xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 		return -ENOMEM;
1097 	}
1098 
1099 	buffer->skb = skb;
1100 	buffer->protocol = 0;
1101 	buffer->bytecount = skb->len;
1102 	buffer->gso_segs = 1;
1103 	buffer->time_stamp = jiffies;
1104 	dma_unmap_len_set(buffer, len, skb->len);
1105 	dma_unmap_addr_set(buffer, dma, dma);
1106 
1107 	return 0;
1108 }
1109 
1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 					struct sk_buff *skb,
1112 					struct igc_tx_buffer *first)
1113 {
1114 	union igc_adv_tx_desc *desc;
1115 	u32 cmd_type, olinfo_status;
1116 	int err;
1117 
1118 	if (!igc_desc_unused(ring))
1119 		return -EBUSY;
1120 
1121 	err = igc_init_empty_frame(ring, first, skb);
1122 	if (err)
1123 		return err;
1124 
1125 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 		   first->bytecount;
1128 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129 
1130 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134 
1135 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136 
1137 	first->next_to_watch = desc;
1138 
1139 	ring->next_to_use++;
1140 	if (ring->next_to_use == ring->count)
1141 		ring->next_to_use = 0;
1142 
1143 	return 0;
1144 }
1145 
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147 
1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 			    __le32 launch_time, bool first_flag,
1150 			    u32 vlan_macip_lens, u32 type_tucmd,
1151 			    u32 mss_l4len_idx)
1152 {
1153 	struct igc_adv_tx_context_desc *context_desc;
1154 	u16 i = tx_ring->next_to_use;
1155 
1156 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157 
1158 	i++;
1159 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160 
1161 	/* set bits to identify this as an advanced context descriptor */
1162 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163 
1164 	/* For i225, context index must be unique per ring. */
1165 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1167 
1168 	if (first_flag)
1169 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170 
1171 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1172 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1173 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1174 	context_desc->launch_time	= launch_time;
1175 }
1176 
1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 			__le32 launch_time, bool first_flag)
1179 {
1180 	struct sk_buff *skb = first->skb;
1181 	u32 vlan_macip_lens = 0;
1182 	u32 type_tucmd = 0;
1183 
1184 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 		    !tx_ring->launchtime_enable)
1188 			return;
1189 		goto no_csum;
1190 	}
1191 
1192 	switch (skb->csum_offset) {
1193 	case offsetof(struct tcphdr, check):
1194 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 		fallthrough;
1196 	case offsetof(struct udphdr, check):
1197 		break;
1198 	case offsetof(struct sctphdr, checksum):
1199 		/* validate that this is actually an SCTP request */
1200 		if (skb_csum_is_sctp(skb)) {
1201 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 			break;
1203 		}
1204 		fallthrough;
1205 	default:
1206 		skb_checksum_help(skb);
1207 		goto csum_failed;
1208 	}
1209 
1210 	/* update TX checksum flag */
1211 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 			  skb_network_offset(skb);
1214 no_csum:
1215 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217 
1218 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 			vlan_macip_lens, type_tucmd, 0);
1220 }
1221 
1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 	struct net_device *netdev = tx_ring->netdev;
1225 
1226 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1227 
1228 	/* memory barriier comment */
1229 	smp_mb();
1230 
1231 	/* We need to check again in a case another CPU has just
1232 	 * made room available.
1233 	 */
1234 	if (igc_desc_unused(tx_ring) < size)
1235 		return -EBUSY;
1236 
1237 	/* A reprieve! */
1238 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1239 
1240 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 	tx_ring->tx_stats.restart_queue2++;
1242 	u64_stats_update_end(&tx_ring->tx_syncp2);
1243 
1244 	return 0;
1245 }
1246 
1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 	if (igc_desc_unused(tx_ring) >= size)
1250 		return 0;
1251 	return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253 
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 	(((_flag) <= (_result)) ?				\
1256 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1257 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258 
1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 	/* set type for advanced descriptor with frame checksum insertion */
1262 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 		       IGC_ADVTXD_DCMD_DEXT |
1264 		       IGC_ADVTXD_DCMD_IFCS;
1265 
1266 	/* set HW vlan bit if vlan is present */
1267 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 				 IGC_ADVTXD_DCMD_VLE);
1269 
1270 	/* set segmentation bits for TSO */
1271 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 				 (IGC_ADVTXD_DCMD_TSE));
1273 
1274 	/* set timestamp bit if present, will select the register set
1275 	 * based on the _TSTAMP(_X) bit.
1276 	 */
1277 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278 				 (IGC_ADVTXD_MAC_TSTAMP));
1279 
1280 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281 				 (IGC_ADVTXD_TSTAMP_REG_1));
1282 
1283 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284 				 (IGC_ADVTXD_TSTAMP_REG_2));
1285 
1286 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287 				 (IGC_ADVTXD_TSTAMP_REG_3));
1288 
1289 	/* insert frame checksum */
1290 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291 
1292 	return cmd_type;
1293 }
1294 
1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296 				 union igc_adv_tx_desc *tx_desc,
1297 				 u32 tx_flags, unsigned int paylen)
1298 {
1299 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300 
1301 	/* insert L4 checksum */
1302 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1303 				      (IGC_TXD_POPTS_TXSM << 8));
1304 
1305 	/* insert IPv4 checksum */
1306 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1307 				      (IGC_TXD_POPTS_IXSM << 8));
1308 
1309 	/* Use the second timer (free running, in general) for the timestamp */
1310 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1311 				      IGC_TXD_PTP2_TIMER_1);
1312 
1313 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1314 }
1315 
1316 static int igc_tx_map(struct igc_ring *tx_ring,
1317 		      struct igc_tx_buffer *first,
1318 		      const u8 hdr_len)
1319 {
1320 	struct sk_buff *skb = first->skb;
1321 	struct igc_tx_buffer *tx_buffer;
1322 	union igc_adv_tx_desc *tx_desc;
1323 	u32 tx_flags = first->tx_flags;
1324 	skb_frag_t *frag;
1325 	u16 i = tx_ring->next_to_use;
1326 	unsigned int data_len, size;
1327 	dma_addr_t dma;
1328 	u32 cmd_type;
1329 
1330 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1331 	tx_desc = IGC_TX_DESC(tx_ring, i);
1332 
1333 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1334 
1335 	size = skb_headlen(skb);
1336 	data_len = skb->data_len;
1337 
1338 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1339 
1340 	tx_buffer = first;
1341 
1342 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1343 		if (dma_mapping_error(tx_ring->dev, dma))
1344 			goto dma_error;
1345 
1346 		/* record length, and DMA address */
1347 		dma_unmap_len_set(tx_buffer, len, size);
1348 		dma_unmap_addr_set(tx_buffer, dma, dma);
1349 
1350 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1351 
1352 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1353 			tx_desc->read.cmd_type_len =
1354 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1355 
1356 			i++;
1357 			tx_desc++;
1358 			if (i == tx_ring->count) {
1359 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1360 				i = 0;
1361 			}
1362 			tx_desc->read.olinfo_status = 0;
1363 
1364 			dma += IGC_MAX_DATA_PER_TXD;
1365 			size -= IGC_MAX_DATA_PER_TXD;
1366 
1367 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1368 		}
1369 
1370 		if (likely(!data_len))
1371 			break;
1372 
1373 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1374 
1375 		i++;
1376 		tx_desc++;
1377 		if (i == tx_ring->count) {
1378 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1379 			i = 0;
1380 		}
1381 		tx_desc->read.olinfo_status = 0;
1382 
1383 		size = skb_frag_size(frag);
1384 		data_len -= size;
1385 
1386 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1387 				       size, DMA_TO_DEVICE);
1388 
1389 		tx_buffer = &tx_ring->tx_buffer_info[i];
1390 	}
1391 
1392 	/* write last descriptor with RS and EOP bits */
1393 	cmd_type |= size | IGC_TXD_DCMD;
1394 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1395 
1396 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1397 
1398 	/* set the timestamp */
1399 	first->time_stamp = jiffies;
1400 
1401 	skb_tx_timestamp(skb);
1402 
1403 	/* Force memory writes to complete before letting h/w know there
1404 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1405 	 * memory model archs, such as IA-64).
1406 	 *
1407 	 * We also need this memory barrier to make certain all of the
1408 	 * status bits have been updated before next_to_watch is written.
1409 	 */
1410 	wmb();
1411 
1412 	/* set next_to_watch value indicating a packet is present */
1413 	first->next_to_watch = tx_desc;
1414 
1415 	i++;
1416 	if (i == tx_ring->count)
1417 		i = 0;
1418 
1419 	tx_ring->next_to_use = i;
1420 
1421 	/* Make sure there is space in the ring for the next send. */
1422 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1423 
1424 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1425 		writel(i, tx_ring->tail);
1426 	}
1427 
1428 	return 0;
1429 dma_error:
1430 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1431 	tx_buffer = &tx_ring->tx_buffer_info[i];
1432 
1433 	/* clear dma mappings for failed tx_buffer_info map */
1434 	while (tx_buffer != first) {
1435 		if (dma_unmap_len(tx_buffer, len))
1436 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437 
1438 		if (i-- == 0)
1439 			i += tx_ring->count;
1440 		tx_buffer = &tx_ring->tx_buffer_info[i];
1441 	}
1442 
1443 	if (dma_unmap_len(tx_buffer, len))
1444 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1445 
1446 	dev_kfree_skb_any(tx_buffer->skb);
1447 	tx_buffer->skb = NULL;
1448 
1449 	tx_ring->next_to_use = i;
1450 
1451 	return -1;
1452 }
1453 
1454 static int igc_tso(struct igc_ring *tx_ring,
1455 		   struct igc_tx_buffer *first,
1456 		   __le32 launch_time, bool first_flag,
1457 		   u8 *hdr_len)
1458 {
1459 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1460 	struct sk_buff *skb = first->skb;
1461 	union {
1462 		struct iphdr *v4;
1463 		struct ipv6hdr *v6;
1464 		unsigned char *hdr;
1465 	} ip;
1466 	union {
1467 		struct tcphdr *tcp;
1468 		struct udphdr *udp;
1469 		unsigned char *hdr;
1470 	} l4;
1471 	u32 paylen, l4_offset;
1472 	int err;
1473 
1474 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1475 		return 0;
1476 
1477 	if (!skb_is_gso(skb))
1478 		return 0;
1479 
1480 	err = skb_cow_head(skb, 0);
1481 	if (err < 0)
1482 		return err;
1483 
1484 	ip.hdr = skb_network_header(skb);
1485 	l4.hdr = skb_checksum_start(skb);
1486 
1487 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1488 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1489 
1490 	/* initialize outer IP header fields */
1491 	if (ip.v4->version == 4) {
1492 		unsigned char *csum_start = skb_checksum_start(skb);
1493 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1494 
1495 		/* IP header will have to cancel out any data that
1496 		 * is not a part of the outer IP header
1497 		 */
1498 		ip.v4->check = csum_fold(csum_partial(trans_start,
1499 						      csum_start - trans_start,
1500 						      0));
1501 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1502 
1503 		ip.v4->tot_len = 0;
1504 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1505 				   IGC_TX_FLAGS_CSUM |
1506 				   IGC_TX_FLAGS_IPV4;
1507 	} else {
1508 		ip.v6->payload_len = 0;
1509 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1510 				   IGC_TX_FLAGS_CSUM;
1511 	}
1512 
1513 	/* determine offset of inner transport header */
1514 	l4_offset = l4.hdr - skb->data;
1515 
1516 	/* remove payload length from inner checksum */
1517 	paylen = skb->len - l4_offset;
1518 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1519 		/* compute length of segmentation header */
1520 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1521 		csum_replace_by_diff(&l4.tcp->check,
1522 				     (__force __wsum)htonl(paylen));
1523 	} else {
1524 		/* compute length of segmentation header */
1525 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1526 		csum_replace_by_diff(&l4.udp->check,
1527 				     (__force __wsum)htonl(paylen));
1528 	}
1529 
1530 	/* update gso size and bytecount with header size */
1531 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1532 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1533 
1534 	/* MSS L4LEN IDX */
1535 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1536 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1537 
1538 	/* VLAN MACLEN IPLEN */
1539 	vlan_macip_lens = l4.hdr - ip.hdr;
1540 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1541 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1542 
1543 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1544 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1545 
1546 	return 1;
1547 }
1548 
1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1550 {
1551 	int i;
1552 
1553 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1554 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1555 
1556 		if (tstamp->skb)
1557 			continue;
1558 
1559 		tstamp->skb = skb_get(skb);
1560 		tstamp->start = jiffies;
1561 		*flags = tstamp->flags;
1562 
1563 		return true;
1564 	}
1565 
1566 	return false;
1567 }
1568 
1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1570 				       struct igc_ring *tx_ring)
1571 {
1572 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1573 	bool first_flag = false, insert_empty = false;
1574 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1575 	__be16 protocol = vlan_get_protocol(skb);
1576 	struct igc_tx_buffer *first;
1577 	__le32 launch_time = 0;
1578 	u32 tx_flags = 0;
1579 	unsigned short f;
1580 	ktime_t txtime;
1581 	u8 hdr_len = 0;
1582 	int tso = 0;
1583 
1584 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1585 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1586 	 *	+ 2 desc gap to keep tail from touching head,
1587 	 *	+ 1 desc for context descriptor,
1588 	 * otherwise try next time
1589 	 */
1590 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1591 		count += TXD_USE_COUNT(skb_frag_size(
1592 						&skb_shinfo(skb)->frags[f]));
1593 
1594 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1595 		/* this is a hard error */
1596 		return NETDEV_TX_BUSY;
1597 	}
1598 
1599 	if (!tx_ring->launchtime_enable)
1600 		goto done;
1601 
1602 	txtime = skb->tstamp;
1603 	skb->tstamp = ktime_set(0, 0);
1604 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1605 
1606 	if (insert_empty) {
1607 		struct igc_tx_buffer *empty_info;
1608 		struct sk_buff *empty;
1609 		void *data;
1610 
1611 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1612 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1613 		if (!empty)
1614 			goto done;
1615 
1616 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1617 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1618 
1619 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1620 
1621 		if (igc_init_tx_empty_descriptor(tx_ring,
1622 						 empty,
1623 						 empty_info) < 0)
1624 			dev_kfree_skb_any(empty);
1625 	}
1626 
1627 done:
1628 	/* record the location of the first descriptor for this packet */
1629 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1630 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1631 	first->skb = skb;
1632 	first->bytecount = skb->len;
1633 	first->gso_segs = 1;
1634 
1635 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1636 		goto out_drop;
1637 
1638 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1639 		adapter->stats.txdrop++;
1640 		goto out_drop;
1641 	}
1642 
1643 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1644 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1645 		unsigned long flags;
1646 		u32 tstamp_flags;
1647 
1648 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1649 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1650 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1651 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1652 			if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1653 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1654 		} else {
1655 			adapter->tx_hwtstamp_skipped++;
1656 		}
1657 
1658 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1659 	}
1660 
1661 	if (skb_vlan_tag_present(skb)) {
1662 		tx_flags |= IGC_TX_FLAGS_VLAN;
1663 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1664 	}
1665 
1666 	/* record initial flags and protocol */
1667 	first->tx_flags = tx_flags;
1668 	first->protocol = protocol;
1669 
1670 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1671 	if (tso < 0)
1672 		goto out_drop;
1673 	else if (!tso)
1674 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1675 
1676 	igc_tx_map(tx_ring, first, hdr_len);
1677 
1678 	return NETDEV_TX_OK;
1679 
1680 out_drop:
1681 	dev_kfree_skb_any(first->skb);
1682 	first->skb = NULL;
1683 
1684 	return NETDEV_TX_OK;
1685 }
1686 
1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1688 						    struct sk_buff *skb)
1689 {
1690 	unsigned int r_idx = skb->queue_mapping;
1691 
1692 	if (r_idx >= adapter->num_tx_queues)
1693 		r_idx = r_idx % adapter->num_tx_queues;
1694 
1695 	return adapter->tx_ring[r_idx];
1696 }
1697 
1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1699 				  struct net_device *netdev)
1700 {
1701 	struct igc_adapter *adapter = netdev_priv(netdev);
1702 
1703 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1704 	 * in order to meet this minimum size requirement.
1705 	 */
1706 	if (skb->len < 17) {
1707 		if (skb_padto(skb, 17))
1708 			return NETDEV_TX_OK;
1709 		skb->len = 17;
1710 	}
1711 
1712 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1713 }
1714 
1715 static void igc_rx_checksum(struct igc_ring *ring,
1716 			    union igc_adv_rx_desc *rx_desc,
1717 			    struct sk_buff *skb)
1718 {
1719 	skb_checksum_none_assert(skb);
1720 
1721 	/* Ignore Checksum bit is set */
1722 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1723 		return;
1724 
1725 	/* Rx checksum disabled via ethtool */
1726 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1727 		return;
1728 
1729 	/* TCP/UDP checksum error bit is set */
1730 	if (igc_test_staterr(rx_desc,
1731 			     IGC_RXDEXT_STATERR_L4E |
1732 			     IGC_RXDEXT_STATERR_IPE)) {
1733 		/* work around errata with sctp packets where the TCPE aka
1734 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1735 		 * packets (aka let the stack check the crc32c)
1736 		 */
1737 		if (!(skb->len == 60 &&
1738 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1739 			u64_stats_update_begin(&ring->rx_syncp);
1740 			ring->rx_stats.csum_err++;
1741 			u64_stats_update_end(&ring->rx_syncp);
1742 		}
1743 		/* let the stack verify checksum errors */
1744 		return;
1745 	}
1746 	/* It must be a TCP or UDP packet with a valid checksum */
1747 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1748 				      IGC_RXD_STAT_UDPCS))
1749 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1750 
1751 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1752 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1753 }
1754 
1755 /* Mapping HW RSS Type to enum pkt_hash_types */
1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1757 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1758 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1759 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1760 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1761 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1762 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1763 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1764 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1765 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1766 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1767 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1768 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1769 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1770 	[13] = PKT_HASH_TYPE_NONE,
1771 	[14] = PKT_HASH_TYPE_NONE,
1772 	[15] = PKT_HASH_TYPE_NONE,
1773 };
1774 
1775 static inline void igc_rx_hash(struct igc_ring *ring,
1776 			       union igc_adv_rx_desc *rx_desc,
1777 			       struct sk_buff *skb)
1778 {
1779 	if (ring->netdev->features & NETIF_F_RXHASH) {
1780 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1781 		u32 rss_type = igc_rss_type(rx_desc);
1782 
1783 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1784 	}
1785 }
1786 
1787 static void igc_rx_vlan(struct igc_ring *rx_ring,
1788 			union igc_adv_rx_desc *rx_desc,
1789 			struct sk_buff *skb)
1790 {
1791 	struct net_device *dev = rx_ring->netdev;
1792 	u16 vid;
1793 
1794 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1796 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1797 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1798 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1799 		else
1800 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1801 
1802 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1803 	}
1804 }
1805 
1806 /**
1807  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1808  * @rx_ring: rx descriptor ring packet is being transacted on
1809  * @rx_desc: pointer to the EOP Rx descriptor
1810  * @skb: pointer to current skb being populated
1811  *
1812  * This function checks the ring, descriptor, and packet information in order
1813  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1814  * skb.
1815  */
1816 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1817 				   union igc_adv_rx_desc *rx_desc,
1818 				   struct sk_buff *skb)
1819 {
1820 	igc_rx_hash(rx_ring, rx_desc, skb);
1821 
1822 	igc_rx_checksum(rx_ring, rx_desc, skb);
1823 
1824 	igc_rx_vlan(rx_ring, rx_desc, skb);
1825 
1826 	skb_record_rx_queue(skb, rx_ring->queue_index);
1827 
1828 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1829 }
1830 
1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1832 {
1833 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1834 	struct igc_adapter *adapter = netdev_priv(netdev);
1835 	struct igc_hw *hw = &adapter->hw;
1836 	u32 ctrl;
1837 
1838 	ctrl = rd32(IGC_CTRL);
1839 
1840 	if (enable) {
1841 		/* enable VLAN tag insert/strip */
1842 		ctrl |= IGC_CTRL_VME;
1843 	} else {
1844 		/* disable VLAN tag insert/strip */
1845 		ctrl &= ~IGC_CTRL_VME;
1846 	}
1847 	wr32(IGC_CTRL, ctrl);
1848 }
1849 
1850 static void igc_restore_vlan(struct igc_adapter *adapter)
1851 {
1852 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1853 }
1854 
1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1856 					       const unsigned int size,
1857 					       int *rx_buffer_pgcnt)
1858 {
1859 	struct igc_rx_buffer *rx_buffer;
1860 
1861 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1862 	*rx_buffer_pgcnt =
1863 #if (PAGE_SIZE < 8192)
1864 		page_count(rx_buffer->page);
1865 #else
1866 		0;
1867 #endif
1868 	prefetchw(rx_buffer->page);
1869 
1870 	/* we are reusing so sync this buffer for CPU use */
1871 	dma_sync_single_range_for_cpu(rx_ring->dev,
1872 				      rx_buffer->dma,
1873 				      rx_buffer->page_offset,
1874 				      size,
1875 				      DMA_FROM_DEVICE);
1876 
1877 	rx_buffer->pagecnt_bias--;
1878 
1879 	return rx_buffer;
1880 }
1881 
1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1883 			       unsigned int truesize)
1884 {
1885 #if (PAGE_SIZE < 8192)
1886 	buffer->page_offset ^= truesize;
1887 #else
1888 	buffer->page_offset += truesize;
1889 #endif
1890 }
1891 
1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1893 					      unsigned int size)
1894 {
1895 	unsigned int truesize;
1896 
1897 #if (PAGE_SIZE < 8192)
1898 	truesize = igc_rx_pg_size(ring) / 2;
1899 #else
1900 	truesize = ring_uses_build_skb(ring) ?
1901 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1902 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1903 		   SKB_DATA_ALIGN(size);
1904 #endif
1905 	return truesize;
1906 }
1907 
1908 /**
1909  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1910  * @rx_ring: rx descriptor ring to transact packets on
1911  * @rx_buffer: buffer containing page to add
1912  * @skb: sk_buff to place the data into
1913  * @size: size of buffer to be added
1914  *
1915  * This function will add the data contained in rx_buffer->page to the skb.
1916  */
1917 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1918 			    struct igc_rx_buffer *rx_buffer,
1919 			    struct sk_buff *skb,
1920 			    unsigned int size)
1921 {
1922 	unsigned int truesize;
1923 
1924 #if (PAGE_SIZE < 8192)
1925 	truesize = igc_rx_pg_size(rx_ring) / 2;
1926 #else
1927 	truesize = ring_uses_build_skb(rx_ring) ?
1928 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1929 		   SKB_DATA_ALIGN(size);
1930 #endif
1931 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932 			rx_buffer->page_offset, size, truesize);
1933 
1934 	igc_rx_buffer_flip(rx_buffer, truesize);
1935 }
1936 
1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1938 				     struct igc_rx_buffer *rx_buffer,
1939 				     struct xdp_buff *xdp)
1940 {
1941 	unsigned int size = xdp->data_end - xdp->data;
1942 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943 	unsigned int metasize = xdp->data - xdp->data_meta;
1944 	struct sk_buff *skb;
1945 
1946 	/* prefetch first cache line of first page */
1947 	net_prefetch(xdp->data_meta);
1948 
1949 	/* build an skb around the page buffer */
1950 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1951 	if (unlikely(!skb))
1952 		return NULL;
1953 
1954 	/* update pointers within the skb to store the data */
1955 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1956 	__skb_put(skb, size);
1957 	if (metasize)
1958 		skb_metadata_set(skb, metasize);
1959 
1960 	igc_rx_buffer_flip(rx_buffer, truesize);
1961 	return skb;
1962 }
1963 
1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1965 					 struct igc_rx_buffer *rx_buffer,
1966 					 struct igc_xdp_buff *ctx)
1967 {
1968 	struct xdp_buff *xdp = &ctx->xdp;
1969 	unsigned int metasize = xdp->data - xdp->data_meta;
1970 	unsigned int size = xdp->data_end - xdp->data;
1971 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1972 	void *va = xdp->data;
1973 	unsigned int headlen;
1974 	struct sk_buff *skb;
1975 
1976 	/* prefetch first cache line of first page */
1977 	net_prefetch(xdp->data_meta);
1978 
1979 	/* allocate a skb to store the frags */
1980 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1981 			     IGC_RX_HDR_LEN + metasize);
1982 	if (unlikely(!skb))
1983 		return NULL;
1984 
1985 	if (ctx->rx_ts) {
1986 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1987 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1988 	}
1989 
1990 	/* Determine available headroom for copy */
1991 	headlen = size;
1992 	if (headlen > IGC_RX_HDR_LEN)
1993 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1994 
1995 	/* align pull length to size of long to optimize memcpy performance */
1996 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1997 	       ALIGN(headlen + metasize, sizeof(long)));
1998 
1999 	if (metasize) {
2000 		skb_metadata_set(skb, metasize);
2001 		__skb_pull(skb, metasize);
2002 	}
2003 
2004 	/* update all of the pointers */
2005 	size -= headlen;
2006 	if (size) {
2007 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2008 				(va + headlen) - page_address(rx_buffer->page),
2009 				size, truesize);
2010 		igc_rx_buffer_flip(rx_buffer, truesize);
2011 	} else {
2012 		rx_buffer->pagecnt_bias++;
2013 	}
2014 
2015 	return skb;
2016 }
2017 
2018 /**
2019  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2020  * @rx_ring: rx descriptor ring to store buffers on
2021  * @old_buff: donor buffer to have page reused
2022  *
2023  * Synchronizes page for reuse by the adapter
2024  */
2025 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2026 			      struct igc_rx_buffer *old_buff)
2027 {
2028 	u16 nta = rx_ring->next_to_alloc;
2029 	struct igc_rx_buffer *new_buff;
2030 
2031 	new_buff = &rx_ring->rx_buffer_info[nta];
2032 
2033 	/* update, and store next to alloc */
2034 	nta++;
2035 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2036 
2037 	/* Transfer page from old buffer to new buffer.
2038 	 * Move each member individually to avoid possible store
2039 	 * forwarding stalls.
2040 	 */
2041 	new_buff->dma		= old_buff->dma;
2042 	new_buff->page		= old_buff->page;
2043 	new_buff->page_offset	= old_buff->page_offset;
2044 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2045 }
2046 
2047 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2048 				  int rx_buffer_pgcnt)
2049 {
2050 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2051 	struct page *page = rx_buffer->page;
2052 
2053 	/* avoid re-using remote and pfmemalloc pages */
2054 	if (!dev_page_is_reusable(page))
2055 		return false;
2056 
2057 #if (PAGE_SIZE < 8192)
2058 	/* if we are only owner of page we can reuse it */
2059 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2060 		return false;
2061 #else
2062 #define IGC_LAST_OFFSET \
2063 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2064 
2065 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2066 		return false;
2067 #endif
2068 
2069 	/* If we have drained the page fragment pool we need to update
2070 	 * the pagecnt_bias and page count so that we fully restock the
2071 	 * number of references the driver holds.
2072 	 */
2073 	if (unlikely(pagecnt_bias == 1)) {
2074 		page_ref_add(page, USHRT_MAX - 1);
2075 		rx_buffer->pagecnt_bias = USHRT_MAX;
2076 	}
2077 
2078 	return true;
2079 }
2080 
2081 /**
2082  * igc_is_non_eop - process handling of non-EOP buffers
2083  * @rx_ring: Rx ring being processed
2084  * @rx_desc: Rx descriptor for current buffer
2085  *
2086  * This function updates next to clean.  If the buffer is an EOP buffer
2087  * this function exits returning false, otherwise it will place the
2088  * sk_buff in the next buffer to be chained and return true indicating
2089  * that this is in fact a non-EOP buffer.
2090  */
2091 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2092 			   union igc_adv_rx_desc *rx_desc)
2093 {
2094 	u32 ntc = rx_ring->next_to_clean + 1;
2095 
2096 	/* fetch, update, and store next to clean */
2097 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2098 	rx_ring->next_to_clean = ntc;
2099 
2100 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2101 
2102 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2103 		return false;
2104 
2105 	return true;
2106 }
2107 
2108 /**
2109  * igc_cleanup_headers - Correct corrupted or empty headers
2110  * @rx_ring: rx descriptor ring packet is being transacted on
2111  * @rx_desc: pointer to the EOP Rx descriptor
2112  * @skb: pointer to current skb being fixed
2113  *
2114  * Address the case where we are pulling data in on pages only
2115  * and as such no data is present in the skb header.
2116  *
2117  * In addition if skb is not at least 60 bytes we need to pad it so that
2118  * it is large enough to qualify as a valid Ethernet frame.
2119  *
2120  * Returns true if an error was encountered and skb was freed.
2121  */
2122 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2123 				union igc_adv_rx_desc *rx_desc,
2124 				struct sk_buff *skb)
2125 {
2126 	/* XDP packets use error pointer so abort at this point */
2127 	if (IS_ERR(skb))
2128 		return true;
2129 
2130 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2131 		struct net_device *netdev = rx_ring->netdev;
2132 
2133 		if (!(netdev->features & NETIF_F_RXALL)) {
2134 			dev_kfree_skb_any(skb);
2135 			return true;
2136 		}
2137 	}
2138 
2139 	/* if eth_skb_pad returns an error the skb was freed */
2140 	if (eth_skb_pad(skb))
2141 		return true;
2142 
2143 	return false;
2144 }
2145 
2146 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2147 			      struct igc_rx_buffer *rx_buffer,
2148 			      int rx_buffer_pgcnt)
2149 {
2150 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2151 		/* hand second half of page back to the ring */
2152 		igc_reuse_rx_page(rx_ring, rx_buffer);
2153 	} else {
2154 		/* We are not reusing the buffer so unmap it and free
2155 		 * any references we are holding to it
2156 		 */
2157 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2158 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2159 				     IGC_RX_DMA_ATTR);
2160 		__page_frag_cache_drain(rx_buffer->page,
2161 					rx_buffer->pagecnt_bias);
2162 	}
2163 
2164 	/* clear contents of rx_buffer */
2165 	rx_buffer->page = NULL;
2166 }
2167 
2168 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2169 {
2170 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2171 
2172 	if (ring_uses_build_skb(rx_ring))
2173 		return IGC_SKB_PAD;
2174 	if (igc_xdp_is_enabled(adapter))
2175 		return XDP_PACKET_HEADROOM;
2176 
2177 	return 0;
2178 }
2179 
2180 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2181 				  struct igc_rx_buffer *bi)
2182 {
2183 	struct page *page = bi->page;
2184 	dma_addr_t dma;
2185 
2186 	/* since we are recycling buffers we should seldom need to alloc */
2187 	if (likely(page))
2188 		return true;
2189 
2190 	/* alloc new page for storage */
2191 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2192 	if (unlikely(!page)) {
2193 		rx_ring->rx_stats.alloc_failed++;
2194 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2195 		return false;
2196 	}
2197 
2198 	/* map page for use */
2199 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2200 				 igc_rx_pg_size(rx_ring),
2201 				 DMA_FROM_DEVICE,
2202 				 IGC_RX_DMA_ATTR);
2203 
2204 	/* if mapping failed free memory back to system since
2205 	 * there isn't much point in holding memory we can't use
2206 	 */
2207 	if (dma_mapping_error(rx_ring->dev, dma)) {
2208 		__free_page(page);
2209 
2210 		rx_ring->rx_stats.alloc_failed++;
2211 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2212 		return false;
2213 	}
2214 
2215 	bi->dma = dma;
2216 	bi->page = page;
2217 	bi->page_offset = igc_rx_offset(rx_ring);
2218 	page_ref_add(page, USHRT_MAX - 1);
2219 	bi->pagecnt_bias = USHRT_MAX;
2220 
2221 	return true;
2222 }
2223 
2224 /**
2225  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2226  * @rx_ring: rx descriptor ring
2227  * @cleaned_count: number of buffers to clean
2228  */
2229 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2230 {
2231 	union igc_adv_rx_desc *rx_desc;
2232 	u16 i = rx_ring->next_to_use;
2233 	struct igc_rx_buffer *bi;
2234 	u16 bufsz;
2235 
2236 	/* nothing to do */
2237 	if (!cleaned_count)
2238 		return;
2239 
2240 	rx_desc = IGC_RX_DESC(rx_ring, i);
2241 	bi = &rx_ring->rx_buffer_info[i];
2242 	i -= rx_ring->count;
2243 
2244 	bufsz = igc_rx_bufsz(rx_ring);
2245 
2246 	do {
2247 		if (!igc_alloc_mapped_page(rx_ring, bi))
2248 			break;
2249 
2250 		/* sync the buffer for use by the device */
2251 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2252 						 bi->page_offset, bufsz,
2253 						 DMA_FROM_DEVICE);
2254 
2255 		/* Refresh the desc even if buffer_addrs didn't change
2256 		 * because each write-back erases this info.
2257 		 */
2258 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2259 
2260 		rx_desc++;
2261 		bi++;
2262 		i++;
2263 		if (unlikely(!i)) {
2264 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2265 			bi = rx_ring->rx_buffer_info;
2266 			i -= rx_ring->count;
2267 		}
2268 
2269 		/* clear the length for the next_to_use descriptor */
2270 		rx_desc->wb.upper.length = 0;
2271 
2272 		cleaned_count--;
2273 	} while (cleaned_count);
2274 
2275 	i += rx_ring->count;
2276 
2277 	if (rx_ring->next_to_use != i) {
2278 		/* record the next descriptor to use */
2279 		rx_ring->next_to_use = i;
2280 
2281 		/* update next to alloc since we have filled the ring */
2282 		rx_ring->next_to_alloc = i;
2283 
2284 		/* Force memory writes to complete before letting h/w
2285 		 * know there are new descriptors to fetch.  (Only
2286 		 * applicable for weak-ordered memory model archs,
2287 		 * such as IA-64).
2288 		 */
2289 		wmb();
2290 		writel(i, rx_ring->tail);
2291 	}
2292 }
2293 
2294 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2295 {
2296 	union igc_adv_rx_desc *desc;
2297 	u16 i = ring->next_to_use;
2298 	struct igc_rx_buffer *bi;
2299 	dma_addr_t dma;
2300 	bool ok = true;
2301 
2302 	if (!count)
2303 		return ok;
2304 
2305 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2306 
2307 	desc = IGC_RX_DESC(ring, i);
2308 	bi = &ring->rx_buffer_info[i];
2309 	i -= ring->count;
2310 
2311 	do {
2312 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2313 		if (!bi->xdp) {
2314 			ok = false;
2315 			break;
2316 		}
2317 
2318 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2319 		desc->read.pkt_addr = cpu_to_le64(dma);
2320 
2321 		desc++;
2322 		bi++;
2323 		i++;
2324 		if (unlikely(!i)) {
2325 			desc = IGC_RX_DESC(ring, 0);
2326 			bi = ring->rx_buffer_info;
2327 			i -= ring->count;
2328 		}
2329 
2330 		/* Clear the length for the next_to_use descriptor. */
2331 		desc->wb.upper.length = 0;
2332 
2333 		count--;
2334 	} while (count);
2335 
2336 	i += ring->count;
2337 
2338 	if (ring->next_to_use != i) {
2339 		ring->next_to_use = i;
2340 
2341 		/* Force memory writes to complete before letting h/w
2342 		 * know there are new descriptors to fetch.  (Only
2343 		 * applicable for weak-ordered memory model archs,
2344 		 * such as IA-64).
2345 		 */
2346 		wmb();
2347 		writel(i, ring->tail);
2348 	}
2349 
2350 	return ok;
2351 }
2352 
2353 /* This function requires __netif_tx_lock is held by the caller. */
2354 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2355 				      struct xdp_frame *xdpf)
2356 {
2357 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2358 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2359 	u16 count, index = ring->next_to_use;
2360 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2361 	struct igc_tx_buffer *buffer = head;
2362 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2363 	u32 olinfo_status, len = xdpf->len, cmd_type;
2364 	void *data = xdpf->data;
2365 	u16 i;
2366 
2367 	count = TXD_USE_COUNT(len);
2368 	for (i = 0; i < nr_frags; i++)
2369 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2370 
2371 	if (igc_maybe_stop_tx(ring, count + 3)) {
2372 		/* this is a hard error */
2373 		return -EBUSY;
2374 	}
2375 
2376 	i = 0;
2377 	head->bytecount = xdp_get_frame_len(xdpf);
2378 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2379 	head->gso_segs = 1;
2380 	head->xdpf = xdpf;
2381 
2382 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2383 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2384 
2385 	for (;;) {
2386 		dma_addr_t dma;
2387 
2388 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2389 		if (dma_mapping_error(ring->dev, dma)) {
2390 			netdev_err_once(ring->netdev,
2391 					"Failed to map DMA for TX\n");
2392 			goto unmap;
2393 		}
2394 
2395 		dma_unmap_len_set(buffer, len, len);
2396 		dma_unmap_addr_set(buffer, dma, dma);
2397 
2398 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2399 			   IGC_ADVTXD_DCMD_IFCS | len;
2400 
2401 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2402 		desc->read.buffer_addr = cpu_to_le64(dma);
2403 
2404 		buffer->protocol = 0;
2405 
2406 		if (++index == ring->count)
2407 			index = 0;
2408 
2409 		if (i == nr_frags)
2410 			break;
2411 
2412 		buffer = &ring->tx_buffer_info[index];
2413 		desc = IGC_TX_DESC(ring, index);
2414 		desc->read.olinfo_status = 0;
2415 
2416 		data = skb_frag_address(&sinfo->frags[i]);
2417 		len = skb_frag_size(&sinfo->frags[i]);
2418 		i++;
2419 	}
2420 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2421 
2422 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2423 	/* set the timestamp */
2424 	head->time_stamp = jiffies;
2425 	/* set next_to_watch value indicating a packet is present */
2426 	head->next_to_watch = desc;
2427 	ring->next_to_use = index;
2428 
2429 	return 0;
2430 
2431 unmap:
2432 	for (;;) {
2433 		buffer = &ring->tx_buffer_info[index];
2434 		if (dma_unmap_len(buffer, len))
2435 			dma_unmap_page(ring->dev,
2436 				       dma_unmap_addr(buffer, dma),
2437 				       dma_unmap_len(buffer, len),
2438 				       DMA_TO_DEVICE);
2439 		dma_unmap_len_set(buffer, len, 0);
2440 		if (buffer == head)
2441 			break;
2442 
2443 		if (!index)
2444 			index += ring->count;
2445 		index--;
2446 	}
2447 
2448 	return -ENOMEM;
2449 }
2450 
2451 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2452 					    int cpu)
2453 {
2454 	int index = cpu;
2455 
2456 	if (unlikely(index < 0))
2457 		index = 0;
2458 
2459 	while (index >= adapter->num_tx_queues)
2460 		index -= adapter->num_tx_queues;
2461 
2462 	return adapter->tx_ring[index];
2463 }
2464 
2465 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2466 {
2467 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2468 	int cpu = smp_processor_id();
2469 	struct netdev_queue *nq;
2470 	struct igc_ring *ring;
2471 	int res;
2472 
2473 	if (unlikely(!xdpf))
2474 		return -EFAULT;
2475 
2476 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2477 	nq = txring_txq(ring);
2478 
2479 	__netif_tx_lock(nq, cpu);
2480 	/* Avoid transmit queue timeout since we share it with the slow path */
2481 	txq_trans_cond_update(nq);
2482 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2483 	__netif_tx_unlock(nq);
2484 	return res;
2485 }
2486 
2487 /* This function assumes rcu_read_lock() is held by the caller. */
2488 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2489 			      struct bpf_prog *prog,
2490 			      struct xdp_buff *xdp)
2491 {
2492 	u32 act = bpf_prog_run_xdp(prog, xdp);
2493 
2494 	switch (act) {
2495 	case XDP_PASS:
2496 		return IGC_XDP_PASS;
2497 	case XDP_TX:
2498 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2499 			goto out_failure;
2500 		return IGC_XDP_TX;
2501 	case XDP_REDIRECT:
2502 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2503 			goto out_failure;
2504 		return IGC_XDP_REDIRECT;
2505 		break;
2506 	default:
2507 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2508 		fallthrough;
2509 	case XDP_ABORTED:
2510 out_failure:
2511 		trace_xdp_exception(adapter->netdev, prog, act);
2512 		fallthrough;
2513 	case XDP_DROP:
2514 		return IGC_XDP_CONSUMED;
2515 	}
2516 }
2517 
2518 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2519 					struct xdp_buff *xdp)
2520 {
2521 	struct bpf_prog *prog;
2522 	int res;
2523 
2524 	prog = READ_ONCE(adapter->xdp_prog);
2525 	if (!prog) {
2526 		res = IGC_XDP_PASS;
2527 		goto out;
2528 	}
2529 
2530 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2531 
2532 out:
2533 	return ERR_PTR(-res);
2534 }
2535 
2536 /* This function assumes __netif_tx_lock is held by the caller. */
2537 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2538 {
2539 	/* Once tail pointer is updated, hardware can fetch the descriptors
2540 	 * any time so we issue a write membar here to ensure all memory
2541 	 * writes are complete before the tail pointer is updated.
2542 	 */
2543 	wmb();
2544 	writel(ring->next_to_use, ring->tail);
2545 }
2546 
2547 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2548 {
2549 	int cpu = smp_processor_id();
2550 	struct netdev_queue *nq;
2551 	struct igc_ring *ring;
2552 
2553 	if (status & IGC_XDP_TX) {
2554 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2555 		nq = txring_txq(ring);
2556 
2557 		__netif_tx_lock(nq, cpu);
2558 		igc_flush_tx_descriptors(ring);
2559 		__netif_tx_unlock(nq);
2560 	}
2561 
2562 	if (status & IGC_XDP_REDIRECT)
2563 		xdp_do_flush();
2564 }
2565 
2566 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2567 				unsigned int packets, unsigned int bytes)
2568 {
2569 	struct igc_ring *ring = q_vector->rx.ring;
2570 
2571 	u64_stats_update_begin(&ring->rx_syncp);
2572 	ring->rx_stats.packets += packets;
2573 	ring->rx_stats.bytes += bytes;
2574 	u64_stats_update_end(&ring->rx_syncp);
2575 
2576 	q_vector->rx.total_packets += packets;
2577 	q_vector->rx.total_bytes += bytes;
2578 }
2579 
2580 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2581 {
2582 	unsigned int total_bytes = 0, total_packets = 0;
2583 	struct igc_adapter *adapter = q_vector->adapter;
2584 	struct igc_ring *rx_ring = q_vector->rx.ring;
2585 	struct sk_buff *skb = rx_ring->skb;
2586 	u16 cleaned_count = igc_desc_unused(rx_ring);
2587 	int xdp_status = 0, rx_buffer_pgcnt;
2588 
2589 	while (likely(total_packets < budget)) {
2590 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2591 		struct igc_rx_buffer *rx_buffer;
2592 		union igc_adv_rx_desc *rx_desc;
2593 		unsigned int size, truesize;
2594 		int pkt_offset = 0;
2595 		void *pktbuf;
2596 
2597 		/* return some buffers to hardware, one at a time is too slow */
2598 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2599 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2600 			cleaned_count = 0;
2601 		}
2602 
2603 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2604 		size = le16_to_cpu(rx_desc->wb.upper.length);
2605 		if (!size)
2606 			break;
2607 
2608 		/* This memory barrier is needed to keep us from reading
2609 		 * any other fields out of the rx_desc until we know the
2610 		 * descriptor has been written back
2611 		 */
2612 		dma_rmb();
2613 
2614 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2615 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2616 
2617 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2618 
2619 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2620 			ctx.rx_ts = pktbuf;
2621 			pkt_offset = IGC_TS_HDR_LEN;
2622 			size -= IGC_TS_HDR_LEN;
2623 		}
2624 
2625 		if (!skb) {
2626 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2627 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2628 					 igc_rx_offset(rx_ring) + pkt_offset,
2629 					 size, true);
2630 			xdp_buff_clear_frags_flag(&ctx.xdp);
2631 			ctx.rx_desc = rx_desc;
2632 
2633 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2634 		}
2635 
2636 		if (IS_ERR(skb)) {
2637 			unsigned int xdp_res = -PTR_ERR(skb);
2638 
2639 			switch (xdp_res) {
2640 			case IGC_XDP_CONSUMED:
2641 				rx_buffer->pagecnt_bias++;
2642 				break;
2643 			case IGC_XDP_TX:
2644 			case IGC_XDP_REDIRECT:
2645 				igc_rx_buffer_flip(rx_buffer, truesize);
2646 				xdp_status |= xdp_res;
2647 				break;
2648 			}
2649 
2650 			total_packets++;
2651 			total_bytes += size;
2652 		} else if (skb)
2653 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2654 		else if (ring_uses_build_skb(rx_ring))
2655 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2656 		else
2657 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2658 
2659 		/* exit if we failed to retrieve a buffer */
2660 		if (!skb) {
2661 			rx_ring->rx_stats.alloc_failed++;
2662 			rx_buffer->pagecnt_bias++;
2663 			set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2664 			break;
2665 		}
2666 
2667 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2668 		cleaned_count++;
2669 
2670 		/* fetch next buffer in frame if non-eop */
2671 		if (igc_is_non_eop(rx_ring, rx_desc))
2672 			continue;
2673 
2674 		/* verify the packet layout is correct */
2675 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2676 			skb = NULL;
2677 			continue;
2678 		}
2679 
2680 		/* probably a little skewed due to removing CRC */
2681 		total_bytes += skb->len;
2682 
2683 		/* populate checksum, VLAN, and protocol */
2684 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2685 
2686 		napi_gro_receive(&q_vector->napi, skb);
2687 
2688 		/* reset skb pointer */
2689 		skb = NULL;
2690 
2691 		/* update budget accounting */
2692 		total_packets++;
2693 	}
2694 
2695 	if (xdp_status)
2696 		igc_finalize_xdp(adapter, xdp_status);
2697 
2698 	/* place incomplete frames back on ring for completion */
2699 	rx_ring->skb = skb;
2700 
2701 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2702 
2703 	if (cleaned_count)
2704 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2705 
2706 	return total_packets;
2707 }
2708 
2709 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2710 					    struct xdp_buff *xdp)
2711 {
2712 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2713 	unsigned int metasize = xdp->data - xdp->data_meta;
2714 	struct sk_buff *skb;
2715 
2716 	net_prefetch(xdp->data_meta);
2717 
2718 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2719 	if (unlikely(!skb))
2720 		return NULL;
2721 
2722 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2723 	       ALIGN(totalsize, sizeof(long)));
2724 
2725 	if (metasize) {
2726 		skb_metadata_set(skb, metasize);
2727 		__skb_pull(skb, metasize);
2728 	}
2729 
2730 	return skb;
2731 }
2732 
2733 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2734 				union igc_adv_rx_desc *desc,
2735 				struct xdp_buff *xdp,
2736 				ktime_t timestamp)
2737 {
2738 	struct igc_ring *ring = q_vector->rx.ring;
2739 	struct sk_buff *skb;
2740 
2741 	skb = igc_construct_skb_zc(ring, xdp);
2742 	if (!skb) {
2743 		ring->rx_stats.alloc_failed++;
2744 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2745 		return;
2746 	}
2747 
2748 	if (timestamp)
2749 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2750 
2751 	if (igc_cleanup_headers(ring, desc, skb))
2752 		return;
2753 
2754 	igc_process_skb_fields(ring, desc, skb);
2755 	napi_gro_receive(&q_vector->napi, skb);
2756 }
2757 
2758 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2759 {
2760 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2761 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2762 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2763 	 */
2764        return (struct igc_xdp_buff *)xdp;
2765 }
2766 
2767 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2768 {
2769 	struct igc_adapter *adapter = q_vector->adapter;
2770 	struct igc_ring *ring = q_vector->rx.ring;
2771 	u16 cleaned_count = igc_desc_unused(ring);
2772 	int total_bytes = 0, total_packets = 0;
2773 	u16 ntc = ring->next_to_clean;
2774 	struct bpf_prog *prog;
2775 	bool failure = false;
2776 	int xdp_status = 0;
2777 
2778 	rcu_read_lock();
2779 
2780 	prog = READ_ONCE(adapter->xdp_prog);
2781 
2782 	while (likely(total_packets < budget)) {
2783 		union igc_adv_rx_desc *desc;
2784 		struct igc_rx_buffer *bi;
2785 		struct igc_xdp_buff *ctx;
2786 		ktime_t timestamp = 0;
2787 		unsigned int size;
2788 		int res;
2789 
2790 		desc = IGC_RX_DESC(ring, ntc);
2791 		size = le16_to_cpu(desc->wb.upper.length);
2792 		if (!size)
2793 			break;
2794 
2795 		/* This memory barrier is needed to keep us from reading
2796 		 * any other fields out of the rx_desc until we know the
2797 		 * descriptor has been written back
2798 		 */
2799 		dma_rmb();
2800 
2801 		bi = &ring->rx_buffer_info[ntc];
2802 
2803 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2804 		ctx->rx_desc = desc;
2805 
2806 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2807 			ctx->rx_ts = bi->xdp->data;
2808 
2809 			bi->xdp->data += IGC_TS_HDR_LEN;
2810 
2811 			/* HW timestamp has been copied into local variable. Metadata
2812 			 * length when XDP program is called should be 0.
2813 			 */
2814 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2815 			size -= IGC_TS_HDR_LEN;
2816 		}
2817 
2818 		bi->xdp->data_end = bi->xdp->data + size;
2819 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2820 
2821 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2822 		switch (res) {
2823 		case IGC_XDP_PASS:
2824 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2825 			fallthrough;
2826 		case IGC_XDP_CONSUMED:
2827 			xsk_buff_free(bi->xdp);
2828 			break;
2829 		case IGC_XDP_TX:
2830 		case IGC_XDP_REDIRECT:
2831 			xdp_status |= res;
2832 			break;
2833 		}
2834 
2835 		bi->xdp = NULL;
2836 		total_bytes += size;
2837 		total_packets++;
2838 		cleaned_count++;
2839 		ntc++;
2840 		if (ntc == ring->count)
2841 			ntc = 0;
2842 	}
2843 
2844 	ring->next_to_clean = ntc;
2845 	rcu_read_unlock();
2846 
2847 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2848 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2849 
2850 	if (xdp_status)
2851 		igc_finalize_xdp(adapter, xdp_status);
2852 
2853 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2854 
2855 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2856 		if (failure || ring->next_to_clean == ring->next_to_use)
2857 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2858 		else
2859 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2860 		return total_packets;
2861 	}
2862 
2863 	return failure ? budget : total_packets;
2864 }
2865 
2866 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2867 				unsigned int packets, unsigned int bytes)
2868 {
2869 	struct igc_ring *ring = q_vector->tx.ring;
2870 
2871 	u64_stats_update_begin(&ring->tx_syncp);
2872 	ring->tx_stats.bytes += bytes;
2873 	ring->tx_stats.packets += packets;
2874 	u64_stats_update_end(&ring->tx_syncp);
2875 
2876 	q_vector->tx.total_bytes += bytes;
2877 	q_vector->tx.total_packets += packets;
2878 }
2879 
2880 static void igc_xsk_request_timestamp(void *_priv)
2881 {
2882 	struct igc_metadata_request *meta_req = _priv;
2883 	struct igc_ring *tx_ring = meta_req->tx_ring;
2884 	struct igc_tx_timestamp_request *tstamp;
2885 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2886 	struct igc_adapter *adapter;
2887 	unsigned long lock_flags;
2888 	bool found = false;
2889 	int i;
2890 
2891 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2892 		adapter = netdev_priv(tx_ring->netdev);
2893 
2894 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2895 
2896 		/* Search for available tstamp regs */
2897 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2898 			tstamp = &adapter->tx_tstamp[i];
2899 
2900 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2901 			 * When tstamp->skb is equal to NULL,
2902 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2903 			 * This condition means that the particular tstamp reg
2904 			 * is not occupied by other packet.
2905 			 */
2906 			if (!tstamp->skb) {
2907 				found = true;
2908 				break;
2909 			}
2910 		}
2911 
2912 		/* Return if no available tstamp regs */
2913 		if (!found) {
2914 			adapter->tx_hwtstamp_skipped++;
2915 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2916 					       lock_flags);
2917 			return;
2918 		}
2919 
2920 		tstamp->start = jiffies;
2921 		tstamp->xsk_queue_index = tx_ring->queue_index;
2922 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2923 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2924 
2925 		/* Hold the transmit completion until timestamp is ready */
2926 		meta_req->tx_buffer->xsk_pending_ts = true;
2927 
2928 		/* Keep the pointer to tx_timestamp, which is located in XDP
2929 		 * metadata area. It is the location to store the value of
2930 		 * tx hardware timestamp.
2931 		 */
2932 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2933 
2934 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2935 		tx_flags |= tstamp->flags;
2936 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2937 						   IGC_TX_FLAGS_TSTAMP,
2938 						   (IGC_ADVTXD_MAC_TSTAMP));
2939 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2940 						   IGC_TX_FLAGS_TSTAMP_1,
2941 						   (IGC_ADVTXD_TSTAMP_REG_1));
2942 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2943 						   IGC_TX_FLAGS_TSTAMP_2,
2944 						   (IGC_ADVTXD_TSTAMP_REG_2));
2945 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2946 						   IGC_TX_FLAGS_TSTAMP_3,
2947 						   (IGC_ADVTXD_TSTAMP_REG_3));
2948 
2949 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2950 	}
2951 }
2952 
2953 static u64 igc_xsk_fill_timestamp(void *_priv)
2954 {
2955 	return *(u64 *)_priv;
2956 }
2957 
2958 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2959 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
2960 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
2961 };
2962 
2963 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2964 {
2965 	struct xsk_buff_pool *pool = ring->xsk_pool;
2966 	struct netdev_queue *nq = txring_txq(ring);
2967 	union igc_adv_tx_desc *tx_desc = NULL;
2968 	int cpu = smp_processor_id();
2969 	struct xdp_desc xdp_desc;
2970 	u16 budget, ntu;
2971 
2972 	if (!netif_carrier_ok(ring->netdev))
2973 		return;
2974 
2975 	__netif_tx_lock(nq, cpu);
2976 
2977 	/* Avoid transmit queue timeout since we share it with the slow path */
2978 	txq_trans_cond_update(nq);
2979 
2980 	ntu = ring->next_to_use;
2981 	budget = igc_desc_unused(ring);
2982 
2983 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2984 		struct igc_metadata_request meta_req;
2985 		struct xsk_tx_metadata *meta = NULL;
2986 		struct igc_tx_buffer *bi;
2987 		u32 olinfo_status;
2988 		dma_addr_t dma;
2989 
2990 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2991 				    IGC_ADVTXD_DCMD_DEXT |
2992 				    IGC_ADVTXD_DCMD_IFCS |
2993 				    IGC_TXD_DCMD | xdp_desc.len;
2994 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2995 
2996 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2997 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
2998 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2999 		bi = &ring->tx_buffer_info[ntu];
3000 
3001 		meta_req.tx_ring = ring;
3002 		meta_req.tx_buffer = bi;
3003 		meta_req.meta = meta;
3004 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3005 					&meta_req);
3006 
3007 		tx_desc = IGC_TX_DESC(ring, ntu);
3008 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3009 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3010 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3011 
3012 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3013 		bi->protocol = 0;
3014 		bi->bytecount = xdp_desc.len;
3015 		bi->gso_segs = 1;
3016 		bi->time_stamp = jiffies;
3017 		bi->next_to_watch = tx_desc;
3018 
3019 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3020 
3021 		ntu++;
3022 		if (ntu == ring->count)
3023 			ntu = 0;
3024 	}
3025 
3026 	ring->next_to_use = ntu;
3027 	if (tx_desc) {
3028 		igc_flush_tx_descriptors(ring);
3029 		xsk_tx_release(pool);
3030 	}
3031 
3032 	__netif_tx_unlock(nq);
3033 }
3034 
3035 /**
3036  * igc_clean_tx_irq - Reclaim resources after transmit completes
3037  * @q_vector: pointer to q_vector containing needed info
3038  * @napi_budget: Used to determine if we are in netpoll
3039  *
3040  * returns true if ring is completely cleaned
3041  */
3042 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3043 {
3044 	struct igc_adapter *adapter = q_vector->adapter;
3045 	unsigned int total_bytes = 0, total_packets = 0;
3046 	unsigned int budget = q_vector->tx.work_limit;
3047 	struct igc_ring *tx_ring = q_vector->tx.ring;
3048 	unsigned int i = tx_ring->next_to_clean;
3049 	struct igc_tx_buffer *tx_buffer;
3050 	union igc_adv_tx_desc *tx_desc;
3051 	u32 xsk_frames = 0;
3052 
3053 	if (test_bit(__IGC_DOWN, &adapter->state))
3054 		return true;
3055 
3056 	tx_buffer = &tx_ring->tx_buffer_info[i];
3057 	tx_desc = IGC_TX_DESC(tx_ring, i);
3058 	i -= tx_ring->count;
3059 
3060 	do {
3061 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3062 
3063 		/* if next_to_watch is not set then there is no work pending */
3064 		if (!eop_desc)
3065 			break;
3066 
3067 		/* prevent any other reads prior to eop_desc */
3068 		smp_rmb();
3069 
3070 		/* if DD is not set pending work has not been completed */
3071 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3072 			break;
3073 
3074 		/* Hold the completions while there's a pending tx hardware
3075 		 * timestamp request from XDP Tx metadata.
3076 		 */
3077 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3078 		    tx_buffer->xsk_pending_ts)
3079 			break;
3080 
3081 		/* clear next_to_watch to prevent false hangs */
3082 		tx_buffer->next_to_watch = NULL;
3083 
3084 		/* update the statistics for this packet */
3085 		total_bytes += tx_buffer->bytecount;
3086 		total_packets += tx_buffer->gso_segs;
3087 
3088 		switch (tx_buffer->type) {
3089 		case IGC_TX_BUFFER_TYPE_XSK:
3090 			xsk_frames++;
3091 			break;
3092 		case IGC_TX_BUFFER_TYPE_XDP:
3093 			xdp_return_frame(tx_buffer->xdpf);
3094 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3095 			break;
3096 		case IGC_TX_BUFFER_TYPE_SKB:
3097 			napi_consume_skb(tx_buffer->skb, napi_budget);
3098 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3099 			break;
3100 		default:
3101 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3102 			break;
3103 		}
3104 
3105 		/* clear last DMA location and unmap remaining buffers */
3106 		while (tx_desc != eop_desc) {
3107 			tx_buffer++;
3108 			tx_desc++;
3109 			i++;
3110 			if (unlikely(!i)) {
3111 				i -= tx_ring->count;
3112 				tx_buffer = tx_ring->tx_buffer_info;
3113 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3114 			}
3115 
3116 			/* unmap any remaining paged data */
3117 			if (dma_unmap_len(tx_buffer, len))
3118 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3119 		}
3120 
3121 		/* move us one more past the eop_desc for start of next pkt */
3122 		tx_buffer++;
3123 		tx_desc++;
3124 		i++;
3125 		if (unlikely(!i)) {
3126 			i -= tx_ring->count;
3127 			tx_buffer = tx_ring->tx_buffer_info;
3128 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3129 		}
3130 
3131 		/* issue prefetch for next Tx descriptor */
3132 		prefetch(tx_desc);
3133 
3134 		/* update budget accounting */
3135 		budget--;
3136 	} while (likely(budget));
3137 
3138 	netdev_tx_completed_queue(txring_txq(tx_ring),
3139 				  total_packets, total_bytes);
3140 
3141 	i += tx_ring->count;
3142 	tx_ring->next_to_clean = i;
3143 
3144 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3145 
3146 	if (tx_ring->xsk_pool) {
3147 		if (xsk_frames)
3148 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3149 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3150 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3151 		igc_xdp_xmit_zc(tx_ring);
3152 	}
3153 
3154 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3155 		struct igc_hw *hw = &adapter->hw;
3156 
3157 		/* Detect a transmit hang in hardware, this serializes the
3158 		 * check with the clearing of time_stamp and movement of i
3159 		 */
3160 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3161 		if (tx_buffer->next_to_watch &&
3162 		    time_after(jiffies, tx_buffer->time_stamp +
3163 		    (adapter->tx_timeout_factor * HZ)) &&
3164 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3165 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3166 		    !tx_ring->oper_gate_closed) {
3167 			/* detected Tx unit hang */
3168 			netdev_err(tx_ring->netdev,
3169 				   "Detected Tx Unit Hang\n"
3170 				   "  Tx Queue             <%d>\n"
3171 				   "  TDH                  <%x>\n"
3172 				   "  TDT                  <%x>\n"
3173 				   "  next_to_use          <%x>\n"
3174 				   "  next_to_clean        <%x>\n"
3175 				   "buffer_info[next_to_clean]\n"
3176 				   "  time_stamp           <%lx>\n"
3177 				   "  next_to_watch        <%p>\n"
3178 				   "  jiffies              <%lx>\n"
3179 				   "  desc.status          <%x>\n",
3180 				   tx_ring->queue_index,
3181 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3182 				   readl(tx_ring->tail),
3183 				   tx_ring->next_to_use,
3184 				   tx_ring->next_to_clean,
3185 				   tx_buffer->time_stamp,
3186 				   tx_buffer->next_to_watch,
3187 				   jiffies,
3188 				   tx_buffer->next_to_watch->wb.status);
3189 			netif_stop_subqueue(tx_ring->netdev,
3190 					    tx_ring->queue_index);
3191 
3192 			/* we are about to reset, no point in enabling stuff */
3193 			return true;
3194 		}
3195 	}
3196 
3197 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3198 	if (unlikely(total_packets &&
3199 		     netif_carrier_ok(tx_ring->netdev) &&
3200 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3201 		/* Make sure that anybody stopping the queue after this
3202 		 * sees the new next_to_clean.
3203 		 */
3204 		smp_mb();
3205 		if (__netif_subqueue_stopped(tx_ring->netdev,
3206 					     tx_ring->queue_index) &&
3207 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3208 			netif_wake_subqueue(tx_ring->netdev,
3209 					    tx_ring->queue_index);
3210 
3211 			u64_stats_update_begin(&tx_ring->tx_syncp);
3212 			tx_ring->tx_stats.restart_queue++;
3213 			u64_stats_update_end(&tx_ring->tx_syncp);
3214 		}
3215 	}
3216 
3217 	return !!budget;
3218 }
3219 
3220 static int igc_find_mac_filter(struct igc_adapter *adapter,
3221 			       enum igc_mac_filter_type type, const u8 *addr)
3222 {
3223 	struct igc_hw *hw = &adapter->hw;
3224 	int max_entries = hw->mac.rar_entry_count;
3225 	u32 ral, rah;
3226 	int i;
3227 
3228 	for (i = 0; i < max_entries; i++) {
3229 		ral = rd32(IGC_RAL(i));
3230 		rah = rd32(IGC_RAH(i));
3231 
3232 		if (!(rah & IGC_RAH_AV))
3233 			continue;
3234 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3235 			continue;
3236 		if ((rah & IGC_RAH_RAH_MASK) !=
3237 		    le16_to_cpup((__le16 *)(addr + 4)))
3238 			continue;
3239 		if (ral != le32_to_cpup((__le32 *)(addr)))
3240 			continue;
3241 
3242 		return i;
3243 	}
3244 
3245 	return -1;
3246 }
3247 
3248 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3249 {
3250 	struct igc_hw *hw = &adapter->hw;
3251 	int max_entries = hw->mac.rar_entry_count;
3252 	u32 rah;
3253 	int i;
3254 
3255 	for (i = 0; i < max_entries; i++) {
3256 		rah = rd32(IGC_RAH(i));
3257 
3258 		if (!(rah & IGC_RAH_AV))
3259 			return i;
3260 	}
3261 
3262 	return -1;
3263 }
3264 
3265 /**
3266  * igc_add_mac_filter() - Add MAC address filter
3267  * @adapter: Pointer to adapter where the filter should be added
3268  * @type: MAC address filter type (source or destination)
3269  * @addr: MAC address
3270  * @queue: If non-negative, queue assignment feature is enabled and frames
3271  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3272  *         assignment is disabled.
3273  *
3274  * Return: 0 in case of success, negative errno code otherwise.
3275  */
3276 static int igc_add_mac_filter(struct igc_adapter *adapter,
3277 			      enum igc_mac_filter_type type, const u8 *addr,
3278 			      int queue)
3279 {
3280 	struct net_device *dev = adapter->netdev;
3281 	int index;
3282 
3283 	index = igc_find_mac_filter(adapter, type, addr);
3284 	if (index >= 0)
3285 		goto update_filter;
3286 
3287 	index = igc_get_avail_mac_filter_slot(adapter);
3288 	if (index < 0)
3289 		return -ENOSPC;
3290 
3291 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3292 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3293 		   addr, queue);
3294 
3295 update_filter:
3296 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3297 	return 0;
3298 }
3299 
3300 /**
3301  * igc_del_mac_filter() - Delete MAC address filter
3302  * @adapter: Pointer to adapter where the filter should be deleted from
3303  * @type: MAC address filter type (source or destination)
3304  * @addr: MAC address
3305  */
3306 static void igc_del_mac_filter(struct igc_adapter *adapter,
3307 			       enum igc_mac_filter_type type, const u8 *addr)
3308 {
3309 	struct net_device *dev = adapter->netdev;
3310 	int index;
3311 
3312 	index = igc_find_mac_filter(adapter, type, addr);
3313 	if (index < 0)
3314 		return;
3315 
3316 	if (index == 0) {
3317 		/* If this is the default filter, we don't actually delete it.
3318 		 * We just reset to its default value i.e. disable queue
3319 		 * assignment.
3320 		 */
3321 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3322 
3323 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3324 	} else {
3325 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3326 			   index,
3327 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3328 			   addr);
3329 
3330 		igc_clear_mac_filter_hw(adapter, index);
3331 	}
3332 }
3333 
3334 /**
3335  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3336  * @adapter: Pointer to adapter where the filter should be added
3337  * @prio: VLAN priority value
3338  * @queue: Queue number which matching frames are assigned to
3339  *
3340  * Return: 0 in case of success, negative errno code otherwise.
3341  */
3342 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3343 				    int queue)
3344 {
3345 	struct net_device *dev = adapter->netdev;
3346 	struct igc_hw *hw = &adapter->hw;
3347 	u32 vlanpqf;
3348 
3349 	vlanpqf = rd32(IGC_VLANPQF);
3350 
3351 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3352 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3353 		return -EEXIST;
3354 	}
3355 
3356 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3357 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3358 
3359 	wr32(IGC_VLANPQF, vlanpqf);
3360 
3361 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3362 		   prio, queue);
3363 	return 0;
3364 }
3365 
3366 /**
3367  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3368  * @adapter: Pointer to adapter where the filter should be deleted from
3369  * @prio: VLAN priority value
3370  */
3371 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3372 {
3373 	struct igc_hw *hw = &adapter->hw;
3374 	u32 vlanpqf;
3375 
3376 	vlanpqf = rd32(IGC_VLANPQF);
3377 
3378 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3379 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3380 
3381 	wr32(IGC_VLANPQF, vlanpqf);
3382 
3383 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3384 		   prio);
3385 }
3386 
3387 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3388 {
3389 	struct igc_hw *hw = &adapter->hw;
3390 	int i;
3391 
3392 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3393 		u32 etqf = rd32(IGC_ETQF(i));
3394 
3395 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3396 			return i;
3397 	}
3398 
3399 	return -1;
3400 }
3401 
3402 /**
3403  * igc_add_etype_filter() - Add ethertype filter
3404  * @adapter: Pointer to adapter where the filter should be added
3405  * @etype: Ethertype value
3406  * @queue: If non-negative, queue assignment feature is enabled and frames
3407  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3408  *         assignment is disabled.
3409  *
3410  * Return: 0 in case of success, negative errno code otherwise.
3411  */
3412 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3413 				int queue)
3414 {
3415 	struct igc_hw *hw = &adapter->hw;
3416 	int index;
3417 	u32 etqf;
3418 
3419 	index = igc_get_avail_etype_filter_slot(adapter);
3420 	if (index < 0)
3421 		return -ENOSPC;
3422 
3423 	etqf = rd32(IGC_ETQF(index));
3424 
3425 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3426 	etqf |= etype;
3427 
3428 	if (queue >= 0) {
3429 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3430 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3431 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3432 	}
3433 
3434 	etqf |= IGC_ETQF_FILTER_ENABLE;
3435 
3436 	wr32(IGC_ETQF(index), etqf);
3437 
3438 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3439 		   etype, queue);
3440 	return 0;
3441 }
3442 
3443 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3444 {
3445 	struct igc_hw *hw = &adapter->hw;
3446 	int i;
3447 
3448 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3449 		u32 etqf = rd32(IGC_ETQF(i));
3450 
3451 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3452 			return i;
3453 	}
3454 
3455 	return -1;
3456 }
3457 
3458 /**
3459  * igc_del_etype_filter() - Delete ethertype filter
3460  * @adapter: Pointer to adapter where the filter should be deleted from
3461  * @etype: Ethertype value
3462  */
3463 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3464 {
3465 	struct igc_hw *hw = &adapter->hw;
3466 	int index;
3467 
3468 	index = igc_find_etype_filter(adapter, etype);
3469 	if (index < 0)
3470 		return;
3471 
3472 	wr32(IGC_ETQF(index), 0);
3473 
3474 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3475 		   etype);
3476 }
3477 
3478 static int igc_flex_filter_select(struct igc_adapter *adapter,
3479 				  struct igc_flex_filter *input,
3480 				  u32 *fhft)
3481 {
3482 	struct igc_hw *hw = &adapter->hw;
3483 	u8 fhft_index;
3484 	u32 fhftsl;
3485 
3486 	if (input->index >= MAX_FLEX_FILTER) {
3487 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3488 		return -EINVAL;
3489 	}
3490 
3491 	/* Indirect table select register */
3492 	fhftsl = rd32(IGC_FHFTSL);
3493 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3494 	switch (input->index) {
3495 	case 0 ... 7:
3496 		fhftsl |= 0x00;
3497 		break;
3498 	case 8 ... 15:
3499 		fhftsl |= 0x01;
3500 		break;
3501 	case 16 ... 23:
3502 		fhftsl |= 0x02;
3503 		break;
3504 	case 24 ... 31:
3505 		fhftsl |= 0x03;
3506 		break;
3507 	}
3508 	wr32(IGC_FHFTSL, fhftsl);
3509 
3510 	/* Normalize index down to host table register */
3511 	fhft_index = input->index % 8;
3512 
3513 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3514 		IGC_FHFT_EXT(fhft_index - 4);
3515 
3516 	return 0;
3517 }
3518 
3519 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3520 				    struct igc_flex_filter *input)
3521 {
3522 	struct igc_hw *hw = &adapter->hw;
3523 	u8 *data = input->data;
3524 	u8 *mask = input->mask;
3525 	u32 queuing;
3526 	u32 fhft;
3527 	u32 wufc;
3528 	int ret;
3529 	int i;
3530 
3531 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3532 	 * out early to avoid surprises later.
3533 	 */
3534 	if (input->length % 8 != 0) {
3535 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3536 		return -EINVAL;
3537 	}
3538 
3539 	/* Select corresponding flex filter register and get base for host table. */
3540 	ret = igc_flex_filter_select(adapter, input, &fhft);
3541 	if (ret)
3542 		return ret;
3543 
3544 	/* When adding a filter globally disable flex filter feature. That is
3545 	 * recommended within the datasheet.
3546 	 */
3547 	wufc = rd32(IGC_WUFC);
3548 	wufc &= ~IGC_WUFC_FLEX_HQ;
3549 	wr32(IGC_WUFC, wufc);
3550 
3551 	/* Configure filter */
3552 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3553 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3554 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3555 
3556 	if (input->immediate_irq)
3557 		queuing |= IGC_FHFT_IMM_INT;
3558 
3559 	if (input->drop)
3560 		queuing |= IGC_FHFT_DROP;
3561 
3562 	wr32(fhft + 0xFC, queuing);
3563 
3564 	/* Write data (128 byte) and mask (128 bit) */
3565 	for (i = 0; i < 16; ++i) {
3566 		const size_t data_idx = i * 8;
3567 		const size_t row_idx = i * 16;
3568 		u32 dw0 =
3569 			(data[data_idx + 0] << 0) |
3570 			(data[data_idx + 1] << 8) |
3571 			(data[data_idx + 2] << 16) |
3572 			(data[data_idx + 3] << 24);
3573 		u32 dw1 =
3574 			(data[data_idx + 4] << 0) |
3575 			(data[data_idx + 5] << 8) |
3576 			(data[data_idx + 6] << 16) |
3577 			(data[data_idx + 7] << 24);
3578 		u32 tmp;
3579 
3580 		/* Write row: dw0, dw1 and mask */
3581 		wr32(fhft + row_idx, dw0);
3582 		wr32(fhft + row_idx + 4, dw1);
3583 
3584 		/* mask is only valid for MASK(7, 0) */
3585 		tmp = rd32(fhft + row_idx + 8);
3586 		tmp &= ~GENMASK(7, 0);
3587 		tmp |= mask[i];
3588 		wr32(fhft + row_idx + 8, tmp);
3589 	}
3590 
3591 	/* Enable filter. */
3592 	wufc |= IGC_WUFC_FLEX_HQ;
3593 	if (input->index > 8) {
3594 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3595 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3596 
3597 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3598 
3599 		wr32(IGC_WUFC_EXT, wufc_ext);
3600 	} else {
3601 		wufc |= (IGC_WUFC_FLX0 << input->index);
3602 	}
3603 	wr32(IGC_WUFC, wufc);
3604 
3605 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3606 		   input->index);
3607 
3608 	return 0;
3609 }
3610 
3611 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3612 				      const void *src, unsigned int offset,
3613 				      size_t len, const void *mask)
3614 {
3615 	int i;
3616 
3617 	/* data */
3618 	memcpy(&flex->data[offset], src, len);
3619 
3620 	/* mask */
3621 	for (i = 0; i < len; ++i) {
3622 		const unsigned int idx = i + offset;
3623 		const u8 *ptr = mask;
3624 
3625 		if (mask) {
3626 			if (ptr[i] & 0xff)
3627 				flex->mask[idx / 8] |= BIT(idx % 8);
3628 
3629 			continue;
3630 		}
3631 
3632 		flex->mask[idx / 8] |= BIT(idx % 8);
3633 	}
3634 }
3635 
3636 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3637 {
3638 	struct igc_hw *hw = &adapter->hw;
3639 	u32 wufc, wufc_ext;
3640 	int i;
3641 
3642 	wufc = rd32(IGC_WUFC);
3643 	wufc_ext = rd32(IGC_WUFC_EXT);
3644 
3645 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3646 		if (i < 8) {
3647 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3648 				return i;
3649 		} else {
3650 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3651 				return i;
3652 		}
3653 	}
3654 
3655 	return -ENOSPC;
3656 }
3657 
3658 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3659 {
3660 	struct igc_hw *hw = &adapter->hw;
3661 	u32 wufc, wufc_ext;
3662 
3663 	wufc = rd32(IGC_WUFC);
3664 	wufc_ext = rd32(IGC_WUFC_EXT);
3665 
3666 	if (wufc & IGC_WUFC_FILTER_MASK)
3667 		return true;
3668 
3669 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3670 		return true;
3671 
3672 	return false;
3673 }
3674 
3675 static int igc_add_flex_filter(struct igc_adapter *adapter,
3676 			       struct igc_nfc_rule *rule)
3677 {
3678 	struct igc_nfc_filter *filter = &rule->filter;
3679 	unsigned int eth_offset, user_offset;
3680 	struct igc_flex_filter flex = { };
3681 	int ret, index;
3682 	bool vlan;
3683 
3684 	index = igc_find_avail_flex_filter_slot(adapter);
3685 	if (index < 0)
3686 		return -ENOSPC;
3687 
3688 	/* Construct the flex filter:
3689 	 *  -> dest_mac [6]
3690 	 *  -> src_mac [6]
3691 	 *  -> tpid [2]
3692 	 *  -> vlan tci [2]
3693 	 *  -> ether type [2]
3694 	 *  -> user data [8]
3695 	 *  -> = 26 bytes => 32 length
3696 	 */
3697 	flex.index    = index;
3698 	flex.length   = 32;
3699 	flex.rx_queue = rule->action;
3700 
3701 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3702 	eth_offset = vlan ? 16 : 12;
3703 	user_offset = vlan ? 18 : 14;
3704 
3705 	/* Add destination MAC  */
3706 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3707 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3708 					  ETH_ALEN, NULL);
3709 
3710 	/* Add source MAC */
3711 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3712 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3713 					  ETH_ALEN, NULL);
3714 
3715 	/* Add VLAN etype */
3716 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3717 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3718 
3719 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3720 					  sizeof(vlan_etype), NULL);
3721 	}
3722 
3723 	/* Add VLAN TCI */
3724 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3725 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3726 					  sizeof(filter->vlan_tci), NULL);
3727 
3728 	/* Add Ether type */
3729 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3730 		__be16 etype = cpu_to_be16(filter->etype);
3731 
3732 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3733 					  sizeof(etype), NULL);
3734 	}
3735 
3736 	/* Add user data */
3737 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3738 		igc_flex_filter_add_field(&flex, &filter->user_data,
3739 					  user_offset,
3740 					  sizeof(filter->user_data),
3741 					  filter->user_mask);
3742 
3743 	/* Add it down to the hardware and enable it. */
3744 	ret = igc_write_flex_filter_ll(adapter, &flex);
3745 	if (ret)
3746 		return ret;
3747 
3748 	filter->flex_index = index;
3749 
3750 	return 0;
3751 }
3752 
3753 static void igc_del_flex_filter(struct igc_adapter *adapter,
3754 				u16 reg_index)
3755 {
3756 	struct igc_hw *hw = &adapter->hw;
3757 	u32 wufc;
3758 
3759 	/* Just disable the filter. The filter table itself is kept
3760 	 * intact. Another flex_filter_add() should override the "old" data
3761 	 * then.
3762 	 */
3763 	if (reg_index > 8) {
3764 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3765 
3766 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3767 		wr32(IGC_WUFC_EXT, wufc_ext);
3768 	} else {
3769 		wufc = rd32(IGC_WUFC);
3770 
3771 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3772 		wr32(IGC_WUFC, wufc);
3773 	}
3774 
3775 	if (igc_flex_filter_in_use(adapter))
3776 		return;
3777 
3778 	/* No filters are in use, we may disable flex filters */
3779 	wufc = rd32(IGC_WUFC);
3780 	wufc &= ~IGC_WUFC_FLEX_HQ;
3781 	wr32(IGC_WUFC, wufc);
3782 }
3783 
3784 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3785 			       struct igc_nfc_rule *rule)
3786 {
3787 	int err;
3788 
3789 	if (rule->flex) {
3790 		return igc_add_flex_filter(adapter, rule);
3791 	}
3792 
3793 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3794 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3795 					   rule->action);
3796 		if (err)
3797 			return err;
3798 	}
3799 
3800 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3801 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3802 					 rule->filter.src_addr, rule->action);
3803 		if (err)
3804 			return err;
3805 	}
3806 
3807 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3808 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3809 					 rule->filter.dst_addr, rule->action);
3810 		if (err)
3811 			return err;
3812 	}
3813 
3814 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3815 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3816 
3817 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3818 		if (err)
3819 			return err;
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3826 				 const struct igc_nfc_rule *rule)
3827 {
3828 	if (rule->flex) {
3829 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3830 		return;
3831 	}
3832 
3833 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3834 		igc_del_etype_filter(adapter, rule->filter.etype);
3835 
3836 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3837 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3838 
3839 		igc_del_vlan_prio_filter(adapter, prio);
3840 	}
3841 
3842 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3843 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3844 				   rule->filter.src_addr);
3845 
3846 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3847 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3848 				   rule->filter.dst_addr);
3849 }
3850 
3851 /**
3852  * igc_get_nfc_rule() - Get NFC rule
3853  * @adapter: Pointer to adapter
3854  * @location: Rule location
3855  *
3856  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3857  *
3858  * Return: Pointer to NFC rule at @location. If not found, NULL.
3859  */
3860 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3861 				      u32 location)
3862 {
3863 	struct igc_nfc_rule *rule;
3864 
3865 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3866 		if (rule->location == location)
3867 			return rule;
3868 		if (rule->location > location)
3869 			break;
3870 	}
3871 
3872 	return NULL;
3873 }
3874 
3875 /**
3876  * igc_del_nfc_rule() - Delete NFC rule
3877  * @adapter: Pointer to adapter
3878  * @rule: Pointer to rule to be deleted
3879  *
3880  * Disable NFC rule in hardware and delete it from adapter.
3881  *
3882  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3883  */
3884 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3885 {
3886 	igc_disable_nfc_rule(adapter, rule);
3887 
3888 	list_del(&rule->list);
3889 	adapter->nfc_rule_count--;
3890 
3891 	kfree(rule);
3892 }
3893 
3894 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3895 {
3896 	struct igc_nfc_rule *rule, *tmp;
3897 
3898 	mutex_lock(&adapter->nfc_rule_lock);
3899 
3900 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3901 		igc_del_nfc_rule(adapter, rule);
3902 
3903 	mutex_unlock(&adapter->nfc_rule_lock);
3904 }
3905 
3906 /**
3907  * igc_add_nfc_rule() - Add NFC rule
3908  * @adapter: Pointer to adapter
3909  * @rule: Pointer to rule to be added
3910  *
3911  * Enable NFC rule in hardware and add it to adapter.
3912  *
3913  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3914  *
3915  * Return: 0 on success, negative errno on failure.
3916  */
3917 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3918 {
3919 	struct igc_nfc_rule *pred, *cur;
3920 	int err;
3921 
3922 	err = igc_enable_nfc_rule(adapter, rule);
3923 	if (err)
3924 		return err;
3925 
3926 	pred = NULL;
3927 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3928 		if (cur->location >= rule->location)
3929 			break;
3930 		pred = cur;
3931 	}
3932 
3933 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3934 	adapter->nfc_rule_count++;
3935 	return 0;
3936 }
3937 
3938 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3939 {
3940 	struct igc_nfc_rule *rule;
3941 
3942 	mutex_lock(&adapter->nfc_rule_lock);
3943 
3944 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3945 		igc_enable_nfc_rule(adapter, rule);
3946 
3947 	mutex_unlock(&adapter->nfc_rule_lock);
3948 }
3949 
3950 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3951 {
3952 	struct igc_adapter *adapter = netdev_priv(netdev);
3953 
3954 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3955 }
3956 
3957 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3958 {
3959 	struct igc_adapter *adapter = netdev_priv(netdev);
3960 
3961 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3962 	return 0;
3963 }
3964 
3965 /**
3966  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3967  * @netdev: network interface device structure
3968  *
3969  * The set_rx_mode entry point is called whenever the unicast or multicast
3970  * address lists or the network interface flags are updated.  This routine is
3971  * responsible for configuring the hardware for proper unicast, multicast,
3972  * promiscuous mode, and all-multi behavior.
3973  */
3974 static void igc_set_rx_mode(struct net_device *netdev)
3975 {
3976 	struct igc_adapter *adapter = netdev_priv(netdev);
3977 	struct igc_hw *hw = &adapter->hw;
3978 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3979 	int count;
3980 
3981 	/* Check for Promiscuous and All Multicast modes */
3982 	if (netdev->flags & IFF_PROMISC) {
3983 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3984 	} else {
3985 		if (netdev->flags & IFF_ALLMULTI) {
3986 			rctl |= IGC_RCTL_MPE;
3987 		} else {
3988 			/* Write addresses to the MTA, if the attempt fails
3989 			 * then we should just turn on promiscuous mode so
3990 			 * that we can at least receive multicast traffic
3991 			 */
3992 			count = igc_write_mc_addr_list(netdev);
3993 			if (count < 0)
3994 				rctl |= IGC_RCTL_MPE;
3995 		}
3996 	}
3997 
3998 	/* Write addresses to available RAR registers, if there is not
3999 	 * sufficient space to store all the addresses then enable
4000 	 * unicast promiscuous mode
4001 	 */
4002 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4003 		rctl |= IGC_RCTL_UPE;
4004 
4005 	/* update state of unicast and multicast */
4006 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4007 	wr32(IGC_RCTL, rctl);
4008 
4009 #if (PAGE_SIZE < 8192)
4010 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4011 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4012 #endif
4013 	wr32(IGC_RLPML, rlpml);
4014 }
4015 
4016 /**
4017  * igc_configure - configure the hardware for RX and TX
4018  * @adapter: private board structure
4019  */
4020 static void igc_configure(struct igc_adapter *adapter)
4021 {
4022 	struct net_device *netdev = adapter->netdev;
4023 	int i = 0;
4024 
4025 	igc_get_hw_control(adapter);
4026 	igc_set_rx_mode(netdev);
4027 
4028 	igc_restore_vlan(adapter);
4029 
4030 	igc_setup_tctl(adapter);
4031 	igc_setup_mrqc(adapter);
4032 	igc_setup_rctl(adapter);
4033 
4034 	igc_set_default_mac_filter(adapter);
4035 	igc_restore_nfc_rules(adapter);
4036 
4037 	igc_configure_tx(adapter);
4038 	igc_configure_rx(adapter);
4039 
4040 	igc_rx_fifo_flush_base(&adapter->hw);
4041 
4042 	/* call igc_desc_unused which always leaves
4043 	 * at least 1 descriptor unused to make sure
4044 	 * next_to_use != next_to_clean
4045 	 */
4046 	for (i = 0; i < adapter->num_rx_queues; i++) {
4047 		struct igc_ring *ring = adapter->rx_ring[i];
4048 
4049 		if (ring->xsk_pool)
4050 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4051 		else
4052 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4053 	}
4054 }
4055 
4056 /**
4057  * igc_write_ivar - configure ivar for given MSI-X vector
4058  * @hw: pointer to the HW structure
4059  * @msix_vector: vector number we are allocating to a given ring
4060  * @index: row index of IVAR register to write within IVAR table
4061  * @offset: column offset of in IVAR, should be multiple of 8
4062  *
4063  * The IVAR table consists of 2 columns,
4064  * each containing an cause allocation for an Rx and Tx ring, and a
4065  * variable number of rows depending on the number of queues supported.
4066  */
4067 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4068 			   int index, int offset)
4069 {
4070 	u32 ivar = array_rd32(IGC_IVAR0, index);
4071 
4072 	/* clear any bits that are currently set */
4073 	ivar &= ~((u32)0xFF << offset);
4074 
4075 	/* write vector and valid bit */
4076 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4077 
4078 	array_wr32(IGC_IVAR0, index, ivar);
4079 }
4080 
4081 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4082 {
4083 	struct igc_adapter *adapter = q_vector->adapter;
4084 	struct igc_hw *hw = &adapter->hw;
4085 	int rx_queue = IGC_N0_QUEUE;
4086 	int tx_queue = IGC_N0_QUEUE;
4087 
4088 	if (q_vector->rx.ring)
4089 		rx_queue = q_vector->rx.ring->reg_idx;
4090 	if (q_vector->tx.ring)
4091 		tx_queue = q_vector->tx.ring->reg_idx;
4092 
4093 	switch (hw->mac.type) {
4094 	case igc_i225:
4095 		if (rx_queue > IGC_N0_QUEUE)
4096 			igc_write_ivar(hw, msix_vector,
4097 				       rx_queue >> 1,
4098 				       (rx_queue & 0x1) << 4);
4099 		if (tx_queue > IGC_N0_QUEUE)
4100 			igc_write_ivar(hw, msix_vector,
4101 				       tx_queue >> 1,
4102 				       ((tx_queue & 0x1) << 4) + 8);
4103 		q_vector->eims_value = BIT(msix_vector);
4104 		break;
4105 	default:
4106 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4107 		break;
4108 	}
4109 
4110 	/* add q_vector eims value to global eims_enable_mask */
4111 	adapter->eims_enable_mask |= q_vector->eims_value;
4112 
4113 	/* configure q_vector to set itr on first interrupt */
4114 	q_vector->set_itr = 1;
4115 }
4116 
4117 /**
4118  * igc_configure_msix - Configure MSI-X hardware
4119  * @adapter: Pointer to adapter structure
4120  *
4121  * igc_configure_msix sets up the hardware to properly
4122  * generate MSI-X interrupts.
4123  */
4124 static void igc_configure_msix(struct igc_adapter *adapter)
4125 {
4126 	struct igc_hw *hw = &adapter->hw;
4127 	int i, vector = 0;
4128 	u32 tmp;
4129 
4130 	adapter->eims_enable_mask = 0;
4131 
4132 	/* set vector for other causes, i.e. link changes */
4133 	switch (hw->mac.type) {
4134 	case igc_i225:
4135 		/* Turn on MSI-X capability first, or our settings
4136 		 * won't stick.  And it will take days to debug.
4137 		 */
4138 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4139 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4140 		     IGC_GPIE_NSICR);
4141 
4142 		/* enable msix_other interrupt */
4143 		adapter->eims_other = BIT(vector);
4144 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4145 
4146 		wr32(IGC_IVAR_MISC, tmp);
4147 		break;
4148 	default:
4149 		/* do nothing, since nothing else supports MSI-X */
4150 		break;
4151 	} /* switch (hw->mac.type) */
4152 
4153 	adapter->eims_enable_mask |= adapter->eims_other;
4154 
4155 	for (i = 0; i < adapter->num_q_vectors; i++)
4156 		igc_assign_vector(adapter->q_vector[i], vector++);
4157 
4158 	wrfl();
4159 }
4160 
4161 /**
4162  * igc_irq_enable - Enable default interrupt generation settings
4163  * @adapter: board private structure
4164  */
4165 static void igc_irq_enable(struct igc_adapter *adapter)
4166 {
4167 	struct igc_hw *hw = &adapter->hw;
4168 
4169 	if (adapter->msix_entries) {
4170 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4171 		u32 regval = rd32(IGC_EIAC);
4172 
4173 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4174 		regval = rd32(IGC_EIAM);
4175 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4176 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4177 		wr32(IGC_IMS, ims);
4178 	} else {
4179 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4180 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4181 	}
4182 }
4183 
4184 /**
4185  * igc_irq_disable - Mask off interrupt generation on the NIC
4186  * @adapter: board private structure
4187  */
4188 static void igc_irq_disable(struct igc_adapter *adapter)
4189 {
4190 	struct igc_hw *hw = &adapter->hw;
4191 
4192 	if (adapter->msix_entries) {
4193 		u32 regval = rd32(IGC_EIAM);
4194 
4195 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4196 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4197 		regval = rd32(IGC_EIAC);
4198 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4199 	}
4200 
4201 	wr32(IGC_IAM, 0);
4202 	wr32(IGC_IMC, ~0);
4203 	wrfl();
4204 
4205 	if (adapter->msix_entries) {
4206 		int vector = 0, i;
4207 
4208 		synchronize_irq(adapter->msix_entries[vector++].vector);
4209 
4210 		for (i = 0; i < adapter->num_q_vectors; i++)
4211 			synchronize_irq(adapter->msix_entries[vector++].vector);
4212 	} else {
4213 		synchronize_irq(adapter->pdev->irq);
4214 	}
4215 }
4216 
4217 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4218 			      const u32 max_rss_queues)
4219 {
4220 	/* Determine if we need to pair queues. */
4221 	/* If rss_queues > half of max_rss_queues, pair the queues in
4222 	 * order to conserve interrupts due to limited supply.
4223 	 */
4224 	if (adapter->rss_queues > (max_rss_queues / 2))
4225 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4226 	else
4227 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4228 }
4229 
4230 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4231 {
4232 	return IGC_MAX_RX_QUEUES;
4233 }
4234 
4235 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4236 {
4237 	u32 max_rss_queues;
4238 
4239 	max_rss_queues = igc_get_max_rss_queues(adapter);
4240 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4241 
4242 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4243 }
4244 
4245 /**
4246  * igc_reset_q_vector - Reset config for interrupt vector
4247  * @adapter: board private structure to initialize
4248  * @v_idx: Index of vector to be reset
4249  *
4250  * If NAPI is enabled it will delete any references to the
4251  * NAPI struct. This is preparation for igc_free_q_vector.
4252  */
4253 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4254 {
4255 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4256 
4257 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4258 	 * not yet allocated
4259 	 */
4260 	if (!q_vector)
4261 		return;
4262 
4263 	if (q_vector->tx.ring)
4264 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4265 
4266 	if (q_vector->rx.ring)
4267 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4268 
4269 	netif_napi_del(&q_vector->napi);
4270 }
4271 
4272 /**
4273  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4274  * @adapter: board private structure to initialize
4275  * @v_idx: Index of vector to be freed
4276  *
4277  * This function frees the memory allocated to the q_vector.
4278  */
4279 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4280 {
4281 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4282 
4283 	adapter->q_vector[v_idx] = NULL;
4284 
4285 	/* igc_get_stats64() might access the rings on this vector,
4286 	 * we must wait a grace period before freeing it.
4287 	 */
4288 	if (q_vector)
4289 		kfree_rcu(q_vector, rcu);
4290 }
4291 
4292 /**
4293  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4294  * @adapter: board private structure to initialize
4295  *
4296  * This function frees the memory allocated to the q_vectors.  In addition if
4297  * NAPI is enabled it will delete any references to the NAPI struct prior
4298  * to freeing the q_vector.
4299  */
4300 static void igc_free_q_vectors(struct igc_adapter *adapter)
4301 {
4302 	int v_idx = adapter->num_q_vectors;
4303 
4304 	adapter->num_tx_queues = 0;
4305 	adapter->num_rx_queues = 0;
4306 	adapter->num_q_vectors = 0;
4307 
4308 	while (v_idx--) {
4309 		igc_reset_q_vector(adapter, v_idx);
4310 		igc_free_q_vector(adapter, v_idx);
4311 	}
4312 }
4313 
4314 /**
4315  * igc_update_itr - update the dynamic ITR value based on statistics
4316  * @q_vector: pointer to q_vector
4317  * @ring_container: ring info to update the itr for
4318  *
4319  * Stores a new ITR value based on packets and byte
4320  * counts during the last interrupt.  The advantage of per interrupt
4321  * computation is faster updates and more accurate ITR for the current
4322  * traffic pattern.  Constants in this function were computed
4323  * based on theoretical maximum wire speed and thresholds were set based
4324  * on testing data as well as attempting to minimize response time
4325  * while increasing bulk throughput.
4326  * NOTE: These calculations are only valid when operating in a single-
4327  * queue environment.
4328  */
4329 static void igc_update_itr(struct igc_q_vector *q_vector,
4330 			   struct igc_ring_container *ring_container)
4331 {
4332 	unsigned int packets = ring_container->total_packets;
4333 	unsigned int bytes = ring_container->total_bytes;
4334 	u8 itrval = ring_container->itr;
4335 
4336 	/* no packets, exit with status unchanged */
4337 	if (packets == 0)
4338 		return;
4339 
4340 	switch (itrval) {
4341 	case lowest_latency:
4342 		/* handle TSO and jumbo frames */
4343 		if (bytes / packets > 8000)
4344 			itrval = bulk_latency;
4345 		else if ((packets < 5) && (bytes > 512))
4346 			itrval = low_latency;
4347 		break;
4348 	case low_latency:  /* 50 usec aka 20000 ints/s */
4349 		if (bytes > 10000) {
4350 			/* this if handles the TSO accounting */
4351 			if (bytes / packets > 8000)
4352 				itrval = bulk_latency;
4353 			else if ((packets < 10) || ((bytes / packets) > 1200))
4354 				itrval = bulk_latency;
4355 			else if ((packets > 35))
4356 				itrval = lowest_latency;
4357 		} else if (bytes / packets > 2000) {
4358 			itrval = bulk_latency;
4359 		} else if (packets <= 2 && bytes < 512) {
4360 			itrval = lowest_latency;
4361 		}
4362 		break;
4363 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4364 		if (bytes > 25000) {
4365 			if (packets > 35)
4366 				itrval = low_latency;
4367 		} else if (bytes < 1500) {
4368 			itrval = low_latency;
4369 		}
4370 		break;
4371 	}
4372 
4373 	/* clear work counters since we have the values we need */
4374 	ring_container->total_bytes = 0;
4375 	ring_container->total_packets = 0;
4376 
4377 	/* write updated itr to ring container */
4378 	ring_container->itr = itrval;
4379 }
4380 
4381 static void igc_set_itr(struct igc_q_vector *q_vector)
4382 {
4383 	struct igc_adapter *adapter = q_vector->adapter;
4384 	u32 new_itr = q_vector->itr_val;
4385 	u8 current_itr = 0;
4386 
4387 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4388 	switch (adapter->link_speed) {
4389 	case SPEED_10:
4390 	case SPEED_100:
4391 		current_itr = 0;
4392 		new_itr = IGC_4K_ITR;
4393 		goto set_itr_now;
4394 	default:
4395 		break;
4396 	}
4397 
4398 	igc_update_itr(q_vector, &q_vector->tx);
4399 	igc_update_itr(q_vector, &q_vector->rx);
4400 
4401 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4402 
4403 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4404 	if (current_itr == lowest_latency &&
4405 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4406 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4407 		current_itr = low_latency;
4408 
4409 	switch (current_itr) {
4410 	/* counts and packets in update_itr are dependent on these numbers */
4411 	case lowest_latency:
4412 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4413 		break;
4414 	case low_latency:
4415 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4416 		break;
4417 	case bulk_latency:
4418 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4419 		break;
4420 	default:
4421 		break;
4422 	}
4423 
4424 set_itr_now:
4425 	if (new_itr != q_vector->itr_val) {
4426 		/* this attempts to bias the interrupt rate towards Bulk
4427 		 * by adding intermediate steps when interrupt rate is
4428 		 * increasing
4429 		 */
4430 		new_itr = new_itr > q_vector->itr_val ?
4431 			  max((new_itr * q_vector->itr_val) /
4432 			  (new_itr + (q_vector->itr_val >> 2)),
4433 			  new_itr) : new_itr;
4434 		/* Don't write the value here; it resets the adapter's
4435 		 * internal timer, and causes us to delay far longer than
4436 		 * we should between interrupts.  Instead, we write the ITR
4437 		 * value at the beginning of the next interrupt so the timing
4438 		 * ends up being correct.
4439 		 */
4440 		q_vector->itr_val = new_itr;
4441 		q_vector->set_itr = 1;
4442 	}
4443 }
4444 
4445 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4446 {
4447 	int v_idx = adapter->num_q_vectors;
4448 
4449 	if (adapter->msix_entries) {
4450 		pci_disable_msix(adapter->pdev);
4451 		kfree(adapter->msix_entries);
4452 		adapter->msix_entries = NULL;
4453 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4454 		pci_disable_msi(adapter->pdev);
4455 	}
4456 
4457 	while (v_idx--)
4458 		igc_reset_q_vector(adapter, v_idx);
4459 }
4460 
4461 /**
4462  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4463  * @adapter: Pointer to adapter structure
4464  * @msix: boolean value for MSI-X capability
4465  *
4466  * Attempt to configure interrupts using the best available
4467  * capabilities of the hardware and kernel.
4468  */
4469 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4470 					 bool msix)
4471 {
4472 	int numvecs, i;
4473 	int err;
4474 
4475 	if (!msix)
4476 		goto msi_only;
4477 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4478 
4479 	/* Number of supported queues. */
4480 	adapter->num_rx_queues = adapter->rss_queues;
4481 
4482 	adapter->num_tx_queues = adapter->rss_queues;
4483 
4484 	/* start with one vector for every Rx queue */
4485 	numvecs = adapter->num_rx_queues;
4486 
4487 	/* if Tx handler is separate add 1 for every Tx queue */
4488 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4489 		numvecs += adapter->num_tx_queues;
4490 
4491 	/* store the number of vectors reserved for queues */
4492 	adapter->num_q_vectors = numvecs;
4493 
4494 	/* add 1 vector for link status interrupts */
4495 	numvecs++;
4496 
4497 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4498 					GFP_KERNEL);
4499 
4500 	if (!adapter->msix_entries)
4501 		return;
4502 
4503 	/* populate entry values */
4504 	for (i = 0; i < numvecs; i++)
4505 		adapter->msix_entries[i].entry = i;
4506 
4507 	err = pci_enable_msix_range(adapter->pdev,
4508 				    adapter->msix_entries,
4509 				    numvecs,
4510 				    numvecs);
4511 	if (err > 0)
4512 		return;
4513 
4514 	kfree(adapter->msix_entries);
4515 	adapter->msix_entries = NULL;
4516 
4517 	igc_reset_interrupt_capability(adapter);
4518 
4519 msi_only:
4520 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4521 
4522 	adapter->rss_queues = 1;
4523 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4524 	adapter->num_rx_queues = 1;
4525 	adapter->num_tx_queues = 1;
4526 	adapter->num_q_vectors = 1;
4527 	if (!pci_enable_msi(adapter->pdev))
4528 		adapter->flags |= IGC_FLAG_HAS_MSI;
4529 }
4530 
4531 /**
4532  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4533  * @q_vector: pointer to q_vector
4534  *
4535  * Stores a new ITR value based on strictly on packet size.  This
4536  * algorithm is less sophisticated than that used in igc_update_itr,
4537  * due to the difficulty of synchronizing statistics across multiple
4538  * receive rings.  The divisors and thresholds used by this function
4539  * were determined based on theoretical maximum wire speed and testing
4540  * data, in order to minimize response time while increasing bulk
4541  * throughput.
4542  * NOTE: This function is called only when operating in a multiqueue
4543  * receive environment.
4544  */
4545 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4546 {
4547 	struct igc_adapter *adapter = q_vector->adapter;
4548 	int new_val = q_vector->itr_val;
4549 	int avg_wire_size = 0;
4550 	unsigned int packets;
4551 
4552 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4553 	 * ints/sec - ITR timer value of 120 ticks.
4554 	 */
4555 	switch (adapter->link_speed) {
4556 	case SPEED_10:
4557 	case SPEED_100:
4558 		new_val = IGC_4K_ITR;
4559 		goto set_itr_val;
4560 	default:
4561 		break;
4562 	}
4563 
4564 	packets = q_vector->rx.total_packets;
4565 	if (packets)
4566 		avg_wire_size = q_vector->rx.total_bytes / packets;
4567 
4568 	packets = q_vector->tx.total_packets;
4569 	if (packets)
4570 		avg_wire_size = max_t(u32, avg_wire_size,
4571 				      q_vector->tx.total_bytes / packets);
4572 
4573 	/* if avg_wire_size isn't set no work was done */
4574 	if (!avg_wire_size)
4575 		goto clear_counts;
4576 
4577 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4578 	avg_wire_size += 24;
4579 
4580 	/* Don't starve jumbo frames */
4581 	avg_wire_size = min(avg_wire_size, 3000);
4582 
4583 	/* Give a little boost to mid-size frames */
4584 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4585 		new_val = avg_wire_size / 3;
4586 	else
4587 		new_val = avg_wire_size / 2;
4588 
4589 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4590 	if (new_val < IGC_20K_ITR &&
4591 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4592 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4593 		new_val = IGC_20K_ITR;
4594 
4595 set_itr_val:
4596 	if (new_val != q_vector->itr_val) {
4597 		q_vector->itr_val = new_val;
4598 		q_vector->set_itr = 1;
4599 	}
4600 clear_counts:
4601 	q_vector->rx.total_bytes = 0;
4602 	q_vector->rx.total_packets = 0;
4603 	q_vector->tx.total_bytes = 0;
4604 	q_vector->tx.total_packets = 0;
4605 }
4606 
4607 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4608 {
4609 	struct igc_adapter *adapter = q_vector->adapter;
4610 	struct igc_hw *hw = &adapter->hw;
4611 
4612 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4613 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4614 		if (adapter->num_q_vectors == 1)
4615 			igc_set_itr(q_vector);
4616 		else
4617 			igc_update_ring_itr(q_vector);
4618 	}
4619 
4620 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4621 		if (adapter->msix_entries)
4622 			wr32(IGC_EIMS, q_vector->eims_value);
4623 		else
4624 			igc_irq_enable(adapter);
4625 	}
4626 }
4627 
4628 static void igc_add_ring(struct igc_ring *ring,
4629 			 struct igc_ring_container *head)
4630 {
4631 	head->ring = ring;
4632 	head->count++;
4633 }
4634 
4635 /**
4636  * igc_cache_ring_register - Descriptor ring to register mapping
4637  * @adapter: board private structure to initialize
4638  *
4639  * Once we know the feature-set enabled for the device, we'll cache
4640  * the register offset the descriptor ring is assigned to.
4641  */
4642 static void igc_cache_ring_register(struct igc_adapter *adapter)
4643 {
4644 	int i = 0, j = 0;
4645 
4646 	switch (adapter->hw.mac.type) {
4647 	case igc_i225:
4648 	default:
4649 		for (; i < adapter->num_rx_queues; i++)
4650 			adapter->rx_ring[i]->reg_idx = i;
4651 		for (; j < adapter->num_tx_queues; j++)
4652 			adapter->tx_ring[j]->reg_idx = j;
4653 		break;
4654 	}
4655 }
4656 
4657 /**
4658  * igc_poll - NAPI Rx polling callback
4659  * @napi: napi polling structure
4660  * @budget: count of how many packets we should handle
4661  */
4662 static int igc_poll(struct napi_struct *napi, int budget)
4663 {
4664 	struct igc_q_vector *q_vector = container_of(napi,
4665 						     struct igc_q_vector,
4666 						     napi);
4667 	struct igc_ring *rx_ring = q_vector->rx.ring;
4668 	bool clean_complete = true;
4669 	int work_done = 0;
4670 
4671 	if (q_vector->tx.ring)
4672 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4673 
4674 	if (rx_ring) {
4675 		int cleaned = rx_ring->xsk_pool ?
4676 			      igc_clean_rx_irq_zc(q_vector, budget) :
4677 			      igc_clean_rx_irq(q_vector, budget);
4678 
4679 		work_done += cleaned;
4680 		if (cleaned >= budget)
4681 			clean_complete = false;
4682 	}
4683 
4684 	/* If all work not completed, return budget and keep polling */
4685 	if (!clean_complete)
4686 		return budget;
4687 
4688 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4689 	 * poll us due to busy-polling
4690 	 */
4691 	if (likely(napi_complete_done(napi, work_done)))
4692 		igc_ring_irq_enable(q_vector);
4693 
4694 	return min(work_done, budget - 1);
4695 }
4696 
4697 /**
4698  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4699  * @adapter: board private structure to initialize
4700  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4701  * @v_idx: index of vector in adapter struct
4702  * @txr_count: total number of Tx rings to allocate
4703  * @txr_idx: index of first Tx ring to allocate
4704  * @rxr_count: total number of Rx rings to allocate
4705  * @rxr_idx: index of first Rx ring to allocate
4706  *
4707  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4708  */
4709 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4710 			      unsigned int v_count, unsigned int v_idx,
4711 			      unsigned int txr_count, unsigned int txr_idx,
4712 			      unsigned int rxr_count, unsigned int rxr_idx)
4713 {
4714 	struct igc_q_vector *q_vector;
4715 	struct igc_ring *ring;
4716 	int ring_count;
4717 
4718 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4719 	if (txr_count > 1 || rxr_count > 1)
4720 		return -ENOMEM;
4721 
4722 	ring_count = txr_count + rxr_count;
4723 
4724 	/* allocate q_vector and rings */
4725 	q_vector = adapter->q_vector[v_idx];
4726 	if (!q_vector)
4727 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4728 				   GFP_KERNEL);
4729 	else
4730 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4731 	if (!q_vector)
4732 		return -ENOMEM;
4733 
4734 	/* initialize NAPI */
4735 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4736 
4737 	/* tie q_vector and adapter together */
4738 	adapter->q_vector[v_idx] = q_vector;
4739 	q_vector->adapter = adapter;
4740 
4741 	/* initialize work limits */
4742 	q_vector->tx.work_limit = adapter->tx_work_limit;
4743 
4744 	/* initialize ITR configuration */
4745 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4746 	q_vector->itr_val = IGC_START_ITR;
4747 
4748 	/* initialize pointer to rings */
4749 	ring = q_vector->ring;
4750 
4751 	/* initialize ITR */
4752 	if (rxr_count) {
4753 		/* rx or rx/tx vector */
4754 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4755 			q_vector->itr_val = adapter->rx_itr_setting;
4756 	} else {
4757 		/* tx only vector */
4758 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4759 			q_vector->itr_val = adapter->tx_itr_setting;
4760 	}
4761 
4762 	if (txr_count) {
4763 		/* assign generic ring traits */
4764 		ring->dev = &adapter->pdev->dev;
4765 		ring->netdev = adapter->netdev;
4766 
4767 		/* configure backlink on ring */
4768 		ring->q_vector = q_vector;
4769 
4770 		/* update q_vector Tx values */
4771 		igc_add_ring(ring, &q_vector->tx);
4772 
4773 		/* apply Tx specific ring traits */
4774 		ring->count = adapter->tx_ring_count;
4775 		ring->queue_index = txr_idx;
4776 
4777 		/* assign ring to adapter */
4778 		adapter->tx_ring[txr_idx] = ring;
4779 
4780 		/* push pointer to next ring */
4781 		ring++;
4782 	}
4783 
4784 	if (rxr_count) {
4785 		/* assign generic ring traits */
4786 		ring->dev = &adapter->pdev->dev;
4787 		ring->netdev = adapter->netdev;
4788 
4789 		/* configure backlink on ring */
4790 		ring->q_vector = q_vector;
4791 
4792 		/* update q_vector Rx values */
4793 		igc_add_ring(ring, &q_vector->rx);
4794 
4795 		/* apply Rx specific ring traits */
4796 		ring->count = adapter->rx_ring_count;
4797 		ring->queue_index = rxr_idx;
4798 
4799 		/* assign ring to adapter */
4800 		adapter->rx_ring[rxr_idx] = ring;
4801 	}
4802 
4803 	return 0;
4804 }
4805 
4806 /**
4807  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4808  * @adapter: board private structure to initialize
4809  *
4810  * We allocate one q_vector per queue interrupt.  If allocation fails we
4811  * return -ENOMEM.
4812  */
4813 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4814 {
4815 	int rxr_remaining = adapter->num_rx_queues;
4816 	int txr_remaining = adapter->num_tx_queues;
4817 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4818 	int q_vectors = adapter->num_q_vectors;
4819 	int err;
4820 
4821 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4822 		for (; rxr_remaining; v_idx++) {
4823 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4824 						 0, 0, 1, rxr_idx);
4825 
4826 			if (err)
4827 				goto err_out;
4828 
4829 			/* update counts and index */
4830 			rxr_remaining--;
4831 			rxr_idx++;
4832 		}
4833 	}
4834 
4835 	for (; v_idx < q_vectors; v_idx++) {
4836 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4837 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4838 
4839 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4840 					 tqpv, txr_idx, rqpv, rxr_idx);
4841 
4842 		if (err)
4843 			goto err_out;
4844 
4845 		/* update counts and index */
4846 		rxr_remaining -= rqpv;
4847 		txr_remaining -= tqpv;
4848 		rxr_idx++;
4849 		txr_idx++;
4850 	}
4851 
4852 	return 0;
4853 
4854 err_out:
4855 	adapter->num_tx_queues = 0;
4856 	adapter->num_rx_queues = 0;
4857 	adapter->num_q_vectors = 0;
4858 
4859 	while (v_idx--)
4860 		igc_free_q_vector(adapter, v_idx);
4861 
4862 	return -ENOMEM;
4863 }
4864 
4865 /**
4866  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4867  * @adapter: Pointer to adapter structure
4868  * @msix: boolean for MSI-X capability
4869  *
4870  * This function initializes the interrupts and allocates all of the queues.
4871  */
4872 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4873 {
4874 	struct net_device *dev = adapter->netdev;
4875 	int err = 0;
4876 
4877 	igc_set_interrupt_capability(adapter, msix);
4878 
4879 	err = igc_alloc_q_vectors(adapter);
4880 	if (err) {
4881 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4882 		goto err_alloc_q_vectors;
4883 	}
4884 
4885 	igc_cache_ring_register(adapter);
4886 
4887 	return 0;
4888 
4889 err_alloc_q_vectors:
4890 	igc_reset_interrupt_capability(adapter);
4891 	return err;
4892 }
4893 
4894 /**
4895  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4896  * @adapter: board private structure to initialize
4897  *
4898  * igc_sw_init initializes the Adapter private data structure.
4899  * Fields are initialized based on PCI device information and
4900  * OS network device settings (MTU size).
4901  */
4902 static int igc_sw_init(struct igc_adapter *adapter)
4903 {
4904 	struct net_device *netdev = adapter->netdev;
4905 	struct pci_dev *pdev = adapter->pdev;
4906 	struct igc_hw *hw = &adapter->hw;
4907 
4908 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4909 
4910 	/* set default ring sizes */
4911 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4912 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4913 
4914 	/* set default ITR values */
4915 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4916 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4917 
4918 	/* set default work limits */
4919 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4920 
4921 	/* adjust max frame to be at least the size of a standard frame */
4922 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4923 				VLAN_HLEN;
4924 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4925 
4926 	mutex_init(&adapter->nfc_rule_lock);
4927 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4928 	adapter->nfc_rule_count = 0;
4929 
4930 	spin_lock_init(&adapter->stats64_lock);
4931 	spin_lock_init(&adapter->qbv_tx_lock);
4932 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4933 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4934 
4935 	igc_init_queue_configuration(adapter);
4936 
4937 	/* This call may decrease the number of queues */
4938 	if (igc_init_interrupt_scheme(adapter, true)) {
4939 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4940 		return -ENOMEM;
4941 	}
4942 
4943 	/* Explicitly disable IRQ since the NIC can be in any state. */
4944 	igc_irq_disable(adapter);
4945 
4946 	set_bit(__IGC_DOWN, &adapter->state);
4947 
4948 	return 0;
4949 }
4950 
4951 /**
4952  * igc_up - Open the interface and prepare it to handle traffic
4953  * @adapter: board private structure
4954  */
4955 void igc_up(struct igc_adapter *adapter)
4956 {
4957 	struct igc_hw *hw = &adapter->hw;
4958 	int i = 0;
4959 
4960 	/* hardware has been reset, we need to reload some things */
4961 	igc_configure(adapter);
4962 
4963 	clear_bit(__IGC_DOWN, &adapter->state);
4964 
4965 	for (i = 0; i < adapter->num_q_vectors; i++)
4966 		napi_enable(&adapter->q_vector[i]->napi);
4967 
4968 	if (adapter->msix_entries)
4969 		igc_configure_msix(adapter);
4970 	else
4971 		igc_assign_vector(adapter->q_vector[0], 0);
4972 
4973 	/* Clear any pending interrupts. */
4974 	rd32(IGC_ICR);
4975 	igc_irq_enable(adapter);
4976 
4977 	netif_tx_start_all_queues(adapter->netdev);
4978 
4979 	/* start the watchdog. */
4980 	hw->mac.get_link_status = true;
4981 	schedule_work(&adapter->watchdog_task);
4982 }
4983 
4984 /**
4985  * igc_update_stats - Update the board statistics counters
4986  * @adapter: board private structure
4987  */
4988 void igc_update_stats(struct igc_adapter *adapter)
4989 {
4990 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4991 	struct pci_dev *pdev = adapter->pdev;
4992 	struct igc_hw *hw = &adapter->hw;
4993 	u64 _bytes, _packets;
4994 	u64 bytes, packets;
4995 	unsigned int start;
4996 	u32 mpc;
4997 	int i;
4998 
4999 	/* Prevent stats update while adapter is being reset, or if the pci
5000 	 * connection is down.
5001 	 */
5002 	if (adapter->link_speed == 0)
5003 		return;
5004 	if (pci_channel_offline(pdev))
5005 		return;
5006 
5007 	packets = 0;
5008 	bytes = 0;
5009 
5010 	rcu_read_lock();
5011 	for (i = 0; i < adapter->num_rx_queues; i++) {
5012 		struct igc_ring *ring = adapter->rx_ring[i];
5013 		u32 rqdpc = rd32(IGC_RQDPC(i));
5014 
5015 		if (hw->mac.type >= igc_i225)
5016 			wr32(IGC_RQDPC(i), 0);
5017 
5018 		if (rqdpc) {
5019 			ring->rx_stats.drops += rqdpc;
5020 			net_stats->rx_fifo_errors += rqdpc;
5021 		}
5022 
5023 		do {
5024 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5025 			_bytes = ring->rx_stats.bytes;
5026 			_packets = ring->rx_stats.packets;
5027 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5028 		bytes += _bytes;
5029 		packets += _packets;
5030 	}
5031 
5032 	net_stats->rx_bytes = bytes;
5033 	net_stats->rx_packets = packets;
5034 
5035 	packets = 0;
5036 	bytes = 0;
5037 	for (i = 0; i < adapter->num_tx_queues; i++) {
5038 		struct igc_ring *ring = adapter->tx_ring[i];
5039 
5040 		do {
5041 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5042 			_bytes = ring->tx_stats.bytes;
5043 			_packets = ring->tx_stats.packets;
5044 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5045 		bytes += _bytes;
5046 		packets += _packets;
5047 	}
5048 	net_stats->tx_bytes = bytes;
5049 	net_stats->tx_packets = packets;
5050 	rcu_read_unlock();
5051 
5052 	/* read stats registers */
5053 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5054 	adapter->stats.gprc += rd32(IGC_GPRC);
5055 	adapter->stats.gorc += rd32(IGC_GORCL);
5056 	rd32(IGC_GORCH); /* clear GORCL */
5057 	adapter->stats.bprc += rd32(IGC_BPRC);
5058 	adapter->stats.mprc += rd32(IGC_MPRC);
5059 	adapter->stats.roc += rd32(IGC_ROC);
5060 
5061 	adapter->stats.prc64 += rd32(IGC_PRC64);
5062 	adapter->stats.prc127 += rd32(IGC_PRC127);
5063 	adapter->stats.prc255 += rd32(IGC_PRC255);
5064 	adapter->stats.prc511 += rd32(IGC_PRC511);
5065 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5066 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5067 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5068 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5069 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5070 
5071 	mpc = rd32(IGC_MPC);
5072 	adapter->stats.mpc += mpc;
5073 	net_stats->rx_fifo_errors += mpc;
5074 	adapter->stats.scc += rd32(IGC_SCC);
5075 	adapter->stats.ecol += rd32(IGC_ECOL);
5076 	adapter->stats.mcc += rd32(IGC_MCC);
5077 	adapter->stats.latecol += rd32(IGC_LATECOL);
5078 	adapter->stats.dc += rd32(IGC_DC);
5079 	adapter->stats.rlec += rd32(IGC_RLEC);
5080 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5081 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5082 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5083 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5084 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5085 	adapter->stats.gptc += rd32(IGC_GPTC);
5086 	adapter->stats.gotc += rd32(IGC_GOTCL);
5087 	rd32(IGC_GOTCH); /* clear GOTCL */
5088 	adapter->stats.rnbc += rd32(IGC_RNBC);
5089 	adapter->stats.ruc += rd32(IGC_RUC);
5090 	adapter->stats.rfc += rd32(IGC_RFC);
5091 	adapter->stats.rjc += rd32(IGC_RJC);
5092 	adapter->stats.tor += rd32(IGC_TORH);
5093 	adapter->stats.tot += rd32(IGC_TOTH);
5094 	adapter->stats.tpr += rd32(IGC_TPR);
5095 
5096 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5097 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5098 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5099 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5100 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5101 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5102 
5103 	adapter->stats.mptc += rd32(IGC_MPTC);
5104 	adapter->stats.bptc += rd32(IGC_BPTC);
5105 
5106 	adapter->stats.tpt += rd32(IGC_TPT);
5107 	adapter->stats.colc += rd32(IGC_COLC);
5108 	adapter->stats.colc += rd32(IGC_RERC);
5109 
5110 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5111 
5112 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5113 
5114 	adapter->stats.iac += rd32(IGC_IAC);
5115 
5116 	/* Fill out the OS statistics structure */
5117 	net_stats->multicast = adapter->stats.mprc;
5118 	net_stats->collisions = adapter->stats.colc;
5119 
5120 	/* Rx Errors */
5121 
5122 	/* RLEC on some newer hardware can be incorrect so build
5123 	 * our own version based on RUC and ROC
5124 	 */
5125 	net_stats->rx_errors = adapter->stats.rxerrc +
5126 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5127 		adapter->stats.ruc + adapter->stats.roc +
5128 		adapter->stats.cexterr;
5129 	net_stats->rx_length_errors = adapter->stats.ruc +
5130 				      adapter->stats.roc;
5131 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5132 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5133 	net_stats->rx_missed_errors = adapter->stats.mpc;
5134 
5135 	/* Tx Errors */
5136 	net_stats->tx_errors = adapter->stats.ecol +
5137 			       adapter->stats.latecol;
5138 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5139 	net_stats->tx_window_errors = adapter->stats.latecol;
5140 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5141 
5142 	/* Tx Dropped */
5143 	net_stats->tx_dropped = adapter->stats.txdrop;
5144 
5145 	/* Management Stats */
5146 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5147 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5148 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5149 }
5150 
5151 /**
5152  * igc_down - Close the interface
5153  * @adapter: board private structure
5154  */
5155 void igc_down(struct igc_adapter *adapter)
5156 {
5157 	struct net_device *netdev = adapter->netdev;
5158 	struct igc_hw *hw = &adapter->hw;
5159 	u32 tctl, rctl;
5160 	int i = 0;
5161 
5162 	set_bit(__IGC_DOWN, &adapter->state);
5163 
5164 	igc_ptp_suspend(adapter);
5165 
5166 	if (pci_device_is_present(adapter->pdev)) {
5167 		/* disable receives in the hardware */
5168 		rctl = rd32(IGC_RCTL);
5169 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5170 		/* flush and sleep below */
5171 	}
5172 	/* set trans_start so we don't get spurious watchdogs during reset */
5173 	netif_trans_update(netdev);
5174 
5175 	netif_carrier_off(netdev);
5176 	netif_tx_stop_all_queues(netdev);
5177 
5178 	if (pci_device_is_present(adapter->pdev)) {
5179 		/* disable transmits in the hardware */
5180 		tctl = rd32(IGC_TCTL);
5181 		tctl &= ~IGC_TCTL_EN;
5182 		wr32(IGC_TCTL, tctl);
5183 		/* flush both disables and wait for them to finish */
5184 		wrfl();
5185 		usleep_range(10000, 20000);
5186 
5187 		igc_irq_disable(adapter);
5188 	}
5189 
5190 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5191 
5192 	for (i = 0; i < adapter->num_q_vectors; i++) {
5193 		if (adapter->q_vector[i]) {
5194 			napi_synchronize(&adapter->q_vector[i]->napi);
5195 			napi_disable(&adapter->q_vector[i]->napi);
5196 		}
5197 	}
5198 
5199 	del_timer_sync(&adapter->watchdog_timer);
5200 	del_timer_sync(&adapter->phy_info_timer);
5201 
5202 	/* record the stats before reset*/
5203 	spin_lock(&adapter->stats64_lock);
5204 	igc_update_stats(adapter);
5205 	spin_unlock(&adapter->stats64_lock);
5206 
5207 	adapter->link_speed = 0;
5208 	adapter->link_duplex = 0;
5209 
5210 	if (!pci_channel_offline(adapter->pdev))
5211 		igc_reset(adapter);
5212 
5213 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5214 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5215 
5216 	igc_disable_all_tx_rings_hw(adapter);
5217 	igc_clean_all_tx_rings(adapter);
5218 	igc_clean_all_rx_rings(adapter);
5219 }
5220 
5221 void igc_reinit_locked(struct igc_adapter *adapter)
5222 {
5223 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5224 		usleep_range(1000, 2000);
5225 	igc_down(adapter);
5226 	igc_up(adapter);
5227 	clear_bit(__IGC_RESETTING, &adapter->state);
5228 }
5229 
5230 static void igc_reset_task(struct work_struct *work)
5231 {
5232 	struct igc_adapter *adapter;
5233 
5234 	adapter = container_of(work, struct igc_adapter, reset_task);
5235 
5236 	rtnl_lock();
5237 	/* If we're already down or resetting, just bail */
5238 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5239 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5240 		rtnl_unlock();
5241 		return;
5242 	}
5243 
5244 	igc_rings_dump(adapter);
5245 	igc_regs_dump(adapter);
5246 	netdev_err(adapter->netdev, "Reset adapter\n");
5247 	igc_reinit_locked(adapter);
5248 	rtnl_unlock();
5249 }
5250 
5251 /**
5252  * igc_change_mtu - Change the Maximum Transfer Unit
5253  * @netdev: network interface device structure
5254  * @new_mtu: new value for maximum frame size
5255  *
5256  * Returns 0 on success, negative on failure
5257  */
5258 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5259 {
5260 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5261 	struct igc_adapter *adapter = netdev_priv(netdev);
5262 
5263 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5264 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5265 		return -EINVAL;
5266 	}
5267 
5268 	/* adjust max frame to be at least the size of a standard frame */
5269 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5270 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5271 
5272 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5273 		usleep_range(1000, 2000);
5274 
5275 	/* igc_down has a dependency on max_frame_size */
5276 	adapter->max_frame_size = max_frame;
5277 
5278 	if (netif_running(netdev))
5279 		igc_down(adapter);
5280 
5281 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5282 	WRITE_ONCE(netdev->mtu, new_mtu);
5283 
5284 	if (netif_running(netdev))
5285 		igc_up(adapter);
5286 	else
5287 		igc_reset(adapter);
5288 
5289 	clear_bit(__IGC_RESETTING, &adapter->state);
5290 
5291 	return 0;
5292 }
5293 
5294 /**
5295  * igc_tx_timeout - Respond to a Tx Hang
5296  * @netdev: network interface device structure
5297  * @txqueue: queue number that timed out
5298  **/
5299 static void igc_tx_timeout(struct net_device *netdev,
5300 			   unsigned int __always_unused txqueue)
5301 {
5302 	struct igc_adapter *adapter = netdev_priv(netdev);
5303 	struct igc_hw *hw = &adapter->hw;
5304 
5305 	/* Do the reset outside of interrupt context */
5306 	adapter->tx_timeout_count++;
5307 	schedule_work(&adapter->reset_task);
5308 	wr32(IGC_EICS,
5309 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5310 }
5311 
5312 /**
5313  * igc_get_stats64 - Get System Network Statistics
5314  * @netdev: network interface device structure
5315  * @stats: rtnl_link_stats64 pointer
5316  *
5317  * Returns the address of the device statistics structure.
5318  * The statistics are updated here and also from the timer callback.
5319  */
5320 static void igc_get_stats64(struct net_device *netdev,
5321 			    struct rtnl_link_stats64 *stats)
5322 {
5323 	struct igc_adapter *adapter = netdev_priv(netdev);
5324 
5325 	spin_lock(&adapter->stats64_lock);
5326 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5327 		igc_update_stats(adapter);
5328 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5329 	spin_unlock(&adapter->stats64_lock);
5330 }
5331 
5332 static netdev_features_t igc_fix_features(struct net_device *netdev,
5333 					  netdev_features_t features)
5334 {
5335 	/* Since there is no support for separate Rx/Tx vlan accel
5336 	 * enable/disable make sure Tx flag is always in same state as Rx.
5337 	 */
5338 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5339 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5340 	else
5341 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5342 
5343 	return features;
5344 }
5345 
5346 static int igc_set_features(struct net_device *netdev,
5347 			    netdev_features_t features)
5348 {
5349 	netdev_features_t changed = netdev->features ^ features;
5350 	struct igc_adapter *adapter = netdev_priv(netdev);
5351 
5352 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5353 		igc_vlan_mode(netdev, features);
5354 
5355 	/* Add VLAN support */
5356 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5357 		return 0;
5358 
5359 	if (!(features & NETIF_F_NTUPLE))
5360 		igc_flush_nfc_rules(adapter);
5361 
5362 	netdev->features = features;
5363 
5364 	if (netif_running(netdev))
5365 		igc_reinit_locked(adapter);
5366 	else
5367 		igc_reset(adapter);
5368 
5369 	return 1;
5370 }
5371 
5372 static netdev_features_t
5373 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5374 		   netdev_features_t features)
5375 {
5376 	unsigned int network_hdr_len, mac_hdr_len;
5377 
5378 	/* Make certain the headers can be described by a context descriptor */
5379 	mac_hdr_len = skb_network_offset(skb);
5380 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5381 		return features & ~(NETIF_F_HW_CSUM |
5382 				    NETIF_F_SCTP_CRC |
5383 				    NETIF_F_HW_VLAN_CTAG_TX |
5384 				    NETIF_F_TSO |
5385 				    NETIF_F_TSO6);
5386 
5387 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5388 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5389 		return features & ~(NETIF_F_HW_CSUM |
5390 				    NETIF_F_SCTP_CRC |
5391 				    NETIF_F_TSO |
5392 				    NETIF_F_TSO6);
5393 
5394 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5395 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5396 	 */
5397 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5398 		features &= ~NETIF_F_TSO;
5399 
5400 	return features;
5401 }
5402 
5403 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5404 {
5405 	struct igc_hw *hw = &adapter->hw;
5406 	u32 tsauxc, sec, nsec, tsicr;
5407 	struct ptp_clock_event event;
5408 	struct timespec64 ts;
5409 
5410 	tsicr = rd32(IGC_TSICR);
5411 
5412 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5413 		event.type = PTP_CLOCK_PPS;
5414 		if (adapter->ptp_caps.pps)
5415 			ptp_clock_event(adapter->ptp_clock, &event);
5416 	}
5417 
5418 	if (tsicr & IGC_TSICR_TXTS) {
5419 		/* retrieve hardware timestamp */
5420 		igc_ptp_tx_tstamp_event(adapter);
5421 	}
5422 
5423 	if (tsicr & IGC_TSICR_TT0) {
5424 		spin_lock(&adapter->tmreg_lock);
5425 		ts = timespec64_add(adapter->perout[0].start,
5426 				    adapter->perout[0].period);
5427 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5428 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5429 		tsauxc = rd32(IGC_TSAUXC);
5430 		tsauxc |= IGC_TSAUXC_EN_TT0;
5431 		wr32(IGC_TSAUXC, tsauxc);
5432 		adapter->perout[0].start = ts;
5433 		spin_unlock(&adapter->tmreg_lock);
5434 	}
5435 
5436 	if (tsicr & IGC_TSICR_TT1) {
5437 		spin_lock(&adapter->tmreg_lock);
5438 		ts = timespec64_add(adapter->perout[1].start,
5439 				    adapter->perout[1].period);
5440 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5441 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5442 		tsauxc = rd32(IGC_TSAUXC);
5443 		tsauxc |= IGC_TSAUXC_EN_TT1;
5444 		wr32(IGC_TSAUXC, tsauxc);
5445 		adapter->perout[1].start = ts;
5446 		spin_unlock(&adapter->tmreg_lock);
5447 	}
5448 
5449 	if (tsicr & IGC_TSICR_AUTT0) {
5450 		nsec = rd32(IGC_AUXSTMPL0);
5451 		sec  = rd32(IGC_AUXSTMPH0);
5452 		event.type = PTP_CLOCK_EXTTS;
5453 		event.index = 0;
5454 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5455 		ptp_clock_event(adapter->ptp_clock, &event);
5456 	}
5457 
5458 	if (tsicr & IGC_TSICR_AUTT1) {
5459 		nsec = rd32(IGC_AUXSTMPL1);
5460 		sec  = rd32(IGC_AUXSTMPH1);
5461 		event.type = PTP_CLOCK_EXTTS;
5462 		event.index = 1;
5463 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5464 		ptp_clock_event(adapter->ptp_clock, &event);
5465 	}
5466 }
5467 
5468 /**
5469  * igc_msix_other - msix other interrupt handler
5470  * @irq: interrupt number
5471  * @data: pointer to a q_vector
5472  */
5473 static irqreturn_t igc_msix_other(int irq, void *data)
5474 {
5475 	struct igc_adapter *adapter = data;
5476 	struct igc_hw *hw = &adapter->hw;
5477 	u32 icr = rd32(IGC_ICR);
5478 
5479 	/* reading ICR causes bit 31 of EICR to be cleared */
5480 	if (icr & IGC_ICR_DRSTA)
5481 		schedule_work(&adapter->reset_task);
5482 
5483 	if (icr & IGC_ICR_DOUTSYNC) {
5484 		/* HW is reporting DMA is out of sync */
5485 		adapter->stats.doosync++;
5486 	}
5487 
5488 	if (icr & IGC_ICR_LSC) {
5489 		hw->mac.get_link_status = true;
5490 		/* guard against interrupt when we're going down */
5491 		if (!test_bit(__IGC_DOWN, &adapter->state))
5492 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5493 	}
5494 
5495 	if (icr & IGC_ICR_TS)
5496 		igc_tsync_interrupt(adapter);
5497 
5498 	wr32(IGC_EIMS, adapter->eims_other);
5499 
5500 	return IRQ_HANDLED;
5501 }
5502 
5503 static void igc_write_itr(struct igc_q_vector *q_vector)
5504 {
5505 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5506 
5507 	if (!q_vector->set_itr)
5508 		return;
5509 
5510 	if (!itr_val)
5511 		itr_val = IGC_ITR_VAL_MASK;
5512 
5513 	itr_val |= IGC_EITR_CNT_IGNR;
5514 
5515 	writel(itr_val, q_vector->itr_register);
5516 	q_vector->set_itr = 0;
5517 }
5518 
5519 static irqreturn_t igc_msix_ring(int irq, void *data)
5520 {
5521 	struct igc_q_vector *q_vector = data;
5522 
5523 	/* Write the ITR value calculated from the previous interrupt. */
5524 	igc_write_itr(q_vector);
5525 
5526 	napi_schedule(&q_vector->napi);
5527 
5528 	return IRQ_HANDLED;
5529 }
5530 
5531 /**
5532  * igc_request_msix - Initialize MSI-X interrupts
5533  * @adapter: Pointer to adapter structure
5534  *
5535  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5536  * kernel.
5537  */
5538 static int igc_request_msix(struct igc_adapter *adapter)
5539 {
5540 	unsigned int num_q_vectors = adapter->num_q_vectors;
5541 	int i = 0, err = 0, vector = 0, free_vector = 0;
5542 	struct net_device *netdev = adapter->netdev;
5543 
5544 	err = request_irq(adapter->msix_entries[vector].vector,
5545 			  &igc_msix_other, 0, netdev->name, adapter);
5546 	if (err)
5547 		goto err_out;
5548 
5549 	if (num_q_vectors > MAX_Q_VECTORS) {
5550 		num_q_vectors = MAX_Q_VECTORS;
5551 		dev_warn(&adapter->pdev->dev,
5552 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5553 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5554 	}
5555 	for (i = 0; i < num_q_vectors; i++) {
5556 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5557 
5558 		vector++;
5559 
5560 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5561 
5562 		if (q_vector->rx.ring && q_vector->tx.ring)
5563 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5564 				q_vector->rx.ring->queue_index);
5565 		else if (q_vector->tx.ring)
5566 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5567 				q_vector->tx.ring->queue_index);
5568 		else if (q_vector->rx.ring)
5569 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5570 				q_vector->rx.ring->queue_index);
5571 		else
5572 			sprintf(q_vector->name, "%s-unused", netdev->name);
5573 
5574 		err = request_irq(adapter->msix_entries[vector].vector,
5575 				  igc_msix_ring, 0, q_vector->name,
5576 				  q_vector);
5577 		if (err)
5578 			goto err_free;
5579 	}
5580 
5581 	igc_configure_msix(adapter);
5582 	return 0;
5583 
5584 err_free:
5585 	/* free already assigned IRQs */
5586 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5587 
5588 	vector--;
5589 	for (i = 0; i < vector; i++) {
5590 		free_irq(adapter->msix_entries[free_vector++].vector,
5591 			 adapter->q_vector[i]);
5592 	}
5593 err_out:
5594 	return err;
5595 }
5596 
5597 /**
5598  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5599  * @adapter: Pointer to adapter structure
5600  *
5601  * This function resets the device so that it has 0 rx queues, tx queues, and
5602  * MSI-X interrupts allocated.
5603  */
5604 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5605 {
5606 	igc_free_q_vectors(adapter);
5607 	igc_reset_interrupt_capability(adapter);
5608 }
5609 
5610 /* Need to wait a few seconds after link up to get diagnostic information from
5611  * the phy
5612  */
5613 static void igc_update_phy_info(struct timer_list *t)
5614 {
5615 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5616 
5617 	igc_get_phy_info(&adapter->hw);
5618 }
5619 
5620 /**
5621  * igc_has_link - check shared code for link and determine up/down
5622  * @adapter: pointer to driver private info
5623  */
5624 bool igc_has_link(struct igc_adapter *adapter)
5625 {
5626 	struct igc_hw *hw = &adapter->hw;
5627 	bool link_active = false;
5628 
5629 	/* get_link_status is set on LSC (link status) interrupt or
5630 	 * rx sequence error interrupt.  get_link_status will stay
5631 	 * false until the igc_check_for_link establishes link
5632 	 * for copper adapters ONLY
5633 	 */
5634 	if (!hw->mac.get_link_status)
5635 		return true;
5636 	hw->mac.ops.check_for_link(hw);
5637 	link_active = !hw->mac.get_link_status;
5638 
5639 	if (hw->mac.type == igc_i225) {
5640 		if (!netif_carrier_ok(adapter->netdev)) {
5641 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5642 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5643 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5644 			adapter->link_check_timeout = jiffies;
5645 		}
5646 	}
5647 
5648 	return link_active;
5649 }
5650 
5651 /**
5652  * igc_watchdog - Timer Call-back
5653  * @t: timer for the watchdog
5654  */
5655 static void igc_watchdog(struct timer_list *t)
5656 {
5657 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5658 	/* Do the rest outside of interrupt context */
5659 	schedule_work(&adapter->watchdog_task);
5660 }
5661 
5662 static void igc_watchdog_task(struct work_struct *work)
5663 {
5664 	struct igc_adapter *adapter = container_of(work,
5665 						   struct igc_adapter,
5666 						   watchdog_task);
5667 	struct net_device *netdev = adapter->netdev;
5668 	struct igc_hw *hw = &adapter->hw;
5669 	struct igc_phy_info *phy = &hw->phy;
5670 	u16 phy_data, retry_count = 20;
5671 	u32 link;
5672 	int i;
5673 
5674 	link = igc_has_link(adapter);
5675 
5676 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5677 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5678 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5679 		else
5680 			link = false;
5681 	}
5682 
5683 	if (link) {
5684 		/* Cancel scheduled suspend requests. */
5685 		pm_runtime_resume(netdev->dev.parent);
5686 
5687 		if (!netif_carrier_ok(netdev)) {
5688 			u32 ctrl;
5689 
5690 			hw->mac.ops.get_speed_and_duplex(hw,
5691 							 &adapter->link_speed,
5692 							 &adapter->link_duplex);
5693 
5694 			ctrl = rd32(IGC_CTRL);
5695 			/* Link status message must follow this format */
5696 			netdev_info(netdev,
5697 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5698 				    adapter->link_speed,
5699 				    adapter->link_duplex == FULL_DUPLEX ?
5700 				    "Full" : "Half",
5701 				    (ctrl & IGC_CTRL_TFCE) &&
5702 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5703 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5704 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5705 
5706 			/* disable EEE if enabled */
5707 			if ((adapter->flags & IGC_FLAG_EEE) &&
5708 			    adapter->link_duplex == HALF_DUPLEX) {
5709 				netdev_info(netdev,
5710 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5711 				adapter->hw.dev_spec._base.eee_enable = false;
5712 				adapter->flags &= ~IGC_FLAG_EEE;
5713 			}
5714 
5715 			/* check if SmartSpeed worked */
5716 			igc_check_downshift(hw);
5717 			if (phy->speed_downgraded)
5718 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5719 
5720 			/* adjust timeout factor according to speed/duplex */
5721 			adapter->tx_timeout_factor = 1;
5722 			switch (adapter->link_speed) {
5723 			case SPEED_10:
5724 				adapter->tx_timeout_factor = 14;
5725 				break;
5726 			case SPEED_100:
5727 			case SPEED_1000:
5728 			case SPEED_2500:
5729 				adapter->tx_timeout_factor = 1;
5730 				break;
5731 			}
5732 
5733 			/* Once the launch time has been set on the wire, there
5734 			 * is a delay before the link speed can be determined
5735 			 * based on link-up activity. Write into the register
5736 			 * as soon as we know the correct link speed.
5737 			 */
5738 			igc_tsn_adjust_txtime_offset(adapter);
5739 
5740 			if (adapter->link_speed != SPEED_1000)
5741 				goto no_wait;
5742 
5743 			/* wait for Remote receiver status OK */
5744 retry_read_status:
5745 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5746 					      &phy_data)) {
5747 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5748 				    retry_count) {
5749 					msleep(100);
5750 					retry_count--;
5751 					goto retry_read_status;
5752 				} else if (!retry_count) {
5753 					netdev_err(netdev, "exceed max 2 second\n");
5754 				}
5755 			} else {
5756 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5757 			}
5758 no_wait:
5759 			netif_carrier_on(netdev);
5760 
5761 			/* link state has changed, schedule phy info update */
5762 			if (!test_bit(__IGC_DOWN, &adapter->state))
5763 				mod_timer(&adapter->phy_info_timer,
5764 					  round_jiffies(jiffies + 2 * HZ));
5765 		}
5766 	} else {
5767 		if (netif_carrier_ok(netdev)) {
5768 			adapter->link_speed = 0;
5769 			adapter->link_duplex = 0;
5770 
5771 			/* Links status message must follow this format */
5772 			netdev_info(netdev, "NIC Link is Down\n");
5773 			netif_carrier_off(netdev);
5774 
5775 			/* link state has changed, schedule phy info update */
5776 			if (!test_bit(__IGC_DOWN, &adapter->state))
5777 				mod_timer(&adapter->phy_info_timer,
5778 					  round_jiffies(jiffies + 2 * HZ));
5779 
5780 			pm_schedule_suspend(netdev->dev.parent,
5781 					    MSEC_PER_SEC * 5);
5782 		}
5783 	}
5784 
5785 	spin_lock(&adapter->stats64_lock);
5786 	igc_update_stats(adapter);
5787 	spin_unlock(&adapter->stats64_lock);
5788 
5789 	for (i = 0; i < adapter->num_tx_queues; i++) {
5790 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5791 
5792 		if (!netif_carrier_ok(netdev)) {
5793 			/* We've lost link, so the controller stops DMA,
5794 			 * but we've got queued Tx work that's never going
5795 			 * to get done, so reset controller to flush Tx.
5796 			 * (Do the reset outside of interrupt context).
5797 			 */
5798 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5799 				adapter->tx_timeout_count++;
5800 				schedule_work(&adapter->reset_task);
5801 				/* return immediately since reset is imminent */
5802 				return;
5803 			}
5804 		}
5805 
5806 		/* Force detection of hung controller every watchdog period */
5807 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5808 	}
5809 
5810 	/* Cause software interrupt to ensure Rx ring is cleaned */
5811 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5812 		u32 eics = 0;
5813 
5814 		for (i = 0; i < adapter->num_q_vectors; i++) {
5815 			struct igc_q_vector *q_vector = adapter->q_vector[i];
5816 			struct igc_ring *rx_ring;
5817 
5818 			if (!q_vector->rx.ring)
5819 				continue;
5820 
5821 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5822 
5823 			if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5824 				eics |= q_vector->eims_value;
5825 				clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5826 			}
5827 		}
5828 		if (eics)
5829 			wr32(IGC_EICS, eics);
5830 	} else {
5831 		struct igc_ring *rx_ring = adapter->rx_ring[0];
5832 
5833 		if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5834 			clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5835 			wr32(IGC_ICS, IGC_ICS_RXDMT0);
5836 		}
5837 	}
5838 
5839 	igc_ptp_tx_hang(adapter);
5840 
5841 	/* Reset the timer */
5842 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5843 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5844 			mod_timer(&adapter->watchdog_timer,
5845 				  round_jiffies(jiffies +  HZ));
5846 		else
5847 			mod_timer(&adapter->watchdog_timer,
5848 				  round_jiffies(jiffies + 2 * HZ));
5849 	}
5850 }
5851 
5852 /**
5853  * igc_intr_msi - Interrupt Handler
5854  * @irq: interrupt number
5855  * @data: pointer to a network interface device structure
5856  */
5857 static irqreturn_t igc_intr_msi(int irq, void *data)
5858 {
5859 	struct igc_adapter *adapter = data;
5860 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5861 	struct igc_hw *hw = &adapter->hw;
5862 	/* read ICR disables interrupts using IAM */
5863 	u32 icr = rd32(IGC_ICR);
5864 
5865 	igc_write_itr(q_vector);
5866 
5867 	if (icr & IGC_ICR_DRSTA)
5868 		schedule_work(&adapter->reset_task);
5869 
5870 	if (icr & IGC_ICR_DOUTSYNC) {
5871 		/* HW is reporting DMA is out of sync */
5872 		adapter->stats.doosync++;
5873 	}
5874 
5875 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5876 		hw->mac.get_link_status = true;
5877 		if (!test_bit(__IGC_DOWN, &adapter->state))
5878 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5879 	}
5880 
5881 	if (icr & IGC_ICR_TS)
5882 		igc_tsync_interrupt(adapter);
5883 
5884 	napi_schedule(&q_vector->napi);
5885 
5886 	return IRQ_HANDLED;
5887 }
5888 
5889 /**
5890  * igc_intr - Legacy Interrupt Handler
5891  * @irq: interrupt number
5892  * @data: pointer to a network interface device structure
5893  */
5894 static irqreturn_t igc_intr(int irq, void *data)
5895 {
5896 	struct igc_adapter *adapter = data;
5897 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5898 	struct igc_hw *hw = &adapter->hw;
5899 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5900 	 * need for the IMC write
5901 	 */
5902 	u32 icr = rd32(IGC_ICR);
5903 
5904 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5905 	 * not set, then the adapter didn't send an interrupt
5906 	 */
5907 	if (!(icr & IGC_ICR_INT_ASSERTED))
5908 		return IRQ_NONE;
5909 
5910 	igc_write_itr(q_vector);
5911 
5912 	if (icr & IGC_ICR_DRSTA)
5913 		schedule_work(&adapter->reset_task);
5914 
5915 	if (icr & IGC_ICR_DOUTSYNC) {
5916 		/* HW is reporting DMA is out of sync */
5917 		adapter->stats.doosync++;
5918 	}
5919 
5920 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5921 		hw->mac.get_link_status = true;
5922 		/* guard against interrupt when we're going down */
5923 		if (!test_bit(__IGC_DOWN, &adapter->state))
5924 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5925 	}
5926 
5927 	if (icr & IGC_ICR_TS)
5928 		igc_tsync_interrupt(adapter);
5929 
5930 	napi_schedule(&q_vector->napi);
5931 
5932 	return IRQ_HANDLED;
5933 }
5934 
5935 static void igc_free_irq(struct igc_adapter *adapter)
5936 {
5937 	if (adapter->msix_entries) {
5938 		int vector = 0, i;
5939 
5940 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5941 
5942 		for (i = 0; i < adapter->num_q_vectors; i++)
5943 			free_irq(adapter->msix_entries[vector++].vector,
5944 				 adapter->q_vector[i]);
5945 	} else {
5946 		free_irq(adapter->pdev->irq, adapter);
5947 	}
5948 }
5949 
5950 /**
5951  * igc_request_irq - initialize interrupts
5952  * @adapter: Pointer to adapter structure
5953  *
5954  * Attempts to configure interrupts using the best available
5955  * capabilities of the hardware and kernel.
5956  */
5957 static int igc_request_irq(struct igc_adapter *adapter)
5958 {
5959 	struct net_device *netdev = adapter->netdev;
5960 	struct pci_dev *pdev = adapter->pdev;
5961 	int err = 0;
5962 
5963 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5964 		err = igc_request_msix(adapter);
5965 		if (!err)
5966 			goto request_done;
5967 		/* fall back to MSI */
5968 		igc_free_all_tx_resources(adapter);
5969 		igc_free_all_rx_resources(adapter);
5970 
5971 		igc_clear_interrupt_scheme(adapter);
5972 		err = igc_init_interrupt_scheme(adapter, false);
5973 		if (err)
5974 			goto request_done;
5975 		igc_setup_all_tx_resources(adapter);
5976 		igc_setup_all_rx_resources(adapter);
5977 		igc_configure(adapter);
5978 	}
5979 
5980 	igc_assign_vector(adapter->q_vector[0], 0);
5981 
5982 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5983 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5984 				  netdev->name, adapter);
5985 		if (!err)
5986 			goto request_done;
5987 
5988 		/* fall back to legacy interrupts */
5989 		igc_reset_interrupt_capability(adapter);
5990 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5991 	}
5992 
5993 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5994 			  netdev->name, adapter);
5995 
5996 	if (err)
5997 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5998 
5999 request_done:
6000 	return err;
6001 }
6002 
6003 /**
6004  * __igc_open - Called when a network interface is made active
6005  * @netdev: network interface device structure
6006  * @resuming: boolean indicating if the device is resuming
6007  *
6008  * Returns 0 on success, negative value on failure
6009  *
6010  * The open entry point is called when a network interface is made
6011  * active by the system (IFF_UP).  At this point all resources needed
6012  * for transmit and receive operations are allocated, the interrupt
6013  * handler is registered with the OS, the watchdog timer is started,
6014  * and the stack is notified that the interface is ready.
6015  */
6016 static int __igc_open(struct net_device *netdev, bool resuming)
6017 {
6018 	struct igc_adapter *adapter = netdev_priv(netdev);
6019 	struct pci_dev *pdev = adapter->pdev;
6020 	struct igc_hw *hw = &adapter->hw;
6021 	int err = 0;
6022 	int i = 0;
6023 
6024 	/* disallow open during test */
6025 
6026 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6027 		WARN_ON(resuming);
6028 		return -EBUSY;
6029 	}
6030 
6031 	if (!resuming)
6032 		pm_runtime_get_sync(&pdev->dev);
6033 
6034 	netif_carrier_off(netdev);
6035 
6036 	/* allocate transmit descriptors */
6037 	err = igc_setup_all_tx_resources(adapter);
6038 	if (err)
6039 		goto err_setup_tx;
6040 
6041 	/* allocate receive descriptors */
6042 	err = igc_setup_all_rx_resources(adapter);
6043 	if (err)
6044 		goto err_setup_rx;
6045 
6046 	igc_power_up_link(adapter);
6047 
6048 	igc_configure(adapter);
6049 
6050 	err = igc_request_irq(adapter);
6051 	if (err)
6052 		goto err_req_irq;
6053 
6054 	clear_bit(__IGC_DOWN, &adapter->state);
6055 
6056 	for (i = 0; i < adapter->num_q_vectors; i++)
6057 		napi_enable(&adapter->q_vector[i]->napi);
6058 
6059 	/* Clear any pending interrupts. */
6060 	rd32(IGC_ICR);
6061 	igc_irq_enable(adapter);
6062 
6063 	if (!resuming)
6064 		pm_runtime_put(&pdev->dev);
6065 
6066 	netif_tx_start_all_queues(netdev);
6067 
6068 	/* start the watchdog. */
6069 	hw->mac.get_link_status = true;
6070 	schedule_work(&adapter->watchdog_task);
6071 
6072 	return IGC_SUCCESS;
6073 
6074 err_req_irq:
6075 	igc_release_hw_control(adapter);
6076 	igc_power_down_phy_copper_base(&adapter->hw);
6077 	igc_free_all_rx_resources(adapter);
6078 err_setup_rx:
6079 	igc_free_all_tx_resources(adapter);
6080 err_setup_tx:
6081 	igc_reset(adapter);
6082 	if (!resuming)
6083 		pm_runtime_put(&pdev->dev);
6084 
6085 	return err;
6086 }
6087 
6088 int igc_open(struct net_device *netdev)
6089 {
6090 	struct igc_adapter *adapter = netdev_priv(netdev);
6091 	int err;
6092 
6093 	/* Notify the stack of the actual queue counts. */
6094 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6095 					adapter->num_rx_queues);
6096 	if (err) {
6097 		netdev_err(netdev, "error setting real queue count\n");
6098 		return err;
6099 	}
6100 
6101 	return __igc_open(netdev, false);
6102 }
6103 
6104 /**
6105  * __igc_close - Disables a network interface
6106  * @netdev: network interface device structure
6107  * @suspending: boolean indicating the device is suspending
6108  *
6109  * Returns 0, this is not allowed to fail
6110  *
6111  * The close entry point is called when an interface is de-activated
6112  * by the OS.  The hardware is still under the driver's control, but
6113  * needs to be disabled.  A global MAC reset is issued to stop the
6114  * hardware, and all transmit and receive resources are freed.
6115  */
6116 static int __igc_close(struct net_device *netdev, bool suspending)
6117 {
6118 	struct igc_adapter *adapter = netdev_priv(netdev);
6119 	struct pci_dev *pdev = adapter->pdev;
6120 
6121 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6122 
6123 	if (!suspending)
6124 		pm_runtime_get_sync(&pdev->dev);
6125 
6126 	igc_down(adapter);
6127 
6128 	igc_release_hw_control(adapter);
6129 
6130 	igc_free_irq(adapter);
6131 
6132 	igc_free_all_tx_resources(adapter);
6133 	igc_free_all_rx_resources(adapter);
6134 
6135 	if (!suspending)
6136 		pm_runtime_put_sync(&pdev->dev);
6137 
6138 	return 0;
6139 }
6140 
6141 int igc_close(struct net_device *netdev)
6142 {
6143 	if (netif_device_present(netdev) || netdev->dismantle)
6144 		return __igc_close(netdev, false);
6145 	return 0;
6146 }
6147 
6148 /**
6149  * igc_ioctl - Access the hwtstamp interface
6150  * @netdev: network interface device structure
6151  * @ifr: interface request data
6152  * @cmd: ioctl command
6153  **/
6154 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6155 {
6156 	switch (cmd) {
6157 	case SIOCGHWTSTAMP:
6158 		return igc_ptp_get_ts_config(netdev, ifr);
6159 	case SIOCSHWTSTAMP:
6160 		return igc_ptp_set_ts_config(netdev, ifr);
6161 	default:
6162 		return -EOPNOTSUPP;
6163 	}
6164 }
6165 
6166 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6167 				      bool enable)
6168 {
6169 	struct igc_ring *ring;
6170 
6171 	if (queue < 0 || queue >= adapter->num_tx_queues)
6172 		return -EINVAL;
6173 
6174 	ring = adapter->tx_ring[queue];
6175 	ring->launchtime_enable = enable;
6176 
6177 	return 0;
6178 }
6179 
6180 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6181 {
6182 	struct timespec64 b;
6183 
6184 	b = ktime_to_timespec64(base_time);
6185 
6186 	return timespec64_compare(now, &b) > 0;
6187 }
6188 
6189 static bool validate_schedule(struct igc_adapter *adapter,
6190 			      const struct tc_taprio_qopt_offload *qopt)
6191 {
6192 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6193 	struct igc_hw *hw = &adapter->hw;
6194 	struct timespec64 now;
6195 	size_t n;
6196 
6197 	if (qopt->cycle_time_extension)
6198 		return false;
6199 
6200 	igc_ptp_read(adapter, &now);
6201 
6202 	/* If we program the controller's BASET registers with a time
6203 	 * in the future, it will hold all the packets until that
6204 	 * time, causing a lot of TX Hangs, so to avoid that, we
6205 	 * reject schedules that would start in the future.
6206 	 * Note: Limitation above is no longer in i226.
6207 	 */
6208 	if (!is_base_time_past(qopt->base_time, &now) &&
6209 	    igc_is_device_id_i225(hw))
6210 		return false;
6211 
6212 	for (n = 0; n < qopt->num_entries; n++) {
6213 		const struct tc_taprio_sched_entry *e, *prev;
6214 		int i;
6215 
6216 		prev = n ? &qopt->entries[n - 1] : NULL;
6217 		e = &qopt->entries[n];
6218 
6219 		/* i225 only supports "global" frame preemption
6220 		 * settings.
6221 		 */
6222 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6223 			return false;
6224 
6225 		for (i = 0; i < adapter->num_tx_queues; i++)
6226 			if (e->gate_mask & BIT(i)) {
6227 				queue_uses[i]++;
6228 
6229 				/* There are limitations: A single queue cannot
6230 				 * be opened and closed multiple times per cycle
6231 				 * unless the gate stays open. Check for it.
6232 				 */
6233 				if (queue_uses[i] > 1 &&
6234 				    !(prev->gate_mask & BIT(i)))
6235 					return false;
6236 			}
6237 	}
6238 
6239 	return true;
6240 }
6241 
6242 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6243 				     struct tc_etf_qopt_offload *qopt)
6244 {
6245 	struct igc_hw *hw = &adapter->hw;
6246 	int err;
6247 
6248 	if (hw->mac.type != igc_i225)
6249 		return -EOPNOTSUPP;
6250 
6251 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6252 	if (err)
6253 		return err;
6254 
6255 	return igc_tsn_offload_apply(adapter);
6256 }
6257 
6258 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6259 {
6260 	unsigned long flags;
6261 	int i;
6262 
6263 	adapter->base_time = 0;
6264 	adapter->cycle_time = NSEC_PER_SEC;
6265 	adapter->taprio_offload_enable = false;
6266 	adapter->qbv_config_change_errors = 0;
6267 	adapter->qbv_count = 0;
6268 
6269 	for (i = 0; i < adapter->num_tx_queues; i++) {
6270 		struct igc_ring *ring = adapter->tx_ring[i];
6271 
6272 		ring->start_time = 0;
6273 		ring->end_time = NSEC_PER_SEC;
6274 		ring->max_sdu = 0;
6275 	}
6276 
6277 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6278 
6279 	adapter->qbv_transition = false;
6280 
6281 	for (i = 0; i < adapter->num_tx_queues; i++) {
6282 		struct igc_ring *ring = adapter->tx_ring[i];
6283 
6284 		ring->oper_gate_closed = false;
6285 		ring->admin_gate_closed = false;
6286 	}
6287 
6288 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6289 
6290 	return 0;
6291 }
6292 
6293 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6294 {
6295 	igc_qbv_clear_schedule(adapter);
6296 
6297 	return 0;
6298 }
6299 
6300 static void igc_taprio_stats(struct net_device *dev,
6301 			     struct tc_taprio_qopt_stats *stats)
6302 {
6303 	/* When Strict_End is enabled, the tx_overruns counter
6304 	 * will always be zero.
6305 	 */
6306 	stats->tx_overruns = 0;
6307 }
6308 
6309 static void igc_taprio_queue_stats(struct net_device *dev,
6310 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6311 {
6312 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6313 
6314 	/* When Strict_End is enabled, the tx_overruns counter
6315 	 * will always be zero.
6316 	 */
6317 	stats->tx_overruns = 0;
6318 }
6319 
6320 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6321 				 struct tc_taprio_qopt_offload *qopt)
6322 {
6323 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6324 	struct igc_hw *hw = &adapter->hw;
6325 	u32 start_time = 0, end_time = 0;
6326 	struct timespec64 now;
6327 	unsigned long flags;
6328 	size_t n;
6329 	int i;
6330 
6331 	if (qopt->base_time < 0)
6332 		return -ERANGE;
6333 
6334 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6335 		return -EALREADY;
6336 
6337 	if (!validate_schedule(adapter, qopt))
6338 		return -EINVAL;
6339 
6340 	igc_ptp_read(adapter, &now);
6341 
6342 	if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6343 	    is_base_time_past(qopt->base_time, &now))
6344 		adapter->qbv_config_change_errors++;
6345 
6346 	adapter->cycle_time = qopt->cycle_time;
6347 	adapter->base_time = qopt->base_time;
6348 	adapter->taprio_offload_enable = true;
6349 
6350 	for (n = 0; n < qopt->num_entries; n++) {
6351 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6352 
6353 		end_time += e->interval;
6354 
6355 		/* If any of the conditions below are true, we need to manually
6356 		 * control the end time of the cycle.
6357 		 * 1. Qbv users can specify a cycle time that is not equal
6358 		 * to the total GCL intervals. Hence, recalculation is
6359 		 * necessary here to exclude the time interval that
6360 		 * exceeds the cycle time.
6361 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6362 		 * once the end of the list is reached, it will switch
6363 		 * to the END_OF_CYCLE state and leave the gates in the
6364 		 * same state until the next cycle is started.
6365 		 */
6366 		if (end_time > adapter->cycle_time ||
6367 		    n + 1 == qopt->num_entries)
6368 			end_time = adapter->cycle_time;
6369 
6370 		for (i = 0; i < adapter->num_tx_queues; i++) {
6371 			struct igc_ring *ring = adapter->tx_ring[i];
6372 
6373 			if (!(e->gate_mask & BIT(i)))
6374 				continue;
6375 
6376 			/* Check whether a queue stays open for more than one
6377 			 * entry. If so, keep the start and advance the end
6378 			 * time.
6379 			 */
6380 			if (!queue_configured[i])
6381 				ring->start_time = start_time;
6382 			ring->end_time = end_time;
6383 
6384 			if (ring->start_time >= adapter->cycle_time)
6385 				queue_configured[i] = false;
6386 			else
6387 				queue_configured[i] = true;
6388 		}
6389 
6390 		start_time += e->interval;
6391 	}
6392 
6393 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6394 
6395 	/* Check whether a queue gets configured.
6396 	 * If not, set the start and end time to be end time.
6397 	 */
6398 	for (i = 0; i < adapter->num_tx_queues; i++) {
6399 		struct igc_ring *ring = adapter->tx_ring[i];
6400 
6401 		if (!is_base_time_past(qopt->base_time, &now)) {
6402 			ring->admin_gate_closed = false;
6403 		} else {
6404 			ring->oper_gate_closed = false;
6405 			ring->admin_gate_closed = false;
6406 		}
6407 
6408 		if (!queue_configured[i]) {
6409 			if (!is_base_time_past(qopt->base_time, &now))
6410 				ring->admin_gate_closed = true;
6411 			else
6412 				ring->oper_gate_closed = true;
6413 
6414 			ring->start_time = end_time;
6415 			ring->end_time = end_time;
6416 		}
6417 	}
6418 
6419 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6420 
6421 	for (i = 0; i < adapter->num_tx_queues; i++) {
6422 		struct igc_ring *ring = adapter->tx_ring[i];
6423 		struct net_device *dev = adapter->netdev;
6424 
6425 		if (qopt->max_sdu[i])
6426 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6427 		else
6428 			ring->max_sdu = 0;
6429 	}
6430 
6431 	return 0;
6432 }
6433 
6434 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6435 					 struct tc_taprio_qopt_offload *qopt)
6436 {
6437 	struct igc_hw *hw = &adapter->hw;
6438 	int err;
6439 
6440 	if (hw->mac.type != igc_i225)
6441 		return -EOPNOTSUPP;
6442 
6443 	switch (qopt->cmd) {
6444 	case TAPRIO_CMD_REPLACE:
6445 		err = igc_save_qbv_schedule(adapter, qopt);
6446 		break;
6447 	case TAPRIO_CMD_DESTROY:
6448 		err = igc_tsn_clear_schedule(adapter);
6449 		break;
6450 	case TAPRIO_CMD_STATS:
6451 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6452 		return 0;
6453 	case TAPRIO_CMD_QUEUE_STATS:
6454 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6455 		return 0;
6456 	default:
6457 		return -EOPNOTSUPP;
6458 	}
6459 
6460 	if (err)
6461 		return err;
6462 
6463 	return igc_tsn_offload_apply(adapter);
6464 }
6465 
6466 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6467 			       bool enable, int idleslope, int sendslope,
6468 			       int hicredit, int locredit)
6469 {
6470 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6471 	struct net_device *netdev = adapter->netdev;
6472 	struct igc_ring *ring;
6473 	int i;
6474 
6475 	/* i225 has two sets of credit-based shaper logic.
6476 	 * Supporting it only on the top two priority queues
6477 	 */
6478 	if (queue < 0 || queue > 1)
6479 		return -EINVAL;
6480 
6481 	ring = adapter->tx_ring[queue];
6482 
6483 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6484 		if (adapter->tx_ring[i])
6485 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6486 
6487 	/* CBS should be enabled on the highest priority queue first in order
6488 	 * for the CBS algorithm to operate as intended.
6489 	 */
6490 	if (enable) {
6491 		if (queue == 1 && !cbs_status[0]) {
6492 			netdev_err(netdev,
6493 				   "Enabling CBS on queue1 before queue0\n");
6494 			return -EINVAL;
6495 		}
6496 	} else {
6497 		if (queue == 0 && cbs_status[1]) {
6498 			netdev_err(netdev,
6499 				   "Disabling CBS on queue0 before queue1\n");
6500 			return -EINVAL;
6501 		}
6502 	}
6503 
6504 	ring->cbs_enable = enable;
6505 	ring->idleslope = idleslope;
6506 	ring->sendslope = sendslope;
6507 	ring->hicredit = hicredit;
6508 	ring->locredit = locredit;
6509 
6510 	return 0;
6511 }
6512 
6513 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6514 			      struct tc_cbs_qopt_offload *qopt)
6515 {
6516 	struct igc_hw *hw = &adapter->hw;
6517 	int err;
6518 
6519 	if (hw->mac.type != igc_i225)
6520 		return -EOPNOTSUPP;
6521 
6522 	if (qopt->queue < 0 || qopt->queue > 1)
6523 		return -EINVAL;
6524 
6525 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6526 				  qopt->idleslope, qopt->sendslope,
6527 				  qopt->hicredit, qopt->locredit);
6528 	if (err)
6529 		return err;
6530 
6531 	return igc_tsn_offload_apply(adapter);
6532 }
6533 
6534 static int igc_tc_query_caps(struct igc_adapter *adapter,
6535 			     struct tc_query_caps_base *base)
6536 {
6537 	struct igc_hw *hw = &adapter->hw;
6538 
6539 	switch (base->type) {
6540 	case TC_SETUP_QDISC_MQPRIO: {
6541 		struct tc_mqprio_caps *caps = base->caps;
6542 
6543 		caps->validate_queue_counts = true;
6544 
6545 		return 0;
6546 	}
6547 	case TC_SETUP_QDISC_TAPRIO: {
6548 		struct tc_taprio_caps *caps = base->caps;
6549 
6550 		caps->broken_mqprio = true;
6551 
6552 		if (hw->mac.type == igc_i225) {
6553 			caps->supports_queue_max_sdu = true;
6554 			caps->gate_mask_per_txq = true;
6555 		}
6556 
6557 		return 0;
6558 	}
6559 	default:
6560 		return -EOPNOTSUPP;
6561 	}
6562 }
6563 
6564 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6565 				   u16 *offset)
6566 {
6567 	int i;
6568 
6569 	adapter->strict_priority_enable = true;
6570 	adapter->num_tc = num_tc;
6571 
6572 	for (i = 0; i < num_tc; i++)
6573 		adapter->queue_per_tc[i] = offset[i];
6574 }
6575 
6576 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6577 				 struct tc_mqprio_qopt_offload *mqprio)
6578 {
6579 	struct igc_hw *hw = &adapter->hw;
6580 	int i;
6581 
6582 	if (hw->mac.type != igc_i225)
6583 		return -EOPNOTSUPP;
6584 
6585 	if (!mqprio->qopt.num_tc) {
6586 		adapter->strict_priority_enable = false;
6587 		goto apply;
6588 	}
6589 
6590 	/* There are as many TCs as Tx queues. */
6591 	if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6592 		NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6593 				       "Only %d traffic classes supported",
6594 				       adapter->num_tx_queues);
6595 		return -EOPNOTSUPP;
6596 	}
6597 
6598 	/* Only one queue per TC is supported. */
6599 	for (i = 0; i < mqprio->qopt.num_tc; i++) {
6600 		if (mqprio->qopt.count[i] != 1) {
6601 			NL_SET_ERR_MSG_MOD(mqprio->extack,
6602 					   "Only one queue per TC supported");
6603 			return -EOPNOTSUPP;
6604 		}
6605 	}
6606 
6607 	/* Preemption is not supported yet. */
6608 	if (mqprio->preemptible_tcs) {
6609 		NL_SET_ERR_MSG_MOD(mqprio->extack,
6610 				   "Preemption is not supported yet");
6611 		return -EOPNOTSUPP;
6612 	}
6613 
6614 	igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6615 			       mqprio->qopt.offset);
6616 
6617 	mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6618 
6619 apply:
6620 	return igc_tsn_offload_apply(adapter);
6621 }
6622 
6623 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6624 			void *type_data)
6625 {
6626 	struct igc_adapter *adapter = netdev_priv(dev);
6627 
6628 	adapter->tc_setup_type = type;
6629 
6630 	switch (type) {
6631 	case TC_QUERY_CAPS:
6632 		return igc_tc_query_caps(adapter, type_data);
6633 	case TC_SETUP_QDISC_TAPRIO:
6634 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6635 
6636 	case TC_SETUP_QDISC_ETF:
6637 		return igc_tsn_enable_launchtime(adapter, type_data);
6638 
6639 	case TC_SETUP_QDISC_CBS:
6640 		return igc_tsn_enable_cbs(adapter, type_data);
6641 
6642 	case TC_SETUP_QDISC_MQPRIO:
6643 		return igc_tsn_enable_mqprio(adapter, type_data);
6644 
6645 	default:
6646 		return -EOPNOTSUPP;
6647 	}
6648 }
6649 
6650 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6651 {
6652 	struct igc_adapter *adapter = netdev_priv(dev);
6653 
6654 	switch (bpf->command) {
6655 	case XDP_SETUP_PROG:
6656 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6657 	case XDP_SETUP_XSK_POOL:
6658 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6659 					  bpf->xsk.queue_id);
6660 	default:
6661 		return -EOPNOTSUPP;
6662 	}
6663 }
6664 
6665 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6666 			struct xdp_frame **frames, u32 flags)
6667 {
6668 	struct igc_adapter *adapter = netdev_priv(dev);
6669 	int cpu = smp_processor_id();
6670 	struct netdev_queue *nq;
6671 	struct igc_ring *ring;
6672 	int i, nxmit;
6673 
6674 	if (unlikely(!netif_carrier_ok(dev)))
6675 		return -ENETDOWN;
6676 
6677 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6678 		return -EINVAL;
6679 
6680 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6681 	nq = txring_txq(ring);
6682 
6683 	__netif_tx_lock(nq, cpu);
6684 
6685 	/* Avoid transmit queue timeout since we share it with the slow path */
6686 	txq_trans_cond_update(nq);
6687 
6688 	nxmit = 0;
6689 	for (i = 0; i < num_frames; i++) {
6690 		int err;
6691 		struct xdp_frame *xdpf = frames[i];
6692 
6693 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6694 		if (err)
6695 			break;
6696 		nxmit++;
6697 	}
6698 
6699 	if (flags & XDP_XMIT_FLUSH)
6700 		igc_flush_tx_descriptors(ring);
6701 
6702 	__netif_tx_unlock(nq);
6703 
6704 	return nxmit;
6705 }
6706 
6707 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6708 					struct igc_q_vector *q_vector)
6709 {
6710 	struct igc_hw *hw = &adapter->hw;
6711 	u32 eics = 0;
6712 
6713 	eics |= q_vector->eims_value;
6714 	wr32(IGC_EICS, eics);
6715 }
6716 
6717 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6718 {
6719 	struct igc_adapter *adapter = netdev_priv(dev);
6720 	struct igc_q_vector *q_vector;
6721 	struct igc_ring *ring;
6722 
6723 	if (test_bit(__IGC_DOWN, &adapter->state))
6724 		return -ENETDOWN;
6725 
6726 	if (!igc_xdp_is_enabled(adapter))
6727 		return -ENXIO;
6728 
6729 	if (queue_id >= adapter->num_rx_queues)
6730 		return -EINVAL;
6731 
6732 	ring = adapter->rx_ring[queue_id];
6733 
6734 	if (!ring->xsk_pool)
6735 		return -ENXIO;
6736 
6737 	q_vector = adapter->q_vector[queue_id];
6738 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6739 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6740 
6741 	return 0;
6742 }
6743 
6744 static ktime_t igc_get_tstamp(struct net_device *dev,
6745 			      const struct skb_shared_hwtstamps *hwtstamps,
6746 			      bool cycles)
6747 {
6748 	struct igc_adapter *adapter = netdev_priv(dev);
6749 	struct igc_inline_rx_tstamps *tstamp;
6750 	ktime_t timestamp;
6751 
6752 	tstamp = hwtstamps->netdev_data;
6753 
6754 	if (cycles)
6755 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6756 	else
6757 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6758 
6759 	return timestamp;
6760 }
6761 
6762 static const struct net_device_ops igc_netdev_ops = {
6763 	.ndo_open		= igc_open,
6764 	.ndo_stop		= igc_close,
6765 	.ndo_start_xmit		= igc_xmit_frame,
6766 	.ndo_set_rx_mode	= igc_set_rx_mode,
6767 	.ndo_set_mac_address	= igc_set_mac,
6768 	.ndo_change_mtu		= igc_change_mtu,
6769 	.ndo_tx_timeout		= igc_tx_timeout,
6770 	.ndo_get_stats64	= igc_get_stats64,
6771 	.ndo_fix_features	= igc_fix_features,
6772 	.ndo_set_features	= igc_set_features,
6773 	.ndo_features_check	= igc_features_check,
6774 	.ndo_eth_ioctl		= igc_ioctl,
6775 	.ndo_setup_tc		= igc_setup_tc,
6776 	.ndo_bpf		= igc_bpf,
6777 	.ndo_xdp_xmit		= igc_xdp_xmit,
6778 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6779 	.ndo_get_tstamp		= igc_get_tstamp,
6780 };
6781 
6782 /* PCIe configuration access */
6783 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6784 {
6785 	struct igc_adapter *adapter = hw->back;
6786 
6787 	pci_read_config_word(adapter->pdev, reg, value);
6788 }
6789 
6790 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6791 {
6792 	struct igc_adapter *adapter = hw->back;
6793 
6794 	pci_write_config_word(adapter->pdev, reg, *value);
6795 }
6796 
6797 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6798 {
6799 	struct igc_adapter *adapter = hw->back;
6800 
6801 	if (!pci_is_pcie(adapter->pdev))
6802 		return -IGC_ERR_CONFIG;
6803 
6804 	pcie_capability_read_word(adapter->pdev, reg, value);
6805 
6806 	return IGC_SUCCESS;
6807 }
6808 
6809 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6810 {
6811 	struct igc_adapter *adapter = hw->back;
6812 
6813 	if (!pci_is_pcie(adapter->pdev))
6814 		return -IGC_ERR_CONFIG;
6815 
6816 	pcie_capability_write_word(adapter->pdev, reg, *value);
6817 
6818 	return IGC_SUCCESS;
6819 }
6820 
6821 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6822 {
6823 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6824 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6825 	u32 value = 0;
6826 
6827 	if (IGC_REMOVED(hw_addr))
6828 		return ~value;
6829 
6830 	value = readl(&hw_addr[reg]);
6831 
6832 	/* reads should not return all F's */
6833 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6834 		struct net_device *netdev = igc->netdev;
6835 
6836 		hw->hw_addr = NULL;
6837 		netif_device_detach(netdev);
6838 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6839 		WARN(pci_device_is_present(igc->pdev),
6840 		     "igc: Failed to read reg 0x%x!\n", reg);
6841 	}
6842 
6843 	return value;
6844 }
6845 
6846 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6847 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6848 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6849 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6850 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6851 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6852 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6853 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6854 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6855 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6856 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6857 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6858 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6859 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6860 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6861 	[13] = XDP_RSS_TYPE_NONE,
6862 	[14] = XDP_RSS_TYPE_NONE,
6863 	[15] = XDP_RSS_TYPE_NONE,
6864 };
6865 
6866 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6867 			   enum xdp_rss_hash_type *rss_type)
6868 {
6869 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6870 
6871 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6872 		return -ENODATA;
6873 
6874 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6875 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6876 
6877 	return 0;
6878 }
6879 
6880 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6881 {
6882 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6883 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6884 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6885 
6886 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6887 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6888 
6889 		return 0;
6890 	}
6891 
6892 	return -ENODATA;
6893 }
6894 
6895 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6896 	.xmo_rx_hash			= igc_xdp_rx_hash,
6897 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6898 };
6899 
6900 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6901 {
6902 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6903 						   hrtimer);
6904 	unsigned long flags;
6905 	unsigned int i;
6906 
6907 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6908 
6909 	adapter->qbv_transition = true;
6910 	for (i = 0; i < adapter->num_tx_queues; i++) {
6911 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6912 
6913 		if (tx_ring->admin_gate_closed) {
6914 			tx_ring->admin_gate_closed = false;
6915 			tx_ring->oper_gate_closed = true;
6916 		} else {
6917 			tx_ring->oper_gate_closed = false;
6918 		}
6919 	}
6920 	adapter->qbv_transition = false;
6921 
6922 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6923 
6924 	return HRTIMER_NORESTART;
6925 }
6926 
6927 /**
6928  * igc_probe - Device Initialization Routine
6929  * @pdev: PCI device information struct
6930  * @ent: entry in igc_pci_tbl
6931  *
6932  * Returns 0 on success, negative on failure
6933  *
6934  * igc_probe initializes an adapter identified by a pci_dev structure.
6935  * The OS initialization, configuring the adapter private structure,
6936  * and a hardware reset occur.
6937  */
6938 static int igc_probe(struct pci_dev *pdev,
6939 		     const struct pci_device_id *ent)
6940 {
6941 	struct igc_adapter *adapter;
6942 	struct net_device *netdev;
6943 	struct igc_hw *hw;
6944 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6945 	int err;
6946 
6947 	err = pci_enable_device_mem(pdev);
6948 	if (err)
6949 		return err;
6950 
6951 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6952 	if (err) {
6953 		dev_err(&pdev->dev,
6954 			"No usable DMA configuration, aborting\n");
6955 		goto err_dma;
6956 	}
6957 
6958 	err = pci_request_mem_regions(pdev, igc_driver_name);
6959 	if (err)
6960 		goto err_pci_reg;
6961 
6962 	err = pci_enable_ptm(pdev, NULL);
6963 	if (err < 0)
6964 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6965 
6966 	pci_set_master(pdev);
6967 
6968 	err = -ENOMEM;
6969 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6970 				   IGC_MAX_TX_QUEUES);
6971 
6972 	if (!netdev)
6973 		goto err_alloc_etherdev;
6974 
6975 	SET_NETDEV_DEV(netdev, &pdev->dev);
6976 
6977 	pci_set_drvdata(pdev, netdev);
6978 	adapter = netdev_priv(netdev);
6979 	adapter->netdev = netdev;
6980 	adapter->pdev = pdev;
6981 	hw = &adapter->hw;
6982 	hw->back = adapter;
6983 	adapter->port_num = hw->bus.func;
6984 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6985 
6986 	err = pci_save_state(pdev);
6987 	if (err)
6988 		goto err_ioremap;
6989 
6990 	err = -EIO;
6991 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6992 				   pci_resource_len(pdev, 0));
6993 	if (!adapter->io_addr)
6994 		goto err_ioremap;
6995 
6996 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6997 	hw->hw_addr = adapter->io_addr;
6998 
6999 	netdev->netdev_ops = &igc_netdev_ops;
7000 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7001 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7002 	igc_ethtool_set_ops(netdev);
7003 	netdev->watchdog_timeo = 5 * HZ;
7004 
7005 	netdev->mem_start = pci_resource_start(pdev, 0);
7006 	netdev->mem_end = pci_resource_end(pdev, 0);
7007 
7008 	/* PCI config space info */
7009 	hw->vendor_id = pdev->vendor;
7010 	hw->device_id = pdev->device;
7011 	hw->revision_id = pdev->revision;
7012 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
7013 	hw->subsystem_device_id = pdev->subsystem_device;
7014 
7015 	/* Copy the default MAC and PHY function pointers */
7016 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7017 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7018 
7019 	/* Initialize skew-specific constants */
7020 	err = ei->get_invariants(hw);
7021 	if (err)
7022 		goto err_sw_init;
7023 
7024 	/* Add supported features to the features list*/
7025 	netdev->features |= NETIF_F_SG;
7026 	netdev->features |= NETIF_F_TSO;
7027 	netdev->features |= NETIF_F_TSO6;
7028 	netdev->features |= NETIF_F_TSO_ECN;
7029 	netdev->features |= NETIF_F_RXHASH;
7030 	netdev->features |= NETIF_F_RXCSUM;
7031 	netdev->features |= NETIF_F_HW_CSUM;
7032 	netdev->features |= NETIF_F_SCTP_CRC;
7033 	netdev->features |= NETIF_F_HW_TC;
7034 
7035 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7036 				  NETIF_F_GSO_GRE_CSUM | \
7037 				  NETIF_F_GSO_IPXIP4 | \
7038 				  NETIF_F_GSO_IPXIP6 | \
7039 				  NETIF_F_GSO_UDP_TUNNEL | \
7040 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
7041 
7042 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7043 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7044 
7045 	/* setup the private structure */
7046 	err = igc_sw_init(adapter);
7047 	if (err)
7048 		goto err_sw_init;
7049 
7050 	/* copy netdev features into list of user selectable features */
7051 	netdev->hw_features |= NETIF_F_NTUPLE;
7052 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7053 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7054 	netdev->hw_features |= netdev->features;
7055 
7056 	netdev->features |= NETIF_F_HIGHDMA;
7057 
7058 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7059 	netdev->mpls_features |= NETIF_F_HW_CSUM;
7060 	netdev->hw_enc_features |= netdev->vlan_features;
7061 
7062 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7063 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
7064 
7065 	/* MTU range: 68 - 9216 */
7066 	netdev->min_mtu = ETH_MIN_MTU;
7067 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7068 
7069 	/* before reading the NVM, reset the controller to put the device in a
7070 	 * known good starting state
7071 	 */
7072 	hw->mac.ops.reset_hw(hw);
7073 
7074 	if (igc_get_flash_presence_i225(hw)) {
7075 		if (hw->nvm.ops.validate(hw) < 0) {
7076 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7077 			err = -EIO;
7078 			goto err_eeprom;
7079 		}
7080 	}
7081 
7082 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7083 		/* copy the MAC address out of the NVM */
7084 		if (hw->mac.ops.read_mac_addr(hw))
7085 			dev_err(&pdev->dev, "NVM Read Error\n");
7086 	}
7087 
7088 	eth_hw_addr_set(netdev, hw->mac.addr);
7089 
7090 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7091 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7092 		err = -EIO;
7093 		goto err_eeprom;
7094 	}
7095 
7096 	/* configure RXPBSIZE and TXPBSIZE */
7097 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7098 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7099 
7100 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7101 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7102 
7103 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7104 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7105 
7106 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7107 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7108 
7109 	/* Initialize link properties that are user-changeable */
7110 	adapter->fc_autoneg = true;
7111 	hw->mac.autoneg = true;
7112 	hw->phy.autoneg_advertised = 0xaf;
7113 
7114 	hw->fc.requested_mode = igc_fc_default;
7115 	hw->fc.current_mode = igc_fc_default;
7116 
7117 	/* By default, support wake on port A */
7118 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7119 
7120 	/* initialize the wol settings based on the eeprom settings */
7121 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7122 		adapter->wol |= IGC_WUFC_MAG;
7123 
7124 	device_set_wakeup_enable(&adapter->pdev->dev,
7125 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7126 
7127 	igc_ptp_init(adapter);
7128 
7129 	igc_tsn_clear_schedule(adapter);
7130 
7131 	/* reset the hardware with the new settings */
7132 	igc_reset(adapter);
7133 
7134 	/* let the f/w know that the h/w is now under the control of the
7135 	 * driver.
7136 	 */
7137 	igc_get_hw_control(adapter);
7138 
7139 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7140 	err = register_netdev(netdev);
7141 	if (err)
7142 		goto err_register;
7143 
7144 	 /* carrier off reporting is important to ethtool even BEFORE open */
7145 	netif_carrier_off(netdev);
7146 
7147 	/* Check if Media Autosense is enabled */
7148 	adapter->ei = *ei;
7149 
7150 	/* print pcie link status and MAC address */
7151 	pcie_print_link_status(pdev);
7152 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7153 
7154 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7155 	/* Disable EEE for internal PHY devices */
7156 	hw->dev_spec._base.eee_enable = false;
7157 	adapter->flags &= ~IGC_FLAG_EEE;
7158 	igc_set_eee_i225(hw, false, false, false);
7159 
7160 	pm_runtime_put_noidle(&pdev->dev);
7161 
7162 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7163 		err = igc_led_setup(adapter);
7164 		if (err)
7165 			goto err_register;
7166 	}
7167 
7168 	return 0;
7169 
7170 err_register:
7171 	igc_release_hw_control(adapter);
7172 err_eeprom:
7173 	if (!igc_check_reset_block(hw))
7174 		igc_reset_phy(hw);
7175 err_sw_init:
7176 	igc_clear_interrupt_scheme(adapter);
7177 	iounmap(adapter->io_addr);
7178 err_ioremap:
7179 	free_netdev(netdev);
7180 err_alloc_etherdev:
7181 	pci_release_mem_regions(pdev);
7182 err_pci_reg:
7183 err_dma:
7184 	pci_disable_device(pdev);
7185 	return err;
7186 }
7187 
7188 /**
7189  * igc_remove - Device Removal Routine
7190  * @pdev: PCI device information struct
7191  *
7192  * igc_remove is called by the PCI subsystem to alert the driver
7193  * that it should release a PCI device.  This could be caused by a
7194  * Hot-Plug event, or because the driver is going to be removed from
7195  * memory.
7196  */
7197 static void igc_remove(struct pci_dev *pdev)
7198 {
7199 	struct net_device *netdev = pci_get_drvdata(pdev);
7200 	struct igc_adapter *adapter = netdev_priv(netdev);
7201 
7202 	pm_runtime_get_noresume(&pdev->dev);
7203 
7204 	igc_flush_nfc_rules(adapter);
7205 
7206 	igc_ptp_stop(adapter);
7207 
7208 	pci_disable_ptm(pdev);
7209 	pci_clear_master(pdev);
7210 
7211 	set_bit(__IGC_DOWN, &adapter->state);
7212 
7213 	del_timer_sync(&adapter->watchdog_timer);
7214 	del_timer_sync(&adapter->phy_info_timer);
7215 
7216 	cancel_work_sync(&adapter->reset_task);
7217 	cancel_work_sync(&adapter->watchdog_task);
7218 	hrtimer_cancel(&adapter->hrtimer);
7219 
7220 	if (IS_ENABLED(CONFIG_IGC_LEDS))
7221 		igc_led_free(adapter);
7222 
7223 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7224 	 * would have already happened in close and is redundant.
7225 	 */
7226 	igc_release_hw_control(adapter);
7227 	unregister_netdev(netdev);
7228 
7229 	igc_clear_interrupt_scheme(adapter);
7230 	pci_iounmap(pdev, adapter->io_addr);
7231 	pci_release_mem_regions(pdev);
7232 
7233 	free_netdev(netdev);
7234 
7235 	pci_disable_device(pdev);
7236 }
7237 
7238 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7239 			  bool runtime)
7240 {
7241 	struct net_device *netdev = pci_get_drvdata(pdev);
7242 	struct igc_adapter *adapter = netdev_priv(netdev);
7243 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7244 	struct igc_hw *hw = &adapter->hw;
7245 	u32 ctrl, rctl, status;
7246 	bool wake;
7247 
7248 	rtnl_lock();
7249 	netif_device_detach(netdev);
7250 
7251 	if (netif_running(netdev))
7252 		__igc_close(netdev, true);
7253 
7254 	igc_ptp_suspend(adapter);
7255 
7256 	igc_clear_interrupt_scheme(adapter);
7257 	rtnl_unlock();
7258 
7259 	status = rd32(IGC_STATUS);
7260 	if (status & IGC_STATUS_LU)
7261 		wufc &= ~IGC_WUFC_LNKC;
7262 
7263 	if (wufc) {
7264 		igc_setup_rctl(adapter);
7265 		igc_set_rx_mode(netdev);
7266 
7267 		/* turn on all-multi mode if wake on multicast is enabled */
7268 		if (wufc & IGC_WUFC_MC) {
7269 			rctl = rd32(IGC_RCTL);
7270 			rctl |= IGC_RCTL_MPE;
7271 			wr32(IGC_RCTL, rctl);
7272 		}
7273 
7274 		ctrl = rd32(IGC_CTRL);
7275 		ctrl |= IGC_CTRL_ADVD3WUC;
7276 		wr32(IGC_CTRL, ctrl);
7277 
7278 		/* Allow time for pending master requests to run */
7279 		igc_disable_pcie_master(hw);
7280 
7281 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7282 		wr32(IGC_WUFC, wufc);
7283 	} else {
7284 		wr32(IGC_WUC, 0);
7285 		wr32(IGC_WUFC, 0);
7286 	}
7287 
7288 	wake = wufc || adapter->en_mng_pt;
7289 	if (!wake)
7290 		igc_power_down_phy_copper_base(&adapter->hw);
7291 	else
7292 		igc_power_up_link(adapter);
7293 
7294 	if (enable_wake)
7295 		*enable_wake = wake;
7296 
7297 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7298 	 * would have already happened in close and is redundant.
7299 	 */
7300 	igc_release_hw_control(adapter);
7301 
7302 	pci_disable_device(pdev);
7303 
7304 	return 0;
7305 }
7306 
7307 static int igc_runtime_suspend(struct device *dev)
7308 {
7309 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7310 }
7311 
7312 static void igc_deliver_wake_packet(struct net_device *netdev)
7313 {
7314 	struct igc_adapter *adapter = netdev_priv(netdev);
7315 	struct igc_hw *hw = &adapter->hw;
7316 	struct sk_buff *skb;
7317 	u32 wupl;
7318 
7319 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7320 
7321 	/* WUPM stores only the first 128 bytes of the wake packet.
7322 	 * Read the packet only if we have the whole thing.
7323 	 */
7324 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7325 		return;
7326 
7327 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7328 	if (!skb)
7329 		return;
7330 
7331 	skb_put(skb, wupl);
7332 
7333 	/* Ensure reads are 32-bit aligned */
7334 	wupl = roundup(wupl, 4);
7335 
7336 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7337 
7338 	skb->protocol = eth_type_trans(skb, netdev);
7339 	netif_rx(skb);
7340 }
7341 
7342 static int igc_resume(struct device *dev)
7343 {
7344 	struct pci_dev *pdev = to_pci_dev(dev);
7345 	struct net_device *netdev = pci_get_drvdata(pdev);
7346 	struct igc_adapter *adapter = netdev_priv(netdev);
7347 	struct igc_hw *hw = &adapter->hw;
7348 	u32 err, val;
7349 
7350 	pci_set_power_state(pdev, PCI_D0);
7351 	pci_restore_state(pdev);
7352 	pci_save_state(pdev);
7353 
7354 	if (!pci_device_is_present(pdev))
7355 		return -ENODEV;
7356 	err = pci_enable_device_mem(pdev);
7357 	if (err) {
7358 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7359 		return err;
7360 	}
7361 	pci_set_master(pdev);
7362 
7363 	pci_enable_wake(pdev, PCI_D3hot, 0);
7364 	pci_enable_wake(pdev, PCI_D3cold, 0);
7365 
7366 	if (igc_init_interrupt_scheme(adapter, true)) {
7367 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7368 		return -ENOMEM;
7369 	}
7370 
7371 	igc_reset(adapter);
7372 
7373 	/* let the f/w know that the h/w is now under the control of the
7374 	 * driver.
7375 	 */
7376 	igc_get_hw_control(adapter);
7377 
7378 	val = rd32(IGC_WUS);
7379 	if (val & WAKE_PKT_WUS)
7380 		igc_deliver_wake_packet(netdev);
7381 
7382 	wr32(IGC_WUS, ~0);
7383 
7384 	if (netif_running(netdev)) {
7385 		err = __igc_open(netdev, true);
7386 		if (!err)
7387 			netif_device_attach(netdev);
7388 	}
7389 
7390 	return err;
7391 }
7392 
7393 static int igc_runtime_resume(struct device *dev)
7394 {
7395 	return igc_resume(dev);
7396 }
7397 
7398 static int igc_suspend(struct device *dev)
7399 {
7400 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7401 }
7402 
7403 static int __maybe_unused igc_runtime_idle(struct device *dev)
7404 {
7405 	struct net_device *netdev = dev_get_drvdata(dev);
7406 	struct igc_adapter *adapter = netdev_priv(netdev);
7407 
7408 	if (!igc_has_link(adapter))
7409 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7410 
7411 	return -EBUSY;
7412 }
7413 
7414 static void igc_shutdown(struct pci_dev *pdev)
7415 {
7416 	bool wake;
7417 
7418 	__igc_shutdown(pdev, &wake, 0);
7419 
7420 	if (system_state == SYSTEM_POWER_OFF) {
7421 		pci_wake_from_d3(pdev, wake);
7422 		pci_set_power_state(pdev, PCI_D3hot);
7423 	}
7424 }
7425 
7426 /**
7427  *  igc_io_error_detected - called when PCI error is detected
7428  *  @pdev: Pointer to PCI device
7429  *  @state: The current PCI connection state
7430  *
7431  *  This function is called after a PCI bus error affecting
7432  *  this device has been detected.
7433  **/
7434 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7435 					      pci_channel_state_t state)
7436 {
7437 	struct net_device *netdev = pci_get_drvdata(pdev);
7438 	struct igc_adapter *adapter = netdev_priv(netdev);
7439 
7440 	netif_device_detach(netdev);
7441 
7442 	if (state == pci_channel_io_perm_failure)
7443 		return PCI_ERS_RESULT_DISCONNECT;
7444 
7445 	if (netif_running(netdev))
7446 		igc_down(adapter);
7447 	pci_disable_device(pdev);
7448 
7449 	/* Request a slot reset. */
7450 	return PCI_ERS_RESULT_NEED_RESET;
7451 }
7452 
7453 /**
7454  *  igc_io_slot_reset - called after the PCI bus has been reset.
7455  *  @pdev: Pointer to PCI device
7456  *
7457  *  Restart the card from scratch, as if from a cold-boot. Implementation
7458  *  resembles the first-half of the igc_resume routine.
7459  **/
7460 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7461 {
7462 	struct net_device *netdev = pci_get_drvdata(pdev);
7463 	struct igc_adapter *adapter = netdev_priv(netdev);
7464 	struct igc_hw *hw = &adapter->hw;
7465 	pci_ers_result_t result;
7466 
7467 	if (pci_enable_device_mem(pdev)) {
7468 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7469 		result = PCI_ERS_RESULT_DISCONNECT;
7470 	} else {
7471 		pci_set_master(pdev);
7472 		pci_restore_state(pdev);
7473 		pci_save_state(pdev);
7474 
7475 		pci_enable_wake(pdev, PCI_D3hot, 0);
7476 		pci_enable_wake(pdev, PCI_D3cold, 0);
7477 
7478 		/* In case of PCI error, adapter loses its HW address
7479 		 * so we should re-assign it here.
7480 		 */
7481 		hw->hw_addr = adapter->io_addr;
7482 
7483 		igc_reset(adapter);
7484 		wr32(IGC_WUS, ~0);
7485 		result = PCI_ERS_RESULT_RECOVERED;
7486 	}
7487 
7488 	return result;
7489 }
7490 
7491 /**
7492  *  igc_io_resume - called when traffic can start to flow again.
7493  *  @pdev: Pointer to PCI device
7494  *
7495  *  This callback is called when the error recovery driver tells us that
7496  *  its OK to resume normal operation. Implementation resembles the
7497  *  second-half of the igc_resume routine.
7498  */
7499 static void igc_io_resume(struct pci_dev *pdev)
7500 {
7501 	struct net_device *netdev = pci_get_drvdata(pdev);
7502 	struct igc_adapter *adapter = netdev_priv(netdev);
7503 
7504 	rtnl_lock();
7505 	if (netif_running(netdev)) {
7506 		if (igc_open(netdev)) {
7507 			rtnl_unlock();
7508 			netdev_err(netdev, "igc_open failed after reset\n");
7509 			return;
7510 		}
7511 	}
7512 
7513 	netif_device_attach(netdev);
7514 
7515 	/* let the f/w know that the h/w is now under the control of the
7516 	 * driver.
7517 	 */
7518 	igc_get_hw_control(adapter);
7519 	rtnl_unlock();
7520 }
7521 
7522 static const struct pci_error_handlers igc_err_handler = {
7523 	.error_detected = igc_io_error_detected,
7524 	.slot_reset = igc_io_slot_reset,
7525 	.resume = igc_io_resume,
7526 };
7527 
7528 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7529 			  igc_runtime_suspend, igc_runtime_resume,
7530 			  igc_runtime_idle);
7531 
7532 static struct pci_driver igc_driver = {
7533 	.name     = igc_driver_name,
7534 	.id_table = igc_pci_tbl,
7535 	.probe    = igc_probe,
7536 	.remove   = igc_remove,
7537 	.driver.pm = pm_ptr(&igc_pm_ops),
7538 	.shutdown = igc_shutdown,
7539 	.err_handler = &igc_err_handler,
7540 };
7541 
7542 /**
7543  * igc_reinit_queues - return error
7544  * @adapter: pointer to adapter structure
7545  */
7546 int igc_reinit_queues(struct igc_adapter *adapter)
7547 {
7548 	struct net_device *netdev = adapter->netdev;
7549 	int err = 0;
7550 
7551 	if (netif_running(netdev))
7552 		igc_close(netdev);
7553 
7554 	igc_reset_interrupt_capability(adapter);
7555 
7556 	if (igc_init_interrupt_scheme(adapter, true)) {
7557 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7558 		return -ENOMEM;
7559 	}
7560 
7561 	if (netif_running(netdev))
7562 		err = igc_open(netdev);
7563 
7564 	return err;
7565 }
7566 
7567 /**
7568  * igc_get_hw_dev - return device
7569  * @hw: pointer to hardware structure
7570  *
7571  * used by hardware layer to print debugging information
7572  */
7573 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7574 {
7575 	struct igc_adapter *adapter = hw->back;
7576 
7577 	return adapter->netdev;
7578 }
7579 
7580 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7581 {
7582 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7583 	u8 idx = ring->reg_idx;
7584 	u32 rxdctl;
7585 
7586 	rxdctl = rd32(IGC_RXDCTL(idx));
7587 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7588 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7589 	wr32(IGC_RXDCTL(idx), rxdctl);
7590 }
7591 
7592 void igc_disable_rx_ring(struct igc_ring *ring)
7593 {
7594 	igc_disable_rx_ring_hw(ring);
7595 	igc_clean_rx_ring(ring);
7596 }
7597 
7598 void igc_enable_rx_ring(struct igc_ring *ring)
7599 {
7600 	struct igc_adapter *adapter = ring->q_vector->adapter;
7601 
7602 	igc_configure_rx_ring(adapter, ring);
7603 
7604 	if (ring->xsk_pool)
7605 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7606 	else
7607 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7608 }
7609 
7610 void igc_disable_tx_ring(struct igc_ring *ring)
7611 {
7612 	igc_disable_tx_ring_hw(ring);
7613 	igc_clean_tx_ring(ring);
7614 }
7615 
7616 void igc_enable_tx_ring(struct igc_ring *ring)
7617 {
7618 	struct igc_adapter *adapter = ring->q_vector->adapter;
7619 
7620 	igc_configure_tx_ring(adapter, ring);
7621 }
7622 
7623 /**
7624  * igc_init_module - Driver Registration Routine
7625  *
7626  * igc_init_module is the first routine called when the driver is
7627  * loaded. All it does is register with the PCI subsystem.
7628  */
7629 static int __init igc_init_module(void)
7630 {
7631 	int ret;
7632 
7633 	pr_info("%s\n", igc_driver_string);
7634 	pr_info("%s\n", igc_copyright);
7635 
7636 	ret = pci_register_driver(&igc_driver);
7637 	return ret;
7638 }
7639 
7640 module_init(igc_init_module);
7641 
7642 /**
7643  * igc_exit_module - Driver Exit Cleanup Routine
7644  *
7645  * igc_exit_module is called just before the driver is removed
7646  * from memory.
7647  */
7648 static void __exit igc_exit_module(void)
7649 {
7650 	pci_unregister_driver(&igc_driver);
7651 }
7652 
7653 module_exit(igc_exit_module);
7654 /* igc_main.c */
7655