xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 332d2c1d713e232e163386c35a3ba0c1b90df83f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40 
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 	"Copyright(c) 2018 Intel Corporation.";
45 
46 static const struct igc_info *igc_info_tbl[] = {
47 	[board_base] = &igc_base_info,
48 };
49 
50 static const struct pci_device_id igc_pci_tbl[] = {
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67 	/* required last entry */
68 	{0, }
69 };
70 
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72 
73 enum latency_range {
74 	lowest_latency = 0,
75 	low_latency = 1,
76 	bulk_latency = 2,
77 	latency_invalid = 255
78 };
79 
80 void igc_reset(struct igc_adapter *adapter)
81 {
82 	struct net_device *dev = adapter->netdev;
83 	struct igc_hw *hw = &adapter->hw;
84 	struct igc_fc_info *fc = &hw->fc;
85 	u32 pba, hwm;
86 
87 	/* Repartition PBA for greater than 9k MTU if required */
88 	pba = IGC_PBA_34K;
89 
90 	/* flow control settings
91 	 * The high water mark must be low enough to fit one full frame
92 	 * after transmitting the pause frame.  As such we must have enough
93 	 * space to allow for us to complete our current transmit and then
94 	 * receive the frame that is in progress from the link partner.
95 	 * Set it to:
96 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97 	 */
98 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99 
100 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
101 	fc->low_water = fc->high_water - 16;
102 	fc->pause_time = 0xFFFF;
103 	fc->send_xon = 1;
104 	fc->current_mode = fc->requested_mode;
105 
106 	hw->mac.ops.reset_hw(hw);
107 
108 	if (hw->mac.ops.init_hw(hw))
109 		netdev_err(dev, "Error on hardware initialization\n");
110 
111 	/* Re-establish EEE setting */
112 	igc_set_eee_i225(hw, true, true, true);
113 
114 	if (!netif_running(adapter->netdev))
115 		igc_power_down_phy_copper_base(&adapter->hw);
116 
117 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118 	wr32(IGC_VET, ETH_P_8021Q);
119 
120 	/* Re-enable PTP, where applicable. */
121 	igc_ptp_reset(adapter);
122 
123 	/* Re-enable TSN offloading, where applicable. */
124 	igc_tsn_reset(adapter);
125 
126 	igc_get_phy_info(hw);
127 }
128 
129 /**
130  * igc_power_up_link - Power up the phy link
131  * @adapter: address of board private structure
132  */
133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135 	igc_reset_phy(&adapter->hw);
136 
137 	igc_power_up_phy_copper(&adapter->hw);
138 
139 	igc_setup_link(&adapter->hw);
140 }
141 
142 /**
143  * igc_release_hw_control - release control of the h/w to f/w
144  * @adapter: address of board private structure
145  *
146  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that the
148  * driver is no longer loaded.
149  */
150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152 	struct igc_hw *hw = &adapter->hw;
153 	u32 ctrl_ext;
154 
155 	if (!pci_device_is_present(adapter->pdev))
156 		return;
157 
158 	/* Let firmware take over control of h/w */
159 	ctrl_ext = rd32(IGC_CTRL_EXT);
160 	wr32(IGC_CTRL_EXT,
161 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163 
164 /**
165  * igc_get_hw_control - get control of the h/w from f/w
166  * @adapter: address of board private structure
167  *
168  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169  * For ASF and Pass Through versions of f/w this means that
170  * the driver is loaded.
171  */
172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174 	struct igc_hw *hw = &adapter->hw;
175 	u32 ctrl_ext;
176 
177 	/* Let firmware know the driver has taken over */
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	wr32(IGC_CTRL_EXT,
180 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182 
183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
187 
188 	dma_unmap_len_set(buf, len, 0);
189 }
190 
191 /**
192  * igc_clean_tx_ring - Free Tx Buffers
193  * @tx_ring: ring to be cleaned
194  */
195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197 	u16 i = tx_ring->next_to_clean;
198 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199 	u32 xsk_frames = 0;
200 
201 	while (i != tx_ring->next_to_use) {
202 		union igc_adv_tx_desc *eop_desc, *tx_desc;
203 
204 		switch (tx_buffer->type) {
205 		case IGC_TX_BUFFER_TYPE_XSK:
206 			xsk_frames++;
207 			break;
208 		case IGC_TX_BUFFER_TYPE_XDP:
209 			xdp_return_frame(tx_buffer->xdpf);
210 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211 			break;
212 		case IGC_TX_BUFFER_TYPE_SKB:
213 			dev_kfree_skb_any(tx_buffer->skb);
214 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215 			break;
216 		default:
217 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218 			break;
219 		}
220 
221 		/* check for eop_desc to determine the end of the packet */
222 		eop_desc = tx_buffer->next_to_watch;
223 		tx_desc = IGC_TX_DESC(tx_ring, i);
224 
225 		/* unmap remaining buffers */
226 		while (tx_desc != eop_desc) {
227 			tx_buffer++;
228 			tx_desc++;
229 			i++;
230 			if (unlikely(i == tx_ring->count)) {
231 				i = 0;
232 				tx_buffer = tx_ring->tx_buffer_info;
233 				tx_desc = IGC_TX_DESC(tx_ring, 0);
234 			}
235 
236 			/* unmap any remaining paged data */
237 			if (dma_unmap_len(tx_buffer, len))
238 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239 		}
240 
241 		tx_buffer->next_to_watch = NULL;
242 
243 		/* move us one more past the eop_desc for start of next pkt */
244 		tx_buffer++;
245 		i++;
246 		if (unlikely(i == tx_ring->count)) {
247 			i = 0;
248 			tx_buffer = tx_ring->tx_buffer_info;
249 		}
250 	}
251 
252 	if (tx_ring->xsk_pool && xsk_frames)
253 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254 
255 	/* reset BQL for queue */
256 	netdev_tx_reset_queue(txring_txq(tx_ring));
257 
258 	/* Zero out the buffer ring */
259 	memset(tx_ring->tx_buffer_info, 0,
260 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
261 
262 	/* Zero out the descriptor ring */
263 	memset(tx_ring->desc, 0, tx_ring->size);
264 
265 	/* reset next_to_use and next_to_clean */
266 	tx_ring->next_to_use = 0;
267 	tx_ring->next_to_clean = 0;
268 }
269 
270 /**
271  * igc_free_tx_resources - Free Tx Resources per Queue
272  * @tx_ring: Tx descriptor ring for a specific queue
273  *
274  * Free all transmit software resources
275  */
276 void igc_free_tx_resources(struct igc_ring *tx_ring)
277 {
278 	igc_disable_tx_ring(tx_ring);
279 
280 	vfree(tx_ring->tx_buffer_info);
281 	tx_ring->tx_buffer_info = NULL;
282 
283 	/* if not set, then don't free */
284 	if (!tx_ring->desc)
285 		return;
286 
287 	dma_free_coherent(tx_ring->dev, tx_ring->size,
288 			  tx_ring->desc, tx_ring->dma);
289 
290 	tx_ring->desc = NULL;
291 }
292 
293 /**
294  * igc_free_all_tx_resources - Free Tx Resources for All Queues
295  * @adapter: board private structure
296  *
297  * Free all transmit software resources
298  */
299 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
300 {
301 	int i;
302 
303 	for (i = 0; i < adapter->num_tx_queues; i++)
304 		igc_free_tx_resources(adapter->tx_ring[i]);
305 }
306 
307 /**
308  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
309  * @adapter: board private structure
310  */
311 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
312 {
313 	int i;
314 
315 	for (i = 0; i < adapter->num_tx_queues; i++)
316 		if (adapter->tx_ring[i])
317 			igc_clean_tx_ring(adapter->tx_ring[i]);
318 }
319 
320 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
321 {
322 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
323 	u8 idx = ring->reg_idx;
324 	u32 txdctl;
325 
326 	txdctl = rd32(IGC_TXDCTL(idx));
327 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
328 	txdctl |= IGC_TXDCTL_SWFLUSH;
329 	wr32(IGC_TXDCTL(idx), txdctl);
330 }
331 
332 /**
333  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
334  * @adapter: board private structure
335  */
336 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
337 {
338 	int i;
339 
340 	for (i = 0; i < adapter->num_tx_queues; i++) {
341 		struct igc_ring *tx_ring = adapter->tx_ring[i];
342 
343 		igc_disable_tx_ring_hw(tx_ring);
344 	}
345 }
346 
347 /**
348  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
349  * @tx_ring: tx descriptor ring (for a specific queue) to setup
350  *
351  * Return 0 on success, negative on failure
352  */
353 int igc_setup_tx_resources(struct igc_ring *tx_ring)
354 {
355 	struct net_device *ndev = tx_ring->netdev;
356 	struct device *dev = tx_ring->dev;
357 	int size = 0;
358 
359 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
360 	tx_ring->tx_buffer_info = vzalloc(size);
361 	if (!tx_ring->tx_buffer_info)
362 		goto err;
363 
364 	/* round up to nearest 4K */
365 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
366 	tx_ring->size = ALIGN(tx_ring->size, 4096);
367 
368 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
369 					   &tx_ring->dma, GFP_KERNEL);
370 
371 	if (!tx_ring->desc)
372 		goto err;
373 
374 	tx_ring->next_to_use = 0;
375 	tx_ring->next_to_clean = 0;
376 
377 	return 0;
378 
379 err:
380 	vfree(tx_ring->tx_buffer_info);
381 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
382 	return -ENOMEM;
383 }
384 
385 /**
386  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
387  * @adapter: board private structure
388  *
389  * Return 0 on success, negative on failure
390  */
391 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
392 {
393 	struct net_device *dev = adapter->netdev;
394 	int i, err = 0;
395 
396 	for (i = 0; i < adapter->num_tx_queues; i++) {
397 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
398 		if (err) {
399 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
400 			for (i--; i >= 0; i--)
401 				igc_free_tx_resources(adapter->tx_ring[i]);
402 			break;
403 		}
404 	}
405 
406 	return err;
407 }
408 
409 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
410 {
411 	u16 i = rx_ring->next_to_clean;
412 
413 	dev_kfree_skb(rx_ring->skb);
414 	rx_ring->skb = NULL;
415 
416 	/* Free all the Rx ring sk_buffs */
417 	while (i != rx_ring->next_to_alloc) {
418 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
419 
420 		/* Invalidate cache lines that may have been written to by
421 		 * device so that we avoid corrupting memory.
422 		 */
423 		dma_sync_single_range_for_cpu(rx_ring->dev,
424 					      buffer_info->dma,
425 					      buffer_info->page_offset,
426 					      igc_rx_bufsz(rx_ring),
427 					      DMA_FROM_DEVICE);
428 
429 		/* free resources associated with mapping */
430 		dma_unmap_page_attrs(rx_ring->dev,
431 				     buffer_info->dma,
432 				     igc_rx_pg_size(rx_ring),
433 				     DMA_FROM_DEVICE,
434 				     IGC_RX_DMA_ATTR);
435 		__page_frag_cache_drain(buffer_info->page,
436 					buffer_info->pagecnt_bias);
437 
438 		i++;
439 		if (i == rx_ring->count)
440 			i = 0;
441 	}
442 }
443 
444 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
445 {
446 	struct igc_rx_buffer *bi;
447 	u16 i;
448 
449 	for (i = 0; i < ring->count; i++) {
450 		bi = &ring->rx_buffer_info[i];
451 		if (!bi->xdp)
452 			continue;
453 
454 		xsk_buff_free(bi->xdp);
455 		bi->xdp = NULL;
456 	}
457 }
458 
459 /**
460  * igc_clean_rx_ring - Free Rx Buffers per Queue
461  * @ring: ring to free buffers from
462  */
463 static void igc_clean_rx_ring(struct igc_ring *ring)
464 {
465 	if (ring->xsk_pool)
466 		igc_clean_rx_ring_xsk_pool(ring);
467 	else
468 		igc_clean_rx_ring_page_shared(ring);
469 
470 	clear_ring_uses_large_buffer(ring);
471 
472 	ring->next_to_alloc = 0;
473 	ring->next_to_clean = 0;
474 	ring->next_to_use = 0;
475 }
476 
477 /**
478  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
479  * @adapter: board private structure
480  */
481 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
482 {
483 	int i;
484 
485 	for (i = 0; i < adapter->num_rx_queues; i++)
486 		if (adapter->rx_ring[i])
487 			igc_clean_rx_ring(adapter->rx_ring[i]);
488 }
489 
490 /**
491  * igc_free_rx_resources - Free Rx Resources
492  * @rx_ring: ring to clean the resources from
493  *
494  * Free all receive software resources
495  */
496 void igc_free_rx_resources(struct igc_ring *rx_ring)
497 {
498 	igc_clean_rx_ring(rx_ring);
499 
500 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
501 
502 	vfree(rx_ring->rx_buffer_info);
503 	rx_ring->rx_buffer_info = NULL;
504 
505 	/* if not set, then don't free */
506 	if (!rx_ring->desc)
507 		return;
508 
509 	dma_free_coherent(rx_ring->dev, rx_ring->size,
510 			  rx_ring->desc, rx_ring->dma);
511 
512 	rx_ring->desc = NULL;
513 }
514 
515 /**
516  * igc_free_all_rx_resources - Free Rx Resources for All Queues
517  * @adapter: board private structure
518  *
519  * Free all receive software resources
520  */
521 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
522 {
523 	int i;
524 
525 	for (i = 0; i < adapter->num_rx_queues; i++)
526 		igc_free_rx_resources(adapter->rx_ring[i]);
527 }
528 
529 /**
530  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
531  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
532  *
533  * Returns 0 on success, negative on failure
534  */
535 int igc_setup_rx_resources(struct igc_ring *rx_ring)
536 {
537 	struct net_device *ndev = rx_ring->netdev;
538 	struct device *dev = rx_ring->dev;
539 	u8 index = rx_ring->queue_index;
540 	int size, desc_len, res;
541 
542 	/* XDP RX-queue info */
543 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
544 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
545 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
546 			       rx_ring->q_vector->napi.napi_id);
547 	if (res < 0) {
548 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
549 			   index);
550 		return res;
551 	}
552 
553 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
554 	rx_ring->rx_buffer_info = vzalloc(size);
555 	if (!rx_ring->rx_buffer_info)
556 		goto err;
557 
558 	desc_len = sizeof(union igc_adv_rx_desc);
559 
560 	/* Round up to nearest 4K */
561 	rx_ring->size = rx_ring->count * desc_len;
562 	rx_ring->size = ALIGN(rx_ring->size, 4096);
563 
564 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
565 					   &rx_ring->dma, GFP_KERNEL);
566 
567 	if (!rx_ring->desc)
568 		goto err;
569 
570 	rx_ring->next_to_alloc = 0;
571 	rx_ring->next_to_clean = 0;
572 	rx_ring->next_to_use = 0;
573 
574 	return 0;
575 
576 err:
577 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
578 	vfree(rx_ring->rx_buffer_info);
579 	rx_ring->rx_buffer_info = NULL;
580 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
581 	return -ENOMEM;
582 }
583 
584 /**
585  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
586  *                                (Descriptors) for all queues
587  * @adapter: board private structure
588  *
589  * Return 0 on success, negative on failure
590  */
591 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
592 {
593 	struct net_device *dev = adapter->netdev;
594 	int i, err = 0;
595 
596 	for (i = 0; i < adapter->num_rx_queues; i++) {
597 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
598 		if (err) {
599 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
600 			for (i--; i >= 0; i--)
601 				igc_free_rx_resources(adapter->rx_ring[i]);
602 			break;
603 		}
604 	}
605 
606 	return err;
607 }
608 
609 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
610 					      struct igc_ring *ring)
611 {
612 	if (!igc_xdp_is_enabled(adapter) ||
613 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
614 		return NULL;
615 
616 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
617 }
618 
619 /**
620  * igc_configure_rx_ring - Configure a receive ring after Reset
621  * @adapter: board private structure
622  * @ring: receive ring to be configured
623  *
624  * Configure the Rx unit of the MAC after a reset.
625  */
626 static void igc_configure_rx_ring(struct igc_adapter *adapter,
627 				  struct igc_ring *ring)
628 {
629 	struct igc_hw *hw = &adapter->hw;
630 	union igc_adv_rx_desc *rx_desc;
631 	int reg_idx = ring->reg_idx;
632 	u32 srrctl = 0, rxdctl = 0;
633 	u64 rdba = ring->dma;
634 	u32 buf_size;
635 
636 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
637 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
638 	if (ring->xsk_pool) {
639 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
640 						   MEM_TYPE_XSK_BUFF_POOL,
641 						   NULL));
642 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
643 	} else {
644 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
645 						   MEM_TYPE_PAGE_SHARED,
646 						   NULL));
647 	}
648 
649 	if (igc_xdp_is_enabled(adapter))
650 		set_ring_uses_large_buffer(ring);
651 
652 	/* disable the queue */
653 	wr32(IGC_RXDCTL(reg_idx), 0);
654 
655 	/* Set DMA base address registers */
656 	wr32(IGC_RDBAL(reg_idx),
657 	     rdba & 0x00000000ffffffffULL);
658 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
659 	wr32(IGC_RDLEN(reg_idx),
660 	     ring->count * sizeof(union igc_adv_rx_desc));
661 
662 	/* initialize head and tail */
663 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
664 	wr32(IGC_RDH(reg_idx), 0);
665 	writel(0, ring->tail);
666 
667 	/* reset next-to- use/clean to place SW in sync with hardware */
668 	ring->next_to_clean = 0;
669 	ring->next_to_use = 0;
670 
671 	if (ring->xsk_pool)
672 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
673 	else if (ring_uses_large_buffer(ring))
674 		buf_size = IGC_RXBUFFER_3072;
675 	else
676 		buf_size = IGC_RXBUFFER_2048;
677 
678 	srrctl = rd32(IGC_SRRCTL(reg_idx));
679 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
680 		    IGC_SRRCTL_DESCTYPE_MASK);
681 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
682 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
683 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
684 
685 	wr32(IGC_SRRCTL(reg_idx), srrctl);
686 
687 	rxdctl |= IGC_RX_PTHRESH;
688 	rxdctl |= IGC_RX_HTHRESH << 8;
689 	rxdctl |= IGC_RX_WTHRESH << 16;
690 
691 	/* initialize rx_buffer_info */
692 	memset(ring->rx_buffer_info, 0,
693 	       sizeof(struct igc_rx_buffer) * ring->count);
694 
695 	/* initialize Rx descriptor 0 */
696 	rx_desc = IGC_RX_DESC(ring, 0);
697 	rx_desc->wb.upper.length = 0;
698 
699 	/* enable receive descriptor fetching */
700 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
701 
702 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
703 }
704 
705 /**
706  * igc_configure_rx - Configure receive Unit after Reset
707  * @adapter: board private structure
708  *
709  * Configure the Rx unit of the MAC after a reset.
710  */
711 static void igc_configure_rx(struct igc_adapter *adapter)
712 {
713 	int i;
714 
715 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
716 	 * the Base and Length of the Rx Descriptor Ring
717 	 */
718 	for (i = 0; i < adapter->num_rx_queues; i++)
719 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
720 }
721 
722 /**
723  * igc_configure_tx_ring - Configure transmit ring after Reset
724  * @adapter: board private structure
725  * @ring: tx ring to configure
726  *
727  * Configure a transmit ring after a reset.
728  */
729 static void igc_configure_tx_ring(struct igc_adapter *adapter,
730 				  struct igc_ring *ring)
731 {
732 	struct igc_hw *hw = &adapter->hw;
733 	int reg_idx = ring->reg_idx;
734 	u64 tdba = ring->dma;
735 	u32 txdctl = 0;
736 
737 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
738 
739 	/* disable the queue */
740 	wr32(IGC_TXDCTL(reg_idx), 0);
741 	wrfl();
742 
743 	wr32(IGC_TDLEN(reg_idx),
744 	     ring->count * sizeof(union igc_adv_tx_desc));
745 	wr32(IGC_TDBAL(reg_idx),
746 	     tdba & 0x00000000ffffffffULL);
747 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
748 
749 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
750 	wr32(IGC_TDH(reg_idx), 0);
751 	writel(0, ring->tail);
752 
753 	txdctl |= IGC_TX_PTHRESH;
754 	txdctl |= IGC_TX_HTHRESH << 8;
755 	txdctl |= IGC_TX_WTHRESH << 16;
756 
757 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
758 	wr32(IGC_TXDCTL(reg_idx), txdctl);
759 }
760 
761 /**
762  * igc_configure_tx - Configure transmit Unit after Reset
763  * @adapter: board private structure
764  *
765  * Configure the Tx unit of the MAC after a reset.
766  */
767 static void igc_configure_tx(struct igc_adapter *adapter)
768 {
769 	int i;
770 
771 	for (i = 0; i < adapter->num_tx_queues; i++)
772 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
773 }
774 
775 /**
776  * igc_setup_mrqc - configure the multiple receive queue control registers
777  * @adapter: Board private structure
778  */
779 static void igc_setup_mrqc(struct igc_adapter *adapter)
780 {
781 	struct igc_hw *hw = &adapter->hw;
782 	u32 j, num_rx_queues;
783 	u32 mrqc, rxcsum;
784 	u32 rss_key[10];
785 
786 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
787 	for (j = 0; j < 10; j++)
788 		wr32(IGC_RSSRK(j), rss_key[j]);
789 
790 	num_rx_queues = adapter->rss_queues;
791 
792 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
793 		for (j = 0; j < IGC_RETA_SIZE; j++)
794 			adapter->rss_indir_tbl[j] =
795 			(j * num_rx_queues) / IGC_RETA_SIZE;
796 		adapter->rss_indir_tbl_init = num_rx_queues;
797 	}
798 	igc_write_rss_indir_tbl(adapter);
799 
800 	/* Disable raw packet checksumming so that RSS hash is placed in
801 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
802 	 * offloads as they are enabled by default
803 	 */
804 	rxcsum = rd32(IGC_RXCSUM);
805 	rxcsum |= IGC_RXCSUM_PCSD;
806 
807 	/* Enable Receive Checksum Offload for SCTP */
808 	rxcsum |= IGC_RXCSUM_CRCOFL;
809 
810 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
811 	wr32(IGC_RXCSUM, rxcsum);
812 
813 	/* Generate RSS hash based on packet types, TCP/UDP
814 	 * port numbers and/or IPv4/v6 src and dst addresses
815 	 */
816 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
817 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
818 	       IGC_MRQC_RSS_FIELD_IPV6 |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
820 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
821 
822 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
823 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
824 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
825 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
826 
827 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
828 
829 	wr32(IGC_MRQC, mrqc);
830 }
831 
832 /**
833  * igc_setup_rctl - configure the receive control registers
834  * @adapter: Board private structure
835  */
836 static void igc_setup_rctl(struct igc_adapter *adapter)
837 {
838 	struct igc_hw *hw = &adapter->hw;
839 	u32 rctl;
840 
841 	rctl = rd32(IGC_RCTL);
842 
843 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
844 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
845 
846 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
847 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
848 
849 	/* enable stripping of CRC. Newer features require
850 	 * that the HW strips the CRC.
851 	 */
852 	rctl |= IGC_RCTL_SECRC;
853 
854 	/* disable store bad packets and clear size bits. */
855 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
856 
857 	/* enable LPE to allow for reception of jumbo frames */
858 	rctl |= IGC_RCTL_LPE;
859 
860 	/* disable queue 0 to prevent tail write w/o re-config */
861 	wr32(IGC_RXDCTL(0), 0);
862 
863 	/* This is useful for sniffing bad packets. */
864 	if (adapter->netdev->features & NETIF_F_RXALL) {
865 		/* UPE and MPE will be handled by normal PROMISC logic
866 		 * in set_rx_mode
867 		 */
868 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
869 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
870 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
871 
872 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
873 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
874 	}
875 
876 	wr32(IGC_RCTL, rctl);
877 }
878 
879 /**
880  * igc_setup_tctl - configure the transmit control registers
881  * @adapter: Board private structure
882  */
883 static void igc_setup_tctl(struct igc_adapter *adapter)
884 {
885 	struct igc_hw *hw = &adapter->hw;
886 	u32 tctl;
887 
888 	/* disable queue 0 which icould be enabled by default */
889 	wr32(IGC_TXDCTL(0), 0);
890 
891 	/* Program the Transmit Control Register */
892 	tctl = rd32(IGC_TCTL);
893 	tctl &= ~IGC_TCTL_CT;
894 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
895 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
896 
897 	/* Enable transmits */
898 	tctl |= IGC_TCTL_EN;
899 
900 	wr32(IGC_TCTL, tctl);
901 }
902 
903 /**
904  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
905  * @adapter: Pointer to adapter where the filter should be set
906  * @index: Filter index
907  * @type: MAC address filter type (source or destination)
908  * @addr: MAC address
909  * @queue: If non-negative, queue assignment feature is enabled and frames
910  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
911  *         assignment is disabled.
912  */
913 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
914 				  enum igc_mac_filter_type type,
915 				  const u8 *addr, int queue)
916 {
917 	struct net_device *dev = adapter->netdev;
918 	struct igc_hw *hw = &adapter->hw;
919 	u32 ral, rah;
920 
921 	if (WARN_ON(index >= hw->mac.rar_entry_count))
922 		return;
923 
924 	ral = le32_to_cpup((__le32 *)(addr));
925 	rah = le16_to_cpup((__le16 *)(addr + 4));
926 
927 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
928 		rah &= ~IGC_RAH_ASEL_MASK;
929 		rah |= IGC_RAH_ASEL_SRC_ADDR;
930 	}
931 
932 	if (queue >= 0) {
933 		rah &= ~IGC_RAH_QSEL_MASK;
934 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
935 		rah |= IGC_RAH_QSEL_ENABLE;
936 	}
937 
938 	rah |= IGC_RAH_AV;
939 
940 	wr32(IGC_RAL(index), ral);
941 	wr32(IGC_RAH(index), rah);
942 
943 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
944 }
945 
946 /**
947  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
948  * @adapter: Pointer to adapter where the filter should be cleared
949  * @index: Filter index
950  */
951 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
952 {
953 	struct net_device *dev = adapter->netdev;
954 	struct igc_hw *hw = &adapter->hw;
955 
956 	if (WARN_ON(index >= hw->mac.rar_entry_count))
957 		return;
958 
959 	wr32(IGC_RAL(index), 0);
960 	wr32(IGC_RAH(index), 0);
961 
962 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
963 }
964 
965 /* Set default MAC address for the PF in the first RAR entry */
966 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
967 {
968 	struct net_device *dev = adapter->netdev;
969 	u8 *addr = adapter->hw.mac.addr;
970 
971 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
972 
973 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
974 }
975 
976 /**
977  * igc_set_mac - Change the Ethernet Address of the NIC
978  * @netdev: network interface device structure
979  * @p: pointer to an address structure
980  *
981  * Returns 0 on success, negative on failure
982  */
983 static int igc_set_mac(struct net_device *netdev, void *p)
984 {
985 	struct igc_adapter *adapter = netdev_priv(netdev);
986 	struct igc_hw *hw = &adapter->hw;
987 	struct sockaddr *addr = p;
988 
989 	if (!is_valid_ether_addr(addr->sa_data))
990 		return -EADDRNOTAVAIL;
991 
992 	eth_hw_addr_set(netdev, addr->sa_data);
993 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
994 
995 	/* set the correct pool for the new PF MAC address in entry 0 */
996 	igc_set_default_mac_filter(adapter);
997 
998 	return 0;
999 }
1000 
1001 /**
1002  *  igc_write_mc_addr_list - write multicast addresses to MTA
1003  *  @netdev: network interface device structure
1004  *
1005  *  Writes multicast address list to the MTA hash table.
1006  *  Returns: -ENOMEM on failure
1007  *           0 on no addresses written
1008  *           X on writing X addresses to MTA
1009  **/
1010 static int igc_write_mc_addr_list(struct net_device *netdev)
1011 {
1012 	struct igc_adapter *adapter = netdev_priv(netdev);
1013 	struct igc_hw *hw = &adapter->hw;
1014 	struct netdev_hw_addr *ha;
1015 	u8  *mta_list;
1016 	int i;
1017 
1018 	if (netdev_mc_empty(netdev)) {
1019 		/* nothing to program, so clear mc list */
1020 		igc_update_mc_addr_list(hw, NULL, 0);
1021 		return 0;
1022 	}
1023 
1024 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1025 	if (!mta_list)
1026 		return -ENOMEM;
1027 
1028 	/* The shared function expects a packed array of only addresses. */
1029 	i = 0;
1030 	netdev_for_each_mc_addr(ha, netdev)
1031 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1032 
1033 	igc_update_mc_addr_list(hw, mta_list, i);
1034 	kfree(mta_list);
1035 
1036 	return netdev_mc_count(netdev);
1037 }
1038 
1039 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1040 				bool *first_flag, bool *insert_empty)
1041 {
1042 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1043 	ktime_t cycle_time = adapter->cycle_time;
1044 	ktime_t base_time = adapter->base_time;
1045 	ktime_t now = ktime_get_clocktai();
1046 	ktime_t baset_est, end_of_cycle;
1047 	s32 launchtime;
1048 	s64 n;
1049 
1050 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1051 
1052 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1053 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1054 
1055 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1056 		if (baset_est != ring->last_ff_cycle) {
1057 			*first_flag = true;
1058 			ring->last_ff_cycle = baset_est;
1059 
1060 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1061 				*insert_empty = true;
1062 		}
1063 	}
1064 
1065 	/* Introducing a window at end of cycle on which packets
1066 	 * potentially not honor launchtime. Window of 5us chosen
1067 	 * considering software update the tail pointer and packets
1068 	 * are dma'ed to packet buffer.
1069 	 */
1070 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1071 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1072 			    txtime);
1073 
1074 	ring->last_tx_cycle = end_of_cycle;
1075 
1076 	launchtime = ktime_sub_ns(txtime, baset_est);
1077 	if (launchtime > 0)
1078 		div_s64_rem(launchtime, cycle_time, &launchtime);
1079 	else
1080 		launchtime = 0;
1081 
1082 	return cpu_to_le32(launchtime);
1083 }
1084 
1085 static int igc_init_empty_frame(struct igc_ring *ring,
1086 				struct igc_tx_buffer *buffer,
1087 				struct sk_buff *skb)
1088 {
1089 	unsigned int size;
1090 	dma_addr_t dma;
1091 
1092 	size = skb_headlen(skb);
1093 
1094 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1095 	if (dma_mapping_error(ring->dev, dma)) {
1096 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1097 		return -ENOMEM;
1098 	}
1099 
1100 	buffer->skb = skb;
1101 	buffer->protocol = 0;
1102 	buffer->bytecount = skb->len;
1103 	buffer->gso_segs = 1;
1104 	buffer->time_stamp = jiffies;
1105 	dma_unmap_len_set(buffer, len, skb->len);
1106 	dma_unmap_addr_set(buffer, dma, dma);
1107 
1108 	return 0;
1109 }
1110 
1111 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 					struct sk_buff *skb,
1113 					struct igc_tx_buffer *first)
1114 {
1115 	union igc_adv_tx_desc *desc;
1116 	u32 cmd_type, olinfo_status;
1117 	int err;
1118 
1119 	if (!igc_desc_unused(ring))
1120 		return -EBUSY;
1121 
1122 	err = igc_init_empty_frame(ring, first, skb);
1123 	if (err)
1124 		return err;
1125 
1126 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 		   first->bytecount;
1129 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130 
1131 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135 
1136 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137 
1138 	first->next_to_watch = desc;
1139 
1140 	ring->next_to_use++;
1141 	if (ring->next_to_use == ring->count)
1142 		ring->next_to_use = 0;
1143 
1144 	return 0;
1145 }
1146 
1147 #define IGC_EMPTY_FRAME_SIZE 60
1148 
1149 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 			    __le32 launch_time, bool first_flag,
1151 			    u32 vlan_macip_lens, u32 type_tucmd,
1152 			    u32 mss_l4len_idx)
1153 {
1154 	struct igc_adv_tx_context_desc *context_desc;
1155 	u16 i = tx_ring->next_to_use;
1156 
1157 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158 
1159 	i++;
1160 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161 
1162 	/* set bits to identify this as an advanced context descriptor */
1163 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164 
1165 	/* For i225, context index must be unique per ring. */
1166 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1168 
1169 	if (first_flag)
1170 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171 
1172 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1173 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1174 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1175 	context_desc->launch_time	= launch_time;
1176 }
1177 
1178 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 			__le32 launch_time, bool first_flag)
1180 {
1181 	struct sk_buff *skb = first->skb;
1182 	u32 vlan_macip_lens = 0;
1183 	u32 type_tucmd = 0;
1184 
1185 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186 csum_failed:
1187 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 		    !tx_ring->launchtime_enable)
1189 			return;
1190 		goto no_csum;
1191 	}
1192 
1193 	switch (skb->csum_offset) {
1194 	case offsetof(struct tcphdr, check):
1195 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 		fallthrough;
1197 	case offsetof(struct udphdr, check):
1198 		break;
1199 	case offsetof(struct sctphdr, checksum):
1200 		/* validate that this is actually an SCTP request */
1201 		if (skb_csum_is_sctp(skb)) {
1202 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 			break;
1204 		}
1205 		fallthrough;
1206 	default:
1207 		skb_checksum_help(skb);
1208 		goto csum_failed;
1209 	}
1210 
1211 	/* update TX checksum flag */
1212 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 			  skb_network_offset(skb);
1215 no_csum:
1216 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218 
1219 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 			vlan_macip_lens, type_tucmd, 0);
1221 }
1222 
1223 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224 {
1225 	struct net_device *netdev = tx_ring->netdev;
1226 
1227 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1228 
1229 	/* memory barriier comment */
1230 	smp_mb();
1231 
1232 	/* We need to check again in a case another CPU has just
1233 	 * made room available.
1234 	 */
1235 	if (igc_desc_unused(tx_ring) < size)
1236 		return -EBUSY;
1237 
1238 	/* A reprieve! */
1239 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1240 
1241 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 	tx_ring->tx_stats.restart_queue2++;
1243 	u64_stats_update_end(&tx_ring->tx_syncp2);
1244 
1245 	return 0;
1246 }
1247 
1248 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249 {
1250 	if (igc_desc_unused(tx_ring) >= size)
1251 		return 0;
1252 	return __igc_maybe_stop_tx(tx_ring, size);
1253 }
1254 
1255 #define IGC_SET_FLAG(_input, _flag, _result) \
1256 	(((_flag) <= (_result)) ?				\
1257 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1258 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259 
1260 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261 {
1262 	/* set type for advanced descriptor with frame checksum insertion */
1263 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 		       IGC_ADVTXD_DCMD_DEXT |
1265 		       IGC_ADVTXD_DCMD_IFCS;
1266 
1267 	/* set HW vlan bit if vlan is present */
1268 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 				 IGC_ADVTXD_DCMD_VLE);
1270 
1271 	/* set segmentation bits for TSO */
1272 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 				 (IGC_ADVTXD_DCMD_TSE));
1274 
1275 	/* set timestamp bit if present, will select the register set
1276 	 * based on the _TSTAMP(_X) bit.
1277 	 */
1278 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1279 				 (IGC_ADVTXD_MAC_TSTAMP));
1280 
1281 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1282 				 (IGC_ADVTXD_TSTAMP_REG_1));
1283 
1284 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1285 				 (IGC_ADVTXD_TSTAMP_REG_2));
1286 
1287 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1288 				 (IGC_ADVTXD_TSTAMP_REG_3));
1289 
1290 	/* insert frame checksum */
1291 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1292 
1293 	return cmd_type;
1294 }
1295 
1296 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1297 				 union igc_adv_tx_desc *tx_desc,
1298 				 u32 tx_flags, unsigned int paylen)
1299 {
1300 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1301 
1302 	/* insert L4 checksum */
1303 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1304 				      (IGC_TXD_POPTS_TXSM << 8));
1305 
1306 	/* insert IPv4 checksum */
1307 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1308 				      (IGC_TXD_POPTS_IXSM << 8));
1309 
1310 	/* Use the second timer (free running, in general) for the timestamp */
1311 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1312 				      IGC_TXD_PTP2_TIMER_1);
1313 
1314 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1315 }
1316 
1317 static int igc_tx_map(struct igc_ring *tx_ring,
1318 		      struct igc_tx_buffer *first,
1319 		      const u8 hdr_len)
1320 {
1321 	struct sk_buff *skb = first->skb;
1322 	struct igc_tx_buffer *tx_buffer;
1323 	union igc_adv_tx_desc *tx_desc;
1324 	u32 tx_flags = first->tx_flags;
1325 	skb_frag_t *frag;
1326 	u16 i = tx_ring->next_to_use;
1327 	unsigned int data_len, size;
1328 	dma_addr_t dma;
1329 	u32 cmd_type;
1330 
1331 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1332 	tx_desc = IGC_TX_DESC(tx_ring, i);
1333 
1334 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1335 
1336 	size = skb_headlen(skb);
1337 	data_len = skb->data_len;
1338 
1339 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1340 
1341 	tx_buffer = first;
1342 
1343 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1344 		if (dma_mapping_error(tx_ring->dev, dma))
1345 			goto dma_error;
1346 
1347 		/* record length, and DMA address */
1348 		dma_unmap_len_set(tx_buffer, len, size);
1349 		dma_unmap_addr_set(tx_buffer, dma, dma);
1350 
1351 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1352 
1353 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1354 			tx_desc->read.cmd_type_len =
1355 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1356 
1357 			i++;
1358 			tx_desc++;
1359 			if (i == tx_ring->count) {
1360 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1361 				i = 0;
1362 			}
1363 			tx_desc->read.olinfo_status = 0;
1364 
1365 			dma += IGC_MAX_DATA_PER_TXD;
1366 			size -= IGC_MAX_DATA_PER_TXD;
1367 
1368 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1369 		}
1370 
1371 		if (likely(!data_len))
1372 			break;
1373 
1374 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1375 
1376 		i++;
1377 		tx_desc++;
1378 		if (i == tx_ring->count) {
1379 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1380 			i = 0;
1381 		}
1382 		tx_desc->read.olinfo_status = 0;
1383 
1384 		size = skb_frag_size(frag);
1385 		data_len -= size;
1386 
1387 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1388 				       size, DMA_TO_DEVICE);
1389 
1390 		tx_buffer = &tx_ring->tx_buffer_info[i];
1391 	}
1392 
1393 	/* write last descriptor with RS and EOP bits */
1394 	cmd_type |= size | IGC_TXD_DCMD;
1395 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1396 
1397 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1398 
1399 	/* set the timestamp */
1400 	first->time_stamp = jiffies;
1401 
1402 	skb_tx_timestamp(skb);
1403 
1404 	/* Force memory writes to complete before letting h/w know there
1405 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1406 	 * memory model archs, such as IA-64).
1407 	 *
1408 	 * We also need this memory barrier to make certain all of the
1409 	 * status bits have been updated before next_to_watch is written.
1410 	 */
1411 	wmb();
1412 
1413 	/* set next_to_watch value indicating a packet is present */
1414 	first->next_to_watch = tx_desc;
1415 
1416 	i++;
1417 	if (i == tx_ring->count)
1418 		i = 0;
1419 
1420 	tx_ring->next_to_use = i;
1421 
1422 	/* Make sure there is space in the ring for the next send. */
1423 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1424 
1425 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1426 		writel(i, tx_ring->tail);
1427 	}
1428 
1429 	return 0;
1430 dma_error:
1431 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1432 	tx_buffer = &tx_ring->tx_buffer_info[i];
1433 
1434 	/* clear dma mappings for failed tx_buffer_info map */
1435 	while (tx_buffer != first) {
1436 		if (dma_unmap_len(tx_buffer, len))
1437 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1438 
1439 		if (i-- == 0)
1440 			i += tx_ring->count;
1441 		tx_buffer = &tx_ring->tx_buffer_info[i];
1442 	}
1443 
1444 	if (dma_unmap_len(tx_buffer, len))
1445 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1446 
1447 	dev_kfree_skb_any(tx_buffer->skb);
1448 	tx_buffer->skb = NULL;
1449 
1450 	tx_ring->next_to_use = i;
1451 
1452 	return -1;
1453 }
1454 
1455 static int igc_tso(struct igc_ring *tx_ring,
1456 		   struct igc_tx_buffer *first,
1457 		   __le32 launch_time, bool first_flag,
1458 		   u8 *hdr_len)
1459 {
1460 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1461 	struct sk_buff *skb = first->skb;
1462 	union {
1463 		struct iphdr *v4;
1464 		struct ipv6hdr *v6;
1465 		unsigned char *hdr;
1466 	} ip;
1467 	union {
1468 		struct tcphdr *tcp;
1469 		struct udphdr *udp;
1470 		unsigned char *hdr;
1471 	} l4;
1472 	u32 paylen, l4_offset;
1473 	int err;
1474 
1475 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 		return 0;
1477 
1478 	if (!skb_is_gso(skb))
1479 		return 0;
1480 
1481 	err = skb_cow_head(skb, 0);
1482 	if (err < 0)
1483 		return err;
1484 
1485 	ip.hdr = skb_network_header(skb);
1486 	l4.hdr = skb_checksum_start(skb);
1487 
1488 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1489 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1490 
1491 	/* initialize outer IP header fields */
1492 	if (ip.v4->version == 4) {
1493 		unsigned char *csum_start = skb_checksum_start(skb);
1494 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1495 
1496 		/* IP header will have to cancel out any data that
1497 		 * is not a part of the outer IP header
1498 		 */
1499 		ip.v4->check = csum_fold(csum_partial(trans_start,
1500 						      csum_start - trans_start,
1501 						      0));
1502 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1503 
1504 		ip.v4->tot_len = 0;
1505 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1506 				   IGC_TX_FLAGS_CSUM |
1507 				   IGC_TX_FLAGS_IPV4;
1508 	} else {
1509 		ip.v6->payload_len = 0;
1510 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1511 				   IGC_TX_FLAGS_CSUM;
1512 	}
1513 
1514 	/* determine offset of inner transport header */
1515 	l4_offset = l4.hdr - skb->data;
1516 
1517 	/* remove payload length from inner checksum */
1518 	paylen = skb->len - l4_offset;
1519 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1520 		/* compute length of segmentation header */
1521 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1522 		csum_replace_by_diff(&l4.tcp->check,
1523 				     (__force __wsum)htonl(paylen));
1524 	} else {
1525 		/* compute length of segmentation header */
1526 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1527 		csum_replace_by_diff(&l4.udp->check,
1528 				     (__force __wsum)htonl(paylen));
1529 	}
1530 
1531 	/* update gso size and bytecount with header size */
1532 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1533 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1534 
1535 	/* MSS L4LEN IDX */
1536 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1537 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1538 
1539 	/* VLAN MACLEN IPLEN */
1540 	vlan_macip_lens = l4.hdr - ip.hdr;
1541 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1542 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1543 
1544 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1545 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1546 
1547 	return 1;
1548 }
1549 
1550 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1551 {
1552 	int i;
1553 
1554 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1555 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1556 
1557 		if (tstamp->skb)
1558 			continue;
1559 
1560 		tstamp->skb = skb_get(skb);
1561 		tstamp->start = jiffies;
1562 		*flags = tstamp->flags;
1563 
1564 		return true;
1565 	}
1566 
1567 	return false;
1568 }
1569 
1570 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1571 				       struct igc_ring *tx_ring)
1572 {
1573 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1574 	bool first_flag = false, insert_empty = false;
1575 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1576 	__be16 protocol = vlan_get_protocol(skb);
1577 	struct igc_tx_buffer *first;
1578 	__le32 launch_time = 0;
1579 	u32 tx_flags = 0;
1580 	unsigned short f;
1581 	ktime_t txtime;
1582 	u8 hdr_len = 0;
1583 	int tso = 0;
1584 
1585 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1586 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1587 	 *	+ 2 desc gap to keep tail from touching head,
1588 	 *	+ 1 desc for context descriptor,
1589 	 * otherwise try next time
1590 	 */
1591 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1592 		count += TXD_USE_COUNT(skb_frag_size(
1593 						&skb_shinfo(skb)->frags[f]));
1594 
1595 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1596 		/* this is a hard error */
1597 		return NETDEV_TX_BUSY;
1598 	}
1599 
1600 	if (!tx_ring->launchtime_enable)
1601 		goto done;
1602 
1603 	txtime = skb->tstamp;
1604 	skb->tstamp = ktime_set(0, 0);
1605 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1606 
1607 	if (insert_empty) {
1608 		struct igc_tx_buffer *empty_info;
1609 		struct sk_buff *empty;
1610 		void *data;
1611 
1612 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1613 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1614 		if (!empty)
1615 			goto done;
1616 
1617 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1618 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1619 
1620 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1621 
1622 		if (igc_init_tx_empty_descriptor(tx_ring,
1623 						 empty,
1624 						 empty_info) < 0)
1625 			dev_kfree_skb_any(empty);
1626 	}
1627 
1628 done:
1629 	/* record the location of the first descriptor for this packet */
1630 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1631 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1632 	first->skb = skb;
1633 	first->bytecount = skb->len;
1634 	first->gso_segs = 1;
1635 
1636 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1637 		goto out_drop;
1638 
1639 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1640 		adapter->stats.txdrop++;
1641 		goto out_drop;
1642 	}
1643 
1644 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1645 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1646 		unsigned long flags;
1647 		u32 tstamp_flags;
1648 
1649 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1650 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1651 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1652 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1653 			if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1654 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1655 		} else {
1656 			adapter->tx_hwtstamp_skipped++;
1657 		}
1658 
1659 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1660 	}
1661 
1662 	if (skb_vlan_tag_present(skb)) {
1663 		tx_flags |= IGC_TX_FLAGS_VLAN;
1664 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1665 	}
1666 
1667 	/* record initial flags and protocol */
1668 	first->tx_flags = tx_flags;
1669 	first->protocol = protocol;
1670 
1671 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1672 	if (tso < 0)
1673 		goto out_drop;
1674 	else if (!tso)
1675 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1676 
1677 	igc_tx_map(tx_ring, first, hdr_len);
1678 
1679 	return NETDEV_TX_OK;
1680 
1681 out_drop:
1682 	dev_kfree_skb_any(first->skb);
1683 	first->skb = NULL;
1684 
1685 	return NETDEV_TX_OK;
1686 }
1687 
1688 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1689 						    struct sk_buff *skb)
1690 {
1691 	unsigned int r_idx = skb->queue_mapping;
1692 
1693 	if (r_idx >= adapter->num_tx_queues)
1694 		r_idx = r_idx % adapter->num_tx_queues;
1695 
1696 	return adapter->tx_ring[r_idx];
1697 }
1698 
1699 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1700 				  struct net_device *netdev)
1701 {
1702 	struct igc_adapter *adapter = netdev_priv(netdev);
1703 
1704 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1705 	 * in order to meet this minimum size requirement.
1706 	 */
1707 	if (skb->len < 17) {
1708 		if (skb_padto(skb, 17))
1709 			return NETDEV_TX_OK;
1710 		skb->len = 17;
1711 	}
1712 
1713 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1714 }
1715 
1716 static void igc_rx_checksum(struct igc_ring *ring,
1717 			    union igc_adv_rx_desc *rx_desc,
1718 			    struct sk_buff *skb)
1719 {
1720 	skb_checksum_none_assert(skb);
1721 
1722 	/* Ignore Checksum bit is set */
1723 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1724 		return;
1725 
1726 	/* Rx checksum disabled via ethtool */
1727 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1728 		return;
1729 
1730 	/* TCP/UDP checksum error bit is set */
1731 	if (igc_test_staterr(rx_desc,
1732 			     IGC_RXDEXT_STATERR_L4E |
1733 			     IGC_RXDEXT_STATERR_IPE)) {
1734 		/* work around errata with sctp packets where the TCPE aka
1735 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1736 		 * packets (aka let the stack check the crc32c)
1737 		 */
1738 		if (!(skb->len == 60 &&
1739 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1740 			u64_stats_update_begin(&ring->rx_syncp);
1741 			ring->rx_stats.csum_err++;
1742 			u64_stats_update_end(&ring->rx_syncp);
1743 		}
1744 		/* let the stack verify checksum errors */
1745 		return;
1746 	}
1747 	/* It must be a TCP or UDP packet with a valid checksum */
1748 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1749 				      IGC_RXD_STAT_UDPCS))
1750 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1751 
1752 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1753 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1754 }
1755 
1756 /* Mapping HW RSS Type to enum pkt_hash_types */
1757 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1758 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1759 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1760 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1761 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1762 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1763 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1764 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1765 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1766 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1767 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1769 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1770 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1771 	[13] = PKT_HASH_TYPE_NONE,
1772 	[14] = PKT_HASH_TYPE_NONE,
1773 	[15] = PKT_HASH_TYPE_NONE,
1774 };
1775 
1776 static inline void igc_rx_hash(struct igc_ring *ring,
1777 			       union igc_adv_rx_desc *rx_desc,
1778 			       struct sk_buff *skb)
1779 {
1780 	if (ring->netdev->features & NETIF_F_RXHASH) {
1781 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1782 		u32 rss_type = igc_rss_type(rx_desc);
1783 
1784 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1785 	}
1786 }
1787 
1788 static void igc_rx_vlan(struct igc_ring *rx_ring,
1789 			union igc_adv_rx_desc *rx_desc,
1790 			struct sk_buff *skb)
1791 {
1792 	struct net_device *dev = rx_ring->netdev;
1793 	u16 vid;
1794 
1795 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1796 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1797 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1798 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1799 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1800 		else
1801 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1802 
1803 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1804 	}
1805 }
1806 
1807 /**
1808  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1809  * @rx_ring: rx descriptor ring packet is being transacted on
1810  * @rx_desc: pointer to the EOP Rx descriptor
1811  * @skb: pointer to current skb being populated
1812  *
1813  * This function checks the ring, descriptor, and packet information in order
1814  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1815  * skb.
1816  */
1817 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1818 				   union igc_adv_rx_desc *rx_desc,
1819 				   struct sk_buff *skb)
1820 {
1821 	igc_rx_hash(rx_ring, rx_desc, skb);
1822 
1823 	igc_rx_checksum(rx_ring, rx_desc, skb);
1824 
1825 	igc_rx_vlan(rx_ring, rx_desc, skb);
1826 
1827 	skb_record_rx_queue(skb, rx_ring->queue_index);
1828 
1829 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830 }
1831 
1832 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1833 {
1834 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1835 	struct igc_adapter *adapter = netdev_priv(netdev);
1836 	struct igc_hw *hw = &adapter->hw;
1837 	u32 ctrl;
1838 
1839 	ctrl = rd32(IGC_CTRL);
1840 
1841 	if (enable) {
1842 		/* enable VLAN tag insert/strip */
1843 		ctrl |= IGC_CTRL_VME;
1844 	} else {
1845 		/* disable VLAN tag insert/strip */
1846 		ctrl &= ~IGC_CTRL_VME;
1847 	}
1848 	wr32(IGC_CTRL, ctrl);
1849 }
1850 
1851 static void igc_restore_vlan(struct igc_adapter *adapter)
1852 {
1853 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1854 }
1855 
1856 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1857 					       const unsigned int size,
1858 					       int *rx_buffer_pgcnt)
1859 {
1860 	struct igc_rx_buffer *rx_buffer;
1861 
1862 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1863 	*rx_buffer_pgcnt =
1864 #if (PAGE_SIZE < 8192)
1865 		page_count(rx_buffer->page);
1866 #else
1867 		0;
1868 #endif
1869 	prefetchw(rx_buffer->page);
1870 
1871 	/* we are reusing so sync this buffer for CPU use */
1872 	dma_sync_single_range_for_cpu(rx_ring->dev,
1873 				      rx_buffer->dma,
1874 				      rx_buffer->page_offset,
1875 				      size,
1876 				      DMA_FROM_DEVICE);
1877 
1878 	rx_buffer->pagecnt_bias--;
1879 
1880 	return rx_buffer;
1881 }
1882 
1883 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1884 			       unsigned int truesize)
1885 {
1886 #if (PAGE_SIZE < 8192)
1887 	buffer->page_offset ^= truesize;
1888 #else
1889 	buffer->page_offset += truesize;
1890 #endif
1891 }
1892 
1893 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1894 					      unsigned int size)
1895 {
1896 	unsigned int truesize;
1897 
1898 #if (PAGE_SIZE < 8192)
1899 	truesize = igc_rx_pg_size(ring) / 2;
1900 #else
1901 	truesize = ring_uses_build_skb(ring) ?
1902 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1903 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1904 		   SKB_DATA_ALIGN(size);
1905 #endif
1906 	return truesize;
1907 }
1908 
1909 /**
1910  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1911  * @rx_ring: rx descriptor ring to transact packets on
1912  * @rx_buffer: buffer containing page to add
1913  * @skb: sk_buff to place the data into
1914  * @size: size of buffer to be added
1915  *
1916  * This function will add the data contained in rx_buffer->page to the skb.
1917  */
1918 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1919 			    struct igc_rx_buffer *rx_buffer,
1920 			    struct sk_buff *skb,
1921 			    unsigned int size)
1922 {
1923 	unsigned int truesize;
1924 
1925 #if (PAGE_SIZE < 8192)
1926 	truesize = igc_rx_pg_size(rx_ring) / 2;
1927 #else
1928 	truesize = ring_uses_build_skb(rx_ring) ?
1929 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 		   SKB_DATA_ALIGN(size);
1931 #endif
1932 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 			rx_buffer->page_offset, size, truesize);
1934 
1935 	igc_rx_buffer_flip(rx_buffer, truesize);
1936 }
1937 
1938 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1939 				     struct igc_rx_buffer *rx_buffer,
1940 				     struct xdp_buff *xdp)
1941 {
1942 	unsigned int size = xdp->data_end - xdp->data;
1943 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1944 	unsigned int metasize = xdp->data - xdp->data_meta;
1945 	struct sk_buff *skb;
1946 
1947 	/* prefetch first cache line of first page */
1948 	net_prefetch(xdp->data_meta);
1949 
1950 	/* build an skb around the page buffer */
1951 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1952 	if (unlikely(!skb))
1953 		return NULL;
1954 
1955 	/* update pointers within the skb to store the data */
1956 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1957 	__skb_put(skb, size);
1958 	if (metasize)
1959 		skb_metadata_set(skb, metasize);
1960 
1961 	igc_rx_buffer_flip(rx_buffer, truesize);
1962 	return skb;
1963 }
1964 
1965 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1966 					 struct igc_rx_buffer *rx_buffer,
1967 					 struct igc_xdp_buff *ctx)
1968 {
1969 	struct xdp_buff *xdp = &ctx->xdp;
1970 	unsigned int metasize = xdp->data - xdp->data_meta;
1971 	unsigned int size = xdp->data_end - xdp->data;
1972 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1973 	void *va = xdp->data;
1974 	unsigned int headlen;
1975 	struct sk_buff *skb;
1976 
1977 	/* prefetch first cache line of first page */
1978 	net_prefetch(xdp->data_meta);
1979 
1980 	/* allocate a skb to store the frags */
1981 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1982 			     IGC_RX_HDR_LEN + metasize);
1983 	if (unlikely(!skb))
1984 		return NULL;
1985 
1986 	if (ctx->rx_ts) {
1987 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1988 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1989 	}
1990 
1991 	/* Determine available headroom for copy */
1992 	headlen = size;
1993 	if (headlen > IGC_RX_HDR_LEN)
1994 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1995 
1996 	/* align pull length to size of long to optimize memcpy performance */
1997 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1998 	       ALIGN(headlen + metasize, sizeof(long)));
1999 
2000 	if (metasize) {
2001 		skb_metadata_set(skb, metasize);
2002 		__skb_pull(skb, metasize);
2003 	}
2004 
2005 	/* update all of the pointers */
2006 	size -= headlen;
2007 	if (size) {
2008 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2009 				(va + headlen) - page_address(rx_buffer->page),
2010 				size, truesize);
2011 		igc_rx_buffer_flip(rx_buffer, truesize);
2012 	} else {
2013 		rx_buffer->pagecnt_bias++;
2014 	}
2015 
2016 	return skb;
2017 }
2018 
2019 /**
2020  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2021  * @rx_ring: rx descriptor ring to store buffers on
2022  * @old_buff: donor buffer to have page reused
2023  *
2024  * Synchronizes page for reuse by the adapter
2025  */
2026 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2027 			      struct igc_rx_buffer *old_buff)
2028 {
2029 	u16 nta = rx_ring->next_to_alloc;
2030 	struct igc_rx_buffer *new_buff;
2031 
2032 	new_buff = &rx_ring->rx_buffer_info[nta];
2033 
2034 	/* update, and store next to alloc */
2035 	nta++;
2036 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2037 
2038 	/* Transfer page from old buffer to new buffer.
2039 	 * Move each member individually to avoid possible store
2040 	 * forwarding stalls.
2041 	 */
2042 	new_buff->dma		= old_buff->dma;
2043 	new_buff->page		= old_buff->page;
2044 	new_buff->page_offset	= old_buff->page_offset;
2045 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2046 }
2047 
2048 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2049 				  int rx_buffer_pgcnt)
2050 {
2051 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2052 	struct page *page = rx_buffer->page;
2053 
2054 	/* avoid re-using remote and pfmemalloc pages */
2055 	if (!dev_page_is_reusable(page))
2056 		return false;
2057 
2058 #if (PAGE_SIZE < 8192)
2059 	/* if we are only owner of page we can reuse it */
2060 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2061 		return false;
2062 #else
2063 #define IGC_LAST_OFFSET \
2064 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2065 
2066 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2067 		return false;
2068 #endif
2069 
2070 	/* If we have drained the page fragment pool we need to update
2071 	 * the pagecnt_bias and page count so that we fully restock the
2072 	 * number of references the driver holds.
2073 	 */
2074 	if (unlikely(pagecnt_bias == 1)) {
2075 		page_ref_add(page, USHRT_MAX - 1);
2076 		rx_buffer->pagecnt_bias = USHRT_MAX;
2077 	}
2078 
2079 	return true;
2080 }
2081 
2082 /**
2083  * igc_is_non_eop - process handling of non-EOP buffers
2084  * @rx_ring: Rx ring being processed
2085  * @rx_desc: Rx descriptor for current buffer
2086  *
2087  * This function updates next to clean.  If the buffer is an EOP buffer
2088  * this function exits returning false, otherwise it will place the
2089  * sk_buff in the next buffer to be chained and return true indicating
2090  * that this is in fact a non-EOP buffer.
2091  */
2092 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2093 			   union igc_adv_rx_desc *rx_desc)
2094 {
2095 	u32 ntc = rx_ring->next_to_clean + 1;
2096 
2097 	/* fetch, update, and store next to clean */
2098 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2099 	rx_ring->next_to_clean = ntc;
2100 
2101 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2102 
2103 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2104 		return false;
2105 
2106 	return true;
2107 }
2108 
2109 /**
2110  * igc_cleanup_headers - Correct corrupted or empty headers
2111  * @rx_ring: rx descriptor ring packet is being transacted on
2112  * @rx_desc: pointer to the EOP Rx descriptor
2113  * @skb: pointer to current skb being fixed
2114  *
2115  * Address the case where we are pulling data in on pages only
2116  * and as such no data is present in the skb header.
2117  *
2118  * In addition if skb is not at least 60 bytes we need to pad it so that
2119  * it is large enough to qualify as a valid Ethernet frame.
2120  *
2121  * Returns true if an error was encountered and skb was freed.
2122  */
2123 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2124 				union igc_adv_rx_desc *rx_desc,
2125 				struct sk_buff *skb)
2126 {
2127 	/* XDP packets use error pointer so abort at this point */
2128 	if (IS_ERR(skb))
2129 		return true;
2130 
2131 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2132 		struct net_device *netdev = rx_ring->netdev;
2133 
2134 		if (!(netdev->features & NETIF_F_RXALL)) {
2135 			dev_kfree_skb_any(skb);
2136 			return true;
2137 		}
2138 	}
2139 
2140 	/* if eth_skb_pad returns an error the skb was freed */
2141 	if (eth_skb_pad(skb))
2142 		return true;
2143 
2144 	return false;
2145 }
2146 
2147 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2148 			      struct igc_rx_buffer *rx_buffer,
2149 			      int rx_buffer_pgcnt)
2150 {
2151 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2152 		/* hand second half of page back to the ring */
2153 		igc_reuse_rx_page(rx_ring, rx_buffer);
2154 	} else {
2155 		/* We are not reusing the buffer so unmap it and free
2156 		 * any references we are holding to it
2157 		 */
2158 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2160 				     IGC_RX_DMA_ATTR);
2161 		__page_frag_cache_drain(rx_buffer->page,
2162 					rx_buffer->pagecnt_bias);
2163 	}
2164 
2165 	/* clear contents of rx_buffer */
2166 	rx_buffer->page = NULL;
2167 }
2168 
2169 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2170 {
2171 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2172 
2173 	if (ring_uses_build_skb(rx_ring))
2174 		return IGC_SKB_PAD;
2175 	if (igc_xdp_is_enabled(adapter))
2176 		return XDP_PACKET_HEADROOM;
2177 
2178 	return 0;
2179 }
2180 
2181 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2182 				  struct igc_rx_buffer *bi)
2183 {
2184 	struct page *page = bi->page;
2185 	dma_addr_t dma;
2186 
2187 	/* since we are recycling buffers we should seldom need to alloc */
2188 	if (likely(page))
2189 		return true;
2190 
2191 	/* alloc new page for storage */
2192 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2193 	if (unlikely(!page)) {
2194 		rx_ring->rx_stats.alloc_failed++;
2195 		return false;
2196 	}
2197 
2198 	/* map page for use */
2199 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2200 				 igc_rx_pg_size(rx_ring),
2201 				 DMA_FROM_DEVICE,
2202 				 IGC_RX_DMA_ATTR);
2203 
2204 	/* if mapping failed free memory back to system since
2205 	 * there isn't much point in holding memory we can't use
2206 	 */
2207 	if (dma_mapping_error(rx_ring->dev, dma)) {
2208 		__free_page(page);
2209 
2210 		rx_ring->rx_stats.alloc_failed++;
2211 		return false;
2212 	}
2213 
2214 	bi->dma = dma;
2215 	bi->page = page;
2216 	bi->page_offset = igc_rx_offset(rx_ring);
2217 	page_ref_add(page, USHRT_MAX - 1);
2218 	bi->pagecnt_bias = USHRT_MAX;
2219 
2220 	return true;
2221 }
2222 
2223 /**
2224  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2225  * @rx_ring: rx descriptor ring
2226  * @cleaned_count: number of buffers to clean
2227  */
2228 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2229 {
2230 	union igc_adv_rx_desc *rx_desc;
2231 	u16 i = rx_ring->next_to_use;
2232 	struct igc_rx_buffer *bi;
2233 	u16 bufsz;
2234 
2235 	/* nothing to do */
2236 	if (!cleaned_count)
2237 		return;
2238 
2239 	rx_desc = IGC_RX_DESC(rx_ring, i);
2240 	bi = &rx_ring->rx_buffer_info[i];
2241 	i -= rx_ring->count;
2242 
2243 	bufsz = igc_rx_bufsz(rx_ring);
2244 
2245 	do {
2246 		if (!igc_alloc_mapped_page(rx_ring, bi))
2247 			break;
2248 
2249 		/* sync the buffer for use by the device */
2250 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2251 						 bi->page_offset, bufsz,
2252 						 DMA_FROM_DEVICE);
2253 
2254 		/* Refresh the desc even if buffer_addrs didn't change
2255 		 * because each write-back erases this info.
2256 		 */
2257 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2258 
2259 		rx_desc++;
2260 		bi++;
2261 		i++;
2262 		if (unlikely(!i)) {
2263 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2264 			bi = rx_ring->rx_buffer_info;
2265 			i -= rx_ring->count;
2266 		}
2267 
2268 		/* clear the length for the next_to_use descriptor */
2269 		rx_desc->wb.upper.length = 0;
2270 
2271 		cleaned_count--;
2272 	} while (cleaned_count);
2273 
2274 	i += rx_ring->count;
2275 
2276 	if (rx_ring->next_to_use != i) {
2277 		/* record the next descriptor to use */
2278 		rx_ring->next_to_use = i;
2279 
2280 		/* update next to alloc since we have filled the ring */
2281 		rx_ring->next_to_alloc = i;
2282 
2283 		/* Force memory writes to complete before letting h/w
2284 		 * know there are new descriptors to fetch.  (Only
2285 		 * applicable for weak-ordered memory model archs,
2286 		 * such as IA-64).
2287 		 */
2288 		wmb();
2289 		writel(i, rx_ring->tail);
2290 	}
2291 }
2292 
2293 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2294 {
2295 	union igc_adv_rx_desc *desc;
2296 	u16 i = ring->next_to_use;
2297 	struct igc_rx_buffer *bi;
2298 	dma_addr_t dma;
2299 	bool ok = true;
2300 
2301 	if (!count)
2302 		return ok;
2303 
2304 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2305 
2306 	desc = IGC_RX_DESC(ring, i);
2307 	bi = &ring->rx_buffer_info[i];
2308 	i -= ring->count;
2309 
2310 	do {
2311 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2312 		if (!bi->xdp) {
2313 			ok = false;
2314 			break;
2315 		}
2316 
2317 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2318 		desc->read.pkt_addr = cpu_to_le64(dma);
2319 
2320 		desc++;
2321 		bi++;
2322 		i++;
2323 		if (unlikely(!i)) {
2324 			desc = IGC_RX_DESC(ring, 0);
2325 			bi = ring->rx_buffer_info;
2326 			i -= ring->count;
2327 		}
2328 
2329 		/* Clear the length for the next_to_use descriptor. */
2330 		desc->wb.upper.length = 0;
2331 
2332 		count--;
2333 	} while (count);
2334 
2335 	i += ring->count;
2336 
2337 	if (ring->next_to_use != i) {
2338 		ring->next_to_use = i;
2339 
2340 		/* Force memory writes to complete before letting h/w
2341 		 * know there are new descriptors to fetch.  (Only
2342 		 * applicable for weak-ordered memory model archs,
2343 		 * such as IA-64).
2344 		 */
2345 		wmb();
2346 		writel(i, ring->tail);
2347 	}
2348 
2349 	return ok;
2350 }
2351 
2352 /* This function requires __netif_tx_lock is held by the caller. */
2353 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2354 				      struct xdp_frame *xdpf)
2355 {
2356 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2357 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2358 	u16 count, index = ring->next_to_use;
2359 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2360 	struct igc_tx_buffer *buffer = head;
2361 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2362 	u32 olinfo_status, len = xdpf->len, cmd_type;
2363 	void *data = xdpf->data;
2364 	u16 i;
2365 
2366 	count = TXD_USE_COUNT(len);
2367 	for (i = 0; i < nr_frags; i++)
2368 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2369 
2370 	if (igc_maybe_stop_tx(ring, count + 3)) {
2371 		/* this is a hard error */
2372 		return -EBUSY;
2373 	}
2374 
2375 	i = 0;
2376 	head->bytecount = xdp_get_frame_len(xdpf);
2377 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2378 	head->gso_segs = 1;
2379 	head->xdpf = xdpf;
2380 
2381 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2382 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2383 
2384 	for (;;) {
2385 		dma_addr_t dma;
2386 
2387 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2388 		if (dma_mapping_error(ring->dev, dma)) {
2389 			netdev_err_once(ring->netdev,
2390 					"Failed to map DMA for TX\n");
2391 			goto unmap;
2392 		}
2393 
2394 		dma_unmap_len_set(buffer, len, len);
2395 		dma_unmap_addr_set(buffer, dma, dma);
2396 
2397 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2398 			   IGC_ADVTXD_DCMD_IFCS | len;
2399 
2400 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2401 		desc->read.buffer_addr = cpu_to_le64(dma);
2402 
2403 		buffer->protocol = 0;
2404 
2405 		if (++index == ring->count)
2406 			index = 0;
2407 
2408 		if (i == nr_frags)
2409 			break;
2410 
2411 		buffer = &ring->tx_buffer_info[index];
2412 		desc = IGC_TX_DESC(ring, index);
2413 		desc->read.olinfo_status = 0;
2414 
2415 		data = skb_frag_address(&sinfo->frags[i]);
2416 		len = skb_frag_size(&sinfo->frags[i]);
2417 		i++;
2418 	}
2419 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2420 
2421 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2422 	/* set the timestamp */
2423 	head->time_stamp = jiffies;
2424 	/* set next_to_watch value indicating a packet is present */
2425 	head->next_to_watch = desc;
2426 	ring->next_to_use = index;
2427 
2428 	return 0;
2429 
2430 unmap:
2431 	for (;;) {
2432 		buffer = &ring->tx_buffer_info[index];
2433 		if (dma_unmap_len(buffer, len))
2434 			dma_unmap_page(ring->dev,
2435 				       dma_unmap_addr(buffer, dma),
2436 				       dma_unmap_len(buffer, len),
2437 				       DMA_TO_DEVICE);
2438 		dma_unmap_len_set(buffer, len, 0);
2439 		if (buffer == head)
2440 			break;
2441 
2442 		if (!index)
2443 			index += ring->count;
2444 		index--;
2445 	}
2446 
2447 	return -ENOMEM;
2448 }
2449 
2450 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2451 					    int cpu)
2452 {
2453 	int index = cpu;
2454 
2455 	if (unlikely(index < 0))
2456 		index = 0;
2457 
2458 	while (index >= adapter->num_tx_queues)
2459 		index -= adapter->num_tx_queues;
2460 
2461 	return adapter->tx_ring[index];
2462 }
2463 
2464 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2465 {
2466 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2467 	int cpu = smp_processor_id();
2468 	struct netdev_queue *nq;
2469 	struct igc_ring *ring;
2470 	int res;
2471 
2472 	if (unlikely(!xdpf))
2473 		return -EFAULT;
2474 
2475 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2476 	nq = txring_txq(ring);
2477 
2478 	__netif_tx_lock(nq, cpu);
2479 	/* Avoid transmit queue timeout since we share it with the slow path */
2480 	txq_trans_cond_update(nq);
2481 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2482 	__netif_tx_unlock(nq);
2483 	return res;
2484 }
2485 
2486 /* This function assumes rcu_read_lock() is held by the caller. */
2487 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2488 			      struct bpf_prog *prog,
2489 			      struct xdp_buff *xdp)
2490 {
2491 	u32 act = bpf_prog_run_xdp(prog, xdp);
2492 
2493 	switch (act) {
2494 	case XDP_PASS:
2495 		return IGC_XDP_PASS;
2496 	case XDP_TX:
2497 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2498 			goto out_failure;
2499 		return IGC_XDP_TX;
2500 	case XDP_REDIRECT:
2501 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2502 			goto out_failure;
2503 		return IGC_XDP_REDIRECT;
2504 		break;
2505 	default:
2506 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2507 		fallthrough;
2508 	case XDP_ABORTED:
2509 out_failure:
2510 		trace_xdp_exception(adapter->netdev, prog, act);
2511 		fallthrough;
2512 	case XDP_DROP:
2513 		return IGC_XDP_CONSUMED;
2514 	}
2515 }
2516 
2517 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2518 					struct xdp_buff *xdp)
2519 {
2520 	struct bpf_prog *prog;
2521 	int res;
2522 
2523 	prog = READ_ONCE(adapter->xdp_prog);
2524 	if (!prog) {
2525 		res = IGC_XDP_PASS;
2526 		goto out;
2527 	}
2528 
2529 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2530 
2531 out:
2532 	return ERR_PTR(-res);
2533 }
2534 
2535 /* This function assumes __netif_tx_lock is held by the caller. */
2536 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2537 {
2538 	/* Once tail pointer is updated, hardware can fetch the descriptors
2539 	 * any time so we issue a write membar here to ensure all memory
2540 	 * writes are complete before the tail pointer is updated.
2541 	 */
2542 	wmb();
2543 	writel(ring->next_to_use, ring->tail);
2544 }
2545 
2546 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2547 {
2548 	int cpu = smp_processor_id();
2549 	struct netdev_queue *nq;
2550 	struct igc_ring *ring;
2551 
2552 	if (status & IGC_XDP_TX) {
2553 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2554 		nq = txring_txq(ring);
2555 
2556 		__netif_tx_lock(nq, cpu);
2557 		igc_flush_tx_descriptors(ring);
2558 		__netif_tx_unlock(nq);
2559 	}
2560 
2561 	if (status & IGC_XDP_REDIRECT)
2562 		xdp_do_flush();
2563 }
2564 
2565 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2566 				unsigned int packets, unsigned int bytes)
2567 {
2568 	struct igc_ring *ring = q_vector->rx.ring;
2569 
2570 	u64_stats_update_begin(&ring->rx_syncp);
2571 	ring->rx_stats.packets += packets;
2572 	ring->rx_stats.bytes += bytes;
2573 	u64_stats_update_end(&ring->rx_syncp);
2574 
2575 	q_vector->rx.total_packets += packets;
2576 	q_vector->rx.total_bytes += bytes;
2577 }
2578 
2579 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2580 {
2581 	unsigned int total_bytes = 0, total_packets = 0;
2582 	struct igc_adapter *adapter = q_vector->adapter;
2583 	struct igc_ring *rx_ring = q_vector->rx.ring;
2584 	struct sk_buff *skb = rx_ring->skb;
2585 	u16 cleaned_count = igc_desc_unused(rx_ring);
2586 	int xdp_status = 0, rx_buffer_pgcnt;
2587 
2588 	while (likely(total_packets < budget)) {
2589 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2590 		struct igc_rx_buffer *rx_buffer;
2591 		union igc_adv_rx_desc *rx_desc;
2592 		unsigned int size, truesize;
2593 		int pkt_offset = 0;
2594 		void *pktbuf;
2595 
2596 		/* return some buffers to hardware, one at a time is too slow */
2597 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2598 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2599 			cleaned_count = 0;
2600 		}
2601 
2602 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2603 		size = le16_to_cpu(rx_desc->wb.upper.length);
2604 		if (!size)
2605 			break;
2606 
2607 		/* This memory barrier is needed to keep us from reading
2608 		 * any other fields out of the rx_desc until we know the
2609 		 * descriptor has been written back
2610 		 */
2611 		dma_rmb();
2612 
2613 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2614 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2615 
2616 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2617 
2618 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2619 			ctx.rx_ts = pktbuf;
2620 			pkt_offset = IGC_TS_HDR_LEN;
2621 			size -= IGC_TS_HDR_LEN;
2622 		}
2623 
2624 		if (!skb) {
2625 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2626 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2627 					 igc_rx_offset(rx_ring) + pkt_offset,
2628 					 size, true);
2629 			xdp_buff_clear_frags_flag(&ctx.xdp);
2630 			ctx.rx_desc = rx_desc;
2631 
2632 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2633 		}
2634 
2635 		if (IS_ERR(skb)) {
2636 			unsigned int xdp_res = -PTR_ERR(skb);
2637 
2638 			switch (xdp_res) {
2639 			case IGC_XDP_CONSUMED:
2640 				rx_buffer->pagecnt_bias++;
2641 				break;
2642 			case IGC_XDP_TX:
2643 			case IGC_XDP_REDIRECT:
2644 				igc_rx_buffer_flip(rx_buffer, truesize);
2645 				xdp_status |= xdp_res;
2646 				break;
2647 			}
2648 
2649 			total_packets++;
2650 			total_bytes += size;
2651 		} else if (skb)
2652 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2653 		else if (ring_uses_build_skb(rx_ring))
2654 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2655 		else
2656 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2657 
2658 		/* exit if we failed to retrieve a buffer */
2659 		if (!skb) {
2660 			rx_ring->rx_stats.alloc_failed++;
2661 			rx_buffer->pagecnt_bias++;
2662 			break;
2663 		}
2664 
2665 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2666 		cleaned_count++;
2667 
2668 		/* fetch next buffer in frame if non-eop */
2669 		if (igc_is_non_eop(rx_ring, rx_desc))
2670 			continue;
2671 
2672 		/* verify the packet layout is correct */
2673 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2674 			skb = NULL;
2675 			continue;
2676 		}
2677 
2678 		/* probably a little skewed due to removing CRC */
2679 		total_bytes += skb->len;
2680 
2681 		/* populate checksum, VLAN, and protocol */
2682 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2683 
2684 		napi_gro_receive(&q_vector->napi, skb);
2685 
2686 		/* reset skb pointer */
2687 		skb = NULL;
2688 
2689 		/* update budget accounting */
2690 		total_packets++;
2691 	}
2692 
2693 	if (xdp_status)
2694 		igc_finalize_xdp(adapter, xdp_status);
2695 
2696 	/* place incomplete frames back on ring for completion */
2697 	rx_ring->skb = skb;
2698 
2699 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2700 
2701 	if (cleaned_count)
2702 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2703 
2704 	return total_packets;
2705 }
2706 
2707 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2708 					    struct xdp_buff *xdp)
2709 {
2710 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2711 	unsigned int metasize = xdp->data - xdp->data_meta;
2712 	struct sk_buff *skb;
2713 
2714 	net_prefetch(xdp->data_meta);
2715 
2716 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2717 	if (unlikely(!skb))
2718 		return NULL;
2719 
2720 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2721 	       ALIGN(totalsize, sizeof(long)));
2722 
2723 	if (metasize) {
2724 		skb_metadata_set(skb, metasize);
2725 		__skb_pull(skb, metasize);
2726 	}
2727 
2728 	return skb;
2729 }
2730 
2731 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2732 				union igc_adv_rx_desc *desc,
2733 				struct xdp_buff *xdp,
2734 				ktime_t timestamp)
2735 {
2736 	struct igc_ring *ring = q_vector->rx.ring;
2737 	struct sk_buff *skb;
2738 
2739 	skb = igc_construct_skb_zc(ring, xdp);
2740 	if (!skb) {
2741 		ring->rx_stats.alloc_failed++;
2742 		return;
2743 	}
2744 
2745 	if (timestamp)
2746 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2747 
2748 	if (igc_cleanup_headers(ring, desc, skb))
2749 		return;
2750 
2751 	igc_process_skb_fields(ring, desc, skb);
2752 	napi_gro_receive(&q_vector->napi, skb);
2753 }
2754 
2755 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2756 {
2757 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2758 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2759 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2760 	 */
2761        return (struct igc_xdp_buff *)xdp;
2762 }
2763 
2764 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2765 {
2766 	struct igc_adapter *adapter = q_vector->adapter;
2767 	struct igc_ring *ring = q_vector->rx.ring;
2768 	u16 cleaned_count = igc_desc_unused(ring);
2769 	int total_bytes = 0, total_packets = 0;
2770 	u16 ntc = ring->next_to_clean;
2771 	struct bpf_prog *prog;
2772 	bool failure = false;
2773 	int xdp_status = 0;
2774 
2775 	rcu_read_lock();
2776 
2777 	prog = READ_ONCE(adapter->xdp_prog);
2778 
2779 	while (likely(total_packets < budget)) {
2780 		union igc_adv_rx_desc *desc;
2781 		struct igc_rx_buffer *bi;
2782 		struct igc_xdp_buff *ctx;
2783 		ktime_t timestamp = 0;
2784 		unsigned int size;
2785 		int res;
2786 
2787 		desc = IGC_RX_DESC(ring, ntc);
2788 		size = le16_to_cpu(desc->wb.upper.length);
2789 		if (!size)
2790 			break;
2791 
2792 		/* This memory barrier is needed to keep us from reading
2793 		 * any other fields out of the rx_desc until we know the
2794 		 * descriptor has been written back
2795 		 */
2796 		dma_rmb();
2797 
2798 		bi = &ring->rx_buffer_info[ntc];
2799 
2800 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2801 		ctx->rx_desc = desc;
2802 
2803 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2804 			ctx->rx_ts = bi->xdp->data;
2805 
2806 			bi->xdp->data += IGC_TS_HDR_LEN;
2807 
2808 			/* HW timestamp has been copied into local variable. Metadata
2809 			 * length when XDP program is called should be 0.
2810 			 */
2811 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2812 			size -= IGC_TS_HDR_LEN;
2813 		}
2814 
2815 		bi->xdp->data_end = bi->xdp->data + size;
2816 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2817 
2818 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2819 		switch (res) {
2820 		case IGC_XDP_PASS:
2821 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2822 			fallthrough;
2823 		case IGC_XDP_CONSUMED:
2824 			xsk_buff_free(bi->xdp);
2825 			break;
2826 		case IGC_XDP_TX:
2827 		case IGC_XDP_REDIRECT:
2828 			xdp_status |= res;
2829 			break;
2830 		}
2831 
2832 		bi->xdp = NULL;
2833 		total_bytes += size;
2834 		total_packets++;
2835 		cleaned_count++;
2836 		ntc++;
2837 		if (ntc == ring->count)
2838 			ntc = 0;
2839 	}
2840 
2841 	ring->next_to_clean = ntc;
2842 	rcu_read_unlock();
2843 
2844 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2845 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2846 
2847 	if (xdp_status)
2848 		igc_finalize_xdp(adapter, xdp_status);
2849 
2850 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2851 
2852 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2853 		if (failure || ring->next_to_clean == ring->next_to_use)
2854 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2855 		else
2856 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2857 		return total_packets;
2858 	}
2859 
2860 	return failure ? budget : total_packets;
2861 }
2862 
2863 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2864 				unsigned int packets, unsigned int bytes)
2865 {
2866 	struct igc_ring *ring = q_vector->tx.ring;
2867 
2868 	u64_stats_update_begin(&ring->tx_syncp);
2869 	ring->tx_stats.bytes += bytes;
2870 	ring->tx_stats.packets += packets;
2871 	u64_stats_update_end(&ring->tx_syncp);
2872 
2873 	q_vector->tx.total_bytes += bytes;
2874 	q_vector->tx.total_packets += packets;
2875 }
2876 
2877 static void igc_xsk_request_timestamp(void *_priv)
2878 {
2879 	struct igc_metadata_request *meta_req = _priv;
2880 	struct igc_ring *tx_ring = meta_req->tx_ring;
2881 	struct igc_tx_timestamp_request *tstamp;
2882 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2883 	struct igc_adapter *adapter;
2884 	unsigned long lock_flags;
2885 	bool found = false;
2886 	int i;
2887 
2888 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2889 		adapter = netdev_priv(tx_ring->netdev);
2890 
2891 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2892 
2893 		/* Search for available tstamp regs */
2894 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2895 			tstamp = &adapter->tx_tstamp[i];
2896 
2897 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2898 			 * When tstamp->skb is equal to NULL,
2899 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2900 			 * This condition means that the particular tstamp reg
2901 			 * is not occupied by other packet.
2902 			 */
2903 			if (!tstamp->skb) {
2904 				found = true;
2905 				break;
2906 			}
2907 		}
2908 
2909 		/* Return if no available tstamp regs */
2910 		if (!found) {
2911 			adapter->tx_hwtstamp_skipped++;
2912 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2913 					       lock_flags);
2914 			return;
2915 		}
2916 
2917 		tstamp->start = jiffies;
2918 		tstamp->xsk_queue_index = tx_ring->queue_index;
2919 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2920 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2921 
2922 		/* Hold the transmit completion until timestamp is ready */
2923 		meta_req->tx_buffer->xsk_pending_ts = true;
2924 
2925 		/* Keep the pointer to tx_timestamp, which is located in XDP
2926 		 * metadata area. It is the location to store the value of
2927 		 * tx hardware timestamp.
2928 		 */
2929 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2930 
2931 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2932 		tx_flags |= tstamp->flags;
2933 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2934 						   IGC_TX_FLAGS_TSTAMP,
2935 						   (IGC_ADVTXD_MAC_TSTAMP));
2936 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2937 						   IGC_TX_FLAGS_TSTAMP_1,
2938 						   (IGC_ADVTXD_TSTAMP_REG_1));
2939 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2940 						   IGC_TX_FLAGS_TSTAMP_2,
2941 						   (IGC_ADVTXD_TSTAMP_REG_2));
2942 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2943 						   IGC_TX_FLAGS_TSTAMP_3,
2944 						   (IGC_ADVTXD_TSTAMP_REG_3));
2945 
2946 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2947 	}
2948 }
2949 
2950 static u64 igc_xsk_fill_timestamp(void *_priv)
2951 {
2952 	return *(u64 *)_priv;
2953 }
2954 
2955 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2956 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
2957 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
2958 };
2959 
2960 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2961 {
2962 	struct xsk_buff_pool *pool = ring->xsk_pool;
2963 	struct netdev_queue *nq = txring_txq(ring);
2964 	union igc_adv_tx_desc *tx_desc = NULL;
2965 	int cpu = smp_processor_id();
2966 	struct xdp_desc xdp_desc;
2967 	u16 budget, ntu;
2968 
2969 	if (!netif_carrier_ok(ring->netdev))
2970 		return;
2971 
2972 	__netif_tx_lock(nq, cpu);
2973 
2974 	/* Avoid transmit queue timeout since we share it with the slow path */
2975 	txq_trans_cond_update(nq);
2976 
2977 	ntu = ring->next_to_use;
2978 	budget = igc_desc_unused(ring);
2979 
2980 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2981 		struct igc_metadata_request meta_req;
2982 		struct xsk_tx_metadata *meta = NULL;
2983 		struct igc_tx_buffer *bi;
2984 		u32 olinfo_status;
2985 		dma_addr_t dma;
2986 
2987 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2988 				    IGC_ADVTXD_DCMD_DEXT |
2989 				    IGC_ADVTXD_DCMD_IFCS |
2990 				    IGC_TXD_DCMD | xdp_desc.len;
2991 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2992 
2993 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2994 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
2995 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2996 		bi = &ring->tx_buffer_info[ntu];
2997 
2998 		meta_req.tx_ring = ring;
2999 		meta_req.tx_buffer = bi;
3000 		meta_req.meta = meta;
3001 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3002 					&meta_req);
3003 
3004 		tx_desc = IGC_TX_DESC(ring, ntu);
3005 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3006 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3007 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3008 
3009 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3010 		bi->protocol = 0;
3011 		bi->bytecount = xdp_desc.len;
3012 		bi->gso_segs = 1;
3013 		bi->time_stamp = jiffies;
3014 		bi->next_to_watch = tx_desc;
3015 
3016 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3017 
3018 		ntu++;
3019 		if (ntu == ring->count)
3020 			ntu = 0;
3021 	}
3022 
3023 	ring->next_to_use = ntu;
3024 	if (tx_desc) {
3025 		igc_flush_tx_descriptors(ring);
3026 		xsk_tx_release(pool);
3027 	}
3028 
3029 	__netif_tx_unlock(nq);
3030 }
3031 
3032 /**
3033  * igc_clean_tx_irq - Reclaim resources after transmit completes
3034  * @q_vector: pointer to q_vector containing needed info
3035  * @napi_budget: Used to determine if we are in netpoll
3036  *
3037  * returns true if ring is completely cleaned
3038  */
3039 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3040 {
3041 	struct igc_adapter *adapter = q_vector->adapter;
3042 	unsigned int total_bytes = 0, total_packets = 0;
3043 	unsigned int budget = q_vector->tx.work_limit;
3044 	struct igc_ring *tx_ring = q_vector->tx.ring;
3045 	unsigned int i = tx_ring->next_to_clean;
3046 	struct igc_tx_buffer *tx_buffer;
3047 	union igc_adv_tx_desc *tx_desc;
3048 	u32 xsk_frames = 0;
3049 
3050 	if (test_bit(__IGC_DOWN, &adapter->state))
3051 		return true;
3052 
3053 	tx_buffer = &tx_ring->tx_buffer_info[i];
3054 	tx_desc = IGC_TX_DESC(tx_ring, i);
3055 	i -= tx_ring->count;
3056 
3057 	do {
3058 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3059 
3060 		/* if next_to_watch is not set then there is no work pending */
3061 		if (!eop_desc)
3062 			break;
3063 
3064 		/* prevent any other reads prior to eop_desc */
3065 		smp_rmb();
3066 
3067 		/* if DD is not set pending work has not been completed */
3068 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3069 			break;
3070 
3071 		/* Hold the completions while there's a pending tx hardware
3072 		 * timestamp request from XDP Tx metadata.
3073 		 */
3074 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3075 		    tx_buffer->xsk_pending_ts)
3076 			break;
3077 
3078 		/* clear next_to_watch to prevent false hangs */
3079 		tx_buffer->next_to_watch = NULL;
3080 
3081 		/* update the statistics for this packet */
3082 		total_bytes += tx_buffer->bytecount;
3083 		total_packets += tx_buffer->gso_segs;
3084 
3085 		switch (tx_buffer->type) {
3086 		case IGC_TX_BUFFER_TYPE_XSK:
3087 			xsk_frames++;
3088 			break;
3089 		case IGC_TX_BUFFER_TYPE_XDP:
3090 			xdp_return_frame(tx_buffer->xdpf);
3091 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3092 			break;
3093 		case IGC_TX_BUFFER_TYPE_SKB:
3094 			napi_consume_skb(tx_buffer->skb, napi_budget);
3095 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3096 			break;
3097 		default:
3098 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3099 			break;
3100 		}
3101 
3102 		/* clear last DMA location and unmap remaining buffers */
3103 		while (tx_desc != eop_desc) {
3104 			tx_buffer++;
3105 			tx_desc++;
3106 			i++;
3107 			if (unlikely(!i)) {
3108 				i -= tx_ring->count;
3109 				tx_buffer = tx_ring->tx_buffer_info;
3110 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3111 			}
3112 
3113 			/* unmap any remaining paged data */
3114 			if (dma_unmap_len(tx_buffer, len))
3115 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3116 		}
3117 
3118 		/* move us one more past the eop_desc for start of next pkt */
3119 		tx_buffer++;
3120 		tx_desc++;
3121 		i++;
3122 		if (unlikely(!i)) {
3123 			i -= tx_ring->count;
3124 			tx_buffer = tx_ring->tx_buffer_info;
3125 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3126 		}
3127 
3128 		/* issue prefetch for next Tx descriptor */
3129 		prefetch(tx_desc);
3130 
3131 		/* update budget accounting */
3132 		budget--;
3133 	} while (likely(budget));
3134 
3135 	netdev_tx_completed_queue(txring_txq(tx_ring),
3136 				  total_packets, total_bytes);
3137 
3138 	i += tx_ring->count;
3139 	tx_ring->next_to_clean = i;
3140 
3141 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3142 
3143 	if (tx_ring->xsk_pool) {
3144 		if (xsk_frames)
3145 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3146 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3147 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3148 		igc_xdp_xmit_zc(tx_ring);
3149 	}
3150 
3151 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3152 		struct igc_hw *hw = &adapter->hw;
3153 
3154 		/* Detect a transmit hang in hardware, this serializes the
3155 		 * check with the clearing of time_stamp and movement of i
3156 		 */
3157 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3158 		if (tx_buffer->next_to_watch &&
3159 		    time_after(jiffies, tx_buffer->time_stamp +
3160 		    (adapter->tx_timeout_factor * HZ)) &&
3161 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3162 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3163 		    !tx_ring->oper_gate_closed) {
3164 			/* detected Tx unit hang */
3165 			netdev_err(tx_ring->netdev,
3166 				   "Detected Tx Unit Hang\n"
3167 				   "  Tx Queue             <%d>\n"
3168 				   "  TDH                  <%x>\n"
3169 				   "  TDT                  <%x>\n"
3170 				   "  next_to_use          <%x>\n"
3171 				   "  next_to_clean        <%x>\n"
3172 				   "buffer_info[next_to_clean]\n"
3173 				   "  time_stamp           <%lx>\n"
3174 				   "  next_to_watch        <%p>\n"
3175 				   "  jiffies              <%lx>\n"
3176 				   "  desc.status          <%x>\n",
3177 				   tx_ring->queue_index,
3178 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3179 				   readl(tx_ring->tail),
3180 				   tx_ring->next_to_use,
3181 				   tx_ring->next_to_clean,
3182 				   tx_buffer->time_stamp,
3183 				   tx_buffer->next_to_watch,
3184 				   jiffies,
3185 				   tx_buffer->next_to_watch->wb.status);
3186 			netif_stop_subqueue(tx_ring->netdev,
3187 					    tx_ring->queue_index);
3188 
3189 			/* we are about to reset, no point in enabling stuff */
3190 			return true;
3191 		}
3192 	}
3193 
3194 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3195 	if (unlikely(total_packets &&
3196 		     netif_carrier_ok(tx_ring->netdev) &&
3197 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3198 		/* Make sure that anybody stopping the queue after this
3199 		 * sees the new next_to_clean.
3200 		 */
3201 		smp_mb();
3202 		if (__netif_subqueue_stopped(tx_ring->netdev,
3203 					     tx_ring->queue_index) &&
3204 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3205 			netif_wake_subqueue(tx_ring->netdev,
3206 					    tx_ring->queue_index);
3207 
3208 			u64_stats_update_begin(&tx_ring->tx_syncp);
3209 			tx_ring->tx_stats.restart_queue++;
3210 			u64_stats_update_end(&tx_ring->tx_syncp);
3211 		}
3212 	}
3213 
3214 	return !!budget;
3215 }
3216 
3217 static int igc_find_mac_filter(struct igc_adapter *adapter,
3218 			       enum igc_mac_filter_type type, const u8 *addr)
3219 {
3220 	struct igc_hw *hw = &adapter->hw;
3221 	int max_entries = hw->mac.rar_entry_count;
3222 	u32 ral, rah;
3223 	int i;
3224 
3225 	for (i = 0; i < max_entries; i++) {
3226 		ral = rd32(IGC_RAL(i));
3227 		rah = rd32(IGC_RAH(i));
3228 
3229 		if (!(rah & IGC_RAH_AV))
3230 			continue;
3231 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3232 			continue;
3233 		if ((rah & IGC_RAH_RAH_MASK) !=
3234 		    le16_to_cpup((__le16 *)(addr + 4)))
3235 			continue;
3236 		if (ral != le32_to_cpup((__le32 *)(addr)))
3237 			continue;
3238 
3239 		return i;
3240 	}
3241 
3242 	return -1;
3243 }
3244 
3245 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3246 {
3247 	struct igc_hw *hw = &adapter->hw;
3248 	int max_entries = hw->mac.rar_entry_count;
3249 	u32 rah;
3250 	int i;
3251 
3252 	for (i = 0; i < max_entries; i++) {
3253 		rah = rd32(IGC_RAH(i));
3254 
3255 		if (!(rah & IGC_RAH_AV))
3256 			return i;
3257 	}
3258 
3259 	return -1;
3260 }
3261 
3262 /**
3263  * igc_add_mac_filter() - Add MAC address filter
3264  * @adapter: Pointer to adapter where the filter should be added
3265  * @type: MAC address filter type (source or destination)
3266  * @addr: MAC address
3267  * @queue: If non-negative, queue assignment feature is enabled and frames
3268  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3269  *         assignment is disabled.
3270  *
3271  * Return: 0 in case of success, negative errno code otherwise.
3272  */
3273 static int igc_add_mac_filter(struct igc_adapter *adapter,
3274 			      enum igc_mac_filter_type type, const u8 *addr,
3275 			      int queue)
3276 {
3277 	struct net_device *dev = adapter->netdev;
3278 	int index;
3279 
3280 	index = igc_find_mac_filter(adapter, type, addr);
3281 	if (index >= 0)
3282 		goto update_filter;
3283 
3284 	index = igc_get_avail_mac_filter_slot(adapter);
3285 	if (index < 0)
3286 		return -ENOSPC;
3287 
3288 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3289 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3290 		   addr, queue);
3291 
3292 update_filter:
3293 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3294 	return 0;
3295 }
3296 
3297 /**
3298  * igc_del_mac_filter() - Delete MAC address filter
3299  * @adapter: Pointer to adapter where the filter should be deleted from
3300  * @type: MAC address filter type (source or destination)
3301  * @addr: MAC address
3302  */
3303 static void igc_del_mac_filter(struct igc_adapter *adapter,
3304 			       enum igc_mac_filter_type type, const u8 *addr)
3305 {
3306 	struct net_device *dev = adapter->netdev;
3307 	int index;
3308 
3309 	index = igc_find_mac_filter(adapter, type, addr);
3310 	if (index < 0)
3311 		return;
3312 
3313 	if (index == 0) {
3314 		/* If this is the default filter, we don't actually delete it.
3315 		 * We just reset to its default value i.e. disable queue
3316 		 * assignment.
3317 		 */
3318 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3319 
3320 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3321 	} else {
3322 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3323 			   index,
3324 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3325 			   addr);
3326 
3327 		igc_clear_mac_filter_hw(adapter, index);
3328 	}
3329 }
3330 
3331 /**
3332  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3333  * @adapter: Pointer to adapter where the filter should be added
3334  * @prio: VLAN priority value
3335  * @queue: Queue number which matching frames are assigned to
3336  *
3337  * Return: 0 in case of success, negative errno code otherwise.
3338  */
3339 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3340 				    int queue)
3341 {
3342 	struct net_device *dev = adapter->netdev;
3343 	struct igc_hw *hw = &adapter->hw;
3344 	u32 vlanpqf;
3345 
3346 	vlanpqf = rd32(IGC_VLANPQF);
3347 
3348 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3349 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3350 		return -EEXIST;
3351 	}
3352 
3353 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3354 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3355 
3356 	wr32(IGC_VLANPQF, vlanpqf);
3357 
3358 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3359 		   prio, queue);
3360 	return 0;
3361 }
3362 
3363 /**
3364  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3365  * @adapter: Pointer to adapter where the filter should be deleted from
3366  * @prio: VLAN priority value
3367  */
3368 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3369 {
3370 	struct igc_hw *hw = &adapter->hw;
3371 	u32 vlanpqf;
3372 
3373 	vlanpqf = rd32(IGC_VLANPQF);
3374 
3375 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3376 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3377 
3378 	wr32(IGC_VLANPQF, vlanpqf);
3379 
3380 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3381 		   prio);
3382 }
3383 
3384 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3385 {
3386 	struct igc_hw *hw = &adapter->hw;
3387 	int i;
3388 
3389 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3390 		u32 etqf = rd32(IGC_ETQF(i));
3391 
3392 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3393 			return i;
3394 	}
3395 
3396 	return -1;
3397 }
3398 
3399 /**
3400  * igc_add_etype_filter() - Add ethertype filter
3401  * @adapter: Pointer to adapter where the filter should be added
3402  * @etype: Ethertype value
3403  * @queue: If non-negative, queue assignment feature is enabled and frames
3404  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3405  *         assignment is disabled.
3406  *
3407  * Return: 0 in case of success, negative errno code otherwise.
3408  */
3409 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3410 				int queue)
3411 {
3412 	struct igc_hw *hw = &adapter->hw;
3413 	int index;
3414 	u32 etqf;
3415 
3416 	index = igc_get_avail_etype_filter_slot(adapter);
3417 	if (index < 0)
3418 		return -ENOSPC;
3419 
3420 	etqf = rd32(IGC_ETQF(index));
3421 
3422 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3423 	etqf |= etype;
3424 
3425 	if (queue >= 0) {
3426 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3427 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3428 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3429 	}
3430 
3431 	etqf |= IGC_ETQF_FILTER_ENABLE;
3432 
3433 	wr32(IGC_ETQF(index), etqf);
3434 
3435 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3436 		   etype, queue);
3437 	return 0;
3438 }
3439 
3440 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3441 {
3442 	struct igc_hw *hw = &adapter->hw;
3443 	int i;
3444 
3445 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3446 		u32 etqf = rd32(IGC_ETQF(i));
3447 
3448 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3449 			return i;
3450 	}
3451 
3452 	return -1;
3453 }
3454 
3455 /**
3456  * igc_del_etype_filter() - Delete ethertype filter
3457  * @adapter: Pointer to adapter where the filter should be deleted from
3458  * @etype: Ethertype value
3459  */
3460 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3461 {
3462 	struct igc_hw *hw = &adapter->hw;
3463 	int index;
3464 
3465 	index = igc_find_etype_filter(adapter, etype);
3466 	if (index < 0)
3467 		return;
3468 
3469 	wr32(IGC_ETQF(index), 0);
3470 
3471 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3472 		   etype);
3473 }
3474 
3475 static int igc_flex_filter_select(struct igc_adapter *adapter,
3476 				  struct igc_flex_filter *input,
3477 				  u32 *fhft)
3478 {
3479 	struct igc_hw *hw = &adapter->hw;
3480 	u8 fhft_index;
3481 	u32 fhftsl;
3482 
3483 	if (input->index >= MAX_FLEX_FILTER) {
3484 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3485 		return -EINVAL;
3486 	}
3487 
3488 	/* Indirect table select register */
3489 	fhftsl = rd32(IGC_FHFTSL);
3490 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3491 	switch (input->index) {
3492 	case 0 ... 7:
3493 		fhftsl |= 0x00;
3494 		break;
3495 	case 8 ... 15:
3496 		fhftsl |= 0x01;
3497 		break;
3498 	case 16 ... 23:
3499 		fhftsl |= 0x02;
3500 		break;
3501 	case 24 ... 31:
3502 		fhftsl |= 0x03;
3503 		break;
3504 	}
3505 	wr32(IGC_FHFTSL, fhftsl);
3506 
3507 	/* Normalize index down to host table register */
3508 	fhft_index = input->index % 8;
3509 
3510 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3511 		IGC_FHFT_EXT(fhft_index - 4);
3512 
3513 	return 0;
3514 }
3515 
3516 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3517 				    struct igc_flex_filter *input)
3518 {
3519 	struct igc_hw *hw = &adapter->hw;
3520 	u8 *data = input->data;
3521 	u8 *mask = input->mask;
3522 	u32 queuing;
3523 	u32 fhft;
3524 	u32 wufc;
3525 	int ret;
3526 	int i;
3527 
3528 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3529 	 * out early to avoid surprises later.
3530 	 */
3531 	if (input->length % 8 != 0) {
3532 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3533 		return -EINVAL;
3534 	}
3535 
3536 	/* Select corresponding flex filter register and get base for host table. */
3537 	ret = igc_flex_filter_select(adapter, input, &fhft);
3538 	if (ret)
3539 		return ret;
3540 
3541 	/* When adding a filter globally disable flex filter feature. That is
3542 	 * recommended within the datasheet.
3543 	 */
3544 	wufc = rd32(IGC_WUFC);
3545 	wufc &= ~IGC_WUFC_FLEX_HQ;
3546 	wr32(IGC_WUFC, wufc);
3547 
3548 	/* Configure filter */
3549 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3550 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3551 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3552 
3553 	if (input->immediate_irq)
3554 		queuing |= IGC_FHFT_IMM_INT;
3555 
3556 	if (input->drop)
3557 		queuing |= IGC_FHFT_DROP;
3558 
3559 	wr32(fhft + 0xFC, queuing);
3560 
3561 	/* Write data (128 byte) and mask (128 bit) */
3562 	for (i = 0; i < 16; ++i) {
3563 		const size_t data_idx = i * 8;
3564 		const size_t row_idx = i * 16;
3565 		u32 dw0 =
3566 			(data[data_idx + 0] << 0) |
3567 			(data[data_idx + 1] << 8) |
3568 			(data[data_idx + 2] << 16) |
3569 			(data[data_idx + 3] << 24);
3570 		u32 dw1 =
3571 			(data[data_idx + 4] << 0) |
3572 			(data[data_idx + 5] << 8) |
3573 			(data[data_idx + 6] << 16) |
3574 			(data[data_idx + 7] << 24);
3575 		u32 tmp;
3576 
3577 		/* Write row: dw0, dw1 and mask */
3578 		wr32(fhft + row_idx, dw0);
3579 		wr32(fhft + row_idx + 4, dw1);
3580 
3581 		/* mask is only valid for MASK(7, 0) */
3582 		tmp = rd32(fhft + row_idx + 8);
3583 		tmp &= ~GENMASK(7, 0);
3584 		tmp |= mask[i];
3585 		wr32(fhft + row_idx + 8, tmp);
3586 	}
3587 
3588 	/* Enable filter. */
3589 	wufc |= IGC_WUFC_FLEX_HQ;
3590 	if (input->index > 8) {
3591 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3592 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3593 
3594 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3595 
3596 		wr32(IGC_WUFC_EXT, wufc_ext);
3597 	} else {
3598 		wufc |= (IGC_WUFC_FLX0 << input->index);
3599 	}
3600 	wr32(IGC_WUFC, wufc);
3601 
3602 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3603 		   input->index);
3604 
3605 	return 0;
3606 }
3607 
3608 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3609 				      const void *src, unsigned int offset,
3610 				      size_t len, const void *mask)
3611 {
3612 	int i;
3613 
3614 	/* data */
3615 	memcpy(&flex->data[offset], src, len);
3616 
3617 	/* mask */
3618 	for (i = 0; i < len; ++i) {
3619 		const unsigned int idx = i + offset;
3620 		const u8 *ptr = mask;
3621 
3622 		if (mask) {
3623 			if (ptr[i] & 0xff)
3624 				flex->mask[idx / 8] |= BIT(idx % 8);
3625 
3626 			continue;
3627 		}
3628 
3629 		flex->mask[idx / 8] |= BIT(idx % 8);
3630 	}
3631 }
3632 
3633 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3634 {
3635 	struct igc_hw *hw = &adapter->hw;
3636 	u32 wufc, wufc_ext;
3637 	int i;
3638 
3639 	wufc = rd32(IGC_WUFC);
3640 	wufc_ext = rd32(IGC_WUFC_EXT);
3641 
3642 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3643 		if (i < 8) {
3644 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3645 				return i;
3646 		} else {
3647 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3648 				return i;
3649 		}
3650 	}
3651 
3652 	return -ENOSPC;
3653 }
3654 
3655 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3656 {
3657 	struct igc_hw *hw = &adapter->hw;
3658 	u32 wufc, wufc_ext;
3659 
3660 	wufc = rd32(IGC_WUFC);
3661 	wufc_ext = rd32(IGC_WUFC_EXT);
3662 
3663 	if (wufc & IGC_WUFC_FILTER_MASK)
3664 		return true;
3665 
3666 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3667 		return true;
3668 
3669 	return false;
3670 }
3671 
3672 static int igc_add_flex_filter(struct igc_adapter *adapter,
3673 			       struct igc_nfc_rule *rule)
3674 {
3675 	struct igc_nfc_filter *filter = &rule->filter;
3676 	unsigned int eth_offset, user_offset;
3677 	struct igc_flex_filter flex = { };
3678 	int ret, index;
3679 	bool vlan;
3680 
3681 	index = igc_find_avail_flex_filter_slot(adapter);
3682 	if (index < 0)
3683 		return -ENOSPC;
3684 
3685 	/* Construct the flex filter:
3686 	 *  -> dest_mac [6]
3687 	 *  -> src_mac [6]
3688 	 *  -> tpid [2]
3689 	 *  -> vlan tci [2]
3690 	 *  -> ether type [2]
3691 	 *  -> user data [8]
3692 	 *  -> = 26 bytes => 32 length
3693 	 */
3694 	flex.index    = index;
3695 	flex.length   = 32;
3696 	flex.rx_queue = rule->action;
3697 
3698 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3699 	eth_offset = vlan ? 16 : 12;
3700 	user_offset = vlan ? 18 : 14;
3701 
3702 	/* Add destination MAC  */
3703 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3704 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3705 					  ETH_ALEN, NULL);
3706 
3707 	/* Add source MAC */
3708 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3709 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3710 					  ETH_ALEN, NULL);
3711 
3712 	/* Add VLAN etype */
3713 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3714 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3715 
3716 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3717 					  sizeof(vlan_etype), NULL);
3718 	}
3719 
3720 	/* Add VLAN TCI */
3721 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3722 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3723 					  sizeof(filter->vlan_tci), NULL);
3724 
3725 	/* Add Ether type */
3726 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3727 		__be16 etype = cpu_to_be16(filter->etype);
3728 
3729 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3730 					  sizeof(etype), NULL);
3731 	}
3732 
3733 	/* Add user data */
3734 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3735 		igc_flex_filter_add_field(&flex, &filter->user_data,
3736 					  user_offset,
3737 					  sizeof(filter->user_data),
3738 					  filter->user_mask);
3739 
3740 	/* Add it down to the hardware and enable it. */
3741 	ret = igc_write_flex_filter_ll(adapter, &flex);
3742 	if (ret)
3743 		return ret;
3744 
3745 	filter->flex_index = index;
3746 
3747 	return 0;
3748 }
3749 
3750 static void igc_del_flex_filter(struct igc_adapter *adapter,
3751 				u16 reg_index)
3752 {
3753 	struct igc_hw *hw = &adapter->hw;
3754 	u32 wufc;
3755 
3756 	/* Just disable the filter. The filter table itself is kept
3757 	 * intact. Another flex_filter_add() should override the "old" data
3758 	 * then.
3759 	 */
3760 	if (reg_index > 8) {
3761 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3762 
3763 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3764 		wr32(IGC_WUFC_EXT, wufc_ext);
3765 	} else {
3766 		wufc = rd32(IGC_WUFC);
3767 
3768 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3769 		wr32(IGC_WUFC, wufc);
3770 	}
3771 
3772 	if (igc_flex_filter_in_use(adapter))
3773 		return;
3774 
3775 	/* No filters are in use, we may disable flex filters */
3776 	wufc = rd32(IGC_WUFC);
3777 	wufc &= ~IGC_WUFC_FLEX_HQ;
3778 	wr32(IGC_WUFC, wufc);
3779 }
3780 
3781 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3782 			       struct igc_nfc_rule *rule)
3783 {
3784 	int err;
3785 
3786 	if (rule->flex) {
3787 		return igc_add_flex_filter(adapter, rule);
3788 	}
3789 
3790 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3791 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3792 					   rule->action);
3793 		if (err)
3794 			return err;
3795 	}
3796 
3797 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3798 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3799 					 rule->filter.src_addr, rule->action);
3800 		if (err)
3801 			return err;
3802 	}
3803 
3804 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3805 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3806 					 rule->filter.dst_addr, rule->action);
3807 		if (err)
3808 			return err;
3809 	}
3810 
3811 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3812 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3813 
3814 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3815 		if (err)
3816 			return err;
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3823 				 const struct igc_nfc_rule *rule)
3824 {
3825 	if (rule->flex) {
3826 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3827 		return;
3828 	}
3829 
3830 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3831 		igc_del_etype_filter(adapter, rule->filter.etype);
3832 
3833 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3834 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3835 
3836 		igc_del_vlan_prio_filter(adapter, prio);
3837 	}
3838 
3839 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3840 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3841 				   rule->filter.src_addr);
3842 
3843 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3844 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3845 				   rule->filter.dst_addr);
3846 }
3847 
3848 /**
3849  * igc_get_nfc_rule() - Get NFC rule
3850  * @adapter: Pointer to adapter
3851  * @location: Rule location
3852  *
3853  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3854  *
3855  * Return: Pointer to NFC rule at @location. If not found, NULL.
3856  */
3857 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3858 				      u32 location)
3859 {
3860 	struct igc_nfc_rule *rule;
3861 
3862 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3863 		if (rule->location == location)
3864 			return rule;
3865 		if (rule->location > location)
3866 			break;
3867 	}
3868 
3869 	return NULL;
3870 }
3871 
3872 /**
3873  * igc_del_nfc_rule() - Delete NFC rule
3874  * @adapter: Pointer to adapter
3875  * @rule: Pointer to rule to be deleted
3876  *
3877  * Disable NFC rule in hardware and delete it from adapter.
3878  *
3879  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3880  */
3881 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3882 {
3883 	igc_disable_nfc_rule(adapter, rule);
3884 
3885 	list_del(&rule->list);
3886 	adapter->nfc_rule_count--;
3887 
3888 	kfree(rule);
3889 }
3890 
3891 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3892 {
3893 	struct igc_nfc_rule *rule, *tmp;
3894 
3895 	mutex_lock(&adapter->nfc_rule_lock);
3896 
3897 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3898 		igc_del_nfc_rule(adapter, rule);
3899 
3900 	mutex_unlock(&adapter->nfc_rule_lock);
3901 }
3902 
3903 /**
3904  * igc_add_nfc_rule() - Add NFC rule
3905  * @adapter: Pointer to adapter
3906  * @rule: Pointer to rule to be added
3907  *
3908  * Enable NFC rule in hardware and add it to adapter.
3909  *
3910  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3911  *
3912  * Return: 0 on success, negative errno on failure.
3913  */
3914 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3915 {
3916 	struct igc_nfc_rule *pred, *cur;
3917 	int err;
3918 
3919 	err = igc_enable_nfc_rule(adapter, rule);
3920 	if (err)
3921 		return err;
3922 
3923 	pred = NULL;
3924 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3925 		if (cur->location >= rule->location)
3926 			break;
3927 		pred = cur;
3928 	}
3929 
3930 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3931 	adapter->nfc_rule_count++;
3932 	return 0;
3933 }
3934 
3935 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3936 {
3937 	struct igc_nfc_rule *rule;
3938 
3939 	mutex_lock(&adapter->nfc_rule_lock);
3940 
3941 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3942 		igc_enable_nfc_rule(adapter, rule);
3943 
3944 	mutex_unlock(&adapter->nfc_rule_lock);
3945 }
3946 
3947 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3948 {
3949 	struct igc_adapter *adapter = netdev_priv(netdev);
3950 
3951 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3952 }
3953 
3954 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3955 {
3956 	struct igc_adapter *adapter = netdev_priv(netdev);
3957 
3958 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3959 	return 0;
3960 }
3961 
3962 /**
3963  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3964  * @netdev: network interface device structure
3965  *
3966  * The set_rx_mode entry point is called whenever the unicast or multicast
3967  * address lists or the network interface flags are updated.  This routine is
3968  * responsible for configuring the hardware for proper unicast, multicast,
3969  * promiscuous mode, and all-multi behavior.
3970  */
3971 static void igc_set_rx_mode(struct net_device *netdev)
3972 {
3973 	struct igc_adapter *adapter = netdev_priv(netdev);
3974 	struct igc_hw *hw = &adapter->hw;
3975 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3976 	int count;
3977 
3978 	/* Check for Promiscuous and All Multicast modes */
3979 	if (netdev->flags & IFF_PROMISC) {
3980 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3981 	} else {
3982 		if (netdev->flags & IFF_ALLMULTI) {
3983 			rctl |= IGC_RCTL_MPE;
3984 		} else {
3985 			/* Write addresses to the MTA, if the attempt fails
3986 			 * then we should just turn on promiscuous mode so
3987 			 * that we can at least receive multicast traffic
3988 			 */
3989 			count = igc_write_mc_addr_list(netdev);
3990 			if (count < 0)
3991 				rctl |= IGC_RCTL_MPE;
3992 		}
3993 	}
3994 
3995 	/* Write addresses to available RAR registers, if there is not
3996 	 * sufficient space to store all the addresses then enable
3997 	 * unicast promiscuous mode
3998 	 */
3999 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4000 		rctl |= IGC_RCTL_UPE;
4001 
4002 	/* update state of unicast and multicast */
4003 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4004 	wr32(IGC_RCTL, rctl);
4005 
4006 #if (PAGE_SIZE < 8192)
4007 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4008 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4009 #endif
4010 	wr32(IGC_RLPML, rlpml);
4011 }
4012 
4013 /**
4014  * igc_configure - configure the hardware for RX and TX
4015  * @adapter: private board structure
4016  */
4017 static void igc_configure(struct igc_adapter *adapter)
4018 {
4019 	struct net_device *netdev = adapter->netdev;
4020 	int i = 0;
4021 
4022 	igc_get_hw_control(adapter);
4023 	igc_set_rx_mode(netdev);
4024 
4025 	igc_restore_vlan(adapter);
4026 
4027 	igc_setup_tctl(adapter);
4028 	igc_setup_mrqc(adapter);
4029 	igc_setup_rctl(adapter);
4030 
4031 	igc_set_default_mac_filter(adapter);
4032 	igc_restore_nfc_rules(adapter);
4033 
4034 	igc_configure_tx(adapter);
4035 	igc_configure_rx(adapter);
4036 
4037 	igc_rx_fifo_flush_base(&adapter->hw);
4038 
4039 	/* call igc_desc_unused which always leaves
4040 	 * at least 1 descriptor unused to make sure
4041 	 * next_to_use != next_to_clean
4042 	 */
4043 	for (i = 0; i < adapter->num_rx_queues; i++) {
4044 		struct igc_ring *ring = adapter->rx_ring[i];
4045 
4046 		if (ring->xsk_pool)
4047 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4048 		else
4049 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4050 	}
4051 }
4052 
4053 /**
4054  * igc_write_ivar - configure ivar for given MSI-X vector
4055  * @hw: pointer to the HW structure
4056  * @msix_vector: vector number we are allocating to a given ring
4057  * @index: row index of IVAR register to write within IVAR table
4058  * @offset: column offset of in IVAR, should be multiple of 8
4059  *
4060  * The IVAR table consists of 2 columns,
4061  * each containing an cause allocation for an Rx and Tx ring, and a
4062  * variable number of rows depending on the number of queues supported.
4063  */
4064 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4065 			   int index, int offset)
4066 {
4067 	u32 ivar = array_rd32(IGC_IVAR0, index);
4068 
4069 	/* clear any bits that are currently set */
4070 	ivar &= ~((u32)0xFF << offset);
4071 
4072 	/* write vector and valid bit */
4073 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4074 
4075 	array_wr32(IGC_IVAR0, index, ivar);
4076 }
4077 
4078 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4079 {
4080 	struct igc_adapter *adapter = q_vector->adapter;
4081 	struct igc_hw *hw = &adapter->hw;
4082 	int rx_queue = IGC_N0_QUEUE;
4083 	int tx_queue = IGC_N0_QUEUE;
4084 
4085 	if (q_vector->rx.ring)
4086 		rx_queue = q_vector->rx.ring->reg_idx;
4087 	if (q_vector->tx.ring)
4088 		tx_queue = q_vector->tx.ring->reg_idx;
4089 
4090 	switch (hw->mac.type) {
4091 	case igc_i225:
4092 		if (rx_queue > IGC_N0_QUEUE)
4093 			igc_write_ivar(hw, msix_vector,
4094 				       rx_queue >> 1,
4095 				       (rx_queue & 0x1) << 4);
4096 		if (tx_queue > IGC_N0_QUEUE)
4097 			igc_write_ivar(hw, msix_vector,
4098 				       tx_queue >> 1,
4099 				       ((tx_queue & 0x1) << 4) + 8);
4100 		q_vector->eims_value = BIT(msix_vector);
4101 		break;
4102 	default:
4103 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4104 		break;
4105 	}
4106 
4107 	/* add q_vector eims value to global eims_enable_mask */
4108 	adapter->eims_enable_mask |= q_vector->eims_value;
4109 
4110 	/* configure q_vector to set itr on first interrupt */
4111 	q_vector->set_itr = 1;
4112 }
4113 
4114 /**
4115  * igc_configure_msix - Configure MSI-X hardware
4116  * @adapter: Pointer to adapter structure
4117  *
4118  * igc_configure_msix sets up the hardware to properly
4119  * generate MSI-X interrupts.
4120  */
4121 static void igc_configure_msix(struct igc_adapter *adapter)
4122 {
4123 	struct igc_hw *hw = &adapter->hw;
4124 	int i, vector = 0;
4125 	u32 tmp;
4126 
4127 	adapter->eims_enable_mask = 0;
4128 
4129 	/* set vector for other causes, i.e. link changes */
4130 	switch (hw->mac.type) {
4131 	case igc_i225:
4132 		/* Turn on MSI-X capability first, or our settings
4133 		 * won't stick.  And it will take days to debug.
4134 		 */
4135 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4136 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4137 		     IGC_GPIE_NSICR);
4138 
4139 		/* enable msix_other interrupt */
4140 		adapter->eims_other = BIT(vector);
4141 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4142 
4143 		wr32(IGC_IVAR_MISC, tmp);
4144 		break;
4145 	default:
4146 		/* do nothing, since nothing else supports MSI-X */
4147 		break;
4148 	} /* switch (hw->mac.type) */
4149 
4150 	adapter->eims_enable_mask |= adapter->eims_other;
4151 
4152 	for (i = 0; i < adapter->num_q_vectors; i++)
4153 		igc_assign_vector(adapter->q_vector[i], vector++);
4154 
4155 	wrfl();
4156 }
4157 
4158 /**
4159  * igc_irq_enable - Enable default interrupt generation settings
4160  * @adapter: board private structure
4161  */
4162 static void igc_irq_enable(struct igc_adapter *adapter)
4163 {
4164 	struct igc_hw *hw = &adapter->hw;
4165 
4166 	if (adapter->msix_entries) {
4167 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4168 		u32 regval = rd32(IGC_EIAC);
4169 
4170 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4171 		regval = rd32(IGC_EIAM);
4172 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4173 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4174 		wr32(IGC_IMS, ims);
4175 	} else {
4176 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4177 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4178 	}
4179 }
4180 
4181 /**
4182  * igc_irq_disable - Mask off interrupt generation on the NIC
4183  * @adapter: board private structure
4184  */
4185 static void igc_irq_disable(struct igc_adapter *adapter)
4186 {
4187 	struct igc_hw *hw = &adapter->hw;
4188 
4189 	if (adapter->msix_entries) {
4190 		u32 regval = rd32(IGC_EIAM);
4191 
4192 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4193 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4194 		regval = rd32(IGC_EIAC);
4195 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4196 	}
4197 
4198 	wr32(IGC_IAM, 0);
4199 	wr32(IGC_IMC, ~0);
4200 	wrfl();
4201 
4202 	if (adapter->msix_entries) {
4203 		int vector = 0, i;
4204 
4205 		synchronize_irq(adapter->msix_entries[vector++].vector);
4206 
4207 		for (i = 0; i < adapter->num_q_vectors; i++)
4208 			synchronize_irq(adapter->msix_entries[vector++].vector);
4209 	} else {
4210 		synchronize_irq(adapter->pdev->irq);
4211 	}
4212 }
4213 
4214 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4215 			      const u32 max_rss_queues)
4216 {
4217 	/* Determine if we need to pair queues. */
4218 	/* If rss_queues > half of max_rss_queues, pair the queues in
4219 	 * order to conserve interrupts due to limited supply.
4220 	 */
4221 	if (adapter->rss_queues > (max_rss_queues / 2))
4222 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4223 	else
4224 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4225 }
4226 
4227 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4228 {
4229 	return IGC_MAX_RX_QUEUES;
4230 }
4231 
4232 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4233 {
4234 	u32 max_rss_queues;
4235 
4236 	max_rss_queues = igc_get_max_rss_queues(adapter);
4237 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4238 
4239 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4240 }
4241 
4242 /**
4243  * igc_reset_q_vector - Reset config for interrupt vector
4244  * @adapter: board private structure to initialize
4245  * @v_idx: Index of vector to be reset
4246  *
4247  * If NAPI is enabled it will delete any references to the
4248  * NAPI struct. This is preparation for igc_free_q_vector.
4249  */
4250 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4251 {
4252 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4253 
4254 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4255 	 * not yet allocated
4256 	 */
4257 	if (!q_vector)
4258 		return;
4259 
4260 	if (q_vector->tx.ring)
4261 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4262 
4263 	if (q_vector->rx.ring)
4264 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4265 
4266 	netif_napi_del(&q_vector->napi);
4267 }
4268 
4269 /**
4270  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4271  * @adapter: board private structure to initialize
4272  * @v_idx: Index of vector to be freed
4273  *
4274  * This function frees the memory allocated to the q_vector.
4275  */
4276 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4277 {
4278 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4279 
4280 	adapter->q_vector[v_idx] = NULL;
4281 
4282 	/* igc_get_stats64() might access the rings on this vector,
4283 	 * we must wait a grace period before freeing it.
4284 	 */
4285 	if (q_vector)
4286 		kfree_rcu(q_vector, rcu);
4287 }
4288 
4289 /**
4290  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4291  * @adapter: board private structure to initialize
4292  *
4293  * This function frees the memory allocated to the q_vectors.  In addition if
4294  * NAPI is enabled it will delete any references to the NAPI struct prior
4295  * to freeing the q_vector.
4296  */
4297 static void igc_free_q_vectors(struct igc_adapter *adapter)
4298 {
4299 	int v_idx = adapter->num_q_vectors;
4300 
4301 	adapter->num_tx_queues = 0;
4302 	adapter->num_rx_queues = 0;
4303 	adapter->num_q_vectors = 0;
4304 
4305 	while (v_idx--) {
4306 		igc_reset_q_vector(adapter, v_idx);
4307 		igc_free_q_vector(adapter, v_idx);
4308 	}
4309 }
4310 
4311 /**
4312  * igc_update_itr - update the dynamic ITR value based on statistics
4313  * @q_vector: pointer to q_vector
4314  * @ring_container: ring info to update the itr for
4315  *
4316  * Stores a new ITR value based on packets and byte
4317  * counts during the last interrupt.  The advantage of per interrupt
4318  * computation is faster updates and more accurate ITR for the current
4319  * traffic pattern.  Constants in this function were computed
4320  * based on theoretical maximum wire speed and thresholds were set based
4321  * on testing data as well as attempting to minimize response time
4322  * while increasing bulk throughput.
4323  * NOTE: These calculations are only valid when operating in a single-
4324  * queue environment.
4325  */
4326 static void igc_update_itr(struct igc_q_vector *q_vector,
4327 			   struct igc_ring_container *ring_container)
4328 {
4329 	unsigned int packets = ring_container->total_packets;
4330 	unsigned int bytes = ring_container->total_bytes;
4331 	u8 itrval = ring_container->itr;
4332 
4333 	/* no packets, exit with status unchanged */
4334 	if (packets == 0)
4335 		return;
4336 
4337 	switch (itrval) {
4338 	case lowest_latency:
4339 		/* handle TSO and jumbo frames */
4340 		if (bytes / packets > 8000)
4341 			itrval = bulk_latency;
4342 		else if ((packets < 5) && (bytes > 512))
4343 			itrval = low_latency;
4344 		break;
4345 	case low_latency:  /* 50 usec aka 20000 ints/s */
4346 		if (bytes > 10000) {
4347 			/* this if handles the TSO accounting */
4348 			if (bytes / packets > 8000)
4349 				itrval = bulk_latency;
4350 			else if ((packets < 10) || ((bytes / packets) > 1200))
4351 				itrval = bulk_latency;
4352 			else if ((packets > 35))
4353 				itrval = lowest_latency;
4354 		} else if (bytes / packets > 2000) {
4355 			itrval = bulk_latency;
4356 		} else if (packets <= 2 && bytes < 512) {
4357 			itrval = lowest_latency;
4358 		}
4359 		break;
4360 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4361 		if (bytes > 25000) {
4362 			if (packets > 35)
4363 				itrval = low_latency;
4364 		} else if (bytes < 1500) {
4365 			itrval = low_latency;
4366 		}
4367 		break;
4368 	}
4369 
4370 	/* clear work counters since we have the values we need */
4371 	ring_container->total_bytes = 0;
4372 	ring_container->total_packets = 0;
4373 
4374 	/* write updated itr to ring container */
4375 	ring_container->itr = itrval;
4376 }
4377 
4378 static void igc_set_itr(struct igc_q_vector *q_vector)
4379 {
4380 	struct igc_adapter *adapter = q_vector->adapter;
4381 	u32 new_itr = q_vector->itr_val;
4382 	u8 current_itr = 0;
4383 
4384 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4385 	switch (adapter->link_speed) {
4386 	case SPEED_10:
4387 	case SPEED_100:
4388 		current_itr = 0;
4389 		new_itr = IGC_4K_ITR;
4390 		goto set_itr_now;
4391 	default:
4392 		break;
4393 	}
4394 
4395 	igc_update_itr(q_vector, &q_vector->tx);
4396 	igc_update_itr(q_vector, &q_vector->rx);
4397 
4398 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4399 
4400 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4401 	if (current_itr == lowest_latency &&
4402 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4403 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4404 		current_itr = low_latency;
4405 
4406 	switch (current_itr) {
4407 	/* counts and packets in update_itr are dependent on these numbers */
4408 	case lowest_latency:
4409 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4410 		break;
4411 	case low_latency:
4412 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4413 		break;
4414 	case bulk_latency:
4415 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4416 		break;
4417 	default:
4418 		break;
4419 	}
4420 
4421 set_itr_now:
4422 	if (new_itr != q_vector->itr_val) {
4423 		/* this attempts to bias the interrupt rate towards Bulk
4424 		 * by adding intermediate steps when interrupt rate is
4425 		 * increasing
4426 		 */
4427 		new_itr = new_itr > q_vector->itr_val ?
4428 			  max((new_itr * q_vector->itr_val) /
4429 			  (new_itr + (q_vector->itr_val >> 2)),
4430 			  new_itr) : new_itr;
4431 		/* Don't write the value here; it resets the adapter's
4432 		 * internal timer, and causes us to delay far longer than
4433 		 * we should between interrupts.  Instead, we write the ITR
4434 		 * value at the beginning of the next interrupt so the timing
4435 		 * ends up being correct.
4436 		 */
4437 		q_vector->itr_val = new_itr;
4438 		q_vector->set_itr = 1;
4439 	}
4440 }
4441 
4442 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4443 {
4444 	int v_idx = adapter->num_q_vectors;
4445 
4446 	if (adapter->msix_entries) {
4447 		pci_disable_msix(adapter->pdev);
4448 		kfree(adapter->msix_entries);
4449 		adapter->msix_entries = NULL;
4450 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4451 		pci_disable_msi(adapter->pdev);
4452 	}
4453 
4454 	while (v_idx--)
4455 		igc_reset_q_vector(adapter, v_idx);
4456 }
4457 
4458 /**
4459  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4460  * @adapter: Pointer to adapter structure
4461  * @msix: boolean value for MSI-X capability
4462  *
4463  * Attempt to configure interrupts using the best available
4464  * capabilities of the hardware and kernel.
4465  */
4466 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4467 					 bool msix)
4468 {
4469 	int numvecs, i;
4470 	int err;
4471 
4472 	if (!msix)
4473 		goto msi_only;
4474 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4475 
4476 	/* Number of supported queues. */
4477 	adapter->num_rx_queues = adapter->rss_queues;
4478 
4479 	adapter->num_tx_queues = adapter->rss_queues;
4480 
4481 	/* start with one vector for every Rx queue */
4482 	numvecs = adapter->num_rx_queues;
4483 
4484 	/* if Tx handler is separate add 1 for every Tx queue */
4485 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4486 		numvecs += adapter->num_tx_queues;
4487 
4488 	/* store the number of vectors reserved for queues */
4489 	adapter->num_q_vectors = numvecs;
4490 
4491 	/* add 1 vector for link status interrupts */
4492 	numvecs++;
4493 
4494 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4495 					GFP_KERNEL);
4496 
4497 	if (!adapter->msix_entries)
4498 		return;
4499 
4500 	/* populate entry values */
4501 	for (i = 0; i < numvecs; i++)
4502 		adapter->msix_entries[i].entry = i;
4503 
4504 	err = pci_enable_msix_range(adapter->pdev,
4505 				    adapter->msix_entries,
4506 				    numvecs,
4507 				    numvecs);
4508 	if (err > 0)
4509 		return;
4510 
4511 	kfree(adapter->msix_entries);
4512 	adapter->msix_entries = NULL;
4513 
4514 	igc_reset_interrupt_capability(adapter);
4515 
4516 msi_only:
4517 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4518 
4519 	adapter->rss_queues = 1;
4520 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4521 	adapter->num_rx_queues = 1;
4522 	adapter->num_tx_queues = 1;
4523 	adapter->num_q_vectors = 1;
4524 	if (!pci_enable_msi(adapter->pdev))
4525 		adapter->flags |= IGC_FLAG_HAS_MSI;
4526 }
4527 
4528 /**
4529  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4530  * @q_vector: pointer to q_vector
4531  *
4532  * Stores a new ITR value based on strictly on packet size.  This
4533  * algorithm is less sophisticated than that used in igc_update_itr,
4534  * due to the difficulty of synchronizing statistics across multiple
4535  * receive rings.  The divisors and thresholds used by this function
4536  * were determined based on theoretical maximum wire speed and testing
4537  * data, in order to minimize response time while increasing bulk
4538  * throughput.
4539  * NOTE: This function is called only when operating in a multiqueue
4540  * receive environment.
4541  */
4542 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4543 {
4544 	struct igc_adapter *adapter = q_vector->adapter;
4545 	int new_val = q_vector->itr_val;
4546 	int avg_wire_size = 0;
4547 	unsigned int packets;
4548 
4549 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4550 	 * ints/sec - ITR timer value of 120 ticks.
4551 	 */
4552 	switch (adapter->link_speed) {
4553 	case SPEED_10:
4554 	case SPEED_100:
4555 		new_val = IGC_4K_ITR;
4556 		goto set_itr_val;
4557 	default:
4558 		break;
4559 	}
4560 
4561 	packets = q_vector->rx.total_packets;
4562 	if (packets)
4563 		avg_wire_size = q_vector->rx.total_bytes / packets;
4564 
4565 	packets = q_vector->tx.total_packets;
4566 	if (packets)
4567 		avg_wire_size = max_t(u32, avg_wire_size,
4568 				      q_vector->tx.total_bytes / packets);
4569 
4570 	/* if avg_wire_size isn't set no work was done */
4571 	if (!avg_wire_size)
4572 		goto clear_counts;
4573 
4574 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4575 	avg_wire_size += 24;
4576 
4577 	/* Don't starve jumbo frames */
4578 	avg_wire_size = min(avg_wire_size, 3000);
4579 
4580 	/* Give a little boost to mid-size frames */
4581 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4582 		new_val = avg_wire_size / 3;
4583 	else
4584 		new_val = avg_wire_size / 2;
4585 
4586 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4587 	if (new_val < IGC_20K_ITR &&
4588 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4589 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4590 		new_val = IGC_20K_ITR;
4591 
4592 set_itr_val:
4593 	if (new_val != q_vector->itr_val) {
4594 		q_vector->itr_val = new_val;
4595 		q_vector->set_itr = 1;
4596 	}
4597 clear_counts:
4598 	q_vector->rx.total_bytes = 0;
4599 	q_vector->rx.total_packets = 0;
4600 	q_vector->tx.total_bytes = 0;
4601 	q_vector->tx.total_packets = 0;
4602 }
4603 
4604 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4605 {
4606 	struct igc_adapter *adapter = q_vector->adapter;
4607 	struct igc_hw *hw = &adapter->hw;
4608 
4609 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4610 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4611 		if (adapter->num_q_vectors == 1)
4612 			igc_set_itr(q_vector);
4613 		else
4614 			igc_update_ring_itr(q_vector);
4615 	}
4616 
4617 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4618 		if (adapter->msix_entries)
4619 			wr32(IGC_EIMS, q_vector->eims_value);
4620 		else
4621 			igc_irq_enable(adapter);
4622 	}
4623 }
4624 
4625 static void igc_add_ring(struct igc_ring *ring,
4626 			 struct igc_ring_container *head)
4627 {
4628 	head->ring = ring;
4629 	head->count++;
4630 }
4631 
4632 /**
4633  * igc_cache_ring_register - Descriptor ring to register mapping
4634  * @adapter: board private structure to initialize
4635  *
4636  * Once we know the feature-set enabled for the device, we'll cache
4637  * the register offset the descriptor ring is assigned to.
4638  */
4639 static void igc_cache_ring_register(struct igc_adapter *adapter)
4640 {
4641 	int i = 0, j = 0;
4642 
4643 	switch (adapter->hw.mac.type) {
4644 	case igc_i225:
4645 	default:
4646 		for (; i < adapter->num_rx_queues; i++)
4647 			adapter->rx_ring[i]->reg_idx = i;
4648 		for (; j < adapter->num_tx_queues; j++)
4649 			adapter->tx_ring[j]->reg_idx = j;
4650 		break;
4651 	}
4652 }
4653 
4654 /**
4655  * igc_poll - NAPI Rx polling callback
4656  * @napi: napi polling structure
4657  * @budget: count of how many packets we should handle
4658  */
4659 static int igc_poll(struct napi_struct *napi, int budget)
4660 {
4661 	struct igc_q_vector *q_vector = container_of(napi,
4662 						     struct igc_q_vector,
4663 						     napi);
4664 	struct igc_ring *rx_ring = q_vector->rx.ring;
4665 	bool clean_complete = true;
4666 	int work_done = 0;
4667 
4668 	if (q_vector->tx.ring)
4669 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4670 
4671 	if (rx_ring) {
4672 		int cleaned = rx_ring->xsk_pool ?
4673 			      igc_clean_rx_irq_zc(q_vector, budget) :
4674 			      igc_clean_rx_irq(q_vector, budget);
4675 
4676 		work_done += cleaned;
4677 		if (cleaned >= budget)
4678 			clean_complete = false;
4679 	}
4680 
4681 	/* If all work not completed, return budget and keep polling */
4682 	if (!clean_complete)
4683 		return budget;
4684 
4685 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4686 	 * poll us due to busy-polling
4687 	 */
4688 	if (likely(napi_complete_done(napi, work_done)))
4689 		igc_ring_irq_enable(q_vector);
4690 
4691 	return min(work_done, budget - 1);
4692 }
4693 
4694 /**
4695  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4696  * @adapter: board private structure to initialize
4697  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4698  * @v_idx: index of vector in adapter struct
4699  * @txr_count: total number of Tx rings to allocate
4700  * @txr_idx: index of first Tx ring to allocate
4701  * @rxr_count: total number of Rx rings to allocate
4702  * @rxr_idx: index of first Rx ring to allocate
4703  *
4704  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4705  */
4706 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4707 			      unsigned int v_count, unsigned int v_idx,
4708 			      unsigned int txr_count, unsigned int txr_idx,
4709 			      unsigned int rxr_count, unsigned int rxr_idx)
4710 {
4711 	struct igc_q_vector *q_vector;
4712 	struct igc_ring *ring;
4713 	int ring_count;
4714 
4715 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4716 	if (txr_count > 1 || rxr_count > 1)
4717 		return -ENOMEM;
4718 
4719 	ring_count = txr_count + rxr_count;
4720 
4721 	/* allocate q_vector and rings */
4722 	q_vector = adapter->q_vector[v_idx];
4723 	if (!q_vector)
4724 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4725 				   GFP_KERNEL);
4726 	else
4727 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4728 	if (!q_vector)
4729 		return -ENOMEM;
4730 
4731 	/* initialize NAPI */
4732 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4733 
4734 	/* tie q_vector and adapter together */
4735 	adapter->q_vector[v_idx] = q_vector;
4736 	q_vector->adapter = adapter;
4737 
4738 	/* initialize work limits */
4739 	q_vector->tx.work_limit = adapter->tx_work_limit;
4740 
4741 	/* initialize ITR configuration */
4742 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4743 	q_vector->itr_val = IGC_START_ITR;
4744 
4745 	/* initialize pointer to rings */
4746 	ring = q_vector->ring;
4747 
4748 	/* initialize ITR */
4749 	if (rxr_count) {
4750 		/* rx or rx/tx vector */
4751 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4752 			q_vector->itr_val = adapter->rx_itr_setting;
4753 	} else {
4754 		/* tx only vector */
4755 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4756 			q_vector->itr_val = adapter->tx_itr_setting;
4757 	}
4758 
4759 	if (txr_count) {
4760 		/* assign generic ring traits */
4761 		ring->dev = &adapter->pdev->dev;
4762 		ring->netdev = adapter->netdev;
4763 
4764 		/* configure backlink on ring */
4765 		ring->q_vector = q_vector;
4766 
4767 		/* update q_vector Tx values */
4768 		igc_add_ring(ring, &q_vector->tx);
4769 
4770 		/* apply Tx specific ring traits */
4771 		ring->count = adapter->tx_ring_count;
4772 		ring->queue_index = txr_idx;
4773 
4774 		/* assign ring to adapter */
4775 		adapter->tx_ring[txr_idx] = ring;
4776 
4777 		/* push pointer to next ring */
4778 		ring++;
4779 	}
4780 
4781 	if (rxr_count) {
4782 		/* assign generic ring traits */
4783 		ring->dev = &adapter->pdev->dev;
4784 		ring->netdev = adapter->netdev;
4785 
4786 		/* configure backlink on ring */
4787 		ring->q_vector = q_vector;
4788 
4789 		/* update q_vector Rx values */
4790 		igc_add_ring(ring, &q_vector->rx);
4791 
4792 		/* apply Rx specific ring traits */
4793 		ring->count = adapter->rx_ring_count;
4794 		ring->queue_index = rxr_idx;
4795 
4796 		/* assign ring to adapter */
4797 		adapter->rx_ring[rxr_idx] = ring;
4798 	}
4799 
4800 	return 0;
4801 }
4802 
4803 /**
4804  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4805  * @adapter: board private structure to initialize
4806  *
4807  * We allocate one q_vector per queue interrupt.  If allocation fails we
4808  * return -ENOMEM.
4809  */
4810 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4811 {
4812 	int rxr_remaining = adapter->num_rx_queues;
4813 	int txr_remaining = adapter->num_tx_queues;
4814 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4815 	int q_vectors = adapter->num_q_vectors;
4816 	int err;
4817 
4818 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4819 		for (; rxr_remaining; v_idx++) {
4820 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4821 						 0, 0, 1, rxr_idx);
4822 
4823 			if (err)
4824 				goto err_out;
4825 
4826 			/* update counts and index */
4827 			rxr_remaining--;
4828 			rxr_idx++;
4829 		}
4830 	}
4831 
4832 	for (; v_idx < q_vectors; v_idx++) {
4833 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4834 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4835 
4836 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4837 					 tqpv, txr_idx, rqpv, rxr_idx);
4838 
4839 		if (err)
4840 			goto err_out;
4841 
4842 		/* update counts and index */
4843 		rxr_remaining -= rqpv;
4844 		txr_remaining -= tqpv;
4845 		rxr_idx++;
4846 		txr_idx++;
4847 	}
4848 
4849 	return 0;
4850 
4851 err_out:
4852 	adapter->num_tx_queues = 0;
4853 	adapter->num_rx_queues = 0;
4854 	adapter->num_q_vectors = 0;
4855 
4856 	while (v_idx--)
4857 		igc_free_q_vector(adapter, v_idx);
4858 
4859 	return -ENOMEM;
4860 }
4861 
4862 /**
4863  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4864  * @adapter: Pointer to adapter structure
4865  * @msix: boolean for MSI-X capability
4866  *
4867  * This function initializes the interrupts and allocates all of the queues.
4868  */
4869 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4870 {
4871 	struct net_device *dev = adapter->netdev;
4872 	int err = 0;
4873 
4874 	igc_set_interrupt_capability(adapter, msix);
4875 
4876 	err = igc_alloc_q_vectors(adapter);
4877 	if (err) {
4878 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4879 		goto err_alloc_q_vectors;
4880 	}
4881 
4882 	igc_cache_ring_register(adapter);
4883 
4884 	return 0;
4885 
4886 err_alloc_q_vectors:
4887 	igc_reset_interrupt_capability(adapter);
4888 	return err;
4889 }
4890 
4891 /**
4892  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4893  * @adapter: board private structure to initialize
4894  *
4895  * igc_sw_init initializes the Adapter private data structure.
4896  * Fields are initialized based on PCI device information and
4897  * OS network device settings (MTU size).
4898  */
4899 static int igc_sw_init(struct igc_adapter *adapter)
4900 {
4901 	struct net_device *netdev = adapter->netdev;
4902 	struct pci_dev *pdev = adapter->pdev;
4903 	struct igc_hw *hw = &adapter->hw;
4904 
4905 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4906 
4907 	/* set default ring sizes */
4908 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4909 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4910 
4911 	/* set default ITR values */
4912 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4913 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4914 
4915 	/* set default work limits */
4916 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4917 
4918 	/* adjust max frame to be at least the size of a standard frame */
4919 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4920 				VLAN_HLEN;
4921 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4922 
4923 	mutex_init(&adapter->nfc_rule_lock);
4924 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4925 	adapter->nfc_rule_count = 0;
4926 
4927 	spin_lock_init(&adapter->stats64_lock);
4928 	spin_lock_init(&adapter->qbv_tx_lock);
4929 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4930 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4931 
4932 	igc_init_queue_configuration(adapter);
4933 
4934 	/* This call may decrease the number of queues */
4935 	if (igc_init_interrupt_scheme(adapter, true)) {
4936 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4937 		return -ENOMEM;
4938 	}
4939 
4940 	/* Explicitly disable IRQ since the NIC can be in any state. */
4941 	igc_irq_disable(adapter);
4942 
4943 	set_bit(__IGC_DOWN, &adapter->state);
4944 
4945 	return 0;
4946 }
4947 
4948 /**
4949  * igc_up - Open the interface and prepare it to handle traffic
4950  * @adapter: board private structure
4951  */
4952 void igc_up(struct igc_adapter *adapter)
4953 {
4954 	struct igc_hw *hw = &adapter->hw;
4955 	int i = 0;
4956 
4957 	/* hardware has been reset, we need to reload some things */
4958 	igc_configure(adapter);
4959 
4960 	clear_bit(__IGC_DOWN, &adapter->state);
4961 
4962 	for (i = 0; i < adapter->num_q_vectors; i++)
4963 		napi_enable(&adapter->q_vector[i]->napi);
4964 
4965 	if (adapter->msix_entries)
4966 		igc_configure_msix(adapter);
4967 	else
4968 		igc_assign_vector(adapter->q_vector[0], 0);
4969 
4970 	/* Clear any pending interrupts. */
4971 	rd32(IGC_ICR);
4972 	igc_irq_enable(adapter);
4973 
4974 	netif_tx_start_all_queues(adapter->netdev);
4975 
4976 	/* start the watchdog. */
4977 	hw->mac.get_link_status = true;
4978 	schedule_work(&adapter->watchdog_task);
4979 
4980 	adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T |
4981 			      MDIO_EEE_2_5GT;
4982 }
4983 
4984 /**
4985  * igc_update_stats - Update the board statistics counters
4986  * @adapter: board private structure
4987  */
4988 void igc_update_stats(struct igc_adapter *adapter)
4989 {
4990 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4991 	struct pci_dev *pdev = adapter->pdev;
4992 	struct igc_hw *hw = &adapter->hw;
4993 	u64 _bytes, _packets;
4994 	u64 bytes, packets;
4995 	unsigned int start;
4996 	u32 mpc;
4997 	int i;
4998 
4999 	/* Prevent stats update while adapter is being reset, or if the pci
5000 	 * connection is down.
5001 	 */
5002 	if (adapter->link_speed == 0)
5003 		return;
5004 	if (pci_channel_offline(pdev))
5005 		return;
5006 
5007 	packets = 0;
5008 	bytes = 0;
5009 
5010 	rcu_read_lock();
5011 	for (i = 0; i < adapter->num_rx_queues; i++) {
5012 		struct igc_ring *ring = adapter->rx_ring[i];
5013 		u32 rqdpc = rd32(IGC_RQDPC(i));
5014 
5015 		if (hw->mac.type >= igc_i225)
5016 			wr32(IGC_RQDPC(i), 0);
5017 
5018 		if (rqdpc) {
5019 			ring->rx_stats.drops += rqdpc;
5020 			net_stats->rx_fifo_errors += rqdpc;
5021 		}
5022 
5023 		do {
5024 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5025 			_bytes = ring->rx_stats.bytes;
5026 			_packets = ring->rx_stats.packets;
5027 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5028 		bytes += _bytes;
5029 		packets += _packets;
5030 	}
5031 
5032 	net_stats->rx_bytes = bytes;
5033 	net_stats->rx_packets = packets;
5034 
5035 	packets = 0;
5036 	bytes = 0;
5037 	for (i = 0; i < adapter->num_tx_queues; i++) {
5038 		struct igc_ring *ring = adapter->tx_ring[i];
5039 
5040 		do {
5041 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5042 			_bytes = ring->tx_stats.bytes;
5043 			_packets = ring->tx_stats.packets;
5044 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5045 		bytes += _bytes;
5046 		packets += _packets;
5047 	}
5048 	net_stats->tx_bytes = bytes;
5049 	net_stats->tx_packets = packets;
5050 	rcu_read_unlock();
5051 
5052 	/* read stats registers */
5053 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5054 	adapter->stats.gprc += rd32(IGC_GPRC);
5055 	adapter->stats.gorc += rd32(IGC_GORCL);
5056 	rd32(IGC_GORCH); /* clear GORCL */
5057 	adapter->stats.bprc += rd32(IGC_BPRC);
5058 	adapter->stats.mprc += rd32(IGC_MPRC);
5059 	adapter->stats.roc += rd32(IGC_ROC);
5060 
5061 	adapter->stats.prc64 += rd32(IGC_PRC64);
5062 	adapter->stats.prc127 += rd32(IGC_PRC127);
5063 	adapter->stats.prc255 += rd32(IGC_PRC255);
5064 	adapter->stats.prc511 += rd32(IGC_PRC511);
5065 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5066 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5067 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5068 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5069 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5070 
5071 	mpc = rd32(IGC_MPC);
5072 	adapter->stats.mpc += mpc;
5073 	net_stats->rx_fifo_errors += mpc;
5074 	adapter->stats.scc += rd32(IGC_SCC);
5075 	adapter->stats.ecol += rd32(IGC_ECOL);
5076 	adapter->stats.mcc += rd32(IGC_MCC);
5077 	adapter->stats.latecol += rd32(IGC_LATECOL);
5078 	adapter->stats.dc += rd32(IGC_DC);
5079 	adapter->stats.rlec += rd32(IGC_RLEC);
5080 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5081 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5082 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5083 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5084 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5085 	adapter->stats.gptc += rd32(IGC_GPTC);
5086 	adapter->stats.gotc += rd32(IGC_GOTCL);
5087 	rd32(IGC_GOTCH); /* clear GOTCL */
5088 	adapter->stats.rnbc += rd32(IGC_RNBC);
5089 	adapter->stats.ruc += rd32(IGC_RUC);
5090 	adapter->stats.rfc += rd32(IGC_RFC);
5091 	adapter->stats.rjc += rd32(IGC_RJC);
5092 	adapter->stats.tor += rd32(IGC_TORH);
5093 	adapter->stats.tot += rd32(IGC_TOTH);
5094 	adapter->stats.tpr += rd32(IGC_TPR);
5095 
5096 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5097 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5098 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5099 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5100 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5101 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5102 
5103 	adapter->stats.mptc += rd32(IGC_MPTC);
5104 	adapter->stats.bptc += rd32(IGC_BPTC);
5105 
5106 	adapter->stats.tpt += rd32(IGC_TPT);
5107 	adapter->stats.colc += rd32(IGC_COLC);
5108 	adapter->stats.colc += rd32(IGC_RERC);
5109 
5110 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5111 
5112 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5113 
5114 	adapter->stats.iac += rd32(IGC_IAC);
5115 
5116 	/* Fill out the OS statistics structure */
5117 	net_stats->multicast = adapter->stats.mprc;
5118 	net_stats->collisions = adapter->stats.colc;
5119 
5120 	/* Rx Errors */
5121 
5122 	/* RLEC on some newer hardware can be incorrect so build
5123 	 * our own version based on RUC and ROC
5124 	 */
5125 	net_stats->rx_errors = adapter->stats.rxerrc +
5126 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5127 		adapter->stats.ruc + adapter->stats.roc +
5128 		adapter->stats.cexterr;
5129 	net_stats->rx_length_errors = adapter->stats.ruc +
5130 				      adapter->stats.roc;
5131 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5132 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5133 	net_stats->rx_missed_errors = adapter->stats.mpc;
5134 
5135 	/* Tx Errors */
5136 	net_stats->tx_errors = adapter->stats.ecol +
5137 			       adapter->stats.latecol;
5138 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5139 	net_stats->tx_window_errors = adapter->stats.latecol;
5140 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5141 
5142 	/* Tx Dropped */
5143 	net_stats->tx_dropped = adapter->stats.txdrop;
5144 
5145 	/* Management Stats */
5146 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5147 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5148 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5149 }
5150 
5151 /**
5152  * igc_down - Close the interface
5153  * @adapter: board private structure
5154  */
5155 void igc_down(struct igc_adapter *adapter)
5156 {
5157 	struct net_device *netdev = adapter->netdev;
5158 	struct igc_hw *hw = &adapter->hw;
5159 	u32 tctl, rctl;
5160 	int i = 0;
5161 
5162 	set_bit(__IGC_DOWN, &adapter->state);
5163 
5164 	igc_ptp_suspend(adapter);
5165 
5166 	if (pci_device_is_present(adapter->pdev)) {
5167 		/* disable receives in the hardware */
5168 		rctl = rd32(IGC_RCTL);
5169 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5170 		/* flush and sleep below */
5171 	}
5172 	/* set trans_start so we don't get spurious watchdogs during reset */
5173 	netif_trans_update(netdev);
5174 
5175 	netif_carrier_off(netdev);
5176 	netif_tx_stop_all_queues(netdev);
5177 
5178 	if (pci_device_is_present(adapter->pdev)) {
5179 		/* disable transmits in the hardware */
5180 		tctl = rd32(IGC_TCTL);
5181 		tctl &= ~IGC_TCTL_EN;
5182 		wr32(IGC_TCTL, tctl);
5183 		/* flush both disables and wait for them to finish */
5184 		wrfl();
5185 		usleep_range(10000, 20000);
5186 
5187 		igc_irq_disable(adapter);
5188 	}
5189 
5190 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5191 
5192 	for (i = 0; i < adapter->num_q_vectors; i++) {
5193 		if (adapter->q_vector[i]) {
5194 			napi_synchronize(&adapter->q_vector[i]->napi);
5195 			napi_disable(&adapter->q_vector[i]->napi);
5196 		}
5197 	}
5198 
5199 	del_timer_sync(&adapter->watchdog_timer);
5200 	del_timer_sync(&adapter->phy_info_timer);
5201 
5202 	/* record the stats before reset*/
5203 	spin_lock(&adapter->stats64_lock);
5204 	igc_update_stats(adapter);
5205 	spin_unlock(&adapter->stats64_lock);
5206 
5207 	adapter->link_speed = 0;
5208 	adapter->link_duplex = 0;
5209 
5210 	if (!pci_channel_offline(adapter->pdev))
5211 		igc_reset(adapter);
5212 
5213 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5214 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5215 
5216 	igc_disable_all_tx_rings_hw(adapter);
5217 	igc_clean_all_tx_rings(adapter);
5218 	igc_clean_all_rx_rings(adapter);
5219 }
5220 
5221 void igc_reinit_locked(struct igc_adapter *adapter)
5222 {
5223 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5224 		usleep_range(1000, 2000);
5225 	igc_down(adapter);
5226 	igc_up(adapter);
5227 	clear_bit(__IGC_RESETTING, &adapter->state);
5228 }
5229 
5230 static void igc_reset_task(struct work_struct *work)
5231 {
5232 	struct igc_adapter *adapter;
5233 
5234 	adapter = container_of(work, struct igc_adapter, reset_task);
5235 
5236 	rtnl_lock();
5237 	/* If we're already down or resetting, just bail */
5238 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5239 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5240 		rtnl_unlock();
5241 		return;
5242 	}
5243 
5244 	igc_rings_dump(adapter);
5245 	igc_regs_dump(adapter);
5246 	netdev_err(adapter->netdev, "Reset adapter\n");
5247 	igc_reinit_locked(adapter);
5248 	rtnl_unlock();
5249 }
5250 
5251 /**
5252  * igc_change_mtu - Change the Maximum Transfer Unit
5253  * @netdev: network interface device structure
5254  * @new_mtu: new value for maximum frame size
5255  *
5256  * Returns 0 on success, negative on failure
5257  */
5258 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5259 {
5260 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5261 	struct igc_adapter *adapter = netdev_priv(netdev);
5262 
5263 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5264 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5265 		return -EINVAL;
5266 	}
5267 
5268 	/* adjust max frame to be at least the size of a standard frame */
5269 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5270 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5271 
5272 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5273 		usleep_range(1000, 2000);
5274 
5275 	/* igc_down has a dependency on max_frame_size */
5276 	adapter->max_frame_size = max_frame;
5277 
5278 	if (netif_running(netdev))
5279 		igc_down(adapter);
5280 
5281 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5282 	WRITE_ONCE(netdev->mtu, new_mtu);
5283 
5284 	if (netif_running(netdev))
5285 		igc_up(adapter);
5286 	else
5287 		igc_reset(adapter);
5288 
5289 	clear_bit(__IGC_RESETTING, &adapter->state);
5290 
5291 	return 0;
5292 }
5293 
5294 /**
5295  * igc_tx_timeout - Respond to a Tx Hang
5296  * @netdev: network interface device structure
5297  * @txqueue: queue number that timed out
5298  **/
5299 static void igc_tx_timeout(struct net_device *netdev,
5300 			   unsigned int __always_unused txqueue)
5301 {
5302 	struct igc_adapter *adapter = netdev_priv(netdev);
5303 	struct igc_hw *hw = &adapter->hw;
5304 
5305 	/* Do the reset outside of interrupt context */
5306 	adapter->tx_timeout_count++;
5307 	schedule_work(&adapter->reset_task);
5308 	wr32(IGC_EICS,
5309 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5310 }
5311 
5312 /**
5313  * igc_get_stats64 - Get System Network Statistics
5314  * @netdev: network interface device structure
5315  * @stats: rtnl_link_stats64 pointer
5316  *
5317  * Returns the address of the device statistics structure.
5318  * The statistics are updated here and also from the timer callback.
5319  */
5320 static void igc_get_stats64(struct net_device *netdev,
5321 			    struct rtnl_link_stats64 *stats)
5322 {
5323 	struct igc_adapter *adapter = netdev_priv(netdev);
5324 
5325 	spin_lock(&adapter->stats64_lock);
5326 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5327 		igc_update_stats(adapter);
5328 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5329 	spin_unlock(&adapter->stats64_lock);
5330 }
5331 
5332 static netdev_features_t igc_fix_features(struct net_device *netdev,
5333 					  netdev_features_t features)
5334 {
5335 	/* Since there is no support for separate Rx/Tx vlan accel
5336 	 * enable/disable make sure Tx flag is always in same state as Rx.
5337 	 */
5338 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5339 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5340 	else
5341 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5342 
5343 	return features;
5344 }
5345 
5346 static int igc_set_features(struct net_device *netdev,
5347 			    netdev_features_t features)
5348 {
5349 	netdev_features_t changed = netdev->features ^ features;
5350 	struct igc_adapter *adapter = netdev_priv(netdev);
5351 
5352 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5353 		igc_vlan_mode(netdev, features);
5354 
5355 	/* Add VLAN support */
5356 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5357 		return 0;
5358 
5359 	if (!(features & NETIF_F_NTUPLE))
5360 		igc_flush_nfc_rules(adapter);
5361 
5362 	netdev->features = features;
5363 
5364 	if (netif_running(netdev))
5365 		igc_reinit_locked(adapter);
5366 	else
5367 		igc_reset(adapter);
5368 
5369 	return 1;
5370 }
5371 
5372 static netdev_features_t
5373 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5374 		   netdev_features_t features)
5375 {
5376 	unsigned int network_hdr_len, mac_hdr_len;
5377 
5378 	/* Make certain the headers can be described by a context descriptor */
5379 	mac_hdr_len = skb_network_offset(skb);
5380 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5381 		return features & ~(NETIF_F_HW_CSUM |
5382 				    NETIF_F_SCTP_CRC |
5383 				    NETIF_F_HW_VLAN_CTAG_TX |
5384 				    NETIF_F_TSO |
5385 				    NETIF_F_TSO6);
5386 
5387 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5388 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5389 		return features & ~(NETIF_F_HW_CSUM |
5390 				    NETIF_F_SCTP_CRC |
5391 				    NETIF_F_TSO |
5392 				    NETIF_F_TSO6);
5393 
5394 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5395 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5396 	 */
5397 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5398 		features &= ~NETIF_F_TSO;
5399 
5400 	return features;
5401 }
5402 
5403 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5404 {
5405 	struct igc_hw *hw = &adapter->hw;
5406 	u32 tsauxc, sec, nsec, tsicr;
5407 	struct ptp_clock_event event;
5408 	struct timespec64 ts;
5409 
5410 	tsicr = rd32(IGC_TSICR);
5411 
5412 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5413 		event.type = PTP_CLOCK_PPS;
5414 		if (adapter->ptp_caps.pps)
5415 			ptp_clock_event(adapter->ptp_clock, &event);
5416 	}
5417 
5418 	if (tsicr & IGC_TSICR_TXTS) {
5419 		/* retrieve hardware timestamp */
5420 		igc_ptp_tx_tstamp_event(adapter);
5421 	}
5422 
5423 	if (tsicr & IGC_TSICR_TT0) {
5424 		spin_lock(&adapter->tmreg_lock);
5425 		ts = timespec64_add(adapter->perout[0].start,
5426 				    adapter->perout[0].period);
5427 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5428 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5429 		tsauxc = rd32(IGC_TSAUXC);
5430 		tsauxc |= IGC_TSAUXC_EN_TT0;
5431 		wr32(IGC_TSAUXC, tsauxc);
5432 		adapter->perout[0].start = ts;
5433 		spin_unlock(&adapter->tmreg_lock);
5434 	}
5435 
5436 	if (tsicr & IGC_TSICR_TT1) {
5437 		spin_lock(&adapter->tmreg_lock);
5438 		ts = timespec64_add(adapter->perout[1].start,
5439 				    adapter->perout[1].period);
5440 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5441 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5442 		tsauxc = rd32(IGC_TSAUXC);
5443 		tsauxc |= IGC_TSAUXC_EN_TT1;
5444 		wr32(IGC_TSAUXC, tsauxc);
5445 		adapter->perout[1].start = ts;
5446 		spin_unlock(&adapter->tmreg_lock);
5447 	}
5448 
5449 	if (tsicr & IGC_TSICR_AUTT0) {
5450 		nsec = rd32(IGC_AUXSTMPL0);
5451 		sec  = rd32(IGC_AUXSTMPH0);
5452 		event.type = PTP_CLOCK_EXTTS;
5453 		event.index = 0;
5454 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5455 		ptp_clock_event(adapter->ptp_clock, &event);
5456 	}
5457 
5458 	if (tsicr & IGC_TSICR_AUTT1) {
5459 		nsec = rd32(IGC_AUXSTMPL1);
5460 		sec  = rd32(IGC_AUXSTMPH1);
5461 		event.type = PTP_CLOCK_EXTTS;
5462 		event.index = 1;
5463 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5464 		ptp_clock_event(adapter->ptp_clock, &event);
5465 	}
5466 }
5467 
5468 /**
5469  * igc_msix_other - msix other interrupt handler
5470  * @irq: interrupt number
5471  * @data: pointer to a q_vector
5472  */
5473 static irqreturn_t igc_msix_other(int irq, void *data)
5474 {
5475 	struct igc_adapter *adapter = data;
5476 	struct igc_hw *hw = &adapter->hw;
5477 	u32 icr = rd32(IGC_ICR);
5478 
5479 	/* reading ICR causes bit 31 of EICR to be cleared */
5480 	if (icr & IGC_ICR_DRSTA)
5481 		schedule_work(&adapter->reset_task);
5482 
5483 	if (icr & IGC_ICR_DOUTSYNC) {
5484 		/* HW is reporting DMA is out of sync */
5485 		adapter->stats.doosync++;
5486 	}
5487 
5488 	if (icr & IGC_ICR_LSC) {
5489 		hw->mac.get_link_status = true;
5490 		/* guard against interrupt when we're going down */
5491 		if (!test_bit(__IGC_DOWN, &adapter->state))
5492 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5493 	}
5494 
5495 	if (icr & IGC_ICR_TS)
5496 		igc_tsync_interrupt(adapter);
5497 
5498 	wr32(IGC_EIMS, adapter->eims_other);
5499 
5500 	return IRQ_HANDLED;
5501 }
5502 
5503 static void igc_write_itr(struct igc_q_vector *q_vector)
5504 {
5505 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5506 
5507 	if (!q_vector->set_itr)
5508 		return;
5509 
5510 	if (!itr_val)
5511 		itr_val = IGC_ITR_VAL_MASK;
5512 
5513 	itr_val |= IGC_EITR_CNT_IGNR;
5514 
5515 	writel(itr_val, q_vector->itr_register);
5516 	q_vector->set_itr = 0;
5517 }
5518 
5519 static irqreturn_t igc_msix_ring(int irq, void *data)
5520 {
5521 	struct igc_q_vector *q_vector = data;
5522 
5523 	/* Write the ITR value calculated from the previous interrupt. */
5524 	igc_write_itr(q_vector);
5525 
5526 	napi_schedule(&q_vector->napi);
5527 
5528 	return IRQ_HANDLED;
5529 }
5530 
5531 /**
5532  * igc_request_msix - Initialize MSI-X interrupts
5533  * @adapter: Pointer to adapter structure
5534  *
5535  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5536  * kernel.
5537  */
5538 static int igc_request_msix(struct igc_adapter *adapter)
5539 {
5540 	unsigned int num_q_vectors = adapter->num_q_vectors;
5541 	int i = 0, err = 0, vector = 0, free_vector = 0;
5542 	struct net_device *netdev = adapter->netdev;
5543 
5544 	err = request_irq(adapter->msix_entries[vector].vector,
5545 			  &igc_msix_other, 0, netdev->name, adapter);
5546 	if (err)
5547 		goto err_out;
5548 
5549 	if (num_q_vectors > MAX_Q_VECTORS) {
5550 		num_q_vectors = MAX_Q_VECTORS;
5551 		dev_warn(&adapter->pdev->dev,
5552 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5553 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5554 	}
5555 	for (i = 0; i < num_q_vectors; i++) {
5556 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5557 
5558 		vector++;
5559 
5560 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5561 
5562 		if (q_vector->rx.ring && q_vector->tx.ring)
5563 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5564 				q_vector->rx.ring->queue_index);
5565 		else if (q_vector->tx.ring)
5566 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5567 				q_vector->tx.ring->queue_index);
5568 		else if (q_vector->rx.ring)
5569 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5570 				q_vector->rx.ring->queue_index);
5571 		else
5572 			sprintf(q_vector->name, "%s-unused", netdev->name);
5573 
5574 		err = request_irq(adapter->msix_entries[vector].vector,
5575 				  igc_msix_ring, 0, q_vector->name,
5576 				  q_vector);
5577 		if (err)
5578 			goto err_free;
5579 	}
5580 
5581 	igc_configure_msix(adapter);
5582 	return 0;
5583 
5584 err_free:
5585 	/* free already assigned IRQs */
5586 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5587 
5588 	vector--;
5589 	for (i = 0; i < vector; i++) {
5590 		free_irq(adapter->msix_entries[free_vector++].vector,
5591 			 adapter->q_vector[i]);
5592 	}
5593 err_out:
5594 	return err;
5595 }
5596 
5597 /**
5598  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5599  * @adapter: Pointer to adapter structure
5600  *
5601  * This function resets the device so that it has 0 rx queues, tx queues, and
5602  * MSI-X interrupts allocated.
5603  */
5604 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5605 {
5606 	igc_free_q_vectors(adapter);
5607 	igc_reset_interrupt_capability(adapter);
5608 }
5609 
5610 /* Need to wait a few seconds after link up to get diagnostic information from
5611  * the phy
5612  */
5613 static void igc_update_phy_info(struct timer_list *t)
5614 {
5615 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5616 
5617 	igc_get_phy_info(&adapter->hw);
5618 }
5619 
5620 /**
5621  * igc_has_link - check shared code for link and determine up/down
5622  * @adapter: pointer to driver private info
5623  */
5624 bool igc_has_link(struct igc_adapter *adapter)
5625 {
5626 	struct igc_hw *hw = &adapter->hw;
5627 	bool link_active = false;
5628 
5629 	/* get_link_status is set on LSC (link status) interrupt or
5630 	 * rx sequence error interrupt.  get_link_status will stay
5631 	 * false until the igc_check_for_link establishes link
5632 	 * for copper adapters ONLY
5633 	 */
5634 	if (!hw->mac.get_link_status)
5635 		return true;
5636 	hw->mac.ops.check_for_link(hw);
5637 	link_active = !hw->mac.get_link_status;
5638 
5639 	if (hw->mac.type == igc_i225) {
5640 		if (!netif_carrier_ok(adapter->netdev)) {
5641 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5642 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5643 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5644 			adapter->link_check_timeout = jiffies;
5645 		}
5646 	}
5647 
5648 	return link_active;
5649 }
5650 
5651 /**
5652  * igc_watchdog - Timer Call-back
5653  * @t: timer for the watchdog
5654  */
5655 static void igc_watchdog(struct timer_list *t)
5656 {
5657 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5658 	/* Do the rest outside of interrupt context */
5659 	schedule_work(&adapter->watchdog_task);
5660 }
5661 
5662 static void igc_watchdog_task(struct work_struct *work)
5663 {
5664 	struct igc_adapter *adapter = container_of(work,
5665 						   struct igc_adapter,
5666 						   watchdog_task);
5667 	struct net_device *netdev = adapter->netdev;
5668 	struct igc_hw *hw = &adapter->hw;
5669 	struct igc_phy_info *phy = &hw->phy;
5670 	u16 phy_data, retry_count = 20;
5671 	u32 link;
5672 	int i;
5673 
5674 	link = igc_has_link(adapter);
5675 
5676 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5677 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5678 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5679 		else
5680 			link = false;
5681 	}
5682 
5683 	if (link) {
5684 		/* Cancel scheduled suspend requests. */
5685 		pm_runtime_resume(netdev->dev.parent);
5686 
5687 		if (!netif_carrier_ok(netdev)) {
5688 			u32 ctrl;
5689 
5690 			hw->mac.ops.get_speed_and_duplex(hw,
5691 							 &adapter->link_speed,
5692 							 &adapter->link_duplex);
5693 
5694 			ctrl = rd32(IGC_CTRL);
5695 			/* Link status message must follow this format */
5696 			netdev_info(netdev,
5697 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5698 				    adapter->link_speed,
5699 				    adapter->link_duplex == FULL_DUPLEX ?
5700 				    "Full" : "Half",
5701 				    (ctrl & IGC_CTRL_TFCE) &&
5702 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5703 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5704 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5705 
5706 			/* disable EEE if enabled */
5707 			if ((adapter->flags & IGC_FLAG_EEE) &&
5708 			    adapter->link_duplex == HALF_DUPLEX) {
5709 				netdev_info(netdev,
5710 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5711 				adapter->hw.dev_spec._base.eee_enable = false;
5712 				adapter->flags &= ~IGC_FLAG_EEE;
5713 			}
5714 
5715 			/* check if SmartSpeed worked */
5716 			igc_check_downshift(hw);
5717 			if (phy->speed_downgraded)
5718 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5719 
5720 			/* adjust timeout factor according to speed/duplex */
5721 			adapter->tx_timeout_factor = 1;
5722 			switch (adapter->link_speed) {
5723 			case SPEED_10:
5724 				adapter->tx_timeout_factor = 14;
5725 				break;
5726 			case SPEED_100:
5727 			case SPEED_1000:
5728 			case SPEED_2500:
5729 				adapter->tx_timeout_factor = 1;
5730 				break;
5731 			}
5732 
5733 			/* Once the launch time has been set on the wire, there
5734 			 * is a delay before the link speed can be determined
5735 			 * based on link-up activity. Write into the register
5736 			 * as soon as we know the correct link speed.
5737 			 */
5738 			igc_tsn_adjust_txtime_offset(adapter);
5739 
5740 			if (adapter->link_speed != SPEED_1000)
5741 				goto no_wait;
5742 
5743 			/* wait for Remote receiver status OK */
5744 retry_read_status:
5745 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5746 					      &phy_data)) {
5747 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5748 				    retry_count) {
5749 					msleep(100);
5750 					retry_count--;
5751 					goto retry_read_status;
5752 				} else if (!retry_count) {
5753 					netdev_err(netdev, "exceed max 2 second\n");
5754 				}
5755 			} else {
5756 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5757 			}
5758 no_wait:
5759 			netif_carrier_on(netdev);
5760 
5761 			/* link state has changed, schedule phy info update */
5762 			if (!test_bit(__IGC_DOWN, &adapter->state))
5763 				mod_timer(&adapter->phy_info_timer,
5764 					  round_jiffies(jiffies + 2 * HZ));
5765 		}
5766 	} else {
5767 		if (netif_carrier_ok(netdev)) {
5768 			adapter->link_speed = 0;
5769 			adapter->link_duplex = 0;
5770 
5771 			/* Links status message must follow this format */
5772 			netdev_info(netdev, "NIC Link is Down\n");
5773 			netif_carrier_off(netdev);
5774 
5775 			/* link state has changed, schedule phy info update */
5776 			if (!test_bit(__IGC_DOWN, &adapter->state))
5777 				mod_timer(&adapter->phy_info_timer,
5778 					  round_jiffies(jiffies + 2 * HZ));
5779 
5780 			pm_schedule_suspend(netdev->dev.parent,
5781 					    MSEC_PER_SEC * 5);
5782 		}
5783 	}
5784 
5785 	spin_lock(&adapter->stats64_lock);
5786 	igc_update_stats(adapter);
5787 	spin_unlock(&adapter->stats64_lock);
5788 
5789 	for (i = 0; i < adapter->num_tx_queues; i++) {
5790 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5791 
5792 		if (!netif_carrier_ok(netdev)) {
5793 			/* We've lost link, so the controller stops DMA,
5794 			 * but we've got queued Tx work that's never going
5795 			 * to get done, so reset controller to flush Tx.
5796 			 * (Do the reset outside of interrupt context).
5797 			 */
5798 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5799 				adapter->tx_timeout_count++;
5800 				schedule_work(&adapter->reset_task);
5801 				/* return immediately since reset is imminent */
5802 				return;
5803 			}
5804 		}
5805 
5806 		/* Force detection of hung controller every watchdog period */
5807 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5808 	}
5809 
5810 	/* Cause software interrupt to ensure Rx ring is cleaned */
5811 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5812 		u32 eics = 0;
5813 
5814 		for (i = 0; i < adapter->num_q_vectors; i++)
5815 			eics |= adapter->q_vector[i]->eims_value;
5816 		wr32(IGC_EICS, eics);
5817 	} else {
5818 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5819 	}
5820 
5821 	igc_ptp_tx_hang(adapter);
5822 
5823 	/* Reset the timer */
5824 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5825 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5826 			mod_timer(&adapter->watchdog_timer,
5827 				  round_jiffies(jiffies +  HZ));
5828 		else
5829 			mod_timer(&adapter->watchdog_timer,
5830 				  round_jiffies(jiffies + 2 * HZ));
5831 	}
5832 }
5833 
5834 /**
5835  * igc_intr_msi - Interrupt Handler
5836  * @irq: interrupt number
5837  * @data: pointer to a network interface device structure
5838  */
5839 static irqreturn_t igc_intr_msi(int irq, void *data)
5840 {
5841 	struct igc_adapter *adapter = data;
5842 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5843 	struct igc_hw *hw = &adapter->hw;
5844 	/* read ICR disables interrupts using IAM */
5845 	u32 icr = rd32(IGC_ICR);
5846 
5847 	igc_write_itr(q_vector);
5848 
5849 	if (icr & IGC_ICR_DRSTA)
5850 		schedule_work(&adapter->reset_task);
5851 
5852 	if (icr & IGC_ICR_DOUTSYNC) {
5853 		/* HW is reporting DMA is out of sync */
5854 		adapter->stats.doosync++;
5855 	}
5856 
5857 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5858 		hw->mac.get_link_status = true;
5859 		if (!test_bit(__IGC_DOWN, &adapter->state))
5860 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5861 	}
5862 
5863 	if (icr & IGC_ICR_TS)
5864 		igc_tsync_interrupt(adapter);
5865 
5866 	napi_schedule(&q_vector->napi);
5867 
5868 	return IRQ_HANDLED;
5869 }
5870 
5871 /**
5872  * igc_intr - Legacy Interrupt Handler
5873  * @irq: interrupt number
5874  * @data: pointer to a network interface device structure
5875  */
5876 static irqreturn_t igc_intr(int irq, void *data)
5877 {
5878 	struct igc_adapter *adapter = data;
5879 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5880 	struct igc_hw *hw = &adapter->hw;
5881 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5882 	 * need for the IMC write
5883 	 */
5884 	u32 icr = rd32(IGC_ICR);
5885 
5886 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5887 	 * not set, then the adapter didn't send an interrupt
5888 	 */
5889 	if (!(icr & IGC_ICR_INT_ASSERTED))
5890 		return IRQ_NONE;
5891 
5892 	igc_write_itr(q_vector);
5893 
5894 	if (icr & IGC_ICR_DRSTA)
5895 		schedule_work(&adapter->reset_task);
5896 
5897 	if (icr & IGC_ICR_DOUTSYNC) {
5898 		/* HW is reporting DMA is out of sync */
5899 		adapter->stats.doosync++;
5900 	}
5901 
5902 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5903 		hw->mac.get_link_status = true;
5904 		/* guard against interrupt when we're going down */
5905 		if (!test_bit(__IGC_DOWN, &adapter->state))
5906 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5907 	}
5908 
5909 	if (icr & IGC_ICR_TS)
5910 		igc_tsync_interrupt(adapter);
5911 
5912 	napi_schedule(&q_vector->napi);
5913 
5914 	return IRQ_HANDLED;
5915 }
5916 
5917 static void igc_free_irq(struct igc_adapter *adapter)
5918 {
5919 	if (adapter->msix_entries) {
5920 		int vector = 0, i;
5921 
5922 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5923 
5924 		for (i = 0; i < adapter->num_q_vectors; i++)
5925 			free_irq(adapter->msix_entries[vector++].vector,
5926 				 adapter->q_vector[i]);
5927 	} else {
5928 		free_irq(adapter->pdev->irq, adapter);
5929 	}
5930 }
5931 
5932 /**
5933  * igc_request_irq - initialize interrupts
5934  * @adapter: Pointer to adapter structure
5935  *
5936  * Attempts to configure interrupts using the best available
5937  * capabilities of the hardware and kernel.
5938  */
5939 static int igc_request_irq(struct igc_adapter *adapter)
5940 {
5941 	struct net_device *netdev = adapter->netdev;
5942 	struct pci_dev *pdev = adapter->pdev;
5943 	int err = 0;
5944 
5945 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5946 		err = igc_request_msix(adapter);
5947 		if (!err)
5948 			goto request_done;
5949 		/* fall back to MSI */
5950 		igc_free_all_tx_resources(adapter);
5951 		igc_free_all_rx_resources(adapter);
5952 
5953 		igc_clear_interrupt_scheme(adapter);
5954 		err = igc_init_interrupt_scheme(adapter, false);
5955 		if (err)
5956 			goto request_done;
5957 		igc_setup_all_tx_resources(adapter);
5958 		igc_setup_all_rx_resources(adapter);
5959 		igc_configure(adapter);
5960 	}
5961 
5962 	igc_assign_vector(adapter->q_vector[0], 0);
5963 
5964 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5965 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5966 				  netdev->name, adapter);
5967 		if (!err)
5968 			goto request_done;
5969 
5970 		/* fall back to legacy interrupts */
5971 		igc_reset_interrupt_capability(adapter);
5972 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5973 	}
5974 
5975 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5976 			  netdev->name, adapter);
5977 
5978 	if (err)
5979 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5980 
5981 request_done:
5982 	return err;
5983 }
5984 
5985 /**
5986  * __igc_open - Called when a network interface is made active
5987  * @netdev: network interface device structure
5988  * @resuming: boolean indicating if the device is resuming
5989  *
5990  * Returns 0 on success, negative value on failure
5991  *
5992  * The open entry point is called when a network interface is made
5993  * active by the system (IFF_UP).  At this point all resources needed
5994  * for transmit and receive operations are allocated, the interrupt
5995  * handler is registered with the OS, the watchdog timer is started,
5996  * and the stack is notified that the interface is ready.
5997  */
5998 static int __igc_open(struct net_device *netdev, bool resuming)
5999 {
6000 	struct igc_adapter *adapter = netdev_priv(netdev);
6001 	struct pci_dev *pdev = adapter->pdev;
6002 	struct igc_hw *hw = &adapter->hw;
6003 	int err = 0;
6004 	int i = 0;
6005 
6006 	/* disallow open during test */
6007 
6008 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6009 		WARN_ON(resuming);
6010 		return -EBUSY;
6011 	}
6012 
6013 	if (!resuming)
6014 		pm_runtime_get_sync(&pdev->dev);
6015 
6016 	netif_carrier_off(netdev);
6017 
6018 	/* allocate transmit descriptors */
6019 	err = igc_setup_all_tx_resources(adapter);
6020 	if (err)
6021 		goto err_setup_tx;
6022 
6023 	/* allocate receive descriptors */
6024 	err = igc_setup_all_rx_resources(adapter);
6025 	if (err)
6026 		goto err_setup_rx;
6027 
6028 	igc_power_up_link(adapter);
6029 
6030 	igc_configure(adapter);
6031 
6032 	err = igc_request_irq(adapter);
6033 	if (err)
6034 		goto err_req_irq;
6035 
6036 	clear_bit(__IGC_DOWN, &adapter->state);
6037 
6038 	for (i = 0; i < adapter->num_q_vectors; i++)
6039 		napi_enable(&adapter->q_vector[i]->napi);
6040 
6041 	/* Clear any pending interrupts. */
6042 	rd32(IGC_ICR);
6043 	igc_irq_enable(adapter);
6044 
6045 	if (!resuming)
6046 		pm_runtime_put(&pdev->dev);
6047 
6048 	netif_tx_start_all_queues(netdev);
6049 
6050 	/* start the watchdog. */
6051 	hw->mac.get_link_status = true;
6052 	schedule_work(&adapter->watchdog_task);
6053 
6054 	return IGC_SUCCESS;
6055 
6056 err_req_irq:
6057 	igc_release_hw_control(adapter);
6058 	igc_power_down_phy_copper_base(&adapter->hw);
6059 	igc_free_all_rx_resources(adapter);
6060 err_setup_rx:
6061 	igc_free_all_tx_resources(adapter);
6062 err_setup_tx:
6063 	igc_reset(adapter);
6064 	if (!resuming)
6065 		pm_runtime_put(&pdev->dev);
6066 
6067 	return err;
6068 }
6069 
6070 int igc_open(struct net_device *netdev)
6071 {
6072 	struct igc_adapter *adapter = netdev_priv(netdev);
6073 	int err;
6074 
6075 	/* Notify the stack of the actual queue counts. */
6076 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6077 					adapter->num_rx_queues);
6078 	if (err) {
6079 		netdev_err(netdev, "error setting real queue count\n");
6080 		return err;
6081 	}
6082 
6083 	return __igc_open(netdev, false);
6084 }
6085 
6086 /**
6087  * __igc_close - Disables a network interface
6088  * @netdev: network interface device structure
6089  * @suspending: boolean indicating the device is suspending
6090  *
6091  * Returns 0, this is not allowed to fail
6092  *
6093  * The close entry point is called when an interface is de-activated
6094  * by the OS.  The hardware is still under the driver's control, but
6095  * needs to be disabled.  A global MAC reset is issued to stop the
6096  * hardware, and all transmit and receive resources are freed.
6097  */
6098 static int __igc_close(struct net_device *netdev, bool suspending)
6099 {
6100 	struct igc_adapter *adapter = netdev_priv(netdev);
6101 	struct pci_dev *pdev = adapter->pdev;
6102 
6103 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6104 
6105 	if (!suspending)
6106 		pm_runtime_get_sync(&pdev->dev);
6107 
6108 	igc_down(adapter);
6109 
6110 	igc_release_hw_control(adapter);
6111 
6112 	igc_free_irq(adapter);
6113 
6114 	igc_free_all_tx_resources(adapter);
6115 	igc_free_all_rx_resources(adapter);
6116 
6117 	if (!suspending)
6118 		pm_runtime_put_sync(&pdev->dev);
6119 
6120 	return 0;
6121 }
6122 
6123 int igc_close(struct net_device *netdev)
6124 {
6125 	if (netif_device_present(netdev) || netdev->dismantle)
6126 		return __igc_close(netdev, false);
6127 	return 0;
6128 }
6129 
6130 /**
6131  * igc_ioctl - Access the hwtstamp interface
6132  * @netdev: network interface device structure
6133  * @ifr: interface request data
6134  * @cmd: ioctl command
6135  **/
6136 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6137 {
6138 	switch (cmd) {
6139 	case SIOCGHWTSTAMP:
6140 		return igc_ptp_get_ts_config(netdev, ifr);
6141 	case SIOCSHWTSTAMP:
6142 		return igc_ptp_set_ts_config(netdev, ifr);
6143 	default:
6144 		return -EOPNOTSUPP;
6145 	}
6146 }
6147 
6148 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6149 				      bool enable)
6150 {
6151 	struct igc_ring *ring;
6152 
6153 	if (queue < 0 || queue >= adapter->num_tx_queues)
6154 		return -EINVAL;
6155 
6156 	ring = adapter->tx_ring[queue];
6157 	ring->launchtime_enable = enable;
6158 
6159 	return 0;
6160 }
6161 
6162 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6163 {
6164 	struct timespec64 b;
6165 
6166 	b = ktime_to_timespec64(base_time);
6167 
6168 	return timespec64_compare(now, &b) > 0;
6169 }
6170 
6171 static bool validate_schedule(struct igc_adapter *adapter,
6172 			      const struct tc_taprio_qopt_offload *qopt)
6173 {
6174 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6175 	struct igc_hw *hw = &adapter->hw;
6176 	struct timespec64 now;
6177 	size_t n;
6178 
6179 	if (qopt->cycle_time_extension)
6180 		return false;
6181 
6182 	igc_ptp_read(adapter, &now);
6183 
6184 	/* If we program the controller's BASET registers with a time
6185 	 * in the future, it will hold all the packets until that
6186 	 * time, causing a lot of TX Hangs, so to avoid that, we
6187 	 * reject schedules that would start in the future.
6188 	 * Note: Limitation above is no longer in i226.
6189 	 */
6190 	if (!is_base_time_past(qopt->base_time, &now) &&
6191 	    igc_is_device_id_i225(hw))
6192 		return false;
6193 
6194 	for (n = 0; n < qopt->num_entries; n++) {
6195 		const struct tc_taprio_sched_entry *e, *prev;
6196 		int i;
6197 
6198 		prev = n ? &qopt->entries[n - 1] : NULL;
6199 		e = &qopt->entries[n];
6200 
6201 		/* i225 only supports "global" frame preemption
6202 		 * settings.
6203 		 */
6204 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6205 			return false;
6206 
6207 		for (i = 0; i < adapter->num_tx_queues; i++)
6208 			if (e->gate_mask & BIT(i)) {
6209 				queue_uses[i]++;
6210 
6211 				/* There are limitations: A single queue cannot
6212 				 * be opened and closed multiple times per cycle
6213 				 * unless the gate stays open. Check for it.
6214 				 */
6215 				if (queue_uses[i] > 1 &&
6216 				    !(prev->gate_mask & BIT(i)))
6217 					return false;
6218 			}
6219 	}
6220 
6221 	return true;
6222 }
6223 
6224 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6225 				     struct tc_etf_qopt_offload *qopt)
6226 {
6227 	struct igc_hw *hw = &adapter->hw;
6228 	int err;
6229 
6230 	if (hw->mac.type != igc_i225)
6231 		return -EOPNOTSUPP;
6232 
6233 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6234 	if (err)
6235 		return err;
6236 
6237 	return igc_tsn_offload_apply(adapter);
6238 }
6239 
6240 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6241 {
6242 	unsigned long flags;
6243 	int i;
6244 
6245 	adapter->base_time = 0;
6246 	adapter->cycle_time = NSEC_PER_SEC;
6247 	adapter->taprio_offload_enable = false;
6248 	adapter->qbv_config_change_errors = 0;
6249 	adapter->qbv_count = 0;
6250 
6251 	for (i = 0; i < adapter->num_tx_queues; i++) {
6252 		struct igc_ring *ring = adapter->tx_ring[i];
6253 
6254 		ring->start_time = 0;
6255 		ring->end_time = NSEC_PER_SEC;
6256 		ring->max_sdu = 0;
6257 	}
6258 
6259 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6260 
6261 	adapter->qbv_transition = false;
6262 
6263 	for (i = 0; i < adapter->num_tx_queues; i++) {
6264 		struct igc_ring *ring = adapter->tx_ring[i];
6265 
6266 		ring->oper_gate_closed = false;
6267 		ring->admin_gate_closed = false;
6268 	}
6269 
6270 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6271 
6272 	return 0;
6273 }
6274 
6275 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6276 {
6277 	igc_qbv_clear_schedule(adapter);
6278 
6279 	return 0;
6280 }
6281 
6282 static void igc_taprio_stats(struct net_device *dev,
6283 			     struct tc_taprio_qopt_stats *stats)
6284 {
6285 	/* When Strict_End is enabled, the tx_overruns counter
6286 	 * will always be zero.
6287 	 */
6288 	stats->tx_overruns = 0;
6289 }
6290 
6291 static void igc_taprio_queue_stats(struct net_device *dev,
6292 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6293 {
6294 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6295 
6296 	/* When Strict_End is enabled, the tx_overruns counter
6297 	 * will always be zero.
6298 	 */
6299 	stats->tx_overruns = 0;
6300 }
6301 
6302 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6303 				 struct tc_taprio_qopt_offload *qopt)
6304 {
6305 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6306 	struct igc_hw *hw = &adapter->hw;
6307 	u32 start_time = 0, end_time = 0;
6308 	struct timespec64 now;
6309 	unsigned long flags;
6310 	size_t n;
6311 	int i;
6312 
6313 	switch (qopt->cmd) {
6314 	case TAPRIO_CMD_REPLACE:
6315 		break;
6316 	case TAPRIO_CMD_DESTROY:
6317 		return igc_tsn_clear_schedule(adapter);
6318 	case TAPRIO_CMD_STATS:
6319 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6320 		return 0;
6321 	case TAPRIO_CMD_QUEUE_STATS:
6322 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6323 		return 0;
6324 	default:
6325 		return -EOPNOTSUPP;
6326 	}
6327 
6328 	if (qopt->base_time < 0)
6329 		return -ERANGE;
6330 
6331 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6332 		return -EALREADY;
6333 
6334 	if (!validate_schedule(adapter, qopt))
6335 		return -EINVAL;
6336 
6337 	adapter->cycle_time = qopt->cycle_time;
6338 	adapter->base_time = qopt->base_time;
6339 	adapter->taprio_offload_enable = true;
6340 
6341 	igc_ptp_read(adapter, &now);
6342 
6343 	for (n = 0; n < qopt->num_entries; n++) {
6344 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6345 
6346 		end_time += e->interval;
6347 
6348 		/* If any of the conditions below are true, we need to manually
6349 		 * control the end time of the cycle.
6350 		 * 1. Qbv users can specify a cycle time that is not equal
6351 		 * to the total GCL intervals. Hence, recalculation is
6352 		 * necessary here to exclude the time interval that
6353 		 * exceeds the cycle time.
6354 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6355 		 * once the end of the list is reached, it will switch
6356 		 * to the END_OF_CYCLE state and leave the gates in the
6357 		 * same state until the next cycle is started.
6358 		 */
6359 		if (end_time > adapter->cycle_time ||
6360 		    n + 1 == qopt->num_entries)
6361 			end_time = adapter->cycle_time;
6362 
6363 		for (i = 0; i < adapter->num_tx_queues; i++) {
6364 			struct igc_ring *ring = adapter->tx_ring[i];
6365 
6366 			if (!(e->gate_mask & BIT(i)))
6367 				continue;
6368 
6369 			/* Check whether a queue stays open for more than one
6370 			 * entry. If so, keep the start and advance the end
6371 			 * time.
6372 			 */
6373 			if (!queue_configured[i])
6374 				ring->start_time = start_time;
6375 			ring->end_time = end_time;
6376 
6377 			if (ring->start_time >= adapter->cycle_time)
6378 				queue_configured[i] = false;
6379 			else
6380 				queue_configured[i] = true;
6381 		}
6382 
6383 		start_time += e->interval;
6384 	}
6385 
6386 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6387 
6388 	/* Check whether a queue gets configured.
6389 	 * If not, set the start and end time to be end time.
6390 	 */
6391 	for (i = 0; i < adapter->num_tx_queues; i++) {
6392 		struct igc_ring *ring = adapter->tx_ring[i];
6393 
6394 		if (!is_base_time_past(qopt->base_time, &now)) {
6395 			ring->admin_gate_closed = false;
6396 		} else {
6397 			ring->oper_gate_closed = false;
6398 			ring->admin_gate_closed = false;
6399 		}
6400 
6401 		if (!queue_configured[i]) {
6402 			if (!is_base_time_past(qopt->base_time, &now))
6403 				ring->admin_gate_closed = true;
6404 			else
6405 				ring->oper_gate_closed = true;
6406 
6407 			ring->start_time = end_time;
6408 			ring->end_time = end_time;
6409 		}
6410 	}
6411 
6412 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6413 
6414 	for (i = 0; i < adapter->num_tx_queues; i++) {
6415 		struct igc_ring *ring = adapter->tx_ring[i];
6416 		struct net_device *dev = adapter->netdev;
6417 
6418 		if (qopt->max_sdu[i])
6419 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6420 		else
6421 			ring->max_sdu = 0;
6422 	}
6423 
6424 	return 0;
6425 }
6426 
6427 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6428 					 struct tc_taprio_qopt_offload *qopt)
6429 {
6430 	struct igc_hw *hw = &adapter->hw;
6431 	int err;
6432 
6433 	if (hw->mac.type != igc_i225)
6434 		return -EOPNOTSUPP;
6435 
6436 	err = igc_save_qbv_schedule(adapter, qopt);
6437 	if (err)
6438 		return err;
6439 
6440 	return igc_tsn_offload_apply(adapter);
6441 }
6442 
6443 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6444 			       bool enable, int idleslope, int sendslope,
6445 			       int hicredit, int locredit)
6446 {
6447 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6448 	struct net_device *netdev = adapter->netdev;
6449 	struct igc_ring *ring;
6450 	int i;
6451 
6452 	/* i225 has two sets of credit-based shaper logic.
6453 	 * Supporting it only on the top two priority queues
6454 	 */
6455 	if (queue < 0 || queue > 1)
6456 		return -EINVAL;
6457 
6458 	ring = adapter->tx_ring[queue];
6459 
6460 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6461 		if (adapter->tx_ring[i])
6462 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6463 
6464 	/* CBS should be enabled on the highest priority queue first in order
6465 	 * for the CBS algorithm to operate as intended.
6466 	 */
6467 	if (enable) {
6468 		if (queue == 1 && !cbs_status[0]) {
6469 			netdev_err(netdev,
6470 				   "Enabling CBS on queue1 before queue0\n");
6471 			return -EINVAL;
6472 		}
6473 	} else {
6474 		if (queue == 0 && cbs_status[1]) {
6475 			netdev_err(netdev,
6476 				   "Disabling CBS on queue0 before queue1\n");
6477 			return -EINVAL;
6478 		}
6479 	}
6480 
6481 	ring->cbs_enable = enable;
6482 	ring->idleslope = idleslope;
6483 	ring->sendslope = sendslope;
6484 	ring->hicredit = hicredit;
6485 	ring->locredit = locredit;
6486 
6487 	return 0;
6488 }
6489 
6490 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6491 			      struct tc_cbs_qopt_offload *qopt)
6492 {
6493 	struct igc_hw *hw = &adapter->hw;
6494 	int err;
6495 
6496 	if (hw->mac.type != igc_i225)
6497 		return -EOPNOTSUPP;
6498 
6499 	if (qopt->queue < 0 || qopt->queue > 1)
6500 		return -EINVAL;
6501 
6502 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6503 				  qopt->idleslope, qopt->sendslope,
6504 				  qopt->hicredit, qopt->locredit);
6505 	if (err)
6506 		return err;
6507 
6508 	return igc_tsn_offload_apply(adapter);
6509 }
6510 
6511 static int igc_tc_query_caps(struct igc_adapter *adapter,
6512 			     struct tc_query_caps_base *base)
6513 {
6514 	struct igc_hw *hw = &adapter->hw;
6515 
6516 	switch (base->type) {
6517 	case TC_SETUP_QDISC_TAPRIO: {
6518 		struct tc_taprio_caps *caps = base->caps;
6519 
6520 		caps->broken_mqprio = true;
6521 
6522 		if (hw->mac.type == igc_i225) {
6523 			caps->supports_queue_max_sdu = true;
6524 			caps->gate_mask_per_txq = true;
6525 		}
6526 
6527 		return 0;
6528 	}
6529 	default:
6530 		return -EOPNOTSUPP;
6531 	}
6532 }
6533 
6534 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6535 			void *type_data)
6536 {
6537 	struct igc_adapter *adapter = netdev_priv(dev);
6538 
6539 	adapter->tc_setup_type = type;
6540 
6541 	switch (type) {
6542 	case TC_QUERY_CAPS:
6543 		return igc_tc_query_caps(adapter, type_data);
6544 	case TC_SETUP_QDISC_TAPRIO:
6545 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6546 
6547 	case TC_SETUP_QDISC_ETF:
6548 		return igc_tsn_enable_launchtime(adapter, type_data);
6549 
6550 	case TC_SETUP_QDISC_CBS:
6551 		return igc_tsn_enable_cbs(adapter, type_data);
6552 
6553 	default:
6554 		return -EOPNOTSUPP;
6555 	}
6556 }
6557 
6558 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6559 {
6560 	struct igc_adapter *adapter = netdev_priv(dev);
6561 
6562 	switch (bpf->command) {
6563 	case XDP_SETUP_PROG:
6564 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6565 	case XDP_SETUP_XSK_POOL:
6566 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6567 					  bpf->xsk.queue_id);
6568 	default:
6569 		return -EOPNOTSUPP;
6570 	}
6571 }
6572 
6573 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6574 			struct xdp_frame **frames, u32 flags)
6575 {
6576 	struct igc_adapter *adapter = netdev_priv(dev);
6577 	int cpu = smp_processor_id();
6578 	struct netdev_queue *nq;
6579 	struct igc_ring *ring;
6580 	int i, nxmit;
6581 
6582 	if (unlikely(!netif_carrier_ok(dev)))
6583 		return -ENETDOWN;
6584 
6585 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6586 		return -EINVAL;
6587 
6588 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6589 	nq = txring_txq(ring);
6590 
6591 	__netif_tx_lock(nq, cpu);
6592 
6593 	/* Avoid transmit queue timeout since we share it with the slow path */
6594 	txq_trans_cond_update(nq);
6595 
6596 	nxmit = 0;
6597 	for (i = 0; i < num_frames; i++) {
6598 		int err;
6599 		struct xdp_frame *xdpf = frames[i];
6600 
6601 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6602 		if (err)
6603 			break;
6604 		nxmit++;
6605 	}
6606 
6607 	if (flags & XDP_XMIT_FLUSH)
6608 		igc_flush_tx_descriptors(ring);
6609 
6610 	__netif_tx_unlock(nq);
6611 
6612 	return nxmit;
6613 }
6614 
6615 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6616 					struct igc_q_vector *q_vector)
6617 {
6618 	struct igc_hw *hw = &adapter->hw;
6619 	u32 eics = 0;
6620 
6621 	eics |= q_vector->eims_value;
6622 	wr32(IGC_EICS, eics);
6623 }
6624 
6625 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6626 {
6627 	struct igc_adapter *adapter = netdev_priv(dev);
6628 	struct igc_q_vector *q_vector;
6629 	struct igc_ring *ring;
6630 
6631 	if (test_bit(__IGC_DOWN, &adapter->state))
6632 		return -ENETDOWN;
6633 
6634 	if (!igc_xdp_is_enabled(adapter))
6635 		return -ENXIO;
6636 
6637 	if (queue_id >= adapter->num_rx_queues)
6638 		return -EINVAL;
6639 
6640 	ring = adapter->rx_ring[queue_id];
6641 
6642 	if (!ring->xsk_pool)
6643 		return -ENXIO;
6644 
6645 	q_vector = adapter->q_vector[queue_id];
6646 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6647 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6648 
6649 	return 0;
6650 }
6651 
6652 static ktime_t igc_get_tstamp(struct net_device *dev,
6653 			      const struct skb_shared_hwtstamps *hwtstamps,
6654 			      bool cycles)
6655 {
6656 	struct igc_adapter *adapter = netdev_priv(dev);
6657 	struct igc_inline_rx_tstamps *tstamp;
6658 	ktime_t timestamp;
6659 
6660 	tstamp = hwtstamps->netdev_data;
6661 
6662 	if (cycles)
6663 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6664 	else
6665 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6666 
6667 	return timestamp;
6668 }
6669 
6670 static const struct net_device_ops igc_netdev_ops = {
6671 	.ndo_open		= igc_open,
6672 	.ndo_stop		= igc_close,
6673 	.ndo_start_xmit		= igc_xmit_frame,
6674 	.ndo_set_rx_mode	= igc_set_rx_mode,
6675 	.ndo_set_mac_address	= igc_set_mac,
6676 	.ndo_change_mtu		= igc_change_mtu,
6677 	.ndo_tx_timeout		= igc_tx_timeout,
6678 	.ndo_get_stats64	= igc_get_stats64,
6679 	.ndo_fix_features	= igc_fix_features,
6680 	.ndo_set_features	= igc_set_features,
6681 	.ndo_features_check	= igc_features_check,
6682 	.ndo_eth_ioctl		= igc_ioctl,
6683 	.ndo_setup_tc		= igc_setup_tc,
6684 	.ndo_bpf		= igc_bpf,
6685 	.ndo_xdp_xmit		= igc_xdp_xmit,
6686 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6687 	.ndo_get_tstamp		= igc_get_tstamp,
6688 };
6689 
6690 /* PCIe configuration access */
6691 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6692 {
6693 	struct igc_adapter *adapter = hw->back;
6694 
6695 	pci_read_config_word(adapter->pdev, reg, value);
6696 }
6697 
6698 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6699 {
6700 	struct igc_adapter *adapter = hw->back;
6701 
6702 	pci_write_config_word(adapter->pdev, reg, *value);
6703 }
6704 
6705 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6706 {
6707 	struct igc_adapter *adapter = hw->back;
6708 
6709 	if (!pci_is_pcie(adapter->pdev))
6710 		return -IGC_ERR_CONFIG;
6711 
6712 	pcie_capability_read_word(adapter->pdev, reg, value);
6713 
6714 	return IGC_SUCCESS;
6715 }
6716 
6717 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6718 {
6719 	struct igc_adapter *adapter = hw->back;
6720 
6721 	if (!pci_is_pcie(adapter->pdev))
6722 		return -IGC_ERR_CONFIG;
6723 
6724 	pcie_capability_write_word(adapter->pdev, reg, *value);
6725 
6726 	return IGC_SUCCESS;
6727 }
6728 
6729 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6730 {
6731 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6732 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6733 	u32 value = 0;
6734 
6735 	if (IGC_REMOVED(hw_addr))
6736 		return ~value;
6737 
6738 	value = readl(&hw_addr[reg]);
6739 
6740 	/* reads should not return all F's */
6741 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6742 		struct net_device *netdev = igc->netdev;
6743 
6744 		hw->hw_addr = NULL;
6745 		netif_device_detach(netdev);
6746 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6747 		WARN(pci_device_is_present(igc->pdev),
6748 		     "igc: Failed to read reg 0x%x!\n", reg);
6749 	}
6750 
6751 	return value;
6752 }
6753 
6754 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6755 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6756 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6757 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6758 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6759 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6760 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6761 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6762 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6763 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6764 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6765 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6766 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6767 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6768 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6769 	[13] = XDP_RSS_TYPE_NONE,
6770 	[14] = XDP_RSS_TYPE_NONE,
6771 	[15] = XDP_RSS_TYPE_NONE,
6772 };
6773 
6774 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6775 			   enum xdp_rss_hash_type *rss_type)
6776 {
6777 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6778 
6779 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6780 		return -ENODATA;
6781 
6782 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6783 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6784 
6785 	return 0;
6786 }
6787 
6788 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6789 {
6790 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6791 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6792 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6793 
6794 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6795 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6796 
6797 		return 0;
6798 	}
6799 
6800 	return -ENODATA;
6801 }
6802 
6803 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6804 	.xmo_rx_hash			= igc_xdp_rx_hash,
6805 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6806 };
6807 
6808 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6809 {
6810 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6811 						   hrtimer);
6812 	unsigned long flags;
6813 	unsigned int i;
6814 
6815 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6816 
6817 	adapter->qbv_transition = true;
6818 	for (i = 0; i < adapter->num_tx_queues; i++) {
6819 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6820 
6821 		if (tx_ring->admin_gate_closed) {
6822 			tx_ring->admin_gate_closed = false;
6823 			tx_ring->oper_gate_closed = true;
6824 		} else {
6825 			tx_ring->oper_gate_closed = false;
6826 		}
6827 	}
6828 	adapter->qbv_transition = false;
6829 
6830 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6831 
6832 	return HRTIMER_NORESTART;
6833 }
6834 
6835 /**
6836  * igc_probe - Device Initialization Routine
6837  * @pdev: PCI device information struct
6838  * @ent: entry in igc_pci_tbl
6839  *
6840  * Returns 0 on success, negative on failure
6841  *
6842  * igc_probe initializes an adapter identified by a pci_dev structure.
6843  * The OS initialization, configuring the adapter private structure,
6844  * and a hardware reset occur.
6845  */
6846 static int igc_probe(struct pci_dev *pdev,
6847 		     const struct pci_device_id *ent)
6848 {
6849 	struct igc_adapter *adapter;
6850 	struct net_device *netdev;
6851 	struct igc_hw *hw;
6852 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6853 	int err;
6854 
6855 	err = pci_enable_device_mem(pdev);
6856 	if (err)
6857 		return err;
6858 
6859 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6860 	if (err) {
6861 		dev_err(&pdev->dev,
6862 			"No usable DMA configuration, aborting\n");
6863 		goto err_dma;
6864 	}
6865 
6866 	err = pci_request_mem_regions(pdev, igc_driver_name);
6867 	if (err)
6868 		goto err_pci_reg;
6869 
6870 	err = pci_enable_ptm(pdev, NULL);
6871 	if (err < 0)
6872 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6873 
6874 	pci_set_master(pdev);
6875 
6876 	err = -ENOMEM;
6877 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6878 				   IGC_MAX_TX_QUEUES);
6879 
6880 	if (!netdev)
6881 		goto err_alloc_etherdev;
6882 
6883 	SET_NETDEV_DEV(netdev, &pdev->dev);
6884 
6885 	pci_set_drvdata(pdev, netdev);
6886 	adapter = netdev_priv(netdev);
6887 	adapter->netdev = netdev;
6888 	adapter->pdev = pdev;
6889 	hw = &adapter->hw;
6890 	hw->back = adapter;
6891 	adapter->port_num = hw->bus.func;
6892 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6893 
6894 	err = pci_save_state(pdev);
6895 	if (err)
6896 		goto err_ioremap;
6897 
6898 	err = -EIO;
6899 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6900 				   pci_resource_len(pdev, 0));
6901 	if (!adapter->io_addr)
6902 		goto err_ioremap;
6903 
6904 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6905 	hw->hw_addr = adapter->io_addr;
6906 
6907 	netdev->netdev_ops = &igc_netdev_ops;
6908 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6909 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
6910 	igc_ethtool_set_ops(netdev);
6911 	netdev->watchdog_timeo = 5 * HZ;
6912 
6913 	netdev->mem_start = pci_resource_start(pdev, 0);
6914 	netdev->mem_end = pci_resource_end(pdev, 0);
6915 
6916 	/* PCI config space info */
6917 	hw->vendor_id = pdev->vendor;
6918 	hw->device_id = pdev->device;
6919 	hw->revision_id = pdev->revision;
6920 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6921 	hw->subsystem_device_id = pdev->subsystem_device;
6922 
6923 	/* Copy the default MAC and PHY function pointers */
6924 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6925 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6926 
6927 	/* Initialize skew-specific constants */
6928 	err = ei->get_invariants(hw);
6929 	if (err)
6930 		goto err_sw_init;
6931 
6932 	/* Add supported features to the features list*/
6933 	netdev->features |= NETIF_F_SG;
6934 	netdev->features |= NETIF_F_TSO;
6935 	netdev->features |= NETIF_F_TSO6;
6936 	netdev->features |= NETIF_F_TSO_ECN;
6937 	netdev->features |= NETIF_F_RXHASH;
6938 	netdev->features |= NETIF_F_RXCSUM;
6939 	netdev->features |= NETIF_F_HW_CSUM;
6940 	netdev->features |= NETIF_F_SCTP_CRC;
6941 	netdev->features |= NETIF_F_HW_TC;
6942 
6943 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6944 				  NETIF_F_GSO_GRE_CSUM | \
6945 				  NETIF_F_GSO_IPXIP4 | \
6946 				  NETIF_F_GSO_IPXIP6 | \
6947 				  NETIF_F_GSO_UDP_TUNNEL | \
6948 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6949 
6950 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6951 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6952 
6953 	/* setup the private structure */
6954 	err = igc_sw_init(adapter);
6955 	if (err)
6956 		goto err_sw_init;
6957 
6958 	/* copy netdev features into list of user selectable features */
6959 	netdev->hw_features |= NETIF_F_NTUPLE;
6960 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6961 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6962 	netdev->hw_features |= netdev->features;
6963 
6964 	netdev->features |= NETIF_F_HIGHDMA;
6965 
6966 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6967 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6968 	netdev->hw_enc_features |= netdev->vlan_features;
6969 
6970 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6971 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
6972 
6973 	/* MTU range: 68 - 9216 */
6974 	netdev->min_mtu = ETH_MIN_MTU;
6975 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6976 
6977 	/* before reading the NVM, reset the controller to put the device in a
6978 	 * known good starting state
6979 	 */
6980 	hw->mac.ops.reset_hw(hw);
6981 
6982 	if (igc_get_flash_presence_i225(hw)) {
6983 		if (hw->nvm.ops.validate(hw) < 0) {
6984 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6985 			err = -EIO;
6986 			goto err_eeprom;
6987 		}
6988 	}
6989 
6990 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6991 		/* copy the MAC address out of the NVM */
6992 		if (hw->mac.ops.read_mac_addr(hw))
6993 			dev_err(&pdev->dev, "NVM Read Error\n");
6994 	}
6995 
6996 	eth_hw_addr_set(netdev, hw->mac.addr);
6997 
6998 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6999 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7000 		err = -EIO;
7001 		goto err_eeprom;
7002 	}
7003 
7004 	/* configure RXPBSIZE and TXPBSIZE */
7005 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7006 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7007 
7008 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7009 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7010 
7011 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7012 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7013 
7014 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7015 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7016 
7017 	/* Initialize link properties that are user-changeable */
7018 	adapter->fc_autoneg = true;
7019 	hw->mac.autoneg = true;
7020 	hw->phy.autoneg_advertised = 0xaf;
7021 
7022 	hw->fc.requested_mode = igc_fc_default;
7023 	hw->fc.current_mode = igc_fc_default;
7024 
7025 	/* By default, support wake on port A */
7026 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7027 
7028 	/* initialize the wol settings based on the eeprom settings */
7029 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7030 		adapter->wol |= IGC_WUFC_MAG;
7031 
7032 	device_set_wakeup_enable(&adapter->pdev->dev,
7033 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7034 
7035 	igc_ptp_init(adapter);
7036 
7037 	igc_tsn_clear_schedule(adapter);
7038 
7039 	/* reset the hardware with the new settings */
7040 	igc_reset(adapter);
7041 
7042 	/* let the f/w know that the h/w is now under the control of the
7043 	 * driver.
7044 	 */
7045 	igc_get_hw_control(adapter);
7046 
7047 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7048 	err = register_netdev(netdev);
7049 	if (err)
7050 		goto err_register;
7051 
7052 	 /* carrier off reporting is important to ethtool even BEFORE open */
7053 	netif_carrier_off(netdev);
7054 
7055 	/* Check if Media Autosense is enabled */
7056 	adapter->ei = *ei;
7057 
7058 	/* print pcie link status and MAC address */
7059 	pcie_print_link_status(pdev);
7060 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7061 
7062 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7063 	/* Disable EEE for internal PHY devices */
7064 	hw->dev_spec._base.eee_enable = false;
7065 	adapter->flags &= ~IGC_FLAG_EEE;
7066 	igc_set_eee_i225(hw, false, false, false);
7067 
7068 	pm_runtime_put_noidle(&pdev->dev);
7069 
7070 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7071 		err = igc_led_setup(adapter);
7072 		if (err)
7073 			goto err_register;
7074 	}
7075 
7076 	return 0;
7077 
7078 err_register:
7079 	igc_release_hw_control(adapter);
7080 err_eeprom:
7081 	if (!igc_check_reset_block(hw))
7082 		igc_reset_phy(hw);
7083 err_sw_init:
7084 	igc_clear_interrupt_scheme(adapter);
7085 	iounmap(adapter->io_addr);
7086 err_ioremap:
7087 	free_netdev(netdev);
7088 err_alloc_etherdev:
7089 	pci_release_mem_regions(pdev);
7090 err_pci_reg:
7091 err_dma:
7092 	pci_disable_device(pdev);
7093 	return err;
7094 }
7095 
7096 /**
7097  * igc_remove - Device Removal Routine
7098  * @pdev: PCI device information struct
7099  *
7100  * igc_remove is called by the PCI subsystem to alert the driver
7101  * that it should release a PCI device.  This could be caused by a
7102  * Hot-Plug event, or because the driver is going to be removed from
7103  * memory.
7104  */
7105 static void igc_remove(struct pci_dev *pdev)
7106 {
7107 	struct net_device *netdev = pci_get_drvdata(pdev);
7108 	struct igc_adapter *adapter = netdev_priv(netdev);
7109 
7110 	pm_runtime_get_noresume(&pdev->dev);
7111 
7112 	igc_flush_nfc_rules(adapter);
7113 
7114 	igc_ptp_stop(adapter);
7115 
7116 	pci_disable_ptm(pdev);
7117 	pci_clear_master(pdev);
7118 
7119 	set_bit(__IGC_DOWN, &adapter->state);
7120 
7121 	del_timer_sync(&adapter->watchdog_timer);
7122 	del_timer_sync(&adapter->phy_info_timer);
7123 
7124 	cancel_work_sync(&adapter->reset_task);
7125 	cancel_work_sync(&adapter->watchdog_task);
7126 	hrtimer_cancel(&adapter->hrtimer);
7127 
7128 	if (IS_ENABLED(CONFIG_IGC_LEDS))
7129 		igc_led_free(adapter);
7130 
7131 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7132 	 * would have already happened in close and is redundant.
7133 	 */
7134 	igc_release_hw_control(adapter);
7135 	unregister_netdev(netdev);
7136 
7137 	igc_clear_interrupt_scheme(adapter);
7138 	pci_iounmap(pdev, adapter->io_addr);
7139 	pci_release_mem_regions(pdev);
7140 
7141 	free_netdev(netdev);
7142 
7143 	pci_disable_device(pdev);
7144 }
7145 
7146 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7147 			  bool runtime)
7148 {
7149 	struct net_device *netdev = pci_get_drvdata(pdev);
7150 	struct igc_adapter *adapter = netdev_priv(netdev);
7151 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7152 	struct igc_hw *hw = &adapter->hw;
7153 	u32 ctrl, rctl, status;
7154 	bool wake;
7155 
7156 	rtnl_lock();
7157 	netif_device_detach(netdev);
7158 
7159 	if (netif_running(netdev))
7160 		__igc_close(netdev, true);
7161 
7162 	igc_ptp_suspend(adapter);
7163 
7164 	igc_clear_interrupt_scheme(adapter);
7165 	rtnl_unlock();
7166 
7167 	status = rd32(IGC_STATUS);
7168 	if (status & IGC_STATUS_LU)
7169 		wufc &= ~IGC_WUFC_LNKC;
7170 
7171 	if (wufc) {
7172 		igc_setup_rctl(adapter);
7173 		igc_set_rx_mode(netdev);
7174 
7175 		/* turn on all-multi mode if wake on multicast is enabled */
7176 		if (wufc & IGC_WUFC_MC) {
7177 			rctl = rd32(IGC_RCTL);
7178 			rctl |= IGC_RCTL_MPE;
7179 			wr32(IGC_RCTL, rctl);
7180 		}
7181 
7182 		ctrl = rd32(IGC_CTRL);
7183 		ctrl |= IGC_CTRL_ADVD3WUC;
7184 		wr32(IGC_CTRL, ctrl);
7185 
7186 		/* Allow time for pending master requests to run */
7187 		igc_disable_pcie_master(hw);
7188 
7189 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7190 		wr32(IGC_WUFC, wufc);
7191 	} else {
7192 		wr32(IGC_WUC, 0);
7193 		wr32(IGC_WUFC, 0);
7194 	}
7195 
7196 	wake = wufc || adapter->en_mng_pt;
7197 	if (!wake)
7198 		igc_power_down_phy_copper_base(&adapter->hw);
7199 	else
7200 		igc_power_up_link(adapter);
7201 
7202 	if (enable_wake)
7203 		*enable_wake = wake;
7204 
7205 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7206 	 * would have already happened in close and is redundant.
7207 	 */
7208 	igc_release_hw_control(adapter);
7209 
7210 	pci_disable_device(pdev);
7211 
7212 	return 0;
7213 }
7214 
7215 static int igc_runtime_suspend(struct device *dev)
7216 {
7217 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7218 }
7219 
7220 static void igc_deliver_wake_packet(struct net_device *netdev)
7221 {
7222 	struct igc_adapter *adapter = netdev_priv(netdev);
7223 	struct igc_hw *hw = &adapter->hw;
7224 	struct sk_buff *skb;
7225 	u32 wupl;
7226 
7227 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7228 
7229 	/* WUPM stores only the first 128 bytes of the wake packet.
7230 	 * Read the packet only if we have the whole thing.
7231 	 */
7232 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7233 		return;
7234 
7235 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7236 	if (!skb)
7237 		return;
7238 
7239 	skb_put(skb, wupl);
7240 
7241 	/* Ensure reads are 32-bit aligned */
7242 	wupl = roundup(wupl, 4);
7243 
7244 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7245 
7246 	skb->protocol = eth_type_trans(skb, netdev);
7247 	netif_rx(skb);
7248 }
7249 
7250 static int igc_resume(struct device *dev)
7251 {
7252 	struct pci_dev *pdev = to_pci_dev(dev);
7253 	struct net_device *netdev = pci_get_drvdata(pdev);
7254 	struct igc_adapter *adapter = netdev_priv(netdev);
7255 	struct igc_hw *hw = &adapter->hw;
7256 	u32 err, val;
7257 
7258 	pci_set_power_state(pdev, PCI_D0);
7259 	pci_restore_state(pdev);
7260 	pci_save_state(pdev);
7261 
7262 	if (!pci_device_is_present(pdev))
7263 		return -ENODEV;
7264 	err = pci_enable_device_mem(pdev);
7265 	if (err) {
7266 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7267 		return err;
7268 	}
7269 	pci_set_master(pdev);
7270 
7271 	pci_enable_wake(pdev, PCI_D3hot, 0);
7272 	pci_enable_wake(pdev, PCI_D3cold, 0);
7273 
7274 	if (igc_init_interrupt_scheme(adapter, true)) {
7275 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7276 		return -ENOMEM;
7277 	}
7278 
7279 	igc_reset(adapter);
7280 
7281 	/* let the f/w know that the h/w is now under the control of the
7282 	 * driver.
7283 	 */
7284 	igc_get_hw_control(adapter);
7285 
7286 	val = rd32(IGC_WUS);
7287 	if (val & WAKE_PKT_WUS)
7288 		igc_deliver_wake_packet(netdev);
7289 
7290 	wr32(IGC_WUS, ~0);
7291 
7292 	if (netif_running(netdev)) {
7293 		err = __igc_open(netdev, true);
7294 		if (!err)
7295 			netif_device_attach(netdev);
7296 	}
7297 
7298 	return err;
7299 }
7300 
7301 static int igc_runtime_resume(struct device *dev)
7302 {
7303 	return igc_resume(dev);
7304 }
7305 
7306 static int igc_suspend(struct device *dev)
7307 {
7308 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7309 }
7310 
7311 static int __maybe_unused igc_runtime_idle(struct device *dev)
7312 {
7313 	struct net_device *netdev = dev_get_drvdata(dev);
7314 	struct igc_adapter *adapter = netdev_priv(netdev);
7315 
7316 	if (!igc_has_link(adapter))
7317 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7318 
7319 	return -EBUSY;
7320 }
7321 
7322 static void igc_shutdown(struct pci_dev *pdev)
7323 {
7324 	bool wake;
7325 
7326 	__igc_shutdown(pdev, &wake, 0);
7327 
7328 	if (system_state == SYSTEM_POWER_OFF) {
7329 		pci_wake_from_d3(pdev, wake);
7330 		pci_set_power_state(pdev, PCI_D3hot);
7331 	}
7332 }
7333 
7334 /**
7335  *  igc_io_error_detected - called when PCI error is detected
7336  *  @pdev: Pointer to PCI device
7337  *  @state: The current PCI connection state
7338  *
7339  *  This function is called after a PCI bus error affecting
7340  *  this device has been detected.
7341  **/
7342 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7343 					      pci_channel_state_t state)
7344 {
7345 	struct net_device *netdev = pci_get_drvdata(pdev);
7346 	struct igc_adapter *adapter = netdev_priv(netdev);
7347 
7348 	netif_device_detach(netdev);
7349 
7350 	if (state == pci_channel_io_perm_failure)
7351 		return PCI_ERS_RESULT_DISCONNECT;
7352 
7353 	if (netif_running(netdev))
7354 		igc_down(adapter);
7355 	pci_disable_device(pdev);
7356 
7357 	/* Request a slot reset. */
7358 	return PCI_ERS_RESULT_NEED_RESET;
7359 }
7360 
7361 /**
7362  *  igc_io_slot_reset - called after the PCI bus has been reset.
7363  *  @pdev: Pointer to PCI device
7364  *
7365  *  Restart the card from scratch, as if from a cold-boot. Implementation
7366  *  resembles the first-half of the igc_resume routine.
7367  **/
7368 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7369 {
7370 	struct net_device *netdev = pci_get_drvdata(pdev);
7371 	struct igc_adapter *adapter = netdev_priv(netdev);
7372 	struct igc_hw *hw = &adapter->hw;
7373 	pci_ers_result_t result;
7374 
7375 	if (pci_enable_device_mem(pdev)) {
7376 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7377 		result = PCI_ERS_RESULT_DISCONNECT;
7378 	} else {
7379 		pci_set_master(pdev);
7380 		pci_restore_state(pdev);
7381 		pci_save_state(pdev);
7382 
7383 		pci_enable_wake(pdev, PCI_D3hot, 0);
7384 		pci_enable_wake(pdev, PCI_D3cold, 0);
7385 
7386 		/* In case of PCI error, adapter loses its HW address
7387 		 * so we should re-assign it here.
7388 		 */
7389 		hw->hw_addr = adapter->io_addr;
7390 
7391 		igc_reset(adapter);
7392 		wr32(IGC_WUS, ~0);
7393 		result = PCI_ERS_RESULT_RECOVERED;
7394 	}
7395 
7396 	return result;
7397 }
7398 
7399 /**
7400  *  igc_io_resume - called when traffic can start to flow again.
7401  *  @pdev: Pointer to PCI device
7402  *
7403  *  This callback is called when the error recovery driver tells us that
7404  *  its OK to resume normal operation. Implementation resembles the
7405  *  second-half of the igc_resume routine.
7406  */
7407 static void igc_io_resume(struct pci_dev *pdev)
7408 {
7409 	struct net_device *netdev = pci_get_drvdata(pdev);
7410 	struct igc_adapter *adapter = netdev_priv(netdev);
7411 
7412 	rtnl_lock();
7413 	if (netif_running(netdev)) {
7414 		if (igc_open(netdev)) {
7415 			netdev_err(netdev, "igc_open failed after reset\n");
7416 			return;
7417 		}
7418 	}
7419 
7420 	netif_device_attach(netdev);
7421 
7422 	/* let the f/w know that the h/w is now under the control of the
7423 	 * driver.
7424 	 */
7425 	igc_get_hw_control(adapter);
7426 	rtnl_unlock();
7427 }
7428 
7429 static const struct pci_error_handlers igc_err_handler = {
7430 	.error_detected = igc_io_error_detected,
7431 	.slot_reset = igc_io_slot_reset,
7432 	.resume = igc_io_resume,
7433 };
7434 
7435 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7436 			  igc_runtime_suspend, igc_runtime_resume,
7437 			  igc_runtime_idle);
7438 
7439 static struct pci_driver igc_driver = {
7440 	.name     = igc_driver_name,
7441 	.id_table = igc_pci_tbl,
7442 	.probe    = igc_probe,
7443 	.remove   = igc_remove,
7444 	.driver.pm = pm_ptr(&igc_pm_ops),
7445 	.shutdown = igc_shutdown,
7446 	.err_handler = &igc_err_handler,
7447 };
7448 
7449 /**
7450  * igc_reinit_queues - return error
7451  * @adapter: pointer to adapter structure
7452  */
7453 int igc_reinit_queues(struct igc_adapter *adapter)
7454 {
7455 	struct net_device *netdev = adapter->netdev;
7456 	int err = 0;
7457 
7458 	if (netif_running(netdev))
7459 		igc_close(netdev);
7460 
7461 	igc_reset_interrupt_capability(adapter);
7462 
7463 	if (igc_init_interrupt_scheme(adapter, true)) {
7464 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7465 		return -ENOMEM;
7466 	}
7467 
7468 	if (netif_running(netdev))
7469 		err = igc_open(netdev);
7470 
7471 	return err;
7472 }
7473 
7474 /**
7475  * igc_get_hw_dev - return device
7476  * @hw: pointer to hardware structure
7477  *
7478  * used by hardware layer to print debugging information
7479  */
7480 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7481 {
7482 	struct igc_adapter *adapter = hw->back;
7483 
7484 	return adapter->netdev;
7485 }
7486 
7487 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7488 {
7489 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7490 	u8 idx = ring->reg_idx;
7491 	u32 rxdctl;
7492 
7493 	rxdctl = rd32(IGC_RXDCTL(idx));
7494 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7495 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7496 	wr32(IGC_RXDCTL(idx), rxdctl);
7497 }
7498 
7499 void igc_disable_rx_ring(struct igc_ring *ring)
7500 {
7501 	igc_disable_rx_ring_hw(ring);
7502 	igc_clean_rx_ring(ring);
7503 }
7504 
7505 void igc_enable_rx_ring(struct igc_ring *ring)
7506 {
7507 	struct igc_adapter *adapter = ring->q_vector->adapter;
7508 
7509 	igc_configure_rx_ring(adapter, ring);
7510 
7511 	if (ring->xsk_pool)
7512 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7513 	else
7514 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7515 }
7516 
7517 void igc_disable_tx_ring(struct igc_ring *ring)
7518 {
7519 	igc_disable_tx_ring_hw(ring);
7520 	igc_clean_tx_ring(ring);
7521 }
7522 
7523 void igc_enable_tx_ring(struct igc_ring *ring)
7524 {
7525 	struct igc_adapter *adapter = ring->q_vector->adapter;
7526 
7527 	igc_configure_tx_ring(adapter, ring);
7528 }
7529 
7530 /**
7531  * igc_init_module - Driver Registration Routine
7532  *
7533  * igc_init_module is the first routine called when the driver is
7534  * loaded. All it does is register with the PCI subsystem.
7535  */
7536 static int __init igc_init_module(void)
7537 {
7538 	int ret;
7539 
7540 	pr_info("%s\n", igc_driver_string);
7541 	pr_info("%s\n", igc_copyright);
7542 
7543 	ret = pci_register_driver(&igc_driver);
7544 	return ret;
7545 }
7546 
7547 module_init(igc_init_module);
7548 
7549 /**
7550  * igc_exit_module - Driver Exit Cleanup Routine
7551  *
7552  * igc_exit_module is called just before the driver is removed
7553  * from memory.
7554  */
7555 static void __exit igc_exit_module(void)
7556 {
7557 	pci_unregister_driver(&igc_driver);
7558 }
7559 
7560 module_exit(igc_exit_module);
7561 /* igc_main.c */
7562