xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 
9 #include "igc.h"
10 #include "igc_hw.h"
11 
12 #define DRV_VERSION	"0.0.1-k"
13 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
14 
15 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
16 
17 static int debug = -1;
18 
19 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
20 MODULE_DESCRIPTION(DRV_SUMMARY);
21 MODULE_LICENSE("GPL v2");
22 MODULE_VERSION(DRV_VERSION);
23 module_param(debug, int, 0);
24 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
25 
26 char igc_driver_name[] = "igc";
27 char igc_driver_version[] = DRV_VERSION;
28 static const char igc_driver_string[] = DRV_SUMMARY;
29 static const char igc_copyright[] =
30 	"Copyright(c) 2018 Intel Corporation.";
31 
32 static const struct igc_info *igc_info_tbl[] = {
33 	[board_base] = &igc_base_info,
34 };
35 
36 static const struct pci_device_id igc_pci_tbl[] = {
37 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
38 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
39 	/* required last entry */
40 	{0, }
41 };
42 
43 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
44 
45 /* forward declaration */
46 static void igc_clean_tx_ring(struct igc_ring *tx_ring);
47 static int igc_sw_init(struct igc_adapter *);
48 static void igc_configure(struct igc_adapter *adapter);
49 static void igc_power_down_link(struct igc_adapter *adapter);
50 static void igc_set_default_mac_filter(struct igc_adapter *adapter);
51 static void igc_set_rx_mode(struct net_device *netdev);
52 static void igc_write_itr(struct igc_q_vector *q_vector);
53 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
54 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
55 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
56 					 bool msix);
57 static void igc_free_q_vectors(struct igc_adapter *adapter);
58 static void igc_irq_disable(struct igc_adapter *adapter);
59 static void igc_irq_enable(struct igc_adapter *adapter);
60 static void igc_configure_msix(struct igc_adapter *adapter);
61 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
62 				  struct igc_rx_buffer *bi);
63 
64 enum latency_range {
65 	lowest_latency = 0,
66 	low_latency = 1,
67 	bulk_latency = 2,
68 	latency_invalid = 255
69 };
70 
71 void igc_reset(struct igc_adapter *adapter)
72 {
73 	struct pci_dev *pdev = adapter->pdev;
74 	struct igc_hw *hw = &adapter->hw;
75 
76 	hw->mac.ops.reset_hw(hw);
77 
78 	if (hw->mac.ops.init_hw(hw))
79 		dev_err(&pdev->dev, "Hardware Error\n");
80 
81 	if (!netif_running(adapter->netdev))
82 		igc_power_down_link(adapter);
83 
84 	igc_get_phy_info(hw);
85 }
86 
87 /**
88  * igc_power_up_link - Power up the phy/serdes link
89  * @adapter: address of board private structure
90  */
91 static void igc_power_up_link(struct igc_adapter *adapter)
92 {
93 	igc_reset_phy(&adapter->hw);
94 
95 	if (adapter->hw.phy.media_type == igc_media_type_copper)
96 		igc_power_up_phy_copper(&adapter->hw);
97 
98 	igc_setup_link(&adapter->hw);
99 }
100 
101 /**
102  * igc_power_down_link - Power down the phy/serdes link
103  * @adapter: address of board private structure
104  */
105 static void igc_power_down_link(struct igc_adapter *adapter)
106 {
107 	if (adapter->hw.phy.media_type == igc_media_type_copper)
108 		igc_power_down_phy_copper_base(&adapter->hw);
109 }
110 
111 /**
112  * igc_release_hw_control - release control of the h/w to f/w
113  * @adapter: address of board private structure
114  *
115  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
116  * For ASF and Pass Through versions of f/w this means that the
117  * driver is no longer loaded.
118  */
119 static void igc_release_hw_control(struct igc_adapter *adapter)
120 {
121 	struct igc_hw *hw = &adapter->hw;
122 	u32 ctrl_ext;
123 
124 	/* Let firmware take over control of h/w */
125 	ctrl_ext = rd32(IGC_CTRL_EXT);
126 	wr32(IGC_CTRL_EXT,
127 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
128 }
129 
130 /**
131  * igc_get_hw_control - get control of the h/w from f/w
132  * @adapter: address of board private structure
133  *
134  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
135  * For ASF and Pass Through versions of f/w this means that
136  * the driver is loaded.
137  */
138 static void igc_get_hw_control(struct igc_adapter *adapter)
139 {
140 	struct igc_hw *hw = &adapter->hw;
141 	u32 ctrl_ext;
142 
143 	/* Let firmware know the driver has taken over */
144 	ctrl_ext = rd32(IGC_CTRL_EXT);
145 	wr32(IGC_CTRL_EXT,
146 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
147 }
148 
149 /**
150  * igc_free_tx_resources - Free Tx Resources per Queue
151  * @tx_ring: Tx descriptor ring for a specific queue
152  *
153  * Free all transmit software resources
154  */
155 void igc_free_tx_resources(struct igc_ring *tx_ring)
156 {
157 	igc_clean_tx_ring(tx_ring);
158 
159 	vfree(tx_ring->tx_buffer_info);
160 	tx_ring->tx_buffer_info = NULL;
161 
162 	/* if not set, then don't free */
163 	if (!tx_ring->desc)
164 		return;
165 
166 	dma_free_coherent(tx_ring->dev, tx_ring->size,
167 			  tx_ring->desc, tx_ring->dma);
168 
169 	tx_ring->desc = NULL;
170 }
171 
172 /**
173  * igc_free_all_tx_resources - Free Tx Resources for All Queues
174  * @adapter: board private structure
175  *
176  * Free all transmit software resources
177  */
178 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
179 {
180 	int i;
181 
182 	for (i = 0; i < adapter->num_tx_queues; i++)
183 		igc_free_tx_resources(adapter->tx_ring[i]);
184 }
185 
186 /**
187  * igc_clean_tx_ring - Free Tx Buffers
188  * @tx_ring: ring to be cleaned
189  */
190 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
191 {
192 	u16 i = tx_ring->next_to_clean;
193 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
194 
195 	while (i != tx_ring->next_to_use) {
196 		union igc_adv_tx_desc *eop_desc, *tx_desc;
197 
198 		/* Free all the Tx ring sk_buffs */
199 		dev_kfree_skb_any(tx_buffer->skb);
200 
201 		/* unmap skb header data */
202 		dma_unmap_single(tx_ring->dev,
203 				 dma_unmap_addr(tx_buffer, dma),
204 				 dma_unmap_len(tx_buffer, len),
205 				 DMA_TO_DEVICE);
206 
207 		/* check for eop_desc to determine the end of the packet */
208 		eop_desc = tx_buffer->next_to_watch;
209 		tx_desc = IGC_TX_DESC(tx_ring, i);
210 
211 		/* unmap remaining buffers */
212 		while (tx_desc != eop_desc) {
213 			tx_buffer++;
214 			tx_desc++;
215 			i++;
216 			if (unlikely(i == tx_ring->count)) {
217 				i = 0;
218 				tx_buffer = tx_ring->tx_buffer_info;
219 				tx_desc = IGC_TX_DESC(tx_ring, 0);
220 			}
221 
222 			/* unmap any remaining paged data */
223 			if (dma_unmap_len(tx_buffer, len))
224 				dma_unmap_page(tx_ring->dev,
225 					       dma_unmap_addr(tx_buffer, dma),
226 					       dma_unmap_len(tx_buffer, len),
227 					       DMA_TO_DEVICE);
228 		}
229 
230 		/* move us one more past the eop_desc for start of next pkt */
231 		tx_buffer++;
232 		i++;
233 		if (unlikely(i == tx_ring->count)) {
234 			i = 0;
235 			tx_buffer = tx_ring->tx_buffer_info;
236 		}
237 	}
238 
239 	/* reset BQL for queue */
240 	netdev_tx_reset_queue(txring_txq(tx_ring));
241 
242 	/* reset next_to_use and next_to_clean */
243 	tx_ring->next_to_use = 0;
244 	tx_ring->next_to_clean = 0;
245 }
246 
247 /**
248  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
249  * @adapter: board private structure
250  */
251 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
252 {
253 	int i;
254 
255 	for (i = 0; i < adapter->num_tx_queues; i++)
256 		if (adapter->tx_ring[i])
257 			igc_clean_tx_ring(adapter->tx_ring[i]);
258 }
259 
260 /**
261  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
262  * @tx_ring: tx descriptor ring (for a specific queue) to setup
263  *
264  * Return 0 on success, negative on failure
265  */
266 int igc_setup_tx_resources(struct igc_ring *tx_ring)
267 {
268 	struct device *dev = tx_ring->dev;
269 	int size = 0;
270 
271 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
272 	tx_ring->tx_buffer_info = vzalloc(size);
273 	if (!tx_ring->tx_buffer_info)
274 		goto err;
275 
276 	/* round up to nearest 4K */
277 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
278 	tx_ring->size = ALIGN(tx_ring->size, 4096);
279 
280 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
281 					   &tx_ring->dma, GFP_KERNEL);
282 
283 	if (!tx_ring->desc)
284 		goto err;
285 
286 	tx_ring->next_to_use = 0;
287 	tx_ring->next_to_clean = 0;
288 
289 	return 0;
290 
291 err:
292 	vfree(tx_ring->tx_buffer_info);
293 	dev_err(dev,
294 		"Unable to allocate memory for the transmit descriptor ring\n");
295 	return -ENOMEM;
296 }
297 
298 /**
299  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
300  * @adapter: board private structure
301  *
302  * Return 0 on success, negative on failure
303  */
304 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
305 {
306 	struct pci_dev *pdev = adapter->pdev;
307 	int i, err = 0;
308 
309 	for (i = 0; i < adapter->num_tx_queues; i++) {
310 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
311 		if (err) {
312 			dev_err(&pdev->dev,
313 				"Allocation for Tx Queue %u failed\n", i);
314 			for (i--; i >= 0; i--)
315 				igc_free_tx_resources(adapter->tx_ring[i]);
316 			break;
317 		}
318 	}
319 
320 	return err;
321 }
322 
323 /**
324  * igc_clean_rx_ring - Free Rx Buffers per Queue
325  * @rx_ring: ring to free buffers from
326  */
327 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
328 {
329 	u16 i = rx_ring->next_to_clean;
330 
331 	if (rx_ring->skb)
332 		dev_kfree_skb(rx_ring->skb);
333 	rx_ring->skb = NULL;
334 
335 	/* Free all the Rx ring sk_buffs */
336 	while (i != rx_ring->next_to_alloc) {
337 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
338 
339 		/* Invalidate cache lines that may have been written to by
340 		 * device so that we avoid corrupting memory.
341 		 */
342 		dma_sync_single_range_for_cpu(rx_ring->dev,
343 					      buffer_info->dma,
344 					      buffer_info->page_offset,
345 					      igc_rx_bufsz(rx_ring),
346 					      DMA_FROM_DEVICE);
347 
348 		/* free resources associated with mapping */
349 		dma_unmap_page_attrs(rx_ring->dev,
350 				     buffer_info->dma,
351 				     igc_rx_pg_size(rx_ring),
352 				     DMA_FROM_DEVICE,
353 				     IGC_RX_DMA_ATTR);
354 		__page_frag_cache_drain(buffer_info->page,
355 					buffer_info->pagecnt_bias);
356 
357 		i++;
358 		if (i == rx_ring->count)
359 			i = 0;
360 	}
361 
362 	rx_ring->next_to_alloc = 0;
363 	rx_ring->next_to_clean = 0;
364 	rx_ring->next_to_use = 0;
365 }
366 
367 /**
368  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
369  * @adapter: board private structure
370  */
371 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
372 {
373 	int i;
374 
375 	for (i = 0; i < adapter->num_rx_queues; i++)
376 		if (adapter->rx_ring[i])
377 			igc_clean_rx_ring(adapter->rx_ring[i]);
378 }
379 
380 /**
381  * igc_free_rx_resources - Free Rx Resources
382  * @rx_ring: ring to clean the resources from
383  *
384  * Free all receive software resources
385  */
386 void igc_free_rx_resources(struct igc_ring *rx_ring)
387 {
388 	igc_clean_rx_ring(rx_ring);
389 
390 	vfree(rx_ring->rx_buffer_info);
391 	rx_ring->rx_buffer_info = NULL;
392 
393 	/* if not set, then don't free */
394 	if (!rx_ring->desc)
395 		return;
396 
397 	dma_free_coherent(rx_ring->dev, rx_ring->size,
398 			  rx_ring->desc, rx_ring->dma);
399 
400 	rx_ring->desc = NULL;
401 }
402 
403 /**
404  * igc_free_all_rx_resources - Free Rx Resources for All Queues
405  * @adapter: board private structure
406  *
407  * Free all receive software resources
408  */
409 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
410 {
411 	int i;
412 
413 	for (i = 0; i < adapter->num_rx_queues; i++)
414 		igc_free_rx_resources(adapter->rx_ring[i]);
415 }
416 
417 /**
418  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
419  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
420  *
421  * Returns 0 on success, negative on failure
422  */
423 int igc_setup_rx_resources(struct igc_ring *rx_ring)
424 {
425 	struct device *dev = rx_ring->dev;
426 	int size, desc_len;
427 
428 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
429 	rx_ring->rx_buffer_info = vzalloc(size);
430 	if (!rx_ring->rx_buffer_info)
431 		goto err;
432 
433 	desc_len = sizeof(union igc_adv_rx_desc);
434 
435 	/* Round up to nearest 4K */
436 	rx_ring->size = rx_ring->count * desc_len;
437 	rx_ring->size = ALIGN(rx_ring->size, 4096);
438 
439 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
440 					   &rx_ring->dma, GFP_KERNEL);
441 
442 	if (!rx_ring->desc)
443 		goto err;
444 
445 	rx_ring->next_to_alloc = 0;
446 	rx_ring->next_to_clean = 0;
447 	rx_ring->next_to_use = 0;
448 
449 	return 0;
450 
451 err:
452 	vfree(rx_ring->rx_buffer_info);
453 	rx_ring->rx_buffer_info = NULL;
454 	dev_err(dev,
455 		"Unable to allocate memory for the receive descriptor ring\n");
456 	return -ENOMEM;
457 }
458 
459 /**
460  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
461  *                                (Descriptors) for all queues
462  * @adapter: board private structure
463  *
464  * Return 0 on success, negative on failure
465  */
466 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
467 {
468 	struct pci_dev *pdev = adapter->pdev;
469 	int i, err = 0;
470 
471 	for (i = 0; i < adapter->num_rx_queues; i++) {
472 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
473 		if (err) {
474 			dev_err(&pdev->dev,
475 				"Allocation for Rx Queue %u failed\n", i);
476 			for (i--; i >= 0; i--)
477 				igc_free_rx_resources(adapter->rx_ring[i]);
478 			break;
479 		}
480 	}
481 
482 	return err;
483 }
484 
485 /**
486  * igc_configure_rx_ring - Configure a receive ring after Reset
487  * @adapter: board private structure
488  * @ring: receive ring to be configured
489  *
490  * Configure the Rx unit of the MAC after a reset.
491  */
492 static void igc_configure_rx_ring(struct igc_adapter *adapter,
493 				  struct igc_ring *ring)
494 {
495 	struct igc_hw *hw = &adapter->hw;
496 	union igc_adv_rx_desc *rx_desc;
497 	int reg_idx = ring->reg_idx;
498 	u32 srrctl = 0, rxdctl = 0;
499 	u64 rdba = ring->dma;
500 
501 	/* disable the queue */
502 	wr32(IGC_RXDCTL(reg_idx), 0);
503 
504 	/* Set DMA base address registers */
505 	wr32(IGC_RDBAL(reg_idx),
506 	     rdba & 0x00000000ffffffffULL);
507 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
508 	wr32(IGC_RDLEN(reg_idx),
509 	     ring->count * sizeof(union igc_adv_rx_desc));
510 
511 	/* initialize head and tail */
512 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
513 	wr32(IGC_RDH(reg_idx), 0);
514 	writel(0, ring->tail);
515 
516 	/* reset next-to- use/clean to place SW in sync with hardware */
517 	ring->next_to_clean = 0;
518 	ring->next_to_use = 0;
519 
520 	/* set descriptor configuration */
521 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
522 	if (ring_uses_large_buffer(ring))
523 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
524 	else
525 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
526 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
527 
528 	wr32(IGC_SRRCTL(reg_idx), srrctl);
529 
530 	rxdctl |= IGC_RX_PTHRESH;
531 	rxdctl |= IGC_RX_HTHRESH << 8;
532 	rxdctl |= IGC_RX_WTHRESH << 16;
533 
534 	/* initialize rx_buffer_info */
535 	memset(ring->rx_buffer_info, 0,
536 	       sizeof(struct igc_rx_buffer) * ring->count);
537 
538 	/* initialize Rx descriptor 0 */
539 	rx_desc = IGC_RX_DESC(ring, 0);
540 	rx_desc->wb.upper.length = 0;
541 
542 	/* enable receive descriptor fetching */
543 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
544 
545 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
546 }
547 
548 /**
549  * igc_configure_rx - Configure receive Unit after Reset
550  * @adapter: board private structure
551  *
552  * Configure the Rx unit of the MAC after a reset.
553  */
554 static void igc_configure_rx(struct igc_adapter *adapter)
555 {
556 	int i;
557 
558 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
559 	 * the Base and Length of the Rx Descriptor Ring
560 	 */
561 	for (i = 0; i < adapter->num_rx_queues; i++)
562 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
563 }
564 
565 /**
566  * igc_configure_tx_ring - Configure transmit ring after Reset
567  * @adapter: board private structure
568  * @ring: tx ring to configure
569  *
570  * Configure a transmit ring after a reset.
571  */
572 static void igc_configure_tx_ring(struct igc_adapter *adapter,
573 				  struct igc_ring *ring)
574 {
575 	struct igc_hw *hw = &adapter->hw;
576 	int reg_idx = ring->reg_idx;
577 	u64 tdba = ring->dma;
578 	u32 txdctl = 0;
579 
580 	/* disable the queue */
581 	wr32(IGC_TXDCTL(reg_idx), 0);
582 	wrfl();
583 	mdelay(10);
584 
585 	wr32(IGC_TDLEN(reg_idx),
586 	     ring->count * sizeof(union igc_adv_tx_desc));
587 	wr32(IGC_TDBAL(reg_idx),
588 	     tdba & 0x00000000ffffffffULL);
589 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
590 
591 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
592 	wr32(IGC_TDH(reg_idx), 0);
593 	writel(0, ring->tail);
594 
595 	txdctl |= IGC_TX_PTHRESH;
596 	txdctl |= IGC_TX_HTHRESH << 8;
597 	txdctl |= IGC_TX_WTHRESH << 16;
598 
599 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
600 	wr32(IGC_TXDCTL(reg_idx), txdctl);
601 }
602 
603 /**
604  * igc_configure_tx - Configure transmit Unit after Reset
605  * @adapter: board private structure
606  *
607  * Configure the Tx unit of the MAC after a reset.
608  */
609 static void igc_configure_tx(struct igc_adapter *adapter)
610 {
611 	int i;
612 
613 	for (i = 0; i < adapter->num_tx_queues; i++)
614 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
615 }
616 
617 /**
618  * igc_setup_mrqc - configure the multiple receive queue control registers
619  * @adapter: Board private structure
620  */
621 static void igc_setup_mrqc(struct igc_adapter *adapter)
622 {
623 }
624 
625 /**
626  * igc_setup_rctl - configure the receive control registers
627  * @adapter: Board private structure
628  */
629 static void igc_setup_rctl(struct igc_adapter *adapter)
630 {
631 	struct igc_hw *hw = &adapter->hw;
632 	u32 rctl;
633 
634 	rctl = rd32(IGC_RCTL);
635 
636 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
637 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
638 
639 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
640 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
641 
642 	/* enable stripping of CRC. Newer features require
643 	 * that the HW strips the CRC.
644 	 */
645 	rctl |= IGC_RCTL_SECRC;
646 
647 	/* disable store bad packets and clear size bits. */
648 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
649 
650 	/* enable LPE to allow for reception of jumbo frames */
651 	rctl |= IGC_RCTL_LPE;
652 
653 	/* disable queue 0 to prevent tail write w/o re-config */
654 	wr32(IGC_RXDCTL(0), 0);
655 
656 	/* This is useful for sniffing bad packets. */
657 	if (adapter->netdev->features & NETIF_F_RXALL) {
658 		/* UPE and MPE will be handled by normal PROMISC logic
659 		 * in set_rx_mode
660 		 */
661 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
662 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
663 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
664 
665 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
666 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
667 	}
668 
669 	wr32(IGC_RCTL, rctl);
670 }
671 
672 /**
673  * igc_setup_tctl - configure the transmit control registers
674  * @adapter: Board private structure
675  */
676 static void igc_setup_tctl(struct igc_adapter *adapter)
677 {
678 	struct igc_hw *hw = &adapter->hw;
679 	u32 tctl;
680 
681 	/* disable queue 0 which icould be enabled by default */
682 	wr32(IGC_TXDCTL(0), 0);
683 
684 	/* Program the Transmit Control Register */
685 	tctl = rd32(IGC_TCTL);
686 	tctl &= ~IGC_TCTL_CT;
687 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
688 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
689 
690 	/* Enable transmits */
691 	tctl |= IGC_TCTL_EN;
692 
693 	wr32(IGC_TCTL, tctl);
694 }
695 
696 /**
697  * igc_set_mac - Change the Ethernet Address of the NIC
698  * @netdev: network interface device structure
699  * @p: pointer to an address structure
700  *
701  * Returns 0 on success, negative on failure
702  */
703 static int igc_set_mac(struct net_device *netdev, void *p)
704 {
705 	struct igc_adapter *adapter = netdev_priv(netdev);
706 	struct igc_hw *hw = &adapter->hw;
707 	struct sockaddr *addr = p;
708 
709 	if (!is_valid_ether_addr(addr->sa_data))
710 		return -EADDRNOTAVAIL;
711 
712 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
713 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
714 
715 	/* set the correct pool for the new PF MAC address in entry 0 */
716 	igc_set_default_mac_filter(adapter);
717 
718 	return 0;
719 }
720 
721 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
722 {
723 }
724 
725 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
726 {
727 	struct net_device *netdev = tx_ring->netdev;
728 
729 	netif_stop_subqueue(netdev, tx_ring->queue_index);
730 
731 	/* memory barriier comment */
732 	smp_mb();
733 
734 	/* We need to check again in a case another CPU has just
735 	 * made room available.
736 	 */
737 	if (igc_desc_unused(tx_ring) < size)
738 		return -EBUSY;
739 
740 	/* A reprieve! */
741 	netif_wake_subqueue(netdev, tx_ring->queue_index);
742 
743 	u64_stats_update_begin(&tx_ring->tx_syncp2);
744 	tx_ring->tx_stats.restart_queue2++;
745 	u64_stats_update_end(&tx_ring->tx_syncp2);
746 
747 	return 0;
748 }
749 
750 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
751 {
752 	if (igc_desc_unused(tx_ring) >= size)
753 		return 0;
754 	return __igc_maybe_stop_tx(tx_ring, size);
755 }
756 
757 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
758 {
759 	/* set type for advanced descriptor with frame checksum insertion */
760 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
761 		       IGC_ADVTXD_DCMD_DEXT |
762 		       IGC_ADVTXD_DCMD_IFCS;
763 
764 	return cmd_type;
765 }
766 
767 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
768 				 union igc_adv_tx_desc *tx_desc,
769 				 u32 tx_flags, unsigned int paylen)
770 {
771 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
772 
773 	/* insert L4 checksum */
774 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
775 			  ((IGC_TXD_POPTS_TXSM << 8) /
776 			  IGC_TX_FLAGS_CSUM);
777 
778 	/* insert IPv4 checksum */
779 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
780 			  (((IGC_TXD_POPTS_IXSM << 8)) /
781 			  IGC_TX_FLAGS_IPV4);
782 
783 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
784 }
785 
786 static int igc_tx_map(struct igc_ring *tx_ring,
787 		      struct igc_tx_buffer *first,
788 		      const u8 hdr_len)
789 {
790 	struct sk_buff *skb = first->skb;
791 	struct igc_tx_buffer *tx_buffer;
792 	union igc_adv_tx_desc *tx_desc;
793 	u32 tx_flags = first->tx_flags;
794 	struct skb_frag_struct *frag;
795 	u16 i = tx_ring->next_to_use;
796 	unsigned int data_len, size;
797 	dma_addr_t dma;
798 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
799 
800 	tx_desc = IGC_TX_DESC(tx_ring, i);
801 
802 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
803 
804 	size = skb_headlen(skb);
805 	data_len = skb->data_len;
806 
807 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
808 
809 	tx_buffer = first;
810 
811 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
812 		if (dma_mapping_error(tx_ring->dev, dma))
813 			goto dma_error;
814 
815 		/* record length, and DMA address */
816 		dma_unmap_len_set(tx_buffer, len, size);
817 		dma_unmap_addr_set(tx_buffer, dma, dma);
818 
819 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
820 
821 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
822 			tx_desc->read.cmd_type_len =
823 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
824 
825 			i++;
826 			tx_desc++;
827 			if (i == tx_ring->count) {
828 				tx_desc = IGC_TX_DESC(tx_ring, 0);
829 				i = 0;
830 			}
831 			tx_desc->read.olinfo_status = 0;
832 
833 			dma += IGC_MAX_DATA_PER_TXD;
834 			size -= IGC_MAX_DATA_PER_TXD;
835 
836 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
837 		}
838 
839 		if (likely(!data_len))
840 			break;
841 
842 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
843 
844 		i++;
845 		tx_desc++;
846 		if (i == tx_ring->count) {
847 			tx_desc = IGC_TX_DESC(tx_ring, 0);
848 			i = 0;
849 		}
850 		tx_desc->read.olinfo_status = 0;
851 
852 		size = skb_frag_size(frag);
853 		data_len -= size;
854 
855 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
856 				       size, DMA_TO_DEVICE);
857 
858 		tx_buffer = &tx_ring->tx_buffer_info[i];
859 	}
860 
861 	/* write last descriptor with RS and EOP bits */
862 	cmd_type |= size | IGC_TXD_DCMD;
863 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
864 
865 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
866 
867 	/* set the timestamp */
868 	first->time_stamp = jiffies;
869 
870 	skb_tx_timestamp(skb);
871 
872 	/* Force memory writes to complete before letting h/w know there
873 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
874 	 * memory model archs, such as IA-64).
875 	 *
876 	 * We also need this memory barrier to make certain all of the
877 	 * status bits have been updated before next_to_watch is written.
878 	 */
879 	wmb();
880 
881 	/* set next_to_watch value indicating a packet is present */
882 	first->next_to_watch = tx_desc;
883 
884 	i++;
885 	if (i == tx_ring->count)
886 		i = 0;
887 
888 	tx_ring->next_to_use = i;
889 
890 	/* Make sure there is space in the ring for the next send. */
891 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
892 
893 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
894 		writel(i, tx_ring->tail);
895 
896 		/* we need this if more than one processor can write to our tail
897 		 * at a time, it synchronizes IO on IA64/Altix systems
898 		 */
899 		mmiowb();
900 	}
901 
902 	return 0;
903 dma_error:
904 	dev_err(tx_ring->dev, "TX DMA map failed\n");
905 	tx_buffer = &tx_ring->tx_buffer_info[i];
906 
907 	/* clear dma mappings for failed tx_buffer_info map */
908 	while (tx_buffer != first) {
909 		if (dma_unmap_len(tx_buffer, len))
910 			dma_unmap_page(tx_ring->dev,
911 				       dma_unmap_addr(tx_buffer, dma),
912 				       dma_unmap_len(tx_buffer, len),
913 				       DMA_TO_DEVICE);
914 		dma_unmap_len_set(tx_buffer, len, 0);
915 
916 		if (i-- == 0)
917 			i += tx_ring->count;
918 		tx_buffer = &tx_ring->tx_buffer_info[i];
919 	}
920 
921 	if (dma_unmap_len(tx_buffer, len))
922 		dma_unmap_single(tx_ring->dev,
923 				 dma_unmap_addr(tx_buffer, dma),
924 				 dma_unmap_len(tx_buffer, len),
925 				 DMA_TO_DEVICE);
926 	dma_unmap_len_set(tx_buffer, len, 0);
927 
928 	dev_kfree_skb_any(tx_buffer->skb);
929 	tx_buffer->skb = NULL;
930 
931 	tx_ring->next_to_use = i;
932 
933 	return -1;
934 }
935 
936 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
937 				       struct igc_ring *tx_ring)
938 {
939 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
940 	__be16 protocol = vlan_get_protocol(skb);
941 	struct igc_tx_buffer *first;
942 	u32 tx_flags = 0;
943 	unsigned short f;
944 	u8 hdr_len = 0;
945 
946 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
947 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
948 	 *	+ 2 desc gap to keep tail from touching head,
949 	 *	+ 1 desc for context descriptor,
950 	 * otherwise try next time
951 	 */
952 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
953 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
954 
955 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
956 		/* this is a hard error */
957 		return NETDEV_TX_BUSY;
958 	}
959 
960 	/* record the location of the first descriptor for this packet */
961 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
962 	first->skb = skb;
963 	first->bytecount = skb->len;
964 	first->gso_segs = 1;
965 
966 	/* record initial flags and protocol */
967 	first->tx_flags = tx_flags;
968 	first->protocol = protocol;
969 
970 	igc_tx_csum(tx_ring, first);
971 
972 	igc_tx_map(tx_ring, first, hdr_len);
973 
974 	return NETDEV_TX_OK;
975 }
976 
977 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
978 						    struct sk_buff *skb)
979 {
980 	unsigned int r_idx = skb->queue_mapping;
981 
982 	if (r_idx >= adapter->num_tx_queues)
983 		r_idx = r_idx % adapter->num_tx_queues;
984 
985 	return adapter->tx_ring[r_idx];
986 }
987 
988 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
989 				  struct net_device *netdev)
990 {
991 	struct igc_adapter *adapter = netdev_priv(netdev);
992 
993 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
994 	 * in order to meet this minimum size requirement.
995 	 */
996 	if (skb->len < 17) {
997 		if (skb_padto(skb, 17))
998 			return NETDEV_TX_OK;
999 		skb->len = 17;
1000 	}
1001 
1002 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1003 }
1004 
1005 static inline void igc_rx_hash(struct igc_ring *ring,
1006 			       union igc_adv_rx_desc *rx_desc,
1007 			       struct sk_buff *skb)
1008 {
1009 	if (ring->netdev->features & NETIF_F_RXHASH)
1010 		skb_set_hash(skb,
1011 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1012 			     PKT_HASH_TYPE_L3);
1013 }
1014 
1015 /**
1016  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1017  * @rx_ring: rx descriptor ring packet is being transacted on
1018  * @rx_desc: pointer to the EOP Rx descriptor
1019  * @skb: pointer to current skb being populated
1020  *
1021  * This function checks the ring, descriptor, and packet information in
1022  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1023  * other fields within the skb.
1024  */
1025 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1026 				   union igc_adv_rx_desc *rx_desc,
1027 				   struct sk_buff *skb)
1028 {
1029 	igc_rx_hash(rx_ring, rx_desc, skb);
1030 
1031 	skb_record_rx_queue(skb, rx_ring->queue_index);
1032 
1033 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1034 }
1035 
1036 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1037 					       const unsigned int size)
1038 {
1039 	struct igc_rx_buffer *rx_buffer;
1040 
1041 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1042 	prefetchw(rx_buffer->page);
1043 
1044 	/* we are reusing so sync this buffer for CPU use */
1045 	dma_sync_single_range_for_cpu(rx_ring->dev,
1046 				      rx_buffer->dma,
1047 				      rx_buffer->page_offset,
1048 				      size,
1049 				      DMA_FROM_DEVICE);
1050 
1051 	rx_buffer->pagecnt_bias--;
1052 
1053 	return rx_buffer;
1054 }
1055 
1056 /**
1057  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1058  * @rx_ring: rx descriptor ring to transact packets on
1059  * @rx_buffer: buffer containing page to add
1060  * @skb: sk_buff to place the data into
1061  * @size: size of buffer to be added
1062  *
1063  * This function will add the data contained in rx_buffer->page to the skb.
1064  */
1065 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1066 			    struct igc_rx_buffer *rx_buffer,
1067 			    struct sk_buff *skb,
1068 			    unsigned int size)
1069 {
1070 #if (PAGE_SIZE < 8192)
1071 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1072 
1073 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1074 			rx_buffer->page_offset, size, truesize);
1075 	rx_buffer->page_offset ^= truesize;
1076 #else
1077 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1078 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1079 				SKB_DATA_ALIGN(size);
1080 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1081 			rx_buffer->page_offset, size, truesize);
1082 	rx_buffer->page_offset += truesize;
1083 #endif
1084 }
1085 
1086 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1087 				     struct igc_rx_buffer *rx_buffer,
1088 				     union igc_adv_rx_desc *rx_desc,
1089 				     unsigned int size)
1090 {
1091 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1092 #if (PAGE_SIZE < 8192)
1093 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1094 #else
1095 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1096 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1097 #endif
1098 	struct sk_buff *skb;
1099 
1100 	/* prefetch first cache line of first page */
1101 	prefetch(va);
1102 #if L1_CACHE_BYTES < 128
1103 	prefetch(va + L1_CACHE_BYTES);
1104 #endif
1105 
1106 	/* build an skb around the page buffer */
1107 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1108 	if (unlikely(!skb))
1109 		return NULL;
1110 
1111 	/* update pointers within the skb to store the data */
1112 	skb_reserve(skb, IGC_SKB_PAD);
1113 	__skb_put(skb, size);
1114 
1115 	/* update buffer offset */
1116 #if (PAGE_SIZE < 8192)
1117 	rx_buffer->page_offset ^= truesize;
1118 #else
1119 	rx_buffer->page_offset += truesize;
1120 #endif
1121 
1122 	return skb;
1123 }
1124 
1125 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1126 					 struct igc_rx_buffer *rx_buffer,
1127 					 union igc_adv_rx_desc *rx_desc,
1128 					 unsigned int size)
1129 {
1130 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1131 #if (PAGE_SIZE < 8192)
1132 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1133 #else
1134 	unsigned int truesize = SKB_DATA_ALIGN(size);
1135 #endif
1136 	unsigned int headlen;
1137 	struct sk_buff *skb;
1138 
1139 	/* prefetch first cache line of first page */
1140 	prefetch(va);
1141 #if L1_CACHE_BYTES < 128
1142 	prefetch(va + L1_CACHE_BYTES);
1143 #endif
1144 
1145 	/* allocate a skb to store the frags */
1146 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1147 	if (unlikely(!skb))
1148 		return NULL;
1149 
1150 	/* Determine available headroom for copy */
1151 	headlen = size;
1152 	if (headlen > IGC_RX_HDR_LEN)
1153 		headlen = eth_get_headlen(va, IGC_RX_HDR_LEN);
1154 
1155 	/* align pull length to size of long to optimize memcpy performance */
1156 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1157 
1158 	/* update all of the pointers */
1159 	size -= headlen;
1160 	if (size) {
1161 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1162 				(va + headlen) - page_address(rx_buffer->page),
1163 				size, truesize);
1164 #if (PAGE_SIZE < 8192)
1165 		rx_buffer->page_offset ^= truesize;
1166 #else
1167 		rx_buffer->page_offset += truesize;
1168 #endif
1169 	} else {
1170 		rx_buffer->pagecnt_bias++;
1171 	}
1172 
1173 	return skb;
1174 }
1175 
1176 /**
1177  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1178  * @rx_ring: rx descriptor ring to store buffers on
1179  * @old_buff: donor buffer to have page reused
1180  *
1181  * Synchronizes page for reuse by the adapter
1182  */
1183 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1184 			      struct igc_rx_buffer *old_buff)
1185 {
1186 	u16 nta = rx_ring->next_to_alloc;
1187 	struct igc_rx_buffer *new_buff;
1188 
1189 	new_buff = &rx_ring->rx_buffer_info[nta];
1190 
1191 	/* update, and store next to alloc */
1192 	nta++;
1193 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1194 
1195 	/* Transfer page from old buffer to new buffer.
1196 	 * Move each member individually to avoid possible store
1197 	 * forwarding stalls.
1198 	 */
1199 	new_buff->dma		= old_buff->dma;
1200 	new_buff->page		= old_buff->page;
1201 	new_buff->page_offset	= old_buff->page_offset;
1202 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1203 }
1204 
1205 static inline bool igc_page_is_reserved(struct page *page)
1206 {
1207 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1208 }
1209 
1210 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1211 {
1212 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1213 	struct page *page = rx_buffer->page;
1214 
1215 	/* avoid re-using remote pages */
1216 	if (unlikely(igc_page_is_reserved(page)))
1217 		return false;
1218 
1219 #if (PAGE_SIZE < 8192)
1220 	/* if we are only owner of page we can reuse it */
1221 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1222 		return false;
1223 #else
1224 #define IGC_LAST_OFFSET \
1225 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1226 
1227 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1228 		return false;
1229 #endif
1230 
1231 	/* If we have drained the page fragment pool we need to update
1232 	 * the pagecnt_bias and page count so that we fully restock the
1233 	 * number of references the driver holds.
1234 	 */
1235 	if (unlikely(!pagecnt_bias)) {
1236 		page_ref_add(page, USHRT_MAX);
1237 		rx_buffer->pagecnt_bias = USHRT_MAX;
1238 	}
1239 
1240 	return true;
1241 }
1242 
1243 /**
1244  * igc_is_non_eop - process handling of non-EOP buffers
1245  * @rx_ring: Rx ring being processed
1246  * @rx_desc: Rx descriptor for current buffer
1247  * @skb: current socket buffer containing buffer in progress
1248  *
1249  * This function updates next to clean.  If the buffer is an EOP buffer
1250  * this function exits returning false, otherwise it will place the
1251  * sk_buff in the next buffer to be chained and return true indicating
1252  * that this is in fact a non-EOP buffer.
1253  */
1254 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1255 			   union igc_adv_rx_desc *rx_desc)
1256 {
1257 	u32 ntc = rx_ring->next_to_clean + 1;
1258 
1259 	/* fetch, update, and store next to clean */
1260 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1261 	rx_ring->next_to_clean = ntc;
1262 
1263 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1264 
1265 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1266 		return false;
1267 
1268 	return true;
1269 }
1270 
1271 /**
1272  * igc_cleanup_headers - Correct corrupted or empty headers
1273  * @rx_ring: rx descriptor ring packet is being transacted on
1274  * @rx_desc: pointer to the EOP Rx descriptor
1275  * @skb: pointer to current skb being fixed
1276  *
1277  * Address the case where we are pulling data in on pages only
1278  * and as such no data is present in the skb header.
1279  *
1280  * In addition if skb is not at least 60 bytes we need to pad it so that
1281  * it is large enough to qualify as a valid Ethernet frame.
1282  *
1283  * Returns true if an error was encountered and skb was freed.
1284  */
1285 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1286 				union igc_adv_rx_desc *rx_desc,
1287 				struct sk_buff *skb)
1288 {
1289 	if (unlikely((igc_test_staterr(rx_desc,
1290 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1291 		struct net_device *netdev = rx_ring->netdev;
1292 
1293 		if (!(netdev->features & NETIF_F_RXALL)) {
1294 			dev_kfree_skb_any(skb);
1295 			return true;
1296 		}
1297 	}
1298 
1299 	/* if eth_skb_pad returns an error the skb was freed */
1300 	if (eth_skb_pad(skb))
1301 		return true;
1302 
1303 	return false;
1304 }
1305 
1306 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1307 			      struct igc_rx_buffer *rx_buffer)
1308 {
1309 	if (igc_can_reuse_rx_page(rx_buffer)) {
1310 		/* hand second half of page back to the ring */
1311 		igc_reuse_rx_page(rx_ring, rx_buffer);
1312 	} else {
1313 		/* We are not reusing the buffer so unmap it and free
1314 		 * any references we are holding to it
1315 		 */
1316 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1317 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1318 				     IGC_RX_DMA_ATTR);
1319 		__page_frag_cache_drain(rx_buffer->page,
1320 					rx_buffer->pagecnt_bias);
1321 	}
1322 
1323 	/* clear contents of rx_buffer */
1324 	rx_buffer->page = NULL;
1325 }
1326 
1327 /**
1328  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1329  * @adapter: address of board private structure
1330  */
1331 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1332 {
1333 	union igc_adv_rx_desc *rx_desc;
1334 	u16 i = rx_ring->next_to_use;
1335 	struct igc_rx_buffer *bi;
1336 	u16 bufsz;
1337 
1338 	/* nothing to do */
1339 	if (!cleaned_count)
1340 		return;
1341 
1342 	rx_desc = IGC_RX_DESC(rx_ring, i);
1343 	bi = &rx_ring->rx_buffer_info[i];
1344 	i -= rx_ring->count;
1345 
1346 	bufsz = igc_rx_bufsz(rx_ring);
1347 
1348 	do {
1349 		if (!igc_alloc_mapped_page(rx_ring, bi))
1350 			break;
1351 
1352 		/* sync the buffer for use by the device */
1353 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1354 						 bi->page_offset, bufsz,
1355 						 DMA_FROM_DEVICE);
1356 
1357 		/* Refresh the desc even if buffer_addrs didn't change
1358 		 * because each write-back erases this info.
1359 		 */
1360 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1361 
1362 		rx_desc++;
1363 		bi++;
1364 		i++;
1365 		if (unlikely(!i)) {
1366 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1367 			bi = rx_ring->rx_buffer_info;
1368 			i -= rx_ring->count;
1369 		}
1370 
1371 		/* clear the length for the next_to_use descriptor */
1372 		rx_desc->wb.upper.length = 0;
1373 
1374 		cleaned_count--;
1375 	} while (cleaned_count);
1376 
1377 	i += rx_ring->count;
1378 
1379 	if (rx_ring->next_to_use != i) {
1380 		/* record the next descriptor to use */
1381 		rx_ring->next_to_use = i;
1382 
1383 		/* update next to alloc since we have filled the ring */
1384 		rx_ring->next_to_alloc = i;
1385 
1386 		/* Force memory writes to complete before letting h/w
1387 		 * know there are new descriptors to fetch.  (Only
1388 		 * applicable for weak-ordered memory model archs,
1389 		 * such as IA-64).
1390 		 */
1391 		wmb();
1392 		writel(i, rx_ring->tail);
1393 	}
1394 }
1395 
1396 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1397 {
1398 	unsigned int total_bytes = 0, total_packets = 0;
1399 	struct igc_ring *rx_ring = q_vector->rx.ring;
1400 	struct sk_buff *skb = rx_ring->skb;
1401 	u16 cleaned_count = igc_desc_unused(rx_ring);
1402 
1403 	while (likely(total_packets < budget)) {
1404 		union igc_adv_rx_desc *rx_desc;
1405 		struct igc_rx_buffer *rx_buffer;
1406 		unsigned int size;
1407 
1408 		/* return some buffers to hardware, one at a time is too slow */
1409 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1410 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1411 			cleaned_count = 0;
1412 		}
1413 
1414 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1415 		size = le16_to_cpu(rx_desc->wb.upper.length);
1416 		if (!size)
1417 			break;
1418 
1419 		/* This memory barrier is needed to keep us from reading
1420 		 * any other fields out of the rx_desc until we know the
1421 		 * descriptor has been written back
1422 		 */
1423 		dma_rmb();
1424 
1425 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1426 
1427 		/* retrieve a buffer from the ring */
1428 		if (skb)
1429 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1430 		else if (ring_uses_build_skb(rx_ring))
1431 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1432 		else
1433 			skb = igc_construct_skb(rx_ring, rx_buffer,
1434 						rx_desc, size);
1435 
1436 		/* exit if we failed to retrieve a buffer */
1437 		if (!skb) {
1438 			rx_ring->rx_stats.alloc_failed++;
1439 			rx_buffer->pagecnt_bias++;
1440 			break;
1441 		}
1442 
1443 		igc_put_rx_buffer(rx_ring, rx_buffer);
1444 		cleaned_count++;
1445 
1446 		/* fetch next buffer in frame if non-eop */
1447 		if (igc_is_non_eop(rx_ring, rx_desc))
1448 			continue;
1449 
1450 		/* verify the packet layout is correct */
1451 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1452 			skb = NULL;
1453 			continue;
1454 		}
1455 
1456 		/* probably a little skewed due to removing CRC */
1457 		total_bytes += skb->len;
1458 
1459 		/* populate checksum, timestamp, VLAN, and protocol */
1460 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1461 
1462 		napi_gro_receive(&q_vector->napi, skb);
1463 
1464 		/* reset skb pointer */
1465 		skb = NULL;
1466 
1467 		/* update budget accounting */
1468 		total_packets++;
1469 	}
1470 
1471 	/* place incomplete frames back on ring for completion */
1472 	rx_ring->skb = skb;
1473 
1474 	u64_stats_update_begin(&rx_ring->rx_syncp);
1475 	rx_ring->rx_stats.packets += total_packets;
1476 	rx_ring->rx_stats.bytes += total_bytes;
1477 	u64_stats_update_end(&rx_ring->rx_syncp);
1478 	q_vector->rx.total_packets += total_packets;
1479 	q_vector->rx.total_bytes += total_bytes;
1480 
1481 	if (cleaned_count)
1482 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1483 
1484 	return total_packets;
1485 }
1486 
1487 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1488 {
1489 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1490 }
1491 
1492 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1493 				  struct igc_rx_buffer *bi)
1494 {
1495 	struct page *page = bi->page;
1496 	dma_addr_t dma;
1497 
1498 	/* since we are recycling buffers we should seldom need to alloc */
1499 	if (likely(page))
1500 		return true;
1501 
1502 	/* alloc new page for storage */
1503 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1504 	if (unlikely(!page)) {
1505 		rx_ring->rx_stats.alloc_failed++;
1506 		return false;
1507 	}
1508 
1509 	/* map page for use */
1510 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1511 				 igc_rx_pg_size(rx_ring),
1512 				 DMA_FROM_DEVICE,
1513 				 IGC_RX_DMA_ATTR);
1514 
1515 	/* if mapping failed free memory back to system since
1516 	 * there isn't much point in holding memory we can't use
1517 	 */
1518 	if (dma_mapping_error(rx_ring->dev, dma)) {
1519 		__free_page(page);
1520 
1521 		rx_ring->rx_stats.alloc_failed++;
1522 		return false;
1523 	}
1524 
1525 	bi->dma = dma;
1526 	bi->page = page;
1527 	bi->page_offset = igc_rx_offset(rx_ring);
1528 	bi->pagecnt_bias = 1;
1529 
1530 	return true;
1531 }
1532 
1533 /**
1534  * igc_clean_tx_irq - Reclaim resources after transmit completes
1535  * @q_vector: pointer to q_vector containing needed info
1536  * @napi_budget: Used to determine if we are in netpoll
1537  *
1538  * returns true if ring is completely cleaned
1539  */
1540 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1541 {
1542 	struct igc_adapter *adapter = q_vector->adapter;
1543 	unsigned int total_bytes = 0, total_packets = 0;
1544 	unsigned int budget = q_vector->tx.work_limit;
1545 	struct igc_ring *tx_ring = q_vector->tx.ring;
1546 	unsigned int i = tx_ring->next_to_clean;
1547 	struct igc_tx_buffer *tx_buffer;
1548 	union igc_adv_tx_desc *tx_desc;
1549 
1550 	if (test_bit(__IGC_DOWN, &adapter->state))
1551 		return true;
1552 
1553 	tx_buffer = &tx_ring->tx_buffer_info[i];
1554 	tx_desc = IGC_TX_DESC(tx_ring, i);
1555 	i -= tx_ring->count;
1556 
1557 	do {
1558 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1559 
1560 		/* if next_to_watch is not set then there is no work pending */
1561 		if (!eop_desc)
1562 			break;
1563 
1564 		/* prevent any other reads prior to eop_desc */
1565 		smp_rmb();
1566 
1567 		/* if DD is not set pending work has not been completed */
1568 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1569 			break;
1570 
1571 		/* clear next_to_watch to prevent false hangs */
1572 		tx_buffer->next_to_watch = NULL;
1573 
1574 		/* update the statistics for this packet */
1575 		total_bytes += tx_buffer->bytecount;
1576 		total_packets += tx_buffer->gso_segs;
1577 
1578 		/* free the skb */
1579 		napi_consume_skb(tx_buffer->skb, napi_budget);
1580 
1581 		/* unmap skb header data */
1582 		dma_unmap_single(tx_ring->dev,
1583 				 dma_unmap_addr(tx_buffer, dma),
1584 				 dma_unmap_len(tx_buffer, len),
1585 				 DMA_TO_DEVICE);
1586 
1587 		/* clear tx_buffer data */
1588 		dma_unmap_len_set(tx_buffer, len, 0);
1589 
1590 		/* clear last DMA location and unmap remaining buffers */
1591 		while (tx_desc != eop_desc) {
1592 			tx_buffer++;
1593 			tx_desc++;
1594 			i++;
1595 			if (unlikely(!i)) {
1596 				i -= tx_ring->count;
1597 				tx_buffer = tx_ring->tx_buffer_info;
1598 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1599 			}
1600 
1601 			/* unmap any remaining paged data */
1602 			if (dma_unmap_len(tx_buffer, len)) {
1603 				dma_unmap_page(tx_ring->dev,
1604 					       dma_unmap_addr(tx_buffer, dma),
1605 					       dma_unmap_len(tx_buffer, len),
1606 					       DMA_TO_DEVICE);
1607 				dma_unmap_len_set(tx_buffer, len, 0);
1608 			}
1609 		}
1610 
1611 		/* move us one more past the eop_desc for start of next pkt */
1612 		tx_buffer++;
1613 		tx_desc++;
1614 		i++;
1615 		if (unlikely(!i)) {
1616 			i -= tx_ring->count;
1617 			tx_buffer = tx_ring->tx_buffer_info;
1618 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1619 		}
1620 
1621 		/* issue prefetch for next Tx descriptor */
1622 		prefetch(tx_desc);
1623 
1624 		/* update budget accounting */
1625 		budget--;
1626 	} while (likely(budget));
1627 
1628 	netdev_tx_completed_queue(txring_txq(tx_ring),
1629 				  total_packets, total_bytes);
1630 
1631 	i += tx_ring->count;
1632 	tx_ring->next_to_clean = i;
1633 	u64_stats_update_begin(&tx_ring->tx_syncp);
1634 	tx_ring->tx_stats.bytes += total_bytes;
1635 	tx_ring->tx_stats.packets += total_packets;
1636 	u64_stats_update_end(&tx_ring->tx_syncp);
1637 	q_vector->tx.total_bytes += total_bytes;
1638 	q_vector->tx.total_packets += total_packets;
1639 
1640 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1641 		struct igc_hw *hw = &adapter->hw;
1642 
1643 		/* Detect a transmit hang in hardware, this serializes the
1644 		 * check with the clearing of time_stamp and movement of i
1645 		 */
1646 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1647 		if (tx_buffer->next_to_watch &&
1648 		    time_after(jiffies, tx_buffer->time_stamp +
1649 		    (adapter->tx_timeout_factor * HZ)) &&
1650 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1651 			/* detected Tx unit hang */
1652 			dev_err(tx_ring->dev,
1653 				"Detected Tx Unit Hang\n"
1654 				"  Tx Queue             <%d>\n"
1655 				"  TDH                  <%x>\n"
1656 				"  TDT                  <%x>\n"
1657 				"  next_to_use          <%x>\n"
1658 				"  next_to_clean        <%x>\n"
1659 				"buffer_info[next_to_clean]\n"
1660 				"  time_stamp           <%lx>\n"
1661 				"  next_to_watch        <%p>\n"
1662 				"  jiffies              <%lx>\n"
1663 				"  desc.status          <%x>\n",
1664 				tx_ring->queue_index,
1665 				rd32(IGC_TDH(tx_ring->reg_idx)),
1666 				readl(tx_ring->tail),
1667 				tx_ring->next_to_use,
1668 				tx_ring->next_to_clean,
1669 				tx_buffer->time_stamp,
1670 				tx_buffer->next_to_watch,
1671 				jiffies,
1672 				tx_buffer->next_to_watch->wb.status);
1673 			netif_stop_subqueue(tx_ring->netdev,
1674 					    tx_ring->queue_index);
1675 
1676 			/* we are about to reset, no point in enabling stuff */
1677 			return true;
1678 		}
1679 	}
1680 
1681 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1682 	if (unlikely(total_packets &&
1683 		     netif_carrier_ok(tx_ring->netdev) &&
1684 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1685 		/* Make sure that anybody stopping the queue after this
1686 		 * sees the new next_to_clean.
1687 		 */
1688 		smp_mb();
1689 		if (__netif_subqueue_stopped(tx_ring->netdev,
1690 					     tx_ring->queue_index) &&
1691 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
1692 			netif_wake_subqueue(tx_ring->netdev,
1693 					    tx_ring->queue_index);
1694 
1695 			u64_stats_update_begin(&tx_ring->tx_syncp);
1696 			tx_ring->tx_stats.restart_queue++;
1697 			u64_stats_update_end(&tx_ring->tx_syncp);
1698 		}
1699 	}
1700 
1701 	return !!budget;
1702 }
1703 
1704 /**
1705  * igc_up - Open the interface and prepare it to handle traffic
1706  * @adapter: board private structure
1707  */
1708 void igc_up(struct igc_adapter *adapter)
1709 {
1710 	struct igc_hw *hw = &adapter->hw;
1711 	int i = 0;
1712 
1713 	/* hardware has been reset, we need to reload some things */
1714 	igc_configure(adapter);
1715 
1716 	clear_bit(__IGC_DOWN, &adapter->state);
1717 
1718 	for (i = 0; i < adapter->num_q_vectors; i++)
1719 		napi_enable(&adapter->q_vector[i]->napi);
1720 
1721 	if (adapter->msix_entries)
1722 		igc_configure_msix(adapter);
1723 	else
1724 		igc_assign_vector(adapter->q_vector[0], 0);
1725 
1726 	/* Clear any pending interrupts. */
1727 	rd32(IGC_ICR);
1728 	igc_irq_enable(adapter);
1729 
1730 	netif_tx_start_all_queues(adapter->netdev);
1731 
1732 	/* start the watchdog. */
1733 	hw->mac.get_link_status = 1;
1734 	schedule_work(&adapter->watchdog_task);
1735 }
1736 
1737 /**
1738  * igc_update_stats - Update the board statistics counters
1739  * @adapter: board private structure
1740  */
1741 static void igc_update_stats(struct igc_adapter *adapter)
1742 {
1743 }
1744 
1745 static void igc_nfc_filter_exit(struct igc_adapter *adapter)
1746 {
1747 }
1748 
1749 /**
1750  * igc_down - Close the interface
1751  * @adapter: board private structure
1752  */
1753 void igc_down(struct igc_adapter *adapter)
1754 {
1755 	struct net_device *netdev = adapter->netdev;
1756 	struct igc_hw *hw = &adapter->hw;
1757 	u32 tctl, rctl;
1758 	int i = 0;
1759 
1760 	set_bit(__IGC_DOWN, &adapter->state);
1761 
1762 	/* disable receives in the hardware */
1763 	rctl = rd32(IGC_RCTL);
1764 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
1765 	/* flush and sleep below */
1766 
1767 	igc_nfc_filter_exit(adapter);
1768 
1769 	/* set trans_start so we don't get spurious watchdogs during reset */
1770 	netif_trans_update(netdev);
1771 
1772 	netif_carrier_off(netdev);
1773 	netif_tx_stop_all_queues(netdev);
1774 
1775 	/* disable transmits in the hardware */
1776 	tctl = rd32(IGC_TCTL);
1777 	tctl &= ~IGC_TCTL_EN;
1778 	wr32(IGC_TCTL, tctl);
1779 	/* flush both disables and wait for them to finish */
1780 	wrfl();
1781 	usleep_range(10000, 20000);
1782 
1783 	igc_irq_disable(adapter);
1784 
1785 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
1786 
1787 	for (i = 0; i < adapter->num_q_vectors; i++) {
1788 		if (adapter->q_vector[i]) {
1789 			napi_synchronize(&adapter->q_vector[i]->napi);
1790 			napi_disable(&adapter->q_vector[i]->napi);
1791 		}
1792 	}
1793 
1794 	del_timer_sync(&adapter->watchdog_timer);
1795 	del_timer_sync(&adapter->phy_info_timer);
1796 
1797 	/* record the stats before reset*/
1798 	spin_lock(&adapter->stats64_lock);
1799 	igc_update_stats(adapter);
1800 	spin_unlock(&adapter->stats64_lock);
1801 
1802 	adapter->link_speed = 0;
1803 	adapter->link_duplex = 0;
1804 
1805 	if (!pci_channel_offline(adapter->pdev))
1806 		igc_reset(adapter);
1807 
1808 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1809 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
1810 
1811 	igc_clean_all_tx_rings(adapter);
1812 	igc_clean_all_rx_rings(adapter);
1813 }
1814 
1815 void igc_reinit_locked(struct igc_adapter *adapter)
1816 {
1817 	WARN_ON(in_interrupt());
1818 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
1819 		usleep_range(1000, 2000);
1820 	igc_down(adapter);
1821 	igc_up(adapter);
1822 	clear_bit(__IGC_RESETTING, &adapter->state);
1823 }
1824 
1825 static void igc_reset_task(struct work_struct *work)
1826 {
1827 	struct igc_adapter *adapter;
1828 
1829 	adapter = container_of(work, struct igc_adapter, reset_task);
1830 
1831 	netdev_err(adapter->netdev, "Reset adapter\n");
1832 	igc_reinit_locked(adapter);
1833 }
1834 
1835 /**
1836  * igc_change_mtu - Change the Maximum Transfer Unit
1837  * @netdev: network interface device structure
1838  * @new_mtu: new value for maximum frame size
1839  *
1840  * Returns 0 on success, negative on failure
1841  */
1842 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
1843 {
1844 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1845 	struct igc_adapter *adapter = netdev_priv(netdev);
1846 	struct pci_dev *pdev = adapter->pdev;
1847 
1848 	/* adjust max frame to be at least the size of a standard frame */
1849 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1850 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
1851 
1852 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
1853 		usleep_range(1000, 2000);
1854 
1855 	/* igc_down has a dependency on max_frame_size */
1856 	adapter->max_frame_size = max_frame;
1857 
1858 	if (netif_running(netdev))
1859 		igc_down(adapter);
1860 
1861 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
1862 		 netdev->mtu, new_mtu);
1863 	netdev->mtu = new_mtu;
1864 
1865 	if (netif_running(netdev))
1866 		igc_up(adapter);
1867 	else
1868 		igc_reset(adapter);
1869 
1870 	clear_bit(__IGC_RESETTING, &adapter->state);
1871 
1872 	return 0;
1873 }
1874 
1875 /**
1876  * igc_get_stats - Get System Network Statistics
1877  * @netdev: network interface device structure
1878  *
1879  * Returns the address of the device statistics structure.
1880  * The statistics are updated here and also from the timer callback.
1881  */
1882 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
1883 {
1884 	struct igc_adapter *adapter = netdev_priv(netdev);
1885 
1886 	if (!test_bit(__IGC_RESETTING, &adapter->state))
1887 		igc_update_stats(adapter);
1888 
1889 	/* only return the current stats */
1890 	return &netdev->stats;
1891 }
1892 
1893 /**
1894  * igc_configure - configure the hardware for RX and TX
1895  * @adapter: private board structure
1896  */
1897 static void igc_configure(struct igc_adapter *adapter)
1898 {
1899 	struct net_device *netdev = adapter->netdev;
1900 	int i = 0;
1901 
1902 	igc_get_hw_control(adapter);
1903 	igc_set_rx_mode(netdev);
1904 
1905 	igc_setup_tctl(adapter);
1906 	igc_setup_mrqc(adapter);
1907 	igc_setup_rctl(adapter);
1908 
1909 	igc_configure_tx(adapter);
1910 	igc_configure_rx(adapter);
1911 
1912 	igc_rx_fifo_flush_base(&adapter->hw);
1913 
1914 	/* call igc_desc_unused which always leaves
1915 	 * at least 1 descriptor unused to make sure
1916 	 * next_to_use != next_to_clean
1917 	 */
1918 	for (i = 0; i < adapter->num_rx_queues; i++) {
1919 		struct igc_ring *ring = adapter->rx_ring[i];
1920 
1921 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
1922 	}
1923 }
1924 
1925 /**
1926  * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
1927  * @adapter: address of board private structure
1928  * @index: Index of the RAR entry which need to be synced with MAC table
1929  */
1930 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
1931 {
1932 	u8 *addr = adapter->mac_table[index].addr;
1933 	struct igc_hw *hw = &adapter->hw;
1934 	u32 rar_low, rar_high;
1935 
1936 	/* HW expects these to be in network order when they are plugged
1937 	 * into the registers which are little endian.  In order to guarantee
1938 	 * that ordering we need to do an leXX_to_cpup here in order to be
1939 	 * ready for the byteswap that occurs with writel
1940 	 */
1941 	rar_low = le32_to_cpup((__le32 *)(addr));
1942 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
1943 
1944 	/* Indicate to hardware the Address is Valid. */
1945 	if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
1946 		if (is_valid_ether_addr(addr))
1947 			rar_high |= IGC_RAH_AV;
1948 
1949 		rar_high |= IGC_RAH_POOL_1 <<
1950 			adapter->mac_table[index].queue;
1951 	}
1952 
1953 	wr32(IGC_RAL(index), rar_low);
1954 	wrfl();
1955 	wr32(IGC_RAH(index), rar_high);
1956 	wrfl();
1957 }
1958 
1959 /* Set default MAC address for the PF in the first RAR entry */
1960 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
1961 {
1962 	struct igc_mac_addr *mac_table = &adapter->mac_table[0];
1963 
1964 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
1965 	mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
1966 
1967 	igc_rar_set_index(adapter, 0);
1968 }
1969 
1970 /**
1971  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
1972  * @netdev: network interface device structure
1973  *
1974  * The set_rx_mode entry point is called whenever the unicast or multicast
1975  * address lists or the network interface flags are updated.  This routine is
1976  * responsible for configuring the hardware for proper unicast, multicast,
1977  * promiscuous mode, and all-multi behavior.
1978  */
1979 static void igc_set_rx_mode(struct net_device *netdev)
1980 {
1981 }
1982 
1983 /**
1984  * igc_msix_other - msix other interrupt handler
1985  * @irq: interrupt number
1986  * @data: pointer to a q_vector
1987  */
1988 static irqreturn_t igc_msix_other(int irq, void *data)
1989 {
1990 	struct igc_adapter *adapter = data;
1991 	struct igc_hw *hw = &adapter->hw;
1992 	u32 icr = rd32(IGC_ICR);
1993 
1994 	/* reading ICR causes bit 31 of EICR to be cleared */
1995 	if (icr & IGC_ICR_DRSTA)
1996 		schedule_work(&adapter->reset_task);
1997 
1998 	if (icr & IGC_ICR_DOUTSYNC) {
1999 		/* HW is reporting DMA is out of sync */
2000 		adapter->stats.doosync++;
2001 	}
2002 
2003 	if (icr & IGC_ICR_LSC) {
2004 		hw->mac.get_link_status = 1;
2005 		/* guard against interrupt when we're going down */
2006 		if (!test_bit(__IGC_DOWN, &adapter->state))
2007 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2008 	}
2009 
2010 	wr32(IGC_EIMS, adapter->eims_other);
2011 
2012 	return IRQ_HANDLED;
2013 }
2014 
2015 /**
2016  * igc_write_ivar - configure ivar for given MSI-X vector
2017  * @hw: pointer to the HW structure
2018  * @msix_vector: vector number we are allocating to a given ring
2019  * @index: row index of IVAR register to write within IVAR table
2020  * @offset: column offset of in IVAR, should be multiple of 8
2021  *
2022  * The IVAR table consists of 2 columns,
2023  * each containing an cause allocation for an Rx and Tx ring, and a
2024  * variable number of rows depending on the number of queues supported.
2025  */
2026 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2027 			   int index, int offset)
2028 {
2029 	u32 ivar = array_rd32(IGC_IVAR0, index);
2030 
2031 	/* clear any bits that are currently set */
2032 	ivar &= ~((u32)0xFF << offset);
2033 
2034 	/* write vector and valid bit */
2035 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2036 
2037 	array_wr32(IGC_IVAR0, index, ivar);
2038 }
2039 
2040 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2041 {
2042 	struct igc_adapter *adapter = q_vector->adapter;
2043 	struct igc_hw *hw = &adapter->hw;
2044 	int rx_queue = IGC_N0_QUEUE;
2045 	int tx_queue = IGC_N0_QUEUE;
2046 
2047 	if (q_vector->rx.ring)
2048 		rx_queue = q_vector->rx.ring->reg_idx;
2049 	if (q_vector->tx.ring)
2050 		tx_queue = q_vector->tx.ring->reg_idx;
2051 
2052 	switch (hw->mac.type) {
2053 	case igc_i225:
2054 		if (rx_queue > IGC_N0_QUEUE)
2055 			igc_write_ivar(hw, msix_vector,
2056 				       rx_queue >> 1,
2057 				       (rx_queue & 0x1) << 4);
2058 		if (tx_queue > IGC_N0_QUEUE)
2059 			igc_write_ivar(hw, msix_vector,
2060 				       tx_queue >> 1,
2061 				       ((tx_queue & 0x1) << 4) + 8);
2062 		q_vector->eims_value = BIT(msix_vector);
2063 		break;
2064 	default:
2065 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2066 		break;
2067 	}
2068 
2069 	/* add q_vector eims value to global eims_enable_mask */
2070 	adapter->eims_enable_mask |= q_vector->eims_value;
2071 
2072 	/* configure q_vector to set itr on first interrupt */
2073 	q_vector->set_itr = 1;
2074 }
2075 
2076 /**
2077  * igc_configure_msix - Configure MSI-X hardware
2078  * @adapter: Pointer to adapter structure
2079  *
2080  * igc_configure_msix sets up the hardware to properly
2081  * generate MSI-X interrupts.
2082  */
2083 static void igc_configure_msix(struct igc_adapter *adapter)
2084 {
2085 	struct igc_hw *hw = &adapter->hw;
2086 	int i, vector = 0;
2087 	u32 tmp;
2088 
2089 	adapter->eims_enable_mask = 0;
2090 
2091 	/* set vector for other causes, i.e. link changes */
2092 	switch (hw->mac.type) {
2093 	case igc_i225:
2094 		/* Turn on MSI-X capability first, or our settings
2095 		 * won't stick.  And it will take days to debug.
2096 		 */
2097 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2098 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2099 		     IGC_GPIE_NSICR);
2100 
2101 		/* enable msix_other interrupt */
2102 		adapter->eims_other = BIT(vector);
2103 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2104 
2105 		wr32(IGC_IVAR_MISC, tmp);
2106 		break;
2107 	default:
2108 		/* do nothing, since nothing else supports MSI-X */
2109 		break;
2110 	} /* switch (hw->mac.type) */
2111 
2112 	adapter->eims_enable_mask |= adapter->eims_other;
2113 
2114 	for (i = 0; i < adapter->num_q_vectors; i++)
2115 		igc_assign_vector(adapter->q_vector[i], vector++);
2116 
2117 	wrfl();
2118 }
2119 
2120 static irqreturn_t igc_msix_ring(int irq, void *data)
2121 {
2122 	struct igc_q_vector *q_vector = data;
2123 
2124 	/* Write the ITR value calculated from the previous interrupt. */
2125 	igc_write_itr(q_vector);
2126 
2127 	napi_schedule(&q_vector->napi);
2128 
2129 	return IRQ_HANDLED;
2130 }
2131 
2132 /**
2133  * igc_request_msix - Initialize MSI-X interrupts
2134  * @adapter: Pointer to adapter structure
2135  *
2136  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2137  * kernel.
2138  */
2139 static int igc_request_msix(struct igc_adapter *adapter)
2140 {
2141 	int i = 0, err = 0, vector = 0, free_vector = 0;
2142 	struct net_device *netdev = adapter->netdev;
2143 
2144 	err = request_irq(adapter->msix_entries[vector].vector,
2145 			  &igc_msix_other, 0, netdev->name, adapter);
2146 	if (err)
2147 		goto err_out;
2148 
2149 	for (i = 0; i < adapter->num_q_vectors; i++) {
2150 		struct igc_q_vector *q_vector = adapter->q_vector[i];
2151 
2152 		vector++;
2153 
2154 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2155 
2156 		if (q_vector->rx.ring && q_vector->tx.ring)
2157 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2158 				q_vector->rx.ring->queue_index);
2159 		else if (q_vector->tx.ring)
2160 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2161 				q_vector->tx.ring->queue_index);
2162 		else if (q_vector->rx.ring)
2163 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2164 				q_vector->rx.ring->queue_index);
2165 		else
2166 			sprintf(q_vector->name, "%s-unused", netdev->name);
2167 
2168 		err = request_irq(adapter->msix_entries[vector].vector,
2169 				  igc_msix_ring, 0, q_vector->name,
2170 				  q_vector);
2171 		if (err)
2172 			goto err_free;
2173 	}
2174 
2175 	igc_configure_msix(adapter);
2176 	return 0;
2177 
2178 err_free:
2179 	/* free already assigned IRQs */
2180 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2181 
2182 	vector--;
2183 	for (i = 0; i < vector; i++) {
2184 		free_irq(adapter->msix_entries[free_vector++].vector,
2185 			 adapter->q_vector[i]);
2186 	}
2187 err_out:
2188 	return err;
2189 }
2190 
2191 /**
2192  * igc_reset_q_vector - Reset config for interrupt vector
2193  * @adapter: board private structure to initialize
2194  * @v_idx: Index of vector to be reset
2195  *
2196  * If NAPI is enabled it will delete any references to the
2197  * NAPI struct. This is preparation for igc_free_q_vector.
2198  */
2199 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2200 {
2201 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2202 
2203 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2204 	 * not yet allocated
2205 	 */
2206 	if (!q_vector)
2207 		return;
2208 
2209 	if (q_vector->tx.ring)
2210 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2211 
2212 	if (q_vector->rx.ring)
2213 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2214 
2215 	netif_napi_del(&q_vector->napi);
2216 }
2217 
2218 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2219 {
2220 	int v_idx = adapter->num_q_vectors;
2221 
2222 	if (adapter->msix_entries) {
2223 		pci_disable_msix(adapter->pdev);
2224 		kfree(adapter->msix_entries);
2225 		adapter->msix_entries = NULL;
2226 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2227 		pci_disable_msi(adapter->pdev);
2228 	}
2229 
2230 	while (v_idx--)
2231 		igc_reset_q_vector(adapter, v_idx);
2232 }
2233 
2234 /**
2235  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2236  * @adapter: Pointer to adapter structure
2237  *
2238  * This function resets the device so that it has 0 rx queues, tx queues, and
2239  * MSI-X interrupts allocated.
2240  */
2241 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2242 {
2243 	igc_free_q_vectors(adapter);
2244 	igc_reset_interrupt_capability(adapter);
2245 }
2246 
2247 /**
2248  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2249  * @adapter: board private structure to initialize
2250  *
2251  * This function frees the memory allocated to the q_vectors.  In addition if
2252  * NAPI is enabled it will delete any references to the NAPI struct prior
2253  * to freeing the q_vector.
2254  */
2255 static void igc_free_q_vectors(struct igc_adapter *adapter)
2256 {
2257 	int v_idx = adapter->num_q_vectors;
2258 
2259 	adapter->num_tx_queues = 0;
2260 	adapter->num_rx_queues = 0;
2261 	adapter->num_q_vectors = 0;
2262 
2263 	while (v_idx--) {
2264 		igc_reset_q_vector(adapter, v_idx);
2265 		igc_free_q_vector(adapter, v_idx);
2266 	}
2267 }
2268 
2269 /**
2270  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2271  * @adapter: board private structure to initialize
2272  * @v_idx: Index of vector to be freed
2273  *
2274  * This function frees the memory allocated to the q_vector.
2275  */
2276 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2277 {
2278 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2279 
2280 	adapter->q_vector[v_idx] = NULL;
2281 
2282 	/* igc_get_stats64() might access the rings on this vector,
2283 	 * we must wait a grace period before freeing it.
2284 	 */
2285 	if (q_vector)
2286 		kfree_rcu(q_vector, rcu);
2287 }
2288 
2289 /* Need to wait a few seconds after link up to get diagnostic information from
2290  * the phy
2291  */
2292 static void igc_update_phy_info(struct timer_list *t)
2293 {
2294 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2295 
2296 	igc_get_phy_info(&adapter->hw);
2297 }
2298 
2299 /**
2300  * igc_has_link - check shared code for link and determine up/down
2301  * @adapter: pointer to driver private info
2302  */
2303 bool igc_has_link(struct igc_adapter *adapter)
2304 {
2305 	struct igc_hw *hw = &adapter->hw;
2306 	bool link_active = false;
2307 
2308 	/* get_link_status is set on LSC (link status) interrupt or
2309 	 * rx sequence error interrupt.  get_link_status will stay
2310 	 * false until the igc_check_for_link establishes link
2311 	 * for copper adapters ONLY
2312 	 */
2313 	switch (hw->phy.media_type) {
2314 	case igc_media_type_copper:
2315 		if (!hw->mac.get_link_status)
2316 			return true;
2317 		hw->mac.ops.check_for_link(hw);
2318 		link_active = !hw->mac.get_link_status;
2319 		break;
2320 	default:
2321 	case igc_media_type_unknown:
2322 		break;
2323 	}
2324 
2325 	if (hw->mac.type == igc_i225 &&
2326 	    hw->phy.id == I225_I_PHY_ID) {
2327 		if (!netif_carrier_ok(adapter->netdev)) {
2328 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2329 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2330 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2331 			adapter->link_check_timeout = jiffies;
2332 		}
2333 	}
2334 
2335 	return link_active;
2336 }
2337 
2338 /**
2339  * igc_watchdog - Timer Call-back
2340  * @data: pointer to adapter cast into an unsigned long
2341  */
2342 static void igc_watchdog(struct timer_list *t)
2343 {
2344 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2345 	/* Do the rest outside of interrupt context */
2346 	schedule_work(&adapter->watchdog_task);
2347 }
2348 
2349 static void igc_watchdog_task(struct work_struct *work)
2350 {
2351 	struct igc_adapter *adapter = container_of(work,
2352 						   struct igc_adapter,
2353 						   watchdog_task);
2354 	struct net_device *netdev = adapter->netdev;
2355 	struct igc_hw *hw = &adapter->hw;
2356 	struct igc_phy_info *phy = &hw->phy;
2357 	u16 phy_data, retry_count = 20;
2358 	u32 connsw;
2359 	u32 link;
2360 	int i;
2361 
2362 	link = igc_has_link(adapter);
2363 
2364 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2365 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2366 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2367 		else
2368 			link = false;
2369 	}
2370 
2371 	/* Force link down if we have fiber to swap to */
2372 	if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2373 		if (hw->phy.media_type == igc_media_type_copper) {
2374 			connsw = rd32(IGC_CONNSW);
2375 			if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2376 				link = 0;
2377 		}
2378 	}
2379 	if (link) {
2380 		if (!netif_carrier_ok(netdev)) {
2381 			u32 ctrl;
2382 
2383 			hw->mac.ops.get_speed_and_duplex(hw,
2384 							 &adapter->link_speed,
2385 							 &adapter->link_duplex);
2386 
2387 			ctrl = rd32(IGC_CTRL);
2388 			/* Link status message must follow this format */
2389 			netdev_info(netdev,
2390 				    "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2391 				    netdev->name,
2392 				    adapter->link_speed,
2393 				    adapter->link_duplex == FULL_DUPLEX ?
2394 				    "Full" : "Half",
2395 				    (ctrl & IGC_CTRL_TFCE) &&
2396 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2397 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
2398 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
2399 
2400 			/* check if SmartSpeed worked */
2401 			igc_check_downshift(hw);
2402 			if (phy->speed_downgraded)
2403 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2404 
2405 			/* adjust timeout factor according to speed/duplex */
2406 			adapter->tx_timeout_factor = 1;
2407 			switch (adapter->link_speed) {
2408 			case SPEED_10:
2409 				adapter->tx_timeout_factor = 14;
2410 				break;
2411 			case SPEED_100:
2412 				/* maybe add some timeout factor ? */
2413 				break;
2414 			}
2415 
2416 			if (adapter->link_speed != SPEED_1000)
2417 				goto no_wait;
2418 
2419 			/* wait for Remote receiver status OK */
2420 retry_read_status:
2421 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2422 					      &phy_data)) {
2423 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2424 				    retry_count) {
2425 					msleep(100);
2426 					retry_count--;
2427 					goto retry_read_status;
2428 				} else if (!retry_count) {
2429 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2430 				}
2431 			} else {
2432 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2433 			}
2434 no_wait:
2435 			netif_carrier_on(netdev);
2436 
2437 			/* link state has changed, schedule phy info update */
2438 			if (!test_bit(__IGC_DOWN, &adapter->state))
2439 				mod_timer(&adapter->phy_info_timer,
2440 					  round_jiffies(jiffies + 2 * HZ));
2441 		}
2442 	} else {
2443 		if (netif_carrier_ok(netdev)) {
2444 			adapter->link_speed = 0;
2445 			adapter->link_duplex = 0;
2446 
2447 			/* Links status message must follow this format */
2448 			netdev_info(netdev, "igc: %s NIC Link is Down\n",
2449 				    netdev->name);
2450 			netif_carrier_off(netdev);
2451 
2452 			/* link state has changed, schedule phy info update */
2453 			if (!test_bit(__IGC_DOWN, &adapter->state))
2454 				mod_timer(&adapter->phy_info_timer,
2455 					  round_jiffies(jiffies + 2 * HZ));
2456 
2457 			/* link is down, time to check for alternate media */
2458 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2459 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2460 					schedule_work(&adapter->reset_task);
2461 					/* return immediately */
2462 					return;
2463 				}
2464 			}
2465 
2466 		/* also check for alternate media here */
2467 		} else if (!netif_carrier_ok(netdev) &&
2468 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
2469 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2470 				schedule_work(&adapter->reset_task);
2471 				/* return immediately */
2472 				return;
2473 			}
2474 		}
2475 	}
2476 
2477 	spin_lock(&adapter->stats64_lock);
2478 	igc_update_stats(adapter);
2479 	spin_unlock(&adapter->stats64_lock);
2480 
2481 	for (i = 0; i < adapter->num_tx_queues; i++) {
2482 		struct igc_ring *tx_ring = adapter->tx_ring[i];
2483 
2484 		if (!netif_carrier_ok(netdev)) {
2485 			/* We've lost link, so the controller stops DMA,
2486 			 * but we've got queued Tx work that's never going
2487 			 * to get done, so reset controller to flush Tx.
2488 			 * (Do the reset outside of interrupt context).
2489 			 */
2490 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
2491 				adapter->tx_timeout_count++;
2492 				schedule_work(&adapter->reset_task);
2493 				/* return immediately since reset is imminent */
2494 				return;
2495 			}
2496 		}
2497 
2498 		/* Force detection of hung controller every watchdog period */
2499 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2500 	}
2501 
2502 	/* Cause software interrupt to ensure Rx ring is cleaned */
2503 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
2504 		u32 eics = 0;
2505 
2506 		for (i = 0; i < adapter->num_q_vectors; i++)
2507 			eics |= adapter->q_vector[i]->eims_value;
2508 		wr32(IGC_EICS, eics);
2509 	} else {
2510 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
2511 	}
2512 
2513 	/* Reset the timer */
2514 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
2515 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
2516 			mod_timer(&adapter->watchdog_timer,
2517 				  round_jiffies(jiffies +  HZ));
2518 		else
2519 			mod_timer(&adapter->watchdog_timer,
2520 				  round_jiffies(jiffies + 2 * HZ));
2521 	}
2522 }
2523 
2524 /**
2525  * igc_update_ring_itr - update the dynamic ITR value based on packet size
2526  * @q_vector: pointer to q_vector
2527  *
2528  * Stores a new ITR value based on strictly on packet size.  This
2529  * algorithm is less sophisticated than that used in igc_update_itr,
2530  * due to the difficulty of synchronizing statistics across multiple
2531  * receive rings.  The divisors and thresholds used by this function
2532  * were determined based on theoretical maximum wire speed and testing
2533  * data, in order to minimize response time while increasing bulk
2534  * throughput.
2535  * NOTE: This function is called only when operating in a multiqueue
2536  * receive environment.
2537  */
2538 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
2539 {
2540 	struct igc_adapter *adapter = q_vector->adapter;
2541 	int new_val = q_vector->itr_val;
2542 	int avg_wire_size = 0;
2543 	unsigned int packets;
2544 
2545 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
2546 	 * ints/sec - ITR timer value of 120 ticks.
2547 	 */
2548 	switch (adapter->link_speed) {
2549 	case SPEED_10:
2550 	case SPEED_100:
2551 		new_val = IGC_4K_ITR;
2552 		goto set_itr_val;
2553 	default:
2554 		break;
2555 	}
2556 
2557 	packets = q_vector->rx.total_packets;
2558 	if (packets)
2559 		avg_wire_size = q_vector->rx.total_bytes / packets;
2560 
2561 	packets = q_vector->tx.total_packets;
2562 	if (packets)
2563 		avg_wire_size = max_t(u32, avg_wire_size,
2564 				      q_vector->tx.total_bytes / packets);
2565 
2566 	/* if avg_wire_size isn't set no work was done */
2567 	if (!avg_wire_size)
2568 		goto clear_counts;
2569 
2570 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
2571 	avg_wire_size += 24;
2572 
2573 	/* Don't starve jumbo frames */
2574 	avg_wire_size = min(avg_wire_size, 3000);
2575 
2576 	/* Give a little boost to mid-size frames */
2577 	if (avg_wire_size > 300 && avg_wire_size < 1200)
2578 		new_val = avg_wire_size / 3;
2579 	else
2580 		new_val = avg_wire_size / 2;
2581 
2582 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2583 	if (new_val < IGC_20K_ITR &&
2584 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
2585 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
2586 		new_val = IGC_20K_ITR;
2587 
2588 set_itr_val:
2589 	if (new_val != q_vector->itr_val) {
2590 		q_vector->itr_val = new_val;
2591 		q_vector->set_itr = 1;
2592 	}
2593 clear_counts:
2594 	q_vector->rx.total_bytes = 0;
2595 	q_vector->rx.total_packets = 0;
2596 	q_vector->tx.total_bytes = 0;
2597 	q_vector->tx.total_packets = 0;
2598 }
2599 
2600 /**
2601  * igc_update_itr - update the dynamic ITR value based on statistics
2602  * @q_vector: pointer to q_vector
2603  * @ring_container: ring info to update the itr for
2604  *
2605  * Stores a new ITR value based on packets and byte
2606  * counts during the last interrupt.  The advantage of per interrupt
2607  * computation is faster updates and more accurate ITR for the current
2608  * traffic pattern.  Constants in this function were computed
2609  * based on theoretical maximum wire speed and thresholds were set based
2610  * on testing data as well as attempting to minimize response time
2611  * while increasing bulk throughput.
2612  * NOTE: These calculations are only valid when operating in a single-
2613  * queue environment.
2614  */
2615 static void igc_update_itr(struct igc_q_vector *q_vector,
2616 			   struct igc_ring_container *ring_container)
2617 {
2618 	unsigned int packets = ring_container->total_packets;
2619 	unsigned int bytes = ring_container->total_bytes;
2620 	u8 itrval = ring_container->itr;
2621 
2622 	/* no packets, exit with status unchanged */
2623 	if (packets == 0)
2624 		return;
2625 
2626 	switch (itrval) {
2627 	case lowest_latency:
2628 		/* handle TSO and jumbo frames */
2629 		if (bytes / packets > 8000)
2630 			itrval = bulk_latency;
2631 		else if ((packets < 5) && (bytes > 512))
2632 			itrval = low_latency;
2633 		break;
2634 	case low_latency:  /* 50 usec aka 20000 ints/s */
2635 		if (bytes > 10000) {
2636 			/* this if handles the TSO accounting */
2637 			if (bytes / packets > 8000)
2638 				itrval = bulk_latency;
2639 			else if ((packets < 10) || ((bytes / packets) > 1200))
2640 				itrval = bulk_latency;
2641 			else if ((packets > 35))
2642 				itrval = lowest_latency;
2643 		} else if (bytes / packets > 2000) {
2644 			itrval = bulk_latency;
2645 		} else if (packets <= 2 && bytes < 512) {
2646 			itrval = lowest_latency;
2647 		}
2648 		break;
2649 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2650 		if (bytes > 25000) {
2651 			if (packets > 35)
2652 				itrval = low_latency;
2653 		} else if (bytes < 1500) {
2654 			itrval = low_latency;
2655 		}
2656 		break;
2657 	}
2658 
2659 	/* clear work counters since we have the values we need */
2660 	ring_container->total_bytes = 0;
2661 	ring_container->total_packets = 0;
2662 
2663 	/* write updated itr to ring container */
2664 	ring_container->itr = itrval;
2665 }
2666 
2667 /**
2668  * igc_intr_msi - Interrupt Handler
2669  * @irq: interrupt number
2670  * @data: pointer to a network interface device structure
2671  */
2672 static irqreturn_t igc_intr_msi(int irq, void *data)
2673 {
2674 	struct igc_adapter *adapter = data;
2675 	struct igc_q_vector *q_vector = adapter->q_vector[0];
2676 	struct igc_hw *hw = &adapter->hw;
2677 	/* read ICR disables interrupts using IAM */
2678 	u32 icr = rd32(IGC_ICR);
2679 
2680 	igc_write_itr(q_vector);
2681 
2682 	if (icr & IGC_ICR_DRSTA)
2683 		schedule_work(&adapter->reset_task);
2684 
2685 	if (icr & IGC_ICR_DOUTSYNC) {
2686 		/* HW is reporting DMA is out of sync */
2687 		adapter->stats.doosync++;
2688 	}
2689 
2690 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
2691 		hw->mac.get_link_status = 1;
2692 		if (!test_bit(__IGC_DOWN, &adapter->state))
2693 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2694 	}
2695 
2696 	napi_schedule(&q_vector->napi);
2697 
2698 	return IRQ_HANDLED;
2699 }
2700 
2701 /**
2702  * igc_intr - Legacy Interrupt Handler
2703  * @irq: interrupt number
2704  * @data: pointer to a network interface device structure
2705  */
2706 static irqreturn_t igc_intr(int irq, void *data)
2707 {
2708 	struct igc_adapter *adapter = data;
2709 	struct igc_q_vector *q_vector = adapter->q_vector[0];
2710 	struct igc_hw *hw = &adapter->hw;
2711 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
2712 	 * need for the IMC write
2713 	 */
2714 	u32 icr = rd32(IGC_ICR);
2715 
2716 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
2717 	 * not set, then the adapter didn't send an interrupt
2718 	 */
2719 	if (!(icr & IGC_ICR_INT_ASSERTED))
2720 		return IRQ_NONE;
2721 
2722 	igc_write_itr(q_vector);
2723 
2724 	if (icr & IGC_ICR_DRSTA)
2725 		schedule_work(&adapter->reset_task);
2726 
2727 	if (icr & IGC_ICR_DOUTSYNC) {
2728 		/* HW is reporting DMA is out of sync */
2729 		adapter->stats.doosync++;
2730 	}
2731 
2732 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
2733 		hw->mac.get_link_status = 1;
2734 		/* guard against interrupt when we're going down */
2735 		if (!test_bit(__IGC_DOWN, &adapter->state))
2736 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2737 	}
2738 
2739 	napi_schedule(&q_vector->napi);
2740 
2741 	return IRQ_HANDLED;
2742 }
2743 
2744 static void igc_set_itr(struct igc_q_vector *q_vector)
2745 {
2746 	struct igc_adapter *adapter = q_vector->adapter;
2747 	u32 new_itr = q_vector->itr_val;
2748 	u8 current_itr = 0;
2749 
2750 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2751 	switch (adapter->link_speed) {
2752 	case SPEED_10:
2753 	case SPEED_100:
2754 		current_itr = 0;
2755 		new_itr = IGC_4K_ITR;
2756 		goto set_itr_now;
2757 	default:
2758 		break;
2759 	}
2760 
2761 	igc_update_itr(q_vector, &q_vector->tx);
2762 	igc_update_itr(q_vector, &q_vector->rx);
2763 
2764 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
2765 
2766 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2767 	if (current_itr == lowest_latency &&
2768 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
2769 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
2770 		current_itr = low_latency;
2771 
2772 	switch (current_itr) {
2773 	/* counts and packets in update_itr are dependent on these numbers */
2774 	case lowest_latency:
2775 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
2776 		break;
2777 	case low_latency:
2778 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
2779 		break;
2780 	case bulk_latency:
2781 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
2782 		break;
2783 	default:
2784 		break;
2785 	}
2786 
2787 set_itr_now:
2788 	if (new_itr != q_vector->itr_val) {
2789 		/* this attempts to bias the interrupt rate towards Bulk
2790 		 * by adding intermediate steps when interrupt rate is
2791 		 * increasing
2792 		 */
2793 		new_itr = new_itr > q_vector->itr_val ?
2794 			  max((new_itr * q_vector->itr_val) /
2795 			  (new_itr + (q_vector->itr_val >> 2)),
2796 			  new_itr) : new_itr;
2797 		/* Don't write the value here; it resets the adapter's
2798 		 * internal timer, and causes us to delay far longer than
2799 		 * we should between interrupts.  Instead, we write the ITR
2800 		 * value at the beginning of the next interrupt so the timing
2801 		 * ends up being correct.
2802 		 */
2803 		q_vector->itr_val = new_itr;
2804 		q_vector->set_itr = 1;
2805 	}
2806 }
2807 
2808 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
2809 {
2810 	struct igc_adapter *adapter = q_vector->adapter;
2811 	struct igc_hw *hw = &adapter->hw;
2812 
2813 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
2814 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
2815 		if (adapter->num_q_vectors == 1)
2816 			igc_set_itr(q_vector);
2817 		else
2818 			igc_update_ring_itr(q_vector);
2819 	}
2820 
2821 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
2822 		if (adapter->msix_entries)
2823 			wr32(IGC_EIMS, q_vector->eims_value);
2824 		else
2825 			igc_irq_enable(adapter);
2826 	}
2827 }
2828 
2829 /**
2830  * igc_poll - NAPI Rx polling callback
2831  * @napi: napi polling structure
2832  * @budget: count of how many packets we should handle
2833  */
2834 static int igc_poll(struct napi_struct *napi, int budget)
2835 {
2836 	struct igc_q_vector *q_vector = container_of(napi,
2837 						     struct igc_q_vector,
2838 						     napi);
2839 	bool clean_complete = true;
2840 	int work_done = 0;
2841 
2842 	if (q_vector->tx.ring)
2843 		clean_complete = igc_clean_tx_irq(q_vector, budget);
2844 
2845 	if (q_vector->rx.ring) {
2846 		int cleaned = igc_clean_rx_irq(q_vector, budget);
2847 
2848 		work_done += cleaned;
2849 		if (cleaned >= budget)
2850 			clean_complete = false;
2851 	}
2852 
2853 	/* If all work not completed, return budget and keep polling */
2854 	if (!clean_complete)
2855 		return budget;
2856 
2857 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2858 	 * poll us due to busy-polling
2859 	 */
2860 	if (likely(napi_complete_done(napi, work_done)))
2861 		igc_ring_irq_enable(q_vector);
2862 
2863 	return min(work_done, budget - 1);
2864 }
2865 
2866 /**
2867  * igc_set_interrupt_capability - set MSI or MSI-X if supported
2868  * @adapter: Pointer to adapter structure
2869  *
2870  * Attempt to configure interrupts using the best available
2871  * capabilities of the hardware and kernel.
2872  */
2873 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
2874 					 bool msix)
2875 {
2876 	int numvecs, i;
2877 	int err;
2878 
2879 	if (!msix)
2880 		goto msi_only;
2881 	adapter->flags |= IGC_FLAG_HAS_MSIX;
2882 
2883 	/* Number of supported queues. */
2884 	adapter->num_rx_queues = adapter->rss_queues;
2885 
2886 	adapter->num_tx_queues = adapter->rss_queues;
2887 
2888 	/* start with one vector for every Rx queue */
2889 	numvecs = adapter->num_rx_queues;
2890 
2891 	/* if Tx handler is separate add 1 for every Tx queue */
2892 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
2893 		numvecs += adapter->num_tx_queues;
2894 
2895 	/* store the number of vectors reserved for queues */
2896 	adapter->num_q_vectors = numvecs;
2897 
2898 	/* add 1 vector for link status interrupts */
2899 	numvecs++;
2900 
2901 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
2902 					GFP_KERNEL);
2903 
2904 	if (!adapter->msix_entries)
2905 		return;
2906 
2907 	/* populate entry values */
2908 	for (i = 0; i < numvecs; i++)
2909 		adapter->msix_entries[i].entry = i;
2910 
2911 	err = pci_enable_msix_range(adapter->pdev,
2912 				    adapter->msix_entries,
2913 				    numvecs,
2914 				    numvecs);
2915 	if (err > 0)
2916 		return;
2917 
2918 	kfree(adapter->msix_entries);
2919 	adapter->msix_entries = NULL;
2920 
2921 	igc_reset_interrupt_capability(adapter);
2922 
2923 msi_only:
2924 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
2925 
2926 	adapter->rss_queues = 1;
2927 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2928 	adapter->num_rx_queues = 1;
2929 	adapter->num_tx_queues = 1;
2930 	adapter->num_q_vectors = 1;
2931 	if (!pci_enable_msi(adapter->pdev))
2932 		adapter->flags |= IGC_FLAG_HAS_MSI;
2933 }
2934 
2935 static void igc_add_ring(struct igc_ring *ring,
2936 			 struct igc_ring_container *head)
2937 {
2938 	head->ring = ring;
2939 	head->count++;
2940 }
2941 
2942 /**
2943  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
2944  * @adapter: board private structure to initialize
2945  * @v_count: q_vectors allocated on adapter, used for ring interleaving
2946  * @v_idx: index of vector in adapter struct
2947  * @txr_count: total number of Tx rings to allocate
2948  * @txr_idx: index of first Tx ring to allocate
2949  * @rxr_count: total number of Rx rings to allocate
2950  * @rxr_idx: index of first Rx ring to allocate
2951  *
2952  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2953  */
2954 static int igc_alloc_q_vector(struct igc_adapter *adapter,
2955 			      unsigned int v_count, unsigned int v_idx,
2956 			      unsigned int txr_count, unsigned int txr_idx,
2957 			      unsigned int rxr_count, unsigned int rxr_idx)
2958 {
2959 	struct igc_q_vector *q_vector;
2960 	struct igc_ring *ring;
2961 	int ring_count;
2962 
2963 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
2964 	if (txr_count > 1 || rxr_count > 1)
2965 		return -ENOMEM;
2966 
2967 	ring_count = txr_count + rxr_count;
2968 
2969 	/* allocate q_vector and rings */
2970 	q_vector = adapter->q_vector[v_idx];
2971 	if (!q_vector)
2972 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
2973 				   GFP_KERNEL);
2974 	else
2975 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
2976 	if (!q_vector)
2977 		return -ENOMEM;
2978 
2979 	/* initialize NAPI */
2980 	netif_napi_add(adapter->netdev, &q_vector->napi,
2981 		       igc_poll, 64);
2982 
2983 	/* tie q_vector and adapter together */
2984 	adapter->q_vector[v_idx] = q_vector;
2985 	q_vector->adapter = adapter;
2986 
2987 	/* initialize work limits */
2988 	q_vector->tx.work_limit = adapter->tx_work_limit;
2989 
2990 	/* initialize ITR configuration */
2991 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
2992 	q_vector->itr_val = IGC_START_ITR;
2993 
2994 	/* initialize pointer to rings */
2995 	ring = q_vector->ring;
2996 
2997 	/* initialize ITR */
2998 	if (rxr_count) {
2999 		/* rx or rx/tx vector */
3000 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3001 			q_vector->itr_val = adapter->rx_itr_setting;
3002 	} else {
3003 		/* tx only vector */
3004 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3005 			q_vector->itr_val = adapter->tx_itr_setting;
3006 	}
3007 
3008 	if (txr_count) {
3009 		/* assign generic ring traits */
3010 		ring->dev = &adapter->pdev->dev;
3011 		ring->netdev = adapter->netdev;
3012 
3013 		/* configure backlink on ring */
3014 		ring->q_vector = q_vector;
3015 
3016 		/* update q_vector Tx values */
3017 		igc_add_ring(ring, &q_vector->tx);
3018 
3019 		/* apply Tx specific ring traits */
3020 		ring->count = adapter->tx_ring_count;
3021 		ring->queue_index = txr_idx;
3022 
3023 		/* assign ring to adapter */
3024 		adapter->tx_ring[txr_idx] = ring;
3025 
3026 		/* push pointer to next ring */
3027 		ring++;
3028 	}
3029 
3030 	if (rxr_count) {
3031 		/* assign generic ring traits */
3032 		ring->dev = &adapter->pdev->dev;
3033 		ring->netdev = adapter->netdev;
3034 
3035 		/* configure backlink on ring */
3036 		ring->q_vector = q_vector;
3037 
3038 		/* update q_vector Rx values */
3039 		igc_add_ring(ring, &q_vector->rx);
3040 
3041 		/* apply Rx specific ring traits */
3042 		ring->count = adapter->rx_ring_count;
3043 		ring->queue_index = rxr_idx;
3044 
3045 		/* assign ring to adapter */
3046 		adapter->rx_ring[rxr_idx] = ring;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 /**
3053  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3054  * @adapter: board private structure to initialize
3055  *
3056  * We allocate one q_vector per queue interrupt.  If allocation fails we
3057  * return -ENOMEM.
3058  */
3059 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3060 {
3061 	int rxr_remaining = adapter->num_rx_queues;
3062 	int txr_remaining = adapter->num_tx_queues;
3063 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3064 	int q_vectors = adapter->num_q_vectors;
3065 	int err;
3066 
3067 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3068 		for (; rxr_remaining; v_idx++) {
3069 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3070 						 0, 0, 1, rxr_idx);
3071 
3072 			if (err)
3073 				goto err_out;
3074 
3075 			/* update counts and index */
3076 			rxr_remaining--;
3077 			rxr_idx++;
3078 		}
3079 	}
3080 
3081 	for (; v_idx < q_vectors; v_idx++) {
3082 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3083 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3084 
3085 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3086 					 tqpv, txr_idx, rqpv, rxr_idx);
3087 
3088 		if (err)
3089 			goto err_out;
3090 
3091 		/* update counts and index */
3092 		rxr_remaining -= rqpv;
3093 		txr_remaining -= tqpv;
3094 		rxr_idx++;
3095 		txr_idx++;
3096 	}
3097 
3098 	return 0;
3099 
3100 err_out:
3101 	adapter->num_tx_queues = 0;
3102 	adapter->num_rx_queues = 0;
3103 	adapter->num_q_vectors = 0;
3104 
3105 	while (v_idx--)
3106 		igc_free_q_vector(adapter, v_idx);
3107 
3108 	return -ENOMEM;
3109 }
3110 
3111 /**
3112  * igc_cache_ring_register - Descriptor ring to register mapping
3113  * @adapter: board private structure to initialize
3114  *
3115  * Once we know the feature-set enabled for the device, we'll cache
3116  * the register offset the descriptor ring is assigned to.
3117  */
3118 static void igc_cache_ring_register(struct igc_adapter *adapter)
3119 {
3120 	int i = 0, j = 0;
3121 
3122 	switch (adapter->hw.mac.type) {
3123 	case igc_i225:
3124 	/* Fall through */
3125 	default:
3126 		for (; i < adapter->num_rx_queues; i++)
3127 			adapter->rx_ring[i]->reg_idx = i;
3128 		for (; j < adapter->num_tx_queues; j++)
3129 			adapter->tx_ring[j]->reg_idx = j;
3130 		break;
3131 	}
3132 }
3133 
3134 /**
3135  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3136  * @adapter: Pointer to adapter structure
3137  *
3138  * This function initializes the interrupts and allocates all of the queues.
3139  */
3140 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3141 {
3142 	struct pci_dev *pdev = adapter->pdev;
3143 	int err = 0;
3144 
3145 	igc_set_interrupt_capability(adapter, msix);
3146 
3147 	err = igc_alloc_q_vectors(adapter);
3148 	if (err) {
3149 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3150 		goto err_alloc_q_vectors;
3151 	}
3152 
3153 	igc_cache_ring_register(adapter);
3154 
3155 	return 0;
3156 
3157 err_alloc_q_vectors:
3158 	igc_reset_interrupt_capability(adapter);
3159 	return err;
3160 }
3161 
3162 static void igc_free_irq(struct igc_adapter *adapter)
3163 {
3164 	if (adapter->msix_entries) {
3165 		int vector = 0, i;
3166 
3167 		free_irq(adapter->msix_entries[vector++].vector, adapter);
3168 
3169 		for (i = 0; i < adapter->num_q_vectors; i++)
3170 			free_irq(adapter->msix_entries[vector++].vector,
3171 				 adapter->q_vector[i]);
3172 	} else {
3173 		free_irq(adapter->pdev->irq, adapter);
3174 	}
3175 }
3176 
3177 /**
3178  * igc_irq_disable - Mask off interrupt generation on the NIC
3179  * @adapter: board private structure
3180  */
3181 static void igc_irq_disable(struct igc_adapter *adapter)
3182 {
3183 	struct igc_hw *hw = &adapter->hw;
3184 
3185 	if (adapter->msix_entries) {
3186 		u32 regval = rd32(IGC_EIAM);
3187 
3188 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3189 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3190 		regval = rd32(IGC_EIAC);
3191 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3192 	}
3193 
3194 	wr32(IGC_IAM, 0);
3195 	wr32(IGC_IMC, ~0);
3196 	wrfl();
3197 
3198 	if (adapter->msix_entries) {
3199 		int vector = 0, i;
3200 
3201 		synchronize_irq(adapter->msix_entries[vector++].vector);
3202 
3203 		for (i = 0; i < adapter->num_q_vectors; i++)
3204 			synchronize_irq(adapter->msix_entries[vector++].vector);
3205 	} else {
3206 		synchronize_irq(adapter->pdev->irq);
3207 	}
3208 }
3209 
3210 /**
3211  * igc_irq_enable - Enable default interrupt generation settings
3212  * @adapter: board private structure
3213  */
3214 static void igc_irq_enable(struct igc_adapter *adapter)
3215 {
3216 	struct igc_hw *hw = &adapter->hw;
3217 
3218 	if (adapter->msix_entries) {
3219 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3220 		u32 regval = rd32(IGC_EIAC);
3221 
3222 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3223 		regval = rd32(IGC_EIAM);
3224 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3225 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3226 		wr32(IGC_IMS, ims);
3227 	} else {
3228 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3229 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3230 	}
3231 }
3232 
3233 /**
3234  * igc_request_irq - initialize interrupts
3235  * @adapter: Pointer to adapter structure
3236  *
3237  * Attempts to configure interrupts using the best available
3238  * capabilities of the hardware and kernel.
3239  */
3240 static int igc_request_irq(struct igc_adapter *adapter)
3241 {
3242 	struct net_device *netdev = adapter->netdev;
3243 	struct pci_dev *pdev = adapter->pdev;
3244 	int err = 0;
3245 
3246 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3247 		err = igc_request_msix(adapter);
3248 		if (!err)
3249 			goto request_done;
3250 		/* fall back to MSI */
3251 		igc_free_all_tx_resources(adapter);
3252 		igc_free_all_rx_resources(adapter);
3253 
3254 		igc_clear_interrupt_scheme(adapter);
3255 		err = igc_init_interrupt_scheme(adapter, false);
3256 		if (err)
3257 			goto request_done;
3258 		igc_setup_all_tx_resources(adapter);
3259 		igc_setup_all_rx_resources(adapter);
3260 		igc_configure(adapter);
3261 	}
3262 
3263 	igc_assign_vector(adapter->q_vector[0], 0);
3264 
3265 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
3266 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
3267 				  netdev->name, adapter);
3268 		if (!err)
3269 			goto request_done;
3270 
3271 		/* fall back to legacy interrupts */
3272 		igc_reset_interrupt_capability(adapter);
3273 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
3274 	}
3275 
3276 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3277 			  netdev->name, adapter);
3278 
3279 	if (err)
3280 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
3281 			err);
3282 
3283 request_done:
3284 	return err;
3285 }
3286 
3287 static void igc_write_itr(struct igc_q_vector *q_vector)
3288 {
3289 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3290 
3291 	if (!q_vector->set_itr)
3292 		return;
3293 
3294 	if (!itr_val)
3295 		itr_val = IGC_ITR_VAL_MASK;
3296 
3297 	itr_val |= IGC_EITR_CNT_IGNR;
3298 
3299 	writel(itr_val, q_vector->itr_register);
3300 	q_vector->set_itr = 0;
3301 }
3302 
3303 /**
3304  * igc_open - Called when a network interface is made active
3305  * @netdev: network interface device structure
3306  *
3307  * Returns 0 on success, negative value on failure
3308  *
3309  * The open entry point is called when a network interface is made
3310  * active by the system (IFF_UP).  At this point all resources needed
3311  * for transmit and receive operations are allocated, the interrupt
3312  * handler is registered with the OS, the watchdog timer is started,
3313  * and the stack is notified that the interface is ready.
3314  */
3315 static int __igc_open(struct net_device *netdev, bool resuming)
3316 {
3317 	struct igc_adapter *adapter = netdev_priv(netdev);
3318 	struct igc_hw *hw = &adapter->hw;
3319 	int err = 0;
3320 	int i = 0;
3321 
3322 	/* disallow open during test */
3323 
3324 	if (test_bit(__IGC_TESTING, &adapter->state)) {
3325 		WARN_ON(resuming);
3326 		return -EBUSY;
3327 	}
3328 
3329 	netif_carrier_off(netdev);
3330 
3331 	/* allocate transmit descriptors */
3332 	err = igc_setup_all_tx_resources(adapter);
3333 	if (err)
3334 		goto err_setup_tx;
3335 
3336 	/* allocate receive descriptors */
3337 	err = igc_setup_all_rx_resources(adapter);
3338 	if (err)
3339 		goto err_setup_rx;
3340 
3341 	igc_power_up_link(adapter);
3342 
3343 	igc_configure(adapter);
3344 
3345 	err = igc_request_irq(adapter);
3346 	if (err)
3347 		goto err_req_irq;
3348 
3349 	/* Notify the stack of the actual queue counts. */
3350 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3351 	if (err)
3352 		goto err_set_queues;
3353 
3354 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3355 	if (err)
3356 		goto err_set_queues;
3357 
3358 	clear_bit(__IGC_DOWN, &adapter->state);
3359 
3360 	for (i = 0; i < adapter->num_q_vectors; i++)
3361 		napi_enable(&adapter->q_vector[i]->napi);
3362 
3363 	/* Clear any pending interrupts. */
3364 	rd32(IGC_ICR);
3365 	igc_irq_enable(adapter);
3366 
3367 	netif_tx_start_all_queues(netdev);
3368 
3369 	/* start the watchdog. */
3370 	hw->mac.get_link_status = 1;
3371 	schedule_work(&adapter->watchdog_task);
3372 
3373 	return IGC_SUCCESS;
3374 
3375 err_set_queues:
3376 	igc_free_irq(adapter);
3377 err_req_irq:
3378 	igc_release_hw_control(adapter);
3379 	igc_power_down_link(adapter);
3380 	igc_free_all_rx_resources(adapter);
3381 err_setup_rx:
3382 	igc_free_all_tx_resources(adapter);
3383 err_setup_tx:
3384 	igc_reset(adapter);
3385 
3386 	return err;
3387 }
3388 
3389 static int igc_open(struct net_device *netdev)
3390 {
3391 	return __igc_open(netdev, false);
3392 }
3393 
3394 /**
3395  * igc_close - Disables a network interface
3396  * @netdev: network interface device structure
3397  *
3398  * Returns 0, this is not allowed to fail
3399  *
3400  * The close entry point is called when an interface is de-activated
3401  * by the OS.  The hardware is still under the driver's control, but
3402  * needs to be disabled.  A global MAC reset is issued to stop the
3403  * hardware, and all transmit and receive resources are freed.
3404  */
3405 static int __igc_close(struct net_device *netdev, bool suspending)
3406 {
3407 	struct igc_adapter *adapter = netdev_priv(netdev);
3408 
3409 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3410 
3411 	igc_down(adapter);
3412 
3413 	igc_release_hw_control(adapter);
3414 
3415 	igc_free_irq(adapter);
3416 
3417 	igc_free_all_tx_resources(adapter);
3418 	igc_free_all_rx_resources(adapter);
3419 
3420 	return 0;
3421 }
3422 
3423 static int igc_close(struct net_device *netdev)
3424 {
3425 	if (netif_device_present(netdev) || netdev->dismantle)
3426 		return __igc_close(netdev, false);
3427 	return 0;
3428 }
3429 
3430 static const struct net_device_ops igc_netdev_ops = {
3431 	.ndo_open		= igc_open,
3432 	.ndo_stop		= igc_close,
3433 	.ndo_start_xmit		= igc_xmit_frame,
3434 	.ndo_set_mac_address	= igc_set_mac,
3435 	.ndo_change_mtu		= igc_change_mtu,
3436 	.ndo_get_stats		= igc_get_stats,
3437 };
3438 
3439 /* PCIe configuration access */
3440 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3441 {
3442 	struct igc_adapter *adapter = hw->back;
3443 
3444 	pci_read_config_word(adapter->pdev, reg, value);
3445 }
3446 
3447 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3448 {
3449 	struct igc_adapter *adapter = hw->back;
3450 
3451 	pci_write_config_word(adapter->pdev, reg, *value);
3452 }
3453 
3454 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3455 {
3456 	struct igc_adapter *adapter = hw->back;
3457 	u16 cap_offset;
3458 
3459 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3460 	if (!cap_offset)
3461 		return -IGC_ERR_CONFIG;
3462 
3463 	pci_read_config_word(adapter->pdev, cap_offset + reg, value);
3464 
3465 	return IGC_SUCCESS;
3466 }
3467 
3468 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3469 {
3470 	struct igc_adapter *adapter = hw->back;
3471 	u16 cap_offset;
3472 
3473 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3474 	if (!cap_offset)
3475 		return -IGC_ERR_CONFIG;
3476 
3477 	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
3478 
3479 	return IGC_SUCCESS;
3480 }
3481 
3482 u32 igc_rd32(struct igc_hw *hw, u32 reg)
3483 {
3484 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
3485 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
3486 	u32 value = 0;
3487 
3488 	if (IGC_REMOVED(hw_addr))
3489 		return ~value;
3490 
3491 	value = readl(&hw_addr[reg]);
3492 
3493 	/* reads should not return all F's */
3494 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
3495 		struct net_device *netdev = igc->netdev;
3496 
3497 		hw->hw_addr = NULL;
3498 		netif_device_detach(netdev);
3499 		netdev_err(netdev, "PCIe link lost, device now detached\n");
3500 	}
3501 
3502 	return value;
3503 }
3504 
3505 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
3506 {
3507 	struct pci_dev *pdev = adapter->pdev;
3508 	struct igc_mac_info *mac = &adapter->hw.mac;
3509 
3510 	mac->autoneg = 0;
3511 
3512 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
3513 	 * for the switch() below to work
3514 	 */
3515 	if ((spd & 1) || (dplx & ~1))
3516 		goto err_inval;
3517 
3518 	switch (spd + dplx) {
3519 	case SPEED_10 + DUPLEX_HALF:
3520 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3521 		break;
3522 	case SPEED_10 + DUPLEX_FULL:
3523 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3524 		break;
3525 	case SPEED_100 + DUPLEX_HALF:
3526 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3527 		break;
3528 	case SPEED_100 + DUPLEX_FULL:
3529 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3530 		break;
3531 	case SPEED_1000 + DUPLEX_FULL:
3532 		mac->autoneg = 1;
3533 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3534 		break;
3535 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
3536 		goto err_inval;
3537 	case SPEED_2500 + DUPLEX_FULL:
3538 		mac->autoneg = 1;
3539 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
3540 		break;
3541 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
3542 	default:
3543 		goto err_inval;
3544 	}
3545 
3546 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
3547 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
3548 
3549 	return 0;
3550 
3551 err_inval:
3552 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
3553 	return -EINVAL;
3554 }
3555 
3556 /**
3557  * igc_probe - Device Initialization Routine
3558  * @pdev: PCI device information struct
3559  * @ent: entry in igc_pci_tbl
3560  *
3561  * Returns 0 on success, negative on failure
3562  *
3563  * igc_probe initializes an adapter identified by a pci_dev structure.
3564  * The OS initialization, configuring the adapter private structure,
3565  * and a hardware reset occur.
3566  */
3567 static int igc_probe(struct pci_dev *pdev,
3568 		     const struct pci_device_id *ent)
3569 {
3570 	struct igc_adapter *adapter;
3571 	struct net_device *netdev;
3572 	struct igc_hw *hw;
3573 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
3574 	int err;
3575 
3576 	err = pci_enable_device_mem(pdev);
3577 	if (err)
3578 		return err;
3579 
3580 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
3581 	if (!err) {
3582 		err = dma_set_coherent_mask(&pdev->dev,
3583 					    DMA_BIT_MASK(64));
3584 	} else {
3585 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3586 		if (err) {
3587 			err = dma_set_coherent_mask(&pdev->dev,
3588 						    DMA_BIT_MASK(32));
3589 			if (err) {
3590 				dev_err(&pdev->dev, "igc: Wrong DMA config\n");
3591 				goto err_dma;
3592 			}
3593 		}
3594 	}
3595 
3596 	err = pci_request_selected_regions(pdev,
3597 					   pci_select_bars(pdev,
3598 							   IORESOURCE_MEM),
3599 					   igc_driver_name);
3600 	if (err)
3601 		goto err_pci_reg;
3602 
3603 	pci_enable_pcie_error_reporting(pdev);
3604 
3605 	pci_set_master(pdev);
3606 
3607 	err = -ENOMEM;
3608 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
3609 				   IGC_MAX_TX_QUEUES);
3610 
3611 	if (!netdev)
3612 		goto err_alloc_etherdev;
3613 
3614 	SET_NETDEV_DEV(netdev, &pdev->dev);
3615 
3616 	pci_set_drvdata(pdev, netdev);
3617 	adapter = netdev_priv(netdev);
3618 	adapter->netdev = netdev;
3619 	adapter->pdev = pdev;
3620 	hw = &adapter->hw;
3621 	hw->back = adapter;
3622 	adapter->port_num = hw->bus.func;
3623 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3624 
3625 	err = pci_save_state(pdev);
3626 	if (err)
3627 		goto err_ioremap;
3628 
3629 	err = -EIO;
3630 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
3631 				   pci_resource_len(pdev, 0));
3632 	if (!adapter->io_addr)
3633 		goto err_ioremap;
3634 
3635 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
3636 	hw->hw_addr = adapter->io_addr;
3637 
3638 	netdev->netdev_ops = &igc_netdev_ops;
3639 	igc_set_ethtool_ops(netdev);
3640 	netdev->watchdog_timeo = 5 * HZ;
3641 
3642 	netdev->mem_start = pci_resource_start(pdev, 0);
3643 	netdev->mem_end = pci_resource_end(pdev, 0);
3644 
3645 	/* PCI config space info */
3646 	hw->vendor_id = pdev->vendor;
3647 	hw->device_id = pdev->device;
3648 	hw->revision_id = pdev->revision;
3649 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3650 	hw->subsystem_device_id = pdev->subsystem_device;
3651 
3652 	/* Copy the default MAC and PHY function pointers */
3653 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3654 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3655 
3656 	/* Initialize skew-specific constants */
3657 	err = ei->get_invariants(hw);
3658 	if (err)
3659 		goto err_sw_init;
3660 
3661 	/* setup the private structure */
3662 	err = igc_sw_init(adapter);
3663 	if (err)
3664 		goto err_sw_init;
3665 
3666 	/* MTU range: 68 - 9216 */
3667 	netdev->min_mtu = ETH_MIN_MTU;
3668 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3669 
3670 	/* before reading the NVM, reset the controller to put the device in a
3671 	 * known good starting state
3672 	 */
3673 	hw->mac.ops.reset_hw(hw);
3674 
3675 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3676 		/* copy the MAC address out of the NVM */
3677 		if (hw->mac.ops.read_mac_addr(hw))
3678 			dev_err(&pdev->dev, "NVM Read Error\n");
3679 	}
3680 
3681 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3682 
3683 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3684 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3685 		err = -EIO;
3686 		goto err_eeprom;
3687 	}
3688 
3689 	/* configure RXPBSIZE and TXPBSIZE */
3690 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
3691 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
3692 
3693 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
3694 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
3695 
3696 	INIT_WORK(&adapter->reset_task, igc_reset_task);
3697 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
3698 
3699 	/* Initialize link properties that are user-changeable */
3700 	adapter->fc_autoneg = true;
3701 	hw->mac.autoneg = true;
3702 	hw->phy.autoneg_advertised = 0xaf;
3703 
3704 	hw->fc.requested_mode = igc_fc_default;
3705 	hw->fc.current_mode = igc_fc_default;
3706 
3707 	/* reset the hardware with the new settings */
3708 	igc_reset(adapter);
3709 
3710 	/* let the f/w know that the h/w is now under the control of the
3711 	 * driver.
3712 	 */
3713 	igc_get_hw_control(adapter);
3714 
3715 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
3716 	err = register_netdev(netdev);
3717 	if (err)
3718 		goto err_register;
3719 
3720 	 /* carrier off reporting is important to ethtool even BEFORE open */
3721 	netif_carrier_off(netdev);
3722 
3723 	/* Check if Media Autosense is enabled */
3724 	adapter->ei = *ei;
3725 
3726 	/* print pcie link status and MAC address */
3727 	pcie_print_link_status(pdev);
3728 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
3729 
3730 	return 0;
3731 
3732 err_register:
3733 	igc_release_hw_control(adapter);
3734 err_eeprom:
3735 	if (!igc_check_reset_block(hw))
3736 		igc_reset_phy(hw);
3737 err_sw_init:
3738 	igc_clear_interrupt_scheme(adapter);
3739 	iounmap(adapter->io_addr);
3740 err_ioremap:
3741 	free_netdev(netdev);
3742 err_alloc_etherdev:
3743 	pci_release_selected_regions(pdev,
3744 				     pci_select_bars(pdev, IORESOURCE_MEM));
3745 err_pci_reg:
3746 err_dma:
3747 	pci_disable_device(pdev);
3748 	return err;
3749 }
3750 
3751 /**
3752  * igc_remove - Device Removal Routine
3753  * @pdev: PCI device information struct
3754  *
3755  * igc_remove is called by the PCI subsystem to alert the driver
3756  * that it should release a PCI device.  This could be caused by a
3757  * Hot-Plug event, or because the driver is going to be removed from
3758  * memory.
3759  */
3760 static void igc_remove(struct pci_dev *pdev)
3761 {
3762 	struct net_device *netdev = pci_get_drvdata(pdev);
3763 	struct igc_adapter *adapter = netdev_priv(netdev);
3764 
3765 	set_bit(__IGC_DOWN, &adapter->state);
3766 
3767 	del_timer_sync(&adapter->watchdog_timer);
3768 	del_timer_sync(&adapter->phy_info_timer);
3769 
3770 	cancel_work_sync(&adapter->reset_task);
3771 	cancel_work_sync(&adapter->watchdog_task);
3772 
3773 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3774 	 * would have already happened in close and is redundant.
3775 	 */
3776 	igc_release_hw_control(adapter);
3777 	unregister_netdev(netdev);
3778 
3779 	igc_clear_interrupt_scheme(adapter);
3780 	pci_iounmap(pdev, adapter->io_addr);
3781 	pci_release_mem_regions(pdev);
3782 
3783 	kfree(adapter->mac_table);
3784 	kfree(adapter->shadow_vfta);
3785 	free_netdev(netdev);
3786 
3787 	pci_disable_pcie_error_reporting(pdev);
3788 
3789 	pci_disable_device(pdev);
3790 }
3791 
3792 static struct pci_driver igc_driver = {
3793 	.name     = igc_driver_name,
3794 	.id_table = igc_pci_tbl,
3795 	.probe    = igc_probe,
3796 	.remove   = igc_remove,
3797 };
3798 
3799 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3800 			      const u32 max_rss_queues)
3801 {
3802 	/* Determine if we need to pair queues. */
3803 	/* If rss_queues > half of max_rss_queues, pair the queues in
3804 	 * order to conserve interrupts due to limited supply.
3805 	 */
3806 	if (adapter->rss_queues > (max_rss_queues / 2))
3807 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3808 	else
3809 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3810 }
3811 
3812 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3813 {
3814 	unsigned int max_rss_queues;
3815 
3816 	/* Determine the maximum number of RSS queues supported. */
3817 	max_rss_queues = IGC_MAX_RX_QUEUES;
3818 
3819 	return max_rss_queues;
3820 }
3821 
3822 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3823 {
3824 	u32 max_rss_queues;
3825 
3826 	max_rss_queues = igc_get_max_rss_queues(adapter);
3827 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3828 
3829 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3830 }
3831 
3832 /**
3833  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3834  * @adapter: board private structure to initialize
3835  *
3836  * igc_sw_init initializes the Adapter private data structure.
3837  * Fields are initialized based on PCI device information and
3838  * OS network device settings (MTU size).
3839  */
3840 static int igc_sw_init(struct igc_adapter *adapter)
3841 {
3842 	struct net_device *netdev = adapter->netdev;
3843 	struct pci_dev *pdev = adapter->pdev;
3844 	struct igc_hw *hw = &adapter->hw;
3845 
3846 	int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
3847 
3848 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3849 
3850 	/* set default ring sizes */
3851 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3852 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3853 
3854 	/* set default ITR values */
3855 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3856 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3857 
3858 	/* set default work limits */
3859 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3860 
3861 	/* adjust max frame to be at least the size of a standard frame */
3862 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3863 				VLAN_HLEN;
3864 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3865 
3866 	spin_lock_init(&adapter->nfc_lock);
3867 	spin_lock_init(&adapter->stats64_lock);
3868 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3869 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3870 
3871 	adapter->mac_table = kzalloc(size, GFP_ATOMIC);
3872 	if (!adapter->mac_table)
3873 		return -ENOMEM;
3874 
3875 	igc_init_queue_configuration(adapter);
3876 
3877 	/* This call may decrease the number of queues */
3878 	if (igc_init_interrupt_scheme(adapter, true)) {
3879 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3880 		return -ENOMEM;
3881 	}
3882 
3883 	/* Explicitly disable IRQ since the NIC can be in any state. */
3884 	igc_irq_disable(adapter);
3885 
3886 	set_bit(__IGC_DOWN, &adapter->state);
3887 
3888 	return 0;
3889 }
3890 
3891 /**
3892  * igc_reinit_queues - return error
3893  * @adapter: pointer to adapter structure
3894  */
3895 int igc_reinit_queues(struct igc_adapter *adapter)
3896 {
3897 	struct net_device *netdev = adapter->netdev;
3898 	struct pci_dev *pdev = adapter->pdev;
3899 	int err = 0;
3900 
3901 	if (netif_running(netdev))
3902 		igc_close(netdev);
3903 
3904 	igc_reset_interrupt_capability(adapter);
3905 
3906 	if (igc_init_interrupt_scheme(adapter, true)) {
3907 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3908 		return -ENOMEM;
3909 	}
3910 
3911 	if (netif_running(netdev))
3912 		err = igc_open(netdev);
3913 
3914 	return err;
3915 }
3916 
3917 /**
3918  * igc_get_hw_dev - return device
3919  * @hw: pointer to hardware structure
3920  *
3921  * used by hardware layer to print debugging information
3922  */
3923 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
3924 {
3925 	struct igc_adapter *adapter = hw->back;
3926 
3927 	return adapter->netdev;
3928 }
3929 
3930 /**
3931  * igc_init_module - Driver Registration Routine
3932  *
3933  * igc_init_module is the first routine called when the driver is
3934  * loaded. All it does is register with the PCI subsystem.
3935  */
3936 static int __init igc_init_module(void)
3937 {
3938 	int ret;
3939 
3940 	pr_info("%s - version %s\n",
3941 		igc_driver_string, igc_driver_version);
3942 
3943 	pr_info("%s\n", igc_copyright);
3944 
3945 	ret = pci_register_driver(&igc_driver);
3946 	return ret;
3947 }
3948 
3949 module_init(igc_init_module);
3950 
3951 /**
3952  * igc_exit_module - Driver Exit Cleanup Routine
3953  *
3954  * igc_exit_module is called just before the driver is removed
3955  * from memory.
3956  */
3957 static void __exit igc_exit_module(void)
3958 {
3959 	pci_unregister_driver(&igc_driver);
3960 }
3961 
3962 module_exit(igc_exit_module);
3963 /* igc_main.c */
3964