1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/tcp.h> 8 #include <linux/udp.h> 9 #include <linux/ip.h> 10 #include <linux/pm_runtime.h> 11 #include <net/pkt_sched.h> 12 #include <linux/bpf_trace.h> 13 #include <net/xdp_sock_drv.h> 14 #include <linux/pci.h> 15 16 #include <net/ipv6.h> 17 18 #include "igc.h" 19 #include "igc_hw.h" 20 #include "igc_tsn.h" 21 #include "igc_xdp.h" 22 23 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 24 25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 26 27 #define IGC_XDP_PASS 0 28 #define IGC_XDP_CONSUMED BIT(0) 29 #define IGC_XDP_TX BIT(1) 30 #define IGC_XDP_REDIRECT BIT(2) 31 32 static int debug = -1; 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 char igc_driver_name[] = "igc"; 41 static const char igc_driver_string[] = DRV_SUMMARY; 42 static const char igc_copyright[] = 43 "Copyright(c) 2018 Intel Corporation."; 44 45 static const struct igc_info *igc_info_tbl[] = { 46 [board_base] = &igc_base_info, 47 }; 48 49 static const struct pci_device_id igc_pci_tbl[] = { 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 66 /* required last entry */ 67 {0, } 68 }; 69 70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct net_device *dev = adapter->netdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 netdev_err(dev, "Error on hardware initialization\n"); 109 110 /* Re-establish EEE setting */ 111 igc_set_eee_i225(hw, true, true, true); 112 113 if (!netif_running(adapter->netdev)) 114 igc_power_down_phy_copper_base(&adapter->hw); 115 116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 117 wr32(IGC_VET, ETH_P_8021Q); 118 119 /* Re-enable PTP, where applicable. */ 120 igc_ptp_reset(adapter); 121 122 /* Re-enable TSN offloading, where applicable. */ 123 igc_tsn_reset(adapter); 124 125 igc_get_phy_info(hw); 126 } 127 128 /** 129 * igc_power_up_link - Power up the phy link 130 * @adapter: address of board private structure 131 */ 132 static void igc_power_up_link(struct igc_adapter *adapter) 133 { 134 igc_reset_phy(&adapter->hw); 135 136 igc_power_up_phy_copper(&adapter->hw); 137 138 igc_setup_link(&adapter->hw); 139 } 140 141 /** 142 * igc_release_hw_control - release control of the h/w to f/w 143 * @adapter: address of board private structure 144 * 145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 146 * For ASF and Pass Through versions of f/w this means that the 147 * driver is no longer loaded. 148 */ 149 static void igc_release_hw_control(struct igc_adapter *adapter) 150 { 151 struct igc_hw *hw = &adapter->hw; 152 u32 ctrl_ext; 153 154 if (!pci_device_is_present(adapter->pdev)) 155 return; 156 157 /* Let firmware take over control of h/w */ 158 ctrl_ext = rd32(IGC_CTRL_EXT); 159 wr32(IGC_CTRL_EXT, 160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 161 } 162 163 /** 164 * igc_get_hw_control - get control of the h/w from f/w 165 * @adapter: address of board private structure 166 * 167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 168 * For ASF and Pass Through versions of f/w this means that 169 * the driver is loaded. 170 */ 171 static void igc_get_hw_control(struct igc_adapter *adapter) 172 { 173 struct igc_hw *hw = &adapter->hw; 174 u32 ctrl_ext; 175 176 /* Let firmware know the driver has taken over */ 177 ctrl_ext = rd32(IGC_CTRL_EXT); 178 wr32(IGC_CTRL_EXT, 179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 180 } 181 182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 183 { 184 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 185 dma_unmap_len(buf, len), DMA_TO_DEVICE); 186 187 dma_unmap_len_set(buf, len, 0); 188 } 189 190 /** 191 * igc_clean_tx_ring - Free Tx Buffers 192 * @tx_ring: ring to be cleaned 193 */ 194 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 195 { 196 u16 i = tx_ring->next_to_clean; 197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 198 u32 xsk_frames = 0; 199 200 while (i != tx_ring->next_to_use) { 201 union igc_adv_tx_desc *eop_desc, *tx_desc; 202 203 switch (tx_buffer->type) { 204 case IGC_TX_BUFFER_TYPE_XSK: 205 xsk_frames++; 206 break; 207 case IGC_TX_BUFFER_TYPE_XDP: 208 xdp_return_frame(tx_buffer->xdpf); 209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 210 break; 211 case IGC_TX_BUFFER_TYPE_SKB: 212 dev_kfree_skb_any(tx_buffer->skb); 213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 214 break; 215 default: 216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 217 break; 218 } 219 220 /* check for eop_desc to determine the end of the packet */ 221 eop_desc = tx_buffer->next_to_watch; 222 tx_desc = IGC_TX_DESC(tx_ring, i); 223 224 /* unmap remaining buffers */ 225 while (tx_desc != eop_desc) { 226 tx_buffer++; 227 tx_desc++; 228 i++; 229 if (unlikely(i == tx_ring->count)) { 230 i = 0; 231 tx_buffer = tx_ring->tx_buffer_info; 232 tx_desc = IGC_TX_DESC(tx_ring, 0); 233 } 234 235 /* unmap any remaining paged data */ 236 if (dma_unmap_len(tx_buffer, len)) 237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 238 } 239 240 tx_buffer->next_to_watch = NULL; 241 242 /* move us one more past the eop_desc for start of next pkt */ 243 tx_buffer++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 } 249 } 250 251 if (tx_ring->xsk_pool && xsk_frames) 252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 253 254 /* reset BQL for queue */ 255 netdev_tx_reset_queue(txring_txq(tx_ring)); 256 257 /* Zero out the buffer ring */ 258 memset(tx_ring->tx_buffer_info, 0, 259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count); 260 261 /* Zero out the descriptor ring */ 262 memset(tx_ring->desc, 0, tx_ring->size); 263 264 /* reset next_to_use and next_to_clean */ 265 tx_ring->next_to_use = 0; 266 tx_ring->next_to_clean = 0; 267 } 268 269 /** 270 * igc_free_tx_resources - Free Tx Resources per Queue 271 * @tx_ring: Tx descriptor ring for a specific queue 272 * 273 * Free all transmit software resources 274 */ 275 void igc_free_tx_resources(struct igc_ring *tx_ring) 276 { 277 igc_disable_tx_ring(tx_ring); 278 279 vfree(tx_ring->tx_buffer_info); 280 tx_ring->tx_buffer_info = NULL; 281 282 /* if not set, then don't free */ 283 if (!tx_ring->desc) 284 return; 285 286 dma_free_coherent(tx_ring->dev, tx_ring->size, 287 tx_ring->desc, tx_ring->dma); 288 289 tx_ring->desc = NULL; 290 } 291 292 /** 293 * igc_free_all_tx_resources - Free Tx Resources for All Queues 294 * @adapter: board private structure 295 * 296 * Free all transmit software resources 297 */ 298 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 299 { 300 int i; 301 302 for (i = 0; i < adapter->num_tx_queues; i++) 303 igc_free_tx_resources(adapter->tx_ring[i]); 304 } 305 306 /** 307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 308 * @adapter: board private structure 309 */ 310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 311 { 312 int i; 313 314 for (i = 0; i < adapter->num_tx_queues; i++) 315 if (adapter->tx_ring[i]) 316 igc_clean_tx_ring(adapter->tx_ring[i]); 317 } 318 319 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 320 { 321 struct igc_hw *hw = &ring->q_vector->adapter->hw; 322 u8 idx = ring->reg_idx; 323 u32 txdctl; 324 325 txdctl = rd32(IGC_TXDCTL(idx)); 326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 327 txdctl |= IGC_TXDCTL_SWFLUSH; 328 wr32(IGC_TXDCTL(idx), txdctl); 329 } 330 331 /** 332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation 333 * @adapter: board private structure 334 */ 335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter) 336 { 337 int i; 338 339 for (i = 0; i < adapter->num_tx_queues; i++) { 340 struct igc_ring *tx_ring = adapter->tx_ring[i]; 341 342 igc_disable_tx_ring_hw(tx_ring); 343 } 344 } 345 346 /** 347 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 348 * @tx_ring: tx descriptor ring (for a specific queue) to setup 349 * 350 * Return 0 on success, negative on failure 351 */ 352 int igc_setup_tx_resources(struct igc_ring *tx_ring) 353 { 354 struct net_device *ndev = tx_ring->netdev; 355 struct device *dev = tx_ring->dev; 356 int size = 0; 357 358 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 359 tx_ring->tx_buffer_info = vzalloc(size); 360 if (!tx_ring->tx_buffer_info) 361 goto err; 362 363 /* round up to nearest 4K */ 364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 365 tx_ring->size = ALIGN(tx_ring->size, 4096); 366 367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 368 &tx_ring->dma, GFP_KERNEL); 369 370 if (!tx_ring->desc) 371 goto err; 372 373 tx_ring->next_to_use = 0; 374 tx_ring->next_to_clean = 0; 375 376 return 0; 377 378 err: 379 vfree(tx_ring->tx_buffer_info); 380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 381 return -ENOMEM; 382 } 383 384 /** 385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 386 * @adapter: board private structure 387 * 388 * Return 0 on success, negative on failure 389 */ 390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 391 { 392 struct net_device *dev = adapter->netdev; 393 int i, err = 0; 394 395 for (i = 0; i < adapter->num_tx_queues; i++) { 396 err = igc_setup_tx_resources(adapter->tx_ring[i]); 397 if (err) { 398 netdev_err(dev, "Error on Tx queue %u setup\n", i); 399 for (i--; i >= 0; i--) 400 igc_free_tx_resources(adapter->tx_ring[i]); 401 break; 402 } 403 } 404 405 return err; 406 } 407 408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 409 { 410 u16 i = rx_ring->next_to_clean; 411 412 dev_kfree_skb(rx_ring->skb); 413 rx_ring->skb = NULL; 414 415 /* Free all the Rx ring sk_buffs */ 416 while (i != rx_ring->next_to_alloc) { 417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 418 419 /* Invalidate cache lines that may have been written to by 420 * device so that we avoid corrupting memory. 421 */ 422 dma_sync_single_range_for_cpu(rx_ring->dev, 423 buffer_info->dma, 424 buffer_info->page_offset, 425 igc_rx_bufsz(rx_ring), 426 DMA_FROM_DEVICE); 427 428 /* free resources associated with mapping */ 429 dma_unmap_page_attrs(rx_ring->dev, 430 buffer_info->dma, 431 igc_rx_pg_size(rx_ring), 432 DMA_FROM_DEVICE, 433 IGC_RX_DMA_ATTR); 434 __page_frag_cache_drain(buffer_info->page, 435 buffer_info->pagecnt_bias); 436 437 i++; 438 if (i == rx_ring->count) 439 i = 0; 440 } 441 } 442 443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 444 { 445 struct igc_rx_buffer *bi; 446 u16 i; 447 448 for (i = 0; i < ring->count; i++) { 449 bi = &ring->rx_buffer_info[i]; 450 if (!bi->xdp) 451 continue; 452 453 xsk_buff_free(bi->xdp); 454 bi->xdp = NULL; 455 } 456 } 457 458 /** 459 * igc_clean_rx_ring - Free Rx Buffers per Queue 460 * @ring: ring to free buffers from 461 */ 462 static void igc_clean_rx_ring(struct igc_ring *ring) 463 { 464 if (ring->xsk_pool) 465 igc_clean_rx_ring_xsk_pool(ring); 466 else 467 igc_clean_rx_ring_page_shared(ring); 468 469 clear_ring_uses_large_buffer(ring); 470 471 ring->next_to_alloc = 0; 472 ring->next_to_clean = 0; 473 ring->next_to_use = 0; 474 } 475 476 /** 477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 478 * @adapter: board private structure 479 */ 480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 481 { 482 int i; 483 484 for (i = 0; i < adapter->num_rx_queues; i++) 485 if (adapter->rx_ring[i]) 486 igc_clean_rx_ring(adapter->rx_ring[i]); 487 } 488 489 /** 490 * igc_free_rx_resources - Free Rx Resources 491 * @rx_ring: ring to clean the resources from 492 * 493 * Free all receive software resources 494 */ 495 void igc_free_rx_resources(struct igc_ring *rx_ring) 496 { 497 igc_clean_rx_ring(rx_ring); 498 499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 500 501 vfree(rx_ring->rx_buffer_info); 502 rx_ring->rx_buffer_info = NULL; 503 504 /* if not set, then don't free */ 505 if (!rx_ring->desc) 506 return; 507 508 dma_free_coherent(rx_ring->dev, rx_ring->size, 509 rx_ring->desc, rx_ring->dma); 510 511 rx_ring->desc = NULL; 512 } 513 514 /** 515 * igc_free_all_rx_resources - Free Rx Resources for All Queues 516 * @adapter: board private structure 517 * 518 * Free all receive software resources 519 */ 520 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 521 { 522 int i; 523 524 for (i = 0; i < adapter->num_rx_queues; i++) 525 igc_free_rx_resources(adapter->rx_ring[i]); 526 } 527 528 /** 529 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 530 * @rx_ring: rx descriptor ring (for a specific queue) to setup 531 * 532 * Returns 0 on success, negative on failure 533 */ 534 int igc_setup_rx_resources(struct igc_ring *rx_ring) 535 { 536 struct net_device *ndev = rx_ring->netdev; 537 struct device *dev = rx_ring->dev; 538 u8 index = rx_ring->queue_index; 539 int size, desc_len, res; 540 541 /* XDP RX-queue info */ 542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 545 rx_ring->q_vector->napi.napi_id); 546 if (res < 0) { 547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 548 index); 549 return res; 550 } 551 552 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 553 rx_ring->rx_buffer_info = vzalloc(size); 554 if (!rx_ring->rx_buffer_info) 555 goto err; 556 557 desc_len = sizeof(union igc_adv_rx_desc); 558 559 /* Round up to nearest 4K */ 560 rx_ring->size = rx_ring->count * desc_len; 561 rx_ring->size = ALIGN(rx_ring->size, 4096); 562 563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 564 &rx_ring->dma, GFP_KERNEL); 565 566 if (!rx_ring->desc) 567 goto err; 568 569 rx_ring->next_to_alloc = 0; 570 rx_ring->next_to_clean = 0; 571 rx_ring->next_to_use = 0; 572 573 return 0; 574 575 err: 576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 577 vfree(rx_ring->rx_buffer_info); 578 rx_ring->rx_buffer_info = NULL; 579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 580 return -ENOMEM; 581 } 582 583 /** 584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 585 * (Descriptors) for all queues 586 * @adapter: board private structure 587 * 588 * Return 0 on success, negative on failure 589 */ 590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 591 { 592 struct net_device *dev = adapter->netdev; 593 int i, err = 0; 594 595 for (i = 0; i < adapter->num_rx_queues; i++) { 596 err = igc_setup_rx_resources(adapter->rx_ring[i]); 597 if (err) { 598 netdev_err(dev, "Error on Rx queue %u setup\n", i); 599 for (i--; i >= 0; i--) 600 igc_free_rx_resources(adapter->rx_ring[i]); 601 break; 602 } 603 } 604 605 return err; 606 } 607 608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 609 struct igc_ring *ring) 610 { 611 if (!igc_xdp_is_enabled(adapter) || 612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 613 return NULL; 614 615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 616 } 617 618 /** 619 * igc_configure_rx_ring - Configure a receive ring after Reset 620 * @adapter: board private structure 621 * @ring: receive ring to be configured 622 * 623 * Configure the Rx unit of the MAC after a reset. 624 */ 625 static void igc_configure_rx_ring(struct igc_adapter *adapter, 626 struct igc_ring *ring) 627 { 628 struct igc_hw *hw = &adapter->hw; 629 union igc_adv_rx_desc *rx_desc; 630 int reg_idx = ring->reg_idx; 631 u32 srrctl = 0, rxdctl = 0; 632 u64 rdba = ring->dma; 633 u32 buf_size; 634 635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 637 if (ring->xsk_pool) { 638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 639 MEM_TYPE_XSK_BUFF_POOL, 640 NULL)); 641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 642 } else { 643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 644 MEM_TYPE_PAGE_SHARED, 645 NULL)); 646 } 647 648 if (igc_xdp_is_enabled(adapter)) 649 set_ring_uses_large_buffer(ring); 650 651 /* disable the queue */ 652 wr32(IGC_RXDCTL(reg_idx), 0); 653 654 /* Set DMA base address registers */ 655 wr32(IGC_RDBAL(reg_idx), 656 rdba & 0x00000000ffffffffULL); 657 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 658 wr32(IGC_RDLEN(reg_idx), 659 ring->count * sizeof(union igc_adv_rx_desc)); 660 661 /* initialize head and tail */ 662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 663 wr32(IGC_RDH(reg_idx), 0); 664 writel(0, ring->tail); 665 666 /* reset next-to- use/clean to place SW in sync with hardware */ 667 ring->next_to_clean = 0; 668 ring->next_to_use = 0; 669 670 if (ring->xsk_pool) 671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 672 else if (ring_uses_large_buffer(ring)) 673 buf_size = IGC_RXBUFFER_3072; 674 else 675 buf_size = IGC_RXBUFFER_2048; 676 677 srrctl = rd32(IGC_SRRCTL(reg_idx)); 678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK | 679 IGC_SRRCTL_DESCTYPE_MASK); 680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN); 681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size); 682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 683 684 wr32(IGC_SRRCTL(reg_idx), srrctl); 685 686 rxdctl |= IGC_RX_PTHRESH; 687 rxdctl |= IGC_RX_HTHRESH << 8; 688 rxdctl |= IGC_RX_WTHRESH << 16; 689 690 /* initialize rx_buffer_info */ 691 memset(ring->rx_buffer_info, 0, 692 sizeof(struct igc_rx_buffer) * ring->count); 693 694 /* initialize Rx descriptor 0 */ 695 rx_desc = IGC_RX_DESC(ring, 0); 696 rx_desc->wb.upper.length = 0; 697 698 /* enable receive descriptor fetching */ 699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 700 701 wr32(IGC_RXDCTL(reg_idx), rxdctl); 702 } 703 704 /** 705 * igc_configure_rx - Configure receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 */ 710 static void igc_configure_rx(struct igc_adapter *adapter) 711 { 712 int i; 713 714 /* Setup the HW Rx Head and Tail Descriptor Pointers and 715 * the Base and Length of the Rx Descriptor Ring 716 */ 717 for (i = 0; i < adapter->num_rx_queues; i++) 718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 719 } 720 721 /** 722 * igc_configure_tx_ring - Configure transmit ring after Reset 723 * @adapter: board private structure 724 * @ring: tx ring to configure 725 * 726 * Configure a transmit ring after a reset. 727 */ 728 static void igc_configure_tx_ring(struct igc_adapter *adapter, 729 struct igc_ring *ring) 730 { 731 struct igc_hw *hw = &adapter->hw; 732 int reg_idx = ring->reg_idx; 733 u64 tdba = ring->dma; 734 u32 txdctl = 0; 735 736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 737 738 /* disable the queue */ 739 wr32(IGC_TXDCTL(reg_idx), 0); 740 wrfl(); 741 742 wr32(IGC_TDLEN(reg_idx), 743 ring->count * sizeof(union igc_adv_tx_desc)); 744 wr32(IGC_TDBAL(reg_idx), 745 tdba & 0x00000000ffffffffULL); 746 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 747 748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 749 wr32(IGC_TDH(reg_idx), 0); 750 writel(0, ring->tail); 751 752 txdctl |= IGC_TX_PTHRESH; 753 txdctl |= IGC_TX_HTHRESH << 8; 754 txdctl |= IGC_TX_WTHRESH << 16; 755 756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 757 wr32(IGC_TXDCTL(reg_idx), txdctl); 758 } 759 760 /** 761 * igc_configure_tx - Configure transmit Unit after Reset 762 * @adapter: board private structure 763 * 764 * Configure the Tx unit of the MAC after a reset. 765 */ 766 static void igc_configure_tx(struct igc_adapter *adapter) 767 { 768 int i; 769 770 for (i = 0; i < adapter->num_tx_queues; i++) 771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 772 } 773 774 /** 775 * igc_setup_mrqc - configure the multiple receive queue control registers 776 * @adapter: Board private structure 777 */ 778 static void igc_setup_mrqc(struct igc_adapter *adapter) 779 { 780 struct igc_hw *hw = &adapter->hw; 781 u32 j, num_rx_queues; 782 u32 mrqc, rxcsum; 783 u32 rss_key[10]; 784 785 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 786 for (j = 0; j < 10; j++) 787 wr32(IGC_RSSRK(j), rss_key[j]); 788 789 num_rx_queues = adapter->rss_queues; 790 791 if (adapter->rss_indir_tbl_init != num_rx_queues) { 792 for (j = 0; j < IGC_RETA_SIZE; j++) 793 adapter->rss_indir_tbl[j] = 794 (j * num_rx_queues) / IGC_RETA_SIZE; 795 adapter->rss_indir_tbl_init = num_rx_queues; 796 } 797 igc_write_rss_indir_tbl(adapter); 798 799 /* Disable raw packet checksumming so that RSS hash is placed in 800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 801 * offloads as they are enabled by default 802 */ 803 rxcsum = rd32(IGC_RXCSUM); 804 rxcsum |= IGC_RXCSUM_PCSD; 805 806 /* Enable Receive Checksum Offload for SCTP */ 807 rxcsum |= IGC_RXCSUM_CRCOFL; 808 809 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 810 wr32(IGC_RXCSUM, rxcsum); 811 812 /* Generate RSS hash based on packet types, TCP/UDP 813 * port numbers and/or IPv4/v6 src and dst addresses 814 */ 815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 816 IGC_MRQC_RSS_FIELD_IPV4_TCP | 817 IGC_MRQC_RSS_FIELD_IPV6 | 818 IGC_MRQC_RSS_FIELD_IPV6_TCP | 819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 820 821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 825 826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 827 828 wr32(IGC_MRQC, mrqc); 829 } 830 831 /** 832 * igc_setup_rctl - configure the receive control registers 833 * @adapter: Board private structure 834 */ 835 static void igc_setup_rctl(struct igc_adapter *adapter) 836 { 837 struct igc_hw *hw = &adapter->hw; 838 u32 rctl; 839 840 rctl = rd32(IGC_RCTL); 841 842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 844 845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 847 848 /* enable stripping of CRC. Newer features require 849 * that the HW strips the CRC. 850 */ 851 rctl |= IGC_RCTL_SECRC; 852 853 /* disable store bad packets and clear size bits. */ 854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 855 856 /* enable LPE to allow for reception of jumbo frames */ 857 rctl |= IGC_RCTL_LPE; 858 859 /* disable queue 0 to prevent tail write w/o re-config */ 860 wr32(IGC_RXDCTL(0), 0); 861 862 /* This is useful for sniffing bad packets. */ 863 if (adapter->netdev->features & NETIF_F_RXALL) { 864 /* UPE and MPE will be handled by normal PROMISC logic 865 * in set_rx_mode 866 */ 867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 868 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 870 871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 873 } 874 875 wr32(IGC_RCTL, rctl); 876 } 877 878 /** 879 * igc_setup_tctl - configure the transmit control registers 880 * @adapter: Board private structure 881 */ 882 static void igc_setup_tctl(struct igc_adapter *adapter) 883 { 884 struct igc_hw *hw = &adapter->hw; 885 u32 tctl; 886 887 /* disable queue 0 which icould be enabled by default */ 888 wr32(IGC_TXDCTL(0), 0); 889 890 /* Program the Transmit Control Register */ 891 tctl = rd32(IGC_TCTL); 892 tctl &= ~IGC_TCTL_CT; 893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 895 896 /* Enable transmits */ 897 tctl |= IGC_TCTL_EN; 898 899 wr32(IGC_TCTL, tctl); 900 } 901 902 /** 903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 904 * @adapter: Pointer to adapter where the filter should be set 905 * @index: Filter index 906 * @type: MAC address filter type (source or destination) 907 * @addr: MAC address 908 * @queue: If non-negative, queue assignment feature is enabled and frames 909 * matching the filter are enqueued onto 'queue'. Otherwise, queue 910 * assignment is disabled. 911 */ 912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 913 enum igc_mac_filter_type type, 914 const u8 *addr, int queue) 915 { 916 struct net_device *dev = adapter->netdev; 917 struct igc_hw *hw = &adapter->hw; 918 u32 ral, rah; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 ral = le32_to_cpup((__le32 *)(addr)); 924 rah = le16_to_cpup((__le16 *)(addr + 4)); 925 926 if (type == IGC_MAC_FILTER_TYPE_SRC) { 927 rah &= ~IGC_RAH_ASEL_MASK; 928 rah |= IGC_RAH_ASEL_SRC_ADDR; 929 } 930 931 if (queue >= 0) { 932 rah &= ~IGC_RAH_QSEL_MASK; 933 rah |= (queue << IGC_RAH_QSEL_SHIFT); 934 rah |= IGC_RAH_QSEL_ENABLE; 935 } 936 937 rah |= IGC_RAH_AV; 938 939 wr32(IGC_RAL(index), ral); 940 wr32(IGC_RAH(index), rah); 941 942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 943 } 944 945 /** 946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 947 * @adapter: Pointer to adapter where the filter should be cleared 948 * @index: Filter index 949 */ 950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 951 { 952 struct net_device *dev = adapter->netdev; 953 struct igc_hw *hw = &adapter->hw; 954 955 if (WARN_ON(index >= hw->mac.rar_entry_count)) 956 return; 957 958 wr32(IGC_RAL(index), 0); 959 wr32(IGC_RAH(index), 0); 960 961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 962 } 963 964 /* Set default MAC address for the PF in the first RAR entry */ 965 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 966 { 967 struct net_device *dev = adapter->netdev; 968 u8 *addr = adapter->hw.mac.addr; 969 970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 971 972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 973 } 974 975 /** 976 * igc_set_mac - Change the Ethernet Address of the NIC 977 * @netdev: network interface device structure 978 * @p: pointer to an address structure 979 * 980 * Returns 0 on success, negative on failure 981 */ 982 static int igc_set_mac(struct net_device *netdev, void *p) 983 { 984 struct igc_adapter *adapter = netdev_priv(netdev); 985 struct igc_hw *hw = &adapter->hw; 986 struct sockaddr *addr = p; 987 988 if (!is_valid_ether_addr(addr->sa_data)) 989 return -EADDRNOTAVAIL; 990 991 eth_hw_addr_set(netdev, addr->sa_data); 992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 993 994 /* set the correct pool for the new PF MAC address in entry 0 */ 995 igc_set_default_mac_filter(adapter); 996 997 return 0; 998 } 999 1000 /** 1001 * igc_write_mc_addr_list - write multicast addresses to MTA 1002 * @netdev: network interface device structure 1003 * 1004 * Writes multicast address list to the MTA hash table. 1005 * Returns: -ENOMEM on failure 1006 * 0 on no addresses written 1007 * X on writing X addresses to MTA 1008 **/ 1009 static int igc_write_mc_addr_list(struct net_device *netdev) 1010 { 1011 struct igc_adapter *adapter = netdev_priv(netdev); 1012 struct igc_hw *hw = &adapter->hw; 1013 struct netdev_hw_addr *ha; 1014 u8 *mta_list; 1015 int i; 1016 1017 if (netdev_mc_empty(netdev)) { 1018 /* nothing to program, so clear mc list */ 1019 igc_update_mc_addr_list(hw, NULL, 0); 1020 return 0; 1021 } 1022 1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 1024 if (!mta_list) 1025 return -ENOMEM; 1026 1027 /* The shared function expects a packed array of only addresses. */ 1028 i = 0; 1029 netdev_for_each_mc_addr(ha, netdev) 1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1031 1032 igc_update_mc_addr_list(hw, mta_list, i); 1033 kfree(mta_list); 1034 1035 return netdev_mc_count(netdev); 1036 } 1037 1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1039 bool *first_flag, bool *insert_empty) 1040 { 1041 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1042 ktime_t cycle_time = adapter->cycle_time; 1043 ktime_t base_time = adapter->base_time; 1044 ktime_t now = ktime_get_clocktai(); 1045 ktime_t baset_est, end_of_cycle; 1046 s32 launchtime; 1047 s64 n; 1048 1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1050 1051 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1053 1054 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1055 if (baset_est != ring->last_ff_cycle) { 1056 *first_flag = true; 1057 ring->last_ff_cycle = baset_est; 1058 1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0) 1060 *insert_empty = true; 1061 } 1062 } 1063 1064 /* Introducing a window at end of cycle on which packets 1065 * potentially not honor launchtime. Window of 5us chosen 1066 * considering software update the tail pointer and packets 1067 * are dma'ed to packet buffer. 1068 */ 1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1071 txtime); 1072 1073 ring->last_tx_cycle = end_of_cycle; 1074 1075 launchtime = ktime_sub_ns(txtime, baset_est); 1076 if (launchtime > 0) 1077 div_s64_rem(launchtime, cycle_time, &launchtime); 1078 else 1079 launchtime = 0; 1080 1081 return cpu_to_le32(launchtime); 1082 } 1083 1084 static int igc_init_empty_frame(struct igc_ring *ring, 1085 struct igc_tx_buffer *buffer, 1086 struct sk_buff *skb) 1087 { 1088 unsigned int size; 1089 dma_addr_t dma; 1090 1091 size = skb_headlen(skb); 1092 1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1094 if (dma_mapping_error(ring->dev, dma)) { 1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1096 return -ENOMEM; 1097 } 1098 1099 buffer->skb = skb; 1100 buffer->protocol = 0; 1101 buffer->bytecount = skb->len; 1102 buffer->gso_segs = 1; 1103 buffer->time_stamp = jiffies; 1104 dma_unmap_len_set(buffer, len, skb->len); 1105 dma_unmap_addr_set(buffer, dma, dma); 1106 1107 return 0; 1108 } 1109 1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1111 struct sk_buff *skb, 1112 struct igc_tx_buffer *first) 1113 { 1114 union igc_adv_tx_desc *desc; 1115 u32 cmd_type, olinfo_status; 1116 int err; 1117 1118 if (!igc_desc_unused(ring)) 1119 return -EBUSY; 1120 1121 err = igc_init_empty_frame(ring, first, skb); 1122 if (err) 1123 return err; 1124 1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1127 first->bytecount; 1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1129 1130 desc = IGC_TX_DESC(ring, ring->next_to_use); 1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1134 1135 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1136 1137 first->next_to_watch = desc; 1138 1139 ring->next_to_use++; 1140 if (ring->next_to_use == ring->count) 1141 ring->next_to_use = 0; 1142 1143 return 0; 1144 } 1145 1146 #define IGC_EMPTY_FRAME_SIZE 60 1147 1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1149 __le32 launch_time, bool first_flag, 1150 u32 vlan_macip_lens, u32 type_tucmd, 1151 u32 mss_l4len_idx) 1152 { 1153 struct igc_adv_tx_context_desc *context_desc; 1154 u16 i = tx_ring->next_to_use; 1155 1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1157 1158 i++; 1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1160 1161 /* set bits to identify this as an advanced context descriptor */ 1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1163 1164 /* For i225, context index must be unique per ring. */ 1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1166 mss_l4len_idx |= tx_ring->reg_idx << 4; 1167 1168 if (first_flag) 1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1170 1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1174 context_desc->launch_time = launch_time; 1175 } 1176 1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1178 __le32 launch_time, bool first_flag) 1179 { 1180 struct sk_buff *skb = first->skb; 1181 u32 vlan_macip_lens = 0; 1182 u32 type_tucmd = 0; 1183 1184 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1185 csum_failed: 1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1187 !tx_ring->launchtime_enable) 1188 return; 1189 goto no_csum; 1190 } 1191 1192 switch (skb->csum_offset) { 1193 case offsetof(struct tcphdr, check): 1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1195 fallthrough; 1196 case offsetof(struct udphdr, check): 1197 break; 1198 case offsetof(struct sctphdr, checksum): 1199 /* validate that this is actually an SCTP request */ 1200 if (skb_csum_is_sctp(skb)) { 1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1202 break; 1203 } 1204 fallthrough; 1205 default: 1206 skb_checksum_help(skb); 1207 goto csum_failed; 1208 } 1209 1210 /* update TX checksum flag */ 1211 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1212 vlan_macip_lens = skb_checksum_start_offset(skb) - 1213 skb_network_offset(skb); 1214 no_csum: 1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1217 1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1219 vlan_macip_lens, type_tucmd, 0); 1220 } 1221 1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1223 { 1224 struct net_device *netdev = tx_ring->netdev; 1225 1226 netif_stop_subqueue(netdev, tx_ring->queue_index); 1227 1228 /* memory barriier comment */ 1229 smp_mb(); 1230 1231 /* We need to check again in a case another CPU has just 1232 * made room available. 1233 */ 1234 if (igc_desc_unused(tx_ring) < size) 1235 return -EBUSY; 1236 1237 /* A reprieve! */ 1238 netif_wake_subqueue(netdev, tx_ring->queue_index); 1239 1240 u64_stats_update_begin(&tx_ring->tx_syncp2); 1241 tx_ring->tx_stats.restart_queue2++; 1242 u64_stats_update_end(&tx_ring->tx_syncp2); 1243 1244 return 0; 1245 } 1246 1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1248 { 1249 if (igc_desc_unused(tx_ring) >= size) 1250 return 0; 1251 return __igc_maybe_stop_tx(tx_ring, size); 1252 } 1253 1254 #define IGC_SET_FLAG(_input, _flag, _result) \ 1255 (((_flag) <= (_result)) ? \ 1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1258 1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1260 { 1261 /* set type for advanced descriptor with frame checksum insertion */ 1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1263 IGC_ADVTXD_DCMD_DEXT | 1264 IGC_ADVTXD_DCMD_IFCS; 1265 1266 /* set HW vlan bit if vlan is present */ 1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1268 IGC_ADVTXD_DCMD_VLE); 1269 1270 /* set segmentation bits for TSO */ 1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1272 (IGC_ADVTXD_DCMD_TSE)); 1273 1274 /* set timestamp bit if present, will select the register set 1275 * based on the _TSTAMP(_X) bit. 1276 */ 1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1278 (IGC_ADVTXD_MAC_TSTAMP)); 1279 1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1, 1281 (IGC_ADVTXD_TSTAMP_REG_1)); 1282 1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2, 1284 (IGC_ADVTXD_TSTAMP_REG_2)); 1285 1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3, 1287 (IGC_ADVTXD_TSTAMP_REG_3)); 1288 1289 /* insert frame checksum */ 1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1291 1292 return cmd_type; 1293 } 1294 1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1296 union igc_adv_tx_desc *tx_desc, 1297 u32 tx_flags, unsigned int paylen) 1298 { 1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1300 1301 /* insert L4 checksum */ 1302 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM, 1303 (IGC_TXD_POPTS_TXSM << 8)); 1304 1305 /* insert IPv4 checksum */ 1306 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4, 1307 (IGC_TXD_POPTS_IXSM << 8)); 1308 1309 /* Use the second timer (free running, in general) for the timestamp */ 1310 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1, 1311 IGC_TXD_PTP2_TIMER_1); 1312 1313 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1314 } 1315 1316 static int igc_tx_map(struct igc_ring *tx_ring, 1317 struct igc_tx_buffer *first, 1318 const u8 hdr_len) 1319 { 1320 struct sk_buff *skb = first->skb; 1321 struct igc_tx_buffer *tx_buffer; 1322 union igc_adv_tx_desc *tx_desc; 1323 u32 tx_flags = first->tx_flags; 1324 skb_frag_t *frag; 1325 u16 i = tx_ring->next_to_use; 1326 unsigned int data_len, size; 1327 dma_addr_t dma; 1328 u32 cmd_type; 1329 1330 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1331 tx_desc = IGC_TX_DESC(tx_ring, i); 1332 1333 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1334 1335 size = skb_headlen(skb); 1336 data_len = skb->data_len; 1337 1338 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1339 1340 tx_buffer = first; 1341 1342 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1343 if (dma_mapping_error(tx_ring->dev, dma)) 1344 goto dma_error; 1345 1346 /* record length, and DMA address */ 1347 dma_unmap_len_set(tx_buffer, len, size); 1348 dma_unmap_addr_set(tx_buffer, dma, dma); 1349 1350 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1351 1352 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1353 tx_desc->read.cmd_type_len = 1354 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1355 1356 i++; 1357 tx_desc++; 1358 if (i == tx_ring->count) { 1359 tx_desc = IGC_TX_DESC(tx_ring, 0); 1360 i = 0; 1361 } 1362 tx_desc->read.olinfo_status = 0; 1363 1364 dma += IGC_MAX_DATA_PER_TXD; 1365 size -= IGC_MAX_DATA_PER_TXD; 1366 1367 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1368 } 1369 1370 if (likely(!data_len)) 1371 break; 1372 1373 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1374 1375 i++; 1376 tx_desc++; 1377 if (i == tx_ring->count) { 1378 tx_desc = IGC_TX_DESC(tx_ring, 0); 1379 i = 0; 1380 } 1381 tx_desc->read.olinfo_status = 0; 1382 1383 size = skb_frag_size(frag); 1384 data_len -= size; 1385 1386 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1387 size, DMA_TO_DEVICE); 1388 1389 tx_buffer = &tx_ring->tx_buffer_info[i]; 1390 } 1391 1392 /* write last descriptor with RS and EOP bits */ 1393 cmd_type |= size | IGC_TXD_DCMD; 1394 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1395 1396 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1397 1398 /* set the timestamp */ 1399 first->time_stamp = jiffies; 1400 1401 skb_tx_timestamp(skb); 1402 1403 /* Force memory writes to complete before letting h/w know there 1404 * are new descriptors to fetch. (Only applicable for weak-ordered 1405 * memory model archs, such as IA-64). 1406 * 1407 * We also need this memory barrier to make certain all of the 1408 * status bits have been updated before next_to_watch is written. 1409 */ 1410 wmb(); 1411 1412 /* set next_to_watch value indicating a packet is present */ 1413 first->next_to_watch = tx_desc; 1414 1415 i++; 1416 if (i == tx_ring->count) 1417 i = 0; 1418 1419 tx_ring->next_to_use = i; 1420 1421 /* Make sure there is space in the ring for the next send. */ 1422 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1423 1424 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1425 writel(i, tx_ring->tail); 1426 } 1427 1428 return 0; 1429 dma_error: 1430 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1431 tx_buffer = &tx_ring->tx_buffer_info[i]; 1432 1433 /* clear dma mappings for failed tx_buffer_info map */ 1434 while (tx_buffer != first) { 1435 if (dma_unmap_len(tx_buffer, len)) 1436 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1437 1438 if (i-- == 0) 1439 i += tx_ring->count; 1440 tx_buffer = &tx_ring->tx_buffer_info[i]; 1441 } 1442 1443 if (dma_unmap_len(tx_buffer, len)) 1444 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1445 1446 dev_kfree_skb_any(tx_buffer->skb); 1447 tx_buffer->skb = NULL; 1448 1449 tx_ring->next_to_use = i; 1450 1451 return -1; 1452 } 1453 1454 static int igc_tso(struct igc_ring *tx_ring, 1455 struct igc_tx_buffer *first, 1456 __le32 launch_time, bool first_flag, 1457 u8 *hdr_len) 1458 { 1459 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1460 struct sk_buff *skb = first->skb; 1461 union { 1462 struct iphdr *v4; 1463 struct ipv6hdr *v6; 1464 unsigned char *hdr; 1465 } ip; 1466 union { 1467 struct tcphdr *tcp; 1468 struct udphdr *udp; 1469 unsigned char *hdr; 1470 } l4; 1471 u32 paylen, l4_offset; 1472 int err; 1473 1474 if (skb->ip_summed != CHECKSUM_PARTIAL) 1475 return 0; 1476 1477 if (!skb_is_gso(skb)) 1478 return 0; 1479 1480 err = skb_cow_head(skb, 0); 1481 if (err < 0) 1482 return err; 1483 1484 ip.hdr = skb_network_header(skb); 1485 l4.hdr = skb_checksum_start(skb); 1486 1487 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1488 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1489 1490 /* initialize outer IP header fields */ 1491 if (ip.v4->version == 4) { 1492 unsigned char *csum_start = skb_checksum_start(skb); 1493 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1494 1495 /* IP header will have to cancel out any data that 1496 * is not a part of the outer IP header 1497 */ 1498 ip.v4->check = csum_fold(csum_partial(trans_start, 1499 csum_start - trans_start, 1500 0)); 1501 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1502 1503 ip.v4->tot_len = 0; 1504 first->tx_flags |= IGC_TX_FLAGS_TSO | 1505 IGC_TX_FLAGS_CSUM | 1506 IGC_TX_FLAGS_IPV4; 1507 } else { 1508 ip.v6->payload_len = 0; 1509 first->tx_flags |= IGC_TX_FLAGS_TSO | 1510 IGC_TX_FLAGS_CSUM; 1511 } 1512 1513 /* determine offset of inner transport header */ 1514 l4_offset = l4.hdr - skb->data; 1515 1516 /* remove payload length from inner checksum */ 1517 paylen = skb->len - l4_offset; 1518 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1519 /* compute length of segmentation header */ 1520 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1521 csum_replace_by_diff(&l4.tcp->check, 1522 (__force __wsum)htonl(paylen)); 1523 } else { 1524 /* compute length of segmentation header */ 1525 *hdr_len = sizeof(*l4.udp) + l4_offset; 1526 csum_replace_by_diff(&l4.udp->check, 1527 (__force __wsum)htonl(paylen)); 1528 } 1529 1530 /* update gso size and bytecount with header size */ 1531 first->gso_segs = skb_shinfo(skb)->gso_segs; 1532 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1533 1534 /* MSS L4LEN IDX */ 1535 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1536 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1537 1538 /* VLAN MACLEN IPLEN */ 1539 vlan_macip_lens = l4.hdr - ip.hdr; 1540 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1541 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1542 1543 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1544 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1545 1546 return 1; 1547 } 1548 1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags) 1550 { 1551 int i; 1552 1553 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 1554 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 1555 1556 if (tstamp->skb) 1557 continue; 1558 1559 tstamp->skb = skb_get(skb); 1560 tstamp->start = jiffies; 1561 *flags = tstamp->flags; 1562 1563 return true; 1564 } 1565 1566 return false; 1567 } 1568 1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1570 struct igc_ring *tx_ring) 1571 { 1572 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1573 bool first_flag = false, insert_empty = false; 1574 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1575 __be16 protocol = vlan_get_protocol(skb); 1576 struct igc_tx_buffer *first; 1577 __le32 launch_time = 0; 1578 u32 tx_flags = 0; 1579 unsigned short f; 1580 ktime_t txtime; 1581 u8 hdr_len = 0; 1582 int tso = 0; 1583 1584 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1585 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1586 * + 2 desc gap to keep tail from touching head, 1587 * + 1 desc for context descriptor, 1588 * otherwise try next time 1589 */ 1590 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1591 count += TXD_USE_COUNT(skb_frag_size( 1592 &skb_shinfo(skb)->frags[f])); 1593 1594 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1595 /* this is a hard error */ 1596 return NETDEV_TX_BUSY; 1597 } 1598 1599 if (!tx_ring->launchtime_enable) 1600 goto done; 1601 1602 txtime = skb->tstamp; 1603 skb->tstamp = ktime_set(0, 0); 1604 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1605 1606 if (insert_empty) { 1607 struct igc_tx_buffer *empty_info; 1608 struct sk_buff *empty; 1609 void *data; 1610 1611 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1612 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1613 if (!empty) 1614 goto done; 1615 1616 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1617 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1618 1619 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1620 1621 if (igc_init_tx_empty_descriptor(tx_ring, 1622 empty, 1623 empty_info) < 0) 1624 dev_kfree_skb_any(empty); 1625 } 1626 1627 done: 1628 /* record the location of the first descriptor for this packet */ 1629 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1630 first->type = IGC_TX_BUFFER_TYPE_SKB; 1631 first->skb = skb; 1632 first->bytecount = skb->len; 1633 first->gso_segs = 1; 1634 1635 if (adapter->qbv_transition || tx_ring->oper_gate_closed) 1636 goto out_drop; 1637 1638 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) { 1639 adapter->stats.txdrop++; 1640 goto out_drop; 1641 } 1642 1643 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) && 1644 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1645 unsigned long flags; 1646 u32 tstamp_flags; 1647 1648 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 1649 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) { 1650 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1651 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags; 1652 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES) 1653 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1; 1654 } else { 1655 adapter->tx_hwtstamp_skipped++; 1656 } 1657 1658 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 1659 } 1660 1661 if (skb_vlan_tag_present(skb)) { 1662 tx_flags |= IGC_TX_FLAGS_VLAN; 1663 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1664 } 1665 1666 /* record initial flags and protocol */ 1667 first->tx_flags = tx_flags; 1668 first->protocol = protocol; 1669 1670 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1671 if (tso < 0) 1672 goto out_drop; 1673 else if (!tso) 1674 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1675 1676 igc_tx_map(tx_ring, first, hdr_len); 1677 1678 return NETDEV_TX_OK; 1679 1680 out_drop: 1681 dev_kfree_skb_any(first->skb); 1682 first->skb = NULL; 1683 1684 return NETDEV_TX_OK; 1685 } 1686 1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1688 struct sk_buff *skb) 1689 { 1690 unsigned int r_idx = skb->queue_mapping; 1691 1692 if (r_idx >= adapter->num_tx_queues) 1693 r_idx = r_idx % adapter->num_tx_queues; 1694 1695 return adapter->tx_ring[r_idx]; 1696 } 1697 1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1699 struct net_device *netdev) 1700 { 1701 struct igc_adapter *adapter = netdev_priv(netdev); 1702 1703 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1704 * in order to meet this minimum size requirement. 1705 */ 1706 if (skb->len < 17) { 1707 if (skb_padto(skb, 17)) 1708 return NETDEV_TX_OK; 1709 skb->len = 17; 1710 } 1711 1712 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1713 } 1714 1715 static void igc_rx_checksum(struct igc_ring *ring, 1716 union igc_adv_rx_desc *rx_desc, 1717 struct sk_buff *skb) 1718 { 1719 skb_checksum_none_assert(skb); 1720 1721 /* Ignore Checksum bit is set */ 1722 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1723 return; 1724 1725 /* Rx checksum disabled via ethtool */ 1726 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1727 return; 1728 1729 /* TCP/UDP checksum error bit is set */ 1730 if (igc_test_staterr(rx_desc, 1731 IGC_RXDEXT_STATERR_L4E | 1732 IGC_RXDEXT_STATERR_IPE)) { 1733 /* work around errata with sctp packets where the TCPE aka 1734 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1735 * packets (aka let the stack check the crc32c) 1736 */ 1737 if (!(skb->len == 60 && 1738 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1739 u64_stats_update_begin(&ring->rx_syncp); 1740 ring->rx_stats.csum_err++; 1741 u64_stats_update_end(&ring->rx_syncp); 1742 } 1743 /* let the stack verify checksum errors */ 1744 return; 1745 } 1746 /* It must be a TCP or UDP packet with a valid checksum */ 1747 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1748 IGC_RXD_STAT_UDPCS)) 1749 skb->ip_summed = CHECKSUM_UNNECESSARY; 1750 1751 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1752 le32_to_cpu(rx_desc->wb.upper.status_error)); 1753 } 1754 1755 /* Mapping HW RSS Type to enum pkt_hash_types */ 1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = { 1757 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2, 1758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4, 1759 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3, 1760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4, 1761 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3, 1762 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3, 1763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4, 1764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4, 1765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4, 1766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4, 1767 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 1768 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */ 1769 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */ 1770 [13] = PKT_HASH_TYPE_NONE, 1771 [14] = PKT_HASH_TYPE_NONE, 1772 [15] = PKT_HASH_TYPE_NONE, 1773 }; 1774 1775 static inline void igc_rx_hash(struct igc_ring *ring, 1776 union igc_adv_rx_desc *rx_desc, 1777 struct sk_buff *skb) 1778 { 1779 if (ring->netdev->features & NETIF_F_RXHASH) { 1780 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 1781 u32 rss_type = igc_rss_type(rx_desc); 1782 1783 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]); 1784 } 1785 } 1786 1787 static void igc_rx_vlan(struct igc_ring *rx_ring, 1788 union igc_adv_rx_desc *rx_desc, 1789 struct sk_buff *skb) 1790 { 1791 struct net_device *dev = rx_ring->netdev; 1792 u16 vid; 1793 1794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1795 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1796 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1797 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1798 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1799 else 1800 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1801 1802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1803 } 1804 } 1805 1806 /** 1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1808 * @rx_ring: rx descriptor ring packet is being transacted on 1809 * @rx_desc: pointer to the EOP Rx descriptor 1810 * @skb: pointer to current skb being populated 1811 * 1812 * This function checks the ring, descriptor, and packet information in order 1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1814 * skb. 1815 */ 1816 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1817 union igc_adv_rx_desc *rx_desc, 1818 struct sk_buff *skb) 1819 { 1820 igc_rx_hash(rx_ring, rx_desc, skb); 1821 1822 igc_rx_checksum(rx_ring, rx_desc, skb); 1823 1824 igc_rx_vlan(rx_ring, rx_desc, skb); 1825 1826 skb_record_rx_queue(skb, rx_ring->queue_index); 1827 1828 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1829 } 1830 1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1832 { 1833 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1834 struct igc_adapter *adapter = netdev_priv(netdev); 1835 struct igc_hw *hw = &adapter->hw; 1836 u32 ctrl; 1837 1838 ctrl = rd32(IGC_CTRL); 1839 1840 if (enable) { 1841 /* enable VLAN tag insert/strip */ 1842 ctrl |= IGC_CTRL_VME; 1843 } else { 1844 /* disable VLAN tag insert/strip */ 1845 ctrl &= ~IGC_CTRL_VME; 1846 } 1847 wr32(IGC_CTRL, ctrl); 1848 } 1849 1850 static void igc_restore_vlan(struct igc_adapter *adapter) 1851 { 1852 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1853 } 1854 1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1856 const unsigned int size, 1857 int *rx_buffer_pgcnt) 1858 { 1859 struct igc_rx_buffer *rx_buffer; 1860 1861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1862 *rx_buffer_pgcnt = 1863 #if (PAGE_SIZE < 8192) 1864 page_count(rx_buffer->page); 1865 #else 1866 0; 1867 #endif 1868 prefetchw(rx_buffer->page); 1869 1870 /* we are reusing so sync this buffer for CPU use */ 1871 dma_sync_single_range_for_cpu(rx_ring->dev, 1872 rx_buffer->dma, 1873 rx_buffer->page_offset, 1874 size, 1875 DMA_FROM_DEVICE); 1876 1877 rx_buffer->pagecnt_bias--; 1878 1879 return rx_buffer; 1880 } 1881 1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1883 unsigned int truesize) 1884 { 1885 #if (PAGE_SIZE < 8192) 1886 buffer->page_offset ^= truesize; 1887 #else 1888 buffer->page_offset += truesize; 1889 #endif 1890 } 1891 1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1893 unsigned int size) 1894 { 1895 unsigned int truesize; 1896 1897 #if (PAGE_SIZE < 8192) 1898 truesize = igc_rx_pg_size(ring) / 2; 1899 #else 1900 truesize = ring_uses_build_skb(ring) ? 1901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1902 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1903 SKB_DATA_ALIGN(size); 1904 #endif 1905 return truesize; 1906 } 1907 1908 /** 1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1910 * @rx_ring: rx descriptor ring to transact packets on 1911 * @rx_buffer: buffer containing page to add 1912 * @skb: sk_buff to place the data into 1913 * @size: size of buffer to be added 1914 * 1915 * This function will add the data contained in rx_buffer->page to the skb. 1916 */ 1917 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1918 struct igc_rx_buffer *rx_buffer, 1919 struct sk_buff *skb, 1920 unsigned int size) 1921 { 1922 unsigned int truesize; 1923 1924 #if (PAGE_SIZE < 8192) 1925 truesize = igc_rx_pg_size(rx_ring) / 2; 1926 #else 1927 truesize = ring_uses_build_skb(rx_ring) ? 1928 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1929 SKB_DATA_ALIGN(size); 1930 #endif 1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1932 rx_buffer->page_offset, size, truesize); 1933 1934 igc_rx_buffer_flip(rx_buffer, truesize); 1935 } 1936 1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1938 struct igc_rx_buffer *rx_buffer, 1939 struct xdp_buff *xdp) 1940 { 1941 unsigned int size = xdp->data_end - xdp->data; 1942 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1943 unsigned int metasize = xdp->data - xdp->data_meta; 1944 struct sk_buff *skb; 1945 1946 /* prefetch first cache line of first page */ 1947 net_prefetch(xdp->data_meta); 1948 1949 /* build an skb around the page buffer */ 1950 skb = napi_build_skb(xdp->data_hard_start, truesize); 1951 if (unlikely(!skb)) 1952 return NULL; 1953 1954 /* update pointers within the skb to store the data */ 1955 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1956 __skb_put(skb, size); 1957 if (metasize) 1958 skb_metadata_set(skb, metasize); 1959 1960 igc_rx_buffer_flip(rx_buffer, truesize); 1961 return skb; 1962 } 1963 1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1965 struct igc_rx_buffer *rx_buffer, 1966 struct igc_xdp_buff *ctx) 1967 { 1968 struct xdp_buff *xdp = &ctx->xdp; 1969 unsigned int metasize = xdp->data - xdp->data_meta; 1970 unsigned int size = xdp->data_end - xdp->data; 1971 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1972 void *va = xdp->data; 1973 unsigned int headlen; 1974 struct sk_buff *skb; 1975 1976 /* prefetch first cache line of first page */ 1977 net_prefetch(xdp->data_meta); 1978 1979 /* allocate a skb to store the frags */ 1980 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1981 IGC_RX_HDR_LEN + metasize); 1982 if (unlikely(!skb)) 1983 return NULL; 1984 1985 if (ctx->rx_ts) { 1986 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV; 1987 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts; 1988 } 1989 1990 /* Determine available headroom for copy */ 1991 headlen = size; 1992 if (headlen > IGC_RX_HDR_LEN) 1993 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1994 1995 /* align pull length to size of long to optimize memcpy performance */ 1996 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1997 ALIGN(headlen + metasize, sizeof(long))); 1998 1999 if (metasize) { 2000 skb_metadata_set(skb, metasize); 2001 __skb_pull(skb, metasize); 2002 } 2003 2004 /* update all of the pointers */ 2005 size -= headlen; 2006 if (size) { 2007 skb_add_rx_frag(skb, 0, rx_buffer->page, 2008 (va + headlen) - page_address(rx_buffer->page), 2009 size, truesize); 2010 igc_rx_buffer_flip(rx_buffer, truesize); 2011 } else { 2012 rx_buffer->pagecnt_bias++; 2013 } 2014 2015 return skb; 2016 } 2017 2018 /** 2019 * igc_reuse_rx_page - page flip buffer and store it back on the ring 2020 * @rx_ring: rx descriptor ring to store buffers on 2021 * @old_buff: donor buffer to have page reused 2022 * 2023 * Synchronizes page for reuse by the adapter 2024 */ 2025 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 2026 struct igc_rx_buffer *old_buff) 2027 { 2028 u16 nta = rx_ring->next_to_alloc; 2029 struct igc_rx_buffer *new_buff; 2030 2031 new_buff = &rx_ring->rx_buffer_info[nta]; 2032 2033 /* update, and store next to alloc */ 2034 nta++; 2035 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 2036 2037 /* Transfer page from old buffer to new buffer. 2038 * Move each member individually to avoid possible store 2039 * forwarding stalls. 2040 */ 2041 new_buff->dma = old_buff->dma; 2042 new_buff->page = old_buff->page; 2043 new_buff->page_offset = old_buff->page_offset; 2044 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 2045 } 2046 2047 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 2048 int rx_buffer_pgcnt) 2049 { 2050 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 2051 struct page *page = rx_buffer->page; 2052 2053 /* avoid re-using remote and pfmemalloc pages */ 2054 if (!dev_page_is_reusable(page)) 2055 return false; 2056 2057 #if (PAGE_SIZE < 8192) 2058 /* if we are only owner of page we can reuse it */ 2059 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 2060 return false; 2061 #else 2062 #define IGC_LAST_OFFSET \ 2063 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 2064 2065 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 2066 return false; 2067 #endif 2068 2069 /* If we have drained the page fragment pool we need to update 2070 * the pagecnt_bias and page count so that we fully restock the 2071 * number of references the driver holds. 2072 */ 2073 if (unlikely(pagecnt_bias == 1)) { 2074 page_ref_add(page, USHRT_MAX - 1); 2075 rx_buffer->pagecnt_bias = USHRT_MAX; 2076 } 2077 2078 return true; 2079 } 2080 2081 /** 2082 * igc_is_non_eop - process handling of non-EOP buffers 2083 * @rx_ring: Rx ring being processed 2084 * @rx_desc: Rx descriptor for current buffer 2085 * 2086 * This function updates next to clean. If the buffer is an EOP buffer 2087 * this function exits returning false, otherwise it will place the 2088 * sk_buff in the next buffer to be chained and return true indicating 2089 * that this is in fact a non-EOP buffer. 2090 */ 2091 static bool igc_is_non_eop(struct igc_ring *rx_ring, 2092 union igc_adv_rx_desc *rx_desc) 2093 { 2094 u32 ntc = rx_ring->next_to_clean + 1; 2095 2096 /* fetch, update, and store next to clean */ 2097 ntc = (ntc < rx_ring->count) ? ntc : 0; 2098 rx_ring->next_to_clean = ntc; 2099 2100 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2101 2102 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2103 return false; 2104 2105 return true; 2106 } 2107 2108 /** 2109 * igc_cleanup_headers - Correct corrupted or empty headers 2110 * @rx_ring: rx descriptor ring packet is being transacted on 2111 * @rx_desc: pointer to the EOP Rx descriptor 2112 * @skb: pointer to current skb being fixed 2113 * 2114 * Address the case where we are pulling data in on pages only 2115 * and as such no data is present in the skb header. 2116 * 2117 * In addition if skb is not at least 60 bytes we need to pad it so that 2118 * it is large enough to qualify as a valid Ethernet frame. 2119 * 2120 * Returns true if an error was encountered and skb was freed. 2121 */ 2122 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2123 union igc_adv_rx_desc *rx_desc, 2124 struct sk_buff *skb) 2125 { 2126 /* XDP packets use error pointer so abort at this point */ 2127 if (IS_ERR(skb)) 2128 return true; 2129 2130 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2131 struct net_device *netdev = rx_ring->netdev; 2132 2133 if (!(netdev->features & NETIF_F_RXALL)) { 2134 dev_kfree_skb_any(skb); 2135 return true; 2136 } 2137 } 2138 2139 /* if eth_skb_pad returns an error the skb was freed */ 2140 if (eth_skb_pad(skb)) 2141 return true; 2142 2143 return false; 2144 } 2145 2146 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2147 struct igc_rx_buffer *rx_buffer, 2148 int rx_buffer_pgcnt) 2149 { 2150 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2151 /* hand second half of page back to the ring */ 2152 igc_reuse_rx_page(rx_ring, rx_buffer); 2153 } else { 2154 /* We are not reusing the buffer so unmap it and free 2155 * any references we are holding to it 2156 */ 2157 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2158 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2159 IGC_RX_DMA_ATTR); 2160 __page_frag_cache_drain(rx_buffer->page, 2161 rx_buffer->pagecnt_bias); 2162 } 2163 2164 /* clear contents of rx_buffer */ 2165 rx_buffer->page = NULL; 2166 } 2167 2168 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2169 { 2170 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2171 2172 if (ring_uses_build_skb(rx_ring)) 2173 return IGC_SKB_PAD; 2174 if (igc_xdp_is_enabled(adapter)) 2175 return XDP_PACKET_HEADROOM; 2176 2177 return 0; 2178 } 2179 2180 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2181 struct igc_rx_buffer *bi) 2182 { 2183 struct page *page = bi->page; 2184 dma_addr_t dma; 2185 2186 /* since we are recycling buffers we should seldom need to alloc */ 2187 if (likely(page)) 2188 return true; 2189 2190 /* alloc new page for storage */ 2191 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2192 if (unlikely(!page)) { 2193 rx_ring->rx_stats.alloc_failed++; 2194 return false; 2195 } 2196 2197 /* map page for use */ 2198 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2199 igc_rx_pg_size(rx_ring), 2200 DMA_FROM_DEVICE, 2201 IGC_RX_DMA_ATTR); 2202 2203 /* if mapping failed free memory back to system since 2204 * there isn't much point in holding memory we can't use 2205 */ 2206 if (dma_mapping_error(rx_ring->dev, dma)) { 2207 __free_page(page); 2208 2209 rx_ring->rx_stats.alloc_failed++; 2210 return false; 2211 } 2212 2213 bi->dma = dma; 2214 bi->page = page; 2215 bi->page_offset = igc_rx_offset(rx_ring); 2216 page_ref_add(page, USHRT_MAX - 1); 2217 bi->pagecnt_bias = USHRT_MAX; 2218 2219 return true; 2220 } 2221 2222 /** 2223 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2224 * @rx_ring: rx descriptor ring 2225 * @cleaned_count: number of buffers to clean 2226 */ 2227 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2228 { 2229 union igc_adv_rx_desc *rx_desc; 2230 u16 i = rx_ring->next_to_use; 2231 struct igc_rx_buffer *bi; 2232 u16 bufsz; 2233 2234 /* nothing to do */ 2235 if (!cleaned_count) 2236 return; 2237 2238 rx_desc = IGC_RX_DESC(rx_ring, i); 2239 bi = &rx_ring->rx_buffer_info[i]; 2240 i -= rx_ring->count; 2241 2242 bufsz = igc_rx_bufsz(rx_ring); 2243 2244 do { 2245 if (!igc_alloc_mapped_page(rx_ring, bi)) 2246 break; 2247 2248 /* sync the buffer for use by the device */ 2249 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2250 bi->page_offset, bufsz, 2251 DMA_FROM_DEVICE); 2252 2253 /* Refresh the desc even if buffer_addrs didn't change 2254 * because each write-back erases this info. 2255 */ 2256 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2257 2258 rx_desc++; 2259 bi++; 2260 i++; 2261 if (unlikely(!i)) { 2262 rx_desc = IGC_RX_DESC(rx_ring, 0); 2263 bi = rx_ring->rx_buffer_info; 2264 i -= rx_ring->count; 2265 } 2266 2267 /* clear the length for the next_to_use descriptor */ 2268 rx_desc->wb.upper.length = 0; 2269 2270 cleaned_count--; 2271 } while (cleaned_count); 2272 2273 i += rx_ring->count; 2274 2275 if (rx_ring->next_to_use != i) { 2276 /* record the next descriptor to use */ 2277 rx_ring->next_to_use = i; 2278 2279 /* update next to alloc since we have filled the ring */ 2280 rx_ring->next_to_alloc = i; 2281 2282 /* Force memory writes to complete before letting h/w 2283 * know there are new descriptors to fetch. (Only 2284 * applicable for weak-ordered memory model archs, 2285 * such as IA-64). 2286 */ 2287 wmb(); 2288 writel(i, rx_ring->tail); 2289 } 2290 } 2291 2292 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2293 { 2294 union igc_adv_rx_desc *desc; 2295 u16 i = ring->next_to_use; 2296 struct igc_rx_buffer *bi; 2297 dma_addr_t dma; 2298 bool ok = true; 2299 2300 if (!count) 2301 return ok; 2302 2303 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff); 2304 2305 desc = IGC_RX_DESC(ring, i); 2306 bi = &ring->rx_buffer_info[i]; 2307 i -= ring->count; 2308 2309 do { 2310 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2311 if (!bi->xdp) { 2312 ok = false; 2313 break; 2314 } 2315 2316 dma = xsk_buff_xdp_get_dma(bi->xdp); 2317 desc->read.pkt_addr = cpu_to_le64(dma); 2318 2319 desc++; 2320 bi++; 2321 i++; 2322 if (unlikely(!i)) { 2323 desc = IGC_RX_DESC(ring, 0); 2324 bi = ring->rx_buffer_info; 2325 i -= ring->count; 2326 } 2327 2328 /* Clear the length for the next_to_use descriptor. */ 2329 desc->wb.upper.length = 0; 2330 2331 count--; 2332 } while (count); 2333 2334 i += ring->count; 2335 2336 if (ring->next_to_use != i) { 2337 ring->next_to_use = i; 2338 2339 /* Force memory writes to complete before letting h/w 2340 * know there are new descriptors to fetch. (Only 2341 * applicable for weak-ordered memory model archs, 2342 * such as IA-64). 2343 */ 2344 wmb(); 2345 writel(i, ring->tail); 2346 } 2347 2348 return ok; 2349 } 2350 2351 /* This function requires __netif_tx_lock is held by the caller. */ 2352 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2353 struct xdp_frame *xdpf) 2354 { 2355 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2356 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2357 u16 count, index = ring->next_to_use; 2358 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2359 struct igc_tx_buffer *buffer = head; 2360 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2361 u32 olinfo_status, len = xdpf->len, cmd_type; 2362 void *data = xdpf->data; 2363 u16 i; 2364 2365 count = TXD_USE_COUNT(len); 2366 for (i = 0; i < nr_frags; i++) 2367 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2368 2369 if (igc_maybe_stop_tx(ring, count + 3)) { 2370 /* this is a hard error */ 2371 return -EBUSY; 2372 } 2373 2374 i = 0; 2375 head->bytecount = xdp_get_frame_len(xdpf); 2376 head->type = IGC_TX_BUFFER_TYPE_XDP; 2377 head->gso_segs = 1; 2378 head->xdpf = xdpf; 2379 2380 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2381 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2382 2383 for (;;) { 2384 dma_addr_t dma; 2385 2386 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2387 if (dma_mapping_error(ring->dev, dma)) { 2388 netdev_err_once(ring->netdev, 2389 "Failed to map DMA for TX\n"); 2390 goto unmap; 2391 } 2392 2393 dma_unmap_len_set(buffer, len, len); 2394 dma_unmap_addr_set(buffer, dma, dma); 2395 2396 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2397 IGC_ADVTXD_DCMD_IFCS | len; 2398 2399 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2400 desc->read.buffer_addr = cpu_to_le64(dma); 2401 2402 buffer->protocol = 0; 2403 2404 if (++index == ring->count) 2405 index = 0; 2406 2407 if (i == nr_frags) 2408 break; 2409 2410 buffer = &ring->tx_buffer_info[index]; 2411 desc = IGC_TX_DESC(ring, index); 2412 desc->read.olinfo_status = 0; 2413 2414 data = skb_frag_address(&sinfo->frags[i]); 2415 len = skb_frag_size(&sinfo->frags[i]); 2416 i++; 2417 } 2418 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2419 2420 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2421 /* set the timestamp */ 2422 head->time_stamp = jiffies; 2423 /* set next_to_watch value indicating a packet is present */ 2424 head->next_to_watch = desc; 2425 ring->next_to_use = index; 2426 2427 return 0; 2428 2429 unmap: 2430 for (;;) { 2431 buffer = &ring->tx_buffer_info[index]; 2432 if (dma_unmap_len(buffer, len)) 2433 dma_unmap_page(ring->dev, 2434 dma_unmap_addr(buffer, dma), 2435 dma_unmap_len(buffer, len), 2436 DMA_TO_DEVICE); 2437 dma_unmap_len_set(buffer, len, 0); 2438 if (buffer == head) 2439 break; 2440 2441 if (!index) 2442 index += ring->count; 2443 index--; 2444 } 2445 2446 return -ENOMEM; 2447 } 2448 2449 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2450 int cpu) 2451 { 2452 int index = cpu; 2453 2454 if (unlikely(index < 0)) 2455 index = 0; 2456 2457 while (index >= adapter->num_tx_queues) 2458 index -= adapter->num_tx_queues; 2459 2460 return adapter->tx_ring[index]; 2461 } 2462 2463 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2464 { 2465 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2466 int cpu = smp_processor_id(); 2467 struct netdev_queue *nq; 2468 struct igc_ring *ring; 2469 int res; 2470 2471 if (unlikely(!xdpf)) 2472 return -EFAULT; 2473 2474 ring = igc_xdp_get_tx_ring(adapter, cpu); 2475 nq = txring_txq(ring); 2476 2477 __netif_tx_lock(nq, cpu); 2478 /* Avoid transmit queue timeout since we share it with the slow path */ 2479 txq_trans_cond_update(nq); 2480 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2481 __netif_tx_unlock(nq); 2482 return res; 2483 } 2484 2485 /* This function assumes rcu_read_lock() is held by the caller. */ 2486 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2487 struct bpf_prog *prog, 2488 struct xdp_buff *xdp) 2489 { 2490 u32 act = bpf_prog_run_xdp(prog, xdp); 2491 2492 switch (act) { 2493 case XDP_PASS: 2494 return IGC_XDP_PASS; 2495 case XDP_TX: 2496 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2497 goto out_failure; 2498 return IGC_XDP_TX; 2499 case XDP_REDIRECT: 2500 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2501 goto out_failure; 2502 return IGC_XDP_REDIRECT; 2503 break; 2504 default: 2505 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2506 fallthrough; 2507 case XDP_ABORTED: 2508 out_failure: 2509 trace_xdp_exception(adapter->netdev, prog, act); 2510 fallthrough; 2511 case XDP_DROP: 2512 return IGC_XDP_CONSUMED; 2513 } 2514 } 2515 2516 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2517 struct xdp_buff *xdp) 2518 { 2519 struct bpf_prog *prog; 2520 int res; 2521 2522 prog = READ_ONCE(adapter->xdp_prog); 2523 if (!prog) { 2524 res = IGC_XDP_PASS; 2525 goto out; 2526 } 2527 2528 res = __igc_xdp_run_prog(adapter, prog, xdp); 2529 2530 out: 2531 return ERR_PTR(-res); 2532 } 2533 2534 /* This function assumes __netif_tx_lock is held by the caller. */ 2535 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2536 { 2537 /* Once tail pointer is updated, hardware can fetch the descriptors 2538 * any time so we issue a write membar here to ensure all memory 2539 * writes are complete before the tail pointer is updated. 2540 */ 2541 wmb(); 2542 writel(ring->next_to_use, ring->tail); 2543 } 2544 2545 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2546 { 2547 int cpu = smp_processor_id(); 2548 struct netdev_queue *nq; 2549 struct igc_ring *ring; 2550 2551 if (status & IGC_XDP_TX) { 2552 ring = igc_xdp_get_tx_ring(adapter, cpu); 2553 nq = txring_txq(ring); 2554 2555 __netif_tx_lock(nq, cpu); 2556 igc_flush_tx_descriptors(ring); 2557 __netif_tx_unlock(nq); 2558 } 2559 2560 if (status & IGC_XDP_REDIRECT) 2561 xdp_do_flush(); 2562 } 2563 2564 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2565 unsigned int packets, unsigned int bytes) 2566 { 2567 struct igc_ring *ring = q_vector->rx.ring; 2568 2569 u64_stats_update_begin(&ring->rx_syncp); 2570 ring->rx_stats.packets += packets; 2571 ring->rx_stats.bytes += bytes; 2572 u64_stats_update_end(&ring->rx_syncp); 2573 2574 q_vector->rx.total_packets += packets; 2575 q_vector->rx.total_bytes += bytes; 2576 } 2577 2578 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2579 { 2580 unsigned int total_bytes = 0, total_packets = 0; 2581 struct igc_adapter *adapter = q_vector->adapter; 2582 struct igc_ring *rx_ring = q_vector->rx.ring; 2583 struct sk_buff *skb = rx_ring->skb; 2584 u16 cleaned_count = igc_desc_unused(rx_ring); 2585 int xdp_status = 0, rx_buffer_pgcnt; 2586 2587 while (likely(total_packets < budget)) { 2588 struct igc_xdp_buff ctx = { .rx_ts = NULL }; 2589 struct igc_rx_buffer *rx_buffer; 2590 union igc_adv_rx_desc *rx_desc; 2591 unsigned int size, truesize; 2592 int pkt_offset = 0; 2593 void *pktbuf; 2594 2595 /* return some buffers to hardware, one at a time is too slow */ 2596 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2597 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2598 cleaned_count = 0; 2599 } 2600 2601 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2602 size = le16_to_cpu(rx_desc->wb.upper.length); 2603 if (!size) 2604 break; 2605 2606 /* This memory barrier is needed to keep us from reading 2607 * any other fields out of the rx_desc until we know the 2608 * descriptor has been written back 2609 */ 2610 dma_rmb(); 2611 2612 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2613 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2614 2615 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2616 2617 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2618 ctx.rx_ts = pktbuf; 2619 pkt_offset = IGC_TS_HDR_LEN; 2620 size -= IGC_TS_HDR_LEN; 2621 } 2622 2623 if (!skb) { 2624 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq); 2625 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring), 2626 igc_rx_offset(rx_ring) + pkt_offset, 2627 size, true); 2628 xdp_buff_clear_frags_flag(&ctx.xdp); 2629 ctx.rx_desc = rx_desc; 2630 2631 skb = igc_xdp_run_prog(adapter, &ctx.xdp); 2632 } 2633 2634 if (IS_ERR(skb)) { 2635 unsigned int xdp_res = -PTR_ERR(skb); 2636 2637 switch (xdp_res) { 2638 case IGC_XDP_CONSUMED: 2639 rx_buffer->pagecnt_bias++; 2640 break; 2641 case IGC_XDP_TX: 2642 case IGC_XDP_REDIRECT: 2643 igc_rx_buffer_flip(rx_buffer, truesize); 2644 xdp_status |= xdp_res; 2645 break; 2646 } 2647 2648 total_packets++; 2649 total_bytes += size; 2650 } else if (skb) 2651 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2652 else if (ring_uses_build_skb(rx_ring)) 2653 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp); 2654 else 2655 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx); 2656 2657 /* exit if we failed to retrieve a buffer */ 2658 if (!skb) { 2659 rx_ring->rx_stats.alloc_failed++; 2660 rx_buffer->pagecnt_bias++; 2661 break; 2662 } 2663 2664 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2665 cleaned_count++; 2666 2667 /* fetch next buffer in frame if non-eop */ 2668 if (igc_is_non_eop(rx_ring, rx_desc)) 2669 continue; 2670 2671 /* verify the packet layout is correct */ 2672 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2673 skb = NULL; 2674 continue; 2675 } 2676 2677 /* probably a little skewed due to removing CRC */ 2678 total_bytes += skb->len; 2679 2680 /* populate checksum, VLAN, and protocol */ 2681 igc_process_skb_fields(rx_ring, rx_desc, skb); 2682 2683 napi_gro_receive(&q_vector->napi, skb); 2684 2685 /* reset skb pointer */ 2686 skb = NULL; 2687 2688 /* update budget accounting */ 2689 total_packets++; 2690 } 2691 2692 if (xdp_status) 2693 igc_finalize_xdp(adapter, xdp_status); 2694 2695 /* place incomplete frames back on ring for completion */ 2696 rx_ring->skb = skb; 2697 2698 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2699 2700 if (cleaned_count) 2701 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2702 2703 return total_packets; 2704 } 2705 2706 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2707 struct xdp_buff *xdp) 2708 { 2709 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2710 unsigned int metasize = xdp->data - xdp->data_meta; 2711 struct sk_buff *skb; 2712 2713 net_prefetch(xdp->data_meta); 2714 2715 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2716 GFP_ATOMIC | __GFP_NOWARN); 2717 if (unlikely(!skb)) 2718 return NULL; 2719 2720 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2721 ALIGN(totalsize, sizeof(long))); 2722 2723 if (metasize) { 2724 skb_metadata_set(skb, metasize); 2725 __skb_pull(skb, metasize); 2726 } 2727 2728 return skb; 2729 } 2730 2731 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2732 union igc_adv_rx_desc *desc, 2733 struct xdp_buff *xdp, 2734 ktime_t timestamp) 2735 { 2736 struct igc_ring *ring = q_vector->rx.ring; 2737 struct sk_buff *skb; 2738 2739 skb = igc_construct_skb_zc(ring, xdp); 2740 if (!skb) { 2741 ring->rx_stats.alloc_failed++; 2742 return; 2743 } 2744 2745 if (timestamp) 2746 skb_hwtstamps(skb)->hwtstamp = timestamp; 2747 2748 if (igc_cleanup_headers(ring, desc, skb)) 2749 return; 2750 2751 igc_process_skb_fields(ring, desc, skb); 2752 napi_gro_receive(&q_vector->napi, skb); 2753 } 2754 2755 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp) 2756 { 2757 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The 2758 * igc_xdp_buff shares its layout with xdp_buff_xsk and private 2759 * igc_xdp_buff fields fall into xdp_buff_xsk->cb 2760 */ 2761 return (struct igc_xdp_buff *)xdp; 2762 } 2763 2764 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2765 { 2766 struct igc_adapter *adapter = q_vector->adapter; 2767 struct igc_ring *ring = q_vector->rx.ring; 2768 u16 cleaned_count = igc_desc_unused(ring); 2769 int total_bytes = 0, total_packets = 0; 2770 u16 ntc = ring->next_to_clean; 2771 struct bpf_prog *prog; 2772 bool failure = false; 2773 int xdp_status = 0; 2774 2775 rcu_read_lock(); 2776 2777 prog = READ_ONCE(adapter->xdp_prog); 2778 2779 while (likely(total_packets < budget)) { 2780 union igc_adv_rx_desc *desc; 2781 struct igc_rx_buffer *bi; 2782 struct igc_xdp_buff *ctx; 2783 ktime_t timestamp = 0; 2784 unsigned int size; 2785 int res; 2786 2787 desc = IGC_RX_DESC(ring, ntc); 2788 size = le16_to_cpu(desc->wb.upper.length); 2789 if (!size) 2790 break; 2791 2792 /* This memory barrier is needed to keep us from reading 2793 * any other fields out of the rx_desc until we know the 2794 * descriptor has been written back 2795 */ 2796 dma_rmb(); 2797 2798 bi = &ring->rx_buffer_info[ntc]; 2799 2800 ctx = xsk_buff_to_igc_ctx(bi->xdp); 2801 ctx->rx_desc = desc; 2802 2803 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2804 ctx->rx_ts = bi->xdp->data; 2805 2806 bi->xdp->data += IGC_TS_HDR_LEN; 2807 2808 /* HW timestamp has been copied into local variable. Metadata 2809 * length when XDP program is called should be 0. 2810 */ 2811 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2812 size -= IGC_TS_HDR_LEN; 2813 } 2814 2815 bi->xdp->data_end = bi->xdp->data + size; 2816 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2817 2818 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2819 switch (res) { 2820 case IGC_XDP_PASS: 2821 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2822 fallthrough; 2823 case IGC_XDP_CONSUMED: 2824 xsk_buff_free(bi->xdp); 2825 break; 2826 case IGC_XDP_TX: 2827 case IGC_XDP_REDIRECT: 2828 xdp_status |= res; 2829 break; 2830 } 2831 2832 bi->xdp = NULL; 2833 total_bytes += size; 2834 total_packets++; 2835 cleaned_count++; 2836 ntc++; 2837 if (ntc == ring->count) 2838 ntc = 0; 2839 } 2840 2841 ring->next_to_clean = ntc; 2842 rcu_read_unlock(); 2843 2844 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2845 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2846 2847 if (xdp_status) 2848 igc_finalize_xdp(adapter, xdp_status); 2849 2850 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2851 2852 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2853 if (failure || ring->next_to_clean == ring->next_to_use) 2854 xsk_set_rx_need_wakeup(ring->xsk_pool); 2855 else 2856 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2857 return total_packets; 2858 } 2859 2860 return failure ? budget : total_packets; 2861 } 2862 2863 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2864 unsigned int packets, unsigned int bytes) 2865 { 2866 struct igc_ring *ring = q_vector->tx.ring; 2867 2868 u64_stats_update_begin(&ring->tx_syncp); 2869 ring->tx_stats.bytes += bytes; 2870 ring->tx_stats.packets += packets; 2871 u64_stats_update_end(&ring->tx_syncp); 2872 2873 q_vector->tx.total_bytes += bytes; 2874 q_vector->tx.total_packets += packets; 2875 } 2876 2877 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2878 { 2879 struct xsk_buff_pool *pool = ring->xsk_pool; 2880 struct netdev_queue *nq = txring_txq(ring); 2881 union igc_adv_tx_desc *tx_desc = NULL; 2882 int cpu = smp_processor_id(); 2883 struct xdp_desc xdp_desc; 2884 u16 budget, ntu; 2885 2886 if (!netif_carrier_ok(ring->netdev)) 2887 return; 2888 2889 __netif_tx_lock(nq, cpu); 2890 2891 /* Avoid transmit queue timeout since we share it with the slow path */ 2892 txq_trans_cond_update(nq); 2893 2894 ntu = ring->next_to_use; 2895 budget = igc_desc_unused(ring); 2896 2897 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2898 u32 cmd_type, olinfo_status; 2899 struct igc_tx_buffer *bi; 2900 dma_addr_t dma; 2901 2902 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2903 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2904 xdp_desc.len; 2905 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2906 2907 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2908 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2909 2910 tx_desc = IGC_TX_DESC(ring, ntu); 2911 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2912 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2913 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2914 2915 bi = &ring->tx_buffer_info[ntu]; 2916 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2917 bi->protocol = 0; 2918 bi->bytecount = xdp_desc.len; 2919 bi->gso_segs = 1; 2920 bi->time_stamp = jiffies; 2921 bi->next_to_watch = tx_desc; 2922 2923 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2924 2925 ntu++; 2926 if (ntu == ring->count) 2927 ntu = 0; 2928 } 2929 2930 ring->next_to_use = ntu; 2931 if (tx_desc) { 2932 igc_flush_tx_descriptors(ring); 2933 xsk_tx_release(pool); 2934 } 2935 2936 __netif_tx_unlock(nq); 2937 } 2938 2939 /** 2940 * igc_clean_tx_irq - Reclaim resources after transmit completes 2941 * @q_vector: pointer to q_vector containing needed info 2942 * @napi_budget: Used to determine if we are in netpoll 2943 * 2944 * returns true if ring is completely cleaned 2945 */ 2946 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2947 { 2948 struct igc_adapter *adapter = q_vector->adapter; 2949 unsigned int total_bytes = 0, total_packets = 0; 2950 unsigned int budget = q_vector->tx.work_limit; 2951 struct igc_ring *tx_ring = q_vector->tx.ring; 2952 unsigned int i = tx_ring->next_to_clean; 2953 struct igc_tx_buffer *tx_buffer; 2954 union igc_adv_tx_desc *tx_desc; 2955 u32 xsk_frames = 0; 2956 2957 if (test_bit(__IGC_DOWN, &adapter->state)) 2958 return true; 2959 2960 tx_buffer = &tx_ring->tx_buffer_info[i]; 2961 tx_desc = IGC_TX_DESC(tx_ring, i); 2962 i -= tx_ring->count; 2963 2964 do { 2965 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2966 2967 /* if next_to_watch is not set then there is no work pending */ 2968 if (!eop_desc) 2969 break; 2970 2971 /* prevent any other reads prior to eop_desc */ 2972 smp_rmb(); 2973 2974 /* if DD is not set pending work has not been completed */ 2975 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2976 break; 2977 2978 /* clear next_to_watch to prevent false hangs */ 2979 tx_buffer->next_to_watch = NULL; 2980 2981 /* update the statistics for this packet */ 2982 total_bytes += tx_buffer->bytecount; 2983 total_packets += tx_buffer->gso_segs; 2984 2985 switch (tx_buffer->type) { 2986 case IGC_TX_BUFFER_TYPE_XSK: 2987 xsk_frames++; 2988 break; 2989 case IGC_TX_BUFFER_TYPE_XDP: 2990 xdp_return_frame(tx_buffer->xdpf); 2991 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2992 break; 2993 case IGC_TX_BUFFER_TYPE_SKB: 2994 napi_consume_skb(tx_buffer->skb, napi_budget); 2995 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2996 break; 2997 default: 2998 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2999 break; 3000 } 3001 3002 /* clear last DMA location and unmap remaining buffers */ 3003 while (tx_desc != eop_desc) { 3004 tx_buffer++; 3005 tx_desc++; 3006 i++; 3007 if (unlikely(!i)) { 3008 i -= tx_ring->count; 3009 tx_buffer = tx_ring->tx_buffer_info; 3010 tx_desc = IGC_TX_DESC(tx_ring, 0); 3011 } 3012 3013 /* unmap any remaining paged data */ 3014 if (dma_unmap_len(tx_buffer, len)) 3015 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3016 } 3017 3018 /* move us one more past the eop_desc for start of next pkt */ 3019 tx_buffer++; 3020 tx_desc++; 3021 i++; 3022 if (unlikely(!i)) { 3023 i -= tx_ring->count; 3024 tx_buffer = tx_ring->tx_buffer_info; 3025 tx_desc = IGC_TX_DESC(tx_ring, 0); 3026 } 3027 3028 /* issue prefetch for next Tx descriptor */ 3029 prefetch(tx_desc); 3030 3031 /* update budget accounting */ 3032 budget--; 3033 } while (likely(budget)); 3034 3035 netdev_tx_completed_queue(txring_txq(tx_ring), 3036 total_packets, total_bytes); 3037 3038 i += tx_ring->count; 3039 tx_ring->next_to_clean = i; 3040 3041 igc_update_tx_stats(q_vector, total_packets, total_bytes); 3042 3043 if (tx_ring->xsk_pool) { 3044 if (xsk_frames) 3045 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 3046 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 3047 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 3048 igc_xdp_xmit_zc(tx_ring); 3049 } 3050 3051 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 3052 struct igc_hw *hw = &adapter->hw; 3053 3054 /* Detect a transmit hang in hardware, this serializes the 3055 * check with the clearing of time_stamp and movement of i 3056 */ 3057 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 3058 if (tx_buffer->next_to_watch && 3059 time_after(jiffies, tx_buffer->time_stamp + 3060 (adapter->tx_timeout_factor * HZ)) && 3061 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 3062 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) && 3063 !tx_ring->oper_gate_closed) { 3064 /* detected Tx unit hang */ 3065 netdev_err(tx_ring->netdev, 3066 "Detected Tx Unit Hang\n" 3067 " Tx Queue <%d>\n" 3068 " TDH <%x>\n" 3069 " TDT <%x>\n" 3070 " next_to_use <%x>\n" 3071 " next_to_clean <%x>\n" 3072 "buffer_info[next_to_clean]\n" 3073 " time_stamp <%lx>\n" 3074 " next_to_watch <%p>\n" 3075 " jiffies <%lx>\n" 3076 " desc.status <%x>\n", 3077 tx_ring->queue_index, 3078 rd32(IGC_TDH(tx_ring->reg_idx)), 3079 readl(tx_ring->tail), 3080 tx_ring->next_to_use, 3081 tx_ring->next_to_clean, 3082 tx_buffer->time_stamp, 3083 tx_buffer->next_to_watch, 3084 jiffies, 3085 tx_buffer->next_to_watch->wb.status); 3086 netif_stop_subqueue(tx_ring->netdev, 3087 tx_ring->queue_index); 3088 3089 /* we are about to reset, no point in enabling stuff */ 3090 return true; 3091 } 3092 } 3093 3094 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 3095 if (unlikely(total_packets && 3096 netif_carrier_ok(tx_ring->netdev) && 3097 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 3098 /* Make sure that anybody stopping the queue after this 3099 * sees the new next_to_clean. 3100 */ 3101 smp_mb(); 3102 if (__netif_subqueue_stopped(tx_ring->netdev, 3103 tx_ring->queue_index) && 3104 !(test_bit(__IGC_DOWN, &adapter->state))) { 3105 netif_wake_subqueue(tx_ring->netdev, 3106 tx_ring->queue_index); 3107 3108 u64_stats_update_begin(&tx_ring->tx_syncp); 3109 tx_ring->tx_stats.restart_queue++; 3110 u64_stats_update_end(&tx_ring->tx_syncp); 3111 } 3112 } 3113 3114 return !!budget; 3115 } 3116 3117 static int igc_find_mac_filter(struct igc_adapter *adapter, 3118 enum igc_mac_filter_type type, const u8 *addr) 3119 { 3120 struct igc_hw *hw = &adapter->hw; 3121 int max_entries = hw->mac.rar_entry_count; 3122 u32 ral, rah; 3123 int i; 3124 3125 for (i = 0; i < max_entries; i++) { 3126 ral = rd32(IGC_RAL(i)); 3127 rah = rd32(IGC_RAH(i)); 3128 3129 if (!(rah & IGC_RAH_AV)) 3130 continue; 3131 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3132 continue; 3133 if ((rah & IGC_RAH_RAH_MASK) != 3134 le16_to_cpup((__le16 *)(addr + 4))) 3135 continue; 3136 if (ral != le32_to_cpup((__le32 *)(addr))) 3137 continue; 3138 3139 return i; 3140 } 3141 3142 return -1; 3143 } 3144 3145 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3146 { 3147 struct igc_hw *hw = &adapter->hw; 3148 int max_entries = hw->mac.rar_entry_count; 3149 u32 rah; 3150 int i; 3151 3152 for (i = 0; i < max_entries; i++) { 3153 rah = rd32(IGC_RAH(i)); 3154 3155 if (!(rah & IGC_RAH_AV)) 3156 return i; 3157 } 3158 3159 return -1; 3160 } 3161 3162 /** 3163 * igc_add_mac_filter() - Add MAC address filter 3164 * @adapter: Pointer to adapter where the filter should be added 3165 * @type: MAC address filter type (source or destination) 3166 * @addr: MAC address 3167 * @queue: If non-negative, queue assignment feature is enabled and frames 3168 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3169 * assignment is disabled. 3170 * 3171 * Return: 0 in case of success, negative errno code otherwise. 3172 */ 3173 static int igc_add_mac_filter(struct igc_adapter *adapter, 3174 enum igc_mac_filter_type type, const u8 *addr, 3175 int queue) 3176 { 3177 struct net_device *dev = adapter->netdev; 3178 int index; 3179 3180 index = igc_find_mac_filter(adapter, type, addr); 3181 if (index >= 0) 3182 goto update_filter; 3183 3184 index = igc_get_avail_mac_filter_slot(adapter); 3185 if (index < 0) 3186 return -ENOSPC; 3187 3188 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3189 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3190 addr, queue); 3191 3192 update_filter: 3193 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3194 return 0; 3195 } 3196 3197 /** 3198 * igc_del_mac_filter() - Delete MAC address filter 3199 * @adapter: Pointer to adapter where the filter should be deleted from 3200 * @type: MAC address filter type (source or destination) 3201 * @addr: MAC address 3202 */ 3203 static void igc_del_mac_filter(struct igc_adapter *adapter, 3204 enum igc_mac_filter_type type, const u8 *addr) 3205 { 3206 struct net_device *dev = adapter->netdev; 3207 int index; 3208 3209 index = igc_find_mac_filter(adapter, type, addr); 3210 if (index < 0) 3211 return; 3212 3213 if (index == 0) { 3214 /* If this is the default filter, we don't actually delete it. 3215 * We just reset to its default value i.e. disable queue 3216 * assignment. 3217 */ 3218 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3219 3220 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3221 } else { 3222 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3223 index, 3224 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3225 addr); 3226 3227 igc_clear_mac_filter_hw(adapter, index); 3228 } 3229 } 3230 3231 /** 3232 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3233 * @adapter: Pointer to adapter where the filter should be added 3234 * @prio: VLAN priority value 3235 * @queue: Queue number which matching frames are assigned to 3236 * 3237 * Return: 0 in case of success, negative errno code otherwise. 3238 */ 3239 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3240 int queue) 3241 { 3242 struct net_device *dev = adapter->netdev; 3243 struct igc_hw *hw = &adapter->hw; 3244 u32 vlanpqf; 3245 3246 vlanpqf = rd32(IGC_VLANPQF); 3247 3248 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3249 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3250 return -EEXIST; 3251 } 3252 3253 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3254 vlanpqf |= IGC_VLANPQF_VALID(prio); 3255 3256 wr32(IGC_VLANPQF, vlanpqf); 3257 3258 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3259 prio, queue); 3260 return 0; 3261 } 3262 3263 /** 3264 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3265 * @adapter: Pointer to adapter where the filter should be deleted from 3266 * @prio: VLAN priority value 3267 */ 3268 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3269 { 3270 struct igc_hw *hw = &adapter->hw; 3271 u32 vlanpqf; 3272 3273 vlanpqf = rd32(IGC_VLANPQF); 3274 3275 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3276 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3277 3278 wr32(IGC_VLANPQF, vlanpqf); 3279 3280 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3281 prio); 3282 } 3283 3284 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3285 { 3286 struct igc_hw *hw = &adapter->hw; 3287 int i; 3288 3289 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3290 u32 etqf = rd32(IGC_ETQF(i)); 3291 3292 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3293 return i; 3294 } 3295 3296 return -1; 3297 } 3298 3299 /** 3300 * igc_add_etype_filter() - Add ethertype filter 3301 * @adapter: Pointer to adapter where the filter should be added 3302 * @etype: Ethertype value 3303 * @queue: If non-negative, queue assignment feature is enabled and frames 3304 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3305 * assignment is disabled. 3306 * 3307 * Return: 0 in case of success, negative errno code otherwise. 3308 */ 3309 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3310 int queue) 3311 { 3312 struct igc_hw *hw = &adapter->hw; 3313 int index; 3314 u32 etqf; 3315 3316 index = igc_get_avail_etype_filter_slot(adapter); 3317 if (index < 0) 3318 return -ENOSPC; 3319 3320 etqf = rd32(IGC_ETQF(index)); 3321 3322 etqf &= ~IGC_ETQF_ETYPE_MASK; 3323 etqf |= etype; 3324 3325 if (queue >= 0) { 3326 etqf &= ~IGC_ETQF_QUEUE_MASK; 3327 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3328 etqf |= IGC_ETQF_QUEUE_ENABLE; 3329 } 3330 3331 etqf |= IGC_ETQF_FILTER_ENABLE; 3332 3333 wr32(IGC_ETQF(index), etqf); 3334 3335 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3336 etype, queue); 3337 return 0; 3338 } 3339 3340 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3341 { 3342 struct igc_hw *hw = &adapter->hw; 3343 int i; 3344 3345 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3346 u32 etqf = rd32(IGC_ETQF(i)); 3347 3348 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3349 return i; 3350 } 3351 3352 return -1; 3353 } 3354 3355 /** 3356 * igc_del_etype_filter() - Delete ethertype filter 3357 * @adapter: Pointer to adapter where the filter should be deleted from 3358 * @etype: Ethertype value 3359 */ 3360 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3361 { 3362 struct igc_hw *hw = &adapter->hw; 3363 int index; 3364 3365 index = igc_find_etype_filter(adapter, etype); 3366 if (index < 0) 3367 return; 3368 3369 wr32(IGC_ETQF(index), 0); 3370 3371 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3372 etype); 3373 } 3374 3375 static int igc_flex_filter_select(struct igc_adapter *adapter, 3376 struct igc_flex_filter *input, 3377 u32 *fhft) 3378 { 3379 struct igc_hw *hw = &adapter->hw; 3380 u8 fhft_index; 3381 u32 fhftsl; 3382 3383 if (input->index >= MAX_FLEX_FILTER) { 3384 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n"); 3385 return -EINVAL; 3386 } 3387 3388 /* Indirect table select register */ 3389 fhftsl = rd32(IGC_FHFTSL); 3390 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3391 switch (input->index) { 3392 case 0 ... 7: 3393 fhftsl |= 0x00; 3394 break; 3395 case 8 ... 15: 3396 fhftsl |= 0x01; 3397 break; 3398 case 16 ... 23: 3399 fhftsl |= 0x02; 3400 break; 3401 case 24 ... 31: 3402 fhftsl |= 0x03; 3403 break; 3404 } 3405 wr32(IGC_FHFTSL, fhftsl); 3406 3407 /* Normalize index down to host table register */ 3408 fhft_index = input->index % 8; 3409 3410 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3411 IGC_FHFT_EXT(fhft_index - 4); 3412 3413 return 0; 3414 } 3415 3416 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3417 struct igc_flex_filter *input) 3418 { 3419 struct igc_hw *hw = &adapter->hw; 3420 u8 *data = input->data; 3421 u8 *mask = input->mask; 3422 u32 queuing; 3423 u32 fhft; 3424 u32 wufc; 3425 int ret; 3426 int i; 3427 3428 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3429 * out early to avoid surprises later. 3430 */ 3431 if (input->length % 8 != 0) { 3432 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n"); 3433 return -EINVAL; 3434 } 3435 3436 /* Select corresponding flex filter register and get base for host table. */ 3437 ret = igc_flex_filter_select(adapter, input, &fhft); 3438 if (ret) 3439 return ret; 3440 3441 /* When adding a filter globally disable flex filter feature. That is 3442 * recommended within the datasheet. 3443 */ 3444 wufc = rd32(IGC_WUFC); 3445 wufc &= ~IGC_WUFC_FLEX_HQ; 3446 wr32(IGC_WUFC, wufc); 3447 3448 /* Configure filter */ 3449 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3450 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue); 3451 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio); 3452 3453 if (input->immediate_irq) 3454 queuing |= IGC_FHFT_IMM_INT; 3455 3456 if (input->drop) 3457 queuing |= IGC_FHFT_DROP; 3458 3459 wr32(fhft + 0xFC, queuing); 3460 3461 /* Write data (128 byte) and mask (128 bit) */ 3462 for (i = 0; i < 16; ++i) { 3463 const size_t data_idx = i * 8; 3464 const size_t row_idx = i * 16; 3465 u32 dw0 = 3466 (data[data_idx + 0] << 0) | 3467 (data[data_idx + 1] << 8) | 3468 (data[data_idx + 2] << 16) | 3469 (data[data_idx + 3] << 24); 3470 u32 dw1 = 3471 (data[data_idx + 4] << 0) | 3472 (data[data_idx + 5] << 8) | 3473 (data[data_idx + 6] << 16) | 3474 (data[data_idx + 7] << 24); 3475 u32 tmp; 3476 3477 /* Write row: dw0, dw1 and mask */ 3478 wr32(fhft + row_idx, dw0); 3479 wr32(fhft + row_idx + 4, dw1); 3480 3481 /* mask is only valid for MASK(7, 0) */ 3482 tmp = rd32(fhft + row_idx + 8); 3483 tmp &= ~GENMASK(7, 0); 3484 tmp |= mask[i]; 3485 wr32(fhft + row_idx + 8, tmp); 3486 } 3487 3488 /* Enable filter. */ 3489 wufc |= IGC_WUFC_FLEX_HQ; 3490 if (input->index > 8) { 3491 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3492 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3493 3494 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3495 3496 wr32(IGC_WUFC_EXT, wufc_ext); 3497 } else { 3498 wufc |= (IGC_WUFC_FLX0 << input->index); 3499 } 3500 wr32(IGC_WUFC, wufc); 3501 3502 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n", 3503 input->index); 3504 3505 return 0; 3506 } 3507 3508 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3509 const void *src, unsigned int offset, 3510 size_t len, const void *mask) 3511 { 3512 int i; 3513 3514 /* data */ 3515 memcpy(&flex->data[offset], src, len); 3516 3517 /* mask */ 3518 for (i = 0; i < len; ++i) { 3519 const unsigned int idx = i + offset; 3520 const u8 *ptr = mask; 3521 3522 if (mask) { 3523 if (ptr[i] & 0xff) 3524 flex->mask[idx / 8] |= BIT(idx % 8); 3525 3526 continue; 3527 } 3528 3529 flex->mask[idx / 8] |= BIT(idx % 8); 3530 } 3531 } 3532 3533 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3534 { 3535 struct igc_hw *hw = &adapter->hw; 3536 u32 wufc, wufc_ext; 3537 int i; 3538 3539 wufc = rd32(IGC_WUFC); 3540 wufc_ext = rd32(IGC_WUFC_EXT); 3541 3542 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3543 if (i < 8) { 3544 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3545 return i; 3546 } else { 3547 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3548 return i; 3549 } 3550 } 3551 3552 return -ENOSPC; 3553 } 3554 3555 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3556 { 3557 struct igc_hw *hw = &adapter->hw; 3558 u32 wufc, wufc_ext; 3559 3560 wufc = rd32(IGC_WUFC); 3561 wufc_ext = rd32(IGC_WUFC_EXT); 3562 3563 if (wufc & IGC_WUFC_FILTER_MASK) 3564 return true; 3565 3566 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3567 return true; 3568 3569 return false; 3570 } 3571 3572 static int igc_add_flex_filter(struct igc_adapter *adapter, 3573 struct igc_nfc_rule *rule) 3574 { 3575 struct igc_nfc_filter *filter = &rule->filter; 3576 unsigned int eth_offset, user_offset; 3577 struct igc_flex_filter flex = { }; 3578 int ret, index; 3579 bool vlan; 3580 3581 index = igc_find_avail_flex_filter_slot(adapter); 3582 if (index < 0) 3583 return -ENOSPC; 3584 3585 /* Construct the flex filter: 3586 * -> dest_mac [6] 3587 * -> src_mac [6] 3588 * -> tpid [2] 3589 * -> vlan tci [2] 3590 * -> ether type [2] 3591 * -> user data [8] 3592 * -> = 26 bytes => 32 length 3593 */ 3594 flex.index = index; 3595 flex.length = 32; 3596 flex.rx_queue = rule->action; 3597 3598 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3599 eth_offset = vlan ? 16 : 12; 3600 user_offset = vlan ? 18 : 14; 3601 3602 /* Add destination MAC */ 3603 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3604 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3605 ETH_ALEN, NULL); 3606 3607 /* Add source MAC */ 3608 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3609 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3610 ETH_ALEN, NULL); 3611 3612 /* Add VLAN etype */ 3613 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) { 3614 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype); 3615 3616 igc_flex_filter_add_field(&flex, &vlan_etype, 12, 3617 sizeof(vlan_etype), NULL); 3618 } 3619 3620 /* Add VLAN TCI */ 3621 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3622 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3623 sizeof(filter->vlan_tci), NULL); 3624 3625 /* Add Ether type */ 3626 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3627 __be16 etype = cpu_to_be16(filter->etype); 3628 3629 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3630 sizeof(etype), NULL); 3631 } 3632 3633 /* Add user data */ 3634 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3635 igc_flex_filter_add_field(&flex, &filter->user_data, 3636 user_offset, 3637 sizeof(filter->user_data), 3638 filter->user_mask); 3639 3640 /* Add it down to the hardware and enable it. */ 3641 ret = igc_write_flex_filter_ll(adapter, &flex); 3642 if (ret) 3643 return ret; 3644 3645 filter->flex_index = index; 3646 3647 return 0; 3648 } 3649 3650 static void igc_del_flex_filter(struct igc_adapter *adapter, 3651 u16 reg_index) 3652 { 3653 struct igc_hw *hw = &adapter->hw; 3654 u32 wufc; 3655 3656 /* Just disable the filter. The filter table itself is kept 3657 * intact. Another flex_filter_add() should override the "old" data 3658 * then. 3659 */ 3660 if (reg_index > 8) { 3661 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3662 3663 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3664 wr32(IGC_WUFC_EXT, wufc_ext); 3665 } else { 3666 wufc = rd32(IGC_WUFC); 3667 3668 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3669 wr32(IGC_WUFC, wufc); 3670 } 3671 3672 if (igc_flex_filter_in_use(adapter)) 3673 return; 3674 3675 /* No filters are in use, we may disable flex filters */ 3676 wufc = rd32(IGC_WUFC); 3677 wufc &= ~IGC_WUFC_FLEX_HQ; 3678 wr32(IGC_WUFC, wufc); 3679 } 3680 3681 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3682 struct igc_nfc_rule *rule) 3683 { 3684 int err; 3685 3686 if (rule->flex) { 3687 return igc_add_flex_filter(adapter, rule); 3688 } 3689 3690 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3691 err = igc_add_etype_filter(adapter, rule->filter.etype, 3692 rule->action); 3693 if (err) 3694 return err; 3695 } 3696 3697 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3698 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3699 rule->filter.src_addr, rule->action); 3700 if (err) 3701 return err; 3702 } 3703 3704 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3705 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3706 rule->filter.dst_addr, rule->action); 3707 if (err) 3708 return err; 3709 } 3710 3711 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3712 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci); 3713 3714 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3715 if (err) 3716 return err; 3717 } 3718 3719 return 0; 3720 } 3721 3722 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3723 const struct igc_nfc_rule *rule) 3724 { 3725 if (rule->flex) { 3726 igc_del_flex_filter(adapter, rule->filter.flex_index); 3727 return; 3728 } 3729 3730 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3731 igc_del_etype_filter(adapter, rule->filter.etype); 3732 3733 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3734 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci); 3735 3736 igc_del_vlan_prio_filter(adapter, prio); 3737 } 3738 3739 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3740 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3741 rule->filter.src_addr); 3742 3743 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3744 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3745 rule->filter.dst_addr); 3746 } 3747 3748 /** 3749 * igc_get_nfc_rule() - Get NFC rule 3750 * @adapter: Pointer to adapter 3751 * @location: Rule location 3752 * 3753 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3754 * 3755 * Return: Pointer to NFC rule at @location. If not found, NULL. 3756 */ 3757 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3758 u32 location) 3759 { 3760 struct igc_nfc_rule *rule; 3761 3762 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3763 if (rule->location == location) 3764 return rule; 3765 if (rule->location > location) 3766 break; 3767 } 3768 3769 return NULL; 3770 } 3771 3772 /** 3773 * igc_del_nfc_rule() - Delete NFC rule 3774 * @adapter: Pointer to adapter 3775 * @rule: Pointer to rule to be deleted 3776 * 3777 * Disable NFC rule in hardware and delete it from adapter. 3778 * 3779 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3780 */ 3781 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3782 { 3783 igc_disable_nfc_rule(adapter, rule); 3784 3785 list_del(&rule->list); 3786 adapter->nfc_rule_count--; 3787 3788 kfree(rule); 3789 } 3790 3791 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3792 { 3793 struct igc_nfc_rule *rule, *tmp; 3794 3795 mutex_lock(&adapter->nfc_rule_lock); 3796 3797 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3798 igc_del_nfc_rule(adapter, rule); 3799 3800 mutex_unlock(&adapter->nfc_rule_lock); 3801 } 3802 3803 /** 3804 * igc_add_nfc_rule() - Add NFC rule 3805 * @adapter: Pointer to adapter 3806 * @rule: Pointer to rule to be added 3807 * 3808 * Enable NFC rule in hardware and add it to adapter. 3809 * 3810 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3811 * 3812 * Return: 0 on success, negative errno on failure. 3813 */ 3814 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3815 { 3816 struct igc_nfc_rule *pred, *cur; 3817 int err; 3818 3819 err = igc_enable_nfc_rule(adapter, rule); 3820 if (err) 3821 return err; 3822 3823 pred = NULL; 3824 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3825 if (cur->location >= rule->location) 3826 break; 3827 pred = cur; 3828 } 3829 3830 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3831 adapter->nfc_rule_count++; 3832 return 0; 3833 } 3834 3835 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3836 { 3837 struct igc_nfc_rule *rule; 3838 3839 mutex_lock(&adapter->nfc_rule_lock); 3840 3841 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3842 igc_enable_nfc_rule(adapter, rule); 3843 3844 mutex_unlock(&adapter->nfc_rule_lock); 3845 } 3846 3847 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3848 { 3849 struct igc_adapter *adapter = netdev_priv(netdev); 3850 3851 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3852 } 3853 3854 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3855 { 3856 struct igc_adapter *adapter = netdev_priv(netdev); 3857 3858 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3859 return 0; 3860 } 3861 3862 /** 3863 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3864 * @netdev: network interface device structure 3865 * 3866 * The set_rx_mode entry point is called whenever the unicast or multicast 3867 * address lists or the network interface flags are updated. This routine is 3868 * responsible for configuring the hardware for proper unicast, multicast, 3869 * promiscuous mode, and all-multi behavior. 3870 */ 3871 static void igc_set_rx_mode(struct net_device *netdev) 3872 { 3873 struct igc_adapter *adapter = netdev_priv(netdev); 3874 struct igc_hw *hw = &adapter->hw; 3875 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3876 int count; 3877 3878 /* Check for Promiscuous and All Multicast modes */ 3879 if (netdev->flags & IFF_PROMISC) { 3880 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3881 } else { 3882 if (netdev->flags & IFF_ALLMULTI) { 3883 rctl |= IGC_RCTL_MPE; 3884 } else { 3885 /* Write addresses to the MTA, if the attempt fails 3886 * then we should just turn on promiscuous mode so 3887 * that we can at least receive multicast traffic 3888 */ 3889 count = igc_write_mc_addr_list(netdev); 3890 if (count < 0) 3891 rctl |= IGC_RCTL_MPE; 3892 } 3893 } 3894 3895 /* Write addresses to available RAR registers, if there is not 3896 * sufficient space to store all the addresses then enable 3897 * unicast promiscuous mode 3898 */ 3899 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3900 rctl |= IGC_RCTL_UPE; 3901 3902 /* update state of unicast and multicast */ 3903 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3904 wr32(IGC_RCTL, rctl); 3905 3906 #if (PAGE_SIZE < 8192) 3907 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3908 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3909 #endif 3910 wr32(IGC_RLPML, rlpml); 3911 } 3912 3913 /** 3914 * igc_configure - configure the hardware for RX and TX 3915 * @adapter: private board structure 3916 */ 3917 static void igc_configure(struct igc_adapter *adapter) 3918 { 3919 struct net_device *netdev = adapter->netdev; 3920 int i = 0; 3921 3922 igc_get_hw_control(adapter); 3923 igc_set_rx_mode(netdev); 3924 3925 igc_restore_vlan(adapter); 3926 3927 igc_setup_tctl(adapter); 3928 igc_setup_mrqc(adapter); 3929 igc_setup_rctl(adapter); 3930 3931 igc_set_default_mac_filter(adapter); 3932 igc_restore_nfc_rules(adapter); 3933 3934 igc_configure_tx(adapter); 3935 igc_configure_rx(adapter); 3936 3937 igc_rx_fifo_flush_base(&adapter->hw); 3938 3939 /* call igc_desc_unused which always leaves 3940 * at least 1 descriptor unused to make sure 3941 * next_to_use != next_to_clean 3942 */ 3943 for (i = 0; i < adapter->num_rx_queues; i++) { 3944 struct igc_ring *ring = adapter->rx_ring[i]; 3945 3946 if (ring->xsk_pool) 3947 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3948 else 3949 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3950 } 3951 } 3952 3953 /** 3954 * igc_write_ivar - configure ivar for given MSI-X vector 3955 * @hw: pointer to the HW structure 3956 * @msix_vector: vector number we are allocating to a given ring 3957 * @index: row index of IVAR register to write within IVAR table 3958 * @offset: column offset of in IVAR, should be multiple of 8 3959 * 3960 * The IVAR table consists of 2 columns, 3961 * each containing an cause allocation for an Rx and Tx ring, and a 3962 * variable number of rows depending on the number of queues supported. 3963 */ 3964 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3965 int index, int offset) 3966 { 3967 u32 ivar = array_rd32(IGC_IVAR0, index); 3968 3969 /* clear any bits that are currently set */ 3970 ivar &= ~((u32)0xFF << offset); 3971 3972 /* write vector and valid bit */ 3973 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3974 3975 array_wr32(IGC_IVAR0, index, ivar); 3976 } 3977 3978 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3979 { 3980 struct igc_adapter *adapter = q_vector->adapter; 3981 struct igc_hw *hw = &adapter->hw; 3982 int rx_queue = IGC_N0_QUEUE; 3983 int tx_queue = IGC_N0_QUEUE; 3984 3985 if (q_vector->rx.ring) 3986 rx_queue = q_vector->rx.ring->reg_idx; 3987 if (q_vector->tx.ring) 3988 tx_queue = q_vector->tx.ring->reg_idx; 3989 3990 switch (hw->mac.type) { 3991 case igc_i225: 3992 if (rx_queue > IGC_N0_QUEUE) 3993 igc_write_ivar(hw, msix_vector, 3994 rx_queue >> 1, 3995 (rx_queue & 0x1) << 4); 3996 if (tx_queue > IGC_N0_QUEUE) 3997 igc_write_ivar(hw, msix_vector, 3998 tx_queue >> 1, 3999 ((tx_queue & 0x1) << 4) + 8); 4000 q_vector->eims_value = BIT(msix_vector); 4001 break; 4002 default: 4003 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 4004 break; 4005 } 4006 4007 /* add q_vector eims value to global eims_enable_mask */ 4008 adapter->eims_enable_mask |= q_vector->eims_value; 4009 4010 /* configure q_vector to set itr on first interrupt */ 4011 q_vector->set_itr = 1; 4012 } 4013 4014 /** 4015 * igc_configure_msix - Configure MSI-X hardware 4016 * @adapter: Pointer to adapter structure 4017 * 4018 * igc_configure_msix sets up the hardware to properly 4019 * generate MSI-X interrupts. 4020 */ 4021 static void igc_configure_msix(struct igc_adapter *adapter) 4022 { 4023 struct igc_hw *hw = &adapter->hw; 4024 int i, vector = 0; 4025 u32 tmp; 4026 4027 adapter->eims_enable_mask = 0; 4028 4029 /* set vector for other causes, i.e. link changes */ 4030 switch (hw->mac.type) { 4031 case igc_i225: 4032 /* Turn on MSI-X capability first, or our settings 4033 * won't stick. And it will take days to debug. 4034 */ 4035 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 4036 IGC_GPIE_PBA | IGC_GPIE_EIAME | 4037 IGC_GPIE_NSICR); 4038 4039 /* enable msix_other interrupt */ 4040 adapter->eims_other = BIT(vector); 4041 tmp = (vector++ | IGC_IVAR_VALID) << 8; 4042 4043 wr32(IGC_IVAR_MISC, tmp); 4044 break; 4045 default: 4046 /* do nothing, since nothing else supports MSI-X */ 4047 break; 4048 } /* switch (hw->mac.type) */ 4049 4050 adapter->eims_enable_mask |= adapter->eims_other; 4051 4052 for (i = 0; i < adapter->num_q_vectors; i++) 4053 igc_assign_vector(adapter->q_vector[i], vector++); 4054 4055 wrfl(); 4056 } 4057 4058 /** 4059 * igc_irq_enable - Enable default interrupt generation settings 4060 * @adapter: board private structure 4061 */ 4062 static void igc_irq_enable(struct igc_adapter *adapter) 4063 { 4064 struct igc_hw *hw = &adapter->hw; 4065 4066 if (adapter->msix_entries) { 4067 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 4068 u32 regval = rd32(IGC_EIAC); 4069 4070 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 4071 regval = rd32(IGC_EIAM); 4072 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 4073 wr32(IGC_EIMS, adapter->eims_enable_mask); 4074 wr32(IGC_IMS, ims); 4075 } else { 4076 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4077 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4078 } 4079 } 4080 4081 /** 4082 * igc_irq_disable - Mask off interrupt generation on the NIC 4083 * @adapter: board private structure 4084 */ 4085 static void igc_irq_disable(struct igc_adapter *adapter) 4086 { 4087 struct igc_hw *hw = &adapter->hw; 4088 4089 if (adapter->msix_entries) { 4090 u32 regval = rd32(IGC_EIAM); 4091 4092 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 4093 wr32(IGC_EIMC, adapter->eims_enable_mask); 4094 regval = rd32(IGC_EIAC); 4095 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 4096 } 4097 4098 wr32(IGC_IAM, 0); 4099 wr32(IGC_IMC, ~0); 4100 wrfl(); 4101 4102 if (adapter->msix_entries) { 4103 int vector = 0, i; 4104 4105 synchronize_irq(adapter->msix_entries[vector++].vector); 4106 4107 for (i = 0; i < adapter->num_q_vectors; i++) 4108 synchronize_irq(adapter->msix_entries[vector++].vector); 4109 } else { 4110 synchronize_irq(adapter->pdev->irq); 4111 } 4112 } 4113 4114 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4115 const u32 max_rss_queues) 4116 { 4117 /* Determine if we need to pair queues. */ 4118 /* If rss_queues > half of max_rss_queues, pair the queues in 4119 * order to conserve interrupts due to limited supply. 4120 */ 4121 if (adapter->rss_queues > (max_rss_queues / 2)) 4122 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4123 else 4124 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4125 } 4126 4127 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4128 { 4129 return IGC_MAX_RX_QUEUES; 4130 } 4131 4132 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4133 { 4134 u32 max_rss_queues; 4135 4136 max_rss_queues = igc_get_max_rss_queues(adapter); 4137 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4138 4139 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4140 } 4141 4142 /** 4143 * igc_reset_q_vector - Reset config for interrupt vector 4144 * @adapter: board private structure to initialize 4145 * @v_idx: Index of vector to be reset 4146 * 4147 * If NAPI is enabled it will delete any references to the 4148 * NAPI struct. This is preparation for igc_free_q_vector. 4149 */ 4150 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4151 { 4152 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4153 4154 /* if we're coming from igc_set_interrupt_capability, the vectors are 4155 * not yet allocated 4156 */ 4157 if (!q_vector) 4158 return; 4159 4160 if (q_vector->tx.ring) 4161 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4162 4163 if (q_vector->rx.ring) 4164 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4165 4166 netif_napi_del(&q_vector->napi); 4167 } 4168 4169 /** 4170 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4171 * @adapter: board private structure to initialize 4172 * @v_idx: Index of vector to be freed 4173 * 4174 * This function frees the memory allocated to the q_vector. 4175 */ 4176 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4177 { 4178 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4179 4180 adapter->q_vector[v_idx] = NULL; 4181 4182 /* igc_get_stats64() might access the rings on this vector, 4183 * we must wait a grace period before freeing it. 4184 */ 4185 if (q_vector) 4186 kfree_rcu(q_vector, rcu); 4187 } 4188 4189 /** 4190 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4191 * @adapter: board private structure to initialize 4192 * 4193 * This function frees the memory allocated to the q_vectors. In addition if 4194 * NAPI is enabled it will delete any references to the NAPI struct prior 4195 * to freeing the q_vector. 4196 */ 4197 static void igc_free_q_vectors(struct igc_adapter *adapter) 4198 { 4199 int v_idx = adapter->num_q_vectors; 4200 4201 adapter->num_tx_queues = 0; 4202 adapter->num_rx_queues = 0; 4203 adapter->num_q_vectors = 0; 4204 4205 while (v_idx--) { 4206 igc_reset_q_vector(adapter, v_idx); 4207 igc_free_q_vector(adapter, v_idx); 4208 } 4209 } 4210 4211 /** 4212 * igc_update_itr - update the dynamic ITR value based on statistics 4213 * @q_vector: pointer to q_vector 4214 * @ring_container: ring info to update the itr for 4215 * 4216 * Stores a new ITR value based on packets and byte 4217 * counts during the last interrupt. The advantage of per interrupt 4218 * computation is faster updates and more accurate ITR for the current 4219 * traffic pattern. Constants in this function were computed 4220 * based on theoretical maximum wire speed and thresholds were set based 4221 * on testing data as well as attempting to minimize response time 4222 * while increasing bulk throughput. 4223 * NOTE: These calculations are only valid when operating in a single- 4224 * queue environment. 4225 */ 4226 static void igc_update_itr(struct igc_q_vector *q_vector, 4227 struct igc_ring_container *ring_container) 4228 { 4229 unsigned int packets = ring_container->total_packets; 4230 unsigned int bytes = ring_container->total_bytes; 4231 u8 itrval = ring_container->itr; 4232 4233 /* no packets, exit with status unchanged */ 4234 if (packets == 0) 4235 return; 4236 4237 switch (itrval) { 4238 case lowest_latency: 4239 /* handle TSO and jumbo frames */ 4240 if (bytes / packets > 8000) 4241 itrval = bulk_latency; 4242 else if ((packets < 5) && (bytes > 512)) 4243 itrval = low_latency; 4244 break; 4245 case low_latency: /* 50 usec aka 20000 ints/s */ 4246 if (bytes > 10000) { 4247 /* this if handles the TSO accounting */ 4248 if (bytes / packets > 8000) 4249 itrval = bulk_latency; 4250 else if ((packets < 10) || ((bytes / packets) > 1200)) 4251 itrval = bulk_latency; 4252 else if ((packets > 35)) 4253 itrval = lowest_latency; 4254 } else if (bytes / packets > 2000) { 4255 itrval = bulk_latency; 4256 } else if (packets <= 2 && bytes < 512) { 4257 itrval = lowest_latency; 4258 } 4259 break; 4260 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4261 if (bytes > 25000) { 4262 if (packets > 35) 4263 itrval = low_latency; 4264 } else if (bytes < 1500) { 4265 itrval = low_latency; 4266 } 4267 break; 4268 } 4269 4270 /* clear work counters since we have the values we need */ 4271 ring_container->total_bytes = 0; 4272 ring_container->total_packets = 0; 4273 4274 /* write updated itr to ring container */ 4275 ring_container->itr = itrval; 4276 } 4277 4278 static void igc_set_itr(struct igc_q_vector *q_vector) 4279 { 4280 struct igc_adapter *adapter = q_vector->adapter; 4281 u32 new_itr = q_vector->itr_val; 4282 u8 current_itr = 0; 4283 4284 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4285 switch (adapter->link_speed) { 4286 case SPEED_10: 4287 case SPEED_100: 4288 current_itr = 0; 4289 new_itr = IGC_4K_ITR; 4290 goto set_itr_now; 4291 default: 4292 break; 4293 } 4294 4295 igc_update_itr(q_vector, &q_vector->tx); 4296 igc_update_itr(q_vector, &q_vector->rx); 4297 4298 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4299 4300 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4301 if (current_itr == lowest_latency && 4302 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4303 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4304 current_itr = low_latency; 4305 4306 switch (current_itr) { 4307 /* counts and packets in update_itr are dependent on these numbers */ 4308 case lowest_latency: 4309 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4310 break; 4311 case low_latency: 4312 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4313 break; 4314 case bulk_latency: 4315 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4316 break; 4317 default: 4318 break; 4319 } 4320 4321 set_itr_now: 4322 if (new_itr != q_vector->itr_val) { 4323 /* this attempts to bias the interrupt rate towards Bulk 4324 * by adding intermediate steps when interrupt rate is 4325 * increasing 4326 */ 4327 new_itr = new_itr > q_vector->itr_val ? 4328 max((new_itr * q_vector->itr_val) / 4329 (new_itr + (q_vector->itr_val >> 2)), 4330 new_itr) : new_itr; 4331 /* Don't write the value here; it resets the adapter's 4332 * internal timer, and causes us to delay far longer than 4333 * we should between interrupts. Instead, we write the ITR 4334 * value at the beginning of the next interrupt so the timing 4335 * ends up being correct. 4336 */ 4337 q_vector->itr_val = new_itr; 4338 q_vector->set_itr = 1; 4339 } 4340 } 4341 4342 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4343 { 4344 int v_idx = adapter->num_q_vectors; 4345 4346 if (adapter->msix_entries) { 4347 pci_disable_msix(adapter->pdev); 4348 kfree(adapter->msix_entries); 4349 adapter->msix_entries = NULL; 4350 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4351 pci_disable_msi(adapter->pdev); 4352 } 4353 4354 while (v_idx--) 4355 igc_reset_q_vector(adapter, v_idx); 4356 } 4357 4358 /** 4359 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4360 * @adapter: Pointer to adapter structure 4361 * @msix: boolean value for MSI-X capability 4362 * 4363 * Attempt to configure interrupts using the best available 4364 * capabilities of the hardware and kernel. 4365 */ 4366 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4367 bool msix) 4368 { 4369 int numvecs, i; 4370 int err; 4371 4372 if (!msix) 4373 goto msi_only; 4374 adapter->flags |= IGC_FLAG_HAS_MSIX; 4375 4376 /* Number of supported queues. */ 4377 adapter->num_rx_queues = adapter->rss_queues; 4378 4379 adapter->num_tx_queues = adapter->rss_queues; 4380 4381 /* start with one vector for every Rx queue */ 4382 numvecs = adapter->num_rx_queues; 4383 4384 /* if Tx handler is separate add 1 for every Tx queue */ 4385 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4386 numvecs += adapter->num_tx_queues; 4387 4388 /* store the number of vectors reserved for queues */ 4389 adapter->num_q_vectors = numvecs; 4390 4391 /* add 1 vector for link status interrupts */ 4392 numvecs++; 4393 4394 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4395 GFP_KERNEL); 4396 4397 if (!adapter->msix_entries) 4398 return; 4399 4400 /* populate entry values */ 4401 for (i = 0; i < numvecs; i++) 4402 adapter->msix_entries[i].entry = i; 4403 4404 err = pci_enable_msix_range(adapter->pdev, 4405 adapter->msix_entries, 4406 numvecs, 4407 numvecs); 4408 if (err > 0) 4409 return; 4410 4411 kfree(adapter->msix_entries); 4412 adapter->msix_entries = NULL; 4413 4414 igc_reset_interrupt_capability(adapter); 4415 4416 msi_only: 4417 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4418 4419 adapter->rss_queues = 1; 4420 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4421 adapter->num_rx_queues = 1; 4422 adapter->num_tx_queues = 1; 4423 adapter->num_q_vectors = 1; 4424 if (!pci_enable_msi(adapter->pdev)) 4425 adapter->flags |= IGC_FLAG_HAS_MSI; 4426 } 4427 4428 /** 4429 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4430 * @q_vector: pointer to q_vector 4431 * 4432 * Stores a new ITR value based on strictly on packet size. This 4433 * algorithm is less sophisticated than that used in igc_update_itr, 4434 * due to the difficulty of synchronizing statistics across multiple 4435 * receive rings. The divisors and thresholds used by this function 4436 * were determined based on theoretical maximum wire speed and testing 4437 * data, in order to minimize response time while increasing bulk 4438 * throughput. 4439 * NOTE: This function is called only when operating in a multiqueue 4440 * receive environment. 4441 */ 4442 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4443 { 4444 struct igc_adapter *adapter = q_vector->adapter; 4445 int new_val = q_vector->itr_val; 4446 int avg_wire_size = 0; 4447 unsigned int packets; 4448 4449 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4450 * ints/sec - ITR timer value of 120 ticks. 4451 */ 4452 switch (adapter->link_speed) { 4453 case SPEED_10: 4454 case SPEED_100: 4455 new_val = IGC_4K_ITR; 4456 goto set_itr_val; 4457 default: 4458 break; 4459 } 4460 4461 packets = q_vector->rx.total_packets; 4462 if (packets) 4463 avg_wire_size = q_vector->rx.total_bytes / packets; 4464 4465 packets = q_vector->tx.total_packets; 4466 if (packets) 4467 avg_wire_size = max_t(u32, avg_wire_size, 4468 q_vector->tx.total_bytes / packets); 4469 4470 /* if avg_wire_size isn't set no work was done */ 4471 if (!avg_wire_size) 4472 goto clear_counts; 4473 4474 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4475 avg_wire_size += 24; 4476 4477 /* Don't starve jumbo frames */ 4478 avg_wire_size = min(avg_wire_size, 3000); 4479 4480 /* Give a little boost to mid-size frames */ 4481 if (avg_wire_size > 300 && avg_wire_size < 1200) 4482 new_val = avg_wire_size / 3; 4483 else 4484 new_val = avg_wire_size / 2; 4485 4486 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4487 if (new_val < IGC_20K_ITR && 4488 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4489 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4490 new_val = IGC_20K_ITR; 4491 4492 set_itr_val: 4493 if (new_val != q_vector->itr_val) { 4494 q_vector->itr_val = new_val; 4495 q_vector->set_itr = 1; 4496 } 4497 clear_counts: 4498 q_vector->rx.total_bytes = 0; 4499 q_vector->rx.total_packets = 0; 4500 q_vector->tx.total_bytes = 0; 4501 q_vector->tx.total_packets = 0; 4502 } 4503 4504 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4505 { 4506 struct igc_adapter *adapter = q_vector->adapter; 4507 struct igc_hw *hw = &adapter->hw; 4508 4509 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4510 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4511 if (adapter->num_q_vectors == 1) 4512 igc_set_itr(q_vector); 4513 else 4514 igc_update_ring_itr(q_vector); 4515 } 4516 4517 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4518 if (adapter->msix_entries) 4519 wr32(IGC_EIMS, q_vector->eims_value); 4520 else 4521 igc_irq_enable(adapter); 4522 } 4523 } 4524 4525 static void igc_add_ring(struct igc_ring *ring, 4526 struct igc_ring_container *head) 4527 { 4528 head->ring = ring; 4529 head->count++; 4530 } 4531 4532 /** 4533 * igc_cache_ring_register - Descriptor ring to register mapping 4534 * @adapter: board private structure to initialize 4535 * 4536 * Once we know the feature-set enabled for the device, we'll cache 4537 * the register offset the descriptor ring is assigned to. 4538 */ 4539 static void igc_cache_ring_register(struct igc_adapter *adapter) 4540 { 4541 int i = 0, j = 0; 4542 4543 switch (adapter->hw.mac.type) { 4544 case igc_i225: 4545 default: 4546 for (; i < adapter->num_rx_queues; i++) 4547 adapter->rx_ring[i]->reg_idx = i; 4548 for (; j < adapter->num_tx_queues; j++) 4549 adapter->tx_ring[j]->reg_idx = j; 4550 break; 4551 } 4552 } 4553 4554 /** 4555 * igc_poll - NAPI Rx polling callback 4556 * @napi: napi polling structure 4557 * @budget: count of how many packets we should handle 4558 */ 4559 static int igc_poll(struct napi_struct *napi, int budget) 4560 { 4561 struct igc_q_vector *q_vector = container_of(napi, 4562 struct igc_q_vector, 4563 napi); 4564 struct igc_ring *rx_ring = q_vector->rx.ring; 4565 bool clean_complete = true; 4566 int work_done = 0; 4567 4568 if (q_vector->tx.ring) 4569 clean_complete = igc_clean_tx_irq(q_vector, budget); 4570 4571 if (rx_ring) { 4572 int cleaned = rx_ring->xsk_pool ? 4573 igc_clean_rx_irq_zc(q_vector, budget) : 4574 igc_clean_rx_irq(q_vector, budget); 4575 4576 work_done += cleaned; 4577 if (cleaned >= budget) 4578 clean_complete = false; 4579 } 4580 4581 /* If all work not completed, return budget and keep polling */ 4582 if (!clean_complete) 4583 return budget; 4584 4585 /* Exit the polling mode, but don't re-enable interrupts if stack might 4586 * poll us due to busy-polling 4587 */ 4588 if (likely(napi_complete_done(napi, work_done))) 4589 igc_ring_irq_enable(q_vector); 4590 4591 return min(work_done, budget - 1); 4592 } 4593 4594 /** 4595 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4596 * @adapter: board private structure to initialize 4597 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4598 * @v_idx: index of vector in adapter struct 4599 * @txr_count: total number of Tx rings to allocate 4600 * @txr_idx: index of first Tx ring to allocate 4601 * @rxr_count: total number of Rx rings to allocate 4602 * @rxr_idx: index of first Rx ring to allocate 4603 * 4604 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4605 */ 4606 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4607 unsigned int v_count, unsigned int v_idx, 4608 unsigned int txr_count, unsigned int txr_idx, 4609 unsigned int rxr_count, unsigned int rxr_idx) 4610 { 4611 struct igc_q_vector *q_vector; 4612 struct igc_ring *ring; 4613 int ring_count; 4614 4615 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4616 if (txr_count > 1 || rxr_count > 1) 4617 return -ENOMEM; 4618 4619 ring_count = txr_count + rxr_count; 4620 4621 /* allocate q_vector and rings */ 4622 q_vector = adapter->q_vector[v_idx]; 4623 if (!q_vector) 4624 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4625 GFP_KERNEL); 4626 else 4627 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4628 if (!q_vector) 4629 return -ENOMEM; 4630 4631 /* initialize NAPI */ 4632 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4633 4634 /* tie q_vector and adapter together */ 4635 adapter->q_vector[v_idx] = q_vector; 4636 q_vector->adapter = adapter; 4637 4638 /* initialize work limits */ 4639 q_vector->tx.work_limit = adapter->tx_work_limit; 4640 4641 /* initialize ITR configuration */ 4642 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4643 q_vector->itr_val = IGC_START_ITR; 4644 4645 /* initialize pointer to rings */ 4646 ring = q_vector->ring; 4647 4648 /* initialize ITR */ 4649 if (rxr_count) { 4650 /* rx or rx/tx vector */ 4651 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4652 q_vector->itr_val = adapter->rx_itr_setting; 4653 } else { 4654 /* tx only vector */ 4655 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4656 q_vector->itr_val = adapter->tx_itr_setting; 4657 } 4658 4659 if (txr_count) { 4660 /* assign generic ring traits */ 4661 ring->dev = &adapter->pdev->dev; 4662 ring->netdev = adapter->netdev; 4663 4664 /* configure backlink on ring */ 4665 ring->q_vector = q_vector; 4666 4667 /* update q_vector Tx values */ 4668 igc_add_ring(ring, &q_vector->tx); 4669 4670 /* apply Tx specific ring traits */ 4671 ring->count = adapter->tx_ring_count; 4672 ring->queue_index = txr_idx; 4673 4674 /* assign ring to adapter */ 4675 adapter->tx_ring[txr_idx] = ring; 4676 4677 /* push pointer to next ring */ 4678 ring++; 4679 } 4680 4681 if (rxr_count) { 4682 /* assign generic ring traits */ 4683 ring->dev = &adapter->pdev->dev; 4684 ring->netdev = adapter->netdev; 4685 4686 /* configure backlink on ring */ 4687 ring->q_vector = q_vector; 4688 4689 /* update q_vector Rx values */ 4690 igc_add_ring(ring, &q_vector->rx); 4691 4692 /* apply Rx specific ring traits */ 4693 ring->count = adapter->rx_ring_count; 4694 ring->queue_index = rxr_idx; 4695 4696 /* assign ring to adapter */ 4697 adapter->rx_ring[rxr_idx] = ring; 4698 } 4699 4700 return 0; 4701 } 4702 4703 /** 4704 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4705 * @adapter: board private structure to initialize 4706 * 4707 * We allocate one q_vector per queue interrupt. If allocation fails we 4708 * return -ENOMEM. 4709 */ 4710 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4711 { 4712 int rxr_remaining = adapter->num_rx_queues; 4713 int txr_remaining = adapter->num_tx_queues; 4714 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4715 int q_vectors = adapter->num_q_vectors; 4716 int err; 4717 4718 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4719 for (; rxr_remaining; v_idx++) { 4720 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4721 0, 0, 1, rxr_idx); 4722 4723 if (err) 4724 goto err_out; 4725 4726 /* update counts and index */ 4727 rxr_remaining--; 4728 rxr_idx++; 4729 } 4730 } 4731 4732 for (; v_idx < q_vectors; v_idx++) { 4733 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4734 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4735 4736 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4737 tqpv, txr_idx, rqpv, rxr_idx); 4738 4739 if (err) 4740 goto err_out; 4741 4742 /* update counts and index */ 4743 rxr_remaining -= rqpv; 4744 txr_remaining -= tqpv; 4745 rxr_idx++; 4746 txr_idx++; 4747 } 4748 4749 return 0; 4750 4751 err_out: 4752 adapter->num_tx_queues = 0; 4753 adapter->num_rx_queues = 0; 4754 adapter->num_q_vectors = 0; 4755 4756 while (v_idx--) 4757 igc_free_q_vector(adapter, v_idx); 4758 4759 return -ENOMEM; 4760 } 4761 4762 /** 4763 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4764 * @adapter: Pointer to adapter structure 4765 * @msix: boolean for MSI-X capability 4766 * 4767 * This function initializes the interrupts and allocates all of the queues. 4768 */ 4769 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4770 { 4771 struct net_device *dev = adapter->netdev; 4772 int err = 0; 4773 4774 igc_set_interrupt_capability(adapter, msix); 4775 4776 err = igc_alloc_q_vectors(adapter); 4777 if (err) { 4778 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4779 goto err_alloc_q_vectors; 4780 } 4781 4782 igc_cache_ring_register(adapter); 4783 4784 return 0; 4785 4786 err_alloc_q_vectors: 4787 igc_reset_interrupt_capability(adapter); 4788 return err; 4789 } 4790 4791 /** 4792 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4793 * @adapter: board private structure to initialize 4794 * 4795 * igc_sw_init initializes the Adapter private data structure. 4796 * Fields are initialized based on PCI device information and 4797 * OS network device settings (MTU size). 4798 */ 4799 static int igc_sw_init(struct igc_adapter *adapter) 4800 { 4801 struct net_device *netdev = adapter->netdev; 4802 struct pci_dev *pdev = adapter->pdev; 4803 struct igc_hw *hw = &adapter->hw; 4804 4805 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4806 4807 /* set default ring sizes */ 4808 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4809 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4810 4811 /* set default ITR values */ 4812 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4813 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4814 4815 /* set default work limits */ 4816 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4817 4818 /* adjust max frame to be at least the size of a standard frame */ 4819 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4820 VLAN_HLEN; 4821 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4822 4823 mutex_init(&adapter->nfc_rule_lock); 4824 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4825 adapter->nfc_rule_count = 0; 4826 4827 spin_lock_init(&adapter->stats64_lock); 4828 spin_lock_init(&adapter->qbv_tx_lock); 4829 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4830 adapter->flags |= IGC_FLAG_HAS_MSIX; 4831 4832 igc_init_queue_configuration(adapter); 4833 4834 /* This call may decrease the number of queues */ 4835 if (igc_init_interrupt_scheme(adapter, true)) { 4836 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4837 return -ENOMEM; 4838 } 4839 4840 /* Explicitly disable IRQ since the NIC can be in any state. */ 4841 igc_irq_disable(adapter); 4842 4843 set_bit(__IGC_DOWN, &adapter->state); 4844 4845 return 0; 4846 } 4847 4848 /** 4849 * igc_up - Open the interface and prepare it to handle traffic 4850 * @adapter: board private structure 4851 */ 4852 void igc_up(struct igc_adapter *adapter) 4853 { 4854 struct igc_hw *hw = &adapter->hw; 4855 int i = 0; 4856 4857 /* hardware has been reset, we need to reload some things */ 4858 igc_configure(adapter); 4859 4860 clear_bit(__IGC_DOWN, &adapter->state); 4861 4862 for (i = 0; i < adapter->num_q_vectors; i++) 4863 napi_enable(&adapter->q_vector[i]->napi); 4864 4865 if (adapter->msix_entries) 4866 igc_configure_msix(adapter); 4867 else 4868 igc_assign_vector(adapter->q_vector[0], 0); 4869 4870 /* Clear any pending interrupts. */ 4871 rd32(IGC_ICR); 4872 igc_irq_enable(adapter); 4873 4874 netif_tx_start_all_queues(adapter->netdev); 4875 4876 /* start the watchdog. */ 4877 hw->mac.get_link_status = true; 4878 schedule_work(&adapter->watchdog_task); 4879 } 4880 4881 /** 4882 * igc_update_stats - Update the board statistics counters 4883 * @adapter: board private structure 4884 */ 4885 void igc_update_stats(struct igc_adapter *adapter) 4886 { 4887 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4888 struct pci_dev *pdev = adapter->pdev; 4889 struct igc_hw *hw = &adapter->hw; 4890 u64 _bytes, _packets; 4891 u64 bytes, packets; 4892 unsigned int start; 4893 u32 mpc; 4894 int i; 4895 4896 /* Prevent stats update while adapter is being reset, or if the pci 4897 * connection is down. 4898 */ 4899 if (adapter->link_speed == 0) 4900 return; 4901 if (pci_channel_offline(pdev)) 4902 return; 4903 4904 packets = 0; 4905 bytes = 0; 4906 4907 rcu_read_lock(); 4908 for (i = 0; i < adapter->num_rx_queues; i++) { 4909 struct igc_ring *ring = adapter->rx_ring[i]; 4910 u32 rqdpc = rd32(IGC_RQDPC(i)); 4911 4912 if (hw->mac.type >= igc_i225) 4913 wr32(IGC_RQDPC(i), 0); 4914 4915 if (rqdpc) { 4916 ring->rx_stats.drops += rqdpc; 4917 net_stats->rx_fifo_errors += rqdpc; 4918 } 4919 4920 do { 4921 start = u64_stats_fetch_begin(&ring->rx_syncp); 4922 _bytes = ring->rx_stats.bytes; 4923 _packets = ring->rx_stats.packets; 4924 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4925 bytes += _bytes; 4926 packets += _packets; 4927 } 4928 4929 net_stats->rx_bytes = bytes; 4930 net_stats->rx_packets = packets; 4931 4932 packets = 0; 4933 bytes = 0; 4934 for (i = 0; i < adapter->num_tx_queues; i++) { 4935 struct igc_ring *ring = adapter->tx_ring[i]; 4936 4937 do { 4938 start = u64_stats_fetch_begin(&ring->tx_syncp); 4939 _bytes = ring->tx_stats.bytes; 4940 _packets = ring->tx_stats.packets; 4941 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4942 bytes += _bytes; 4943 packets += _packets; 4944 } 4945 net_stats->tx_bytes = bytes; 4946 net_stats->tx_packets = packets; 4947 rcu_read_unlock(); 4948 4949 /* read stats registers */ 4950 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4951 adapter->stats.gprc += rd32(IGC_GPRC); 4952 adapter->stats.gorc += rd32(IGC_GORCL); 4953 rd32(IGC_GORCH); /* clear GORCL */ 4954 adapter->stats.bprc += rd32(IGC_BPRC); 4955 adapter->stats.mprc += rd32(IGC_MPRC); 4956 adapter->stats.roc += rd32(IGC_ROC); 4957 4958 adapter->stats.prc64 += rd32(IGC_PRC64); 4959 adapter->stats.prc127 += rd32(IGC_PRC127); 4960 adapter->stats.prc255 += rd32(IGC_PRC255); 4961 adapter->stats.prc511 += rd32(IGC_PRC511); 4962 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4963 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4964 adapter->stats.tlpic += rd32(IGC_TLPIC); 4965 adapter->stats.rlpic += rd32(IGC_RLPIC); 4966 adapter->stats.hgptc += rd32(IGC_HGPTC); 4967 4968 mpc = rd32(IGC_MPC); 4969 adapter->stats.mpc += mpc; 4970 net_stats->rx_fifo_errors += mpc; 4971 adapter->stats.scc += rd32(IGC_SCC); 4972 adapter->stats.ecol += rd32(IGC_ECOL); 4973 adapter->stats.mcc += rd32(IGC_MCC); 4974 adapter->stats.latecol += rd32(IGC_LATECOL); 4975 adapter->stats.dc += rd32(IGC_DC); 4976 adapter->stats.rlec += rd32(IGC_RLEC); 4977 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4978 adapter->stats.xontxc += rd32(IGC_XONTXC); 4979 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4980 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4981 adapter->stats.fcruc += rd32(IGC_FCRUC); 4982 adapter->stats.gptc += rd32(IGC_GPTC); 4983 adapter->stats.gotc += rd32(IGC_GOTCL); 4984 rd32(IGC_GOTCH); /* clear GOTCL */ 4985 adapter->stats.rnbc += rd32(IGC_RNBC); 4986 adapter->stats.ruc += rd32(IGC_RUC); 4987 adapter->stats.rfc += rd32(IGC_RFC); 4988 adapter->stats.rjc += rd32(IGC_RJC); 4989 adapter->stats.tor += rd32(IGC_TORH); 4990 adapter->stats.tot += rd32(IGC_TOTH); 4991 adapter->stats.tpr += rd32(IGC_TPR); 4992 4993 adapter->stats.ptc64 += rd32(IGC_PTC64); 4994 adapter->stats.ptc127 += rd32(IGC_PTC127); 4995 adapter->stats.ptc255 += rd32(IGC_PTC255); 4996 adapter->stats.ptc511 += rd32(IGC_PTC511); 4997 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4998 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4999 5000 adapter->stats.mptc += rd32(IGC_MPTC); 5001 adapter->stats.bptc += rd32(IGC_BPTC); 5002 5003 adapter->stats.tpt += rd32(IGC_TPT); 5004 adapter->stats.colc += rd32(IGC_COLC); 5005 adapter->stats.colc += rd32(IGC_RERC); 5006 5007 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 5008 5009 adapter->stats.tsctc += rd32(IGC_TSCTC); 5010 5011 adapter->stats.iac += rd32(IGC_IAC); 5012 5013 /* Fill out the OS statistics structure */ 5014 net_stats->multicast = adapter->stats.mprc; 5015 net_stats->collisions = adapter->stats.colc; 5016 5017 /* Rx Errors */ 5018 5019 /* RLEC on some newer hardware can be incorrect so build 5020 * our own version based on RUC and ROC 5021 */ 5022 net_stats->rx_errors = adapter->stats.rxerrc + 5023 adapter->stats.crcerrs + adapter->stats.algnerrc + 5024 adapter->stats.ruc + adapter->stats.roc + 5025 adapter->stats.cexterr; 5026 net_stats->rx_length_errors = adapter->stats.ruc + 5027 adapter->stats.roc; 5028 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5029 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5030 net_stats->rx_missed_errors = adapter->stats.mpc; 5031 5032 /* Tx Errors */ 5033 net_stats->tx_errors = adapter->stats.ecol + 5034 adapter->stats.latecol; 5035 net_stats->tx_aborted_errors = adapter->stats.ecol; 5036 net_stats->tx_window_errors = adapter->stats.latecol; 5037 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5038 5039 /* Tx Dropped */ 5040 net_stats->tx_dropped = adapter->stats.txdrop; 5041 5042 /* Management Stats */ 5043 adapter->stats.mgptc += rd32(IGC_MGTPTC); 5044 adapter->stats.mgprc += rd32(IGC_MGTPRC); 5045 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 5046 } 5047 5048 /** 5049 * igc_down - Close the interface 5050 * @adapter: board private structure 5051 */ 5052 void igc_down(struct igc_adapter *adapter) 5053 { 5054 struct net_device *netdev = adapter->netdev; 5055 struct igc_hw *hw = &adapter->hw; 5056 u32 tctl, rctl; 5057 int i = 0; 5058 5059 set_bit(__IGC_DOWN, &adapter->state); 5060 5061 igc_ptp_suspend(adapter); 5062 5063 if (pci_device_is_present(adapter->pdev)) { 5064 /* disable receives in the hardware */ 5065 rctl = rd32(IGC_RCTL); 5066 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 5067 /* flush and sleep below */ 5068 } 5069 /* set trans_start so we don't get spurious watchdogs during reset */ 5070 netif_trans_update(netdev); 5071 5072 netif_carrier_off(netdev); 5073 netif_tx_stop_all_queues(netdev); 5074 5075 if (pci_device_is_present(adapter->pdev)) { 5076 /* disable transmits in the hardware */ 5077 tctl = rd32(IGC_TCTL); 5078 tctl &= ~IGC_TCTL_EN; 5079 wr32(IGC_TCTL, tctl); 5080 /* flush both disables and wait for them to finish */ 5081 wrfl(); 5082 usleep_range(10000, 20000); 5083 5084 igc_irq_disable(adapter); 5085 } 5086 5087 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5088 5089 for (i = 0; i < adapter->num_q_vectors; i++) { 5090 if (adapter->q_vector[i]) { 5091 napi_synchronize(&adapter->q_vector[i]->napi); 5092 napi_disable(&adapter->q_vector[i]->napi); 5093 } 5094 } 5095 5096 del_timer_sync(&adapter->watchdog_timer); 5097 del_timer_sync(&adapter->phy_info_timer); 5098 5099 /* record the stats before reset*/ 5100 spin_lock(&adapter->stats64_lock); 5101 igc_update_stats(adapter); 5102 spin_unlock(&adapter->stats64_lock); 5103 5104 adapter->link_speed = 0; 5105 adapter->link_duplex = 0; 5106 5107 if (!pci_channel_offline(adapter->pdev)) 5108 igc_reset(adapter); 5109 5110 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 5111 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 5112 5113 igc_disable_all_tx_rings_hw(adapter); 5114 igc_clean_all_tx_rings(adapter); 5115 igc_clean_all_rx_rings(adapter); 5116 } 5117 5118 void igc_reinit_locked(struct igc_adapter *adapter) 5119 { 5120 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5121 usleep_range(1000, 2000); 5122 igc_down(adapter); 5123 igc_up(adapter); 5124 clear_bit(__IGC_RESETTING, &adapter->state); 5125 } 5126 5127 static void igc_reset_task(struct work_struct *work) 5128 { 5129 struct igc_adapter *adapter; 5130 5131 adapter = container_of(work, struct igc_adapter, reset_task); 5132 5133 rtnl_lock(); 5134 /* If we're already down or resetting, just bail */ 5135 if (test_bit(__IGC_DOWN, &adapter->state) || 5136 test_bit(__IGC_RESETTING, &adapter->state)) { 5137 rtnl_unlock(); 5138 return; 5139 } 5140 5141 igc_rings_dump(adapter); 5142 igc_regs_dump(adapter); 5143 netdev_err(adapter->netdev, "Reset adapter\n"); 5144 igc_reinit_locked(adapter); 5145 rtnl_unlock(); 5146 } 5147 5148 /** 5149 * igc_change_mtu - Change the Maximum Transfer Unit 5150 * @netdev: network interface device structure 5151 * @new_mtu: new value for maximum frame size 5152 * 5153 * Returns 0 on success, negative on failure 5154 */ 5155 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5156 { 5157 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5158 struct igc_adapter *adapter = netdev_priv(netdev); 5159 5160 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5161 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5162 return -EINVAL; 5163 } 5164 5165 /* adjust max frame to be at least the size of a standard frame */ 5166 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5167 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5168 5169 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5170 usleep_range(1000, 2000); 5171 5172 /* igc_down has a dependency on max_frame_size */ 5173 adapter->max_frame_size = max_frame; 5174 5175 if (netif_running(netdev)) 5176 igc_down(adapter); 5177 5178 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5179 netdev->mtu = new_mtu; 5180 5181 if (netif_running(netdev)) 5182 igc_up(adapter); 5183 else 5184 igc_reset(adapter); 5185 5186 clear_bit(__IGC_RESETTING, &adapter->state); 5187 5188 return 0; 5189 } 5190 5191 /** 5192 * igc_tx_timeout - Respond to a Tx Hang 5193 * @netdev: network interface device structure 5194 * @txqueue: queue number that timed out 5195 **/ 5196 static void igc_tx_timeout(struct net_device *netdev, 5197 unsigned int __always_unused txqueue) 5198 { 5199 struct igc_adapter *adapter = netdev_priv(netdev); 5200 struct igc_hw *hw = &adapter->hw; 5201 5202 /* Do the reset outside of interrupt context */ 5203 adapter->tx_timeout_count++; 5204 schedule_work(&adapter->reset_task); 5205 wr32(IGC_EICS, 5206 (adapter->eims_enable_mask & ~adapter->eims_other)); 5207 } 5208 5209 /** 5210 * igc_get_stats64 - Get System Network Statistics 5211 * @netdev: network interface device structure 5212 * @stats: rtnl_link_stats64 pointer 5213 * 5214 * Returns the address of the device statistics structure. 5215 * The statistics are updated here and also from the timer callback. 5216 */ 5217 static void igc_get_stats64(struct net_device *netdev, 5218 struct rtnl_link_stats64 *stats) 5219 { 5220 struct igc_adapter *adapter = netdev_priv(netdev); 5221 5222 spin_lock(&adapter->stats64_lock); 5223 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5224 igc_update_stats(adapter); 5225 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5226 spin_unlock(&adapter->stats64_lock); 5227 } 5228 5229 static netdev_features_t igc_fix_features(struct net_device *netdev, 5230 netdev_features_t features) 5231 { 5232 /* Since there is no support for separate Rx/Tx vlan accel 5233 * enable/disable make sure Tx flag is always in same state as Rx. 5234 */ 5235 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5236 features |= NETIF_F_HW_VLAN_CTAG_TX; 5237 else 5238 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5239 5240 return features; 5241 } 5242 5243 static int igc_set_features(struct net_device *netdev, 5244 netdev_features_t features) 5245 { 5246 netdev_features_t changed = netdev->features ^ features; 5247 struct igc_adapter *adapter = netdev_priv(netdev); 5248 5249 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5250 igc_vlan_mode(netdev, features); 5251 5252 /* Add VLAN support */ 5253 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5254 return 0; 5255 5256 if (!(features & NETIF_F_NTUPLE)) 5257 igc_flush_nfc_rules(adapter); 5258 5259 netdev->features = features; 5260 5261 if (netif_running(netdev)) 5262 igc_reinit_locked(adapter); 5263 else 5264 igc_reset(adapter); 5265 5266 return 1; 5267 } 5268 5269 static netdev_features_t 5270 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5271 netdev_features_t features) 5272 { 5273 unsigned int network_hdr_len, mac_hdr_len; 5274 5275 /* Make certain the headers can be described by a context descriptor */ 5276 mac_hdr_len = skb_network_offset(skb); 5277 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5278 return features & ~(NETIF_F_HW_CSUM | 5279 NETIF_F_SCTP_CRC | 5280 NETIF_F_HW_VLAN_CTAG_TX | 5281 NETIF_F_TSO | 5282 NETIF_F_TSO6); 5283 5284 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5285 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5286 return features & ~(NETIF_F_HW_CSUM | 5287 NETIF_F_SCTP_CRC | 5288 NETIF_F_TSO | 5289 NETIF_F_TSO6); 5290 5291 /* We can only support IPv4 TSO in tunnels if we can mangle the 5292 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5293 */ 5294 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5295 features &= ~NETIF_F_TSO; 5296 5297 return features; 5298 } 5299 5300 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5301 { 5302 struct igc_hw *hw = &adapter->hw; 5303 u32 tsauxc, sec, nsec, tsicr; 5304 struct ptp_clock_event event; 5305 struct timespec64 ts; 5306 5307 tsicr = rd32(IGC_TSICR); 5308 5309 if (tsicr & IGC_TSICR_SYS_WRAP) { 5310 event.type = PTP_CLOCK_PPS; 5311 if (adapter->ptp_caps.pps) 5312 ptp_clock_event(adapter->ptp_clock, &event); 5313 } 5314 5315 if (tsicr & IGC_TSICR_TXTS) { 5316 /* retrieve hardware timestamp */ 5317 igc_ptp_tx_tstamp_event(adapter); 5318 } 5319 5320 if (tsicr & IGC_TSICR_TT0) { 5321 spin_lock(&adapter->tmreg_lock); 5322 ts = timespec64_add(adapter->perout[0].start, 5323 adapter->perout[0].period); 5324 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5325 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5326 tsauxc = rd32(IGC_TSAUXC); 5327 tsauxc |= IGC_TSAUXC_EN_TT0; 5328 wr32(IGC_TSAUXC, tsauxc); 5329 adapter->perout[0].start = ts; 5330 spin_unlock(&adapter->tmreg_lock); 5331 } 5332 5333 if (tsicr & IGC_TSICR_TT1) { 5334 spin_lock(&adapter->tmreg_lock); 5335 ts = timespec64_add(adapter->perout[1].start, 5336 adapter->perout[1].period); 5337 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5338 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5339 tsauxc = rd32(IGC_TSAUXC); 5340 tsauxc |= IGC_TSAUXC_EN_TT1; 5341 wr32(IGC_TSAUXC, tsauxc); 5342 adapter->perout[1].start = ts; 5343 spin_unlock(&adapter->tmreg_lock); 5344 } 5345 5346 if (tsicr & IGC_TSICR_AUTT0) { 5347 nsec = rd32(IGC_AUXSTMPL0); 5348 sec = rd32(IGC_AUXSTMPH0); 5349 event.type = PTP_CLOCK_EXTTS; 5350 event.index = 0; 5351 event.timestamp = sec * NSEC_PER_SEC + nsec; 5352 ptp_clock_event(adapter->ptp_clock, &event); 5353 } 5354 5355 if (tsicr & IGC_TSICR_AUTT1) { 5356 nsec = rd32(IGC_AUXSTMPL1); 5357 sec = rd32(IGC_AUXSTMPH1); 5358 event.type = PTP_CLOCK_EXTTS; 5359 event.index = 1; 5360 event.timestamp = sec * NSEC_PER_SEC + nsec; 5361 ptp_clock_event(adapter->ptp_clock, &event); 5362 } 5363 } 5364 5365 /** 5366 * igc_msix_other - msix other interrupt handler 5367 * @irq: interrupt number 5368 * @data: pointer to a q_vector 5369 */ 5370 static irqreturn_t igc_msix_other(int irq, void *data) 5371 { 5372 struct igc_adapter *adapter = data; 5373 struct igc_hw *hw = &adapter->hw; 5374 u32 icr = rd32(IGC_ICR); 5375 5376 /* reading ICR causes bit 31 of EICR to be cleared */ 5377 if (icr & IGC_ICR_DRSTA) 5378 schedule_work(&adapter->reset_task); 5379 5380 if (icr & IGC_ICR_DOUTSYNC) { 5381 /* HW is reporting DMA is out of sync */ 5382 adapter->stats.doosync++; 5383 } 5384 5385 if (icr & IGC_ICR_LSC) { 5386 hw->mac.get_link_status = true; 5387 /* guard against interrupt when we're going down */ 5388 if (!test_bit(__IGC_DOWN, &adapter->state)) 5389 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5390 } 5391 5392 if (icr & IGC_ICR_TS) 5393 igc_tsync_interrupt(adapter); 5394 5395 wr32(IGC_EIMS, adapter->eims_other); 5396 5397 return IRQ_HANDLED; 5398 } 5399 5400 static void igc_write_itr(struct igc_q_vector *q_vector) 5401 { 5402 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5403 5404 if (!q_vector->set_itr) 5405 return; 5406 5407 if (!itr_val) 5408 itr_val = IGC_ITR_VAL_MASK; 5409 5410 itr_val |= IGC_EITR_CNT_IGNR; 5411 5412 writel(itr_val, q_vector->itr_register); 5413 q_vector->set_itr = 0; 5414 } 5415 5416 static irqreturn_t igc_msix_ring(int irq, void *data) 5417 { 5418 struct igc_q_vector *q_vector = data; 5419 5420 /* Write the ITR value calculated from the previous interrupt. */ 5421 igc_write_itr(q_vector); 5422 5423 napi_schedule(&q_vector->napi); 5424 5425 return IRQ_HANDLED; 5426 } 5427 5428 /** 5429 * igc_request_msix - Initialize MSI-X interrupts 5430 * @adapter: Pointer to adapter structure 5431 * 5432 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5433 * kernel. 5434 */ 5435 static int igc_request_msix(struct igc_adapter *adapter) 5436 { 5437 unsigned int num_q_vectors = adapter->num_q_vectors; 5438 int i = 0, err = 0, vector = 0, free_vector = 0; 5439 struct net_device *netdev = adapter->netdev; 5440 5441 err = request_irq(adapter->msix_entries[vector].vector, 5442 &igc_msix_other, 0, netdev->name, adapter); 5443 if (err) 5444 goto err_out; 5445 5446 if (num_q_vectors > MAX_Q_VECTORS) { 5447 num_q_vectors = MAX_Q_VECTORS; 5448 dev_warn(&adapter->pdev->dev, 5449 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5450 adapter->num_q_vectors, MAX_Q_VECTORS); 5451 } 5452 for (i = 0; i < num_q_vectors; i++) { 5453 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5454 5455 vector++; 5456 5457 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5458 5459 if (q_vector->rx.ring && q_vector->tx.ring) 5460 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5461 q_vector->rx.ring->queue_index); 5462 else if (q_vector->tx.ring) 5463 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5464 q_vector->tx.ring->queue_index); 5465 else if (q_vector->rx.ring) 5466 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5467 q_vector->rx.ring->queue_index); 5468 else 5469 sprintf(q_vector->name, "%s-unused", netdev->name); 5470 5471 err = request_irq(adapter->msix_entries[vector].vector, 5472 igc_msix_ring, 0, q_vector->name, 5473 q_vector); 5474 if (err) 5475 goto err_free; 5476 } 5477 5478 igc_configure_msix(adapter); 5479 return 0; 5480 5481 err_free: 5482 /* free already assigned IRQs */ 5483 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5484 5485 vector--; 5486 for (i = 0; i < vector; i++) { 5487 free_irq(adapter->msix_entries[free_vector++].vector, 5488 adapter->q_vector[i]); 5489 } 5490 err_out: 5491 return err; 5492 } 5493 5494 /** 5495 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5496 * @adapter: Pointer to adapter structure 5497 * 5498 * This function resets the device so that it has 0 rx queues, tx queues, and 5499 * MSI-X interrupts allocated. 5500 */ 5501 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5502 { 5503 igc_free_q_vectors(adapter); 5504 igc_reset_interrupt_capability(adapter); 5505 } 5506 5507 /* Need to wait a few seconds after link up to get diagnostic information from 5508 * the phy 5509 */ 5510 static void igc_update_phy_info(struct timer_list *t) 5511 { 5512 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5513 5514 igc_get_phy_info(&adapter->hw); 5515 } 5516 5517 /** 5518 * igc_has_link - check shared code for link and determine up/down 5519 * @adapter: pointer to driver private info 5520 */ 5521 bool igc_has_link(struct igc_adapter *adapter) 5522 { 5523 struct igc_hw *hw = &adapter->hw; 5524 bool link_active = false; 5525 5526 /* get_link_status is set on LSC (link status) interrupt or 5527 * rx sequence error interrupt. get_link_status will stay 5528 * false until the igc_check_for_link establishes link 5529 * for copper adapters ONLY 5530 */ 5531 if (!hw->mac.get_link_status) 5532 return true; 5533 hw->mac.ops.check_for_link(hw); 5534 link_active = !hw->mac.get_link_status; 5535 5536 if (hw->mac.type == igc_i225) { 5537 if (!netif_carrier_ok(adapter->netdev)) { 5538 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5539 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5540 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5541 adapter->link_check_timeout = jiffies; 5542 } 5543 } 5544 5545 return link_active; 5546 } 5547 5548 /** 5549 * igc_watchdog - Timer Call-back 5550 * @t: timer for the watchdog 5551 */ 5552 static void igc_watchdog(struct timer_list *t) 5553 { 5554 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5555 /* Do the rest outside of interrupt context */ 5556 schedule_work(&adapter->watchdog_task); 5557 } 5558 5559 static void igc_watchdog_task(struct work_struct *work) 5560 { 5561 struct igc_adapter *adapter = container_of(work, 5562 struct igc_adapter, 5563 watchdog_task); 5564 struct net_device *netdev = adapter->netdev; 5565 struct igc_hw *hw = &adapter->hw; 5566 struct igc_phy_info *phy = &hw->phy; 5567 u16 phy_data, retry_count = 20; 5568 u32 link; 5569 int i; 5570 5571 link = igc_has_link(adapter); 5572 5573 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5574 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5575 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5576 else 5577 link = false; 5578 } 5579 5580 if (link) { 5581 /* Cancel scheduled suspend requests. */ 5582 pm_runtime_resume(netdev->dev.parent); 5583 5584 if (!netif_carrier_ok(netdev)) { 5585 u32 ctrl; 5586 5587 hw->mac.ops.get_speed_and_duplex(hw, 5588 &adapter->link_speed, 5589 &adapter->link_duplex); 5590 5591 ctrl = rd32(IGC_CTRL); 5592 /* Link status message must follow this format */ 5593 netdev_info(netdev, 5594 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5595 adapter->link_speed, 5596 adapter->link_duplex == FULL_DUPLEX ? 5597 "Full" : "Half", 5598 (ctrl & IGC_CTRL_TFCE) && 5599 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5600 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5601 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5602 5603 /* disable EEE if enabled */ 5604 if ((adapter->flags & IGC_FLAG_EEE) && 5605 adapter->link_duplex == HALF_DUPLEX) { 5606 netdev_info(netdev, 5607 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5608 adapter->hw.dev_spec._base.eee_enable = false; 5609 adapter->flags &= ~IGC_FLAG_EEE; 5610 } 5611 5612 /* check if SmartSpeed worked */ 5613 igc_check_downshift(hw); 5614 if (phy->speed_downgraded) 5615 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5616 5617 /* adjust timeout factor according to speed/duplex */ 5618 adapter->tx_timeout_factor = 1; 5619 switch (adapter->link_speed) { 5620 case SPEED_10: 5621 adapter->tx_timeout_factor = 14; 5622 break; 5623 case SPEED_100: 5624 case SPEED_1000: 5625 case SPEED_2500: 5626 adapter->tx_timeout_factor = 1; 5627 break; 5628 } 5629 5630 /* Once the launch time has been set on the wire, there 5631 * is a delay before the link speed can be determined 5632 * based on link-up activity. Write into the register 5633 * as soon as we know the correct link speed. 5634 */ 5635 igc_tsn_adjust_txtime_offset(adapter); 5636 5637 if (adapter->link_speed != SPEED_1000) 5638 goto no_wait; 5639 5640 /* wait for Remote receiver status OK */ 5641 retry_read_status: 5642 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5643 &phy_data)) { 5644 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5645 retry_count) { 5646 msleep(100); 5647 retry_count--; 5648 goto retry_read_status; 5649 } else if (!retry_count) { 5650 netdev_err(netdev, "exceed max 2 second\n"); 5651 } 5652 } else { 5653 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5654 } 5655 no_wait: 5656 netif_carrier_on(netdev); 5657 5658 /* link state has changed, schedule phy info update */ 5659 if (!test_bit(__IGC_DOWN, &adapter->state)) 5660 mod_timer(&adapter->phy_info_timer, 5661 round_jiffies(jiffies + 2 * HZ)); 5662 } 5663 } else { 5664 if (netif_carrier_ok(netdev)) { 5665 adapter->link_speed = 0; 5666 adapter->link_duplex = 0; 5667 5668 /* Links status message must follow this format */ 5669 netdev_info(netdev, "NIC Link is Down\n"); 5670 netif_carrier_off(netdev); 5671 5672 /* link state has changed, schedule phy info update */ 5673 if (!test_bit(__IGC_DOWN, &adapter->state)) 5674 mod_timer(&adapter->phy_info_timer, 5675 round_jiffies(jiffies + 2 * HZ)); 5676 5677 pm_schedule_suspend(netdev->dev.parent, 5678 MSEC_PER_SEC * 5); 5679 } 5680 } 5681 5682 spin_lock(&adapter->stats64_lock); 5683 igc_update_stats(adapter); 5684 spin_unlock(&adapter->stats64_lock); 5685 5686 for (i = 0; i < adapter->num_tx_queues; i++) { 5687 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5688 5689 if (!netif_carrier_ok(netdev)) { 5690 /* We've lost link, so the controller stops DMA, 5691 * but we've got queued Tx work that's never going 5692 * to get done, so reset controller to flush Tx. 5693 * (Do the reset outside of interrupt context). 5694 */ 5695 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5696 adapter->tx_timeout_count++; 5697 schedule_work(&adapter->reset_task); 5698 /* return immediately since reset is imminent */ 5699 return; 5700 } 5701 } 5702 5703 /* Force detection of hung controller every watchdog period */ 5704 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5705 } 5706 5707 /* Cause software interrupt to ensure Rx ring is cleaned */ 5708 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5709 u32 eics = 0; 5710 5711 for (i = 0; i < adapter->num_q_vectors; i++) 5712 eics |= adapter->q_vector[i]->eims_value; 5713 wr32(IGC_EICS, eics); 5714 } else { 5715 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5716 } 5717 5718 igc_ptp_tx_hang(adapter); 5719 5720 /* Reset the timer */ 5721 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5722 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5723 mod_timer(&adapter->watchdog_timer, 5724 round_jiffies(jiffies + HZ)); 5725 else 5726 mod_timer(&adapter->watchdog_timer, 5727 round_jiffies(jiffies + 2 * HZ)); 5728 } 5729 } 5730 5731 /** 5732 * igc_intr_msi - Interrupt Handler 5733 * @irq: interrupt number 5734 * @data: pointer to a network interface device structure 5735 */ 5736 static irqreturn_t igc_intr_msi(int irq, void *data) 5737 { 5738 struct igc_adapter *adapter = data; 5739 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5740 struct igc_hw *hw = &adapter->hw; 5741 /* read ICR disables interrupts using IAM */ 5742 u32 icr = rd32(IGC_ICR); 5743 5744 igc_write_itr(q_vector); 5745 5746 if (icr & IGC_ICR_DRSTA) 5747 schedule_work(&adapter->reset_task); 5748 5749 if (icr & IGC_ICR_DOUTSYNC) { 5750 /* HW is reporting DMA is out of sync */ 5751 adapter->stats.doosync++; 5752 } 5753 5754 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5755 hw->mac.get_link_status = true; 5756 if (!test_bit(__IGC_DOWN, &adapter->state)) 5757 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5758 } 5759 5760 if (icr & IGC_ICR_TS) 5761 igc_tsync_interrupt(adapter); 5762 5763 napi_schedule(&q_vector->napi); 5764 5765 return IRQ_HANDLED; 5766 } 5767 5768 /** 5769 * igc_intr - Legacy Interrupt Handler 5770 * @irq: interrupt number 5771 * @data: pointer to a network interface device structure 5772 */ 5773 static irqreturn_t igc_intr(int irq, void *data) 5774 { 5775 struct igc_adapter *adapter = data; 5776 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5777 struct igc_hw *hw = &adapter->hw; 5778 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5779 * need for the IMC write 5780 */ 5781 u32 icr = rd32(IGC_ICR); 5782 5783 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5784 * not set, then the adapter didn't send an interrupt 5785 */ 5786 if (!(icr & IGC_ICR_INT_ASSERTED)) 5787 return IRQ_NONE; 5788 5789 igc_write_itr(q_vector); 5790 5791 if (icr & IGC_ICR_DRSTA) 5792 schedule_work(&adapter->reset_task); 5793 5794 if (icr & IGC_ICR_DOUTSYNC) { 5795 /* HW is reporting DMA is out of sync */ 5796 adapter->stats.doosync++; 5797 } 5798 5799 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5800 hw->mac.get_link_status = true; 5801 /* guard against interrupt when we're going down */ 5802 if (!test_bit(__IGC_DOWN, &adapter->state)) 5803 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5804 } 5805 5806 if (icr & IGC_ICR_TS) 5807 igc_tsync_interrupt(adapter); 5808 5809 napi_schedule(&q_vector->napi); 5810 5811 return IRQ_HANDLED; 5812 } 5813 5814 static void igc_free_irq(struct igc_adapter *adapter) 5815 { 5816 if (adapter->msix_entries) { 5817 int vector = 0, i; 5818 5819 free_irq(adapter->msix_entries[vector++].vector, adapter); 5820 5821 for (i = 0; i < adapter->num_q_vectors; i++) 5822 free_irq(adapter->msix_entries[vector++].vector, 5823 adapter->q_vector[i]); 5824 } else { 5825 free_irq(adapter->pdev->irq, adapter); 5826 } 5827 } 5828 5829 /** 5830 * igc_request_irq - initialize interrupts 5831 * @adapter: Pointer to adapter structure 5832 * 5833 * Attempts to configure interrupts using the best available 5834 * capabilities of the hardware and kernel. 5835 */ 5836 static int igc_request_irq(struct igc_adapter *adapter) 5837 { 5838 struct net_device *netdev = adapter->netdev; 5839 struct pci_dev *pdev = adapter->pdev; 5840 int err = 0; 5841 5842 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5843 err = igc_request_msix(adapter); 5844 if (!err) 5845 goto request_done; 5846 /* fall back to MSI */ 5847 igc_free_all_tx_resources(adapter); 5848 igc_free_all_rx_resources(adapter); 5849 5850 igc_clear_interrupt_scheme(adapter); 5851 err = igc_init_interrupt_scheme(adapter, false); 5852 if (err) 5853 goto request_done; 5854 igc_setup_all_tx_resources(adapter); 5855 igc_setup_all_rx_resources(adapter); 5856 igc_configure(adapter); 5857 } 5858 5859 igc_assign_vector(adapter->q_vector[0], 0); 5860 5861 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5862 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5863 netdev->name, adapter); 5864 if (!err) 5865 goto request_done; 5866 5867 /* fall back to legacy interrupts */ 5868 igc_reset_interrupt_capability(adapter); 5869 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5870 } 5871 5872 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5873 netdev->name, adapter); 5874 5875 if (err) 5876 netdev_err(netdev, "Error %d getting interrupt\n", err); 5877 5878 request_done: 5879 return err; 5880 } 5881 5882 /** 5883 * __igc_open - Called when a network interface is made active 5884 * @netdev: network interface device structure 5885 * @resuming: boolean indicating if the device is resuming 5886 * 5887 * Returns 0 on success, negative value on failure 5888 * 5889 * The open entry point is called when a network interface is made 5890 * active by the system (IFF_UP). At this point all resources needed 5891 * for transmit and receive operations are allocated, the interrupt 5892 * handler is registered with the OS, the watchdog timer is started, 5893 * and the stack is notified that the interface is ready. 5894 */ 5895 static int __igc_open(struct net_device *netdev, bool resuming) 5896 { 5897 struct igc_adapter *adapter = netdev_priv(netdev); 5898 struct pci_dev *pdev = adapter->pdev; 5899 struct igc_hw *hw = &adapter->hw; 5900 int err = 0; 5901 int i = 0; 5902 5903 /* disallow open during test */ 5904 5905 if (test_bit(__IGC_TESTING, &adapter->state)) { 5906 WARN_ON(resuming); 5907 return -EBUSY; 5908 } 5909 5910 if (!resuming) 5911 pm_runtime_get_sync(&pdev->dev); 5912 5913 netif_carrier_off(netdev); 5914 5915 /* allocate transmit descriptors */ 5916 err = igc_setup_all_tx_resources(adapter); 5917 if (err) 5918 goto err_setup_tx; 5919 5920 /* allocate receive descriptors */ 5921 err = igc_setup_all_rx_resources(adapter); 5922 if (err) 5923 goto err_setup_rx; 5924 5925 igc_power_up_link(adapter); 5926 5927 igc_configure(adapter); 5928 5929 err = igc_request_irq(adapter); 5930 if (err) 5931 goto err_req_irq; 5932 5933 /* Notify the stack of the actual queue counts. */ 5934 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5935 if (err) 5936 goto err_set_queues; 5937 5938 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5939 if (err) 5940 goto err_set_queues; 5941 5942 clear_bit(__IGC_DOWN, &adapter->state); 5943 5944 for (i = 0; i < adapter->num_q_vectors; i++) 5945 napi_enable(&adapter->q_vector[i]->napi); 5946 5947 /* Clear any pending interrupts. */ 5948 rd32(IGC_ICR); 5949 igc_irq_enable(adapter); 5950 5951 if (!resuming) 5952 pm_runtime_put(&pdev->dev); 5953 5954 netif_tx_start_all_queues(netdev); 5955 5956 /* start the watchdog. */ 5957 hw->mac.get_link_status = true; 5958 schedule_work(&adapter->watchdog_task); 5959 5960 return IGC_SUCCESS; 5961 5962 err_set_queues: 5963 igc_free_irq(adapter); 5964 err_req_irq: 5965 igc_release_hw_control(adapter); 5966 igc_power_down_phy_copper_base(&adapter->hw); 5967 igc_free_all_rx_resources(adapter); 5968 err_setup_rx: 5969 igc_free_all_tx_resources(adapter); 5970 err_setup_tx: 5971 igc_reset(adapter); 5972 if (!resuming) 5973 pm_runtime_put(&pdev->dev); 5974 5975 return err; 5976 } 5977 5978 int igc_open(struct net_device *netdev) 5979 { 5980 return __igc_open(netdev, false); 5981 } 5982 5983 /** 5984 * __igc_close - Disables a network interface 5985 * @netdev: network interface device structure 5986 * @suspending: boolean indicating the device is suspending 5987 * 5988 * Returns 0, this is not allowed to fail 5989 * 5990 * The close entry point is called when an interface is de-activated 5991 * by the OS. The hardware is still under the driver's control, but 5992 * needs to be disabled. A global MAC reset is issued to stop the 5993 * hardware, and all transmit and receive resources are freed. 5994 */ 5995 static int __igc_close(struct net_device *netdev, bool suspending) 5996 { 5997 struct igc_adapter *adapter = netdev_priv(netdev); 5998 struct pci_dev *pdev = adapter->pdev; 5999 6000 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 6001 6002 if (!suspending) 6003 pm_runtime_get_sync(&pdev->dev); 6004 6005 igc_down(adapter); 6006 6007 igc_release_hw_control(adapter); 6008 6009 igc_free_irq(adapter); 6010 6011 igc_free_all_tx_resources(adapter); 6012 igc_free_all_rx_resources(adapter); 6013 6014 if (!suspending) 6015 pm_runtime_put_sync(&pdev->dev); 6016 6017 return 0; 6018 } 6019 6020 int igc_close(struct net_device *netdev) 6021 { 6022 if (netif_device_present(netdev) || netdev->dismantle) 6023 return __igc_close(netdev, false); 6024 return 0; 6025 } 6026 6027 /** 6028 * igc_ioctl - Access the hwtstamp interface 6029 * @netdev: network interface device structure 6030 * @ifr: interface request data 6031 * @cmd: ioctl command 6032 **/ 6033 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6034 { 6035 switch (cmd) { 6036 case SIOCGHWTSTAMP: 6037 return igc_ptp_get_ts_config(netdev, ifr); 6038 case SIOCSHWTSTAMP: 6039 return igc_ptp_set_ts_config(netdev, ifr); 6040 default: 6041 return -EOPNOTSUPP; 6042 } 6043 } 6044 6045 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 6046 bool enable) 6047 { 6048 struct igc_ring *ring; 6049 6050 if (queue < 0 || queue >= adapter->num_tx_queues) 6051 return -EINVAL; 6052 6053 ring = adapter->tx_ring[queue]; 6054 ring->launchtime_enable = enable; 6055 6056 return 0; 6057 } 6058 6059 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 6060 { 6061 struct timespec64 b; 6062 6063 b = ktime_to_timespec64(base_time); 6064 6065 return timespec64_compare(now, &b) > 0; 6066 } 6067 6068 static bool validate_schedule(struct igc_adapter *adapter, 6069 const struct tc_taprio_qopt_offload *qopt) 6070 { 6071 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 6072 struct igc_hw *hw = &adapter->hw; 6073 struct timespec64 now; 6074 size_t n; 6075 6076 if (qopt->cycle_time_extension) 6077 return false; 6078 6079 igc_ptp_read(adapter, &now); 6080 6081 /* If we program the controller's BASET registers with a time 6082 * in the future, it will hold all the packets until that 6083 * time, causing a lot of TX Hangs, so to avoid that, we 6084 * reject schedules that would start in the future. 6085 * Note: Limitation above is no longer in i226. 6086 */ 6087 if (!is_base_time_past(qopt->base_time, &now) && 6088 igc_is_device_id_i225(hw)) 6089 return false; 6090 6091 for (n = 0; n < qopt->num_entries; n++) { 6092 const struct tc_taprio_sched_entry *e, *prev; 6093 int i; 6094 6095 prev = n ? &qopt->entries[n - 1] : NULL; 6096 e = &qopt->entries[n]; 6097 6098 /* i225 only supports "global" frame preemption 6099 * settings. 6100 */ 6101 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6102 return false; 6103 6104 for (i = 0; i < adapter->num_tx_queues; i++) 6105 if (e->gate_mask & BIT(i)) { 6106 queue_uses[i]++; 6107 6108 /* There are limitations: A single queue cannot 6109 * be opened and closed multiple times per cycle 6110 * unless the gate stays open. Check for it. 6111 */ 6112 if (queue_uses[i] > 1 && 6113 !(prev->gate_mask & BIT(i))) 6114 return false; 6115 } 6116 } 6117 6118 return true; 6119 } 6120 6121 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6122 struct tc_etf_qopt_offload *qopt) 6123 { 6124 struct igc_hw *hw = &adapter->hw; 6125 int err; 6126 6127 if (hw->mac.type != igc_i225) 6128 return -EOPNOTSUPP; 6129 6130 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6131 if (err) 6132 return err; 6133 6134 return igc_tsn_offload_apply(adapter); 6135 } 6136 6137 static int igc_qbv_clear_schedule(struct igc_adapter *adapter) 6138 { 6139 unsigned long flags; 6140 int i; 6141 6142 adapter->base_time = 0; 6143 adapter->cycle_time = NSEC_PER_SEC; 6144 adapter->taprio_offload_enable = false; 6145 adapter->qbv_config_change_errors = 0; 6146 adapter->qbv_count = 0; 6147 6148 for (i = 0; i < adapter->num_tx_queues; i++) { 6149 struct igc_ring *ring = adapter->tx_ring[i]; 6150 6151 ring->start_time = 0; 6152 ring->end_time = NSEC_PER_SEC; 6153 ring->max_sdu = 0; 6154 } 6155 6156 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6157 6158 adapter->qbv_transition = false; 6159 6160 for (i = 0; i < adapter->num_tx_queues; i++) { 6161 struct igc_ring *ring = adapter->tx_ring[i]; 6162 6163 ring->oper_gate_closed = false; 6164 ring->admin_gate_closed = false; 6165 } 6166 6167 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6168 6169 return 0; 6170 } 6171 6172 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6173 { 6174 igc_qbv_clear_schedule(adapter); 6175 6176 return 0; 6177 } 6178 6179 static void igc_taprio_stats(struct net_device *dev, 6180 struct tc_taprio_qopt_stats *stats) 6181 { 6182 /* When Strict_End is enabled, the tx_overruns counter 6183 * will always be zero. 6184 */ 6185 stats->tx_overruns = 0; 6186 } 6187 6188 static void igc_taprio_queue_stats(struct net_device *dev, 6189 struct tc_taprio_qopt_queue_stats *queue_stats) 6190 { 6191 struct tc_taprio_qopt_stats *stats = &queue_stats->stats; 6192 6193 /* When Strict_End is enabled, the tx_overruns counter 6194 * will always be zero. 6195 */ 6196 stats->tx_overruns = 0; 6197 } 6198 6199 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6200 struct tc_taprio_qopt_offload *qopt) 6201 { 6202 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6203 struct igc_hw *hw = &adapter->hw; 6204 u32 start_time = 0, end_time = 0; 6205 struct timespec64 now; 6206 unsigned long flags; 6207 size_t n; 6208 int i; 6209 6210 switch (qopt->cmd) { 6211 case TAPRIO_CMD_REPLACE: 6212 break; 6213 case TAPRIO_CMD_DESTROY: 6214 return igc_tsn_clear_schedule(adapter); 6215 case TAPRIO_CMD_STATS: 6216 igc_taprio_stats(adapter->netdev, &qopt->stats); 6217 return 0; 6218 case TAPRIO_CMD_QUEUE_STATS: 6219 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats); 6220 return 0; 6221 default: 6222 return -EOPNOTSUPP; 6223 } 6224 6225 if (qopt->base_time < 0) 6226 return -ERANGE; 6227 6228 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable) 6229 return -EALREADY; 6230 6231 if (!validate_schedule(adapter, qopt)) 6232 return -EINVAL; 6233 6234 adapter->cycle_time = qopt->cycle_time; 6235 adapter->base_time = qopt->base_time; 6236 adapter->taprio_offload_enable = true; 6237 6238 igc_ptp_read(adapter, &now); 6239 6240 for (n = 0; n < qopt->num_entries; n++) { 6241 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6242 6243 end_time += e->interval; 6244 6245 /* If any of the conditions below are true, we need to manually 6246 * control the end time of the cycle. 6247 * 1. Qbv users can specify a cycle time that is not equal 6248 * to the total GCL intervals. Hence, recalculation is 6249 * necessary here to exclude the time interval that 6250 * exceeds the cycle time. 6251 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6252 * once the end of the list is reached, it will switch 6253 * to the END_OF_CYCLE state and leave the gates in the 6254 * same state until the next cycle is started. 6255 */ 6256 if (end_time > adapter->cycle_time || 6257 n + 1 == qopt->num_entries) 6258 end_time = adapter->cycle_time; 6259 6260 for (i = 0; i < adapter->num_tx_queues; i++) { 6261 struct igc_ring *ring = adapter->tx_ring[i]; 6262 6263 if (!(e->gate_mask & BIT(i))) 6264 continue; 6265 6266 /* Check whether a queue stays open for more than one 6267 * entry. If so, keep the start and advance the end 6268 * time. 6269 */ 6270 if (!queue_configured[i]) 6271 ring->start_time = start_time; 6272 ring->end_time = end_time; 6273 6274 if (ring->start_time >= adapter->cycle_time) 6275 queue_configured[i] = false; 6276 else 6277 queue_configured[i] = true; 6278 } 6279 6280 start_time += e->interval; 6281 } 6282 6283 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6284 6285 /* Check whether a queue gets configured. 6286 * If not, set the start and end time to be end time. 6287 */ 6288 for (i = 0; i < adapter->num_tx_queues; i++) { 6289 struct igc_ring *ring = adapter->tx_ring[i]; 6290 6291 if (!is_base_time_past(qopt->base_time, &now)) { 6292 ring->admin_gate_closed = false; 6293 } else { 6294 ring->oper_gate_closed = false; 6295 ring->admin_gate_closed = false; 6296 } 6297 6298 if (!queue_configured[i]) { 6299 if (!is_base_time_past(qopt->base_time, &now)) 6300 ring->admin_gate_closed = true; 6301 else 6302 ring->oper_gate_closed = true; 6303 6304 ring->start_time = end_time; 6305 ring->end_time = end_time; 6306 } 6307 } 6308 6309 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6310 6311 for (i = 0; i < adapter->num_tx_queues; i++) { 6312 struct igc_ring *ring = adapter->tx_ring[i]; 6313 struct net_device *dev = adapter->netdev; 6314 6315 if (qopt->max_sdu[i]) 6316 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN; 6317 else 6318 ring->max_sdu = 0; 6319 } 6320 6321 return 0; 6322 } 6323 6324 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6325 struct tc_taprio_qopt_offload *qopt) 6326 { 6327 struct igc_hw *hw = &adapter->hw; 6328 int err; 6329 6330 if (hw->mac.type != igc_i225) 6331 return -EOPNOTSUPP; 6332 6333 err = igc_save_qbv_schedule(adapter, qopt); 6334 if (err) 6335 return err; 6336 6337 return igc_tsn_offload_apply(adapter); 6338 } 6339 6340 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6341 bool enable, int idleslope, int sendslope, 6342 int hicredit, int locredit) 6343 { 6344 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6345 struct net_device *netdev = adapter->netdev; 6346 struct igc_ring *ring; 6347 int i; 6348 6349 /* i225 has two sets of credit-based shaper logic. 6350 * Supporting it only on the top two priority queues 6351 */ 6352 if (queue < 0 || queue > 1) 6353 return -EINVAL; 6354 6355 ring = adapter->tx_ring[queue]; 6356 6357 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6358 if (adapter->tx_ring[i]) 6359 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6360 6361 /* CBS should be enabled on the highest priority queue first in order 6362 * for the CBS algorithm to operate as intended. 6363 */ 6364 if (enable) { 6365 if (queue == 1 && !cbs_status[0]) { 6366 netdev_err(netdev, 6367 "Enabling CBS on queue1 before queue0\n"); 6368 return -EINVAL; 6369 } 6370 } else { 6371 if (queue == 0 && cbs_status[1]) { 6372 netdev_err(netdev, 6373 "Disabling CBS on queue0 before queue1\n"); 6374 return -EINVAL; 6375 } 6376 } 6377 6378 ring->cbs_enable = enable; 6379 ring->idleslope = idleslope; 6380 ring->sendslope = sendslope; 6381 ring->hicredit = hicredit; 6382 ring->locredit = locredit; 6383 6384 return 0; 6385 } 6386 6387 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6388 struct tc_cbs_qopt_offload *qopt) 6389 { 6390 struct igc_hw *hw = &adapter->hw; 6391 int err; 6392 6393 if (hw->mac.type != igc_i225) 6394 return -EOPNOTSUPP; 6395 6396 if (qopt->queue < 0 || qopt->queue > 1) 6397 return -EINVAL; 6398 6399 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6400 qopt->idleslope, qopt->sendslope, 6401 qopt->hicredit, qopt->locredit); 6402 if (err) 6403 return err; 6404 6405 return igc_tsn_offload_apply(adapter); 6406 } 6407 6408 static int igc_tc_query_caps(struct igc_adapter *adapter, 6409 struct tc_query_caps_base *base) 6410 { 6411 struct igc_hw *hw = &adapter->hw; 6412 6413 switch (base->type) { 6414 case TC_SETUP_QDISC_TAPRIO: { 6415 struct tc_taprio_caps *caps = base->caps; 6416 6417 caps->broken_mqprio = true; 6418 6419 if (hw->mac.type == igc_i225) { 6420 caps->supports_queue_max_sdu = true; 6421 caps->gate_mask_per_txq = true; 6422 } 6423 6424 return 0; 6425 } 6426 default: 6427 return -EOPNOTSUPP; 6428 } 6429 } 6430 6431 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6432 void *type_data) 6433 { 6434 struct igc_adapter *adapter = netdev_priv(dev); 6435 6436 adapter->tc_setup_type = type; 6437 6438 switch (type) { 6439 case TC_QUERY_CAPS: 6440 return igc_tc_query_caps(adapter, type_data); 6441 case TC_SETUP_QDISC_TAPRIO: 6442 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6443 6444 case TC_SETUP_QDISC_ETF: 6445 return igc_tsn_enable_launchtime(adapter, type_data); 6446 6447 case TC_SETUP_QDISC_CBS: 6448 return igc_tsn_enable_cbs(adapter, type_data); 6449 6450 default: 6451 return -EOPNOTSUPP; 6452 } 6453 } 6454 6455 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6456 { 6457 struct igc_adapter *adapter = netdev_priv(dev); 6458 6459 switch (bpf->command) { 6460 case XDP_SETUP_PROG: 6461 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6462 case XDP_SETUP_XSK_POOL: 6463 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6464 bpf->xsk.queue_id); 6465 default: 6466 return -EOPNOTSUPP; 6467 } 6468 } 6469 6470 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6471 struct xdp_frame **frames, u32 flags) 6472 { 6473 struct igc_adapter *adapter = netdev_priv(dev); 6474 int cpu = smp_processor_id(); 6475 struct netdev_queue *nq; 6476 struct igc_ring *ring; 6477 int i, nxmit; 6478 6479 if (unlikely(!netif_carrier_ok(dev))) 6480 return -ENETDOWN; 6481 6482 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6483 return -EINVAL; 6484 6485 ring = igc_xdp_get_tx_ring(adapter, cpu); 6486 nq = txring_txq(ring); 6487 6488 __netif_tx_lock(nq, cpu); 6489 6490 /* Avoid transmit queue timeout since we share it with the slow path */ 6491 txq_trans_cond_update(nq); 6492 6493 nxmit = 0; 6494 for (i = 0; i < num_frames; i++) { 6495 int err; 6496 struct xdp_frame *xdpf = frames[i]; 6497 6498 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6499 if (err) 6500 break; 6501 nxmit++; 6502 } 6503 6504 if (flags & XDP_XMIT_FLUSH) 6505 igc_flush_tx_descriptors(ring); 6506 6507 __netif_tx_unlock(nq); 6508 6509 return nxmit; 6510 } 6511 6512 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6513 struct igc_q_vector *q_vector) 6514 { 6515 struct igc_hw *hw = &adapter->hw; 6516 u32 eics = 0; 6517 6518 eics |= q_vector->eims_value; 6519 wr32(IGC_EICS, eics); 6520 } 6521 6522 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6523 { 6524 struct igc_adapter *adapter = netdev_priv(dev); 6525 struct igc_q_vector *q_vector; 6526 struct igc_ring *ring; 6527 6528 if (test_bit(__IGC_DOWN, &adapter->state)) 6529 return -ENETDOWN; 6530 6531 if (!igc_xdp_is_enabled(adapter)) 6532 return -ENXIO; 6533 6534 if (queue_id >= adapter->num_rx_queues) 6535 return -EINVAL; 6536 6537 ring = adapter->rx_ring[queue_id]; 6538 6539 if (!ring->xsk_pool) 6540 return -ENXIO; 6541 6542 q_vector = adapter->q_vector[queue_id]; 6543 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6544 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6545 6546 return 0; 6547 } 6548 6549 static ktime_t igc_get_tstamp(struct net_device *dev, 6550 const struct skb_shared_hwtstamps *hwtstamps, 6551 bool cycles) 6552 { 6553 struct igc_adapter *adapter = netdev_priv(dev); 6554 struct igc_inline_rx_tstamps *tstamp; 6555 ktime_t timestamp; 6556 6557 tstamp = hwtstamps->netdev_data; 6558 6559 if (cycles) 6560 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1); 6561 else 6562 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0); 6563 6564 return timestamp; 6565 } 6566 6567 static const struct net_device_ops igc_netdev_ops = { 6568 .ndo_open = igc_open, 6569 .ndo_stop = igc_close, 6570 .ndo_start_xmit = igc_xmit_frame, 6571 .ndo_set_rx_mode = igc_set_rx_mode, 6572 .ndo_set_mac_address = igc_set_mac, 6573 .ndo_change_mtu = igc_change_mtu, 6574 .ndo_tx_timeout = igc_tx_timeout, 6575 .ndo_get_stats64 = igc_get_stats64, 6576 .ndo_fix_features = igc_fix_features, 6577 .ndo_set_features = igc_set_features, 6578 .ndo_features_check = igc_features_check, 6579 .ndo_eth_ioctl = igc_ioctl, 6580 .ndo_setup_tc = igc_setup_tc, 6581 .ndo_bpf = igc_bpf, 6582 .ndo_xdp_xmit = igc_xdp_xmit, 6583 .ndo_xsk_wakeup = igc_xsk_wakeup, 6584 .ndo_get_tstamp = igc_get_tstamp, 6585 }; 6586 6587 /* PCIe configuration access */ 6588 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6589 { 6590 struct igc_adapter *adapter = hw->back; 6591 6592 pci_read_config_word(adapter->pdev, reg, value); 6593 } 6594 6595 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6596 { 6597 struct igc_adapter *adapter = hw->back; 6598 6599 pci_write_config_word(adapter->pdev, reg, *value); 6600 } 6601 6602 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6603 { 6604 struct igc_adapter *adapter = hw->back; 6605 6606 if (!pci_is_pcie(adapter->pdev)) 6607 return -IGC_ERR_CONFIG; 6608 6609 pcie_capability_read_word(adapter->pdev, reg, value); 6610 6611 return IGC_SUCCESS; 6612 } 6613 6614 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6615 { 6616 struct igc_adapter *adapter = hw->back; 6617 6618 if (!pci_is_pcie(adapter->pdev)) 6619 return -IGC_ERR_CONFIG; 6620 6621 pcie_capability_write_word(adapter->pdev, reg, *value); 6622 6623 return IGC_SUCCESS; 6624 } 6625 6626 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6627 { 6628 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6629 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6630 u32 value = 0; 6631 6632 if (IGC_REMOVED(hw_addr)) 6633 return ~value; 6634 6635 value = readl(&hw_addr[reg]); 6636 6637 /* reads should not return all F's */ 6638 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6639 struct net_device *netdev = igc->netdev; 6640 6641 hw->hw_addr = NULL; 6642 netif_device_detach(netdev); 6643 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6644 WARN(pci_device_is_present(igc->pdev), 6645 "igc: Failed to read reg 0x%x!\n", reg); 6646 } 6647 6648 return value; 6649 } 6650 6651 /* Mapping HW RSS Type to enum xdp_rss_hash_type */ 6652 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = { 6653 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2, 6654 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP, 6655 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4, 6656 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP, 6657 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX, 6658 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6, 6659 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX, 6660 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP, 6661 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP, 6662 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX, 6663 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 6664 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */ 6665 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */ 6666 [13] = XDP_RSS_TYPE_NONE, 6667 [14] = XDP_RSS_TYPE_NONE, 6668 [15] = XDP_RSS_TYPE_NONE, 6669 }; 6670 6671 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash, 6672 enum xdp_rss_hash_type *rss_type) 6673 { 6674 const struct igc_xdp_buff *ctx = (void *)_ctx; 6675 6676 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH)) 6677 return -ENODATA; 6678 6679 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss); 6680 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)]; 6681 6682 return 0; 6683 } 6684 6685 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 6686 { 6687 const struct igc_xdp_buff *ctx = (void *)_ctx; 6688 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev); 6689 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts; 6690 6691 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) { 6692 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0); 6693 6694 return 0; 6695 } 6696 6697 return -ENODATA; 6698 } 6699 6700 static const struct xdp_metadata_ops igc_xdp_metadata_ops = { 6701 .xmo_rx_hash = igc_xdp_rx_hash, 6702 .xmo_rx_timestamp = igc_xdp_rx_timestamp, 6703 }; 6704 6705 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer) 6706 { 6707 struct igc_adapter *adapter = container_of(timer, struct igc_adapter, 6708 hrtimer); 6709 unsigned long flags; 6710 unsigned int i; 6711 6712 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6713 6714 adapter->qbv_transition = true; 6715 for (i = 0; i < adapter->num_tx_queues; i++) { 6716 struct igc_ring *tx_ring = adapter->tx_ring[i]; 6717 6718 if (tx_ring->admin_gate_closed) { 6719 tx_ring->admin_gate_closed = false; 6720 tx_ring->oper_gate_closed = true; 6721 } else { 6722 tx_ring->oper_gate_closed = false; 6723 } 6724 } 6725 adapter->qbv_transition = false; 6726 6727 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6728 6729 return HRTIMER_NORESTART; 6730 } 6731 6732 /** 6733 * igc_probe - Device Initialization Routine 6734 * @pdev: PCI device information struct 6735 * @ent: entry in igc_pci_tbl 6736 * 6737 * Returns 0 on success, negative on failure 6738 * 6739 * igc_probe initializes an adapter identified by a pci_dev structure. 6740 * The OS initialization, configuring the adapter private structure, 6741 * and a hardware reset occur. 6742 */ 6743 static int igc_probe(struct pci_dev *pdev, 6744 const struct pci_device_id *ent) 6745 { 6746 struct igc_adapter *adapter; 6747 struct net_device *netdev; 6748 struct igc_hw *hw; 6749 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6750 int err; 6751 6752 err = pci_enable_device_mem(pdev); 6753 if (err) 6754 return err; 6755 6756 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6757 if (err) { 6758 dev_err(&pdev->dev, 6759 "No usable DMA configuration, aborting\n"); 6760 goto err_dma; 6761 } 6762 6763 err = pci_request_mem_regions(pdev, igc_driver_name); 6764 if (err) 6765 goto err_pci_reg; 6766 6767 err = pci_enable_ptm(pdev, NULL); 6768 if (err < 0) 6769 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6770 6771 pci_set_master(pdev); 6772 6773 err = -ENOMEM; 6774 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6775 IGC_MAX_TX_QUEUES); 6776 6777 if (!netdev) 6778 goto err_alloc_etherdev; 6779 6780 SET_NETDEV_DEV(netdev, &pdev->dev); 6781 6782 pci_set_drvdata(pdev, netdev); 6783 adapter = netdev_priv(netdev); 6784 adapter->netdev = netdev; 6785 adapter->pdev = pdev; 6786 hw = &adapter->hw; 6787 hw->back = adapter; 6788 adapter->port_num = hw->bus.func; 6789 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6790 6791 err = pci_save_state(pdev); 6792 if (err) 6793 goto err_ioremap; 6794 6795 err = -EIO; 6796 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6797 pci_resource_len(pdev, 0)); 6798 if (!adapter->io_addr) 6799 goto err_ioremap; 6800 6801 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6802 hw->hw_addr = adapter->io_addr; 6803 6804 netdev->netdev_ops = &igc_netdev_ops; 6805 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops; 6806 igc_ethtool_set_ops(netdev); 6807 netdev->watchdog_timeo = 5 * HZ; 6808 6809 netdev->mem_start = pci_resource_start(pdev, 0); 6810 netdev->mem_end = pci_resource_end(pdev, 0); 6811 6812 /* PCI config space info */ 6813 hw->vendor_id = pdev->vendor; 6814 hw->device_id = pdev->device; 6815 hw->revision_id = pdev->revision; 6816 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6817 hw->subsystem_device_id = pdev->subsystem_device; 6818 6819 /* Copy the default MAC and PHY function pointers */ 6820 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6821 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6822 6823 /* Initialize skew-specific constants */ 6824 err = ei->get_invariants(hw); 6825 if (err) 6826 goto err_sw_init; 6827 6828 /* Add supported features to the features list*/ 6829 netdev->features |= NETIF_F_SG; 6830 netdev->features |= NETIF_F_TSO; 6831 netdev->features |= NETIF_F_TSO6; 6832 netdev->features |= NETIF_F_TSO_ECN; 6833 netdev->features |= NETIF_F_RXHASH; 6834 netdev->features |= NETIF_F_RXCSUM; 6835 netdev->features |= NETIF_F_HW_CSUM; 6836 netdev->features |= NETIF_F_SCTP_CRC; 6837 netdev->features |= NETIF_F_HW_TC; 6838 6839 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6840 NETIF_F_GSO_GRE_CSUM | \ 6841 NETIF_F_GSO_IPXIP4 | \ 6842 NETIF_F_GSO_IPXIP6 | \ 6843 NETIF_F_GSO_UDP_TUNNEL | \ 6844 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6845 6846 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6847 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6848 6849 /* setup the private structure */ 6850 err = igc_sw_init(adapter); 6851 if (err) 6852 goto err_sw_init; 6853 6854 /* copy netdev features into list of user selectable features */ 6855 netdev->hw_features |= NETIF_F_NTUPLE; 6856 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6857 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6858 netdev->hw_features |= netdev->features; 6859 6860 netdev->features |= NETIF_F_HIGHDMA; 6861 6862 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6863 netdev->mpls_features |= NETIF_F_HW_CSUM; 6864 netdev->hw_enc_features |= netdev->vlan_features; 6865 6866 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 6867 NETDEV_XDP_ACT_XSK_ZEROCOPY; 6868 6869 /* MTU range: 68 - 9216 */ 6870 netdev->min_mtu = ETH_MIN_MTU; 6871 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6872 6873 /* before reading the NVM, reset the controller to put the device in a 6874 * known good starting state 6875 */ 6876 hw->mac.ops.reset_hw(hw); 6877 6878 if (igc_get_flash_presence_i225(hw)) { 6879 if (hw->nvm.ops.validate(hw) < 0) { 6880 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6881 err = -EIO; 6882 goto err_eeprom; 6883 } 6884 } 6885 6886 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6887 /* copy the MAC address out of the NVM */ 6888 if (hw->mac.ops.read_mac_addr(hw)) 6889 dev_err(&pdev->dev, "NVM Read Error\n"); 6890 } 6891 6892 eth_hw_addr_set(netdev, hw->mac.addr); 6893 6894 if (!is_valid_ether_addr(netdev->dev_addr)) { 6895 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6896 err = -EIO; 6897 goto err_eeprom; 6898 } 6899 6900 /* configure RXPBSIZE and TXPBSIZE */ 6901 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6902 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6903 6904 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6905 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6906 6907 INIT_WORK(&adapter->reset_task, igc_reset_task); 6908 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6909 6910 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6911 adapter->hrtimer.function = &igc_qbv_scheduling_timer; 6912 6913 /* Initialize link properties that are user-changeable */ 6914 adapter->fc_autoneg = true; 6915 hw->mac.autoneg = true; 6916 hw->phy.autoneg_advertised = 0xaf; 6917 6918 hw->fc.requested_mode = igc_fc_default; 6919 hw->fc.current_mode = igc_fc_default; 6920 6921 /* By default, support wake on port A */ 6922 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6923 6924 /* initialize the wol settings based on the eeprom settings */ 6925 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6926 adapter->wol |= IGC_WUFC_MAG; 6927 6928 device_set_wakeup_enable(&adapter->pdev->dev, 6929 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6930 6931 igc_ptp_init(adapter); 6932 6933 igc_tsn_clear_schedule(adapter); 6934 6935 /* reset the hardware with the new settings */ 6936 igc_reset(adapter); 6937 6938 /* let the f/w know that the h/w is now under the control of the 6939 * driver. 6940 */ 6941 igc_get_hw_control(adapter); 6942 6943 strscpy(netdev->name, "eth%d", sizeof(netdev->name)); 6944 err = register_netdev(netdev); 6945 if (err) 6946 goto err_register; 6947 6948 /* carrier off reporting is important to ethtool even BEFORE open */ 6949 netif_carrier_off(netdev); 6950 6951 /* Check if Media Autosense is enabled */ 6952 adapter->ei = *ei; 6953 6954 /* print pcie link status and MAC address */ 6955 pcie_print_link_status(pdev); 6956 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6957 6958 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6959 /* Disable EEE for internal PHY devices */ 6960 hw->dev_spec._base.eee_enable = false; 6961 adapter->flags &= ~IGC_FLAG_EEE; 6962 igc_set_eee_i225(hw, false, false, false); 6963 6964 pm_runtime_put_noidle(&pdev->dev); 6965 6966 if (IS_ENABLED(CONFIG_IGC_LEDS)) { 6967 err = igc_led_setup(adapter); 6968 if (err) 6969 goto err_register; 6970 } 6971 6972 return 0; 6973 6974 err_register: 6975 igc_release_hw_control(adapter); 6976 err_eeprom: 6977 if (!igc_check_reset_block(hw)) 6978 igc_reset_phy(hw); 6979 err_sw_init: 6980 igc_clear_interrupt_scheme(adapter); 6981 iounmap(adapter->io_addr); 6982 err_ioremap: 6983 free_netdev(netdev); 6984 err_alloc_etherdev: 6985 pci_release_mem_regions(pdev); 6986 err_pci_reg: 6987 err_dma: 6988 pci_disable_device(pdev); 6989 return err; 6990 } 6991 6992 /** 6993 * igc_remove - Device Removal Routine 6994 * @pdev: PCI device information struct 6995 * 6996 * igc_remove is called by the PCI subsystem to alert the driver 6997 * that it should release a PCI device. This could be caused by a 6998 * Hot-Plug event, or because the driver is going to be removed from 6999 * memory. 7000 */ 7001 static void igc_remove(struct pci_dev *pdev) 7002 { 7003 struct net_device *netdev = pci_get_drvdata(pdev); 7004 struct igc_adapter *adapter = netdev_priv(netdev); 7005 7006 pm_runtime_get_noresume(&pdev->dev); 7007 7008 igc_flush_nfc_rules(adapter); 7009 7010 igc_ptp_stop(adapter); 7011 7012 pci_disable_ptm(pdev); 7013 pci_clear_master(pdev); 7014 7015 set_bit(__IGC_DOWN, &adapter->state); 7016 7017 del_timer_sync(&adapter->watchdog_timer); 7018 del_timer_sync(&adapter->phy_info_timer); 7019 7020 cancel_work_sync(&adapter->reset_task); 7021 cancel_work_sync(&adapter->watchdog_task); 7022 hrtimer_cancel(&adapter->hrtimer); 7023 7024 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7025 * would have already happened in close and is redundant. 7026 */ 7027 igc_release_hw_control(adapter); 7028 unregister_netdev(netdev); 7029 7030 igc_clear_interrupt_scheme(adapter); 7031 pci_iounmap(pdev, adapter->io_addr); 7032 pci_release_mem_regions(pdev); 7033 7034 free_netdev(netdev); 7035 7036 pci_disable_device(pdev); 7037 } 7038 7039 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 7040 bool runtime) 7041 { 7042 struct net_device *netdev = pci_get_drvdata(pdev); 7043 struct igc_adapter *adapter = netdev_priv(netdev); 7044 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 7045 struct igc_hw *hw = &adapter->hw; 7046 u32 ctrl, rctl, status; 7047 bool wake; 7048 7049 rtnl_lock(); 7050 netif_device_detach(netdev); 7051 7052 if (netif_running(netdev)) 7053 __igc_close(netdev, true); 7054 7055 igc_ptp_suspend(adapter); 7056 7057 igc_clear_interrupt_scheme(adapter); 7058 rtnl_unlock(); 7059 7060 status = rd32(IGC_STATUS); 7061 if (status & IGC_STATUS_LU) 7062 wufc &= ~IGC_WUFC_LNKC; 7063 7064 if (wufc) { 7065 igc_setup_rctl(adapter); 7066 igc_set_rx_mode(netdev); 7067 7068 /* turn on all-multi mode if wake on multicast is enabled */ 7069 if (wufc & IGC_WUFC_MC) { 7070 rctl = rd32(IGC_RCTL); 7071 rctl |= IGC_RCTL_MPE; 7072 wr32(IGC_RCTL, rctl); 7073 } 7074 7075 ctrl = rd32(IGC_CTRL); 7076 ctrl |= IGC_CTRL_ADVD3WUC; 7077 wr32(IGC_CTRL, ctrl); 7078 7079 /* Allow time for pending master requests to run */ 7080 igc_disable_pcie_master(hw); 7081 7082 wr32(IGC_WUC, IGC_WUC_PME_EN); 7083 wr32(IGC_WUFC, wufc); 7084 } else { 7085 wr32(IGC_WUC, 0); 7086 wr32(IGC_WUFC, 0); 7087 } 7088 7089 wake = wufc || adapter->en_mng_pt; 7090 if (!wake) 7091 igc_power_down_phy_copper_base(&adapter->hw); 7092 else 7093 igc_power_up_link(adapter); 7094 7095 if (enable_wake) 7096 *enable_wake = wake; 7097 7098 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7099 * would have already happened in close and is redundant. 7100 */ 7101 igc_release_hw_control(adapter); 7102 7103 pci_disable_device(pdev); 7104 7105 return 0; 7106 } 7107 7108 #ifdef CONFIG_PM 7109 static int __maybe_unused igc_runtime_suspend(struct device *dev) 7110 { 7111 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 7112 } 7113 7114 static void igc_deliver_wake_packet(struct net_device *netdev) 7115 { 7116 struct igc_adapter *adapter = netdev_priv(netdev); 7117 struct igc_hw *hw = &adapter->hw; 7118 struct sk_buff *skb; 7119 u32 wupl; 7120 7121 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 7122 7123 /* WUPM stores only the first 128 bytes of the wake packet. 7124 * Read the packet only if we have the whole thing. 7125 */ 7126 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 7127 return; 7128 7129 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 7130 if (!skb) 7131 return; 7132 7133 skb_put(skb, wupl); 7134 7135 /* Ensure reads are 32-bit aligned */ 7136 wupl = roundup(wupl, 4); 7137 7138 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 7139 7140 skb->protocol = eth_type_trans(skb, netdev); 7141 netif_rx(skb); 7142 } 7143 7144 static int __maybe_unused igc_resume(struct device *dev) 7145 { 7146 struct pci_dev *pdev = to_pci_dev(dev); 7147 struct net_device *netdev = pci_get_drvdata(pdev); 7148 struct igc_adapter *adapter = netdev_priv(netdev); 7149 struct igc_hw *hw = &adapter->hw; 7150 u32 err, val; 7151 7152 pci_set_power_state(pdev, PCI_D0); 7153 pci_restore_state(pdev); 7154 pci_save_state(pdev); 7155 7156 if (!pci_device_is_present(pdev)) 7157 return -ENODEV; 7158 err = pci_enable_device_mem(pdev); 7159 if (err) { 7160 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 7161 return err; 7162 } 7163 pci_set_master(pdev); 7164 7165 pci_enable_wake(pdev, PCI_D3hot, 0); 7166 pci_enable_wake(pdev, PCI_D3cold, 0); 7167 7168 if (igc_init_interrupt_scheme(adapter, true)) { 7169 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7170 return -ENOMEM; 7171 } 7172 7173 igc_reset(adapter); 7174 7175 /* let the f/w know that the h/w is now under the control of the 7176 * driver. 7177 */ 7178 igc_get_hw_control(adapter); 7179 7180 val = rd32(IGC_WUS); 7181 if (val & WAKE_PKT_WUS) 7182 igc_deliver_wake_packet(netdev); 7183 7184 wr32(IGC_WUS, ~0); 7185 7186 rtnl_lock(); 7187 if (!err && netif_running(netdev)) 7188 err = __igc_open(netdev, true); 7189 7190 if (!err) 7191 netif_device_attach(netdev); 7192 rtnl_unlock(); 7193 7194 return err; 7195 } 7196 7197 static int __maybe_unused igc_runtime_resume(struct device *dev) 7198 { 7199 return igc_resume(dev); 7200 } 7201 7202 static int __maybe_unused igc_suspend(struct device *dev) 7203 { 7204 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 7205 } 7206 7207 static int __maybe_unused igc_runtime_idle(struct device *dev) 7208 { 7209 struct net_device *netdev = dev_get_drvdata(dev); 7210 struct igc_adapter *adapter = netdev_priv(netdev); 7211 7212 if (!igc_has_link(adapter)) 7213 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7214 7215 return -EBUSY; 7216 } 7217 #endif /* CONFIG_PM */ 7218 7219 static void igc_shutdown(struct pci_dev *pdev) 7220 { 7221 bool wake; 7222 7223 __igc_shutdown(pdev, &wake, 0); 7224 7225 if (system_state == SYSTEM_POWER_OFF) { 7226 pci_wake_from_d3(pdev, wake); 7227 pci_set_power_state(pdev, PCI_D3hot); 7228 } 7229 } 7230 7231 /** 7232 * igc_io_error_detected - called when PCI error is detected 7233 * @pdev: Pointer to PCI device 7234 * @state: The current PCI connection state 7235 * 7236 * This function is called after a PCI bus error affecting 7237 * this device has been detected. 7238 **/ 7239 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 7240 pci_channel_state_t state) 7241 { 7242 struct net_device *netdev = pci_get_drvdata(pdev); 7243 struct igc_adapter *adapter = netdev_priv(netdev); 7244 7245 netif_device_detach(netdev); 7246 7247 if (state == pci_channel_io_perm_failure) 7248 return PCI_ERS_RESULT_DISCONNECT; 7249 7250 if (netif_running(netdev)) 7251 igc_down(adapter); 7252 pci_disable_device(pdev); 7253 7254 /* Request a slot reset. */ 7255 return PCI_ERS_RESULT_NEED_RESET; 7256 } 7257 7258 /** 7259 * igc_io_slot_reset - called after the PCI bus has been reset. 7260 * @pdev: Pointer to PCI device 7261 * 7262 * Restart the card from scratch, as if from a cold-boot. Implementation 7263 * resembles the first-half of the igc_resume routine. 7264 **/ 7265 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 7266 { 7267 struct net_device *netdev = pci_get_drvdata(pdev); 7268 struct igc_adapter *adapter = netdev_priv(netdev); 7269 struct igc_hw *hw = &adapter->hw; 7270 pci_ers_result_t result; 7271 7272 if (pci_enable_device_mem(pdev)) { 7273 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 7274 result = PCI_ERS_RESULT_DISCONNECT; 7275 } else { 7276 pci_set_master(pdev); 7277 pci_restore_state(pdev); 7278 pci_save_state(pdev); 7279 7280 pci_enable_wake(pdev, PCI_D3hot, 0); 7281 pci_enable_wake(pdev, PCI_D3cold, 0); 7282 7283 /* In case of PCI error, adapter loses its HW address 7284 * so we should re-assign it here. 7285 */ 7286 hw->hw_addr = adapter->io_addr; 7287 7288 igc_reset(adapter); 7289 wr32(IGC_WUS, ~0); 7290 result = PCI_ERS_RESULT_RECOVERED; 7291 } 7292 7293 return result; 7294 } 7295 7296 /** 7297 * igc_io_resume - called when traffic can start to flow again. 7298 * @pdev: Pointer to PCI device 7299 * 7300 * This callback is called when the error recovery driver tells us that 7301 * its OK to resume normal operation. Implementation resembles the 7302 * second-half of the igc_resume routine. 7303 */ 7304 static void igc_io_resume(struct pci_dev *pdev) 7305 { 7306 struct net_device *netdev = pci_get_drvdata(pdev); 7307 struct igc_adapter *adapter = netdev_priv(netdev); 7308 7309 rtnl_lock(); 7310 if (netif_running(netdev)) { 7311 if (igc_open(netdev)) { 7312 netdev_err(netdev, "igc_open failed after reset\n"); 7313 return; 7314 } 7315 } 7316 7317 netif_device_attach(netdev); 7318 7319 /* let the f/w know that the h/w is now under the control of the 7320 * driver. 7321 */ 7322 igc_get_hw_control(adapter); 7323 rtnl_unlock(); 7324 } 7325 7326 static const struct pci_error_handlers igc_err_handler = { 7327 .error_detected = igc_io_error_detected, 7328 .slot_reset = igc_io_slot_reset, 7329 .resume = igc_io_resume, 7330 }; 7331 7332 #ifdef CONFIG_PM 7333 static const struct dev_pm_ops igc_pm_ops = { 7334 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 7335 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 7336 igc_runtime_idle) 7337 }; 7338 #endif 7339 7340 static struct pci_driver igc_driver = { 7341 .name = igc_driver_name, 7342 .id_table = igc_pci_tbl, 7343 .probe = igc_probe, 7344 .remove = igc_remove, 7345 #ifdef CONFIG_PM 7346 .driver.pm = &igc_pm_ops, 7347 #endif 7348 .shutdown = igc_shutdown, 7349 .err_handler = &igc_err_handler, 7350 }; 7351 7352 /** 7353 * igc_reinit_queues - return error 7354 * @adapter: pointer to adapter structure 7355 */ 7356 int igc_reinit_queues(struct igc_adapter *adapter) 7357 { 7358 struct net_device *netdev = adapter->netdev; 7359 int err = 0; 7360 7361 if (netif_running(netdev)) 7362 igc_close(netdev); 7363 7364 igc_reset_interrupt_capability(adapter); 7365 7366 if (igc_init_interrupt_scheme(adapter, true)) { 7367 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7368 return -ENOMEM; 7369 } 7370 7371 if (netif_running(netdev)) 7372 err = igc_open(netdev); 7373 7374 return err; 7375 } 7376 7377 /** 7378 * igc_get_hw_dev - return device 7379 * @hw: pointer to hardware structure 7380 * 7381 * used by hardware layer to print debugging information 7382 */ 7383 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7384 { 7385 struct igc_adapter *adapter = hw->back; 7386 7387 return adapter->netdev; 7388 } 7389 7390 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7391 { 7392 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7393 u8 idx = ring->reg_idx; 7394 u32 rxdctl; 7395 7396 rxdctl = rd32(IGC_RXDCTL(idx)); 7397 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7398 rxdctl |= IGC_RXDCTL_SWFLUSH; 7399 wr32(IGC_RXDCTL(idx), rxdctl); 7400 } 7401 7402 void igc_disable_rx_ring(struct igc_ring *ring) 7403 { 7404 igc_disable_rx_ring_hw(ring); 7405 igc_clean_rx_ring(ring); 7406 } 7407 7408 void igc_enable_rx_ring(struct igc_ring *ring) 7409 { 7410 struct igc_adapter *adapter = ring->q_vector->adapter; 7411 7412 igc_configure_rx_ring(adapter, ring); 7413 7414 if (ring->xsk_pool) 7415 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7416 else 7417 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7418 } 7419 7420 void igc_disable_tx_ring(struct igc_ring *ring) 7421 { 7422 igc_disable_tx_ring_hw(ring); 7423 igc_clean_tx_ring(ring); 7424 } 7425 7426 void igc_enable_tx_ring(struct igc_ring *ring) 7427 { 7428 struct igc_adapter *adapter = ring->q_vector->adapter; 7429 7430 igc_configure_tx_ring(adapter, ring); 7431 } 7432 7433 /** 7434 * igc_init_module - Driver Registration Routine 7435 * 7436 * igc_init_module is the first routine called when the driver is 7437 * loaded. All it does is register with the PCI subsystem. 7438 */ 7439 static int __init igc_init_module(void) 7440 { 7441 int ret; 7442 7443 pr_info("%s\n", igc_driver_string); 7444 pr_info("%s\n", igc_copyright); 7445 7446 ret = pci_register_driver(&igc_driver); 7447 return ret; 7448 } 7449 7450 module_init(igc_init_module); 7451 7452 /** 7453 * igc_exit_module - Driver Exit Cleanup Routine 7454 * 7455 * igc_exit_module is called just before the driver is removed 7456 * from memory. 7457 */ 7458 static void __exit igc_exit_module(void) 7459 { 7460 pci_unregister_driver(&igc_driver); 7461 } 7462 7463 module_exit(igc_exit_module); 7464 /* igc_main.c */ 7465