xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 920c293af8d01942caa10300ad97eabf778e8598)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <net/ipv6.h>
16 
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 #include "igc_xdp.h"
21 
22 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
23 
24 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25 
26 #define IGC_XDP_PASS		0
27 #define IGC_XDP_CONSUMED	BIT(0)
28 #define IGC_XDP_TX		BIT(1)
29 #define IGC_XDP_REDIRECT	BIT(2)
30 
31 static int debug = -1;
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 
39 char igc_driver_name[] = "igc";
40 static const char igc_driver_string[] = DRV_SUMMARY;
41 static const char igc_copyright[] =
42 	"Copyright(c) 2018 Intel Corporation.";
43 
44 static const struct igc_info *igc_info_tbl[] = {
45 	[board_base] = &igc_base_info,
46 };
47 
48 static const struct pci_device_id igc_pci_tbl[] = {
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64 	/* required last entry */
65 	{0, }
66 };
67 
68 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69 
70 enum latency_range {
71 	lowest_latency = 0,
72 	low_latency = 1,
73 	bulk_latency = 2,
74 	latency_invalid = 255
75 };
76 
77 void igc_reset(struct igc_adapter *adapter)
78 {
79 	struct net_device *dev = adapter->netdev;
80 	struct igc_hw *hw = &adapter->hw;
81 	struct igc_fc_info *fc = &hw->fc;
82 	u32 pba, hwm;
83 
84 	/* Repartition PBA for greater than 9k MTU if required */
85 	pba = IGC_PBA_34K;
86 
87 	/* flow control settings
88 	 * The high water mark must be low enough to fit one full frame
89 	 * after transmitting the pause frame.  As such we must have enough
90 	 * space to allow for us to complete our current transmit and then
91 	 * receive the frame that is in progress from the link partner.
92 	 * Set it to:
93 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 	 */
95 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96 
97 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
98 	fc->low_water = fc->high_water - 16;
99 	fc->pause_time = 0xFFFF;
100 	fc->send_xon = 1;
101 	fc->current_mode = fc->requested_mode;
102 
103 	hw->mac.ops.reset_hw(hw);
104 
105 	if (hw->mac.ops.init_hw(hw))
106 		netdev_err(dev, "Error on hardware initialization\n");
107 
108 	/* Re-establish EEE setting */
109 	igc_set_eee_i225(hw, true, true, true);
110 
111 	if (!netif_running(adapter->netdev))
112 		igc_power_down_phy_copper_base(&adapter->hw);
113 
114 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
115 	wr32(IGC_VET, ETH_P_8021Q);
116 
117 	/* Re-enable PTP, where applicable. */
118 	igc_ptp_reset(adapter);
119 
120 	/* Re-enable TSN offloading, where applicable. */
121 	igc_tsn_offload_apply(adapter);
122 
123 	igc_get_phy_info(hw);
124 }
125 
126 /**
127  * igc_power_up_link - Power up the phy link
128  * @adapter: address of board private structure
129  */
130 static void igc_power_up_link(struct igc_adapter *adapter)
131 {
132 	igc_reset_phy(&adapter->hw);
133 
134 	igc_power_up_phy_copper(&adapter->hw);
135 
136 	igc_setup_link(&adapter->hw);
137 }
138 
139 /**
140  * igc_release_hw_control - release control of the h/w to f/w
141  * @adapter: address of board private structure
142  *
143  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
144  * For ASF and Pass Through versions of f/w this means that the
145  * driver is no longer loaded.
146  */
147 static void igc_release_hw_control(struct igc_adapter *adapter)
148 {
149 	struct igc_hw *hw = &adapter->hw;
150 	u32 ctrl_ext;
151 
152 	/* Let firmware take over control of h/w */
153 	ctrl_ext = rd32(IGC_CTRL_EXT);
154 	wr32(IGC_CTRL_EXT,
155 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
156 }
157 
158 /**
159  * igc_get_hw_control - get control of the h/w from f/w
160  * @adapter: address of board private structure
161  *
162  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
163  * For ASF and Pass Through versions of f/w this means that
164  * the driver is loaded.
165  */
166 static void igc_get_hw_control(struct igc_adapter *adapter)
167 {
168 	struct igc_hw *hw = &adapter->hw;
169 	u32 ctrl_ext;
170 
171 	/* Let firmware know the driver has taken over */
172 	ctrl_ext = rd32(IGC_CTRL_EXT);
173 	wr32(IGC_CTRL_EXT,
174 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
175 }
176 
177 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
178 {
179 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
180 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
181 
182 	dma_unmap_len_set(buf, len, 0);
183 }
184 
185 /**
186  * igc_clean_tx_ring - Free Tx Buffers
187  * @tx_ring: ring to be cleaned
188  */
189 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
190 {
191 	u16 i = tx_ring->next_to_clean;
192 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
193 	u32 xsk_frames = 0;
194 
195 	while (i != tx_ring->next_to_use) {
196 		union igc_adv_tx_desc *eop_desc, *tx_desc;
197 
198 		switch (tx_buffer->type) {
199 		case IGC_TX_BUFFER_TYPE_XSK:
200 			xsk_frames++;
201 			break;
202 		case IGC_TX_BUFFER_TYPE_XDP:
203 			xdp_return_frame(tx_buffer->xdpf);
204 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
205 			break;
206 		case IGC_TX_BUFFER_TYPE_SKB:
207 			dev_kfree_skb_any(tx_buffer->skb);
208 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
209 			break;
210 		default:
211 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
212 			break;
213 		}
214 
215 		/* check for eop_desc to determine the end of the packet */
216 		eop_desc = tx_buffer->next_to_watch;
217 		tx_desc = IGC_TX_DESC(tx_ring, i);
218 
219 		/* unmap remaining buffers */
220 		while (tx_desc != eop_desc) {
221 			tx_buffer++;
222 			tx_desc++;
223 			i++;
224 			if (unlikely(i == tx_ring->count)) {
225 				i = 0;
226 				tx_buffer = tx_ring->tx_buffer_info;
227 				tx_desc = IGC_TX_DESC(tx_ring, 0);
228 			}
229 
230 			/* unmap any remaining paged data */
231 			if (dma_unmap_len(tx_buffer, len))
232 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
233 		}
234 
235 		tx_buffer->next_to_watch = NULL;
236 
237 		/* move us one more past the eop_desc for start of next pkt */
238 		tx_buffer++;
239 		i++;
240 		if (unlikely(i == tx_ring->count)) {
241 			i = 0;
242 			tx_buffer = tx_ring->tx_buffer_info;
243 		}
244 	}
245 
246 	if (tx_ring->xsk_pool && xsk_frames)
247 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
248 
249 	/* reset BQL for queue */
250 	netdev_tx_reset_queue(txring_txq(tx_ring));
251 
252 	/* reset next_to_use and next_to_clean */
253 	tx_ring->next_to_use = 0;
254 	tx_ring->next_to_clean = 0;
255 }
256 
257 /**
258  * igc_free_tx_resources - Free Tx Resources per Queue
259  * @tx_ring: Tx descriptor ring for a specific queue
260  *
261  * Free all transmit software resources
262  */
263 void igc_free_tx_resources(struct igc_ring *tx_ring)
264 {
265 	igc_clean_tx_ring(tx_ring);
266 
267 	vfree(tx_ring->tx_buffer_info);
268 	tx_ring->tx_buffer_info = NULL;
269 
270 	/* if not set, then don't free */
271 	if (!tx_ring->desc)
272 		return;
273 
274 	dma_free_coherent(tx_ring->dev, tx_ring->size,
275 			  tx_ring->desc, tx_ring->dma);
276 
277 	tx_ring->desc = NULL;
278 }
279 
280 /**
281  * igc_free_all_tx_resources - Free Tx Resources for All Queues
282  * @adapter: board private structure
283  *
284  * Free all transmit software resources
285  */
286 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
287 {
288 	int i;
289 
290 	for (i = 0; i < adapter->num_tx_queues; i++)
291 		igc_free_tx_resources(adapter->tx_ring[i]);
292 }
293 
294 /**
295  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
296  * @adapter: board private structure
297  */
298 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		if (adapter->tx_ring[i])
304 			igc_clean_tx_ring(adapter->tx_ring[i]);
305 }
306 
307 /**
308  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
309  * @tx_ring: tx descriptor ring (for a specific queue) to setup
310  *
311  * Return 0 on success, negative on failure
312  */
313 int igc_setup_tx_resources(struct igc_ring *tx_ring)
314 {
315 	struct net_device *ndev = tx_ring->netdev;
316 	struct device *dev = tx_ring->dev;
317 	int size = 0;
318 
319 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
320 	tx_ring->tx_buffer_info = vzalloc(size);
321 	if (!tx_ring->tx_buffer_info)
322 		goto err;
323 
324 	/* round up to nearest 4K */
325 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
326 	tx_ring->size = ALIGN(tx_ring->size, 4096);
327 
328 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
329 					   &tx_ring->dma, GFP_KERNEL);
330 
331 	if (!tx_ring->desc)
332 		goto err;
333 
334 	tx_ring->next_to_use = 0;
335 	tx_ring->next_to_clean = 0;
336 
337 	return 0;
338 
339 err:
340 	vfree(tx_ring->tx_buffer_info);
341 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
342 	return -ENOMEM;
343 }
344 
345 /**
346  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
347  * @adapter: board private structure
348  *
349  * Return 0 on success, negative on failure
350  */
351 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
352 {
353 	struct net_device *dev = adapter->netdev;
354 	int i, err = 0;
355 
356 	for (i = 0; i < adapter->num_tx_queues; i++) {
357 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
358 		if (err) {
359 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
360 			for (i--; i >= 0; i--)
361 				igc_free_tx_resources(adapter->tx_ring[i]);
362 			break;
363 		}
364 	}
365 
366 	return err;
367 }
368 
369 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
370 {
371 	u16 i = rx_ring->next_to_clean;
372 
373 	dev_kfree_skb(rx_ring->skb);
374 	rx_ring->skb = NULL;
375 
376 	/* Free all the Rx ring sk_buffs */
377 	while (i != rx_ring->next_to_alloc) {
378 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
379 
380 		/* Invalidate cache lines that may have been written to by
381 		 * device so that we avoid corrupting memory.
382 		 */
383 		dma_sync_single_range_for_cpu(rx_ring->dev,
384 					      buffer_info->dma,
385 					      buffer_info->page_offset,
386 					      igc_rx_bufsz(rx_ring),
387 					      DMA_FROM_DEVICE);
388 
389 		/* free resources associated with mapping */
390 		dma_unmap_page_attrs(rx_ring->dev,
391 				     buffer_info->dma,
392 				     igc_rx_pg_size(rx_ring),
393 				     DMA_FROM_DEVICE,
394 				     IGC_RX_DMA_ATTR);
395 		__page_frag_cache_drain(buffer_info->page,
396 					buffer_info->pagecnt_bias);
397 
398 		i++;
399 		if (i == rx_ring->count)
400 			i = 0;
401 	}
402 }
403 
404 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
405 {
406 	struct igc_rx_buffer *bi;
407 	u16 i;
408 
409 	for (i = 0; i < ring->count; i++) {
410 		bi = &ring->rx_buffer_info[i];
411 		if (!bi->xdp)
412 			continue;
413 
414 		xsk_buff_free(bi->xdp);
415 		bi->xdp = NULL;
416 	}
417 }
418 
419 /**
420  * igc_clean_rx_ring - Free Rx Buffers per Queue
421  * @ring: ring to free buffers from
422  */
423 static void igc_clean_rx_ring(struct igc_ring *ring)
424 {
425 	if (ring->xsk_pool)
426 		igc_clean_rx_ring_xsk_pool(ring);
427 	else
428 		igc_clean_rx_ring_page_shared(ring);
429 
430 	clear_ring_uses_large_buffer(ring);
431 
432 	ring->next_to_alloc = 0;
433 	ring->next_to_clean = 0;
434 	ring->next_to_use = 0;
435 }
436 
437 /**
438  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
439  * @adapter: board private structure
440  */
441 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
442 {
443 	int i;
444 
445 	for (i = 0; i < adapter->num_rx_queues; i++)
446 		if (adapter->rx_ring[i])
447 			igc_clean_rx_ring(adapter->rx_ring[i]);
448 }
449 
450 /**
451  * igc_free_rx_resources - Free Rx Resources
452  * @rx_ring: ring to clean the resources from
453  *
454  * Free all receive software resources
455  */
456 void igc_free_rx_resources(struct igc_ring *rx_ring)
457 {
458 	igc_clean_rx_ring(rx_ring);
459 
460 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
461 
462 	vfree(rx_ring->rx_buffer_info);
463 	rx_ring->rx_buffer_info = NULL;
464 
465 	/* if not set, then don't free */
466 	if (!rx_ring->desc)
467 		return;
468 
469 	dma_free_coherent(rx_ring->dev, rx_ring->size,
470 			  rx_ring->desc, rx_ring->dma);
471 
472 	rx_ring->desc = NULL;
473 }
474 
475 /**
476  * igc_free_all_rx_resources - Free Rx Resources for All Queues
477  * @adapter: board private structure
478  *
479  * Free all receive software resources
480  */
481 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
482 {
483 	int i;
484 
485 	for (i = 0; i < adapter->num_rx_queues; i++)
486 		igc_free_rx_resources(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
491  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
492  *
493  * Returns 0 on success, negative on failure
494  */
495 int igc_setup_rx_resources(struct igc_ring *rx_ring)
496 {
497 	struct net_device *ndev = rx_ring->netdev;
498 	struct device *dev = rx_ring->dev;
499 	u8 index = rx_ring->queue_index;
500 	int size, desc_len, res;
501 
502 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
503 			       rx_ring->q_vector->napi.napi_id);
504 	if (res < 0) {
505 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
506 			   index);
507 		return res;
508 	}
509 
510 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
511 	rx_ring->rx_buffer_info = vzalloc(size);
512 	if (!rx_ring->rx_buffer_info)
513 		goto err;
514 
515 	desc_len = sizeof(union igc_adv_rx_desc);
516 
517 	/* Round up to nearest 4K */
518 	rx_ring->size = rx_ring->count * desc_len;
519 	rx_ring->size = ALIGN(rx_ring->size, 4096);
520 
521 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
522 					   &rx_ring->dma, GFP_KERNEL);
523 
524 	if (!rx_ring->desc)
525 		goto err;
526 
527 	rx_ring->next_to_alloc = 0;
528 	rx_ring->next_to_clean = 0;
529 	rx_ring->next_to_use = 0;
530 
531 	return 0;
532 
533 err:
534 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
535 	vfree(rx_ring->rx_buffer_info);
536 	rx_ring->rx_buffer_info = NULL;
537 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
538 	return -ENOMEM;
539 }
540 
541 /**
542  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
543  *                                (Descriptors) for all queues
544  * @adapter: board private structure
545  *
546  * Return 0 on success, negative on failure
547  */
548 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
549 {
550 	struct net_device *dev = adapter->netdev;
551 	int i, err = 0;
552 
553 	for (i = 0; i < adapter->num_rx_queues; i++) {
554 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
555 		if (err) {
556 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
557 			for (i--; i >= 0; i--)
558 				igc_free_rx_resources(adapter->rx_ring[i]);
559 			break;
560 		}
561 	}
562 
563 	return err;
564 }
565 
566 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
567 					      struct igc_ring *ring)
568 {
569 	if (!igc_xdp_is_enabled(adapter) ||
570 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
571 		return NULL;
572 
573 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
574 }
575 
576 /**
577  * igc_configure_rx_ring - Configure a receive ring after Reset
578  * @adapter: board private structure
579  * @ring: receive ring to be configured
580  *
581  * Configure the Rx unit of the MAC after a reset.
582  */
583 static void igc_configure_rx_ring(struct igc_adapter *adapter,
584 				  struct igc_ring *ring)
585 {
586 	struct igc_hw *hw = &adapter->hw;
587 	union igc_adv_rx_desc *rx_desc;
588 	int reg_idx = ring->reg_idx;
589 	u32 srrctl = 0, rxdctl = 0;
590 	u64 rdba = ring->dma;
591 	u32 buf_size;
592 
593 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
594 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
595 	if (ring->xsk_pool) {
596 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
597 						   MEM_TYPE_XSK_BUFF_POOL,
598 						   NULL));
599 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
600 	} else {
601 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
602 						   MEM_TYPE_PAGE_SHARED,
603 						   NULL));
604 	}
605 
606 	if (igc_xdp_is_enabled(adapter))
607 		set_ring_uses_large_buffer(ring);
608 
609 	/* disable the queue */
610 	wr32(IGC_RXDCTL(reg_idx), 0);
611 
612 	/* Set DMA base address registers */
613 	wr32(IGC_RDBAL(reg_idx),
614 	     rdba & 0x00000000ffffffffULL);
615 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
616 	wr32(IGC_RDLEN(reg_idx),
617 	     ring->count * sizeof(union igc_adv_rx_desc));
618 
619 	/* initialize head and tail */
620 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
621 	wr32(IGC_RDH(reg_idx), 0);
622 	writel(0, ring->tail);
623 
624 	/* reset next-to- use/clean to place SW in sync with hardware */
625 	ring->next_to_clean = 0;
626 	ring->next_to_use = 0;
627 
628 	if (ring->xsk_pool)
629 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
630 	else if (ring_uses_large_buffer(ring))
631 		buf_size = IGC_RXBUFFER_3072;
632 	else
633 		buf_size = IGC_RXBUFFER_2048;
634 
635 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
636 	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
637 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
638 
639 	wr32(IGC_SRRCTL(reg_idx), srrctl);
640 
641 	rxdctl |= IGC_RX_PTHRESH;
642 	rxdctl |= IGC_RX_HTHRESH << 8;
643 	rxdctl |= IGC_RX_WTHRESH << 16;
644 
645 	/* initialize rx_buffer_info */
646 	memset(ring->rx_buffer_info, 0,
647 	       sizeof(struct igc_rx_buffer) * ring->count);
648 
649 	/* initialize Rx descriptor 0 */
650 	rx_desc = IGC_RX_DESC(ring, 0);
651 	rx_desc->wb.upper.length = 0;
652 
653 	/* enable receive descriptor fetching */
654 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
655 
656 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
657 }
658 
659 /**
660  * igc_configure_rx - Configure receive Unit after Reset
661  * @adapter: board private structure
662  *
663  * Configure the Rx unit of the MAC after a reset.
664  */
665 static void igc_configure_rx(struct igc_adapter *adapter)
666 {
667 	int i;
668 
669 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
670 	 * the Base and Length of the Rx Descriptor Ring
671 	 */
672 	for (i = 0; i < adapter->num_rx_queues; i++)
673 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
674 }
675 
676 /**
677  * igc_configure_tx_ring - Configure transmit ring after Reset
678  * @adapter: board private structure
679  * @ring: tx ring to configure
680  *
681  * Configure a transmit ring after a reset.
682  */
683 static void igc_configure_tx_ring(struct igc_adapter *adapter,
684 				  struct igc_ring *ring)
685 {
686 	struct igc_hw *hw = &adapter->hw;
687 	int reg_idx = ring->reg_idx;
688 	u64 tdba = ring->dma;
689 	u32 txdctl = 0;
690 
691 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
692 
693 	/* disable the queue */
694 	wr32(IGC_TXDCTL(reg_idx), 0);
695 	wrfl();
696 	mdelay(10);
697 
698 	wr32(IGC_TDLEN(reg_idx),
699 	     ring->count * sizeof(union igc_adv_tx_desc));
700 	wr32(IGC_TDBAL(reg_idx),
701 	     tdba & 0x00000000ffffffffULL);
702 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
703 
704 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
705 	wr32(IGC_TDH(reg_idx), 0);
706 	writel(0, ring->tail);
707 
708 	txdctl |= IGC_TX_PTHRESH;
709 	txdctl |= IGC_TX_HTHRESH << 8;
710 	txdctl |= IGC_TX_WTHRESH << 16;
711 
712 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
713 	wr32(IGC_TXDCTL(reg_idx), txdctl);
714 }
715 
716 /**
717  * igc_configure_tx - Configure transmit Unit after Reset
718  * @adapter: board private structure
719  *
720  * Configure the Tx unit of the MAC after a reset.
721  */
722 static void igc_configure_tx(struct igc_adapter *adapter)
723 {
724 	int i;
725 
726 	for (i = 0; i < adapter->num_tx_queues; i++)
727 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
728 }
729 
730 /**
731  * igc_setup_mrqc - configure the multiple receive queue control registers
732  * @adapter: Board private structure
733  */
734 static void igc_setup_mrqc(struct igc_adapter *adapter)
735 {
736 	struct igc_hw *hw = &adapter->hw;
737 	u32 j, num_rx_queues;
738 	u32 mrqc, rxcsum;
739 	u32 rss_key[10];
740 
741 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
742 	for (j = 0; j < 10; j++)
743 		wr32(IGC_RSSRK(j), rss_key[j]);
744 
745 	num_rx_queues = adapter->rss_queues;
746 
747 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
748 		for (j = 0; j < IGC_RETA_SIZE; j++)
749 			adapter->rss_indir_tbl[j] =
750 			(j * num_rx_queues) / IGC_RETA_SIZE;
751 		adapter->rss_indir_tbl_init = num_rx_queues;
752 	}
753 	igc_write_rss_indir_tbl(adapter);
754 
755 	/* Disable raw packet checksumming so that RSS hash is placed in
756 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
757 	 * offloads as they are enabled by default
758 	 */
759 	rxcsum = rd32(IGC_RXCSUM);
760 	rxcsum |= IGC_RXCSUM_PCSD;
761 
762 	/* Enable Receive Checksum Offload for SCTP */
763 	rxcsum |= IGC_RXCSUM_CRCOFL;
764 
765 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
766 	wr32(IGC_RXCSUM, rxcsum);
767 
768 	/* Generate RSS hash based on packet types, TCP/UDP
769 	 * port numbers and/or IPv4/v6 src and dst addresses
770 	 */
771 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
772 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
773 	       IGC_MRQC_RSS_FIELD_IPV6 |
774 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
775 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
776 
777 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
778 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
779 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
780 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
781 
782 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
783 
784 	wr32(IGC_MRQC, mrqc);
785 }
786 
787 /**
788  * igc_setup_rctl - configure the receive control registers
789  * @adapter: Board private structure
790  */
791 static void igc_setup_rctl(struct igc_adapter *adapter)
792 {
793 	struct igc_hw *hw = &adapter->hw;
794 	u32 rctl;
795 
796 	rctl = rd32(IGC_RCTL);
797 
798 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
799 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
800 
801 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
802 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
803 
804 	/* enable stripping of CRC. Newer features require
805 	 * that the HW strips the CRC.
806 	 */
807 	rctl |= IGC_RCTL_SECRC;
808 
809 	/* disable store bad packets and clear size bits. */
810 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
811 
812 	/* enable LPE to allow for reception of jumbo frames */
813 	rctl |= IGC_RCTL_LPE;
814 
815 	/* disable queue 0 to prevent tail write w/o re-config */
816 	wr32(IGC_RXDCTL(0), 0);
817 
818 	/* This is useful for sniffing bad packets. */
819 	if (adapter->netdev->features & NETIF_F_RXALL) {
820 		/* UPE and MPE will be handled by normal PROMISC logic
821 		 * in set_rx_mode
822 		 */
823 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
824 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
825 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
826 
827 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
828 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
829 	}
830 
831 	wr32(IGC_RCTL, rctl);
832 }
833 
834 /**
835  * igc_setup_tctl - configure the transmit control registers
836  * @adapter: Board private structure
837  */
838 static void igc_setup_tctl(struct igc_adapter *adapter)
839 {
840 	struct igc_hw *hw = &adapter->hw;
841 	u32 tctl;
842 
843 	/* disable queue 0 which icould be enabled by default */
844 	wr32(IGC_TXDCTL(0), 0);
845 
846 	/* Program the Transmit Control Register */
847 	tctl = rd32(IGC_TCTL);
848 	tctl &= ~IGC_TCTL_CT;
849 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
850 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
851 
852 	/* Enable transmits */
853 	tctl |= IGC_TCTL_EN;
854 
855 	wr32(IGC_TCTL, tctl);
856 }
857 
858 /**
859  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
860  * @adapter: Pointer to adapter where the filter should be set
861  * @index: Filter index
862  * @type: MAC address filter type (source or destination)
863  * @addr: MAC address
864  * @queue: If non-negative, queue assignment feature is enabled and frames
865  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
866  *         assignment is disabled.
867  */
868 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
869 				  enum igc_mac_filter_type type,
870 				  const u8 *addr, int queue)
871 {
872 	struct net_device *dev = adapter->netdev;
873 	struct igc_hw *hw = &adapter->hw;
874 	u32 ral, rah;
875 
876 	if (WARN_ON(index >= hw->mac.rar_entry_count))
877 		return;
878 
879 	ral = le32_to_cpup((__le32 *)(addr));
880 	rah = le16_to_cpup((__le16 *)(addr + 4));
881 
882 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
883 		rah &= ~IGC_RAH_ASEL_MASK;
884 		rah |= IGC_RAH_ASEL_SRC_ADDR;
885 	}
886 
887 	if (queue >= 0) {
888 		rah &= ~IGC_RAH_QSEL_MASK;
889 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
890 		rah |= IGC_RAH_QSEL_ENABLE;
891 	}
892 
893 	rah |= IGC_RAH_AV;
894 
895 	wr32(IGC_RAL(index), ral);
896 	wr32(IGC_RAH(index), rah);
897 
898 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
899 }
900 
901 /**
902  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
903  * @adapter: Pointer to adapter where the filter should be cleared
904  * @index: Filter index
905  */
906 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
907 {
908 	struct net_device *dev = adapter->netdev;
909 	struct igc_hw *hw = &adapter->hw;
910 
911 	if (WARN_ON(index >= hw->mac.rar_entry_count))
912 		return;
913 
914 	wr32(IGC_RAL(index), 0);
915 	wr32(IGC_RAH(index), 0);
916 
917 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
918 }
919 
920 /* Set default MAC address for the PF in the first RAR entry */
921 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
922 {
923 	struct net_device *dev = adapter->netdev;
924 	u8 *addr = adapter->hw.mac.addr;
925 
926 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
927 
928 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
929 }
930 
931 /**
932  * igc_set_mac - Change the Ethernet Address of the NIC
933  * @netdev: network interface device structure
934  * @p: pointer to an address structure
935  *
936  * Returns 0 on success, negative on failure
937  */
938 static int igc_set_mac(struct net_device *netdev, void *p)
939 {
940 	struct igc_adapter *adapter = netdev_priv(netdev);
941 	struct igc_hw *hw = &adapter->hw;
942 	struct sockaddr *addr = p;
943 
944 	if (!is_valid_ether_addr(addr->sa_data))
945 		return -EADDRNOTAVAIL;
946 
947 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
948 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
949 
950 	/* set the correct pool for the new PF MAC address in entry 0 */
951 	igc_set_default_mac_filter(adapter);
952 
953 	return 0;
954 }
955 
956 /**
957  *  igc_write_mc_addr_list - write multicast addresses to MTA
958  *  @netdev: network interface device structure
959  *
960  *  Writes multicast address list to the MTA hash table.
961  *  Returns: -ENOMEM on failure
962  *           0 on no addresses written
963  *           X on writing X addresses to MTA
964  **/
965 static int igc_write_mc_addr_list(struct net_device *netdev)
966 {
967 	struct igc_adapter *adapter = netdev_priv(netdev);
968 	struct igc_hw *hw = &adapter->hw;
969 	struct netdev_hw_addr *ha;
970 	u8  *mta_list;
971 	int i;
972 
973 	if (netdev_mc_empty(netdev)) {
974 		/* nothing to program, so clear mc list */
975 		igc_update_mc_addr_list(hw, NULL, 0);
976 		return 0;
977 	}
978 
979 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
980 	if (!mta_list)
981 		return -ENOMEM;
982 
983 	/* The shared function expects a packed array of only addresses. */
984 	i = 0;
985 	netdev_for_each_mc_addr(ha, netdev)
986 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
987 
988 	igc_update_mc_addr_list(hw, mta_list, i);
989 	kfree(mta_list);
990 
991 	return netdev_mc_count(netdev);
992 }
993 
994 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
995 {
996 	ktime_t cycle_time = adapter->cycle_time;
997 	ktime_t base_time = adapter->base_time;
998 	u32 launchtime;
999 
1000 	/* FIXME: when using ETF together with taprio, we may have a
1001 	 * case where 'delta' is larger than the cycle_time, this may
1002 	 * cause problems if we don't read the current value of
1003 	 * IGC_BASET, as the value writen into the launchtime
1004 	 * descriptor field may be misinterpreted.
1005 	 */
1006 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1007 
1008 	return cpu_to_le32(launchtime);
1009 }
1010 
1011 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1012 			    struct igc_tx_buffer *first,
1013 			    u32 vlan_macip_lens, u32 type_tucmd,
1014 			    u32 mss_l4len_idx)
1015 {
1016 	struct igc_adv_tx_context_desc *context_desc;
1017 	u16 i = tx_ring->next_to_use;
1018 
1019 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1020 
1021 	i++;
1022 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1023 
1024 	/* set bits to identify this as an advanced context descriptor */
1025 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1026 
1027 	/* For i225, context index must be unique per ring. */
1028 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1029 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1030 
1031 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1032 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1033 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1034 
1035 	/* We assume there is always a valid Tx time available. Invalid times
1036 	 * should have been handled by the upper layers.
1037 	 */
1038 	if (tx_ring->launchtime_enable) {
1039 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1040 		ktime_t txtime = first->skb->tstamp;
1041 
1042 		skb_txtime_consumed(first->skb);
1043 		context_desc->launch_time = igc_tx_launchtime(adapter,
1044 							      txtime);
1045 	} else {
1046 		context_desc->launch_time = 0;
1047 	}
1048 }
1049 
1050 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1051 {
1052 	struct sk_buff *skb = first->skb;
1053 	u32 vlan_macip_lens = 0;
1054 	u32 type_tucmd = 0;
1055 
1056 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1057 csum_failed:
1058 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1059 		    !tx_ring->launchtime_enable)
1060 			return;
1061 		goto no_csum;
1062 	}
1063 
1064 	switch (skb->csum_offset) {
1065 	case offsetof(struct tcphdr, check):
1066 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1067 		fallthrough;
1068 	case offsetof(struct udphdr, check):
1069 		break;
1070 	case offsetof(struct sctphdr, checksum):
1071 		/* validate that this is actually an SCTP request */
1072 		if (skb_csum_is_sctp(skb)) {
1073 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1074 			break;
1075 		}
1076 		fallthrough;
1077 	default:
1078 		skb_checksum_help(skb);
1079 		goto csum_failed;
1080 	}
1081 
1082 	/* update TX checksum flag */
1083 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1084 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1085 			  skb_network_offset(skb);
1086 no_csum:
1087 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1088 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1089 
1090 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1091 }
1092 
1093 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1094 {
1095 	struct net_device *netdev = tx_ring->netdev;
1096 
1097 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1098 
1099 	/* memory barriier comment */
1100 	smp_mb();
1101 
1102 	/* We need to check again in a case another CPU has just
1103 	 * made room available.
1104 	 */
1105 	if (igc_desc_unused(tx_ring) < size)
1106 		return -EBUSY;
1107 
1108 	/* A reprieve! */
1109 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1110 
1111 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1112 	tx_ring->tx_stats.restart_queue2++;
1113 	u64_stats_update_end(&tx_ring->tx_syncp2);
1114 
1115 	return 0;
1116 }
1117 
1118 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1119 {
1120 	if (igc_desc_unused(tx_ring) >= size)
1121 		return 0;
1122 	return __igc_maybe_stop_tx(tx_ring, size);
1123 }
1124 
1125 #define IGC_SET_FLAG(_input, _flag, _result) \
1126 	(((_flag) <= (_result)) ?				\
1127 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1128 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1129 
1130 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1131 {
1132 	/* set type for advanced descriptor with frame checksum insertion */
1133 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1134 		       IGC_ADVTXD_DCMD_DEXT |
1135 		       IGC_ADVTXD_DCMD_IFCS;
1136 
1137 	/* set HW vlan bit if vlan is present */
1138 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1139 				 IGC_ADVTXD_DCMD_VLE);
1140 
1141 	/* set segmentation bits for TSO */
1142 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1143 				 (IGC_ADVTXD_DCMD_TSE));
1144 
1145 	/* set timestamp bit if present */
1146 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1147 				 (IGC_ADVTXD_MAC_TSTAMP));
1148 
1149 	/* insert frame checksum */
1150 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1151 
1152 	return cmd_type;
1153 }
1154 
1155 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1156 				 union igc_adv_tx_desc *tx_desc,
1157 				 u32 tx_flags, unsigned int paylen)
1158 {
1159 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1160 
1161 	/* insert L4 checksum */
1162 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1163 			  ((IGC_TXD_POPTS_TXSM << 8) /
1164 			  IGC_TX_FLAGS_CSUM);
1165 
1166 	/* insert IPv4 checksum */
1167 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1168 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1169 			  IGC_TX_FLAGS_IPV4);
1170 
1171 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1172 }
1173 
1174 static int igc_tx_map(struct igc_ring *tx_ring,
1175 		      struct igc_tx_buffer *first,
1176 		      const u8 hdr_len)
1177 {
1178 	struct sk_buff *skb = first->skb;
1179 	struct igc_tx_buffer *tx_buffer;
1180 	union igc_adv_tx_desc *tx_desc;
1181 	u32 tx_flags = first->tx_flags;
1182 	skb_frag_t *frag;
1183 	u16 i = tx_ring->next_to_use;
1184 	unsigned int data_len, size;
1185 	dma_addr_t dma;
1186 	u32 cmd_type;
1187 
1188 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1189 	tx_desc = IGC_TX_DESC(tx_ring, i);
1190 
1191 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1192 
1193 	size = skb_headlen(skb);
1194 	data_len = skb->data_len;
1195 
1196 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1197 
1198 	tx_buffer = first;
1199 
1200 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1201 		if (dma_mapping_error(tx_ring->dev, dma))
1202 			goto dma_error;
1203 
1204 		/* record length, and DMA address */
1205 		dma_unmap_len_set(tx_buffer, len, size);
1206 		dma_unmap_addr_set(tx_buffer, dma, dma);
1207 
1208 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1209 
1210 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1211 			tx_desc->read.cmd_type_len =
1212 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1213 
1214 			i++;
1215 			tx_desc++;
1216 			if (i == tx_ring->count) {
1217 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1218 				i = 0;
1219 			}
1220 			tx_desc->read.olinfo_status = 0;
1221 
1222 			dma += IGC_MAX_DATA_PER_TXD;
1223 			size -= IGC_MAX_DATA_PER_TXD;
1224 
1225 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1226 		}
1227 
1228 		if (likely(!data_len))
1229 			break;
1230 
1231 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1232 
1233 		i++;
1234 		tx_desc++;
1235 		if (i == tx_ring->count) {
1236 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1237 			i = 0;
1238 		}
1239 		tx_desc->read.olinfo_status = 0;
1240 
1241 		size = skb_frag_size(frag);
1242 		data_len -= size;
1243 
1244 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1245 				       size, DMA_TO_DEVICE);
1246 
1247 		tx_buffer = &tx_ring->tx_buffer_info[i];
1248 	}
1249 
1250 	/* write last descriptor with RS and EOP bits */
1251 	cmd_type |= size | IGC_TXD_DCMD;
1252 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1253 
1254 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1255 
1256 	/* set the timestamp */
1257 	first->time_stamp = jiffies;
1258 
1259 	skb_tx_timestamp(skb);
1260 
1261 	/* Force memory writes to complete before letting h/w know there
1262 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1263 	 * memory model archs, such as IA-64).
1264 	 *
1265 	 * We also need this memory barrier to make certain all of the
1266 	 * status bits have been updated before next_to_watch is written.
1267 	 */
1268 	wmb();
1269 
1270 	/* set next_to_watch value indicating a packet is present */
1271 	first->next_to_watch = tx_desc;
1272 
1273 	i++;
1274 	if (i == tx_ring->count)
1275 		i = 0;
1276 
1277 	tx_ring->next_to_use = i;
1278 
1279 	/* Make sure there is space in the ring for the next send. */
1280 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1281 
1282 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1283 		writel(i, tx_ring->tail);
1284 	}
1285 
1286 	return 0;
1287 dma_error:
1288 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1289 	tx_buffer = &tx_ring->tx_buffer_info[i];
1290 
1291 	/* clear dma mappings for failed tx_buffer_info map */
1292 	while (tx_buffer != first) {
1293 		if (dma_unmap_len(tx_buffer, len))
1294 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1295 
1296 		if (i-- == 0)
1297 			i += tx_ring->count;
1298 		tx_buffer = &tx_ring->tx_buffer_info[i];
1299 	}
1300 
1301 	if (dma_unmap_len(tx_buffer, len))
1302 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1303 
1304 	dev_kfree_skb_any(tx_buffer->skb);
1305 	tx_buffer->skb = NULL;
1306 
1307 	tx_ring->next_to_use = i;
1308 
1309 	return -1;
1310 }
1311 
1312 static int igc_tso(struct igc_ring *tx_ring,
1313 		   struct igc_tx_buffer *first,
1314 		   u8 *hdr_len)
1315 {
1316 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1317 	struct sk_buff *skb = first->skb;
1318 	union {
1319 		struct iphdr *v4;
1320 		struct ipv6hdr *v6;
1321 		unsigned char *hdr;
1322 	} ip;
1323 	union {
1324 		struct tcphdr *tcp;
1325 		struct udphdr *udp;
1326 		unsigned char *hdr;
1327 	} l4;
1328 	u32 paylen, l4_offset;
1329 	int err;
1330 
1331 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1332 		return 0;
1333 
1334 	if (!skb_is_gso(skb))
1335 		return 0;
1336 
1337 	err = skb_cow_head(skb, 0);
1338 	if (err < 0)
1339 		return err;
1340 
1341 	ip.hdr = skb_network_header(skb);
1342 	l4.hdr = skb_checksum_start(skb);
1343 
1344 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1345 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1346 
1347 	/* initialize outer IP header fields */
1348 	if (ip.v4->version == 4) {
1349 		unsigned char *csum_start = skb_checksum_start(skb);
1350 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1351 
1352 		/* IP header will have to cancel out any data that
1353 		 * is not a part of the outer IP header
1354 		 */
1355 		ip.v4->check = csum_fold(csum_partial(trans_start,
1356 						      csum_start - trans_start,
1357 						      0));
1358 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1359 
1360 		ip.v4->tot_len = 0;
1361 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1362 				   IGC_TX_FLAGS_CSUM |
1363 				   IGC_TX_FLAGS_IPV4;
1364 	} else {
1365 		ip.v6->payload_len = 0;
1366 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1367 				   IGC_TX_FLAGS_CSUM;
1368 	}
1369 
1370 	/* determine offset of inner transport header */
1371 	l4_offset = l4.hdr - skb->data;
1372 
1373 	/* remove payload length from inner checksum */
1374 	paylen = skb->len - l4_offset;
1375 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1376 		/* compute length of segmentation header */
1377 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1378 		csum_replace_by_diff(&l4.tcp->check,
1379 				     (__force __wsum)htonl(paylen));
1380 	} else {
1381 		/* compute length of segmentation header */
1382 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1383 		csum_replace_by_diff(&l4.udp->check,
1384 				     (__force __wsum)htonl(paylen));
1385 	}
1386 
1387 	/* update gso size and bytecount with header size */
1388 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1389 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1390 
1391 	/* MSS L4LEN IDX */
1392 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1393 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1394 
1395 	/* VLAN MACLEN IPLEN */
1396 	vlan_macip_lens = l4.hdr - ip.hdr;
1397 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1398 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1399 
1400 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1401 			type_tucmd, mss_l4len_idx);
1402 
1403 	return 1;
1404 }
1405 
1406 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1407 				       struct igc_ring *tx_ring)
1408 {
1409 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1410 	__be16 protocol = vlan_get_protocol(skb);
1411 	struct igc_tx_buffer *first;
1412 	u32 tx_flags = 0;
1413 	unsigned short f;
1414 	u8 hdr_len = 0;
1415 	int tso = 0;
1416 
1417 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1418 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1419 	 *	+ 2 desc gap to keep tail from touching head,
1420 	 *	+ 1 desc for context descriptor,
1421 	 * otherwise try next time
1422 	 */
1423 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1424 		count += TXD_USE_COUNT(skb_frag_size(
1425 						&skb_shinfo(skb)->frags[f]));
1426 
1427 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1428 		/* this is a hard error */
1429 		return NETDEV_TX_BUSY;
1430 	}
1431 
1432 	/* record the location of the first descriptor for this packet */
1433 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1434 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1435 	first->skb = skb;
1436 	first->bytecount = skb->len;
1437 	first->gso_segs = 1;
1438 
1439 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1440 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1441 
1442 		/* FIXME: add support for retrieving timestamps from
1443 		 * the other timer registers before skipping the
1444 		 * timestamping request.
1445 		 */
1446 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1447 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1448 					   &adapter->state)) {
1449 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1450 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1451 
1452 			adapter->ptp_tx_skb = skb_get(skb);
1453 			adapter->ptp_tx_start = jiffies;
1454 		} else {
1455 			adapter->tx_hwtstamp_skipped++;
1456 		}
1457 	}
1458 
1459 	if (skb_vlan_tag_present(skb)) {
1460 		tx_flags |= IGC_TX_FLAGS_VLAN;
1461 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1462 	}
1463 
1464 	/* record initial flags and protocol */
1465 	first->tx_flags = tx_flags;
1466 	first->protocol = protocol;
1467 
1468 	tso = igc_tso(tx_ring, first, &hdr_len);
1469 	if (tso < 0)
1470 		goto out_drop;
1471 	else if (!tso)
1472 		igc_tx_csum(tx_ring, first);
1473 
1474 	igc_tx_map(tx_ring, first, hdr_len);
1475 
1476 	return NETDEV_TX_OK;
1477 
1478 out_drop:
1479 	dev_kfree_skb_any(first->skb);
1480 	first->skb = NULL;
1481 
1482 	return NETDEV_TX_OK;
1483 }
1484 
1485 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1486 						    struct sk_buff *skb)
1487 {
1488 	unsigned int r_idx = skb->queue_mapping;
1489 
1490 	if (r_idx >= adapter->num_tx_queues)
1491 		r_idx = r_idx % adapter->num_tx_queues;
1492 
1493 	return adapter->tx_ring[r_idx];
1494 }
1495 
1496 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1497 				  struct net_device *netdev)
1498 {
1499 	struct igc_adapter *adapter = netdev_priv(netdev);
1500 
1501 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1502 	 * in order to meet this minimum size requirement.
1503 	 */
1504 	if (skb->len < 17) {
1505 		if (skb_padto(skb, 17))
1506 			return NETDEV_TX_OK;
1507 		skb->len = 17;
1508 	}
1509 
1510 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1511 }
1512 
1513 static void igc_rx_checksum(struct igc_ring *ring,
1514 			    union igc_adv_rx_desc *rx_desc,
1515 			    struct sk_buff *skb)
1516 {
1517 	skb_checksum_none_assert(skb);
1518 
1519 	/* Ignore Checksum bit is set */
1520 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1521 		return;
1522 
1523 	/* Rx checksum disabled via ethtool */
1524 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1525 		return;
1526 
1527 	/* TCP/UDP checksum error bit is set */
1528 	if (igc_test_staterr(rx_desc,
1529 			     IGC_RXDEXT_STATERR_L4E |
1530 			     IGC_RXDEXT_STATERR_IPE)) {
1531 		/* work around errata with sctp packets where the TCPE aka
1532 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1533 		 * packets (aka let the stack check the crc32c)
1534 		 */
1535 		if (!(skb->len == 60 &&
1536 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1537 			u64_stats_update_begin(&ring->rx_syncp);
1538 			ring->rx_stats.csum_err++;
1539 			u64_stats_update_end(&ring->rx_syncp);
1540 		}
1541 		/* let the stack verify checksum errors */
1542 		return;
1543 	}
1544 	/* It must be a TCP or UDP packet with a valid checksum */
1545 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1546 				      IGC_RXD_STAT_UDPCS))
1547 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1548 
1549 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1550 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1551 }
1552 
1553 static inline void igc_rx_hash(struct igc_ring *ring,
1554 			       union igc_adv_rx_desc *rx_desc,
1555 			       struct sk_buff *skb)
1556 {
1557 	if (ring->netdev->features & NETIF_F_RXHASH)
1558 		skb_set_hash(skb,
1559 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1560 			     PKT_HASH_TYPE_L3);
1561 }
1562 
1563 static void igc_rx_vlan(struct igc_ring *rx_ring,
1564 			union igc_adv_rx_desc *rx_desc,
1565 			struct sk_buff *skb)
1566 {
1567 	struct net_device *dev = rx_ring->netdev;
1568 	u16 vid;
1569 
1570 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1571 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1572 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1573 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1574 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1575 		else
1576 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1577 
1578 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1579 	}
1580 }
1581 
1582 /**
1583  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1584  * @rx_ring: rx descriptor ring packet is being transacted on
1585  * @rx_desc: pointer to the EOP Rx descriptor
1586  * @skb: pointer to current skb being populated
1587  *
1588  * This function checks the ring, descriptor, and packet information in order
1589  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1590  * skb.
1591  */
1592 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1593 				   union igc_adv_rx_desc *rx_desc,
1594 				   struct sk_buff *skb)
1595 {
1596 	igc_rx_hash(rx_ring, rx_desc, skb);
1597 
1598 	igc_rx_checksum(rx_ring, rx_desc, skb);
1599 
1600 	igc_rx_vlan(rx_ring, rx_desc, skb);
1601 
1602 	skb_record_rx_queue(skb, rx_ring->queue_index);
1603 
1604 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1605 }
1606 
1607 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1608 {
1609 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1610 	struct igc_adapter *adapter = netdev_priv(netdev);
1611 	struct igc_hw *hw = &adapter->hw;
1612 	u32 ctrl;
1613 
1614 	ctrl = rd32(IGC_CTRL);
1615 
1616 	if (enable) {
1617 		/* enable VLAN tag insert/strip */
1618 		ctrl |= IGC_CTRL_VME;
1619 	} else {
1620 		/* disable VLAN tag insert/strip */
1621 		ctrl &= ~IGC_CTRL_VME;
1622 	}
1623 	wr32(IGC_CTRL, ctrl);
1624 }
1625 
1626 static void igc_restore_vlan(struct igc_adapter *adapter)
1627 {
1628 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1629 }
1630 
1631 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1632 					       const unsigned int size,
1633 					       int *rx_buffer_pgcnt)
1634 {
1635 	struct igc_rx_buffer *rx_buffer;
1636 
1637 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1638 	*rx_buffer_pgcnt =
1639 #if (PAGE_SIZE < 8192)
1640 		page_count(rx_buffer->page);
1641 #else
1642 		0;
1643 #endif
1644 	prefetchw(rx_buffer->page);
1645 
1646 	/* we are reusing so sync this buffer for CPU use */
1647 	dma_sync_single_range_for_cpu(rx_ring->dev,
1648 				      rx_buffer->dma,
1649 				      rx_buffer->page_offset,
1650 				      size,
1651 				      DMA_FROM_DEVICE);
1652 
1653 	rx_buffer->pagecnt_bias--;
1654 
1655 	return rx_buffer;
1656 }
1657 
1658 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1659 			       unsigned int truesize)
1660 {
1661 #if (PAGE_SIZE < 8192)
1662 	buffer->page_offset ^= truesize;
1663 #else
1664 	buffer->page_offset += truesize;
1665 #endif
1666 }
1667 
1668 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1669 					      unsigned int size)
1670 {
1671 	unsigned int truesize;
1672 
1673 #if (PAGE_SIZE < 8192)
1674 	truesize = igc_rx_pg_size(ring) / 2;
1675 #else
1676 	truesize = ring_uses_build_skb(ring) ?
1677 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1678 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1679 		   SKB_DATA_ALIGN(size);
1680 #endif
1681 	return truesize;
1682 }
1683 
1684 /**
1685  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1686  * @rx_ring: rx descriptor ring to transact packets on
1687  * @rx_buffer: buffer containing page to add
1688  * @skb: sk_buff to place the data into
1689  * @size: size of buffer to be added
1690  *
1691  * This function will add the data contained in rx_buffer->page to the skb.
1692  */
1693 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1694 			    struct igc_rx_buffer *rx_buffer,
1695 			    struct sk_buff *skb,
1696 			    unsigned int size)
1697 {
1698 	unsigned int truesize;
1699 
1700 #if (PAGE_SIZE < 8192)
1701 	truesize = igc_rx_pg_size(rx_ring) / 2;
1702 #else
1703 	truesize = ring_uses_build_skb(rx_ring) ?
1704 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1705 		   SKB_DATA_ALIGN(size);
1706 #endif
1707 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1708 			rx_buffer->page_offset, size, truesize);
1709 
1710 	igc_rx_buffer_flip(rx_buffer, truesize);
1711 }
1712 
1713 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1714 				     struct igc_rx_buffer *rx_buffer,
1715 				     union igc_adv_rx_desc *rx_desc,
1716 				     unsigned int size)
1717 {
1718 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1719 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1720 	struct sk_buff *skb;
1721 
1722 	/* prefetch first cache line of first page */
1723 	net_prefetch(va);
1724 
1725 	/* build an skb around the page buffer */
1726 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1727 	if (unlikely(!skb))
1728 		return NULL;
1729 
1730 	/* update pointers within the skb to store the data */
1731 	skb_reserve(skb, IGC_SKB_PAD);
1732 	__skb_put(skb, size);
1733 
1734 	igc_rx_buffer_flip(rx_buffer, truesize);
1735 	return skb;
1736 }
1737 
1738 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1739 					 struct igc_rx_buffer *rx_buffer,
1740 					 struct xdp_buff *xdp,
1741 					 ktime_t timestamp)
1742 {
1743 	unsigned int size = xdp->data_end - xdp->data;
1744 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1745 	void *va = xdp->data;
1746 	unsigned int headlen;
1747 	struct sk_buff *skb;
1748 
1749 	/* prefetch first cache line of first page */
1750 	net_prefetch(va);
1751 
1752 	/* allocate a skb to store the frags */
1753 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1754 	if (unlikely(!skb))
1755 		return NULL;
1756 
1757 	if (timestamp)
1758 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1759 
1760 	/* Determine available headroom for copy */
1761 	headlen = size;
1762 	if (headlen > IGC_RX_HDR_LEN)
1763 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1764 
1765 	/* align pull length to size of long to optimize memcpy performance */
1766 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1767 
1768 	/* update all of the pointers */
1769 	size -= headlen;
1770 	if (size) {
1771 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1772 				(va + headlen) - page_address(rx_buffer->page),
1773 				size, truesize);
1774 		igc_rx_buffer_flip(rx_buffer, truesize);
1775 	} else {
1776 		rx_buffer->pagecnt_bias++;
1777 	}
1778 
1779 	return skb;
1780 }
1781 
1782 /**
1783  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1784  * @rx_ring: rx descriptor ring to store buffers on
1785  * @old_buff: donor buffer to have page reused
1786  *
1787  * Synchronizes page for reuse by the adapter
1788  */
1789 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1790 			      struct igc_rx_buffer *old_buff)
1791 {
1792 	u16 nta = rx_ring->next_to_alloc;
1793 	struct igc_rx_buffer *new_buff;
1794 
1795 	new_buff = &rx_ring->rx_buffer_info[nta];
1796 
1797 	/* update, and store next to alloc */
1798 	nta++;
1799 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1800 
1801 	/* Transfer page from old buffer to new buffer.
1802 	 * Move each member individually to avoid possible store
1803 	 * forwarding stalls.
1804 	 */
1805 	new_buff->dma		= old_buff->dma;
1806 	new_buff->page		= old_buff->page;
1807 	new_buff->page_offset	= old_buff->page_offset;
1808 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1809 }
1810 
1811 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1812 				  int rx_buffer_pgcnt)
1813 {
1814 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1815 	struct page *page = rx_buffer->page;
1816 
1817 	/* avoid re-using remote and pfmemalloc pages */
1818 	if (!dev_page_is_reusable(page))
1819 		return false;
1820 
1821 #if (PAGE_SIZE < 8192)
1822 	/* if we are only owner of page we can reuse it */
1823 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1824 		return false;
1825 #else
1826 #define IGC_LAST_OFFSET \
1827 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1828 
1829 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1830 		return false;
1831 #endif
1832 
1833 	/* If we have drained the page fragment pool we need to update
1834 	 * the pagecnt_bias and page count so that we fully restock the
1835 	 * number of references the driver holds.
1836 	 */
1837 	if (unlikely(pagecnt_bias == 1)) {
1838 		page_ref_add(page, USHRT_MAX - 1);
1839 		rx_buffer->pagecnt_bias = USHRT_MAX;
1840 	}
1841 
1842 	return true;
1843 }
1844 
1845 /**
1846  * igc_is_non_eop - process handling of non-EOP buffers
1847  * @rx_ring: Rx ring being processed
1848  * @rx_desc: Rx descriptor for current buffer
1849  *
1850  * This function updates next to clean.  If the buffer is an EOP buffer
1851  * this function exits returning false, otherwise it will place the
1852  * sk_buff in the next buffer to be chained and return true indicating
1853  * that this is in fact a non-EOP buffer.
1854  */
1855 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1856 			   union igc_adv_rx_desc *rx_desc)
1857 {
1858 	u32 ntc = rx_ring->next_to_clean + 1;
1859 
1860 	/* fetch, update, and store next to clean */
1861 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1862 	rx_ring->next_to_clean = ntc;
1863 
1864 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1865 
1866 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1867 		return false;
1868 
1869 	return true;
1870 }
1871 
1872 /**
1873  * igc_cleanup_headers - Correct corrupted or empty headers
1874  * @rx_ring: rx descriptor ring packet is being transacted on
1875  * @rx_desc: pointer to the EOP Rx descriptor
1876  * @skb: pointer to current skb being fixed
1877  *
1878  * Address the case where we are pulling data in on pages only
1879  * and as such no data is present in the skb header.
1880  *
1881  * In addition if skb is not at least 60 bytes we need to pad it so that
1882  * it is large enough to qualify as a valid Ethernet frame.
1883  *
1884  * Returns true if an error was encountered and skb was freed.
1885  */
1886 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1887 				union igc_adv_rx_desc *rx_desc,
1888 				struct sk_buff *skb)
1889 {
1890 	/* XDP packets use error pointer so abort at this point */
1891 	if (IS_ERR(skb))
1892 		return true;
1893 
1894 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1895 		struct net_device *netdev = rx_ring->netdev;
1896 
1897 		if (!(netdev->features & NETIF_F_RXALL)) {
1898 			dev_kfree_skb_any(skb);
1899 			return true;
1900 		}
1901 	}
1902 
1903 	/* if eth_skb_pad returns an error the skb was freed */
1904 	if (eth_skb_pad(skb))
1905 		return true;
1906 
1907 	return false;
1908 }
1909 
1910 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1911 			      struct igc_rx_buffer *rx_buffer,
1912 			      int rx_buffer_pgcnt)
1913 {
1914 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1915 		/* hand second half of page back to the ring */
1916 		igc_reuse_rx_page(rx_ring, rx_buffer);
1917 	} else {
1918 		/* We are not reusing the buffer so unmap it and free
1919 		 * any references we are holding to it
1920 		 */
1921 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1922 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1923 				     IGC_RX_DMA_ATTR);
1924 		__page_frag_cache_drain(rx_buffer->page,
1925 					rx_buffer->pagecnt_bias);
1926 	}
1927 
1928 	/* clear contents of rx_buffer */
1929 	rx_buffer->page = NULL;
1930 }
1931 
1932 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1933 {
1934 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1935 
1936 	if (ring_uses_build_skb(rx_ring))
1937 		return IGC_SKB_PAD;
1938 	if (igc_xdp_is_enabled(adapter))
1939 		return XDP_PACKET_HEADROOM;
1940 
1941 	return 0;
1942 }
1943 
1944 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1945 				  struct igc_rx_buffer *bi)
1946 {
1947 	struct page *page = bi->page;
1948 	dma_addr_t dma;
1949 
1950 	/* since we are recycling buffers we should seldom need to alloc */
1951 	if (likely(page))
1952 		return true;
1953 
1954 	/* alloc new page for storage */
1955 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1956 	if (unlikely(!page)) {
1957 		rx_ring->rx_stats.alloc_failed++;
1958 		return false;
1959 	}
1960 
1961 	/* map page for use */
1962 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1963 				 igc_rx_pg_size(rx_ring),
1964 				 DMA_FROM_DEVICE,
1965 				 IGC_RX_DMA_ATTR);
1966 
1967 	/* if mapping failed free memory back to system since
1968 	 * there isn't much point in holding memory we can't use
1969 	 */
1970 	if (dma_mapping_error(rx_ring->dev, dma)) {
1971 		__free_page(page);
1972 
1973 		rx_ring->rx_stats.alloc_failed++;
1974 		return false;
1975 	}
1976 
1977 	bi->dma = dma;
1978 	bi->page = page;
1979 	bi->page_offset = igc_rx_offset(rx_ring);
1980 	page_ref_add(page, USHRT_MAX - 1);
1981 	bi->pagecnt_bias = USHRT_MAX;
1982 
1983 	return true;
1984 }
1985 
1986 /**
1987  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1988  * @rx_ring: rx descriptor ring
1989  * @cleaned_count: number of buffers to clean
1990  */
1991 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1992 {
1993 	union igc_adv_rx_desc *rx_desc;
1994 	u16 i = rx_ring->next_to_use;
1995 	struct igc_rx_buffer *bi;
1996 	u16 bufsz;
1997 
1998 	/* nothing to do */
1999 	if (!cleaned_count)
2000 		return;
2001 
2002 	rx_desc = IGC_RX_DESC(rx_ring, i);
2003 	bi = &rx_ring->rx_buffer_info[i];
2004 	i -= rx_ring->count;
2005 
2006 	bufsz = igc_rx_bufsz(rx_ring);
2007 
2008 	do {
2009 		if (!igc_alloc_mapped_page(rx_ring, bi))
2010 			break;
2011 
2012 		/* sync the buffer for use by the device */
2013 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2014 						 bi->page_offset, bufsz,
2015 						 DMA_FROM_DEVICE);
2016 
2017 		/* Refresh the desc even if buffer_addrs didn't change
2018 		 * because each write-back erases this info.
2019 		 */
2020 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2021 
2022 		rx_desc++;
2023 		bi++;
2024 		i++;
2025 		if (unlikely(!i)) {
2026 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2027 			bi = rx_ring->rx_buffer_info;
2028 			i -= rx_ring->count;
2029 		}
2030 
2031 		/* clear the length for the next_to_use descriptor */
2032 		rx_desc->wb.upper.length = 0;
2033 
2034 		cleaned_count--;
2035 	} while (cleaned_count);
2036 
2037 	i += rx_ring->count;
2038 
2039 	if (rx_ring->next_to_use != i) {
2040 		/* record the next descriptor to use */
2041 		rx_ring->next_to_use = i;
2042 
2043 		/* update next to alloc since we have filled the ring */
2044 		rx_ring->next_to_alloc = i;
2045 
2046 		/* Force memory writes to complete before letting h/w
2047 		 * know there are new descriptors to fetch.  (Only
2048 		 * applicable for weak-ordered memory model archs,
2049 		 * such as IA-64).
2050 		 */
2051 		wmb();
2052 		writel(i, rx_ring->tail);
2053 	}
2054 }
2055 
2056 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2057 {
2058 	union igc_adv_rx_desc *desc;
2059 	u16 i = ring->next_to_use;
2060 	struct igc_rx_buffer *bi;
2061 	dma_addr_t dma;
2062 	bool ok = true;
2063 
2064 	if (!count)
2065 		return ok;
2066 
2067 	desc = IGC_RX_DESC(ring, i);
2068 	bi = &ring->rx_buffer_info[i];
2069 	i -= ring->count;
2070 
2071 	do {
2072 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2073 		if (!bi->xdp) {
2074 			ok = false;
2075 			break;
2076 		}
2077 
2078 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2079 		desc->read.pkt_addr = cpu_to_le64(dma);
2080 
2081 		desc++;
2082 		bi++;
2083 		i++;
2084 		if (unlikely(!i)) {
2085 			desc = IGC_RX_DESC(ring, 0);
2086 			bi = ring->rx_buffer_info;
2087 			i -= ring->count;
2088 		}
2089 
2090 		/* Clear the length for the next_to_use descriptor. */
2091 		desc->wb.upper.length = 0;
2092 
2093 		count--;
2094 	} while (count);
2095 
2096 	i += ring->count;
2097 
2098 	if (ring->next_to_use != i) {
2099 		ring->next_to_use = i;
2100 
2101 		/* Force memory writes to complete before letting h/w
2102 		 * know there are new descriptors to fetch.  (Only
2103 		 * applicable for weak-ordered memory model archs,
2104 		 * such as IA-64).
2105 		 */
2106 		wmb();
2107 		writel(i, ring->tail);
2108 	}
2109 
2110 	return ok;
2111 }
2112 
2113 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2114 				  struct xdp_frame *xdpf,
2115 				  struct igc_ring *ring)
2116 {
2117 	dma_addr_t dma;
2118 
2119 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2120 	if (dma_mapping_error(ring->dev, dma)) {
2121 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2122 		return -ENOMEM;
2123 	}
2124 
2125 	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2126 	buffer->xdpf = xdpf;
2127 	buffer->protocol = 0;
2128 	buffer->bytecount = xdpf->len;
2129 	buffer->gso_segs = 1;
2130 	buffer->time_stamp = jiffies;
2131 	dma_unmap_len_set(buffer, len, xdpf->len);
2132 	dma_unmap_addr_set(buffer, dma, dma);
2133 	return 0;
2134 }
2135 
2136 /* This function requires __netif_tx_lock is held by the caller. */
2137 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2138 				      struct xdp_frame *xdpf)
2139 {
2140 	struct igc_tx_buffer *buffer;
2141 	union igc_adv_tx_desc *desc;
2142 	u32 cmd_type, olinfo_status;
2143 	int err;
2144 
2145 	if (!igc_desc_unused(ring))
2146 		return -EBUSY;
2147 
2148 	buffer = &ring->tx_buffer_info[ring->next_to_use];
2149 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2150 	if (err)
2151 		return err;
2152 
2153 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2154 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2155 		   buffer->bytecount;
2156 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2157 
2158 	desc = IGC_TX_DESC(ring, ring->next_to_use);
2159 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2160 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2161 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2162 
2163 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2164 
2165 	buffer->next_to_watch = desc;
2166 
2167 	ring->next_to_use++;
2168 	if (ring->next_to_use == ring->count)
2169 		ring->next_to_use = 0;
2170 
2171 	return 0;
2172 }
2173 
2174 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2175 					    int cpu)
2176 {
2177 	int index = cpu;
2178 
2179 	if (unlikely(index < 0))
2180 		index = 0;
2181 
2182 	while (index >= adapter->num_tx_queues)
2183 		index -= adapter->num_tx_queues;
2184 
2185 	return adapter->tx_ring[index];
2186 }
2187 
2188 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2189 {
2190 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2191 	int cpu = smp_processor_id();
2192 	struct netdev_queue *nq;
2193 	struct igc_ring *ring;
2194 	int res;
2195 
2196 	if (unlikely(!xdpf))
2197 		return -EFAULT;
2198 
2199 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2200 	nq = txring_txq(ring);
2201 
2202 	__netif_tx_lock(nq, cpu);
2203 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2204 	__netif_tx_unlock(nq);
2205 	return res;
2206 }
2207 
2208 /* This function assumes rcu_read_lock() is held by the caller. */
2209 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2210 			      struct bpf_prog *prog,
2211 			      struct xdp_buff *xdp)
2212 {
2213 	u32 act = bpf_prog_run_xdp(prog, xdp);
2214 
2215 	switch (act) {
2216 	case XDP_PASS:
2217 		return IGC_XDP_PASS;
2218 	case XDP_TX:
2219 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2220 			goto out_failure;
2221 		return IGC_XDP_TX;
2222 	case XDP_REDIRECT:
2223 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2224 			goto out_failure;
2225 		return IGC_XDP_REDIRECT;
2226 		break;
2227 	default:
2228 		bpf_warn_invalid_xdp_action(act);
2229 		fallthrough;
2230 	case XDP_ABORTED:
2231 out_failure:
2232 		trace_xdp_exception(adapter->netdev, prog, act);
2233 		fallthrough;
2234 	case XDP_DROP:
2235 		return IGC_XDP_CONSUMED;
2236 	}
2237 }
2238 
2239 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2240 					struct xdp_buff *xdp)
2241 {
2242 	struct bpf_prog *prog;
2243 	int res;
2244 
2245 	prog = READ_ONCE(adapter->xdp_prog);
2246 	if (!prog) {
2247 		res = IGC_XDP_PASS;
2248 		goto out;
2249 	}
2250 
2251 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2252 
2253 out:
2254 	return ERR_PTR(-res);
2255 }
2256 
2257 /* This function assumes __netif_tx_lock is held by the caller. */
2258 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2259 {
2260 	/* Once tail pointer is updated, hardware can fetch the descriptors
2261 	 * any time so we issue a write membar here to ensure all memory
2262 	 * writes are complete before the tail pointer is updated.
2263 	 */
2264 	wmb();
2265 	writel(ring->next_to_use, ring->tail);
2266 }
2267 
2268 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2269 {
2270 	int cpu = smp_processor_id();
2271 	struct netdev_queue *nq;
2272 	struct igc_ring *ring;
2273 
2274 	if (status & IGC_XDP_TX) {
2275 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2276 		nq = txring_txq(ring);
2277 
2278 		__netif_tx_lock(nq, cpu);
2279 		igc_flush_tx_descriptors(ring);
2280 		__netif_tx_unlock(nq);
2281 	}
2282 
2283 	if (status & IGC_XDP_REDIRECT)
2284 		xdp_do_flush();
2285 }
2286 
2287 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2288 				unsigned int packets, unsigned int bytes)
2289 {
2290 	struct igc_ring *ring = q_vector->rx.ring;
2291 
2292 	u64_stats_update_begin(&ring->rx_syncp);
2293 	ring->rx_stats.packets += packets;
2294 	ring->rx_stats.bytes += bytes;
2295 	u64_stats_update_end(&ring->rx_syncp);
2296 
2297 	q_vector->rx.total_packets += packets;
2298 	q_vector->rx.total_bytes += bytes;
2299 }
2300 
2301 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2302 {
2303 	unsigned int total_bytes = 0, total_packets = 0;
2304 	struct igc_adapter *adapter = q_vector->adapter;
2305 	struct igc_ring *rx_ring = q_vector->rx.ring;
2306 	struct sk_buff *skb = rx_ring->skb;
2307 	u16 cleaned_count = igc_desc_unused(rx_ring);
2308 	int xdp_status = 0, rx_buffer_pgcnt;
2309 
2310 	while (likely(total_packets < budget)) {
2311 		union igc_adv_rx_desc *rx_desc;
2312 		struct igc_rx_buffer *rx_buffer;
2313 		unsigned int size, truesize;
2314 		ktime_t timestamp = 0;
2315 		struct xdp_buff xdp;
2316 		int pkt_offset = 0;
2317 		void *pktbuf;
2318 
2319 		/* return some buffers to hardware, one at a time is too slow */
2320 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2321 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2322 			cleaned_count = 0;
2323 		}
2324 
2325 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2326 		size = le16_to_cpu(rx_desc->wb.upper.length);
2327 		if (!size)
2328 			break;
2329 
2330 		/* This memory barrier is needed to keep us from reading
2331 		 * any other fields out of the rx_desc until we know the
2332 		 * descriptor has been written back
2333 		 */
2334 		dma_rmb();
2335 
2336 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2337 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2338 
2339 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2340 
2341 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2342 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2343 							pktbuf);
2344 			pkt_offset = IGC_TS_HDR_LEN;
2345 			size -= IGC_TS_HDR_LEN;
2346 		}
2347 
2348 		if (!skb) {
2349 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2350 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2351 					 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2352 
2353 			skb = igc_xdp_run_prog(adapter, &xdp);
2354 		}
2355 
2356 		if (IS_ERR(skb)) {
2357 			unsigned int xdp_res = -PTR_ERR(skb);
2358 
2359 			switch (xdp_res) {
2360 			case IGC_XDP_CONSUMED:
2361 				rx_buffer->pagecnt_bias++;
2362 				break;
2363 			case IGC_XDP_TX:
2364 			case IGC_XDP_REDIRECT:
2365 				igc_rx_buffer_flip(rx_buffer, truesize);
2366 				xdp_status |= xdp_res;
2367 				break;
2368 			}
2369 
2370 			total_packets++;
2371 			total_bytes += size;
2372 		} else if (skb)
2373 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2374 		else if (ring_uses_build_skb(rx_ring))
2375 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2376 		else
2377 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2378 						timestamp);
2379 
2380 		/* exit if we failed to retrieve a buffer */
2381 		if (!skb) {
2382 			rx_ring->rx_stats.alloc_failed++;
2383 			rx_buffer->pagecnt_bias++;
2384 			break;
2385 		}
2386 
2387 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2388 		cleaned_count++;
2389 
2390 		/* fetch next buffer in frame if non-eop */
2391 		if (igc_is_non_eop(rx_ring, rx_desc))
2392 			continue;
2393 
2394 		/* verify the packet layout is correct */
2395 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2396 			skb = NULL;
2397 			continue;
2398 		}
2399 
2400 		/* probably a little skewed due to removing CRC */
2401 		total_bytes += skb->len;
2402 
2403 		/* populate checksum, VLAN, and protocol */
2404 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2405 
2406 		napi_gro_receive(&q_vector->napi, skb);
2407 
2408 		/* reset skb pointer */
2409 		skb = NULL;
2410 
2411 		/* update budget accounting */
2412 		total_packets++;
2413 	}
2414 
2415 	if (xdp_status)
2416 		igc_finalize_xdp(adapter, xdp_status);
2417 
2418 	/* place incomplete frames back on ring for completion */
2419 	rx_ring->skb = skb;
2420 
2421 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2422 
2423 	if (cleaned_count)
2424 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2425 
2426 	return total_packets;
2427 }
2428 
2429 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2430 					    struct xdp_buff *xdp)
2431 {
2432 	unsigned int metasize = xdp->data - xdp->data_meta;
2433 	unsigned int datasize = xdp->data_end - xdp->data;
2434 	unsigned int totalsize = metasize + datasize;
2435 	struct sk_buff *skb;
2436 
2437 	skb = __napi_alloc_skb(&ring->q_vector->napi,
2438 			       xdp->data_end - xdp->data_hard_start,
2439 			       GFP_ATOMIC | __GFP_NOWARN);
2440 	if (unlikely(!skb))
2441 		return NULL;
2442 
2443 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2444 	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2445 	if (metasize)
2446 		skb_metadata_set(skb, metasize);
2447 
2448 	return skb;
2449 }
2450 
2451 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2452 				union igc_adv_rx_desc *desc,
2453 				struct xdp_buff *xdp,
2454 				ktime_t timestamp)
2455 {
2456 	struct igc_ring *ring = q_vector->rx.ring;
2457 	struct sk_buff *skb;
2458 
2459 	skb = igc_construct_skb_zc(ring, xdp);
2460 	if (!skb) {
2461 		ring->rx_stats.alloc_failed++;
2462 		return;
2463 	}
2464 
2465 	if (timestamp)
2466 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2467 
2468 	if (igc_cleanup_headers(ring, desc, skb))
2469 		return;
2470 
2471 	igc_process_skb_fields(ring, desc, skb);
2472 	napi_gro_receive(&q_vector->napi, skb);
2473 }
2474 
2475 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2476 {
2477 	struct igc_adapter *adapter = q_vector->adapter;
2478 	struct igc_ring *ring = q_vector->rx.ring;
2479 	u16 cleaned_count = igc_desc_unused(ring);
2480 	int total_bytes = 0, total_packets = 0;
2481 	u16 ntc = ring->next_to_clean;
2482 	struct bpf_prog *prog;
2483 	bool failure = false;
2484 	int xdp_status = 0;
2485 
2486 	rcu_read_lock();
2487 
2488 	prog = READ_ONCE(adapter->xdp_prog);
2489 
2490 	while (likely(total_packets < budget)) {
2491 		union igc_adv_rx_desc *desc;
2492 		struct igc_rx_buffer *bi;
2493 		ktime_t timestamp = 0;
2494 		unsigned int size;
2495 		int res;
2496 
2497 		desc = IGC_RX_DESC(ring, ntc);
2498 		size = le16_to_cpu(desc->wb.upper.length);
2499 		if (!size)
2500 			break;
2501 
2502 		/* This memory barrier is needed to keep us from reading
2503 		 * any other fields out of the rx_desc until we know the
2504 		 * descriptor has been written back
2505 		 */
2506 		dma_rmb();
2507 
2508 		bi = &ring->rx_buffer_info[ntc];
2509 
2510 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2511 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2512 							bi->xdp->data);
2513 
2514 			bi->xdp->data += IGC_TS_HDR_LEN;
2515 
2516 			/* HW timestamp has been copied into local variable. Metadata
2517 			 * length when XDP program is called should be 0.
2518 			 */
2519 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2520 			size -= IGC_TS_HDR_LEN;
2521 		}
2522 
2523 		bi->xdp->data_end = bi->xdp->data + size;
2524 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2525 
2526 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2527 		switch (res) {
2528 		case IGC_XDP_PASS:
2529 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2530 			fallthrough;
2531 		case IGC_XDP_CONSUMED:
2532 			xsk_buff_free(bi->xdp);
2533 			break;
2534 		case IGC_XDP_TX:
2535 		case IGC_XDP_REDIRECT:
2536 			xdp_status |= res;
2537 			break;
2538 		}
2539 
2540 		bi->xdp = NULL;
2541 		total_bytes += size;
2542 		total_packets++;
2543 		cleaned_count++;
2544 		ntc++;
2545 		if (ntc == ring->count)
2546 			ntc = 0;
2547 	}
2548 
2549 	ring->next_to_clean = ntc;
2550 	rcu_read_unlock();
2551 
2552 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2553 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2554 
2555 	if (xdp_status)
2556 		igc_finalize_xdp(adapter, xdp_status);
2557 
2558 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2559 
2560 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2561 		if (failure || ring->next_to_clean == ring->next_to_use)
2562 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2563 		else
2564 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2565 		return total_packets;
2566 	}
2567 
2568 	return failure ? budget : total_packets;
2569 }
2570 
2571 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2572 				unsigned int packets, unsigned int bytes)
2573 {
2574 	struct igc_ring *ring = q_vector->tx.ring;
2575 
2576 	u64_stats_update_begin(&ring->tx_syncp);
2577 	ring->tx_stats.bytes += bytes;
2578 	ring->tx_stats.packets += packets;
2579 	u64_stats_update_end(&ring->tx_syncp);
2580 
2581 	q_vector->tx.total_bytes += bytes;
2582 	q_vector->tx.total_packets += packets;
2583 }
2584 
2585 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2586 {
2587 	struct xsk_buff_pool *pool = ring->xsk_pool;
2588 	struct netdev_queue *nq = txring_txq(ring);
2589 	union igc_adv_tx_desc *tx_desc = NULL;
2590 	int cpu = smp_processor_id();
2591 	u16 ntu = ring->next_to_use;
2592 	struct xdp_desc xdp_desc;
2593 	u16 budget;
2594 
2595 	if (!netif_carrier_ok(ring->netdev))
2596 		return;
2597 
2598 	__netif_tx_lock(nq, cpu);
2599 
2600 	budget = igc_desc_unused(ring);
2601 
2602 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2603 		u32 cmd_type, olinfo_status;
2604 		struct igc_tx_buffer *bi;
2605 		dma_addr_t dma;
2606 
2607 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2608 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2609 			   xdp_desc.len;
2610 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2611 
2612 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2613 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2614 
2615 		tx_desc = IGC_TX_DESC(ring, ntu);
2616 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2617 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2618 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2619 
2620 		bi = &ring->tx_buffer_info[ntu];
2621 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2622 		bi->protocol = 0;
2623 		bi->bytecount = xdp_desc.len;
2624 		bi->gso_segs = 1;
2625 		bi->time_stamp = jiffies;
2626 		bi->next_to_watch = tx_desc;
2627 
2628 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2629 
2630 		ntu++;
2631 		if (ntu == ring->count)
2632 			ntu = 0;
2633 	}
2634 
2635 	ring->next_to_use = ntu;
2636 	if (tx_desc) {
2637 		igc_flush_tx_descriptors(ring);
2638 		xsk_tx_release(pool);
2639 	}
2640 
2641 	__netif_tx_unlock(nq);
2642 }
2643 
2644 /**
2645  * igc_clean_tx_irq - Reclaim resources after transmit completes
2646  * @q_vector: pointer to q_vector containing needed info
2647  * @napi_budget: Used to determine if we are in netpoll
2648  *
2649  * returns true if ring is completely cleaned
2650  */
2651 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2652 {
2653 	struct igc_adapter *adapter = q_vector->adapter;
2654 	unsigned int total_bytes = 0, total_packets = 0;
2655 	unsigned int budget = q_vector->tx.work_limit;
2656 	struct igc_ring *tx_ring = q_vector->tx.ring;
2657 	unsigned int i = tx_ring->next_to_clean;
2658 	struct igc_tx_buffer *tx_buffer;
2659 	union igc_adv_tx_desc *tx_desc;
2660 	u32 xsk_frames = 0;
2661 
2662 	if (test_bit(__IGC_DOWN, &adapter->state))
2663 		return true;
2664 
2665 	tx_buffer = &tx_ring->tx_buffer_info[i];
2666 	tx_desc = IGC_TX_DESC(tx_ring, i);
2667 	i -= tx_ring->count;
2668 
2669 	do {
2670 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2671 
2672 		/* if next_to_watch is not set then there is no work pending */
2673 		if (!eop_desc)
2674 			break;
2675 
2676 		/* prevent any other reads prior to eop_desc */
2677 		smp_rmb();
2678 
2679 		/* if DD is not set pending work has not been completed */
2680 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2681 			break;
2682 
2683 		/* clear next_to_watch to prevent false hangs */
2684 		tx_buffer->next_to_watch = NULL;
2685 
2686 		/* update the statistics for this packet */
2687 		total_bytes += tx_buffer->bytecount;
2688 		total_packets += tx_buffer->gso_segs;
2689 
2690 		switch (tx_buffer->type) {
2691 		case IGC_TX_BUFFER_TYPE_XSK:
2692 			xsk_frames++;
2693 			break;
2694 		case IGC_TX_BUFFER_TYPE_XDP:
2695 			xdp_return_frame(tx_buffer->xdpf);
2696 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2697 			break;
2698 		case IGC_TX_BUFFER_TYPE_SKB:
2699 			napi_consume_skb(tx_buffer->skb, napi_budget);
2700 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2701 			break;
2702 		default:
2703 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2704 			break;
2705 		}
2706 
2707 		/* clear last DMA location and unmap remaining buffers */
2708 		while (tx_desc != eop_desc) {
2709 			tx_buffer++;
2710 			tx_desc++;
2711 			i++;
2712 			if (unlikely(!i)) {
2713 				i -= tx_ring->count;
2714 				tx_buffer = tx_ring->tx_buffer_info;
2715 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2716 			}
2717 
2718 			/* unmap any remaining paged data */
2719 			if (dma_unmap_len(tx_buffer, len))
2720 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2721 		}
2722 
2723 		/* move us one more past the eop_desc for start of next pkt */
2724 		tx_buffer++;
2725 		tx_desc++;
2726 		i++;
2727 		if (unlikely(!i)) {
2728 			i -= tx_ring->count;
2729 			tx_buffer = tx_ring->tx_buffer_info;
2730 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2731 		}
2732 
2733 		/* issue prefetch for next Tx descriptor */
2734 		prefetch(tx_desc);
2735 
2736 		/* update budget accounting */
2737 		budget--;
2738 	} while (likely(budget));
2739 
2740 	netdev_tx_completed_queue(txring_txq(tx_ring),
2741 				  total_packets, total_bytes);
2742 
2743 	i += tx_ring->count;
2744 	tx_ring->next_to_clean = i;
2745 
2746 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2747 
2748 	if (tx_ring->xsk_pool) {
2749 		if (xsk_frames)
2750 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2751 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2752 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2753 		igc_xdp_xmit_zc(tx_ring);
2754 	}
2755 
2756 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2757 		struct igc_hw *hw = &adapter->hw;
2758 
2759 		/* Detect a transmit hang in hardware, this serializes the
2760 		 * check with the clearing of time_stamp and movement of i
2761 		 */
2762 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2763 		if (tx_buffer->next_to_watch &&
2764 		    time_after(jiffies, tx_buffer->time_stamp +
2765 		    (adapter->tx_timeout_factor * HZ)) &&
2766 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2767 			/* detected Tx unit hang */
2768 			netdev_err(tx_ring->netdev,
2769 				   "Detected Tx Unit Hang\n"
2770 				   "  Tx Queue             <%d>\n"
2771 				   "  TDH                  <%x>\n"
2772 				   "  TDT                  <%x>\n"
2773 				   "  next_to_use          <%x>\n"
2774 				   "  next_to_clean        <%x>\n"
2775 				   "buffer_info[next_to_clean]\n"
2776 				   "  time_stamp           <%lx>\n"
2777 				   "  next_to_watch        <%p>\n"
2778 				   "  jiffies              <%lx>\n"
2779 				   "  desc.status          <%x>\n",
2780 				   tx_ring->queue_index,
2781 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2782 				   readl(tx_ring->tail),
2783 				   tx_ring->next_to_use,
2784 				   tx_ring->next_to_clean,
2785 				   tx_buffer->time_stamp,
2786 				   tx_buffer->next_to_watch,
2787 				   jiffies,
2788 				   tx_buffer->next_to_watch->wb.status);
2789 			netif_stop_subqueue(tx_ring->netdev,
2790 					    tx_ring->queue_index);
2791 
2792 			/* we are about to reset, no point in enabling stuff */
2793 			return true;
2794 		}
2795 	}
2796 
2797 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2798 	if (unlikely(total_packets &&
2799 		     netif_carrier_ok(tx_ring->netdev) &&
2800 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2801 		/* Make sure that anybody stopping the queue after this
2802 		 * sees the new next_to_clean.
2803 		 */
2804 		smp_mb();
2805 		if (__netif_subqueue_stopped(tx_ring->netdev,
2806 					     tx_ring->queue_index) &&
2807 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2808 			netif_wake_subqueue(tx_ring->netdev,
2809 					    tx_ring->queue_index);
2810 
2811 			u64_stats_update_begin(&tx_ring->tx_syncp);
2812 			tx_ring->tx_stats.restart_queue++;
2813 			u64_stats_update_end(&tx_ring->tx_syncp);
2814 		}
2815 	}
2816 
2817 	return !!budget;
2818 }
2819 
2820 static int igc_find_mac_filter(struct igc_adapter *adapter,
2821 			       enum igc_mac_filter_type type, const u8 *addr)
2822 {
2823 	struct igc_hw *hw = &adapter->hw;
2824 	int max_entries = hw->mac.rar_entry_count;
2825 	u32 ral, rah;
2826 	int i;
2827 
2828 	for (i = 0; i < max_entries; i++) {
2829 		ral = rd32(IGC_RAL(i));
2830 		rah = rd32(IGC_RAH(i));
2831 
2832 		if (!(rah & IGC_RAH_AV))
2833 			continue;
2834 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2835 			continue;
2836 		if ((rah & IGC_RAH_RAH_MASK) !=
2837 		    le16_to_cpup((__le16 *)(addr + 4)))
2838 			continue;
2839 		if (ral != le32_to_cpup((__le32 *)(addr)))
2840 			continue;
2841 
2842 		return i;
2843 	}
2844 
2845 	return -1;
2846 }
2847 
2848 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2849 {
2850 	struct igc_hw *hw = &adapter->hw;
2851 	int max_entries = hw->mac.rar_entry_count;
2852 	u32 rah;
2853 	int i;
2854 
2855 	for (i = 0; i < max_entries; i++) {
2856 		rah = rd32(IGC_RAH(i));
2857 
2858 		if (!(rah & IGC_RAH_AV))
2859 			return i;
2860 	}
2861 
2862 	return -1;
2863 }
2864 
2865 /**
2866  * igc_add_mac_filter() - Add MAC address filter
2867  * @adapter: Pointer to adapter where the filter should be added
2868  * @type: MAC address filter type (source or destination)
2869  * @addr: MAC address
2870  * @queue: If non-negative, queue assignment feature is enabled and frames
2871  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2872  *         assignment is disabled.
2873  *
2874  * Return: 0 in case of success, negative errno code otherwise.
2875  */
2876 static int igc_add_mac_filter(struct igc_adapter *adapter,
2877 			      enum igc_mac_filter_type type, const u8 *addr,
2878 			      int queue)
2879 {
2880 	struct net_device *dev = adapter->netdev;
2881 	int index;
2882 
2883 	index = igc_find_mac_filter(adapter, type, addr);
2884 	if (index >= 0)
2885 		goto update_filter;
2886 
2887 	index = igc_get_avail_mac_filter_slot(adapter);
2888 	if (index < 0)
2889 		return -ENOSPC;
2890 
2891 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2892 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2893 		   addr, queue);
2894 
2895 update_filter:
2896 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2897 	return 0;
2898 }
2899 
2900 /**
2901  * igc_del_mac_filter() - Delete MAC address filter
2902  * @adapter: Pointer to adapter where the filter should be deleted from
2903  * @type: MAC address filter type (source or destination)
2904  * @addr: MAC address
2905  */
2906 static void igc_del_mac_filter(struct igc_adapter *adapter,
2907 			       enum igc_mac_filter_type type, const u8 *addr)
2908 {
2909 	struct net_device *dev = adapter->netdev;
2910 	int index;
2911 
2912 	index = igc_find_mac_filter(adapter, type, addr);
2913 	if (index < 0)
2914 		return;
2915 
2916 	if (index == 0) {
2917 		/* If this is the default filter, we don't actually delete it.
2918 		 * We just reset to its default value i.e. disable queue
2919 		 * assignment.
2920 		 */
2921 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2922 
2923 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2924 	} else {
2925 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2926 			   index,
2927 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2928 			   addr);
2929 
2930 		igc_clear_mac_filter_hw(adapter, index);
2931 	}
2932 }
2933 
2934 /**
2935  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2936  * @adapter: Pointer to adapter where the filter should be added
2937  * @prio: VLAN priority value
2938  * @queue: Queue number which matching frames are assigned to
2939  *
2940  * Return: 0 in case of success, negative errno code otherwise.
2941  */
2942 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2943 				    int queue)
2944 {
2945 	struct net_device *dev = adapter->netdev;
2946 	struct igc_hw *hw = &adapter->hw;
2947 	u32 vlanpqf;
2948 
2949 	vlanpqf = rd32(IGC_VLANPQF);
2950 
2951 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2952 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2953 		return -EEXIST;
2954 	}
2955 
2956 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2957 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2958 
2959 	wr32(IGC_VLANPQF, vlanpqf);
2960 
2961 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2962 		   prio, queue);
2963 	return 0;
2964 }
2965 
2966 /**
2967  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2968  * @adapter: Pointer to adapter where the filter should be deleted from
2969  * @prio: VLAN priority value
2970  */
2971 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2972 {
2973 	struct igc_hw *hw = &adapter->hw;
2974 	u32 vlanpqf;
2975 
2976 	vlanpqf = rd32(IGC_VLANPQF);
2977 
2978 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2979 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2980 
2981 	wr32(IGC_VLANPQF, vlanpqf);
2982 
2983 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2984 		   prio);
2985 }
2986 
2987 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2988 {
2989 	struct igc_hw *hw = &adapter->hw;
2990 	int i;
2991 
2992 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2993 		u32 etqf = rd32(IGC_ETQF(i));
2994 
2995 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2996 			return i;
2997 	}
2998 
2999 	return -1;
3000 }
3001 
3002 /**
3003  * igc_add_etype_filter() - Add ethertype filter
3004  * @adapter: Pointer to adapter where the filter should be added
3005  * @etype: Ethertype value
3006  * @queue: If non-negative, queue assignment feature is enabled and frames
3007  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3008  *         assignment is disabled.
3009  *
3010  * Return: 0 in case of success, negative errno code otherwise.
3011  */
3012 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3013 				int queue)
3014 {
3015 	struct igc_hw *hw = &adapter->hw;
3016 	int index;
3017 	u32 etqf;
3018 
3019 	index = igc_get_avail_etype_filter_slot(adapter);
3020 	if (index < 0)
3021 		return -ENOSPC;
3022 
3023 	etqf = rd32(IGC_ETQF(index));
3024 
3025 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3026 	etqf |= etype;
3027 
3028 	if (queue >= 0) {
3029 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3030 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3031 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3032 	}
3033 
3034 	etqf |= IGC_ETQF_FILTER_ENABLE;
3035 
3036 	wr32(IGC_ETQF(index), etqf);
3037 
3038 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3039 		   etype, queue);
3040 	return 0;
3041 }
3042 
3043 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3044 {
3045 	struct igc_hw *hw = &adapter->hw;
3046 	int i;
3047 
3048 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3049 		u32 etqf = rd32(IGC_ETQF(i));
3050 
3051 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3052 			return i;
3053 	}
3054 
3055 	return -1;
3056 }
3057 
3058 /**
3059  * igc_del_etype_filter() - Delete ethertype filter
3060  * @adapter: Pointer to adapter where the filter should be deleted from
3061  * @etype: Ethertype value
3062  */
3063 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3064 {
3065 	struct igc_hw *hw = &adapter->hw;
3066 	int index;
3067 
3068 	index = igc_find_etype_filter(adapter, etype);
3069 	if (index < 0)
3070 		return;
3071 
3072 	wr32(IGC_ETQF(index), 0);
3073 
3074 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3075 		   etype);
3076 }
3077 
3078 static int igc_flex_filter_select(struct igc_adapter *adapter,
3079 				  struct igc_flex_filter *input,
3080 				  u32 *fhft)
3081 {
3082 	struct igc_hw *hw = &adapter->hw;
3083 	u8 fhft_index;
3084 	u32 fhftsl;
3085 
3086 	if (input->index >= MAX_FLEX_FILTER) {
3087 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3088 		return -EINVAL;
3089 	}
3090 
3091 	/* Indirect table select register */
3092 	fhftsl = rd32(IGC_FHFTSL);
3093 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3094 	switch (input->index) {
3095 	case 0 ... 7:
3096 		fhftsl |= 0x00;
3097 		break;
3098 	case 8 ... 15:
3099 		fhftsl |= 0x01;
3100 		break;
3101 	case 16 ... 23:
3102 		fhftsl |= 0x02;
3103 		break;
3104 	case 24 ... 31:
3105 		fhftsl |= 0x03;
3106 		break;
3107 	}
3108 	wr32(IGC_FHFTSL, fhftsl);
3109 
3110 	/* Normalize index down to host table register */
3111 	fhft_index = input->index % 8;
3112 
3113 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3114 		IGC_FHFT_EXT(fhft_index - 4);
3115 
3116 	return 0;
3117 }
3118 
3119 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3120 				    struct igc_flex_filter *input)
3121 {
3122 	struct device *dev = &adapter->pdev->dev;
3123 	struct igc_hw *hw = &adapter->hw;
3124 	u8 *data = input->data;
3125 	u8 *mask = input->mask;
3126 	u32 queuing;
3127 	u32 fhft;
3128 	u32 wufc;
3129 	int ret;
3130 	int i;
3131 
3132 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3133 	 * out early to avoid surprises later.
3134 	 */
3135 	if (input->length % 8 != 0) {
3136 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3137 		return -EINVAL;
3138 	}
3139 
3140 	/* Select corresponding flex filter register and get base for host table. */
3141 	ret = igc_flex_filter_select(adapter, input, &fhft);
3142 	if (ret)
3143 		return ret;
3144 
3145 	/* When adding a filter globally disable flex filter feature. That is
3146 	 * recommended within the datasheet.
3147 	 */
3148 	wufc = rd32(IGC_WUFC);
3149 	wufc &= ~IGC_WUFC_FLEX_HQ;
3150 	wr32(IGC_WUFC, wufc);
3151 
3152 	/* Configure filter */
3153 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3154 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3155 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3156 
3157 	if (input->immediate_irq)
3158 		queuing |= IGC_FHFT_IMM_INT;
3159 
3160 	if (input->drop)
3161 		queuing |= IGC_FHFT_DROP;
3162 
3163 	wr32(fhft + 0xFC, queuing);
3164 
3165 	/* Write data (128 byte) and mask (128 bit) */
3166 	for (i = 0; i < 16; ++i) {
3167 		const size_t data_idx = i * 8;
3168 		const size_t row_idx = i * 16;
3169 		u32 dw0 =
3170 			(data[data_idx + 0] << 0) |
3171 			(data[data_idx + 1] << 8) |
3172 			(data[data_idx + 2] << 16) |
3173 			(data[data_idx + 3] << 24);
3174 		u32 dw1 =
3175 			(data[data_idx + 4] << 0) |
3176 			(data[data_idx + 5] << 8) |
3177 			(data[data_idx + 6] << 16) |
3178 			(data[data_idx + 7] << 24);
3179 		u32 tmp;
3180 
3181 		/* Write row: dw0, dw1 and mask */
3182 		wr32(fhft + row_idx, dw0);
3183 		wr32(fhft + row_idx + 4, dw1);
3184 
3185 		/* mask is only valid for MASK(7, 0) */
3186 		tmp = rd32(fhft + row_idx + 8);
3187 		tmp &= ~GENMASK(7, 0);
3188 		tmp |= mask[i];
3189 		wr32(fhft + row_idx + 8, tmp);
3190 	}
3191 
3192 	/* Enable filter. */
3193 	wufc |= IGC_WUFC_FLEX_HQ;
3194 	if (input->index > 8) {
3195 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3196 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3197 
3198 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3199 
3200 		wr32(IGC_WUFC_EXT, wufc_ext);
3201 	} else {
3202 		wufc |= (IGC_WUFC_FLX0 << input->index);
3203 	}
3204 	wr32(IGC_WUFC, wufc);
3205 
3206 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3207 		input->index);
3208 
3209 	return 0;
3210 }
3211 
3212 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3213 				      const void *src, unsigned int offset,
3214 				      size_t len, const void *mask)
3215 {
3216 	int i;
3217 
3218 	/* data */
3219 	memcpy(&flex->data[offset], src, len);
3220 
3221 	/* mask */
3222 	for (i = 0; i < len; ++i) {
3223 		const unsigned int idx = i + offset;
3224 		const u8 *ptr = mask;
3225 
3226 		if (mask) {
3227 			if (ptr[i] & 0xff)
3228 				flex->mask[idx / 8] |= BIT(idx % 8);
3229 
3230 			continue;
3231 		}
3232 
3233 		flex->mask[idx / 8] |= BIT(idx % 8);
3234 	}
3235 }
3236 
3237 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3238 {
3239 	struct igc_hw *hw = &adapter->hw;
3240 	u32 wufc, wufc_ext;
3241 	int i;
3242 
3243 	wufc = rd32(IGC_WUFC);
3244 	wufc_ext = rd32(IGC_WUFC_EXT);
3245 
3246 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3247 		if (i < 8) {
3248 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3249 				return i;
3250 		} else {
3251 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3252 				return i;
3253 		}
3254 	}
3255 
3256 	return -ENOSPC;
3257 }
3258 
3259 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3260 {
3261 	struct igc_hw *hw = &adapter->hw;
3262 	u32 wufc, wufc_ext;
3263 
3264 	wufc = rd32(IGC_WUFC);
3265 	wufc_ext = rd32(IGC_WUFC_EXT);
3266 
3267 	if (wufc & IGC_WUFC_FILTER_MASK)
3268 		return true;
3269 
3270 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3271 		return true;
3272 
3273 	return false;
3274 }
3275 
3276 static int igc_add_flex_filter(struct igc_adapter *adapter,
3277 			       struct igc_nfc_rule *rule)
3278 {
3279 	struct igc_flex_filter flex = { };
3280 	struct igc_nfc_filter *filter = &rule->filter;
3281 	unsigned int eth_offset, user_offset;
3282 	int ret, index;
3283 	bool vlan;
3284 
3285 	index = igc_find_avail_flex_filter_slot(adapter);
3286 	if (index < 0)
3287 		return -ENOSPC;
3288 
3289 	/* Construct the flex filter:
3290 	 *  -> dest_mac [6]
3291 	 *  -> src_mac [6]
3292 	 *  -> tpid [2]
3293 	 *  -> vlan tci [2]
3294 	 *  -> ether type [2]
3295 	 *  -> user data [8]
3296 	 *  -> = 26 bytes => 32 length
3297 	 */
3298 	flex.index    = index;
3299 	flex.length   = 32;
3300 	flex.rx_queue = rule->action;
3301 
3302 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3303 	eth_offset = vlan ? 16 : 12;
3304 	user_offset = vlan ? 18 : 14;
3305 
3306 	/* Add destination MAC  */
3307 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3308 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3309 					  ETH_ALEN, NULL);
3310 
3311 	/* Add source MAC */
3312 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3313 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3314 					  ETH_ALEN, NULL);
3315 
3316 	/* Add VLAN etype */
3317 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3318 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3319 					  sizeof(filter->vlan_etype),
3320 					  NULL);
3321 
3322 	/* Add VLAN TCI */
3323 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3324 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3325 					  sizeof(filter->vlan_tci), NULL);
3326 
3327 	/* Add Ether type */
3328 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3329 		__be16 etype = cpu_to_be16(filter->etype);
3330 
3331 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3332 					  sizeof(etype), NULL);
3333 	}
3334 
3335 	/* Add user data */
3336 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3337 		igc_flex_filter_add_field(&flex, &filter->user_data,
3338 					  user_offset,
3339 					  sizeof(filter->user_data),
3340 					  filter->user_mask);
3341 
3342 	/* Add it down to the hardware and enable it. */
3343 	ret = igc_write_flex_filter_ll(adapter, &flex);
3344 	if (ret)
3345 		return ret;
3346 
3347 	filter->flex_index = index;
3348 
3349 	return 0;
3350 }
3351 
3352 static void igc_del_flex_filter(struct igc_adapter *adapter,
3353 				u16 reg_index)
3354 {
3355 	struct igc_hw *hw = &adapter->hw;
3356 	u32 wufc;
3357 
3358 	/* Just disable the filter. The filter table itself is kept
3359 	 * intact. Another flex_filter_add() should override the "old" data
3360 	 * then.
3361 	 */
3362 	if (reg_index > 8) {
3363 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3364 
3365 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3366 		wr32(IGC_WUFC_EXT, wufc_ext);
3367 	} else {
3368 		wufc = rd32(IGC_WUFC);
3369 
3370 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3371 		wr32(IGC_WUFC, wufc);
3372 	}
3373 
3374 	if (igc_flex_filter_in_use(adapter))
3375 		return;
3376 
3377 	/* No filters are in use, we may disable flex filters */
3378 	wufc = rd32(IGC_WUFC);
3379 	wufc &= ~IGC_WUFC_FLEX_HQ;
3380 	wr32(IGC_WUFC, wufc);
3381 }
3382 
3383 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3384 			       struct igc_nfc_rule *rule)
3385 {
3386 	int err;
3387 
3388 	if (rule->flex) {
3389 		return igc_add_flex_filter(adapter, rule);
3390 	}
3391 
3392 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3393 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3394 					   rule->action);
3395 		if (err)
3396 			return err;
3397 	}
3398 
3399 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3400 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3401 					 rule->filter.src_addr, rule->action);
3402 		if (err)
3403 			return err;
3404 	}
3405 
3406 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3407 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3408 					 rule->filter.dst_addr, rule->action);
3409 		if (err)
3410 			return err;
3411 	}
3412 
3413 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3414 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3415 			   VLAN_PRIO_SHIFT;
3416 
3417 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3418 		if (err)
3419 			return err;
3420 	}
3421 
3422 	return 0;
3423 }
3424 
3425 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3426 				 const struct igc_nfc_rule *rule)
3427 {
3428 	if (rule->flex) {
3429 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3430 		return;
3431 	}
3432 
3433 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3434 		igc_del_etype_filter(adapter, rule->filter.etype);
3435 
3436 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3437 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3438 			   VLAN_PRIO_SHIFT;
3439 
3440 		igc_del_vlan_prio_filter(adapter, prio);
3441 	}
3442 
3443 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3444 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3445 				   rule->filter.src_addr);
3446 
3447 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3448 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3449 				   rule->filter.dst_addr);
3450 }
3451 
3452 /**
3453  * igc_get_nfc_rule() - Get NFC rule
3454  * @adapter: Pointer to adapter
3455  * @location: Rule location
3456  *
3457  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3458  *
3459  * Return: Pointer to NFC rule at @location. If not found, NULL.
3460  */
3461 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3462 				      u32 location)
3463 {
3464 	struct igc_nfc_rule *rule;
3465 
3466 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3467 		if (rule->location == location)
3468 			return rule;
3469 		if (rule->location > location)
3470 			break;
3471 	}
3472 
3473 	return NULL;
3474 }
3475 
3476 /**
3477  * igc_del_nfc_rule() - Delete NFC rule
3478  * @adapter: Pointer to adapter
3479  * @rule: Pointer to rule to be deleted
3480  *
3481  * Disable NFC rule in hardware and delete it from adapter.
3482  *
3483  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3484  */
3485 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3486 {
3487 	igc_disable_nfc_rule(adapter, rule);
3488 
3489 	list_del(&rule->list);
3490 	adapter->nfc_rule_count--;
3491 
3492 	kfree(rule);
3493 }
3494 
3495 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3496 {
3497 	struct igc_nfc_rule *rule, *tmp;
3498 
3499 	mutex_lock(&adapter->nfc_rule_lock);
3500 
3501 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3502 		igc_del_nfc_rule(adapter, rule);
3503 
3504 	mutex_unlock(&adapter->nfc_rule_lock);
3505 }
3506 
3507 /**
3508  * igc_add_nfc_rule() - Add NFC rule
3509  * @adapter: Pointer to adapter
3510  * @rule: Pointer to rule to be added
3511  *
3512  * Enable NFC rule in hardware and add it to adapter.
3513  *
3514  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3515  *
3516  * Return: 0 on success, negative errno on failure.
3517  */
3518 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3519 {
3520 	struct igc_nfc_rule *pred, *cur;
3521 	int err;
3522 
3523 	err = igc_enable_nfc_rule(adapter, rule);
3524 	if (err)
3525 		return err;
3526 
3527 	pred = NULL;
3528 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3529 		if (cur->location >= rule->location)
3530 			break;
3531 		pred = cur;
3532 	}
3533 
3534 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3535 	adapter->nfc_rule_count++;
3536 	return 0;
3537 }
3538 
3539 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3540 {
3541 	struct igc_nfc_rule *rule;
3542 
3543 	mutex_lock(&adapter->nfc_rule_lock);
3544 
3545 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3546 		igc_enable_nfc_rule(adapter, rule);
3547 
3548 	mutex_unlock(&adapter->nfc_rule_lock);
3549 }
3550 
3551 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3552 {
3553 	struct igc_adapter *adapter = netdev_priv(netdev);
3554 
3555 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3556 }
3557 
3558 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3559 {
3560 	struct igc_adapter *adapter = netdev_priv(netdev);
3561 
3562 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3563 	return 0;
3564 }
3565 
3566 /**
3567  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3568  * @netdev: network interface device structure
3569  *
3570  * The set_rx_mode entry point is called whenever the unicast or multicast
3571  * address lists or the network interface flags are updated.  This routine is
3572  * responsible for configuring the hardware for proper unicast, multicast,
3573  * promiscuous mode, and all-multi behavior.
3574  */
3575 static void igc_set_rx_mode(struct net_device *netdev)
3576 {
3577 	struct igc_adapter *adapter = netdev_priv(netdev);
3578 	struct igc_hw *hw = &adapter->hw;
3579 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3580 	int count;
3581 
3582 	/* Check for Promiscuous and All Multicast modes */
3583 	if (netdev->flags & IFF_PROMISC) {
3584 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3585 	} else {
3586 		if (netdev->flags & IFF_ALLMULTI) {
3587 			rctl |= IGC_RCTL_MPE;
3588 		} else {
3589 			/* Write addresses to the MTA, if the attempt fails
3590 			 * then we should just turn on promiscuous mode so
3591 			 * that we can at least receive multicast traffic
3592 			 */
3593 			count = igc_write_mc_addr_list(netdev);
3594 			if (count < 0)
3595 				rctl |= IGC_RCTL_MPE;
3596 		}
3597 	}
3598 
3599 	/* Write addresses to available RAR registers, if there is not
3600 	 * sufficient space to store all the addresses then enable
3601 	 * unicast promiscuous mode
3602 	 */
3603 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3604 		rctl |= IGC_RCTL_UPE;
3605 
3606 	/* update state of unicast and multicast */
3607 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3608 	wr32(IGC_RCTL, rctl);
3609 
3610 #if (PAGE_SIZE < 8192)
3611 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3612 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3613 #endif
3614 	wr32(IGC_RLPML, rlpml);
3615 }
3616 
3617 /**
3618  * igc_configure - configure the hardware for RX and TX
3619  * @adapter: private board structure
3620  */
3621 static void igc_configure(struct igc_adapter *adapter)
3622 {
3623 	struct net_device *netdev = adapter->netdev;
3624 	int i = 0;
3625 
3626 	igc_get_hw_control(adapter);
3627 	igc_set_rx_mode(netdev);
3628 
3629 	igc_restore_vlan(adapter);
3630 
3631 	igc_setup_tctl(adapter);
3632 	igc_setup_mrqc(adapter);
3633 	igc_setup_rctl(adapter);
3634 
3635 	igc_set_default_mac_filter(adapter);
3636 	igc_restore_nfc_rules(adapter);
3637 
3638 	igc_configure_tx(adapter);
3639 	igc_configure_rx(adapter);
3640 
3641 	igc_rx_fifo_flush_base(&adapter->hw);
3642 
3643 	/* call igc_desc_unused which always leaves
3644 	 * at least 1 descriptor unused to make sure
3645 	 * next_to_use != next_to_clean
3646 	 */
3647 	for (i = 0; i < adapter->num_rx_queues; i++) {
3648 		struct igc_ring *ring = adapter->rx_ring[i];
3649 
3650 		if (ring->xsk_pool)
3651 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3652 		else
3653 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3654 	}
3655 }
3656 
3657 /**
3658  * igc_write_ivar - configure ivar for given MSI-X vector
3659  * @hw: pointer to the HW structure
3660  * @msix_vector: vector number we are allocating to a given ring
3661  * @index: row index of IVAR register to write within IVAR table
3662  * @offset: column offset of in IVAR, should be multiple of 8
3663  *
3664  * The IVAR table consists of 2 columns,
3665  * each containing an cause allocation for an Rx and Tx ring, and a
3666  * variable number of rows depending on the number of queues supported.
3667  */
3668 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3669 			   int index, int offset)
3670 {
3671 	u32 ivar = array_rd32(IGC_IVAR0, index);
3672 
3673 	/* clear any bits that are currently set */
3674 	ivar &= ~((u32)0xFF << offset);
3675 
3676 	/* write vector and valid bit */
3677 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3678 
3679 	array_wr32(IGC_IVAR0, index, ivar);
3680 }
3681 
3682 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3683 {
3684 	struct igc_adapter *adapter = q_vector->adapter;
3685 	struct igc_hw *hw = &adapter->hw;
3686 	int rx_queue = IGC_N0_QUEUE;
3687 	int tx_queue = IGC_N0_QUEUE;
3688 
3689 	if (q_vector->rx.ring)
3690 		rx_queue = q_vector->rx.ring->reg_idx;
3691 	if (q_vector->tx.ring)
3692 		tx_queue = q_vector->tx.ring->reg_idx;
3693 
3694 	switch (hw->mac.type) {
3695 	case igc_i225:
3696 		if (rx_queue > IGC_N0_QUEUE)
3697 			igc_write_ivar(hw, msix_vector,
3698 				       rx_queue >> 1,
3699 				       (rx_queue & 0x1) << 4);
3700 		if (tx_queue > IGC_N0_QUEUE)
3701 			igc_write_ivar(hw, msix_vector,
3702 				       tx_queue >> 1,
3703 				       ((tx_queue & 0x1) << 4) + 8);
3704 		q_vector->eims_value = BIT(msix_vector);
3705 		break;
3706 	default:
3707 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3708 		break;
3709 	}
3710 
3711 	/* add q_vector eims value to global eims_enable_mask */
3712 	adapter->eims_enable_mask |= q_vector->eims_value;
3713 
3714 	/* configure q_vector to set itr on first interrupt */
3715 	q_vector->set_itr = 1;
3716 }
3717 
3718 /**
3719  * igc_configure_msix - Configure MSI-X hardware
3720  * @adapter: Pointer to adapter structure
3721  *
3722  * igc_configure_msix sets up the hardware to properly
3723  * generate MSI-X interrupts.
3724  */
3725 static void igc_configure_msix(struct igc_adapter *adapter)
3726 {
3727 	struct igc_hw *hw = &adapter->hw;
3728 	int i, vector = 0;
3729 	u32 tmp;
3730 
3731 	adapter->eims_enable_mask = 0;
3732 
3733 	/* set vector for other causes, i.e. link changes */
3734 	switch (hw->mac.type) {
3735 	case igc_i225:
3736 		/* Turn on MSI-X capability first, or our settings
3737 		 * won't stick.  And it will take days to debug.
3738 		 */
3739 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3740 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3741 		     IGC_GPIE_NSICR);
3742 
3743 		/* enable msix_other interrupt */
3744 		adapter->eims_other = BIT(vector);
3745 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3746 
3747 		wr32(IGC_IVAR_MISC, tmp);
3748 		break;
3749 	default:
3750 		/* do nothing, since nothing else supports MSI-X */
3751 		break;
3752 	} /* switch (hw->mac.type) */
3753 
3754 	adapter->eims_enable_mask |= adapter->eims_other;
3755 
3756 	for (i = 0; i < adapter->num_q_vectors; i++)
3757 		igc_assign_vector(adapter->q_vector[i], vector++);
3758 
3759 	wrfl();
3760 }
3761 
3762 /**
3763  * igc_irq_enable - Enable default interrupt generation settings
3764  * @adapter: board private structure
3765  */
3766 static void igc_irq_enable(struct igc_adapter *adapter)
3767 {
3768 	struct igc_hw *hw = &adapter->hw;
3769 
3770 	if (adapter->msix_entries) {
3771 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3772 		u32 regval = rd32(IGC_EIAC);
3773 
3774 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3775 		regval = rd32(IGC_EIAM);
3776 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3777 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3778 		wr32(IGC_IMS, ims);
3779 	} else {
3780 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3781 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3782 	}
3783 }
3784 
3785 /**
3786  * igc_irq_disable - Mask off interrupt generation on the NIC
3787  * @adapter: board private structure
3788  */
3789 static void igc_irq_disable(struct igc_adapter *adapter)
3790 {
3791 	struct igc_hw *hw = &adapter->hw;
3792 
3793 	if (adapter->msix_entries) {
3794 		u32 regval = rd32(IGC_EIAM);
3795 
3796 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3797 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3798 		regval = rd32(IGC_EIAC);
3799 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3800 	}
3801 
3802 	wr32(IGC_IAM, 0);
3803 	wr32(IGC_IMC, ~0);
3804 	wrfl();
3805 
3806 	if (adapter->msix_entries) {
3807 		int vector = 0, i;
3808 
3809 		synchronize_irq(adapter->msix_entries[vector++].vector);
3810 
3811 		for (i = 0; i < adapter->num_q_vectors; i++)
3812 			synchronize_irq(adapter->msix_entries[vector++].vector);
3813 	} else {
3814 		synchronize_irq(adapter->pdev->irq);
3815 	}
3816 }
3817 
3818 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3819 			      const u32 max_rss_queues)
3820 {
3821 	/* Determine if we need to pair queues. */
3822 	/* If rss_queues > half of max_rss_queues, pair the queues in
3823 	 * order to conserve interrupts due to limited supply.
3824 	 */
3825 	if (adapter->rss_queues > (max_rss_queues / 2))
3826 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3827 	else
3828 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3829 }
3830 
3831 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3832 {
3833 	return IGC_MAX_RX_QUEUES;
3834 }
3835 
3836 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3837 {
3838 	u32 max_rss_queues;
3839 
3840 	max_rss_queues = igc_get_max_rss_queues(adapter);
3841 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3842 
3843 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3844 }
3845 
3846 /**
3847  * igc_reset_q_vector - Reset config for interrupt vector
3848  * @adapter: board private structure to initialize
3849  * @v_idx: Index of vector to be reset
3850  *
3851  * If NAPI is enabled it will delete any references to the
3852  * NAPI struct. This is preparation for igc_free_q_vector.
3853  */
3854 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3855 {
3856 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3857 
3858 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3859 	 * not yet allocated
3860 	 */
3861 	if (!q_vector)
3862 		return;
3863 
3864 	if (q_vector->tx.ring)
3865 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3866 
3867 	if (q_vector->rx.ring)
3868 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3869 
3870 	netif_napi_del(&q_vector->napi);
3871 }
3872 
3873 /**
3874  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3875  * @adapter: board private structure to initialize
3876  * @v_idx: Index of vector to be freed
3877  *
3878  * This function frees the memory allocated to the q_vector.
3879  */
3880 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3881 {
3882 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3883 
3884 	adapter->q_vector[v_idx] = NULL;
3885 
3886 	/* igc_get_stats64() might access the rings on this vector,
3887 	 * we must wait a grace period before freeing it.
3888 	 */
3889 	if (q_vector)
3890 		kfree_rcu(q_vector, rcu);
3891 }
3892 
3893 /**
3894  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3895  * @adapter: board private structure to initialize
3896  *
3897  * This function frees the memory allocated to the q_vectors.  In addition if
3898  * NAPI is enabled it will delete any references to the NAPI struct prior
3899  * to freeing the q_vector.
3900  */
3901 static void igc_free_q_vectors(struct igc_adapter *adapter)
3902 {
3903 	int v_idx = adapter->num_q_vectors;
3904 
3905 	adapter->num_tx_queues = 0;
3906 	adapter->num_rx_queues = 0;
3907 	adapter->num_q_vectors = 0;
3908 
3909 	while (v_idx--) {
3910 		igc_reset_q_vector(adapter, v_idx);
3911 		igc_free_q_vector(adapter, v_idx);
3912 	}
3913 }
3914 
3915 /**
3916  * igc_update_itr - update the dynamic ITR value based on statistics
3917  * @q_vector: pointer to q_vector
3918  * @ring_container: ring info to update the itr for
3919  *
3920  * Stores a new ITR value based on packets and byte
3921  * counts during the last interrupt.  The advantage of per interrupt
3922  * computation is faster updates and more accurate ITR for the current
3923  * traffic pattern.  Constants in this function were computed
3924  * based on theoretical maximum wire speed and thresholds were set based
3925  * on testing data as well as attempting to minimize response time
3926  * while increasing bulk throughput.
3927  * NOTE: These calculations are only valid when operating in a single-
3928  * queue environment.
3929  */
3930 static void igc_update_itr(struct igc_q_vector *q_vector,
3931 			   struct igc_ring_container *ring_container)
3932 {
3933 	unsigned int packets = ring_container->total_packets;
3934 	unsigned int bytes = ring_container->total_bytes;
3935 	u8 itrval = ring_container->itr;
3936 
3937 	/* no packets, exit with status unchanged */
3938 	if (packets == 0)
3939 		return;
3940 
3941 	switch (itrval) {
3942 	case lowest_latency:
3943 		/* handle TSO and jumbo frames */
3944 		if (bytes / packets > 8000)
3945 			itrval = bulk_latency;
3946 		else if ((packets < 5) && (bytes > 512))
3947 			itrval = low_latency;
3948 		break;
3949 	case low_latency:  /* 50 usec aka 20000 ints/s */
3950 		if (bytes > 10000) {
3951 			/* this if handles the TSO accounting */
3952 			if (bytes / packets > 8000)
3953 				itrval = bulk_latency;
3954 			else if ((packets < 10) || ((bytes / packets) > 1200))
3955 				itrval = bulk_latency;
3956 			else if ((packets > 35))
3957 				itrval = lowest_latency;
3958 		} else if (bytes / packets > 2000) {
3959 			itrval = bulk_latency;
3960 		} else if (packets <= 2 && bytes < 512) {
3961 			itrval = lowest_latency;
3962 		}
3963 		break;
3964 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3965 		if (bytes > 25000) {
3966 			if (packets > 35)
3967 				itrval = low_latency;
3968 		} else if (bytes < 1500) {
3969 			itrval = low_latency;
3970 		}
3971 		break;
3972 	}
3973 
3974 	/* clear work counters since we have the values we need */
3975 	ring_container->total_bytes = 0;
3976 	ring_container->total_packets = 0;
3977 
3978 	/* write updated itr to ring container */
3979 	ring_container->itr = itrval;
3980 }
3981 
3982 static void igc_set_itr(struct igc_q_vector *q_vector)
3983 {
3984 	struct igc_adapter *adapter = q_vector->adapter;
3985 	u32 new_itr = q_vector->itr_val;
3986 	u8 current_itr = 0;
3987 
3988 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3989 	switch (adapter->link_speed) {
3990 	case SPEED_10:
3991 	case SPEED_100:
3992 		current_itr = 0;
3993 		new_itr = IGC_4K_ITR;
3994 		goto set_itr_now;
3995 	default:
3996 		break;
3997 	}
3998 
3999 	igc_update_itr(q_vector, &q_vector->tx);
4000 	igc_update_itr(q_vector, &q_vector->rx);
4001 
4002 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4003 
4004 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4005 	if (current_itr == lowest_latency &&
4006 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4007 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4008 		current_itr = low_latency;
4009 
4010 	switch (current_itr) {
4011 	/* counts and packets in update_itr are dependent on these numbers */
4012 	case lowest_latency:
4013 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4014 		break;
4015 	case low_latency:
4016 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4017 		break;
4018 	case bulk_latency:
4019 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4020 		break;
4021 	default:
4022 		break;
4023 	}
4024 
4025 set_itr_now:
4026 	if (new_itr != q_vector->itr_val) {
4027 		/* this attempts to bias the interrupt rate towards Bulk
4028 		 * by adding intermediate steps when interrupt rate is
4029 		 * increasing
4030 		 */
4031 		new_itr = new_itr > q_vector->itr_val ?
4032 			  max((new_itr * q_vector->itr_val) /
4033 			  (new_itr + (q_vector->itr_val >> 2)),
4034 			  new_itr) : new_itr;
4035 		/* Don't write the value here; it resets the adapter's
4036 		 * internal timer, and causes us to delay far longer than
4037 		 * we should between interrupts.  Instead, we write the ITR
4038 		 * value at the beginning of the next interrupt so the timing
4039 		 * ends up being correct.
4040 		 */
4041 		q_vector->itr_val = new_itr;
4042 		q_vector->set_itr = 1;
4043 	}
4044 }
4045 
4046 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4047 {
4048 	int v_idx = adapter->num_q_vectors;
4049 
4050 	if (adapter->msix_entries) {
4051 		pci_disable_msix(adapter->pdev);
4052 		kfree(adapter->msix_entries);
4053 		adapter->msix_entries = NULL;
4054 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4055 		pci_disable_msi(adapter->pdev);
4056 	}
4057 
4058 	while (v_idx--)
4059 		igc_reset_q_vector(adapter, v_idx);
4060 }
4061 
4062 /**
4063  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4064  * @adapter: Pointer to adapter structure
4065  * @msix: boolean value for MSI-X capability
4066  *
4067  * Attempt to configure interrupts using the best available
4068  * capabilities of the hardware and kernel.
4069  */
4070 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4071 					 bool msix)
4072 {
4073 	int numvecs, i;
4074 	int err;
4075 
4076 	if (!msix)
4077 		goto msi_only;
4078 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4079 
4080 	/* Number of supported queues. */
4081 	adapter->num_rx_queues = adapter->rss_queues;
4082 
4083 	adapter->num_tx_queues = adapter->rss_queues;
4084 
4085 	/* start with one vector for every Rx queue */
4086 	numvecs = adapter->num_rx_queues;
4087 
4088 	/* if Tx handler is separate add 1 for every Tx queue */
4089 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4090 		numvecs += adapter->num_tx_queues;
4091 
4092 	/* store the number of vectors reserved for queues */
4093 	adapter->num_q_vectors = numvecs;
4094 
4095 	/* add 1 vector for link status interrupts */
4096 	numvecs++;
4097 
4098 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4099 					GFP_KERNEL);
4100 
4101 	if (!adapter->msix_entries)
4102 		return;
4103 
4104 	/* populate entry values */
4105 	for (i = 0; i < numvecs; i++)
4106 		adapter->msix_entries[i].entry = i;
4107 
4108 	err = pci_enable_msix_range(adapter->pdev,
4109 				    adapter->msix_entries,
4110 				    numvecs,
4111 				    numvecs);
4112 	if (err > 0)
4113 		return;
4114 
4115 	kfree(adapter->msix_entries);
4116 	adapter->msix_entries = NULL;
4117 
4118 	igc_reset_interrupt_capability(adapter);
4119 
4120 msi_only:
4121 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4122 
4123 	adapter->rss_queues = 1;
4124 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4125 	adapter->num_rx_queues = 1;
4126 	adapter->num_tx_queues = 1;
4127 	adapter->num_q_vectors = 1;
4128 	if (!pci_enable_msi(adapter->pdev))
4129 		adapter->flags |= IGC_FLAG_HAS_MSI;
4130 }
4131 
4132 /**
4133  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4134  * @q_vector: pointer to q_vector
4135  *
4136  * Stores a new ITR value based on strictly on packet size.  This
4137  * algorithm is less sophisticated than that used in igc_update_itr,
4138  * due to the difficulty of synchronizing statistics across multiple
4139  * receive rings.  The divisors and thresholds used by this function
4140  * were determined based on theoretical maximum wire speed and testing
4141  * data, in order to minimize response time while increasing bulk
4142  * throughput.
4143  * NOTE: This function is called only when operating in a multiqueue
4144  * receive environment.
4145  */
4146 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4147 {
4148 	struct igc_adapter *adapter = q_vector->adapter;
4149 	int new_val = q_vector->itr_val;
4150 	int avg_wire_size = 0;
4151 	unsigned int packets;
4152 
4153 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4154 	 * ints/sec - ITR timer value of 120 ticks.
4155 	 */
4156 	switch (adapter->link_speed) {
4157 	case SPEED_10:
4158 	case SPEED_100:
4159 		new_val = IGC_4K_ITR;
4160 		goto set_itr_val;
4161 	default:
4162 		break;
4163 	}
4164 
4165 	packets = q_vector->rx.total_packets;
4166 	if (packets)
4167 		avg_wire_size = q_vector->rx.total_bytes / packets;
4168 
4169 	packets = q_vector->tx.total_packets;
4170 	if (packets)
4171 		avg_wire_size = max_t(u32, avg_wire_size,
4172 				      q_vector->tx.total_bytes / packets);
4173 
4174 	/* if avg_wire_size isn't set no work was done */
4175 	if (!avg_wire_size)
4176 		goto clear_counts;
4177 
4178 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4179 	avg_wire_size += 24;
4180 
4181 	/* Don't starve jumbo frames */
4182 	avg_wire_size = min(avg_wire_size, 3000);
4183 
4184 	/* Give a little boost to mid-size frames */
4185 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4186 		new_val = avg_wire_size / 3;
4187 	else
4188 		new_val = avg_wire_size / 2;
4189 
4190 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4191 	if (new_val < IGC_20K_ITR &&
4192 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4193 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4194 		new_val = IGC_20K_ITR;
4195 
4196 set_itr_val:
4197 	if (new_val != q_vector->itr_val) {
4198 		q_vector->itr_val = new_val;
4199 		q_vector->set_itr = 1;
4200 	}
4201 clear_counts:
4202 	q_vector->rx.total_bytes = 0;
4203 	q_vector->rx.total_packets = 0;
4204 	q_vector->tx.total_bytes = 0;
4205 	q_vector->tx.total_packets = 0;
4206 }
4207 
4208 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4209 {
4210 	struct igc_adapter *adapter = q_vector->adapter;
4211 	struct igc_hw *hw = &adapter->hw;
4212 
4213 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4214 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4215 		if (adapter->num_q_vectors == 1)
4216 			igc_set_itr(q_vector);
4217 		else
4218 			igc_update_ring_itr(q_vector);
4219 	}
4220 
4221 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4222 		if (adapter->msix_entries)
4223 			wr32(IGC_EIMS, q_vector->eims_value);
4224 		else
4225 			igc_irq_enable(adapter);
4226 	}
4227 }
4228 
4229 static void igc_add_ring(struct igc_ring *ring,
4230 			 struct igc_ring_container *head)
4231 {
4232 	head->ring = ring;
4233 	head->count++;
4234 }
4235 
4236 /**
4237  * igc_cache_ring_register - Descriptor ring to register mapping
4238  * @adapter: board private structure to initialize
4239  *
4240  * Once we know the feature-set enabled for the device, we'll cache
4241  * the register offset the descriptor ring is assigned to.
4242  */
4243 static void igc_cache_ring_register(struct igc_adapter *adapter)
4244 {
4245 	int i = 0, j = 0;
4246 
4247 	switch (adapter->hw.mac.type) {
4248 	case igc_i225:
4249 	default:
4250 		for (; i < adapter->num_rx_queues; i++)
4251 			adapter->rx_ring[i]->reg_idx = i;
4252 		for (; j < adapter->num_tx_queues; j++)
4253 			adapter->tx_ring[j]->reg_idx = j;
4254 		break;
4255 	}
4256 }
4257 
4258 /**
4259  * igc_poll - NAPI Rx polling callback
4260  * @napi: napi polling structure
4261  * @budget: count of how many packets we should handle
4262  */
4263 static int igc_poll(struct napi_struct *napi, int budget)
4264 {
4265 	struct igc_q_vector *q_vector = container_of(napi,
4266 						     struct igc_q_vector,
4267 						     napi);
4268 	struct igc_ring *rx_ring = q_vector->rx.ring;
4269 	bool clean_complete = true;
4270 	int work_done = 0;
4271 
4272 	if (q_vector->tx.ring)
4273 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4274 
4275 	if (rx_ring) {
4276 		int cleaned = rx_ring->xsk_pool ?
4277 			      igc_clean_rx_irq_zc(q_vector, budget) :
4278 			      igc_clean_rx_irq(q_vector, budget);
4279 
4280 		work_done += cleaned;
4281 		if (cleaned >= budget)
4282 			clean_complete = false;
4283 	}
4284 
4285 	/* If all work not completed, return budget and keep polling */
4286 	if (!clean_complete)
4287 		return budget;
4288 
4289 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4290 	 * poll us due to busy-polling
4291 	 */
4292 	if (likely(napi_complete_done(napi, work_done)))
4293 		igc_ring_irq_enable(q_vector);
4294 
4295 	return min(work_done, budget - 1);
4296 }
4297 
4298 /**
4299  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4300  * @adapter: board private structure to initialize
4301  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4302  * @v_idx: index of vector in adapter struct
4303  * @txr_count: total number of Tx rings to allocate
4304  * @txr_idx: index of first Tx ring to allocate
4305  * @rxr_count: total number of Rx rings to allocate
4306  * @rxr_idx: index of first Rx ring to allocate
4307  *
4308  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4309  */
4310 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4311 			      unsigned int v_count, unsigned int v_idx,
4312 			      unsigned int txr_count, unsigned int txr_idx,
4313 			      unsigned int rxr_count, unsigned int rxr_idx)
4314 {
4315 	struct igc_q_vector *q_vector;
4316 	struct igc_ring *ring;
4317 	int ring_count;
4318 
4319 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4320 	if (txr_count > 1 || rxr_count > 1)
4321 		return -ENOMEM;
4322 
4323 	ring_count = txr_count + rxr_count;
4324 
4325 	/* allocate q_vector and rings */
4326 	q_vector = adapter->q_vector[v_idx];
4327 	if (!q_vector)
4328 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4329 				   GFP_KERNEL);
4330 	else
4331 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4332 	if (!q_vector)
4333 		return -ENOMEM;
4334 
4335 	/* initialize NAPI */
4336 	netif_napi_add(adapter->netdev, &q_vector->napi,
4337 		       igc_poll, 64);
4338 
4339 	/* tie q_vector and adapter together */
4340 	adapter->q_vector[v_idx] = q_vector;
4341 	q_vector->adapter = adapter;
4342 
4343 	/* initialize work limits */
4344 	q_vector->tx.work_limit = adapter->tx_work_limit;
4345 
4346 	/* initialize ITR configuration */
4347 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4348 	q_vector->itr_val = IGC_START_ITR;
4349 
4350 	/* initialize pointer to rings */
4351 	ring = q_vector->ring;
4352 
4353 	/* initialize ITR */
4354 	if (rxr_count) {
4355 		/* rx or rx/tx vector */
4356 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4357 			q_vector->itr_val = adapter->rx_itr_setting;
4358 	} else {
4359 		/* tx only vector */
4360 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4361 			q_vector->itr_val = adapter->tx_itr_setting;
4362 	}
4363 
4364 	if (txr_count) {
4365 		/* assign generic ring traits */
4366 		ring->dev = &adapter->pdev->dev;
4367 		ring->netdev = adapter->netdev;
4368 
4369 		/* configure backlink on ring */
4370 		ring->q_vector = q_vector;
4371 
4372 		/* update q_vector Tx values */
4373 		igc_add_ring(ring, &q_vector->tx);
4374 
4375 		/* apply Tx specific ring traits */
4376 		ring->count = adapter->tx_ring_count;
4377 		ring->queue_index = txr_idx;
4378 
4379 		/* assign ring to adapter */
4380 		adapter->tx_ring[txr_idx] = ring;
4381 
4382 		/* push pointer to next ring */
4383 		ring++;
4384 	}
4385 
4386 	if (rxr_count) {
4387 		/* assign generic ring traits */
4388 		ring->dev = &adapter->pdev->dev;
4389 		ring->netdev = adapter->netdev;
4390 
4391 		/* configure backlink on ring */
4392 		ring->q_vector = q_vector;
4393 
4394 		/* update q_vector Rx values */
4395 		igc_add_ring(ring, &q_vector->rx);
4396 
4397 		/* apply Rx specific ring traits */
4398 		ring->count = adapter->rx_ring_count;
4399 		ring->queue_index = rxr_idx;
4400 
4401 		/* assign ring to adapter */
4402 		adapter->rx_ring[rxr_idx] = ring;
4403 	}
4404 
4405 	return 0;
4406 }
4407 
4408 /**
4409  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4410  * @adapter: board private structure to initialize
4411  *
4412  * We allocate one q_vector per queue interrupt.  If allocation fails we
4413  * return -ENOMEM.
4414  */
4415 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4416 {
4417 	int rxr_remaining = adapter->num_rx_queues;
4418 	int txr_remaining = adapter->num_tx_queues;
4419 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4420 	int q_vectors = adapter->num_q_vectors;
4421 	int err;
4422 
4423 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4424 		for (; rxr_remaining; v_idx++) {
4425 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4426 						 0, 0, 1, rxr_idx);
4427 
4428 			if (err)
4429 				goto err_out;
4430 
4431 			/* update counts and index */
4432 			rxr_remaining--;
4433 			rxr_idx++;
4434 		}
4435 	}
4436 
4437 	for (; v_idx < q_vectors; v_idx++) {
4438 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4439 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4440 
4441 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4442 					 tqpv, txr_idx, rqpv, rxr_idx);
4443 
4444 		if (err)
4445 			goto err_out;
4446 
4447 		/* update counts and index */
4448 		rxr_remaining -= rqpv;
4449 		txr_remaining -= tqpv;
4450 		rxr_idx++;
4451 		txr_idx++;
4452 	}
4453 
4454 	return 0;
4455 
4456 err_out:
4457 	adapter->num_tx_queues = 0;
4458 	adapter->num_rx_queues = 0;
4459 	adapter->num_q_vectors = 0;
4460 
4461 	while (v_idx--)
4462 		igc_free_q_vector(adapter, v_idx);
4463 
4464 	return -ENOMEM;
4465 }
4466 
4467 /**
4468  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4469  * @adapter: Pointer to adapter structure
4470  * @msix: boolean for MSI-X capability
4471  *
4472  * This function initializes the interrupts and allocates all of the queues.
4473  */
4474 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4475 {
4476 	struct net_device *dev = adapter->netdev;
4477 	int err = 0;
4478 
4479 	igc_set_interrupt_capability(adapter, msix);
4480 
4481 	err = igc_alloc_q_vectors(adapter);
4482 	if (err) {
4483 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4484 		goto err_alloc_q_vectors;
4485 	}
4486 
4487 	igc_cache_ring_register(adapter);
4488 
4489 	return 0;
4490 
4491 err_alloc_q_vectors:
4492 	igc_reset_interrupt_capability(adapter);
4493 	return err;
4494 }
4495 
4496 /**
4497  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4498  * @adapter: board private structure to initialize
4499  *
4500  * igc_sw_init initializes the Adapter private data structure.
4501  * Fields are initialized based on PCI device information and
4502  * OS network device settings (MTU size).
4503  */
4504 static int igc_sw_init(struct igc_adapter *adapter)
4505 {
4506 	struct net_device *netdev = adapter->netdev;
4507 	struct pci_dev *pdev = adapter->pdev;
4508 	struct igc_hw *hw = &adapter->hw;
4509 
4510 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4511 
4512 	/* set default ring sizes */
4513 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4514 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4515 
4516 	/* set default ITR values */
4517 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4518 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4519 
4520 	/* set default work limits */
4521 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4522 
4523 	/* adjust max frame to be at least the size of a standard frame */
4524 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4525 				VLAN_HLEN;
4526 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4527 
4528 	mutex_init(&adapter->nfc_rule_lock);
4529 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4530 	adapter->nfc_rule_count = 0;
4531 
4532 	spin_lock_init(&adapter->stats64_lock);
4533 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4534 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4535 
4536 	igc_init_queue_configuration(adapter);
4537 
4538 	/* This call may decrease the number of queues */
4539 	if (igc_init_interrupt_scheme(adapter, true)) {
4540 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4541 		return -ENOMEM;
4542 	}
4543 
4544 	/* Explicitly disable IRQ since the NIC can be in any state. */
4545 	igc_irq_disable(adapter);
4546 
4547 	set_bit(__IGC_DOWN, &adapter->state);
4548 
4549 	return 0;
4550 }
4551 
4552 /**
4553  * igc_up - Open the interface and prepare it to handle traffic
4554  * @adapter: board private structure
4555  */
4556 void igc_up(struct igc_adapter *adapter)
4557 {
4558 	struct igc_hw *hw = &adapter->hw;
4559 	int i = 0;
4560 
4561 	/* hardware has been reset, we need to reload some things */
4562 	igc_configure(adapter);
4563 
4564 	clear_bit(__IGC_DOWN, &adapter->state);
4565 
4566 	for (i = 0; i < adapter->num_q_vectors; i++)
4567 		napi_enable(&adapter->q_vector[i]->napi);
4568 
4569 	if (adapter->msix_entries)
4570 		igc_configure_msix(adapter);
4571 	else
4572 		igc_assign_vector(adapter->q_vector[0], 0);
4573 
4574 	/* Clear any pending interrupts. */
4575 	rd32(IGC_ICR);
4576 	igc_irq_enable(adapter);
4577 
4578 	netif_tx_start_all_queues(adapter->netdev);
4579 
4580 	/* start the watchdog. */
4581 	hw->mac.get_link_status = true;
4582 	schedule_work(&adapter->watchdog_task);
4583 }
4584 
4585 /**
4586  * igc_update_stats - Update the board statistics counters
4587  * @adapter: board private structure
4588  */
4589 void igc_update_stats(struct igc_adapter *adapter)
4590 {
4591 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4592 	struct pci_dev *pdev = adapter->pdev;
4593 	struct igc_hw *hw = &adapter->hw;
4594 	u64 _bytes, _packets;
4595 	u64 bytes, packets;
4596 	unsigned int start;
4597 	u32 mpc;
4598 	int i;
4599 
4600 	/* Prevent stats update while adapter is being reset, or if the pci
4601 	 * connection is down.
4602 	 */
4603 	if (adapter->link_speed == 0)
4604 		return;
4605 	if (pci_channel_offline(pdev))
4606 		return;
4607 
4608 	packets = 0;
4609 	bytes = 0;
4610 
4611 	rcu_read_lock();
4612 	for (i = 0; i < adapter->num_rx_queues; i++) {
4613 		struct igc_ring *ring = adapter->rx_ring[i];
4614 		u32 rqdpc = rd32(IGC_RQDPC(i));
4615 
4616 		if (hw->mac.type >= igc_i225)
4617 			wr32(IGC_RQDPC(i), 0);
4618 
4619 		if (rqdpc) {
4620 			ring->rx_stats.drops += rqdpc;
4621 			net_stats->rx_fifo_errors += rqdpc;
4622 		}
4623 
4624 		do {
4625 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4626 			_bytes = ring->rx_stats.bytes;
4627 			_packets = ring->rx_stats.packets;
4628 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4629 		bytes += _bytes;
4630 		packets += _packets;
4631 	}
4632 
4633 	net_stats->rx_bytes = bytes;
4634 	net_stats->rx_packets = packets;
4635 
4636 	packets = 0;
4637 	bytes = 0;
4638 	for (i = 0; i < adapter->num_tx_queues; i++) {
4639 		struct igc_ring *ring = adapter->tx_ring[i];
4640 
4641 		do {
4642 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4643 			_bytes = ring->tx_stats.bytes;
4644 			_packets = ring->tx_stats.packets;
4645 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4646 		bytes += _bytes;
4647 		packets += _packets;
4648 	}
4649 	net_stats->tx_bytes = bytes;
4650 	net_stats->tx_packets = packets;
4651 	rcu_read_unlock();
4652 
4653 	/* read stats registers */
4654 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4655 	adapter->stats.gprc += rd32(IGC_GPRC);
4656 	adapter->stats.gorc += rd32(IGC_GORCL);
4657 	rd32(IGC_GORCH); /* clear GORCL */
4658 	adapter->stats.bprc += rd32(IGC_BPRC);
4659 	adapter->stats.mprc += rd32(IGC_MPRC);
4660 	adapter->stats.roc += rd32(IGC_ROC);
4661 
4662 	adapter->stats.prc64 += rd32(IGC_PRC64);
4663 	adapter->stats.prc127 += rd32(IGC_PRC127);
4664 	adapter->stats.prc255 += rd32(IGC_PRC255);
4665 	adapter->stats.prc511 += rd32(IGC_PRC511);
4666 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4667 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4668 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4669 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4670 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4671 
4672 	mpc = rd32(IGC_MPC);
4673 	adapter->stats.mpc += mpc;
4674 	net_stats->rx_fifo_errors += mpc;
4675 	adapter->stats.scc += rd32(IGC_SCC);
4676 	adapter->stats.ecol += rd32(IGC_ECOL);
4677 	adapter->stats.mcc += rd32(IGC_MCC);
4678 	adapter->stats.latecol += rd32(IGC_LATECOL);
4679 	adapter->stats.dc += rd32(IGC_DC);
4680 	adapter->stats.rlec += rd32(IGC_RLEC);
4681 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4682 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4683 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4684 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4685 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4686 	adapter->stats.gptc += rd32(IGC_GPTC);
4687 	adapter->stats.gotc += rd32(IGC_GOTCL);
4688 	rd32(IGC_GOTCH); /* clear GOTCL */
4689 	adapter->stats.rnbc += rd32(IGC_RNBC);
4690 	adapter->stats.ruc += rd32(IGC_RUC);
4691 	adapter->stats.rfc += rd32(IGC_RFC);
4692 	adapter->stats.rjc += rd32(IGC_RJC);
4693 	adapter->stats.tor += rd32(IGC_TORH);
4694 	adapter->stats.tot += rd32(IGC_TOTH);
4695 	adapter->stats.tpr += rd32(IGC_TPR);
4696 
4697 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4698 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4699 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4700 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4701 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4702 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4703 
4704 	adapter->stats.mptc += rd32(IGC_MPTC);
4705 	adapter->stats.bptc += rd32(IGC_BPTC);
4706 
4707 	adapter->stats.tpt += rd32(IGC_TPT);
4708 	adapter->stats.colc += rd32(IGC_COLC);
4709 	adapter->stats.colc += rd32(IGC_RERC);
4710 
4711 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4712 
4713 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4714 
4715 	adapter->stats.iac += rd32(IGC_IAC);
4716 
4717 	/* Fill out the OS statistics structure */
4718 	net_stats->multicast = adapter->stats.mprc;
4719 	net_stats->collisions = adapter->stats.colc;
4720 
4721 	/* Rx Errors */
4722 
4723 	/* RLEC on some newer hardware can be incorrect so build
4724 	 * our own version based on RUC and ROC
4725 	 */
4726 	net_stats->rx_errors = adapter->stats.rxerrc +
4727 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4728 		adapter->stats.ruc + adapter->stats.roc +
4729 		adapter->stats.cexterr;
4730 	net_stats->rx_length_errors = adapter->stats.ruc +
4731 				      adapter->stats.roc;
4732 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4733 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4734 	net_stats->rx_missed_errors = adapter->stats.mpc;
4735 
4736 	/* Tx Errors */
4737 	net_stats->tx_errors = adapter->stats.ecol +
4738 			       adapter->stats.latecol;
4739 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4740 	net_stats->tx_window_errors = adapter->stats.latecol;
4741 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4742 
4743 	/* Tx Dropped needs to be maintained elsewhere */
4744 
4745 	/* Management Stats */
4746 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4747 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4748 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4749 }
4750 
4751 /**
4752  * igc_down - Close the interface
4753  * @adapter: board private structure
4754  */
4755 void igc_down(struct igc_adapter *adapter)
4756 {
4757 	struct net_device *netdev = adapter->netdev;
4758 	struct igc_hw *hw = &adapter->hw;
4759 	u32 tctl, rctl;
4760 	int i = 0;
4761 
4762 	set_bit(__IGC_DOWN, &adapter->state);
4763 
4764 	igc_ptp_suspend(adapter);
4765 
4766 	/* disable receives in the hardware */
4767 	rctl = rd32(IGC_RCTL);
4768 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4769 	/* flush and sleep below */
4770 
4771 	/* set trans_start so we don't get spurious watchdogs during reset */
4772 	netif_trans_update(netdev);
4773 
4774 	netif_carrier_off(netdev);
4775 	netif_tx_stop_all_queues(netdev);
4776 
4777 	/* disable transmits in the hardware */
4778 	tctl = rd32(IGC_TCTL);
4779 	tctl &= ~IGC_TCTL_EN;
4780 	wr32(IGC_TCTL, tctl);
4781 	/* flush both disables and wait for them to finish */
4782 	wrfl();
4783 	usleep_range(10000, 20000);
4784 
4785 	igc_irq_disable(adapter);
4786 
4787 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4788 
4789 	for (i = 0; i < adapter->num_q_vectors; i++) {
4790 		if (adapter->q_vector[i]) {
4791 			napi_synchronize(&adapter->q_vector[i]->napi);
4792 			napi_disable(&adapter->q_vector[i]->napi);
4793 		}
4794 	}
4795 
4796 	del_timer_sync(&adapter->watchdog_timer);
4797 	del_timer_sync(&adapter->phy_info_timer);
4798 
4799 	/* record the stats before reset*/
4800 	spin_lock(&adapter->stats64_lock);
4801 	igc_update_stats(adapter);
4802 	spin_unlock(&adapter->stats64_lock);
4803 
4804 	adapter->link_speed = 0;
4805 	adapter->link_duplex = 0;
4806 
4807 	if (!pci_channel_offline(adapter->pdev))
4808 		igc_reset(adapter);
4809 
4810 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4811 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4812 
4813 	igc_clean_all_tx_rings(adapter);
4814 	igc_clean_all_rx_rings(adapter);
4815 }
4816 
4817 void igc_reinit_locked(struct igc_adapter *adapter)
4818 {
4819 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4820 		usleep_range(1000, 2000);
4821 	igc_down(adapter);
4822 	igc_up(adapter);
4823 	clear_bit(__IGC_RESETTING, &adapter->state);
4824 }
4825 
4826 static void igc_reset_task(struct work_struct *work)
4827 {
4828 	struct igc_adapter *adapter;
4829 
4830 	adapter = container_of(work, struct igc_adapter, reset_task);
4831 
4832 	rtnl_lock();
4833 	/* If we're already down or resetting, just bail */
4834 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4835 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4836 		rtnl_unlock();
4837 		return;
4838 	}
4839 
4840 	igc_rings_dump(adapter);
4841 	igc_regs_dump(adapter);
4842 	netdev_err(adapter->netdev, "Reset adapter\n");
4843 	igc_reinit_locked(adapter);
4844 	rtnl_unlock();
4845 }
4846 
4847 /**
4848  * igc_change_mtu - Change the Maximum Transfer Unit
4849  * @netdev: network interface device structure
4850  * @new_mtu: new value for maximum frame size
4851  *
4852  * Returns 0 on success, negative on failure
4853  */
4854 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4855 {
4856 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4857 	struct igc_adapter *adapter = netdev_priv(netdev);
4858 
4859 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4860 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4861 		return -EINVAL;
4862 	}
4863 
4864 	/* adjust max frame to be at least the size of a standard frame */
4865 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4866 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4867 
4868 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4869 		usleep_range(1000, 2000);
4870 
4871 	/* igc_down has a dependency on max_frame_size */
4872 	adapter->max_frame_size = max_frame;
4873 
4874 	if (netif_running(netdev))
4875 		igc_down(adapter);
4876 
4877 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4878 	netdev->mtu = new_mtu;
4879 
4880 	if (netif_running(netdev))
4881 		igc_up(adapter);
4882 	else
4883 		igc_reset(adapter);
4884 
4885 	clear_bit(__IGC_RESETTING, &adapter->state);
4886 
4887 	return 0;
4888 }
4889 
4890 /**
4891  * igc_get_stats64 - Get System Network Statistics
4892  * @netdev: network interface device structure
4893  * @stats: rtnl_link_stats64 pointer
4894  *
4895  * Returns the address of the device statistics structure.
4896  * The statistics are updated here and also from the timer callback.
4897  */
4898 static void igc_get_stats64(struct net_device *netdev,
4899 			    struct rtnl_link_stats64 *stats)
4900 {
4901 	struct igc_adapter *adapter = netdev_priv(netdev);
4902 
4903 	spin_lock(&adapter->stats64_lock);
4904 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4905 		igc_update_stats(adapter);
4906 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4907 	spin_unlock(&adapter->stats64_lock);
4908 }
4909 
4910 static netdev_features_t igc_fix_features(struct net_device *netdev,
4911 					  netdev_features_t features)
4912 {
4913 	/* Since there is no support for separate Rx/Tx vlan accel
4914 	 * enable/disable make sure Tx flag is always in same state as Rx.
4915 	 */
4916 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4917 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4918 	else
4919 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4920 
4921 	return features;
4922 }
4923 
4924 static int igc_set_features(struct net_device *netdev,
4925 			    netdev_features_t features)
4926 {
4927 	netdev_features_t changed = netdev->features ^ features;
4928 	struct igc_adapter *adapter = netdev_priv(netdev);
4929 
4930 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4931 		igc_vlan_mode(netdev, features);
4932 
4933 	/* Add VLAN support */
4934 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4935 		return 0;
4936 
4937 	if (!(features & NETIF_F_NTUPLE))
4938 		igc_flush_nfc_rules(adapter);
4939 
4940 	netdev->features = features;
4941 
4942 	if (netif_running(netdev))
4943 		igc_reinit_locked(adapter);
4944 	else
4945 		igc_reset(adapter);
4946 
4947 	return 1;
4948 }
4949 
4950 static netdev_features_t
4951 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4952 		   netdev_features_t features)
4953 {
4954 	unsigned int network_hdr_len, mac_hdr_len;
4955 
4956 	/* Make certain the headers can be described by a context descriptor */
4957 	mac_hdr_len = skb_network_header(skb) - skb->data;
4958 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4959 		return features & ~(NETIF_F_HW_CSUM |
4960 				    NETIF_F_SCTP_CRC |
4961 				    NETIF_F_HW_VLAN_CTAG_TX |
4962 				    NETIF_F_TSO |
4963 				    NETIF_F_TSO6);
4964 
4965 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4966 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4967 		return features & ~(NETIF_F_HW_CSUM |
4968 				    NETIF_F_SCTP_CRC |
4969 				    NETIF_F_TSO |
4970 				    NETIF_F_TSO6);
4971 
4972 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4973 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4974 	 */
4975 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4976 		features &= ~NETIF_F_TSO;
4977 
4978 	return features;
4979 }
4980 
4981 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4982 {
4983 	u32 ack, tsauxc, sec, nsec, tsicr;
4984 	struct igc_hw *hw = &adapter->hw;
4985 	struct ptp_clock_event event;
4986 	struct timespec64 ts;
4987 
4988 	tsicr = rd32(IGC_TSICR);
4989 	ack = 0;
4990 
4991 	if (tsicr & IGC_TSICR_SYS_WRAP) {
4992 		event.type = PTP_CLOCK_PPS;
4993 		if (adapter->ptp_caps.pps)
4994 			ptp_clock_event(adapter->ptp_clock, &event);
4995 		ack |= IGC_TSICR_SYS_WRAP;
4996 	}
4997 
4998 	if (tsicr & IGC_TSICR_TXTS) {
4999 		/* retrieve hardware timestamp */
5000 		schedule_work(&adapter->ptp_tx_work);
5001 		ack |= IGC_TSICR_TXTS;
5002 	}
5003 
5004 	if (tsicr & IGC_TSICR_TT0) {
5005 		spin_lock(&adapter->tmreg_lock);
5006 		ts = timespec64_add(adapter->perout[0].start,
5007 				    adapter->perout[0].period);
5008 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5009 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5010 		tsauxc = rd32(IGC_TSAUXC);
5011 		tsauxc |= IGC_TSAUXC_EN_TT0;
5012 		wr32(IGC_TSAUXC, tsauxc);
5013 		adapter->perout[0].start = ts;
5014 		spin_unlock(&adapter->tmreg_lock);
5015 		ack |= IGC_TSICR_TT0;
5016 	}
5017 
5018 	if (tsicr & IGC_TSICR_TT1) {
5019 		spin_lock(&adapter->tmreg_lock);
5020 		ts = timespec64_add(adapter->perout[1].start,
5021 				    adapter->perout[1].period);
5022 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5023 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5024 		tsauxc = rd32(IGC_TSAUXC);
5025 		tsauxc |= IGC_TSAUXC_EN_TT1;
5026 		wr32(IGC_TSAUXC, tsauxc);
5027 		adapter->perout[1].start = ts;
5028 		spin_unlock(&adapter->tmreg_lock);
5029 		ack |= IGC_TSICR_TT1;
5030 	}
5031 
5032 	if (tsicr & IGC_TSICR_AUTT0) {
5033 		nsec = rd32(IGC_AUXSTMPL0);
5034 		sec  = rd32(IGC_AUXSTMPH0);
5035 		event.type = PTP_CLOCK_EXTTS;
5036 		event.index = 0;
5037 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5038 		ptp_clock_event(adapter->ptp_clock, &event);
5039 		ack |= IGC_TSICR_AUTT0;
5040 	}
5041 
5042 	if (tsicr & IGC_TSICR_AUTT1) {
5043 		nsec = rd32(IGC_AUXSTMPL1);
5044 		sec  = rd32(IGC_AUXSTMPH1);
5045 		event.type = PTP_CLOCK_EXTTS;
5046 		event.index = 1;
5047 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5048 		ptp_clock_event(adapter->ptp_clock, &event);
5049 		ack |= IGC_TSICR_AUTT1;
5050 	}
5051 
5052 	/* acknowledge the interrupts */
5053 	wr32(IGC_TSICR, ack);
5054 }
5055 
5056 /**
5057  * igc_msix_other - msix other interrupt handler
5058  * @irq: interrupt number
5059  * @data: pointer to a q_vector
5060  */
5061 static irqreturn_t igc_msix_other(int irq, void *data)
5062 {
5063 	struct igc_adapter *adapter = data;
5064 	struct igc_hw *hw = &adapter->hw;
5065 	u32 icr = rd32(IGC_ICR);
5066 
5067 	/* reading ICR causes bit 31 of EICR to be cleared */
5068 	if (icr & IGC_ICR_DRSTA)
5069 		schedule_work(&adapter->reset_task);
5070 
5071 	if (icr & IGC_ICR_DOUTSYNC) {
5072 		/* HW is reporting DMA is out of sync */
5073 		adapter->stats.doosync++;
5074 	}
5075 
5076 	if (icr & IGC_ICR_LSC) {
5077 		hw->mac.get_link_status = true;
5078 		/* guard against interrupt when we're going down */
5079 		if (!test_bit(__IGC_DOWN, &adapter->state))
5080 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5081 	}
5082 
5083 	if (icr & IGC_ICR_TS)
5084 		igc_tsync_interrupt(adapter);
5085 
5086 	wr32(IGC_EIMS, adapter->eims_other);
5087 
5088 	return IRQ_HANDLED;
5089 }
5090 
5091 static void igc_write_itr(struct igc_q_vector *q_vector)
5092 {
5093 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5094 
5095 	if (!q_vector->set_itr)
5096 		return;
5097 
5098 	if (!itr_val)
5099 		itr_val = IGC_ITR_VAL_MASK;
5100 
5101 	itr_val |= IGC_EITR_CNT_IGNR;
5102 
5103 	writel(itr_val, q_vector->itr_register);
5104 	q_vector->set_itr = 0;
5105 }
5106 
5107 static irqreturn_t igc_msix_ring(int irq, void *data)
5108 {
5109 	struct igc_q_vector *q_vector = data;
5110 
5111 	/* Write the ITR value calculated from the previous interrupt. */
5112 	igc_write_itr(q_vector);
5113 
5114 	napi_schedule(&q_vector->napi);
5115 
5116 	return IRQ_HANDLED;
5117 }
5118 
5119 /**
5120  * igc_request_msix - Initialize MSI-X interrupts
5121  * @adapter: Pointer to adapter structure
5122  *
5123  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5124  * kernel.
5125  */
5126 static int igc_request_msix(struct igc_adapter *adapter)
5127 {
5128 	unsigned int num_q_vectors = adapter->num_q_vectors;
5129 	int i = 0, err = 0, vector = 0, free_vector = 0;
5130 	struct net_device *netdev = adapter->netdev;
5131 
5132 	err = request_irq(adapter->msix_entries[vector].vector,
5133 			  &igc_msix_other, 0, netdev->name, adapter);
5134 	if (err)
5135 		goto err_out;
5136 
5137 	if (num_q_vectors > MAX_Q_VECTORS) {
5138 		num_q_vectors = MAX_Q_VECTORS;
5139 		dev_warn(&adapter->pdev->dev,
5140 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5141 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5142 	}
5143 	for (i = 0; i < num_q_vectors; i++) {
5144 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5145 
5146 		vector++;
5147 
5148 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5149 
5150 		if (q_vector->rx.ring && q_vector->tx.ring)
5151 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5152 				q_vector->rx.ring->queue_index);
5153 		else if (q_vector->tx.ring)
5154 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5155 				q_vector->tx.ring->queue_index);
5156 		else if (q_vector->rx.ring)
5157 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5158 				q_vector->rx.ring->queue_index);
5159 		else
5160 			sprintf(q_vector->name, "%s-unused", netdev->name);
5161 
5162 		err = request_irq(adapter->msix_entries[vector].vector,
5163 				  igc_msix_ring, 0, q_vector->name,
5164 				  q_vector);
5165 		if (err)
5166 			goto err_free;
5167 	}
5168 
5169 	igc_configure_msix(adapter);
5170 	return 0;
5171 
5172 err_free:
5173 	/* free already assigned IRQs */
5174 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5175 
5176 	vector--;
5177 	for (i = 0; i < vector; i++) {
5178 		free_irq(adapter->msix_entries[free_vector++].vector,
5179 			 adapter->q_vector[i]);
5180 	}
5181 err_out:
5182 	return err;
5183 }
5184 
5185 /**
5186  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5187  * @adapter: Pointer to adapter structure
5188  *
5189  * This function resets the device so that it has 0 rx queues, tx queues, and
5190  * MSI-X interrupts allocated.
5191  */
5192 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5193 {
5194 	igc_free_q_vectors(adapter);
5195 	igc_reset_interrupt_capability(adapter);
5196 }
5197 
5198 /* Need to wait a few seconds after link up to get diagnostic information from
5199  * the phy
5200  */
5201 static void igc_update_phy_info(struct timer_list *t)
5202 {
5203 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5204 
5205 	igc_get_phy_info(&adapter->hw);
5206 }
5207 
5208 /**
5209  * igc_has_link - check shared code for link and determine up/down
5210  * @adapter: pointer to driver private info
5211  */
5212 bool igc_has_link(struct igc_adapter *adapter)
5213 {
5214 	struct igc_hw *hw = &adapter->hw;
5215 	bool link_active = false;
5216 
5217 	/* get_link_status is set on LSC (link status) interrupt or
5218 	 * rx sequence error interrupt.  get_link_status will stay
5219 	 * false until the igc_check_for_link establishes link
5220 	 * for copper adapters ONLY
5221 	 */
5222 	if (!hw->mac.get_link_status)
5223 		return true;
5224 	hw->mac.ops.check_for_link(hw);
5225 	link_active = !hw->mac.get_link_status;
5226 
5227 	if (hw->mac.type == igc_i225) {
5228 		if (!netif_carrier_ok(adapter->netdev)) {
5229 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5230 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5231 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5232 			adapter->link_check_timeout = jiffies;
5233 		}
5234 	}
5235 
5236 	return link_active;
5237 }
5238 
5239 /**
5240  * igc_watchdog - Timer Call-back
5241  * @t: timer for the watchdog
5242  */
5243 static void igc_watchdog(struct timer_list *t)
5244 {
5245 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5246 	/* Do the rest outside of interrupt context */
5247 	schedule_work(&adapter->watchdog_task);
5248 }
5249 
5250 static void igc_watchdog_task(struct work_struct *work)
5251 {
5252 	struct igc_adapter *adapter = container_of(work,
5253 						   struct igc_adapter,
5254 						   watchdog_task);
5255 	struct net_device *netdev = adapter->netdev;
5256 	struct igc_hw *hw = &adapter->hw;
5257 	struct igc_phy_info *phy = &hw->phy;
5258 	u16 phy_data, retry_count = 20;
5259 	u32 link;
5260 	int i;
5261 
5262 	link = igc_has_link(adapter);
5263 
5264 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5265 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5266 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5267 		else
5268 			link = false;
5269 	}
5270 
5271 	if (link) {
5272 		/* Cancel scheduled suspend requests. */
5273 		pm_runtime_resume(netdev->dev.parent);
5274 
5275 		if (!netif_carrier_ok(netdev)) {
5276 			u32 ctrl;
5277 
5278 			hw->mac.ops.get_speed_and_duplex(hw,
5279 							 &adapter->link_speed,
5280 							 &adapter->link_duplex);
5281 
5282 			ctrl = rd32(IGC_CTRL);
5283 			/* Link status message must follow this format */
5284 			netdev_info(netdev,
5285 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5286 				    adapter->link_speed,
5287 				    adapter->link_duplex == FULL_DUPLEX ?
5288 				    "Full" : "Half",
5289 				    (ctrl & IGC_CTRL_TFCE) &&
5290 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5291 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5292 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5293 
5294 			/* disable EEE if enabled */
5295 			if ((adapter->flags & IGC_FLAG_EEE) &&
5296 			    adapter->link_duplex == HALF_DUPLEX) {
5297 				netdev_info(netdev,
5298 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5299 				adapter->hw.dev_spec._base.eee_enable = false;
5300 				adapter->flags &= ~IGC_FLAG_EEE;
5301 			}
5302 
5303 			/* check if SmartSpeed worked */
5304 			igc_check_downshift(hw);
5305 			if (phy->speed_downgraded)
5306 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5307 
5308 			/* adjust timeout factor according to speed/duplex */
5309 			adapter->tx_timeout_factor = 1;
5310 			switch (adapter->link_speed) {
5311 			case SPEED_10:
5312 				adapter->tx_timeout_factor = 14;
5313 				break;
5314 			case SPEED_100:
5315 			case SPEED_1000:
5316 			case SPEED_2500:
5317 				adapter->tx_timeout_factor = 7;
5318 				break;
5319 			}
5320 
5321 			if (adapter->link_speed != SPEED_1000)
5322 				goto no_wait;
5323 
5324 			/* wait for Remote receiver status OK */
5325 retry_read_status:
5326 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5327 					      &phy_data)) {
5328 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5329 				    retry_count) {
5330 					msleep(100);
5331 					retry_count--;
5332 					goto retry_read_status;
5333 				} else if (!retry_count) {
5334 					netdev_err(netdev, "exceed max 2 second\n");
5335 				}
5336 			} else {
5337 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5338 			}
5339 no_wait:
5340 			netif_carrier_on(netdev);
5341 
5342 			/* link state has changed, schedule phy info update */
5343 			if (!test_bit(__IGC_DOWN, &adapter->state))
5344 				mod_timer(&adapter->phy_info_timer,
5345 					  round_jiffies(jiffies + 2 * HZ));
5346 		}
5347 	} else {
5348 		if (netif_carrier_ok(netdev)) {
5349 			adapter->link_speed = 0;
5350 			adapter->link_duplex = 0;
5351 
5352 			/* Links status message must follow this format */
5353 			netdev_info(netdev, "NIC Link is Down\n");
5354 			netif_carrier_off(netdev);
5355 
5356 			/* link state has changed, schedule phy info update */
5357 			if (!test_bit(__IGC_DOWN, &adapter->state))
5358 				mod_timer(&adapter->phy_info_timer,
5359 					  round_jiffies(jiffies + 2 * HZ));
5360 
5361 			/* link is down, time to check for alternate media */
5362 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5363 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5364 					schedule_work(&adapter->reset_task);
5365 					/* return immediately */
5366 					return;
5367 				}
5368 			}
5369 			pm_schedule_suspend(netdev->dev.parent,
5370 					    MSEC_PER_SEC * 5);
5371 
5372 		/* also check for alternate media here */
5373 		} else if (!netif_carrier_ok(netdev) &&
5374 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5375 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5376 				schedule_work(&adapter->reset_task);
5377 				/* return immediately */
5378 				return;
5379 			}
5380 		}
5381 	}
5382 
5383 	spin_lock(&adapter->stats64_lock);
5384 	igc_update_stats(adapter);
5385 	spin_unlock(&adapter->stats64_lock);
5386 
5387 	for (i = 0; i < adapter->num_tx_queues; i++) {
5388 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5389 
5390 		if (!netif_carrier_ok(netdev)) {
5391 			/* We've lost link, so the controller stops DMA,
5392 			 * but we've got queued Tx work that's never going
5393 			 * to get done, so reset controller to flush Tx.
5394 			 * (Do the reset outside of interrupt context).
5395 			 */
5396 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5397 				adapter->tx_timeout_count++;
5398 				schedule_work(&adapter->reset_task);
5399 				/* return immediately since reset is imminent */
5400 				return;
5401 			}
5402 		}
5403 
5404 		/* Force detection of hung controller every watchdog period */
5405 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5406 	}
5407 
5408 	/* Cause software interrupt to ensure Rx ring is cleaned */
5409 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5410 		u32 eics = 0;
5411 
5412 		for (i = 0; i < adapter->num_q_vectors; i++)
5413 			eics |= adapter->q_vector[i]->eims_value;
5414 		wr32(IGC_EICS, eics);
5415 	} else {
5416 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5417 	}
5418 
5419 	igc_ptp_tx_hang(adapter);
5420 
5421 	/* Reset the timer */
5422 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5423 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5424 			mod_timer(&adapter->watchdog_timer,
5425 				  round_jiffies(jiffies +  HZ));
5426 		else
5427 			mod_timer(&adapter->watchdog_timer,
5428 				  round_jiffies(jiffies + 2 * HZ));
5429 	}
5430 }
5431 
5432 /**
5433  * igc_intr_msi - Interrupt Handler
5434  * @irq: interrupt number
5435  * @data: pointer to a network interface device structure
5436  */
5437 static irqreturn_t igc_intr_msi(int irq, void *data)
5438 {
5439 	struct igc_adapter *adapter = data;
5440 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5441 	struct igc_hw *hw = &adapter->hw;
5442 	/* read ICR disables interrupts using IAM */
5443 	u32 icr = rd32(IGC_ICR);
5444 
5445 	igc_write_itr(q_vector);
5446 
5447 	if (icr & IGC_ICR_DRSTA)
5448 		schedule_work(&adapter->reset_task);
5449 
5450 	if (icr & IGC_ICR_DOUTSYNC) {
5451 		/* HW is reporting DMA is out of sync */
5452 		adapter->stats.doosync++;
5453 	}
5454 
5455 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5456 		hw->mac.get_link_status = true;
5457 		if (!test_bit(__IGC_DOWN, &adapter->state))
5458 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5459 	}
5460 
5461 	napi_schedule(&q_vector->napi);
5462 
5463 	return IRQ_HANDLED;
5464 }
5465 
5466 /**
5467  * igc_intr - Legacy Interrupt Handler
5468  * @irq: interrupt number
5469  * @data: pointer to a network interface device structure
5470  */
5471 static irqreturn_t igc_intr(int irq, void *data)
5472 {
5473 	struct igc_adapter *adapter = data;
5474 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5475 	struct igc_hw *hw = &adapter->hw;
5476 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5477 	 * need for the IMC write
5478 	 */
5479 	u32 icr = rd32(IGC_ICR);
5480 
5481 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5482 	 * not set, then the adapter didn't send an interrupt
5483 	 */
5484 	if (!(icr & IGC_ICR_INT_ASSERTED))
5485 		return IRQ_NONE;
5486 
5487 	igc_write_itr(q_vector);
5488 
5489 	if (icr & IGC_ICR_DRSTA)
5490 		schedule_work(&adapter->reset_task);
5491 
5492 	if (icr & IGC_ICR_DOUTSYNC) {
5493 		/* HW is reporting DMA is out of sync */
5494 		adapter->stats.doosync++;
5495 	}
5496 
5497 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5498 		hw->mac.get_link_status = true;
5499 		/* guard against interrupt when we're going down */
5500 		if (!test_bit(__IGC_DOWN, &adapter->state))
5501 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5502 	}
5503 
5504 	napi_schedule(&q_vector->napi);
5505 
5506 	return IRQ_HANDLED;
5507 }
5508 
5509 static void igc_free_irq(struct igc_adapter *adapter)
5510 {
5511 	if (adapter->msix_entries) {
5512 		int vector = 0, i;
5513 
5514 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5515 
5516 		for (i = 0; i < adapter->num_q_vectors; i++)
5517 			free_irq(adapter->msix_entries[vector++].vector,
5518 				 adapter->q_vector[i]);
5519 	} else {
5520 		free_irq(adapter->pdev->irq, adapter);
5521 	}
5522 }
5523 
5524 /**
5525  * igc_request_irq - initialize interrupts
5526  * @adapter: Pointer to adapter structure
5527  *
5528  * Attempts to configure interrupts using the best available
5529  * capabilities of the hardware and kernel.
5530  */
5531 static int igc_request_irq(struct igc_adapter *adapter)
5532 {
5533 	struct net_device *netdev = adapter->netdev;
5534 	struct pci_dev *pdev = adapter->pdev;
5535 	int err = 0;
5536 
5537 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5538 		err = igc_request_msix(adapter);
5539 		if (!err)
5540 			goto request_done;
5541 		/* fall back to MSI */
5542 		igc_free_all_tx_resources(adapter);
5543 		igc_free_all_rx_resources(adapter);
5544 
5545 		igc_clear_interrupt_scheme(adapter);
5546 		err = igc_init_interrupt_scheme(adapter, false);
5547 		if (err)
5548 			goto request_done;
5549 		igc_setup_all_tx_resources(adapter);
5550 		igc_setup_all_rx_resources(adapter);
5551 		igc_configure(adapter);
5552 	}
5553 
5554 	igc_assign_vector(adapter->q_vector[0], 0);
5555 
5556 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5557 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5558 				  netdev->name, adapter);
5559 		if (!err)
5560 			goto request_done;
5561 
5562 		/* fall back to legacy interrupts */
5563 		igc_reset_interrupt_capability(adapter);
5564 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5565 	}
5566 
5567 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5568 			  netdev->name, adapter);
5569 
5570 	if (err)
5571 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5572 
5573 request_done:
5574 	return err;
5575 }
5576 
5577 /**
5578  * __igc_open - Called when a network interface is made active
5579  * @netdev: network interface device structure
5580  * @resuming: boolean indicating if the device is resuming
5581  *
5582  * Returns 0 on success, negative value on failure
5583  *
5584  * The open entry point is called when a network interface is made
5585  * active by the system (IFF_UP).  At this point all resources needed
5586  * for transmit and receive operations are allocated, the interrupt
5587  * handler is registered with the OS, the watchdog timer is started,
5588  * and the stack is notified that the interface is ready.
5589  */
5590 static int __igc_open(struct net_device *netdev, bool resuming)
5591 {
5592 	struct igc_adapter *adapter = netdev_priv(netdev);
5593 	struct pci_dev *pdev = adapter->pdev;
5594 	struct igc_hw *hw = &adapter->hw;
5595 	int err = 0;
5596 	int i = 0;
5597 
5598 	/* disallow open during test */
5599 
5600 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5601 		WARN_ON(resuming);
5602 		return -EBUSY;
5603 	}
5604 
5605 	if (!resuming)
5606 		pm_runtime_get_sync(&pdev->dev);
5607 
5608 	netif_carrier_off(netdev);
5609 
5610 	/* allocate transmit descriptors */
5611 	err = igc_setup_all_tx_resources(adapter);
5612 	if (err)
5613 		goto err_setup_tx;
5614 
5615 	/* allocate receive descriptors */
5616 	err = igc_setup_all_rx_resources(adapter);
5617 	if (err)
5618 		goto err_setup_rx;
5619 
5620 	igc_power_up_link(adapter);
5621 
5622 	igc_configure(adapter);
5623 
5624 	err = igc_request_irq(adapter);
5625 	if (err)
5626 		goto err_req_irq;
5627 
5628 	/* Notify the stack of the actual queue counts. */
5629 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5630 	if (err)
5631 		goto err_set_queues;
5632 
5633 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5634 	if (err)
5635 		goto err_set_queues;
5636 
5637 	clear_bit(__IGC_DOWN, &adapter->state);
5638 
5639 	for (i = 0; i < adapter->num_q_vectors; i++)
5640 		napi_enable(&adapter->q_vector[i]->napi);
5641 
5642 	/* Clear any pending interrupts. */
5643 	rd32(IGC_ICR);
5644 	igc_irq_enable(adapter);
5645 
5646 	if (!resuming)
5647 		pm_runtime_put(&pdev->dev);
5648 
5649 	netif_tx_start_all_queues(netdev);
5650 
5651 	/* start the watchdog. */
5652 	hw->mac.get_link_status = true;
5653 	schedule_work(&adapter->watchdog_task);
5654 
5655 	return IGC_SUCCESS;
5656 
5657 err_set_queues:
5658 	igc_free_irq(adapter);
5659 err_req_irq:
5660 	igc_release_hw_control(adapter);
5661 	igc_power_down_phy_copper_base(&adapter->hw);
5662 	igc_free_all_rx_resources(adapter);
5663 err_setup_rx:
5664 	igc_free_all_tx_resources(adapter);
5665 err_setup_tx:
5666 	igc_reset(adapter);
5667 	if (!resuming)
5668 		pm_runtime_put(&pdev->dev);
5669 
5670 	return err;
5671 }
5672 
5673 int igc_open(struct net_device *netdev)
5674 {
5675 	return __igc_open(netdev, false);
5676 }
5677 
5678 /**
5679  * __igc_close - Disables a network interface
5680  * @netdev: network interface device structure
5681  * @suspending: boolean indicating the device is suspending
5682  *
5683  * Returns 0, this is not allowed to fail
5684  *
5685  * The close entry point is called when an interface is de-activated
5686  * by the OS.  The hardware is still under the driver's control, but
5687  * needs to be disabled.  A global MAC reset is issued to stop the
5688  * hardware, and all transmit and receive resources are freed.
5689  */
5690 static int __igc_close(struct net_device *netdev, bool suspending)
5691 {
5692 	struct igc_adapter *adapter = netdev_priv(netdev);
5693 	struct pci_dev *pdev = adapter->pdev;
5694 
5695 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5696 
5697 	if (!suspending)
5698 		pm_runtime_get_sync(&pdev->dev);
5699 
5700 	igc_down(adapter);
5701 
5702 	igc_release_hw_control(adapter);
5703 
5704 	igc_free_irq(adapter);
5705 
5706 	igc_free_all_tx_resources(adapter);
5707 	igc_free_all_rx_resources(adapter);
5708 
5709 	if (!suspending)
5710 		pm_runtime_put_sync(&pdev->dev);
5711 
5712 	return 0;
5713 }
5714 
5715 int igc_close(struct net_device *netdev)
5716 {
5717 	if (netif_device_present(netdev) || netdev->dismantle)
5718 		return __igc_close(netdev, false);
5719 	return 0;
5720 }
5721 
5722 /**
5723  * igc_ioctl - Access the hwtstamp interface
5724  * @netdev: network interface device structure
5725  * @ifr: interface request data
5726  * @cmd: ioctl command
5727  **/
5728 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5729 {
5730 	switch (cmd) {
5731 	case SIOCGHWTSTAMP:
5732 		return igc_ptp_get_ts_config(netdev, ifr);
5733 	case SIOCSHWTSTAMP:
5734 		return igc_ptp_set_ts_config(netdev, ifr);
5735 	default:
5736 		return -EOPNOTSUPP;
5737 	}
5738 }
5739 
5740 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5741 				      bool enable)
5742 {
5743 	struct igc_ring *ring;
5744 	int i;
5745 
5746 	if (queue < 0 || queue >= adapter->num_tx_queues)
5747 		return -EINVAL;
5748 
5749 	ring = adapter->tx_ring[queue];
5750 	ring->launchtime_enable = enable;
5751 
5752 	if (adapter->base_time)
5753 		return 0;
5754 
5755 	adapter->cycle_time = NSEC_PER_SEC;
5756 
5757 	for (i = 0; i < adapter->num_tx_queues; i++) {
5758 		ring = adapter->tx_ring[i];
5759 		ring->start_time = 0;
5760 		ring->end_time = NSEC_PER_SEC;
5761 	}
5762 
5763 	return 0;
5764 }
5765 
5766 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5767 {
5768 	struct timespec64 b;
5769 
5770 	b = ktime_to_timespec64(base_time);
5771 
5772 	return timespec64_compare(now, &b) > 0;
5773 }
5774 
5775 static bool validate_schedule(struct igc_adapter *adapter,
5776 			      const struct tc_taprio_qopt_offload *qopt)
5777 {
5778 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5779 	struct timespec64 now;
5780 	size_t n;
5781 
5782 	if (qopt->cycle_time_extension)
5783 		return false;
5784 
5785 	igc_ptp_read(adapter, &now);
5786 
5787 	/* If we program the controller's BASET registers with a time
5788 	 * in the future, it will hold all the packets until that
5789 	 * time, causing a lot of TX Hangs, so to avoid that, we
5790 	 * reject schedules that would start in the future.
5791 	 */
5792 	if (!is_base_time_past(qopt->base_time, &now))
5793 		return false;
5794 
5795 	for (n = 0; n < qopt->num_entries; n++) {
5796 		const struct tc_taprio_sched_entry *e;
5797 		int i;
5798 
5799 		e = &qopt->entries[n];
5800 
5801 		/* i225 only supports "global" frame preemption
5802 		 * settings.
5803 		 */
5804 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5805 			return false;
5806 
5807 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5808 			if (e->gate_mask & BIT(i))
5809 				queue_uses[i]++;
5810 
5811 			if (queue_uses[i] > 1)
5812 				return false;
5813 		}
5814 	}
5815 
5816 	return true;
5817 }
5818 
5819 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5820 				     struct tc_etf_qopt_offload *qopt)
5821 {
5822 	struct igc_hw *hw = &adapter->hw;
5823 	int err;
5824 
5825 	if (hw->mac.type != igc_i225)
5826 		return -EOPNOTSUPP;
5827 
5828 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5829 	if (err)
5830 		return err;
5831 
5832 	return igc_tsn_offload_apply(adapter);
5833 }
5834 
5835 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5836 				 struct tc_taprio_qopt_offload *qopt)
5837 {
5838 	u32 start_time = 0, end_time = 0;
5839 	size_t n;
5840 
5841 	if (!qopt->enable) {
5842 		adapter->base_time = 0;
5843 		return 0;
5844 	}
5845 
5846 	if (adapter->base_time)
5847 		return -EALREADY;
5848 
5849 	if (!validate_schedule(adapter, qopt))
5850 		return -EINVAL;
5851 
5852 	adapter->cycle_time = qopt->cycle_time;
5853 	adapter->base_time = qopt->base_time;
5854 
5855 	/* FIXME: be a little smarter about cases when the gate for a
5856 	 * queue stays open for more than one entry.
5857 	 */
5858 	for (n = 0; n < qopt->num_entries; n++) {
5859 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5860 		int i;
5861 
5862 		end_time += e->interval;
5863 
5864 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5865 			struct igc_ring *ring = adapter->tx_ring[i];
5866 
5867 			if (!(e->gate_mask & BIT(i)))
5868 				continue;
5869 
5870 			ring->start_time = start_time;
5871 			ring->end_time = end_time;
5872 		}
5873 
5874 		start_time += e->interval;
5875 	}
5876 
5877 	return 0;
5878 }
5879 
5880 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5881 					 struct tc_taprio_qopt_offload *qopt)
5882 {
5883 	struct igc_hw *hw = &adapter->hw;
5884 	int err;
5885 
5886 	if (hw->mac.type != igc_i225)
5887 		return -EOPNOTSUPP;
5888 
5889 	err = igc_save_qbv_schedule(adapter, qopt);
5890 	if (err)
5891 		return err;
5892 
5893 	return igc_tsn_offload_apply(adapter);
5894 }
5895 
5896 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5897 			void *type_data)
5898 {
5899 	struct igc_adapter *adapter = netdev_priv(dev);
5900 
5901 	switch (type) {
5902 	case TC_SETUP_QDISC_TAPRIO:
5903 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5904 
5905 	case TC_SETUP_QDISC_ETF:
5906 		return igc_tsn_enable_launchtime(adapter, type_data);
5907 
5908 	default:
5909 		return -EOPNOTSUPP;
5910 	}
5911 }
5912 
5913 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5914 {
5915 	struct igc_adapter *adapter = netdev_priv(dev);
5916 
5917 	switch (bpf->command) {
5918 	case XDP_SETUP_PROG:
5919 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5920 	case XDP_SETUP_XSK_POOL:
5921 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5922 					  bpf->xsk.queue_id);
5923 	default:
5924 		return -EOPNOTSUPP;
5925 	}
5926 }
5927 
5928 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5929 			struct xdp_frame **frames, u32 flags)
5930 {
5931 	struct igc_adapter *adapter = netdev_priv(dev);
5932 	int cpu = smp_processor_id();
5933 	struct netdev_queue *nq;
5934 	struct igc_ring *ring;
5935 	int i, drops;
5936 
5937 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5938 		return -ENETDOWN;
5939 
5940 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5941 		return -EINVAL;
5942 
5943 	ring = igc_xdp_get_tx_ring(adapter, cpu);
5944 	nq = txring_txq(ring);
5945 
5946 	__netif_tx_lock(nq, cpu);
5947 
5948 	drops = 0;
5949 	for (i = 0; i < num_frames; i++) {
5950 		int err;
5951 		struct xdp_frame *xdpf = frames[i];
5952 
5953 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
5954 		if (err) {
5955 			xdp_return_frame_rx_napi(xdpf);
5956 			drops++;
5957 		}
5958 	}
5959 
5960 	if (flags & XDP_XMIT_FLUSH)
5961 		igc_flush_tx_descriptors(ring);
5962 
5963 	__netif_tx_unlock(nq);
5964 
5965 	return num_frames - drops;
5966 }
5967 
5968 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5969 					struct igc_q_vector *q_vector)
5970 {
5971 	struct igc_hw *hw = &adapter->hw;
5972 	u32 eics = 0;
5973 
5974 	eics |= q_vector->eims_value;
5975 	wr32(IGC_EICS, eics);
5976 }
5977 
5978 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5979 {
5980 	struct igc_adapter *adapter = netdev_priv(dev);
5981 	struct igc_q_vector *q_vector;
5982 	struct igc_ring *ring;
5983 
5984 	if (test_bit(__IGC_DOWN, &adapter->state))
5985 		return -ENETDOWN;
5986 
5987 	if (!igc_xdp_is_enabled(adapter))
5988 		return -ENXIO;
5989 
5990 	if (queue_id >= adapter->num_rx_queues)
5991 		return -EINVAL;
5992 
5993 	ring = adapter->rx_ring[queue_id];
5994 
5995 	if (!ring->xsk_pool)
5996 		return -ENXIO;
5997 
5998 	q_vector = adapter->q_vector[queue_id];
5999 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6000 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6001 
6002 	return 0;
6003 }
6004 
6005 static const struct net_device_ops igc_netdev_ops = {
6006 	.ndo_open		= igc_open,
6007 	.ndo_stop		= igc_close,
6008 	.ndo_start_xmit		= igc_xmit_frame,
6009 	.ndo_set_rx_mode	= igc_set_rx_mode,
6010 	.ndo_set_mac_address	= igc_set_mac,
6011 	.ndo_change_mtu		= igc_change_mtu,
6012 	.ndo_get_stats64	= igc_get_stats64,
6013 	.ndo_fix_features	= igc_fix_features,
6014 	.ndo_set_features	= igc_set_features,
6015 	.ndo_features_check	= igc_features_check,
6016 	.ndo_eth_ioctl		= igc_ioctl,
6017 	.ndo_setup_tc		= igc_setup_tc,
6018 	.ndo_bpf		= igc_bpf,
6019 	.ndo_xdp_xmit		= igc_xdp_xmit,
6020 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6021 };
6022 
6023 /* PCIe configuration access */
6024 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6025 {
6026 	struct igc_adapter *adapter = hw->back;
6027 
6028 	pci_read_config_word(adapter->pdev, reg, value);
6029 }
6030 
6031 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6032 {
6033 	struct igc_adapter *adapter = hw->back;
6034 
6035 	pci_write_config_word(adapter->pdev, reg, *value);
6036 }
6037 
6038 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6039 {
6040 	struct igc_adapter *adapter = hw->back;
6041 
6042 	if (!pci_is_pcie(adapter->pdev))
6043 		return -IGC_ERR_CONFIG;
6044 
6045 	pcie_capability_read_word(adapter->pdev, reg, value);
6046 
6047 	return IGC_SUCCESS;
6048 }
6049 
6050 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6051 {
6052 	struct igc_adapter *adapter = hw->back;
6053 
6054 	if (!pci_is_pcie(adapter->pdev))
6055 		return -IGC_ERR_CONFIG;
6056 
6057 	pcie_capability_write_word(adapter->pdev, reg, *value);
6058 
6059 	return IGC_SUCCESS;
6060 }
6061 
6062 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6063 {
6064 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6065 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6066 	u32 value = 0;
6067 
6068 	value = readl(&hw_addr[reg]);
6069 
6070 	/* reads should not return all F's */
6071 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6072 		struct net_device *netdev = igc->netdev;
6073 
6074 		hw->hw_addr = NULL;
6075 		netif_device_detach(netdev);
6076 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6077 		WARN(pci_device_is_present(igc->pdev),
6078 		     "igc: Failed to read reg 0x%x!\n", reg);
6079 	}
6080 
6081 	return value;
6082 }
6083 
6084 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
6085 {
6086 	struct igc_mac_info *mac = &adapter->hw.mac;
6087 
6088 	mac->autoneg = false;
6089 
6090 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6091 	 * for the switch() below to work
6092 	 */
6093 	if ((spd & 1) || (dplx & ~1))
6094 		goto err_inval;
6095 
6096 	switch (spd + dplx) {
6097 	case SPEED_10 + DUPLEX_HALF:
6098 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6099 		break;
6100 	case SPEED_10 + DUPLEX_FULL:
6101 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6102 		break;
6103 	case SPEED_100 + DUPLEX_HALF:
6104 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6105 		break;
6106 	case SPEED_100 + DUPLEX_FULL:
6107 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6108 		break;
6109 	case SPEED_1000 + DUPLEX_FULL:
6110 		mac->autoneg = true;
6111 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6112 		break;
6113 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6114 		goto err_inval;
6115 	case SPEED_2500 + DUPLEX_FULL:
6116 		mac->autoneg = true;
6117 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
6118 		break;
6119 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
6120 	default:
6121 		goto err_inval;
6122 	}
6123 
6124 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6125 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6126 
6127 	return 0;
6128 
6129 err_inval:
6130 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
6131 	return -EINVAL;
6132 }
6133 
6134 /**
6135  * igc_probe - Device Initialization Routine
6136  * @pdev: PCI device information struct
6137  * @ent: entry in igc_pci_tbl
6138  *
6139  * Returns 0 on success, negative on failure
6140  *
6141  * igc_probe initializes an adapter identified by a pci_dev structure.
6142  * The OS initialization, configuring the adapter private structure,
6143  * and a hardware reset occur.
6144  */
6145 static int igc_probe(struct pci_dev *pdev,
6146 		     const struct pci_device_id *ent)
6147 {
6148 	struct igc_adapter *adapter;
6149 	struct net_device *netdev;
6150 	struct igc_hw *hw;
6151 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6152 	int err, pci_using_dac;
6153 
6154 	err = pci_enable_device_mem(pdev);
6155 	if (err)
6156 		return err;
6157 
6158 	pci_using_dac = 0;
6159 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6160 	if (!err) {
6161 		pci_using_dac = 1;
6162 	} else {
6163 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6164 		if (err) {
6165 			dev_err(&pdev->dev,
6166 				"No usable DMA configuration, aborting\n");
6167 			goto err_dma;
6168 		}
6169 	}
6170 
6171 	err = pci_request_mem_regions(pdev, igc_driver_name);
6172 	if (err)
6173 		goto err_pci_reg;
6174 
6175 	pci_enable_pcie_error_reporting(pdev);
6176 
6177 	pci_set_master(pdev);
6178 
6179 	err = -ENOMEM;
6180 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6181 				   IGC_MAX_TX_QUEUES);
6182 
6183 	if (!netdev)
6184 		goto err_alloc_etherdev;
6185 
6186 	SET_NETDEV_DEV(netdev, &pdev->dev);
6187 
6188 	pci_set_drvdata(pdev, netdev);
6189 	adapter = netdev_priv(netdev);
6190 	adapter->netdev = netdev;
6191 	adapter->pdev = pdev;
6192 	hw = &adapter->hw;
6193 	hw->back = adapter;
6194 	adapter->port_num = hw->bus.func;
6195 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6196 
6197 	err = pci_save_state(pdev);
6198 	if (err)
6199 		goto err_ioremap;
6200 
6201 	err = -EIO;
6202 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6203 				   pci_resource_len(pdev, 0));
6204 	if (!adapter->io_addr)
6205 		goto err_ioremap;
6206 
6207 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6208 	hw->hw_addr = adapter->io_addr;
6209 
6210 	netdev->netdev_ops = &igc_netdev_ops;
6211 	igc_ethtool_set_ops(netdev);
6212 	netdev->watchdog_timeo = 5 * HZ;
6213 
6214 	netdev->mem_start = pci_resource_start(pdev, 0);
6215 	netdev->mem_end = pci_resource_end(pdev, 0);
6216 
6217 	/* PCI config space info */
6218 	hw->vendor_id = pdev->vendor;
6219 	hw->device_id = pdev->device;
6220 	hw->revision_id = pdev->revision;
6221 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6222 	hw->subsystem_device_id = pdev->subsystem_device;
6223 
6224 	/* Copy the default MAC and PHY function pointers */
6225 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6226 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6227 
6228 	/* Initialize skew-specific constants */
6229 	err = ei->get_invariants(hw);
6230 	if (err)
6231 		goto err_sw_init;
6232 
6233 	/* Add supported features to the features list*/
6234 	netdev->features |= NETIF_F_SG;
6235 	netdev->features |= NETIF_F_TSO;
6236 	netdev->features |= NETIF_F_TSO6;
6237 	netdev->features |= NETIF_F_TSO_ECN;
6238 	netdev->features |= NETIF_F_RXCSUM;
6239 	netdev->features |= NETIF_F_HW_CSUM;
6240 	netdev->features |= NETIF_F_SCTP_CRC;
6241 	netdev->features |= NETIF_F_HW_TC;
6242 
6243 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6244 				  NETIF_F_GSO_GRE_CSUM | \
6245 				  NETIF_F_GSO_IPXIP4 | \
6246 				  NETIF_F_GSO_IPXIP6 | \
6247 				  NETIF_F_GSO_UDP_TUNNEL | \
6248 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6249 
6250 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6251 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6252 
6253 	/* setup the private structure */
6254 	err = igc_sw_init(adapter);
6255 	if (err)
6256 		goto err_sw_init;
6257 
6258 	/* copy netdev features into list of user selectable features */
6259 	netdev->hw_features |= NETIF_F_NTUPLE;
6260 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6261 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6262 	netdev->hw_features |= netdev->features;
6263 
6264 	if (pci_using_dac)
6265 		netdev->features |= NETIF_F_HIGHDMA;
6266 
6267 	netdev->vlan_features |= netdev->features;
6268 
6269 	/* MTU range: 68 - 9216 */
6270 	netdev->min_mtu = ETH_MIN_MTU;
6271 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6272 
6273 	/* before reading the NVM, reset the controller to put the device in a
6274 	 * known good starting state
6275 	 */
6276 	hw->mac.ops.reset_hw(hw);
6277 
6278 	if (igc_get_flash_presence_i225(hw)) {
6279 		if (hw->nvm.ops.validate(hw) < 0) {
6280 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6281 			err = -EIO;
6282 			goto err_eeprom;
6283 		}
6284 	}
6285 
6286 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6287 		/* copy the MAC address out of the NVM */
6288 		if (hw->mac.ops.read_mac_addr(hw))
6289 			dev_err(&pdev->dev, "NVM Read Error\n");
6290 	}
6291 
6292 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
6293 
6294 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6295 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6296 		err = -EIO;
6297 		goto err_eeprom;
6298 	}
6299 
6300 	/* configure RXPBSIZE and TXPBSIZE */
6301 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6302 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6303 
6304 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6305 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6306 
6307 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6308 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6309 
6310 	/* Initialize link properties that are user-changeable */
6311 	adapter->fc_autoneg = true;
6312 	hw->mac.autoneg = true;
6313 	hw->phy.autoneg_advertised = 0xaf;
6314 
6315 	hw->fc.requested_mode = igc_fc_default;
6316 	hw->fc.current_mode = igc_fc_default;
6317 
6318 	/* By default, support wake on port A */
6319 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6320 
6321 	/* initialize the wol settings based on the eeprom settings */
6322 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6323 		adapter->wol |= IGC_WUFC_MAG;
6324 
6325 	device_set_wakeup_enable(&adapter->pdev->dev,
6326 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6327 
6328 	igc_ptp_init(adapter);
6329 
6330 	/* reset the hardware with the new settings */
6331 	igc_reset(adapter);
6332 
6333 	/* let the f/w know that the h/w is now under the control of the
6334 	 * driver.
6335 	 */
6336 	igc_get_hw_control(adapter);
6337 
6338 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6339 	err = register_netdev(netdev);
6340 	if (err)
6341 		goto err_register;
6342 
6343 	 /* carrier off reporting is important to ethtool even BEFORE open */
6344 	netif_carrier_off(netdev);
6345 
6346 	/* Check if Media Autosense is enabled */
6347 	adapter->ei = *ei;
6348 
6349 	/* print pcie link status and MAC address */
6350 	pcie_print_link_status(pdev);
6351 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6352 
6353 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6354 	/* Disable EEE for internal PHY devices */
6355 	hw->dev_spec._base.eee_enable = false;
6356 	adapter->flags &= ~IGC_FLAG_EEE;
6357 	igc_set_eee_i225(hw, false, false, false);
6358 
6359 	pm_runtime_put_noidle(&pdev->dev);
6360 
6361 	return 0;
6362 
6363 err_register:
6364 	igc_release_hw_control(adapter);
6365 err_eeprom:
6366 	if (!igc_check_reset_block(hw))
6367 		igc_reset_phy(hw);
6368 err_sw_init:
6369 	igc_clear_interrupt_scheme(adapter);
6370 	iounmap(adapter->io_addr);
6371 err_ioremap:
6372 	free_netdev(netdev);
6373 err_alloc_etherdev:
6374 	pci_disable_pcie_error_reporting(pdev);
6375 	pci_release_mem_regions(pdev);
6376 err_pci_reg:
6377 err_dma:
6378 	pci_disable_device(pdev);
6379 	return err;
6380 }
6381 
6382 /**
6383  * igc_remove - Device Removal Routine
6384  * @pdev: PCI device information struct
6385  *
6386  * igc_remove is called by the PCI subsystem to alert the driver
6387  * that it should release a PCI device.  This could be caused by a
6388  * Hot-Plug event, or because the driver is going to be removed from
6389  * memory.
6390  */
6391 static void igc_remove(struct pci_dev *pdev)
6392 {
6393 	struct net_device *netdev = pci_get_drvdata(pdev);
6394 	struct igc_adapter *adapter = netdev_priv(netdev);
6395 
6396 	pm_runtime_get_noresume(&pdev->dev);
6397 
6398 	igc_flush_nfc_rules(adapter);
6399 
6400 	igc_ptp_stop(adapter);
6401 
6402 	set_bit(__IGC_DOWN, &adapter->state);
6403 
6404 	del_timer_sync(&adapter->watchdog_timer);
6405 	del_timer_sync(&adapter->phy_info_timer);
6406 
6407 	cancel_work_sync(&adapter->reset_task);
6408 	cancel_work_sync(&adapter->watchdog_task);
6409 
6410 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6411 	 * would have already happened in close and is redundant.
6412 	 */
6413 	igc_release_hw_control(adapter);
6414 	unregister_netdev(netdev);
6415 
6416 	igc_clear_interrupt_scheme(adapter);
6417 	pci_iounmap(pdev, adapter->io_addr);
6418 	pci_release_mem_regions(pdev);
6419 
6420 	free_netdev(netdev);
6421 
6422 	pci_disable_pcie_error_reporting(pdev);
6423 
6424 	pci_disable_device(pdev);
6425 }
6426 
6427 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6428 			  bool runtime)
6429 {
6430 	struct net_device *netdev = pci_get_drvdata(pdev);
6431 	struct igc_adapter *adapter = netdev_priv(netdev);
6432 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6433 	struct igc_hw *hw = &adapter->hw;
6434 	u32 ctrl, rctl, status;
6435 	bool wake;
6436 
6437 	rtnl_lock();
6438 	netif_device_detach(netdev);
6439 
6440 	if (netif_running(netdev))
6441 		__igc_close(netdev, true);
6442 
6443 	igc_ptp_suspend(adapter);
6444 
6445 	igc_clear_interrupt_scheme(adapter);
6446 	rtnl_unlock();
6447 
6448 	status = rd32(IGC_STATUS);
6449 	if (status & IGC_STATUS_LU)
6450 		wufc &= ~IGC_WUFC_LNKC;
6451 
6452 	if (wufc) {
6453 		igc_setup_rctl(adapter);
6454 		igc_set_rx_mode(netdev);
6455 
6456 		/* turn on all-multi mode if wake on multicast is enabled */
6457 		if (wufc & IGC_WUFC_MC) {
6458 			rctl = rd32(IGC_RCTL);
6459 			rctl |= IGC_RCTL_MPE;
6460 			wr32(IGC_RCTL, rctl);
6461 		}
6462 
6463 		ctrl = rd32(IGC_CTRL);
6464 		ctrl |= IGC_CTRL_ADVD3WUC;
6465 		wr32(IGC_CTRL, ctrl);
6466 
6467 		/* Allow time for pending master requests to run */
6468 		igc_disable_pcie_master(hw);
6469 
6470 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6471 		wr32(IGC_WUFC, wufc);
6472 	} else {
6473 		wr32(IGC_WUC, 0);
6474 		wr32(IGC_WUFC, 0);
6475 	}
6476 
6477 	wake = wufc || adapter->en_mng_pt;
6478 	if (!wake)
6479 		igc_power_down_phy_copper_base(&adapter->hw);
6480 	else
6481 		igc_power_up_link(adapter);
6482 
6483 	if (enable_wake)
6484 		*enable_wake = wake;
6485 
6486 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6487 	 * would have already happened in close and is redundant.
6488 	 */
6489 	igc_release_hw_control(adapter);
6490 
6491 	pci_disable_device(pdev);
6492 
6493 	return 0;
6494 }
6495 
6496 #ifdef CONFIG_PM
6497 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6498 {
6499 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6500 }
6501 
6502 static void igc_deliver_wake_packet(struct net_device *netdev)
6503 {
6504 	struct igc_adapter *adapter = netdev_priv(netdev);
6505 	struct igc_hw *hw = &adapter->hw;
6506 	struct sk_buff *skb;
6507 	u32 wupl;
6508 
6509 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6510 
6511 	/* WUPM stores only the first 128 bytes of the wake packet.
6512 	 * Read the packet only if we have the whole thing.
6513 	 */
6514 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6515 		return;
6516 
6517 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6518 	if (!skb)
6519 		return;
6520 
6521 	skb_put(skb, wupl);
6522 
6523 	/* Ensure reads are 32-bit aligned */
6524 	wupl = roundup(wupl, 4);
6525 
6526 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6527 
6528 	skb->protocol = eth_type_trans(skb, netdev);
6529 	netif_rx(skb);
6530 }
6531 
6532 static int __maybe_unused igc_resume(struct device *dev)
6533 {
6534 	struct pci_dev *pdev = to_pci_dev(dev);
6535 	struct net_device *netdev = pci_get_drvdata(pdev);
6536 	struct igc_adapter *adapter = netdev_priv(netdev);
6537 	struct igc_hw *hw = &adapter->hw;
6538 	u32 err, val;
6539 
6540 	pci_set_power_state(pdev, PCI_D0);
6541 	pci_restore_state(pdev);
6542 	pci_save_state(pdev);
6543 
6544 	if (!pci_device_is_present(pdev))
6545 		return -ENODEV;
6546 	err = pci_enable_device_mem(pdev);
6547 	if (err) {
6548 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6549 		return err;
6550 	}
6551 	pci_set_master(pdev);
6552 
6553 	pci_enable_wake(pdev, PCI_D3hot, 0);
6554 	pci_enable_wake(pdev, PCI_D3cold, 0);
6555 
6556 	if (igc_init_interrupt_scheme(adapter, true)) {
6557 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6558 		return -ENOMEM;
6559 	}
6560 
6561 	igc_reset(adapter);
6562 
6563 	/* let the f/w know that the h/w is now under the control of the
6564 	 * driver.
6565 	 */
6566 	igc_get_hw_control(adapter);
6567 
6568 	val = rd32(IGC_WUS);
6569 	if (val & WAKE_PKT_WUS)
6570 		igc_deliver_wake_packet(netdev);
6571 
6572 	wr32(IGC_WUS, ~0);
6573 
6574 	rtnl_lock();
6575 	if (!err && netif_running(netdev))
6576 		err = __igc_open(netdev, true);
6577 
6578 	if (!err)
6579 		netif_device_attach(netdev);
6580 	rtnl_unlock();
6581 
6582 	return err;
6583 }
6584 
6585 static int __maybe_unused igc_runtime_resume(struct device *dev)
6586 {
6587 	return igc_resume(dev);
6588 }
6589 
6590 static int __maybe_unused igc_suspend(struct device *dev)
6591 {
6592 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6593 }
6594 
6595 static int __maybe_unused igc_runtime_idle(struct device *dev)
6596 {
6597 	struct net_device *netdev = dev_get_drvdata(dev);
6598 	struct igc_adapter *adapter = netdev_priv(netdev);
6599 
6600 	if (!igc_has_link(adapter))
6601 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6602 
6603 	return -EBUSY;
6604 }
6605 #endif /* CONFIG_PM */
6606 
6607 static void igc_shutdown(struct pci_dev *pdev)
6608 {
6609 	bool wake;
6610 
6611 	__igc_shutdown(pdev, &wake, 0);
6612 
6613 	if (system_state == SYSTEM_POWER_OFF) {
6614 		pci_wake_from_d3(pdev, wake);
6615 		pci_set_power_state(pdev, PCI_D3hot);
6616 	}
6617 }
6618 
6619 /**
6620  *  igc_io_error_detected - called when PCI error is detected
6621  *  @pdev: Pointer to PCI device
6622  *  @state: The current PCI connection state
6623  *
6624  *  This function is called after a PCI bus error affecting
6625  *  this device has been detected.
6626  **/
6627 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6628 					      pci_channel_state_t state)
6629 {
6630 	struct net_device *netdev = pci_get_drvdata(pdev);
6631 	struct igc_adapter *adapter = netdev_priv(netdev);
6632 
6633 	netif_device_detach(netdev);
6634 
6635 	if (state == pci_channel_io_perm_failure)
6636 		return PCI_ERS_RESULT_DISCONNECT;
6637 
6638 	if (netif_running(netdev))
6639 		igc_down(adapter);
6640 	pci_disable_device(pdev);
6641 
6642 	/* Request a slot reset. */
6643 	return PCI_ERS_RESULT_NEED_RESET;
6644 }
6645 
6646 /**
6647  *  igc_io_slot_reset - called after the PCI bus has been reset.
6648  *  @pdev: Pointer to PCI device
6649  *
6650  *  Restart the card from scratch, as if from a cold-boot. Implementation
6651  *  resembles the first-half of the igc_resume routine.
6652  **/
6653 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6654 {
6655 	struct net_device *netdev = pci_get_drvdata(pdev);
6656 	struct igc_adapter *adapter = netdev_priv(netdev);
6657 	struct igc_hw *hw = &adapter->hw;
6658 	pci_ers_result_t result;
6659 
6660 	if (pci_enable_device_mem(pdev)) {
6661 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6662 		result = PCI_ERS_RESULT_DISCONNECT;
6663 	} else {
6664 		pci_set_master(pdev);
6665 		pci_restore_state(pdev);
6666 		pci_save_state(pdev);
6667 
6668 		pci_enable_wake(pdev, PCI_D3hot, 0);
6669 		pci_enable_wake(pdev, PCI_D3cold, 0);
6670 
6671 		/* In case of PCI error, adapter loses its HW address
6672 		 * so we should re-assign it here.
6673 		 */
6674 		hw->hw_addr = adapter->io_addr;
6675 
6676 		igc_reset(adapter);
6677 		wr32(IGC_WUS, ~0);
6678 		result = PCI_ERS_RESULT_RECOVERED;
6679 	}
6680 
6681 	return result;
6682 }
6683 
6684 /**
6685  *  igc_io_resume - called when traffic can start to flow again.
6686  *  @pdev: Pointer to PCI device
6687  *
6688  *  This callback is called when the error recovery driver tells us that
6689  *  its OK to resume normal operation. Implementation resembles the
6690  *  second-half of the igc_resume routine.
6691  */
6692 static void igc_io_resume(struct pci_dev *pdev)
6693 {
6694 	struct net_device *netdev = pci_get_drvdata(pdev);
6695 	struct igc_adapter *adapter = netdev_priv(netdev);
6696 
6697 	rtnl_lock();
6698 	if (netif_running(netdev)) {
6699 		if (igc_open(netdev)) {
6700 			netdev_err(netdev, "igc_open failed after reset\n");
6701 			return;
6702 		}
6703 	}
6704 
6705 	netif_device_attach(netdev);
6706 
6707 	/* let the f/w know that the h/w is now under the control of the
6708 	 * driver.
6709 	 */
6710 	igc_get_hw_control(adapter);
6711 	rtnl_unlock();
6712 }
6713 
6714 static const struct pci_error_handlers igc_err_handler = {
6715 	.error_detected = igc_io_error_detected,
6716 	.slot_reset = igc_io_slot_reset,
6717 	.resume = igc_io_resume,
6718 };
6719 
6720 #ifdef CONFIG_PM
6721 static const struct dev_pm_ops igc_pm_ops = {
6722 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6723 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6724 			   igc_runtime_idle)
6725 };
6726 #endif
6727 
6728 static struct pci_driver igc_driver = {
6729 	.name     = igc_driver_name,
6730 	.id_table = igc_pci_tbl,
6731 	.probe    = igc_probe,
6732 	.remove   = igc_remove,
6733 #ifdef CONFIG_PM
6734 	.driver.pm = &igc_pm_ops,
6735 #endif
6736 	.shutdown = igc_shutdown,
6737 	.err_handler = &igc_err_handler,
6738 };
6739 
6740 /**
6741  * igc_reinit_queues - return error
6742  * @adapter: pointer to adapter structure
6743  */
6744 int igc_reinit_queues(struct igc_adapter *adapter)
6745 {
6746 	struct net_device *netdev = adapter->netdev;
6747 	int err = 0;
6748 
6749 	if (netif_running(netdev))
6750 		igc_close(netdev);
6751 
6752 	igc_reset_interrupt_capability(adapter);
6753 
6754 	if (igc_init_interrupt_scheme(adapter, true)) {
6755 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6756 		return -ENOMEM;
6757 	}
6758 
6759 	if (netif_running(netdev))
6760 		err = igc_open(netdev);
6761 
6762 	return err;
6763 }
6764 
6765 /**
6766  * igc_get_hw_dev - return device
6767  * @hw: pointer to hardware structure
6768  *
6769  * used by hardware layer to print debugging information
6770  */
6771 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6772 {
6773 	struct igc_adapter *adapter = hw->back;
6774 
6775 	return adapter->netdev;
6776 }
6777 
6778 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6779 {
6780 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6781 	u8 idx = ring->reg_idx;
6782 	u32 rxdctl;
6783 
6784 	rxdctl = rd32(IGC_RXDCTL(idx));
6785 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6786 	rxdctl |= IGC_RXDCTL_SWFLUSH;
6787 	wr32(IGC_RXDCTL(idx), rxdctl);
6788 }
6789 
6790 void igc_disable_rx_ring(struct igc_ring *ring)
6791 {
6792 	igc_disable_rx_ring_hw(ring);
6793 	igc_clean_rx_ring(ring);
6794 }
6795 
6796 void igc_enable_rx_ring(struct igc_ring *ring)
6797 {
6798 	struct igc_adapter *adapter = ring->q_vector->adapter;
6799 
6800 	igc_configure_rx_ring(adapter, ring);
6801 
6802 	if (ring->xsk_pool)
6803 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6804 	else
6805 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6806 }
6807 
6808 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6809 {
6810 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6811 	u8 idx = ring->reg_idx;
6812 	u32 txdctl;
6813 
6814 	txdctl = rd32(IGC_TXDCTL(idx));
6815 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6816 	txdctl |= IGC_TXDCTL_SWFLUSH;
6817 	wr32(IGC_TXDCTL(idx), txdctl);
6818 }
6819 
6820 void igc_disable_tx_ring(struct igc_ring *ring)
6821 {
6822 	igc_disable_tx_ring_hw(ring);
6823 	igc_clean_tx_ring(ring);
6824 }
6825 
6826 void igc_enable_tx_ring(struct igc_ring *ring)
6827 {
6828 	struct igc_adapter *adapter = ring->q_vector->adapter;
6829 
6830 	igc_configure_tx_ring(adapter, ring);
6831 }
6832 
6833 /**
6834  * igc_init_module - Driver Registration Routine
6835  *
6836  * igc_init_module is the first routine called when the driver is
6837  * loaded. All it does is register with the PCI subsystem.
6838  */
6839 static int __init igc_init_module(void)
6840 {
6841 	int ret;
6842 
6843 	pr_info("%s\n", igc_driver_string);
6844 	pr_info("%s\n", igc_copyright);
6845 
6846 	ret = pci_register_driver(&igc_driver);
6847 	return ret;
6848 }
6849 
6850 module_init(igc_init_module);
6851 
6852 /**
6853  * igc_exit_module - Driver Exit Cleanup Routine
6854  *
6855  * igc_exit_module is called just before the driver is removed
6856  * from memory.
6857  */
6858 static void __exit igc_exit_module(void)
6859 {
6860 	pci_unregister_driver(&igc_driver);
6861 }
6862 
6863 module_exit(igc_exit_module);
6864 /* igc_main.c */
6865