xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 
16 #include <net/ipv6.h>
17 
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22 
23 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
24 
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26 
27 #define IGC_XDP_PASS		0
28 #define IGC_XDP_CONSUMED	BIT(0)
29 #define IGC_XDP_TX		BIT(1)
30 #define IGC_XDP_REDIRECT	BIT(2)
31 
32 static int debug = -1;
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 		return -ENOMEM;
1097 	}
1098 
1099 	buffer->skb = skb;
1100 	buffer->protocol = 0;
1101 	buffer->bytecount = skb->len;
1102 	buffer->gso_segs = 1;
1103 	buffer->time_stamp = jiffies;
1104 	dma_unmap_len_set(buffer, len, skb->len);
1105 	dma_unmap_addr_set(buffer, dma, dma);
1106 
1107 	return 0;
1108 }
1109 
1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 					struct sk_buff *skb,
1112 					struct igc_tx_buffer *first)
1113 {
1114 	union igc_adv_tx_desc *desc;
1115 	u32 cmd_type, olinfo_status;
1116 	int err;
1117 
1118 	if (!igc_desc_unused(ring))
1119 		return -EBUSY;
1120 
1121 	err = igc_init_empty_frame(ring, first, skb);
1122 	if (err)
1123 		return err;
1124 
1125 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 		   first->bytecount;
1128 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129 
1130 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134 
1135 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136 
1137 	first->next_to_watch = desc;
1138 
1139 	ring->next_to_use++;
1140 	if (ring->next_to_use == ring->count)
1141 		ring->next_to_use = 0;
1142 
1143 	return 0;
1144 }
1145 
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147 
1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 			    __le32 launch_time, bool first_flag,
1150 			    u32 vlan_macip_lens, u32 type_tucmd,
1151 			    u32 mss_l4len_idx)
1152 {
1153 	struct igc_adv_tx_context_desc *context_desc;
1154 	u16 i = tx_ring->next_to_use;
1155 
1156 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157 
1158 	i++;
1159 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160 
1161 	/* set bits to identify this as an advanced context descriptor */
1162 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163 
1164 	/* For i225, context index must be unique per ring. */
1165 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1167 
1168 	if (first_flag)
1169 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170 
1171 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1172 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1173 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1174 	context_desc->launch_time	= launch_time;
1175 }
1176 
1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 			__le32 launch_time, bool first_flag)
1179 {
1180 	struct sk_buff *skb = first->skb;
1181 	u32 vlan_macip_lens = 0;
1182 	u32 type_tucmd = 0;
1183 
1184 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 		    !tx_ring->launchtime_enable)
1188 			return;
1189 		goto no_csum;
1190 	}
1191 
1192 	switch (skb->csum_offset) {
1193 	case offsetof(struct tcphdr, check):
1194 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 		fallthrough;
1196 	case offsetof(struct udphdr, check):
1197 		break;
1198 	case offsetof(struct sctphdr, checksum):
1199 		/* validate that this is actually an SCTP request */
1200 		if (skb_csum_is_sctp(skb)) {
1201 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 			break;
1203 		}
1204 		fallthrough;
1205 	default:
1206 		skb_checksum_help(skb);
1207 		goto csum_failed;
1208 	}
1209 
1210 	/* update TX checksum flag */
1211 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 			  skb_network_offset(skb);
1214 no_csum:
1215 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217 
1218 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 			vlan_macip_lens, type_tucmd, 0);
1220 }
1221 
1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 	struct net_device *netdev = tx_ring->netdev;
1225 
1226 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1227 
1228 	/* memory barriier comment */
1229 	smp_mb();
1230 
1231 	/* We need to check again in a case another CPU has just
1232 	 * made room available.
1233 	 */
1234 	if (igc_desc_unused(tx_ring) < size)
1235 		return -EBUSY;
1236 
1237 	/* A reprieve! */
1238 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1239 
1240 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 	tx_ring->tx_stats.restart_queue2++;
1242 	u64_stats_update_end(&tx_ring->tx_syncp2);
1243 
1244 	return 0;
1245 }
1246 
1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 	if (igc_desc_unused(tx_ring) >= size)
1250 		return 0;
1251 	return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253 
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 	(((_flag) <= (_result)) ?				\
1256 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1257 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258 
1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 	/* set type for advanced descriptor with frame checksum insertion */
1262 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 		       IGC_ADVTXD_DCMD_DEXT |
1264 		       IGC_ADVTXD_DCMD_IFCS;
1265 
1266 	/* set HW vlan bit if vlan is present */
1267 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 				 IGC_ADVTXD_DCMD_VLE);
1269 
1270 	/* set segmentation bits for TSO */
1271 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 				 (IGC_ADVTXD_DCMD_TSE));
1273 
1274 	/* set timestamp bit if present, will select the register set
1275 	 * based on the _TSTAMP(_X) bit.
1276 	 */
1277 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278 				 (IGC_ADVTXD_MAC_TSTAMP));
1279 
1280 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281 				 (IGC_ADVTXD_TSTAMP_REG_1));
1282 
1283 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284 				 (IGC_ADVTXD_TSTAMP_REG_2));
1285 
1286 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287 				 (IGC_ADVTXD_TSTAMP_REG_3));
1288 
1289 	/* insert frame checksum */
1290 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291 
1292 	return cmd_type;
1293 }
1294 
1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296 				 union igc_adv_tx_desc *tx_desc,
1297 				 u32 tx_flags, unsigned int paylen)
1298 {
1299 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300 
1301 	/* insert L4 checksum */
1302 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1303 				      (IGC_TXD_POPTS_TXSM << 8));
1304 
1305 	/* insert IPv4 checksum */
1306 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1307 				      (IGC_TXD_POPTS_IXSM << 8));
1308 
1309 	/* Use the second timer (free running, in general) for the timestamp */
1310 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1311 				      IGC_TXD_PTP2_TIMER_1);
1312 
1313 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1314 }
1315 
1316 static int igc_tx_map(struct igc_ring *tx_ring,
1317 		      struct igc_tx_buffer *first,
1318 		      const u8 hdr_len)
1319 {
1320 	struct sk_buff *skb = first->skb;
1321 	struct igc_tx_buffer *tx_buffer;
1322 	union igc_adv_tx_desc *tx_desc;
1323 	u32 tx_flags = first->tx_flags;
1324 	skb_frag_t *frag;
1325 	u16 i = tx_ring->next_to_use;
1326 	unsigned int data_len, size;
1327 	dma_addr_t dma;
1328 	u32 cmd_type;
1329 
1330 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1331 	tx_desc = IGC_TX_DESC(tx_ring, i);
1332 
1333 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1334 
1335 	size = skb_headlen(skb);
1336 	data_len = skb->data_len;
1337 
1338 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1339 
1340 	tx_buffer = first;
1341 
1342 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1343 		if (dma_mapping_error(tx_ring->dev, dma))
1344 			goto dma_error;
1345 
1346 		/* record length, and DMA address */
1347 		dma_unmap_len_set(tx_buffer, len, size);
1348 		dma_unmap_addr_set(tx_buffer, dma, dma);
1349 
1350 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1351 
1352 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1353 			tx_desc->read.cmd_type_len =
1354 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1355 
1356 			i++;
1357 			tx_desc++;
1358 			if (i == tx_ring->count) {
1359 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1360 				i = 0;
1361 			}
1362 			tx_desc->read.olinfo_status = 0;
1363 
1364 			dma += IGC_MAX_DATA_PER_TXD;
1365 			size -= IGC_MAX_DATA_PER_TXD;
1366 
1367 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1368 		}
1369 
1370 		if (likely(!data_len))
1371 			break;
1372 
1373 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1374 
1375 		i++;
1376 		tx_desc++;
1377 		if (i == tx_ring->count) {
1378 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1379 			i = 0;
1380 		}
1381 		tx_desc->read.olinfo_status = 0;
1382 
1383 		size = skb_frag_size(frag);
1384 		data_len -= size;
1385 
1386 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1387 				       size, DMA_TO_DEVICE);
1388 
1389 		tx_buffer = &tx_ring->tx_buffer_info[i];
1390 	}
1391 
1392 	/* write last descriptor with RS and EOP bits */
1393 	cmd_type |= size | IGC_TXD_DCMD;
1394 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1395 
1396 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1397 
1398 	/* set the timestamp */
1399 	first->time_stamp = jiffies;
1400 
1401 	skb_tx_timestamp(skb);
1402 
1403 	/* Force memory writes to complete before letting h/w know there
1404 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1405 	 * memory model archs, such as IA-64).
1406 	 *
1407 	 * We also need this memory barrier to make certain all of the
1408 	 * status bits have been updated before next_to_watch is written.
1409 	 */
1410 	wmb();
1411 
1412 	/* set next_to_watch value indicating a packet is present */
1413 	first->next_to_watch = tx_desc;
1414 
1415 	i++;
1416 	if (i == tx_ring->count)
1417 		i = 0;
1418 
1419 	tx_ring->next_to_use = i;
1420 
1421 	/* Make sure there is space in the ring for the next send. */
1422 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1423 
1424 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1425 		writel(i, tx_ring->tail);
1426 	}
1427 
1428 	return 0;
1429 dma_error:
1430 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1431 	tx_buffer = &tx_ring->tx_buffer_info[i];
1432 
1433 	/* clear dma mappings for failed tx_buffer_info map */
1434 	while (tx_buffer != first) {
1435 		if (dma_unmap_len(tx_buffer, len))
1436 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437 
1438 		if (i-- == 0)
1439 			i += tx_ring->count;
1440 		tx_buffer = &tx_ring->tx_buffer_info[i];
1441 	}
1442 
1443 	if (dma_unmap_len(tx_buffer, len))
1444 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1445 
1446 	dev_kfree_skb_any(tx_buffer->skb);
1447 	tx_buffer->skb = NULL;
1448 
1449 	tx_ring->next_to_use = i;
1450 
1451 	return -1;
1452 }
1453 
1454 static int igc_tso(struct igc_ring *tx_ring,
1455 		   struct igc_tx_buffer *first,
1456 		   __le32 launch_time, bool first_flag,
1457 		   u8 *hdr_len)
1458 {
1459 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1460 	struct sk_buff *skb = first->skb;
1461 	union {
1462 		struct iphdr *v4;
1463 		struct ipv6hdr *v6;
1464 		unsigned char *hdr;
1465 	} ip;
1466 	union {
1467 		struct tcphdr *tcp;
1468 		struct udphdr *udp;
1469 		unsigned char *hdr;
1470 	} l4;
1471 	u32 paylen, l4_offset;
1472 	int err;
1473 
1474 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1475 		return 0;
1476 
1477 	if (!skb_is_gso(skb))
1478 		return 0;
1479 
1480 	err = skb_cow_head(skb, 0);
1481 	if (err < 0)
1482 		return err;
1483 
1484 	ip.hdr = skb_network_header(skb);
1485 	l4.hdr = skb_checksum_start(skb);
1486 
1487 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1488 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1489 
1490 	/* initialize outer IP header fields */
1491 	if (ip.v4->version == 4) {
1492 		unsigned char *csum_start = skb_checksum_start(skb);
1493 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1494 
1495 		/* IP header will have to cancel out any data that
1496 		 * is not a part of the outer IP header
1497 		 */
1498 		ip.v4->check = csum_fold(csum_partial(trans_start,
1499 						      csum_start - trans_start,
1500 						      0));
1501 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1502 
1503 		ip.v4->tot_len = 0;
1504 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1505 				   IGC_TX_FLAGS_CSUM |
1506 				   IGC_TX_FLAGS_IPV4;
1507 	} else {
1508 		ip.v6->payload_len = 0;
1509 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1510 				   IGC_TX_FLAGS_CSUM;
1511 	}
1512 
1513 	/* determine offset of inner transport header */
1514 	l4_offset = l4.hdr - skb->data;
1515 
1516 	/* remove payload length from inner checksum */
1517 	paylen = skb->len - l4_offset;
1518 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1519 		/* compute length of segmentation header */
1520 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1521 		csum_replace_by_diff(&l4.tcp->check,
1522 				     (__force __wsum)htonl(paylen));
1523 	} else {
1524 		/* compute length of segmentation header */
1525 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1526 		csum_replace_by_diff(&l4.udp->check,
1527 				     (__force __wsum)htonl(paylen));
1528 	}
1529 
1530 	/* update gso size and bytecount with header size */
1531 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1532 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1533 
1534 	/* MSS L4LEN IDX */
1535 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1536 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1537 
1538 	/* VLAN MACLEN IPLEN */
1539 	vlan_macip_lens = l4.hdr - ip.hdr;
1540 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1541 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1542 
1543 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1544 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1545 
1546 	return 1;
1547 }
1548 
1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1550 {
1551 	int i;
1552 
1553 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1554 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1555 
1556 		if (tstamp->skb)
1557 			continue;
1558 
1559 		tstamp->skb = skb_get(skb);
1560 		tstamp->start = jiffies;
1561 		*flags = tstamp->flags;
1562 
1563 		return true;
1564 	}
1565 
1566 	return false;
1567 }
1568 
1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1570 				       struct igc_ring *tx_ring)
1571 {
1572 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1573 	bool first_flag = false, insert_empty = false;
1574 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1575 	__be16 protocol = vlan_get_protocol(skb);
1576 	struct igc_tx_buffer *first;
1577 	__le32 launch_time = 0;
1578 	u32 tx_flags = 0;
1579 	unsigned short f;
1580 	ktime_t txtime;
1581 	u8 hdr_len = 0;
1582 	int tso = 0;
1583 
1584 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1585 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1586 	 *	+ 2 desc gap to keep tail from touching head,
1587 	 *	+ 1 desc for context descriptor,
1588 	 * otherwise try next time
1589 	 */
1590 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1591 		count += TXD_USE_COUNT(skb_frag_size(
1592 						&skb_shinfo(skb)->frags[f]));
1593 
1594 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1595 		/* this is a hard error */
1596 		return NETDEV_TX_BUSY;
1597 	}
1598 
1599 	if (!tx_ring->launchtime_enable)
1600 		goto done;
1601 
1602 	txtime = skb->tstamp;
1603 	skb->tstamp = ktime_set(0, 0);
1604 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1605 
1606 	if (insert_empty) {
1607 		struct igc_tx_buffer *empty_info;
1608 		struct sk_buff *empty;
1609 		void *data;
1610 
1611 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1612 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1613 		if (!empty)
1614 			goto done;
1615 
1616 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1617 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1618 
1619 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1620 
1621 		if (igc_init_tx_empty_descriptor(tx_ring,
1622 						 empty,
1623 						 empty_info) < 0)
1624 			dev_kfree_skb_any(empty);
1625 	}
1626 
1627 done:
1628 	/* record the location of the first descriptor for this packet */
1629 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1630 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1631 	first->skb = skb;
1632 	first->bytecount = skb->len;
1633 	first->gso_segs = 1;
1634 
1635 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1636 		goto out_drop;
1637 
1638 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1639 		adapter->stats.txdrop++;
1640 		goto out_drop;
1641 	}
1642 
1643 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1644 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1645 		unsigned long flags;
1646 		u32 tstamp_flags;
1647 
1648 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1649 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1650 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1651 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1652 			if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1653 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1654 		} else {
1655 			adapter->tx_hwtstamp_skipped++;
1656 		}
1657 
1658 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1659 	}
1660 
1661 	if (skb_vlan_tag_present(skb)) {
1662 		tx_flags |= IGC_TX_FLAGS_VLAN;
1663 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1664 	}
1665 
1666 	/* record initial flags and protocol */
1667 	first->tx_flags = tx_flags;
1668 	first->protocol = protocol;
1669 
1670 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1671 	if (tso < 0)
1672 		goto out_drop;
1673 	else if (!tso)
1674 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1675 
1676 	igc_tx_map(tx_ring, first, hdr_len);
1677 
1678 	return NETDEV_TX_OK;
1679 
1680 out_drop:
1681 	dev_kfree_skb_any(first->skb);
1682 	first->skb = NULL;
1683 
1684 	return NETDEV_TX_OK;
1685 }
1686 
1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1688 						    struct sk_buff *skb)
1689 {
1690 	unsigned int r_idx = skb->queue_mapping;
1691 
1692 	if (r_idx >= adapter->num_tx_queues)
1693 		r_idx = r_idx % adapter->num_tx_queues;
1694 
1695 	return adapter->tx_ring[r_idx];
1696 }
1697 
1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1699 				  struct net_device *netdev)
1700 {
1701 	struct igc_adapter *adapter = netdev_priv(netdev);
1702 
1703 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1704 	 * in order to meet this minimum size requirement.
1705 	 */
1706 	if (skb->len < 17) {
1707 		if (skb_padto(skb, 17))
1708 			return NETDEV_TX_OK;
1709 		skb->len = 17;
1710 	}
1711 
1712 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1713 }
1714 
1715 static void igc_rx_checksum(struct igc_ring *ring,
1716 			    union igc_adv_rx_desc *rx_desc,
1717 			    struct sk_buff *skb)
1718 {
1719 	skb_checksum_none_assert(skb);
1720 
1721 	/* Ignore Checksum bit is set */
1722 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1723 		return;
1724 
1725 	/* Rx checksum disabled via ethtool */
1726 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1727 		return;
1728 
1729 	/* TCP/UDP checksum error bit is set */
1730 	if (igc_test_staterr(rx_desc,
1731 			     IGC_RXDEXT_STATERR_L4E |
1732 			     IGC_RXDEXT_STATERR_IPE)) {
1733 		/* work around errata with sctp packets where the TCPE aka
1734 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1735 		 * packets (aka let the stack check the crc32c)
1736 		 */
1737 		if (!(skb->len == 60 &&
1738 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1739 			u64_stats_update_begin(&ring->rx_syncp);
1740 			ring->rx_stats.csum_err++;
1741 			u64_stats_update_end(&ring->rx_syncp);
1742 		}
1743 		/* let the stack verify checksum errors */
1744 		return;
1745 	}
1746 	/* It must be a TCP or UDP packet with a valid checksum */
1747 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1748 				      IGC_RXD_STAT_UDPCS))
1749 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1750 
1751 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1752 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1753 }
1754 
1755 /* Mapping HW RSS Type to enum pkt_hash_types */
1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1757 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1758 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1759 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1760 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1761 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1762 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1763 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1764 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1765 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1766 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1767 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1768 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1769 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1770 	[13] = PKT_HASH_TYPE_NONE,
1771 	[14] = PKT_HASH_TYPE_NONE,
1772 	[15] = PKT_HASH_TYPE_NONE,
1773 };
1774 
1775 static inline void igc_rx_hash(struct igc_ring *ring,
1776 			       union igc_adv_rx_desc *rx_desc,
1777 			       struct sk_buff *skb)
1778 {
1779 	if (ring->netdev->features & NETIF_F_RXHASH) {
1780 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1781 		u32 rss_type = igc_rss_type(rx_desc);
1782 
1783 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1784 	}
1785 }
1786 
1787 static void igc_rx_vlan(struct igc_ring *rx_ring,
1788 			union igc_adv_rx_desc *rx_desc,
1789 			struct sk_buff *skb)
1790 {
1791 	struct net_device *dev = rx_ring->netdev;
1792 	u16 vid;
1793 
1794 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1796 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1797 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1798 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1799 		else
1800 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1801 
1802 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1803 	}
1804 }
1805 
1806 /**
1807  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1808  * @rx_ring: rx descriptor ring packet is being transacted on
1809  * @rx_desc: pointer to the EOP Rx descriptor
1810  * @skb: pointer to current skb being populated
1811  *
1812  * This function checks the ring, descriptor, and packet information in order
1813  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1814  * skb.
1815  */
1816 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1817 				   union igc_adv_rx_desc *rx_desc,
1818 				   struct sk_buff *skb)
1819 {
1820 	igc_rx_hash(rx_ring, rx_desc, skb);
1821 
1822 	igc_rx_checksum(rx_ring, rx_desc, skb);
1823 
1824 	igc_rx_vlan(rx_ring, rx_desc, skb);
1825 
1826 	skb_record_rx_queue(skb, rx_ring->queue_index);
1827 
1828 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1829 }
1830 
1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1832 {
1833 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1834 	struct igc_adapter *adapter = netdev_priv(netdev);
1835 	struct igc_hw *hw = &adapter->hw;
1836 	u32 ctrl;
1837 
1838 	ctrl = rd32(IGC_CTRL);
1839 
1840 	if (enable) {
1841 		/* enable VLAN tag insert/strip */
1842 		ctrl |= IGC_CTRL_VME;
1843 	} else {
1844 		/* disable VLAN tag insert/strip */
1845 		ctrl &= ~IGC_CTRL_VME;
1846 	}
1847 	wr32(IGC_CTRL, ctrl);
1848 }
1849 
1850 static void igc_restore_vlan(struct igc_adapter *adapter)
1851 {
1852 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1853 }
1854 
1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1856 					       const unsigned int size,
1857 					       int *rx_buffer_pgcnt)
1858 {
1859 	struct igc_rx_buffer *rx_buffer;
1860 
1861 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1862 	*rx_buffer_pgcnt =
1863 #if (PAGE_SIZE < 8192)
1864 		page_count(rx_buffer->page);
1865 #else
1866 		0;
1867 #endif
1868 	prefetchw(rx_buffer->page);
1869 
1870 	/* we are reusing so sync this buffer for CPU use */
1871 	dma_sync_single_range_for_cpu(rx_ring->dev,
1872 				      rx_buffer->dma,
1873 				      rx_buffer->page_offset,
1874 				      size,
1875 				      DMA_FROM_DEVICE);
1876 
1877 	rx_buffer->pagecnt_bias--;
1878 
1879 	return rx_buffer;
1880 }
1881 
1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1883 			       unsigned int truesize)
1884 {
1885 #if (PAGE_SIZE < 8192)
1886 	buffer->page_offset ^= truesize;
1887 #else
1888 	buffer->page_offset += truesize;
1889 #endif
1890 }
1891 
1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1893 					      unsigned int size)
1894 {
1895 	unsigned int truesize;
1896 
1897 #if (PAGE_SIZE < 8192)
1898 	truesize = igc_rx_pg_size(ring) / 2;
1899 #else
1900 	truesize = ring_uses_build_skb(ring) ?
1901 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1902 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1903 		   SKB_DATA_ALIGN(size);
1904 #endif
1905 	return truesize;
1906 }
1907 
1908 /**
1909  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1910  * @rx_ring: rx descriptor ring to transact packets on
1911  * @rx_buffer: buffer containing page to add
1912  * @skb: sk_buff to place the data into
1913  * @size: size of buffer to be added
1914  *
1915  * This function will add the data contained in rx_buffer->page to the skb.
1916  */
1917 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1918 			    struct igc_rx_buffer *rx_buffer,
1919 			    struct sk_buff *skb,
1920 			    unsigned int size)
1921 {
1922 	unsigned int truesize;
1923 
1924 #if (PAGE_SIZE < 8192)
1925 	truesize = igc_rx_pg_size(rx_ring) / 2;
1926 #else
1927 	truesize = ring_uses_build_skb(rx_ring) ?
1928 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1929 		   SKB_DATA_ALIGN(size);
1930 #endif
1931 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932 			rx_buffer->page_offset, size, truesize);
1933 
1934 	igc_rx_buffer_flip(rx_buffer, truesize);
1935 }
1936 
1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1938 				     struct igc_rx_buffer *rx_buffer,
1939 				     struct xdp_buff *xdp)
1940 {
1941 	unsigned int size = xdp->data_end - xdp->data;
1942 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943 	unsigned int metasize = xdp->data - xdp->data_meta;
1944 	struct sk_buff *skb;
1945 
1946 	/* prefetch first cache line of first page */
1947 	net_prefetch(xdp->data_meta);
1948 
1949 	/* build an skb around the page buffer */
1950 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1951 	if (unlikely(!skb))
1952 		return NULL;
1953 
1954 	/* update pointers within the skb to store the data */
1955 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1956 	__skb_put(skb, size);
1957 	if (metasize)
1958 		skb_metadata_set(skb, metasize);
1959 
1960 	igc_rx_buffer_flip(rx_buffer, truesize);
1961 	return skb;
1962 }
1963 
1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1965 					 struct igc_rx_buffer *rx_buffer,
1966 					 struct igc_xdp_buff *ctx)
1967 {
1968 	struct xdp_buff *xdp = &ctx->xdp;
1969 	unsigned int metasize = xdp->data - xdp->data_meta;
1970 	unsigned int size = xdp->data_end - xdp->data;
1971 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1972 	void *va = xdp->data;
1973 	unsigned int headlen;
1974 	struct sk_buff *skb;
1975 
1976 	/* prefetch first cache line of first page */
1977 	net_prefetch(xdp->data_meta);
1978 
1979 	/* allocate a skb to store the frags */
1980 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1981 			     IGC_RX_HDR_LEN + metasize);
1982 	if (unlikely(!skb))
1983 		return NULL;
1984 
1985 	if (ctx->rx_ts) {
1986 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1987 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1988 	}
1989 
1990 	/* Determine available headroom for copy */
1991 	headlen = size;
1992 	if (headlen > IGC_RX_HDR_LEN)
1993 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1994 
1995 	/* align pull length to size of long to optimize memcpy performance */
1996 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1997 	       ALIGN(headlen + metasize, sizeof(long)));
1998 
1999 	if (metasize) {
2000 		skb_metadata_set(skb, metasize);
2001 		__skb_pull(skb, metasize);
2002 	}
2003 
2004 	/* update all of the pointers */
2005 	size -= headlen;
2006 	if (size) {
2007 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2008 				(va + headlen) - page_address(rx_buffer->page),
2009 				size, truesize);
2010 		igc_rx_buffer_flip(rx_buffer, truesize);
2011 	} else {
2012 		rx_buffer->pagecnt_bias++;
2013 	}
2014 
2015 	return skb;
2016 }
2017 
2018 /**
2019  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2020  * @rx_ring: rx descriptor ring to store buffers on
2021  * @old_buff: donor buffer to have page reused
2022  *
2023  * Synchronizes page for reuse by the adapter
2024  */
2025 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2026 			      struct igc_rx_buffer *old_buff)
2027 {
2028 	u16 nta = rx_ring->next_to_alloc;
2029 	struct igc_rx_buffer *new_buff;
2030 
2031 	new_buff = &rx_ring->rx_buffer_info[nta];
2032 
2033 	/* update, and store next to alloc */
2034 	nta++;
2035 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2036 
2037 	/* Transfer page from old buffer to new buffer.
2038 	 * Move each member individually to avoid possible store
2039 	 * forwarding stalls.
2040 	 */
2041 	new_buff->dma		= old_buff->dma;
2042 	new_buff->page		= old_buff->page;
2043 	new_buff->page_offset	= old_buff->page_offset;
2044 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2045 }
2046 
2047 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2048 				  int rx_buffer_pgcnt)
2049 {
2050 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2051 	struct page *page = rx_buffer->page;
2052 
2053 	/* avoid re-using remote and pfmemalloc pages */
2054 	if (!dev_page_is_reusable(page))
2055 		return false;
2056 
2057 #if (PAGE_SIZE < 8192)
2058 	/* if we are only owner of page we can reuse it */
2059 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2060 		return false;
2061 #else
2062 #define IGC_LAST_OFFSET \
2063 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2064 
2065 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2066 		return false;
2067 #endif
2068 
2069 	/* If we have drained the page fragment pool we need to update
2070 	 * the pagecnt_bias and page count so that we fully restock the
2071 	 * number of references the driver holds.
2072 	 */
2073 	if (unlikely(pagecnt_bias == 1)) {
2074 		page_ref_add(page, USHRT_MAX - 1);
2075 		rx_buffer->pagecnt_bias = USHRT_MAX;
2076 	}
2077 
2078 	return true;
2079 }
2080 
2081 /**
2082  * igc_is_non_eop - process handling of non-EOP buffers
2083  * @rx_ring: Rx ring being processed
2084  * @rx_desc: Rx descriptor for current buffer
2085  *
2086  * This function updates next to clean.  If the buffer is an EOP buffer
2087  * this function exits returning false, otherwise it will place the
2088  * sk_buff in the next buffer to be chained and return true indicating
2089  * that this is in fact a non-EOP buffer.
2090  */
2091 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2092 			   union igc_adv_rx_desc *rx_desc)
2093 {
2094 	u32 ntc = rx_ring->next_to_clean + 1;
2095 
2096 	/* fetch, update, and store next to clean */
2097 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2098 	rx_ring->next_to_clean = ntc;
2099 
2100 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2101 
2102 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2103 		return false;
2104 
2105 	return true;
2106 }
2107 
2108 /**
2109  * igc_cleanup_headers - Correct corrupted or empty headers
2110  * @rx_ring: rx descriptor ring packet is being transacted on
2111  * @rx_desc: pointer to the EOP Rx descriptor
2112  * @skb: pointer to current skb being fixed
2113  *
2114  * Address the case where we are pulling data in on pages only
2115  * and as such no data is present in the skb header.
2116  *
2117  * In addition if skb is not at least 60 bytes we need to pad it so that
2118  * it is large enough to qualify as a valid Ethernet frame.
2119  *
2120  * Returns true if an error was encountered and skb was freed.
2121  */
2122 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2123 				union igc_adv_rx_desc *rx_desc,
2124 				struct sk_buff *skb)
2125 {
2126 	/* XDP packets use error pointer so abort at this point */
2127 	if (IS_ERR(skb))
2128 		return true;
2129 
2130 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2131 		struct net_device *netdev = rx_ring->netdev;
2132 
2133 		if (!(netdev->features & NETIF_F_RXALL)) {
2134 			dev_kfree_skb_any(skb);
2135 			return true;
2136 		}
2137 	}
2138 
2139 	/* if eth_skb_pad returns an error the skb was freed */
2140 	if (eth_skb_pad(skb))
2141 		return true;
2142 
2143 	return false;
2144 }
2145 
2146 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2147 			      struct igc_rx_buffer *rx_buffer,
2148 			      int rx_buffer_pgcnt)
2149 {
2150 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2151 		/* hand second half of page back to the ring */
2152 		igc_reuse_rx_page(rx_ring, rx_buffer);
2153 	} else {
2154 		/* We are not reusing the buffer so unmap it and free
2155 		 * any references we are holding to it
2156 		 */
2157 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2158 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2159 				     IGC_RX_DMA_ATTR);
2160 		__page_frag_cache_drain(rx_buffer->page,
2161 					rx_buffer->pagecnt_bias);
2162 	}
2163 
2164 	/* clear contents of rx_buffer */
2165 	rx_buffer->page = NULL;
2166 }
2167 
2168 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2169 {
2170 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2171 
2172 	if (ring_uses_build_skb(rx_ring))
2173 		return IGC_SKB_PAD;
2174 	if (igc_xdp_is_enabled(adapter))
2175 		return XDP_PACKET_HEADROOM;
2176 
2177 	return 0;
2178 }
2179 
2180 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2181 				  struct igc_rx_buffer *bi)
2182 {
2183 	struct page *page = bi->page;
2184 	dma_addr_t dma;
2185 
2186 	/* since we are recycling buffers we should seldom need to alloc */
2187 	if (likely(page))
2188 		return true;
2189 
2190 	/* alloc new page for storage */
2191 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2192 	if (unlikely(!page)) {
2193 		rx_ring->rx_stats.alloc_failed++;
2194 		return false;
2195 	}
2196 
2197 	/* map page for use */
2198 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2199 				 igc_rx_pg_size(rx_ring),
2200 				 DMA_FROM_DEVICE,
2201 				 IGC_RX_DMA_ATTR);
2202 
2203 	/* if mapping failed free memory back to system since
2204 	 * there isn't much point in holding memory we can't use
2205 	 */
2206 	if (dma_mapping_error(rx_ring->dev, dma)) {
2207 		__free_page(page);
2208 
2209 		rx_ring->rx_stats.alloc_failed++;
2210 		return false;
2211 	}
2212 
2213 	bi->dma = dma;
2214 	bi->page = page;
2215 	bi->page_offset = igc_rx_offset(rx_ring);
2216 	page_ref_add(page, USHRT_MAX - 1);
2217 	bi->pagecnt_bias = USHRT_MAX;
2218 
2219 	return true;
2220 }
2221 
2222 /**
2223  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2224  * @rx_ring: rx descriptor ring
2225  * @cleaned_count: number of buffers to clean
2226  */
2227 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2228 {
2229 	union igc_adv_rx_desc *rx_desc;
2230 	u16 i = rx_ring->next_to_use;
2231 	struct igc_rx_buffer *bi;
2232 	u16 bufsz;
2233 
2234 	/* nothing to do */
2235 	if (!cleaned_count)
2236 		return;
2237 
2238 	rx_desc = IGC_RX_DESC(rx_ring, i);
2239 	bi = &rx_ring->rx_buffer_info[i];
2240 	i -= rx_ring->count;
2241 
2242 	bufsz = igc_rx_bufsz(rx_ring);
2243 
2244 	do {
2245 		if (!igc_alloc_mapped_page(rx_ring, bi))
2246 			break;
2247 
2248 		/* sync the buffer for use by the device */
2249 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2250 						 bi->page_offset, bufsz,
2251 						 DMA_FROM_DEVICE);
2252 
2253 		/* Refresh the desc even if buffer_addrs didn't change
2254 		 * because each write-back erases this info.
2255 		 */
2256 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2257 
2258 		rx_desc++;
2259 		bi++;
2260 		i++;
2261 		if (unlikely(!i)) {
2262 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2263 			bi = rx_ring->rx_buffer_info;
2264 			i -= rx_ring->count;
2265 		}
2266 
2267 		/* clear the length for the next_to_use descriptor */
2268 		rx_desc->wb.upper.length = 0;
2269 
2270 		cleaned_count--;
2271 	} while (cleaned_count);
2272 
2273 	i += rx_ring->count;
2274 
2275 	if (rx_ring->next_to_use != i) {
2276 		/* record the next descriptor to use */
2277 		rx_ring->next_to_use = i;
2278 
2279 		/* update next to alloc since we have filled the ring */
2280 		rx_ring->next_to_alloc = i;
2281 
2282 		/* Force memory writes to complete before letting h/w
2283 		 * know there are new descriptors to fetch.  (Only
2284 		 * applicable for weak-ordered memory model archs,
2285 		 * such as IA-64).
2286 		 */
2287 		wmb();
2288 		writel(i, rx_ring->tail);
2289 	}
2290 }
2291 
2292 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2293 {
2294 	union igc_adv_rx_desc *desc;
2295 	u16 i = ring->next_to_use;
2296 	struct igc_rx_buffer *bi;
2297 	dma_addr_t dma;
2298 	bool ok = true;
2299 
2300 	if (!count)
2301 		return ok;
2302 
2303 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2304 
2305 	desc = IGC_RX_DESC(ring, i);
2306 	bi = &ring->rx_buffer_info[i];
2307 	i -= ring->count;
2308 
2309 	do {
2310 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2311 		if (!bi->xdp) {
2312 			ok = false;
2313 			break;
2314 		}
2315 
2316 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2317 		desc->read.pkt_addr = cpu_to_le64(dma);
2318 
2319 		desc++;
2320 		bi++;
2321 		i++;
2322 		if (unlikely(!i)) {
2323 			desc = IGC_RX_DESC(ring, 0);
2324 			bi = ring->rx_buffer_info;
2325 			i -= ring->count;
2326 		}
2327 
2328 		/* Clear the length for the next_to_use descriptor. */
2329 		desc->wb.upper.length = 0;
2330 
2331 		count--;
2332 	} while (count);
2333 
2334 	i += ring->count;
2335 
2336 	if (ring->next_to_use != i) {
2337 		ring->next_to_use = i;
2338 
2339 		/* Force memory writes to complete before letting h/w
2340 		 * know there are new descriptors to fetch.  (Only
2341 		 * applicable for weak-ordered memory model archs,
2342 		 * such as IA-64).
2343 		 */
2344 		wmb();
2345 		writel(i, ring->tail);
2346 	}
2347 
2348 	return ok;
2349 }
2350 
2351 /* This function requires __netif_tx_lock is held by the caller. */
2352 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2353 				      struct xdp_frame *xdpf)
2354 {
2355 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2356 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2357 	u16 count, index = ring->next_to_use;
2358 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2359 	struct igc_tx_buffer *buffer = head;
2360 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2361 	u32 olinfo_status, len = xdpf->len, cmd_type;
2362 	void *data = xdpf->data;
2363 	u16 i;
2364 
2365 	count = TXD_USE_COUNT(len);
2366 	for (i = 0; i < nr_frags; i++)
2367 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2368 
2369 	if (igc_maybe_stop_tx(ring, count + 3)) {
2370 		/* this is a hard error */
2371 		return -EBUSY;
2372 	}
2373 
2374 	i = 0;
2375 	head->bytecount = xdp_get_frame_len(xdpf);
2376 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2377 	head->gso_segs = 1;
2378 	head->xdpf = xdpf;
2379 
2380 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2381 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2382 
2383 	for (;;) {
2384 		dma_addr_t dma;
2385 
2386 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2387 		if (dma_mapping_error(ring->dev, dma)) {
2388 			netdev_err_once(ring->netdev,
2389 					"Failed to map DMA for TX\n");
2390 			goto unmap;
2391 		}
2392 
2393 		dma_unmap_len_set(buffer, len, len);
2394 		dma_unmap_addr_set(buffer, dma, dma);
2395 
2396 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2397 			   IGC_ADVTXD_DCMD_IFCS | len;
2398 
2399 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2400 		desc->read.buffer_addr = cpu_to_le64(dma);
2401 
2402 		buffer->protocol = 0;
2403 
2404 		if (++index == ring->count)
2405 			index = 0;
2406 
2407 		if (i == nr_frags)
2408 			break;
2409 
2410 		buffer = &ring->tx_buffer_info[index];
2411 		desc = IGC_TX_DESC(ring, index);
2412 		desc->read.olinfo_status = 0;
2413 
2414 		data = skb_frag_address(&sinfo->frags[i]);
2415 		len = skb_frag_size(&sinfo->frags[i]);
2416 		i++;
2417 	}
2418 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2419 
2420 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2421 	/* set the timestamp */
2422 	head->time_stamp = jiffies;
2423 	/* set next_to_watch value indicating a packet is present */
2424 	head->next_to_watch = desc;
2425 	ring->next_to_use = index;
2426 
2427 	return 0;
2428 
2429 unmap:
2430 	for (;;) {
2431 		buffer = &ring->tx_buffer_info[index];
2432 		if (dma_unmap_len(buffer, len))
2433 			dma_unmap_page(ring->dev,
2434 				       dma_unmap_addr(buffer, dma),
2435 				       dma_unmap_len(buffer, len),
2436 				       DMA_TO_DEVICE);
2437 		dma_unmap_len_set(buffer, len, 0);
2438 		if (buffer == head)
2439 			break;
2440 
2441 		if (!index)
2442 			index += ring->count;
2443 		index--;
2444 	}
2445 
2446 	return -ENOMEM;
2447 }
2448 
2449 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2450 					    int cpu)
2451 {
2452 	int index = cpu;
2453 
2454 	if (unlikely(index < 0))
2455 		index = 0;
2456 
2457 	while (index >= adapter->num_tx_queues)
2458 		index -= adapter->num_tx_queues;
2459 
2460 	return adapter->tx_ring[index];
2461 }
2462 
2463 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2464 {
2465 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2466 	int cpu = smp_processor_id();
2467 	struct netdev_queue *nq;
2468 	struct igc_ring *ring;
2469 	int res;
2470 
2471 	if (unlikely(!xdpf))
2472 		return -EFAULT;
2473 
2474 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2475 	nq = txring_txq(ring);
2476 
2477 	__netif_tx_lock(nq, cpu);
2478 	/* Avoid transmit queue timeout since we share it with the slow path */
2479 	txq_trans_cond_update(nq);
2480 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2481 	__netif_tx_unlock(nq);
2482 	return res;
2483 }
2484 
2485 /* This function assumes rcu_read_lock() is held by the caller. */
2486 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2487 			      struct bpf_prog *prog,
2488 			      struct xdp_buff *xdp)
2489 {
2490 	u32 act = bpf_prog_run_xdp(prog, xdp);
2491 
2492 	switch (act) {
2493 	case XDP_PASS:
2494 		return IGC_XDP_PASS;
2495 	case XDP_TX:
2496 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2497 			goto out_failure;
2498 		return IGC_XDP_TX;
2499 	case XDP_REDIRECT:
2500 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2501 			goto out_failure;
2502 		return IGC_XDP_REDIRECT;
2503 		break;
2504 	default:
2505 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2506 		fallthrough;
2507 	case XDP_ABORTED:
2508 out_failure:
2509 		trace_xdp_exception(adapter->netdev, prog, act);
2510 		fallthrough;
2511 	case XDP_DROP:
2512 		return IGC_XDP_CONSUMED;
2513 	}
2514 }
2515 
2516 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2517 					struct xdp_buff *xdp)
2518 {
2519 	struct bpf_prog *prog;
2520 	int res;
2521 
2522 	prog = READ_ONCE(adapter->xdp_prog);
2523 	if (!prog) {
2524 		res = IGC_XDP_PASS;
2525 		goto out;
2526 	}
2527 
2528 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2529 
2530 out:
2531 	return ERR_PTR(-res);
2532 }
2533 
2534 /* This function assumes __netif_tx_lock is held by the caller. */
2535 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2536 {
2537 	/* Once tail pointer is updated, hardware can fetch the descriptors
2538 	 * any time so we issue a write membar here to ensure all memory
2539 	 * writes are complete before the tail pointer is updated.
2540 	 */
2541 	wmb();
2542 	writel(ring->next_to_use, ring->tail);
2543 }
2544 
2545 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2546 {
2547 	int cpu = smp_processor_id();
2548 	struct netdev_queue *nq;
2549 	struct igc_ring *ring;
2550 
2551 	if (status & IGC_XDP_TX) {
2552 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2553 		nq = txring_txq(ring);
2554 
2555 		__netif_tx_lock(nq, cpu);
2556 		igc_flush_tx_descriptors(ring);
2557 		__netif_tx_unlock(nq);
2558 	}
2559 
2560 	if (status & IGC_XDP_REDIRECT)
2561 		xdp_do_flush();
2562 }
2563 
2564 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2565 				unsigned int packets, unsigned int bytes)
2566 {
2567 	struct igc_ring *ring = q_vector->rx.ring;
2568 
2569 	u64_stats_update_begin(&ring->rx_syncp);
2570 	ring->rx_stats.packets += packets;
2571 	ring->rx_stats.bytes += bytes;
2572 	u64_stats_update_end(&ring->rx_syncp);
2573 
2574 	q_vector->rx.total_packets += packets;
2575 	q_vector->rx.total_bytes += bytes;
2576 }
2577 
2578 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2579 {
2580 	unsigned int total_bytes = 0, total_packets = 0;
2581 	struct igc_adapter *adapter = q_vector->adapter;
2582 	struct igc_ring *rx_ring = q_vector->rx.ring;
2583 	struct sk_buff *skb = rx_ring->skb;
2584 	u16 cleaned_count = igc_desc_unused(rx_ring);
2585 	int xdp_status = 0, rx_buffer_pgcnt;
2586 
2587 	while (likely(total_packets < budget)) {
2588 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2589 		struct igc_rx_buffer *rx_buffer;
2590 		union igc_adv_rx_desc *rx_desc;
2591 		unsigned int size, truesize;
2592 		int pkt_offset = 0;
2593 		void *pktbuf;
2594 
2595 		/* return some buffers to hardware, one at a time is too slow */
2596 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2597 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2598 			cleaned_count = 0;
2599 		}
2600 
2601 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2602 		size = le16_to_cpu(rx_desc->wb.upper.length);
2603 		if (!size)
2604 			break;
2605 
2606 		/* This memory barrier is needed to keep us from reading
2607 		 * any other fields out of the rx_desc until we know the
2608 		 * descriptor has been written back
2609 		 */
2610 		dma_rmb();
2611 
2612 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2613 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2614 
2615 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2616 
2617 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2618 			ctx.rx_ts = pktbuf;
2619 			pkt_offset = IGC_TS_HDR_LEN;
2620 			size -= IGC_TS_HDR_LEN;
2621 		}
2622 
2623 		if (!skb) {
2624 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2625 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2626 					 igc_rx_offset(rx_ring) + pkt_offset,
2627 					 size, true);
2628 			xdp_buff_clear_frags_flag(&ctx.xdp);
2629 			ctx.rx_desc = rx_desc;
2630 
2631 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2632 		}
2633 
2634 		if (IS_ERR(skb)) {
2635 			unsigned int xdp_res = -PTR_ERR(skb);
2636 
2637 			switch (xdp_res) {
2638 			case IGC_XDP_CONSUMED:
2639 				rx_buffer->pagecnt_bias++;
2640 				break;
2641 			case IGC_XDP_TX:
2642 			case IGC_XDP_REDIRECT:
2643 				igc_rx_buffer_flip(rx_buffer, truesize);
2644 				xdp_status |= xdp_res;
2645 				break;
2646 			}
2647 
2648 			total_packets++;
2649 			total_bytes += size;
2650 		} else if (skb)
2651 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2652 		else if (ring_uses_build_skb(rx_ring))
2653 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2654 		else
2655 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2656 
2657 		/* exit if we failed to retrieve a buffer */
2658 		if (!skb) {
2659 			rx_ring->rx_stats.alloc_failed++;
2660 			rx_buffer->pagecnt_bias++;
2661 			break;
2662 		}
2663 
2664 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2665 		cleaned_count++;
2666 
2667 		/* fetch next buffer in frame if non-eop */
2668 		if (igc_is_non_eop(rx_ring, rx_desc))
2669 			continue;
2670 
2671 		/* verify the packet layout is correct */
2672 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2673 			skb = NULL;
2674 			continue;
2675 		}
2676 
2677 		/* probably a little skewed due to removing CRC */
2678 		total_bytes += skb->len;
2679 
2680 		/* populate checksum, VLAN, and protocol */
2681 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2682 
2683 		napi_gro_receive(&q_vector->napi, skb);
2684 
2685 		/* reset skb pointer */
2686 		skb = NULL;
2687 
2688 		/* update budget accounting */
2689 		total_packets++;
2690 	}
2691 
2692 	if (xdp_status)
2693 		igc_finalize_xdp(adapter, xdp_status);
2694 
2695 	/* place incomplete frames back on ring for completion */
2696 	rx_ring->skb = skb;
2697 
2698 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2699 
2700 	if (cleaned_count)
2701 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2702 
2703 	return total_packets;
2704 }
2705 
2706 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2707 					    struct xdp_buff *xdp)
2708 {
2709 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2710 	unsigned int metasize = xdp->data - xdp->data_meta;
2711 	struct sk_buff *skb;
2712 
2713 	net_prefetch(xdp->data_meta);
2714 
2715 	skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2716 			       GFP_ATOMIC | __GFP_NOWARN);
2717 	if (unlikely(!skb))
2718 		return NULL;
2719 
2720 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2721 	       ALIGN(totalsize, sizeof(long)));
2722 
2723 	if (metasize) {
2724 		skb_metadata_set(skb, metasize);
2725 		__skb_pull(skb, metasize);
2726 	}
2727 
2728 	return skb;
2729 }
2730 
2731 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2732 				union igc_adv_rx_desc *desc,
2733 				struct xdp_buff *xdp,
2734 				ktime_t timestamp)
2735 {
2736 	struct igc_ring *ring = q_vector->rx.ring;
2737 	struct sk_buff *skb;
2738 
2739 	skb = igc_construct_skb_zc(ring, xdp);
2740 	if (!skb) {
2741 		ring->rx_stats.alloc_failed++;
2742 		return;
2743 	}
2744 
2745 	if (timestamp)
2746 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2747 
2748 	if (igc_cleanup_headers(ring, desc, skb))
2749 		return;
2750 
2751 	igc_process_skb_fields(ring, desc, skb);
2752 	napi_gro_receive(&q_vector->napi, skb);
2753 }
2754 
2755 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2756 {
2757 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2758 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2759 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2760 	 */
2761        return (struct igc_xdp_buff *)xdp;
2762 }
2763 
2764 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2765 {
2766 	struct igc_adapter *adapter = q_vector->adapter;
2767 	struct igc_ring *ring = q_vector->rx.ring;
2768 	u16 cleaned_count = igc_desc_unused(ring);
2769 	int total_bytes = 0, total_packets = 0;
2770 	u16 ntc = ring->next_to_clean;
2771 	struct bpf_prog *prog;
2772 	bool failure = false;
2773 	int xdp_status = 0;
2774 
2775 	rcu_read_lock();
2776 
2777 	prog = READ_ONCE(adapter->xdp_prog);
2778 
2779 	while (likely(total_packets < budget)) {
2780 		union igc_adv_rx_desc *desc;
2781 		struct igc_rx_buffer *bi;
2782 		struct igc_xdp_buff *ctx;
2783 		ktime_t timestamp = 0;
2784 		unsigned int size;
2785 		int res;
2786 
2787 		desc = IGC_RX_DESC(ring, ntc);
2788 		size = le16_to_cpu(desc->wb.upper.length);
2789 		if (!size)
2790 			break;
2791 
2792 		/* This memory barrier is needed to keep us from reading
2793 		 * any other fields out of the rx_desc until we know the
2794 		 * descriptor has been written back
2795 		 */
2796 		dma_rmb();
2797 
2798 		bi = &ring->rx_buffer_info[ntc];
2799 
2800 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2801 		ctx->rx_desc = desc;
2802 
2803 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2804 			ctx->rx_ts = bi->xdp->data;
2805 
2806 			bi->xdp->data += IGC_TS_HDR_LEN;
2807 
2808 			/* HW timestamp has been copied into local variable. Metadata
2809 			 * length when XDP program is called should be 0.
2810 			 */
2811 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2812 			size -= IGC_TS_HDR_LEN;
2813 		}
2814 
2815 		bi->xdp->data_end = bi->xdp->data + size;
2816 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2817 
2818 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2819 		switch (res) {
2820 		case IGC_XDP_PASS:
2821 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2822 			fallthrough;
2823 		case IGC_XDP_CONSUMED:
2824 			xsk_buff_free(bi->xdp);
2825 			break;
2826 		case IGC_XDP_TX:
2827 		case IGC_XDP_REDIRECT:
2828 			xdp_status |= res;
2829 			break;
2830 		}
2831 
2832 		bi->xdp = NULL;
2833 		total_bytes += size;
2834 		total_packets++;
2835 		cleaned_count++;
2836 		ntc++;
2837 		if (ntc == ring->count)
2838 			ntc = 0;
2839 	}
2840 
2841 	ring->next_to_clean = ntc;
2842 	rcu_read_unlock();
2843 
2844 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2845 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2846 
2847 	if (xdp_status)
2848 		igc_finalize_xdp(adapter, xdp_status);
2849 
2850 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2851 
2852 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2853 		if (failure || ring->next_to_clean == ring->next_to_use)
2854 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2855 		else
2856 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2857 		return total_packets;
2858 	}
2859 
2860 	return failure ? budget : total_packets;
2861 }
2862 
2863 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2864 				unsigned int packets, unsigned int bytes)
2865 {
2866 	struct igc_ring *ring = q_vector->tx.ring;
2867 
2868 	u64_stats_update_begin(&ring->tx_syncp);
2869 	ring->tx_stats.bytes += bytes;
2870 	ring->tx_stats.packets += packets;
2871 	u64_stats_update_end(&ring->tx_syncp);
2872 
2873 	q_vector->tx.total_bytes += bytes;
2874 	q_vector->tx.total_packets += packets;
2875 }
2876 
2877 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2878 {
2879 	struct xsk_buff_pool *pool = ring->xsk_pool;
2880 	struct netdev_queue *nq = txring_txq(ring);
2881 	union igc_adv_tx_desc *tx_desc = NULL;
2882 	int cpu = smp_processor_id();
2883 	struct xdp_desc xdp_desc;
2884 	u16 budget, ntu;
2885 
2886 	if (!netif_carrier_ok(ring->netdev))
2887 		return;
2888 
2889 	__netif_tx_lock(nq, cpu);
2890 
2891 	/* Avoid transmit queue timeout since we share it with the slow path */
2892 	txq_trans_cond_update(nq);
2893 
2894 	ntu = ring->next_to_use;
2895 	budget = igc_desc_unused(ring);
2896 
2897 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2898 		u32 cmd_type, olinfo_status;
2899 		struct igc_tx_buffer *bi;
2900 		dma_addr_t dma;
2901 
2902 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2903 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2904 			   xdp_desc.len;
2905 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2906 
2907 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2908 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2909 
2910 		tx_desc = IGC_TX_DESC(ring, ntu);
2911 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2912 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2913 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2914 
2915 		bi = &ring->tx_buffer_info[ntu];
2916 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2917 		bi->protocol = 0;
2918 		bi->bytecount = xdp_desc.len;
2919 		bi->gso_segs = 1;
2920 		bi->time_stamp = jiffies;
2921 		bi->next_to_watch = tx_desc;
2922 
2923 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2924 
2925 		ntu++;
2926 		if (ntu == ring->count)
2927 			ntu = 0;
2928 	}
2929 
2930 	ring->next_to_use = ntu;
2931 	if (tx_desc) {
2932 		igc_flush_tx_descriptors(ring);
2933 		xsk_tx_release(pool);
2934 	}
2935 
2936 	__netif_tx_unlock(nq);
2937 }
2938 
2939 /**
2940  * igc_clean_tx_irq - Reclaim resources after transmit completes
2941  * @q_vector: pointer to q_vector containing needed info
2942  * @napi_budget: Used to determine if we are in netpoll
2943  *
2944  * returns true if ring is completely cleaned
2945  */
2946 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2947 {
2948 	struct igc_adapter *adapter = q_vector->adapter;
2949 	unsigned int total_bytes = 0, total_packets = 0;
2950 	unsigned int budget = q_vector->tx.work_limit;
2951 	struct igc_ring *tx_ring = q_vector->tx.ring;
2952 	unsigned int i = tx_ring->next_to_clean;
2953 	struct igc_tx_buffer *tx_buffer;
2954 	union igc_adv_tx_desc *tx_desc;
2955 	u32 xsk_frames = 0;
2956 
2957 	if (test_bit(__IGC_DOWN, &adapter->state))
2958 		return true;
2959 
2960 	tx_buffer = &tx_ring->tx_buffer_info[i];
2961 	tx_desc = IGC_TX_DESC(tx_ring, i);
2962 	i -= tx_ring->count;
2963 
2964 	do {
2965 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2966 
2967 		/* if next_to_watch is not set then there is no work pending */
2968 		if (!eop_desc)
2969 			break;
2970 
2971 		/* prevent any other reads prior to eop_desc */
2972 		smp_rmb();
2973 
2974 		/* if DD is not set pending work has not been completed */
2975 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2976 			break;
2977 
2978 		/* clear next_to_watch to prevent false hangs */
2979 		tx_buffer->next_to_watch = NULL;
2980 
2981 		/* update the statistics for this packet */
2982 		total_bytes += tx_buffer->bytecount;
2983 		total_packets += tx_buffer->gso_segs;
2984 
2985 		switch (tx_buffer->type) {
2986 		case IGC_TX_BUFFER_TYPE_XSK:
2987 			xsk_frames++;
2988 			break;
2989 		case IGC_TX_BUFFER_TYPE_XDP:
2990 			xdp_return_frame(tx_buffer->xdpf);
2991 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2992 			break;
2993 		case IGC_TX_BUFFER_TYPE_SKB:
2994 			napi_consume_skb(tx_buffer->skb, napi_budget);
2995 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2996 			break;
2997 		default:
2998 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2999 			break;
3000 		}
3001 
3002 		/* clear last DMA location and unmap remaining buffers */
3003 		while (tx_desc != eop_desc) {
3004 			tx_buffer++;
3005 			tx_desc++;
3006 			i++;
3007 			if (unlikely(!i)) {
3008 				i -= tx_ring->count;
3009 				tx_buffer = tx_ring->tx_buffer_info;
3010 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3011 			}
3012 
3013 			/* unmap any remaining paged data */
3014 			if (dma_unmap_len(tx_buffer, len))
3015 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3016 		}
3017 
3018 		/* move us one more past the eop_desc for start of next pkt */
3019 		tx_buffer++;
3020 		tx_desc++;
3021 		i++;
3022 		if (unlikely(!i)) {
3023 			i -= tx_ring->count;
3024 			tx_buffer = tx_ring->tx_buffer_info;
3025 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3026 		}
3027 
3028 		/* issue prefetch for next Tx descriptor */
3029 		prefetch(tx_desc);
3030 
3031 		/* update budget accounting */
3032 		budget--;
3033 	} while (likely(budget));
3034 
3035 	netdev_tx_completed_queue(txring_txq(tx_ring),
3036 				  total_packets, total_bytes);
3037 
3038 	i += tx_ring->count;
3039 	tx_ring->next_to_clean = i;
3040 
3041 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3042 
3043 	if (tx_ring->xsk_pool) {
3044 		if (xsk_frames)
3045 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3046 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3047 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3048 		igc_xdp_xmit_zc(tx_ring);
3049 	}
3050 
3051 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3052 		struct igc_hw *hw = &adapter->hw;
3053 
3054 		/* Detect a transmit hang in hardware, this serializes the
3055 		 * check with the clearing of time_stamp and movement of i
3056 		 */
3057 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3058 		if (tx_buffer->next_to_watch &&
3059 		    time_after(jiffies, tx_buffer->time_stamp +
3060 		    (adapter->tx_timeout_factor * HZ)) &&
3061 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3062 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3063 		    !tx_ring->oper_gate_closed) {
3064 			/* detected Tx unit hang */
3065 			netdev_err(tx_ring->netdev,
3066 				   "Detected Tx Unit Hang\n"
3067 				   "  Tx Queue             <%d>\n"
3068 				   "  TDH                  <%x>\n"
3069 				   "  TDT                  <%x>\n"
3070 				   "  next_to_use          <%x>\n"
3071 				   "  next_to_clean        <%x>\n"
3072 				   "buffer_info[next_to_clean]\n"
3073 				   "  time_stamp           <%lx>\n"
3074 				   "  next_to_watch        <%p>\n"
3075 				   "  jiffies              <%lx>\n"
3076 				   "  desc.status          <%x>\n",
3077 				   tx_ring->queue_index,
3078 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3079 				   readl(tx_ring->tail),
3080 				   tx_ring->next_to_use,
3081 				   tx_ring->next_to_clean,
3082 				   tx_buffer->time_stamp,
3083 				   tx_buffer->next_to_watch,
3084 				   jiffies,
3085 				   tx_buffer->next_to_watch->wb.status);
3086 			netif_stop_subqueue(tx_ring->netdev,
3087 					    tx_ring->queue_index);
3088 
3089 			/* we are about to reset, no point in enabling stuff */
3090 			return true;
3091 		}
3092 	}
3093 
3094 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3095 	if (unlikely(total_packets &&
3096 		     netif_carrier_ok(tx_ring->netdev) &&
3097 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3098 		/* Make sure that anybody stopping the queue after this
3099 		 * sees the new next_to_clean.
3100 		 */
3101 		smp_mb();
3102 		if (__netif_subqueue_stopped(tx_ring->netdev,
3103 					     tx_ring->queue_index) &&
3104 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3105 			netif_wake_subqueue(tx_ring->netdev,
3106 					    tx_ring->queue_index);
3107 
3108 			u64_stats_update_begin(&tx_ring->tx_syncp);
3109 			tx_ring->tx_stats.restart_queue++;
3110 			u64_stats_update_end(&tx_ring->tx_syncp);
3111 		}
3112 	}
3113 
3114 	return !!budget;
3115 }
3116 
3117 static int igc_find_mac_filter(struct igc_adapter *adapter,
3118 			       enum igc_mac_filter_type type, const u8 *addr)
3119 {
3120 	struct igc_hw *hw = &adapter->hw;
3121 	int max_entries = hw->mac.rar_entry_count;
3122 	u32 ral, rah;
3123 	int i;
3124 
3125 	for (i = 0; i < max_entries; i++) {
3126 		ral = rd32(IGC_RAL(i));
3127 		rah = rd32(IGC_RAH(i));
3128 
3129 		if (!(rah & IGC_RAH_AV))
3130 			continue;
3131 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3132 			continue;
3133 		if ((rah & IGC_RAH_RAH_MASK) !=
3134 		    le16_to_cpup((__le16 *)(addr + 4)))
3135 			continue;
3136 		if (ral != le32_to_cpup((__le32 *)(addr)))
3137 			continue;
3138 
3139 		return i;
3140 	}
3141 
3142 	return -1;
3143 }
3144 
3145 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3146 {
3147 	struct igc_hw *hw = &adapter->hw;
3148 	int max_entries = hw->mac.rar_entry_count;
3149 	u32 rah;
3150 	int i;
3151 
3152 	for (i = 0; i < max_entries; i++) {
3153 		rah = rd32(IGC_RAH(i));
3154 
3155 		if (!(rah & IGC_RAH_AV))
3156 			return i;
3157 	}
3158 
3159 	return -1;
3160 }
3161 
3162 /**
3163  * igc_add_mac_filter() - Add MAC address filter
3164  * @adapter: Pointer to adapter where the filter should be added
3165  * @type: MAC address filter type (source or destination)
3166  * @addr: MAC address
3167  * @queue: If non-negative, queue assignment feature is enabled and frames
3168  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3169  *         assignment is disabled.
3170  *
3171  * Return: 0 in case of success, negative errno code otherwise.
3172  */
3173 static int igc_add_mac_filter(struct igc_adapter *adapter,
3174 			      enum igc_mac_filter_type type, const u8 *addr,
3175 			      int queue)
3176 {
3177 	struct net_device *dev = adapter->netdev;
3178 	int index;
3179 
3180 	index = igc_find_mac_filter(adapter, type, addr);
3181 	if (index >= 0)
3182 		goto update_filter;
3183 
3184 	index = igc_get_avail_mac_filter_slot(adapter);
3185 	if (index < 0)
3186 		return -ENOSPC;
3187 
3188 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3189 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3190 		   addr, queue);
3191 
3192 update_filter:
3193 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3194 	return 0;
3195 }
3196 
3197 /**
3198  * igc_del_mac_filter() - Delete MAC address filter
3199  * @adapter: Pointer to adapter where the filter should be deleted from
3200  * @type: MAC address filter type (source or destination)
3201  * @addr: MAC address
3202  */
3203 static void igc_del_mac_filter(struct igc_adapter *adapter,
3204 			       enum igc_mac_filter_type type, const u8 *addr)
3205 {
3206 	struct net_device *dev = adapter->netdev;
3207 	int index;
3208 
3209 	index = igc_find_mac_filter(adapter, type, addr);
3210 	if (index < 0)
3211 		return;
3212 
3213 	if (index == 0) {
3214 		/* If this is the default filter, we don't actually delete it.
3215 		 * We just reset to its default value i.e. disable queue
3216 		 * assignment.
3217 		 */
3218 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3219 
3220 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3221 	} else {
3222 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3223 			   index,
3224 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3225 			   addr);
3226 
3227 		igc_clear_mac_filter_hw(adapter, index);
3228 	}
3229 }
3230 
3231 /**
3232  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3233  * @adapter: Pointer to adapter where the filter should be added
3234  * @prio: VLAN priority value
3235  * @queue: Queue number which matching frames are assigned to
3236  *
3237  * Return: 0 in case of success, negative errno code otherwise.
3238  */
3239 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3240 				    int queue)
3241 {
3242 	struct net_device *dev = adapter->netdev;
3243 	struct igc_hw *hw = &adapter->hw;
3244 	u32 vlanpqf;
3245 
3246 	vlanpqf = rd32(IGC_VLANPQF);
3247 
3248 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3249 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3250 		return -EEXIST;
3251 	}
3252 
3253 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3254 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3255 
3256 	wr32(IGC_VLANPQF, vlanpqf);
3257 
3258 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3259 		   prio, queue);
3260 	return 0;
3261 }
3262 
3263 /**
3264  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3265  * @adapter: Pointer to adapter where the filter should be deleted from
3266  * @prio: VLAN priority value
3267  */
3268 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3269 {
3270 	struct igc_hw *hw = &adapter->hw;
3271 	u32 vlanpqf;
3272 
3273 	vlanpqf = rd32(IGC_VLANPQF);
3274 
3275 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3276 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3277 
3278 	wr32(IGC_VLANPQF, vlanpqf);
3279 
3280 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3281 		   prio);
3282 }
3283 
3284 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3285 {
3286 	struct igc_hw *hw = &adapter->hw;
3287 	int i;
3288 
3289 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3290 		u32 etqf = rd32(IGC_ETQF(i));
3291 
3292 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3293 			return i;
3294 	}
3295 
3296 	return -1;
3297 }
3298 
3299 /**
3300  * igc_add_etype_filter() - Add ethertype filter
3301  * @adapter: Pointer to adapter where the filter should be added
3302  * @etype: Ethertype value
3303  * @queue: If non-negative, queue assignment feature is enabled and frames
3304  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3305  *         assignment is disabled.
3306  *
3307  * Return: 0 in case of success, negative errno code otherwise.
3308  */
3309 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3310 				int queue)
3311 {
3312 	struct igc_hw *hw = &adapter->hw;
3313 	int index;
3314 	u32 etqf;
3315 
3316 	index = igc_get_avail_etype_filter_slot(adapter);
3317 	if (index < 0)
3318 		return -ENOSPC;
3319 
3320 	etqf = rd32(IGC_ETQF(index));
3321 
3322 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3323 	etqf |= etype;
3324 
3325 	if (queue >= 0) {
3326 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3327 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3328 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3329 	}
3330 
3331 	etqf |= IGC_ETQF_FILTER_ENABLE;
3332 
3333 	wr32(IGC_ETQF(index), etqf);
3334 
3335 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3336 		   etype, queue);
3337 	return 0;
3338 }
3339 
3340 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3341 {
3342 	struct igc_hw *hw = &adapter->hw;
3343 	int i;
3344 
3345 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3346 		u32 etqf = rd32(IGC_ETQF(i));
3347 
3348 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3349 			return i;
3350 	}
3351 
3352 	return -1;
3353 }
3354 
3355 /**
3356  * igc_del_etype_filter() - Delete ethertype filter
3357  * @adapter: Pointer to adapter where the filter should be deleted from
3358  * @etype: Ethertype value
3359  */
3360 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3361 {
3362 	struct igc_hw *hw = &adapter->hw;
3363 	int index;
3364 
3365 	index = igc_find_etype_filter(adapter, etype);
3366 	if (index < 0)
3367 		return;
3368 
3369 	wr32(IGC_ETQF(index), 0);
3370 
3371 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3372 		   etype);
3373 }
3374 
3375 static int igc_flex_filter_select(struct igc_adapter *adapter,
3376 				  struct igc_flex_filter *input,
3377 				  u32 *fhft)
3378 {
3379 	struct igc_hw *hw = &adapter->hw;
3380 	u8 fhft_index;
3381 	u32 fhftsl;
3382 
3383 	if (input->index >= MAX_FLEX_FILTER) {
3384 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3385 		return -EINVAL;
3386 	}
3387 
3388 	/* Indirect table select register */
3389 	fhftsl = rd32(IGC_FHFTSL);
3390 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3391 	switch (input->index) {
3392 	case 0 ... 7:
3393 		fhftsl |= 0x00;
3394 		break;
3395 	case 8 ... 15:
3396 		fhftsl |= 0x01;
3397 		break;
3398 	case 16 ... 23:
3399 		fhftsl |= 0x02;
3400 		break;
3401 	case 24 ... 31:
3402 		fhftsl |= 0x03;
3403 		break;
3404 	}
3405 	wr32(IGC_FHFTSL, fhftsl);
3406 
3407 	/* Normalize index down to host table register */
3408 	fhft_index = input->index % 8;
3409 
3410 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3411 		IGC_FHFT_EXT(fhft_index - 4);
3412 
3413 	return 0;
3414 }
3415 
3416 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3417 				    struct igc_flex_filter *input)
3418 {
3419 	struct igc_hw *hw = &adapter->hw;
3420 	u8 *data = input->data;
3421 	u8 *mask = input->mask;
3422 	u32 queuing;
3423 	u32 fhft;
3424 	u32 wufc;
3425 	int ret;
3426 	int i;
3427 
3428 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3429 	 * out early to avoid surprises later.
3430 	 */
3431 	if (input->length % 8 != 0) {
3432 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3433 		return -EINVAL;
3434 	}
3435 
3436 	/* Select corresponding flex filter register and get base for host table. */
3437 	ret = igc_flex_filter_select(adapter, input, &fhft);
3438 	if (ret)
3439 		return ret;
3440 
3441 	/* When adding a filter globally disable flex filter feature. That is
3442 	 * recommended within the datasheet.
3443 	 */
3444 	wufc = rd32(IGC_WUFC);
3445 	wufc &= ~IGC_WUFC_FLEX_HQ;
3446 	wr32(IGC_WUFC, wufc);
3447 
3448 	/* Configure filter */
3449 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3450 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3451 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3452 
3453 	if (input->immediate_irq)
3454 		queuing |= IGC_FHFT_IMM_INT;
3455 
3456 	if (input->drop)
3457 		queuing |= IGC_FHFT_DROP;
3458 
3459 	wr32(fhft + 0xFC, queuing);
3460 
3461 	/* Write data (128 byte) and mask (128 bit) */
3462 	for (i = 0; i < 16; ++i) {
3463 		const size_t data_idx = i * 8;
3464 		const size_t row_idx = i * 16;
3465 		u32 dw0 =
3466 			(data[data_idx + 0] << 0) |
3467 			(data[data_idx + 1] << 8) |
3468 			(data[data_idx + 2] << 16) |
3469 			(data[data_idx + 3] << 24);
3470 		u32 dw1 =
3471 			(data[data_idx + 4] << 0) |
3472 			(data[data_idx + 5] << 8) |
3473 			(data[data_idx + 6] << 16) |
3474 			(data[data_idx + 7] << 24);
3475 		u32 tmp;
3476 
3477 		/* Write row: dw0, dw1 and mask */
3478 		wr32(fhft + row_idx, dw0);
3479 		wr32(fhft + row_idx + 4, dw1);
3480 
3481 		/* mask is only valid for MASK(7, 0) */
3482 		tmp = rd32(fhft + row_idx + 8);
3483 		tmp &= ~GENMASK(7, 0);
3484 		tmp |= mask[i];
3485 		wr32(fhft + row_idx + 8, tmp);
3486 	}
3487 
3488 	/* Enable filter. */
3489 	wufc |= IGC_WUFC_FLEX_HQ;
3490 	if (input->index > 8) {
3491 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3492 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3493 
3494 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3495 
3496 		wr32(IGC_WUFC_EXT, wufc_ext);
3497 	} else {
3498 		wufc |= (IGC_WUFC_FLX0 << input->index);
3499 	}
3500 	wr32(IGC_WUFC, wufc);
3501 
3502 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3503 		   input->index);
3504 
3505 	return 0;
3506 }
3507 
3508 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3509 				      const void *src, unsigned int offset,
3510 				      size_t len, const void *mask)
3511 {
3512 	int i;
3513 
3514 	/* data */
3515 	memcpy(&flex->data[offset], src, len);
3516 
3517 	/* mask */
3518 	for (i = 0; i < len; ++i) {
3519 		const unsigned int idx = i + offset;
3520 		const u8 *ptr = mask;
3521 
3522 		if (mask) {
3523 			if (ptr[i] & 0xff)
3524 				flex->mask[idx / 8] |= BIT(idx % 8);
3525 
3526 			continue;
3527 		}
3528 
3529 		flex->mask[idx / 8] |= BIT(idx % 8);
3530 	}
3531 }
3532 
3533 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3534 {
3535 	struct igc_hw *hw = &adapter->hw;
3536 	u32 wufc, wufc_ext;
3537 	int i;
3538 
3539 	wufc = rd32(IGC_WUFC);
3540 	wufc_ext = rd32(IGC_WUFC_EXT);
3541 
3542 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3543 		if (i < 8) {
3544 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3545 				return i;
3546 		} else {
3547 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3548 				return i;
3549 		}
3550 	}
3551 
3552 	return -ENOSPC;
3553 }
3554 
3555 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3556 {
3557 	struct igc_hw *hw = &adapter->hw;
3558 	u32 wufc, wufc_ext;
3559 
3560 	wufc = rd32(IGC_WUFC);
3561 	wufc_ext = rd32(IGC_WUFC_EXT);
3562 
3563 	if (wufc & IGC_WUFC_FILTER_MASK)
3564 		return true;
3565 
3566 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3567 		return true;
3568 
3569 	return false;
3570 }
3571 
3572 static int igc_add_flex_filter(struct igc_adapter *adapter,
3573 			       struct igc_nfc_rule *rule)
3574 {
3575 	struct igc_nfc_filter *filter = &rule->filter;
3576 	unsigned int eth_offset, user_offset;
3577 	struct igc_flex_filter flex = { };
3578 	int ret, index;
3579 	bool vlan;
3580 
3581 	index = igc_find_avail_flex_filter_slot(adapter);
3582 	if (index < 0)
3583 		return -ENOSPC;
3584 
3585 	/* Construct the flex filter:
3586 	 *  -> dest_mac [6]
3587 	 *  -> src_mac [6]
3588 	 *  -> tpid [2]
3589 	 *  -> vlan tci [2]
3590 	 *  -> ether type [2]
3591 	 *  -> user data [8]
3592 	 *  -> = 26 bytes => 32 length
3593 	 */
3594 	flex.index    = index;
3595 	flex.length   = 32;
3596 	flex.rx_queue = rule->action;
3597 
3598 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3599 	eth_offset = vlan ? 16 : 12;
3600 	user_offset = vlan ? 18 : 14;
3601 
3602 	/* Add destination MAC  */
3603 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3604 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3605 					  ETH_ALEN, NULL);
3606 
3607 	/* Add source MAC */
3608 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3609 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3610 					  ETH_ALEN, NULL);
3611 
3612 	/* Add VLAN etype */
3613 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3614 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3615 
3616 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3617 					  sizeof(vlan_etype), NULL);
3618 	}
3619 
3620 	/* Add VLAN TCI */
3621 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3622 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3623 					  sizeof(filter->vlan_tci), NULL);
3624 
3625 	/* Add Ether type */
3626 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3627 		__be16 etype = cpu_to_be16(filter->etype);
3628 
3629 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3630 					  sizeof(etype), NULL);
3631 	}
3632 
3633 	/* Add user data */
3634 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3635 		igc_flex_filter_add_field(&flex, &filter->user_data,
3636 					  user_offset,
3637 					  sizeof(filter->user_data),
3638 					  filter->user_mask);
3639 
3640 	/* Add it down to the hardware and enable it. */
3641 	ret = igc_write_flex_filter_ll(adapter, &flex);
3642 	if (ret)
3643 		return ret;
3644 
3645 	filter->flex_index = index;
3646 
3647 	return 0;
3648 }
3649 
3650 static void igc_del_flex_filter(struct igc_adapter *adapter,
3651 				u16 reg_index)
3652 {
3653 	struct igc_hw *hw = &adapter->hw;
3654 	u32 wufc;
3655 
3656 	/* Just disable the filter. The filter table itself is kept
3657 	 * intact. Another flex_filter_add() should override the "old" data
3658 	 * then.
3659 	 */
3660 	if (reg_index > 8) {
3661 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3662 
3663 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3664 		wr32(IGC_WUFC_EXT, wufc_ext);
3665 	} else {
3666 		wufc = rd32(IGC_WUFC);
3667 
3668 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3669 		wr32(IGC_WUFC, wufc);
3670 	}
3671 
3672 	if (igc_flex_filter_in_use(adapter))
3673 		return;
3674 
3675 	/* No filters are in use, we may disable flex filters */
3676 	wufc = rd32(IGC_WUFC);
3677 	wufc &= ~IGC_WUFC_FLEX_HQ;
3678 	wr32(IGC_WUFC, wufc);
3679 }
3680 
3681 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3682 			       struct igc_nfc_rule *rule)
3683 {
3684 	int err;
3685 
3686 	if (rule->flex) {
3687 		return igc_add_flex_filter(adapter, rule);
3688 	}
3689 
3690 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3691 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3692 					   rule->action);
3693 		if (err)
3694 			return err;
3695 	}
3696 
3697 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3698 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3699 					 rule->filter.src_addr, rule->action);
3700 		if (err)
3701 			return err;
3702 	}
3703 
3704 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3705 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3706 					 rule->filter.dst_addr, rule->action);
3707 		if (err)
3708 			return err;
3709 	}
3710 
3711 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3712 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3713 
3714 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3715 		if (err)
3716 			return err;
3717 	}
3718 
3719 	return 0;
3720 }
3721 
3722 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3723 				 const struct igc_nfc_rule *rule)
3724 {
3725 	if (rule->flex) {
3726 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3727 		return;
3728 	}
3729 
3730 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3731 		igc_del_etype_filter(adapter, rule->filter.etype);
3732 
3733 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3734 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3735 
3736 		igc_del_vlan_prio_filter(adapter, prio);
3737 	}
3738 
3739 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3740 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3741 				   rule->filter.src_addr);
3742 
3743 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3744 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3745 				   rule->filter.dst_addr);
3746 }
3747 
3748 /**
3749  * igc_get_nfc_rule() - Get NFC rule
3750  * @adapter: Pointer to adapter
3751  * @location: Rule location
3752  *
3753  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3754  *
3755  * Return: Pointer to NFC rule at @location. If not found, NULL.
3756  */
3757 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3758 				      u32 location)
3759 {
3760 	struct igc_nfc_rule *rule;
3761 
3762 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3763 		if (rule->location == location)
3764 			return rule;
3765 		if (rule->location > location)
3766 			break;
3767 	}
3768 
3769 	return NULL;
3770 }
3771 
3772 /**
3773  * igc_del_nfc_rule() - Delete NFC rule
3774  * @adapter: Pointer to adapter
3775  * @rule: Pointer to rule to be deleted
3776  *
3777  * Disable NFC rule in hardware and delete it from adapter.
3778  *
3779  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3780  */
3781 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3782 {
3783 	igc_disable_nfc_rule(adapter, rule);
3784 
3785 	list_del(&rule->list);
3786 	adapter->nfc_rule_count--;
3787 
3788 	kfree(rule);
3789 }
3790 
3791 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3792 {
3793 	struct igc_nfc_rule *rule, *tmp;
3794 
3795 	mutex_lock(&adapter->nfc_rule_lock);
3796 
3797 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3798 		igc_del_nfc_rule(adapter, rule);
3799 
3800 	mutex_unlock(&adapter->nfc_rule_lock);
3801 }
3802 
3803 /**
3804  * igc_add_nfc_rule() - Add NFC rule
3805  * @adapter: Pointer to adapter
3806  * @rule: Pointer to rule to be added
3807  *
3808  * Enable NFC rule in hardware and add it to adapter.
3809  *
3810  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3811  *
3812  * Return: 0 on success, negative errno on failure.
3813  */
3814 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3815 {
3816 	struct igc_nfc_rule *pred, *cur;
3817 	int err;
3818 
3819 	err = igc_enable_nfc_rule(adapter, rule);
3820 	if (err)
3821 		return err;
3822 
3823 	pred = NULL;
3824 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3825 		if (cur->location >= rule->location)
3826 			break;
3827 		pred = cur;
3828 	}
3829 
3830 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3831 	adapter->nfc_rule_count++;
3832 	return 0;
3833 }
3834 
3835 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3836 {
3837 	struct igc_nfc_rule *rule;
3838 
3839 	mutex_lock(&adapter->nfc_rule_lock);
3840 
3841 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3842 		igc_enable_nfc_rule(adapter, rule);
3843 
3844 	mutex_unlock(&adapter->nfc_rule_lock);
3845 }
3846 
3847 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3848 {
3849 	struct igc_adapter *adapter = netdev_priv(netdev);
3850 
3851 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3852 }
3853 
3854 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3855 {
3856 	struct igc_adapter *adapter = netdev_priv(netdev);
3857 
3858 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3859 	return 0;
3860 }
3861 
3862 /**
3863  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3864  * @netdev: network interface device structure
3865  *
3866  * The set_rx_mode entry point is called whenever the unicast or multicast
3867  * address lists or the network interface flags are updated.  This routine is
3868  * responsible for configuring the hardware for proper unicast, multicast,
3869  * promiscuous mode, and all-multi behavior.
3870  */
3871 static void igc_set_rx_mode(struct net_device *netdev)
3872 {
3873 	struct igc_adapter *adapter = netdev_priv(netdev);
3874 	struct igc_hw *hw = &adapter->hw;
3875 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3876 	int count;
3877 
3878 	/* Check for Promiscuous and All Multicast modes */
3879 	if (netdev->flags & IFF_PROMISC) {
3880 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3881 	} else {
3882 		if (netdev->flags & IFF_ALLMULTI) {
3883 			rctl |= IGC_RCTL_MPE;
3884 		} else {
3885 			/* Write addresses to the MTA, if the attempt fails
3886 			 * then we should just turn on promiscuous mode so
3887 			 * that we can at least receive multicast traffic
3888 			 */
3889 			count = igc_write_mc_addr_list(netdev);
3890 			if (count < 0)
3891 				rctl |= IGC_RCTL_MPE;
3892 		}
3893 	}
3894 
3895 	/* Write addresses to available RAR registers, if there is not
3896 	 * sufficient space to store all the addresses then enable
3897 	 * unicast promiscuous mode
3898 	 */
3899 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3900 		rctl |= IGC_RCTL_UPE;
3901 
3902 	/* update state of unicast and multicast */
3903 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3904 	wr32(IGC_RCTL, rctl);
3905 
3906 #if (PAGE_SIZE < 8192)
3907 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3908 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3909 #endif
3910 	wr32(IGC_RLPML, rlpml);
3911 }
3912 
3913 /**
3914  * igc_configure - configure the hardware for RX and TX
3915  * @adapter: private board structure
3916  */
3917 static void igc_configure(struct igc_adapter *adapter)
3918 {
3919 	struct net_device *netdev = adapter->netdev;
3920 	int i = 0;
3921 
3922 	igc_get_hw_control(adapter);
3923 	igc_set_rx_mode(netdev);
3924 
3925 	igc_restore_vlan(adapter);
3926 
3927 	igc_setup_tctl(adapter);
3928 	igc_setup_mrqc(adapter);
3929 	igc_setup_rctl(adapter);
3930 
3931 	igc_set_default_mac_filter(adapter);
3932 	igc_restore_nfc_rules(adapter);
3933 
3934 	igc_configure_tx(adapter);
3935 	igc_configure_rx(adapter);
3936 
3937 	igc_rx_fifo_flush_base(&adapter->hw);
3938 
3939 	/* call igc_desc_unused which always leaves
3940 	 * at least 1 descriptor unused to make sure
3941 	 * next_to_use != next_to_clean
3942 	 */
3943 	for (i = 0; i < adapter->num_rx_queues; i++) {
3944 		struct igc_ring *ring = adapter->rx_ring[i];
3945 
3946 		if (ring->xsk_pool)
3947 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3948 		else
3949 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3950 	}
3951 }
3952 
3953 /**
3954  * igc_write_ivar - configure ivar for given MSI-X vector
3955  * @hw: pointer to the HW structure
3956  * @msix_vector: vector number we are allocating to a given ring
3957  * @index: row index of IVAR register to write within IVAR table
3958  * @offset: column offset of in IVAR, should be multiple of 8
3959  *
3960  * The IVAR table consists of 2 columns,
3961  * each containing an cause allocation for an Rx and Tx ring, and a
3962  * variable number of rows depending on the number of queues supported.
3963  */
3964 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3965 			   int index, int offset)
3966 {
3967 	u32 ivar = array_rd32(IGC_IVAR0, index);
3968 
3969 	/* clear any bits that are currently set */
3970 	ivar &= ~((u32)0xFF << offset);
3971 
3972 	/* write vector and valid bit */
3973 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3974 
3975 	array_wr32(IGC_IVAR0, index, ivar);
3976 }
3977 
3978 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3979 {
3980 	struct igc_adapter *adapter = q_vector->adapter;
3981 	struct igc_hw *hw = &adapter->hw;
3982 	int rx_queue = IGC_N0_QUEUE;
3983 	int tx_queue = IGC_N0_QUEUE;
3984 
3985 	if (q_vector->rx.ring)
3986 		rx_queue = q_vector->rx.ring->reg_idx;
3987 	if (q_vector->tx.ring)
3988 		tx_queue = q_vector->tx.ring->reg_idx;
3989 
3990 	switch (hw->mac.type) {
3991 	case igc_i225:
3992 		if (rx_queue > IGC_N0_QUEUE)
3993 			igc_write_ivar(hw, msix_vector,
3994 				       rx_queue >> 1,
3995 				       (rx_queue & 0x1) << 4);
3996 		if (tx_queue > IGC_N0_QUEUE)
3997 			igc_write_ivar(hw, msix_vector,
3998 				       tx_queue >> 1,
3999 				       ((tx_queue & 0x1) << 4) + 8);
4000 		q_vector->eims_value = BIT(msix_vector);
4001 		break;
4002 	default:
4003 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4004 		break;
4005 	}
4006 
4007 	/* add q_vector eims value to global eims_enable_mask */
4008 	adapter->eims_enable_mask |= q_vector->eims_value;
4009 
4010 	/* configure q_vector to set itr on first interrupt */
4011 	q_vector->set_itr = 1;
4012 }
4013 
4014 /**
4015  * igc_configure_msix - Configure MSI-X hardware
4016  * @adapter: Pointer to adapter structure
4017  *
4018  * igc_configure_msix sets up the hardware to properly
4019  * generate MSI-X interrupts.
4020  */
4021 static void igc_configure_msix(struct igc_adapter *adapter)
4022 {
4023 	struct igc_hw *hw = &adapter->hw;
4024 	int i, vector = 0;
4025 	u32 tmp;
4026 
4027 	adapter->eims_enable_mask = 0;
4028 
4029 	/* set vector for other causes, i.e. link changes */
4030 	switch (hw->mac.type) {
4031 	case igc_i225:
4032 		/* Turn on MSI-X capability first, or our settings
4033 		 * won't stick.  And it will take days to debug.
4034 		 */
4035 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4036 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4037 		     IGC_GPIE_NSICR);
4038 
4039 		/* enable msix_other interrupt */
4040 		adapter->eims_other = BIT(vector);
4041 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4042 
4043 		wr32(IGC_IVAR_MISC, tmp);
4044 		break;
4045 	default:
4046 		/* do nothing, since nothing else supports MSI-X */
4047 		break;
4048 	} /* switch (hw->mac.type) */
4049 
4050 	adapter->eims_enable_mask |= adapter->eims_other;
4051 
4052 	for (i = 0; i < adapter->num_q_vectors; i++)
4053 		igc_assign_vector(adapter->q_vector[i], vector++);
4054 
4055 	wrfl();
4056 }
4057 
4058 /**
4059  * igc_irq_enable - Enable default interrupt generation settings
4060  * @adapter: board private structure
4061  */
4062 static void igc_irq_enable(struct igc_adapter *adapter)
4063 {
4064 	struct igc_hw *hw = &adapter->hw;
4065 
4066 	if (adapter->msix_entries) {
4067 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4068 		u32 regval = rd32(IGC_EIAC);
4069 
4070 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4071 		regval = rd32(IGC_EIAM);
4072 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4073 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4074 		wr32(IGC_IMS, ims);
4075 	} else {
4076 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4077 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4078 	}
4079 }
4080 
4081 /**
4082  * igc_irq_disable - Mask off interrupt generation on the NIC
4083  * @adapter: board private structure
4084  */
4085 static void igc_irq_disable(struct igc_adapter *adapter)
4086 {
4087 	struct igc_hw *hw = &adapter->hw;
4088 
4089 	if (adapter->msix_entries) {
4090 		u32 regval = rd32(IGC_EIAM);
4091 
4092 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4093 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4094 		regval = rd32(IGC_EIAC);
4095 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4096 	}
4097 
4098 	wr32(IGC_IAM, 0);
4099 	wr32(IGC_IMC, ~0);
4100 	wrfl();
4101 
4102 	if (adapter->msix_entries) {
4103 		int vector = 0, i;
4104 
4105 		synchronize_irq(adapter->msix_entries[vector++].vector);
4106 
4107 		for (i = 0; i < adapter->num_q_vectors; i++)
4108 			synchronize_irq(adapter->msix_entries[vector++].vector);
4109 	} else {
4110 		synchronize_irq(adapter->pdev->irq);
4111 	}
4112 }
4113 
4114 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4115 			      const u32 max_rss_queues)
4116 {
4117 	/* Determine if we need to pair queues. */
4118 	/* If rss_queues > half of max_rss_queues, pair the queues in
4119 	 * order to conserve interrupts due to limited supply.
4120 	 */
4121 	if (adapter->rss_queues > (max_rss_queues / 2))
4122 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4123 	else
4124 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4125 }
4126 
4127 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4128 {
4129 	return IGC_MAX_RX_QUEUES;
4130 }
4131 
4132 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4133 {
4134 	u32 max_rss_queues;
4135 
4136 	max_rss_queues = igc_get_max_rss_queues(adapter);
4137 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4138 
4139 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4140 }
4141 
4142 /**
4143  * igc_reset_q_vector - Reset config for interrupt vector
4144  * @adapter: board private structure to initialize
4145  * @v_idx: Index of vector to be reset
4146  *
4147  * If NAPI is enabled it will delete any references to the
4148  * NAPI struct. This is preparation for igc_free_q_vector.
4149  */
4150 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4151 {
4152 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4153 
4154 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4155 	 * not yet allocated
4156 	 */
4157 	if (!q_vector)
4158 		return;
4159 
4160 	if (q_vector->tx.ring)
4161 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4162 
4163 	if (q_vector->rx.ring)
4164 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4165 
4166 	netif_napi_del(&q_vector->napi);
4167 }
4168 
4169 /**
4170  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4171  * @adapter: board private structure to initialize
4172  * @v_idx: Index of vector to be freed
4173  *
4174  * This function frees the memory allocated to the q_vector.
4175  */
4176 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4177 {
4178 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4179 
4180 	adapter->q_vector[v_idx] = NULL;
4181 
4182 	/* igc_get_stats64() might access the rings on this vector,
4183 	 * we must wait a grace period before freeing it.
4184 	 */
4185 	if (q_vector)
4186 		kfree_rcu(q_vector, rcu);
4187 }
4188 
4189 /**
4190  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4191  * @adapter: board private structure to initialize
4192  *
4193  * This function frees the memory allocated to the q_vectors.  In addition if
4194  * NAPI is enabled it will delete any references to the NAPI struct prior
4195  * to freeing the q_vector.
4196  */
4197 static void igc_free_q_vectors(struct igc_adapter *adapter)
4198 {
4199 	int v_idx = adapter->num_q_vectors;
4200 
4201 	adapter->num_tx_queues = 0;
4202 	adapter->num_rx_queues = 0;
4203 	adapter->num_q_vectors = 0;
4204 
4205 	while (v_idx--) {
4206 		igc_reset_q_vector(adapter, v_idx);
4207 		igc_free_q_vector(adapter, v_idx);
4208 	}
4209 }
4210 
4211 /**
4212  * igc_update_itr - update the dynamic ITR value based on statistics
4213  * @q_vector: pointer to q_vector
4214  * @ring_container: ring info to update the itr for
4215  *
4216  * Stores a new ITR value based on packets and byte
4217  * counts during the last interrupt.  The advantage of per interrupt
4218  * computation is faster updates and more accurate ITR for the current
4219  * traffic pattern.  Constants in this function were computed
4220  * based on theoretical maximum wire speed and thresholds were set based
4221  * on testing data as well as attempting to minimize response time
4222  * while increasing bulk throughput.
4223  * NOTE: These calculations are only valid when operating in a single-
4224  * queue environment.
4225  */
4226 static void igc_update_itr(struct igc_q_vector *q_vector,
4227 			   struct igc_ring_container *ring_container)
4228 {
4229 	unsigned int packets = ring_container->total_packets;
4230 	unsigned int bytes = ring_container->total_bytes;
4231 	u8 itrval = ring_container->itr;
4232 
4233 	/* no packets, exit with status unchanged */
4234 	if (packets == 0)
4235 		return;
4236 
4237 	switch (itrval) {
4238 	case lowest_latency:
4239 		/* handle TSO and jumbo frames */
4240 		if (bytes / packets > 8000)
4241 			itrval = bulk_latency;
4242 		else if ((packets < 5) && (bytes > 512))
4243 			itrval = low_latency;
4244 		break;
4245 	case low_latency:  /* 50 usec aka 20000 ints/s */
4246 		if (bytes > 10000) {
4247 			/* this if handles the TSO accounting */
4248 			if (bytes / packets > 8000)
4249 				itrval = bulk_latency;
4250 			else if ((packets < 10) || ((bytes / packets) > 1200))
4251 				itrval = bulk_latency;
4252 			else if ((packets > 35))
4253 				itrval = lowest_latency;
4254 		} else if (bytes / packets > 2000) {
4255 			itrval = bulk_latency;
4256 		} else if (packets <= 2 && bytes < 512) {
4257 			itrval = lowest_latency;
4258 		}
4259 		break;
4260 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4261 		if (bytes > 25000) {
4262 			if (packets > 35)
4263 				itrval = low_latency;
4264 		} else if (bytes < 1500) {
4265 			itrval = low_latency;
4266 		}
4267 		break;
4268 	}
4269 
4270 	/* clear work counters since we have the values we need */
4271 	ring_container->total_bytes = 0;
4272 	ring_container->total_packets = 0;
4273 
4274 	/* write updated itr to ring container */
4275 	ring_container->itr = itrval;
4276 }
4277 
4278 static void igc_set_itr(struct igc_q_vector *q_vector)
4279 {
4280 	struct igc_adapter *adapter = q_vector->adapter;
4281 	u32 new_itr = q_vector->itr_val;
4282 	u8 current_itr = 0;
4283 
4284 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4285 	switch (adapter->link_speed) {
4286 	case SPEED_10:
4287 	case SPEED_100:
4288 		current_itr = 0;
4289 		new_itr = IGC_4K_ITR;
4290 		goto set_itr_now;
4291 	default:
4292 		break;
4293 	}
4294 
4295 	igc_update_itr(q_vector, &q_vector->tx);
4296 	igc_update_itr(q_vector, &q_vector->rx);
4297 
4298 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4299 
4300 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4301 	if (current_itr == lowest_latency &&
4302 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4303 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4304 		current_itr = low_latency;
4305 
4306 	switch (current_itr) {
4307 	/* counts and packets in update_itr are dependent on these numbers */
4308 	case lowest_latency:
4309 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4310 		break;
4311 	case low_latency:
4312 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4313 		break;
4314 	case bulk_latency:
4315 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4316 		break;
4317 	default:
4318 		break;
4319 	}
4320 
4321 set_itr_now:
4322 	if (new_itr != q_vector->itr_val) {
4323 		/* this attempts to bias the interrupt rate towards Bulk
4324 		 * by adding intermediate steps when interrupt rate is
4325 		 * increasing
4326 		 */
4327 		new_itr = new_itr > q_vector->itr_val ?
4328 			  max((new_itr * q_vector->itr_val) /
4329 			  (new_itr + (q_vector->itr_val >> 2)),
4330 			  new_itr) : new_itr;
4331 		/* Don't write the value here; it resets the adapter's
4332 		 * internal timer, and causes us to delay far longer than
4333 		 * we should between interrupts.  Instead, we write the ITR
4334 		 * value at the beginning of the next interrupt so the timing
4335 		 * ends up being correct.
4336 		 */
4337 		q_vector->itr_val = new_itr;
4338 		q_vector->set_itr = 1;
4339 	}
4340 }
4341 
4342 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4343 {
4344 	int v_idx = adapter->num_q_vectors;
4345 
4346 	if (adapter->msix_entries) {
4347 		pci_disable_msix(adapter->pdev);
4348 		kfree(adapter->msix_entries);
4349 		adapter->msix_entries = NULL;
4350 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4351 		pci_disable_msi(adapter->pdev);
4352 	}
4353 
4354 	while (v_idx--)
4355 		igc_reset_q_vector(adapter, v_idx);
4356 }
4357 
4358 /**
4359  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4360  * @adapter: Pointer to adapter structure
4361  * @msix: boolean value for MSI-X capability
4362  *
4363  * Attempt to configure interrupts using the best available
4364  * capabilities of the hardware and kernel.
4365  */
4366 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4367 					 bool msix)
4368 {
4369 	int numvecs, i;
4370 	int err;
4371 
4372 	if (!msix)
4373 		goto msi_only;
4374 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4375 
4376 	/* Number of supported queues. */
4377 	adapter->num_rx_queues = adapter->rss_queues;
4378 
4379 	adapter->num_tx_queues = adapter->rss_queues;
4380 
4381 	/* start with one vector for every Rx queue */
4382 	numvecs = adapter->num_rx_queues;
4383 
4384 	/* if Tx handler is separate add 1 for every Tx queue */
4385 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4386 		numvecs += adapter->num_tx_queues;
4387 
4388 	/* store the number of vectors reserved for queues */
4389 	adapter->num_q_vectors = numvecs;
4390 
4391 	/* add 1 vector for link status interrupts */
4392 	numvecs++;
4393 
4394 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4395 					GFP_KERNEL);
4396 
4397 	if (!adapter->msix_entries)
4398 		return;
4399 
4400 	/* populate entry values */
4401 	for (i = 0; i < numvecs; i++)
4402 		adapter->msix_entries[i].entry = i;
4403 
4404 	err = pci_enable_msix_range(adapter->pdev,
4405 				    adapter->msix_entries,
4406 				    numvecs,
4407 				    numvecs);
4408 	if (err > 0)
4409 		return;
4410 
4411 	kfree(adapter->msix_entries);
4412 	adapter->msix_entries = NULL;
4413 
4414 	igc_reset_interrupt_capability(adapter);
4415 
4416 msi_only:
4417 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4418 
4419 	adapter->rss_queues = 1;
4420 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4421 	adapter->num_rx_queues = 1;
4422 	adapter->num_tx_queues = 1;
4423 	adapter->num_q_vectors = 1;
4424 	if (!pci_enable_msi(adapter->pdev))
4425 		adapter->flags |= IGC_FLAG_HAS_MSI;
4426 }
4427 
4428 /**
4429  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4430  * @q_vector: pointer to q_vector
4431  *
4432  * Stores a new ITR value based on strictly on packet size.  This
4433  * algorithm is less sophisticated than that used in igc_update_itr,
4434  * due to the difficulty of synchronizing statistics across multiple
4435  * receive rings.  The divisors and thresholds used by this function
4436  * were determined based on theoretical maximum wire speed and testing
4437  * data, in order to minimize response time while increasing bulk
4438  * throughput.
4439  * NOTE: This function is called only when operating in a multiqueue
4440  * receive environment.
4441  */
4442 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4443 {
4444 	struct igc_adapter *adapter = q_vector->adapter;
4445 	int new_val = q_vector->itr_val;
4446 	int avg_wire_size = 0;
4447 	unsigned int packets;
4448 
4449 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4450 	 * ints/sec - ITR timer value of 120 ticks.
4451 	 */
4452 	switch (adapter->link_speed) {
4453 	case SPEED_10:
4454 	case SPEED_100:
4455 		new_val = IGC_4K_ITR;
4456 		goto set_itr_val;
4457 	default:
4458 		break;
4459 	}
4460 
4461 	packets = q_vector->rx.total_packets;
4462 	if (packets)
4463 		avg_wire_size = q_vector->rx.total_bytes / packets;
4464 
4465 	packets = q_vector->tx.total_packets;
4466 	if (packets)
4467 		avg_wire_size = max_t(u32, avg_wire_size,
4468 				      q_vector->tx.total_bytes / packets);
4469 
4470 	/* if avg_wire_size isn't set no work was done */
4471 	if (!avg_wire_size)
4472 		goto clear_counts;
4473 
4474 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4475 	avg_wire_size += 24;
4476 
4477 	/* Don't starve jumbo frames */
4478 	avg_wire_size = min(avg_wire_size, 3000);
4479 
4480 	/* Give a little boost to mid-size frames */
4481 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4482 		new_val = avg_wire_size / 3;
4483 	else
4484 		new_val = avg_wire_size / 2;
4485 
4486 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4487 	if (new_val < IGC_20K_ITR &&
4488 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4489 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4490 		new_val = IGC_20K_ITR;
4491 
4492 set_itr_val:
4493 	if (new_val != q_vector->itr_val) {
4494 		q_vector->itr_val = new_val;
4495 		q_vector->set_itr = 1;
4496 	}
4497 clear_counts:
4498 	q_vector->rx.total_bytes = 0;
4499 	q_vector->rx.total_packets = 0;
4500 	q_vector->tx.total_bytes = 0;
4501 	q_vector->tx.total_packets = 0;
4502 }
4503 
4504 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4505 {
4506 	struct igc_adapter *adapter = q_vector->adapter;
4507 	struct igc_hw *hw = &adapter->hw;
4508 
4509 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4510 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4511 		if (adapter->num_q_vectors == 1)
4512 			igc_set_itr(q_vector);
4513 		else
4514 			igc_update_ring_itr(q_vector);
4515 	}
4516 
4517 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4518 		if (adapter->msix_entries)
4519 			wr32(IGC_EIMS, q_vector->eims_value);
4520 		else
4521 			igc_irq_enable(adapter);
4522 	}
4523 }
4524 
4525 static void igc_add_ring(struct igc_ring *ring,
4526 			 struct igc_ring_container *head)
4527 {
4528 	head->ring = ring;
4529 	head->count++;
4530 }
4531 
4532 /**
4533  * igc_cache_ring_register - Descriptor ring to register mapping
4534  * @adapter: board private structure to initialize
4535  *
4536  * Once we know the feature-set enabled for the device, we'll cache
4537  * the register offset the descriptor ring is assigned to.
4538  */
4539 static void igc_cache_ring_register(struct igc_adapter *adapter)
4540 {
4541 	int i = 0, j = 0;
4542 
4543 	switch (adapter->hw.mac.type) {
4544 	case igc_i225:
4545 	default:
4546 		for (; i < adapter->num_rx_queues; i++)
4547 			adapter->rx_ring[i]->reg_idx = i;
4548 		for (; j < adapter->num_tx_queues; j++)
4549 			adapter->tx_ring[j]->reg_idx = j;
4550 		break;
4551 	}
4552 }
4553 
4554 /**
4555  * igc_poll - NAPI Rx polling callback
4556  * @napi: napi polling structure
4557  * @budget: count of how many packets we should handle
4558  */
4559 static int igc_poll(struct napi_struct *napi, int budget)
4560 {
4561 	struct igc_q_vector *q_vector = container_of(napi,
4562 						     struct igc_q_vector,
4563 						     napi);
4564 	struct igc_ring *rx_ring = q_vector->rx.ring;
4565 	bool clean_complete = true;
4566 	int work_done = 0;
4567 
4568 	if (q_vector->tx.ring)
4569 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4570 
4571 	if (rx_ring) {
4572 		int cleaned = rx_ring->xsk_pool ?
4573 			      igc_clean_rx_irq_zc(q_vector, budget) :
4574 			      igc_clean_rx_irq(q_vector, budget);
4575 
4576 		work_done += cleaned;
4577 		if (cleaned >= budget)
4578 			clean_complete = false;
4579 	}
4580 
4581 	/* If all work not completed, return budget and keep polling */
4582 	if (!clean_complete)
4583 		return budget;
4584 
4585 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4586 	 * poll us due to busy-polling
4587 	 */
4588 	if (likely(napi_complete_done(napi, work_done)))
4589 		igc_ring_irq_enable(q_vector);
4590 
4591 	return min(work_done, budget - 1);
4592 }
4593 
4594 /**
4595  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4596  * @adapter: board private structure to initialize
4597  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4598  * @v_idx: index of vector in adapter struct
4599  * @txr_count: total number of Tx rings to allocate
4600  * @txr_idx: index of first Tx ring to allocate
4601  * @rxr_count: total number of Rx rings to allocate
4602  * @rxr_idx: index of first Rx ring to allocate
4603  *
4604  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4605  */
4606 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4607 			      unsigned int v_count, unsigned int v_idx,
4608 			      unsigned int txr_count, unsigned int txr_idx,
4609 			      unsigned int rxr_count, unsigned int rxr_idx)
4610 {
4611 	struct igc_q_vector *q_vector;
4612 	struct igc_ring *ring;
4613 	int ring_count;
4614 
4615 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4616 	if (txr_count > 1 || rxr_count > 1)
4617 		return -ENOMEM;
4618 
4619 	ring_count = txr_count + rxr_count;
4620 
4621 	/* allocate q_vector and rings */
4622 	q_vector = adapter->q_vector[v_idx];
4623 	if (!q_vector)
4624 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4625 				   GFP_KERNEL);
4626 	else
4627 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4628 	if (!q_vector)
4629 		return -ENOMEM;
4630 
4631 	/* initialize NAPI */
4632 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4633 
4634 	/* tie q_vector and adapter together */
4635 	adapter->q_vector[v_idx] = q_vector;
4636 	q_vector->adapter = adapter;
4637 
4638 	/* initialize work limits */
4639 	q_vector->tx.work_limit = adapter->tx_work_limit;
4640 
4641 	/* initialize ITR configuration */
4642 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4643 	q_vector->itr_val = IGC_START_ITR;
4644 
4645 	/* initialize pointer to rings */
4646 	ring = q_vector->ring;
4647 
4648 	/* initialize ITR */
4649 	if (rxr_count) {
4650 		/* rx or rx/tx vector */
4651 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4652 			q_vector->itr_val = adapter->rx_itr_setting;
4653 	} else {
4654 		/* tx only vector */
4655 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4656 			q_vector->itr_val = adapter->tx_itr_setting;
4657 	}
4658 
4659 	if (txr_count) {
4660 		/* assign generic ring traits */
4661 		ring->dev = &adapter->pdev->dev;
4662 		ring->netdev = adapter->netdev;
4663 
4664 		/* configure backlink on ring */
4665 		ring->q_vector = q_vector;
4666 
4667 		/* update q_vector Tx values */
4668 		igc_add_ring(ring, &q_vector->tx);
4669 
4670 		/* apply Tx specific ring traits */
4671 		ring->count = adapter->tx_ring_count;
4672 		ring->queue_index = txr_idx;
4673 
4674 		/* assign ring to adapter */
4675 		adapter->tx_ring[txr_idx] = ring;
4676 
4677 		/* push pointer to next ring */
4678 		ring++;
4679 	}
4680 
4681 	if (rxr_count) {
4682 		/* assign generic ring traits */
4683 		ring->dev = &adapter->pdev->dev;
4684 		ring->netdev = adapter->netdev;
4685 
4686 		/* configure backlink on ring */
4687 		ring->q_vector = q_vector;
4688 
4689 		/* update q_vector Rx values */
4690 		igc_add_ring(ring, &q_vector->rx);
4691 
4692 		/* apply Rx specific ring traits */
4693 		ring->count = adapter->rx_ring_count;
4694 		ring->queue_index = rxr_idx;
4695 
4696 		/* assign ring to adapter */
4697 		adapter->rx_ring[rxr_idx] = ring;
4698 	}
4699 
4700 	return 0;
4701 }
4702 
4703 /**
4704  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4705  * @adapter: board private structure to initialize
4706  *
4707  * We allocate one q_vector per queue interrupt.  If allocation fails we
4708  * return -ENOMEM.
4709  */
4710 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4711 {
4712 	int rxr_remaining = adapter->num_rx_queues;
4713 	int txr_remaining = adapter->num_tx_queues;
4714 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4715 	int q_vectors = adapter->num_q_vectors;
4716 	int err;
4717 
4718 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4719 		for (; rxr_remaining; v_idx++) {
4720 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4721 						 0, 0, 1, rxr_idx);
4722 
4723 			if (err)
4724 				goto err_out;
4725 
4726 			/* update counts and index */
4727 			rxr_remaining--;
4728 			rxr_idx++;
4729 		}
4730 	}
4731 
4732 	for (; v_idx < q_vectors; v_idx++) {
4733 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4734 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4735 
4736 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4737 					 tqpv, txr_idx, rqpv, rxr_idx);
4738 
4739 		if (err)
4740 			goto err_out;
4741 
4742 		/* update counts and index */
4743 		rxr_remaining -= rqpv;
4744 		txr_remaining -= tqpv;
4745 		rxr_idx++;
4746 		txr_idx++;
4747 	}
4748 
4749 	return 0;
4750 
4751 err_out:
4752 	adapter->num_tx_queues = 0;
4753 	adapter->num_rx_queues = 0;
4754 	adapter->num_q_vectors = 0;
4755 
4756 	while (v_idx--)
4757 		igc_free_q_vector(adapter, v_idx);
4758 
4759 	return -ENOMEM;
4760 }
4761 
4762 /**
4763  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4764  * @adapter: Pointer to adapter structure
4765  * @msix: boolean for MSI-X capability
4766  *
4767  * This function initializes the interrupts and allocates all of the queues.
4768  */
4769 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4770 {
4771 	struct net_device *dev = adapter->netdev;
4772 	int err = 0;
4773 
4774 	igc_set_interrupt_capability(adapter, msix);
4775 
4776 	err = igc_alloc_q_vectors(adapter);
4777 	if (err) {
4778 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4779 		goto err_alloc_q_vectors;
4780 	}
4781 
4782 	igc_cache_ring_register(adapter);
4783 
4784 	return 0;
4785 
4786 err_alloc_q_vectors:
4787 	igc_reset_interrupt_capability(adapter);
4788 	return err;
4789 }
4790 
4791 /**
4792  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4793  * @adapter: board private structure to initialize
4794  *
4795  * igc_sw_init initializes the Adapter private data structure.
4796  * Fields are initialized based on PCI device information and
4797  * OS network device settings (MTU size).
4798  */
4799 static int igc_sw_init(struct igc_adapter *adapter)
4800 {
4801 	struct net_device *netdev = adapter->netdev;
4802 	struct pci_dev *pdev = adapter->pdev;
4803 	struct igc_hw *hw = &adapter->hw;
4804 
4805 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4806 
4807 	/* set default ring sizes */
4808 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4809 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4810 
4811 	/* set default ITR values */
4812 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4813 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4814 
4815 	/* set default work limits */
4816 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4817 
4818 	/* adjust max frame to be at least the size of a standard frame */
4819 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4820 				VLAN_HLEN;
4821 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4822 
4823 	mutex_init(&adapter->nfc_rule_lock);
4824 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4825 	adapter->nfc_rule_count = 0;
4826 
4827 	spin_lock_init(&adapter->stats64_lock);
4828 	spin_lock_init(&adapter->qbv_tx_lock);
4829 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4830 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4831 
4832 	igc_init_queue_configuration(adapter);
4833 
4834 	/* This call may decrease the number of queues */
4835 	if (igc_init_interrupt_scheme(adapter, true)) {
4836 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4837 		return -ENOMEM;
4838 	}
4839 
4840 	/* Explicitly disable IRQ since the NIC can be in any state. */
4841 	igc_irq_disable(adapter);
4842 
4843 	set_bit(__IGC_DOWN, &adapter->state);
4844 
4845 	return 0;
4846 }
4847 
4848 /**
4849  * igc_up - Open the interface and prepare it to handle traffic
4850  * @adapter: board private structure
4851  */
4852 void igc_up(struct igc_adapter *adapter)
4853 {
4854 	struct igc_hw *hw = &adapter->hw;
4855 	int i = 0;
4856 
4857 	/* hardware has been reset, we need to reload some things */
4858 	igc_configure(adapter);
4859 
4860 	clear_bit(__IGC_DOWN, &adapter->state);
4861 
4862 	for (i = 0; i < adapter->num_q_vectors; i++)
4863 		napi_enable(&adapter->q_vector[i]->napi);
4864 
4865 	if (adapter->msix_entries)
4866 		igc_configure_msix(adapter);
4867 	else
4868 		igc_assign_vector(adapter->q_vector[0], 0);
4869 
4870 	/* Clear any pending interrupts. */
4871 	rd32(IGC_ICR);
4872 	igc_irq_enable(adapter);
4873 
4874 	netif_tx_start_all_queues(adapter->netdev);
4875 
4876 	/* start the watchdog. */
4877 	hw->mac.get_link_status = true;
4878 	schedule_work(&adapter->watchdog_task);
4879 }
4880 
4881 /**
4882  * igc_update_stats - Update the board statistics counters
4883  * @adapter: board private structure
4884  */
4885 void igc_update_stats(struct igc_adapter *adapter)
4886 {
4887 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4888 	struct pci_dev *pdev = adapter->pdev;
4889 	struct igc_hw *hw = &adapter->hw;
4890 	u64 _bytes, _packets;
4891 	u64 bytes, packets;
4892 	unsigned int start;
4893 	u32 mpc;
4894 	int i;
4895 
4896 	/* Prevent stats update while adapter is being reset, or if the pci
4897 	 * connection is down.
4898 	 */
4899 	if (adapter->link_speed == 0)
4900 		return;
4901 	if (pci_channel_offline(pdev))
4902 		return;
4903 
4904 	packets = 0;
4905 	bytes = 0;
4906 
4907 	rcu_read_lock();
4908 	for (i = 0; i < adapter->num_rx_queues; i++) {
4909 		struct igc_ring *ring = adapter->rx_ring[i];
4910 		u32 rqdpc = rd32(IGC_RQDPC(i));
4911 
4912 		if (hw->mac.type >= igc_i225)
4913 			wr32(IGC_RQDPC(i), 0);
4914 
4915 		if (rqdpc) {
4916 			ring->rx_stats.drops += rqdpc;
4917 			net_stats->rx_fifo_errors += rqdpc;
4918 		}
4919 
4920 		do {
4921 			start = u64_stats_fetch_begin(&ring->rx_syncp);
4922 			_bytes = ring->rx_stats.bytes;
4923 			_packets = ring->rx_stats.packets;
4924 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4925 		bytes += _bytes;
4926 		packets += _packets;
4927 	}
4928 
4929 	net_stats->rx_bytes = bytes;
4930 	net_stats->rx_packets = packets;
4931 
4932 	packets = 0;
4933 	bytes = 0;
4934 	for (i = 0; i < adapter->num_tx_queues; i++) {
4935 		struct igc_ring *ring = adapter->tx_ring[i];
4936 
4937 		do {
4938 			start = u64_stats_fetch_begin(&ring->tx_syncp);
4939 			_bytes = ring->tx_stats.bytes;
4940 			_packets = ring->tx_stats.packets;
4941 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4942 		bytes += _bytes;
4943 		packets += _packets;
4944 	}
4945 	net_stats->tx_bytes = bytes;
4946 	net_stats->tx_packets = packets;
4947 	rcu_read_unlock();
4948 
4949 	/* read stats registers */
4950 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4951 	adapter->stats.gprc += rd32(IGC_GPRC);
4952 	adapter->stats.gorc += rd32(IGC_GORCL);
4953 	rd32(IGC_GORCH); /* clear GORCL */
4954 	adapter->stats.bprc += rd32(IGC_BPRC);
4955 	adapter->stats.mprc += rd32(IGC_MPRC);
4956 	adapter->stats.roc += rd32(IGC_ROC);
4957 
4958 	adapter->stats.prc64 += rd32(IGC_PRC64);
4959 	adapter->stats.prc127 += rd32(IGC_PRC127);
4960 	adapter->stats.prc255 += rd32(IGC_PRC255);
4961 	adapter->stats.prc511 += rd32(IGC_PRC511);
4962 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4963 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4964 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4965 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4966 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4967 
4968 	mpc = rd32(IGC_MPC);
4969 	adapter->stats.mpc += mpc;
4970 	net_stats->rx_fifo_errors += mpc;
4971 	adapter->stats.scc += rd32(IGC_SCC);
4972 	adapter->stats.ecol += rd32(IGC_ECOL);
4973 	adapter->stats.mcc += rd32(IGC_MCC);
4974 	adapter->stats.latecol += rd32(IGC_LATECOL);
4975 	adapter->stats.dc += rd32(IGC_DC);
4976 	adapter->stats.rlec += rd32(IGC_RLEC);
4977 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4978 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4979 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4980 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4981 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4982 	adapter->stats.gptc += rd32(IGC_GPTC);
4983 	adapter->stats.gotc += rd32(IGC_GOTCL);
4984 	rd32(IGC_GOTCH); /* clear GOTCL */
4985 	adapter->stats.rnbc += rd32(IGC_RNBC);
4986 	adapter->stats.ruc += rd32(IGC_RUC);
4987 	adapter->stats.rfc += rd32(IGC_RFC);
4988 	adapter->stats.rjc += rd32(IGC_RJC);
4989 	adapter->stats.tor += rd32(IGC_TORH);
4990 	adapter->stats.tot += rd32(IGC_TOTH);
4991 	adapter->stats.tpr += rd32(IGC_TPR);
4992 
4993 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4994 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4995 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4996 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4997 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4998 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4999 
5000 	adapter->stats.mptc += rd32(IGC_MPTC);
5001 	adapter->stats.bptc += rd32(IGC_BPTC);
5002 
5003 	adapter->stats.tpt += rd32(IGC_TPT);
5004 	adapter->stats.colc += rd32(IGC_COLC);
5005 	adapter->stats.colc += rd32(IGC_RERC);
5006 
5007 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5008 
5009 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5010 
5011 	adapter->stats.iac += rd32(IGC_IAC);
5012 
5013 	/* Fill out the OS statistics structure */
5014 	net_stats->multicast = adapter->stats.mprc;
5015 	net_stats->collisions = adapter->stats.colc;
5016 
5017 	/* Rx Errors */
5018 
5019 	/* RLEC on some newer hardware can be incorrect so build
5020 	 * our own version based on RUC and ROC
5021 	 */
5022 	net_stats->rx_errors = adapter->stats.rxerrc +
5023 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5024 		adapter->stats.ruc + adapter->stats.roc +
5025 		adapter->stats.cexterr;
5026 	net_stats->rx_length_errors = adapter->stats.ruc +
5027 				      adapter->stats.roc;
5028 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5029 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5030 	net_stats->rx_missed_errors = adapter->stats.mpc;
5031 
5032 	/* Tx Errors */
5033 	net_stats->tx_errors = adapter->stats.ecol +
5034 			       adapter->stats.latecol;
5035 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5036 	net_stats->tx_window_errors = adapter->stats.latecol;
5037 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5038 
5039 	/* Tx Dropped */
5040 	net_stats->tx_dropped = adapter->stats.txdrop;
5041 
5042 	/* Management Stats */
5043 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5044 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5045 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5046 }
5047 
5048 /**
5049  * igc_down - Close the interface
5050  * @adapter: board private structure
5051  */
5052 void igc_down(struct igc_adapter *adapter)
5053 {
5054 	struct net_device *netdev = adapter->netdev;
5055 	struct igc_hw *hw = &adapter->hw;
5056 	u32 tctl, rctl;
5057 	int i = 0;
5058 
5059 	set_bit(__IGC_DOWN, &adapter->state);
5060 
5061 	igc_ptp_suspend(adapter);
5062 
5063 	if (pci_device_is_present(adapter->pdev)) {
5064 		/* disable receives in the hardware */
5065 		rctl = rd32(IGC_RCTL);
5066 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5067 		/* flush and sleep below */
5068 	}
5069 	/* set trans_start so we don't get spurious watchdogs during reset */
5070 	netif_trans_update(netdev);
5071 
5072 	netif_carrier_off(netdev);
5073 	netif_tx_stop_all_queues(netdev);
5074 
5075 	if (pci_device_is_present(adapter->pdev)) {
5076 		/* disable transmits in the hardware */
5077 		tctl = rd32(IGC_TCTL);
5078 		tctl &= ~IGC_TCTL_EN;
5079 		wr32(IGC_TCTL, tctl);
5080 		/* flush both disables and wait for them to finish */
5081 		wrfl();
5082 		usleep_range(10000, 20000);
5083 
5084 		igc_irq_disable(adapter);
5085 	}
5086 
5087 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5088 
5089 	for (i = 0; i < adapter->num_q_vectors; i++) {
5090 		if (adapter->q_vector[i]) {
5091 			napi_synchronize(&adapter->q_vector[i]->napi);
5092 			napi_disable(&adapter->q_vector[i]->napi);
5093 		}
5094 	}
5095 
5096 	del_timer_sync(&adapter->watchdog_timer);
5097 	del_timer_sync(&adapter->phy_info_timer);
5098 
5099 	/* record the stats before reset*/
5100 	spin_lock(&adapter->stats64_lock);
5101 	igc_update_stats(adapter);
5102 	spin_unlock(&adapter->stats64_lock);
5103 
5104 	adapter->link_speed = 0;
5105 	adapter->link_duplex = 0;
5106 
5107 	if (!pci_channel_offline(adapter->pdev))
5108 		igc_reset(adapter);
5109 
5110 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5111 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5112 
5113 	igc_disable_all_tx_rings_hw(adapter);
5114 	igc_clean_all_tx_rings(adapter);
5115 	igc_clean_all_rx_rings(adapter);
5116 }
5117 
5118 void igc_reinit_locked(struct igc_adapter *adapter)
5119 {
5120 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5121 		usleep_range(1000, 2000);
5122 	igc_down(adapter);
5123 	igc_up(adapter);
5124 	clear_bit(__IGC_RESETTING, &adapter->state);
5125 }
5126 
5127 static void igc_reset_task(struct work_struct *work)
5128 {
5129 	struct igc_adapter *adapter;
5130 
5131 	adapter = container_of(work, struct igc_adapter, reset_task);
5132 
5133 	rtnl_lock();
5134 	/* If we're already down or resetting, just bail */
5135 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5136 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5137 		rtnl_unlock();
5138 		return;
5139 	}
5140 
5141 	igc_rings_dump(adapter);
5142 	igc_regs_dump(adapter);
5143 	netdev_err(adapter->netdev, "Reset adapter\n");
5144 	igc_reinit_locked(adapter);
5145 	rtnl_unlock();
5146 }
5147 
5148 /**
5149  * igc_change_mtu - Change the Maximum Transfer Unit
5150  * @netdev: network interface device structure
5151  * @new_mtu: new value for maximum frame size
5152  *
5153  * Returns 0 on success, negative on failure
5154  */
5155 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5156 {
5157 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5158 	struct igc_adapter *adapter = netdev_priv(netdev);
5159 
5160 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5161 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5162 		return -EINVAL;
5163 	}
5164 
5165 	/* adjust max frame to be at least the size of a standard frame */
5166 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5167 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5168 
5169 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5170 		usleep_range(1000, 2000);
5171 
5172 	/* igc_down has a dependency on max_frame_size */
5173 	adapter->max_frame_size = max_frame;
5174 
5175 	if (netif_running(netdev))
5176 		igc_down(adapter);
5177 
5178 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5179 	netdev->mtu = new_mtu;
5180 
5181 	if (netif_running(netdev))
5182 		igc_up(adapter);
5183 	else
5184 		igc_reset(adapter);
5185 
5186 	clear_bit(__IGC_RESETTING, &adapter->state);
5187 
5188 	return 0;
5189 }
5190 
5191 /**
5192  * igc_tx_timeout - Respond to a Tx Hang
5193  * @netdev: network interface device structure
5194  * @txqueue: queue number that timed out
5195  **/
5196 static void igc_tx_timeout(struct net_device *netdev,
5197 			   unsigned int __always_unused txqueue)
5198 {
5199 	struct igc_adapter *adapter = netdev_priv(netdev);
5200 	struct igc_hw *hw = &adapter->hw;
5201 
5202 	/* Do the reset outside of interrupt context */
5203 	adapter->tx_timeout_count++;
5204 	schedule_work(&adapter->reset_task);
5205 	wr32(IGC_EICS,
5206 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5207 }
5208 
5209 /**
5210  * igc_get_stats64 - Get System Network Statistics
5211  * @netdev: network interface device structure
5212  * @stats: rtnl_link_stats64 pointer
5213  *
5214  * Returns the address of the device statistics structure.
5215  * The statistics are updated here and also from the timer callback.
5216  */
5217 static void igc_get_stats64(struct net_device *netdev,
5218 			    struct rtnl_link_stats64 *stats)
5219 {
5220 	struct igc_adapter *adapter = netdev_priv(netdev);
5221 
5222 	spin_lock(&adapter->stats64_lock);
5223 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5224 		igc_update_stats(adapter);
5225 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5226 	spin_unlock(&adapter->stats64_lock);
5227 }
5228 
5229 static netdev_features_t igc_fix_features(struct net_device *netdev,
5230 					  netdev_features_t features)
5231 {
5232 	/* Since there is no support for separate Rx/Tx vlan accel
5233 	 * enable/disable make sure Tx flag is always in same state as Rx.
5234 	 */
5235 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5236 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5237 	else
5238 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5239 
5240 	return features;
5241 }
5242 
5243 static int igc_set_features(struct net_device *netdev,
5244 			    netdev_features_t features)
5245 {
5246 	netdev_features_t changed = netdev->features ^ features;
5247 	struct igc_adapter *adapter = netdev_priv(netdev);
5248 
5249 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5250 		igc_vlan_mode(netdev, features);
5251 
5252 	/* Add VLAN support */
5253 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5254 		return 0;
5255 
5256 	if (!(features & NETIF_F_NTUPLE))
5257 		igc_flush_nfc_rules(adapter);
5258 
5259 	netdev->features = features;
5260 
5261 	if (netif_running(netdev))
5262 		igc_reinit_locked(adapter);
5263 	else
5264 		igc_reset(adapter);
5265 
5266 	return 1;
5267 }
5268 
5269 static netdev_features_t
5270 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5271 		   netdev_features_t features)
5272 {
5273 	unsigned int network_hdr_len, mac_hdr_len;
5274 
5275 	/* Make certain the headers can be described by a context descriptor */
5276 	mac_hdr_len = skb_network_offset(skb);
5277 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5278 		return features & ~(NETIF_F_HW_CSUM |
5279 				    NETIF_F_SCTP_CRC |
5280 				    NETIF_F_HW_VLAN_CTAG_TX |
5281 				    NETIF_F_TSO |
5282 				    NETIF_F_TSO6);
5283 
5284 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5285 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5286 		return features & ~(NETIF_F_HW_CSUM |
5287 				    NETIF_F_SCTP_CRC |
5288 				    NETIF_F_TSO |
5289 				    NETIF_F_TSO6);
5290 
5291 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5292 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5293 	 */
5294 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5295 		features &= ~NETIF_F_TSO;
5296 
5297 	return features;
5298 }
5299 
5300 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5301 {
5302 	struct igc_hw *hw = &adapter->hw;
5303 	u32 tsauxc, sec, nsec, tsicr;
5304 	struct ptp_clock_event event;
5305 	struct timespec64 ts;
5306 
5307 	tsicr = rd32(IGC_TSICR);
5308 
5309 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5310 		event.type = PTP_CLOCK_PPS;
5311 		if (adapter->ptp_caps.pps)
5312 			ptp_clock_event(adapter->ptp_clock, &event);
5313 	}
5314 
5315 	if (tsicr & IGC_TSICR_TXTS) {
5316 		/* retrieve hardware timestamp */
5317 		igc_ptp_tx_tstamp_event(adapter);
5318 	}
5319 
5320 	if (tsicr & IGC_TSICR_TT0) {
5321 		spin_lock(&adapter->tmreg_lock);
5322 		ts = timespec64_add(adapter->perout[0].start,
5323 				    adapter->perout[0].period);
5324 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5325 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5326 		tsauxc = rd32(IGC_TSAUXC);
5327 		tsauxc |= IGC_TSAUXC_EN_TT0;
5328 		wr32(IGC_TSAUXC, tsauxc);
5329 		adapter->perout[0].start = ts;
5330 		spin_unlock(&adapter->tmreg_lock);
5331 	}
5332 
5333 	if (tsicr & IGC_TSICR_TT1) {
5334 		spin_lock(&adapter->tmreg_lock);
5335 		ts = timespec64_add(adapter->perout[1].start,
5336 				    adapter->perout[1].period);
5337 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5338 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5339 		tsauxc = rd32(IGC_TSAUXC);
5340 		tsauxc |= IGC_TSAUXC_EN_TT1;
5341 		wr32(IGC_TSAUXC, tsauxc);
5342 		adapter->perout[1].start = ts;
5343 		spin_unlock(&adapter->tmreg_lock);
5344 	}
5345 
5346 	if (tsicr & IGC_TSICR_AUTT0) {
5347 		nsec = rd32(IGC_AUXSTMPL0);
5348 		sec  = rd32(IGC_AUXSTMPH0);
5349 		event.type = PTP_CLOCK_EXTTS;
5350 		event.index = 0;
5351 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5352 		ptp_clock_event(adapter->ptp_clock, &event);
5353 	}
5354 
5355 	if (tsicr & IGC_TSICR_AUTT1) {
5356 		nsec = rd32(IGC_AUXSTMPL1);
5357 		sec  = rd32(IGC_AUXSTMPH1);
5358 		event.type = PTP_CLOCK_EXTTS;
5359 		event.index = 1;
5360 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5361 		ptp_clock_event(adapter->ptp_clock, &event);
5362 	}
5363 }
5364 
5365 /**
5366  * igc_msix_other - msix other interrupt handler
5367  * @irq: interrupt number
5368  * @data: pointer to a q_vector
5369  */
5370 static irqreturn_t igc_msix_other(int irq, void *data)
5371 {
5372 	struct igc_adapter *adapter = data;
5373 	struct igc_hw *hw = &adapter->hw;
5374 	u32 icr = rd32(IGC_ICR);
5375 
5376 	/* reading ICR causes bit 31 of EICR to be cleared */
5377 	if (icr & IGC_ICR_DRSTA)
5378 		schedule_work(&adapter->reset_task);
5379 
5380 	if (icr & IGC_ICR_DOUTSYNC) {
5381 		/* HW is reporting DMA is out of sync */
5382 		adapter->stats.doosync++;
5383 	}
5384 
5385 	if (icr & IGC_ICR_LSC) {
5386 		hw->mac.get_link_status = true;
5387 		/* guard against interrupt when we're going down */
5388 		if (!test_bit(__IGC_DOWN, &adapter->state))
5389 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5390 	}
5391 
5392 	if (icr & IGC_ICR_TS)
5393 		igc_tsync_interrupt(adapter);
5394 
5395 	wr32(IGC_EIMS, adapter->eims_other);
5396 
5397 	return IRQ_HANDLED;
5398 }
5399 
5400 static void igc_write_itr(struct igc_q_vector *q_vector)
5401 {
5402 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5403 
5404 	if (!q_vector->set_itr)
5405 		return;
5406 
5407 	if (!itr_val)
5408 		itr_val = IGC_ITR_VAL_MASK;
5409 
5410 	itr_val |= IGC_EITR_CNT_IGNR;
5411 
5412 	writel(itr_val, q_vector->itr_register);
5413 	q_vector->set_itr = 0;
5414 }
5415 
5416 static irqreturn_t igc_msix_ring(int irq, void *data)
5417 {
5418 	struct igc_q_vector *q_vector = data;
5419 
5420 	/* Write the ITR value calculated from the previous interrupt. */
5421 	igc_write_itr(q_vector);
5422 
5423 	napi_schedule(&q_vector->napi);
5424 
5425 	return IRQ_HANDLED;
5426 }
5427 
5428 /**
5429  * igc_request_msix - Initialize MSI-X interrupts
5430  * @adapter: Pointer to adapter structure
5431  *
5432  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5433  * kernel.
5434  */
5435 static int igc_request_msix(struct igc_adapter *adapter)
5436 {
5437 	unsigned int num_q_vectors = adapter->num_q_vectors;
5438 	int i = 0, err = 0, vector = 0, free_vector = 0;
5439 	struct net_device *netdev = adapter->netdev;
5440 
5441 	err = request_irq(adapter->msix_entries[vector].vector,
5442 			  &igc_msix_other, 0, netdev->name, adapter);
5443 	if (err)
5444 		goto err_out;
5445 
5446 	if (num_q_vectors > MAX_Q_VECTORS) {
5447 		num_q_vectors = MAX_Q_VECTORS;
5448 		dev_warn(&adapter->pdev->dev,
5449 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5450 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5451 	}
5452 	for (i = 0; i < num_q_vectors; i++) {
5453 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5454 
5455 		vector++;
5456 
5457 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5458 
5459 		if (q_vector->rx.ring && q_vector->tx.ring)
5460 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5461 				q_vector->rx.ring->queue_index);
5462 		else if (q_vector->tx.ring)
5463 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5464 				q_vector->tx.ring->queue_index);
5465 		else if (q_vector->rx.ring)
5466 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5467 				q_vector->rx.ring->queue_index);
5468 		else
5469 			sprintf(q_vector->name, "%s-unused", netdev->name);
5470 
5471 		err = request_irq(adapter->msix_entries[vector].vector,
5472 				  igc_msix_ring, 0, q_vector->name,
5473 				  q_vector);
5474 		if (err)
5475 			goto err_free;
5476 	}
5477 
5478 	igc_configure_msix(adapter);
5479 	return 0;
5480 
5481 err_free:
5482 	/* free already assigned IRQs */
5483 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5484 
5485 	vector--;
5486 	for (i = 0; i < vector; i++) {
5487 		free_irq(adapter->msix_entries[free_vector++].vector,
5488 			 adapter->q_vector[i]);
5489 	}
5490 err_out:
5491 	return err;
5492 }
5493 
5494 /**
5495  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5496  * @adapter: Pointer to adapter structure
5497  *
5498  * This function resets the device so that it has 0 rx queues, tx queues, and
5499  * MSI-X interrupts allocated.
5500  */
5501 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5502 {
5503 	igc_free_q_vectors(adapter);
5504 	igc_reset_interrupt_capability(adapter);
5505 }
5506 
5507 /* Need to wait a few seconds after link up to get diagnostic information from
5508  * the phy
5509  */
5510 static void igc_update_phy_info(struct timer_list *t)
5511 {
5512 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5513 
5514 	igc_get_phy_info(&adapter->hw);
5515 }
5516 
5517 /**
5518  * igc_has_link - check shared code for link and determine up/down
5519  * @adapter: pointer to driver private info
5520  */
5521 bool igc_has_link(struct igc_adapter *adapter)
5522 {
5523 	struct igc_hw *hw = &adapter->hw;
5524 	bool link_active = false;
5525 
5526 	/* get_link_status is set on LSC (link status) interrupt or
5527 	 * rx sequence error interrupt.  get_link_status will stay
5528 	 * false until the igc_check_for_link establishes link
5529 	 * for copper adapters ONLY
5530 	 */
5531 	if (!hw->mac.get_link_status)
5532 		return true;
5533 	hw->mac.ops.check_for_link(hw);
5534 	link_active = !hw->mac.get_link_status;
5535 
5536 	if (hw->mac.type == igc_i225) {
5537 		if (!netif_carrier_ok(adapter->netdev)) {
5538 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5539 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5540 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5541 			adapter->link_check_timeout = jiffies;
5542 		}
5543 	}
5544 
5545 	return link_active;
5546 }
5547 
5548 /**
5549  * igc_watchdog - Timer Call-back
5550  * @t: timer for the watchdog
5551  */
5552 static void igc_watchdog(struct timer_list *t)
5553 {
5554 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5555 	/* Do the rest outside of interrupt context */
5556 	schedule_work(&adapter->watchdog_task);
5557 }
5558 
5559 static void igc_watchdog_task(struct work_struct *work)
5560 {
5561 	struct igc_adapter *adapter = container_of(work,
5562 						   struct igc_adapter,
5563 						   watchdog_task);
5564 	struct net_device *netdev = adapter->netdev;
5565 	struct igc_hw *hw = &adapter->hw;
5566 	struct igc_phy_info *phy = &hw->phy;
5567 	u16 phy_data, retry_count = 20;
5568 	u32 link;
5569 	int i;
5570 
5571 	link = igc_has_link(adapter);
5572 
5573 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5574 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5575 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5576 		else
5577 			link = false;
5578 	}
5579 
5580 	if (link) {
5581 		/* Cancel scheduled suspend requests. */
5582 		pm_runtime_resume(netdev->dev.parent);
5583 
5584 		if (!netif_carrier_ok(netdev)) {
5585 			u32 ctrl;
5586 
5587 			hw->mac.ops.get_speed_and_duplex(hw,
5588 							 &adapter->link_speed,
5589 							 &adapter->link_duplex);
5590 
5591 			ctrl = rd32(IGC_CTRL);
5592 			/* Link status message must follow this format */
5593 			netdev_info(netdev,
5594 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5595 				    adapter->link_speed,
5596 				    adapter->link_duplex == FULL_DUPLEX ?
5597 				    "Full" : "Half",
5598 				    (ctrl & IGC_CTRL_TFCE) &&
5599 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5600 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5601 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5602 
5603 			/* disable EEE if enabled */
5604 			if ((adapter->flags & IGC_FLAG_EEE) &&
5605 			    adapter->link_duplex == HALF_DUPLEX) {
5606 				netdev_info(netdev,
5607 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5608 				adapter->hw.dev_spec._base.eee_enable = false;
5609 				adapter->flags &= ~IGC_FLAG_EEE;
5610 			}
5611 
5612 			/* check if SmartSpeed worked */
5613 			igc_check_downshift(hw);
5614 			if (phy->speed_downgraded)
5615 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5616 
5617 			/* adjust timeout factor according to speed/duplex */
5618 			adapter->tx_timeout_factor = 1;
5619 			switch (adapter->link_speed) {
5620 			case SPEED_10:
5621 				adapter->tx_timeout_factor = 14;
5622 				break;
5623 			case SPEED_100:
5624 			case SPEED_1000:
5625 			case SPEED_2500:
5626 				adapter->tx_timeout_factor = 1;
5627 				break;
5628 			}
5629 
5630 			/* Once the launch time has been set on the wire, there
5631 			 * is a delay before the link speed can be determined
5632 			 * based on link-up activity. Write into the register
5633 			 * as soon as we know the correct link speed.
5634 			 */
5635 			igc_tsn_adjust_txtime_offset(adapter);
5636 
5637 			if (adapter->link_speed != SPEED_1000)
5638 				goto no_wait;
5639 
5640 			/* wait for Remote receiver status OK */
5641 retry_read_status:
5642 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5643 					      &phy_data)) {
5644 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5645 				    retry_count) {
5646 					msleep(100);
5647 					retry_count--;
5648 					goto retry_read_status;
5649 				} else if (!retry_count) {
5650 					netdev_err(netdev, "exceed max 2 second\n");
5651 				}
5652 			} else {
5653 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5654 			}
5655 no_wait:
5656 			netif_carrier_on(netdev);
5657 
5658 			/* link state has changed, schedule phy info update */
5659 			if (!test_bit(__IGC_DOWN, &adapter->state))
5660 				mod_timer(&adapter->phy_info_timer,
5661 					  round_jiffies(jiffies + 2 * HZ));
5662 		}
5663 	} else {
5664 		if (netif_carrier_ok(netdev)) {
5665 			adapter->link_speed = 0;
5666 			adapter->link_duplex = 0;
5667 
5668 			/* Links status message must follow this format */
5669 			netdev_info(netdev, "NIC Link is Down\n");
5670 			netif_carrier_off(netdev);
5671 
5672 			/* link state has changed, schedule phy info update */
5673 			if (!test_bit(__IGC_DOWN, &adapter->state))
5674 				mod_timer(&adapter->phy_info_timer,
5675 					  round_jiffies(jiffies + 2 * HZ));
5676 
5677 			pm_schedule_suspend(netdev->dev.parent,
5678 					    MSEC_PER_SEC * 5);
5679 		}
5680 	}
5681 
5682 	spin_lock(&adapter->stats64_lock);
5683 	igc_update_stats(adapter);
5684 	spin_unlock(&adapter->stats64_lock);
5685 
5686 	for (i = 0; i < adapter->num_tx_queues; i++) {
5687 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5688 
5689 		if (!netif_carrier_ok(netdev)) {
5690 			/* We've lost link, so the controller stops DMA,
5691 			 * but we've got queued Tx work that's never going
5692 			 * to get done, so reset controller to flush Tx.
5693 			 * (Do the reset outside of interrupt context).
5694 			 */
5695 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5696 				adapter->tx_timeout_count++;
5697 				schedule_work(&adapter->reset_task);
5698 				/* return immediately since reset is imminent */
5699 				return;
5700 			}
5701 		}
5702 
5703 		/* Force detection of hung controller every watchdog period */
5704 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5705 	}
5706 
5707 	/* Cause software interrupt to ensure Rx ring is cleaned */
5708 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5709 		u32 eics = 0;
5710 
5711 		for (i = 0; i < adapter->num_q_vectors; i++)
5712 			eics |= adapter->q_vector[i]->eims_value;
5713 		wr32(IGC_EICS, eics);
5714 	} else {
5715 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5716 	}
5717 
5718 	igc_ptp_tx_hang(adapter);
5719 
5720 	/* Reset the timer */
5721 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5722 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5723 			mod_timer(&adapter->watchdog_timer,
5724 				  round_jiffies(jiffies +  HZ));
5725 		else
5726 			mod_timer(&adapter->watchdog_timer,
5727 				  round_jiffies(jiffies + 2 * HZ));
5728 	}
5729 }
5730 
5731 /**
5732  * igc_intr_msi - Interrupt Handler
5733  * @irq: interrupt number
5734  * @data: pointer to a network interface device structure
5735  */
5736 static irqreturn_t igc_intr_msi(int irq, void *data)
5737 {
5738 	struct igc_adapter *adapter = data;
5739 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5740 	struct igc_hw *hw = &adapter->hw;
5741 	/* read ICR disables interrupts using IAM */
5742 	u32 icr = rd32(IGC_ICR);
5743 
5744 	igc_write_itr(q_vector);
5745 
5746 	if (icr & IGC_ICR_DRSTA)
5747 		schedule_work(&adapter->reset_task);
5748 
5749 	if (icr & IGC_ICR_DOUTSYNC) {
5750 		/* HW is reporting DMA is out of sync */
5751 		adapter->stats.doosync++;
5752 	}
5753 
5754 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5755 		hw->mac.get_link_status = true;
5756 		if (!test_bit(__IGC_DOWN, &adapter->state))
5757 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5758 	}
5759 
5760 	if (icr & IGC_ICR_TS)
5761 		igc_tsync_interrupt(adapter);
5762 
5763 	napi_schedule(&q_vector->napi);
5764 
5765 	return IRQ_HANDLED;
5766 }
5767 
5768 /**
5769  * igc_intr - Legacy Interrupt Handler
5770  * @irq: interrupt number
5771  * @data: pointer to a network interface device structure
5772  */
5773 static irqreturn_t igc_intr(int irq, void *data)
5774 {
5775 	struct igc_adapter *adapter = data;
5776 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5777 	struct igc_hw *hw = &adapter->hw;
5778 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5779 	 * need for the IMC write
5780 	 */
5781 	u32 icr = rd32(IGC_ICR);
5782 
5783 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5784 	 * not set, then the adapter didn't send an interrupt
5785 	 */
5786 	if (!(icr & IGC_ICR_INT_ASSERTED))
5787 		return IRQ_NONE;
5788 
5789 	igc_write_itr(q_vector);
5790 
5791 	if (icr & IGC_ICR_DRSTA)
5792 		schedule_work(&adapter->reset_task);
5793 
5794 	if (icr & IGC_ICR_DOUTSYNC) {
5795 		/* HW is reporting DMA is out of sync */
5796 		adapter->stats.doosync++;
5797 	}
5798 
5799 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5800 		hw->mac.get_link_status = true;
5801 		/* guard against interrupt when we're going down */
5802 		if (!test_bit(__IGC_DOWN, &adapter->state))
5803 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5804 	}
5805 
5806 	if (icr & IGC_ICR_TS)
5807 		igc_tsync_interrupt(adapter);
5808 
5809 	napi_schedule(&q_vector->napi);
5810 
5811 	return IRQ_HANDLED;
5812 }
5813 
5814 static void igc_free_irq(struct igc_adapter *adapter)
5815 {
5816 	if (adapter->msix_entries) {
5817 		int vector = 0, i;
5818 
5819 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5820 
5821 		for (i = 0; i < adapter->num_q_vectors; i++)
5822 			free_irq(adapter->msix_entries[vector++].vector,
5823 				 adapter->q_vector[i]);
5824 	} else {
5825 		free_irq(adapter->pdev->irq, adapter);
5826 	}
5827 }
5828 
5829 /**
5830  * igc_request_irq - initialize interrupts
5831  * @adapter: Pointer to adapter structure
5832  *
5833  * Attempts to configure interrupts using the best available
5834  * capabilities of the hardware and kernel.
5835  */
5836 static int igc_request_irq(struct igc_adapter *adapter)
5837 {
5838 	struct net_device *netdev = adapter->netdev;
5839 	struct pci_dev *pdev = adapter->pdev;
5840 	int err = 0;
5841 
5842 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5843 		err = igc_request_msix(adapter);
5844 		if (!err)
5845 			goto request_done;
5846 		/* fall back to MSI */
5847 		igc_free_all_tx_resources(adapter);
5848 		igc_free_all_rx_resources(adapter);
5849 
5850 		igc_clear_interrupt_scheme(adapter);
5851 		err = igc_init_interrupt_scheme(adapter, false);
5852 		if (err)
5853 			goto request_done;
5854 		igc_setup_all_tx_resources(adapter);
5855 		igc_setup_all_rx_resources(adapter);
5856 		igc_configure(adapter);
5857 	}
5858 
5859 	igc_assign_vector(adapter->q_vector[0], 0);
5860 
5861 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5862 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5863 				  netdev->name, adapter);
5864 		if (!err)
5865 			goto request_done;
5866 
5867 		/* fall back to legacy interrupts */
5868 		igc_reset_interrupt_capability(adapter);
5869 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5870 	}
5871 
5872 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5873 			  netdev->name, adapter);
5874 
5875 	if (err)
5876 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5877 
5878 request_done:
5879 	return err;
5880 }
5881 
5882 /**
5883  * __igc_open - Called when a network interface is made active
5884  * @netdev: network interface device structure
5885  * @resuming: boolean indicating if the device is resuming
5886  *
5887  * Returns 0 on success, negative value on failure
5888  *
5889  * The open entry point is called when a network interface is made
5890  * active by the system (IFF_UP).  At this point all resources needed
5891  * for transmit and receive operations are allocated, the interrupt
5892  * handler is registered with the OS, the watchdog timer is started,
5893  * and the stack is notified that the interface is ready.
5894  */
5895 static int __igc_open(struct net_device *netdev, bool resuming)
5896 {
5897 	struct igc_adapter *adapter = netdev_priv(netdev);
5898 	struct pci_dev *pdev = adapter->pdev;
5899 	struct igc_hw *hw = &adapter->hw;
5900 	int err = 0;
5901 	int i = 0;
5902 
5903 	/* disallow open during test */
5904 
5905 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5906 		WARN_ON(resuming);
5907 		return -EBUSY;
5908 	}
5909 
5910 	if (!resuming)
5911 		pm_runtime_get_sync(&pdev->dev);
5912 
5913 	netif_carrier_off(netdev);
5914 
5915 	/* allocate transmit descriptors */
5916 	err = igc_setup_all_tx_resources(adapter);
5917 	if (err)
5918 		goto err_setup_tx;
5919 
5920 	/* allocate receive descriptors */
5921 	err = igc_setup_all_rx_resources(adapter);
5922 	if (err)
5923 		goto err_setup_rx;
5924 
5925 	igc_power_up_link(adapter);
5926 
5927 	igc_configure(adapter);
5928 
5929 	err = igc_request_irq(adapter);
5930 	if (err)
5931 		goto err_req_irq;
5932 
5933 	/* Notify the stack of the actual queue counts. */
5934 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5935 	if (err)
5936 		goto err_set_queues;
5937 
5938 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5939 	if (err)
5940 		goto err_set_queues;
5941 
5942 	clear_bit(__IGC_DOWN, &adapter->state);
5943 
5944 	for (i = 0; i < adapter->num_q_vectors; i++)
5945 		napi_enable(&adapter->q_vector[i]->napi);
5946 
5947 	/* Clear any pending interrupts. */
5948 	rd32(IGC_ICR);
5949 	igc_irq_enable(adapter);
5950 
5951 	if (!resuming)
5952 		pm_runtime_put(&pdev->dev);
5953 
5954 	netif_tx_start_all_queues(netdev);
5955 
5956 	/* start the watchdog. */
5957 	hw->mac.get_link_status = true;
5958 	schedule_work(&adapter->watchdog_task);
5959 
5960 	return IGC_SUCCESS;
5961 
5962 err_set_queues:
5963 	igc_free_irq(adapter);
5964 err_req_irq:
5965 	igc_release_hw_control(adapter);
5966 	igc_power_down_phy_copper_base(&adapter->hw);
5967 	igc_free_all_rx_resources(adapter);
5968 err_setup_rx:
5969 	igc_free_all_tx_resources(adapter);
5970 err_setup_tx:
5971 	igc_reset(adapter);
5972 	if (!resuming)
5973 		pm_runtime_put(&pdev->dev);
5974 
5975 	return err;
5976 }
5977 
5978 int igc_open(struct net_device *netdev)
5979 {
5980 	return __igc_open(netdev, false);
5981 }
5982 
5983 /**
5984  * __igc_close - Disables a network interface
5985  * @netdev: network interface device structure
5986  * @suspending: boolean indicating the device is suspending
5987  *
5988  * Returns 0, this is not allowed to fail
5989  *
5990  * The close entry point is called when an interface is de-activated
5991  * by the OS.  The hardware is still under the driver's control, but
5992  * needs to be disabled.  A global MAC reset is issued to stop the
5993  * hardware, and all transmit and receive resources are freed.
5994  */
5995 static int __igc_close(struct net_device *netdev, bool suspending)
5996 {
5997 	struct igc_adapter *adapter = netdev_priv(netdev);
5998 	struct pci_dev *pdev = adapter->pdev;
5999 
6000 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6001 
6002 	if (!suspending)
6003 		pm_runtime_get_sync(&pdev->dev);
6004 
6005 	igc_down(adapter);
6006 
6007 	igc_release_hw_control(adapter);
6008 
6009 	igc_free_irq(adapter);
6010 
6011 	igc_free_all_tx_resources(adapter);
6012 	igc_free_all_rx_resources(adapter);
6013 
6014 	if (!suspending)
6015 		pm_runtime_put_sync(&pdev->dev);
6016 
6017 	return 0;
6018 }
6019 
6020 int igc_close(struct net_device *netdev)
6021 {
6022 	if (netif_device_present(netdev) || netdev->dismantle)
6023 		return __igc_close(netdev, false);
6024 	return 0;
6025 }
6026 
6027 /**
6028  * igc_ioctl - Access the hwtstamp interface
6029  * @netdev: network interface device structure
6030  * @ifr: interface request data
6031  * @cmd: ioctl command
6032  **/
6033 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6034 {
6035 	switch (cmd) {
6036 	case SIOCGHWTSTAMP:
6037 		return igc_ptp_get_ts_config(netdev, ifr);
6038 	case SIOCSHWTSTAMP:
6039 		return igc_ptp_set_ts_config(netdev, ifr);
6040 	default:
6041 		return -EOPNOTSUPP;
6042 	}
6043 }
6044 
6045 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6046 				      bool enable)
6047 {
6048 	struct igc_ring *ring;
6049 
6050 	if (queue < 0 || queue >= adapter->num_tx_queues)
6051 		return -EINVAL;
6052 
6053 	ring = adapter->tx_ring[queue];
6054 	ring->launchtime_enable = enable;
6055 
6056 	return 0;
6057 }
6058 
6059 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6060 {
6061 	struct timespec64 b;
6062 
6063 	b = ktime_to_timespec64(base_time);
6064 
6065 	return timespec64_compare(now, &b) > 0;
6066 }
6067 
6068 static bool validate_schedule(struct igc_adapter *adapter,
6069 			      const struct tc_taprio_qopt_offload *qopt)
6070 {
6071 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6072 	struct igc_hw *hw = &adapter->hw;
6073 	struct timespec64 now;
6074 	size_t n;
6075 
6076 	if (qopt->cycle_time_extension)
6077 		return false;
6078 
6079 	igc_ptp_read(adapter, &now);
6080 
6081 	/* If we program the controller's BASET registers with a time
6082 	 * in the future, it will hold all the packets until that
6083 	 * time, causing a lot of TX Hangs, so to avoid that, we
6084 	 * reject schedules that would start in the future.
6085 	 * Note: Limitation above is no longer in i226.
6086 	 */
6087 	if (!is_base_time_past(qopt->base_time, &now) &&
6088 	    igc_is_device_id_i225(hw))
6089 		return false;
6090 
6091 	for (n = 0; n < qopt->num_entries; n++) {
6092 		const struct tc_taprio_sched_entry *e, *prev;
6093 		int i;
6094 
6095 		prev = n ? &qopt->entries[n - 1] : NULL;
6096 		e = &qopt->entries[n];
6097 
6098 		/* i225 only supports "global" frame preemption
6099 		 * settings.
6100 		 */
6101 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6102 			return false;
6103 
6104 		for (i = 0; i < adapter->num_tx_queues; i++)
6105 			if (e->gate_mask & BIT(i)) {
6106 				queue_uses[i]++;
6107 
6108 				/* There are limitations: A single queue cannot
6109 				 * be opened and closed multiple times per cycle
6110 				 * unless the gate stays open. Check for it.
6111 				 */
6112 				if (queue_uses[i] > 1 &&
6113 				    !(prev->gate_mask & BIT(i)))
6114 					return false;
6115 			}
6116 	}
6117 
6118 	return true;
6119 }
6120 
6121 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6122 				     struct tc_etf_qopt_offload *qopt)
6123 {
6124 	struct igc_hw *hw = &adapter->hw;
6125 	int err;
6126 
6127 	if (hw->mac.type != igc_i225)
6128 		return -EOPNOTSUPP;
6129 
6130 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6131 	if (err)
6132 		return err;
6133 
6134 	return igc_tsn_offload_apply(adapter);
6135 }
6136 
6137 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6138 {
6139 	unsigned long flags;
6140 	int i;
6141 
6142 	adapter->base_time = 0;
6143 	adapter->cycle_time = NSEC_PER_SEC;
6144 	adapter->taprio_offload_enable = false;
6145 	adapter->qbv_config_change_errors = 0;
6146 	adapter->qbv_count = 0;
6147 
6148 	for (i = 0; i < adapter->num_tx_queues; i++) {
6149 		struct igc_ring *ring = adapter->tx_ring[i];
6150 
6151 		ring->start_time = 0;
6152 		ring->end_time = NSEC_PER_SEC;
6153 		ring->max_sdu = 0;
6154 	}
6155 
6156 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6157 
6158 	adapter->qbv_transition = false;
6159 
6160 	for (i = 0; i < adapter->num_tx_queues; i++) {
6161 		struct igc_ring *ring = adapter->tx_ring[i];
6162 
6163 		ring->oper_gate_closed = false;
6164 		ring->admin_gate_closed = false;
6165 	}
6166 
6167 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6168 
6169 	return 0;
6170 }
6171 
6172 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6173 {
6174 	igc_qbv_clear_schedule(adapter);
6175 
6176 	return 0;
6177 }
6178 
6179 static void igc_taprio_stats(struct net_device *dev,
6180 			     struct tc_taprio_qopt_stats *stats)
6181 {
6182 	/* When Strict_End is enabled, the tx_overruns counter
6183 	 * will always be zero.
6184 	 */
6185 	stats->tx_overruns = 0;
6186 }
6187 
6188 static void igc_taprio_queue_stats(struct net_device *dev,
6189 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6190 {
6191 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6192 
6193 	/* When Strict_End is enabled, the tx_overruns counter
6194 	 * will always be zero.
6195 	 */
6196 	stats->tx_overruns = 0;
6197 }
6198 
6199 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6200 				 struct tc_taprio_qopt_offload *qopt)
6201 {
6202 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6203 	struct igc_hw *hw = &adapter->hw;
6204 	u32 start_time = 0, end_time = 0;
6205 	struct timespec64 now;
6206 	unsigned long flags;
6207 	size_t n;
6208 	int i;
6209 
6210 	switch (qopt->cmd) {
6211 	case TAPRIO_CMD_REPLACE:
6212 		break;
6213 	case TAPRIO_CMD_DESTROY:
6214 		return igc_tsn_clear_schedule(adapter);
6215 	case TAPRIO_CMD_STATS:
6216 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6217 		return 0;
6218 	case TAPRIO_CMD_QUEUE_STATS:
6219 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6220 		return 0;
6221 	default:
6222 		return -EOPNOTSUPP;
6223 	}
6224 
6225 	if (qopt->base_time < 0)
6226 		return -ERANGE;
6227 
6228 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6229 		return -EALREADY;
6230 
6231 	if (!validate_schedule(adapter, qopt))
6232 		return -EINVAL;
6233 
6234 	adapter->cycle_time = qopt->cycle_time;
6235 	adapter->base_time = qopt->base_time;
6236 	adapter->taprio_offload_enable = true;
6237 
6238 	igc_ptp_read(adapter, &now);
6239 
6240 	for (n = 0; n < qopt->num_entries; n++) {
6241 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6242 
6243 		end_time += e->interval;
6244 
6245 		/* If any of the conditions below are true, we need to manually
6246 		 * control the end time of the cycle.
6247 		 * 1. Qbv users can specify a cycle time that is not equal
6248 		 * to the total GCL intervals. Hence, recalculation is
6249 		 * necessary here to exclude the time interval that
6250 		 * exceeds the cycle time.
6251 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6252 		 * once the end of the list is reached, it will switch
6253 		 * to the END_OF_CYCLE state and leave the gates in the
6254 		 * same state until the next cycle is started.
6255 		 */
6256 		if (end_time > adapter->cycle_time ||
6257 		    n + 1 == qopt->num_entries)
6258 			end_time = adapter->cycle_time;
6259 
6260 		for (i = 0; i < adapter->num_tx_queues; i++) {
6261 			struct igc_ring *ring = adapter->tx_ring[i];
6262 
6263 			if (!(e->gate_mask & BIT(i)))
6264 				continue;
6265 
6266 			/* Check whether a queue stays open for more than one
6267 			 * entry. If so, keep the start and advance the end
6268 			 * time.
6269 			 */
6270 			if (!queue_configured[i])
6271 				ring->start_time = start_time;
6272 			ring->end_time = end_time;
6273 
6274 			if (ring->start_time >= adapter->cycle_time)
6275 				queue_configured[i] = false;
6276 			else
6277 				queue_configured[i] = true;
6278 		}
6279 
6280 		start_time += e->interval;
6281 	}
6282 
6283 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6284 
6285 	/* Check whether a queue gets configured.
6286 	 * If not, set the start and end time to be end time.
6287 	 */
6288 	for (i = 0; i < adapter->num_tx_queues; i++) {
6289 		struct igc_ring *ring = adapter->tx_ring[i];
6290 
6291 		if (!is_base_time_past(qopt->base_time, &now)) {
6292 			ring->admin_gate_closed = false;
6293 		} else {
6294 			ring->oper_gate_closed = false;
6295 			ring->admin_gate_closed = false;
6296 		}
6297 
6298 		if (!queue_configured[i]) {
6299 			if (!is_base_time_past(qopt->base_time, &now))
6300 				ring->admin_gate_closed = true;
6301 			else
6302 				ring->oper_gate_closed = true;
6303 
6304 			ring->start_time = end_time;
6305 			ring->end_time = end_time;
6306 		}
6307 	}
6308 
6309 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6310 
6311 	for (i = 0; i < adapter->num_tx_queues; i++) {
6312 		struct igc_ring *ring = adapter->tx_ring[i];
6313 		struct net_device *dev = adapter->netdev;
6314 
6315 		if (qopt->max_sdu[i])
6316 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6317 		else
6318 			ring->max_sdu = 0;
6319 	}
6320 
6321 	return 0;
6322 }
6323 
6324 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6325 					 struct tc_taprio_qopt_offload *qopt)
6326 {
6327 	struct igc_hw *hw = &adapter->hw;
6328 	int err;
6329 
6330 	if (hw->mac.type != igc_i225)
6331 		return -EOPNOTSUPP;
6332 
6333 	err = igc_save_qbv_schedule(adapter, qopt);
6334 	if (err)
6335 		return err;
6336 
6337 	return igc_tsn_offload_apply(adapter);
6338 }
6339 
6340 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6341 			       bool enable, int idleslope, int sendslope,
6342 			       int hicredit, int locredit)
6343 {
6344 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6345 	struct net_device *netdev = adapter->netdev;
6346 	struct igc_ring *ring;
6347 	int i;
6348 
6349 	/* i225 has two sets of credit-based shaper logic.
6350 	 * Supporting it only on the top two priority queues
6351 	 */
6352 	if (queue < 0 || queue > 1)
6353 		return -EINVAL;
6354 
6355 	ring = adapter->tx_ring[queue];
6356 
6357 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6358 		if (adapter->tx_ring[i])
6359 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6360 
6361 	/* CBS should be enabled on the highest priority queue first in order
6362 	 * for the CBS algorithm to operate as intended.
6363 	 */
6364 	if (enable) {
6365 		if (queue == 1 && !cbs_status[0]) {
6366 			netdev_err(netdev,
6367 				   "Enabling CBS on queue1 before queue0\n");
6368 			return -EINVAL;
6369 		}
6370 	} else {
6371 		if (queue == 0 && cbs_status[1]) {
6372 			netdev_err(netdev,
6373 				   "Disabling CBS on queue0 before queue1\n");
6374 			return -EINVAL;
6375 		}
6376 	}
6377 
6378 	ring->cbs_enable = enable;
6379 	ring->idleslope = idleslope;
6380 	ring->sendslope = sendslope;
6381 	ring->hicredit = hicredit;
6382 	ring->locredit = locredit;
6383 
6384 	return 0;
6385 }
6386 
6387 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6388 			      struct tc_cbs_qopt_offload *qopt)
6389 {
6390 	struct igc_hw *hw = &adapter->hw;
6391 	int err;
6392 
6393 	if (hw->mac.type != igc_i225)
6394 		return -EOPNOTSUPP;
6395 
6396 	if (qopt->queue < 0 || qopt->queue > 1)
6397 		return -EINVAL;
6398 
6399 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6400 				  qopt->idleslope, qopt->sendslope,
6401 				  qopt->hicredit, qopt->locredit);
6402 	if (err)
6403 		return err;
6404 
6405 	return igc_tsn_offload_apply(adapter);
6406 }
6407 
6408 static int igc_tc_query_caps(struct igc_adapter *adapter,
6409 			     struct tc_query_caps_base *base)
6410 {
6411 	struct igc_hw *hw = &adapter->hw;
6412 
6413 	switch (base->type) {
6414 	case TC_SETUP_QDISC_TAPRIO: {
6415 		struct tc_taprio_caps *caps = base->caps;
6416 
6417 		caps->broken_mqprio = true;
6418 
6419 		if (hw->mac.type == igc_i225) {
6420 			caps->supports_queue_max_sdu = true;
6421 			caps->gate_mask_per_txq = true;
6422 		}
6423 
6424 		return 0;
6425 	}
6426 	default:
6427 		return -EOPNOTSUPP;
6428 	}
6429 }
6430 
6431 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6432 			void *type_data)
6433 {
6434 	struct igc_adapter *adapter = netdev_priv(dev);
6435 
6436 	adapter->tc_setup_type = type;
6437 
6438 	switch (type) {
6439 	case TC_QUERY_CAPS:
6440 		return igc_tc_query_caps(adapter, type_data);
6441 	case TC_SETUP_QDISC_TAPRIO:
6442 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6443 
6444 	case TC_SETUP_QDISC_ETF:
6445 		return igc_tsn_enable_launchtime(adapter, type_data);
6446 
6447 	case TC_SETUP_QDISC_CBS:
6448 		return igc_tsn_enable_cbs(adapter, type_data);
6449 
6450 	default:
6451 		return -EOPNOTSUPP;
6452 	}
6453 }
6454 
6455 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6456 {
6457 	struct igc_adapter *adapter = netdev_priv(dev);
6458 
6459 	switch (bpf->command) {
6460 	case XDP_SETUP_PROG:
6461 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6462 	case XDP_SETUP_XSK_POOL:
6463 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6464 					  bpf->xsk.queue_id);
6465 	default:
6466 		return -EOPNOTSUPP;
6467 	}
6468 }
6469 
6470 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6471 			struct xdp_frame **frames, u32 flags)
6472 {
6473 	struct igc_adapter *adapter = netdev_priv(dev);
6474 	int cpu = smp_processor_id();
6475 	struct netdev_queue *nq;
6476 	struct igc_ring *ring;
6477 	int i, nxmit;
6478 
6479 	if (unlikely(!netif_carrier_ok(dev)))
6480 		return -ENETDOWN;
6481 
6482 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6483 		return -EINVAL;
6484 
6485 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6486 	nq = txring_txq(ring);
6487 
6488 	__netif_tx_lock(nq, cpu);
6489 
6490 	/* Avoid transmit queue timeout since we share it with the slow path */
6491 	txq_trans_cond_update(nq);
6492 
6493 	nxmit = 0;
6494 	for (i = 0; i < num_frames; i++) {
6495 		int err;
6496 		struct xdp_frame *xdpf = frames[i];
6497 
6498 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6499 		if (err)
6500 			break;
6501 		nxmit++;
6502 	}
6503 
6504 	if (flags & XDP_XMIT_FLUSH)
6505 		igc_flush_tx_descriptors(ring);
6506 
6507 	__netif_tx_unlock(nq);
6508 
6509 	return nxmit;
6510 }
6511 
6512 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6513 					struct igc_q_vector *q_vector)
6514 {
6515 	struct igc_hw *hw = &adapter->hw;
6516 	u32 eics = 0;
6517 
6518 	eics |= q_vector->eims_value;
6519 	wr32(IGC_EICS, eics);
6520 }
6521 
6522 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6523 {
6524 	struct igc_adapter *adapter = netdev_priv(dev);
6525 	struct igc_q_vector *q_vector;
6526 	struct igc_ring *ring;
6527 
6528 	if (test_bit(__IGC_DOWN, &adapter->state))
6529 		return -ENETDOWN;
6530 
6531 	if (!igc_xdp_is_enabled(adapter))
6532 		return -ENXIO;
6533 
6534 	if (queue_id >= adapter->num_rx_queues)
6535 		return -EINVAL;
6536 
6537 	ring = adapter->rx_ring[queue_id];
6538 
6539 	if (!ring->xsk_pool)
6540 		return -ENXIO;
6541 
6542 	q_vector = adapter->q_vector[queue_id];
6543 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6544 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6545 
6546 	return 0;
6547 }
6548 
6549 static ktime_t igc_get_tstamp(struct net_device *dev,
6550 			      const struct skb_shared_hwtstamps *hwtstamps,
6551 			      bool cycles)
6552 {
6553 	struct igc_adapter *adapter = netdev_priv(dev);
6554 	struct igc_inline_rx_tstamps *tstamp;
6555 	ktime_t timestamp;
6556 
6557 	tstamp = hwtstamps->netdev_data;
6558 
6559 	if (cycles)
6560 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6561 	else
6562 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6563 
6564 	return timestamp;
6565 }
6566 
6567 static const struct net_device_ops igc_netdev_ops = {
6568 	.ndo_open		= igc_open,
6569 	.ndo_stop		= igc_close,
6570 	.ndo_start_xmit		= igc_xmit_frame,
6571 	.ndo_set_rx_mode	= igc_set_rx_mode,
6572 	.ndo_set_mac_address	= igc_set_mac,
6573 	.ndo_change_mtu		= igc_change_mtu,
6574 	.ndo_tx_timeout		= igc_tx_timeout,
6575 	.ndo_get_stats64	= igc_get_stats64,
6576 	.ndo_fix_features	= igc_fix_features,
6577 	.ndo_set_features	= igc_set_features,
6578 	.ndo_features_check	= igc_features_check,
6579 	.ndo_eth_ioctl		= igc_ioctl,
6580 	.ndo_setup_tc		= igc_setup_tc,
6581 	.ndo_bpf		= igc_bpf,
6582 	.ndo_xdp_xmit		= igc_xdp_xmit,
6583 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6584 	.ndo_get_tstamp		= igc_get_tstamp,
6585 };
6586 
6587 /* PCIe configuration access */
6588 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6589 {
6590 	struct igc_adapter *adapter = hw->back;
6591 
6592 	pci_read_config_word(adapter->pdev, reg, value);
6593 }
6594 
6595 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6596 {
6597 	struct igc_adapter *adapter = hw->back;
6598 
6599 	pci_write_config_word(adapter->pdev, reg, *value);
6600 }
6601 
6602 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6603 {
6604 	struct igc_adapter *adapter = hw->back;
6605 
6606 	if (!pci_is_pcie(adapter->pdev))
6607 		return -IGC_ERR_CONFIG;
6608 
6609 	pcie_capability_read_word(adapter->pdev, reg, value);
6610 
6611 	return IGC_SUCCESS;
6612 }
6613 
6614 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6615 {
6616 	struct igc_adapter *adapter = hw->back;
6617 
6618 	if (!pci_is_pcie(adapter->pdev))
6619 		return -IGC_ERR_CONFIG;
6620 
6621 	pcie_capability_write_word(adapter->pdev, reg, *value);
6622 
6623 	return IGC_SUCCESS;
6624 }
6625 
6626 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6627 {
6628 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6629 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6630 	u32 value = 0;
6631 
6632 	if (IGC_REMOVED(hw_addr))
6633 		return ~value;
6634 
6635 	value = readl(&hw_addr[reg]);
6636 
6637 	/* reads should not return all F's */
6638 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6639 		struct net_device *netdev = igc->netdev;
6640 
6641 		hw->hw_addr = NULL;
6642 		netif_device_detach(netdev);
6643 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6644 		WARN(pci_device_is_present(igc->pdev),
6645 		     "igc: Failed to read reg 0x%x!\n", reg);
6646 	}
6647 
6648 	return value;
6649 }
6650 
6651 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6652 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6653 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6654 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6655 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6656 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6657 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6658 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6659 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6660 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6661 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6662 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6663 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6664 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6665 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6666 	[13] = XDP_RSS_TYPE_NONE,
6667 	[14] = XDP_RSS_TYPE_NONE,
6668 	[15] = XDP_RSS_TYPE_NONE,
6669 };
6670 
6671 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6672 			   enum xdp_rss_hash_type *rss_type)
6673 {
6674 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6675 
6676 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6677 		return -ENODATA;
6678 
6679 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6680 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6681 
6682 	return 0;
6683 }
6684 
6685 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6686 {
6687 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6688 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6689 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6690 
6691 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6692 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6693 
6694 		return 0;
6695 	}
6696 
6697 	return -ENODATA;
6698 }
6699 
6700 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6701 	.xmo_rx_hash			= igc_xdp_rx_hash,
6702 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6703 };
6704 
6705 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6706 {
6707 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6708 						   hrtimer);
6709 	unsigned long flags;
6710 	unsigned int i;
6711 
6712 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6713 
6714 	adapter->qbv_transition = true;
6715 	for (i = 0; i < adapter->num_tx_queues; i++) {
6716 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6717 
6718 		if (tx_ring->admin_gate_closed) {
6719 			tx_ring->admin_gate_closed = false;
6720 			tx_ring->oper_gate_closed = true;
6721 		} else {
6722 			tx_ring->oper_gate_closed = false;
6723 		}
6724 	}
6725 	adapter->qbv_transition = false;
6726 
6727 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6728 
6729 	return HRTIMER_NORESTART;
6730 }
6731 
6732 /**
6733  * igc_probe - Device Initialization Routine
6734  * @pdev: PCI device information struct
6735  * @ent: entry in igc_pci_tbl
6736  *
6737  * Returns 0 on success, negative on failure
6738  *
6739  * igc_probe initializes an adapter identified by a pci_dev structure.
6740  * The OS initialization, configuring the adapter private structure,
6741  * and a hardware reset occur.
6742  */
6743 static int igc_probe(struct pci_dev *pdev,
6744 		     const struct pci_device_id *ent)
6745 {
6746 	struct igc_adapter *adapter;
6747 	struct net_device *netdev;
6748 	struct igc_hw *hw;
6749 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6750 	int err;
6751 
6752 	err = pci_enable_device_mem(pdev);
6753 	if (err)
6754 		return err;
6755 
6756 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6757 	if (err) {
6758 		dev_err(&pdev->dev,
6759 			"No usable DMA configuration, aborting\n");
6760 		goto err_dma;
6761 	}
6762 
6763 	err = pci_request_mem_regions(pdev, igc_driver_name);
6764 	if (err)
6765 		goto err_pci_reg;
6766 
6767 	err = pci_enable_ptm(pdev, NULL);
6768 	if (err < 0)
6769 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6770 
6771 	pci_set_master(pdev);
6772 
6773 	err = -ENOMEM;
6774 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6775 				   IGC_MAX_TX_QUEUES);
6776 
6777 	if (!netdev)
6778 		goto err_alloc_etherdev;
6779 
6780 	SET_NETDEV_DEV(netdev, &pdev->dev);
6781 
6782 	pci_set_drvdata(pdev, netdev);
6783 	adapter = netdev_priv(netdev);
6784 	adapter->netdev = netdev;
6785 	adapter->pdev = pdev;
6786 	hw = &adapter->hw;
6787 	hw->back = adapter;
6788 	adapter->port_num = hw->bus.func;
6789 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6790 
6791 	err = pci_save_state(pdev);
6792 	if (err)
6793 		goto err_ioremap;
6794 
6795 	err = -EIO;
6796 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6797 				   pci_resource_len(pdev, 0));
6798 	if (!adapter->io_addr)
6799 		goto err_ioremap;
6800 
6801 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6802 	hw->hw_addr = adapter->io_addr;
6803 
6804 	netdev->netdev_ops = &igc_netdev_ops;
6805 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6806 	igc_ethtool_set_ops(netdev);
6807 	netdev->watchdog_timeo = 5 * HZ;
6808 
6809 	netdev->mem_start = pci_resource_start(pdev, 0);
6810 	netdev->mem_end = pci_resource_end(pdev, 0);
6811 
6812 	/* PCI config space info */
6813 	hw->vendor_id = pdev->vendor;
6814 	hw->device_id = pdev->device;
6815 	hw->revision_id = pdev->revision;
6816 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6817 	hw->subsystem_device_id = pdev->subsystem_device;
6818 
6819 	/* Copy the default MAC and PHY function pointers */
6820 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6821 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6822 
6823 	/* Initialize skew-specific constants */
6824 	err = ei->get_invariants(hw);
6825 	if (err)
6826 		goto err_sw_init;
6827 
6828 	/* Add supported features to the features list*/
6829 	netdev->features |= NETIF_F_SG;
6830 	netdev->features |= NETIF_F_TSO;
6831 	netdev->features |= NETIF_F_TSO6;
6832 	netdev->features |= NETIF_F_TSO_ECN;
6833 	netdev->features |= NETIF_F_RXHASH;
6834 	netdev->features |= NETIF_F_RXCSUM;
6835 	netdev->features |= NETIF_F_HW_CSUM;
6836 	netdev->features |= NETIF_F_SCTP_CRC;
6837 	netdev->features |= NETIF_F_HW_TC;
6838 
6839 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6840 				  NETIF_F_GSO_GRE_CSUM | \
6841 				  NETIF_F_GSO_IPXIP4 | \
6842 				  NETIF_F_GSO_IPXIP6 | \
6843 				  NETIF_F_GSO_UDP_TUNNEL | \
6844 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6845 
6846 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6847 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6848 
6849 	/* setup the private structure */
6850 	err = igc_sw_init(adapter);
6851 	if (err)
6852 		goto err_sw_init;
6853 
6854 	/* copy netdev features into list of user selectable features */
6855 	netdev->hw_features |= NETIF_F_NTUPLE;
6856 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6857 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6858 	netdev->hw_features |= netdev->features;
6859 
6860 	netdev->features |= NETIF_F_HIGHDMA;
6861 
6862 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6863 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6864 	netdev->hw_enc_features |= netdev->vlan_features;
6865 
6866 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6867 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
6868 
6869 	/* MTU range: 68 - 9216 */
6870 	netdev->min_mtu = ETH_MIN_MTU;
6871 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6872 
6873 	/* before reading the NVM, reset the controller to put the device in a
6874 	 * known good starting state
6875 	 */
6876 	hw->mac.ops.reset_hw(hw);
6877 
6878 	if (igc_get_flash_presence_i225(hw)) {
6879 		if (hw->nvm.ops.validate(hw) < 0) {
6880 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6881 			err = -EIO;
6882 			goto err_eeprom;
6883 		}
6884 	}
6885 
6886 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6887 		/* copy the MAC address out of the NVM */
6888 		if (hw->mac.ops.read_mac_addr(hw))
6889 			dev_err(&pdev->dev, "NVM Read Error\n");
6890 	}
6891 
6892 	eth_hw_addr_set(netdev, hw->mac.addr);
6893 
6894 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6895 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6896 		err = -EIO;
6897 		goto err_eeprom;
6898 	}
6899 
6900 	/* configure RXPBSIZE and TXPBSIZE */
6901 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6902 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6903 
6904 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6905 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6906 
6907 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6908 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6909 
6910 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6911 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6912 
6913 	/* Initialize link properties that are user-changeable */
6914 	adapter->fc_autoneg = true;
6915 	hw->mac.autoneg = true;
6916 	hw->phy.autoneg_advertised = 0xaf;
6917 
6918 	hw->fc.requested_mode = igc_fc_default;
6919 	hw->fc.current_mode = igc_fc_default;
6920 
6921 	/* By default, support wake on port A */
6922 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6923 
6924 	/* initialize the wol settings based on the eeprom settings */
6925 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6926 		adapter->wol |= IGC_WUFC_MAG;
6927 
6928 	device_set_wakeup_enable(&adapter->pdev->dev,
6929 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6930 
6931 	igc_ptp_init(adapter);
6932 
6933 	igc_tsn_clear_schedule(adapter);
6934 
6935 	/* reset the hardware with the new settings */
6936 	igc_reset(adapter);
6937 
6938 	/* let the f/w know that the h/w is now under the control of the
6939 	 * driver.
6940 	 */
6941 	igc_get_hw_control(adapter);
6942 
6943 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
6944 	err = register_netdev(netdev);
6945 	if (err)
6946 		goto err_register;
6947 
6948 	 /* carrier off reporting is important to ethtool even BEFORE open */
6949 	netif_carrier_off(netdev);
6950 
6951 	/* Check if Media Autosense is enabled */
6952 	adapter->ei = *ei;
6953 
6954 	/* print pcie link status and MAC address */
6955 	pcie_print_link_status(pdev);
6956 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6957 
6958 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6959 	/* Disable EEE for internal PHY devices */
6960 	hw->dev_spec._base.eee_enable = false;
6961 	adapter->flags &= ~IGC_FLAG_EEE;
6962 	igc_set_eee_i225(hw, false, false, false);
6963 
6964 	pm_runtime_put_noidle(&pdev->dev);
6965 
6966 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
6967 		err = igc_led_setup(adapter);
6968 		if (err)
6969 			goto err_register;
6970 	}
6971 
6972 	return 0;
6973 
6974 err_register:
6975 	igc_release_hw_control(adapter);
6976 err_eeprom:
6977 	if (!igc_check_reset_block(hw))
6978 		igc_reset_phy(hw);
6979 err_sw_init:
6980 	igc_clear_interrupt_scheme(adapter);
6981 	iounmap(adapter->io_addr);
6982 err_ioremap:
6983 	free_netdev(netdev);
6984 err_alloc_etherdev:
6985 	pci_release_mem_regions(pdev);
6986 err_pci_reg:
6987 err_dma:
6988 	pci_disable_device(pdev);
6989 	return err;
6990 }
6991 
6992 /**
6993  * igc_remove - Device Removal Routine
6994  * @pdev: PCI device information struct
6995  *
6996  * igc_remove is called by the PCI subsystem to alert the driver
6997  * that it should release a PCI device.  This could be caused by a
6998  * Hot-Plug event, or because the driver is going to be removed from
6999  * memory.
7000  */
7001 static void igc_remove(struct pci_dev *pdev)
7002 {
7003 	struct net_device *netdev = pci_get_drvdata(pdev);
7004 	struct igc_adapter *adapter = netdev_priv(netdev);
7005 
7006 	pm_runtime_get_noresume(&pdev->dev);
7007 
7008 	igc_flush_nfc_rules(adapter);
7009 
7010 	igc_ptp_stop(adapter);
7011 
7012 	pci_disable_ptm(pdev);
7013 	pci_clear_master(pdev);
7014 
7015 	set_bit(__IGC_DOWN, &adapter->state);
7016 
7017 	del_timer_sync(&adapter->watchdog_timer);
7018 	del_timer_sync(&adapter->phy_info_timer);
7019 
7020 	cancel_work_sync(&adapter->reset_task);
7021 	cancel_work_sync(&adapter->watchdog_task);
7022 	hrtimer_cancel(&adapter->hrtimer);
7023 
7024 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7025 	 * would have already happened in close and is redundant.
7026 	 */
7027 	igc_release_hw_control(adapter);
7028 	unregister_netdev(netdev);
7029 
7030 	igc_clear_interrupt_scheme(adapter);
7031 	pci_iounmap(pdev, adapter->io_addr);
7032 	pci_release_mem_regions(pdev);
7033 
7034 	free_netdev(netdev);
7035 
7036 	pci_disable_device(pdev);
7037 }
7038 
7039 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7040 			  bool runtime)
7041 {
7042 	struct net_device *netdev = pci_get_drvdata(pdev);
7043 	struct igc_adapter *adapter = netdev_priv(netdev);
7044 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7045 	struct igc_hw *hw = &adapter->hw;
7046 	u32 ctrl, rctl, status;
7047 	bool wake;
7048 
7049 	rtnl_lock();
7050 	netif_device_detach(netdev);
7051 
7052 	if (netif_running(netdev))
7053 		__igc_close(netdev, true);
7054 
7055 	igc_ptp_suspend(adapter);
7056 
7057 	igc_clear_interrupt_scheme(adapter);
7058 	rtnl_unlock();
7059 
7060 	status = rd32(IGC_STATUS);
7061 	if (status & IGC_STATUS_LU)
7062 		wufc &= ~IGC_WUFC_LNKC;
7063 
7064 	if (wufc) {
7065 		igc_setup_rctl(adapter);
7066 		igc_set_rx_mode(netdev);
7067 
7068 		/* turn on all-multi mode if wake on multicast is enabled */
7069 		if (wufc & IGC_WUFC_MC) {
7070 			rctl = rd32(IGC_RCTL);
7071 			rctl |= IGC_RCTL_MPE;
7072 			wr32(IGC_RCTL, rctl);
7073 		}
7074 
7075 		ctrl = rd32(IGC_CTRL);
7076 		ctrl |= IGC_CTRL_ADVD3WUC;
7077 		wr32(IGC_CTRL, ctrl);
7078 
7079 		/* Allow time for pending master requests to run */
7080 		igc_disable_pcie_master(hw);
7081 
7082 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7083 		wr32(IGC_WUFC, wufc);
7084 	} else {
7085 		wr32(IGC_WUC, 0);
7086 		wr32(IGC_WUFC, 0);
7087 	}
7088 
7089 	wake = wufc || adapter->en_mng_pt;
7090 	if (!wake)
7091 		igc_power_down_phy_copper_base(&adapter->hw);
7092 	else
7093 		igc_power_up_link(adapter);
7094 
7095 	if (enable_wake)
7096 		*enable_wake = wake;
7097 
7098 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7099 	 * would have already happened in close and is redundant.
7100 	 */
7101 	igc_release_hw_control(adapter);
7102 
7103 	pci_disable_device(pdev);
7104 
7105 	return 0;
7106 }
7107 
7108 #ifdef CONFIG_PM
7109 static int __maybe_unused igc_runtime_suspend(struct device *dev)
7110 {
7111 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7112 }
7113 
7114 static void igc_deliver_wake_packet(struct net_device *netdev)
7115 {
7116 	struct igc_adapter *adapter = netdev_priv(netdev);
7117 	struct igc_hw *hw = &adapter->hw;
7118 	struct sk_buff *skb;
7119 	u32 wupl;
7120 
7121 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7122 
7123 	/* WUPM stores only the first 128 bytes of the wake packet.
7124 	 * Read the packet only if we have the whole thing.
7125 	 */
7126 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7127 		return;
7128 
7129 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7130 	if (!skb)
7131 		return;
7132 
7133 	skb_put(skb, wupl);
7134 
7135 	/* Ensure reads are 32-bit aligned */
7136 	wupl = roundup(wupl, 4);
7137 
7138 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7139 
7140 	skb->protocol = eth_type_trans(skb, netdev);
7141 	netif_rx(skb);
7142 }
7143 
7144 static int __maybe_unused igc_resume(struct device *dev)
7145 {
7146 	struct pci_dev *pdev = to_pci_dev(dev);
7147 	struct net_device *netdev = pci_get_drvdata(pdev);
7148 	struct igc_adapter *adapter = netdev_priv(netdev);
7149 	struct igc_hw *hw = &adapter->hw;
7150 	u32 err, val;
7151 
7152 	pci_set_power_state(pdev, PCI_D0);
7153 	pci_restore_state(pdev);
7154 	pci_save_state(pdev);
7155 
7156 	if (!pci_device_is_present(pdev))
7157 		return -ENODEV;
7158 	err = pci_enable_device_mem(pdev);
7159 	if (err) {
7160 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7161 		return err;
7162 	}
7163 	pci_set_master(pdev);
7164 
7165 	pci_enable_wake(pdev, PCI_D3hot, 0);
7166 	pci_enable_wake(pdev, PCI_D3cold, 0);
7167 
7168 	if (igc_init_interrupt_scheme(adapter, true)) {
7169 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7170 		return -ENOMEM;
7171 	}
7172 
7173 	igc_reset(adapter);
7174 
7175 	/* let the f/w know that the h/w is now under the control of the
7176 	 * driver.
7177 	 */
7178 	igc_get_hw_control(adapter);
7179 
7180 	val = rd32(IGC_WUS);
7181 	if (val & WAKE_PKT_WUS)
7182 		igc_deliver_wake_packet(netdev);
7183 
7184 	wr32(IGC_WUS, ~0);
7185 
7186 	rtnl_lock();
7187 	if (!err && netif_running(netdev))
7188 		err = __igc_open(netdev, true);
7189 
7190 	if (!err)
7191 		netif_device_attach(netdev);
7192 	rtnl_unlock();
7193 
7194 	return err;
7195 }
7196 
7197 static int __maybe_unused igc_runtime_resume(struct device *dev)
7198 {
7199 	return igc_resume(dev);
7200 }
7201 
7202 static int __maybe_unused igc_suspend(struct device *dev)
7203 {
7204 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7205 }
7206 
7207 static int __maybe_unused igc_runtime_idle(struct device *dev)
7208 {
7209 	struct net_device *netdev = dev_get_drvdata(dev);
7210 	struct igc_adapter *adapter = netdev_priv(netdev);
7211 
7212 	if (!igc_has_link(adapter))
7213 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7214 
7215 	return -EBUSY;
7216 }
7217 #endif /* CONFIG_PM */
7218 
7219 static void igc_shutdown(struct pci_dev *pdev)
7220 {
7221 	bool wake;
7222 
7223 	__igc_shutdown(pdev, &wake, 0);
7224 
7225 	if (system_state == SYSTEM_POWER_OFF) {
7226 		pci_wake_from_d3(pdev, wake);
7227 		pci_set_power_state(pdev, PCI_D3hot);
7228 	}
7229 }
7230 
7231 /**
7232  *  igc_io_error_detected - called when PCI error is detected
7233  *  @pdev: Pointer to PCI device
7234  *  @state: The current PCI connection state
7235  *
7236  *  This function is called after a PCI bus error affecting
7237  *  this device has been detected.
7238  **/
7239 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7240 					      pci_channel_state_t state)
7241 {
7242 	struct net_device *netdev = pci_get_drvdata(pdev);
7243 	struct igc_adapter *adapter = netdev_priv(netdev);
7244 
7245 	netif_device_detach(netdev);
7246 
7247 	if (state == pci_channel_io_perm_failure)
7248 		return PCI_ERS_RESULT_DISCONNECT;
7249 
7250 	if (netif_running(netdev))
7251 		igc_down(adapter);
7252 	pci_disable_device(pdev);
7253 
7254 	/* Request a slot reset. */
7255 	return PCI_ERS_RESULT_NEED_RESET;
7256 }
7257 
7258 /**
7259  *  igc_io_slot_reset - called after the PCI bus has been reset.
7260  *  @pdev: Pointer to PCI device
7261  *
7262  *  Restart the card from scratch, as if from a cold-boot. Implementation
7263  *  resembles the first-half of the igc_resume routine.
7264  **/
7265 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7266 {
7267 	struct net_device *netdev = pci_get_drvdata(pdev);
7268 	struct igc_adapter *adapter = netdev_priv(netdev);
7269 	struct igc_hw *hw = &adapter->hw;
7270 	pci_ers_result_t result;
7271 
7272 	if (pci_enable_device_mem(pdev)) {
7273 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7274 		result = PCI_ERS_RESULT_DISCONNECT;
7275 	} else {
7276 		pci_set_master(pdev);
7277 		pci_restore_state(pdev);
7278 		pci_save_state(pdev);
7279 
7280 		pci_enable_wake(pdev, PCI_D3hot, 0);
7281 		pci_enable_wake(pdev, PCI_D3cold, 0);
7282 
7283 		/* In case of PCI error, adapter loses its HW address
7284 		 * so we should re-assign it here.
7285 		 */
7286 		hw->hw_addr = adapter->io_addr;
7287 
7288 		igc_reset(adapter);
7289 		wr32(IGC_WUS, ~0);
7290 		result = PCI_ERS_RESULT_RECOVERED;
7291 	}
7292 
7293 	return result;
7294 }
7295 
7296 /**
7297  *  igc_io_resume - called when traffic can start to flow again.
7298  *  @pdev: Pointer to PCI device
7299  *
7300  *  This callback is called when the error recovery driver tells us that
7301  *  its OK to resume normal operation. Implementation resembles the
7302  *  second-half of the igc_resume routine.
7303  */
7304 static void igc_io_resume(struct pci_dev *pdev)
7305 {
7306 	struct net_device *netdev = pci_get_drvdata(pdev);
7307 	struct igc_adapter *adapter = netdev_priv(netdev);
7308 
7309 	rtnl_lock();
7310 	if (netif_running(netdev)) {
7311 		if (igc_open(netdev)) {
7312 			netdev_err(netdev, "igc_open failed after reset\n");
7313 			return;
7314 		}
7315 	}
7316 
7317 	netif_device_attach(netdev);
7318 
7319 	/* let the f/w know that the h/w is now under the control of the
7320 	 * driver.
7321 	 */
7322 	igc_get_hw_control(adapter);
7323 	rtnl_unlock();
7324 }
7325 
7326 static const struct pci_error_handlers igc_err_handler = {
7327 	.error_detected = igc_io_error_detected,
7328 	.slot_reset = igc_io_slot_reset,
7329 	.resume = igc_io_resume,
7330 };
7331 
7332 #ifdef CONFIG_PM
7333 static const struct dev_pm_ops igc_pm_ops = {
7334 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7335 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7336 			   igc_runtime_idle)
7337 };
7338 #endif
7339 
7340 static struct pci_driver igc_driver = {
7341 	.name     = igc_driver_name,
7342 	.id_table = igc_pci_tbl,
7343 	.probe    = igc_probe,
7344 	.remove   = igc_remove,
7345 #ifdef CONFIG_PM
7346 	.driver.pm = &igc_pm_ops,
7347 #endif
7348 	.shutdown = igc_shutdown,
7349 	.err_handler = &igc_err_handler,
7350 };
7351 
7352 /**
7353  * igc_reinit_queues - return error
7354  * @adapter: pointer to adapter structure
7355  */
7356 int igc_reinit_queues(struct igc_adapter *adapter)
7357 {
7358 	struct net_device *netdev = adapter->netdev;
7359 	int err = 0;
7360 
7361 	if (netif_running(netdev))
7362 		igc_close(netdev);
7363 
7364 	igc_reset_interrupt_capability(adapter);
7365 
7366 	if (igc_init_interrupt_scheme(adapter, true)) {
7367 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7368 		return -ENOMEM;
7369 	}
7370 
7371 	if (netif_running(netdev))
7372 		err = igc_open(netdev);
7373 
7374 	return err;
7375 }
7376 
7377 /**
7378  * igc_get_hw_dev - return device
7379  * @hw: pointer to hardware structure
7380  *
7381  * used by hardware layer to print debugging information
7382  */
7383 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7384 {
7385 	struct igc_adapter *adapter = hw->back;
7386 
7387 	return adapter->netdev;
7388 }
7389 
7390 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7391 {
7392 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7393 	u8 idx = ring->reg_idx;
7394 	u32 rxdctl;
7395 
7396 	rxdctl = rd32(IGC_RXDCTL(idx));
7397 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7398 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7399 	wr32(IGC_RXDCTL(idx), rxdctl);
7400 }
7401 
7402 void igc_disable_rx_ring(struct igc_ring *ring)
7403 {
7404 	igc_disable_rx_ring_hw(ring);
7405 	igc_clean_rx_ring(ring);
7406 }
7407 
7408 void igc_enable_rx_ring(struct igc_ring *ring)
7409 {
7410 	struct igc_adapter *adapter = ring->q_vector->adapter;
7411 
7412 	igc_configure_rx_ring(adapter, ring);
7413 
7414 	if (ring->xsk_pool)
7415 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7416 	else
7417 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7418 }
7419 
7420 void igc_disable_tx_ring(struct igc_ring *ring)
7421 {
7422 	igc_disable_tx_ring_hw(ring);
7423 	igc_clean_tx_ring(ring);
7424 }
7425 
7426 void igc_enable_tx_ring(struct igc_ring *ring)
7427 {
7428 	struct igc_adapter *adapter = ring->q_vector->adapter;
7429 
7430 	igc_configure_tx_ring(adapter, ring);
7431 }
7432 
7433 /**
7434  * igc_init_module - Driver Registration Routine
7435  *
7436  * igc_init_module is the first routine called when the driver is
7437  * loaded. All it does is register with the PCI subsystem.
7438  */
7439 static int __init igc_init_module(void)
7440 {
7441 	int ret;
7442 
7443 	pr_info("%s\n", igc_driver_string);
7444 	pr_info("%s\n", igc_copyright);
7445 
7446 	ret = pci_register_driver(&igc_driver);
7447 	return ret;
7448 }
7449 
7450 module_init(igc_init_module);
7451 
7452 /**
7453  * igc_exit_module - Driver Exit Cleanup Routine
7454  *
7455  * igc_exit_module is called just before the driver is removed
7456  * from memory.
7457  */
7458 static void __exit igc_exit_module(void)
7459 {
7460 	pci_unregister_driver(&igc_driver);
7461 }
7462 
7463 module_exit(igc_exit_module);
7464 /* igc_main.c */
7465