xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 
12 #include <net/ipv6.h>
13 
14 #include "igc.h"
15 #include "igc_hw.h"
16 
17 #define DRV_VERSION	"0.0.1-k"
18 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
19 
20 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
21 
22 static int debug = -1;
23 
24 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
25 MODULE_DESCRIPTION(DRV_SUMMARY);
26 MODULE_LICENSE("GPL v2");
27 MODULE_VERSION(DRV_VERSION);
28 module_param(debug, int, 0);
29 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
30 
31 char igc_driver_name[] = "igc";
32 char igc_driver_version[] = DRV_VERSION;
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 	"Copyright(c) 2018 Intel Corporation.";
36 
37 static const struct igc_info *igc_info_tbl[] = {
38 	[board_base] = &igc_base_info,
39 };
40 
41 static const struct pci_device_id igc_pci_tbl[] = {
42 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 	/* required last entry */
48 	{0, }
49 };
50 
51 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
52 
53 /* forward declaration */
54 static void igc_clean_tx_ring(struct igc_ring *tx_ring);
55 static int igc_sw_init(struct igc_adapter *);
56 static void igc_configure(struct igc_adapter *adapter);
57 static void igc_power_down_link(struct igc_adapter *adapter);
58 static void igc_set_default_mac_filter(struct igc_adapter *adapter);
59 static void igc_set_rx_mode(struct net_device *netdev);
60 static void igc_write_itr(struct igc_q_vector *q_vector);
61 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
62 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
63 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
64 					 bool msix);
65 static void igc_free_q_vectors(struct igc_adapter *adapter);
66 static void igc_irq_disable(struct igc_adapter *adapter);
67 static void igc_irq_enable(struct igc_adapter *adapter);
68 static void igc_configure_msix(struct igc_adapter *adapter);
69 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
70 				  struct igc_rx_buffer *bi);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct pci_dev *pdev = adapter->pdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		dev_err(&pdev->dev, "Hardware Error\n");
109 
110 	if (!netif_running(adapter->netdev))
111 		igc_power_down_link(adapter);
112 
113 	igc_get_phy_info(hw);
114 }
115 
116 /**
117  * igc_power_up_link - Power up the phy/serdes link
118  * @adapter: address of board private structure
119  */
120 static void igc_power_up_link(struct igc_adapter *adapter)
121 {
122 	igc_reset_phy(&adapter->hw);
123 
124 	if (adapter->hw.phy.media_type == igc_media_type_copper)
125 		igc_power_up_phy_copper(&adapter->hw);
126 
127 	igc_setup_link(&adapter->hw);
128 }
129 
130 /**
131  * igc_power_down_link - Power down the phy/serdes link
132  * @adapter: address of board private structure
133  */
134 static void igc_power_down_link(struct igc_adapter *adapter)
135 {
136 	if (adapter->hw.phy.media_type == igc_media_type_copper)
137 		igc_power_down_phy_copper_base(&adapter->hw);
138 }
139 
140 /**
141  * igc_release_hw_control - release control of the h/w to f/w
142  * @adapter: address of board private structure
143  *
144  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
145  * For ASF and Pass Through versions of f/w this means that the
146  * driver is no longer loaded.
147  */
148 static void igc_release_hw_control(struct igc_adapter *adapter)
149 {
150 	struct igc_hw *hw = &adapter->hw;
151 	u32 ctrl_ext;
152 
153 	/* Let firmware take over control of h/w */
154 	ctrl_ext = rd32(IGC_CTRL_EXT);
155 	wr32(IGC_CTRL_EXT,
156 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
157 }
158 
159 /**
160  * igc_get_hw_control - get control of the h/w from f/w
161  * @adapter: address of board private structure
162  *
163  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
164  * For ASF and Pass Through versions of f/w this means that
165  * the driver is loaded.
166  */
167 static void igc_get_hw_control(struct igc_adapter *adapter)
168 {
169 	struct igc_hw *hw = &adapter->hw;
170 	u32 ctrl_ext;
171 
172 	/* Let firmware know the driver has taken over */
173 	ctrl_ext = rd32(IGC_CTRL_EXT);
174 	wr32(IGC_CTRL_EXT,
175 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
176 }
177 
178 /**
179  * igc_free_tx_resources - Free Tx Resources per Queue
180  * @tx_ring: Tx descriptor ring for a specific queue
181  *
182  * Free all transmit software resources
183  */
184 void igc_free_tx_resources(struct igc_ring *tx_ring)
185 {
186 	igc_clean_tx_ring(tx_ring);
187 
188 	vfree(tx_ring->tx_buffer_info);
189 	tx_ring->tx_buffer_info = NULL;
190 
191 	/* if not set, then don't free */
192 	if (!tx_ring->desc)
193 		return;
194 
195 	dma_free_coherent(tx_ring->dev, tx_ring->size,
196 			  tx_ring->desc, tx_ring->dma);
197 
198 	tx_ring->desc = NULL;
199 }
200 
201 /**
202  * igc_free_all_tx_resources - Free Tx Resources for All Queues
203  * @adapter: board private structure
204  *
205  * Free all transmit software resources
206  */
207 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
208 {
209 	int i;
210 
211 	for (i = 0; i < adapter->num_tx_queues; i++)
212 		igc_free_tx_resources(adapter->tx_ring[i]);
213 }
214 
215 /**
216  * igc_clean_tx_ring - Free Tx Buffers
217  * @tx_ring: ring to be cleaned
218  */
219 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
220 {
221 	u16 i = tx_ring->next_to_clean;
222 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
223 
224 	while (i != tx_ring->next_to_use) {
225 		union igc_adv_tx_desc *eop_desc, *tx_desc;
226 
227 		/* Free all the Tx ring sk_buffs */
228 		dev_kfree_skb_any(tx_buffer->skb);
229 
230 		/* unmap skb header data */
231 		dma_unmap_single(tx_ring->dev,
232 				 dma_unmap_addr(tx_buffer, dma),
233 				 dma_unmap_len(tx_buffer, len),
234 				 DMA_TO_DEVICE);
235 
236 		/* check for eop_desc to determine the end of the packet */
237 		eop_desc = tx_buffer->next_to_watch;
238 		tx_desc = IGC_TX_DESC(tx_ring, i);
239 
240 		/* unmap remaining buffers */
241 		while (tx_desc != eop_desc) {
242 			tx_buffer++;
243 			tx_desc++;
244 			i++;
245 			if (unlikely(i == tx_ring->count)) {
246 				i = 0;
247 				tx_buffer = tx_ring->tx_buffer_info;
248 				tx_desc = IGC_TX_DESC(tx_ring, 0);
249 			}
250 
251 			/* unmap any remaining paged data */
252 			if (dma_unmap_len(tx_buffer, len))
253 				dma_unmap_page(tx_ring->dev,
254 					       dma_unmap_addr(tx_buffer, dma),
255 					       dma_unmap_len(tx_buffer, len),
256 					       DMA_TO_DEVICE);
257 		}
258 
259 		/* move us one more past the eop_desc for start of next pkt */
260 		tx_buffer++;
261 		i++;
262 		if (unlikely(i == tx_ring->count)) {
263 			i = 0;
264 			tx_buffer = tx_ring->tx_buffer_info;
265 		}
266 	}
267 
268 	/* reset BQL for queue */
269 	netdev_tx_reset_queue(txring_txq(tx_ring));
270 
271 	/* reset next_to_use and next_to_clean */
272 	tx_ring->next_to_use = 0;
273 	tx_ring->next_to_clean = 0;
274 }
275 
276 /**
277  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
278  * @adapter: board private structure
279  */
280 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
281 {
282 	int i;
283 
284 	for (i = 0; i < adapter->num_tx_queues; i++)
285 		if (adapter->tx_ring[i])
286 			igc_clean_tx_ring(adapter->tx_ring[i]);
287 }
288 
289 /**
290  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
291  * @tx_ring: tx descriptor ring (for a specific queue) to setup
292  *
293  * Return 0 on success, negative on failure
294  */
295 int igc_setup_tx_resources(struct igc_ring *tx_ring)
296 {
297 	struct device *dev = tx_ring->dev;
298 	int size = 0;
299 
300 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
301 	tx_ring->tx_buffer_info = vzalloc(size);
302 	if (!tx_ring->tx_buffer_info)
303 		goto err;
304 
305 	/* round up to nearest 4K */
306 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
307 	tx_ring->size = ALIGN(tx_ring->size, 4096);
308 
309 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
310 					   &tx_ring->dma, GFP_KERNEL);
311 
312 	if (!tx_ring->desc)
313 		goto err;
314 
315 	tx_ring->next_to_use = 0;
316 	tx_ring->next_to_clean = 0;
317 
318 	return 0;
319 
320 err:
321 	vfree(tx_ring->tx_buffer_info);
322 	dev_err(dev,
323 		"Unable to allocate memory for the transmit descriptor ring\n");
324 	return -ENOMEM;
325 }
326 
327 /**
328  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
329  * @adapter: board private structure
330  *
331  * Return 0 on success, negative on failure
332  */
333 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
334 {
335 	struct pci_dev *pdev = adapter->pdev;
336 	int i, err = 0;
337 
338 	for (i = 0; i < adapter->num_tx_queues; i++) {
339 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
340 		if (err) {
341 			dev_err(&pdev->dev,
342 				"Allocation for Tx Queue %u failed\n", i);
343 			for (i--; i >= 0; i--)
344 				igc_free_tx_resources(adapter->tx_ring[i]);
345 			break;
346 		}
347 	}
348 
349 	return err;
350 }
351 
352 /**
353  * igc_clean_rx_ring - Free Rx Buffers per Queue
354  * @rx_ring: ring to free buffers from
355  */
356 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
357 {
358 	u16 i = rx_ring->next_to_clean;
359 
360 	dev_kfree_skb(rx_ring->skb);
361 	rx_ring->skb = NULL;
362 
363 	/* Free all the Rx ring sk_buffs */
364 	while (i != rx_ring->next_to_alloc) {
365 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
366 
367 		/* Invalidate cache lines that may have been written to by
368 		 * device so that we avoid corrupting memory.
369 		 */
370 		dma_sync_single_range_for_cpu(rx_ring->dev,
371 					      buffer_info->dma,
372 					      buffer_info->page_offset,
373 					      igc_rx_bufsz(rx_ring),
374 					      DMA_FROM_DEVICE);
375 
376 		/* free resources associated with mapping */
377 		dma_unmap_page_attrs(rx_ring->dev,
378 				     buffer_info->dma,
379 				     igc_rx_pg_size(rx_ring),
380 				     DMA_FROM_DEVICE,
381 				     IGC_RX_DMA_ATTR);
382 		__page_frag_cache_drain(buffer_info->page,
383 					buffer_info->pagecnt_bias);
384 
385 		i++;
386 		if (i == rx_ring->count)
387 			i = 0;
388 	}
389 
390 	rx_ring->next_to_alloc = 0;
391 	rx_ring->next_to_clean = 0;
392 	rx_ring->next_to_use = 0;
393 }
394 
395 /**
396  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
397  * @adapter: board private structure
398  */
399 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
400 {
401 	int i;
402 
403 	for (i = 0; i < adapter->num_rx_queues; i++)
404 		if (adapter->rx_ring[i])
405 			igc_clean_rx_ring(adapter->rx_ring[i]);
406 }
407 
408 /**
409  * igc_free_rx_resources - Free Rx Resources
410  * @rx_ring: ring to clean the resources from
411  *
412  * Free all receive software resources
413  */
414 void igc_free_rx_resources(struct igc_ring *rx_ring)
415 {
416 	igc_clean_rx_ring(rx_ring);
417 
418 	vfree(rx_ring->rx_buffer_info);
419 	rx_ring->rx_buffer_info = NULL;
420 
421 	/* if not set, then don't free */
422 	if (!rx_ring->desc)
423 		return;
424 
425 	dma_free_coherent(rx_ring->dev, rx_ring->size,
426 			  rx_ring->desc, rx_ring->dma);
427 
428 	rx_ring->desc = NULL;
429 }
430 
431 /**
432  * igc_free_all_rx_resources - Free Rx Resources for All Queues
433  * @adapter: board private structure
434  *
435  * Free all receive software resources
436  */
437 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
438 {
439 	int i;
440 
441 	for (i = 0; i < adapter->num_rx_queues; i++)
442 		igc_free_rx_resources(adapter->rx_ring[i]);
443 }
444 
445 /**
446  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
447  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
448  *
449  * Returns 0 on success, negative on failure
450  */
451 int igc_setup_rx_resources(struct igc_ring *rx_ring)
452 {
453 	struct device *dev = rx_ring->dev;
454 	int size, desc_len;
455 
456 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
457 	rx_ring->rx_buffer_info = vzalloc(size);
458 	if (!rx_ring->rx_buffer_info)
459 		goto err;
460 
461 	desc_len = sizeof(union igc_adv_rx_desc);
462 
463 	/* Round up to nearest 4K */
464 	rx_ring->size = rx_ring->count * desc_len;
465 	rx_ring->size = ALIGN(rx_ring->size, 4096);
466 
467 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
468 					   &rx_ring->dma, GFP_KERNEL);
469 
470 	if (!rx_ring->desc)
471 		goto err;
472 
473 	rx_ring->next_to_alloc = 0;
474 	rx_ring->next_to_clean = 0;
475 	rx_ring->next_to_use = 0;
476 
477 	return 0;
478 
479 err:
480 	vfree(rx_ring->rx_buffer_info);
481 	rx_ring->rx_buffer_info = NULL;
482 	dev_err(dev,
483 		"Unable to allocate memory for the receive descriptor ring\n");
484 	return -ENOMEM;
485 }
486 
487 /**
488  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
489  *                                (Descriptors) for all queues
490  * @adapter: board private structure
491  *
492  * Return 0 on success, negative on failure
493  */
494 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
495 {
496 	struct pci_dev *pdev = adapter->pdev;
497 	int i, err = 0;
498 
499 	for (i = 0; i < adapter->num_rx_queues; i++) {
500 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
501 		if (err) {
502 			dev_err(&pdev->dev,
503 				"Allocation for Rx Queue %u failed\n", i);
504 			for (i--; i >= 0; i--)
505 				igc_free_rx_resources(adapter->rx_ring[i]);
506 			break;
507 		}
508 	}
509 
510 	return err;
511 }
512 
513 /**
514  * igc_configure_rx_ring - Configure a receive ring after Reset
515  * @adapter: board private structure
516  * @ring: receive ring to be configured
517  *
518  * Configure the Rx unit of the MAC after a reset.
519  */
520 static void igc_configure_rx_ring(struct igc_adapter *adapter,
521 				  struct igc_ring *ring)
522 {
523 	struct igc_hw *hw = &adapter->hw;
524 	union igc_adv_rx_desc *rx_desc;
525 	int reg_idx = ring->reg_idx;
526 	u32 srrctl = 0, rxdctl = 0;
527 	u64 rdba = ring->dma;
528 
529 	/* disable the queue */
530 	wr32(IGC_RXDCTL(reg_idx), 0);
531 
532 	/* Set DMA base address registers */
533 	wr32(IGC_RDBAL(reg_idx),
534 	     rdba & 0x00000000ffffffffULL);
535 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
536 	wr32(IGC_RDLEN(reg_idx),
537 	     ring->count * sizeof(union igc_adv_rx_desc));
538 
539 	/* initialize head and tail */
540 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
541 	wr32(IGC_RDH(reg_idx), 0);
542 	writel(0, ring->tail);
543 
544 	/* reset next-to- use/clean to place SW in sync with hardware */
545 	ring->next_to_clean = 0;
546 	ring->next_to_use = 0;
547 
548 	/* set descriptor configuration */
549 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
550 	if (ring_uses_large_buffer(ring))
551 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
552 	else
553 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
554 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
555 
556 	wr32(IGC_SRRCTL(reg_idx), srrctl);
557 
558 	rxdctl |= IGC_RX_PTHRESH;
559 	rxdctl |= IGC_RX_HTHRESH << 8;
560 	rxdctl |= IGC_RX_WTHRESH << 16;
561 
562 	/* initialize rx_buffer_info */
563 	memset(ring->rx_buffer_info, 0,
564 	       sizeof(struct igc_rx_buffer) * ring->count);
565 
566 	/* initialize Rx descriptor 0 */
567 	rx_desc = IGC_RX_DESC(ring, 0);
568 	rx_desc->wb.upper.length = 0;
569 
570 	/* enable receive descriptor fetching */
571 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
572 
573 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
574 }
575 
576 /**
577  * igc_configure_rx - Configure receive Unit after Reset
578  * @adapter: board private structure
579  *
580  * Configure the Rx unit of the MAC after a reset.
581  */
582 static void igc_configure_rx(struct igc_adapter *adapter)
583 {
584 	int i;
585 
586 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
587 	 * the Base and Length of the Rx Descriptor Ring
588 	 */
589 	for (i = 0; i < adapter->num_rx_queues; i++)
590 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
591 }
592 
593 /**
594  * igc_configure_tx_ring - Configure transmit ring after Reset
595  * @adapter: board private structure
596  * @ring: tx ring to configure
597  *
598  * Configure a transmit ring after a reset.
599  */
600 static void igc_configure_tx_ring(struct igc_adapter *adapter,
601 				  struct igc_ring *ring)
602 {
603 	struct igc_hw *hw = &adapter->hw;
604 	int reg_idx = ring->reg_idx;
605 	u64 tdba = ring->dma;
606 	u32 txdctl = 0;
607 
608 	/* disable the queue */
609 	wr32(IGC_TXDCTL(reg_idx), 0);
610 	wrfl();
611 	mdelay(10);
612 
613 	wr32(IGC_TDLEN(reg_idx),
614 	     ring->count * sizeof(union igc_adv_tx_desc));
615 	wr32(IGC_TDBAL(reg_idx),
616 	     tdba & 0x00000000ffffffffULL);
617 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
618 
619 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
620 	wr32(IGC_TDH(reg_idx), 0);
621 	writel(0, ring->tail);
622 
623 	txdctl |= IGC_TX_PTHRESH;
624 	txdctl |= IGC_TX_HTHRESH << 8;
625 	txdctl |= IGC_TX_WTHRESH << 16;
626 
627 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
628 	wr32(IGC_TXDCTL(reg_idx), txdctl);
629 }
630 
631 /**
632  * igc_configure_tx - Configure transmit Unit after Reset
633  * @adapter: board private structure
634  *
635  * Configure the Tx unit of the MAC after a reset.
636  */
637 static void igc_configure_tx(struct igc_adapter *adapter)
638 {
639 	int i;
640 
641 	for (i = 0; i < adapter->num_tx_queues; i++)
642 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
643 }
644 
645 /**
646  * igc_setup_mrqc - configure the multiple receive queue control registers
647  * @adapter: Board private structure
648  */
649 static void igc_setup_mrqc(struct igc_adapter *adapter)
650 {
651 	struct igc_hw *hw = &adapter->hw;
652 	u32 j, num_rx_queues;
653 	u32 mrqc, rxcsum;
654 	u32 rss_key[10];
655 
656 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
657 	for (j = 0; j < 10; j++)
658 		wr32(IGC_RSSRK(j), rss_key[j]);
659 
660 	num_rx_queues = adapter->rss_queues;
661 
662 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
663 		for (j = 0; j < IGC_RETA_SIZE; j++)
664 			adapter->rss_indir_tbl[j] =
665 			(j * num_rx_queues) / IGC_RETA_SIZE;
666 		adapter->rss_indir_tbl_init = num_rx_queues;
667 	}
668 	igc_write_rss_indir_tbl(adapter);
669 
670 	/* Disable raw packet checksumming so that RSS hash is placed in
671 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
672 	 * offloads as they are enabled by default
673 	 */
674 	rxcsum = rd32(IGC_RXCSUM);
675 	rxcsum |= IGC_RXCSUM_PCSD;
676 
677 	/* Enable Receive Checksum Offload for SCTP */
678 	rxcsum |= IGC_RXCSUM_CRCOFL;
679 
680 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
681 	wr32(IGC_RXCSUM, rxcsum);
682 
683 	/* Generate RSS hash based on packet types, TCP/UDP
684 	 * port numbers and/or IPv4/v6 src and dst addresses
685 	 */
686 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
687 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
688 	       IGC_MRQC_RSS_FIELD_IPV6 |
689 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
690 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
691 
692 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
693 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
694 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
695 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
696 
697 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
698 
699 	wr32(IGC_MRQC, mrqc);
700 }
701 
702 /**
703  * igc_setup_rctl - configure the receive control registers
704  * @adapter: Board private structure
705  */
706 static void igc_setup_rctl(struct igc_adapter *adapter)
707 {
708 	struct igc_hw *hw = &adapter->hw;
709 	u32 rctl;
710 
711 	rctl = rd32(IGC_RCTL);
712 
713 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
714 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
715 
716 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
717 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
718 
719 	/* enable stripping of CRC. Newer features require
720 	 * that the HW strips the CRC.
721 	 */
722 	rctl |= IGC_RCTL_SECRC;
723 
724 	/* disable store bad packets and clear size bits. */
725 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
726 
727 	/* enable LPE to allow for reception of jumbo frames */
728 	rctl |= IGC_RCTL_LPE;
729 
730 	/* disable queue 0 to prevent tail write w/o re-config */
731 	wr32(IGC_RXDCTL(0), 0);
732 
733 	/* This is useful for sniffing bad packets. */
734 	if (adapter->netdev->features & NETIF_F_RXALL) {
735 		/* UPE and MPE will be handled by normal PROMISC logic
736 		 * in set_rx_mode
737 		 */
738 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
739 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
740 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
741 
742 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
743 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
744 	}
745 
746 	wr32(IGC_RCTL, rctl);
747 }
748 
749 /**
750  * igc_setup_tctl - configure the transmit control registers
751  * @adapter: Board private structure
752  */
753 static void igc_setup_tctl(struct igc_adapter *adapter)
754 {
755 	struct igc_hw *hw = &adapter->hw;
756 	u32 tctl;
757 
758 	/* disable queue 0 which icould be enabled by default */
759 	wr32(IGC_TXDCTL(0), 0);
760 
761 	/* Program the Transmit Control Register */
762 	tctl = rd32(IGC_TCTL);
763 	tctl &= ~IGC_TCTL_CT;
764 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
765 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
766 
767 	/* Enable transmits */
768 	tctl |= IGC_TCTL_EN;
769 
770 	wr32(IGC_TCTL, tctl);
771 }
772 
773 /**
774  * igc_set_mac - Change the Ethernet Address of the NIC
775  * @netdev: network interface device structure
776  * @p: pointer to an address structure
777  *
778  * Returns 0 on success, negative on failure
779  */
780 static int igc_set_mac(struct net_device *netdev, void *p)
781 {
782 	struct igc_adapter *adapter = netdev_priv(netdev);
783 	struct igc_hw *hw = &adapter->hw;
784 	struct sockaddr *addr = p;
785 
786 	if (!is_valid_ether_addr(addr->sa_data))
787 		return -EADDRNOTAVAIL;
788 
789 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
790 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
791 
792 	/* set the correct pool for the new PF MAC address in entry 0 */
793 	igc_set_default_mac_filter(adapter);
794 
795 	return 0;
796 }
797 
798 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
799 			    struct igc_tx_buffer *first,
800 			    u32 vlan_macip_lens, u32 type_tucmd,
801 			    u32 mss_l4len_idx)
802 {
803 	struct igc_adv_tx_context_desc *context_desc;
804 	u16 i = tx_ring->next_to_use;
805 	struct timespec64 ts;
806 
807 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
808 
809 	i++;
810 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
811 
812 	/* set bits to identify this as an advanced context descriptor */
813 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
814 
815 	/* For 82575, context index must be unique per ring. */
816 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
817 		mss_l4len_idx |= tx_ring->reg_idx << 4;
818 
819 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
820 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
821 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
822 
823 	/* We assume there is always a valid Tx time available. Invalid times
824 	 * should have been handled by the upper layers.
825 	 */
826 	if (tx_ring->launchtime_enable) {
827 		ts = ns_to_timespec64(first->skb->tstamp);
828 		first->skb->tstamp = 0;
829 		context_desc->launch_time = cpu_to_le32(ts.tv_nsec / 32);
830 	} else {
831 		context_desc->launch_time = 0;
832 	}
833 }
834 
835 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
836 {
837 	unsigned int offset = 0;
838 
839 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
840 
841 	return offset == skb_checksum_start_offset(skb);
842 }
843 
844 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
845 {
846 	struct sk_buff *skb = first->skb;
847 	u32 vlan_macip_lens = 0;
848 	u32 type_tucmd = 0;
849 
850 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
851 csum_failed:
852 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
853 		    !tx_ring->launchtime_enable)
854 			return;
855 		goto no_csum;
856 	}
857 
858 	switch (skb->csum_offset) {
859 	case offsetof(struct tcphdr, check):
860 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
861 		/* fall through */
862 	case offsetof(struct udphdr, check):
863 		break;
864 	case offsetof(struct sctphdr, checksum):
865 		/* validate that this is actually an SCTP request */
866 		if ((first->protocol == htons(ETH_P_IP) &&
867 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
868 		    (first->protocol == htons(ETH_P_IPV6) &&
869 		     igc_ipv6_csum_is_sctp(skb))) {
870 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
871 			break;
872 		}
873 		/* fall through */
874 	default:
875 		skb_checksum_help(skb);
876 		goto csum_failed;
877 	}
878 
879 	/* update TX checksum flag */
880 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
881 	vlan_macip_lens = skb_checksum_start_offset(skb) -
882 			  skb_network_offset(skb);
883 no_csum:
884 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
885 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
886 
887 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
888 }
889 
890 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
891 {
892 	struct net_device *netdev = tx_ring->netdev;
893 
894 	netif_stop_subqueue(netdev, tx_ring->queue_index);
895 
896 	/* memory barriier comment */
897 	smp_mb();
898 
899 	/* We need to check again in a case another CPU has just
900 	 * made room available.
901 	 */
902 	if (igc_desc_unused(tx_ring) < size)
903 		return -EBUSY;
904 
905 	/* A reprieve! */
906 	netif_wake_subqueue(netdev, tx_ring->queue_index);
907 
908 	u64_stats_update_begin(&tx_ring->tx_syncp2);
909 	tx_ring->tx_stats.restart_queue2++;
910 	u64_stats_update_end(&tx_ring->tx_syncp2);
911 
912 	return 0;
913 }
914 
915 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
916 {
917 	if (igc_desc_unused(tx_ring) >= size)
918 		return 0;
919 	return __igc_maybe_stop_tx(tx_ring, size);
920 }
921 
922 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
923 {
924 	/* set type for advanced descriptor with frame checksum insertion */
925 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
926 		       IGC_ADVTXD_DCMD_DEXT |
927 		       IGC_ADVTXD_DCMD_IFCS;
928 
929 	return cmd_type;
930 }
931 
932 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
933 				 union igc_adv_tx_desc *tx_desc,
934 				 u32 tx_flags, unsigned int paylen)
935 {
936 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
937 
938 	/* insert L4 checksum */
939 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
940 			  ((IGC_TXD_POPTS_TXSM << 8) /
941 			  IGC_TX_FLAGS_CSUM);
942 
943 	/* insert IPv4 checksum */
944 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
945 			  (((IGC_TXD_POPTS_IXSM << 8)) /
946 			  IGC_TX_FLAGS_IPV4);
947 
948 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
949 }
950 
951 static int igc_tx_map(struct igc_ring *tx_ring,
952 		      struct igc_tx_buffer *first,
953 		      const u8 hdr_len)
954 {
955 	struct sk_buff *skb = first->skb;
956 	struct igc_tx_buffer *tx_buffer;
957 	union igc_adv_tx_desc *tx_desc;
958 	u32 tx_flags = first->tx_flags;
959 	skb_frag_t *frag;
960 	u16 i = tx_ring->next_to_use;
961 	unsigned int data_len, size;
962 	dma_addr_t dma;
963 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
964 
965 	tx_desc = IGC_TX_DESC(tx_ring, i);
966 
967 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
968 
969 	size = skb_headlen(skb);
970 	data_len = skb->data_len;
971 
972 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
973 
974 	tx_buffer = first;
975 
976 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
977 		if (dma_mapping_error(tx_ring->dev, dma))
978 			goto dma_error;
979 
980 		/* record length, and DMA address */
981 		dma_unmap_len_set(tx_buffer, len, size);
982 		dma_unmap_addr_set(tx_buffer, dma, dma);
983 
984 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
985 
986 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
987 			tx_desc->read.cmd_type_len =
988 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
989 
990 			i++;
991 			tx_desc++;
992 			if (i == tx_ring->count) {
993 				tx_desc = IGC_TX_DESC(tx_ring, 0);
994 				i = 0;
995 			}
996 			tx_desc->read.olinfo_status = 0;
997 
998 			dma += IGC_MAX_DATA_PER_TXD;
999 			size -= IGC_MAX_DATA_PER_TXD;
1000 
1001 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1002 		}
1003 
1004 		if (likely(!data_len))
1005 			break;
1006 
1007 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1008 
1009 		i++;
1010 		tx_desc++;
1011 		if (i == tx_ring->count) {
1012 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1013 			i = 0;
1014 		}
1015 		tx_desc->read.olinfo_status = 0;
1016 
1017 		size = skb_frag_size(frag);
1018 		data_len -= size;
1019 
1020 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1021 				       size, DMA_TO_DEVICE);
1022 
1023 		tx_buffer = &tx_ring->tx_buffer_info[i];
1024 	}
1025 
1026 	/* write last descriptor with RS and EOP bits */
1027 	cmd_type |= size | IGC_TXD_DCMD;
1028 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1029 
1030 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031 
1032 	/* set the timestamp */
1033 	first->time_stamp = jiffies;
1034 
1035 	skb_tx_timestamp(skb);
1036 
1037 	/* Force memory writes to complete before letting h/w know there
1038 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1039 	 * memory model archs, such as IA-64).
1040 	 *
1041 	 * We also need this memory barrier to make certain all of the
1042 	 * status bits have been updated before next_to_watch is written.
1043 	 */
1044 	wmb();
1045 
1046 	/* set next_to_watch value indicating a packet is present */
1047 	first->next_to_watch = tx_desc;
1048 
1049 	i++;
1050 	if (i == tx_ring->count)
1051 		i = 0;
1052 
1053 	tx_ring->next_to_use = i;
1054 
1055 	/* Make sure there is space in the ring for the next send. */
1056 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1057 
1058 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1059 		writel(i, tx_ring->tail);
1060 	}
1061 
1062 	return 0;
1063 dma_error:
1064 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1065 	tx_buffer = &tx_ring->tx_buffer_info[i];
1066 
1067 	/* clear dma mappings for failed tx_buffer_info map */
1068 	while (tx_buffer != first) {
1069 		if (dma_unmap_len(tx_buffer, len))
1070 			dma_unmap_page(tx_ring->dev,
1071 				       dma_unmap_addr(tx_buffer, dma),
1072 				       dma_unmap_len(tx_buffer, len),
1073 				       DMA_TO_DEVICE);
1074 		dma_unmap_len_set(tx_buffer, len, 0);
1075 
1076 		if (i-- == 0)
1077 			i += tx_ring->count;
1078 		tx_buffer = &tx_ring->tx_buffer_info[i];
1079 	}
1080 
1081 	if (dma_unmap_len(tx_buffer, len))
1082 		dma_unmap_single(tx_ring->dev,
1083 				 dma_unmap_addr(tx_buffer, dma),
1084 				 dma_unmap_len(tx_buffer, len),
1085 				 DMA_TO_DEVICE);
1086 	dma_unmap_len_set(tx_buffer, len, 0);
1087 
1088 	dev_kfree_skb_any(tx_buffer->skb);
1089 	tx_buffer->skb = NULL;
1090 
1091 	tx_ring->next_to_use = i;
1092 
1093 	return -1;
1094 }
1095 
1096 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1097 				       struct igc_ring *tx_ring)
1098 {
1099 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1100 	__be16 protocol = vlan_get_protocol(skb);
1101 	struct igc_tx_buffer *first;
1102 	u32 tx_flags = 0;
1103 	unsigned short f;
1104 	u8 hdr_len = 0;
1105 
1106 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1107 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1108 	 *	+ 2 desc gap to keep tail from touching head,
1109 	 *	+ 1 desc for context descriptor,
1110 	 * otherwise try next time
1111 	 */
1112 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1113 		count += TXD_USE_COUNT(skb_frag_size(
1114 						&skb_shinfo(skb)->frags[f]));
1115 
1116 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1117 		/* this is a hard error */
1118 		return NETDEV_TX_BUSY;
1119 	}
1120 
1121 	/* record the location of the first descriptor for this packet */
1122 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1123 	first->skb = skb;
1124 	first->bytecount = skb->len;
1125 	first->gso_segs = 1;
1126 
1127 	/* record initial flags and protocol */
1128 	first->tx_flags = tx_flags;
1129 	first->protocol = protocol;
1130 
1131 	igc_tx_csum(tx_ring, first);
1132 
1133 	igc_tx_map(tx_ring, first, hdr_len);
1134 
1135 	return NETDEV_TX_OK;
1136 }
1137 
1138 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1139 						    struct sk_buff *skb)
1140 {
1141 	unsigned int r_idx = skb->queue_mapping;
1142 
1143 	if (r_idx >= adapter->num_tx_queues)
1144 		r_idx = r_idx % adapter->num_tx_queues;
1145 
1146 	return adapter->tx_ring[r_idx];
1147 }
1148 
1149 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1150 				  struct net_device *netdev)
1151 {
1152 	struct igc_adapter *adapter = netdev_priv(netdev);
1153 
1154 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1155 	 * in order to meet this minimum size requirement.
1156 	 */
1157 	if (skb->len < 17) {
1158 		if (skb_padto(skb, 17))
1159 			return NETDEV_TX_OK;
1160 		skb->len = 17;
1161 	}
1162 
1163 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1164 }
1165 
1166 static inline void igc_rx_hash(struct igc_ring *ring,
1167 			       union igc_adv_rx_desc *rx_desc,
1168 			       struct sk_buff *skb)
1169 {
1170 	if (ring->netdev->features & NETIF_F_RXHASH)
1171 		skb_set_hash(skb,
1172 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1173 			     PKT_HASH_TYPE_L3);
1174 }
1175 
1176 /**
1177  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1178  * @rx_ring: rx descriptor ring packet is being transacted on
1179  * @rx_desc: pointer to the EOP Rx descriptor
1180  * @skb: pointer to current skb being populated
1181  *
1182  * This function checks the ring, descriptor, and packet information in
1183  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1184  * other fields within the skb.
1185  */
1186 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1187 				   union igc_adv_rx_desc *rx_desc,
1188 				   struct sk_buff *skb)
1189 {
1190 	igc_rx_hash(rx_ring, rx_desc, skb);
1191 
1192 	skb_record_rx_queue(skb, rx_ring->queue_index);
1193 
1194 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1195 }
1196 
1197 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1198 					       const unsigned int size)
1199 {
1200 	struct igc_rx_buffer *rx_buffer;
1201 
1202 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1203 	prefetchw(rx_buffer->page);
1204 
1205 	/* we are reusing so sync this buffer for CPU use */
1206 	dma_sync_single_range_for_cpu(rx_ring->dev,
1207 				      rx_buffer->dma,
1208 				      rx_buffer->page_offset,
1209 				      size,
1210 				      DMA_FROM_DEVICE);
1211 
1212 	rx_buffer->pagecnt_bias--;
1213 
1214 	return rx_buffer;
1215 }
1216 
1217 /**
1218  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1219  * @rx_ring: rx descriptor ring to transact packets on
1220  * @rx_buffer: buffer containing page to add
1221  * @skb: sk_buff to place the data into
1222  * @size: size of buffer to be added
1223  *
1224  * This function will add the data contained in rx_buffer->page to the skb.
1225  */
1226 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1227 			    struct igc_rx_buffer *rx_buffer,
1228 			    struct sk_buff *skb,
1229 			    unsigned int size)
1230 {
1231 #if (PAGE_SIZE < 8192)
1232 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1233 
1234 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1235 			rx_buffer->page_offset, size, truesize);
1236 	rx_buffer->page_offset ^= truesize;
1237 #else
1238 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1239 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1240 				SKB_DATA_ALIGN(size);
1241 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1242 			rx_buffer->page_offset, size, truesize);
1243 	rx_buffer->page_offset += truesize;
1244 #endif
1245 }
1246 
1247 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1248 				     struct igc_rx_buffer *rx_buffer,
1249 				     union igc_adv_rx_desc *rx_desc,
1250 				     unsigned int size)
1251 {
1252 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1253 #if (PAGE_SIZE < 8192)
1254 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1255 #else
1256 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1257 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1258 #endif
1259 	struct sk_buff *skb;
1260 
1261 	/* prefetch first cache line of first page */
1262 	prefetch(va);
1263 #if L1_CACHE_BYTES < 128
1264 	prefetch(va + L1_CACHE_BYTES);
1265 #endif
1266 
1267 	/* build an skb around the page buffer */
1268 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1269 	if (unlikely(!skb))
1270 		return NULL;
1271 
1272 	/* update pointers within the skb to store the data */
1273 	skb_reserve(skb, IGC_SKB_PAD);
1274 	__skb_put(skb, size);
1275 
1276 	/* update buffer offset */
1277 #if (PAGE_SIZE < 8192)
1278 	rx_buffer->page_offset ^= truesize;
1279 #else
1280 	rx_buffer->page_offset += truesize;
1281 #endif
1282 
1283 	return skb;
1284 }
1285 
1286 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1287 					 struct igc_rx_buffer *rx_buffer,
1288 					 union igc_adv_rx_desc *rx_desc,
1289 					 unsigned int size)
1290 {
1291 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1292 #if (PAGE_SIZE < 8192)
1293 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1294 #else
1295 	unsigned int truesize = SKB_DATA_ALIGN(size);
1296 #endif
1297 	unsigned int headlen;
1298 	struct sk_buff *skb;
1299 
1300 	/* prefetch first cache line of first page */
1301 	prefetch(va);
1302 #if L1_CACHE_BYTES < 128
1303 	prefetch(va + L1_CACHE_BYTES);
1304 #endif
1305 
1306 	/* allocate a skb to store the frags */
1307 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1308 	if (unlikely(!skb))
1309 		return NULL;
1310 
1311 	/* Determine available headroom for copy */
1312 	headlen = size;
1313 	if (headlen > IGC_RX_HDR_LEN)
1314 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1315 
1316 	/* align pull length to size of long to optimize memcpy performance */
1317 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1318 
1319 	/* update all of the pointers */
1320 	size -= headlen;
1321 	if (size) {
1322 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1323 				(va + headlen) - page_address(rx_buffer->page),
1324 				size, truesize);
1325 #if (PAGE_SIZE < 8192)
1326 		rx_buffer->page_offset ^= truesize;
1327 #else
1328 		rx_buffer->page_offset += truesize;
1329 #endif
1330 	} else {
1331 		rx_buffer->pagecnt_bias++;
1332 	}
1333 
1334 	return skb;
1335 }
1336 
1337 /**
1338  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1339  * @rx_ring: rx descriptor ring to store buffers on
1340  * @old_buff: donor buffer to have page reused
1341  *
1342  * Synchronizes page for reuse by the adapter
1343  */
1344 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1345 			      struct igc_rx_buffer *old_buff)
1346 {
1347 	u16 nta = rx_ring->next_to_alloc;
1348 	struct igc_rx_buffer *new_buff;
1349 
1350 	new_buff = &rx_ring->rx_buffer_info[nta];
1351 
1352 	/* update, and store next to alloc */
1353 	nta++;
1354 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1355 
1356 	/* Transfer page from old buffer to new buffer.
1357 	 * Move each member individually to avoid possible store
1358 	 * forwarding stalls.
1359 	 */
1360 	new_buff->dma		= old_buff->dma;
1361 	new_buff->page		= old_buff->page;
1362 	new_buff->page_offset	= old_buff->page_offset;
1363 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1364 }
1365 
1366 static inline bool igc_page_is_reserved(struct page *page)
1367 {
1368 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1369 }
1370 
1371 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1372 {
1373 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1374 	struct page *page = rx_buffer->page;
1375 
1376 	/* avoid re-using remote pages */
1377 	if (unlikely(igc_page_is_reserved(page)))
1378 		return false;
1379 
1380 #if (PAGE_SIZE < 8192)
1381 	/* if we are only owner of page we can reuse it */
1382 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1383 		return false;
1384 #else
1385 #define IGC_LAST_OFFSET \
1386 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1387 
1388 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1389 		return false;
1390 #endif
1391 
1392 	/* If we have drained the page fragment pool we need to update
1393 	 * the pagecnt_bias and page count so that we fully restock the
1394 	 * number of references the driver holds.
1395 	 */
1396 	if (unlikely(!pagecnt_bias)) {
1397 		page_ref_add(page, USHRT_MAX);
1398 		rx_buffer->pagecnt_bias = USHRT_MAX;
1399 	}
1400 
1401 	return true;
1402 }
1403 
1404 /**
1405  * igc_is_non_eop - process handling of non-EOP buffers
1406  * @rx_ring: Rx ring being processed
1407  * @rx_desc: Rx descriptor for current buffer
1408  * @skb: current socket buffer containing buffer in progress
1409  *
1410  * This function updates next to clean.  If the buffer is an EOP buffer
1411  * this function exits returning false, otherwise it will place the
1412  * sk_buff in the next buffer to be chained and return true indicating
1413  * that this is in fact a non-EOP buffer.
1414  */
1415 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1416 			   union igc_adv_rx_desc *rx_desc)
1417 {
1418 	u32 ntc = rx_ring->next_to_clean + 1;
1419 
1420 	/* fetch, update, and store next to clean */
1421 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1422 	rx_ring->next_to_clean = ntc;
1423 
1424 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1425 
1426 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1427 		return false;
1428 
1429 	return true;
1430 }
1431 
1432 /**
1433  * igc_cleanup_headers - Correct corrupted or empty headers
1434  * @rx_ring: rx descriptor ring packet is being transacted on
1435  * @rx_desc: pointer to the EOP Rx descriptor
1436  * @skb: pointer to current skb being fixed
1437  *
1438  * Address the case where we are pulling data in on pages only
1439  * and as such no data is present in the skb header.
1440  *
1441  * In addition if skb is not at least 60 bytes we need to pad it so that
1442  * it is large enough to qualify as a valid Ethernet frame.
1443  *
1444  * Returns true if an error was encountered and skb was freed.
1445  */
1446 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1447 				union igc_adv_rx_desc *rx_desc,
1448 				struct sk_buff *skb)
1449 {
1450 	if (unlikely((igc_test_staterr(rx_desc,
1451 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1452 		struct net_device *netdev = rx_ring->netdev;
1453 
1454 		if (!(netdev->features & NETIF_F_RXALL)) {
1455 			dev_kfree_skb_any(skb);
1456 			return true;
1457 		}
1458 	}
1459 
1460 	/* if eth_skb_pad returns an error the skb was freed */
1461 	if (eth_skb_pad(skb))
1462 		return true;
1463 
1464 	return false;
1465 }
1466 
1467 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1468 			      struct igc_rx_buffer *rx_buffer)
1469 {
1470 	if (igc_can_reuse_rx_page(rx_buffer)) {
1471 		/* hand second half of page back to the ring */
1472 		igc_reuse_rx_page(rx_ring, rx_buffer);
1473 	} else {
1474 		/* We are not reusing the buffer so unmap it and free
1475 		 * any references we are holding to it
1476 		 */
1477 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1478 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1479 				     IGC_RX_DMA_ATTR);
1480 		__page_frag_cache_drain(rx_buffer->page,
1481 					rx_buffer->pagecnt_bias);
1482 	}
1483 
1484 	/* clear contents of rx_buffer */
1485 	rx_buffer->page = NULL;
1486 }
1487 
1488 /**
1489  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1490  * @adapter: address of board private structure
1491  */
1492 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1493 {
1494 	union igc_adv_rx_desc *rx_desc;
1495 	u16 i = rx_ring->next_to_use;
1496 	struct igc_rx_buffer *bi;
1497 	u16 bufsz;
1498 
1499 	/* nothing to do */
1500 	if (!cleaned_count)
1501 		return;
1502 
1503 	rx_desc = IGC_RX_DESC(rx_ring, i);
1504 	bi = &rx_ring->rx_buffer_info[i];
1505 	i -= rx_ring->count;
1506 
1507 	bufsz = igc_rx_bufsz(rx_ring);
1508 
1509 	do {
1510 		if (!igc_alloc_mapped_page(rx_ring, bi))
1511 			break;
1512 
1513 		/* sync the buffer for use by the device */
1514 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1515 						 bi->page_offset, bufsz,
1516 						 DMA_FROM_DEVICE);
1517 
1518 		/* Refresh the desc even if buffer_addrs didn't change
1519 		 * because each write-back erases this info.
1520 		 */
1521 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1522 
1523 		rx_desc++;
1524 		bi++;
1525 		i++;
1526 		if (unlikely(!i)) {
1527 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1528 			bi = rx_ring->rx_buffer_info;
1529 			i -= rx_ring->count;
1530 		}
1531 
1532 		/* clear the length for the next_to_use descriptor */
1533 		rx_desc->wb.upper.length = 0;
1534 
1535 		cleaned_count--;
1536 	} while (cleaned_count);
1537 
1538 	i += rx_ring->count;
1539 
1540 	if (rx_ring->next_to_use != i) {
1541 		/* record the next descriptor to use */
1542 		rx_ring->next_to_use = i;
1543 
1544 		/* update next to alloc since we have filled the ring */
1545 		rx_ring->next_to_alloc = i;
1546 
1547 		/* Force memory writes to complete before letting h/w
1548 		 * know there are new descriptors to fetch.  (Only
1549 		 * applicable for weak-ordered memory model archs,
1550 		 * such as IA-64).
1551 		 */
1552 		wmb();
1553 		writel(i, rx_ring->tail);
1554 	}
1555 }
1556 
1557 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1558 {
1559 	unsigned int total_bytes = 0, total_packets = 0;
1560 	struct igc_ring *rx_ring = q_vector->rx.ring;
1561 	struct sk_buff *skb = rx_ring->skb;
1562 	u16 cleaned_count = igc_desc_unused(rx_ring);
1563 
1564 	while (likely(total_packets < budget)) {
1565 		union igc_adv_rx_desc *rx_desc;
1566 		struct igc_rx_buffer *rx_buffer;
1567 		unsigned int size;
1568 
1569 		/* return some buffers to hardware, one at a time is too slow */
1570 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1571 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1572 			cleaned_count = 0;
1573 		}
1574 
1575 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1576 		size = le16_to_cpu(rx_desc->wb.upper.length);
1577 		if (!size)
1578 			break;
1579 
1580 		/* This memory barrier is needed to keep us from reading
1581 		 * any other fields out of the rx_desc until we know the
1582 		 * descriptor has been written back
1583 		 */
1584 		dma_rmb();
1585 
1586 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1587 
1588 		/* retrieve a buffer from the ring */
1589 		if (skb)
1590 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1591 		else if (ring_uses_build_skb(rx_ring))
1592 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1593 		else
1594 			skb = igc_construct_skb(rx_ring, rx_buffer,
1595 						rx_desc, size);
1596 
1597 		/* exit if we failed to retrieve a buffer */
1598 		if (!skb) {
1599 			rx_ring->rx_stats.alloc_failed++;
1600 			rx_buffer->pagecnt_bias++;
1601 			break;
1602 		}
1603 
1604 		igc_put_rx_buffer(rx_ring, rx_buffer);
1605 		cleaned_count++;
1606 
1607 		/* fetch next buffer in frame if non-eop */
1608 		if (igc_is_non_eop(rx_ring, rx_desc))
1609 			continue;
1610 
1611 		/* verify the packet layout is correct */
1612 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1613 			skb = NULL;
1614 			continue;
1615 		}
1616 
1617 		/* probably a little skewed due to removing CRC */
1618 		total_bytes += skb->len;
1619 
1620 		/* populate checksum, timestamp, VLAN, and protocol */
1621 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1622 
1623 		napi_gro_receive(&q_vector->napi, skb);
1624 
1625 		/* reset skb pointer */
1626 		skb = NULL;
1627 
1628 		/* update budget accounting */
1629 		total_packets++;
1630 	}
1631 
1632 	/* place incomplete frames back on ring for completion */
1633 	rx_ring->skb = skb;
1634 
1635 	u64_stats_update_begin(&rx_ring->rx_syncp);
1636 	rx_ring->rx_stats.packets += total_packets;
1637 	rx_ring->rx_stats.bytes += total_bytes;
1638 	u64_stats_update_end(&rx_ring->rx_syncp);
1639 	q_vector->rx.total_packets += total_packets;
1640 	q_vector->rx.total_bytes += total_bytes;
1641 
1642 	if (cleaned_count)
1643 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1644 
1645 	return total_packets;
1646 }
1647 
1648 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1649 {
1650 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1651 }
1652 
1653 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1654 				  struct igc_rx_buffer *bi)
1655 {
1656 	struct page *page = bi->page;
1657 	dma_addr_t dma;
1658 
1659 	/* since we are recycling buffers we should seldom need to alloc */
1660 	if (likely(page))
1661 		return true;
1662 
1663 	/* alloc new page for storage */
1664 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1665 	if (unlikely(!page)) {
1666 		rx_ring->rx_stats.alloc_failed++;
1667 		return false;
1668 	}
1669 
1670 	/* map page for use */
1671 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1672 				 igc_rx_pg_size(rx_ring),
1673 				 DMA_FROM_DEVICE,
1674 				 IGC_RX_DMA_ATTR);
1675 
1676 	/* if mapping failed free memory back to system since
1677 	 * there isn't much point in holding memory we can't use
1678 	 */
1679 	if (dma_mapping_error(rx_ring->dev, dma)) {
1680 		__free_page(page);
1681 
1682 		rx_ring->rx_stats.alloc_failed++;
1683 		return false;
1684 	}
1685 
1686 	bi->dma = dma;
1687 	bi->page = page;
1688 	bi->page_offset = igc_rx_offset(rx_ring);
1689 	bi->pagecnt_bias = 1;
1690 
1691 	return true;
1692 }
1693 
1694 /**
1695  * igc_clean_tx_irq - Reclaim resources after transmit completes
1696  * @q_vector: pointer to q_vector containing needed info
1697  * @napi_budget: Used to determine if we are in netpoll
1698  *
1699  * returns true if ring is completely cleaned
1700  */
1701 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1702 {
1703 	struct igc_adapter *adapter = q_vector->adapter;
1704 	unsigned int total_bytes = 0, total_packets = 0;
1705 	unsigned int budget = q_vector->tx.work_limit;
1706 	struct igc_ring *tx_ring = q_vector->tx.ring;
1707 	unsigned int i = tx_ring->next_to_clean;
1708 	struct igc_tx_buffer *tx_buffer;
1709 	union igc_adv_tx_desc *tx_desc;
1710 
1711 	if (test_bit(__IGC_DOWN, &adapter->state))
1712 		return true;
1713 
1714 	tx_buffer = &tx_ring->tx_buffer_info[i];
1715 	tx_desc = IGC_TX_DESC(tx_ring, i);
1716 	i -= tx_ring->count;
1717 
1718 	do {
1719 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1720 
1721 		/* if next_to_watch is not set then there is no work pending */
1722 		if (!eop_desc)
1723 			break;
1724 
1725 		/* prevent any other reads prior to eop_desc */
1726 		smp_rmb();
1727 
1728 		/* if DD is not set pending work has not been completed */
1729 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1730 			break;
1731 
1732 		/* clear next_to_watch to prevent false hangs */
1733 		tx_buffer->next_to_watch = NULL;
1734 
1735 		/* update the statistics for this packet */
1736 		total_bytes += tx_buffer->bytecount;
1737 		total_packets += tx_buffer->gso_segs;
1738 
1739 		/* free the skb */
1740 		napi_consume_skb(tx_buffer->skb, napi_budget);
1741 
1742 		/* unmap skb header data */
1743 		dma_unmap_single(tx_ring->dev,
1744 				 dma_unmap_addr(tx_buffer, dma),
1745 				 dma_unmap_len(tx_buffer, len),
1746 				 DMA_TO_DEVICE);
1747 
1748 		/* clear tx_buffer data */
1749 		dma_unmap_len_set(tx_buffer, len, 0);
1750 
1751 		/* clear last DMA location and unmap remaining buffers */
1752 		while (tx_desc != eop_desc) {
1753 			tx_buffer++;
1754 			tx_desc++;
1755 			i++;
1756 			if (unlikely(!i)) {
1757 				i -= tx_ring->count;
1758 				tx_buffer = tx_ring->tx_buffer_info;
1759 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1760 			}
1761 
1762 			/* unmap any remaining paged data */
1763 			if (dma_unmap_len(tx_buffer, len)) {
1764 				dma_unmap_page(tx_ring->dev,
1765 					       dma_unmap_addr(tx_buffer, dma),
1766 					       dma_unmap_len(tx_buffer, len),
1767 					       DMA_TO_DEVICE);
1768 				dma_unmap_len_set(tx_buffer, len, 0);
1769 			}
1770 		}
1771 
1772 		/* move us one more past the eop_desc for start of next pkt */
1773 		tx_buffer++;
1774 		tx_desc++;
1775 		i++;
1776 		if (unlikely(!i)) {
1777 			i -= tx_ring->count;
1778 			tx_buffer = tx_ring->tx_buffer_info;
1779 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1780 		}
1781 
1782 		/* issue prefetch for next Tx descriptor */
1783 		prefetch(tx_desc);
1784 
1785 		/* update budget accounting */
1786 		budget--;
1787 	} while (likely(budget));
1788 
1789 	netdev_tx_completed_queue(txring_txq(tx_ring),
1790 				  total_packets, total_bytes);
1791 
1792 	i += tx_ring->count;
1793 	tx_ring->next_to_clean = i;
1794 	u64_stats_update_begin(&tx_ring->tx_syncp);
1795 	tx_ring->tx_stats.bytes += total_bytes;
1796 	tx_ring->tx_stats.packets += total_packets;
1797 	u64_stats_update_end(&tx_ring->tx_syncp);
1798 	q_vector->tx.total_bytes += total_bytes;
1799 	q_vector->tx.total_packets += total_packets;
1800 
1801 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1802 		struct igc_hw *hw = &adapter->hw;
1803 
1804 		/* Detect a transmit hang in hardware, this serializes the
1805 		 * check with the clearing of time_stamp and movement of i
1806 		 */
1807 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1808 		if (tx_buffer->next_to_watch &&
1809 		    time_after(jiffies, tx_buffer->time_stamp +
1810 		    (adapter->tx_timeout_factor * HZ)) &&
1811 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1812 			/* detected Tx unit hang */
1813 			dev_err(tx_ring->dev,
1814 				"Detected Tx Unit Hang\n"
1815 				"  Tx Queue             <%d>\n"
1816 				"  TDH                  <%x>\n"
1817 				"  TDT                  <%x>\n"
1818 				"  next_to_use          <%x>\n"
1819 				"  next_to_clean        <%x>\n"
1820 				"buffer_info[next_to_clean]\n"
1821 				"  time_stamp           <%lx>\n"
1822 				"  next_to_watch        <%p>\n"
1823 				"  jiffies              <%lx>\n"
1824 				"  desc.status          <%x>\n",
1825 				tx_ring->queue_index,
1826 				rd32(IGC_TDH(tx_ring->reg_idx)),
1827 				readl(tx_ring->tail),
1828 				tx_ring->next_to_use,
1829 				tx_ring->next_to_clean,
1830 				tx_buffer->time_stamp,
1831 				tx_buffer->next_to_watch,
1832 				jiffies,
1833 				tx_buffer->next_to_watch->wb.status);
1834 			netif_stop_subqueue(tx_ring->netdev,
1835 					    tx_ring->queue_index);
1836 
1837 			/* we are about to reset, no point in enabling stuff */
1838 			return true;
1839 		}
1840 	}
1841 
1842 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1843 	if (unlikely(total_packets &&
1844 		     netif_carrier_ok(tx_ring->netdev) &&
1845 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1846 		/* Make sure that anybody stopping the queue after this
1847 		 * sees the new next_to_clean.
1848 		 */
1849 		smp_mb();
1850 		if (__netif_subqueue_stopped(tx_ring->netdev,
1851 					     tx_ring->queue_index) &&
1852 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
1853 			netif_wake_subqueue(tx_ring->netdev,
1854 					    tx_ring->queue_index);
1855 
1856 			u64_stats_update_begin(&tx_ring->tx_syncp);
1857 			tx_ring->tx_stats.restart_queue++;
1858 			u64_stats_update_end(&tx_ring->tx_syncp);
1859 		}
1860 	}
1861 
1862 	return !!budget;
1863 }
1864 
1865 /**
1866  * igc_up - Open the interface and prepare it to handle traffic
1867  * @adapter: board private structure
1868  */
1869 void igc_up(struct igc_adapter *adapter)
1870 {
1871 	struct igc_hw *hw = &adapter->hw;
1872 	int i = 0;
1873 
1874 	/* hardware has been reset, we need to reload some things */
1875 	igc_configure(adapter);
1876 
1877 	clear_bit(__IGC_DOWN, &adapter->state);
1878 
1879 	for (i = 0; i < adapter->num_q_vectors; i++)
1880 		napi_enable(&adapter->q_vector[i]->napi);
1881 
1882 	if (adapter->msix_entries)
1883 		igc_configure_msix(adapter);
1884 	else
1885 		igc_assign_vector(adapter->q_vector[0], 0);
1886 
1887 	/* Clear any pending interrupts. */
1888 	rd32(IGC_ICR);
1889 	igc_irq_enable(adapter);
1890 
1891 	netif_tx_start_all_queues(adapter->netdev);
1892 
1893 	/* start the watchdog. */
1894 	hw->mac.get_link_status = 1;
1895 	schedule_work(&adapter->watchdog_task);
1896 }
1897 
1898 /**
1899  * igc_update_stats - Update the board statistics counters
1900  * @adapter: board private structure
1901  */
1902 void igc_update_stats(struct igc_adapter *adapter)
1903 {
1904 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1905 	struct pci_dev *pdev = adapter->pdev;
1906 	struct igc_hw *hw = &adapter->hw;
1907 	u64 _bytes, _packets;
1908 	u64 bytes, packets;
1909 	unsigned int start;
1910 	u32 mpc;
1911 	int i;
1912 
1913 	/* Prevent stats update while adapter is being reset, or if the pci
1914 	 * connection is down.
1915 	 */
1916 	if (adapter->link_speed == 0)
1917 		return;
1918 	if (pci_channel_offline(pdev))
1919 		return;
1920 
1921 	packets = 0;
1922 	bytes = 0;
1923 
1924 	rcu_read_lock();
1925 	for (i = 0; i < adapter->num_rx_queues; i++) {
1926 		struct igc_ring *ring = adapter->rx_ring[i];
1927 		u32 rqdpc = rd32(IGC_RQDPC(i));
1928 
1929 		if (hw->mac.type >= igc_i225)
1930 			wr32(IGC_RQDPC(i), 0);
1931 
1932 		if (rqdpc) {
1933 			ring->rx_stats.drops += rqdpc;
1934 			net_stats->rx_fifo_errors += rqdpc;
1935 		}
1936 
1937 		do {
1938 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1939 			_bytes = ring->rx_stats.bytes;
1940 			_packets = ring->rx_stats.packets;
1941 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1942 		bytes += _bytes;
1943 		packets += _packets;
1944 	}
1945 
1946 	net_stats->rx_bytes = bytes;
1947 	net_stats->rx_packets = packets;
1948 
1949 	packets = 0;
1950 	bytes = 0;
1951 	for (i = 0; i < adapter->num_tx_queues; i++) {
1952 		struct igc_ring *ring = adapter->tx_ring[i];
1953 
1954 		do {
1955 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1956 			_bytes = ring->tx_stats.bytes;
1957 			_packets = ring->tx_stats.packets;
1958 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1959 		bytes += _bytes;
1960 		packets += _packets;
1961 	}
1962 	net_stats->tx_bytes = bytes;
1963 	net_stats->tx_packets = packets;
1964 	rcu_read_unlock();
1965 
1966 	/* read stats registers */
1967 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1968 	adapter->stats.gprc += rd32(IGC_GPRC);
1969 	adapter->stats.gorc += rd32(IGC_GORCL);
1970 	rd32(IGC_GORCH); /* clear GORCL */
1971 	adapter->stats.bprc += rd32(IGC_BPRC);
1972 	adapter->stats.mprc += rd32(IGC_MPRC);
1973 	adapter->stats.roc += rd32(IGC_ROC);
1974 
1975 	adapter->stats.prc64 += rd32(IGC_PRC64);
1976 	adapter->stats.prc127 += rd32(IGC_PRC127);
1977 	adapter->stats.prc255 += rd32(IGC_PRC255);
1978 	adapter->stats.prc511 += rd32(IGC_PRC511);
1979 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
1980 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
1981 	adapter->stats.symerrs += rd32(IGC_SYMERRS);
1982 	adapter->stats.sec += rd32(IGC_SEC);
1983 
1984 	mpc = rd32(IGC_MPC);
1985 	adapter->stats.mpc += mpc;
1986 	net_stats->rx_fifo_errors += mpc;
1987 	adapter->stats.scc += rd32(IGC_SCC);
1988 	adapter->stats.ecol += rd32(IGC_ECOL);
1989 	adapter->stats.mcc += rd32(IGC_MCC);
1990 	adapter->stats.latecol += rd32(IGC_LATECOL);
1991 	adapter->stats.dc += rd32(IGC_DC);
1992 	adapter->stats.rlec += rd32(IGC_RLEC);
1993 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
1994 	adapter->stats.xontxc += rd32(IGC_XONTXC);
1995 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1996 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1997 	adapter->stats.fcruc += rd32(IGC_FCRUC);
1998 	adapter->stats.gptc += rd32(IGC_GPTC);
1999 	adapter->stats.gotc += rd32(IGC_GOTCL);
2000 	rd32(IGC_GOTCH); /* clear GOTCL */
2001 	adapter->stats.rnbc += rd32(IGC_RNBC);
2002 	adapter->stats.ruc += rd32(IGC_RUC);
2003 	adapter->stats.rfc += rd32(IGC_RFC);
2004 	adapter->stats.rjc += rd32(IGC_RJC);
2005 	adapter->stats.tor += rd32(IGC_TORH);
2006 	adapter->stats.tot += rd32(IGC_TOTH);
2007 	adapter->stats.tpr += rd32(IGC_TPR);
2008 
2009 	adapter->stats.ptc64 += rd32(IGC_PTC64);
2010 	adapter->stats.ptc127 += rd32(IGC_PTC127);
2011 	adapter->stats.ptc255 += rd32(IGC_PTC255);
2012 	adapter->stats.ptc511 += rd32(IGC_PTC511);
2013 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
2014 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
2015 
2016 	adapter->stats.mptc += rd32(IGC_MPTC);
2017 	adapter->stats.bptc += rd32(IGC_BPTC);
2018 
2019 	adapter->stats.tpt += rd32(IGC_TPT);
2020 	adapter->stats.colc += rd32(IGC_COLC);
2021 
2022 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
2023 
2024 	adapter->stats.tsctc += rd32(IGC_TSCTC);
2025 	adapter->stats.tsctfc += rd32(IGC_TSCTFC);
2026 
2027 	adapter->stats.iac += rd32(IGC_IAC);
2028 	adapter->stats.icrxoc += rd32(IGC_ICRXOC);
2029 	adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
2030 	adapter->stats.icrxatc += rd32(IGC_ICRXATC);
2031 	adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
2032 	adapter->stats.ictxatc += rd32(IGC_ICTXATC);
2033 	adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
2034 	adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
2035 	adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
2036 
2037 	/* Fill out the OS statistics structure */
2038 	net_stats->multicast = adapter->stats.mprc;
2039 	net_stats->collisions = adapter->stats.colc;
2040 
2041 	/* Rx Errors */
2042 
2043 	/* RLEC on some newer hardware can be incorrect so build
2044 	 * our own version based on RUC and ROC
2045 	 */
2046 	net_stats->rx_errors = adapter->stats.rxerrc +
2047 		adapter->stats.crcerrs + adapter->stats.algnerrc +
2048 		adapter->stats.ruc + adapter->stats.roc +
2049 		adapter->stats.cexterr;
2050 	net_stats->rx_length_errors = adapter->stats.ruc +
2051 				      adapter->stats.roc;
2052 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
2053 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
2054 	net_stats->rx_missed_errors = adapter->stats.mpc;
2055 
2056 	/* Tx Errors */
2057 	net_stats->tx_errors = adapter->stats.ecol +
2058 			       adapter->stats.latecol;
2059 	net_stats->tx_aborted_errors = adapter->stats.ecol;
2060 	net_stats->tx_window_errors = adapter->stats.latecol;
2061 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
2062 
2063 	/* Tx Dropped needs to be maintained elsewhere */
2064 
2065 	/* Management Stats */
2066 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
2067 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
2068 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
2069 }
2070 
2071 static void igc_nfc_filter_exit(struct igc_adapter *adapter)
2072 {
2073 	struct igc_nfc_filter *rule;
2074 
2075 	spin_lock(&adapter->nfc_lock);
2076 
2077 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2078 		igc_erase_filter(adapter, rule);
2079 
2080 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
2081 		igc_erase_filter(adapter, rule);
2082 
2083 	spin_unlock(&adapter->nfc_lock);
2084 }
2085 
2086 static void igc_nfc_filter_restore(struct igc_adapter *adapter)
2087 {
2088 	struct igc_nfc_filter *rule;
2089 
2090 	spin_lock(&adapter->nfc_lock);
2091 
2092 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2093 		igc_add_filter(adapter, rule);
2094 
2095 	spin_unlock(&adapter->nfc_lock);
2096 }
2097 
2098 /**
2099  * igc_down - Close the interface
2100  * @adapter: board private structure
2101  */
2102 void igc_down(struct igc_adapter *adapter)
2103 {
2104 	struct net_device *netdev = adapter->netdev;
2105 	struct igc_hw *hw = &adapter->hw;
2106 	u32 tctl, rctl;
2107 	int i = 0;
2108 
2109 	set_bit(__IGC_DOWN, &adapter->state);
2110 
2111 	/* disable receives in the hardware */
2112 	rctl = rd32(IGC_RCTL);
2113 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2114 	/* flush and sleep below */
2115 
2116 	igc_nfc_filter_exit(adapter);
2117 
2118 	/* set trans_start so we don't get spurious watchdogs during reset */
2119 	netif_trans_update(netdev);
2120 
2121 	netif_carrier_off(netdev);
2122 	netif_tx_stop_all_queues(netdev);
2123 
2124 	/* disable transmits in the hardware */
2125 	tctl = rd32(IGC_TCTL);
2126 	tctl &= ~IGC_TCTL_EN;
2127 	wr32(IGC_TCTL, tctl);
2128 	/* flush both disables and wait for them to finish */
2129 	wrfl();
2130 	usleep_range(10000, 20000);
2131 
2132 	igc_irq_disable(adapter);
2133 
2134 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2135 
2136 	for (i = 0; i < adapter->num_q_vectors; i++) {
2137 		if (adapter->q_vector[i]) {
2138 			napi_synchronize(&adapter->q_vector[i]->napi);
2139 			napi_disable(&adapter->q_vector[i]->napi);
2140 		}
2141 	}
2142 
2143 	del_timer_sync(&adapter->watchdog_timer);
2144 	del_timer_sync(&adapter->phy_info_timer);
2145 
2146 	/* record the stats before reset*/
2147 	spin_lock(&adapter->stats64_lock);
2148 	igc_update_stats(adapter);
2149 	spin_unlock(&adapter->stats64_lock);
2150 
2151 	adapter->link_speed = 0;
2152 	adapter->link_duplex = 0;
2153 
2154 	if (!pci_channel_offline(adapter->pdev))
2155 		igc_reset(adapter);
2156 
2157 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2158 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2159 
2160 	igc_clean_all_tx_rings(adapter);
2161 	igc_clean_all_rx_rings(adapter);
2162 }
2163 
2164 void igc_reinit_locked(struct igc_adapter *adapter)
2165 {
2166 	WARN_ON(in_interrupt());
2167 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2168 		usleep_range(1000, 2000);
2169 	igc_down(adapter);
2170 	igc_up(adapter);
2171 	clear_bit(__IGC_RESETTING, &adapter->state);
2172 }
2173 
2174 static void igc_reset_task(struct work_struct *work)
2175 {
2176 	struct igc_adapter *adapter;
2177 
2178 	adapter = container_of(work, struct igc_adapter, reset_task);
2179 
2180 	netdev_err(adapter->netdev, "Reset adapter\n");
2181 	igc_reinit_locked(adapter);
2182 }
2183 
2184 /**
2185  * igc_change_mtu - Change the Maximum Transfer Unit
2186  * @netdev: network interface device structure
2187  * @new_mtu: new value for maximum frame size
2188  *
2189  * Returns 0 on success, negative on failure
2190  */
2191 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2192 {
2193 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2194 	struct igc_adapter *adapter = netdev_priv(netdev);
2195 	struct pci_dev *pdev = adapter->pdev;
2196 
2197 	/* adjust max frame to be at least the size of a standard frame */
2198 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2199 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2200 
2201 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2202 		usleep_range(1000, 2000);
2203 
2204 	/* igc_down has a dependency on max_frame_size */
2205 	adapter->max_frame_size = max_frame;
2206 
2207 	if (netif_running(netdev))
2208 		igc_down(adapter);
2209 
2210 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2211 		 netdev->mtu, new_mtu);
2212 	netdev->mtu = new_mtu;
2213 
2214 	if (netif_running(netdev))
2215 		igc_up(adapter);
2216 	else
2217 		igc_reset(adapter);
2218 
2219 	clear_bit(__IGC_RESETTING, &adapter->state);
2220 
2221 	return 0;
2222 }
2223 
2224 /**
2225  * igc_get_stats - Get System Network Statistics
2226  * @netdev: network interface device structure
2227  *
2228  * Returns the address of the device statistics structure.
2229  * The statistics are updated here and also from the timer callback.
2230  */
2231 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2232 {
2233 	struct igc_adapter *adapter = netdev_priv(netdev);
2234 
2235 	if (!test_bit(__IGC_RESETTING, &adapter->state))
2236 		igc_update_stats(adapter);
2237 
2238 	/* only return the current stats */
2239 	return &netdev->stats;
2240 }
2241 
2242 static netdev_features_t igc_fix_features(struct net_device *netdev,
2243 					  netdev_features_t features)
2244 {
2245 	/* Since there is no support for separate Rx/Tx vlan accel
2246 	 * enable/disable make sure Tx flag is always in same state as Rx.
2247 	 */
2248 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2249 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2250 	else
2251 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2252 
2253 	return features;
2254 }
2255 
2256 static int igc_set_features(struct net_device *netdev,
2257 			    netdev_features_t features)
2258 {
2259 	netdev_features_t changed = netdev->features ^ features;
2260 	struct igc_adapter *adapter = netdev_priv(netdev);
2261 
2262 	/* Add VLAN support */
2263 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2264 		return 0;
2265 
2266 	if (!(features & NETIF_F_NTUPLE)) {
2267 		struct hlist_node *node2;
2268 		struct igc_nfc_filter *rule;
2269 
2270 		spin_lock(&adapter->nfc_lock);
2271 		hlist_for_each_entry_safe(rule, node2,
2272 					  &adapter->nfc_filter_list, nfc_node) {
2273 			igc_erase_filter(adapter, rule);
2274 			hlist_del(&rule->nfc_node);
2275 			kfree(rule);
2276 		}
2277 		spin_unlock(&adapter->nfc_lock);
2278 		adapter->nfc_filter_count = 0;
2279 	}
2280 
2281 	netdev->features = features;
2282 
2283 	if (netif_running(netdev))
2284 		igc_reinit_locked(adapter);
2285 	else
2286 		igc_reset(adapter);
2287 
2288 	return 1;
2289 }
2290 
2291 static netdev_features_t
2292 igc_features_check(struct sk_buff *skb, struct net_device *dev,
2293 		   netdev_features_t features)
2294 {
2295 	unsigned int network_hdr_len, mac_hdr_len;
2296 
2297 	/* Make certain the headers can be described by a context descriptor */
2298 	mac_hdr_len = skb_network_header(skb) - skb->data;
2299 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2300 		return features & ~(NETIF_F_HW_CSUM |
2301 				    NETIF_F_SCTP_CRC |
2302 				    NETIF_F_HW_VLAN_CTAG_TX |
2303 				    NETIF_F_TSO |
2304 				    NETIF_F_TSO6);
2305 
2306 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2307 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
2308 		return features & ~(NETIF_F_HW_CSUM |
2309 				    NETIF_F_SCTP_CRC |
2310 				    NETIF_F_TSO |
2311 				    NETIF_F_TSO6);
2312 
2313 	/* We can only support IPv4 TSO in tunnels if we can mangle the
2314 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2315 	 */
2316 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2317 		features &= ~NETIF_F_TSO;
2318 
2319 	return features;
2320 }
2321 
2322 /**
2323  * igc_configure - configure the hardware for RX and TX
2324  * @adapter: private board structure
2325  */
2326 static void igc_configure(struct igc_adapter *adapter)
2327 {
2328 	struct net_device *netdev = adapter->netdev;
2329 	int i = 0;
2330 
2331 	igc_get_hw_control(adapter);
2332 	igc_set_rx_mode(netdev);
2333 
2334 	igc_setup_tctl(adapter);
2335 	igc_setup_mrqc(adapter);
2336 	igc_setup_rctl(adapter);
2337 
2338 	igc_nfc_filter_restore(adapter);
2339 	igc_configure_tx(adapter);
2340 	igc_configure_rx(adapter);
2341 
2342 	igc_rx_fifo_flush_base(&adapter->hw);
2343 
2344 	/* call igc_desc_unused which always leaves
2345 	 * at least 1 descriptor unused to make sure
2346 	 * next_to_use != next_to_clean
2347 	 */
2348 	for (i = 0; i < adapter->num_rx_queues; i++) {
2349 		struct igc_ring *ring = adapter->rx_ring[i];
2350 
2351 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2352 	}
2353 }
2354 
2355 /**
2356  * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2357  * @adapter: address of board private structure
2358  * @index: Index of the RAR entry which need to be synced with MAC table
2359  */
2360 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2361 {
2362 	u8 *addr = adapter->mac_table[index].addr;
2363 	struct igc_hw *hw = &adapter->hw;
2364 	u32 rar_low, rar_high;
2365 
2366 	/* HW expects these to be in network order when they are plugged
2367 	 * into the registers which are little endian.  In order to guarantee
2368 	 * that ordering we need to do an leXX_to_cpup here in order to be
2369 	 * ready for the byteswap that occurs with writel
2370 	 */
2371 	rar_low = le32_to_cpup((__le32 *)(addr));
2372 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
2373 
2374 	/* Indicate to hardware the Address is Valid. */
2375 	if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2376 		if (is_valid_ether_addr(addr))
2377 			rar_high |= IGC_RAH_AV;
2378 
2379 		rar_high |= IGC_RAH_POOL_1 <<
2380 			adapter->mac_table[index].queue;
2381 	}
2382 
2383 	wr32(IGC_RAL(index), rar_low);
2384 	wrfl();
2385 	wr32(IGC_RAH(index), rar_high);
2386 	wrfl();
2387 }
2388 
2389 /* Set default MAC address for the PF in the first RAR entry */
2390 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2391 {
2392 	struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2393 
2394 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2395 	mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2396 
2397 	igc_rar_set_index(adapter, 0);
2398 }
2399 
2400 /* If the filter to be added and an already existing filter express
2401  * the same address and address type, it should be possible to only
2402  * override the other configurations, for example the queue to steer
2403  * traffic.
2404  */
2405 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2406 				      const u8 *addr, const u8 flags)
2407 {
2408 	if (!(entry->state & IGC_MAC_STATE_IN_USE))
2409 		return true;
2410 
2411 	if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2412 	    (flags & IGC_MAC_STATE_SRC_ADDR))
2413 		return false;
2414 
2415 	if (!ether_addr_equal(addr, entry->addr))
2416 		return false;
2417 
2418 	return true;
2419 }
2420 
2421 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2422  * 'flags' is used to indicate what kind of match is made, match is by
2423  * default for the destination address, if matching by source address
2424  * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2425  */
2426 static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2427 				    const u8 *addr, const u8 queue,
2428 				    const u8 flags)
2429 {
2430 	struct igc_hw *hw = &adapter->hw;
2431 	int rar_entries = hw->mac.rar_entry_count;
2432 	int i;
2433 
2434 	if (is_zero_ether_addr(addr))
2435 		return -EINVAL;
2436 
2437 	/* Search for the first empty entry in the MAC table.
2438 	 * Do not touch entries at the end of the table reserved for the VF MAC
2439 	 * addresses.
2440 	 */
2441 	for (i = 0; i < rar_entries; i++) {
2442 		if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2443 					       addr, flags))
2444 			continue;
2445 
2446 		ether_addr_copy(adapter->mac_table[i].addr, addr);
2447 		adapter->mac_table[i].queue = queue;
2448 		adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2449 
2450 		igc_rar_set_index(adapter, i);
2451 		return i;
2452 	}
2453 
2454 	return -ENOSPC;
2455 }
2456 
2457 int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2458 				const u8 *addr, u8 queue, u8 flags)
2459 {
2460 	return igc_add_mac_filter_flags(adapter, addr, queue,
2461 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2462 }
2463 
2464 /* Remove a MAC filter for 'addr' directing matching traffic to
2465  * 'queue', 'flags' is used to indicate what kind of match need to be
2466  * removed, match is by default for the destination address, if
2467  * matching by source address is to be removed the flag
2468  * IGC_MAC_STATE_SRC_ADDR can be used.
2469  */
2470 static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2471 				    const u8 *addr, const u8 queue,
2472 				    const u8 flags)
2473 {
2474 	struct igc_hw *hw = &adapter->hw;
2475 	int rar_entries = hw->mac.rar_entry_count;
2476 	int i;
2477 
2478 	if (is_zero_ether_addr(addr))
2479 		return -EINVAL;
2480 
2481 	/* Search for matching entry in the MAC table based on given address
2482 	 * and queue. Do not touch entries at the end of the table reserved
2483 	 * for the VF MAC addresses.
2484 	 */
2485 	for (i = 0; i < rar_entries; i++) {
2486 		if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2487 			continue;
2488 		if ((adapter->mac_table[i].state & flags) != flags)
2489 			continue;
2490 		if (adapter->mac_table[i].queue != queue)
2491 			continue;
2492 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2493 			continue;
2494 
2495 		/* When a filter for the default address is "deleted",
2496 		 * we return it to its initial configuration
2497 		 */
2498 		if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2499 			adapter->mac_table[i].state =
2500 				IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2501 		} else {
2502 			adapter->mac_table[i].state = 0;
2503 			adapter->mac_table[i].queue = 0;
2504 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2505 		}
2506 
2507 		igc_rar_set_index(adapter, i);
2508 		return 0;
2509 	}
2510 
2511 	return -ENOENT;
2512 }
2513 
2514 int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2515 				const u8 *addr, u8 queue, u8 flags)
2516 {
2517 	return igc_del_mac_filter_flags(adapter, addr, queue,
2518 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2519 }
2520 
2521 /**
2522  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2523  * @netdev: network interface device structure
2524  *
2525  * The set_rx_mode entry point is called whenever the unicast or multicast
2526  * address lists or the network interface flags are updated.  This routine is
2527  * responsible for configuring the hardware for proper unicast, multicast,
2528  * promiscuous mode, and all-multi behavior.
2529  */
2530 static void igc_set_rx_mode(struct net_device *netdev)
2531 {
2532 }
2533 
2534 /**
2535  * igc_msix_other - msix other interrupt handler
2536  * @irq: interrupt number
2537  * @data: pointer to a q_vector
2538  */
2539 static irqreturn_t igc_msix_other(int irq, void *data)
2540 {
2541 	struct igc_adapter *adapter = data;
2542 	struct igc_hw *hw = &adapter->hw;
2543 	u32 icr = rd32(IGC_ICR);
2544 
2545 	/* reading ICR causes bit 31 of EICR to be cleared */
2546 	if (icr & IGC_ICR_DRSTA)
2547 		schedule_work(&adapter->reset_task);
2548 
2549 	if (icr & IGC_ICR_DOUTSYNC) {
2550 		/* HW is reporting DMA is out of sync */
2551 		adapter->stats.doosync++;
2552 	}
2553 
2554 	if (icr & IGC_ICR_LSC) {
2555 		hw->mac.get_link_status = 1;
2556 		/* guard against interrupt when we're going down */
2557 		if (!test_bit(__IGC_DOWN, &adapter->state))
2558 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2559 	}
2560 
2561 	wr32(IGC_EIMS, adapter->eims_other);
2562 
2563 	return IRQ_HANDLED;
2564 }
2565 
2566 /**
2567  * igc_write_ivar - configure ivar for given MSI-X vector
2568  * @hw: pointer to the HW structure
2569  * @msix_vector: vector number we are allocating to a given ring
2570  * @index: row index of IVAR register to write within IVAR table
2571  * @offset: column offset of in IVAR, should be multiple of 8
2572  *
2573  * The IVAR table consists of 2 columns,
2574  * each containing an cause allocation for an Rx and Tx ring, and a
2575  * variable number of rows depending on the number of queues supported.
2576  */
2577 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2578 			   int index, int offset)
2579 {
2580 	u32 ivar = array_rd32(IGC_IVAR0, index);
2581 
2582 	/* clear any bits that are currently set */
2583 	ivar &= ~((u32)0xFF << offset);
2584 
2585 	/* write vector and valid bit */
2586 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2587 
2588 	array_wr32(IGC_IVAR0, index, ivar);
2589 }
2590 
2591 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2592 {
2593 	struct igc_adapter *adapter = q_vector->adapter;
2594 	struct igc_hw *hw = &adapter->hw;
2595 	int rx_queue = IGC_N0_QUEUE;
2596 	int tx_queue = IGC_N0_QUEUE;
2597 
2598 	if (q_vector->rx.ring)
2599 		rx_queue = q_vector->rx.ring->reg_idx;
2600 	if (q_vector->tx.ring)
2601 		tx_queue = q_vector->tx.ring->reg_idx;
2602 
2603 	switch (hw->mac.type) {
2604 	case igc_i225:
2605 		if (rx_queue > IGC_N0_QUEUE)
2606 			igc_write_ivar(hw, msix_vector,
2607 				       rx_queue >> 1,
2608 				       (rx_queue & 0x1) << 4);
2609 		if (tx_queue > IGC_N0_QUEUE)
2610 			igc_write_ivar(hw, msix_vector,
2611 				       tx_queue >> 1,
2612 				       ((tx_queue & 0x1) << 4) + 8);
2613 		q_vector->eims_value = BIT(msix_vector);
2614 		break;
2615 	default:
2616 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2617 		break;
2618 	}
2619 
2620 	/* add q_vector eims value to global eims_enable_mask */
2621 	adapter->eims_enable_mask |= q_vector->eims_value;
2622 
2623 	/* configure q_vector to set itr on first interrupt */
2624 	q_vector->set_itr = 1;
2625 }
2626 
2627 /**
2628  * igc_configure_msix - Configure MSI-X hardware
2629  * @adapter: Pointer to adapter structure
2630  *
2631  * igc_configure_msix sets up the hardware to properly
2632  * generate MSI-X interrupts.
2633  */
2634 static void igc_configure_msix(struct igc_adapter *adapter)
2635 {
2636 	struct igc_hw *hw = &adapter->hw;
2637 	int i, vector = 0;
2638 	u32 tmp;
2639 
2640 	adapter->eims_enable_mask = 0;
2641 
2642 	/* set vector for other causes, i.e. link changes */
2643 	switch (hw->mac.type) {
2644 	case igc_i225:
2645 		/* Turn on MSI-X capability first, or our settings
2646 		 * won't stick.  And it will take days to debug.
2647 		 */
2648 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2649 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2650 		     IGC_GPIE_NSICR);
2651 
2652 		/* enable msix_other interrupt */
2653 		adapter->eims_other = BIT(vector);
2654 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2655 
2656 		wr32(IGC_IVAR_MISC, tmp);
2657 		break;
2658 	default:
2659 		/* do nothing, since nothing else supports MSI-X */
2660 		break;
2661 	} /* switch (hw->mac.type) */
2662 
2663 	adapter->eims_enable_mask |= adapter->eims_other;
2664 
2665 	for (i = 0; i < adapter->num_q_vectors; i++)
2666 		igc_assign_vector(adapter->q_vector[i], vector++);
2667 
2668 	wrfl();
2669 }
2670 
2671 static irqreturn_t igc_msix_ring(int irq, void *data)
2672 {
2673 	struct igc_q_vector *q_vector = data;
2674 
2675 	/* Write the ITR value calculated from the previous interrupt. */
2676 	igc_write_itr(q_vector);
2677 
2678 	napi_schedule(&q_vector->napi);
2679 
2680 	return IRQ_HANDLED;
2681 }
2682 
2683 /**
2684  * igc_request_msix - Initialize MSI-X interrupts
2685  * @adapter: Pointer to adapter structure
2686  *
2687  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2688  * kernel.
2689  */
2690 static int igc_request_msix(struct igc_adapter *adapter)
2691 {
2692 	int i = 0, err = 0, vector = 0, free_vector = 0;
2693 	struct net_device *netdev = adapter->netdev;
2694 
2695 	err = request_irq(adapter->msix_entries[vector].vector,
2696 			  &igc_msix_other, 0, netdev->name, adapter);
2697 	if (err)
2698 		goto err_out;
2699 
2700 	for (i = 0; i < adapter->num_q_vectors; i++) {
2701 		struct igc_q_vector *q_vector = adapter->q_vector[i];
2702 
2703 		vector++;
2704 
2705 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2706 
2707 		if (q_vector->rx.ring && q_vector->tx.ring)
2708 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2709 				q_vector->rx.ring->queue_index);
2710 		else if (q_vector->tx.ring)
2711 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2712 				q_vector->tx.ring->queue_index);
2713 		else if (q_vector->rx.ring)
2714 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2715 				q_vector->rx.ring->queue_index);
2716 		else
2717 			sprintf(q_vector->name, "%s-unused", netdev->name);
2718 
2719 		err = request_irq(adapter->msix_entries[vector].vector,
2720 				  igc_msix_ring, 0, q_vector->name,
2721 				  q_vector);
2722 		if (err)
2723 			goto err_free;
2724 	}
2725 
2726 	igc_configure_msix(adapter);
2727 	return 0;
2728 
2729 err_free:
2730 	/* free already assigned IRQs */
2731 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2732 
2733 	vector--;
2734 	for (i = 0; i < vector; i++) {
2735 		free_irq(adapter->msix_entries[free_vector++].vector,
2736 			 adapter->q_vector[i]);
2737 	}
2738 err_out:
2739 	return err;
2740 }
2741 
2742 /**
2743  * igc_reset_q_vector - Reset config for interrupt vector
2744  * @adapter: board private structure to initialize
2745  * @v_idx: Index of vector to be reset
2746  *
2747  * If NAPI is enabled it will delete any references to the
2748  * NAPI struct. This is preparation for igc_free_q_vector.
2749  */
2750 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2751 {
2752 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2753 
2754 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2755 	 * not yet allocated
2756 	 */
2757 	if (!q_vector)
2758 		return;
2759 
2760 	if (q_vector->tx.ring)
2761 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2762 
2763 	if (q_vector->rx.ring)
2764 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2765 
2766 	netif_napi_del(&q_vector->napi);
2767 }
2768 
2769 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2770 {
2771 	int v_idx = adapter->num_q_vectors;
2772 
2773 	if (adapter->msix_entries) {
2774 		pci_disable_msix(adapter->pdev);
2775 		kfree(adapter->msix_entries);
2776 		adapter->msix_entries = NULL;
2777 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2778 		pci_disable_msi(adapter->pdev);
2779 	}
2780 
2781 	while (v_idx--)
2782 		igc_reset_q_vector(adapter, v_idx);
2783 }
2784 
2785 /**
2786  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2787  * @adapter: Pointer to adapter structure
2788  *
2789  * This function resets the device so that it has 0 rx queues, tx queues, and
2790  * MSI-X interrupts allocated.
2791  */
2792 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2793 {
2794 	igc_free_q_vectors(adapter);
2795 	igc_reset_interrupt_capability(adapter);
2796 }
2797 
2798 /**
2799  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2800  * @adapter: board private structure to initialize
2801  *
2802  * This function frees the memory allocated to the q_vectors.  In addition if
2803  * NAPI is enabled it will delete any references to the NAPI struct prior
2804  * to freeing the q_vector.
2805  */
2806 static void igc_free_q_vectors(struct igc_adapter *adapter)
2807 {
2808 	int v_idx = adapter->num_q_vectors;
2809 
2810 	adapter->num_tx_queues = 0;
2811 	adapter->num_rx_queues = 0;
2812 	adapter->num_q_vectors = 0;
2813 
2814 	while (v_idx--) {
2815 		igc_reset_q_vector(adapter, v_idx);
2816 		igc_free_q_vector(adapter, v_idx);
2817 	}
2818 }
2819 
2820 /**
2821  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2822  * @adapter: board private structure to initialize
2823  * @v_idx: Index of vector to be freed
2824  *
2825  * This function frees the memory allocated to the q_vector.
2826  */
2827 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2828 {
2829 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2830 
2831 	adapter->q_vector[v_idx] = NULL;
2832 
2833 	/* igc_get_stats64() might access the rings on this vector,
2834 	 * we must wait a grace period before freeing it.
2835 	 */
2836 	if (q_vector)
2837 		kfree_rcu(q_vector, rcu);
2838 }
2839 
2840 /* Need to wait a few seconds after link up to get diagnostic information from
2841  * the phy
2842  */
2843 static void igc_update_phy_info(struct timer_list *t)
2844 {
2845 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2846 
2847 	igc_get_phy_info(&adapter->hw);
2848 }
2849 
2850 /**
2851  * igc_has_link - check shared code for link and determine up/down
2852  * @adapter: pointer to driver private info
2853  */
2854 bool igc_has_link(struct igc_adapter *adapter)
2855 {
2856 	struct igc_hw *hw = &adapter->hw;
2857 	bool link_active = false;
2858 
2859 	/* get_link_status is set on LSC (link status) interrupt or
2860 	 * rx sequence error interrupt.  get_link_status will stay
2861 	 * false until the igc_check_for_link establishes link
2862 	 * for copper adapters ONLY
2863 	 */
2864 	switch (hw->phy.media_type) {
2865 	case igc_media_type_copper:
2866 		if (!hw->mac.get_link_status)
2867 			return true;
2868 		hw->mac.ops.check_for_link(hw);
2869 		link_active = !hw->mac.get_link_status;
2870 		break;
2871 	default:
2872 	case igc_media_type_unknown:
2873 		break;
2874 	}
2875 
2876 	if (hw->mac.type == igc_i225 &&
2877 	    hw->phy.id == I225_I_PHY_ID) {
2878 		if (!netif_carrier_ok(adapter->netdev)) {
2879 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2880 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2881 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2882 			adapter->link_check_timeout = jiffies;
2883 		}
2884 	}
2885 
2886 	return link_active;
2887 }
2888 
2889 /**
2890  * igc_watchdog - Timer Call-back
2891  * @data: pointer to adapter cast into an unsigned long
2892  */
2893 static void igc_watchdog(struct timer_list *t)
2894 {
2895 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2896 	/* Do the rest outside of interrupt context */
2897 	schedule_work(&adapter->watchdog_task);
2898 }
2899 
2900 static void igc_watchdog_task(struct work_struct *work)
2901 {
2902 	struct igc_adapter *adapter = container_of(work,
2903 						   struct igc_adapter,
2904 						   watchdog_task);
2905 	struct net_device *netdev = adapter->netdev;
2906 	struct igc_hw *hw = &adapter->hw;
2907 	struct igc_phy_info *phy = &hw->phy;
2908 	u16 phy_data, retry_count = 20;
2909 	u32 connsw;
2910 	u32 link;
2911 	int i;
2912 
2913 	link = igc_has_link(adapter);
2914 
2915 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2916 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2917 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2918 		else
2919 			link = false;
2920 	}
2921 
2922 	/* Force link down if we have fiber to swap to */
2923 	if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2924 		if (hw->phy.media_type == igc_media_type_copper) {
2925 			connsw = rd32(IGC_CONNSW);
2926 			if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2927 				link = 0;
2928 		}
2929 	}
2930 	if (link) {
2931 		if (!netif_carrier_ok(netdev)) {
2932 			u32 ctrl;
2933 
2934 			hw->mac.ops.get_speed_and_duplex(hw,
2935 							 &adapter->link_speed,
2936 							 &adapter->link_duplex);
2937 
2938 			ctrl = rd32(IGC_CTRL);
2939 			/* Link status message must follow this format */
2940 			netdev_info(netdev,
2941 				    "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2942 				    netdev->name,
2943 				    adapter->link_speed,
2944 				    adapter->link_duplex == FULL_DUPLEX ?
2945 				    "Full" : "Half",
2946 				    (ctrl & IGC_CTRL_TFCE) &&
2947 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2948 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
2949 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
2950 
2951 			/* check if SmartSpeed worked */
2952 			igc_check_downshift(hw);
2953 			if (phy->speed_downgraded)
2954 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2955 
2956 			/* adjust timeout factor according to speed/duplex */
2957 			adapter->tx_timeout_factor = 1;
2958 			switch (adapter->link_speed) {
2959 			case SPEED_10:
2960 				adapter->tx_timeout_factor = 14;
2961 				break;
2962 			case SPEED_100:
2963 				/* maybe add some timeout factor ? */
2964 				break;
2965 			}
2966 
2967 			if (adapter->link_speed != SPEED_1000)
2968 				goto no_wait;
2969 
2970 			/* wait for Remote receiver status OK */
2971 retry_read_status:
2972 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2973 					      &phy_data)) {
2974 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2975 				    retry_count) {
2976 					msleep(100);
2977 					retry_count--;
2978 					goto retry_read_status;
2979 				} else if (!retry_count) {
2980 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2981 				}
2982 			} else {
2983 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2984 			}
2985 no_wait:
2986 			netif_carrier_on(netdev);
2987 
2988 			/* link state has changed, schedule phy info update */
2989 			if (!test_bit(__IGC_DOWN, &adapter->state))
2990 				mod_timer(&adapter->phy_info_timer,
2991 					  round_jiffies(jiffies + 2 * HZ));
2992 		}
2993 	} else {
2994 		if (netif_carrier_ok(netdev)) {
2995 			adapter->link_speed = 0;
2996 			adapter->link_duplex = 0;
2997 
2998 			/* Links status message must follow this format */
2999 			netdev_info(netdev, "igc: %s NIC Link is Down\n",
3000 				    netdev->name);
3001 			netif_carrier_off(netdev);
3002 
3003 			/* link state has changed, schedule phy info update */
3004 			if (!test_bit(__IGC_DOWN, &adapter->state))
3005 				mod_timer(&adapter->phy_info_timer,
3006 					  round_jiffies(jiffies + 2 * HZ));
3007 
3008 			/* link is down, time to check for alternate media */
3009 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
3010 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3011 					schedule_work(&adapter->reset_task);
3012 					/* return immediately */
3013 					return;
3014 				}
3015 			}
3016 
3017 		/* also check for alternate media here */
3018 		} else if (!netif_carrier_ok(netdev) &&
3019 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
3020 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3021 				schedule_work(&adapter->reset_task);
3022 				/* return immediately */
3023 				return;
3024 			}
3025 		}
3026 	}
3027 
3028 	spin_lock(&adapter->stats64_lock);
3029 	igc_update_stats(adapter);
3030 	spin_unlock(&adapter->stats64_lock);
3031 
3032 	for (i = 0; i < adapter->num_tx_queues; i++) {
3033 		struct igc_ring *tx_ring = adapter->tx_ring[i];
3034 
3035 		if (!netif_carrier_ok(netdev)) {
3036 			/* We've lost link, so the controller stops DMA,
3037 			 * but we've got queued Tx work that's never going
3038 			 * to get done, so reset controller to flush Tx.
3039 			 * (Do the reset outside of interrupt context).
3040 			 */
3041 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
3042 				adapter->tx_timeout_count++;
3043 				schedule_work(&adapter->reset_task);
3044 				/* return immediately since reset is imminent */
3045 				return;
3046 			}
3047 		}
3048 
3049 		/* Force detection of hung controller every watchdog period */
3050 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3051 	}
3052 
3053 	/* Cause software interrupt to ensure Rx ring is cleaned */
3054 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3055 		u32 eics = 0;
3056 
3057 		for (i = 0; i < adapter->num_q_vectors; i++)
3058 			eics |= adapter->q_vector[i]->eims_value;
3059 		wr32(IGC_EICS, eics);
3060 	} else {
3061 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
3062 	}
3063 
3064 	/* Reset the timer */
3065 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3066 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
3067 			mod_timer(&adapter->watchdog_timer,
3068 				  round_jiffies(jiffies +  HZ));
3069 		else
3070 			mod_timer(&adapter->watchdog_timer,
3071 				  round_jiffies(jiffies + 2 * HZ));
3072 	}
3073 }
3074 
3075 /**
3076  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3077  * @q_vector: pointer to q_vector
3078  *
3079  * Stores a new ITR value based on strictly on packet size.  This
3080  * algorithm is less sophisticated than that used in igc_update_itr,
3081  * due to the difficulty of synchronizing statistics across multiple
3082  * receive rings.  The divisors and thresholds used by this function
3083  * were determined based on theoretical maximum wire speed and testing
3084  * data, in order to minimize response time while increasing bulk
3085  * throughput.
3086  * NOTE: This function is called only when operating in a multiqueue
3087  * receive environment.
3088  */
3089 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3090 {
3091 	struct igc_adapter *adapter = q_vector->adapter;
3092 	int new_val = q_vector->itr_val;
3093 	int avg_wire_size = 0;
3094 	unsigned int packets;
3095 
3096 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3097 	 * ints/sec - ITR timer value of 120 ticks.
3098 	 */
3099 	switch (adapter->link_speed) {
3100 	case SPEED_10:
3101 	case SPEED_100:
3102 		new_val = IGC_4K_ITR;
3103 		goto set_itr_val;
3104 	default:
3105 		break;
3106 	}
3107 
3108 	packets = q_vector->rx.total_packets;
3109 	if (packets)
3110 		avg_wire_size = q_vector->rx.total_bytes / packets;
3111 
3112 	packets = q_vector->tx.total_packets;
3113 	if (packets)
3114 		avg_wire_size = max_t(u32, avg_wire_size,
3115 				      q_vector->tx.total_bytes / packets);
3116 
3117 	/* if avg_wire_size isn't set no work was done */
3118 	if (!avg_wire_size)
3119 		goto clear_counts;
3120 
3121 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3122 	avg_wire_size += 24;
3123 
3124 	/* Don't starve jumbo frames */
3125 	avg_wire_size = min(avg_wire_size, 3000);
3126 
3127 	/* Give a little boost to mid-size frames */
3128 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3129 		new_val = avg_wire_size / 3;
3130 	else
3131 		new_val = avg_wire_size / 2;
3132 
3133 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3134 	if (new_val < IGC_20K_ITR &&
3135 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3136 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3137 		new_val = IGC_20K_ITR;
3138 
3139 set_itr_val:
3140 	if (new_val != q_vector->itr_val) {
3141 		q_vector->itr_val = new_val;
3142 		q_vector->set_itr = 1;
3143 	}
3144 clear_counts:
3145 	q_vector->rx.total_bytes = 0;
3146 	q_vector->rx.total_packets = 0;
3147 	q_vector->tx.total_bytes = 0;
3148 	q_vector->tx.total_packets = 0;
3149 }
3150 
3151 /**
3152  * igc_update_itr - update the dynamic ITR value based on statistics
3153  * @q_vector: pointer to q_vector
3154  * @ring_container: ring info to update the itr for
3155  *
3156  * Stores a new ITR value based on packets and byte
3157  * counts during the last interrupt.  The advantage of per interrupt
3158  * computation is faster updates and more accurate ITR for the current
3159  * traffic pattern.  Constants in this function were computed
3160  * based on theoretical maximum wire speed and thresholds were set based
3161  * on testing data as well as attempting to minimize response time
3162  * while increasing bulk throughput.
3163  * NOTE: These calculations are only valid when operating in a single-
3164  * queue environment.
3165  */
3166 static void igc_update_itr(struct igc_q_vector *q_vector,
3167 			   struct igc_ring_container *ring_container)
3168 {
3169 	unsigned int packets = ring_container->total_packets;
3170 	unsigned int bytes = ring_container->total_bytes;
3171 	u8 itrval = ring_container->itr;
3172 
3173 	/* no packets, exit with status unchanged */
3174 	if (packets == 0)
3175 		return;
3176 
3177 	switch (itrval) {
3178 	case lowest_latency:
3179 		/* handle TSO and jumbo frames */
3180 		if (bytes / packets > 8000)
3181 			itrval = bulk_latency;
3182 		else if ((packets < 5) && (bytes > 512))
3183 			itrval = low_latency;
3184 		break;
3185 	case low_latency:  /* 50 usec aka 20000 ints/s */
3186 		if (bytes > 10000) {
3187 			/* this if handles the TSO accounting */
3188 			if (bytes / packets > 8000)
3189 				itrval = bulk_latency;
3190 			else if ((packets < 10) || ((bytes / packets) > 1200))
3191 				itrval = bulk_latency;
3192 			else if ((packets > 35))
3193 				itrval = lowest_latency;
3194 		} else if (bytes / packets > 2000) {
3195 			itrval = bulk_latency;
3196 		} else if (packets <= 2 && bytes < 512) {
3197 			itrval = lowest_latency;
3198 		}
3199 		break;
3200 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3201 		if (bytes > 25000) {
3202 			if (packets > 35)
3203 				itrval = low_latency;
3204 		} else if (bytes < 1500) {
3205 			itrval = low_latency;
3206 		}
3207 		break;
3208 	}
3209 
3210 	/* clear work counters since we have the values we need */
3211 	ring_container->total_bytes = 0;
3212 	ring_container->total_packets = 0;
3213 
3214 	/* write updated itr to ring container */
3215 	ring_container->itr = itrval;
3216 }
3217 
3218 /**
3219  * igc_intr_msi - Interrupt Handler
3220  * @irq: interrupt number
3221  * @data: pointer to a network interface device structure
3222  */
3223 static irqreturn_t igc_intr_msi(int irq, void *data)
3224 {
3225 	struct igc_adapter *adapter = data;
3226 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3227 	struct igc_hw *hw = &adapter->hw;
3228 	/* read ICR disables interrupts using IAM */
3229 	u32 icr = rd32(IGC_ICR);
3230 
3231 	igc_write_itr(q_vector);
3232 
3233 	if (icr & IGC_ICR_DRSTA)
3234 		schedule_work(&adapter->reset_task);
3235 
3236 	if (icr & IGC_ICR_DOUTSYNC) {
3237 		/* HW is reporting DMA is out of sync */
3238 		adapter->stats.doosync++;
3239 	}
3240 
3241 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3242 		hw->mac.get_link_status = 1;
3243 		if (!test_bit(__IGC_DOWN, &adapter->state))
3244 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3245 	}
3246 
3247 	napi_schedule(&q_vector->napi);
3248 
3249 	return IRQ_HANDLED;
3250 }
3251 
3252 /**
3253  * igc_intr - Legacy Interrupt Handler
3254  * @irq: interrupt number
3255  * @data: pointer to a network interface device structure
3256  */
3257 static irqreturn_t igc_intr(int irq, void *data)
3258 {
3259 	struct igc_adapter *adapter = data;
3260 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3261 	struct igc_hw *hw = &adapter->hw;
3262 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3263 	 * need for the IMC write
3264 	 */
3265 	u32 icr = rd32(IGC_ICR);
3266 
3267 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3268 	 * not set, then the adapter didn't send an interrupt
3269 	 */
3270 	if (!(icr & IGC_ICR_INT_ASSERTED))
3271 		return IRQ_NONE;
3272 
3273 	igc_write_itr(q_vector);
3274 
3275 	if (icr & IGC_ICR_DRSTA)
3276 		schedule_work(&adapter->reset_task);
3277 
3278 	if (icr & IGC_ICR_DOUTSYNC) {
3279 		/* HW is reporting DMA is out of sync */
3280 		adapter->stats.doosync++;
3281 	}
3282 
3283 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3284 		hw->mac.get_link_status = 1;
3285 		/* guard against interrupt when we're going down */
3286 		if (!test_bit(__IGC_DOWN, &adapter->state))
3287 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3288 	}
3289 
3290 	napi_schedule(&q_vector->napi);
3291 
3292 	return IRQ_HANDLED;
3293 }
3294 
3295 static void igc_set_itr(struct igc_q_vector *q_vector)
3296 {
3297 	struct igc_adapter *adapter = q_vector->adapter;
3298 	u32 new_itr = q_vector->itr_val;
3299 	u8 current_itr = 0;
3300 
3301 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3302 	switch (adapter->link_speed) {
3303 	case SPEED_10:
3304 	case SPEED_100:
3305 		current_itr = 0;
3306 		new_itr = IGC_4K_ITR;
3307 		goto set_itr_now;
3308 	default:
3309 		break;
3310 	}
3311 
3312 	igc_update_itr(q_vector, &q_vector->tx);
3313 	igc_update_itr(q_vector, &q_vector->rx);
3314 
3315 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3316 
3317 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3318 	if (current_itr == lowest_latency &&
3319 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3320 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3321 		current_itr = low_latency;
3322 
3323 	switch (current_itr) {
3324 	/* counts and packets in update_itr are dependent on these numbers */
3325 	case lowest_latency:
3326 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3327 		break;
3328 	case low_latency:
3329 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3330 		break;
3331 	case bulk_latency:
3332 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3333 		break;
3334 	default:
3335 		break;
3336 	}
3337 
3338 set_itr_now:
3339 	if (new_itr != q_vector->itr_val) {
3340 		/* this attempts to bias the interrupt rate towards Bulk
3341 		 * by adding intermediate steps when interrupt rate is
3342 		 * increasing
3343 		 */
3344 		new_itr = new_itr > q_vector->itr_val ?
3345 			  max((new_itr * q_vector->itr_val) /
3346 			  (new_itr + (q_vector->itr_val >> 2)),
3347 			  new_itr) : new_itr;
3348 		/* Don't write the value here; it resets the adapter's
3349 		 * internal timer, and causes us to delay far longer than
3350 		 * we should between interrupts.  Instead, we write the ITR
3351 		 * value at the beginning of the next interrupt so the timing
3352 		 * ends up being correct.
3353 		 */
3354 		q_vector->itr_val = new_itr;
3355 		q_vector->set_itr = 1;
3356 	}
3357 }
3358 
3359 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3360 {
3361 	struct igc_adapter *adapter = q_vector->adapter;
3362 	struct igc_hw *hw = &adapter->hw;
3363 
3364 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3365 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3366 		if (adapter->num_q_vectors == 1)
3367 			igc_set_itr(q_vector);
3368 		else
3369 			igc_update_ring_itr(q_vector);
3370 	}
3371 
3372 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3373 		if (adapter->msix_entries)
3374 			wr32(IGC_EIMS, q_vector->eims_value);
3375 		else
3376 			igc_irq_enable(adapter);
3377 	}
3378 }
3379 
3380 /**
3381  * igc_poll - NAPI Rx polling callback
3382  * @napi: napi polling structure
3383  * @budget: count of how many packets we should handle
3384  */
3385 static int igc_poll(struct napi_struct *napi, int budget)
3386 {
3387 	struct igc_q_vector *q_vector = container_of(napi,
3388 						     struct igc_q_vector,
3389 						     napi);
3390 	bool clean_complete = true;
3391 	int work_done = 0;
3392 
3393 	if (q_vector->tx.ring)
3394 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3395 
3396 	if (q_vector->rx.ring) {
3397 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3398 
3399 		work_done += cleaned;
3400 		if (cleaned >= budget)
3401 			clean_complete = false;
3402 	}
3403 
3404 	/* If all work not completed, return budget and keep polling */
3405 	if (!clean_complete)
3406 		return budget;
3407 
3408 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3409 	 * poll us due to busy-polling
3410 	 */
3411 	if (likely(napi_complete_done(napi, work_done)))
3412 		igc_ring_irq_enable(q_vector);
3413 
3414 	return min(work_done, budget - 1);
3415 }
3416 
3417 /**
3418  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3419  * @adapter: Pointer to adapter structure
3420  *
3421  * Attempt to configure interrupts using the best available
3422  * capabilities of the hardware and kernel.
3423  */
3424 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3425 					 bool msix)
3426 {
3427 	int numvecs, i;
3428 	int err;
3429 
3430 	if (!msix)
3431 		goto msi_only;
3432 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3433 
3434 	/* Number of supported queues. */
3435 	adapter->num_rx_queues = adapter->rss_queues;
3436 
3437 	adapter->num_tx_queues = adapter->rss_queues;
3438 
3439 	/* start with one vector for every Rx queue */
3440 	numvecs = adapter->num_rx_queues;
3441 
3442 	/* if Tx handler is separate add 1 for every Tx queue */
3443 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3444 		numvecs += adapter->num_tx_queues;
3445 
3446 	/* store the number of vectors reserved for queues */
3447 	adapter->num_q_vectors = numvecs;
3448 
3449 	/* add 1 vector for link status interrupts */
3450 	numvecs++;
3451 
3452 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3453 					GFP_KERNEL);
3454 
3455 	if (!adapter->msix_entries)
3456 		return;
3457 
3458 	/* populate entry values */
3459 	for (i = 0; i < numvecs; i++)
3460 		adapter->msix_entries[i].entry = i;
3461 
3462 	err = pci_enable_msix_range(adapter->pdev,
3463 				    adapter->msix_entries,
3464 				    numvecs,
3465 				    numvecs);
3466 	if (err > 0)
3467 		return;
3468 
3469 	kfree(adapter->msix_entries);
3470 	adapter->msix_entries = NULL;
3471 
3472 	igc_reset_interrupt_capability(adapter);
3473 
3474 msi_only:
3475 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3476 
3477 	adapter->rss_queues = 1;
3478 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3479 	adapter->num_rx_queues = 1;
3480 	adapter->num_tx_queues = 1;
3481 	adapter->num_q_vectors = 1;
3482 	if (!pci_enable_msi(adapter->pdev))
3483 		adapter->flags |= IGC_FLAG_HAS_MSI;
3484 }
3485 
3486 static void igc_add_ring(struct igc_ring *ring,
3487 			 struct igc_ring_container *head)
3488 {
3489 	head->ring = ring;
3490 	head->count++;
3491 }
3492 
3493 /**
3494  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3495  * @adapter: board private structure to initialize
3496  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3497  * @v_idx: index of vector in adapter struct
3498  * @txr_count: total number of Tx rings to allocate
3499  * @txr_idx: index of first Tx ring to allocate
3500  * @rxr_count: total number of Rx rings to allocate
3501  * @rxr_idx: index of first Rx ring to allocate
3502  *
3503  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3504  */
3505 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3506 			      unsigned int v_count, unsigned int v_idx,
3507 			      unsigned int txr_count, unsigned int txr_idx,
3508 			      unsigned int rxr_count, unsigned int rxr_idx)
3509 {
3510 	struct igc_q_vector *q_vector;
3511 	struct igc_ring *ring;
3512 	int ring_count;
3513 
3514 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3515 	if (txr_count > 1 || rxr_count > 1)
3516 		return -ENOMEM;
3517 
3518 	ring_count = txr_count + rxr_count;
3519 
3520 	/* allocate q_vector and rings */
3521 	q_vector = adapter->q_vector[v_idx];
3522 	if (!q_vector)
3523 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3524 				   GFP_KERNEL);
3525 	else
3526 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3527 	if (!q_vector)
3528 		return -ENOMEM;
3529 
3530 	/* initialize NAPI */
3531 	netif_napi_add(adapter->netdev, &q_vector->napi,
3532 		       igc_poll, 64);
3533 
3534 	/* tie q_vector and adapter together */
3535 	adapter->q_vector[v_idx] = q_vector;
3536 	q_vector->adapter = adapter;
3537 
3538 	/* initialize work limits */
3539 	q_vector->tx.work_limit = adapter->tx_work_limit;
3540 
3541 	/* initialize ITR configuration */
3542 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3543 	q_vector->itr_val = IGC_START_ITR;
3544 
3545 	/* initialize pointer to rings */
3546 	ring = q_vector->ring;
3547 
3548 	/* initialize ITR */
3549 	if (rxr_count) {
3550 		/* rx or rx/tx vector */
3551 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3552 			q_vector->itr_val = adapter->rx_itr_setting;
3553 	} else {
3554 		/* tx only vector */
3555 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3556 			q_vector->itr_val = adapter->tx_itr_setting;
3557 	}
3558 
3559 	if (txr_count) {
3560 		/* assign generic ring traits */
3561 		ring->dev = &adapter->pdev->dev;
3562 		ring->netdev = adapter->netdev;
3563 
3564 		/* configure backlink on ring */
3565 		ring->q_vector = q_vector;
3566 
3567 		/* update q_vector Tx values */
3568 		igc_add_ring(ring, &q_vector->tx);
3569 
3570 		/* apply Tx specific ring traits */
3571 		ring->count = adapter->tx_ring_count;
3572 		ring->queue_index = txr_idx;
3573 
3574 		/* assign ring to adapter */
3575 		adapter->tx_ring[txr_idx] = ring;
3576 
3577 		/* push pointer to next ring */
3578 		ring++;
3579 	}
3580 
3581 	if (rxr_count) {
3582 		/* assign generic ring traits */
3583 		ring->dev = &adapter->pdev->dev;
3584 		ring->netdev = adapter->netdev;
3585 
3586 		/* configure backlink on ring */
3587 		ring->q_vector = q_vector;
3588 
3589 		/* update q_vector Rx values */
3590 		igc_add_ring(ring, &q_vector->rx);
3591 
3592 		/* apply Rx specific ring traits */
3593 		ring->count = adapter->rx_ring_count;
3594 		ring->queue_index = rxr_idx;
3595 
3596 		/* assign ring to adapter */
3597 		adapter->rx_ring[rxr_idx] = ring;
3598 	}
3599 
3600 	return 0;
3601 }
3602 
3603 /**
3604  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3605  * @adapter: board private structure to initialize
3606  *
3607  * We allocate one q_vector per queue interrupt.  If allocation fails we
3608  * return -ENOMEM.
3609  */
3610 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3611 {
3612 	int rxr_remaining = adapter->num_rx_queues;
3613 	int txr_remaining = adapter->num_tx_queues;
3614 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3615 	int q_vectors = adapter->num_q_vectors;
3616 	int err;
3617 
3618 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3619 		for (; rxr_remaining; v_idx++) {
3620 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3621 						 0, 0, 1, rxr_idx);
3622 
3623 			if (err)
3624 				goto err_out;
3625 
3626 			/* update counts and index */
3627 			rxr_remaining--;
3628 			rxr_idx++;
3629 		}
3630 	}
3631 
3632 	for (; v_idx < q_vectors; v_idx++) {
3633 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3634 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3635 
3636 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3637 					 tqpv, txr_idx, rqpv, rxr_idx);
3638 
3639 		if (err)
3640 			goto err_out;
3641 
3642 		/* update counts and index */
3643 		rxr_remaining -= rqpv;
3644 		txr_remaining -= tqpv;
3645 		rxr_idx++;
3646 		txr_idx++;
3647 	}
3648 
3649 	return 0;
3650 
3651 err_out:
3652 	adapter->num_tx_queues = 0;
3653 	adapter->num_rx_queues = 0;
3654 	adapter->num_q_vectors = 0;
3655 
3656 	while (v_idx--)
3657 		igc_free_q_vector(adapter, v_idx);
3658 
3659 	return -ENOMEM;
3660 }
3661 
3662 /**
3663  * igc_cache_ring_register - Descriptor ring to register mapping
3664  * @adapter: board private structure to initialize
3665  *
3666  * Once we know the feature-set enabled for the device, we'll cache
3667  * the register offset the descriptor ring is assigned to.
3668  */
3669 static void igc_cache_ring_register(struct igc_adapter *adapter)
3670 {
3671 	int i = 0, j = 0;
3672 
3673 	switch (adapter->hw.mac.type) {
3674 	case igc_i225:
3675 	/* Fall through */
3676 	default:
3677 		for (; i < adapter->num_rx_queues; i++)
3678 			adapter->rx_ring[i]->reg_idx = i;
3679 		for (; j < adapter->num_tx_queues; j++)
3680 			adapter->tx_ring[j]->reg_idx = j;
3681 		break;
3682 	}
3683 }
3684 
3685 /**
3686  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3687  * @adapter: Pointer to adapter structure
3688  *
3689  * This function initializes the interrupts and allocates all of the queues.
3690  */
3691 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3692 {
3693 	struct pci_dev *pdev = adapter->pdev;
3694 	int err = 0;
3695 
3696 	igc_set_interrupt_capability(adapter, msix);
3697 
3698 	err = igc_alloc_q_vectors(adapter);
3699 	if (err) {
3700 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3701 		goto err_alloc_q_vectors;
3702 	}
3703 
3704 	igc_cache_ring_register(adapter);
3705 
3706 	return 0;
3707 
3708 err_alloc_q_vectors:
3709 	igc_reset_interrupt_capability(adapter);
3710 	return err;
3711 }
3712 
3713 static void igc_free_irq(struct igc_adapter *adapter)
3714 {
3715 	if (adapter->msix_entries) {
3716 		int vector = 0, i;
3717 
3718 		free_irq(adapter->msix_entries[vector++].vector, adapter);
3719 
3720 		for (i = 0; i < adapter->num_q_vectors; i++)
3721 			free_irq(adapter->msix_entries[vector++].vector,
3722 				 adapter->q_vector[i]);
3723 	} else {
3724 		free_irq(adapter->pdev->irq, adapter);
3725 	}
3726 }
3727 
3728 /**
3729  * igc_irq_disable - Mask off interrupt generation on the NIC
3730  * @adapter: board private structure
3731  */
3732 static void igc_irq_disable(struct igc_adapter *adapter)
3733 {
3734 	struct igc_hw *hw = &adapter->hw;
3735 
3736 	if (adapter->msix_entries) {
3737 		u32 regval = rd32(IGC_EIAM);
3738 
3739 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3740 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3741 		regval = rd32(IGC_EIAC);
3742 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3743 	}
3744 
3745 	wr32(IGC_IAM, 0);
3746 	wr32(IGC_IMC, ~0);
3747 	wrfl();
3748 
3749 	if (adapter->msix_entries) {
3750 		int vector = 0, i;
3751 
3752 		synchronize_irq(adapter->msix_entries[vector++].vector);
3753 
3754 		for (i = 0; i < adapter->num_q_vectors; i++)
3755 			synchronize_irq(adapter->msix_entries[vector++].vector);
3756 	} else {
3757 		synchronize_irq(adapter->pdev->irq);
3758 	}
3759 }
3760 
3761 /**
3762  * igc_irq_enable - Enable default interrupt generation settings
3763  * @adapter: board private structure
3764  */
3765 static void igc_irq_enable(struct igc_adapter *adapter)
3766 {
3767 	struct igc_hw *hw = &adapter->hw;
3768 
3769 	if (adapter->msix_entries) {
3770 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3771 		u32 regval = rd32(IGC_EIAC);
3772 
3773 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3774 		regval = rd32(IGC_EIAM);
3775 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3776 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3777 		wr32(IGC_IMS, ims);
3778 	} else {
3779 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3780 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3781 	}
3782 }
3783 
3784 /**
3785  * igc_request_irq - initialize interrupts
3786  * @adapter: Pointer to adapter structure
3787  *
3788  * Attempts to configure interrupts using the best available
3789  * capabilities of the hardware and kernel.
3790  */
3791 static int igc_request_irq(struct igc_adapter *adapter)
3792 {
3793 	struct net_device *netdev = adapter->netdev;
3794 	struct pci_dev *pdev = adapter->pdev;
3795 	int err = 0;
3796 
3797 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3798 		err = igc_request_msix(adapter);
3799 		if (!err)
3800 			goto request_done;
3801 		/* fall back to MSI */
3802 		igc_free_all_tx_resources(adapter);
3803 		igc_free_all_rx_resources(adapter);
3804 
3805 		igc_clear_interrupt_scheme(adapter);
3806 		err = igc_init_interrupt_scheme(adapter, false);
3807 		if (err)
3808 			goto request_done;
3809 		igc_setup_all_tx_resources(adapter);
3810 		igc_setup_all_rx_resources(adapter);
3811 		igc_configure(adapter);
3812 	}
3813 
3814 	igc_assign_vector(adapter->q_vector[0], 0);
3815 
3816 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
3817 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
3818 				  netdev->name, adapter);
3819 		if (!err)
3820 			goto request_done;
3821 
3822 		/* fall back to legacy interrupts */
3823 		igc_reset_interrupt_capability(adapter);
3824 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
3825 	}
3826 
3827 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3828 			  netdev->name, adapter);
3829 
3830 	if (err)
3831 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
3832 			err);
3833 
3834 request_done:
3835 	return err;
3836 }
3837 
3838 static void igc_write_itr(struct igc_q_vector *q_vector)
3839 {
3840 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3841 
3842 	if (!q_vector->set_itr)
3843 		return;
3844 
3845 	if (!itr_val)
3846 		itr_val = IGC_ITR_VAL_MASK;
3847 
3848 	itr_val |= IGC_EITR_CNT_IGNR;
3849 
3850 	writel(itr_val, q_vector->itr_register);
3851 	q_vector->set_itr = 0;
3852 }
3853 
3854 /**
3855  * igc_open - Called when a network interface is made active
3856  * @netdev: network interface device structure
3857  *
3858  * Returns 0 on success, negative value on failure
3859  *
3860  * The open entry point is called when a network interface is made
3861  * active by the system (IFF_UP).  At this point all resources needed
3862  * for transmit and receive operations are allocated, the interrupt
3863  * handler is registered with the OS, the watchdog timer is started,
3864  * and the stack is notified that the interface is ready.
3865  */
3866 static int __igc_open(struct net_device *netdev, bool resuming)
3867 {
3868 	struct igc_adapter *adapter = netdev_priv(netdev);
3869 	struct igc_hw *hw = &adapter->hw;
3870 	int err = 0;
3871 	int i = 0;
3872 
3873 	/* disallow open during test */
3874 
3875 	if (test_bit(__IGC_TESTING, &adapter->state)) {
3876 		WARN_ON(resuming);
3877 		return -EBUSY;
3878 	}
3879 
3880 	netif_carrier_off(netdev);
3881 
3882 	/* allocate transmit descriptors */
3883 	err = igc_setup_all_tx_resources(adapter);
3884 	if (err)
3885 		goto err_setup_tx;
3886 
3887 	/* allocate receive descriptors */
3888 	err = igc_setup_all_rx_resources(adapter);
3889 	if (err)
3890 		goto err_setup_rx;
3891 
3892 	igc_power_up_link(adapter);
3893 
3894 	igc_configure(adapter);
3895 
3896 	err = igc_request_irq(adapter);
3897 	if (err)
3898 		goto err_req_irq;
3899 
3900 	/* Notify the stack of the actual queue counts. */
3901 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3902 	if (err)
3903 		goto err_set_queues;
3904 
3905 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3906 	if (err)
3907 		goto err_set_queues;
3908 
3909 	clear_bit(__IGC_DOWN, &adapter->state);
3910 
3911 	for (i = 0; i < adapter->num_q_vectors; i++)
3912 		napi_enable(&adapter->q_vector[i]->napi);
3913 
3914 	/* Clear any pending interrupts. */
3915 	rd32(IGC_ICR);
3916 	igc_irq_enable(adapter);
3917 
3918 	netif_tx_start_all_queues(netdev);
3919 
3920 	/* start the watchdog. */
3921 	hw->mac.get_link_status = 1;
3922 	schedule_work(&adapter->watchdog_task);
3923 
3924 	return IGC_SUCCESS;
3925 
3926 err_set_queues:
3927 	igc_free_irq(adapter);
3928 err_req_irq:
3929 	igc_release_hw_control(adapter);
3930 	igc_power_down_link(adapter);
3931 	igc_free_all_rx_resources(adapter);
3932 err_setup_rx:
3933 	igc_free_all_tx_resources(adapter);
3934 err_setup_tx:
3935 	igc_reset(adapter);
3936 
3937 	return err;
3938 }
3939 
3940 static int igc_open(struct net_device *netdev)
3941 {
3942 	return __igc_open(netdev, false);
3943 }
3944 
3945 /**
3946  * igc_close - Disables a network interface
3947  * @netdev: network interface device structure
3948  *
3949  * Returns 0, this is not allowed to fail
3950  *
3951  * The close entry point is called when an interface is de-activated
3952  * by the OS.  The hardware is still under the driver's control, but
3953  * needs to be disabled.  A global MAC reset is issued to stop the
3954  * hardware, and all transmit and receive resources are freed.
3955  */
3956 static int __igc_close(struct net_device *netdev, bool suspending)
3957 {
3958 	struct igc_adapter *adapter = netdev_priv(netdev);
3959 
3960 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3961 
3962 	igc_down(adapter);
3963 
3964 	igc_release_hw_control(adapter);
3965 
3966 	igc_free_irq(adapter);
3967 
3968 	igc_free_all_tx_resources(adapter);
3969 	igc_free_all_rx_resources(adapter);
3970 
3971 	return 0;
3972 }
3973 
3974 static int igc_close(struct net_device *netdev)
3975 {
3976 	if (netif_device_present(netdev) || netdev->dismantle)
3977 		return __igc_close(netdev, false);
3978 	return 0;
3979 }
3980 
3981 static const struct net_device_ops igc_netdev_ops = {
3982 	.ndo_open		= igc_open,
3983 	.ndo_stop		= igc_close,
3984 	.ndo_start_xmit		= igc_xmit_frame,
3985 	.ndo_set_mac_address	= igc_set_mac,
3986 	.ndo_change_mtu		= igc_change_mtu,
3987 	.ndo_get_stats		= igc_get_stats,
3988 	.ndo_fix_features	= igc_fix_features,
3989 	.ndo_set_features	= igc_set_features,
3990 	.ndo_features_check	= igc_features_check,
3991 };
3992 
3993 /* PCIe configuration access */
3994 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3995 {
3996 	struct igc_adapter *adapter = hw->back;
3997 
3998 	pci_read_config_word(adapter->pdev, reg, value);
3999 }
4000 
4001 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4002 {
4003 	struct igc_adapter *adapter = hw->back;
4004 
4005 	pci_write_config_word(adapter->pdev, reg, *value);
4006 }
4007 
4008 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4009 {
4010 	struct igc_adapter *adapter = hw->back;
4011 
4012 	if (!pci_is_pcie(adapter->pdev))
4013 		return -IGC_ERR_CONFIG;
4014 
4015 	pcie_capability_read_word(adapter->pdev, reg, value);
4016 
4017 	return IGC_SUCCESS;
4018 }
4019 
4020 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4021 {
4022 	struct igc_adapter *adapter = hw->back;
4023 
4024 	if (!pci_is_pcie(adapter->pdev))
4025 		return -IGC_ERR_CONFIG;
4026 
4027 	pcie_capability_write_word(adapter->pdev, reg, *value);
4028 
4029 	return IGC_SUCCESS;
4030 }
4031 
4032 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4033 {
4034 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4035 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4036 	u32 value = 0;
4037 
4038 	if (IGC_REMOVED(hw_addr))
4039 		return ~value;
4040 
4041 	value = readl(&hw_addr[reg]);
4042 
4043 	/* reads should not return all F's */
4044 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4045 		struct net_device *netdev = igc->netdev;
4046 
4047 		hw->hw_addr = NULL;
4048 		netif_device_detach(netdev);
4049 		netdev_err(netdev, "PCIe link lost, device now detached\n");
4050 		WARN(1, "igc: Failed to read reg 0x%x!\n", reg);
4051 	}
4052 
4053 	return value;
4054 }
4055 
4056 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4057 {
4058 	struct pci_dev *pdev = adapter->pdev;
4059 	struct igc_mac_info *mac = &adapter->hw.mac;
4060 
4061 	mac->autoneg = 0;
4062 
4063 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4064 	 * for the switch() below to work
4065 	 */
4066 	if ((spd & 1) || (dplx & ~1))
4067 		goto err_inval;
4068 
4069 	switch (spd + dplx) {
4070 	case SPEED_10 + DUPLEX_HALF:
4071 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4072 		break;
4073 	case SPEED_10 + DUPLEX_FULL:
4074 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4075 		break;
4076 	case SPEED_100 + DUPLEX_HALF:
4077 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4078 		break;
4079 	case SPEED_100 + DUPLEX_FULL:
4080 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4081 		break;
4082 	case SPEED_1000 + DUPLEX_FULL:
4083 		mac->autoneg = 1;
4084 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4085 		break;
4086 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4087 		goto err_inval;
4088 	case SPEED_2500 + DUPLEX_FULL:
4089 		mac->autoneg = 1;
4090 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4091 		break;
4092 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
4093 	default:
4094 		goto err_inval;
4095 	}
4096 
4097 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4098 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
4099 
4100 	return 0;
4101 
4102 err_inval:
4103 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
4104 	return -EINVAL;
4105 }
4106 
4107 /**
4108  * igc_probe - Device Initialization Routine
4109  * @pdev: PCI device information struct
4110  * @ent: entry in igc_pci_tbl
4111  *
4112  * Returns 0 on success, negative on failure
4113  *
4114  * igc_probe initializes an adapter identified by a pci_dev structure.
4115  * The OS initialization, configuring the adapter private structure,
4116  * and a hardware reset occur.
4117  */
4118 static int igc_probe(struct pci_dev *pdev,
4119 		     const struct pci_device_id *ent)
4120 {
4121 	struct igc_adapter *adapter;
4122 	struct net_device *netdev;
4123 	struct igc_hw *hw;
4124 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4125 	int err;
4126 
4127 	err = pci_enable_device_mem(pdev);
4128 	if (err)
4129 		return err;
4130 
4131 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4132 	if (!err) {
4133 		err = dma_set_coherent_mask(&pdev->dev,
4134 					    DMA_BIT_MASK(64));
4135 	} else {
4136 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4137 		if (err) {
4138 			err = dma_set_coherent_mask(&pdev->dev,
4139 						    DMA_BIT_MASK(32));
4140 			if (err) {
4141 				dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4142 				goto err_dma;
4143 			}
4144 		}
4145 	}
4146 
4147 	err = pci_request_selected_regions(pdev,
4148 					   pci_select_bars(pdev,
4149 							   IORESOURCE_MEM),
4150 					   igc_driver_name);
4151 	if (err)
4152 		goto err_pci_reg;
4153 
4154 	pci_enable_pcie_error_reporting(pdev);
4155 
4156 	pci_set_master(pdev);
4157 
4158 	err = -ENOMEM;
4159 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4160 				   IGC_MAX_TX_QUEUES);
4161 
4162 	if (!netdev)
4163 		goto err_alloc_etherdev;
4164 
4165 	SET_NETDEV_DEV(netdev, &pdev->dev);
4166 
4167 	pci_set_drvdata(pdev, netdev);
4168 	adapter = netdev_priv(netdev);
4169 	adapter->netdev = netdev;
4170 	adapter->pdev = pdev;
4171 	hw = &adapter->hw;
4172 	hw->back = adapter;
4173 	adapter->port_num = hw->bus.func;
4174 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4175 
4176 	err = pci_save_state(pdev);
4177 	if (err)
4178 		goto err_ioremap;
4179 
4180 	err = -EIO;
4181 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4182 				   pci_resource_len(pdev, 0));
4183 	if (!adapter->io_addr)
4184 		goto err_ioremap;
4185 
4186 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4187 	hw->hw_addr = adapter->io_addr;
4188 
4189 	netdev->netdev_ops = &igc_netdev_ops;
4190 	igc_set_ethtool_ops(netdev);
4191 	netdev->watchdog_timeo = 5 * HZ;
4192 
4193 	netdev->mem_start = pci_resource_start(pdev, 0);
4194 	netdev->mem_end = pci_resource_end(pdev, 0);
4195 
4196 	/* PCI config space info */
4197 	hw->vendor_id = pdev->vendor;
4198 	hw->device_id = pdev->device;
4199 	hw->revision_id = pdev->revision;
4200 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4201 	hw->subsystem_device_id = pdev->subsystem_device;
4202 
4203 	/* Copy the default MAC and PHY function pointers */
4204 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4205 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4206 
4207 	/* Initialize skew-specific constants */
4208 	err = ei->get_invariants(hw);
4209 	if (err)
4210 		goto err_sw_init;
4211 
4212 	/* Add supported features to the features list*/
4213 	netdev->features |= NETIF_F_HW_CSUM;
4214 
4215 	/* setup the private structure */
4216 	err = igc_sw_init(adapter);
4217 	if (err)
4218 		goto err_sw_init;
4219 
4220 	/* copy netdev features into list of user selectable features */
4221 	netdev->hw_features |= NETIF_F_NTUPLE;
4222 	netdev->hw_features |= netdev->features;
4223 
4224 	/* MTU range: 68 - 9216 */
4225 	netdev->min_mtu = ETH_MIN_MTU;
4226 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4227 
4228 	/* before reading the NVM, reset the controller to put the device in a
4229 	 * known good starting state
4230 	 */
4231 	hw->mac.ops.reset_hw(hw);
4232 
4233 	if (igc_get_flash_presence_i225(hw)) {
4234 		if (hw->nvm.ops.validate(hw) < 0) {
4235 			dev_err(&pdev->dev,
4236 				"The NVM Checksum Is Not Valid\n");
4237 			err = -EIO;
4238 			goto err_eeprom;
4239 		}
4240 	}
4241 
4242 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4243 		/* copy the MAC address out of the NVM */
4244 		if (hw->mac.ops.read_mac_addr(hw))
4245 			dev_err(&pdev->dev, "NVM Read Error\n");
4246 	}
4247 
4248 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4249 
4250 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4251 		dev_err(&pdev->dev, "Invalid MAC Address\n");
4252 		err = -EIO;
4253 		goto err_eeprom;
4254 	}
4255 
4256 	/* configure RXPBSIZE and TXPBSIZE */
4257 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4258 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4259 
4260 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4261 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4262 
4263 	INIT_WORK(&adapter->reset_task, igc_reset_task);
4264 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4265 
4266 	/* Initialize link properties that are user-changeable */
4267 	adapter->fc_autoneg = true;
4268 	hw->mac.autoneg = true;
4269 	hw->phy.autoneg_advertised = 0xaf;
4270 
4271 	hw->fc.requested_mode = igc_fc_default;
4272 	hw->fc.current_mode = igc_fc_default;
4273 
4274 	/* reset the hardware with the new settings */
4275 	igc_reset(adapter);
4276 
4277 	/* let the f/w know that the h/w is now under the control of the
4278 	 * driver.
4279 	 */
4280 	igc_get_hw_control(adapter);
4281 
4282 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
4283 	err = register_netdev(netdev);
4284 	if (err)
4285 		goto err_register;
4286 
4287 	 /* carrier off reporting is important to ethtool even BEFORE open */
4288 	netif_carrier_off(netdev);
4289 
4290 	/* Check if Media Autosense is enabled */
4291 	adapter->ei = *ei;
4292 
4293 	/* print pcie link status and MAC address */
4294 	pcie_print_link_status(pdev);
4295 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4296 
4297 	return 0;
4298 
4299 err_register:
4300 	igc_release_hw_control(adapter);
4301 err_eeprom:
4302 	if (!igc_check_reset_block(hw))
4303 		igc_reset_phy(hw);
4304 err_sw_init:
4305 	igc_clear_interrupt_scheme(adapter);
4306 	iounmap(adapter->io_addr);
4307 err_ioremap:
4308 	free_netdev(netdev);
4309 err_alloc_etherdev:
4310 	pci_release_selected_regions(pdev,
4311 				     pci_select_bars(pdev, IORESOURCE_MEM));
4312 err_pci_reg:
4313 err_dma:
4314 	pci_disable_device(pdev);
4315 	return err;
4316 }
4317 
4318 /**
4319  * igc_remove - Device Removal Routine
4320  * @pdev: PCI device information struct
4321  *
4322  * igc_remove is called by the PCI subsystem to alert the driver
4323  * that it should release a PCI device.  This could be caused by a
4324  * Hot-Plug event, or because the driver is going to be removed from
4325  * memory.
4326  */
4327 static void igc_remove(struct pci_dev *pdev)
4328 {
4329 	struct net_device *netdev = pci_get_drvdata(pdev);
4330 	struct igc_adapter *adapter = netdev_priv(netdev);
4331 
4332 	set_bit(__IGC_DOWN, &adapter->state);
4333 
4334 	del_timer_sync(&adapter->watchdog_timer);
4335 	del_timer_sync(&adapter->phy_info_timer);
4336 
4337 	cancel_work_sync(&adapter->reset_task);
4338 	cancel_work_sync(&adapter->watchdog_task);
4339 
4340 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
4341 	 * would have already happened in close and is redundant.
4342 	 */
4343 	igc_release_hw_control(adapter);
4344 	unregister_netdev(netdev);
4345 
4346 	igc_clear_interrupt_scheme(adapter);
4347 	pci_iounmap(pdev, adapter->io_addr);
4348 	pci_release_mem_regions(pdev);
4349 
4350 	kfree(adapter->mac_table);
4351 	kfree(adapter->shadow_vfta);
4352 	free_netdev(netdev);
4353 
4354 	pci_disable_pcie_error_reporting(pdev);
4355 
4356 	pci_disable_device(pdev);
4357 }
4358 
4359 static struct pci_driver igc_driver = {
4360 	.name     = igc_driver_name,
4361 	.id_table = igc_pci_tbl,
4362 	.probe    = igc_probe,
4363 	.remove   = igc_remove,
4364 };
4365 
4366 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4367 			      const u32 max_rss_queues)
4368 {
4369 	/* Determine if we need to pair queues. */
4370 	/* If rss_queues > half of max_rss_queues, pair the queues in
4371 	 * order to conserve interrupts due to limited supply.
4372 	 */
4373 	if (adapter->rss_queues > (max_rss_queues / 2))
4374 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4375 	else
4376 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4377 }
4378 
4379 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4380 {
4381 	unsigned int max_rss_queues;
4382 
4383 	/* Determine the maximum number of RSS queues supported. */
4384 	max_rss_queues = IGC_MAX_RX_QUEUES;
4385 
4386 	return max_rss_queues;
4387 }
4388 
4389 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4390 {
4391 	u32 max_rss_queues;
4392 
4393 	max_rss_queues = igc_get_max_rss_queues(adapter);
4394 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4395 
4396 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4397 }
4398 
4399 /**
4400  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4401  * @adapter: board private structure to initialize
4402  *
4403  * igc_sw_init initializes the Adapter private data structure.
4404  * Fields are initialized based on PCI device information and
4405  * OS network device settings (MTU size).
4406  */
4407 static int igc_sw_init(struct igc_adapter *adapter)
4408 {
4409 	struct net_device *netdev = adapter->netdev;
4410 	struct pci_dev *pdev = adapter->pdev;
4411 	struct igc_hw *hw = &adapter->hw;
4412 
4413 	int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4414 
4415 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4416 
4417 	/* set default ring sizes */
4418 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4419 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4420 
4421 	/* set default ITR values */
4422 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4423 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4424 
4425 	/* set default work limits */
4426 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4427 
4428 	/* adjust max frame to be at least the size of a standard frame */
4429 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4430 				VLAN_HLEN;
4431 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4432 
4433 	spin_lock_init(&adapter->nfc_lock);
4434 	spin_lock_init(&adapter->stats64_lock);
4435 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4436 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4437 
4438 	adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4439 	if (!adapter->mac_table)
4440 		return -ENOMEM;
4441 
4442 	igc_init_queue_configuration(adapter);
4443 
4444 	/* This call may decrease the number of queues */
4445 	if (igc_init_interrupt_scheme(adapter, true)) {
4446 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4447 		return -ENOMEM;
4448 	}
4449 
4450 	/* Explicitly disable IRQ since the NIC can be in any state. */
4451 	igc_irq_disable(adapter);
4452 
4453 	set_bit(__IGC_DOWN, &adapter->state);
4454 
4455 	return 0;
4456 }
4457 
4458 /**
4459  * igc_reinit_queues - return error
4460  * @adapter: pointer to adapter structure
4461  */
4462 int igc_reinit_queues(struct igc_adapter *adapter)
4463 {
4464 	struct net_device *netdev = adapter->netdev;
4465 	struct pci_dev *pdev = adapter->pdev;
4466 	int err = 0;
4467 
4468 	if (netif_running(netdev))
4469 		igc_close(netdev);
4470 
4471 	igc_reset_interrupt_capability(adapter);
4472 
4473 	if (igc_init_interrupt_scheme(adapter, true)) {
4474 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4475 		return -ENOMEM;
4476 	}
4477 
4478 	if (netif_running(netdev))
4479 		err = igc_open(netdev);
4480 
4481 	return err;
4482 }
4483 
4484 /**
4485  * igc_get_hw_dev - return device
4486  * @hw: pointer to hardware structure
4487  *
4488  * used by hardware layer to print debugging information
4489  */
4490 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4491 {
4492 	struct igc_adapter *adapter = hw->back;
4493 
4494 	return adapter->netdev;
4495 }
4496 
4497 /**
4498  * igc_init_module - Driver Registration Routine
4499  *
4500  * igc_init_module is the first routine called when the driver is
4501  * loaded. All it does is register with the PCI subsystem.
4502  */
4503 static int __init igc_init_module(void)
4504 {
4505 	int ret;
4506 
4507 	pr_info("%s - version %s\n",
4508 		igc_driver_string, igc_driver_version);
4509 
4510 	pr_info("%s\n", igc_copyright);
4511 
4512 	ret = pci_register_driver(&igc_driver);
4513 	return ret;
4514 }
4515 
4516 module_init(igc_init_module);
4517 
4518 /**
4519  * igc_exit_module - Driver Exit Cleanup Routine
4520  *
4521  * igc_exit_module is called just before the driver is removed
4522  * from memory.
4523  */
4524 static void __exit igc_exit_module(void)
4525 {
4526 	pci_unregister_driver(&igc_driver);
4527 }
4528 
4529 module_exit(igc_exit_module);
4530 /* igc_main.c */
4531