1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/ip.h> 11 12 #include <net/ipv6.h> 13 14 #include "igc.h" 15 #include "igc_hw.h" 16 17 #define DRV_VERSION "0.0.1-k" 18 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 19 20 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 21 22 static int debug = -1; 23 24 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 25 MODULE_DESCRIPTION(DRV_SUMMARY); 26 MODULE_LICENSE("GPL v2"); 27 MODULE_VERSION(DRV_VERSION); 28 module_param(debug, int, 0); 29 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 30 31 char igc_driver_name[] = "igc"; 32 char igc_driver_version[] = DRV_VERSION; 33 static const char igc_driver_string[] = DRV_SUMMARY; 34 static const char igc_copyright[] = 35 "Copyright(c) 2018 Intel Corporation."; 36 37 static const struct igc_info *igc_info_tbl[] = { 38 [board_base] = &igc_base_info, 39 }; 40 41 static const struct pci_device_id igc_pci_tbl[] = { 42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 47 /* required last entry */ 48 {0, } 49 }; 50 51 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 52 53 /* forward declaration */ 54 static void igc_clean_tx_ring(struct igc_ring *tx_ring); 55 static int igc_sw_init(struct igc_adapter *); 56 static void igc_configure(struct igc_adapter *adapter); 57 static void igc_power_down_link(struct igc_adapter *adapter); 58 static void igc_set_default_mac_filter(struct igc_adapter *adapter); 59 static void igc_set_rx_mode(struct net_device *netdev); 60 static void igc_write_itr(struct igc_q_vector *q_vector); 61 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector); 62 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx); 63 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 64 bool msix); 65 static void igc_free_q_vectors(struct igc_adapter *adapter); 66 static void igc_irq_disable(struct igc_adapter *adapter); 67 static void igc_irq_enable(struct igc_adapter *adapter); 68 static void igc_configure_msix(struct igc_adapter *adapter); 69 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 70 struct igc_rx_buffer *bi); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct pci_dev *pdev = adapter->pdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 dev_err(&pdev->dev, "Hardware Error\n"); 109 110 if (!netif_running(adapter->netdev)) 111 igc_power_down_link(adapter); 112 113 igc_get_phy_info(hw); 114 } 115 116 /** 117 * igc_power_up_link - Power up the phy/serdes link 118 * @adapter: address of board private structure 119 */ 120 static void igc_power_up_link(struct igc_adapter *adapter) 121 { 122 igc_reset_phy(&adapter->hw); 123 124 if (adapter->hw.phy.media_type == igc_media_type_copper) 125 igc_power_up_phy_copper(&adapter->hw); 126 127 igc_setup_link(&adapter->hw); 128 } 129 130 /** 131 * igc_power_down_link - Power down the phy/serdes link 132 * @adapter: address of board private structure 133 */ 134 static void igc_power_down_link(struct igc_adapter *adapter) 135 { 136 if (adapter->hw.phy.media_type == igc_media_type_copper) 137 igc_power_down_phy_copper_base(&adapter->hw); 138 } 139 140 /** 141 * igc_release_hw_control - release control of the h/w to f/w 142 * @adapter: address of board private structure 143 * 144 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 145 * For ASF and Pass Through versions of f/w this means that the 146 * driver is no longer loaded. 147 */ 148 static void igc_release_hw_control(struct igc_adapter *adapter) 149 { 150 struct igc_hw *hw = &adapter->hw; 151 u32 ctrl_ext; 152 153 /* Let firmware take over control of h/w */ 154 ctrl_ext = rd32(IGC_CTRL_EXT); 155 wr32(IGC_CTRL_EXT, 156 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 157 } 158 159 /** 160 * igc_get_hw_control - get control of the h/w from f/w 161 * @adapter: address of board private structure 162 * 163 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 164 * For ASF and Pass Through versions of f/w this means that 165 * the driver is loaded. 166 */ 167 static void igc_get_hw_control(struct igc_adapter *adapter) 168 { 169 struct igc_hw *hw = &adapter->hw; 170 u32 ctrl_ext; 171 172 /* Let firmware know the driver has taken over */ 173 ctrl_ext = rd32(IGC_CTRL_EXT); 174 wr32(IGC_CTRL_EXT, 175 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 176 } 177 178 /** 179 * igc_free_tx_resources - Free Tx Resources per Queue 180 * @tx_ring: Tx descriptor ring for a specific queue 181 * 182 * Free all transmit software resources 183 */ 184 void igc_free_tx_resources(struct igc_ring *tx_ring) 185 { 186 igc_clean_tx_ring(tx_ring); 187 188 vfree(tx_ring->tx_buffer_info); 189 tx_ring->tx_buffer_info = NULL; 190 191 /* if not set, then don't free */ 192 if (!tx_ring->desc) 193 return; 194 195 dma_free_coherent(tx_ring->dev, tx_ring->size, 196 tx_ring->desc, tx_ring->dma); 197 198 tx_ring->desc = NULL; 199 } 200 201 /** 202 * igc_free_all_tx_resources - Free Tx Resources for All Queues 203 * @adapter: board private structure 204 * 205 * Free all transmit software resources 206 */ 207 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 208 { 209 int i; 210 211 for (i = 0; i < adapter->num_tx_queues; i++) 212 igc_free_tx_resources(adapter->tx_ring[i]); 213 } 214 215 /** 216 * igc_clean_tx_ring - Free Tx Buffers 217 * @tx_ring: ring to be cleaned 218 */ 219 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 220 { 221 u16 i = tx_ring->next_to_clean; 222 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 223 224 while (i != tx_ring->next_to_use) { 225 union igc_adv_tx_desc *eop_desc, *tx_desc; 226 227 /* Free all the Tx ring sk_buffs */ 228 dev_kfree_skb_any(tx_buffer->skb); 229 230 /* unmap skb header data */ 231 dma_unmap_single(tx_ring->dev, 232 dma_unmap_addr(tx_buffer, dma), 233 dma_unmap_len(tx_buffer, len), 234 DMA_TO_DEVICE); 235 236 /* check for eop_desc to determine the end of the packet */ 237 eop_desc = tx_buffer->next_to_watch; 238 tx_desc = IGC_TX_DESC(tx_ring, i); 239 240 /* unmap remaining buffers */ 241 while (tx_desc != eop_desc) { 242 tx_buffer++; 243 tx_desc++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 tx_desc = IGC_TX_DESC(tx_ring, 0); 249 } 250 251 /* unmap any remaining paged data */ 252 if (dma_unmap_len(tx_buffer, len)) 253 dma_unmap_page(tx_ring->dev, 254 dma_unmap_addr(tx_buffer, dma), 255 dma_unmap_len(tx_buffer, len), 256 DMA_TO_DEVICE); 257 } 258 259 /* move us one more past the eop_desc for start of next pkt */ 260 tx_buffer++; 261 i++; 262 if (unlikely(i == tx_ring->count)) { 263 i = 0; 264 tx_buffer = tx_ring->tx_buffer_info; 265 } 266 } 267 268 /* reset BQL for queue */ 269 netdev_tx_reset_queue(txring_txq(tx_ring)); 270 271 /* reset next_to_use and next_to_clean */ 272 tx_ring->next_to_use = 0; 273 tx_ring->next_to_clean = 0; 274 } 275 276 /** 277 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 278 * @adapter: board private structure 279 */ 280 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 281 { 282 int i; 283 284 for (i = 0; i < adapter->num_tx_queues; i++) 285 if (adapter->tx_ring[i]) 286 igc_clean_tx_ring(adapter->tx_ring[i]); 287 } 288 289 /** 290 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 291 * @tx_ring: tx descriptor ring (for a specific queue) to setup 292 * 293 * Return 0 on success, negative on failure 294 */ 295 int igc_setup_tx_resources(struct igc_ring *tx_ring) 296 { 297 struct device *dev = tx_ring->dev; 298 int size = 0; 299 300 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 301 tx_ring->tx_buffer_info = vzalloc(size); 302 if (!tx_ring->tx_buffer_info) 303 goto err; 304 305 /* round up to nearest 4K */ 306 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 307 tx_ring->size = ALIGN(tx_ring->size, 4096); 308 309 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 310 &tx_ring->dma, GFP_KERNEL); 311 312 if (!tx_ring->desc) 313 goto err; 314 315 tx_ring->next_to_use = 0; 316 tx_ring->next_to_clean = 0; 317 318 return 0; 319 320 err: 321 vfree(tx_ring->tx_buffer_info); 322 dev_err(dev, 323 "Unable to allocate memory for the transmit descriptor ring\n"); 324 return -ENOMEM; 325 } 326 327 /** 328 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 329 * @adapter: board private structure 330 * 331 * Return 0 on success, negative on failure 332 */ 333 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 334 { 335 struct pci_dev *pdev = adapter->pdev; 336 int i, err = 0; 337 338 for (i = 0; i < adapter->num_tx_queues; i++) { 339 err = igc_setup_tx_resources(adapter->tx_ring[i]); 340 if (err) { 341 dev_err(&pdev->dev, 342 "Allocation for Tx Queue %u failed\n", i); 343 for (i--; i >= 0; i--) 344 igc_free_tx_resources(adapter->tx_ring[i]); 345 break; 346 } 347 } 348 349 return err; 350 } 351 352 /** 353 * igc_clean_rx_ring - Free Rx Buffers per Queue 354 * @rx_ring: ring to free buffers from 355 */ 356 static void igc_clean_rx_ring(struct igc_ring *rx_ring) 357 { 358 u16 i = rx_ring->next_to_clean; 359 360 dev_kfree_skb(rx_ring->skb); 361 rx_ring->skb = NULL; 362 363 /* Free all the Rx ring sk_buffs */ 364 while (i != rx_ring->next_to_alloc) { 365 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 366 367 /* Invalidate cache lines that may have been written to by 368 * device so that we avoid corrupting memory. 369 */ 370 dma_sync_single_range_for_cpu(rx_ring->dev, 371 buffer_info->dma, 372 buffer_info->page_offset, 373 igc_rx_bufsz(rx_ring), 374 DMA_FROM_DEVICE); 375 376 /* free resources associated with mapping */ 377 dma_unmap_page_attrs(rx_ring->dev, 378 buffer_info->dma, 379 igc_rx_pg_size(rx_ring), 380 DMA_FROM_DEVICE, 381 IGC_RX_DMA_ATTR); 382 __page_frag_cache_drain(buffer_info->page, 383 buffer_info->pagecnt_bias); 384 385 i++; 386 if (i == rx_ring->count) 387 i = 0; 388 } 389 390 rx_ring->next_to_alloc = 0; 391 rx_ring->next_to_clean = 0; 392 rx_ring->next_to_use = 0; 393 } 394 395 /** 396 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 397 * @adapter: board private structure 398 */ 399 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 400 { 401 int i; 402 403 for (i = 0; i < adapter->num_rx_queues; i++) 404 if (adapter->rx_ring[i]) 405 igc_clean_rx_ring(adapter->rx_ring[i]); 406 } 407 408 /** 409 * igc_free_rx_resources - Free Rx Resources 410 * @rx_ring: ring to clean the resources from 411 * 412 * Free all receive software resources 413 */ 414 void igc_free_rx_resources(struct igc_ring *rx_ring) 415 { 416 igc_clean_rx_ring(rx_ring); 417 418 vfree(rx_ring->rx_buffer_info); 419 rx_ring->rx_buffer_info = NULL; 420 421 /* if not set, then don't free */ 422 if (!rx_ring->desc) 423 return; 424 425 dma_free_coherent(rx_ring->dev, rx_ring->size, 426 rx_ring->desc, rx_ring->dma); 427 428 rx_ring->desc = NULL; 429 } 430 431 /** 432 * igc_free_all_rx_resources - Free Rx Resources for All Queues 433 * @adapter: board private structure 434 * 435 * Free all receive software resources 436 */ 437 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 438 { 439 int i; 440 441 for (i = 0; i < adapter->num_rx_queues; i++) 442 igc_free_rx_resources(adapter->rx_ring[i]); 443 } 444 445 /** 446 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 447 * @rx_ring: rx descriptor ring (for a specific queue) to setup 448 * 449 * Returns 0 on success, negative on failure 450 */ 451 int igc_setup_rx_resources(struct igc_ring *rx_ring) 452 { 453 struct device *dev = rx_ring->dev; 454 int size, desc_len; 455 456 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 457 rx_ring->rx_buffer_info = vzalloc(size); 458 if (!rx_ring->rx_buffer_info) 459 goto err; 460 461 desc_len = sizeof(union igc_adv_rx_desc); 462 463 /* Round up to nearest 4K */ 464 rx_ring->size = rx_ring->count * desc_len; 465 rx_ring->size = ALIGN(rx_ring->size, 4096); 466 467 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 468 &rx_ring->dma, GFP_KERNEL); 469 470 if (!rx_ring->desc) 471 goto err; 472 473 rx_ring->next_to_alloc = 0; 474 rx_ring->next_to_clean = 0; 475 rx_ring->next_to_use = 0; 476 477 return 0; 478 479 err: 480 vfree(rx_ring->rx_buffer_info); 481 rx_ring->rx_buffer_info = NULL; 482 dev_err(dev, 483 "Unable to allocate memory for the receive descriptor ring\n"); 484 return -ENOMEM; 485 } 486 487 /** 488 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 489 * (Descriptors) for all queues 490 * @adapter: board private structure 491 * 492 * Return 0 on success, negative on failure 493 */ 494 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 495 { 496 struct pci_dev *pdev = adapter->pdev; 497 int i, err = 0; 498 499 for (i = 0; i < adapter->num_rx_queues; i++) { 500 err = igc_setup_rx_resources(adapter->rx_ring[i]); 501 if (err) { 502 dev_err(&pdev->dev, 503 "Allocation for Rx Queue %u failed\n", i); 504 for (i--; i >= 0; i--) 505 igc_free_rx_resources(adapter->rx_ring[i]); 506 break; 507 } 508 } 509 510 return err; 511 } 512 513 /** 514 * igc_configure_rx_ring - Configure a receive ring after Reset 515 * @adapter: board private structure 516 * @ring: receive ring to be configured 517 * 518 * Configure the Rx unit of the MAC after a reset. 519 */ 520 static void igc_configure_rx_ring(struct igc_adapter *adapter, 521 struct igc_ring *ring) 522 { 523 struct igc_hw *hw = &adapter->hw; 524 union igc_adv_rx_desc *rx_desc; 525 int reg_idx = ring->reg_idx; 526 u32 srrctl = 0, rxdctl = 0; 527 u64 rdba = ring->dma; 528 529 /* disable the queue */ 530 wr32(IGC_RXDCTL(reg_idx), 0); 531 532 /* Set DMA base address registers */ 533 wr32(IGC_RDBAL(reg_idx), 534 rdba & 0x00000000ffffffffULL); 535 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 536 wr32(IGC_RDLEN(reg_idx), 537 ring->count * sizeof(union igc_adv_rx_desc)); 538 539 /* initialize head and tail */ 540 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 541 wr32(IGC_RDH(reg_idx), 0); 542 writel(0, ring->tail); 543 544 /* reset next-to- use/clean to place SW in sync with hardware */ 545 ring->next_to_clean = 0; 546 ring->next_to_use = 0; 547 548 /* set descriptor configuration */ 549 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 550 if (ring_uses_large_buffer(ring)) 551 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 552 else 553 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 554 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 555 556 wr32(IGC_SRRCTL(reg_idx), srrctl); 557 558 rxdctl |= IGC_RX_PTHRESH; 559 rxdctl |= IGC_RX_HTHRESH << 8; 560 rxdctl |= IGC_RX_WTHRESH << 16; 561 562 /* initialize rx_buffer_info */ 563 memset(ring->rx_buffer_info, 0, 564 sizeof(struct igc_rx_buffer) * ring->count); 565 566 /* initialize Rx descriptor 0 */ 567 rx_desc = IGC_RX_DESC(ring, 0); 568 rx_desc->wb.upper.length = 0; 569 570 /* enable receive descriptor fetching */ 571 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 572 573 wr32(IGC_RXDCTL(reg_idx), rxdctl); 574 } 575 576 /** 577 * igc_configure_rx - Configure receive Unit after Reset 578 * @adapter: board private structure 579 * 580 * Configure the Rx unit of the MAC after a reset. 581 */ 582 static void igc_configure_rx(struct igc_adapter *adapter) 583 { 584 int i; 585 586 /* Setup the HW Rx Head and Tail Descriptor Pointers and 587 * the Base and Length of the Rx Descriptor Ring 588 */ 589 for (i = 0; i < adapter->num_rx_queues; i++) 590 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 591 } 592 593 /** 594 * igc_configure_tx_ring - Configure transmit ring after Reset 595 * @adapter: board private structure 596 * @ring: tx ring to configure 597 * 598 * Configure a transmit ring after a reset. 599 */ 600 static void igc_configure_tx_ring(struct igc_adapter *adapter, 601 struct igc_ring *ring) 602 { 603 struct igc_hw *hw = &adapter->hw; 604 int reg_idx = ring->reg_idx; 605 u64 tdba = ring->dma; 606 u32 txdctl = 0; 607 608 /* disable the queue */ 609 wr32(IGC_TXDCTL(reg_idx), 0); 610 wrfl(); 611 mdelay(10); 612 613 wr32(IGC_TDLEN(reg_idx), 614 ring->count * sizeof(union igc_adv_tx_desc)); 615 wr32(IGC_TDBAL(reg_idx), 616 tdba & 0x00000000ffffffffULL); 617 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 618 619 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 620 wr32(IGC_TDH(reg_idx), 0); 621 writel(0, ring->tail); 622 623 txdctl |= IGC_TX_PTHRESH; 624 txdctl |= IGC_TX_HTHRESH << 8; 625 txdctl |= IGC_TX_WTHRESH << 16; 626 627 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 628 wr32(IGC_TXDCTL(reg_idx), txdctl); 629 } 630 631 /** 632 * igc_configure_tx - Configure transmit Unit after Reset 633 * @adapter: board private structure 634 * 635 * Configure the Tx unit of the MAC after a reset. 636 */ 637 static void igc_configure_tx(struct igc_adapter *adapter) 638 { 639 int i; 640 641 for (i = 0; i < adapter->num_tx_queues; i++) 642 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 643 } 644 645 /** 646 * igc_setup_mrqc - configure the multiple receive queue control registers 647 * @adapter: Board private structure 648 */ 649 static void igc_setup_mrqc(struct igc_adapter *adapter) 650 { 651 struct igc_hw *hw = &adapter->hw; 652 u32 j, num_rx_queues; 653 u32 mrqc, rxcsum; 654 u32 rss_key[10]; 655 656 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 657 for (j = 0; j < 10; j++) 658 wr32(IGC_RSSRK(j), rss_key[j]); 659 660 num_rx_queues = adapter->rss_queues; 661 662 if (adapter->rss_indir_tbl_init != num_rx_queues) { 663 for (j = 0; j < IGC_RETA_SIZE; j++) 664 adapter->rss_indir_tbl[j] = 665 (j * num_rx_queues) / IGC_RETA_SIZE; 666 adapter->rss_indir_tbl_init = num_rx_queues; 667 } 668 igc_write_rss_indir_tbl(adapter); 669 670 /* Disable raw packet checksumming so that RSS hash is placed in 671 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 672 * offloads as they are enabled by default 673 */ 674 rxcsum = rd32(IGC_RXCSUM); 675 rxcsum |= IGC_RXCSUM_PCSD; 676 677 /* Enable Receive Checksum Offload for SCTP */ 678 rxcsum |= IGC_RXCSUM_CRCOFL; 679 680 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 681 wr32(IGC_RXCSUM, rxcsum); 682 683 /* Generate RSS hash based on packet types, TCP/UDP 684 * port numbers and/or IPv4/v6 src and dst addresses 685 */ 686 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 687 IGC_MRQC_RSS_FIELD_IPV4_TCP | 688 IGC_MRQC_RSS_FIELD_IPV6 | 689 IGC_MRQC_RSS_FIELD_IPV6_TCP | 690 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 691 692 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 693 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 694 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 695 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 696 697 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 698 699 wr32(IGC_MRQC, mrqc); 700 } 701 702 /** 703 * igc_setup_rctl - configure the receive control registers 704 * @adapter: Board private structure 705 */ 706 static void igc_setup_rctl(struct igc_adapter *adapter) 707 { 708 struct igc_hw *hw = &adapter->hw; 709 u32 rctl; 710 711 rctl = rd32(IGC_RCTL); 712 713 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 714 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 715 716 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 717 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 718 719 /* enable stripping of CRC. Newer features require 720 * that the HW strips the CRC. 721 */ 722 rctl |= IGC_RCTL_SECRC; 723 724 /* disable store bad packets and clear size bits. */ 725 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 726 727 /* enable LPE to allow for reception of jumbo frames */ 728 rctl |= IGC_RCTL_LPE; 729 730 /* disable queue 0 to prevent tail write w/o re-config */ 731 wr32(IGC_RXDCTL(0), 0); 732 733 /* This is useful for sniffing bad packets. */ 734 if (adapter->netdev->features & NETIF_F_RXALL) { 735 /* UPE and MPE will be handled by normal PROMISC logic 736 * in set_rx_mode 737 */ 738 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 739 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 740 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 741 742 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 743 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 744 } 745 746 wr32(IGC_RCTL, rctl); 747 } 748 749 /** 750 * igc_setup_tctl - configure the transmit control registers 751 * @adapter: Board private structure 752 */ 753 static void igc_setup_tctl(struct igc_adapter *adapter) 754 { 755 struct igc_hw *hw = &adapter->hw; 756 u32 tctl; 757 758 /* disable queue 0 which icould be enabled by default */ 759 wr32(IGC_TXDCTL(0), 0); 760 761 /* Program the Transmit Control Register */ 762 tctl = rd32(IGC_TCTL); 763 tctl &= ~IGC_TCTL_CT; 764 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 765 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 766 767 /* Enable transmits */ 768 tctl |= IGC_TCTL_EN; 769 770 wr32(IGC_TCTL, tctl); 771 } 772 773 /** 774 * igc_set_mac - Change the Ethernet Address of the NIC 775 * @netdev: network interface device structure 776 * @p: pointer to an address structure 777 * 778 * Returns 0 on success, negative on failure 779 */ 780 static int igc_set_mac(struct net_device *netdev, void *p) 781 { 782 struct igc_adapter *adapter = netdev_priv(netdev); 783 struct igc_hw *hw = &adapter->hw; 784 struct sockaddr *addr = p; 785 786 if (!is_valid_ether_addr(addr->sa_data)) 787 return -EADDRNOTAVAIL; 788 789 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 790 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 791 792 /* set the correct pool for the new PF MAC address in entry 0 */ 793 igc_set_default_mac_filter(adapter); 794 795 return 0; 796 } 797 798 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 799 struct igc_tx_buffer *first, 800 u32 vlan_macip_lens, u32 type_tucmd, 801 u32 mss_l4len_idx) 802 { 803 struct igc_adv_tx_context_desc *context_desc; 804 u16 i = tx_ring->next_to_use; 805 struct timespec64 ts; 806 807 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 808 809 i++; 810 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 811 812 /* set bits to identify this as an advanced context descriptor */ 813 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 814 815 /* For 82575, context index must be unique per ring. */ 816 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 817 mss_l4len_idx |= tx_ring->reg_idx << 4; 818 819 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 820 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 821 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 822 823 /* We assume there is always a valid Tx time available. Invalid times 824 * should have been handled by the upper layers. 825 */ 826 if (tx_ring->launchtime_enable) { 827 ts = ns_to_timespec64(first->skb->tstamp); 828 first->skb->tstamp = 0; 829 context_desc->launch_time = cpu_to_le32(ts.tv_nsec / 32); 830 } else { 831 context_desc->launch_time = 0; 832 } 833 } 834 835 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb) 836 { 837 unsigned int offset = 0; 838 839 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 840 841 return offset == skb_checksum_start_offset(skb); 842 } 843 844 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 845 { 846 struct sk_buff *skb = first->skb; 847 u32 vlan_macip_lens = 0; 848 u32 type_tucmd = 0; 849 850 if (skb->ip_summed != CHECKSUM_PARTIAL) { 851 csum_failed: 852 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 853 !tx_ring->launchtime_enable) 854 return; 855 goto no_csum; 856 } 857 858 switch (skb->csum_offset) { 859 case offsetof(struct tcphdr, check): 860 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 861 /* fall through */ 862 case offsetof(struct udphdr, check): 863 break; 864 case offsetof(struct sctphdr, checksum): 865 /* validate that this is actually an SCTP request */ 866 if ((first->protocol == htons(ETH_P_IP) && 867 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 868 (first->protocol == htons(ETH_P_IPV6) && 869 igc_ipv6_csum_is_sctp(skb))) { 870 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 871 break; 872 } 873 /* fall through */ 874 default: 875 skb_checksum_help(skb); 876 goto csum_failed; 877 } 878 879 /* update TX checksum flag */ 880 first->tx_flags |= IGC_TX_FLAGS_CSUM; 881 vlan_macip_lens = skb_checksum_start_offset(skb) - 882 skb_network_offset(skb); 883 no_csum: 884 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 885 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 886 887 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 888 } 889 890 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 891 { 892 struct net_device *netdev = tx_ring->netdev; 893 894 netif_stop_subqueue(netdev, tx_ring->queue_index); 895 896 /* memory barriier comment */ 897 smp_mb(); 898 899 /* We need to check again in a case another CPU has just 900 * made room available. 901 */ 902 if (igc_desc_unused(tx_ring) < size) 903 return -EBUSY; 904 905 /* A reprieve! */ 906 netif_wake_subqueue(netdev, tx_ring->queue_index); 907 908 u64_stats_update_begin(&tx_ring->tx_syncp2); 909 tx_ring->tx_stats.restart_queue2++; 910 u64_stats_update_end(&tx_ring->tx_syncp2); 911 912 return 0; 913 } 914 915 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 916 { 917 if (igc_desc_unused(tx_ring) >= size) 918 return 0; 919 return __igc_maybe_stop_tx(tx_ring, size); 920 } 921 922 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 923 { 924 /* set type for advanced descriptor with frame checksum insertion */ 925 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 926 IGC_ADVTXD_DCMD_DEXT | 927 IGC_ADVTXD_DCMD_IFCS; 928 929 return cmd_type; 930 } 931 932 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 933 union igc_adv_tx_desc *tx_desc, 934 u32 tx_flags, unsigned int paylen) 935 { 936 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 937 938 /* insert L4 checksum */ 939 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 940 ((IGC_TXD_POPTS_TXSM << 8) / 941 IGC_TX_FLAGS_CSUM); 942 943 /* insert IPv4 checksum */ 944 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 945 (((IGC_TXD_POPTS_IXSM << 8)) / 946 IGC_TX_FLAGS_IPV4); 947 948 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 949 } 950 951 static int igc_tx_map(struct igc_ring *tx_ring, 952 struct igc_tx_buffer *first, 953 const u8 hdr_len) 954 { 955 struct sk_buff *skb = first->skb; 956 struct igc_tx_buffer *tx_buffer; 957 union igc_adv_tx_desc *tx_desc; 958 u32 tx_flags = first->tx_flags; 959 skb_frag_t *frag; 960 u16 i = tx_ring->next_to_use; 961 unsigned int data_len, size; 962 dma_addr_t dma; 963 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags); 964 965 tx_desc = IGC_TX_DESC(tx_ring, i); 966 967 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 968 969 size = skb_headlen(skb); 970 data_len = skb->data_len; 971 972 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 973 974 tx_buffer = first; 975 976 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 977 if (dma_mapping_error(tx_ring->dev, dma)) 978 goto dma_error; 979 980 /* record length, and DMA address */ 981 dma_unmap_len_set(tx_buffer, len, size); 982 dma_unmap_addr_set(tx_buffer, dma, dma); 983 984 tx_desc->read.buffer_addr = cpu_to_le64(dma); 985 986 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 987 tx_desc->read.cmd_type_len = 988 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 989 990 i++; 991 tx_desc++; 992 if (i == tx_ring->count) { 993 tx_desc = IGC_TX_DESC(tx_ring, 0); 994 i = 0; 995 } 996 tx_desc->read.olinfo_status = 0; 997 998 dma += IGC_MAX_DATA_PER_TXD; 999 size -= IGC_MAX_DATA_PER_TXD; 1000 1001 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1002 } 1003 1004 if (likely(!data_len)) 1005 break; 1006 1007 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1008 1009 i++; 1010 tx_desc++; 1011 if (i == tx_ring->count) { 1012 tx_desc = IGC_TX_DESC(tx_ring, 0); 1013 i = 0; 1014 } 1015 tx_desc->read.olinfo_status = 0; 1016 1017 size = skb_frag_size(frag); 1018 data_len -= size; 1019 1020 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1021 size, DMA_TO_DEVICE); 1022 1023 tx_buffer = &tx_ring->tx_buffer_info[i]; 1024 } 1025 1026 /* write last descriptor with RS and EOP bits */ 1027 cmd_type |= size | IGC_TXD_DCMD; 1028 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1029 1030 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1031 1032 /* set the timestamp */ 1033 first->time_stamp = jiffies; 1034 1035 skb_tx_timestamp(skb); 1036 1037 /* Force memory writes to complete before letting h/w know there 1038 * are new descriptors to fetch. (Only applicable for weak-ordered 1039 * memory model archs, such as IA-64). 1040 * 1041 * We also need this memory barrier to make certain all of the 1042 * status bits have been updated before next_to_watch is written. 1043 */ 1044 wmb(); 1045 1046 /* set next_to_watch value indicating a packet is present */ 1047 first->next_to_watch = tx_desc; 1048 1049 i++; 1050 if (i == tx_ring->count) 1051 i = 0; 1052 1053 tx_ring->next_to_use = i; 1054 1055 /* Make sure there is space in the ring for the next send. */ 1056 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1057 1058 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1059 writel(i, tx_ring->tail); 1060 } 1061 1062 return 0; 1063 dma_error: 1064 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1065 tx_buffer = &tx_ring->tx_buffer_info[i]; 1066 1067 /* clear dma mappings for failed tx_buffer_info map */ 1068 while (tx_buffer != first) { 1069 if (dma_unmap_len(tx_buffer, len)) 1070 dma_unmap_page(tx_ring->dev, 1071 dma_unmap_addr(tx_buffer, dma), 1072 dma_unmap_len(tx_buffer, len), 1073 DMA_TO_DEVICE); 1074 dma_unmap_len_set(tx_buffer, len, 0); 1075 1076 if (i-- == 0) 1077 i += tx_ring->count; 1078 tx_buffer = &tx_ring->tx_buffer_info[i]; 1079 } 1080 1081 if (dma_unmap_len(tx_buffer, len)) 1082 dma_unmap_single(tx_ring->dev, 1083 dma_unmap_addr(tx_buffer, dma), 1084 dma_unmap_len(tx_buffer, len), 1085 DMA_TO_DEVICE); 1086 dma_unmap_len_set(tx_buffer, len, 0); 1087 1088 dev_kfree_skb_any(tx_buffer->skb); 1089 tx_buffer->skb = NULL; 1090 1091 tx_ring->next_to_use = i; 1092 1093 return -1; 1094 } 1095 1096 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1097 struct igc_ring *tx_ring) 1098 { 1099 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1100 __be16 protocol = vlan_get_protocol(skb); 1101 struct igc_tx_buffer *first; 1102 u32 tx_flags = 0; 1103 unsigned short f; 1104 u8 hdr_len = 0; 1105 1106 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1107 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1108 * + 2 desc gap to keep tail from touching head, 1109 * + 1 desc for context descriptor, 1110 * otherwise try next time 1111 */ 1112 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1113 count += TXD_USE_COUNT(skb_frag_size( 1114 &skb_shinfo(skb)->frags[f])); 1115 1116 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 1117 /* this is a hard error */ 1118 return NETDEV_TX_BUSY; 1119 } 1120 1121 /* record the location of the first descriptor for this packet */ 1122 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1123 first->skb = skb; 1124 first->bytecount = skb->len; 1125 first->gso_segs = 1; 1126 1127 /* record initial flags and protocol */ 1128 first->tx_flags = tx_flags; 1129 first->protocol = protocol; 1130 1131 igc_tx_csum(tx_ring, first); 1132 1133 igc_tx_map(tx_ring, first, hdr_len); 1134 1135 return NETDEV_TX_OK; 1136 } 1137 1138 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1139 struct sk_buff *skb) 1140 { 1141 unsigned int r_idx = skb->queue_mapping; 1142 1143 if (r_idx >= adapter->num_tx_queues) 1144 r_idx = r_idx % adapter->num_tx_queues; 1145 1146 return adapter->tx_ring[r_idx]; 1147 } 1148 1149 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1150 struct net_device *netdev) 1151 { 1152 struct igc_adapter *adapter = netdev_priv(netdev); 1153 1154 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1155 * in order to meet this minimum size requirement. 1156 */ 1157 if (skb->len < 17) { 1158 if (skb_padto(skb, 17)) 1159 return NETDEV_TX_OK; 1160 skb->len = 17; 1161 } 1162 1163 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1164 } 1165 1166 static inline void igc_rx_hash(struct igc_ring *ring, 1167 union igc_adv_rx_desc *rx_desc, 1168 struct sk_buff *skb) 1169 { 1170 if (ring->netdev->features & NETIF_F_RXHASH) 1171 skb_set_hash(skb, 1172 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1173 PKT_HASH_TYPE_L3); 1174 } 1175 1176 /** 1177 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1178 * @rx_ring: rx descriptor ring packet is being transacted on 1179 * @rx_desc: pointer to the EOP Rx descriptor 1180 * @skb: pointer to current skb being populated 1181 * 1182 * This function checks the ring, descriptor, and packet information in 1183 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 1184 * other fields within the skb. 1185 */ 1186 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1187 union igc_adv_rx_desc *rx_desc, 1188 struct sk_buff *skb) 1189 { 1190 igc_rx_hash(rx_ring, rx_desc, skb); 1191 1192 skb_record_rx_queue(skb, rx_ring->queue_index); 1193 1194 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1195 } 1196 1197 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1198 const unsigned int size) 1199 { 1200 struct igc_rx_buffer *rx_buffer; 1201 1202 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1203 prefetchw(rx_buffer->page); 1204 1205 /* we are reusing so sync this buffer for CPU use */ 1206 dma_sync_single_range_for_cpu(rx_ring->dev, 1207 rx_buffer->dma, 1208 rx_buffer->page_offset, 1209 size, 1210 DMA_FROM_DEVICE); 1211 1212 rx_buffer->pagecnt_bias--; 1213 1214 return rx_buffer; 1215 } 1216 1217 /** 1218 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1219 * @rx_ring: rx descriptor ring to transact packets on 1220 * @rx_buffer: buffer containing page to add 1221 * @skb: sk_buff to place the data into 1222 * @size: size of buffer to be added 1223 * 1224 * This function will add the data contained in rx_buffer->page to the skb. 1225 */ 1226 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1227 struct igc_rx_buffer *rx_buffer, 1228 struct sk_buff *skb, 1229 unsigned int size) 1230 { 1231 #if (PAGE_SIZE < 8192) 1232 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1233 1234 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1235 rx_buffer->page_offset, size, truesize); 1236 rx_buffer->page_offset ^= truesize; 1237 #else 1238 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1239 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1240 SKB_DATA_ALIGN(size); 1241 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1242 rx_buffer->page_offset, size, truesize); 1243 rx_buffer->page_offset += truesize; 1244 #endif 1245 } 1246 1247 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1248 struct igc_rx_buffer *rx_buffer, 1249 union igc_adv_rx_desc *rx_desc, 1250 unsigned int size) 1251 { 1252 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1253 #if (PAGE_SIZE < 8192) 1254 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1255 #else 1256 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1257 SKB_DATA_ALIGN(IGC_SKB_PAD + size); 1258 #endif 1259 struct sk_buff *skb; 1260 1261 /* prefetch first cache line of first page */ 1262 prefetch(va); 1263 #if L1_CACHE_BYTES < 128 1264 prefetch(va + L1_CACHE_BYTES); 1265 #endif 1266 1267 /* build an skb around the page buffer */ 1268 skb = build_skb(va - IGC_SKB_PAD, truesize); 1269 if (unlikely(!skb)) 1270 return NULL; 1271 1272 /* update pointers within the skb to store the data */ 1273 skb_reserve(skb, IGC_SKB_PAD); 1274 __skb_put(skb, size); 1275 1276 /* update buffer offset */ 1277 #if (PAGE_SIZE < 8192) 1278 rx_buffer->page_offset ^= truesize; 1279 #else 1280 rx_buffer->page_offset += truesize; 1281 #endif 1282 1283 return skb; 1284 } 1285 1286 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1287 struct igc_rx_buffer *rx_buffer, 1288 union igc_adv_rx_desc *rx_desc, 1289 unsigned int size) 1290 { 1291 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1292 #if (PAGE_SIZE < 8192) 1293 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1294 #else 1295 unsigned int truesize = SKB_DATA_ALIGN(size); 1296 #endif 1297 unsigned int headlen; 1298 struct sk_buff *skb; 1299 1300 /* prefetch first cache line of first page */ 1301 prefetch(va); 1302 #if L1_CACHE_BYTES < 128 1303 prefetch(va + L1_CACHE_BYTES); 1304 #endif 1305 1306 /* allocate a skb to store the frags */ 1307 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN); 1308 if (unlikely(!skb)) 1309 return NULL; 1310 1311 /* Determine available headroom for copy */ 1312 headlen = size; 1313 if (headlen > IGC_RX_HDR_LEN) 1314 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1315 1316 /* align pull length to size of long to optimize memcpy performance */ 1317 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1318 1319 /* update all of the pointers */ 1320 size -= headlen; 1321 if (size) { 1322 skb_add_rx_frag(skb, 0, rx_buffer->page, 1323 (va + headlen) - page_address(rx_buffer->page), 1324 size, truesize); 1325 #if (PAGE_SIZE < 8192) 1326 rx_buffer->page_offset ^= truesize; 1327 #else 1328 rx_buffer->page_offset += truesize; 1329 #endif 1330 } else { 1331 rx_buffer->pagecnt_bias++; 1332 } 1333 1334 return skb; 1335 } 1336 1337 /** 1338 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1339 * @rx_ring: rx descriptor ring to store buffers on 1340 * @old_buff: donor buffer to have page reused 1341 * 1342 * Synchronizes page for reuse by the adapter 1343 */ 1344 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1345 struct igc_rx_buffer *old_buff) 1346 { 1347 u16 nta = rx_ring->next_to_alloc; 1348 struct igc_rx_buffer *new_buff; 1349 1350 new_buff = &rx_ring->rx_buffer_info[nta]; 1351 1352 /* update, and store next to alloc */ 1353 nta++; 1354 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1355 1356 /* Transfer page from old buffer to new buffer. 1357 * Move each member individually to avoid possible store 1358 * forwarding stalls. 1359 */ 1360 new_buff->dma = old_buff->dma; 1361 new_buff->page = old_buff->page; 1362 new_buff->page_offset = old_buff->page_offset; 1363 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1364 } 1365 1366 static inline bool igc_page_is_reserved(struct page *page) 1367 { 1368 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 1369 } 1370 1371 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer) 1372 { 1373 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1374 struct page *page = rx_buffer->page; 1375 1376 /* avoid re-using remote pages */ 1377 if (unlikely(igc_page_is_reserved(page))) 1378 return false; 1379 1380 #if (PAGE_SIZE < 8192) 1381 /* if we are only owner of page we can reuse it */ 1382 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 1383 return false; 1384 #else 1385 #define IGC_LAST_OFFSET \ 1386 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1387 1388 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1389 return false; 1390 #endif 1391 1392 /* If we have drained the page fragment pool we need to update 1393 * the pagecnt_bias and page count so that we fully restock the 1394 * number of references the driver holds. 1395 */ 1396 if (unlikely(!pagecnt_bias)) { 1397 page_ref_add(page, USHRT_MAX); 1398 rx_buffer->pagecnt_bias = USHRT_MAX; 1399 } 1400 1401 return true; 1402 } 1403 1404 /** 1405 * igc_is_non_eop - process handling of non-EOP buffers 1406 * @rx_ring: Rx ring being processed 1407 * @rx_desc: Rx descriptor for current buffer 1408 * @skb: current socket buffer containing buffer in progress 1409 * 1410 * This function updates next to clean. If the buffer is an EOP buffer 1411 * this function exits returning false, otherwise it will place the 1412 * sk_buff in the next buffer to be chained and return true indicating 1413 * that this is in fact a non-EOP buffer. 1414 */ 1415 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1416 union igc_adv_rx_desc *rx_desc) 1417 { 1418 u32 ntc = rx_ring->next_to_clean + 1; 1419 1420 /* fetch, update, and store next to clean */ 1421 ntc = (ntc < rx_ring->count) ? ntc : 0; 1422 rx_ring->next_to_clean = ntc; 1423 1424 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1425 1426 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1427 return false; 1428 1429 return true; 1430 } 1431 1432 /** 1433 * igc_cleanup_headers - Correct corrupted or empty headers 1434 * @rx_ring: rx descriptor ring packet is being transacted on 1435 * @rx_desc: pointer to the EOP Rx descriptor 1436 * @skb: pointer to current skb being fixed 1437 * 1438 * Address the case where we are pulling data in on pages only 1439 * and as such no data is present in the skb header. 1440 * 1441 * In addition if skb is not at least 60 bytes we need to pad it so that 1442 * it is large enough to qualify as a valid Ethernet frame. 1443 * 1444 * Returns true if an error was encountered and skb was freed. 1445 */ 1446 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1447 union igc_adv_rx_desc *rx_desc, 1448 struct sk_buff *skb) 1449 { 1450 if (unlikely((igc_test_staterr(rx_desc, 1451 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) { 1452 struct net_device *netdev = rx_ring->netdev; 1453 1454 if (!(netdev->features & NETIF_F_RXALL)) { 1455 dev_kfree_skb_any(skb); 1456 return true; 1457 } 1458 } 1459 1460 /* if eth_skb_pad returns an error the skb was freed */ 1461 if (eth_skb_pad(skb)) 1462 return true; 1463 1464 return false; 1465 } 1466 1467 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1468 struct igc_rx_buffer *rx_buffer) 1469 { 1470 if (igc_can_reuse_rx_page(rx_buffer)) { 1471 /* hand second half of page back to the ring */ 1472 igc_reuse_rx_page(rx_ring, rx_buffer); 1473 } else { 1474 /* We are not reusing the buffer so unmap it and free 1475 * any references we are holding to it 1476 */ 1477 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1478 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1479 IGC_RX_DMA_ATTR); 1480 __page_frag_cache_drain(rx_buffer->page, 1481 rx_buffer->pagecnt_bias); 1482 } 1483 1484 /* clear contents of rx_buffer */ 1485 rx_buffer->page = NULL; 1486 } 1487 1488 /** 1489 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 1490 * @adapter: address of board private structure 1491 */ 1492 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 1493 { 1494 union igc_adv_rx_desc *rx_desc; 1495 u16 i = rx_ring->next_to_use; 1496 struct igc_rx_buffer *bi; 1497 u16 bufsz; 1498 1499 /* nothing to do */ 1500 if (!cleaned_count) 1501 return; 1502 1503 rx_desc = IGC_RX_DESC(rx_ring, i); 1504 bi = &rx_ring->rx_buffer_info[i]; 1505 i -= rx_ring->count; 1506 1507 bufsz = igc_rx_bufsz(rx_ring); 1508 1509 do { 1510 if (!igc_alloc_mapped_page(rx_ring, bi)) 1511 break; 1512 1513 /* sync the buffer for use by the device */ 1514 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1515 bi->page_offset, bufsz, 1516 DMA_FROM_DEVICE); 1517 1518 /* Refresh the desc even if buffer_addrs didn't change 1519 * because each write-back erases this info. 1520 */ 1521 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1522 1523 rx_desc++; 1524 bi++; 1525 i++; 1526 if (unlikely(!i)) { 1527 rx_desc = IGC_RX_DESC(rx_ring, 0); 1528 bi = rx_ring->rx_buffer_info; 1529 i -= rx_ring->count; 1530 } 1531 1532 /* clear the length for the next_to_use descriptor */ 1533 rx_desc->wb.upper.length = 0; 1534 1535 cleaned_count--; 1536 } while (cleaned_count); 1537 1538 i += rx_ring->count; 1539 1540 if (rx_ring->next_to_use != i) { 1541 /* record the next descriptor to use */ 1542 rx_ring->next_to_use = i; 1543 1544 /* update next to alloc since we have filled the ring */ 1545 rx_ring->next_to_alloc = i; 1546 1547 /* Force memory writes to complete before letting h/w 1548 * know there are new descriptors to fetch. (Only 1549 * applicable for weak-ordered memory model archs, 1550 * such as IA-64). 1551 */ 1552 wmb(); 1553 writel(i, rx_ring->tail); 1554 } 1555 } 1556 1557 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 1558 { 1559 unsigned int total_bytes = 0, total_packets = 0; 1560 struct igc_ring *rx_ring = q_vector->rx.ring; 1561 struct sk_buff *skb = rx_ring->skb; 1562 u16 cleaned_count = igc_desc_unused(rx_ring); 1563 1564 while (likely(total_packets < budget)) { 1565 union igc_adv_rx_desc *rx_desc; 1566 struct igc_rx_buffer *rx_buffer; 1567 unsigned int size; 1568 1569 /* return some buffers to hardware, one at a time is too slow */ 1570 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 1571 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1572 cleaned_count = 0; 1573 } 1574 1575 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 1576 size = le16_to_cpu(rx_desc->wb.upper.length); 1577 if (!size) 1578 break; 1579 1580 /* This memory barrier is needed to keep us from reading 1581 * any other fields out of the rx_desc until we know the 1582 * descriptor has been written back 1583 */ 1584 dma_rmb(); 1585 1586 rx_buffer = igc_get_rx_buffer(rx_ring, size); 1587 1588 /* retrieve a buffer from the ring */ 1589 if (skb) 1590 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 1591 else if (ring_uses_build_skb(rx_ring)) 1592 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size); 1593 else 1594 skb = igc_construct_skb(rx_ring, rx_buffer, 1595 rx_desc, size); 1596 1597 /* exit if we failed to retrieve a buffer */ 1598 if (!skb) { 1599 rx_ring->rx_stats.alloc_failed++; 1600 rx_buffer->pagecnt_bias++; 1601 break; 1602 } 1603 1604 igc_put_rx_buffer(rx_ring, rx_buffer); 1605 cleaned_count++; 1606 1607 /* fetch next buffer in frame if non-eop */ 1608 if (igc_is_non_eop(rx_ring, rx_desc)) 1609 continue; 1610 1611 /* verify the packet layout is correct */ 1612 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 1613 skb = NULL; 1614 continue; 1615 } 1616 1617 /* probably a little skewed due to removing CRC */ 1618 total_bytes += skb->len; 1619 1620 /* populate checksum, timestamp, VLAN, and protocol */ 1621 igc_process_skb_fields(rx_ring, rx_desc, skb); 1622 1623 napi_gro_receive(&q_vector->napi, skb); 1624 1625 /* reset skb pointer */ 1626 skb = NULL; 1627 1628 /* update budget accounting */ 1629 total_packets++; 1630 } 1631 1632 /* place incomplete frames back on ring for completion */ 1633 rx_ring->skb = skb; 1634 1635 u64_stats_update_begin(&rx_ring->rx_syncp); 1636 rx_ring->rx_stats.packets += total_packets; 1637 rx_ring->rx_stats.bytes += total_bytes; 1638 u64_stats_update_end(&rx_ring->rx_syncp); 1639 q_vector->rx.total_packets += total_packets; 1640 q_vector->rx.total_bytes += total_bytes; 1641 1642 if (cleaned_count) 1643 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1644 1645 return total_packets; 1646 } 1647 1648 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1649 { 1650 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0; 1651 } 1652 1653 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1654 struct igc_rx_buffer *bi) 1655 { 1656 struct page *page = bi->page; 1657 dma_addr_t dma; 1658 1659 /* since we are recycling buffers we should seldom need to alloc */ 1660 if (likely(page)) 1661 return true; 1662 1663 /* alloc new page for storage */ 1664 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1665 if (unlikely(!page)) { 1666 rx_ring->rx_stats.alloc_failed++; 1667 return false; 1668 } 1669 1670 /* map page for use */ 1671 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1672 igc_rx_pg_size(rx_ring), 1673 DMA_FROM_DEVICE, 1674 IGC_RX_DMA_ATTR); 1675 1676 /* if mapping failed free memory back to system since 1677 * there isn't much point in holding memory we can't use 1678 */ 1679 if (dma_mapping_error(rx_ring->dev, dma)) { 1680 __free_page(page); 1681 1682 rx_ring->rx_stats.alloc_failed++; 1683 return false; 1684 } 1685 1686 bi->dma = dma; 1687 bi->page = page; 1688 bi->page_offset = igc_rx_offset(rx_ring); 1689 bi->pagecnt_bias = 1; 1690 1691 return true; 1692 } 1693 1694 /** 1695 * igc_clean_tx_irq - Reclaim resources after transmit completes 1696 * @q_vector: pointer to q_vector containing needed info 1697 * @napi_budget: Used to determine if we are in netpoll 1698 * 1699 * returns true if ring is completely cleaned 1700 */ 1701 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 1702 { 1703 struct igc_adapter *adapter = q_vector->adapter; 1704 unsigned int total_bytes = 0, total_packets = 0; 1705 unsigned int budget = q_vector->tx.work_limit; 1706 struct igc_ring *tx_ring = q_vector->tx.ring; 1707 unsigned int i = tx_ring->next_to_clean; 1708 struct igc_tx_buffer *tx_buffer; 1709 union igc_adv_tx_desc *tx_desc; 1710 1711 if (test_bit(__IGC_DOWN, &adapter->state)) 1712 return true; 1713 1714 tx_buffer = &tx_ring->tx_buffer_info[i]; 1715 tx_desc = IGC_TX_DESC(tx_ring, i); 1716 i -= tx_ring->count; 1717 1718 do { 1719 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 1720 1721 /* if next_to_watch is not set then there is no work pending */ 1722 if (!eop_desc) 1723 break; 1724 1725 /* prevent any other reads prior to eop_desc */ 1726 smp_rmb(); 1727 1728 /* if DD is not set pending work has not been completed */ 1729 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 1730 break; 1731 1732 /* clear next_to_watch to prevent false hangs */ 1733 tx_buffer->next_to_watch = NULL; 1734 1735 /* update the statistics for this packet */ 1736 total_bytes += tx_buffer->bytecount; 1737 total_packets += tx_buffer->gso_segs; 1738 1739 /* free the skb */ 1740 napi_consume_skb(tx_buffer->skb, napi_budget); 1741 1742 /* unmap skb header data */ 1743 dma_unmap_single(tx_ring->dev, 1744 dma_unmap_addr(tx_buffer, dma), 1745 dma_unmap_len(tx_buffer, len), 1746 DMA_TO_DEVICE); 1747 1748 /* clear tx_buffer data */ 1749 dma_unmap_len_set(tx_buffer, len, 0); 1750 1751 /* clear last DMA location and unmap remaining buffers */ 1752 while (tx_desc != eop_desc) { 1753 tx_buffer++; 1754 tx_desc++; 1755 i++; 1756 if (unlikely(!i)) { 1757 i -= tx_ring->count; 1758 tx_buffer = tx_ring->tx_buffer_info; 1759 tx_desc = IGC_TX_DESC(tx_ring, 0); 1760 } 1761 1762 /* unmap any remaining paged data */ 1763 if (dma_unmap_len(tx_buffer, len)) { 1764 dma_unmap_page(tx_ring->dev, 1765 dma_unmap_addr(tx_buffer, dma), 1766 dma_unmap_len(tx_buffer, len), 1767 DMA_TO_DEVICE); 1768 dma_unmap_len_set(tx_buffer, len, 0); 1769 } 1770 } 1771 1772 /* move us one more past the eop_desc for start of next pkt */ 1773 tx_buffer++; 1774 tx_desc++; 1775 i++; 1776 if (unlikely(!i)) { 1777 i -= tx_ring->count; 1778 tx_buffer = tx_ring->tx_buffer_info; 1779 tx_desc = IGC_TX_DESC(tx_ring, 0); 1780 } 1781 1782 /* issue prefetch for next Tx descriptor */ 1783 prefetch(tx_desc); 1784 1785 /* update budget accounting */ 1786 budget--; 1787 } while (likely(budget)); 1788 1789 netdev_tx_completed_queue(txring_txq(tx_ring), 1790 total_packets, total_bytes); 1791 1792 i += tx_ring->count; 1793 tx_ring->next_to_clean = i; 1794 u64_stats_update_begin(&tx_ring->tx_syncp); 1795 tx_ring->tx_stats.bytes += total_bytes; 1796 tx_ring->tx_stats.packets += total_packets; 1797 u64_stats_update_end(&tx_ring->tx_syncp); 1798 q_vector->tx.total_bytes += total_bytes; 1799 q_vector->tx.total_packets += total_packets; 1800 1801 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 1802 struct igc_hw *hw = &adapter->hw; 1803 1804 /* Detect a transmit hang in hardware, this serializes the 1805 * check with the clearing of time_stamp and movement of i 1806 */ 1807 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 1808 if (tx_buffer->next_to_watch && 1809 time_after(jiffies, tx_buffer->time_stamp + 1810 (adapter->tx_timeout_factor * HZ)) && 1811 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 1812 /* detected Tx unit hang */ 1813 dev_err(tx_ring->dev, 1814 "Detected Tx Unit Hang\n" 1815 " Tx Queue <%d>\n" 1816 " TDH <%x>\n" 1817 " TDT <%x>\n" 1818 " next_to_use <%x>\n" 1819 " next_to_clean <%x>\n" 1820 "buffer_info[next_to_clean]\n" 1821 " time_stamp <%lx>\n" 1822 " next_to_watch <%p>\n" 1823 " jiffies <%lx>\n" 1824 " desc.status <%x>\n", 1825 tx_ring->queue_index, 1826 rd32(IGC_TDH(tx_ring->reg_idx)), 1827 readl(tx_ring->tail), 1828 tx_ring->next_to_use, 1829 tx_ring->next_to_clean, 1830 tx_buffer->time_stamp, 1831 tx_buffer->next_to_watch, 1832 jiffies, 1833 tx_buffer->next_to_watch->wb.status); 1834 netif_stop_subqueue(tx_ring->netdev, 1835 tx_ring->queue_index); 1836 1837 /* we are about to reset, no point in enabling stuff */ 1838 return true; 1839 } 1840 } 1841 1842 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 1843 if (unlikely(total_packets && 1844 netif_carrier_ok(tx_ring->netdev) && 1845 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 1846 /* Make sure that anybody stopping the queue after this 1847 * sees the new next_to_clean. 1848 */ 1849 smp_mb(); 1850 if (__netif_subqueue_stopped(tx_ring->netdev, 1851 tx_ring->queue_index) && 1852 !(test_bit(__IGC_DOWN, &adapter->state))) { 1853 netif_wake_subqueue(tx_ring->netdev, 1854 tx_ring->queue_index); 1855 1856 u64_stats_update_begin(&tx_ring->tx_syncp); 1857 tx_ring->tx_stats.restart_queue++; 1858 u64_stats_update_end(&tx_ring->tx_syncp); 1859 } 1860 } 1861 1862 return !!budget; 1863 } 1864 1865 /** 1866 * igc_up - Open the interface and prepare it to handle traffic 1867 * @adapter: board private structure 1868 */ 1869 void igc_up(struct igc_adapter *adapter) 1870 { 1871 struct igc_hw *hw = &adapter->hw; 1872 int i = 0; 1873 1874 /* hardware has been reset, we need to reload some things */ 1875 igc_configure(adapter); 1876 1877 clear_bit(__IGC_DOWN, &adapter->state); 1878 1879 for (i = 0; i < adapter->num_q_vectors; i++) 1880 napi_enable(&adapter->q_vector[i]->napi); 1881 1882 if (adapter->msix_entries) 1883 igc_configure_msix(adapter); 1884 else 1885 igc_assign_vector(adapter->q_vector[0], 0); 1886 1887 /* Clear any pending interrupts. */ 1888 rd32(IGC_ICR); 1889 igc_irq_enable(adapter); 1890 1891 netif_tx_start_all_queues(adapter->netdev); 1892 1893 /* start the watchdog. */ 1894 hw->mac.get_link_status = 1; 1895 schedule_work(&adapter->watchdog_task); 1896 } 1897 1898 /** 1899 * igc_update_stats - Update the board statistics counters 1900 * @adapter: board private structure 1901 */ 1902 void igc_update_stats(struct igc_adapter *adapter) 1903 { 1904 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 1905 struct pci_dev *pdev = adapter->pdev; 1906 struct igc_hw *hw = &adapter->hw; 1907 u64 _bytes, _packets; 1908 u64 bytes, packets; 1909 unsigned int start; 1910 u32 mpc; 1911 int i; 1912 1913 /* Prevent stats update while adapter is being reset, or if the pci 1914 * connection is down. 1915 */ 1916 if (adapter->link_speed == 0) 1917 return; 1918 if (pci_channel_offline(pdev)) 1919 return; 1920 1921 packets = 0; 1922 bytes = 0; 1923 1924 rcu_read_lock(); 1925 for (i = 0; i < adapter->num_rx_queues; i++) { 1926 struct igc_ring *ring = adapter->rx_ring[i]; 1927 u32 rqdpc = rd32(IGC_RQDPC(i)); 1928 1929 if (hw->mac.type >= igc_i225) 1930 wr32(IGC_RQDPC(i), 0); 1931 1932 if (rqdpc) { 1933 ring->rx_stats.drops += rqdpc; 1934 net_stats->rx_fifo_errors += rqdpc; 1935 } 1936 1937 do { 1938 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 1939 _bytes = ring->rx_stats.bytes; 1940 _packets = ring->rx_stats.packets; 1941 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 1942 bytes += _bytes; 1943 packets += _packets; 1944 } 1945 1946 net_stats->rx_bytes = bytes; 1947 net_stats->rx_packets = packets; 1948 1949 packets = 0; 1950 bytes = 0; 1951 for (i = 0; i < adapter->num_tx_queues; i++) { 1952 struct igc_ring *ring = adapter->tx_ring[i]; 1953 1954 do { 1955 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 1956 _bytes = ring->tx_stats.bytes; 1957 _packets = ring->tx_stats.packets; 1958 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 1959 bytes += _bytes; 1960 packets += _packets; 1961 } 1962 net_stats->tx_bytes = bytes; 1963 net_stats->tx_packets = packets; 1964 rcu_read_unlock(); 1965 1966 /* read stats registers */ 1967 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 1968 adapter->stats.gprc += rd32(IGC_GPRC); 1969 adapter->stats.gorc += rd32(IGC_GORCL); 1970 rd32(IGC_GORCH); /* clear GORCL */ 1971 adapter->stats.bprc += rd32(IGC_BPRC); 1972 adapter->stats.mprc += rd32(IGC_MPRC); 1973 adapter->stats.roc += rd32(IGC_ROC); 1974 1975 adapter->stats.prc64 += rd32(IGC_PRC64); 1976 adapter->stats.prc127 += rd32(IGC_PRC127); 1977 adapter->stats.prc255 += rd32(IGC_PRC255); 1978 adapter->stats.prc511 += rd32(IGC_PRC511); 1979 adapter->stats.prc1023 += rd32(IGC_PRC1023); 1980 adapter->stats.prc1522 += rd32(IGC_PRC1522); 1981 adapter->stats.symerrs += rd32(IGC_SYMERRS); 1982 adapter->stats.sec += rd32(IGC_SEC); 1983 1984 mpc = rd32(IGC_MPC); 1985 adapter->stats.mpc += mpc; 1986 net_stats->rx_fifo_errors += mpc; 1987 adapter->stats.scc += rd32(IGC_SCC); 1988 adapter->stats.ecol += rd32(IGC_ECOL); 1989 adapter->stats.mcc += rd32(IGC_MCC); 1990 adapter->stats.latecol += rd32(IGC_LATECOL); 1991 adapter->stats.dc += rd32(IGC_DC); 1992 adapter->stats.rlec += rd32(IGC_RLEC); 1993 adapter->stats.xonrxc += rd32(IGC_XONRXC); 1994 adapter->stats.xontxc += rd32(IGC_XONTXC); 1995 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 1996 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 1997 adapter->stats.fcruc += rd32(IGC_FCRUC); 1998 adapter->stats.gptc += rd32(IGC_GPTC); 1999 adapter->stats.gotc += rd32(IGC_GOTCL); 2000 rd32(IGC_GOTCH); /* clear GOTCL */ 2001 adapter->stats.rnbc += rd32(IGC_RNBC); 2002 adapter->stats.ruc += rd32(IGC_RUC); 2003 adapter->stats.rfc += rd32(IGC_RFC); 2004 adapter->stats.rjc += rd32(IGC_RJC); 2005 adapter->stats.tor += rd32(IGC_TORH); 2006 adapter->stats.tot += rd32(IGC_TOTH); 2007 adapter->stats.tpr += rd32(IGC_TPR); 2008 2009 adapter->stats.ptc64 += rd32(IGC_PTC64); 2010 adapter->stats.ptc127 += rd32(IGC_PTC127); 2011 adapter->stats.ptc255 += rd32(IGC_PTC255); 2012 adapter->stats.ptc511 += rd32(IGC_PTC511); 2013 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 2014 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 2015 2016 adapter->stats.mptc += rd32(IGC_MPTC); 2017 adapter->stats.bptc += rd32(IGC_BPTC); 2018 2019 adapter->stats.tpt += rd32(IGC_TPT); 2020 adapter->stats.colc += rd32(IGC_COLC); 2021 2022 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 2023 2024 adapter->stats.tsctc += rd32(IGC_TSCTC); 2025 adapter->stats.tsctfc += rd32(IGC_TSCTFC); 2026 2027 adapter->stats.iac += rd32(IGC_IAC); 2028 adapter->stats.icrxoc += rd32(IGC_ICRXOC); 2029 adapter->stats.icrxptc += rd32(IGC_ICRXPTC); 2030 adapter->stats.icrxatc += rd32(IGC_ICRXATC); 2031 adapter->stats.ictxptc += rd32(IGC_ICTXPTC); 2032 adapter->stats.ictxatc += rd32(IGC_ICTXATC); 2033 adapter->stats.ictxqec += rd32(IGC_ICTXQEC); 2034 adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC); 2035 adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC); 2036 2037 /* Fill out the OS statistics structure */ 2038 net_stats->multicast = adapter->stats.mprc; 2039 net_stats->collisions = adapter->stats.colc; 2040 2041 /* Rx Errors */ 2042 2043 /* RLEC on some newer hardware can be incorrect so build 2044 * our own version based on RUC and ROC 2045 */ 2046 net_stats->rx_errors = adapter->stats.rxerrc + 2047 adapter->stats.crcerrs + adapter->stats.algnerrc + 2048 adapter->stats.ruc + adapter->stats.roc + 2049 adapter->stats.cexterr; 2050 net_stats->rx_length_errors = adapter->stats.ruc + 2051 adapter->stats.roc; 2052 net_stats->rx_crc_errors = adapter->stats.crcerrs; 2053 net_stats->rx_frame_errors = adapter->stats.algnerrc; 2054 net_stats->rx_missed_errors = adapter->stats.mpc; 2055 2056 /* Tx Errors */ 2057 net_stats->tx_errors = adapter->stats.ecol + 2058 adapter->stats.latecol; 2059 net_stats->tx_aborted_errors = adapter->stats.ecol; 2060 net_stats->tx_window_errors = adapter->stats.latecol; 2061 net_stats->tx_carrier_errors = adapter->stats.tncrs; 2062 2063 /* Tx Dropped needs to be maintained elsewhere */ 2064 2065 /* Management Stats */ 2066 adapter->stats.mgptc += rd32(IGC_MGTPTC); 2067 adapter->stats.mgprc += rd32(IGC_MGTPRC); 2068 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 2069 } 2070 2071 static void igc_nfc_filter_exit(struct igc_adapter *adapter) 2072 { 2073 struct igc_nfc_filter *rule; 2074 2075 spin_lock(&adapter->nfc_lock); 2076 2077 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 2078 igc_erase_filter(adapter, rule); 2079 2080 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) 2081 igc_erase_filter(adapter, rule); 2082 2083 spin_unlock(&adapter->nfc_lock); 2084 } 2085 2086 static void igc_nfc_filter_restore(struct igc_adapter *adapter) 2087 { 2088 struct igc_nfc_filter *rule; 2089 2090 spin_lock(&adapter->nfc_lock); 2091 2092 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 2093 igc_add_filter(adapter, rule); 2094 2095 spin_unlock(&adapter->nfc_lock); 2096 } 2097 2098 /** 2099 * igc_down - Close the interface 2100 * @adapter: board private structure 2101 */ 2102 void igc_down(struct igc_adapter *adapter) 2103 { 2104 struct net_device *netdev = adapter->netdev; 2105 struct igc_hw *hw = &adapter->hw; 2106 u32 tctl, rctl; 2107 int i = 0; 2108 2109 set_bit(__IGC_DOWN, &adapter->state); 2110 2111 /* disable receives in the hardware */ 2112 rctl = rd32(IGC_RCTL); 2113 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 2114 /* flush and sleep below */ 2115 2116 igc_nfc_filter_exit(adapter); 2117 2118 /* set trans_start so we don't get spurious watchdogs during reset */ 2119 netif_trans_update(netdev); 2120 2121 netif_carrier_off(netdev); 2122 netif_tx_stop_all_queues(netdev); 2123 2124 /* disable transmits in the hardware */ 2125 tctl = rd32(IGC_TCTL); 2126 tctl &= ~IGC_TCTL_EN; 2127 wr32(IGC_TCTL, tctl); 2128 /* flush both disables and wait for them to finish */ 2129 wrfl(); 2130 usleep_range(10000, 20000); 2131 2132 igc_irq_disable(adapter); 2133 2134 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2135 2136 for (i = 0; i < adapter->num_q_vectors; i++) { 2137 if (adapter->q_vector[i]) { 2138 napi_synchronize(&adapter->q_vector[i]->napi); 2139 napi_disable(&adapter->q_vector[i]->napi); 2140 } 2141 } 2142 2143 del_timer_sync(&adapter->watchdog_timer); 2144 del_timer_sync(&adapter->phy_info_timer); 2145 2146 /* record the stats before reset*/ 2147 spin_lock(&adapter->stats64_lock); 2148 igc_update_stats(adapter); 2149 spin_unlock(&adapter->stats64_lock); 2150 2151 adapter->link_speed = 0; 2152 adapter->link_duplex = 0; 2153 2154 if (!pci_channel_offline(adapter->pdev)) 2155 igc_reset(adapter); 2156 2157 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 2158 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 2159 2160 igc_clean_all_tx_rings(adapter); 2161 igc_clean_all_rx_rings(adapter); 2162 } 2163 2164 void igc_reinit_locked(struct igc_adapter *adapter) 2165 { 2166 WARN_ON(in_interrupt()); 2167 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 2168 usleep_range(1000, 2000); 2169 igc_down(adapter); 2170 igc_up(adapter); 2171 clear_bit(__IGC_RESETTING, &adapter->state); 2172 } 2173 2174 static void igc_reset_task(struct work_struct *work) 2175 { 2176 struct igc_adapter *adapter; 2177 2178 adapter = container_of(work, struct igc_adapter, reset_task); 2179 2180 netdev_err(adapter->netdev, "Reset adapter\n"); 2181 igc_reinit_locked(adapter); 2182 } 2183 2184 /** 2185 * igc_change_mtu - Change the Maximum Transfer Unit 2186 * @netdev: network interface device structure 2187 * @new_mtu: new value for maximum frame size 2188 * 2189 * Returns 0 on success, negative on failure 2190 */ 2191 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 2192 { 2193 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2194 struct igc_adapter *adapter = netdev_priv(netdev); 2195 struct pci_dev *pdev = adapter->pdev; 2196 2197 /* adjust max frame to be at least the size of a standard frame */ 2198 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 2199 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 2200 2201 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 2202 usleep_range(1000, 2000); 2203 2204 /* igc_down has a dependency on max_frame_size */ 2205 adapter->max_frame_size = max_frame; 2206 2207 if (netif_running(netdev)) 2208 igc_down(adapter); 2209 2210 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 2211 netdev->mtu, new_mtu); 2212 netdev->mtu = new_mtu; 2213 2214 if (netif_running(netdev)) 2215 igc_up(adapter); 2216 else 2217 igc_reset(adapter); 2218 2219 clear_bit(__IGC_RESETTING, &adapter->state); 2220 2221 return 0; 2222 } 2223 2224 /** 2225 * igc_get_stats - Get System Network Statistics 2226 * @netdev: network interface device structure 2227 * 2228 * Returns the address of the device statistics structure. 2229 * The statistics are updated here and also from the timer callback. 2230 */ 2231 static struct net_device_stats *igc_get_stats(struct net_device *netdev) 2232 { 2233 struct igc_adapter *adapter = netdev_priv(netdev); 2234 2235 if (!test_bit(__IGC_RESETTING, &adapter->state)) 2236 igc_update_stats(adapter); 2237 2238 /* only return the current stats */ 2239 return &netdev->stats; 2240 } 2241 2242 static netdev_features_t igc_fix_features(struct net_device *netdev, 2243 netdev_features_t features) 2244 { 2245 /* Since there is no support for separate Rx/Tx vlan accel 2246 * enable/disable make sure Tx flag is always in same state as Rx. 2247 */ 2248 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2249 features |= NETIF_F_HW_VLAN_CTAG_TX; 2250 else 2251 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2252 2253 return features; 2254 } 2255 2256 static int igc_set_features(struct net_device *netdev, 2257 netdev_features_t features) 2258 { 2259 netdev_features_t changed = netdev->features ^ features; 2260 struct igc_adapter *adapter = netdev_priv(netdev); 2261 2262 /* Add VLAN support */ 2263 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2264 return 0; 2265 2266 if (!(features & NETIF_F_NTUPLE)) { 2267 struct hlist_node *node2; 2268 struct igc_nfc_filter *rule; 2269 2270 spin_lock(&adapter->nfc_lock); 2271 hlist_for_each_entry_safe(rule, node2, 2272 &adapter->nfc_filter_list, nfc_node) { 2273 igc_erase_filter(adapter, rule); 2274 hlist_del(&rule->nfc_node); 2275 kfree(rule); 2276 } 2277 spin_unlock(&adapter->nfc_lock); 2278 adapter->nfc_filter_count = 0; 2279 } 2280 2281 netdev->features = features; 2282 2283 if (netif_running(netdev)) 2284 igc_reinit_locked(adapter); 2285 else 2286 igc_reset(adapter); 2287 2288 return 1; 2289 } 2290 2291 static netdev_features_t 2292 igc_features_check(struct sk_buff *skb, struct net_device *dev, 2293 netdev_features_t features) 2294 { 2295 unsigned int network_hdr_len, mac_hdr_len; 2296 2297 /* Make certain the headers can be described by a context descriptor */ 2298 mac_hdr_len = skb_network_header(skb) - skb->data; 2299 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 2300 return features & ~(NETIF_F_HW_CSUM | 2301 NETIF_F_SCTP_CRC | 2302 NETIF_F_HW_VLAN_CTAG_TX | 2303 NETIF_F_TSO | 2304 NETIF_F_TSO6); 2305 2306 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2307 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 2308 return features & ~(NETIF_F_HW_CSUM | 2309 NETIF_F_SCTP_CRC | 2310 NETIF_F_TSO | 2311 NETIF_F_TSO6); 2312 2313 /* We can only support IPv4 TSO in tunnels if we can mangle the 2314 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2315 */ 2316 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2317 features &= ~NETIF_F_TSO; 2318 2319 return features; 2320 } 2321 2322 /** 2323 * igc_configure - configure the hardware for RX and TX 2324 * @adapter: private board structure 2325 */ 2326 static void igc_configure(struct igc_adapter *adapter) 2327 { 2328 struct net_device *netdev = adapter->netdev; 2329 int i = 0; 2330 2331 igc_get_hw_control(adapter); 2332 igc_set_rx_mode(netdev); 2333 2334 igc_setup_tctl(adapter); 2335 igc_setup_mrqc(adapter); 2336 igc_setup_rctl(adapter); 2337 2338 igc_nfc_filter_restore(adapter); 2339 igc_configure_tx(adapter); 2340 igc_configure_rx(adapter); 2341 2342 igc_rx_fifo_flush_base(&adapter->hw); 2343 2344 /* call igc_desc_unused which always leaves 2345 * at least 1 descriptor unused to make sure 2346 * next_to_use != next_to_clean 2347 */ 2348 for (i = 0; i < adapter->num_rx_queues; i++) { 2349 struct igc_ring *ring = adapter->rx_ring[i]; 2350 2351 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 2352 } 2353 } 2354 2355 /** 2356 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 2357 * @adapter: address of board private structure 2358 * @index: Index of the RAR entry which need to be synced with MAC table 2359 */ 2360 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index) 2361 { 2362 u8 *addr = adapter->mac_table[index].addr; 2363 struct igc_hw *hw = &adapter->hw; 2364 u32 rar_low, rar_high; 2365 2366 /* HW expects these to be in network order when they are plugged 2367 * into the registers which are little endian. In order to guarantee 2368 * that ordering we need to do an leXX_to_cpup here in order to be 2369 * ready for the byteswap that occurs with writel 2370 */ 2371 rar_low = le32_to_cpup((__le32 *)(addr)); 2372 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 2373 2374 /* Indicate to hardware the Address is Valid. */ 2375 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) { 2376 if (is_valid_ether_addr(addr)) 2377 rar_high |= IGC_RAH_AV; 2378 2379 rar_high |= IGC_RAH_POOL_1 << 2380 adapter->mac_table[index].queue; 2381 } 2382 2383 wr32(IGC_RAL(index), rar_low); 2384 wrfl(); 2385 wr32(IGC_RAH(index), rar_high); 2386 wrfl(); 2387 } 2388 2389 /* Set default MAC address for the PF in the first RAR entry */ 2390 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 2391 { 2392 struct igc_mac_addr *mac_table = &adapter->mac_table[0]; 2393 2394 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 2395 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE; 2396 2397 igc_rar_set_index(adapter, 0); 2398 } 2399 2400 /* If the filter to be added and an already existing filter express 2401 * the same address and address type, it should be possible to only 2402 * override the other configurations, for example the queue to steer 2403 * traffic. 2404 */ 2405 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry, 2406 const u8 *addr, const u8 flags) 2407 { 2408 if (!(entry->state & IGC_MAC_STATE_IN_USE)) 2409 return true; 2410 2411 if ((entry->state & IGC_MAC_STATE_SRC_ADDR) != 2412 (flags & IGC_MAC_STATE_SRC_ADDR)) 2413 return false; 2414 2415 if (!ether_addr_equal(addr, entry->addr)) 2416 return false; 2417 2418 return true; 2419 } 2420 2421 /* Add a MAC filter for 'addr' directing matching traffic to 'queue', 2422 * 'flags' is used to indicate what kind of match is made, match is by 2423 * default for the destination address, if matching by source address 2424 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used. 2425 */ 2426 static int igc_add_mac_filter_flags(struct igc_adapter *adapter, 2427 const u8 *addr, const u8 queue, 2428 const u8 flags) 2429 { 2430 struct igc_hw *hw = &adapter->hw; 2431 int rar_entries = hw->mac.rar_entry_count; 2432 int i; 2433 2434 if (is_zero_ether_addr(addr)) 2435 return -EINVAL; 2436 2437 /* Search for the first empty entry in the MAC table. 2438 * Do not touch entries at the end of the table reserved for the VF MAC 2439 * addresses. 2440 */ 2441 for (i = 0; i < rar_entries; i++) { 2442 if (!igc_mac_entry_can_be_used(&adapter->mac_table[i], 2443 addr, flags)) 2444 continue; 2445 2446 ether_addr_copy(adapter->mac_table[i].addr, addr); 2447 adapter->mac_table[i].queue = queue; 2448 adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags; 2449 2450 igc_rar_set_index(adapter, i); 2451 return i; 2452 } 2453 2454 return -ENOSPC; 2455 } 2456 2457 int igc_add_mac_steering_filter(struct igc_adapter *adapter, 2458 const u8 *addr, u8 queue, u8 flags) 2459 { 2460 return igc_add_mac_filter_flags(adapter, addr, queue, 2461 IGC_MAC_STATE_QUEUE_STEERING | flags); 2462 } 2463 2464 /* Remove a MAC filter for 'addr' directing matching traffic to 2465 * 'queue', 'flags' is used to indicate what kind of match need to be 2466 * removed, match is by default for the destination address, if 2467 * matching by source address is to be removed the flag 2468 * IGC_MAC_STATE_SRC_ADDR can be used. 2469 */ 2470 static int igc_del_mac_filter_flags(struct igc_adapter *adapter, 2471 const u8 *addr, const u8 queue, 2472 const u8 flags) 2473 { 2474 struct igc_hw *hw = &adapter->hw; 2475 int rar_entries = hw->mac.rar_entry_count; 2476 int i; 2477 2478 if (is_zero_ether_addr(addr)) 2479 return -EINVAL; 2480 2481 /* Search for matching entry in the MAC table based on given address 2482 * and queue. Do not touch entries at the end of the table reserved 2483 * for the VF MAC addresses. 2484 */ 2485 for (i = 0; i < rar_entries; i++) { 2486 if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE)) 2487 continue; 2488 if ((adapter->mac_table[i].state & flags) != flags) 2489 continue; 2490 if (adapter->mac_table[i].queue != queue) 2491 continue; 2492 if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) 2493 continue; 2494 2495 /* When a filter for the default address is "deleted", 2496 * we return it to its initial configuration 2497 */ 2498 if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) { 2499 adapter->mac_table[i].state = 2500 IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE; 2501 } else { 2502 adapter->mac_table[i].state = 0; 2503 adapter->mac_table[i].queue = 0; 2504 memset(adapter->mac_table[i].addr, 0, ETH_ALEN); 2505 } 2506 2507 igc_rar_set_index(adapter, i); 2508 return 0; 2509 } 2510 2511 return -ENOENT; 2512 } 2513 2514 int igc_del_mac_steering_filter(struct igc_adapter *adapter, 2515 const u8 *addr, u8 queue, u8 flags) 2516 { 2517 return igc_del_mac_filter_flags(adapter, addr, queue, 2518 IGC_MAC_STATE_QUEUE_STEERING | flags); 2519 } 2520 2521 /** 2522 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2523 * @netdev: network interface device structure 2524 * 2525 * The set_rx_mode entry point is called whenever the unicast or multicast 2526 * address lists or the network interface flags are updated. This routine is 2527 * responsible for configuring the hardware for proper unicast, multicast, 2528 * promiscuous mode, and all-multi behavior. 2529 */ 2530 static void igc_set_rx_mode(struct net_device *netdev) 2531 { 2532 } 2533 2534 /** 2535 * igc_msix_other - msix other interrupt handler 2536 * @irq: interrupt number 2537 * @data: pointer to a q_vector 2538 */ 2539 static irqreturn_t igc_msix_other(int irq, void *data) 2540 { 2541 struct igc_adapter *adapter = data; 2542 struct igc_hw *hw = &adapter->hw; 2543 u32 icr = rd32(IGC_ICR); 2544 2545 /* reading ICR causes bit 31 of EICR to be cleared */ 2546 if (icr & IGC_ICR_DRSTA) 2547 schedule_work(&adapter->reset_task); 2548 2549 if (icr & IGC_ICR_DOUTSYNC) { 2550 /* HW is reporting DMA is out of sync */ 2551 adapter->stats.doosync++; 2552 } 2553 2554 if (icr & IGC_ICR_LSC) { 2555 hw->mac.get_link_status = 1; 2556 /* guard against interrupt when we're going down */ 2557 if (!test_bit(__IGC_DOWN, &adapter->state)) 2558 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2559 } 2560 2561 wr32(IGC_EIMS, adapter->eims_other); 2562 2563 return IRQ_HANDLED; 2564 } 2565 2566 /** 2567 * igc_write_ivar - configure ivar for given MSI-X vector 2568 * @hw: pointer to the HW structure 2569 * @msix_vector: vector number we are allocating to a given ring 2570 * @index: row index of IVAR register to write within IVAR table 2571 * @offset: column offset of in IVAR, should be multiple of 8 2572 * 2573 * The IVAR table consists of 2 columns, 2574 * each containing an cause allocation for an Rx and Tx ring, and a 2575 * variable number of rows depending on the number of queues supported. 2576 */ 2577 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 2578 int index, int offset) 2579 { 2580 u32 ivar = array_rd32(IGC_IVAR0, index); 2581 2582 /* clear any bits that are currently set */ 2583 ivar &= ~((u32)0xFF << offset); 2584 2585 /* write vector and valid bit */ 2586 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 2587 2588 array_wr32(IGC_IVAR0, index, ivar); 2589 } 2590 2591 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 2592 { 2593 struct igc_adapter *adapter = q_vector->adapter; 2594 struct igc_hw *hw = &adapter->hw; 2595 int rx_queue = IGC_N0_QUEUE; 2596 int tx_queue = IGC_N0_QUEUE; 2597 2598 if (q_vector->rx.ring) 2599 rx_queue = q_vector->rx.ring->reg_idx; 2600 if (q_vector->tx.ring) 2601 tx_queue = q_vector->tx.ring->reg_idx; 2602 2603 switch (hw->mac.type) { 2604 case igc_i225: 2605 if (rx_queue > IGC_N0_QUEUE) 2606 igc_write_ivar(hw, msix_vector, 2607 rx_queue >> 1, 2608 (rx_queue & 0x1) << 4); 2609 if (tx_queue > IGC_N0_QUEUE) 2610 igc_write_ivar(hw, msix_vector, 2611 tx_queue >> 1, 2612 ((tx_queue & 0x1) << 4) + 8); 2613 q_vector->eims_value = BIT(msix_vector); 2614 break; 2615 default: 2616 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 2617 break; 2618 } 2619 2620 /* add q_vector eims value to global eims_enable_mask */ 2621 adapter->eims_enable_mask |= q_vector->eims_value; 2622 2623 /* configure q_vector to set itr on first interrupt */ 2624 q_vector->set_itr = 1; 2625 } 2626 2627 /** 2628 * igc_configure_msix - Configure MSI-X hardware 2629 * @adapter: Pointer to adapter structure 2630 * 2631 * igc_configure_msix sets up the hardware to properly 2632 * generate MSI-X interrupts. 2633 */ 2634 static void igc_configure_msix(struct igc_adapter *adapter) 2635 { 2636 struct igc_hw *hw = &adapter->hw; 2637 int i, vector = 0; 2638 u32 tmp; 2639 2640 adapter->eims_enable_mask = 0; 2641 2642 /* set vector for other causes, i.e. link changes */ 2643 switch (hw->mac.type) { 2644 case igc_i225: 2645 /* Turn on MSI-X capability first, or our settings 2646 * won't stick. And it will take days to debug. 2647 */ 2648 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 2649 IGC_GPIE_PBA | IGC_GPIE_EIAME | 2650 IGC_GPIE_NSICR); 2651 2652 /* enable msix_other interrupt */ 2653 adapter->eims_other = BIT(vector); 2654 tmp = (vector++ | IGC_IVAR_VALID) << 8; 2655 2656 wr32(IGC_IVAR_MISC, tmp); 2657 break; 2658 default: 2659 /* do nothing, since nothing else supports MSI-X */ 2660 break; 2661 } /* switch (hw->mac.type) */ 2662 2663 adapter->eims_enable_mask |= adapter->eims_other; 2664 2665 for (i = 0; i < adapter->num_q_vectors; i++) 2666 igc_assign_vector(adapter->q_vector[i], vector++); 2667 2668 wrfl(); 2669 } 2670 2671 static irqreturn_t igc_msix_ring(int irq, void *data) 2672 { 2673 struct igc_q_vector *q_vector = data; 2674 2675 /* Write the ITR value calculated from the previous interrupt. */ 2676 igc_write_itr(q_vector); 2677 2678 napi_schedule(&q_vector->napi); 2679 2680 return IRQ_HANDLED; 2681 } 2682 2683 /** 2684 * igc_request_msix - Initialize MSI-X interrupts 2685 * @adapter: Pointer to adapter structure 2686 * 2687 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 2688 * kernel. 2689 */ 2690 static int igc_request_msix(struct igc_adapter *adapter) 2691 { 2692 int i = 0, err = 0, vector = 0, free_vector = 0; 2693 struct net_device *netdev = adapter->netdev; 2694 2695 err = request_irq(adapter->msix_entries[vector].vector, 2696 &igc_msix_other, 0, netdev->name, adapter); 2697 if (err) 2698 goto err_out; 2699 2700 for (i = 0; i < adapter->num_q_vectors; i++) { 2701 struct igc_q_vector *q_vector = adapter->q_vector[i]; 2702 2703 vector++; 2704 2705 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 2706 2707 if (q_vector->rx.ring && q_vector->tx.ring) 2708 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 2709 q_vector->rx.ring->queue_index); 2710 else if (q_vector->tx.ring) 2711 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 2712 q_vector->tx.ring->queue_index); 2713 else if (q_vector->rx.ring) 2714 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 2715 q_vector->rx.ring->queue_index); 2716 else 2717 sprintf(q_vector->name, "%s-unused", netdev->name); 2718 2719 err = request_irq(adapter->msix_entries[vector].vector, 2720 igc_msix_ring, 0, q_vector->name, 2721 q_vector); 2722 if (err) 2723 goto err_free; 2724 } 2725 2726 igc_configure_msix(adapter); 2727 return 0; 2728 2729 err_free: 2730 /* free already assigned IRQs */ 2731 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 2732 2733 vector--; 2734 for (i = 0; i < vector; i++) { 2735 free_irq(adapter->msix_entries[free_vector++].vector, 2736 adapter->q_vector[i]); 2737 } 2738 err_out: 2739 return err; 2740 } 2741 2742 /** 2743 * igc_reset_q_vector - Reset config for interrupt vector 2744 * @adapter: board private structure to initialize 2745 * @v_idx: Index of vector to be reset 2746 * 2747 * If NAPI is enabled it will delete any references to the 2748 * NAPI struct. This is preparation for igc_free_q_vector. 2749 */ 2750 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 2751 { 2752 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2753 2754 /* if we're coming from igc_set_interrupt_capability, the vectors are 2755 * not yet allocated 2756 */ 2757 if (!q_vector) 2758 return; 2759 2760 if (q_vector->tx.ring) 2761 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 2762 2763 if (q_vector->rx.ring) 2764 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 2765 2766 netif_napi_del(&q_vector->napi); 2767 } 2768 2769 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 2770 { 2771 int v_idx = adapter->num_q_vectors; 2772 2773 if (adapter->msix_entries) { 2774 pci_disable_msix(adapter->pdev); 2775 kfree(adapter->msix_entries); 2776 adapter->msix_entries = NULL; 2777 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 2778 pci_disable_msi(adapter->pdev); 2779 } 2780 2781 while (v_idx--) 2782 igc_reset_q_vector(adapter, v_idx); 2783 } 2784 2785 /** 2786 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 2787 * @adapter: Pointer to adapter structure 2788 * 2789 * This function resets the device so that it has 0 rx queues, tx queues, and 2790 * MSI-X interrupts allocated. 2791 */ 2792 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 2793 { 2794 igc_free_q_vectors(adapter); 2795 igc_reset_interrupt_capability(adapter); 2796 } 2797 2798 /** 2799 * igc_free_q_vectors - Free memory allocated for interrupt vectors 2800 * @adapter: board private structure to initialize 2801 * 2802 * This function frees the memory allocated to the q_vectors. In addition if 2803 * NAPI is enabled it will delete any references to the NAPI struct prior 2804 * to freeing the q_vector. 2805 */ 2806 static void igc_free_q_vectors(struct igc_adapter *adapter) 2807 { 2808 int v_idx = adapter->num_q_vectors; 2809 2810 adapter->num_tx_queues = 0; 2811 adapter->num_rx_queues = 0; 2812 adapter->num_q_vectors = 0; 2813 2814 while (v_idx--) { 2815 igc_reset_q_vector(adapter, v_idx); 2816 igc_free_q_vector(adapter, v_idx); 2817 } 2818 } 2819 2820 /** 2821 * igc_free_q_vector - Free memory allocated for specific interrupt vector 2822 * @adapter: board private structure to initialize 2823 * @v_idx: Index of vector to be freed 2824 * 2825 * This function frees the memory allocated to the q_vector. 2826 */ 2827 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 2828 { 2829 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2830 2831 adapter->q_vector[v_idx] = NULL; 2832 2833 /* igc_get_stats64() might access the rings on this vector, 2834 * we must wait a grace period before freeing it. 2835 */ 2836 if (q_vector) 2837 kfree_rcu(q_vector, rcu); 2838 } 2839 2840 /* Need to wait a few seconds after link up to get diagnostic information from 2841 * the phy 2842 */ 2843 static void igc_update_phy_info(struct timer_list *t) 2844 { 2845 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 2846 2847 igc_get_phy_info(&adapter->hw); 2848 } 2849 2850 /** 2851 * igc_has_link - check shared code for link and determine up/down 2852 * @adapter: pointer to driver private info 2853 */ 2854 bool igc_has_link(struct igc_adapter *adapter) 2855 { 2856 struct igc_hw *hw = &adapter->hw; 2857 bool link_active = false; 2858 2859 /* get_link_status is set on LSC (link status) interrupt or 2860 * rx sequence error interrupt. get_link_status will stay 2861 * false until the igc_check_for_link establishes link 2862 * for copper adapters ONLY 2863 */ 2864 switch (hw->phy.media_type) { 2865 case igc_media_type_copper: 2866 if (!hw->mac.get_link_status) 2867 return true; 2868 hw->mac.ops.check_for_link(hw); 2869 link_active = !hw->mac.get_link_status; 2870 break; 2871 default: 2872 case igc_media_type_unknown: 2873 break; 2874 } 2875 2876 if (hw->mac.type == igc_i225 && 2877 hw->phy.id == I225_I_PHY_ID) { 2878 if (!netif_carrier_ok(adapter->netdev)) { 2879 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2880 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 2881 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 2882 adapter->link_check_timeout = jiffies; 2883 } 2884 } 2885 2886 return link_active; 2887 } 2888 2889 /** 2890 * igc_watchdog - Timer Call-back 2891 * @data: pointer to adapter cast into an unsigned long 2892 */ 2893 static void igc_watchdog(struct timer_list *t) 2894 { 2895 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 2896 /* Do the rest outside of interrupt context */ 2897 schedule_work(&adapter->watchdog_task); 2898 } 2899 2900 static void igc_watchdog_task(struct work_struct *work) 2901 { 2902 struct igc_adapter *adapter = container_of(work, 2903 struct igc_adapter, 2904 watchdog_task); 2905 struct net_device *netdev = adapter->netdev; 2906 struct igc_hw *hw = &adapter->hw; 2907 struct igc_phy_info *phy = &hw->phy; 2908 u16 phy_data, retry_count = 20; 2909 u32 connsw; 2910 u32 link; 2911 int i; 2912 2913 link = igc_has_link(adapter); 2914 2915 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 2916 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 2917 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2918 else 2919 link = false; 2920 } 2921 2922 /* Force link down if we have fiber to swap to */ 2923 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 2924 if (hw->phy.media_type == igc_media_type_copper) { 2925 connsw = rd32(IGC_CONNSW); 2926 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN)) 2927 link = 0; 2928 } 2929 } 2930 if (link) { 2931 if (!netif_carrier_ok(netdev)) { 2932 u32 ctrl; 2933 2934 hw->mac.ops.get_speed_and_duplex(hw, 2935 &adapter->link_speed, 2936 &adapter->link_duplex); 2937 2938 ctrl = rd32(IGC_CTRL); 2939 /* Link status message must follow this format */ 2940 netdev_info(netdev, 2941 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 2942 netdev->name, 2943 adapter->link_speed, 2944 adapter->link_duplex == FULL_DUPLEX ? 2945 "Full" : "Half", 2946 (ctrl & IGC_CTRL_TFCE) && 2947 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 2948 (ctrl & IGC_CTRL_RFCE) ? "RX" : 2949 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 2950 2951 /* check if SmartSpeed worked */ 2952 igc_check_downshift(hw); 2953 if (phy->speed_downgraded) 2954 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 2955 2956 /* adjust timeout factor according to speed/duplex */ 2957 adapter->tx_timeout_factor = 1; 2958 switch (adapter->link_speed) { 2959 case SPEED_10: 2960 adapter->tx_timeout_factor = 14; 2961 break; 2962 case SPEED_100: 2963 /* maybe add some timeout factor ? */ 2964 break; 2965 } 2966 2967 if (adapter->link_speed != SPEED_1000) 2968 goto no_wait; 2969 2970 /* wait for Remote receiver status OK */ 2971 retry_read_status: 2972 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 2973 &phy_data)) { 2974 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 2975 retry_count) { 2976 msleep(100); 2977 retry_count--; 2978 goto retry_read_status; 2979 } else if (!retry_count) { 2980 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 2981 } 2982 } else { 2983 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 2984 } 2985 no_wait: 2986 netif_carrier_on(netdev); 2987 2988 /* link state has changed, schedule phy info update */ 2989 if (!test_bit(__IGC_DOWN, &adapter->state)) 2990 mod_timer(&adapter->phy_info_timer, 2991 round_jiffies(jiffies + 2 * HZ)); 2992 } 2993 } else { 2994 if (netif_carrier_ok(netdev)) { 2995 adapter->link_speed = 0; 2996 adapter->link_duplex = 0; 2997 2998 /* Links status message must follow this format */ 2999 netdev_info(netdev, "igc: %s NIC Link is Down\n", 3000 netdev->name); 3001 netif_carrier_off(netdev); 3002 3003 /* link state has changed, schedule phy info update */ 3004 if (!test_bit(__IGC_DOWN, &adapter->state)) 3005 mod_timer(&adapter->phy_info_timer, 3006 round_jiffies(jiffies + 2 * HZ)); 3007 3008 /* link is down, time to check for alternate media */ 3009 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 3010 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 3011 schedule_work(&adapter->reset_task); 3012 /* return immediately */ 3013 return; 3014 } 3015 } 3016 3017 /* also check for alternate media here */ 3018 } else if (!netif_carrier_ok(netdev) && 3019 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 3020 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 3021 schedule_work(&adapter->reset_task); 3022 /* return immediately */ 3023 return; 3024 } 3025 } 3026 } 3027 3028 spin_lock(&adapter->stats64_lock); 3029 igc_update_stats(adapter); 3030 spin_unlock(&adapter->stats64_lock); 3031 3032 for (i = 0; i < adapter->num_tx_queues; i++) { 3033 struct igc_ring *tx_ring = adapter->tx_ring[i]; 3034 3035 if (!netif_carrier_ok(netdev)) { 3036 /* We've lost link, so the controller stops DMA, 3037 * but we've got queued Tx work that's never going 3038 * to get done, so reset controller to flush Tx. 3039 * (Do the reset outside of interrupt context). 3040 */ 3041 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 3042 adapter->tx_timeout_count++; 3043 schedule_work(&adapter->reset_task); 3044 /* return immediately since reset is imminent */ 3045 return; 3046 } 3047 } 3048 3049 /* Force detection of hung controller every watchdog period */ 3050 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 3051 } 3052 3053 /* Cause software interrupt to ensure Rx ring is cleaned */ 3054 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 3055 u32 eics = 0; 3056 3057 for (i = 0; i < adapter->num_q_vectors; i++) 3058 eics |= adapter->q_vector[i]->eims_value; 3059 wr32(IGC_EICS, eics); 3060 } else { 3061 wr32(IGC_ICS, IGC_ICS_RXDMT0); 3062 } 3063 3064 /* Reset the timer */ 3065 if (!test_bit(__IGC_DOWN, &adapter->state)) { 3066 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 3067 mod_timer(&adapter->watchdog_timer, 3068 round_jiffies(jiffies + HZ)); 3069 else 3070 mod_timer(&adapter->watchdog_timer, 3071 round_jiffies(jiffies + 2 * HZ)); 3072 } 3073 } 3074 3075 /** 3076 * igc_update_ring_itr - update the dynamic ITR value based on packet size 3077 * @q_vector: pointer to q_vector 3078 * 3079 * Stores a new ITR value based on strictly on packet size. This 3080 * algorithm is less sophisticated than that used in igc_update_itr, 3081 * due to the difficulty of synchronizing statistics across multiple 3082 * receive rings. The divisors and thresholds used by this function 3083 * were determined based on theoretical maximum wire speed and testing 3084 * data, in order to minimize response time while increasing bulk 3085 * throughput. 3086 * NOTE: This function is called only when operating in a multiqueue 3087 * receive environment. 3088 */ 3089 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 3090 { 3091 struct igc_adapter *adapter = q_vector->adapter; 3092 int new_val = q_vector->itr_val; 3093 int avg_wire_size = 0; 3094 unsigned int packets; 3095 3096 /* For non-gigabit speeds, just fix the interrupt rate at 4000 3097 * ints/sec - ITR timer value of 120 ticks. 3098 */ 3099 switch (adapter->link_speed) { 3100 case SPEED_10: 3101 case SPEED_100: 3102 new_val = IGC_4K_ITR; 3103 goto set_itr_val; 3104 default: 3105 break; 3106 } 3107 3108 packets = q_vector->rx.total_packets; 3109 if (packets) 3110 avg_wire_size = q_vector->rx.total_bytes / packets; 3111 3112 packets = q_vector->tx.total_packets; 3113 if (packets) 3114 avg_wire_size = max_t(u32, avg_wire_size, 3115 q_vector->tx.total_bytes / packets); 3116 3117 /* if avg_wire_size isn't set no work was done */ 3118 if (!avg_wire_size) 3119 goto clear_counts; 3120 3121 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 3122 avg_wire_size += 24; 3123 3124 /* Don't starve jumbo frames */ 3125 avg_wire_size = min(avg_wire_size, 3000); 3126 3127 /* Give a little boost to mid-size frames */ 3128 if (avg_wire_size > 300 && avg_wire_size < 1200) 3129 new_val = avg_wire_size / 3; 3130 else 3131 new_val = avg_wire_size / 2; 3132 3133 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 3134 if (new_val < IGC_20K_ITR && 3135 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 3136 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 3137 new_val = IGC_20K_ITR; 3138 3139 set_itr_val: 3140 if (new_val != q_vector->itr_val) { 3141 q_vector->itr_val = new_val; 3142 q_vector->set_itr = 1; 3143 } 3144 clear_counts: 3145 q_vector->rx.total_bytes = 0; 3146 q_vector->rx.total_packets = 0; 3147 q_vector->tx.total_bytes = 0; 3148 q_vector->tx.total_packets = 0; 3149 } 3150 3151 /** 3152 * igc_update_itr - update the dynamic ITR value based on statistics 3153 * @q_vector: pointer to q_vector 3154 * @ring_container: ring info to update the itr for 3155 * 3156 * Stores a new ITR value based on packets and byte 3157 * counts during the last interrupt. The advantage of per interrupt 3158 * computation is faster updates and more accurate ITR for the current 3159 * traffic pattern. Constants in this function were computed 3160 * based on theoretical maximum wire speed and thresholds were set based 3161 * on testing data as well as attempting to minimize response time 3162 * while increasing bulk throughput. 3163 * NOTE: These calculations are only valid when operating in a single- 3164 * queue environment. 3165 */ 3166 static void igc_update_itr(struct igc_q_vector *q_vector, 3167 struct igc_ring_container *ring_container) 3168 { 3169 unsigned int packets = ring_container->total_packets; 3170 unsigned int bytes = ring_container->total_bytes; 3171 u8 itrval = ring_container->itr; 3172 3173 /* no packets, exit with status unchanged */ 3174 if (packets == 0) 3175 return; 3176 3177 switch (itrval) { 3178 case lowest_latency: 3179 /* handle TSO and jumbo frames */ 3180 if (bytes / packets > 8000) 3181 itrval = bulk_latency; 3182 else if ((packets < 5) && (bytes > 512)) 3183 itrval = low_latency; 3184 break; 3185 case low_latency: /* 50 usec aka 20000 ints/s */ 3186 if (bytes > 10000) { 3187 /* this if handles the TSO accounting */ 3188 if (bytes / packets > 8000) 3189 itrval = bulk_latency; 3190 else if ((packets < 10) || ((bytes / packets) > 1200)) 3191 itrval = bulk_latency; 3192 else if ((packets > 35)) 3193 itrval = lowest_latency; 3194 } else if (bytes / packets > 2000) { 3195 itrval = bulk_latency; 3196 } else if (packets <= 2 && bytes < 512) { 3197 itrval = lowest_latency; 3198 } 3199 break; 3200 case bulk_latency: /* 250 usec aka 4000 ints/s */ 3201 if (bytes > 25000) { 3202 if (packets > 35) 3203 itrval = low_latency; 3204 } else if (bytes < 1500) { 3205 itrval = low_latency; 3206 } 3207 break; 3208 } 3209 3210 /* clear work counters since we have the values we need */ 3211 ring_container->total_bytes = 0; 3212 ring_container->total_packets = 0; 3213 3214 /* write updated itr to ring container */ 3215 ring_container->itr = itrval; 3216 } 3217 3218 /** 3219 * igc_intr_msi - Interrupt Handler 3220 * @irq: interrupt number 3221 * @data: pointer to a network interface device structure 3222 */ 3223 static irqreturn_t igc_intr_msi(int irq, void *data) 3224 { 3225 struct igc_adapter *adapter = data; 3226 struct igc_q_vector *q_vector = adapter->q_vector[0]; 3227 struct igc_hw *hw = &adapter->hw; 3228 /* read ICR disables interrupts using IAM */ 3229 u32 icr = rd32(IGC_ICR); 3230 3231 igc_write_itr(q_vector); 3232 3233 if (icr & IGC_ICR_DRSTA) 3234 schedule_work(&adapter->reset_task); 3235 3236 if (icr & IGC_ICR_DOUTSYNC) { 3237 /* HW is reporting DMA is out of sync */ 3238 adapter->stats.doosync++; 3239 } 3240 3241 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 3242 hw->mac.get_link_status = 1; 3243 if (!test_bit(__IGC_DOWN, &adapter->state)) 3244 mod_timer(&adapter->watchdog_timer, jiffies + 1); 3245 } 3246 3247 napi_schedule(&q_vector->napi); 3248 3249 return IRQ_HANDLED; 3250 } 3251 3252 /** 3253 * igc_intr - Legacy Interrupt Handler 3254 * @irq: interrupt number 3255 * @data: pointer to a network interface device structure 3256 */ 3257 static irqreturn_t igc_intr(int irq, void *data) 3258 { 3259 struct igc_adapter *adapter = data; 3260 struct igc_q_vector *q_vector = adapter->q_vector[0]; 3261 struct igc_hw *hw = &adapter->hw; 3262 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 3263 * need for the IMC write 3264 */ 3265 u32 icr = rd32(IGC_ICR); 3266 3267 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 3268 * not set, then the adapter didn't send an interrupt 3269 */ 3270 if (!(icr & IGC_ICR_INT_ASSERTED)) 3271 return IRQ_NONE; 3272 3273 igc_write_itr(q_vector); 3274 3275 if (icr & IGC_ICR_DRSTA) 3276 schedule_work(&adapter->reset_task); 3277 3278 if (icr & IGC_ICR_DOUTSYNC) { 3279 /* HW is reporting DMA is out of sync */ 3280 adapter->stats.doosync++; 3281 } 3282 3283 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 3284 hw->mac.get_link_status = 1; 3285 /* guard against interrupt when we're going down */ 3286 if (!test_bit(__IGC_DOWN, &adapter->state)) 3287 mod_timer(&adapter->watchdog_timer, jiffies + 1); 3288 } 3289 3290 napi_schedule(&q_vector->napi); 3291 3292 return IRQ_HANDLED; 3293 } 3294 3295 static void igc_set_itr(struct igc_q_vector *q_vector) 3296 { 3297 struct igc_adapter *adapter = q_vector->adapter; 3298 u32 new_itr = q_vector->itr_val; 3299 u8 current_itr = 0; 3300 3301 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 3302 switch (adapter->link_speed) { 3303 case SPEED_10: 3304 case SPEED_100: 3305 current_itr = 0; 3306 new_itr = IGC_4K_ITR; 3307 goto set_itr_now; 3308 default: 3309 break; 3310 } 3311 3312 igc_update_itr(q_vector, &q_vector->tx); 3313 igc_update_itr(q_vector, &q_vector->rx); 3314 3315 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 3316 3317 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 3318 if (current_itr == lowest_latency && 3319 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 3320 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 3321 current_itr = low_latency; 3322 3323 switch (current_itr) { 3324 /* counts and packets in update_itr are dependent on these numbers */ 3325 case lowest_latency: 3326 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 3327 break; 3328 case low_latency: 3329 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 3330 break; 3331 case bulk_latency: 3332 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 3333 break; 3334 default: 3335 break; 3336 } 3337 3338 set_itr_now: 3339 if (new_itr != q_vector->itr_val) { 3340 /* this attempts to bias the interrupt rate towards Bulk 3341 * by adding intermediate steps when interrupt rate is 3342 * increasing 3343 */ 3344 new_itr = new_itr > q_vector->itr_val ? 3345 max((new_itr * q_vector->itr_val) / 3346 (new_itr + (q_vector->itr_val >> 2)), 3347 new_itr) : new_itr; 3348 /* Don't write the value here; it resets the adapter's 3349 * internal timer, and causes us to delay far longer than 3350 * we should between interrupts. Instead, we write the ITR 3351 * value at the beginning of the next interrupt so the timing 3352 * ends up being correct. 3353 */ 3354 q_vector->itr_val = new_itr; 3355 q_vector->set_itr = 1; 3356 } 3357 } 3358 3359 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 3360 { 3361 struct igc_adapter *adapter = q_vector->adapter; 3362 struct igc_hw *hw = &adapter->hw; 3363 3364 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 3365 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 3366 if (adapter->num_q_vectors == 1) 3367 igc_set_itr(q_vector); 3368 else 3369 igc_update_ring_itr(q_vector); 3370 } 3371 3372 if (!test_bit(__IGC_DOWN, &adapter->state)) { 3373 if (adapter->msix_entries) 3374 wr32(IGC_EIMS, q_vector->eims_value); 3375 else 3376 igc_irq_enable(adapter); 3377 } 3378 } 3379 3380 /** 3381 * igc_poll - NAPI Rx polling callback 3382 * @napi: napi polling structure 3383 * @budget: count of how many packets we should handle 3384 */ 3385 static int igc_poll(struct napi_struct *napi, int budget) 3386 { 3387 struct igc_q_vector *q_vector = container_of(napi, 3388 struct igc_q_vector, 3389 napi); 3390 bool clean_complete = true; 3391 int work_done = 0; 3392 3393 if (q_vector->tx.ring) 3394 clean_complete = igc_clean_tx_irq(q_vector, budget); 3395 3396 if (q_vector->rx.ring) { 3397 int cleaned = igc_clean_rx_irq(q_vector, budget); 3398 3399 work_done += cleaned; 3400 if (cleaned >= budget) 3401 clean_complete = false; 3402 } 3403 3404 /* If all work not completed, return budget and keep polling */ 3405 if (!clean_complete) 3406 return budget; 3407 3408 /* Exit the polling mode, but don't re-enable interrupts if stack might 3409 * poll us due to busy-polling 3410 */ 3411 if (likely(napi_complete_done(napi, work_done))) 3412 igc_ring_irq_enable(q_vector); 3413 3414 return min(work_done, budget - 1); 3415 } 3416 3417 /** 3418 * igc_set_interrupt_capability - set MSI or MSI-X if supported 3419 * @adapter: Pointer to adapter structure 3420 * 3421 * Attempt to configure interrupts using the best available 3422 * capabilities of the hardware and kernel. 3423 */ 3424 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 3425 bool msix) 3426 { 3427 int numvecs, i; 3428 int err; 3429 3430 if (!msix) 3431 goto msi_only; 3432 adapter->flags |= IGC_FLAG_HAS_MSIX; 3433 3434 /* Number of supported queues. */ 3435 adapter->num_rx_queues = adapter->rss_queues; 3436 3437 adapter->num_tx_queues = adapter->rss_queues; 3438 3439 /* start with one vector for every Rx queue */ 3440 numvecs = adapter->num_rx_queues; 3441 3442 /* if Tx handler is separate add 1 for every Tx queue */ 3443 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 3444 numvecs += adapter->num_tx_queues; 3445 3446 /* store the number of vectors reserved for queues */ 3447 adapter->num_q_vectors = numvecs; 3448 3449 /* add 1 vector for link status interrupts */ 3450 numvecs++; 3451 3452 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 3453 GFP_KERNEL); 3454 3455 if (!adapter->msix_entries) 3456 return; 3457 3458 /* populate entry values */ 3459 for (i = 0; i < numvecs; i++) 3460 adapter->msix_entries[i].entry = i; 3461 3462 err = pci_enable_msix_range(adapter->pdev, 3463 adapter->msix_entries, 3464 numvecs, 3465 numvecs); 3466 if (err > 0) 3467 return; 3468 3469 kfree(adapter->msix_entries); 3470 adapter->msix_entries = NULL; 3471 3472 igc_reset_interrupt_capability(adapter); 3473 3474 msi_only: 3475 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 3476 3477 adapter->rss_queues = 1; 3478 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3479 adapter->num_rx_queues = 1; 3480 adapter->num_tx_queues = 1; 3481 adapter->num_q_vectors = 1; 3482 if (!pci_enable_msi(adapter->pdev)) 3483 adapter->flags |= IGC_FLAG_HAS_MSI; 3484 } 3485 3486 static void igc_add_ring(struct igc_ring *ring, 3487 struct igc_ring_container *head) 3488 { 3489 head->ring = ring; 3490 head->count++; 3491 } 3492 3493 /** 3494 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 3495 * @adapter: board private structure to initialize 3496 * @v_count: q_vectors allocated on adapter, used for ring interleaving 3497 * @v_idx: index of vector in adapter struct 3498 * @txr_count: total number of Tx rings to allocate 3499 * @txr_idx: index of first Tx ring to allocate 3500 * @rxr_count: total number of Rx rings to allocate 3501 * @rxr_idx: index of first Rx ring to allocate 3502 * 3503 * We allocate one q_vector. If allocation fails we return -ENOMEM. 3504 */ 3505 static int igc_alloc_q_vector(struct igc_adapter *adapter, 3506 unsigned int v_count, unsigned int v_idx, 3507 unsigned int txr_count, unsigned int txr_idx, 3508 unsigned int rxr_count, unsigned int rxr_idx) 3509 { 3510 struct igc_q_vector *q_vector; 3511 struct igc_ring *ring; 3512 int ring_count; 3513 3514 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 3515 if (txr_count > 1 || rxr_count > 1) 3516 return -ENOMEM; 3517 3518 ring_count = txr_count + rxr_count; 3519 3520 /* allocate q_vector and rings */ 3521 q_vector = adapter->q_vector[v_idx]; 3522 if (!q_vector) 3523 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 3524 GFP_KERNEL); 3525 else 3526 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 3527 if (!q_vector) 3528 return -ENOMEM; 3529 3530 /* initialize NAPI */ 3531 netif_napi_add(adapter->netdev, &q_vector->napi, 3532 igc_poll, 64); 3533 3534 /* tie q_vector and adapter together */ 3535 adapter->q_vector[v_idx] = q_vector; 3536 q_vector->adapter = adapter; 3537 3538 /* initialize work limits */ 3539 q_vector->tx.work_limit = adapter->tx_work_limit; 3540 3541 /* initialize ITR configuration */ 3542 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 3543 q_vector->itr_val = IGC_START_ITR; 3544 3545 /* initialize pointer to rings */ 3546 ring = q_vector->ring; 3547 3548 /* initialize ITR */ 3549 if (rxr_count) { 3550 /* rx or rx/tx vector */ 3551 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 3552 q_vector->itr_val = adapter->rx_itr_setting; 3553 } else { 3554 /* tx only vector */ 3555 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 3556 q_vector->itr_val = adapter->tx_itr_setting; 3557 } 3558 3559 if (txr_count) { 3560 /* assign generic ring traits */ 3561 ring->dev = &adapter->pdev->dev; 3562 ring->netdev = adapter->netdev; 3563 3564 /* configure backlink on ring */ 3565 ring->q_vector = q_vector; 3566 3567 /* update q_vector Tx values */ 3568 igc_add_ring(ring, &q_vector->tx); 3569 3570 /* apply Tx specific ring traits */ 3571 ring->count = adapter->tx_ring_count; 3572 ring->queue_index = txr_idx; 3573 3574 /* assign ring to adapter */ 3575 adapter->tx_ring[txr_idx] = ring; 3576 3577 /* push pointer to next ring */ 3578 ring++; 3579 } 3580 3581 if (rxr_count) { 3582 /* assign generic ring traits */ 3583 ring->dev = &adapter->pdev->dev; 3584 ring->netdev = adapter->netdev; 3585 3586 /* configure backlink on ring */ 3587 ring->q_vector = q_vector; 3588 3589 /* update q_vector Rx values */ 3590 igc_add_ring(ring, &q_vector->rx); 3591 3592 /* apply Rx specific ring traits */ 3593 ring->count = adapter->rx_ring_count; 3594 ring->queue_index = rxr_idx; 3595 3596 /* assign ring to adapter */ 3597 adapter->rx_ring[rxr_idx] = ring; 3598 } 3599 3600 return 0; 3601 } 3602 3603 /** 3604 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 3605 * @adapter: board private structure to initialize 3606 * 3607 * We allocate one q_vector per queue interrupt. If allocation fails we 3608 * return -ENOMEM. 3609 */ 3610 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 3611 { 3612 int rxr_remaining = adapter->num_rx_queues; 3613 int txr_remaining = adapter->num_tx_queues; 3614 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 3615 int q_vectors = adapter->num_q_vectors; 3616 int err; 3617 3618 if (q_vectors >= (rxr_remaining + txr_remaining)) { 3619 for (; rxr_remaining; v_idx++) { 3620 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3621 0, 0, 1, rxr_idx); 3622 3623 if (err) 3624 goto err_out; 3625 3626 /* update counts and index */ 3627 rxr_remaining--; 3628 rxr_idx++; 3629 } 3630 } 3631 3632 for (; v_idx < q_vectors; v_idx++) { 3633 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 3634 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 3635 3636 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3637 tqpv, txr_idx, rqpv, rxr_idx); 3638 3639 if (err) 3640 goto err_out; 3641 3642 /* update counts and index */ 3643 rxr_remaining -= rqpv; 3644 txr_remaining -= tqpv; 3645 rxr_idx++; 3646 txr_idx++; 3647 } 3648 3649 return 0; 3650 3651 err_out: 3652 adapter->num_tx_queues = 0; 3653 adapter->num_rx_queues = 0; 3654 adapter->num_q_vectors = 0; 3655 3656 while (v_idx--) 3657 igc_free_q_vector(adapter, v_idx); 3658 3659 return -ENOMEM; 3660 } 3661 3662 /** 3663 * igc_cache_ring_register - Descriptor ring to register mapping 3664 * @adapter: board private structure to initialize 3665 * 3666 * Once we know the feature-set enabled for the device, we'll cache 3667 * the register offset the descriptor ring is assigned to. 3668 */ 3669 static void igc_cache_ring_register(struct igc_adapter *adapter) 3670 { 3671 int i = 0, j = 0; 3672 3673 switch (adapter->hw.mac.type) { 3674 case igc_i225: 3675 /* Fall through */ 3676 default: 3677 for (; i < adapter->num_rx_queues; i++) 3678 adapter->rx_ring[i]->reg_idx = i; 3679 for (; j < adapter->num_tx_queues; j++) 3680 adapter->tx_ring[j]->reg_idx = j; 3681 break; 3682 } 3683 } 3684 3685 /** 3686 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 3687 * @adapter: Pointer to adapter structure 3688 * 3689 * This function initializes the interrupts and allocates all of the queues. 3690 */ 3691 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 3692 { 3693 struct pci_dev *pdev = adapter->pdev; 3694 int err = 0; 3695 3696 igc_set_interrupt_capability(adapter, msix); 3697 3698 err = igc_alloc_q_vectors(adapter); 3699 if (err) { 3700 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 3701 goto err_alloc_q_vectors; 3702 } 3703 3704 igc_cache_ring_register(adapter); 3705 3706 return 0; 3707 3708 err_alloc_q_vectors: 3709 igc_reset_interrupt_capability(adapter); 3710 return err; 3711 } 3712 3713 static void igc_free_irq(struct igc_adapter *adapter) 3714 { 3715 if (adapter->msix_entries) { 3716 int vector = 0, i; 3717 3718 free_irq(adapter->msix_entries[vector++].vector, adapter); 3719 3720 for (i = 0; i < adapter->num_q_vectors; i++) 3721 free_irq(adapter->msix_entries[vector++].vector, 3722 adapter->q_vector[i]); 3723 } else { 3724 free_irq(adapter->pdev->irq, adapter); 3725 } 3726 } 3727 3728 /** 3729 * igc_irq_disable - Mask off interrupt generation on the NIC 3730 * @adapter: board private structure 3731 */ 3732 static void igc_irq_disable(struct igc_adapter *adapter) 3733 { 3734 struct igc_hw *hw = &adapter->hw; 3735 3736 if (adapter->msix_entries) { 3737 u32 regval = rd32(IGC_EIAM); 3738 3739 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3740 wr32(IGC_EIMC, adapter->eims_enable_mask); 3741 regval = rd32(IGC_EIAC); 3742 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3743 } 3744 3745 wr32(IGC_IAM, 0); 3746 wr32(IGC_IMC, ~0); 3747 wrfl(); 3748 3749 if (adapter->msix_entries) { 3750 int vector = 0, i; 3751 3752 synchronize_irq(adapter->msix_entries[vector++].vector); 3753 3754 for (i = 0; i < adapter->num_q_vectors; i++) 3755 synchronize_irq(adapter->msix_entries[vector++].vector); 3756 } else { 3757 synchronize_irq(adapter->pdev->irq); 3758 } 3759 } 3760 3761 /** 3762 * igc_irq_enable - Enable default interrupt generation settings 3763 * @adapter: board private structure 3764 */ 3765 static void igc_irq_enable(struct igc_adapter *adapter) 3766 { 3767 struct igc_hw *hw = &adapter->hw; 3768 3769 if (adapter->msix_entries) { 3770 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3771 u32 regval = rd32(IGC_EIAC); 3772 3773 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3774 regval = rd32(IGC_EIAM); 3775 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3776 wr32(IGC_EIMS, adapter->eims_enable_mask); 3777 wr32(IGC_IMS, ims); 3778 } else { 3779 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3780 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3781 } 3782 } 3783 3784 /** 3785 * igc_request_irq - initialize interrupts 3786 * @adapter: Pointer to adapter structure 3787 * 3788 * Attempts to configure interrupts using the best available 3789 * capabilities of the hardware and kernel. 3790 */ 3791 static int igc_request_irq(struct igc_adapter *adapter) 3792 { 3793 struct net_device *netdev = adapter->netdev; 3794 struct pci_dev *pdev = adapter->pdev; 3795 int err = 0; 3796 3797 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 3798 err = igc_request_msix(adapter); 3799 if (!err) 3800 goto request_done; 3801 /* fall back to MSI */ 3802 igc_free_all_tx_resources(adapter); 3803 igc_free_all_rx_resources(adapter); 3804 3805 igc_clear_interrupt_scheme(adapter); 3806 err = igc_init_interrupt_scheme(adapter, false); 3807 if (err) 3808 goto request_done; 3809 igc_setup_all_tx_resources(adapter); 3810 igc_setup_all_rx_resources(adapter); 3811 igc_configure(adapter); 3812 } 3813 3814 igc_assign_vector(adapter->q_vector[0], 0); 3815 3816 if (adapter->flags & IGC_FLAG_HAS_MSI) { 3817 err = request_irq(pdev->irq, &igc_intr_msi, 0, 3818 netdev->name, adapter); 3819 if (!err) 3820 goto request_done; 3821 3822 /* fall back to legacy interrupts */ 3823 igc_reset_interrupt_capability(adapter); 3824 adapter->flags &= ~IGC_FLAG_HAS_MSI; 3825 } 3826 3827 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 3828 netdev->name, adapter); 3829 3830 if (err) 3831 dev_err(&pdev->dev, "Error %d getting interrupt\n", 3832 err); 3833 3834 request_done: 3835 return err; 3836 } 3837 3838 static void igc_write_itr(struct igc_q_vector *q_vector) 3839 { 3840 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 3841 3842 if (!q_vector->set_itr) 3843 return; 3844 3845 if (!itr_val) 3846 itr_val = IGC_ITR_VAL_MASK; 3847 3848 itr_val |= IGC_EITR_CNT_IGNR; 3849 3850 writel(itr_val, q_vector->itr_register); 3851 q_vector->set_itr = 0; 3852 } 3853 3854 /** 3855 * igc_open - Called when a network interface is made active 3856 * @netdev: network interface device structure 3857 * 3858 * Returns 0 on success, negative value on failure 3859 * 3860 * The open entry point is called when a network interface is made 3861 * active by the system (IFF_UP). At this point all resources needed 3862 * for transmit and receive operations are allocated, the interrupt 3863 * handler is registered with the OS, the watchdog timer is started, 3864 * and the stack is notified that the interface is ready. 3865 */ 3866 static int __igc_open(struct net_device *netdev, bool resuming) 3867 { 3868 struct igc_adapter *adapter = netdev_priv(netdev); 3869 struct igc_hw *hw = &adapter->hw; 3870 int err = 0; 3871 int i = 0; 3872 3873 /* disallow open during test */ 3874 3875 if (test_bit(__IGC_TESTING, &adapter->state)) { 3876 WARN_ON(resuming); 3877 return -EBUSY; 3878 } 3879 3880 netif_carrier_off(netdev); 3881 3882 /* allocate transmit descriptors */ 3883 err = igc_setup_all_tx_resources(adapter); 3884 if (err) 3885 goto err_setup_tx; 3886 3887 /* allocate receive descriptors */ 3888 err = igc_setup_all_rx_resources(adapter); 3889 if (err) 3890 goto err_setup_rx; 3891 3892 igc_power_up_link(adapter); 3893 3894 igc_configure(adapter); 3895 3896 err = igc_request_irq(adapter); 3897 if (err) 3898 goto err_req_irq; 3899 3900 /* Notify the stack of the actual queue counts. */ 3901 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3902 if (err) 3903 goto err_set_queues; 3904 3905 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3906 if (err) 3907 goto err_set_queues; 3908 3909 clear_bit(__IGC_DOWN, &adapter->state); 3910 3911 for (i = 0; i < adapter->num_q_vectors; i++) 3912 napi_enable(&adapter->q_vector[i]->napi); 3913 3914 /* Clear any pending interrupts. */ 3915 rd32(IGC_ICR); 3916 igc_irq_enable(adapter); 3917 3918 netif_tx_start_all_queues(netdev); 3919 3920 /* start the watchdog. */ 3921 hw->mac.get_link_status = 1; 3922 schedule_work(&adapter->watchdog_task); 3923 3924 return IGC_SUCCESS; 3925 3926 err_set_queues: 3927 igc_free_irq(adapter); 3928 err_req_irq: 3929 igc_release_hw_control(adapter); 3930 igc_power_down_link(adapter); 3931 igc_free_all_rx_resources(adapter); 3932 err_setup_rx: 3933 igc_free_all_tx_resources(adapter); 3934 err_setup_tx: 3935 igc_reset(adapter); 3936 3937 return err; 3938 } 3939 3940 static int igc_open(struct net_device *netdev) 3941 { 3942 return __igc_open(netdev, false); 3943 } 3944 3945 /** 3946 * igc_close - Disables a network interface 3947 * @netdev: network interface device structure 3948 * 3949 * Returns 0, this is not allowed to fail 3950 * 3951 * The close entry point is called when an interface is de-activated 3952 * by the OS. The hardware is still under the driver's control, but 3953 * needs to be disabled. A global MAC reset is issued to stop the 3954 * hardware, and all transmit and receive resources are freed. 3955 */ 3956 static int __igc_close(struct net_device *netdev, bool suspending) 3957 { 3958 struct igc_adapter *adapter = netdev_priv(netdev); 3959 3960 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 3961 3962 igc_down(adapter); 3963 3964 igc_release_hw_control(adapter); 3965 3966 igc_free_irq(adapter); 3967 3968 igc_free_all_tx_resources(adapter); 3969 igc_free_all_rx_resources(adapter); 3970 3971 return 0; 3972 } 3973 3974 static int igc_close(struct net_device *netdev) 3975 { 3976 if (netif_device_present(netdev) || netdev->dismantle) 3977 return __igc_close(netdev, false); 3978 return 0; 3979 } 3980 3981 static const struct net_device_ops igc_netdev_ops = { 3982 .ndo_open = igc_open, 3983 .ndo_stop = igc_close, 3984 .ndo_start_xmit = igc_xmit_frame, 3985 .ndo_set_mac_address = igc_set_mac, 3986 .ndo_change_mtu = igc_change_mtu, 3987 .ndo_get_stats = igc_get_stats, 3988 .ndo_fix_features = igc_fix_features, 3989 .ndo_set_features = igc_set_features, 3990 .ndo_features_check = igc_features_check, 3991 }; 3992 3993 /* PCIe configuration access */ 3994 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 3995 { 3996 struct igc_adapter *adapter = hw->back; 3997 3998 pci_read_config_word(adapter->pdev, reg, value); 3999 } 4000 4001 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 4002 { 4003 struct igc_adapter *adapter = hw->back; 4004 4005 pci_write_config_word(adapter->pdev, reg, *value); 4006 } 4007 4008 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 4009 { 4010 struct igc_adapter *adapter = hw->back; 4011 4012 if (!pci_is_pcie(adapter->pdev)) 4013 return -IGC_ERR_CONFIG; 4014 4015 pcie_capability_read_word(adapter->pdev, reg, value); 4016 4017 return IGC_SUCCESS; 4018 } 4019 4020 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 4021 { 4022 struct igc_adapter *adapter = hw->back; 4023 4024 if (!pci_is_pcie(adapter->pdev)) 4025 return -IGC_ERR_CONFIG; 4026 4027 pcie_capability_write_word(adapter->pdev, reg, *value); 4028 4029 return IGC_SUCCESS; 4030 } 4031 4032 u32 igc_rd32(struct igc_hw *hw, u32 reg) 4033 { 4034 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 4035 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 4036 u32 value = 0; 4037 4038 if (IGC_REMOVED(hw_addr)) 4039 return ~value; 4040 4041 value = readl(&hw_addr[reg]); 4042 4043 /* reads should not return all F's */ 4044 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 4045 struct net_device *netdev = igc->netdev; 4046 4047 hw->hw_addr = NULL; 4048 netif_device_detach(netdev); 4049 netdev_err(netdev, "PCIe link lost, device now detached\n"); 4050 WARN(1, "igc: Failed to read reg 0x%x!\n", reg); 4051 } 4052 4053 return value; 4054 } 4055 4056 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx) 4057 { 4058 struct pci_dev *pdev = adapter->pdev; 4059 struct igc_mac_info *mac = &adapter->hw.mac; 4060 4061 mac->autoneg = 0; 4062 4063 /* Make sure dplx is at most 1 bit and lsb of speed is not set 4064 * for the switch() below to work 4065 */ 4066 if ((spd & 1) || (dplx & ~1)) 4067 goto err_inval; 4068 4069 switch (spd + dplx) { 4070 case SPEED_10 + DUPLEX_HALF: 4071 mac->forced_speed_duplex = ADVERTISE_10_HALF; 4072 break; 4073 case SPEED_10 + DUPLEX_FULL: 4074 mac->forced_speed_duplex = ADVERTISE_10_FULL; 4075 break; 4076 case SPEED_100 + DUPLEX_HALF: 4077 mac->forced_speed_duplex = ADVERTISE_100_HALF; 4078 break; 4079 case SPEED_100 + DUPLEX_FULL: 4080 mac->forced_speed_duplex = ADVERTISE_100_FULL; 4081 break; 4082 case SPEED_1000 + DUPLEX_FULL: 4083 mac->autoneg = 1; 4084 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 4085 break; 4086 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 4087 goto err_inval; 4088 case SPEED_2500 + DUPLEX_FULL: 4089 mac->autoneg = 1; 4090 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL; 4091 break; 4092 case SPEED_2500 + DUPLEX_HALF: /* not supported */ 4093 default: 4094 goto err_inval; 4095 } 4096 4097 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 4098 adapter->hw.phy.mdix = AUTO_ALL_MODES; 4099 4100 return 0; 4101 4102 err_inval: 4103 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 4104 return -EINVAL; 4105 } 4106 4107 /** 4108 * igc_probe - Device Initialization Routine 4109 * @pdev: PCI device information struct 4110 * @ent: entry in igc_pci_tbl 4111 * 4112 * Returns 0 on success, negative on failure 4113 * 4114 * igc_probe initializes an adapter identified by a pci_dev structure. 4115 * The OS initialization, configuring the adapter private structure, 4116 * and a hardware reset occur. 4117 */ 4118 static int igc_probe(struct pci_dev *pdev, 4119 const struct pci_device_id *ent) 4120 { 4121 struct igc_adapter *adapter; 4122 struct net_device *netdev; 4123 struct igc_hw *hw; 4124 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 4125 int err; 4126 4127 err = pci_enable_device_mem(pdev); 4128 if (err) 4129 return err; 4130 4131 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 4132 if (!err) { 4133 err = dma_set_coherent_mask(&pdev->dev, 4134 DMA_BIT_MASK(64)); 4135 } else { 4136 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 4137 if (err) { 4138 err = dma_set_coherent_mask(&pdev->dev, 4139 DMA_BIT_MASK(32)); 4140 if (err) { 4141 dev_err(&pdev->dev, "igc: Wrong DMA config\n"); 4142 goto err_dma; 4143 } 4144 } 4145 } 4146 4147 err = pci_request_selected_regions(pdev, 4148 pci_select_bars(pdev, 4149 IORESOURCE_MEM), 4150 igc_driver_name); 4151 if (err) 4152 goto err_pci_reg; 4153 4154 pci_enable_pcie_error_reporting(pdev); 4155 4156 pci_set_master(pdev); 4157 4158 err = -ENOMEM; 4159 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 4160 IGC_MAX_TX_QUEUES); 4161 4162 if (!netdev) 4163 goto err_alloc_etherdev; 4164 4165 SET_NETDEV_DEV(netdev, &pdev->dev); 4166 4167 pci_set_drvdata(pdev, netdev); 4168 adapter = netdev_priv(netdev); 4169 adapter->netdev = netdev; 4170 adapter->pdev = pdev; 4171 hw = &adapter->hw; 4172 hw->back = adapter; 4173 adapter->port_num = hw->bus.func; 4174 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4175 4176 err = pci_save_state(pdev); 4177 if (err) 4178 goto err_ioremap; 4179 4180 err = -EIO; 4181 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 4182 pci_resource_len(pdev, 0)); 4183 if (!adapter->io_addr) 4184 goto err_ioremap; 4185 4186 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 4187 hw->hw_addr = adapter->io_addr; 4188 4189 netdev->netdev_ops = &igc_netdev_ops; 4190 igc_set_ethtool_ops(netdev); 4191 netdev->watchdog_timeo = 5 * HZ; 4192 4193 netdev->mem_start = pci_resource_start(pdev, 0); 4194 netdev->mem_end = pci_resource_end(pdev, 0); 4195 4196 /* PCI config space info */ 4197 hw->vendor_id = pdev->vendor; 4198 hw->device_id = pdev->device; 4199 hw->revision_id = pdev->revision; 4200 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4201 hw->subsystem_device_id = pdev->subsystem_device; 4202 4203 /* Copy the default MAC and PHY function pointers */ 4204 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 4205 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 4206 4207 /* Initialize skew-specific constants */ 4208 err = ei->get_invariants(hw); 4209 if (err) 4210 goto err_sw_init; 4211 4212 /* Add supported features to the features list*/ 4213 netdev->features |= NETIF_F_HW_CSUM; 4214 4215 /* setup the private structure */ 4216 err = igc_sw_init(adapter); 4217 if (err) 4218 goto err_sw_init; 4219 4220 /* copy netdev features into list of user selectable features */ 4221 netdev->hw_features |= NETIF_F_NTUPLE; 4222 netdev->hw_features |= netdev->features; 4223 4224 /* MTU range: 68 - 9216 */ 4225 netdev->min_mtu = ETH_MIN_MTU; 4226 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 4227 4228 /* before reading the NVM, reset the controller to put the device in a 4229 * known good starting state 4230 */ 4231 hw->mac.ops.reset_hw(hw); 4232 4233 if (igc_get_flash_presence_i225(hw)) { 4234 if (hw->nvm.ops.validate(hw) < 0) { 4235 dev_err(&pdev->dev, 4236 "The NVM Checksum Is Not Valid\n"); 4237 err = -EIO; 4238 goto err_eeprom; 4239 } 4240 } 4241 4242 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 4243 /* copy the MAC address out of the NVM */ 4244 if (hw->mac.ops.read_mac_addr(hw)) 4245 dev_err(&pdev->dev, "NVM Read Error\n"); 4246 } 4247 4248 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 4249 4250 if (!is_valid_ether_addr(netdev->dev_addr)) { 4251 dev_err(&pdev->dev, "Invalid MAC Address\n"); 4252 err = -EIO; 4253 goto err_eeprom; 4254 } 4255 4256 /* configure RXPBSIZE and TXPBSIZE */ 4257 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 4258 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 4259 4260 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 4261 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 4262 4263 INIT_WORK(&adapter->reset_task, igc_reset_task); 4264 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 4265 4266 /* Initialize link properties that are user-changeable */ 4267 adapter->fc_autoneg = true; 4268 hw->mac.autoneg = true; 4269 hw->phy.autoneg_advertised = 0xaf; 4270 4271 hw->fc.requested_mode = igc_fc_default; 4272 hw->fc.current_mode = igc_fc_default; 4273 4274 /* reset the hardware with the new settings */ 4275 igc_reset(adapter); 4276 4277 /* let the f/w know that the h/w is now under the control of the 4278 * driver. 4279 */ 4280 igc_get_hw_control(adapter); 4281 4282 strncpy(netdev->name, "eth%d", IFNAMSIZ); 4283 err = register_netdev(netdev); 4284 if (err) 4285 goto err_register; 4286 4287 /* carrier off reporting is important to ethtool even BEFORE open */ 4288 netif_carrier_off(netdev); 4289 4290 /* Check if Media Autosense is enabled */ 4291 adapter->ei = *ei; 4292 4293 /* print pcie link status and MAC address */ 4294 pcie_print_link_status(pdev); 4295 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 4296 4297 return 0; 4298 4299 err_register: 4300 igc_release_hw_control(adapter); 4301 err_eeprom: 4302 if (!igc_check_reset_block(hw)) 4303 igc_reset_phy(hw); 4304 err_sw_init: 4305 igc_clear_interrupt_scheme(adapter); 4306 iounmap(adapter->io_addr); 4307 err_ioremap: 4308 free_netdev(netdev); 4309 err_alloc_etherdev: 4310 pci_release_selected_regions(pdev, 4311 pci_select_bars(pdev, IORESOURCE_MEM)); 4312 err_pci_reg: 4313 err_dma: 4314 pci_disable_device(pdev); 4315 return err; 4316 } 4317 4318 /** 4319 * igc_remove - Device Removal Routine 4320 * @pdev: PCI device information struct 4321 * 4322 * igc_remove is called by the PCI subsystem to alert the driver 4323 * that it should release a PCI device. This could be caused by a 4324 * Hot-Plug event, or because the driver is going to be removed from 4325 * memory. 4326 */ 4327 static void igc_remove(struct pci_dev *pdev) 4328 { 4329 struct net_device *netdev = pci_get_drvdata(pdev); 4330 struct igc_adapter *adapter = netdev_priv(netdev); 4331 4332 set_bit(__IGC_DOWN, &adapter->state); 4333 4334 del_timer_sync(&adapter->watchdog_timer); 4335 del_timer_sync(&adapter->phy_info_timer); 4336 4337 cancel_work_sync(&adapter->reset_task); 4338 cancel_work_sync(&adapter->watchdog_task); 4339 4340 /* Release control of h/w to f/w. If f/w is AMT enabled, this 4341 * would have already happened in close and is redundant. 4342 */ 4343 igc_release_hw_control(adapter); 4344 unregister_netdev(netdev); 4345 4346 igc_clear_interrupt_scheme(adapter); 4347 pci_iounmap(pdev, adapter->io_addr); 4348 pci_release_mem_regions(pdev); 4349 4350 kfree(adapter->mac_table); 4351 kfree(adapter->shadow_vfta); 4352 free_netdev(netdev); 4353 4354 pci_disable_pcie_error_reporting(pdev); 4355 4356 pci_disable_device(pdev); 4357 } 4358 4359 static struct pci_driver igc_driver = { 4360 .name = igc_driver_name, 4361 .id_table = igc_pci_tbl, 4362 .probe = igc_probe, 4363 .remove = igc_remove, 4364 }; 4365 4366 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4367 const u32 max_rss_queues) 4368 { 4369 /* Determine if we need to pair queues. */ 4370 /* If rss_queues > half of max_rss_queues, pair the queues in 4371 * order to conserve interrupts due to limited supply. 4372 */ 4373 if (adapter->rss_queues > (max_rss_queues / 2)) 4374 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4375 else 4376 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4377 } 4378 4379 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4380 { 4381 unsigned int max_rss_queues; 4382 4383 /* Determine the maximum number of RSS queues supported. */ 4384 max_rss_queues = IGC_MAX_RX_QUEUES; 4385 4386 return max_rss_queues; 4387 } 4388 4389 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4390 { 4391 u32 max_rss_queues; 4392 4393 max_rss_queues = igc_get_max_rss_queues(adapter); 4394 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4395 4396 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4397 } 4398 4399 /** 4400 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4401 * @adapter: board private structure to initialize 4402 * 4403 * igc_sw_init initializes the Adapter private data structure. 4404 * Fields are initialized based on PCI device information and 4405 * OS network device settings (MTU size). 4406 */ 4407 static int igc_sw_init(struct igc_adapter *adapter) 4408 { 4409 struct net_device *netdev = adapter->netdev; 4410 struct pci_dev *pdev = adapter->pdev; 4411 struct igc_hw *hw = &adapter->hw; 4412 4413 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count; 4414 4415 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4416 4417 /* set default ring sizes */ 4418 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4419 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4420 4421 /* set default ITR values */ 4422 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4423 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4424 4425 /* set default work limits */ 4426 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4427 4428 /* adjust max frame to be at least the size of a standard frame */ 4429 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4430 VLAN_HLEN; 4431 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4432 4433 spin_lock_init(&adapter->nfc_lock); 4434 spin_lock_init(&adapter->stats64_lock); 4435 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4436 adapter->flags |= IGC_FLAG_HAS_MSIX; 4437 4438 adapter->mac_table = kzalloc(size, GFP_ATOMIC); 4439 if (!adapter->mac_table) 4440 return -ENOMEM; 4441 4442 igc_init_queue_configuration(adapter); 4443 4444 /* This call may decrease the number of queues */ 4445 if (igc_init_interrupt_scheme(adapter, true)) { 4446 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4447 return -ENOMEM; 4448 } 4449 4450 /* Explicitly disable IRQ since the NIC can be in any state. */ 4451 igc_irq_disable(adapter); 4452 4453 set_bit(__IGC_DOWN, &adapter->state); 4454 4455 return 0; 4456 } 4457 4458 /** 4459 * igc_reinit_queues - return error 4460 * @adapter: pointer to adapter structure 4461 */ 4462 int igc_reinit_queues(struct igc_adapter *adapter) 4463 { 4464 struct net_device *netdev = adapter->netdev; 4465 struct pci_dev *pdev = adapter->pdev; 4466 int err = 0; 4467 4468 if (netif_running(netdev)) 4469 igc_close(netdev); 4470 4471 igc_reset_interrupt_capability(adapter); 4472 4473 if (igc_init_interrupt_scheme(adapter, true)) { 4474 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4475 return -ENOMEM; 4476 } 4477 4478 if (netif_running(netdev)) 4479 err = igc_open(netdev); 4480 4481 return err; 4482 } 4483 4484 /** 4485 * igc_get_hw_dev - return device 4486 * @hw: pointer to hardware structure 4487 * 4488 * used by hardware layer to print debugging information 4489 */ 4490 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 4491 { 4492 struct igc_adapter *adapter = hw->back; 4493 4494 return adapter->netdev; 4495 } 4496 4497 /** 4498 * igc_init_module - Driver Registration Routine 4499 * 4500 * igc_init_module is the first routine called when the driver is 4501 * loaded. All it does is register with the PCI subsystem. 4502 */ 4503 static int __init igc_init_module(void) 4504 { 4505 int ret; 4506 4507 pr_info("%s - version %s\n", 4508 igc_driver_string, igc_driver_version); 4509 4510 pr_info("%s\n", igc_copyright); 4511 4512 ret = pci_register_driver(&igc_driver); 4513 return ret; 4514 } 4515 4516 module_init(igc_init_module); 4517 4518 /** 4519 * igc_exit_module - Driver Exit Cleanup Routine 4520 * 4521 * igc_exit_module is called just before the driver is removed 4522 * from memory. 4523 */ 4524 static void __exit igc_exit_module(void) 4525 { 4526 pci_unregister_driver(&igc_driver); 4527 } 4528 4529 module_exit(igc_exit_module); 4530 /* igc_main.c */ 4531