033 		break;
4034 	case low_latency:
4035 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4036 		break;
4037 	case bulk_latency:
4038 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4039 		break;
4040 	default:
4041 		break;
4042 	}
4043 
4044 set_itr_now:
4045 	if (new_itr != q_vector->itr_val) {
4046 		/* this attempts to bias the interrupt rate towards Bulk
4047 		 * by adding intermediate steps when interrupt rate is
4048 		 * increasing
4049 		 */
4050 		new_itr = new_itr > q_vector->itr_val ?
4051 			  max((new_itr * q_vector->itr_val) /
4052 			  (new_itr + (q_vector->itr_val >> 2)),
4053 			  new_itr) : new_itr;
4054 		/* Don't write the value here; it resets the adapter's
4055 		 * internal timer, and causes us to delay far longer than
4056 		 * we should between interrupts.  Instead, we write the ITR
4057 		 * value at the beginning of the next interrupt so the timing
4058 		 * ends up being correct.
4059 		 */
4060 		q_vector->itr_val = new_itr;
4061 		q_vector->set_itr = 1;
4062 	}
4063 }
4064 
4065 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4066 {
4067 	int v_idx = adapter->num_q_vectors;
4068 
4069 	if (adapter->msix_entries) {
4070 		pci_disable_msix(adapter->pdev);
4071 		kfree(adapter->msix_entries);
4072 		adapter->msix_entries = NULL;
4073 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4074 		pci_disable_msi(adapter->pdev);
4075 	}
4076 
4077 	while (v_idx--)
4078 		igc_reset_q_vector(adapter, v_idx);
4079 }
4080 
4081 /**
4082  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4083  * @adapter: Pointer to adapter structure
4084  * @msix: boolean value for MSI-X capability
4085  *
4086  * Attempt to configure interrupts using the best available
4087  * capabilities of the hardware and kernel.
4088  */
4089 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4090 					 bool msix)
4091 {
4092 	int numvecs, i;
4093 	int err;
4094 
4095 	if (!msix)
4096 		goto msi_only;
4097 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4098 
4099 	/* Number of supported queues. */
4100 	adapter->num_rx_queues = adapter->rss_queues;
4101 
4102 	adapter->num_tx_queues = adapter->rss_queues;
4103 
4104 	/* start with one vector for every Rx queue */
4105 	numvecs = adapter->num_rx_queues;
4106 
4107 	/* if Tx handler is separate add 1 for every Tx queue */
4108 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4109 		numvecs += adapter->num_tx_queues;
4110 
4111 	/* store the number of vectors reserved for queues */
4112 	adapter->num_q_vectors = numvecs;
4113 
4114 	/* add 1 vector for link status interrupts */
4115 	numvecs++;
4116 
4117 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4118 					GFP_KERNEL);
4119 
4120 	if (!adapter->msix_entries)
4121 		return;
4122 
4123 	/* populate entry values */
4124 	for (i = 0; i < numvecs; i++)
4125 		adapter->msix_entries[i].entry = i;
4126 
4127 	err = pci_enable_msix_range(adapter->pdev,
4128 				    adapter->msix_entries,
4129 				    numvecs,
4130 				    numvecs);
4131 	if (err > 0)
4132 		return;
4133 
4134 	kfree(adapter->msix_entries);
4135 	adapter->msix_entries = NULL;
4136 
4137 	igc_reset_interrupt_capability(adapter);
4138 
4139 msi_only:
4140 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4141 
4142 	adapter->rss_queues = 1;
4143 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4144 	adapter->num_rx_queues = 1;
4145 	adapter->num_tx_queues = 1;
4146 	adapter->num_q_vectors = 1;
4147 	if (!pci_enable_msi(adapter->pdev))
4148 		adapter->flags |= IGC_FLAG_HAS_MSI;
4149 }
4150 
4151 /**
4152  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4153  * @q_vector: pointer to q_vector
4154  *
4155  * Stores a new ITR value based on strictly on packet size.  This
4156  * algorithm is less sophisticated than that used in igc_update_itr,
4157  * due to the difficulty of synchronizing statistics across multiple
4158  * receive rings.  The divisors and thresholds used by this function
4159  * were determined based on theoretical maximum wire speed and testing
4160  * data, in order to minimize response time while increasing bulk
4161  * throughput.
4162  * NOTE: This function is called only when operating in a multiqueue
4163  * receive environment.
4164  */
4165 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4166 {
4167 	struct igc_adapter *adapter = q_vector->adapter;
4168 	int new_val = q_vector->itr_val;
4169 	int avg_wire_size = 0;
4170 	unsigned int packets;
4171 
4172 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4173 	 * ints/sec - ITR timer value of 120 ticks.
4174 	 */
4175 	switch (adapter->link_speed) {
4176 	case SPEED_10:
4177 	case SPEED_100:
4178 		new_val = IGC_4K_ITR;
4179 		goto set_itr_val;
4180 	default:
4181 		break;
4182 	}
4183 
4184 	packets = q_vector->rx.total_packets;
4185 	if (packets)
4186 		avg_wire_size = q_vector->rx.total_bytes / packets;
4187 
4188 	packets = q_vector->tx.total_packets;
4189 	if (packets)
4190 		avg_wire_size = max_t(u32, avg_wire_size,
4191 				      q_vector->tx.total_bytes / packets);
4192 
4193 	/* if avg_wire_size isn't set no work was done */
4194 	if (!avg_wire_size)
4195 		goto clear_counts;
4196 
4197 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4198 	avg_wire_size += 24;
4199 
4200 	/* Don't starve jumbo frames */
4201 	avg_wire_size = min(avg_wire_size, 3000);
4202 
4203 	/* Give a little boost to mid-size frames */
4204 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4205 		new_val = avg_wire_size / 3;
4206 	else
4207 		new_val = avg_wire_size / 2;
4208 
4209 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4210 	if (new_val < IGC_20K_ITR &&
4211 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4212 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4213 		new_val = IGC_20K_ITR;
4214 
4215 set_itr_val:
4216 	if (new_val != q_vector->itr_val) {
4217 		q_vector->itr_val = new_val;
4218 		q_vector->set_itr = 1;
4219 	}
4220 clear_counts:
4221 	q_vector->rx.total_bytes = 0;
4222 	q_vector->rx.total_packets = 0;
4223 	q_vector->tx.total_bytes = 0;
4224 	q_vector->tx.total_packets = 0;
4225 }
4226 
4227 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4228 {
4229 	struct igc_adapter *adapter = q_vector->adapter;
4230 	struct igc_hw *hw = &adapter->hw;
4231 
4232 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4233 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4234 		if (adapter->num_q_vectors == 1)
4235 			igc_set_itr(q_vector);
4236 		else
4237 			igc_update_ring_itr(q_vector);
4238 	}
4239 
4240 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4241 		if (adapter->msix_entries)
4242 			wr32(IGC_EIMS, q_vector->eims_value);
4243 		else
4244 			igc_irq_enable(adapter);
4245 	}
4246 }
4247 
4248 static void igc_add_ring(struct igc_ring *ring,
4249 			 struct igc_ring_container *head)
4250 {
4251 	head->ring = ring;
4252 	head->count++;
4253 }
4254 
4255 /**
4256  * igc_cache_ring_register - Descriptor ring to register mapping
4257  * @adapter: board private structure to initialize
4258  *
4259  * Once we know the feature-set enabled for the device, we'll cache
4260  * the register offset the descriptor ring is assigned to.
4261  */
4262 static void igc_cache_ring_register(struct igc_adapter *adapter)
4263 {
4264 	int i = 0, j = 0;
4265 
4266 	switch (adapter->hw.mac.type) {
4267 	case igc_i225:
4268 	default:
4269 		for (; i < adapter->num_rx_queues; i++)
4270 			adapter->rx_ring[i]->reg_idx = i;
4271 		for (; j < adapter->num_tx_queues; j++)
4272 			adapter->tx_ring[j]->reg_idx = j;
4273 		break;
4274 	}
4275 }
4276 
4277 /**
4278  * igc_poll - NAPI Rx polling callback
4279  * @napi: napi polling structure
4280  * @budget: count of how many packets we should handle
4281  */
4282 static int igc_poll(struct napi_struct *napi, int budget)
4283 {
4284 	struct igc_q_vector *q_vector = container_of(napi,
4285 						     struct igc_q_vector,
4286 						     napi);
4287 	struct igc_ring *rx_ring = q_vector->rx.ring;
4288 	bool clean_complete = true;
4289 	int work_done = 0;
4290 
4291 	if (q_vector->tx.ring)
4292 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4293 
4294 	if (rx_ring) {
4295 		int cleaned = rx_ring->xsk_pool ?
4296 			      igc_clean_rx_irq_zc(q_vector, budget) :
4297 			      igc_clean_rx_irq(q_vector, budget);
4298 
4299 		work_done += cleaned;
4300 		if (cleaned >= budget)
4301 			clean_complete = false;
4302 	}
4303 
4304 	/* If all work not completed, return budget and keep polling */
4305 	if (!clean_complete)
4306 		return budget;
4307 
4308 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4309 	 * poll us due to busy-polling
4310 	 */
4311 	if (likely(napi_complete_done(napi, work_done)))
4312 		igc_ring_irq_enable(q_vector);
4313 
4314 	return min(work_done, budget - 1);
4315 }
4316 
4317 /**
4318  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4319  * @adapter: board private structure to initialize
4320  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4321  * @v_idx: index of vector in adapter struct
4322  * @txr_count: total number of Tx rings to allocate
4323  * @txr_idx: index of first Tx ring to allocate
4324  * @rxr_count: total number of Rx rings to allocate
4325  * @rxr_idx: index of first Rx ring to allocate
4326  *
4327  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4328  */
4329 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4330 			      unsigned int v_count, unsigned int v_idx,
4331 			      unsigned int txr_count, unsigned int txr_idx,
4332 			      unsigned int rxr_count, unsigned int rxr_idx)
4333 {
4334 	struct igc_q_vector *q_vector;
4335 	struct igc_ring *ring;
4336 	int ring_count;
4337 
4338 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4339 	if (txr_count > 1 || rxr_count > 1)
4340 		return -ENOMEM;
4341 
4342 	ring_count = txr_count + rxr_count;
4343 
4344 	/* allocate q_vector and rings */
4345 	q_vector = adapter->q_vector[v_idx];
4346 	if (!q_vector)
4347 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4348 				   GFP_KERNEL);
4349 	else
4350 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4351 	if (!q_vector)
4352 		return -ENOMEM;
4353 
4354 	/* initialize NAPI */
4355 	netif_napi_add(adapter->netdev, &q_vector->napi,
4356 		       igc_poll, 64);
4357 
4358 	/* tie q_vector and adapter together */
4359 	adapter->q_vector[v_idx] = q_vector;
4360 	q_vector->adapter = adapter;
4361 
4362 	/* initialize work limits */
4363 	q_vector->tx.work_limit = adapter->tx_work_limit;
4364 
4365 	/* initialize ITR configuration */
4366 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4367 	q_vector->itr_val = IGC_START_ITR;
4368 
4369 	/* initialize pointer to rings */
4370 	ring = q_vector->ring;
4371 
4372 	/* initialize ITR */
4373 	if (rxr_count) {
4374 		/* rx or rx/tx vector */
4375 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4376 			q_vector->itr_val = adapter->rx_itr_setting;
4377 	} else {
4378 		/* tx only vector */
4379 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4380 			q_vector->itr_val = adapter->tx_itr_setting;
4381 	}
4382 
4383 	if (txr_count) {
4384 		/* assign generic ring traits */
4385 		ring->dev = &adapter->pdev->dev;
4386 		ring->netdev = adapter->netdev;
4387 
4388 		/* configure backlink on ring */
4389 		ring->q_vector = q_vector;
4390 
4391 		/* update q_vector Tx values */
4392 		igc_add_ring(ring, &q_vector->tx);
4393 
4394 		/* apply Tx specific ring traits */
4395 		ring->count = adapter->tx_ring_count;
4396 		ring->queue_index = txr_idx;
4397 
4398 		/* assign ring to adapter */
4399 		adapter->tx_ring[txr_idx] = ring;
4400 
4401 		/* push pointer to next ring */
4402 		ring++;
4403 	}
4404 
4405 	if (rxr_count) {
4406 		/* assign generic ring traits */
4407 		ring->dev = &adapter->pdev->dev;
4408 		ring->netdev = adapter->netdev;
4409 
4410 		/* configure backlink on ring */
4411 		ring->q_vector = q_vector;
4412 
4413 		/* update q_vector Rx values */
4414 		igc_add_ring(ring, &q_vector->rx);
4415 
4416 		/* apply Rx specific ring traits */
4417 		ring->count = adapter->rx_ring_count;
4418 		ring->queue_index = rxr_idx;
4419 
4420 		/* assign ring to adapter */
4421 		adapter->rx_ring[rxr_idx] = ring;
4422 	}
4423 
4424 	return 0;
4425 }
4426 
4427 /**
4428  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4429  * @adapter: board private structure to initialize
4430  *
4431  * We allocate one q_vector per queue interrupt.  If allocation fails we
4432  * return -ENOMEM.
4433  */
4434 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4435 {
4436 	int rxr_remaining = adapter->num_rx_queues;
4437 	int txr_remaining = adapter->num_tx_queues;
4438 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4439 	int q_vectors = adapter->num_q_vectors;
4440 	int err;
4441 
4442 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4443 		for (; rxr_remaining; v_idx++) {
4444 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4445 						 0, 0, 1, rxr_idx);
4446 
4447 			if (err)
4448 				goto err_out;
4449 
4450 			/* update counts and index */
4451 			rxr_remaining--;
4452 			rxr_idx++;
4453 		}
4454 	}
4455 
4456 	for (; v_idx < q_vectors; v_idx++) {
4457 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4458 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4459 
4460 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4461 					 tqpv, txr_idx, rqpv, rxr_idx);
4462 
4463 		if (err)
4464 			goto err_out;
4465 
4466 		/* update counts and index */
4467 		rxr_remaining -= rqpv;
4468 		txr_remaining -= tqpv;
4469 		rxr_idx++;
4470 		txr_idx++;
4471 	}
4472 
4473 	return 0;
4474 
4475 err_out:
4476 	adapter->num_tx_queues = 0;
4477 	adapter->num_rx_queues = 0;
4478 	adapter->num_q_vectors = 0;
4479 
4480 	while (v_idx--)
4481 		igc_free_q_vector(adapter, v_idx);
4482 
4483 	return -ENOMEM;
4484 }
4485 
4486 /**
4487  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4488  * @adapter: Pointer to adapter structure
4489  * @msix: boolean for MSI-X capability
4490  *
4491  * This function initializes the interrupts and allocates all of the queues.
4492  */
4493 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4494 {
4495 	struct net_device *dev = adapter->netdev;
4496 	int err = 0;
4497 
4498 	igc_set_interrupt_capability(adapter, msix);
4499 
4500 	err = igc_alloc_q_vectors(adapter);
4501 	if (err) {
4502 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4503 		goto err_alloc_q_vectors;
4504 	}
4505 
4506 	igc_cache_ring_register(adapter);
4507 
4508 	return 0;
4509 
4510 err_alloc_q_vectors:
4511 	igc_reset_interrupt_capability(adapter);
4512 	return err;
4513 }
4514 
4515 /**
4516  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4517  * @adapter: board private structure to initialize
4518  *
4519  * igc_sw_init initializes the Adapter private data structure.
4520  * Fields are initialized based on PCI device information and
4521  * OS network device settings (MTU size).
4522  */
4523 static int igc_sw_init(struct igc_adapter *adapter)
4524 {
4525 	struct net_device *netdev = adapter->netdev;
4526 	struct pci_dev *pdev = adapter->pdev;
4527 	struct igc_hw *hw = &adapter->hw;
4528 
4529 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4530 
4531 	/* set default ring sizes */
4532 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4533 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4534 
4535 	/* set default ITR values */
4536 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4537 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4538 
4539 	/* set default work limits */
4540 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4541 
4542 	/* adjust max frame to be at least the size of a standard frame */
4543 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4544 				VLAN_HLEN;
4545 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4546 
4547 	mutex_init(&adapter->nfc_rule_lock);
4548 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4549 	adapter->nfc_rule_count = 0;
4550 
4551 	spin_lock_init(&adapter->stats64_lock);
4552 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4553 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4554 
4555 	igc_init_queue_configuration(adapter);
4556 
4557 	/* This call may decrease the number of queues */
4558 	if (igc_init_interrupt_scheme(adapter, true)) {
4559 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4560 		return -ENOMEM;
4561 	}
4562 
4563 	/* Explicitly disable IRQ since the NIC can be in any state. */
4564 	igc_irq_disable(adapter);
4565 
4566 	set_bit(__IGC_DOWN, &adapter->state);
4567 
4568 	return 0;
4569 }
4570 
4571 /**
4572  * igc_up - Open the interface and prepare it to handle traffic
4573  * @adapter: board private structure
4574  */
4575 void igc_up(struct igc_adapter *adapter)
4576 {
4577 	struct igc_hw *hw = &adapter->hw;
4578 	int i = 0;
4579 
4580 	/* hardware has been reset, we need to reload some things */
4581 	igc_configure(adapter);
4582 
4583 	clear_bit(__IGC_DOWN, &adapter->state);
4584 
4585 	for (i = 0; i < adapter->num_q_vectors; i++)
4586 		napi_enable(&adapter->q_vector[i]->napi);
4587 
4588 	if (adapter->msix_entries)
4589 		igc_configure_msix(adapter);
4590 	else
4591 		igc_assign_vector(adapter->q_vector[0], 0);
4592 
4593 	/* Clear any pending interrupts. */
4594 	rd32(IGC_ICR);
4595 	igc_irq_enable(adapter);
4596 
4597 	netif_tx_start_all_queues(adapter->netdev);
4598 
4599 	/* start the watchdog. */
4600 	hw->mac.get_link_status = true;
4601 	schedule_work(&adapter->watchdog_task);
4602 }
4603 
4604 /**
4605  * igc_update_stats - Update the board statistics counters
4606  * @adapter: board private structure
4607  */
4608 void igc_update_stats(struct igc_adapter *adapter)
4609 {
4610 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4611 	struct pci_dev *pdev = adapter->pdev;
4612 	struct igc_hw *hw = &adapter->hw;
4613 	u64 _bytes, _packets;
4614 	u64 bytes, packets;
4615 	unsigned int start;
4616 	u32 mpc;
4617 	int i;
4618 
4619 	/* Prevent stats update while adapter is being reset, or if the pci
4620 	 * connection is down.
4621 	 */
4622 	if (adapter->link_speed == 0)
4623 		return;
4624 	if (pci_channel_offline(pdev))
4625 		return;
4626 
4627 	packets = 0;
4628 	bytes = 0;
4629 
4630 	rcu_read_lock();
4631 	for (i = 0; i < adapter->num_rx_queues; i++) {
4632 		struct igc_ring *ring = adapter->rx_ring[i];
4633 		u32 rqdpc = rd32(IGC_RQDPC(i));
4634 
4635 		if (hw->mac.type >= igc_i225)
4636 			wr32(IGC_RQDPC(i), 0);
4637 
4638 		if (rqdpc) {
4639 			ring->rx_stats.drops += rqdpc;
4640 			net_stats->rx_fifo_errors += rqdpc;
4641 		}
4642 
4643 		do {
4644 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4645 			_bytes = ring->rx_stats.bytes;
4646 			_packets = ring->rx_stats.packets;
4647 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4648 		bytes += _bytes;
4649 		packets += _packets;
4650 	}
4651 
4652 	net_stats->rx_bytes = bytes;
4653 	net_stats->rx_packets = packets;
4654 
4655 	packets = 0;
4656 	bytes = 0;
4657 	for (i = 0; i < adapter->num_tx_queues; i++) {
4658 		struct igc_ring *ring = adapter->tx_ring[i];
4659 
4660 		do {
4661 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4662 			_bytes = ring->tx_stats.bytes;
4663 			_packets = ring->tx_stats.packets;
4664 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4665 		bytes += _bytes;
4666 		packets += _packets;
4667 	}
4668 	net_stats->tx_bytes = bytes;
4669 	net_stats->tx_packets = packets;
4670 	rcu_read_unlock();
4671 
4672 	/* read stats registers */
4673 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4674 	adapter->stats.gprc += rd32(IGC_GPRC);
4675 	adapter->stats.gorc += rd32(IGC_GORCL);
4676 	rd32(IGC_GORCH); /* clear GORCL */
4677 	adapter->stats.bprc += rd32(IGC_BPRC);
4678 	adapter->stats.mprc += rd32(IGC_MPRC);
4679 	adapter->stats.roc += rd32(IGC_ROC);
4680 
4681 	adapter->stats.prc64 += rd32(IGC_PRC64);
4682 	adapter->stats.prc127 += rd32(IGC_PRC127);
4683 	adapter->stats.prc255 += rd32(IGC_PRC255);
4684 	adapter->stats.prc511 += rd32(IGC_PRC511);
4685 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4686 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4687 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4688 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4689 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4690 
4691 	mpc = rd32(IGC_MPC);
4692 	adapter->stats.mpc += mpc;
4693 	net_stats->rx_fifo_errors += mpc;
4694 	adapter->stats.scc += rd32(IGC_SCC);
4695 	adapter->stats.ecol += rd32(IGC_ECOL);
4696 	adapter->stats.mcc += rd32(IGC_MCC);
4697 	adapter->stats.latecol += rd32(IGC_LATECOL);
4698 	adapter->stats.dc += rd32(IGC_DC);
4699 	adapter->stats.rlec += rd32(IGC_RLEC);
4700 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4701 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4702 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4703 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4704 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4705 	adapter->stats.gptc += rd32(IGC_GPTC);
4706 	adapter->stats.gotc += rd32(IGC_GOTCL);
4707 	rd32(IGC_GOTCH); /* clear GOTCL */
4708 	adapter->stats.rnbc += rd32(IGC_RNBC);
4709 	adapter->stats.ruc += rd32(IGC_RUC);
4710 	adapter->stats.rfc += rd32(IGC_RFC);
4711 	adapter->stats.rjc += rd32(IGC_RJC);
4712 	adapter->stats.tor += rd32(IGC_TORH);
4713 	adapter->stats.tot += rd32(IGC_TOTH);
4714 	adapter->stats.tpr += rd32(IGC_TPR);
4715 
4716 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4717 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4718 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4719 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4720 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4721 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4722 
4723 	adapter->stats.mptc += rd32(IGC_MPTC);
4724 	adapter->stats.bptc += rd32(IGC_BPTC);
4725 
4726 	adapter->stats.tpt += rd32(IGC_TPT);
4727 	adapter->stats.colc += rd32(IGC_COLC);
4728 	adapter->stats.colc += rd32(IGC_RERC);
4729 
4730 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4731 
4732 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4733 
4734 	adapter->stats.iac += rd32(IGC_IAC);
4735 
4736 	/* Fill out the OS statistics structure */
4737 	net_stats->multicast = adapter->stats.mprc;
4738 	net_stats->collisions = adapter->stats.colc;
4739 
4740 	/* Rx Errors */
4741 
4742 	/* RLEC on some newer hardware can be incorrect so build
4743 	 * our own version based on RUC and ROC
4744 	 */
4745 	net_stats->rx_errors = adapter->stats.rxerrc +
4746 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4747 		adapter->stats.ruc + adapter->stats.roc +
4748 		adapter->stats.cexterr;
4749 	net_stats->rx_length_errors = adapter->stats.ruc +
4750 				      adapter->stats.roc;
4751 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4752 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4753 	net_stats->rx_missed_errors = adapter->stats.mpc;
4754 
4755 	/* Tx Errors */
4756 	net_stats->tx_errors = adapter->stats.ecol +
4757 			       adapter->stats.latecol;
4758 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4759 	net_stats->tx_window_errors = adapter->stats.latecol;
4760 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4761 
4762 	/* Tx Dropped needs to be maintained elsewhere */
4763 
4764 	/* Management Stats */
4765 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4766 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4767 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4768 }
4769 
4770 /**
4771  * igc_down - Close the interface
4772  * @adapter: board private structure
4773  */
4774 void igc_down(struct igc_adapter *adapter)
4775 {
4776 	struct net_device *netdev = adapter->netdev;
4777 	struct igc_hw *hw = &adapter->hw;
4778 	u32 tctl, rctl;
4779 	int i = 0;
4780 
4781 	set_bit(__IGC_DOWN, &adapter->state);
4782 
4783 	igc_ptp_suspend(adapter);
4784 
4785 	if (pci_device_is_present(adapter->pdev)) {
4786 		/* disable receives in the hardware */
4787 		rctl = rd32(IGC_RCTL);
4788 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4789 		/* flush and sleep below */
4790 	}
4791 	/* set trans_start so we don't get spurious watchdogs during reset */
4792 	netif_trans_update(netdev);
4793 
4794 	netif_carrier_off(netdev);
4795 	netif_tx_stop_all_queues(netdev);
4796 
4797 	if (pci_device_is_present(adapter->pdev)) {
4798 		/* disable transmits in the hardware */
4799 		tctl = rd32(IGC_TCTL);
4800 		tctl &= ~IGC_TCTL_EN;
4801 		wr32(IGC_TCTL, tctl);
4802 		/* flush both disables and wait for them to finish */
4803 		wrfl();
4804 		usleep_range(10000, 20000);
4805 
4806 		igc_irq_disable(adapter);
4807 	}
4808 
4809 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4810 
4811 	for (i = 0; i < adapter->num_q_vectors; i++) {
4812 		if (adapter->q_vector[i]) {
4813 			napi_synchronize(&adapter->q_vector[i]->napi);
4814 			napi_disable(&adapter->q_vector[i]->napi);
4815 		}
4816 	}
4817 
4818 	del_timer_sync(&adapter->watchdog_timer);
4819 	del_timer_sync(&adapter->phy_info_timer);
4820 
4821 	/* record the stats before reset*/
4822 	spin_lock(&adapter->stats64_lock);
4823 	igc_update_stats(adapter);
4824 	spin_unlock(&adapter->stats64_lock);
4825 
4826 	adapter->link_speed = 0;
4827 	adapter->link_duplex = 0;
4828 
4829 	if (!pci_channel_offline(adapter->pdev))
4830 		igc_reset(adapter);
4831 
4832 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4833 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4834 
4835 	igc_clean_all_tx_rings(adapter);
4836 	igc_clean_all_rx_rings(adapter);
4837 }
4838 
4839 void igc_reinit_locked(struct igc_adapter *adapter)
4840 {
4841 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4842 		usleep_range(1000, 2000);
4843 	igc_down(adapter);
4844 	igc_up(adapter);
4845 	clear_bit(__IGC_RESETTING, &adapter->state);
4846 }
4847 
4848 static void igc_reset_task(struct work_struct *work)
4849 {
4850 	struct igc_adapter *adapter;
4851 
4852 	adapter = container_of(work, struct igc_adapter, reset_task);
4853 
4854 	rtnl_lock();
4855 	/* If we're already down or resetting, just bail */
4856 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4857 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4858 		rtnl_unlock();
4859 		return;
4860 	}
4861 
4862 	igc_rings_dump(adapter);
4863 	igc_regs_dump(adapter);
4864 	netdev_err(adapter->netdev, "Reset adapter\n");
4865 	igc_reinit_locked(adapter);
4866 	rtnl_unlock();
4867 }
4868 
4869 /**
4870  * igc_change_mtu - Change the Maximum Transfer Unit
4871  * @netdev: network interface device structure
4872  * @new_mtu: new value for maximum frame size
4873  *
4874  * Returns 0 on success, negative on failure
4875  */
4876 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4877 {
4878 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4879 	struct igc_adapter *adapter = netdev_priv(netdev);
4880 
4881 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4882 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4883 		return -EINVAL;
4884 	}
4885 
4886 	/* adjust max frame to be at least the size of a standard frame */
4887 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4888 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4889 
4890 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4891 		usleep_range(1000, 2000);
4892 
4893 	/* igc_down has a dependency on max_frame_size */
4894 	adapter->max_frame_size = max_frame;
4895 
4896 	if (netif_running(netdev))
4897 		igc_down(adapter);
4898 
4899 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4900 	netdev->mtu = new_mtu;
4901 
4902 	if (netif_running(netdev))
4903 		igc_up(adapter);
4904 	else
4905 		igc_reset(adapter);
4906 
4907 	clear_bit(__IGC_RESETTING, &adapter->state);
4908 
4909 	return 0;
4910 }
4911 
4912 /**
4913  * igc_get_stats64 - Get System Network Statistics
4914  * @netdev: network interface device structure
4915  * @stats: rtnl_link_stats64 pointer
4916  *
4917  * Returns the address of the device statistics structure.
4918  * The statistics are updated here and also from the timer callback.
4919  */
4920 static void igc_get_stats64(struct net_device *netdev,
4921 			    struct rtnl_link_stats64 *stats)
4922 {
4923 	struct igc_adapter *adapter = netdev_priv(netdev);
4924 
4925 	spin_lock(&adapter->stats64_lock);
4926 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4927 		igc_update_stats(adapter);
4928 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4929 	spin_unlock(&adapter->stats64_lock);
4930 }
4931 
4932 static netdev_features_t igc_fix_features(struct net_device *netdev,
4933 					  netdev_features_t features)
4934 {
4935 	/* Since there is no support for separate Rx/Tx vlan accel
4936 	 * enable/disable make sure Tx flag is always in same state as Rx.
4937 	 */
4938 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4939 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4940 	else
4941 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4942 
4943 	return features;
4944 }
4945 
4946 static int igc_set_features(struct net_device *netdev,
4947 			    netdev_features_t features)
4948 {
4949 	netdev_features_t changed = netdev->features ^ features;
4950 	struct igc_adapter *adapter = netdev_priv(netdev);
4951 
4952 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4953 		igc_vlan_mode(netdev, features);
4954 
4955 	/* Add VLAN support */
4956 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4957 		return 0;
4958 
4959 	if (!(features & NETIF_F_NTUPLE))
4960 		igc_flush_nfc_rules(adapter);
4961 
4962 	netdev->features = features;
4963 
4964 	if (netif_running(netdev))
4965 		igc_reinit_locked(adapter);
4966 	else
4967 		igc_reset(adapter);
4968 
4969 	return 1;
4970 }
4971 
4972 static netdev_features_t
4973 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4974 		   netdev_features_t features)
4975 {
4976 	unsigned int network_hdr_len, mac_hdr_len;
4977 
4978 	/* Make certain the headers can be described by a context descriptor */
4979 	mac_hdr_len = skb_network_header(skb) - skb->data;
4980 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4981 		return features & ~(NETIF_F_HW_CSUM |
4982 				    NETIF_F_SCTP_CRC |
4983 				    NETIF_F_HW_VLAN_CTAG_TX |
4984 				    NETIF_F_TSO |
4985 				    NETIF_F_TSO6);
4986 
4987 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4988 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4989 		return features & ~(NETIF_F_HW_CSUM |
4990 				    NETIF_F_SCTP_CRC |
4991 				    NETIF_F_TSO |
4992 				    NETIF_F_TSO6);
4993 
4994 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4995 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4996 	 */
4997 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4998 		features &= ~NETIF_F_TSO;
4999 
5000 	return features;
5001 }
5002 
5003 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5004 {
5005 	u32 ack, tsauxc, sec, nsec, tsicr;
5006 	struct igc_hw *hw = &adapter->hw;
5007 	struct ptp_clock_event event;
5008 	struct timespec64 ts;
5009 
5010 	tsicr = rd32(IGC_TSICR);
5011 	ack = 0;
5012 
5013 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5014 		event.type = PTP_CLOCK_PPS;
5015 		if (adapter->ptp_caps.pps)
5016 			ptp_clock_event(adapter->ptp_clock, &event);
5017 		ack |= IGC_TSICR_SYS_WRAP;
5018 	}
5019 
5020 	if (tsicr & IGC_TSICR_TXTS) {
5021 		/* retrieve hardware timestamp */
5022 		schedule_work(&adapter->ptp_tx_work);
5023 		ack |= IGC_TSICR_TXTS;
5024 	}
5025 
5026 	if (tsicr & IGC_TSICR_TT0) {
5027 		spin_lock(&adapter->tmreg_lock);
5028 		ts = timespec64_add(adapter->perout[0].start,
5029 				    adapter->perout[0].period);
5030 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5031 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5032 		tsauxc = rd32(IGC_TSAUXC);
5033 		tsauxc |= IGC_TSAUXC_EN_TT0;
5034 		wr32(IGC_TSAUXC, tsauxc);
5035 		adapter->perout[0].start = ts;
5036 		spin_unlock(&adapter->tmreg_lock);
5037 		ack |= IGC_TSICR_TT0;
5038 	}
5039 
5040 	if (tsicr & IGC_TSICR_TT1) {
5041 		spin_lock(&adapter->tmreg_lock);
5042 		ts = timespec64_add(adapter->perout[1].start,
5043 				    adapter->perout[1].period);
5044 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5045 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5046 		tsauxc = rd32(IGC_TSAUXC);
5047 		tsauxc |= IGC_TSAUXC_EN_TT1;
5048 		wr32(IGC_TSAUXC, tsauxc);
5049 		adapter->perout[1].start = ts;
5050 		spin_unlock(&adapter->tmreg_lock);
5051 		ack |= IGC_TSICR_TT1;
5052 	}
5053 
5054 	if (tsicr & IGC_TSICR_AUTT0) {
5055 		nsec = rd32(IGC_AUXSTMPL0);
5056 		sec  = rd32(IGC_AUXSTMPH0);
5057 		event.type = PTP_CLOCK_EXTTS;
5058 		event.index = 0;
5059 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5060 		ptp_clock_event(adapter->ptp_clock, &event);
5061 		ack |= IGC_TSICR_AUTT0;
5062 	}
5063 
5064 	if (tsicr & IGC_TSICR_AUTT1) {
5065 		nsec = rd32(IGC_AUXSTMPL1);
5066 		sec  = rd32(IGC_AUXSTMPH1);
5067 		event.type = PTP_CLOCK_EXTTS;
5068 		event.index = 1;
5069 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5070 		ptp_clock_event(adapter->ptp_clock, &event);
5071 		ack |= IGC_TSICR_AUTT1;
5072 	}
5073 
5074 	/* acknowledge the interrupts */
5075 	wr32(IGC_TSICR, ack);
5076 }
5077 
5078 /**
5079  * igc_msix_other - msix other interrupt handler
5080  * @irq: interrupt number
5081  * @data: pointer to a q_vector
5082  */
5083 static irqreturn_t igc_msix_other(int irq, void *data)
5084 {
5085 	struct igc_adapter *adapter = data;
5086 	struct igc_hw *hw = &adapter->hw;
5087 	u32 icr = rd32(IGC_ICR);
5088 
5089 	/* reading ICR causes bit 31 of EICR to be cleared */
5090 	if (icr & IGC_ICR_DRSTA)
5091 		schedule_work(&adapter->reset_task);
5092 
5093 	if (icr & IGC_ICR_DOUTSYNC) {
5094 		/* HW is reporting DMA is out of sync */
5095 		adapter->stats.doosync++;
5096 	}
5097 
5098 	if (icr & IGC_ICR_LSC) {
5099 		hw->mac.get_link_status = true;
5100 		/* guard against interrupt when we're going down */
5101 		if (!test_bit(__IGC_DOWN, &adapter->state))
5102 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5103 	}
5104 
5105 	if (icr & IGC_ICR_TS)
5106 		igc_tsync_interrupt(adapter);
5107 
5108 	wr32(IGC_EIMS, adapter->eims_other);
5109 
5110 	return IRQ_HANDLED;
5111 }
5112 
5113 static void igc_write_itr(struct igc_q_vector *q_vector)
5114 {
5115 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5116 
5117 	if (!q_vector->set_itr)
5118 		return;
5119 
5120 	if (!itr_val)
5121 		itr_val = IGC_ITR_VAL_MASK;
5122 
5123 	itr_val |= IGC_EITR_CNT_IGNR;
5124 
5125 	writel(itr_val, q_vector->itr_register);
5126 	q_vector->set_itr = 0;
5127 }
5128 
5129 static irqreturn_t igc_msix_ring(int irq, void *data)
5130 {
5131 	struct igc_q_vector *q_vector = data;
5132 
5133 	/* Write the ITR value calculated from the previous interrupt. */
5134 	igc_write_itr(q_vector);
5135 
5136 	napi_schedule(&q_vector->napi);
5137 
5138 	return IRQ_HANDLED;
5139 }
5140 
5141 /**
5142  * igc_request_msix - Initialize MSI-X interrupts
5143  * @adapter: Pointer to adapter structure
5144  *
5145  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5146  * kernel.
5147  */
5148 static int igc_request_msix(struct igc_adapter *adapter)
5149 {
5150 	unsigned int num_q_vectors = adapter->num_q_vectors;
5151 	int i = 0, err = 0, vector = 0, free_vector = 0;
5152 	struct net_device *netdev = adapter->netdev;
5153 
5154 	err = request_irq(adapter->msix_entries[vector].vector,
5155 			  &igc_msix_other, 0, netdev->name, adapter);
5156 	if (err)
5157 		goto err_out;
5158 
5159 	if (num_q_vectors > MAX_Q_VECTORS) {
5160 		num_q_vectors = MAX_Q_VECTORS;
5161 		dev_warn(&adapter->pdev->dev,
5162 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5163 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5164 	}
5165 	for (i = 0; i < num_q_vectors; i++) {
5166 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5167 
5168 		vector++;
5169 
5170 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5171 
5172 		if (q_vector->rx.ring && q_vector->tx.ring)
5173 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5174 				q_vector->rx.ring->queue_index);
5175 		else if (q_vector->tx.ring)
5176 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5177 				q_vector->tx.ring->queue_index);
5178 		else if (q_vector->rx.ring)
5179 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5180 				q_vector->rx.ring->queue_index);
5181 		else
5182 			sprintf(q_vector->name, "%s-unused", netdev->name);
5183 
5184 		err = request_irq(adapter->msix_entries[vector].vector,
5185 				  igc_msix_ring, 0, q_vector->name,
5186 				  q_vector);
5187 		if (err)
5188 			goto err_free;
5189 	}
5190 
5191 	igc_configure_msix(adapter);
5192 	return 0;
5193 
5194 err_free:
5195 	/* free already assigned IRQs */
5196 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5197 
5198 	vector--;
5199 	for (i = 0; i < vector; i++) {
5200 		free_irq(adapter->msix_entries[free_vector++].vector,
5201 			 adapter->q_vector[i]);
5202 	}
5203 err_out:
5204 	return err;
5205 }
5206 
5207 /**
5208  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5209  * @adapter: Pointer to adapter structure
5210  *
5211  * This function resets the device so that it has 0 rx queues, tx queues, and
5212  * MSI-X interrupts allocated.
5213  */
5214 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5215 {
5216 	igc_free_q_vectors(adapter);
5217 	igc_reset_interrupt_capability(adapter);
5218 }
5219 
5220 /* Need to wait a few seconds after link up to get diagnostic information from
5221  * the phy
5222  */
5223 static void igc_update_phy_info(struct timer_list *t)
5224 {
5225 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5226 
5227 	igc_get_phy_info(&adapter->hw);
5228 }
5229 
5230 /**
5231  * igc_has_link - check shared code for link and determine up/down
5232  * @adapter: pointer to driver private info
5233  */
5234 bool igc_has_link(struct igc_adapter *adapter)
5235 {
5236 	struct igc_hw *hw = &adapter->hw;
5237 	bool link_active = false;
5238 
5239 	/* get_link_status is set on LSC (link status) interrupt or
5240 	 * rx sequence error interrupt.  get_link_status will stay
5241 	 * false until the igc_check_for_link establishes link
5242 	 * for copper adapters ONLY
5243 	 */
5244 	if (!hw->mac.get_link_status)
5245 		return true;
5246 	hw->mac.ops.check_for_link(hw);
5247 	link_active = !hw->mac.get_link_status;
5248 
5249 	if (hw->mac.type == igc_i225) {
5250 		if (!netif_carrier_ok(adapter->netdev)) {
5251 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5252 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5253 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5254 			adapter->link_check_timeout = jiffies;
5255 		}
5256 	}
5257 
5258 	return link_active;
5259 }
5260 
5261 /**
5262  * igc_watchdog - Timer Call-back
5263  * @t: timer for the watchdog
5264  */
5265 static void igc_watchdog(struct timer_list *t)
5266 {
5267 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5268 	/* Do the rest outside of interrupt context */
5269 	schedule_work(&adapter->watchdog_task);
5270 }
5271 
5272 static void igc_watchdog_task(struct work_struct *work)
5273 {
5274 	struct igc_adapter *adapter = container_of(work,
5275 						   struct igc_adapter,
5276 						   watchdog_task);
5277 	struct net_device *netdev = adapter->netdev;
5278 	struct igc_hw *hw = &adapter->hw;
5279 	struct igc_phy_info *phy = &hw->phy;
5280 	u16 phy_data, retry_count = 20;
5281 	u32 link;
5282 	int i;
5283 
5284 	link = igc_has_link(adapter);
5285 
5286 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5287 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5288 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5289 		else
5290 			link = false;
5291 	}
5292 
5293 	if (link) {
5294 		/* Cancel scheduled suspend requests. */
5295 		pm_runtime_resume(netdev->dev.parent);
5296 
5297 		if (!netif_carrier_ok(netdev)) {
5298 			u32 ctrl;
5299 
5300 			hw->mac.ops.get_speed_and_duplex(hw,
5301 							 &adapter->link_speed,
5302 							 &adapter->link_duplex);
5303 
5304 			ctrl = rd32(IGC_CTRL);
5305 			/* Link status message must follow this format */
5306 			netdev_info(netdev,
5307 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5308 				    adapter->link_speed,
5309 				    adapter->link_duplex == FULL_DUPLEX ?
5310 				    "Full" : "Half",
5311 				    (ctrl & IGC_CTRL_TFCE) &&
5312 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5313 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5314 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5315 
5316 			/* disable EEE if enabled */
5317 			if ((adapter->flags & IGC_FLAG_EEE) &&
5318 			    adapter->link_duplex == HALF_DUPLEX) {
5319 				netdev_info(netdev,
5320 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5321 				adapter->hw.dev_spec._base.eee_enable = false;
5322 				adapter->flags &= ~IGC_FLAG_EEE;
5323 			}
5324 
5325 			/* check if SmartSpeed worked */
5326 			igc_check_downshift(hw);
5327 			if (phy->speed_downgraded)
5328 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5329 
5330 			/* adjust timeout factor according to speed/duplex */
5331 			adapter->tx_timeout_factor = 1;
5332 			switch (adapter->link_speed) {
5333 			case SPEED_10:
5334 				adapter->tx_timeout_factor = 14;
5335 				break;
5336 			case SPEED_100:
5337 			case SPEED_1000:
5338 			case SPEED_2500:
5339 				adapter->tx_timeout_factor = 7;
5340 				break;
5341 			}
5342 
5343 			if (adapter->link_speed != SPEED_1000)
5344 				goto no_wait;
5345 
5346 			/* wait for Remote receiver status OK */
5347 retry_read_status:
5348 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5349 					      &phy_data)) {
5350 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5351 				    retry_count) {
5352 					msleep(100);
5353 					retry_count--;
5354 					goto retry_read_status;
5355 				} else if (!retry_count) {
5356 					netdev_err(netdev, "exceed max 2 second\n");
5357 				}
5358 			} else {
5359 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5360 			}
5361 no_wait:
5362 			netif_carrier_on(netdev);
5363 
5364 			/* link state has changed, schedule phy info update */
5365 			if (!test_bit(__IGC_DOWN, &adapter->state))
5366 				mod_timer(&adapter->phy_info_timer,
5367 					  round_jiffies(jiffies + 2 * HZ));
5368 		}
5369 	} else {
5370 		if (netif_carrier_ok(netdev)) {
5371 			adapter->link_speed = 0;
5372 			adapter->link_duplex = 0;
5373 
5374 			/* Links status message must follow this format */
5375 			netdev_info(netdev, "NIC Link is Down\n");
5376 			netif_carrier_off(netdev);
5377 
5378 			/* link state has changed, schedule phy info update */
5379 			if (!test_bit(__IGC_DOWN, &adapter->state))
5380 				mod_timer(&adapter->phy_info_timer,
5381 					  round_jiffies(jiffies + 2 * HZ));
5382 
5383 			/* link is down, time to check for alternate media */
5384 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5385 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5386 					schedule_work(&adapter->reset_task);
5387 					/* return immediately */
5388 					return;
5389 				}
5390 			}
5391 			pm_schedule_suspend(netdev->dev.parent,
5392 					    MSEC_PER_SEC * 5);
5393 
5394 		/* also check for alternate media here */
5395 		} else if (!netif_carrier_ok(netdev) &&
5396 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5397 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5398 				schedule_work(&adapter->reset_task);
5399 				/* return immediately */
5400 				return;
5401 			}
5402 		}
5403 	}
5404 
5405 	spin_lock(&adapter->stats64_lock);
5406 	igc_update_stats(adapter);
5407 	spin_unlock(&adapter->stats64_lock);
5408 
5409 	for (i = 0; i < adapter->num_tx_queues; i++) {
5410 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5411 
5412 		if (!netif_carrier_ok(netdev)) {
5413 			/* We've lost link, so the controller stops DMA,
5414 			 * but we've got queued Tx work that's never going
5415 			 * to get done, so reset controller to flush Tx.
5416 			 * (Do the reset outside of interrupt context).
5417 			 */
5418 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5419 				adapter->tx_timeout_count++;
5420 				schedule_work(&adapter->reset_task);
5421 				/* return immediately since reset is imminent */
5422 				return;
5423 			}
5424 		}
5425 
5426 		/* Force detection of hung controller every watchdog period */
5427 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5428 	}
5429 
5430 	/* Cause software interrupt to ensure Rx ring is cleaned */
5431 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5432 		u32 eics = 0;
5433 
5434 		for (i = 0; i < adapter->num_q_vectors; i++)
5435 			eics |= adapter->q_vector[i]->eims_value;
5436 		wr32(IGC_EICS, eics);
5437 	} else {
5438 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5439 	}
5440 
5441 	igc_ptp_tx_hang(adapter);
5442 
5443 	/* Reset the timer */
5444 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5445 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5446 			mod_timer(&adapter->watchdog_timer,
5447 				  round_jiffies(jiffies +  HZ));
5448 		else
5449 			mod_timer(&adapter->watchdog_timer,
5450 				  round_jiffies(jiffies + 2 * HZ));
5451 	}
5452 }
5453 
5454 /**
5455  * igc_intr_msi - Interrupt Handler
5456  * @irq: interrupt number
5457  * @data: pointer to a network interface device structure
5458  */
5459 static irqreturn_t igc_intr_msi(int irq, void *data)
5460 {
5461 	struct igc_adapter *adapter = data;
5462 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5463 	struct igc_hw *hw = &adapter->hw;
5464 	/* read ICR disables interrupts using IAM */
5465 	u32 icr = rd32(IGC_ICR);
5466 
5467 	igc_write_itr(q_vector);
5468 
5469 	if (icr & IGC_ICR_DRSTA)
5470 		schedule_work(&adapter->reset_task);
5471 
5472 	if (icr & IGC_ICR_DOUTSYNC) {
5473 		/* HW is reporting DMA is out of sync */
5474 		adapter->stats.doosync++;
5475 	}
5476 
5477 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5478 		hw->mac.get_link_status = true;
5479 		if (!test_bit(__IGC_DOWN, &adapter->state))
5480 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5481 	}
5482 
5483 	napi_schedule(&q_vector->napi);
5484 
5485 	return IRQ_HANDLED;
5486 }
5487 
5488 /**
5489  * igc_intr - Legacy Interrupt Handler
5490  * @irq: interrupt number
5491  * @data: pointer to a network interface device structure
5492  */
5493 static irqreturn_t igc_intr(int irq, void *data)
5494 {
5495 	struct igc_adapter *adapter = data;
5496 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5497 	struct igc_hw *hw = &adapter->hw;
5498 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5499 	 * need for the IMC write
5500 	 */
5501 	u32 icr = rd32(IGC_ICR);
5502 
5503 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5504 	 * not set, then the adapter didn't send an interrupt
5505 	 */
5506 	if (!(icr & IGC_ICR_INT_ASSERTED))
5507 		return IRQ_NONE;
5508 
5509 	igc_write_itr(q_vector);
5510 
5511 	if (icr & IGC_ICR_DRSTA)
5512 		schedule_work(&adapter->reset_task);
5513 
5514 	if (icr & IGC_ICR_DOUTSYNC) {
5515 		/* HW is reporting DMA is out of sync */
5516 		adapter->stats.doosync++;
5517 	}
5518 
5519 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5520 		hw->mac.get_link_status = true;
5521 		/* guard against interrupt when we're going down */
5522 		if (!test_bit(__IGC_DOWN, &adapter->state))
5523 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5524 	}
5525 
5526 	napi_schedule(&q_vector->napi);
5527 
5528 	return IRQ_HANDLED;
5529 }
5530 
5531 static void igc_free_irq(struct igc_adapter *adapter)
5532 {
5533 	if (adapter->msix_entries) {
5534 		int vector = 0, i;
5535 
5536 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5537 
5538 		for (i = 0; i < adapter->num_q_vectors; i++)
5539 			free_irq(adapter->msix_entries[vector++].vector,
5540 				 adapter->q_vector[i]);
5541 	} else {
5542 		free_irq(adapter->pdev->irq, adapter);
5543 	}
5544 }
5545 
5546 /**
5547  * igc_request_irq - initialize interrupts
5548  * @adapter: Pointer to adapter structure
5549  *
5550  * Attempts to configure interrupts using the best available
5551  * capabilities of the hardware and kernel.
5552  */
5553 static int igc_request_irq(struct igc_adapter *adapter)
5554 {
5555 	struct net_device *netdev = adapter->netdev;
5556 	struct pci_dev *pdev = adapter->pdev;
5557 	int err = 0;
5558 
5559 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5560 		err = igc_request_msix(adapter);
5561 		if (!err)
5562 			goto request_done;
5563 		/* fall back to MSI */
5564 		igc_free_all_tx_resources(adapter);
5565 		igc_free_all_rx_resources(adapter);
5566 
5567 		igc_clear_interrupt_scheme(adapter);
5568 		err = igc_init_interrupt_scheme(adapter, false);
5569 		if (err)
5570 			goto request_done;
5571 		igc_setup_all_tx_resources(adapter);
5572 		igc_setup_all_rx_resources(adapter);
5573 		igc_configure(adapter);
5574 	}
5575 
5576 	igc_assign_vector(adapter->q_vector[0], 0);
5577 
5578 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5579 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5580 				  netdev->name, adapter);
5581 		if (!err)
5582 			goto request_done;
5583 
5584 		/* fall back to legacy interrupts */
5585 		igc_reset_interrupt_capability(adapter);
5586 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5587 	}
5588 
5589 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5590 			  netdev->name, adapter);
5591 
5592 	if (err)
5593 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5594 
5595 request_done:
5596 	return err;
5597 }
5598 
5599 /**
5600  * __igc_open - Called when a network interface is made active
5601  * @netdev: network interface device structure
5602  * @resuming: boolean indicating if the device is resuming
5603  *
5604  * Returns 0 on success, negative value on failure
5605  *
5606  * The open entry point is called when a network interface is made
5607  * active by the system (IFF_UP).  At this point all resources needed
5608  * for transmit and receive operations are allocated, the interrupt
5609  * handler is registered with the OS, the watchdog timer is started,
5610  * and the stack is notified that the interface is ready.
5611  */
5612 static int __igc_open(struct net_device *netdev, bool resuming)
5613 {
5614 	struct igc_adapter *adapter = netdev_priv(netdev);
5615 	struct pci_dev *pdev = adapter->pdev;
5616 	struct igc_hw *hw = &adapter->hw;
5617 	int err = 0;
5618 	int i = 0;
5619 
5620 	/* disallow open during test */
5621 
5622 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5623 		WARN_ON(resuming);
5624 		return -EBUSY;
5625 	}
5626 
5627 	if (!resuming)
5628 		pm_runtime_get_sync(&pdev->dev);
5629 
5630 	netif_carrier_off(netdev);
5631 
5632 	/* allocate transmit descriptors */
5633 	err = igc_setup_all_tx_resources(adapter);
5634 	if (err)
5635 		goto err_setup_tx;
5636 
5637 	/* allocate receive descriptors */
5638 	err = igc_setup_all_rx_resources(adapter);
5639 	if (err)
5640 		goto err_setup_rx;
5641 
5642 	igc_power_up_link(adapter);
5643 
5644 	igc_configure(adapter);
5645 
5646 	err = igc_request_irq(adapter);
5647 	if (err)
5648 		goto err_req_irq;
5649 
5650 	/* Notify the stack of the actual queue counts. */
5651 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5652 	if (err)
5653 		goto err_set_queues;
5654 
5655 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5656 	if (err)
5657 		goto err_set_queues;
5658 
5659 	clear_bit(__IGC_DOWN, &adapter->state);
5660 
5661 	for (i = 0; i < adapter->num_q_vectors; i++)
5662 		napi_enable(&adapter->q_vector[i]->napi);
5663 
5664 	/* Clear any pending interrupts. */
5665 	rd32(IGC_ICR);
5666 	igc_irq_enable(adapter);
5667 
5668 	if (!resuming)
5669 		pm_runtime_put(&pdev->dev);
5670 
5671 	netif_tx_start_all_queues(netdev);
5672 
5673 	/* start the watchdog. */
5674 	hw->mac.get_link_status = true;
5675 	schedule_work(&adapter->watchdog_task);
5676 
5677 	return IGC_SUCCESS;
5678 
5679 err_set_queues:
5680 	igc_free_irq(adapter);
5681 err_req_irq:
5682 	igc_release_hw_control(adapter);
5683 	igc_power_down_phy_copper_base(&adapter->hw);
5684 	igc_free_all_rx_resources(adapter);
5685 err_setup_rx:
5686 	igc_free_all_tx_resources(adapter);
5687 err_setup_tx:
5688 	igc_reset(adapter);
5689 	if (!resuming)
5690 		pm_runtime_put(&pdev->dev);
5691 
5692 	return err;
5693 }
5694 
5695 int igc_open(struct net_device *netdev)
5696 {
5697 	return __igc_open(netdev, false);
5698 }
5699 
5700 /**
5701  * __igc_close - Disables a network interface
5702  * @netdev: network interface device structure
5703  * @suspending: boolean indicating the device is suspending
5704  *
5705  * Returns 0, this is not allowed to fail
5706  *
5707  * The close entry point is called when an interface is de-activated
5708  * by the OS.  The hardware is still under the driver's control, but
5709  * needs to be disabled.  A global MAC reset is issued to stop the
5710  * hardware, and all transmit and receive resources are freed.
5711  */
5712 static int __igc_close(struct net_device *netdev, bool suspending)
5713 {
5714 	struct igc_adapter *adapter = netdev_priv(netdev);
5715 	struct pci_dev *pdev = adapter->pdev;
5716 
5717 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5718 
5719 	if (!suspending)
5720 		pm_runtime_get_sync(&pdev->dev);
5721 
5722 	igc_down(adapter);
5723 
5724 	igc_release_hw_control(adapter);
5725 
5726 	igc_free_irq(adapter);
5727 
5728 	igc_free_all_tx_resources(adapter);
5729 	igc_free_all_rx_resources(adapter);
5730 
5731 	if (!suspending)
5732 		pm_runtime_put_sync(&pdev->dev);
5733 
5734 	return 0;
5735 }
5736 
5737 int igc_close(struct net_device *netdev)
5738 {
5739 	if (netif_device_present(netdev) || netdev->dismantle)
5740 		return __igc_close(netdev, false);
5741 	return 0;
5742 }
5743 
5744 /**
5745  * igc_ioctl - Access the hwtstamp interface
5746  * @netdev: network interface device structure
5747  * @ifr: interface request data
5748  * @cmd: ioctl command
5749  **/
5750 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5751 {
5752 	switch (cmd) {
5753 	case SIOCGHWTSTAMP:
5754 		return igc_ptp_get_ts_config(netdev, ifr);
5755 	case SIOCSHWTSTAMP:
5756 		return igc_ptp_set_ts_config(netdev, ifr);
5757 	default:
5758 		return -EOPNOTSUPP;
5759 	}
5760 }
5761 
5762 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5763 				      bool enable)
5764 {
5765 	struct igc_ring *ring;
5766 
5767 	if (queue < 0 || queue >= adapter->num_tx_queues)
5768 		return -EINVAL;
5769 
5770 	ring = adapter->tx_ring[queue];
5771 	ring->launchtime_enable = enable;
5772 
5773 	return 0;
5774 }
5775 
5776 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5777 {
5778 	struct timespec64 b;
5779 
5780 	b = ktime_to_timespec64(base_time);
5781 
5782 	return timespec64_compare(now, &b) > 0;
5783 }
5784 
5785 static bool validate_schedule(struct igc_adapter *adapter,
5786 			      const struct tc_taprio_qopt_offload *qopt)
5787 {
5788 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5789 	struct timespec64 now;
5790 	size_t n;
5791 
5792 	if (qopt->cycle_time_extension)
5793 		return false;
5794 
5795 	igc_ptp_read(adapter, &now);
5796 
5797 	/* If we program the controller's BASET registers with a time
5798 	 * in the future, it will hold all the packets until that
5799 	 * time, causing a lot of TX Hangs, so to avoid that, we
5800 	 * reject schedules that would start in the future.
5801 	 */
5802 	if (!is_base_time_past(qopt->base_time, &now))
5803 		return false;
5804 
5805 	for (n = 0; n < qopt->num_entries; n++) {
5806 		const struct tc_taprio_sched_entry *e;
5807 		int i;
5808 
5809 		e = &qopt->entries[n];
5810 
5811 		/* i225 only supports "global" frame preemption
5812 		 * settings.
5813 		 */
5814 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5815 			return false;
5816 
5817 		for (i = 0; i < adapter->num_tx_queues; i++) {
5818 			if (e->gate_mask & BIT(i))
5819 				queue_uses[i]++;
5820 
5821 			if (queue_uses[i] > 1)
5822 				return false;
5823 		}
5824 	}
5825 
5826 	return true;
5827 }
5828 
5829 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5830 				     struct tc_etf_qopt_offload *qopt)
5831 {
5832 	struct igc_hw *hw = &adapter->hw;
5833 	int err;
5834 
5835 	if (hw->mac.type != igc_i225)
5836 		return -EOPNOTSUPP;
5837 
5838 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5839 	if (err)
5840 		return err;
5841 
5842 	return igc_tsn_offload_apply(adapter);
5843 }
5844 
5845 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
5846 {
5847 	int i;
5848 
5849 	adapter->base_time = 0;
5850 	adapter->cycle_time = NSEC_PER_SEC;
5851 
5852 	for (i = 0; i < adapter->num_tx_queues; i++) {
5853 		struct igc_ring *ring = adapter->tx_ring[i];
5854 
5855 		ring->start_time = 0;
5856 		ring->end_time = NSEC_PER_SEC;
5857 	}
5858 
5859 	return 0;
5860 }
5861 
5862 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5863 				 struct tc_taprio_qopt_offload *qopt)
5864 {
5865 	u32 start_time = 0, end_time = 0;
5866 	size_t n;
5867 
5868 	if (!qopt->enable)
5869 		return igc_tsn_clear_schedule(adapter);
5870 
5871 	if (adapter->base_time)
5872 		return -EALREADY;
5873 
5874 	if (!validate_schedule(adapter, qopt))
5875 		return -EINVAL;
5876 
5877 	adapter->cycle_time = qopt->cycle_time;
5878 	adapter->base_time = qopt->base_time;
5879 
5880 	/* FIXME: be a little smarter about cases when the gate for a
5881 	 * queue stays open for more than one entry.
5882 	 */
5883 	for (n = 0; n < qopt->num_entries; n++) {
5884 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5885 		int i;
5886 
5887 		end_time += e->interval;
5888 
5889 		for (i = 0; i < adapter->num_tx_queues; i++) {
5890 			struct igc_ring *ring = adapter->tx_ring[i];
5891 
5892 			if (!(e->gate_mask & BIT(i)))
5893 				continue;
5894 
5895 			ring->start_time = start_time;
5896 			ring->end_time = end_time;
5897 		}
5898 
5899 		start_time += e->interval;
5900 	}
5901 
5902 	return 0;
5903 }
5904 
5905 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5906 					 struct tc_taprio_qopt_offload *qopt)
5907 {
5908 	struct igc_hw *hw = &adapter->hw;
5909 	int err;
5910 
5911 	if (hw->mac.type != igc_i225)
5912 		return -EOPNOTSUPP;
5913 
5914 	err = igc_save_qbv_schedule(adapter, qopt);
5915 	if (err)
5916 		return err;
5917 
5918 	return igc_tsn_offload_apply(adapter);
5919 }
5920 
5921 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
5922 			       bool enable, int idleslope, int sendslope,
5923 			       int hicredit, int locredit)
5924 {
5925 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
5926 	struct net_device *netdev = adapter->netdev;
5927 	struct igc_ring *ring;
5928 	int i;
5929 
5930 	/* i225 has two sets of credit-based shaper logic.
5931 	 * Supporting it only on the top two priority queues
5932 	 */
5933 	if (queue < 0 || queue > 1)
5934 		return -EINVAL;
5935 
5936 	ring = adapter->tx_ring[queue];
5937 
5938 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
5939 		if (adapter->tx_ring[i])
5940 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
5941 
5942 	/* CBS should be enabled on the highest priority queue first in order
5943 	 * for the CBS algorithm to operate as intended.
5944 	 */
5945 	if (enable) {
5946 		if (queue == 1 && !cbs_status[0]) {
5947 			netdev_err(netdev,
5948 				   "Enabling CBS on queue1 before queue0\n");
5949 			return -EINVAL;
5950 		}
5951 	} else {
5952 		if (queue == 0 && cbs_status[1]) {
5953 			netdev_err(netdev,
5954 				   "Disabling CBS on queue0 before queue1\n");
5955 			return -EINVAL;
5956 		}
5957 	}
5958 
5959 	ring->cbs_enable = enable;
5960 	ring->idleslope = idleslope;
5961 	ring->sendslope = sendslope;
5962 	ring->hicredit = hicredit;
5963 	ring->locredit = locredit;
5964 
5965 	return 0;
5966 }
5967 
5968 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
5969 			      struct tc_cbs_qopt_offload *qopt)
5970 {
5971 	struct igc_hw *hw = &adapter->hw;
5972 	int err;
5973 
5974 	if (hw->mac.type != igc_i225)
5975 		return -EOPNOTSUPP;
5976 
5977 	if (qopt->queue < 0 || qopt->queue > 1)
5978 		return -EINVAL;
5979 
5980 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
5981 				  qopt->idleslope, qopt->sendslope,
5982 				  qopt->hicredit, qopt->locredit);
5983 	if (err)
5984 		return err;
5985 
5986 	return igc_tsn_offload_apply(adapter);
5987 }
5988 
5989 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5990 			void *type_data)
5991 {
5992 	struct igc_adapter *adapter = netdev_priv(dev);
5993 
5994 	switch (type) {
5995 	case TC_SETUP_QDISC_TAPRIO:
5996 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5997 
5998 	case TC_SETUP_QDISC_ETF:
5999 		return igc_tsn_enable_launchtime(adapter, type_data);
6000 
6001 	case TC_SETUP_QDISC_CBS:
6002 		return igc_tsn_enable_cbs(adapter, type_data);
6003 
6004 	default:
6005 		return -EOPNOTSUPP;
6006 	}
6007 }
6008 
6009 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6010 {
6011 	struct igc_adapter *adapter = netdev_priv(dev);
6012 
6013 	switch (bpf->command) {
6014 	case XDP_SETUP_PROG:
6015 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6016 	case XDP_SETUP_XSK_POOL:
6017 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6018 					  bpf->xsk.queue_id);
6019 	default:
6020 		return -EOPNOTSUPP;
6021 	}
6022 }
6023 
6024 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6025 			struct xdp_frame **frames, u32 flags)
6026 {
6027 	struct igc_adapter *adapter = netdev_priv(dev);
6028 	int cpu = smp_processor_id();
6029 	struct netdev_queue *nq;
6030 	struct igc_ring *ring;
6031 	int i, drops;
6032 
6033 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6034 		return -ENETDOWN;
6035 
6036 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6037 		return -EINVAL;
6038 
6039 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6040 	nq = txring_txq(ring);
6041 
6042 	__netif_tx_lock(nq, cpu);
6043 
6044 	drops = 0;
6045 	for (i = 0; i < num_frames; i++) {
6046 		int err;
6047 		struct xdp_frame *xdpf = frames[i];
6048 
6049 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6050 		if (err) {
6051 			xdp_return_frame_rx_napi(xdpf);
6052 			drops++;
6053 		}
6054 	}
6055 
6056 	if (flags & XDP_XMIT_FLUSH)
6057 		igc_flush_tx_descriptors(ring);
6058 
6059 	__netif_tx_unlock(nq);
6060 
6061 	return num_frames - drops;
6062 }
6063 
6064 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6065 					struct igc_q_vector *q_vector)
6066 {
6067 	struct igc_hw *hw = &adapter->hw;
6068 	u32 eics = 0;
6069 
6070 	eics |= q_vector->eims_value;
6071 	wr32(IGC_EICS, eics);
6072 }
6073 
6074 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6075 {
6076 	struct igc_adapter *adapter = netdev_priv(dev);
6077 	struct igc_q_vector *q_vector;
6078 	struct igc_ring *ring;
6079 
6080 	if (test_bit(__IGC_DOWN, &adapter->state))
6081 		return -ENETDOWN;
6082 
6083 	if (!igc_xdp_is_enabled(adapter))
6084 		return -ENXIO;
6085 
6086 	if (queue_id >= adapter->num_rx_queues)
6087 		return -EINVAL;
6088 
6089 	ring = adapter->rx_ring[queue_id];
6090 
6091 	if (!ring->xsk_pool)
6092 		return -ENXIO;
6093 
6094 	q_vector = adapter->q_vector[queue_id];
6095 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6096 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6097 
6098 	return 0;
6099 }
6100 
6101 static const struct net_device_ops igc_netdev_ops = {
6102 	.ndo_open		= igc_open,
6103 	.ndo_stop		= igc_close,
6104 	.ndo_start_xmit		= igc_xmit_frame,
6105 	.ndo_set_rx_mode	= igc_set_rx_mode,
6106 	.ndo_set_mac_address	= igc_set_mac,
6107 	.ndo_change_mtu		= igc_change_mtu,
6108 	.ndo_get_stats64	= igc_get_stats64,
6109 	.ndo_fix_features	= igc_fix_features,
6110 	.ndo_set_features	= igc_set_features,
6111 	.ndo_features_check	= igc_features_check,
6112 	.ndo_eth_ioctl		= igc_ioctl,
6113 	.ndo_setup_tc		= igc_setup_tc,
6114 	.ndo_bpf		= igc_bpf,
6115 	.ndo_xdp_xmit		= igc_xdp_xmit,
6116 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6117 };
6118 
6119 /* PCIe configuration access */
6120 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6121 {
6122 	struct igc_adapter *adapter = hw->back;
6123 
6124 	pci_read_config_word(adapter->pdev, reg, value);
6125 }
6126 
6127 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6128 {
6129 	struct igc_adapter *adapter = hw->back;
6130 
6131 	pci_write_config_word(adapter->pdev, reg, *value);
6132 }
6133 
6134 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6135 {
6136 	struct igc_adapter *adapter = hw->back;
6137 
6138 	if (!pci_is_pcie(adapter->pdev))
6139 		return -IGC_ERR_CONFIG;
6140 
6141 	pcie_capability_read_word(adapter->pdev, reg, value);
6142 
6143 	return IGC_SUCCESS;
6144 }
6145 
6146 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6147 {
6148 	struct igc_adapter *adapter = hw->back;
6149 
6150 	if (!pci_is_pcie(adapter->pdev))
6151 		return -IGC_ERR_CONFIG;
6152 
6153 	pcie_capability_write_word(adapter->pdev, reg, *value);
6154 
6155 	return IGC_SUCCESS;
6156 }
6157 
6158 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6159 {
6160 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6161 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6162 	u32 value = 0;
6163 
6164 	value = readl(&hw_addr[reg]);
6165 
6166 	/* reads should not return all F's */
6167 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6168 		struct net_device *netdev = igc->netdev;
6169 
6170 		hw->hw_addr = NULL;
6171 		netif_device_detach(netdev);
6172 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6173 		WARN(pci_device_is_present(igc->pdev),
6174 		     "igc: Failed to read reg 0x%x!\n", reg);
6175 	}
6176 
6177 	return value;
6178 }
6179 
6180 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
6181 {
6182 	struct igc_mac_info *mac = &adapter->hw.mac;
6183 
6184 	mac->autoneg = false;
6185 
6186 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6187 	 * for the switch() below to work
6188 	 */
6189 	if ((spd & 1) || (dplx & ~1))
6190 		goto err_inval;
6191 
6192 	switch (spd + dplx) {
6193 	case SPEED_10 + DUPLEX_HALF:
6194 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6195 		break;
6196 	case SPEED_10 + DUPLEX_FULL:
6197 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6198 		break;
6199 	case SPEED_100 + DUPLEX_HALF:
6200 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6201 		break;
6202 	case SPEED_100 + DUPLEX_FULL:
6203 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6204 		break;
6205 	case SPEED_1000 + DUPLEX_FULL:
6206 		mac->autoneg = true;
6207 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6208 		break;
6209 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6210 		goto err_inval;
6211 	case SPEED_2500 + DUPLEX_FULL:
6212 		mac->autoneg = true;
6213 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
6214 		break;
6215 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
6216 	default:
6217 		goto err_inval;
6218 	}
6219 
6220 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6221 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6222 
6223 	return 0;
6224 
6225 err_inval:
6226 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
6227 	return -EINVAL;
6228 }
6229 
6230 /**
6231  * igc_probe - Device Initialization Routine
6232  * @pdev: PCI device information struct
6233  * @ent: entry in igc_pci_tbl
6234  *
6235  * Returns 0 on success, negative on failure
6236  *
6237  * igc_probe initializes an adapter identified by a pci_dev structure.
6238  * The OS initialization, configuring the adapter private structure,
6239  * and a hardware reset occur.
6240  */
6241 static int igc_probe(struct pci_dev *pdev,
6242 		     const struct pci_device_id *ent)
6243 {
6244 	struct igc_adapter *adapter;
6245 	struct net_device *netdev;
6246 	struct igc_hw *hw;
6247 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6248 	int err, pci_using_dac;
6249 
6250 	err = pci_enable_device_mem(pdev);
6251 	if (err)
6252 		return err;
6253 
6254 	pci_using_dac = 0;
6255 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6256 	if (!err) {
6257 		pci_using_dac = 1;
6258 	} else {
6259 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6260 		if (err) {
6261 			dev_err(&pdev->dev,
6262 				"No usable DMA configuration, aborting\n");
6263 			goto err_dma;
6264 		}
6265 	}
6266 
6267 	err = pci_request_mem_regions(pdev, igc_driver_name);
6268 	if (err)
6269 		goto err_pci_reg;
6270 
6271 	pci_enable_pcie_error_reporting(pdev);
6272 
6273 	err = pci_enable_ptm(pdev, NULL);
6274 	if (err < 0)
6275 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6276 
6277 	pci_set_master(pdev);
6278 
6279 	err = -ENOMEM;
6280 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6281 				   IGC_MAX_TX_QUEUES);
6282 
6283 	if (!netdev)
6284 		goto err_alloc_etherdev;
6285 
6286 	SET_NETDEV_DEV(netdev, &pdev->dev);
6287 
6288 	pci_set_drvdata(pdev, netdev);
6289 	adapter = netdev_priv(netdev);
6290 	adapter->netdev = netdev;
6291 	adapter->pdev = pdev;
6292 	hw = &adapter->hw;
6293 	hw->back = adapter;
6294 	adapter->port_num = hw->bus.func;
6295 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6296 
6297 	err = pci_save_state(pdev);
6298 	if (err)
6299 		goto err_ioremap;
6300 
6301 	err = -EIO;
6302 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6303 				   pci_resource_len(pdev, 0));
6304 	if (!adapter->io_addr)
6305 		goto err_ioremap;
6306 
6307 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6308 	hw->hw_addr = adapter->io_addr;
6309 
6310 	netdev->netdev_ops = &igc_netdev_ops;
6311 	igc_ethtool_set_ops(netdev);
6312 	netdev->watchdog_timeo = 5 * HZ;
6313 
6314 	netdev->mem_start = pci_resource_start(pdev, 0);
6315 	netdev->mem_end = pci_resource_end(pdev, 0);
6316 
6317 	/* PCI config space info */
6318 	hw->vendor_id = pdev->vendor;
6319 	hw->device_id = pdev->device;
6320 	hw->revision_id = pdev->revision;
6321 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6322 	hw->subsystem_device_id = pdev->subsystem_device;
6323 
6324 	/* Copy the default MAC and PHY function pointers */
6325 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6326 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6327 
6328 	/* Initialize skew-specific constants */
6329 	err = ei->get_invariants(hw);
6330 	if (err)
6331 		goto err_sw_init;
6332 
6333 	/* Add supported features to the features list*/
6334 	netdev->features |= NETIF_F_SG;
6335 	netdev->features |= NETIF_F_TSO;
6336 	netdev->features |= NETIF_F_TSO6;
6337 	netdev->features |= NETIF_F_TSO_ECN;
6338 	netdev->features |= NETIF_F_RXCSUM;
6339 	netdev->features |= NETIF_F_HW_CSUM;
6340 	netdev->features |= NETIF_F_SCTP_CRC;
6341 	netdev->features |= NETIF_F_HW_TC;
6342 
6343 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6344 				  NETIF_F_GSO_GRE_CSUM | \
6345 				  NETIF_F_GSO_IPXIP4 | \
6346 				  NETIF_F_GSO_IPXIP6 | \
6347 				  NETIF_F_GSO_UDP_TUNNEL | \
6348 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6349 
6350 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6351 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6352 
6353 	/* setup the private structure */
6354 	err = igc_sw_init(adapter);
6355 	if (err)
6356 		goto err_sw_init;
6357 
6358 	/* copy netdev features into list of user selectable features */
6359 	netdev->hw_features |= NETIF_F_NTUPLE;
6360 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6361 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6362 	netdev->hw_features |= netdev->features;
6363 
6364 	if (pci_using_dac)
6365 		netdev->features |= NETIF_F_HIGHDMA;
6366 
6367 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6368 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6369 	netdev->hw_enc_features |= netdev->vlan_features;
6370 
6371 	/* MTU range: 68 - 9216 */
6372 	netdev->min_mtu = ETH_MIN_MTU;
6373 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6374 
6375 	/* before reading the NVM, reset the controller to put the device in a
6376 	 * known good starting state
6377 	 */
6378 	hw->mac.ops.reset_hw(hw);
6379 
6380 	if (igc_get_flash_presence_i225(hw)) {
6381 		if (hw->nvm.ops.validate(hw) < 0) {
6382 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6383 			err = -EIO;
6384 			goto err_eeprom;
6385 		}
6386 	}
6387 
6388 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6389 		/* copy the MAC address out of the NVM */
6390 		if (hw->mac.ops.read_mac_addr(hw))
6391 			dev_err(&pdev->dev, "NVM Read Error\n");
6392 	}
6393 
6394 	eth_hw_addr_set(netdev, hw->mac.addr);
6395 
6396 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6397 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6398 		err = -EIO;
6399 		goto err_eeprom;
6400 	}
6401 
6402 	/* configure RXPBSIZE and TXPBSIZE */
6403 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6404 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6405 
6406 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6407 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6408 
6409 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6410 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6411 
6412 	/* Initialize link properties that are user-changeable */
6413 	adapter->fc_autoneg = true;
6414 	hw->mac.autoneg = true;
6415 	hw->phy.autoneg_advertised = 0xaf;
6416 
6417 	hw->fc.requested_mode = igc_fc_default;
6418 	hw->fc.current_mode = igc_fc_default;
6419 
6420 	/* By default, support wake on port A */
6421 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6422 
6423 	/* initialize the wol settings based on the eeprom settings */
6424 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6425 		adapter->wol |= IGC_WUFC_MAG;
6426 
6427 	device_set_wakeup_enable(&adapter->pdev->dev,
6428 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6429 
6430 	igc_ptp_init(adapter);
6431 
6432 	igc_tsn_clear_schedule(adapter);
6433 
6434 	/* reset the hardware with the new settings */
6435 	igc_reset(adapter);
6436 
6437 	/* let the f/w know that the h/w is now under the control of the
6438 	 * driver.
6439 	 */
6440 	igc_get_hw_control(adapter);
6441 
6442 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6443 	err = register_netdev(netdev);
6444 	if (err)
6445 		goto err_register;
6446 
6447 	 /* carrier off reporting is important to ethtool even BEFORE open */
6448 	netif_carrier_off(netdev);
6449 
6450 	/* Check if Media Autosense is enabled */
6451 	adapter->ei = *ei;
6452 
6453 	/* print pcie link status and MAC address */
6454 	pcie_print_link_status(pdev);
6455 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6456 
6457 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6458 	/* Disable EEE for internal PHY devices */
6459 	hw->dev_spec._base.eee_enable = false;
6460 	adapter->flags &= ~IGC_FLAG_EEE;
6461 	igc_set_eee_i225(hw, false, false, false);
6462 
6463 	pm_runtime_put_noidle(&pdev->dev);
6464 
6465 	return 0;
6466 
6467 err_register:
6468 	igc_release_hw_control(adapter);
6469 err_eeprom:
6470 	if (!igc_check_reset_block(hw))
6471 		igc_reset_phy(hw);
6472 err_sw_init:
6473 	igc_clear_interrupt_scheme(adapter);
6474 	iounmap(adapter->io_addr);
6475 err_ioremap:
6476 	free_netdev(netdev);
6477 err_alloc_etherdev:
6478 	pci_disable_pcie_error_reporting(pdev);
6479 	pci_release_mem_regions(pdev);
6480 err_pci_reg:
6481 err_dma:
6482 	pci_disable_device(pdev);
6483 	return err;
6484 }
6485 
6486 /**
6487  * igc_remove - Device Removal Routine
6488  * @pdev: PCI device information struct
6489  *
6490  * igc_remove is called by the PCI subsystem to alert the driver
6491  * that it should release a PCI device.  This could be caused by a
6492  * Hot-Plug event, or because the driver is going to be removed from
6493  * memory.
6494  */
6495 static void igc_remove(struct pci_dev *pdev)
6496 {
6497 	struct net_device *netdev = pci_get_drvdata(pdev);
6498 	struct igc_adapter *adapter = netdev_priv(netdev);
6499 
6500 	pm_runtime_get_noresume(&pdev->dev);
6501 
6502 	igc_flush_nfc_rules(adapter);
6503 
6504 	igc_ptp_stop(adapter);
6505 
6506 	set_bit(__IGC_DOWN, &adapter->state);
6507 
6508 	del_timer_sync(&adapter->watchdog_timer);
6509 	del_timer_sync(&adapter->phy_info_timer);
6510 
6511 	cancel_work_sync(&adapter->reset_task);
6512 	cancel_work_sync(&adapter->watchdog_task);
6513 
6514 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6515 	 * would have already happened in close and is redundant.
6516 	 */
6517 	igc_release_hw_control(adapter);
6518 	unregister_netdev(netdev);
6519 
6520 	igc_clear_interrupt_scheme(adapter);
6521 	pci_iounmap(pdev, adapter->io_addr);
6522 	pci_release_mem_regions(pdev);
6523 
6524 	free_netdev(netdev);
6525 
6526 	pci_disable_pcie_error_reporting(pdev);
6527 
6528 	pci_disable_device(pdev);
6529 }
6530 
6531 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6532 			  bool runtime)
6533 {
6534 	struct net_device *netdev = pci_get_drvdata(pdev);
6535 	struct igc_adapter *adapter = netdev_priv(netdev);
6536 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6537 	struct igc_hw *hw = &adapter->hw;
6538 	u32 ctrl, rctl, status;
6539 	bool wake;
6540 
6541 	rtnl_lock();
6542 	netif_device_detach(netdev);
6543 
6544 	if (netif_running(netdev))
6545 		__igc_close(netdev, true);
6546 
6547 	igc_ptp_suspend(adapter);
6548 
6549 	igc_clear_interrupt_scheme(adapter);
6550 	rtnl_unlock();
6551 
6552 	status = rd32(IGC_STATUS);
6553 	if (status & IGC_STATUS_LU)
6554 		wufc &= ~IGC_WUFC_LNKC;
6555 
6556 	if (wufc) {
6557 		igc_setup_rctl(adapter);
6558 		igc_set_rx_mode(netdev);
6559 
6560 		/* turn on all-multi mode if wake on multicast is enabled */
6561 		if (wufc & IGC_WUFC_MC) {
6562 			rctl = rd32(IGC_RCTL);
6563 			rctl |= IGC_RCTL_MPE;
6564 			wr32(IGC_RCTL, rctl);
6565 		}
6566 
6567 		ctrl = rd32(IGC_CTRL);
6568 		ctrl |= IGC_CTRL_ADVD3WUC;
6569 		wr32(IGC_CTRL, ctrl);
6570 
6571 		/* Allow time for pending master requests to run */
6572 		igc_disable_pcie_master(hw);
6573 
6574 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6575 		wr32(IGC_WUFC, wufc);
6576 	} else {
6577 		wr32(IGC_WUC, 0);
6578 		wr32(IGC_WUFC, 0);
6579 	}
6580 
6581 	wake = wufc || adapter->en_mng_pt;
6582 	if (!wake)
6583 		igc_power_down_phy_copper_base(&adapter->hw);
6584 	else
6585 		igc_power_up_link(adapter);
6586 
6587 	if (enable_wake)
6588 		*enable_wake = wake;
6589 
6590 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6591 	 * would have already happened in close and is redundant.
6592 	 */
6593 	igc_release_hw_control(adapter);
6594 
6595 	pci_disable_device(pdev);
6596 
6597 	return 0;
6598 }
6599 
6600 #ifdef CONFIG_PM
6601 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6602 {
6603 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6604 }
6605 
6606 static void igc_deliver_wake_packet(struct net_device *netdev)
6607 {
6608 	struct igc_adapter *adapter = netdev_priv(netdev);
6609 	struct igc_hw *hw = &adapter->hw;
6610 	struct sk_buff *skb;
6611 	u32 wupl;
6612 
6613 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6614 
6615 	/* WUPM stores only the first 128 bytes of the wake packet.
6616 	 * Read the packet only if we have the whole thing.
6617 	 */
6618 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6619 		return;
6620 
6621 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6622 	if (!skb)
6623 		return;
6624 
6625 	skb_put(skb, wupl);
6626 
6627 	/* Ensure reads are 32-bit aligned */
6628 	wupl = roundup(wupl, 4);
6629 
6630 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6631 
6632 	skb->protocol = eth_type_trans(skb, netdev);
6633 	netif_rx(skb);
6634 }
6635 
6636 static int __maybe_unused igc_resume(struct device *dev)
6637 {
6638 	struct pci_dev *pdev = to_pci_dev(dev);
6639 	struct net_device *netdev = pci_get_drvdata(pdev);
6640 	struct igc_adapter *adapter = netdev_priv(netdev);
6641 	struct igc_hw *hw = &adapter->hw;
6642 	u32 err, val;
6643 
6644 	pci_set_power_state(pdev, PCI_D0);
6645 	pci_restore_state(pdev);
6646 	pci_save_state(pdev);
6647 
6648 	if (!pci_device_is_present(pdev))
6649 		return -ENODEV;
6650 	err = pci_enable_device_mem(pdev);
6651 	if (err) {
6652 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6653 		return err;
6654 	}
6655 	pci_set_master(pdev);
6656 
6657 	pci_enable_wake(pdev, PCI_D3hot, 0);
6658 	pci_enable_wake(pdev, PCI_D3cold, 0);
6659 
6660 	if (igc_init_interrupt_scheme(adapter, true)) {
6661 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6662 		return -ENOMEM;
6663 	}
6664 
6665 	igc_reset(adapter);
6666 
6667 	/* let the f/w know that the h/w is now under the control of the
6668 	 * driver.
6669 	 */
6670 	igc_get_hw_control(adapter);
6671 
6672 	val = rd32(IGC_WUS);
6673 	if (val & WAKE_PKT_WUS)
6674 		igc_deliver_wake_packet(netdev);
6675 
6676 	wr32(IGC_WUS, ~0);
6677 
6678 	rtnl_lock();
6679 	if (!err && netif_running(netdev))
6680 		err = __igc_open(netdev, true);
6681 
6682 	if (!err)
6683 		netif_device_attach(netdev);
6684 	rtnl_unlock();
6685 
6686 	return err;
6687 }
6688 
6689 static int __maybe_unused igc_runtime_resume(struct device *dev)
6690 {
6691 	return igc_resume(dev);
6692 }
6693 
6694 static int __maybe_unused igc_suspend(struct device *dev)
6695 {
6696 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6697 }
6698 
6699 static int __maybe_unused igc_runtime_idle(struct device *dev)
6700 {
6701 	struct net_device *netdev = dev_get_drvdata(dev);
6702 	struct igc_adapter *adapter = netdev_priv(netdev);
6703 
6704 	if (!igc_has_link(adapter))
6705 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6706 
6707 	return -EBUSY;
6708 }
6709 #endif /* CONFIG_PM */
6710 
6711 static void igc_shutdown(struct pci_dev *pdev)
6712 {
6713 	bool wake;
6714 
6715 	__igc_shutdown(pdev, &wake, 0);
6716 
6717 	if (system_state == SYSTEM_POWER_OFF) {
6718 		pci_wake_from_d3(pdev, wake);
6719 		pci_set_power_state(pdev, PCI_D3hot);
6720 	}
6721 }
6722 
6723 /**
6724  *  igc_io_error_detected - called when PCI error is detected
6725  *  @pdev: Pointer to PCI device
6726  *  @state: The current PCI connection state
6727  *
6728  *  This function is called after a PCI bus error affecting
6729  *  this device has been detected.
6730  **/
6731 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6732 					      pci_channel_state_t state)
6733 {
6734 	struct net_device *netdev = pci_get_drvdata(pdev);
6735 	struct igc_adapter *adapter = netdev_priv(netdev);
6736 
6737 	netif_device_detach(netdev);
6738 
6739 	if (state == pci_channel_io_perm_failure)
6740 		return PCI_ERS_RESULT_DISCONNECT;
6741 
6742 	if (netif_running(netdev))
6743 		igc_down(adapter);
6744 	pci_disable_device(pdev);
6745 
6746 	/* Request a slot reset. */
6747 	return PCI_ERS_RESULT_NEED_RESET;
6748 }
6749 
6750 /**
6751  *  igc_io_slot_reset - called after the PCI bus has been reset.
6752  *  @pdev: Pointer to PCI device
6753  *
6754  *  Restart the card from scratch, as if from a cold-boot. Implementation
6755  *  resembles the first-half of the igc_resume routine.
6756  **/
6757 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6758 {
6759 	struct net_device *netdev = pci_get_drvdata(pdev);
6760 	struct igc_adapter *adapter = netdev_priv(netdev);
6761 	struct igc_hw *hw = &adapter->hw;
6762 	pci_ers_result_t result;
6763 
6764 	if (pci_enable_device_mem(pdev)) {
6765 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6766 		result = PCI_ERS_RESULT_DISCONNECT;
6767 	} else {
6768 		pci_set_master(pdev);
6769 		pci_restore_state(pdev);
6770 		pci_save_state(pdev);
6771 
6772 		pci_enable_wake(pdev, PCI_D3hot, 0);
6773 		pci_enable_wake(pdev, PCI_D3cold, 0);
6774 
6775 		/* In case of PCI error, adapter loses its HW address
6776 		 * so we should re-assign it here.
6777 		 */
6778 		hw->hw_addr = adapter->io_addr;
6779 
6780 		igc_reset(adapter);
6781 		wr32(IGC_WUS, ~0);
6782 		result = PCI_ERS_RESULT_RECOVERED;
6783 	}
6784 
6785 	return result;
6786 }
6787 
6788 /**
6789  *  igc_io_resume - called when traffic can start to flow again.
6790  *  @pdev: Pointer to PCI device
6791  *
6792  *  This callback is called when the error recovery driver tells us that
6793  *  its OK to resume normal operation. Implementation resembles the
6794  *  second-half of the igc_resume routine.
6795  */
6796 static void igc_io_resume(struct pci_dev *pdev)
6797 {
6798 	struct net_device *netdev = pci_get_drvdata(pdev);
6799 	struct igc_adapter *adapter = netdev_priv(netdev);
6800 
6801 	rtnl_lock();
6802 	if (netif_running(netdev)) {
6803 		if (igc_open(netdev)) {
6804 			netdev_err(netdev, "igc_open failed after reset\n");
6805 			return;
6806 		}
6807 	}
6808 
6809 	netif_device_attach(netdev);
6810 
6811 	/* let the f/w know that the h/w is now under the control of the
6812 	 * driver.
6813 	 */
6814 	igc_get_hw_control(adapter);
6815 	rtnl_unlock();
6816 }
6817 
6818 static const struct pci_error_handlers igc_err_handler = {
6819 	.error_detected = igc_io_error_detected,
6820 	.slot_reset = igc_io_slot_reset,
6821 	.resume = igc_io_resume,
6822 };
6823 
6824 #ifdef CONFIG_PM
6825 static const struct dev_pm_ops igc_pm_ops = {
6826 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6827 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6828 			   igc_runtime_idle)
6829 };
6830 #endif
6831 
6832 static struct pci_driver igc_driver = {
6833 	.name     = igc_driver_name,
6834 	.id_table = igc_pci_tbl,
6835 	.probe    = igc_probe,
6836 	.remove   = igc_remove,
6837 #ifdef CONFIG_PM
6838 	.driver.pm = &igc_pm_ops,
6839 #endif
6840 	.shutdown = igc_shutdown,
6841 	.err_handler = &igc_err_handler,
6842 };
6843 
6844 /**
6845  * igc_reinit_queues - return error
6846  * @adapter: pointer to adapter structure
6847  */
6848 int igc_reinit_queues(struct igc_adapter *adapter)
6849 {
6850 	struct net_device *netdev = adapter->netdev;
6851 	int err = 0;
6852 
6853 	if (netif_running(netdev))
6854 		igc_close(netdev);
6855 
6856 	igc_reset_interrupt_capability(adapter);
6857 
6858 	if (igc_init_interrupt_scheme(adapter, true)) {
6859 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6860 		return -ENOMEM;
6861 	}
6862 
6863 	if (netif_running(netdev))
6864 		err = igc_open(netdev);
6865 
6866 	return err;
6867 }
6868 
6869 /**
6870  * igc_get_hw_dev - return device
6871  * @hw: pointer to hardware structure
6872  *
6873  * used by hardware layer to print debugging information
6874  */
6875 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6876 {
6877 	struct igc_adapter *adapter = hw->back;
6878 
6879 	return adapter->netdev;
6880 }
6881 
6882 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6883 {
6884 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6885 	u8 idx = ring->reg_idx;
6886 	u32 rxdctl;
6887 
6888 	rxdctl = rd32(IGC_RXDCTL(idx));
6889 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6890 	rxdctl |= IGC_RXDCTL_SWFLUSH;
6891 	wr32(IGC_RXDCTL(idx), rxdctl);
6892 }
6893 
6894 void igc_disable_rx_ring(struct igc_ring *ring)
6895 {
6896 	igc_disable_rx_ring_hw(ring);
6897 	igc_clean_rx_ring(ring);
6898 }
6899 
6900 void igc_enable_rx_ring(struct igc_ring *ring)
6901 {
6902 	struct igc_adapter *adapter = ring->q_vector->adapter;
6903 
6904 	igc_configure_rx_ring(adapter, ring);
6905 
6906 	if (ring->xsk_pool)
6907 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6908 	else
6909 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6910 }
6911 
6912 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6913 {
6914 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6915 	u8 idx = ring->reg_idx;
6916 	u32 txdctl;
6917 
6918 	txdctl = rd32(IGC_TXDCTL(idx));
6919 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6920 	txdctl |= IGC_TXDCTL_SWFLUSH;
6921 	wr32(IGC_TXDCTL(idx), txdctl);
6922 }
6923 
6924 void igc_disable_tx_ring(struct igc_ring *ring)
6925 {
6926 	igc_disable_tx_ring_hw(ring);
6927 	igc_clean_tx_ring(ring);
6928 }
6929 
6930 void igc_enable_tx_ring(struct igc_ring *ring)
6931 {
6932 	struct igc_adapter *adapter = ring->q_vector->adapter;
6933 
6934 	igc_configure_tx_ring(adapter, ring);
6935 }
6936 
6937 /**
6938  * igc_init_module - Driver Registration Routine
6939  *
6940  * igc_init_module is the first routine called when the driver is
6941  * loaded. All it does is register with the PCI subsystem.
6942  */
6943 static int __init igc_init_module(void)
6944 {
6945 	int ret;
6946 
6947 	pr_info("%s\n", igc_driver_string);
6948 	pr_info("%s\n", igc_copyright);
6949 
6950 	ret = pci_register_driver(&igc_driver);
6951 	return ret;
6952 }
6953 
6954 module_init(igc_init_module);
6955 
6956 /**
6957  * igc_exit_module - Driver Exit Cleanup Routine
6958  *
6959  * igc_exit_module is called just before the driver is removed
6960  * from memory.
6961  */
6962 static void __exit igc_exit_module(void)
6963 {
6964 	pci_unregister_driver(&igc_driver);
6965 }
6966 
6967 module_exit(igc_exit_module);
6968 /* igc_main.c */
6969