xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 08df80a3c51674ab73ae770885a383ca553fbbbf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 
16 #include <net/ipv6.h>
17 
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22 
23 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
24 
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26 
27 #define IGC_XDP_PASS		0
28 #define IGC_XDP_CONSUMED	BIT(0)
29 #define IGC_XDP_TX		BIT(1)
30 #define IGC_XDP_REDIRECT	BIT(2)
31 
32 static int debug = -1;
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 		return -ENOMEM;
1097 	}
1098 
1099 	buffer->skb = skb;
1100 	buffer->protocol = 0;
1101 	buffer->bytecount = skb->len;
1102 	buffer->gso_segs = 1;
1103 	buffer->time_stamp = jiffies;
1104 	dma_unmap_len_set(buffer, len, skb->len);
1105 	dma_unmap_addr_set(buffer, dma, dma);
1106 
1107 	return 0;
1108 }
1109 
1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 					struct sk_buff *skb,
1112 					struct igc_tx_buffer *first)
1113 {
1114 	union igc_adv_tx_desc *desc;
1115 	u32 cmd_type, olinfo_status;
1116 	int err;
1117 
1118 	if (!igc_desc_unused(ring))
1119 		return -EBUSY;
1120 
1121 	err = igc_init_empty_frame(ring, first, skb);
1122 	if (err)
1123 		return err;
1124 
1125 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 		   first->bytecount;
1128 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129 
1130 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134 
1135 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136 
1137 	first->next_to_watch = desc;
1138 
1139 	ring->next_to_use++;
1140 	if (ring->next_to_use == ring->count)
1141 		ring->next_to_use = 0;
1142 
1143 	return 0;
1144 }
1145 
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147 
1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 			    __le32 launch_time, bool first_flag,
1150 			    u32 vlan_macip_lens, u32 type_tucmd,
1151 			    u32 mss_l4len_idx)
1152 {
1153 	struct igc_adv_tx_context_desc *context_desc;
1154 	u16 i = tx_ring->next_to_use;
1155 
1156 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157 
1158 	i++;
1159 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160 
1161 	/* set bits to identify this as an advanced context descriptor */
1162 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163 
1164 	/* For i225, context index must be unique per ring. */
1165 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1167 
1168 	if (first_flag)
1169 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170 
1171 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1172 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1173 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1174 	context_desc->launch_time	= launch_time;
1175 }
1176 
1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 			__le32 launch_time, bool first_flag)
1179 {
1180 	struct sk_buff *skb = first->skb;
1181 	u32 vlan_macip_lens = 0;
1182 	u32 type_tucmd = 0;
1183 
1184 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 		    !tx_ring->launchtime_enable)
1188 			return;
1189 		goto no_csum;
1190 	}
1191 
1192 	switch (skb->csum_offset) {
1193 	case offsetof(struct tcphdr, check):
1194 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 		fallthrough;
1196 	case offsetof(struct udphdr, check):
1197 		break;
1198 	case offsetof(struct sctphdr, checksum):
1199 		/* validate that this is actually an SCTP request */
1200 		if (skb_csum_is_sctp(skb)) {
1201 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 			break;
1203 		}
1204 		fallthrough;
1205 	default:
1206 		skb_checksum_help(skb);
1207 		goto csum_failed;
1208 	}
1209 
1210 	/* update TX checksum flag */
1211 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 			  skb_network_offset(skb);
1214 no_csum:
1215 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217 
1218 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 			vlan_macip_lens, type_tucmd, 0);
1220 }
1221 
1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 	struct net_device *netdev = tx_ring->netdev;
1225 
1226 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1227 
1228 	/* memory barriier comment */
1229 	smp_mb();
1230 
1231 	/* We need to check again in a case another CPU has just
1232 	 * made room available.
1233 	 */
1234 	if (igc_desc_unused(tx_ring) < size)
1235 		return -EBUSY;
1236 
1237 	/* A reprieve! */
1238 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1239 
1240 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 	tx_ring->tx_stats.restart_queue2++;
1242 	u64_stats_update_end(&tx_ring->tx_syncp2);
1243 
1244 	return 0;
1245 }
1246 
1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 	if (igc_desc_unused(tx_ring) >= size)
1250 		return 0;
1251 	return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253 
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 	(((_flag) <= (_result)) ?				\
1256 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1257 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258 
1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 	/* set type for advanced descriptor with frame checksum insertion */
1262 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 		       IGC_ADVTXD_DCMD_DEXT |
1264 		       IGC_ADVTXD_DCMD_IFCS;
1265 
1266 	/* set HW vlan bit if vlan is present */
1267 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 				 IGC_ADVTXD_DCMD_VLE);
1269 
1270 	/* set segmentation bits for TSO */
1271 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 				 (IGC_ADVTXD_DCMD_TSE));
1273 
1274 	/* set timestamp bit if present, will select the register set
1275 	 * based on the _TSTAMP(_X) bit.
1276 	 */
1277 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278 				 (IGC_ADVTXD_MAC_TSTAMP));
1279 
1280 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281 				 (IGC_ADVTXD_TSTAMP_REG_1));
1282 
1283 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284 				 (IGC_ADVTXD_TSTAMP_REG_2));
1285 
1286 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287 				 (IGC_ADVTXD_TSTAMP_REG_3));
1288 
1289 	/* insert frame checksum */
1290 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291 
1292 	return cmd_type;
1293 }
1294 
1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296 				 union igc_adv_tx_desc *tx_desc,
1297 				 u32 tx_flags, unsigned int paylen)
1298 {
1299 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300 
1301 	/* insert L4 checksum */
1302 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1303 				      (IGC_TXD_POPTS_TXSM << 8));
1304 
1305 	/* insert IPv4 checksum */
1306 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1307 				      (IGC_TXD_POPTS_IXSM << 8));
1308 
1309 	/* Use the second timer (free running, in general) for the timestamp */
1310 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1311 				      IGC_TXD_PTP2_TIMER_1);
1312 
1313 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1314 }
1315 
1316 static int igc_tx_map(struct igc_ring *tx_ring,
1317 		      struct igc_tx_buffer *first,
1318 		      const u8 hdr_len)
1319 {
1320 	struct sk_buff *skb = first->skb;
1321 	struct igc_tx_buffer *tx_buffer;
1322 	union igc_adv_tx_desc *tx_desc;
1323 	u32 tx_flags = first->tx_flags;
1324 	skb_frag_t *frag;
1325 	u16 i = tx_ring->next_to_use;
1326 	unsigned int data_len, size;
1327 	dma_addr_t dma;
1328 	u32 cmd_type;
1329 
1330 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1331 	tx_desc = IGC_TX_DESC(tx_ring, i);
1332 
1333 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1334 
1335 	size = skb_headlen(skb);
1336 	data_len = skb->data_len;
1337 
1338 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1339 
1340 	tx_buffer = first;
1341 
1342 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1343 		if (dma_mapping_error(tx_ring->dev, dma))
1344 			goto dma_error;
1345 
1346 		/* record length, and DMA address */
1347 		dma_unmap_len_set(tx_buffer, len, size);
1348 		dma_unmap_addr_set(tx_buffer, dma, dma);
1349 
1350 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1351 
1352 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1353 			tx_desc->read.cmd_type_len =
1354 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1355 
1356 			i++;
1357 			tx_desc++;
1358 			if (i == tx_ring->count) {
1359 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1360 				i = 0;
1361 			}
1362 			tx_desc->read.olinfo_status = 0;
1363 
1364 			dma += IGC_MAX_DATA_PER_TXD;
1365 			size -= IGC_MAX_DATA_PER_TXD;
1366 
1367 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1368 		}
1369 
1370 		if (likely(!data_len))
1371 			break;
1372 
1373 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1374 
1375 		i++;
1376 		tx_desc++;
1377 		if (i == tx_ring->count) {
1378 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1379 			i = 0;
1380 		}
1381 		tx_desc->read.olinfo_status = 0;
1382 
1383 		size = skb_frag_size(frag);
1384 		data_len -= size;
1385 
1386 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1387 				       size, DMA_TO_DEVICE);
1388 
1389 		tx_buffer = &tx_ring->tx_buffer_info[i];
1390 	}
1391 
1392 	/* write last descriptor with RS and EOP bits */
1393 	cmd_type |= size | IGC_TXD_DCMD;
1394 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1395 
1396 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1397 
1398 	/* set the timestamp */
1399 	first->time_stamp = jiffies;
1400 
1401 	skb_tx_timestamp(skb);
1402 
1403 	/* Force memory writes to complete before letting h/w know there
1404 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1405 	 * memory model archs, such as IA-64).
1406 	 *
1407 	 * We also need this memory barrier to make certain all of the
1408 	 * status bits have been updated before next_to_watch is written.
1409 	 */
1410 	wmb();
1411 
1412 	/* set next_to_watch value indicating a packet is present */
1413 	first->next_to_watch = tx_desc;
1414 
1415 	i++;
1416 	if (i == tx_ring->count)
1417 		i = 0;
1418 
1419 	tx_ring->next_to_use = i;
1420 
1421 	/* Make sure there is space in the ring for the next send. */
1422 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1423 
1424 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1425 		writel(i, tx_ring->tail);
1426 	}
1427 
1428 	return 0;
1429 dma_error:
1430 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1431 	tx_buffer = &tx_ring->tx_buffer_info[i];
1432 
1433 	/* clear dma mappings for failed tx_buffer_info map */
1434 	while (tx_buffer != first) {
1435 		if (dma_unmap_len(tx_buffer, len))
1436 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437 
1438 		if (i-- == 0)
1439 			i += tx_ring->count;
1440 		tx_buffer = &tx_ring->tx_buffer_info[i];
1441 	}
1442 
1443 	if (dma_unmap_len(tx_buffer, len))
1444 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1445 
1446 	dev_kfree_skb_any(tx_buffer->skb);
1447 	tx_buffer->skb = NULL;
1448 
1449 	tx_ring->next_to_use = i;
1450 
1451 	return -1;
1452 }
1453 
1454 static int igc_tso(struct igc_ring *tx_ring,
1455 		   struct igc_tx_buffer *first,
1456 		   __le32 launch_time, bool first_flag,
1457 		   u8 *hdr_len)
1458 {
1459 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1460 	struct sk_buff *skb = first->skb;
1461 	union {
1462 		struct iphdr *v4;
1463 		struct ipv6hdr *v6;
1464 		unsigned char *hdr;
1465 	} ip;
1466 	union {
1467 		struct tcphdr *tcp;
1468 		struct udphdr *udp;
1469 		unsigned char *hdr;
1470 	} l4;
1471 	u32 paylen, l4_offset;
1472 	int err;
1473 
1474 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1475 		return 0;
1476 
1477 	if (!skb_is_gso(skb))
1478 		return 0;
1479 
1480 	err = skb_cow_head(skb, 0);
1481 	if (err < 0)
1482 		return err;
1483 
1484 	ip.hdr = skb_network_header(skb);
1485 	l4.hdr = skb_checksum_start(skb);
1486 
1487 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1488 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1489 
1490 	/* initialize outer IP header fields */
1491 	if (ip.v4->version == 4) {
1492 		unsigned char *csum_start = skb_checksum_start(skb);
1493 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1494 
1495 		/* IP header will have to cancel out any data that
1496 		 * is not a part of the outer IP header
1497 		 */
1498 		ip.v4->check = csum_fold(csum_partial(trans_start,
1499 						      csum_start - trans_start,
1500 						      0));
1501 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1502 
1503 		ip.v4->tot_len = 0;
1504 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1505 				   IGC_TX_FLAGS_CSUM |
1506 				   IGC_TX_FLAGS_IPV4;
1507 	} else {
1508 		ip.v6->payload_len = 0;
1509 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1510 				   IGC_TX_FLAGS_CSUM;
1511 	}
1512 
1513 	/* determine offset of inner transport header */
1514 	l4_offset = l4.hdr - skb->data;
1515 
1516 	/* remove payload length from inner checksum */
1517 	paylen = skb->len - l4_offset;
1518 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1519 		/* compute length of segmentation header */
1520 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1521 		csum_replace_by_diff(&l4.tcp->check,
1522 				     (__force __wsum)htonl(paylen));
1523 	} else {
1524 		/* compute length of segmentation header */
1525 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1526 		csum_replace_by_diff(&l4.udp->check,
1527 				     (__force __wsum)htonl(paylen));
1528 	}
1529 
1530 	/* update gso size and bytecount with header size */
1531 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1532 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1533 
1534 	/* MSS L4LEN IDX */
1535 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1536 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1537 
1538 	/* VLAN MACLEN IPLEN */
1539 	vlan_macip_lens = l4.hdr - ip.hdr;
1540 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1541 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1542 
1543 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1544 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1545 
1546 	return 1;
1547 }
1548 
1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1550 {
1551 	int i;
1552 
1553 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1554 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1555 
1556 		if (tstamp->skb)
1557 			continue;
1558 
1559 		tstamp->skb = skb_get(skb);
1560 		tstamp->start = jiffies;
1561 		*flags = tstamp->flags;
1562 
1563 		return true;
1564 	}
1565 
1566 	return false;
1567 }
1568 
1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1570 				       struct igc_ring *tx_ring)
1571 {
1572 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1573 	bool first_flag = false, insert_empty = false;
1574 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1575 	__be16 protocol = vlan_get_protocol(skb);
1576 	struct igc_tx_buffer *first;
1577 	__le32 launch_time = 0;
1578 	u32 tx_flags = 0;
1579 	unsigned short f;
1580 	ktime_t txtime;
1581 	u8 hdr_len = 0;
1582 	int tso = 0;
1583 
1584 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1585 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1586 	 *	+ 2 desc gap to keep tail from touching head,
1587 	 *	+ 1 desc for context descriptor,
1588 	 * otherwise try next time
1589 	 */
1590 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1591 		count += TXD_USE_COUNT(skb_frag_size(
1592 						&skb_shinfo(skb)->frags[f]));
1593 
1594 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1595 		/* this is a hard error */
1596 		return NETDEV_TX_BUSY;
1597 	}
1598 
1599 	if (!tx_ring->launchtime_enable)
1600 		goto done;
1601 
1602 	txtime = skb->tstamp;
1603 	skb->tstamp = ktime_set(0, 0);
1604 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1605 
1606 	if (insert_empty) {
1607 		struct igc_tx_buffer *empty_info;
1608 		struct sk_buff *empty;
1609 		void *data;
1610 
1611 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1612 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1613 		if (!empty)
1614 			goto done;
1615 
1616 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1617 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1618 
1619 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1620 
1621 		if (igc_init_tx_empty_descriptor(tx_ring,
1622 						 empty,
1623 						 empty_info) < 0)
1624 			dev_kfree_skb_any(empty);
1625 	}
1626 
1627 done:
1628 	/* record the location of the first descriptor for this packet */
1629 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1630 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1631 	first->skb = skb;
1632 	first->bytecount = skb->len;
1633 	first->gso_segs = 1;
1634 
1635 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1636 		goto out_drop;
1637 
1638 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1639 		adapter->stats.txdrop++;
1640 		goto out_drop;
1641 	}
1642 
1643 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1644 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1645 		/* FIXME: add support for retrieving timestamps from
1646 		 * the other timer registers before skipping the
1647 		 * timestamping request.
1648 		 */
1649 		unsigned long flags;
1650 		u32 tstamp_flags;
1651 
1652 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1653 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1654 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1655 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1656 			if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1657 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1658 		} else {
1659 			adapter->tx_hwtstamp_skipped++;
1660 		}
1661 
1662 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1663 	}
1664 
1665 	if (skb_vlan_tag_present(skb)) {
1666 		tx_flags |= IGC_TX_FLAGS_VLAN;
1667 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1668 	}
1669 
1670 	/* record initial flags and protocol */
1671 	first->tx_flags = tx_flags;
1672 	first->protocol = protocol;
1673 
1674 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1675 	if (tso < 0)
1676 		goto out_drop;
1677 	else if (!tso)
1678 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1679 
1680 	igc_tx_map(tx_ring, first, hdr_len);
1681 
1682 	return NETDEV_TX_OK;
1683 
1684 out_drop:
1685 	dev_kfree_skb_any(first->skb);
1686 	first->skb = NULL;
1687 
1688 	return NETDEV_TX_OK;
1689 }
1690 
1691 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1692 						    struct sk_buff *skb)
1693 {
1694 	unsigned int r_idx = skb->queue_mapping;
1695 
1696 	if (r_idx >= adapter->num_tx_queues)
1697 		r_idx = r_idx % adapter->num_tx_queues;
1698 
1699 	return adapter->tx_ring[r_idx];
1700 }
1701 
1702 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1703 				  struct net_device *netdev)
1704 {
1705 	struct igc_adapter *adapter = netdev_priv(netdev);
1706 
1707 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1708 	 * in order to meet this minimum size requirement.
1709 	 */
1710 	if (skb->len < 17) {
1711 		if (skb_padto(skb, 17))
1712 			return NETDEV_TX_OK;
1713 		skb->len = 17;
1714 	}
1715 
1716 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1717 }
1718 
1719 static void igc_rx_checksum(struct igc_ring *ring,
1720 			    union igc_adv_rx_desc *rx_desc,
1721 			    struct sk_buff *skb)
1722 {
1723 	skb_checksum_none_assert(skb);
1724 
1725 	/* Ignore Checksum bit is set */
1726 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1727 		return;
1728 
1729 	/* Rx checksum disabled via ethtool */
1730 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1731 		return;
1732 
1733 	/* TCP/UDP checksum error bit is set */
1734 	if (igc_test_staterr(rx_desc,
1735 			     IGC_RXDEXT_STATERR_L4E |
1736 			     IGC_RXDEXT_STATERR_IPE)) {
1737 		/* work around errata with sctp packets where the TCPE aka
1738 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1739 		 * packets (aka let the stack check the crc32c)
1740 		 */
1741 		if (!(skb->len == 60 &&
1742 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1743 			u64_stats_update_begin(&ring->rx_syncp);
1744 			ring->rx_stats.csum_err++;
1745 			u64_stats_update_end(&ring->rx_syncp);
1746 		}
1747 		/* let the stack verify checksum errors */
1748 		return;
1749 	}
1750 	/* It must be a TCP or UDP packet with a valid checksum */
1751 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1752 				      IGC_RXD_STAT_UDPCS))
1753 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1754 
1755 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1756 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1757 }
1758 
1759 /* Mapping HW RSS Type to enum pkt_hash_types */
1760 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1761 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1762 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1763 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1764 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1765 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1766 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1767 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1769 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1770 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1771 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1772 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1773 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1774 	[13] = PKT_HASH_TYPE_NONE,
1775 	[14] = PKT_HASH_TYPE_NONE,
1776 	[15] = PKT_HASH_TYPE_NONE,
1777 };
1778 
1779 static inline void igc_rx_hash(struct igc_ring *ring,
1780 			       union igc_adv_rx_desc *rx_desc,
1781 			       struct sk_buff *skb)
1782 {
1783 	if (ring->netdev->features & NETIF_F_RXHASH) {
1784 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1785 		u32 rss_type = igc_rss_type(rx_desc);
1786 
1787 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1788 	}
1789 }
1790 
1791 static void igc_rx_vlan(struct igc_ring *rx_ring,
1792 			union igc_adv_rx_desc *rx_desc,
1793 			struct sk_buff *skb)
1794 {
1795 	struct net_device *dev = rx_ring->netdev;
1796 	u16 vid;
1797 
1798 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1799 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1800 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1801 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1802 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1803 		else
1804 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1805 
1806 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1807 	}
1808 }
1809 
1810 /**
1811  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1812  * @rx_ring: rx descriptor ring packet is being transacted on
1813  * @rx_desc: pointer to the EOP Rx descriptor
1814  * @skb: pointer to current skb being populated
1815  *
1816  * This function checks the ring, descriptor, and packet information in order
1817  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1818  * skb.
1819  */
1820 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1821 				   union igc_adv_rx_desc *rx_desc,
1822 				   struct sk_buff *skb)
1823 {
1824 	igc_rx_hash(rx_ring, rx_desc, skb);
1825 
1826 	igc_rx_checksum(rx_ring, rx_desc, skb);
1827 
1828 	igc_rx_vlan(rx_ring, rx_desc, skb);
1829 
1830 	skb_record_rx_queue(skb, rx_ring->queue_index);
1831 
1832 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1833 }
1834 
1835 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1836 {
1837 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1838 	struct igc_adapter *adapter = netdev_priv(netdev);
1839 	struct igc_hw *hw = &adapter->hw;
1840 	u32 ctrl;
1841 
1842 	ctrl = rd32(IGC_CTRL);
1843 
1844 	if (enable) {
1845 		/* enable VLAN tag insert/strip */
1846 		ctrl |= IGC_CTRL_VME;
1847 	} else {
1848 		/* disable VLAN tag insert/strip */
1849 		ctrl &= ~IGC_CTRL_VME;
1850 	}
1851 	wr32(IGC_CTRL, ctrl);
1852 }
1853 
1854 static void igc_restore_vlan(struct igc_adapter *adapter)
1855 {
1856 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1857 }
1858 
1859 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1860 					       const unsigned int size,
1861 					       int *rx_buffer_pgcnt)
1862 {
1863 	struct igc_rx_buffer *rx_buffer;
1864 
1865 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1866 	*rx_buffer_pgcnt =
1867 #if (PAGE_SIZE < 8192)
1868 		page_count(rx_buffer->page);
1869 #else
1870 		0;
1871 #endif
1872 	prefetchw(rx_buffer->page);
1873 
1874 	/* we are reusing so sync this buffer for CPU use */
1875 	dma_sync_single_range_for_cpu(rx_ring->dev,
1876 				      rx_buffer->dma,
1877 				      rx_buffer->page_offset,
1878 				      size,
1879 				      DMA_FROM_DEVICE);
1880 
1881 	rx_buffer->pagecnt_bias--;
1882 
1883 	return rx_buffer;
1884 }
1885 
1886 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1887 			       unsigned int truesize)
1888 {
1889 #if (PAGE_SIZE < 8192)
1890 	buffer->page_offset ^= truesize;
1891 #else
1892 	buffer->page_offset += truesize;
1893 #endif
1894 }
1895 
1896 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1897 					      unsigned int size)
1898 {
1899 	unsigned int truesize;
1900 
1901 #if (PAGE_SIZE < 8192)
1902 	truesize = igc_rx_pg_size(ring) / 2;
1903 #else
1904 	truesize = ring_uses_build_skb(ring) ?
1905 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1906 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1907 		   SKB_DATA_ALIGN(size);
1908 #endif
1909 	return truesize;
1910 }
1911 
1912 /**
1913  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1914  * @rx_ring: rx descriptor ring to transact packets on
1915  * @rx_buffer: buffer containing page to add
1916  * @skb: sk_buff to place the data into
1917  * @size: size of buffer to be added
1918  *
1919  * This function will add the data contained in rx_buffer->page to the skb.
1920  */
1921 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1922 			    struct igc_rx_buffer *rx_buffer,
1923 			    struct sk_buff *skb,
1924 			    unsigned int size)
1925 {
1926 	unsigned int truesize;
1927 
1928 #if (PAGE_SIZE < 8192)
1929 	truesize = igc_rx_pg_size(rx_ring) / 2;
1930 #else
1931 	truesize = ring_uses_build_skb(rx_ring) ?
1932 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1933 		   SKB_DATA_ALIGN(size);
1934 #endif
1935 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1936 			rx_buffer->page_offset, size, truesize);
1937 
1938 	igc_rx_buffer_flip(rx_buffer, truesize);
1939 }
1940 
1941 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1942 				     struct igc_rx_buffer *rx_buffer,
1943 				     struct xdp_buff *xdp)
1944 {
1945 	unsigned int size = xdp->data_end - xdp->data;
1946 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1947 	unsigned int metasize = xdp->data - xdp->data_meta;
1948 	struct sk_buff *skb;
1949 
1950 	/* prefetch first cache line of first page */
1951 	net_prefetch(xdp->data_meta);
1952 
1953 	/* build an skb around the page buffer */
1954 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1955 	if (unlikely(!skb))
1956 		return NULL;
1957 
1958 	/* update pointers within the skb to store the data */
1959 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1960 	__skb_put(skb, size);
1961 	if (metasize)
1962 		skb_metadata_set(skb, metasize);
1963 
1964 	igc_rx_buffer_flip(rx_buffer, truesize);
1965 	return skb;
1966 }
1967 
1968 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1969 					 struct igc_rx_buffer *rx_buffer,
1970 					 struct igc_xdp_buff *ctx)
1971 {
1972 	struct xdp_buff *xdp = &ctx->xdp;
1973 	unsigned int metasize = xdp->data - xdp->data_meta;
1974 	unsigned int size = xdp->data_end - xdp->data;
1975 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1976 	void *va = xdp->data;
1977 	unsigned int headlen;
1978 	struct sk_buff *skb;
1979 
1980 	/* prefetch first cache line of first page */
1981 	net_prefetch(xdp->data_meta);
1982 
1983 	/* allocate a skb to store the frags */
1984 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1985 			     IGC_RX_HDR_LEN + metasize);
1986 	if (unlikely(!skb))
1987 		return NULL;
1988 
1989 	if (ctx->rx_ts) {
1990 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1991 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1992 	}
1993 
1994 	/* Determine available headroom for copy */
1995 	headlen = size;
1996 	if (headlen > IGC_RX_HDR_LEN)
1997 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1998 
1999 	/* align pull length to size of long to optimize memcpy performance */
2000 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2001 	       ALIGN(headlen + metasize, sizeof(long)));
2002 
2003 	if (metasize) {
2004 		skb_metadata_set(skb, metasize);
2005 		__skb_pull(skb, metasize);
2006 	}
2007 
2008 	/* update all of the pointers */
2009 	size -= headlen;
2010 	if (size) {
2011 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2012 				(va + headlen) - page_address(rx_buffer->page),
2013 				size, truesize);
2014 		igc_rx_buffer_flip(rx_buffer, truesize);
2015 	} else {
2016 		rx_buffer->pagecnt_bias++;
2017 	}
2018 
2019 	return skb;
2020 }
2021 
2022 /**
2023  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2024  * @rx_ring: rx descriptor ring to store buffers on
2025  * @old_buff: donor buffer to have page reused
2026  *
2027  * Synchronizes page for reuse by the adapter
2028  */
2029 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2030 			      struct igc_rx_buffer *old_buff)
2031 {
2032 	u16 nta = rx_ring->next_to_alloc;
2033 	struct igc_rx_buffer *new_buff;
2034 
2035 	new_buff = &rx_ring->rx_buffer_info[nta];
2036 
2037 	/* update, and store next to alloc */
2038 	nta++;
2039 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2040 
2041 	/* Transfer page from old buffer to new buffer.
2042 	 * Move each member individually to avoid possible store
2043 	 * forwarding stalls.
2044 	 */
2045 	new_buff->dma		= old_buff->dma;
2046 	new_buff->page		= old_buff->page;
2047 	new_buff->page_offset	= old_buff->page_offset;
2048 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2049 }
2050 
2051 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2052 				  int rx_buffer_pgcnt)
2053 {
2054 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2055 	struct page *page = rx_buffer->page;
2056 
2057 	/* avoid re-using remote and pfmemalloc pages */
2058 	if (!dev_page_is_reusable(page))
2059 		return false;
2060 
2061 #if (PAGE_SIZE < 8192)
2062 	/* if we are only owner of page we can reuse it */
2063 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2064 		return false;
2065 #else
2066 #define IGC_LAST_OFFSET \
2067 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2068 
2069 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2070 		return false;
2071 #endif
2072 
2073 	/* If we have drained the page fragment pool we need to update
2074 	 * the pagecnt_bias and page count so that we fully restock the
2075 	 * number of references the driver holds.
2076 	 */
2077 	if (unlikely(pagecnt_bias == 1)) {
2078 		page_ref_add(page, USHRT_MAX - 1);
2079 		rx_buffer->pagecnt_bias = USHRT_MAX;
2080 	}
2081 
2082 	return true;
2083 }
2084 
2085 /**
2086  * igc_is_non_eop - process handling of non-EOP buffers
2087  * @rx_ring: Rx ring being processed
2088  * @rx_desc: Rx descriptor for current buffer
2089  *
2090  * This function updates next to clean.  If the buffer is an EOP buffer
2091  * this function exits returning false, otherwise it will place the
2092  * sk_buff in the next buffer to be chained and return true indicating
2093  * that this is in fact a non-EOP buffer.
2094  */
2095 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2096 			   union igc_adv_rx_desc *rx_desc)
2097 {
2098 	u32 ntc = rx_ring->next_to_clean + 1;
2099 
2100 	/* fetch, update, and store next to clean */
2101 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2102 	rx_ring->next_to_clean = ntc;
2103 
2104 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2105 
2106 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2107 		return false;
2108 
2109 	return true;
2110 }
2111 
2112 /**
2113  * igc_cleanup_headers - Correct corrupted or empty headers
2114  * @rx_ring: rx descriptor ring packet is being transacted on
2115  * @rx_desc: pointer to the EOP Rx descriptor
2116  * @skb: pointer to current skb being fixed
2117  *
2118  * Address the case where we are pulling data in on pages only
2119  * and as such no data is present in the skb header.
2120  *
2121  * In addition if skb is not at least 60 bytes we need to pad it so that
2122  * it is large enough to qualify as a valid Ethernet frame.
2123  *
2124  * Returns true if an error was encountered and skb was freed.
2125  */
2126 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2127 				union igc_adv_rx_desc *rx_desc,
2128 				struct sk_buff *skb)
2129 {
2130 	/* XDP packets use error pointer so abort at this point */
2131 	if (IS_ERR(skb))
2132 		return true;
2133 
2134 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2135 		struct net_device *netdev = rx_ring->netdev;
2136 
2137 		if (!(netdev->features & NETIF_F_RXALL)) {
2138 			dev_kfree_skb_any(skb);
2139 			return true;
2140 		}
2141 	}
2142 
2143 	/* if eth_skb_pad returns an error the skb was freed */
2144 	if (eth_skb_pad(skb))
2145 		return true;
2146 
2147 	return false;
2148 }
2149 
2150 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2151 			      struct igc_rx_buffer *rx_buffer,
2152 			      int rx_buffer_pgcnt)
2153 {
2154 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2155 		/* hand second half of page back to the ring */
2156 		igc_reuse_rx_page(rx_ring, rx_buffer);
2157 	} else {
2158 		/* We are not reusing the buffer so unmap it and free
2159 		 * any references we are holding to it
2160 		 */
2161 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2162 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2163 				     IGC_RX_DMA_ATTR);
2164 		__page_frag_cache_drain(rx_buffer->page,
2165 					rx_buffer->pagecnt_bias);
2166 	}
2167 
2168 	/* clear contents of rx_buffer */
2169 	rx_buffer->page = NULL;
2170 }
2171 
2172 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2173 {
2174 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2175 
2176 	if (ring_uses_build_skb(rx_ring))
2177 		return IGC_SKB_PAD;
2178 	if (igc_xdp_is_enabled(adapter))
2179 		return XDP_PACKET_HEADROOM;
2180 
2181 	return 0;
2182 }
2183 
2184 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2185 				  struct igc_rx_buffer *bi)
2186 {
2187 	struct page *page = bi->page;
2188 	dma_addr_t dma;
2189 
2190 	/* since we are recycling buffers we should seldom need to alloc */
2191 	if (likely(page))
2192 		return true;
2193 
2194 	/* alloc new page for storage */
2195 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2196 	if (unlikely(!page)) {
2197 		rx_ring->rx_stats.alloc_failed++;
2198 		return false;
2199 	}
2200 
2201 	/* map page for use */
2202 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2203 				 igc_rx_pg_size(rx_ring),
2204 				 DMA_FROM_DEVICE,
2205 				 IGC_RX_DMA_ATTR);
2206 
2207 	/* if mapping failed free memory back to system since
2208 	 * there isn't much point in holding memory we can't use
2209 	 */
2210 	if (dma_mapping_error(rx_ring->dev, dma)) {
2211 		__free_page(page);
2212 
2213 		rx_ring->rx_stats.alloc_failed++;
2214 		return false;
2215 	}
2216 
2217 	bi->dma = dma;
2218 	bi->page = page;
2219 	bi->page_offset = igc_rx_offset(rx_ring);
2220 	page_ref_add(page, USHRT_MAX - 1);
2221 	bi->pagecnt_bias = USHRT_MAX;
2222 
2223 	return true;
2224 }
2225 
2226 /**
2227  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2228  * @rx_ring: rx descriptor ring
2229  * @cleaned_count: number of buffers to clean
2230  */
2231 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2232 {
2233 	union igc_adv_rx_desc *rx_desc;
2234 	u16 i = rx_ring->next_to_use;
2235 	struct igc_rx_buffer *bi;
2236 	u16 bufsz;
2237 
2238 	/* nothing to do */
2239 	if (!cleaned_count)
2240 		return;
2241 
2242 	rx_desc = IGC_RX_DESC(rx_ring, i);
2243 	bi = &rx_ring->rx_buffer_info[i];
2244 	i -= rx_ring->count;
2245 
2246 	bufsz = igc_rx_bufsz(rx_ring);
2247 
2248 	do {
2249 		if (!igc_alloc_mapped_page(rx_ring, bi))
2250 			break;
2251 
2252 		/* sync the buffer for use by the device */
2253 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2254 						 bi->page_offset, bufsz,
2255 						 DMA_FROM_DEVICE);
2256 
2257 		/* Refresh the desc even if buffer_addrs didn't change
2258 		 * because each write-back erases this info.
2259 		 */
2260 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2261 
2262 		rx_desc++;
2263 		bi++;
2264 		i++;
2265 		if (unlikely(!i)) {
2266 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2267 			bi = rx_ring->rx_buffer_info;
2268 			i -= rx_ring->count;
2269 		}
2270 
2271 		/* clear the length for the next_to_use descriptor */
2272 		rx_desc->wb.upper.length = 0;
2273 
2274 		cleaned_count--;
2275 	} while (cleaned_count);
2276 
2277 	i += rx_ring->count;
2278 
2279 	if (rx_ring->next_to_use != i) {
2280 		/* record the next descriptor to use */
2281 		rx_ring->next_to_use = i;
2282 
2283 		/* update next to alloc since we have filled the ring */
2284 		rx_ring->next_to_alloc = i;
2285 
2286 		/* Force memory writes to complete before letting h/w
2287 		 * know there are new descriptors to fetch.  (Only
2288 		 * applicable for weak-ordered memory model archs,
2289 		 * such as IA-64).
2290 		 */
2291 		wmb();
2292 		writel(i, rx_ring->tail);
2293 	}
2294 }
2295 
2296 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2297 {
2298 	union igc_adv_rx_desc *desc;
2299 	u16 i = ring->next_to_use;
2300 	struct igc_rx_buffer *bi;
2301 	dma_addr_t dma;
2302 	bool ok = true;
2303 
2304 	if (!count)
2305 		return ok;
2306 
2307 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2308 
2309 	desc = IGC_RX_DESC(ring, i);
2310 	bi = &ring->rx_buffer_info[i];
2311 	i -= ring->count;
2312 
2313 	do {
2314 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2315 		if (!bi->xdp) {
2316 			ok = false;
2317 			break;
2318 		}
2319 
2320 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2321 		desc->read.pkt_addr = cpu_to_le64(dma);
2322 
2323 		desc++;
2324 		bi++;
2325 		i++;
2326 		if (unlikely(!i)) {
2327 			desc = IGC_RX_DESC(ring, 0);
2328 			bi = ring->rx_buffer_info;
2329 			i -= ring->count;
2330 		}
2331 
2332 		/* Clear the length for the next_to_use descriptor. */
2333 		desc->wb.upper.length = 0;
2334 
2335 		count--;
2336 	} while (count);
2337 
2338 	i += ring->count;
2339 
2340 	if (ring->next_to_use != i) {
2341 		ring->next_to_use = i;
2342 
2343 		/* Force memory writes to complete before letting h/w
2344 		 * know there are new descriptors to fetch.  (Only
2345 		 * applicable for weak-ordered memory model archs,
2346 		 * such as IA-64).
2347 		 */
2348 		wmb();
2349 		writel(i, ring->tail);
2350 	}
2351 
2352 	return ok;
2353 }
2354 
2355 /* This function requires __netif_tx_lock is held by the caller. */
2356 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2357 				      struct xdp_frame *xdpf)
2358 {
2359 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2360 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2361 	u16 count, index = ring->next_to_use;
2362 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2363 	struct igc_tx_buffer *buffer = head;
2364 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2365 	u32 olinfo_status, len = xdpf->len, cmd_type;
2366 	void *data = xdpf->data;
2367 	u16 i;
2368 
2369 	count = TXD_USE_COUNT(len);
2370 	for (i = 0; i < nr_frags; i++)
2371 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2372 
2373 	if (igc_maybe_stop_tx(ring, count + 3)) {
2374 		/* this is a hard error */
2375 		return -EBUSY;
2376 	}
2377 
2378 	i = 0;
2379 	head->bytecount = xdp_get_frame_len(xdpf);
2380 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2381 	head->gso_segs = 1;
2382 	head->xdpf = xdpf;
2383 
2384 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2385 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2386 
2387 	for (;;) {
2388 		dma_addr_t dma;
2389 
2390 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2391 		if (dma_mapping_error(ring->dev, dma)) {
2392 			netdev_err_once(ring->netdev,
2393 					"Failed to map DMA for TX\n");
2394 			goto unmap;
2395 		}
2396 
2397 		dma_unmap_len_set(buffer, len, len);
2398 		dma_unmap_addr_set(buffer, dma, dma);
2399 
2400 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2401 			   IGC_ADVTXD_DCMD_IFCS | len;
2402 
2403 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2404 		desc->read.buffer_addr = cpu_to_le64(dma);
2405 
2406 		buffer->protocol = 0;
2407 
2408 		if (++index == ring->count)
2409 			index = 0;
2410 
2411 		if (i == nr_frags)
2412 			break;
2413 
2414 		buffer = &ring->tx_buffer_info[index];
2415 		desc = IGC_TX_DESC(ring, index);
2416 		desc->read.olinfo_status = 0;
2417 
2418 		data = skb_frag_address(&sinfo->frags[i]);
2419 		len = skb_frag_size(&sinfo->frags[i]);
2420 		i++;
2421 	}
2422 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2423 
2424 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2425 	/* set the timestamp */
2426 	head->time_stamp = jiffies;
2427 	/* set next_to_watch value indicating a packet is present */
2428 	head->next_to_watch = desc;
2429 	ring->next_to_use = index;
2430 
2431 	return 0;
2432 
2433 unmap:
2434 	for (;;) {
2435 		buffer = &ring->tx_buffer_info[index];
2436 		if (dma_unmap_len(buffer, len))
2437 			dma_unmap_page(ring->dev,
2438 				       dma_unmap_addr(buffer, dma),
2439 				       dma_unmap_len(buffer, len),
2440 				       DMA_TO_DEVICE);
2441 		dma_unmap_len_set(buffer, len, 0);
2442 		if (buffer == head)
2443 			break;
2444 
2445 		if (!index)
2446 			index += ring->count;
2447 		index--;
2448 	}
2449 
2450 	return -ENOMEM;
2451 }
2452 
2453 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2454 					    int cpu)
2455 {
2456 	int index = cpu;
2457 
2458 	if (unlikely(index < 0))
2459 		index = 0;
2460 
2461 	while (index >= adapter->num_tx_queues)
2462 		index -= adapter->num_tx_queues;
2463 
2464 	return adapter->tx_ring[index];
2465 }
2466 
2467 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2468 {
2469 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2470 	int cpu = smp_processor_id();
2471 	struct netdev_queue *nq;
2472 	struct igc_ring *ring;
2473 	int res;
2474 
2475 	if (unlikely(!xdpf))
2476 		return -EFAULT;
2477 
2478 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2479 	nq = txring_txq(ring);
2480 
2481 	__netif_tx_lock(nq, cpu);
2482 	/* Avoid transmit queue timeout since we share it with the slow path */
2483 	txq_trans_cond_update(nq);
2484 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2485 	__netif_tx_unlock(nq);
2486 	return res;
2487 }
2488 
2489 /* This function assumes rcu_read_lock() is held by the caller. */
2490 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2491 			      struct bpf_prog *prog,
2492 			      struct xdp_buff *xdp)
2493 {
2494 	u32 act = bpf_prog_run_xdp(prog, xdp);
2495 
2496 	switch (act) {
2497 	case XDP_PASS:
2498 		return IGC_XDP_PASS;
2499 	case XDP_TX:
2500 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2501 			goto out_failure;
2502 		return IGC_XDP_TX;
2503 	case XDP_REDIRECT:
2504 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2505 			goto out_failure;
2506 		return IGC_XDP_REDIRECT;
2507 		break;
2508 	default:
2509 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2510 		fallthrough;
2511 	case XDP_ABORTED:
2512 out_failure:
2513 		trace_xdp_exception(adapter->netdev, prog, act);
2514 		fallthrough;
2515 	case XDP_DROP:
2516 		return IGC_XDP_CONSUMED;
2517 	}
2518 }
2519 
2520 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2521 					struct xdp_buff *xdp)
2522 {
2523 	struct bpf_prog *prog;
2524 	int res;
2525 
2526 	prog = READ_ONCE(adapter->xdp_prog);
2527 	if (!prog) {
2528 		res = IGC_XDP_PASS;
2529 		goto out;
2530 	}
2531 
2532 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2533 
2534 out:
2535 	return ERR_PTR(-res);
2536 }
2537 
2538 /* This function assumes __netif_tx_lock is held by the caller. */
2539 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2540 {
2541 	/* Once tail pointer is updated, hardware can fetch the descriptors
2542 	 * any time so we issue a write membar here to ensure all memory
2543 	 * writes are complete before the tail pointer is updated.
2544 	 */
2545 	wmb();
2546 	writel(ring->next_to_use, ring->tail);
2547 }
2548 
2549 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2550 {
2551 	int cpu = smp_processor_id();
2552 	struct netdev_queue *nq;
2553 	struct igc_ring *ring;
2554 
2555 	if (status & IGC_XDP_TX) {
2556 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2557 		nq = txring_txq(ring);
2558 
2559 		__netif_tx_lock(nq, cpu);
2560 		igc_flush_tx_descriptors(ring);
2561 		__netif_tx_unlock(nq);
2562 	}
2563 
2564 	if (status & IGC_XDP_REDIRECT)
2565 		xdp_do_flush();
2566 }
2567 
2568 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2569 				unsigned int packets, unsigned int bytes)
2570 {
2571 	struct igc_ring *ring = q_vector->rx.ring;
2572 
2573 	u64_stats_update_begin(&ring->rx_syncp);
2574 	ring->rx_stats.packets += packets;
2575 	ring->rx_stats.bytes += bytes;
2576 	u64_stats_update_end(&ring->rx_syncp);
2577 
2578 	q_vector->rx.total_packets += packets;
2579 	q_vector->rx.total_bytes += bytes;
2580 }
2581 
2582 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2583 {
2584 	unsigned int total_bytes = 0, total_packets = 0;
2585 	struct igc_adapter *adapter = q_vector->adapter;
2586 	struct igc_ring *rx_ring = q_vector->rx.ring;
2587 	struct sk_buff *skb = rx_ring->skb;
2588 	u16 cleaned_count = igc_desc_unused(rx_ring);
2589 	int xdp_status = 0, rx_buffer_pgcnt;
2590 
2591 	while (likely(total_packets < budget)) {
2592 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2593 		struct igc_rx_buffer *rx_buffer;
2594 		union igc_adv_rx_desc *rx_desc;
2595 		unsigned int size, truesize;
2596 		int pkt_offset = 0;
2597 		void *pktbuf;
2598 
2599 		/* return some buffers to hardware, one at a time is too slow */
2600 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2601 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2602 			cleaned_count = 0;
2603 		}
2604 
2605 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2606 		size = le16_to_cpu(rx_desc->wb.upper.length);
2607 		if (!size)
2608 			break;
2609 
2610 		/* This memory barrier is needed to keep us from reading
2611 		 * any other fields out of the rx_desc until we know the
2612 		 * descriptor has been written back
2613 		 */
2614 		dma_rmb();
2615 
2616 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2617 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2618 
2619 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2620 
2621 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2622 			ctx.rx_ts = pktbuf;
2623 			pkt_offset = IGC_TS_HDR_LEN;
2624 			size -= IGC_TS_HDR_LEN;
2625 		}
2626 
2627 		if (!skb) {
2628 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2629 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2630 					 igc_rx_offset(rx_ring) + pkt_offset,
2631 					 size, true);
2632 			xdp_buff_clear_frags_flag(&ctx.xdp);
2633 			ctx.rx_desc = rx_desc;
2634 
2635 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2636 		}
2637 
2638 		if (IS_ERR(skb)) {
2639 			unsigned int xdp_res = -PTR_ERR(skb);
2640 
2641 			switch (xdp_res) {
2642 			case IGC_XDP_CONSUMED:
2643 				rx_buffer->pagecnt_bias++;
2644 				break;
2645 			case IGC_XDP_TX:
2646 			case IGC_XDP_REDIRECT:
2647 				igc_rx_buffer_flip(rx_buffer, truesize);
2648 				xdp_status |= xdp_res;
2649 				break;
2650 			}
2651 
2652 			total_packets++;
2653 			total_bytes += size;
2654 		} else if (skb)
2655 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2656 		else if (ring_uses_build_skb(rx_ring))
2657 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2658 		else
2659 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2660 
2661 		/* exit if we failed to retrieve a buffer */
2662 		if (!skb) {
2663 			rx_ring->rx_stats.alloc_failed++;
2664 			rx_buffer->pagecnt_bias++;
2665 			break;
2666 		}
2667 
2668 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2669 		cleaned_count++;
2670 
2671 		/* fetch next buffer in frame if non-eop */
2672 		if (igc_is_non_eop(rx_ring, rx_desc))
2673 			continue;
2674 
2675 		/* verify the packet layout is correct */
2676 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2677 			skb = NULL;
2678 			continue;
2679 		}
2680 
2681 		/* probably a little skewed due to removing CRC */
2682 		total_bytes += skb->len;
2683 
2684 		/* populate checksum, VLAN, and protocol */
2685 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2686 
2687 		napi_gro_receive(&q_vector->napi, skb);
2688 
2689 		/* reset skb pointer */
2690 		skb = NULL;
2691 
2692 		/* update budget accounting */
2693 		total_packets++;
2694 	}
2695 
2696 	if (xdp_status)
2697 		igc_finalize_xdp(adapter, xdp_status);
2698 
2699 	/* place incomplete frames back on ring for completion */
2700 	rx_ring->skb = skb;
2701 
2702 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2703 
2704 	if (cleaned_count)
2705 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2706 
2707 	return total_packets;
2708 }
2709 
2710 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2711 					    struct xdp_buff *xdp)
2712 {
2713 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2714 	unsigned int metasize = xdp->data - xdp->data_meta;
2715 	struct sk_buff *skb;
2716 
2717 	net_prefetch(xdp->data_meta);
2718 
2719 	skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2720 			       GFP_ATOMIC | __GFP_NOWARN);
2721 	if (unlikely(!skb))
2722 		return NULL;
2723 
2724 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2725 	       ALIGN(totalsize, sizeof(long)));
2726 
2727 	if (metasize) {
2728 		skb_metadata_set(skb, metasize);
2729 		__skb_pull(skb, metasize);
2730 	}
2731 
2732 	return skb;
2733 }
2734 
2735 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2736 				union igc_adv_rx_desc *desc,
2737 				struct xdp_buff *xdp,
2738 				ktime_t timestamp)
2739 {
2740 	struct igc_ring *ring = q_vector->rx.ring;
2741 	struct sk_buff *skb;
2742 
2743 	skb = igc_construct_skb_zc(ring, xdp);
2744 	if (!skb) {
2745 		ring->rx_stats.alloc_failed++;
2746 		return;
2747 	}
2748 
2749 	if (timestamp)
2750 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2751 
2752 	if (igc_cleanup_headers(ring, desc, skb))
2753 		return;
2754 
2755 	igc_process_skb_fields(ring, desc, skb);
2756 	napi_gro_receive(&q_vector->napi, skb);
2757 }
2758 
2759 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2760 {
2761 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2762 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2763 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2764 	 */
2765        return (struct igc_xdp_buff *)xdp;
2766 }
2767 
2768 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2769 {
2770 	struct igc_adapter *adapter = q_vector->adapter;
2771 	struct igc_ring *ring = q_vector->rx.ring;
2772 	u16 cleaned_count = igc_desc_unused(ring);
2773 	int total_bytes = 0, total_packets = 0;
2774 	u16 ntc = ring->next_to_clean;
2775 	struct bpf_prog *prog;
2776 	bool failure = false;
2777 	int xdp_status = 0;
2778 
2779 	rcu_read_lock();
2780 
2781 	prog = READ_ONCE(adapter->xdp_prog);
2782 
2783 	while (likely(total_packets < budget)) {
2784 		union igc_adv_rx_desc *desc;
2785 		struct igc_rx_buffer *bi;
2786 		struct igc_xdp_buff *ctx;
2787 		ktime_t timestamp = 0;
2788 		unsigned int size;
2789 		int res;
2790 
2791 		desc = IGC_RX_DESC(ring, ntc);
2792 		size = le16_to_cpu(desc->wb.upper.length);
2793 		if (!size)
2794 			break;
2795 
2796 		/* This memory barrier is needed to keep us from reading
2797 		 * any other fields out of the rx_desc until we know the
2798 		 * descriptor has been written back
2799 		 */
2800 		dma_rmb();
2801 
2802 		bi = &ring->rx_buffer_info[ntc];
2803 
2804 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2805 		ctx->rx_desc = desc;
2806 
2807 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2808 			ctx->rx_ts = bi->xdp->data;
2809 
2810 			bi->xdp->data += IGC_TS_HDR_LEN;
2811 
2812 			/* HW timestamp has been copied into local variable. Metadata
2813 			 * length when XDP program is called should be 0.
2814 			 */
2815 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2816 			size -= IGC_TS_HDR_LEN;
2817 		}
2818 
2819 		bi->xdp->data_end = bi->xdp->data + size;
2820 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2821 
2822 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2823 		switch (res) {
2824 		case IGC_XDP_PASS:
2825 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2826 			fallthrough;
2827 		case IGC_XDP_CONSUMED:
2828 			xsk_buff_free(bi->xdp);
2829 			break;
2830 		case IGC_XDP_TX:
2831 		case IGC_XDP_REDIRECT:
2832 			xdp_status |= res;
2833 			break;
2834 		}
2835 
2836 		bi->xdp = NULL;
2837 		total_bytes += size;
2838 		total_packets++;
2839 		cleaned_count++;
2840 		ntc++;
2841 		if (ntc == ring->count)
2842 			ntc = 0;
2843 	}
2844 
2845 	ring->next_to_clean = ntc;
2846 	rcu_read_unlock();
2847 
2848 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2849 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2850 
2851 	if (xdp_status)
2852 		igc_finalize_xdp(adapter, xdp_status);
2853 
2854 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2855 
2856 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2857 		if (failure || ring->next_to_clean == ring->next_to_use)
2858 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2859 		else
2860 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2861 		return total_packets;
2862 	}
2863 
2864 	return failure ? budget : total_packets;
2865 }
2866 
2867 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2868 				unsigned int packets, unsigned int bytes)
2869 {
2870 	struct igc_ring *ring = q_vector->tx.ring;
2871 
2872 	u64_stats_update_begin(&ring->tx_syncp);
2873 	ring->tx_stats.bytes += bytes;
2874 	ring->tx_stats.packets += packets;
2875 	u64_stats_update_end(&ring->tx_syncp);
2876 
2877 	q_vector->tx.total_bytes += bytes;
2878 	q_vector->tx.total_packets += packets;
2879 }
2880 
2881 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2882 {
2883 	struct xsk_buff_pool *pool = ring->xsk_pool;
2884 	struct netdev_queue *nq = txring_txq(ring);
2885 	union igc_adv_tx_desc *tx_desc = NULL;
2886 	int cpu = smp_processor_id();
2887 	struct xdp_desc xdp_desc;
2888 	u16 budget, ntu;
2889 
2890 	if (!netif_carrier_ok(ring->netdev))
2891 		return;
2892 
2893 	__netif_tx_lock(nq, cpu);
2894 
2895 	/* Avoid transmit queue timeout since we share it with the slow path */
2896 	txq_trans_cond_update(nq);
2897 
2898 	ntu = ring->next_to_use;
2899 	budget = igc_desc_unused(ring);
2900 
2901 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2902 		u32 cmd_type, olinfo_status;
2903 		struct igc_tx_buffer *bi;
2904 		dma_addr_t dma;
2905 
2906 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2907 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2908 			   xdp_desc.len;
2909 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2910 
2911 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2912 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2913 
2914 		tx_desc = IGC_TX_DESC(ring, ntu);
2915 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2916 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2917 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2918 
2919 		bi = &ring->tx_buffer_info[ntu];
2920 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2921 		bi->protocol = 0;
2922 		bi->bytecount = xdp_desc.len;
2923 		bi->gso_segs = 1;
2924 		bi->time_stamp = jiffies;
2925 		bi->next_to_watch = tx_desc;
2926 
2927 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2928 
2929 		ntu++;
2930 		if (ntu == ring->count)
2931 			ntu = 0;
2932 	}
2933 
2934 	ring->next_to_use = ntu;
2935 	if (tx_desc) {
2936 		igc_flush_tx_descriptors(ring);
2937 		xsk_tx_release(pool);
2938 	}
2939 
2940 	__netif_tx_unlock(nq);
2941 }
2942 
2943 /**
2944  * igc_clean_tx_irq - Reclaim resources after transmit completes
2945  * @q_vector: pointer to q_vector containing needed info
2946  * @napi_budget: Used to determine if we are in netpoll
2947  *
2948  * returns true if ring is completely cleaned
2949  */
2950 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2951 {
2952 	struct igc_adapter *adapter = q_vector->adapter;
2953 	unsigned int total_bytes = 0, total_packets = 0;
2954 	unsigned int budget = q_vector->tx.work_limit;
2955 	struct igc_ring *tx_ring = q_vector->tx.ring;
2956 	unsigned int i = tx_ring->next_to_clean;
2957 	struct igc_tx_buffer *tx_buffer;
2958 	union igc_adv_tx_desc *tx_desc;
2959 	u32 xsk_frames = 0;
2960 
2961 	if (test_bit(__IGC_DOWN, &adapter->state))
2962 		return true;
2963 
2964 	tx_buffer = &tx_ring->tx_buffer_info[i];
2965 	tx_desc = IGC_TX_DESC(tx_ring, i);
2966 	i -= tx_ring->count;
2967 
2968 	do {
2969 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2970 
2971 		/* if next_to_watch is not set then there is no work pending */
2972 		if (!eop_desc)
2973 			break;
2974 
2975 		/* prevent any other reads prior to eop_desc */
2976 		smp_rmb();
2977 
2978 		/* if DD is not set pending work has not been completed */
2979 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2980 			break;
2981 
2982 		/* clear next_to_watch to prevent false hangs */
2983 		tx_buffer->next_to_watch = NULL;
2984 
2985 		/* update the statistics for this packet */
2986 		total_bytes += tx_buffer->bytecount;
2987 		total_packets += tx_buffer->gso_segs;
2988 
2989 		switch (tx_buffer->type) {
2990 		case IGC_TX_BUFFER_TYPE_XSK:
2991 			xsk_frames++;
2992 			break;
2993 		case IGC_TX_BUFFER_TYPE_XDP:
2994 			xdp_return_frame(tx_buffer->xdpf);
2995 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2996 			break;
2997 		case IGC_TX_BUFFER_TYPE_SKB:
2998 			napi_consume_skb(tx_buffer->skb, napi_budget);
2999 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3000 			break;
3001 		default:
3002 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3003 			break;
3004 		}
3005 
3006 		/* clear last DMA location and unmap remaining buffers */
3007 		while (tx_desc != eop_desc) {
3008 			tx_buffer++;
3009 			tx_desc++;
3010 			i++;
3011 			if (unlikely(!i)) {
3012 				i -= tx_ring->count;
3013 				tx_buffer = tx_ring->tx_buffer_info;
3014 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3015 			}
3016 
3017 			/* unmap any remaining paged data */
3018 			if (dma_unmap_len(tx_buffer, len))
3019 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3020 		}
3021 
3022 		/* move us one more past the eop_desc for start of next pkt */
3023 		tx_buffer++;
3024 		tx_desc++;
3025 		i++;
3026 		if (unlikely(!i)) {
3027 			i -= tx_ring->count;
3028 			tx_buffer = tx_ring->tx_buffer_info;
3029 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3030 		}
3031 
3032 		/* issue prefetch for next Tx descriptor */
3033 		prefetch(tx_desc);
3034 
3035 		/* update budget accounting */
3036 		budget--;
3037 	} while (likely(budget));
3038 
3039 	netdev_tx_completed_queue(txring_txq(tx_ring),
3040 				  total_packets, total_bytes);
3041 
3042 	i += tx_ring->count;
3043 	tx_ring->next_to_clean = i;
3044 
3045 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3046 
3047 	if (tx_ring->xsk_pool) {
3048 		if (xsk_frames)
3049 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3050 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3051 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3052 		igc_xdp_xmit_zc(tx_ring);
3053 	}
3054 
3055 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3056 		struct igc_hw *hw = &adapter->hw;
3057 
3058 		/* Detect a transmit hang in hardware, this serializes the
3059 		 * check with the clearing of time_stamp and movement of i
3060 		 */
3061 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3062 		if (tx_buffer->next_to_watch &&
3063 		    time_after(jiffies, tx_buffer->time_stamp +
3064 		    (adapter->tx_timeout_factor * HZ)) &&
3065 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3066 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3067 		    !tx_ring->oper_gate_closed) {
3068 			/* detected Tx unit hang */
3069 			netdev_err(tx_ring->netdev,
3070 				   "Detected Tx Unit Hang\n"
3071 				   "  Tx Queue             <%d>\n"
3072 				   "  TDH                  <%x>\n"
3073 				   "  TDT                  <%x>\n"
3074 				   "  next_to_use          <%x>\n"
3075 				   "  next_to_clean        <%x>\n"
3076 				   "buffer_info[next_to_clean]\n"
3077 				   "  time_stamp           <%lx>\n"
3078 				   "  next_to_watch        <%p>\n"
3079 				   "  jiffies              <%lx>\n"
3080 				   "  desc.status          <%x>\n",
3081 				   tx_ring->queue_index,
3082 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3083 				   readl(tx_ring->tail),
3084 				   tx_ring->next_to_use,
3085 				   tx_ring->next_to_clean,
3086 				   tx_buffer->time_stamp,
3087 				   tx_buffer->next_to_watch,
3088 				   jiffies,
3089 				   tx_buffer->next_to_watch->wb.status);
3090 			netif_stop_subqueue(tx_ring->netdev,
3091 					    tx_ring->queue_index);
3092 
3093 			/* we are about to reset, no point in enabling stuff */
3094 			return true;
3095 		}
3096 	}
3097 
3098 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3099 	if (unlikely(total_packets &&
3100 		     netif_carrier_ok(tx_ring->netdev) &&
3101 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3102 		/* Make sure that anybody stopping the queue after this
3103 		 * sees the new next_to_clean.
3104 		 */
3105 		smp_mb();
3106 		if (__netif_subqueue_stopped(tx_ring->netdev,
3107 					     tx_ring->queue_index) &&
3108 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3109 			netif_wake_subqueue(tx_ring->netdev,
3110 					    tx_ring->queue_index);
3111 
3112 			u64_stats_update_begin(&tx_ring->tx_syncp);
3113 			tx_ring->tx_stats.restart_queue++;
3114 			u64_stats_update_end(&tx_ring->tx_syncp);
3115 		}
3116 	}
3117 
3118 	return !!budget;
3119 }
3120 
3121 static int igc_find_mac_filter(struct igc_adapter *adapter,
3122 			       enum igc_mac_filter_type type, const u8 *addr)
3123 {
3124 	struct igc_hw *hw = &adapter->hw;
3125 	int max_entries = hw->mac.rar_entry_count;
3126 	u32 ral, rah;
3127 	int i;
3128 
3129 	for (i = 0; i < max_entries; i++) {
3130 		ral = rd32(IGC_RAL(i));
3131 		rah = rd32(IGC_RAH(i));
3132 
3133 		if (!(rah & IGC_RAH_AV))
3134 			continue;
3135 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3136 			continue;
3137 		if ((rah & IGC_RAH_RAH_MASK) !=
3138 		    le16_to_cpup((__le16 *)(addr + 4)))
3139 			continue;
3140 		if (ral != le32_to_cpup((__le32 *)(addr)))
3141 			continue;
3142 
3143 		return i;
3144 	}
3145 
3146 	return -1;
3147 }
3148 
3149 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3150 {
3151 	struct igc_hw *hw = &adapter->hw;
3152 	int max_entries = hw->mac.rar_entry_count;
3153 	u32 rah;
3154 	int i;
3155 
3156 	for (i = 0; i < max_entries; i++) {
3157 		rah = rd32(IGC_RAH(i));
3158 
3159 		if (!(rah & IGC_RAH_AV))
3160 			return i;
3161 	}
3162 
3163 	return -1;
3164 }
3165 
3166 /**
3167  * igc_add_mac_filter() - Add MAC address filter
3168  * @adapter: Pointer to adapter where the filter should be added
3169  * @type: MAC address filter type (source or destination)
3170  * @addr: MAC address
3171  * @queue: If non-negative, queue assignment feature is enabled and frames
3172  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3173  *         assignment is disabled.
3174  *
3175  * Return: 0 in case of success, negative errno code otherwise.
3176  */
3177 static int igc_add_mac_filter(struct igc_adapter *adapter,
3178 			      enum igc_mac_filter_type type, const u8 *addr,
3179 			      int queue)
3180 {
3181 	struct net_device *dev = adapter->netdev;
3182 	int index;
3183 
3184 	index = igc_find_mac_filter(adapter, type, addr);
3185 	if (index >= 0)
3186 		goto update_filter;
3187 
3188 	index = igc_get_avail_mac_filter_slot(adapter);
3189 	if (index < 0)
3190 		return -ENOSPC;
3191 
3192 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3193 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3194 		   addr, queue);
3195 
3196 update_filter:
3197 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3198 	return 0;
3199 }
3200 
3201 /**
3202  * igc_del_mac_filter() - Delete MAC address filter
3203  * @adapter: Pointer to adapter where the filter should be deleted from
3204  * @type: MAC address filter type (source or destination)
3205  * @addr: MAC address
3206  */
3207 static void igc_del_mac_filter(struct igc_adapter *adapter,
3208 			       enum igc_mac_filter_type type, const u8 *addr)
3209 {
3210 	struct net_device *dev = adapter->netdev;
3211 	int index;
3212 
3213 	index = igc_find_mac_filter(adapter, type, addr);
3214 	if (index < 0)
3215 		return;
3216 
3217 	if (index == 0) {
3218 		/* If this is the default filter, we don't actually delete it.
3219 		 * We just reset to its default value i.e. disable queue
3220 		 * assignment.
3221 		 */
3222 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3223 
3224 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3225 	} else {
3226 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3227 			   index,
3228 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3229 			   addr);
3230 
3231 		igc_clear_mac_filter_hw(adapter, index);
3232 	}
3233 }
3234 
3235 /**
3236  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3237  * @adapter: Pointer to adapter where the filter should be added
3238  * @prio: VLAN priority value
3239  * @queue: Queue number which matching frames are assigned to
3240  *
3241  * Return: 0 in case of success, negative errno code otherwise.
3242  */
3243 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3244 				    int queue)
3245 {
3246 	struct net_device *dev = adapter->netdev;
3247 	struct igc_hw *hw = &adapter->hw;
3248 	u32 vlanpqf;
3249 
3250 	vlanpqf = rd32(IGC_VLANPQF);
3251 
3252 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3253 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3254 		return -EEXIST;
3255 	}
3256 
3257 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3258 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3259 
3260 	wr32(IGC_VLANPQF, vlanpqf);
3261 
3262 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3263 		   prio, queue);
3264 	return 0;
3265 }
3266 
3267 /**
3268  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3269  * @adapter: Pointer to adapter where the filter should be deleted from
3270  * @prio: VLAN priority value
3271  */
3272 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3273 {
3274 	struct igc_hw *hw = &adapter->hw;
3275 	u32 vlanpqf;
3276 
3277 	vlanpqf = rd32(IGC_VLANPQF);
3278 
3279 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3280 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3281 
3282 	wr32(IGC_VLANPQF, vlanpqf);
3283 
3284 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3285 		   prio);
3286 }
3287 
3288 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3289 {
3290 	struct igc_hw *hw = &adapter->hw;
3291 	int i;
3292 
3293 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3294 		u32 etqf = rd32(IGC_ETQF(i));
3295 
3296 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3297 			return i;
3298 	}
3299 
3300 	return -1;
3301 }
3302 
3303 /**
3304  * igc_add_etype_filter() - Add ethertype filter
3305  * @adapter: Pointer to adapter where the filter should be added
3306  * @etype: Ethertype value
3307  * @queue: If non-negative, queue assignment feature is enabled and frames
3308  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3309  *         assignment is disabled.
3310  *
3311  * Return: 0 in case of success, negative errno code otherwise.
3312  */
3313 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3314 				int queue)
3315 {
3316 	struct igc_hw *hw = &adapter->hw;
3317 	int index;
3318 	u32 etqf;
3319 
3320 	index = igc_get_avail_etype_filter_slot(adapter);
3321 	if (index < 0)
3322 		return -ENOSPC;
3323 
3324 	etqf = rd32(IGC_ETQF(index));
3325 
3326 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3327 	etqf |= etype;
3328 
3329 	if (queue >= 0) {
3330 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3331 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3332 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3333 	}
3334 
3335 	etqf |= IGC_ETQF_FILTER_ENABLE;
3336 
3337 	wr32(IGC_ETQF(index), etqf);
3338 
3339 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3340 		   etype, queue);
3341 	return 0;
3342 }
3343 
3344 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3345 {
3346 	struct igc_hw *hw = &adapter->hw;
3347 	int i;
3348 
3349 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3350 		u32 etqf = rd32(IGC_ETQF(i));
3351 
3352 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3353 			return i;
3354 	}
3355 
3356 	return -1;
3357 }
3358 
3359 /**
3360  * igc_del_etype_filter() - Delete ethertype filter
3361  * @adapter: Pointer to adapter where the filter should be deleted from
3362  * @etype: Ethertype value
3363  */
3364 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3365 {
3366 	struct igc_hw *hw = &adapter->hw;
3367 	int index;
3368 
3369 	index = igc_find_etype_filter(adapter, etype);
3370 	if (index < 0)
3371 		return;
3372 
3373 	wr32(IGC_ETQF(index), 0);
3374 
3375 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3376 		   etype);
3377 }
3378 
3379 static int igc_flex_filter_select(struct igc_adapter *adapter,
3380 				  struct igc_flex_filter *input,
3381 				  u32 *fhft)
3382 {
3383 	struct igc_hw *hw = &adapter->hw;
3384 	u8 fhft_index;
3385 	u32 fhftsl;
3386 
3387 	if (input->index >= MAX_FLEX_FILTER) {
3388 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3389 		return -EINVAL;
3390 	}
3391 
3392 	/* Indirect table select register */
3393 	fhftsl = rd32(IGC_FHFTSL);
3394 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3395 	switch (input->index) {
3396 	case 0 ... 7:
3397 		fhftsl |= 0x00;
3398 		break;
3399 	case 8 ... 15:
3400 		fhftsl |= 0x01;
3401 		break;
3402 	case 16 ... 23:
3403 		fhftsl |= 0x02;
3404 		break;
3405 	case 24 ... 31:
3406 		fhftsl |= 0x03;
3407 		break;
3408 	}
3409 	wr32(IGC_FHFTSL, fhftsl);
3410 
3411 	/* Normalize index down to host table register */
3412 	fhft_index = input->index % 8;
3413 
3414 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3415 		IGC_FHFT_EXT(fhft_index - 4);
3416 
3417 	return 0;
3418 }
3419 
3420 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3421 				    struct igc_flex_filter *input)
3422 {
3423 	struct device *dev = &adapter->pdev->dev;
3424 	struct igc_hw *hw = &adapter->hw;
3425 	u8 *data = input->data;
3426 	u8 *mask = input->mask;
3427 	u32 queuing;
3428 	u32 fhft;
3429 	u32 wufc;
3430 	int ret;
3431 	int i;
3432 
3433 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3434 	 * out early to avoid surprises later.
3435 	 */
3436 	if (input->length % 8 != 0) {
3437 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3438 		return -EINVAL;
3439 	}
3440 
3441 	/* Select corresponding flex filter register and get base for host table. */
3442 	ret = igc_flex_filter_select(adapter, input, &fhft);
3443 	if (ret)
3444 		return ret;
3445 
3446 	/* When adding a filter globally disable flex filter feature. That is
3447 	 * recommended within the datasheet.
3448 	 */
3449 	wufc = rd32(IGC_WUFC);
3450 	wufc &= ~IGC_WUFC_FLEX_HQ;
3451 	wr32(IGC_WUFC, wufc);
3452 
3453 	/* Configure filter */
3454 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3455 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3456 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3457 
3458 	if (input->immediate_irq)
3459 		queuing |= IGC_FHFT_IMM_INT;
3460 
3461 	if (input->drop)
3462 		queuing |= IGC_FHFT_DROP;
3463 
3464 	wr32(fhft + 0xFC, queuing);
3465 
3466 	/* Write data (128 byte) and mask (128 bit) */
3467 	for (i = 0; i < 16; ++i) {
3468 		const size_t data_idx = i * 8;
3469 		const size_t row_idx = i * 16;
3470 		u32 dw0 =
3471 			(data[data_idx + 0] << 0) |
3472 			(data[data_idx + 1] << 8) |
3473 			(data[data_idx + 2] << 16) |
3474 			(data[data_idx + 3] << 24);
3475 		u32 dw1 =
3476 			(data[data_idx + 4] << 0) |
3477 			(data[data_idx + 5] << 8) |
3478 			(data[data_idx + 6] << 16) |
3479 			(data[data_idx + 7] << 24);
3480 		u32 tmp;
3481 
3482 		/* Write row: dw0, dw1 and mask */
3483 		wr32(fhft + row_idx, dw0);
3484 		wr32(fhft + row_idx + 4, dw1);
3485 
3486 		/* mask is only valid for MASK(7, 0) */
3487 		tmp = rd32(fhft + row_idx + 8);
3488 		tmp &= ~GENMASK(7, 0);
3489 		tmp |= mask[i];
3490 		wr32(fhft + row_idx + 8, tmp);
3491 	}
3492 
3493 	/* Enable filter. */
3494 	wufc |= IGC_WUFC_FLEX_HQ;
3495 	if (input->index > 8) {
3496 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3497 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3498 
3499 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3500 
3501 		wr32(IGC_WUFC_EXT, wufc_ext);
3502 	} else {
3503 		wufc |= (IGC_WUFC_FLX0 << input->index);
3504 	}
3505 	wr32(IGC_WUFC, wufc);
3506 
3507 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3508 		input->index);
3509 
3510 	return 0;
3511 }
3512 
3513 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3514 				      const void *src, unsigned int offset,
3515 				      size_t len, const void *mask)
3516 {
3517 	int i;
3518 
3519 	/* data */
3520 	memcpy(&flex->data[offset], src, len);
3521 
3522 	/* mask */
3523 	for (i = 0; i < len; ++i) {
3524 		const unsigned int idx = i + offset;
3525 		const u8 *ptr = mask;
3526 
3527 		if (mask) {
3528 			if (ptr[i] & 0xff)
3529 				flex->mask[idx / 8] |= BIT(idx % 8);
3530 
3531 			continue;
3532 		}
3533 
3534 		flex->mask[idx / 8] |= BIT(idx % 8);
3535 	}
3536 }
3537 
3538 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3539 {
3540 	struct igc_hw *hw = &adapter->hw;
3541 	u32 wufc, wufc_ext;
3542 	int i;
3543 
3544 	wufc = rd32(IGC_WUFC);
3545 	wufc_ext = rd32(IGC_WUFC_EXT);
3546 
3547 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3548 		if (i < 8) {
3549 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3550 				return i;
3551 		} else {
3552 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3553 				return i;
3554 		}
3555 	}
3556 
3557 	return -ENOSPC;
3558 }
3559 
3560 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3561 {
3562 	struct igc_hw *hw = &adapter->hw;
3563 	u32 wufc, wufc_ext;
3564 
3565 	wufc = rd32(IGC_WUFC);
3566 	wufc_ext = rd32(IGC_WUFC_EXT);
3567 
3568 	if (wufc & IGC_WUFC_FILTER_MASK)
3569 		return true;
3570 
3571 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3572 		return true;
3573 
3574 	return false;
3575 }
3576 
3577 static int igc_add_flex_filter(struct igc_adapter *adapter,
3578 			       struct igc_nfc_rule *rule)
3579 {
3580 	struct igc_flex_filter flex = { };
3581 	struct igc_nfc_filter *filter = &rule->filter;
3582 	unsigned int eth_offset, user_offset;
3583 	int ret, index;
3584 	bool vlan;
3585 
3586 	index = igc_find_avail_flex_filter_slot(adapter);
3587 	if (index < 0)
3588 		return -ENOSPC;
3589 
3590 	/* Construct the flex filter:
3591 	 *  -> dest_mac [6]
3592 	 *  -> src_mac [6]
3593 	 *  -> tpid [2]
3594 	 *  -> vlan tci [2]
3595 	 *  -> ether type [2]
3596 	 *  -> user data [8]
3597 	 *  -> = 26 bytes => 32 length
3598 	 */
3599 	flex.index    = index;
3600 	flex.length   = 32;
3601 	flex.rx_queue = rule->action;
3602 
3603 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3604 	eth_offset = vlan ? 16 : 12;
3605 	user_offset = vlan ? 18 : 14;
3606 
3607 	/* Add destination MAC  */
3608 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3609 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3610 					  ETH_ALEN, NULL);
3611 
3612 	/* Add source MAC */
3613 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3614 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3615 					  ETH_ALEN, NULL);
3616 
3617 	/* Add VLAN etype */
3618 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3619 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3620 					  sizeof(filter->vlan_etype),
3621 					  NULL);
3622 
3623 	/* Add VLAN TCI */
3624 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3625 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3626 					  sizeof(filter->vlan_tci), NULL);
3627 
3628 	/* Add Ether type */
3629 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3630 		__be16 etype = cpu_to_be16(filter->etype);
3631 
3632 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3633 					  sizeof(etype), NULL);
3634 	}
3635 
3636 	/* Add user data */
3637 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3638 		igc_flex_filter_add_field(&flex, &filter->user_data,
3639 					  user_offset,
3640 					  sizeof(filter->user_data),
3641 					  filter->user_mask);
3642 
3643 	/* Add it down to the hardware and enable it. */
3644 	ret = igc_write_flex_filter_ll(adapter, &flex);
3645 	if (ret)
3646 		return ret;
3647 
3648 	filter->flex_index = index;
3649 
3650 	return 0;
3651 }
3652 
3653 static void igc_del_flex_filter(struct igc_adapter *adapter,
3654 				u16 reg_index)
3655 {
3656 	struct igc_hw *hw = &adapter->hw;
3657 	u32 wufc;
3658 
3659 	/* Just disable the filter. The filter table itself is kept
3660 	 * intact. Another flex_filter_add() should override the "old" data
3661 	 * then.
3662 	 */
3663 	if (reg_index > 8) {
3664 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3665 
3666 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3667 		wr32(IGC_WUFC_EXT, wufc_ext);
3668 	} else {
3669 		wufc = rd32(IGC_WUFC);
3670 
3671 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3672 		wr32(IGC_WUFC, wufc);
3673 	}
3674 
3675 	if (igc_flex_filter_in_use(adapter))
3676 		return;
3677 
3678 	/* No filters are in use, we may disable flex filters */
3679 	wufc = rd32(IGC_WUFC);
3680 	wufc &= ~IGC_WUFC_FLEX_HQ;
3681 	wr32(IGC_WUFC, wufc);
3682 }
3683 
3684 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3685 			       struct igc_nfc_rule *rule)
3686 {
3687 	int err;
3688 
3689 	if (rule->flex) {
3690 		return igc_add_flex_filter(adapter, rule);
3691 	}
3692 
3693 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3694 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3695 					   rule->action);
3696 		if (err)
3697 			return err;
3698 	}
3699 
3700 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3701 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3702 					 rule->filter.src_addr, rule->action);
3703 		if (err)
3704 			return err;
3705 	}
3706 
3707 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3708 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3709 					 rule->filter.dst_addr, rule->action);
3710 		if (err)
3711 			return err;
3712 	}
3713 
3714 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3715 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3716 
3717 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3718 		if (err)
3719 			return err;
3720 	}
3721 
3722 	return 0;
3723 }
3724 
3725 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3726 				 const struct igc_nfc_rule *rule)
3727 {
3728 	if (rule->flex) {
3729 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3730 		return;
3731 	}
3732 
3733 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3734 		igc_del_etype_filter(adapter, rule->filter.etype);
3735 
3736 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3737 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3738 
3739 		igc_del_vlan_prio_filter(adapter, prio);
3740 	}
3741 
3742 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3743 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3744 				   rule->filter.src_addr);
3745 
3746 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3747 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3748 				   rule->filter.dst_addr);
3749 }
3750 
3751 /**
3752  * igc_get_nfc_rule() - Get NFC rule
3753  * @adapter: Pointer to adapter
3754  * @location: Rule location
3755  *
3756  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3757  *
3758  * Return: Pointer to NFC rule at @location. If not found, NULL.
3759  */
3760 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3761 				      u32 location)
3762 {
3763 	struct igc_nfc_rule *rule;
3764 
3765 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3766 		if (rule->location == location)
3767 			return rule;
3768 		if (rule->location > location)
3769 			break;
3770 	}
3771 
3772 	return NULL;
3773 }
3774 
3775 /**
3776  * igc_del_nfc_rule() - Delete NFC rule
3777  * @adapter: Pointer to adapter
3778  * @rule: Pointer to rule to be deleted
3779  *
3780  * Disable NFC rule in hardware and delete it from adapter.
3781  *
3782  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3783  */
3784 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3785 {
3786 	igc_disable_nfc_rule(adapter, rule);
3787 
3788 	list_del(&rule->list);
3789 	adapter->nfc_rule_count--;
3790 
3791 	kfree(rule);
3792 }
3793 
3794 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3795 {
3796 	struct igc_nfc_rule *rule, *tmp;
3797 
3798 	mutex_lock(&adapter->nfc_rule_lock);
3799 
3800 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3801 		igc_del_nfc_rule(adapter, rule);
3802 
3803 	mutex_unlock(&adapter->nfc_rule_lock);
3804 }
3805 
3806 /**
3807  * igc_add_nfc_rule() - Add NFC rule
3808  * @adapter: Pointer to adapter
3809  * @rule: Pointer to rule to be added
3810  *
3811  * Enable NFC rule in hardware and add it to adapter.
3812  *
3813  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3814  *
3815  * Return: 0 on success, negative errno on failure.
3816  */
3817 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3818 {
3819 	struct igc_nfc_rule *pred, *cur;
3820 	int err;
3821 
3822 	err = igc_enable_nfc_rule(adapter, rule);
3823 	if (err)
3824 		return err;
3825 
3826 	pred = NULL;
3827 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3828 		if (cur->location >= rule->location)
3829 			break;
3830 		pred = cur;
3831 	}
3832 
3833 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3834 	adapter->nfc_rule_count++;
3835 	return 0;
3836 }
3837 
3838 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3839 {
3840 	struct igc_nfc_rule *rule;
3841 
3842 	mutex_lock(&adapter->nfc_rule_lock);
3843 
3844 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3845 		igc_enable_nfc_rule(adapter, rule);
3846 
3847 	mutex_unlock(&adapter->nfc_rule_lock);
3848 }
3849 
3850 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3851 {
3852 	struct igc_adapter *adapter = netdev_priv(netdev);
3853 
3854 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3855 }
3856 
3857 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3858 {
3859 	struct igc_adapter *adapter = netdev_priv(netdev);
3860 
3861 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3862 	return 0;
3863 }
3864 
3865 /**
3866  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3867  * @netdev: network interface device structure
3868  *
3869  * The set_rx_mode entry point is called whenever the unicast or multicast
3870  * address lists or the network interface flags are updated.  This routine is
3871  * responsible for configuring the hardware for proper unicast, multicast,
3872  * promiscuous mode, and all-multi behavior.
3873  */
3874 static void igc_set_rx_mode(struct net_device *netdev)
3875 {
3876 	struct igc_adapter *adapter = netdev_priv(netdev);
3877 	struct igc_hw *hw = &adapter->hw;
3878 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3879 	int count;
3880 
3881 	/* Check for Promiscuous and All Multicast modes */
3882 	if (netdev->flags & IFF_PROMISC) {
3883 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3884 	} else {
3885 		if (netdev->flags & IFF_ALLMULTI) {
3886 			rctl |= IGC_RCTL_MPE;
3887 		} else {
3888 			/* Write addresses to the MTA, if the attempt fails
3889 			 * then we should just turn on promiscuous mode so
3890 			 * that we can at least receive multicast traffic
3891 			 */
3892 			count = igc_write_mc_addr_list(netdev);
3893 			if (count < 0)
3894 				rctl |= IGC_RCTL_MPE;
3895 		}
3896 	}
3897 
3898 	/* Write addresses to available RAR registers, if there is not
3899 	 * sufficient space to store all the addresses then enable
3900 	 * unicast promiscuous mode
3901 	 */
3902 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3903 		rctl |= IGC_RCTL_UPE;
3904 
3905 	/* update state of unicast and multicast */
3906 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3907 	wr32(IGC_RCTL, rctl);
3908 
3909 #if (PAGE_SIZE < 8192)
3910 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3911 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3912 #endif
3913 	wr32(IGC_RLPML, rlpml);
3914 }
3915 
3916 /**
3917  * igc_configure - configure the hardware for RX and TX
3918  * @adapter: private board structure
3919  */
3920 static void igc_configure(struct igc_adapter *adapter)
3921 {
3922 	struct net_device *netdev = adapter->netdev;
3923 	int i = 0;
3924 
3925 	igc_get_hw_control(adapter);
3926 	igc_set_rx_mode(netdev);
3927 
3928 	igc_restore_vlan(adapter);
3929 
3930 	igc_setup_tctl(adapter);
3931 	igc_setup_mrqc(adapter);
3932 	igc_setup_rctl(adapter);
3933 
3934 	igc_set_default_mac_filter(adapter);
3935 	igc_restore_nfc_rules(adapter);
3936 
3937 	igc_configure_tx(adapter);
3938 	igc_configure_rx(adapter);
3939 
3940 	igc_rx_fifo_flush_base(&adapter->hw);
3941 
3942 	/* call igc_desc_unused which always leaves
3943 	 * at least 1 descriptor unused to make sure
3944 	 * next_to_use != next_to_clean
3945 	 */
3946 	for (i = 0; i < adapter->num_rx_queues; i++) {
3947 		struct igc_ring *ring = adapter->rx_ring[i];
3948 
3949 		if (ring->xsk_pool)
3950 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3951 		else
3952 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3953 	}
3954 }
3955 
3956 /**
3957  * igc_write_ivar - configure ivar for given MSI-X vector
3958  * @hw: pointer to the HW structure
3959  * @msix_vector: vector number we are allocating to a given ring
3960  * @index: row index of IVAR register to write within IVAR table
3961  * @offset: column offset of in IVAR, should be multiple of 8
3962  *
3963  * The IVAR table consists of 2 columns,
3964  * each containing an cause allocation for an Rx and Tx ring, and a
3965  * variable number of rows depending on the number of queues supported.
3966  */
3967 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3968 			   int index, int offset)
3969 {
3970 	u32 ivar = array_rd32(IGC_IVAR0, index);
3971 
3972 	/* clear any bits that are currently set */
3973 	ivar &= ~((u32)0xFF << offset);
3974 
3975 	/* write vector and valid bit */
3976 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3977 
3978 	array_wr32(IGC_IVAR0, index, ivar);
3979 }
3980 
3981 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3982 {
3983 	struct igc_adapter *adapter = q_vector->adapter;
3984 	struct igc_hw *hw = &adapter->hw;
3985 	int rx_queue = IGC_N0_QUEUE;
3986 	int tx_queue = IGC_N0_QUEUE;
3987 
3988 	if (q_vector->rx.ring)
3989 		rx_queue = q_vector->rx.ring->reg_idx;
3990 	if (q_vector->tx.ring)
3991 		tx_queue = q_vector->tx.ring->reg_idx;
3992 
3993 	switch (hw->mac.type) {
3994 	case igc_i225:
3995 		if (rx_queue > IGC_N0_QUEUE)
3996 			igc_write_ivar(hw, msix_vector,
3997 				       rx_queue >> 1,
3998 				       (rx_queue & 0x1) << 4);
3999 		if (tx_queue > IGC_N0_QUEUE)
4000 			igc_write_ivar(hw, msix_vector,
4001 				       tx_queue >> 1,
4002 				       ((tx_queue & 0x1) << 4) + 8);
4003 		q_vector->eims_value = BIT(msix_vector);
4004 		break;
4005 	default:
4006 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4007 		break;
4008 	}
4009 
4010 	/* add q_vector eims value to global eims_enable_mask */
4011 	adapter->eims_enable_mask |= q_vector->eims_value;
4012 
4013 	/* configure q_vector to set itr on first interrupt */
4014 	q_vector->set_itr = 1;
4015 }
4016 
4017 /**
4018  * igc_configure_msix - Configure MSI-X hardware
4019  * @adapter: Pointer to adapter structure
4020  *
4021  * igc_configure_msix sets up the hardware to properly
4022  * generate MSI-X interrupts.
4023  */
4024 static void igc_configure_msix(struct igc_adapter *adapter)
4025 {
4026 	struct igc_hw *hw = &adapter->hw;
4027 	int i, vector = 0;
4028 	u32 tmp;
4029 
4030 	adapter->eims_enable_mask = 0;
4031 
4032 	/* set vector for other causes, i.e. link changes */
4033 	switch (hw->mac.type) {
4034 	case igc_i225:
4035 		/* Turn on MSI-X capability first, or our settings
4036 		 * won't stick.  And it will take days to debug.
4037 		 */
4038 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4039 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4040 		     IGC_GPIE_NSICR);
4041 
4042 		/* enable msix_other interrupt */
4043 		adapter->eims_other = BIT(vector);
4044 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4045 
4046 		wr32(IGC_IVAR_MISC, tmp);
4047 		break;
4048 	default:
4049 		/* do nothing, since nothing else supports MSI-X */
4050 		break;
4051 	} /* switch (hw->mac.type) */
4052 
4053 	adapter->eims_enable_mask |= adapter->eims_other;
4054 
4055 	for (i = 0; i < adapter->num_q_vectors; i++)
4056 		igc_assign_vector(adapter->q_vector[i], vector++);
4057 
4058 	wrfl();
4059 }
4060 
4061 /**
4062  * igc_irq_enable - Enable default interrupt generation settings
4063  * @adapter: board private structure
4064  */
4065 static void igc_irq_enable(struct igc_adapter *adapter)
4066 {
4067 	struct igc_hw *hw = &adapter->hw;
4068 
4069 	if (adapter->msix_entries) {
4070 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4071 		u32 regval = rd32(IGC_EIAC);
4072 
4073 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4074 		regval = rd32(IGC_EIAM);
4075 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4076 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4077 		wr32(IGC_IMS, ims);
4078 	} else {
4079 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4080 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4081 	}
4082 }
4083 
4084 /**
4085  * igc_irq_disable - Mask off interrupt generation on the NIC
4086  * @adapter: board private structure
4087  */
4088 static void igc_irq_disable(struct igc_adapter *adapter)
4089 {
4090 	struct igc_hw *hw = &adapter->hw;
4091 
4092 	if (adapter->msix_entries) {
4093 		u32 regval = rd32(IGC_EIAM);
4094 
4095 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4096 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4097 		regval = rd32(IGC_EIAC);
4098 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4099 	}
4100 
4101 	wr32(IGC_IAM, 0);
4102 	wr32(IGC_IMC, ~0);
4103 	wrfl();
4104 
4105 	if (adapter->msix_entries) {
4106 		int vector = 0, i;
4107 
4108 		synchronize_irq(adapter->msix_entries[vector++].vector);
4109 
4110 		for (i = 0; i < adapter->num_q_vectors; i++)
4111 			synchronize_irq(adapter->msix_entries[vector++].vector);
4112 	} else {
4113 		synchronize_irq(adapter->pdev->irq);
4114 	}
4115 }
4116 
4117 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4118 			      const u32 max_rss_queues)
4119 {
4120 	/* Determine if we need to pair queues. */
4121 	/* If rss_queues > half of max_rss_queues, pair the queues in
4122 	 * order to conserve interrupts due to limited supply.
4123 	 */
4124 	if (adapter->rss_queues > (max_rss_queues / 2))
4125 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4126 	else
4127 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4128 }
4129 
4130 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4131 {
4132 	return IGC_MAX_RX_QUEUES;
4133 }
4134 
4135 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4136 {
4137 	u32 max_rss_queues;
4138 
4139 	max_rss_queues = igc_get_max_rss_queues(adapter);
4140 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4141 
4142 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4143 }
4144 
4145 /**
4146  * igc_reset_q_vector - Reset config for interrupt vector
4147  * @adapter: board private structure to initialize
4148  * @v_idx: Index of vector to be reset
4149  *
4150  * If NAPI is enabled it will delete any references to the
4151  * NAPI struct. This is preparation for igc_free_q_vector.
4152  */
4153 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4154 {
4155 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4156 
4157 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4158 	 * not yet allocated
4159 	 */
4160 	if (!q_vector)
4161 		return;
4162 
4163 	if (q_vector->tx.ring)
4164 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4165 
4166 	if (q_vector->rx.ring)
4167 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4168 
4169 	netif_napi_del(&q_vector->napi);
4170 }
4171 
4172 /**
4173  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4174  * @adapter: board private structure to initialize
4175  * @v_idx: Index of vector to be freed
4176  *
4177  * This function frees the memory allocated to the q_vector.
4178  */
4179 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4180 {
4181 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4182 
4183 	adapter->q_vector[v_idx] = NULL;
4184 
4185 	/* igc_get_stats64() might access the rings on this vector,
4186 	 * we must wait a grace period before freeing it.
4187 	 */
4188 	if (q_vector)
4189 		kfree_rcu(q_vector, rcu);
4190 }
4191 
4192 /**
4193  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4194  * @adapter: board private structure to initialize
4195  *
4196  * This function frees the memory allocated to the q_vectors.  In addition if
4197  * NAPI is enabled it will delete any references to the NAPI struct prior
4198  * to freeing the q_vector.
4199  */
4200 static void igc_free_q_vectors(struct igc_adapter *adapter)
4201 {
4202 	int v_idx = adapter->num_q_vectors;
4203 
4204 	adapter->num_tx_queues = 0;
4205 	adapter->num_rx_queues = 0;
4206 	adapter->num_q_vectors = 0;
4207 
4208 	while (v_idx--) {
4209 		igc_reset_q_vector(adapter, v_idx);
4210 		igc_free_q_vector(adapter, v_idx);
4211 	}
4212 }
4213 
4214 /**
4215  * igc_update_itr - update the dynamic ITR value based on statistics
4216  * @q_vector: pointer to q_vector
4217  * @ring_container: ring info to update the itr for
4218  *
4219  * Stores a new ITR value based on packets and byte
4220  * counts during the last interrupt.  The advantage of per interrupt
4221  * computation is faster updates and more accurate ITR for the current
4222  * traffic pattern.  Constants in this function were computed
4223  * based on theoretical maximum wire speed and thresholds were set based
4224  * on testing data as well as attempting to minimize response time
4225  * while increasing bulk throughput.
4226  * NOTE: These calculations are only valid when operating in a single-
4227  * queue environment.
4228  */
4229 static void igc_update_itr(struct igc_q_vector *q_vector,
4230 			   struct igc_ring_container *ring_container)
4231 {
4232 	unsigned int packets = ring_container->total_packets;
4233 	unsigned int bytes = ring_container->total_bytes;
4234 	u8 itrval = ring_container->itr;
4235 
4236 	/* no packets, exit with status unchanged */
4237 	if (packets == 0)
4238 		return;
4239 
4240 	switch (itrval) {
4241 	case lowest_latency:
4242 		/* handle TSO and jumbo frames */
4243 		if (bytes / packets > 8000)
4244 			itrval = bulk_latency;
4245 		else if ((packets < 5) && (bytes > 512))
4246 			itrval = low_latency;
4247 		break;
4248 	case low_latency:  /* 50 usec aka 20000 ints/s */
4249 		if (bytes > 10000) {
4250 			/* this if handles the TSO accounting */
4251 			if (bytes / packets > 8000)
4252 				itrval = bulk_latency;
4253 			else if ((packets < 10) || ((bytes / packets) > 1200))
4254 				itrval = bulk_latency;
4255 			else if ((packets > 35))
4256 				itrval = lowest_latency;
4257 		} else if (bytes / packets > 2000) {
4258 			itrval = bulk_latency;
4259 		} else if (packets <= 2 && bytes < 512) {
4260 			itrval = lowest_latency;
4261 		}
4262 		break;
4263 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4264 		if (bytes > 25000) {
4265 			if (packets > 35)
4266 				itrval = low_latency;
4267 		} else if (bytes < 1500) {
4268 			itrval = low_latency;
4269 		}
4270 		break;
4271 	}
4272 
4273 	/* clear work counters since we have the values we need */
4274 	ring_container->total_bytes = 0;
4275 	ring_container->total_packets = 0;
4276 
4277 	/* write updated itr to ring container */
4278 	ring_container->itr = itrval;
4279 }
4280 
4281 static void igc_set_itr(struct igc_q_vector *q_vector)
4282 {
4283 	struct igc_adapter *adapter = q_vector->adapter;
4284 	u32 new_itr = q_vector->itr_val;
4285 	u8 current_itr = 0;
4286 
4287 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4288 	switch (adapter->link_speed) {
4289 	case SPEED_10:
4290 	case SPEED_100:
4291 		current_itr = 0;
4292 		new_itr = IGC_4K_ITR;
4293 		goto set_itr_now;
4294 	default:
4295 		break;
4296 	}
4297 
4298 	igc_update_itr(q_vector, &q_vector->tx);
4299 	igc_update_itr(q_vector, &q_vector->rx);
4300 
4301 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4302 
4303 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4304 	if (current_itr == lowest_latency &&
4305 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4306 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4307 		current_itr = low_latency;
4308 
4309 	switch (current_itr) {
4310 	/* counts and packets in update_itr are dependent on these numbers */
4311 	case lowest_latency:
4312 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4313 		break;
4314 	case low_latency:
4315 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4316 		break;
4317 	case bulk_latency:
4318 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4319 		break;
4320 	default:
4321 		break;
4322 	}
4323 
4324 set_itr_now:
4325 	if (new_itr != q_vector->itr_val) {
4326 		/* this attempts to bias the interrupt rate towards Bulk
4327 		 * by adding intermediate steps when interrupt rate is
4328 		 * increasing
4329 		 */
4330 		new_itr = new_itr > q_vector->itr_val ?
4331 			  max((new_itr * q_vector->itr_val) /
4332 			  (new_itr + (q_vector->itr_val >> 2)),
4333 			  new_itr) : new_itr;
4334 		/* Don't write the value here; it resets the adapter's
4335 		 * internal timer, and causes us to delay far longer than
4336 		 * we should between interrupts.  Instead, we write the ITR
4337 		 * value at the beginning of the next interrupt so the timing
4338 		 * ends up being correct.
4339 		 */
4340 		q_vector->itr_val = new_itr;
4341 		q_vector->set_itr = 1;
4342 	}
4343 }
4344 
4345 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4346 {
4347 	int v_idx = adapter->num_q_vectors;
4348 
4349 	if (adapter->msix_entries) {
4350 		pci_disable_msix(adapter->pdev);
4351 		kfree(adapter->msix_entries);
4352 		adapter->msix_entries = NULL;
4353 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4354 		pci_disable_msi(adapter->pdev);
4355 	}
4356 
4357 	while (v_idx--)
4358 		igc_reset_q_vector(adapter, v_idx);
4359 }
4360 
4361 /**
4362  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4363  * @adapter: Pointer to adapter structure
4364  * @msix: boolean value for MSI-X capability
4365  *
4366  * Attempt to configure interrupts using the best available
4367  * capabilities of the hardware and kernel.
4368  */
4369 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4370 					 bool msix)
4371 {
4372 	int numvecs, i;
4373 	int err;
4374 
4375 	if (!msix)
4376 		goto msi_only;
4377 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4378 
4379 	/* Number of supported queues. */
4380 	adapter->num_rx_queues = adapter->rss_queues;
4381 
4382 	adapter->num_tx_queues = adapter->rss_queues;
4383 
4384 	/* start with one vector for every Rx queue */
4385 	numvecs = adapter->num_rx_queues;
4386 
4387 	/* if Tx handler is separate add 1 for every Tx queue */
4388 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4389 		numvecs += adapter->num_tx_queues;
4390 
4391 	/* store the number of vectors reserved for queues */
4392 	adapter->num_q_vectors = numvecs;
4393 
4394 	/* add 1 vector for link status interrupts */
4395 	numvecs++;
4396 
4397 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4398 					GFP_KERNEL);
4399 
4400 	if (!adapter->msix_entries)
4401 		return;
4402 
4403 	/* populate entry values */
4404 	for (i = 0; i < numvecs; i++)
4405 		adapter->msix_entries[i].entry = i;
4406 
4407 	err = pci_enable_msix_range(adapter->pdev,
4408 				    adapter->msix_entries,
4409 				    numvecs,
4410 				    numvecs);
4411 	if (err > 0)
4412 		return;
4413 
4414 	kfree(adapter->msix_entries);
4415 	adapter->msix_entries = NULL;
4416 
4417 	igc_reset_interrupt_capability(adapter);
4418 
4419 msi_only:
4420 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4421 
4422 	adapter->rss_queues = 1;
4423 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4424 	adapter->num_rx_queues = 1;
4425 	adapter->num_tx_queues = 1;
4426 	adapter->num_q_vectors = 1;
4427 	if (!pci_enable_msi(adapter->pdev))
4428 		adapter->flags |= IGC_FLAG_HAS_MSI;
4429 }
4430 
4431 /**
4432  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4433  * @q_vector: pointer to q_vector
4434  *
4435  * Stores a new ITR value based on strictly on packet size.  This
4436  * algorithm is less sophisticated than that used in igc_update_itr,
4437  * due to the difficulty of synchronizing statistics across multiple
4438  * receive rings.  The divisors and thresholds used by this function
4439  * were determined based on theoretical maximum wire speed and testing
4440  * data, in order to minimize response time while increasing bulk
4441  * throughput.
4442  * NOTE: This function is called only when operating in a multiqueue
4443  * receive environment.
4444  */
4445 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4446 {
4447 	struct igc_adapter *adapter = q_vector->adapter;
4448 	int new_val = q_vector->itr_val;
4449 	int avg_wire_size = 0;
4450 	unsigned int packets;
4451 
4452 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4453 	 * ints/sec - ITR timer value of 120 ticks.
4454 	 */
4455 	switch (adapter->link_speed) {
4456 	case SPEED_10:
4457 	case SPEED_100:
4458 		new_val = IGC_4K_ITR;
4459 		goto set_itr_val;
4460 	default:
4461 		break;
4462 	}
4463 
4464 	packets = q_vector->rx.total_packets;
4465 	if (packets)
4466 		avg_wire_size = q_vector->rx.total_bytes / packets;
4467 
4468 	packets = q_vector->tx.total_packets;
4469 	if (packets)
4470 		avg_wire_size = max_t(u32, avg_wire_size,
4471 				      q_vector->tx.total_bytes / packets);
4472 
4473 	/* if avg_wire_size isn't set no work was done */
4474 	if (!avg_wire_size)
4475 		goto clear_counts;
4476 
4477 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4478 	avg_wire_size += 24;
4479 
4480 	/* Don't starve jumbo frames */
4481 	avg_wire_size = min(avg_wire_size, 3000);
4482 
4483 	/* Give a little boost to mid-size frames */
4484 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4485 		new_val = avg_wire_size / 3;
4486 	else
4487 		new_val = avg_wire_size / 2;
4488 
4489 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4490 	if (new_val < IGC_20K_ITR &&
4491 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4492 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4493 		new_val = IGC_20K_ITR;
4494 
4495 set_itr_val:
4496 	if (new_val != q_vector->itr_val) {
4497 		q_vector->itr_val = new_val;
4498 		q_vector->set_itr = 1;
4499 	}
4500 clear_counts:
4501 	q_vector->rx.total_bytes = 0;
4502 	q_vector->rx.total_packets = 0;
4503 	q_vector->tx.total_bytes = 0;
4504 	q_vector->tx.total_packets = 0;
4505 }
4506 
4507 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4508 {
4509 	struct igc_adapter *adapter = q_vector->adapter;
4510 	struct igc_hw *hw = &adapter->hw;
4511 
4512 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4513 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4514 		if (adapter->num_q_vectors == 1)
4515 			igc_set_itr(q_vector);
4516 		else
4517 			igc_update_ring_itr(q_vector);
4518 	}
4519 
4520 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4521 		if (adapter->msix_entries)
4522 			wr32(IGC_EIMS, q_vector->eims_value);
4523 		else
4524 			igc_irq_enable(adapter);
4525 	}
4526 }
4527 
4528 static void igc_add_ring(struct igc_ring *ring,
4529 			 struct igc_ring_container *head)
4530 {
4531 	head->ring = ring;
4532 	head->count++;
4533 }
4534 
4535 /**
4536  * igc_cache_ring_register - Descriptor ring to register mapping
4537  * @adapter: board private structure to initialize
4538  *
4539  * Once we know the feature-set enabled for the device, we'll cache
4540  * the register offset the descriptor ring is assigned to.
4541  */
4542 static void igc_cache_ring_register(struct igc_adapter *adapter)
4543 {
4544 	int i = 0, j = 0;
4545 
4546 	switch (adapter->hw.mac.type) {
4547 	case igc_i225:
4548 	default:
4549 		for (; i < adapter->num_rx_queues; i++)
4550 			adapter->rx_ring[i]->reg_idx = i;
4551 		for (; j < adapter->num_tx_queues; j++)
4552 			adapter->tx_ring[j]->reg_idx = j;
4553 		break;
4554 	}
4555 }
4556 
4557 /**
4558  * igc_poll - NAPI Rx polling callback
4559  * @napi: napi polling structure
4560  * @budget: count of how many packets we should handle
4561  */
4562 static int igc_poll(struct napi_struct *napi, int budget)
4563 {
4564 	struct igc_q_vector *q_vector = container_of(napi,
4565 						     struct igc_q_vector,
4566 						     napi);
4567 	struct igc_ring *rx_ring = q_vector->rx.ring;
4568 	bool clean_complete = true;
4569 	int work_done = 0;
4570 
4571 	if (q_vector->tx.ring)
4572 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4573 
4574 	if (rx_ring) {
4575 		int cleaned = rx_ring->xsk_pool ?
4576 			      igc_clean_rx_irq_zc(q_vector, budget) :
4577 			      igc_clean_rx_irq(q_vector, budget);
4578 
4579 		work_done += cleaned;
4580 		if (cleaned >= budget)
4581 			clean_complete = false;
4582 	}
4583 
4584 	/* If all work not completed, return budget and keep polling */
4585 	if (!clean_complete)
4586 		return budget;
4587 
4588 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4589 	 * poll us due to busy-polling
4590 	 */
4591 	if (likely(napi_complete_done(napi, work_done)))
4592 		igc_ring_irq_enable(q_vector);
4593 
4594 	return min(work_done, budget - 1);
4595 }
4596 
4597 /**
4598  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4599  * @adapter: board private structure to initialize
4600  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4601  * @v_idx: index of vector in adapter struct
4602  * @txr_count: total number of Tx rings to allocate
4603  * @txr_idx: index of first Tx ring to allocate
4604  * @rxr_count: total number of Rx rings to allocate
4605  * @rxr_idx: index of first Rx ring to allocate
4606  *
4607  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4608  */
4609 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4610 			      unsigned int v_count, unsigned int v_idx,
4611 			      unsigned int txr_count, unsigned int txr_idx,
4612 			      unsigned int rxr_count, unsigned int rxr_idx)
4613 {
4614 	struct igc_q_vector *q_vector;
4615 	struct igc_ring *ring;
4616 	int ring_count;
4617 
4618 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4619 	if (txr_count > 1 || rxr_count > 1)
4620 		return -ENOMEM;
4621 
4622 	ring_count = txr_count + rxr_count;
4623 
4624 	/* allocate q_vector and rings */
4625 	q_vector = adapter->q_vector[v_idx];
4626 	if (!q_vector)
4627 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4628 				   GFP_KERNEL);
4629 	else
4630 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4631 	if (!q_vector)
4632 		return -ENOMEM;
4633 
4634 	/* initialize NAPI */
4635 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4636 
4637 	/* tie q_vector and adapter together */
4638 	adapter->q_vector[v_idx] = q_vector;
4639 	q_vector->adapter = adapter;
4640 
4641 	/* initialize work limits */
4642 	q_vector->tx.work_limit = adapter->tx_work_limit;
4643 
4644 	/* initialize ITR configuration */
4645 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4646 	q_vector->itr_val = IGC_START_ITR;
4647 
4648 	/* initialize pointer to rings */
4649 	ring = q_vector->ring;
4650 
4651 	/* initialize ITR */
4652 	if (rxr_count) {
4653 		/* rx or rx/tx vector */
4654 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4655 			q_vector->itr_val = adapter->rx_itr_setting;
4656 	} else {
4657 		/* tx only vector */
4658 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4659 			q_vector->itr_val = adapter->tx_itr_setting;
4660 	}
4661 
4662 	if (txr_count) {
4663 		/* assign generic ring traits */
4664 		ring->dev = &adapter->pdev->dev;
4665 		ring->netdev = adapter->netdev;
4666 
4667 		/* configure backlink on ring */
4668 		ring->q_vector = q_vector;
4669 
4670 		/* update q_vector Tx values */
4671 		igc_add_ring(ring, &q_vector->tx);
4672 
4673 		/* apply Tx specific ring traits */
4674 		ring->count = adapter->tx_ring_count;
4675 		ring->queue_index = txr_idx;
4676 
4677 		/* assign ring to adapter */
4678 		adapter->tx_ring[txr_idx] = ring;
4679 
4680 		/* push pointer to next ring */
4681 		ring++;
4682 	}
4683 
4684 	if (rxr_count) {
4685 		/* assign generic ring traits */
4686 		ring->dev = &adapter->pdev->dev;
4687 		ring->netdev = adapter->netdev;
4688 
4689 		/* configure backlink on ring */
4690 		ring->q_vector = q_vector;
4691 
4692 		/* update q_vector Rx values */
4693 		igc_add_ring(ring, &q_vector->rx);
4694 
4695 		/* apply Rx specific ring traits */
4696 		ring->count = adapter->rx_ring_count;
4697 		ring->queue_index = rxr_idx;
4698 
4699 		/* assign ring to adapter */
4700 		adapter->rx_ring[rxr_idx] = ring;
4701 	}
4702 
4703 	return 0;
4704 }
4705 
4706 /**
4707  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4708  * @adapter: board private structure to initialize
4709  *
4710  * We allocate one q_vector per queue interrupt.  If allocation fails we
4711  * return -ENOMEM.
4712  */
4713 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4714 {
4715 	int rxr_remaining = adapter->num_rx_queues;
4716 	int txr_remaining = adapter->num_tx_queues;
4717 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4718 	int q_vectors = adapter->num_q_vectors;
4719 	int err;
4720 
4721 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4722 		for (; rxr_remaining; v_idx++) {
4723 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4724 						 0, 0, 1, rxr_idx);
4725 
4726 			if (err)
4727 				goto err_out;
4728 
4729 			/* update counts and index */
4730 			rxr_remaining--;
4731 			rxr_idx++;
4732 		}
4733 	}
4734 
4735 	for (; v_idx < q_vectors; v_idx++) {
4736 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4737 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4738 
4739 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4740 					 tqpv, txr_idx, rqpv, rxr_idx);
4741 
4742 		if (err)
4743 			goto err_out;
4744 
4745 		/* update counts and index */
4746 		rxr_remaining -= rqpv;
4747 		txr_remaining -= tqpv;
4748 		rxr_idx++;
4749 		txr_idx++;
4750 	}
4751 
4752 	return 0;
4753 
4754 err_out:
4755 	adapter->num_tx_queues = 0;
4756 	adapter->num_rx_queues = 0;
4757 	adapter->num_q_vectors = 0;
4758 
4759 	while (v_idx--)
4760 		igc_free_q_vector(adapter, v_idx);
4761 
4762 	return -ENOMEM;
4763 }
4764 
4765 /**
4766  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4767  * @adapter: Pointer to adapter structure
4768  * @msix: boolean for MSI-X capability
4769  *
4770  * This function initializes the interrupts and allocates all of the queues.
4771  */
4772 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4773 {
4774 	struct net_device *dev = adapter->netdev;
4775 	int err = 0;
4776 
4777 	igc_set_interrupt_capability(adapter, msix);
4778 
4779 	err = igc_alloc_q_vectors(adapter);
4780 	if (err) {
4781 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4782 		goto err_alloc_q_vectors;
4783 	}
4784 
4785 	igc_cache_ring_register(adapter);
4786 
4787 	return 0;
4788 
4789 err_alloc_q_vectors:
4790 	igc_reset_interrupt_capability(adapter);
4791 	return err;
4792 }
4793 
4794 /**
4795  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4796  * @adapter: board private structure to initialize
4797  *
4798  * igc_sw_init initializes the Adapter private data structure.
4799  * Fields are initialized based on PCI device information and
4800  * OS network device settings (MTU size).
4801  */
4802 static int igc_sw_init(struct igc_adapter *adapter)
4803 {
4804 	struct net_device *netdev = adapter->netdev;
4805 	struct pci_dev *pdev = adapter->pdev;
4806 	struct igc_hw *hw = &adapter->hw;
4807 
4808 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4809 
4810 	/* set default ring sizes */
4811 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4812 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4813 
4814 	/* set default ITR values */
4815 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4816 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4817 
4818 	/* set default work limits */
4819 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4820 
4821 	/* adjust max frame to be at least the size of a standard frame */
4822 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4823 				VLAN_HLEN;
4824 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4825 
4826 	mutex_init(&adapter->nfc_rule_lock);
4827 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4828 	adapter->nfc_rule_count = 0;
4829 
4830 	spin_lock_init(&adapter->stats64_lock);
4831 	spin_lock_init(&adapter->qbv_tx_lock);
4832 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4833 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4834 
4835 	igc_init_queue_configuration(adapter);
4836 
4837 	/* This call may decrease the number of queues */
4838 	if (igc_init_interrupt_scheme(adapter, true)) {
4839 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4840 		return -ENOMEM;
4841 	}
4842 
4843 	/* Explicitly disable IRQ since the NIC can be in any state. */
4844 	igc_irq_disable(adapter);
4845 
4846 	set_bit(__IGC_DOWN, &adapter->state);
4847 
4848 	return 0;
4849 }
4850 
4851 /**
4852  * igc_up - Open the interface and prepare it to handle traffic
4853  * @adapter: board private structure
4854  */
4855 void igc_up(struct igc_adapter *adapter)
4856 {
4857 	struct igc_hw *hw = &adapter->hw;
4858 	int i = 0;
4859 
4860 	/* hardware has been reset, we need to reload some things */
4861 	igc_configure(adapter);
4862 
4863 	clear_bit(__IGC_DOWN, &adapter->state);
4864 
4865 	for (i = 0; i < adapter->num_q_vectors; i++)
4866 		napi_enable(&adapter->q_vector[i]->napi);
4867 
4868 	if (adapter->msix_entries)
4869 		igc_configure_msix(adapter);
4870 	else
4871 		igc_assign_vector(adapter->q_vector[0], 0);
4872 
4873 	/* Clear any pending interrupts. */
4874 	rd32(IGC_ICR);
4875 	igc_irq_enable(adapter);
4876 
4877 	netif_tx_start_all_queues(adapter->netdev);
4878 
4879 	/* start the watchdog. */
4880 	hw->mac.get_link_status = true;
4881 	schedule_work(&adapter->watchdog_task);
4882 }
4883 
4884 /**
4885  * igc_update_stats - Update the board statistics counters
4886  * @adapter: board private structure
4887  */
4888 void igc_update_stats(struct igc_adapter *adapter)
4889 {
4890 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4891 	struct pci_dev *pdev = adapter->pdev;
4892 	struct igc_hw *hw = &adapter->hw;
4893 	u64 _bytes, _packets;
4894 	u64 bytes, packets;
4895 	unsigned int start;
4896 	u32 mpc;
4897 	int i;
4898 
4899 	/* Prevent stats update while adapter is being reset, or if the pci
4900 	 * connection is down.
4901 	 */
4902 	if (adapter->link_speed == 0)
4903 		return;
4904 	if (pci_channel_offline(pdev))
4905 		return;
4906 
4907 	packets = 0;
4908 	bytes = 0;
4909 
4910 	rcu_read_lock();
4911 	for (i = 0; i < adapter->num_rx_queues; i++) {
4912 		struct igc_ring *ring = adapter->rx_ring[i];
4913 		u32 rqdpc = rd32(IGC_RQDPC(i));
4914 
4915 		if (hw->mac.type >= igc_i225)
4916 			wr32(IGC_RQDPC(i), 0);
4917 
4918 		if (rqdpc) {
4919 			ring->rx_stats.drops += rqdpc;
4920 			net_stats->rx_fifo_errors += rqdpc;
4921 		}
4922 
4923 		do {
4924 			start = u64_stats_fetch_begin(&ring->rx_syncp);
4925 			_bytes = ring->rx_stats.bytes;
4926 			_packets = ring->rx_stats.packets;
4927 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4928 		bytes += _bytes;
4929 		packets += _packets;
4930 	}
4931 
4932 	net_stats->rx_bytes = bytes;
4933 	net_stats->rx_packets = packets;
4934 
4935 	packets = 0;
4936 	bytes = 0;
4937 	for (i = 0; i < adapter->num_tx_queues; i++) {
4938 		struct igc_ring *ring = adapter->tx_ring[i];
4939 
4940 		do {
4941 			start = u64_stats_fetch_begin(&ring->tx_syncp);
4942 			_bytes = ring->tx_stats.bytes;
4943 			_packets = ring->tx_stats.packets;
4944 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4945 		bytes += _bytes;
4946 		packets += _packets;
4947 	}
4948 	net_stats->tx_bytes = bytes;
4949 	net_stats->tx_packets = packets;
4950 	rcu_read_unlock();
4951 
4952 	/* read stats registers */
4953 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4954 	adapter->stats.gprc += rd32(IGC_GPRC);
4955 	adapter->stats.gorc += rd32(IGC_GORCL);
4956 	rd32(IGC_GORCH); /* clear GORCL */
4957 	adapter->stats.bprc += rd32(IGC_BPRC);
4958 	adapter->stats.mprc += rd32(IGC_MPRC);
4959 	adapter->stats.roc += rd32(IGC_ROC);
4960 
4961 	adapter->stats.prc64 += rd32(IGC_PRC64);
4962 	adapter->stats.prc127 += rd32(IGC_PRC127);
4963 	adapter->stats.prc255 += rd32(IGC_PRC255);
4964 	adapter->stats.prc511 += rd32(IGC_PRC511);
4965 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4966 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4967 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4968 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4969 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4970 
4971 	mpc = rd32(IGC_MPC);
4972 	adapter->stats.mpc += mpc;
4973 	net_stats->rx_fifo_errors += mpc;
4974 	adapter->stats.scc += rd32(IGC_SCC);
4975 	adapter->stats.ecol += rd32(IGC_ECOL);
4976 	adapter->stats.mcc += rd32(IGC_MCC);
4977 	adapter->stats.latecol += rd32(IGC_LATECOL);
4978 	adapter->stats.dc += rd32(IGC_DC);
4979 	adapter->stats.rlec += rd32(IGC_RLEC);
4980 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4981 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4982 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4983 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4984 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4985 	adapter->stats.gptc += rd32(IGC_GPTC);
4986 	adapter->stats.gotc += rd32(IGC_GOTCL);
4987 	rd32(IGC_GOTCH); /* clear GOTCL */
4988 	adapter->stats.rnbc += rd32(IGC_RNBC);
4989 	adapter->stats.ruc += rd32(IGC_RUC);
4990 	adapter->stats.rfc += rd32(IGC_RFC);
4991 	adapter->stats.rjc += rd32(IGC_RJC);
4992 	adapter->stats.tor += rd32(IGC_TORH);
4993 	adapter->stats.tot += rd32(IGC_TOTH);
4994 	adapter->stats.tpr += rd32(IGC_TPR);
4995 
4996 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4997 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4998 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4999 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5000 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5001 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5002 
5003 	adapter->stats.mptc += rd32(IGC_MPTC);
5004 	adapter->stats.bptc += rd32(IGC_BPTC);
5005 
5006 	adapter->stats.tpt += rd32(IGC_TPT);
5007 	adapter->stats.colc += rd32(IGC_COLC);
5008 	adapter->stats.colc += rd32(IGC_RERC);
5009 
5010 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5011 
5012 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5013 
5014 	adapter->stats.iac += rd32(IGC_IAC);
5015 
5016 	/* Fill out the OS statistics structure */
5017 	net_stats->multicast = adapter->stats.mprc;
5018 	net_stats->collisions = adapter->stats.colc;
5019 
5020 	/* Rx Errors */
5021 
5022 	/* RLEC on some newer hardware can be incorrect so build
5023 	 * our own version based on RUC and ROC
5024 	 */
5025 	net_stats->rx_errors = adapter->stats.rxerrc +
5026 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5027 		adapter->stats.ruc + adapter->stats.roc +
5028 		adapter->stats.cexterr;
5029 	net_stats->rx_length_errors = adapter->stats.ruc +
5030 				      adapter->stats.roc;
5031 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5032 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5033 	net_stats->rx_missed_errors = adapter->stats.mpc;
5034 
5035 	/* Tx Errors */
5036 	net_stats->tx_errors = adapter->stats.ecol +
5037 			       adapter->stats.latecol;
5038 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5039 	net_stats->tx_window_errors = adapter->stats.latecol;
5040 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5041 
5042 	/* Tx Dropped */
5043 	net_stats->tx_dropped = adapter->stats.txdrop;
5044 
5045 	/* Management Stats */
5046 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5047 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5048 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5049 }
5050 
5051 /**
5052  * igc_down - Close the interface
5053  * @adapter: board private structure
5054  */
5055 void igc_down(struct igc_adapter *adapter)
5056 {
5057 	struct net_device *netdev = adapter->netdev;
5058 	struct igc_hw *hw = &adapter->hw;
5059 	u32 tctl, rctl;
5060 	int i = 0;
5061 
5062 	set_bit(__IGC_DOWN, &adapter->state);
5063 
5064 	igc_ptp_suspend(adapter);
5065 
5066 	if (pci_device_is_present(adapter->pdev)) {
5067 		/* disable receives in the hardware */
5068 		rctl = rd32(IGC_RCTL);
5069 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5070 		/* flush and sleep below */
5071 	}
5072 	/* set trans_start so we don't get spurious watchdogs during reset */
5073 	netif_trans_update(netdev);
5074 
5075 	netif_carrier_off(netdev);
5076 	netif_tx_stop_all_queues(netdev);
5077 
5078 	if (pci_device_is_present(adapter->pdev)) {
5079 		/* disable transmits in the hardware */
5080 		tctl = rd32(IGC_TCTL);
5081 		tctl &= ~IGC_TCTL_EN;
5082 		wr32(IGC_TCTL, tctl);
5083 		/* flush both disables and wait for them to finish */
5084 		wrfl();
5085 		usleep_range(10000, 20000);
5086 
5087 		igc_irq_disable(adapter);
5088 	}
5089 
5090 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5091 
5092 	for (i = 0; i < adapter->num_q_vectors; i++) {
5093 		if (adapter->q_vector[i]) {
5094 			napi_synchronize(&adapter->q_vector[i]->napi);
5095 			napi_disable(&adapter->q_vector[i]->napi);
5096 		}
5097 	}
5098 
5099 	del_timer_sync(&adapter->watchdog_timer);
5100 	del_timer_sync(&adapter->phy_info_timer);
5101 
5102 	/* record the stats before reset*/
5103 	spin_lock(&adapter->stats64_lock);
5104 	igc_update_stats(adapter);
5105 	spin_unlock(&adapter->stats64_lock);
5106 
5107 	adapter->link_speed = 0;
5108 	adapter->link_duplex = 0;
5109 
5110 	if (!pci_channel_offline(adapter->pdev))
5111 		igc_reset(adapter);
5112 
5113 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5114 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5115 
5116 	igc_disable_all_tx_rings_hw(adapter);
5117 	igc_clean_all_tx_rings(adapter);
5118 	igc_clean_all_rx_rings(adapter);
5119 }
5120 
5121 void igc_reinit_locked(struct igc_adapter *adapter)
5122 {
5123 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5124 		usleep_range(1000, 2000);
5125 	igc_down(adapter);
5126 	igc_up(adapter);
5127 	clear_bit(__IGC_RESETTING, &adapter->state);
5128 }
5129 
5130 static void igc_reset_task(struct work_struct *work)
5131 {
5132 	struct igc_adapter *adapter;
5133 
5134 	adapter = container_of(work, struct igc_adapter, reset_task);
5135 
5136 	rtnl_lock();
5137 	/* If we're already down or resetting, just bail */
5138 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5139 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5140 		rtnl_unlock();
5141 		return;
5142 	}
5143 
5144 	igc_rings_dump(adapter);
5145 	igc_regs_dump(adapter);
5146 	netdev_err(adapter->netdev, "Reset adapter\n");
5147 	igc_reinit_locked(adapter);
5148 	rtnl_unlock();
5149 }
5150 
5151 /**
5152  * igc_change_mtu - Change the Maximum Transfer Unit
5153  * @netdev: network interface device structure
5154  * @new_mtu: new value for maximum frame size
5155  *
5156  * Returns 0 on success, negative on failure
5157  */
5158 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5159 {
5160 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5161 	struct igc_adapter *adapter = netdev_priv(netdev);
5162 
5163 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5164 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5165 		return -EINVAL;
5166 	}
5167 
5168 	/* adjust max frame to be at least the size of a standard frame */
5169 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5170 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5171 
5172 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5173 		usleep_range(1000, 2000);
5174 
5175 	/* igc_down has a dependency on max_frame_size */
5176 	adapter->max_frame_size = max_frame;
5177 
5178 	if (netif_running(netdev))
5179 		igc_down(adapter);
5180 
5181 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5182 	netdev->mtu = new_mtu;
5183 
5184 	if (netif_running(netdev))
5185 		igc_up(adapter);
5186 	else
5187 		igc_reset(adapter);
5188 
5189 	clear_bit(__IGC_RESETTING, &adapter->state);
5190 
5191 	return 0;
5192 }
5193 
5194 /**
5195  * igc_tx_timeout - Respond to a Tx Hang
5196  * @netdev: network interface device structure
5197  * @txqueue: queue number that timed out
5198  **/
5199 static void igc_tx_timeout(struct net_device *netdev,
5200 			   unsigned int __always_unused txqueue)
5201 {
5202 	struct igc_adapter *adapter = netdev_priv(netdev);
5203 	struct igc_hw *hw = &adapter->hw;
5204 
5205 	/* Do the reset outside of interrupt context */
5206 	adapter->tx_timeout_count++;
5207 	schedule_work(&adapter->reset_task);
5208 	wr32(IGC_EICS,
5209 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5210 }
5211 
5212 /**
5213  * igc_get_stats64 - Get System Network Statistics
5214  * @netdev: network interface device structure
5215  * @stats: rtnl_link_stats64 pointer
5216  *
5217  * Returns the address of the device statistics structure.
5218  * The statistics are updated here and also from the timer callback.
5219  */
5220 static void igc_get_stats64(struct net_device *netdev,
5221 			    struct rtnl_link_stats64 *stats)
5222 {
5223 	struct igc_adapter *adapter = netdev_priv(netdev);
5224 
5225 	spin_lock(&adapter->stats64_lock);
5226 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5227 		igc_update_stats(adapter);
5228 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5229 	spin_unlock(&adapter->stats64_lock);
5230 }
5231 
5232 static netdev_features_t igc_fix_features(struct net_device *netdev,
5233 					  netdev_features_t features)
5234 {
5235 	/* Since there is no support for separate Rx/Tx vlan accel
5236 	 * enable/disable make sure Tx flag is always in same state as Rx.
5237 	 */
5238 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5239 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5240 	else
5241 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5242 
5243 	return features;
5244 }
5245 
5246 static int igc_set_features(struct net_device *netdev,
5247 			    netdev_features_t features)
5248 {
5249 	netdev_features_t changed = netdev->features ^ features;
5250 	struct igc_adapter *adapter = netdev_priv(netdev);
5251 
5252 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5253 		igc_vlan_mode(netdev, features);
5254 
5255 	/* Add VLAN support */
5256 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5257 		return 0;
5258 
5259 	if (!(features & NETIF_F_NTUPLE))
5260 		igc_flush_nfc_rules(adapter);
5261 
5262 	netdev->features = features;
5263 
5264 	if (netif_running(netdev))
5265 		igc_reinit_locked(adapter);
5266 	else
5267 		igc_reset(adapter);
5268 
5269 	return 1;
5270 }
5271 
5272 static netdev_features_t
5273 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5274 		   netdev_features_t features)
5275 {
5276 	unsigned int network_hdr_len, mac_hdr_len;
5277 
5278 	/* Make certain the headers can be described by a context descriptor */
5279 	mac_hdr_len = skb_network_header(skb) - skb->data;
5280 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5281 		return features & ~(NETIF_F_HW_CSUM |
5282 				    NETIF_F_SCTP_CRC |
5283 				    NETIF_F_HW_VLAN_CTAG_TX |
5284 				    NETIF_F_TSO |
5285 				    NETIF_F_TSO6);
5286 
5287 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5288 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5289 		return features & ~(NETIF_F_HW_CSUM |
5290 				    NETIF_F_SCTP_CRC |
5291 				    NETIF_F_TSO |
5292 				    NETIF_F_TSO6);
5293 
5294 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5295 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5296 	 */
5297 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5298 		features &= ~NETIF_F_TSO;
5299 
5300 	return features;
5301 }
5302 
5303 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5304 {
5305 	u32 ack, tsauxc, sec, nsec, tsicr;
5306 	struct igc_hw *hw = &adapter->hw;
5307 	struct ptp_clock_event event;
5308 	struct timespec64 ts;
5309 
5310 	tsicr = rd32(IGC_TSICR);
5311 	ack = 0;
5312 
5313 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5314 		event.type = PTP_CLOCK_PPS;
5315 		if (adapter->ptp_caps.pps)
5316 			ptp_clock_event(adapter->ptp_clock, &event);
5317 		ack |= IGC_TSICR_SYS_WRAP;
5318 	}
5319 
5320 	if (tsicr & IGC_TSICR_TXTS) {
5321 		/* retrieve hardware timestamp */
5322 		igc_ptp_tx_tstamp_event(adapter);
5323 		ack |= IGC_TSICR_TXTS;
5324 	}
5325 
5326 	if (tsicr & IGC_TSICR_TT0) {
5327 		spin_lock(&adapter->tmreg_lock);
5328 		ts = timespec64_add(adapter->perout[0].start,
5329 				    adapter->perout[0].period);
5330 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5331 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5332 		tsauxc = rd32(IGC_TSAUXC);
5333 		tsauxc |= IGC_TSAUXC_EN_TT0;
5334 		wr32(IGC_TSAUXC, tsauxc);
5335 		adapter->perout[0].start = ts;
5336 		spin_unlock(&adapter->tmreg_lock);
5337 		ack |= IGC_TSICR_TT0;
5338 	}
5339 
5340 	if (tsicr & IGC_TSICR_TT1) {
5341 		spin_lock(&adapter->tmreg_lock);
5342 		ts = timespec64_add(adapter->perout[1].start,
5343 				    adapter->perout[1].period);
5344 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5345 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5346 		tsauxc = rd32(IGC_TSAUXC);
5347 		tsauxc |= IGC_TSAUXC_EN_TT1;
5348 		wr32(IGC_TSAUXC, tsauxc);
5349 		adapter->perout[1].start = ts;
5350 		spin_unlock(&adapter->tmreg_lock);
5351 		ack |= IGC_TSICR_TT1;
5352 	}
5353 
5354 	if (tsicr & IGC_TSICR_AUTT0) {
5355 		nsec = rd32(IGC_AUXSTMPL0);
5356 		sec  = rd32(IGC_AUXSTMPH0);
5357 		event.type = PTP_CLOCK_EXTTS;
5358 		event.index = 0;
5359 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5360 		ptp_clock_event(adapter->ptp_clock, &event);
5361 		ack |= IGC_TSICR_AUTT0;
5362 	}
5363 
5364 	if (tsicr & IGC_TSICR_AUTT1) {
5365 		nsec = rd32(IGC_AUXSTMPL1);
5366 		sec  = rd32(IGC_AUXSTMPH1);
5367 		event.type = PTP_CLOCK_EXTTS;
5368 		event.index = 1;
5369 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5370 		ptp_clock_event(adapter->ptp_clock, &event);
5371 		ack |= IGC_TSICR_AUTT1;
5372 	}
5373 
5374 	/* acknowledge the interrupts */
5375 	wr32(IGC_TSICR, ack);
5376 }
5377 
5378 /**
5379  * igc_msix_other - msix other interrupt handler
5380  * @irq: interrupt number
5381  * @data: pointer to a q_vector
5382  */
5383 static irqreturn_t igc_msix_other(int irq, void *data)
5384 {
5385 	struct igc_adapter *adapter = data;
5386 	struct igc_hw *hw = &adapter->hw;
5387 	u32 icr = rd32(IGC_ICR);
5388 
5389 	/* reading ICR causes bit 31 of EICR to be cleared */
5390 	if (icr & IGC_ICR_DRSTA)
5391 		schedule_work(&adapter->reset_task);
5392 
5393 	if (icr & IGC_ICR_DOUTSYNC) {
5394 		/* HW is reporting DMA is out of sync */
5395 		adapter->stats.doosync++;
5396 	}
5397 
5398 	if (icr & IGC_ICR_LSC) {
5399 		hw->mac.get_link_status = true;
5400 		/* guard against interrupt when we're going down */
5401 		if (!test_bit(__IGC_DOWN, &adapter->state))
5402 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5403 	}
5404 
5405 	if (icr & IGC_ICR_TS)
5406 		igc_tsync_interrupt(adapter);
5407 
5408 	wr32(IGC_EIMS, adapter->eims_other);
5409 
5410 	return IRQ_HANDLED;
5411 }
5412 
5413 static void igc_write_itr(struct igc_q_vector *q_vector)
5414 {
5415 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5416 
5417 	if (!q_vector->set_itr)
5418 		return;
5419 
5420 	if (!itr_val)
5421 		itr_val = IGC_ITR_VAL_MASK;
5422 
5423 	itr_val |= IGC_EITR_CNT_IGNR;
5424 
5425 	writel(itr_val, q_vector->itr_register);
5426 	q_vector->set_itr = 0;
5427 }
5428 
5429 static irqreturn_t igc_msix_ring(int irq, void *data)
5430 {
5431 	struct igc_q_vector *q_vector = data;
5432 
5433 	/* Write the ITR value calculated from the previous interrupt. */
5434 	igc_write_itr(q_vector);
5435 
5436 	napi_schedule(&q_vector->napi);
5437 
5438 	return IRQ_HANDLED;
5439 }
5440 
5441 /**
5442  * igc_request_msix - Initialize MSI-X interrupts
5443  * @adapter: Pointer to adapter structure
5444  *
5445  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5446  * kernel.
5447  */
5448 static int igc_request_msix(struct igc_adapter *adapter)
5449 {
5450 	unsigned int num_q_vectors = adapter->num_q_vectors;
5451 	int i = 0, err = 0, vector = 0, free_vector = 0;
5452 	struct net_device *netdev = adapter->netdev;
5453 
5454 	err = request_irq(adapter->msix_entries[vector].vector,
5455 			  &igc_msix_other, 0, netdev->name, adapter);
5456 	if (err)
5457 		goto err_out;
5458 
5459 	if (num_q_vectors > MAX_Q_VECTORS) {
5460 		num_q_vectors = MAX_Q_VECTORS;
5461 		dev_warn(&adapter->pdev->dev,
5462 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5463 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5464 	}
5465 	for (i = 0; i < num_q_vectors; i++) {
5466 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5467 
5468 		vector++;
5469 
5470 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5471 
5472 		if (q_vector->rx.ring && q_vector->tx.ring)
5473 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5474 				q_vector->rx.ring->queue_index);
5475 		else if (q_vector->tx.ring)
5476 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5477 				q_vector->tx.ring->queue_index);
5478 		else if (q_vector->rx.ring)
5479 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5480 				q_vector->rx.ring->queue_index);
5481 		else
5482 			sprintf(q_vector->name, "%s-unused", netdev->name);
5483 
5484 		err = request_irq(adapter->msix_entries[vector].vector,
5485 				  igc_msix_ring, 0, q_vector->name,
5486 				  q_vector);
5487 		if (err)
5488 			goto err_free;
5489 	}
5490 
5491 	igc_configure_msix(adapter);
5492 	return 0;
5493 
5494 err_free:
5495 	/* free already assigned IRQs */
5496 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5497 
5498 	vector--;
5499 	for (i = 0; i < vector; i++) {
5500 		free_irq(adapter->msix_entries[free_vector++].vector,
5501 			 adapter->q_vector[i]);
5502 	}
5503 err_out:
5504 	return err;
5505 }
5506 
5507 /**
5508  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5509  * @adapter: Pointer to adapter structure
5510  *
5511  * This function resets the device so that it has 0 rx queues, tx queues, and
5512  * MSI-X interrupts allocated.
5513  */
5514 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5515 {
5516 	igc_free_q_vectors(adapter);
5517 	igc_reset_interrupt_capability(adapter);
5518 }
5519 
5520 /* Need to wait a few seconds after link up to get diagnostic information from
5521  * the phy
5522  */
5523 static void igc_update_phy_info(struct timer_list *t)
5524 {
5525 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5526 
5527 	igc_get_phy_info(&adapter->hw);
5528 }
5529 
5530 /**
5531  * igc_has_link - check shared code for link and determine up/down
5532  * @adapter: pointer to driver private info
5533  */
5534 bool igc_has_link(struct igc_adapter *adapter)
5535 {
5536 	struct igc_hw *hw = &adapter->hw;
5537 	bool link_active = false;
5538 
5539 	/* get_link_status is set on LSC (link status) interrupt or
5540 	 * rx sequence error interrupt.  get_link_status will stay
5541 	 * false until the igc_check_for_link establishes link
5542 	 * for copper adapters ONLY
5543 	 */
5544 	if (!hw->mac.get_link_status)
5545 		return true;
5546 	hw->mac.ops.check_for_link(hw);
5547 	link_active = !hw->mac.get_link_status;
5548 
5549 	if (hw->mac.type == igc_i225) {
5550 		if (!netif_carrier_ok(adapter->netdev)) {
5551 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5552 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5553 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5554 			adapter->link_check_timeout = jiffies;
5555 		}
5556 	}
5557 
5558 	return link_active;
5559 }
5560 
5561 /**
5562  * igc_watchdog - Timer Call-back
5563  * @t: timer for the watchdog
5564  */
5565 static void igc_watchdog(struct timer_list *t)
5566 {
5567 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5568 	/* Do the rest outside of interrupt context */
5569 	schedule_work(&adapter->watchdog_task);
5570 }
5571 
5572 static void igc_watchdog_task(struct work_struct *work)
5573 {
5574 	struct igc_adapter *adapter = container_of(work,
5575 						   struct igc_adapter,
5576 						   watchdog_task);
5577 	struct net_device *netdev = adapter->netdev;
5578 	struct igc_hw *hw = &adapter->hw;
5579 	struct igc_phy_info *phy = &hw->phy;
5580 	u16 phy_data, retry_count = 20;
5581 	u32 link;
5582 	int i;
5583 
5584 	link = igc_has_link(adapter);
5585 
5586 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5587 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5588 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5589 		else
5590 			link = false;
5591 	}
5592 
5593 	if (link) {
5594 		/* Cancel scheduled suspend requests. */
5595 		pm_runtime_resume(netdev->dev.parent);
5596 
5597 		if (!netif_carrier_ok(netdev)) {
5598 			u32 ctrl;
5599 
5600 			hw->mac.ops.get_speed_and_duplex(hw,
5601 							 &adapter->link_speed,
5602 							 &adapter->link_duplex);
5603 
5604 			ctrl = rd32(IGC_CTRL);
5605 			/* Link status message must follow this format */
5606 			netdev_info(netdev,
5607 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5608 				    adapter->link_speed,
5609 				    adapter->link_duplex == FULL_DUPLEX ?
5610 				    "Full" : "Half",
5611 				    (ctrl & IGC_CTRL_TFCE) &&
5612 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5613 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5614 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5615 
5616 			/* disable EEE if enabled */
5617 			if ((adapter->flags & IGC_FLAG_EEE) &&
5618 			    adapter->link_duplex == HALF_DUPLEX) {
5619 				netdev_info(netdev,
5620 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5621 				adapter->hw.dev_spec._base.eee_enable = false;
5622 				adapter->flags &= ~IGC_FLAG_EEE;
5623 			}
5624 
5625 			/* check if SmartSpeed worked */
5626 			igc_check_downshift(hw);
5627 			if (phy->speed_downgraded)
5628 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5629 
5630 			/* adjust timeout factor according to speed/duplex */
5631 			adapter->tx_timeout_factor = 1;
5632 			switch (adapter->link_speed) {
5633 			case SPEED_10:
5634 				adapter->tx_timeout_factor = 14;
5635 				break;
5636 			case SPEED_100:
5637 			case SPEED_1000:
5638 			case SPEED_2500:
5639 				adapter->tx_timeout_factor = 1;
5640 				break;
5641 			}
5642 
5643 			/* Once the launch time has been set on the wire, there
5644 			 * is a delay before the link speed can be determined
5645 			 * based on link-up activity. Write into the register
5646 			 * as soon as we know the correct link speed.
5647 			 */
5648 			igc_tsn_adjust_txtime_offset(adapter);
5649 
5650 			if (adapter->link_speed != SPEED_1000)
5651 				goto no_wait;
5652 
5653 			/* wait for Remote receiver status OK */
5654 retry_read_status:
5655 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5656 					      &phy_data)) {
5657 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5658 				    retry_count) {
5659 					msleep(100);
5660 					retry_count--;
5661 					goto retry_read_status;
5662 				} else if (!retry_count) {
5663 					netdev_err(netdev, "exceed max 2 second\n");
5664 				}
5665 			} else {
5666 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5667 			}
5668 no_wait:
5669 			netif_carrier_on(netdev);
5670 
5671 			/* link state has changed, schedule phy info update */
5672 			if (!test_bit(__IGC_DOWN, &adapter->state))
5673 				mod_timer(&adapter->phy_info_timer,
5674 					  round_jiffies(jiffies + 2 * HZ));
5675 		}
5676 	} else {
5677 		if (netif_carrier_ok(netdev)) {
5678 			adapter->link_speed = 0;
5679 			adapter->link_duplex = 0;
5680 
5681 			/* Links status message must follow this format */
5682 			netdev_info(netdev, "NIC Link is Down\n");
5683 			netif_carrier_off(netdev);
5684 
5685 			/* link state has changed, schedule phy info update */
5686 			if (!test_bit(__IGC_DOWN, &adapter->state))
5687 				mod_timer(&adapter->phy_info_timer,
5688 					  round_jiffies(jiffies + 2 * HZ));
5689 
5690 			pm_schedule_suspend(netdev->dev.parent,
5691 					    MSEC_PER_SEC * 5);
5692 		}
5693 	}
5694 
5695 	spin_lock(&adapter->stats64_lock);
5696 	igc_update_stats(adapter);
5697 	spin_unlock(&adapter->stats64_lock);
5698 
5699 	for (i = 0; i < adapter->num_tx_queues; i++) {
5700 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5701 
5702 		if (!netif_carrier_ok(netdev)) {
5703 			/* We've lost link, so the controller stops DMA,
5704 			 * but we've got queued Tx work that's never going
5705 			 * to get done, so reset controller to flush Tx.
5706 			 * (Do the reset outside of interrupt context).
5707 			 */
5708 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5709 				adapter->tx_timeout_count++;
5710 				schedule_work(&adapter->reset_task);
5711 				/* return immediately since reset is imminent */
5712 				return;
5713 			}
5714 		}
5715 
5716 		/* Force detection of hung controller every watchdog period */
5717 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5718 	}
5719 
5720 	/* Cause software interrupt to ensure Rx ring is cleaned */
5721 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5722 		u32 eics = 0;
5723 
5724 		for (i = 0; i < adapter->num_q_vectors; i++)
5725 			eics |= adapter->q_vector[i]->eims_value;
5726 		wr32(IGC_EICS, eics);
5727 	} else {
5728 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5729 	}
5730 
5731 	igc_ptp_tx_hang(adapter);
5732 
5733 	/* Reset the timer */
5734 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5735 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5736 			mod_timer(&adapter->watchdog_timer,
5737 				  round_jiffies(jiffies +  HZ));
5738 		else
5739 			mod_timer(&adapter->watchdog_timer,
5740 				  round_jiffies(jiffies + 2 * HZ));
5741 	}
5742 }
5743 
5744 /**
5745  * igc_intr_msi - Interrupt Handler
5746  * @irq: interrupt number
5747  * @data: pointer to a network interface device structure
5748  */
5749 static irqreturn_t igc_intr_msi(int irq, void *data)
5750 {
5751 	struct igc_adapter *adapter = data;
5752 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5753 	struct igc_hw *hw = &adapter->hw;
5754 	/* read ICR disables interrupts using IAM */
5755 	u32 icr = rd32(IGC_ICR);
5756 
5757 	igc_write_itr(q_vector);
5758 
5759 	if (icr & IGC_ICR_DRSTA)
5760 		schedule_work(&adapter->reset_task);
5761 
5762 	if (icr & IGC_ICR_DOUTSYNC) {
5763 		/* HW is reporting DMA is out of sync */
5764 		adapter->stats.doosync++;
5765 	}
5766 
5767 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5768 		hw->mac.get_link_status = true;
5769 		if (!test_bit(__IGC_DOWN, &adapter->state))
5770 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5771 	}
5772 
5773 	if (icr & IGC_ICR_TS)
5774 		igc_tsync_interrupt(adapter);
5775 
5776 	napi_schedule(&q_vector->napi);
5777 
5778 	return IRQ_HANDLED;
5779 }
5780 
5781 /**
5782  * igc_intr - Legacy Interrupt Handler
5783  * @irq: interrupt number
5784  * @data: pointer to a network interface device structure
5785  */
5786 static irqreturn_t igc_intr(int irq, void *data)
5787 {
5788 	struct igc_adapter *adapter = data;
5789 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5790 	struct igc_hw *hw = &adapter->hw;
5791 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5792 	 * need for the IMC write
5793 	 */
5794 	u32 icr = rd32(IGC_ICR);
5795 
5796 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5797 	 * not set, then the adapter didn't send an interrupt
5798 	 */
5799 	if (!(icr & IGC_ICR_INT_ASSERTED))
5800 		return IRQ_NONE;
5801 
5802 	igc_write_itr(q_vector);
5803 
5804 	if (icr & IGC_ICR_DRSTA)
5805 		schedule_work(&adapter->reset_task);
5806 
5807 	if (icr & IGC_ICR_DOUTSYNC) {
5808 		/* HW is reporting DMA is out of sync */
5809 		adapter->stats.doosync++;
5810 	}
5811 
5812 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5813 		hw->mac.get_link_status = true;
5814 		/* guard against interrupt when we're going down */
5815 		if (!test_bit(__IGC_DOWN, &adapter->state))
5816 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5817 	}
5818 
5819 	if (icr & IGC_ICR_TS)
5820 		igc_tsync_interrupt(adapter);
5821 
5822 	napi_schedule(&q_vector->napi);
5823 
5824 	return IRQ_HANDLED;
5825 }
5826 
5827 static void igc_free_irq(struct igc_adapter *adapter)
5828 {
5829 	if (adapter->msix_entries) {
5830 		int vector = 0, i;
5831 
5832 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5833 
5834 		for (i = 0; i < adapter->num_q_vectors; i++)
5835 			free_irq(adapter->msix_entries[vector++].vector,
5836 				 adapter->q_vector[i]);
5837 	} else {
5838 		free_irq(adapter->pdev->irq, adapter);
5839 	}
5840 }
5841 
5842 /**
5843  * igc_request_irq - initialize interrupts
5844  * @adapter: Pointer to adapter structure
5845  *
5846  * Attempts to configure interrupts using the best available
5847  * capabilities of the hardware and kernel.
5848  */
5849 static int igc_request_irq(struct igc_adapter *adapter)
5850 {
5851 	struct net_device *netdev = adapter->netdev;
5852 	struct pci_dev *pdev = adapter->pdev;
5853 	int err = 0;
5854 
5855 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5856 		err = igc_request_msix(adapter);
5857 		if (!err)
5858 			goto request_done;
5859 		/* fall back to MSI */
5860 		igc_free_all_tx_resources(adapter);
5861 		igc_free_all_rx_resources(adapter);
5862 
5863 		igc_clear_interrupt_scheme(adapter);
5864 		err = igc_init_interrupt_scheme(adapter, false);
5865 		if (err)
5866 			goto request_done;
5867 		igc_setup_all_tx_resources(adapter);
5868 		igc_setup_all_rx_resources(adapter);
5869 		igc_configure(adapter);
5870 	}
5871 
5872 	igc_assign_vector(adapter->q_vector[0], 0);
5873 
5874 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5875 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5876 				  netdev->name, adapter);
5877 		if (!err)
5878 			goto request_done;
5879 
5880 		/* fall back to legacy interrupts */
5881 		igc_reset_interrupt_capability(adapter);
5882 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5883 	}
5884 
5885 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5886 			  netdev->name, adapter);
5887 
5888 	if (err)
5889 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5890 
5891 request_done:
5892 	return err;
5893 }
5894 
5895 /**
5896  * __igc_open - Called when a network interface is made active
5897  * @netdev: network interface device structure
5898  * @resuming: boolean indicating if the device is resuming
5899  *
5900  * Returns 0 on success, negative value on failure
5901  *
5902  * The open entry point is called when a network interface is made
5903  * active by the system (IFF_UP).  At this point all resources needed
5904  * for transmit and receive operations are allocated, the interrupt
5905  * handler is registered with the OS, the watchdog timer is started,
5906  * and the stack is notified that the interface is ready.
5907  */
5908 static int __igc_open(struct net_device *netdev, bool resuming)
5909 {
5910 	struct igc_adapter *adapter = netdev_priv(netdev);
5911 	struct pci_dev *pdev = adapter->pdev;
5912 	struct igc_hw *hw = &adapter->hw;
5913 	int err = 0;
5914 	int i = 0;
5915 
5916 	/* disallow open during test */
5917 
5918 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5919 		WARN_ON(resuming);
5920 		return -EBUSY;
5921 	}
5922 
5923 	if (!resuming)
5924 		pm_runtime_get_sync(&pdev->dev);
5925 
5926 	netif_carrier_off(netdev);
5927 
5928 	/* allocate transmit descriptors */
5929 	err = igc_setup_all_tx_resources(adapter);
5930 	if (err)
5931 		goto err_setup_tx;
5932 
5933 	/* allocate receive descriptors */
5934 	err = igc_setup_all_rx_resources(adapter);
5935 	if (err)
5936 		goto err_setup_rx;
5937 
5938 	igc_power_up_link(adapter);
5939 
5940 	igc_configure(adapter);
5941 
5942 	err = igc_request_irq(adapter);
5943 	if (err)
5944 		goto err_req_irq;
5945 
5946 	/* Notify the stack of the actual queue counts. */
5947 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5948 	if (err)
5949 		goto err_set_queues;
5950 
5951 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5952 	if (err)
5953 		goto err_set_queues;
5954 
5955 	clear_bit(__IGC_DOWN, &adapter->state);
5956 
5957 	for (i = 0; i < adapter->num_q_vectors; i++)
5958 		napi_enable(&adapter->q_vector[i]->napi);
5959 
5960 	/* Clear any pending interrupts. */
5961 	rd32(IGC_ICR);
5962 	igc_irq_enable(adapter);
5963 
5964 	if (!resuming)
5965 		pm_runtime_put(&pdev->dev);
5966 
5967 	netif_tx_start_all_queues(netdev);
5968 
5969 	/* start the watchdog. */
5970 	hw->mac.get_link_status = true;
5971 	schedule_work(&adapter->watchdog_task);
5972 
5973 	return IGC_SUCCESS;
5974 
5975 err_set_queues:
5976 	igc_free_irq(adapter);
5977 err_req_irq:
5978 	igc_release_hw_control(adapter);
5979 	igc_power_down_phy_copper_base(&adapter->hw);
5980 	igc_free_all_rx_resources(adapter);
5981 err_setup_rx:
5982 	igc_free_all_tx_resources(adapter);
5983 err_setup_tx:
5984 	igc_reset(adapter);
5985 	if (!resuming)
5986 		pm_runtime_put(&pdev->dev);
5987 
5988 	return err;
5989 }
5990 
5991 int igc_open(struct net_device *netdev)
5992 {
5993 	return __igc_open(netdev, false);
5994 }
5995 
5996 /**
5997  * __igc_close - Disables a network interface
5998  * @netdev: network interface device structure
5999  * @suspending: boolean indicating the device is suspending
6000  *
6001  * Returns 0, this is not allowed to fail
6002  *
6003  * The close entry point is called when an interface is de-activated
6004  * by the OS.  The hardware is still under the driver's control, but
6005  * needs to be disabled.  A global MAC reset is issued to stop the
6006  * hardware, and all transmit and receive resources are freed.
6007  */
6008 static int __igc_close(struct net_device *netdev, bool suspending)
6009 {
6010 	struct igc_adapter *adapter = netdev_priv(netdev);
6011 	struct pci_dev *pdev = adapter->pdev;
6012 
6013 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6014 
6015 	if (!suspending)
6016 		pm_runtime_get_sync(&pdev->dev);
6017 
6018 	igc_down(adapter);
6019 
6020 	igc_release_hw_control(adapter);
6021 
6022 	igc_free_irq(adapter);
6023 
6024 	igc_free_all_tx_resources(adapter);
6025 	igc_free_all_rx_resources(adapter);
6026 
6027 	if (!suspending)
6028 		pm_runtime_put_sync(&pdev->dev);
6029 
6030 	return 0;
6031 }
6032 
6033 int igc_close(struct net_device *netdev)
6034 {
6035 	if (netif_device_present(netdev) || netdev->dismantle)
6036 		return __igc_close(netdev, false);
6037 	return 0;
6038 }
6039 
6040 /**
6041  * igc_ioctl - Access the hwtstamp interface
6042  * @netdev: network interface device structure
6043  * @ifr: interface request data
6044  * @cmd: ioctl command
6045  **/
6046 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6047 {
6048 	switch (cmd) {
6049 	case SIOCGHWTSTAMP:
6050 		return igc_ptp_get_ts_config(netdev, ifr);
6051 	case SIOCSHWTSTAMP:
6052 		return igc_ptp_set_ts_config(netdev, ifr);
6053 	default:
6054 		return -EOPNOTSUPP;
6055 	}
6056 }
6057 
6058 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6059 				      bool enable)
6060 {
6061 	struct igc_ring *ring;
6062 
6063 	if (queue < 0 || queue >= adapter->num_tx_queues)
6064 		return -EINVAL;
6065 
6066 	ring = adapter->tx_ring[queue];
6067 	ring->launchtime_enable = enable;
6068 
6069 	return 0;
6070 }
6071 
6072 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6073 {
6074 	struct timespec64 b;
6075 
6076 	b = ktime_to_timespec64(base_time);
6077 
6078 	return timespec64_compare(now, &b) > 0;
6079 }
6080 
6081 static bool validate_schedule(struct igc_adapter *adapter,
6082 			      const struct tc_taprio_qopt_offload *qopt)
6083 {
6084 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6085 	struct igc_hw *hw = &adapter->hw;
6086 	struct timespec64 now;
6087 	size_t n;
6088 
6089 	if (qopt->cycle_time_extension)
6090 		return false;
6091 
6092 	igc_ptp_read(adapter, &now);
6093 
6094 	/* If we program the controller's BASET registers with a time
6095 	 * in the future, it will hold all the packets until that
6096 	 * time, causing a lot of TX Hangs, so to avoid that, we
6097 	 * reject schedules that would start in the future.
6098 	 * Note: Limitation above is no longer in i226.
6099 	 */
6100 	if (!is_base_time_past(qopt->base_time, &now) &&
6101 	    igc_is_device_id_i225(hw))
6102 		return false;
6103 
6104 	for (n = 0; n < qopt->num_entries; n++) {
6105 		const struct tc_taprio_sched_entry *e, *prev;
6106 		int i;
6107 
6108 		prev = n ? &qopt->entries[n - 1] : NULL;
6109 		e = &qopt->entries[n];
6110 
6111 		/* i225 only supports "global" frame preemption
6112 		 * settings.
6113 		 */
6114 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6115 			return false;
6116 
6117 		for (i = 0; i < adapter->num_tx_queues; i++)
6118 			if (e->gate_mask & BIT(i)) {
6119 				queue_uses[i]++;
6120 
6121 				/* There are limitations: A single queue cannot
6122 				 * be opened and closed multiple times per cycle
6123 				 * unless the gate stays open. Check for it.
6124 				 */
6125 				if (queue_uses[i] > 1 &&
6126 				    !(prev->gate_mask & BIT(i)))
6127 					return false;
6128 			}
6129 	}
6130 
6131 	return true;
6132 }
6133 
6134 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6135 				     struct tc_etf_qopt_offload *qopt)
6136 {
6137 	struct igc_hw *hw = &adapter->hw;
6138 	int err;
6139 
6140 	if (hw->mac.type != igc_i225)
6141 		return -EOPNOTSUPP;
6142 
6143 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6144 	if (err)
6145 		return err;
6146 
6147 	return igc_tsn_offload_apply(adapter);
6148 }
6149 
6150 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6151 {
6152 	unsigned long flags;
6153 	int i;
6154 
6155 	adapter->base_time = 0;
6156 	adapter->cycle_time = NSEC_PER_SEC;
6157 	adapter->taprio_offload_enable = false;
6158 	adapter->qbv_config_change_errors = 0;
6159 	adapter->qbv_count = 0;
6160 
6161 	for (i = 0; i < adapter->num_tx_queues; i++) {
6162 		struct igc_ring *ring = adapter->tx_ring[i];
6163 
6164 		ring->start_time = 0;
6165 		ring->end_time = NSEC_PER_SEC;
6166 		ring->max_sdu = 0;
6167 	}
6168 
6169 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6170 
6171 	adapter->qbv_transition = false;
6172 
6173 	for (i = 0; i < adapter->num_tx_queues; i++) {
6174 		struct igc_ring *ring = adapter->tx_ring[i];
6175 
6176 		ring->oper_gate_closed = false;
6177 		ring->admin_gate_closed = false;
6178 	}
6179 
6180 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6181 
6182 	return 0;
6183 }
6184 
6185 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6186 {
6187 	igc_qbv_clear_schedule(adapter);
6188 
6189 	return 0;
6190 }
6191 
6192 static void igc_taprio_stats(struct net_device *dev,
6193 			     struct tc_taprio_qopt_stats *stats)
6194 {
6195 	/* When Strict_End is enabled, the tx_overruns counter
6196 	 * will always be zero.
6197 	 */
6198 	stats->tx_overruns = 0;
6199 }
6200 
6201 static void igc_taprio_queue_stats(struct net_device *dev,
6202 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6203 {
6204 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6205 
6206 	/* When Strict_End is enabled, the tx_overruns counter
6207 	 * will always be zero.
6208 	 */
6209 	stats->tx_overruns = 0;
6210 }
6211 
6212 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6213 				 struct tc_taprio_qopt_offload *qopt)
6214 {
6215 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6216 	struct igc_hw *hw = &adapter->hw;
6217 	u32 start_time = 0, end_time = 0;
6218 	struct timespec64 now;
6219 	unsigned long flags;
6220 	size_t n;
6221 	int i;
6222 
6223 	switch (qopt->cmd) {
6224 	case TAPRIO_CMD_REPLACE:
6225 		break;
6226 	case TAPRIO_CMD_DESTROY:
6227 		return igc_tsn_clear_schedule(adapter);
6228 	case TAPRIO_CMD_STATS:
6229 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6230 		return 0;
6231 	case TAPRIO_CMD_QUEUE_STATS:
6232 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6233 		return 0;
6234 	default:
6235 		return -EOPNOTSUPP;
6236 	}
6237 
6238 	if (qopt->base_time < 0)
6239 		return -ERANGE;
6240 
6241 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6242 		return -EALREADY;
6243 
6244 	if (!validate_schedule(adapter, qopt))
6245 		return -EINVAL;
6246 
6247 	adapter->cycle_time = qopt->cycle_time;
6248 	adapter->base_time = qopt->base_time;
6249 	adapter->taprio_offload_enable = true;
6250 
6251 	igc_ptp_read(adapter, &now);
6252 
6253 	for (n = 0; n < qopt->num_entries; n++) {
6254 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6255 
6256 		end_time += e->interval;
6257 
6258 		/* If any of the conditions below are true, we need to manually
6259 		 * control the end time of the cycle.
6260 		 * 1. Qbv users can specify a cycle time that is not equal
6261 		 * to the total GCL intervals. Hence, recalculation is
6262 		 * necessary here to exclude the time interval that
6263 		 * exceeds the cycle time.
6264 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6265 		 * once the end of the list is reached, it will switch
6266 		 * to the END_OF_CYCLE state and leave the gates in the
6267 		 * same state until the next cycle is started.
6268 		 */
6269 		if (end_time > adapter->cycle_time ||
6270 		    n + 1 == qopt->num_entries)
6271 			end_time = adapter->cycle_time;
6272 
6273 		for (i = 0; i < adapter->num_tx_queues; i++) {
6274 			struct igc_ring *ring = adapter->tx_ring[i];
6275 
6276 			if (!(e->gate_mask & BIT(i)))
6277 				continue;
6278 
6279 			/* Check whether a queue stays open for more than one
6280 			 * entry. If so, keep the start and advance the end
6281 			 * time.
6282 			 */
6283 			if (!queue_configured[i])
6284 				ring->start_time = start_time;
6285 			ring->end_time = end_time;
6286 
6287 			if (ring->start_time >= adapter->cycle_time)
6288 				queue_configured[i] = false;
6289 			else
6290 				queue_configured[i] = true;
6291 		}
6292 
6293 		start_time += e->interval;
6294 	}
6295 
6296 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6297 
6298 	/* Check whether a queue gets configured.
6299 	 * If not, set the start and end time to be end time.
6300 	 */
6301 	for (i = 0; i < adapter->num_tx_queues; i++) {
6302 		struct igc_ring *ring = adapter->tx_ring[i];
6303 
6304 		if (!is_base_time_past(qopt->base_time, &now)) {
6305 			ring->admin_gate_closed = false;
6306 		} else {
6307 			ring->oper_gate_closed = false;
6308 			ring->admin_gate_closed = false;
6309 		}
6310 
6311 		if (!queue_configured[i]) {
6312 			if (!is_base_time_past(qopt->base_time, &now))
6313 				ring->admin_gate_closed = true;
6314 			else
6315 				ring->oper_gate_closed = true;
6316 
6317 			ring->start_time = end_time;
6318 			ring->end_time = end_time;
6319 		}
6320 	}
6321 
6322 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6323 
6324 	for (i = 0; i < adapter->num_tx_queues; i++) {
6325 		struct igc_ring *ring = adapter->tx_ring[i];
6326 		struct net_device *dev = adapter->netdev;
6327 
6328 		if (qopt->max_sdu[i])
6329 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6330 		else
6331 			ring->max_sdu = 0;
6332 	}
6333 
6334 	return 0;
6335 }
6336 
6337 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6338 					 struct tc_taprio_qopt_offload *qopt)
6339 {
6340 	struct igc_hw *hw = &adapter->hw;
6341 	int err;
6342 
6343 	if (hw->mac.type != igc_i225)
6344 		return -EOPNOTSUPP;
6345 
6346 	err = igc_save_qbv_schedule(adapter, qopt);
6347 	if (err)
6348 		return err;
6349 
6350 	return igc_tsn_offload_apply(adapter);
6351 }
6352 
6353 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6354 			       bool enable, int idleslope, int sendslope,
6355 			       int hicredit, int locredit)
6356 {
6357 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6358 	struct net_device *netdev = adapter->netdev;
6359 	struct igc_ring *ring;
6360 	int i;
6361 
6362 	/* i225 has two sets of credit-based shaper logic.
6363 	 * Supporting it only on the top two priority queues
6364 	 */
6365 	if (queue < 0 || queue > 1)
6366 		return -EINVAL;
6367 
6368 	ring = adapter->tx_ring[queue];
6369 
6370 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6371 		if (adapter->tx_ring[i])
6372 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6373 
6374 	/* CBS should be enabled on the highest priority queue first in order
6375 	 * for the CBS algorithm to operate as intended.
6376 	 */
6377 	if (enable) {
6378 		if (queue == 1 && !cbs_status[0]) {
6379 			netdev_err(netdev,
6380 				   "Enabling CBS on queue1 before queue0\n");
6381 			return -EINVAL;
6382 		}
6383 	} else {
6384 		if (queue == 0 && cbs_status[1]) {
6385 			netdev_err(netdev,
6386 				   "Disabling CBS on queue0 before queue1\n");
6387 			return -EINVAL;
6388 		}
6389 	}
6390 
6391 	ring->cbs_enable = enable;
6392 	ring->idleslope = idleslope;
6393 	ring->sendslope = sendslope;
6394 	ring->hicredit = hicredit;
6395 	ring->locredit = locredit;
6396 
6397 	return 0;
6398 }
6399 
6400 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6401 			      struct tc_cbs_qopt_offload *qopt)
6402 {
6403 	struct igc_hw *hw = &adapter->hw;
6404 	int err;
6405 
6406 	if (hw->mac.type != igc_i225)
6407 		return -EOPNOTSUPP;
6408 
6409 	if (qopt->queue < 0 || qopt->queue > 1)
6410 		return -EINVAL;
6411 
6412 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6413 				  qopt->idleslope, qopt->sendslope,
6414 				  qopt->hicredit, qopt->locredit);
6415 	if (err)
6416 		return err;
6417 
6418 	return igc_tsn_offload_apply(adapter);
6419 }
6420 
6421 static int igc_tc_query_caps(struct igc_adapter *adapter,
6422 			     struct tc_query_caps_base *base)
6423 {
6424 	struct igc_hw *hw = &adapter->hw;
6425 
6426 	switch (base->type) {
6427 	case TC_SETUP_QDISC_TAPRIO: {
6428 		struct tc_taprio_caps *caps = base->caps;
6429 
6430 		caps->broken_mqprio = true;
6431 
6432 		if (hw->mac.type == igc_i225) {
6433 			caps->supports_queue_max_sdu = true;
6434 			caps->gate_mask_per_txq = true;
6435 		}
6436 
6437 		return 0;
6438 	}
6439 	default:
6440 		return -EOPNOTSUPP;
6441 	}
6442 }
6443 
6444 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6445 			void *type_data)
6446 {
6447 	struct igc_adapter *adapter = netdev_priv(dev);
6448 
6449 	adapter->tc_setup_type = type;
6450 
6451 	switch (type) {
6452 	case TC_QUERY_CAPS:
6453 		return igc_tc_query_caps(adapter, type_data);
6454 	case TC_SETUP_QDISC_TAPRIO:
6455 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6456 
6457 	case TC_SETUP_QDISC_ETF:
6458 		return igc_tsn_enable_launchtime(adapter, type_data);
6459 
6460 	case TC_SETUP_QDISC_CBS:
6461 		return igc_tsn_enable_cbs(adapter, type_data);
6462 
6463 	default:
6464 		return -EOPNOTSUPP;
6465 	}
6466 }
6467 
6468 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6469 {
6470 	struct igc_adapter *adapter = netdev_priv(dev);
6471 
6472 	switch (bpf->command) {
6473 	case XDP_SETUP_PROG:
6474 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6475 	case XDP_SETUP_XSK_POOL:
6476 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6477 					  bpf->xsk.queue_id);
6478 	default:
6479 		return -EOPNOTSUPP;
6480 	}
6481 }
6482 
6483 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6484 			struct xdp_frame **frames, u32 flags)
6485 {
6486 	struct igc_adapter *adapter = netdev_priv(dev);
6487 	int cpu = smp_processor_id();
6488 	struct netdev_queue *nq;
6489 	struct igc_ring *ring;
6490 	int i, drops;
6491 
6492 	if (unlikely(!netif_carrier_ok(dev)))
6493 		return -ENETDOWN;
6494 
6495 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6496 		return -EINVAL;
6497 
6498 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6499 	nq = txring_txq(ring);
6500 
6501 	__netif_tx_lock(nq, cpu);
6502 
6503 	/* Avoid transmit queue timeout since we share it with the slow path */
6504 	txq_trans_cond_update(nq);
6505 
6506 	drops = 0;
6507 	for (i = 0; i < num_frames; i++) {
6508 		int err;
6509 		struct xdp_frame *xdpf = frames[i];
6510 
6511 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6512 		if (err) {
6513 			xdp_return_frame_rx_napi(xdpf);
6514 			drops++;
6515 		}
6516 	}
6517 
6518 	if (flags & XDP_XMIT_FLUSH)
6519 		igc_flush_tx_descriptors(ring);
6520 
6521 	__netif_tx_unlock(nq);
6522 
6523 	return num_frames - drops;
6524 }
6525 
6526 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6527 					struct igc_q_vector *q_vector)
6528 {
6529 	struct igc_hw *hw = &adapter->hw;
6530 	u32 eics = 0;
6531 
6532 	eics |= q_vector->eims_value;
6533 	wr32(IGC_EICS, eics);
6534 }
6535 
6536 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6537 {
6538 	struct igc_adapter *adapter = netdev_priv(dev);
6539 	struct igc_q_vector *q_vector;
6540 	struct igc_ring *ring;
6541 
6542 	if (test_bit(__IGC_DOWN, &adapter->state))
6543 		return -ENETDOWN;
6544 
6545 	if (!igc_xdp_is_enabled(adapter))
6546 		return -ENXIO;
6547 
6548 	if (queue_id >= adapter->num_rx_queues)
6549 		return -EINVAL;
6550 
6551 	ring = adapter->rx_ring[queue_id];
6552 
6553 	if (!ring->xsk_pool)
6554 		return -ENXIO;
6555 
6556 	q_vector = adapter->q_vector[queue_id];
6557 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6558 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6559 
6560 	return 0;
6561 }
6562 
6563 static ktime_t igc_get_tstamp(struct net_device *dev,
6564 			      const struct skb_shared_hwtstamps *hwtstamps,
6565 			      bool cycles)
6566 {
6567 	struct igc_adapter *adapter = netdev_priv(dev);
6568 	struct igc_inline_rx_tstamps *tstamp;
6569 	ktime_t timestamp;
6570 
6571 	tstamp = hwtstamps->netdev_data;
6572 
6573 	if (cycles)
6574 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6575 	else
6576 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6577 
6578 	return timestamp;
6579 }
6580 
6581 static const struct net_device_ops igc_netdev_ops = {
6582 	.ndo_open		= igc_open,
6583 	.ndo_stop		= igc_close,
6584 	.ndo_start_xmit		= igc_xmit_frame,
6585 	.ndo_set_rx_mode	= igc_set_rx_mode,
6586 	.ndo_set_mac_address	= igc_set_mac,
6587 	.ndo_change_mtu		= igc_change_mtu,
6588 	.ndo_tx_timeout		= igc_tx_timeout,
6589 	.ndo_get_stats64	= igc_get_stats64,
6590 	.ndo_fix_features	= igc_fix_features,
6591 	.ndo_set_features	= igc_set_features,
6592 	.ndo_features_check	= igc_features_check,
6593 	.ndo_eth_ioctl		= igc_ioctl,
6594 	.ndo_setup_tc		= igc_setup_tc,
6595 	.ndo_bpf		= igc_bpf,
6596 	.ndo_xdp_xmit		= igc_xdp_xmit,
6597 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6598 	.ndo_get_tstamp		= igc_get_tstamp,
6599 };
6600 
6601 /* PCIe configuration access */
6602 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6603 {
6604 	struct igc_adapter *adapter = hw->back;
6605 
6606 	pci_read_config_word(adapter->pdev, reg, value);
6607 }
6608 
6609 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6610 {
6611 	struct igc_adapter *adapter = hw->back;
6612 
6613 	pci_write_config_word(adapter->pdev, reg, *value);
6614 }
6615 
6616 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6617 {
6618 	struct igc_adapter *adapter = hw->back;
6619 
6620 	if (!pci_is_pcie(adapter->pdev))
6621 		return -IGC_ERR_CONFIG;
6622 
6623 	pcie_capability_read_word(adapter->pdev, reg, value);
6624 
6625 	return IGC_SUCCESS;
6626 }
6627 
6628 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6629 {
6630 	struct igc_adapter *adapter = hw->back;
6631 
6632 	if (!pci_is_pcie(adapter->pdev))
6633 		return -IGC_ERR_CONFIG;
6634 
6635 	pcie_capability_write_word(adapter->pdev, reg, *value);
6636 
6637 	return IGC_SUCCESS;
6638 }
6639 
6640 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6641 {
6642 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6643 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6644 	u32 value = 0;
6645 
6646 	if (IGC_REMOVED(hw_addr))
6647 		return ~value;
6648 
6649 	value = readl(&hw_addr[reg]);
6650 
6651 	/* reads should not return all F's */
6652 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6653 		struct net_device *netdev = igc->netdev;
6654 
6655 		hw->hw_addr = NULL;
6656 		netif_device_detach(netdev);
6657 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6658 		WARN(pci_device_is_present(igc->pdev),
6659 		     "igc: Failed to read reg 0x%x!\n", reg);
6660 	}
6661 
6662 	return value;
6663 }
6664 
6665 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6666 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6667 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6668 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6669 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6670 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6671 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6672 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6673 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6674 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6675 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6676 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6677 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6678 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6679 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6680 	[13] = XDP_RSS_TYPE_NONE,
6681 	[14] = XDP_RSS_TYPE_NONE,
6682 	[15] = XDP_RSS_TYPE_NONE,
6683 };
6684 
6685 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6686 			   enum xdp_rss_hash_type *rss_type)
6687 {
6688 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6689 
6690 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6691 		return -ENODATA;
6692 
6693 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6694 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6695 
6696 	return 0;
6697 }
6698 
6699 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6700 {
6701 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6702 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6703 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6704 
6705 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6706 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6707 
6708 		return 0;
6709 	}
6710 
6711 	return -ENODATA;
6712 }
6713 
6714 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6715 	.xmo_rx_hash			= igc_xdp_rx_hash,
6716 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6717 };
6718 
6719 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6720 {
6721 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6722 						   hrtimer);
6723 	unsigned long flags;
6724 	unsigned int i;
6725 
6726 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6727 
6728 	adapter->qbv_transition = true;
6729 	for (i = 0; i < adapter->num_tx_queues; i++) {
6730 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6731 
6732 		if (tx_ring->admin_gate_closed) {
6733 			tx_ring->admin_gate_closed = false;
6734 			tx_ring->oper_gate_closed = true;
6735 		} else {
6736 			tx_ring->oper_gate_closed = false;
6737 		}
6738 	}
6739 	adapter->qbv_transition = false;
6740 
6741 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6742 
6743 	return HRTIMER_NORESTART;
6744 }
6745 
6746 /**
6747  * igc_probe - Device Initialization Routine
6748  * @pdev: PCI device information struct
6749  * @ent: entry in igc_pci_tbl
6750  *
6751  * Returns 0 on success, negative on failure
6752  *
6753  * igc_probe initializes an adapter identified by a pci_dev structure.
6754  * The OS initialization, configuring the adapter private structure,
6755  * and a hardware reset occur.
6756  */
6757 static int igc_probe(struct pci_dev *pdev,
6758 		     const struct pci_device_id *ent)
6759 {
6760 	struct igc_adapter *adapter;
6761 	struct net_device *netdev;
6762 	struct igc_hw *hw;
6763 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6764 	int err;
6765 
6766 	err = pci_enable_device_mem(pdev);
6767 	if (err)
6768 		return err;
6769 
6770 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6771 	if (err) {
6772 		dev_err(&pdev->dev,
6773 			"No usable DMA configuration, aborting\n");
6774 		goto err_dma;
6775 	}
6776 
6777 	err = pci_request_mem_regions(pdev, igc_driver_name);
6778 	if (err)
6779 		goto err_pci_reg;
6780 
6781 	err = pci_enable_ptm(pdev, NULL);
6782 	if (err < 0)
6783 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6784 
6785 	pci_set_master(pdev);
6786 
6787 	err = -ENOMEM;
6788 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6789 				   IGC_MAX_TX_QUEUES);
6790 
6791 	if (!netdev)
6792 		goto err_alloc_etherdev;
6793 
6794 	SET_NETDEV_DEV(netdev, &pdev->dev);
6795 
6796 	pci_set_drvdata(pdev, netdev);
6797 	adapter = netdev_priv(netdev);
6798 	adapter->netdev = netdev;
6799 	adapter->pdev = pdev;
6800 	hw = &adapter->hw;
6801 	hw->back = adapter;
6802 	adapter->port_num = hw->bus.func;
6803 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6804 
6805 	err = pci_save_state(pdev);
6806 	if (err)
6807 		goto err_ioremap;
6808 
6809 	err = -EIO;
6810 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6811 				   pci_resource_len(pdev, 0));
6812 	if (!adapter->io_addr)
6813 		goto err_ioremap;
6814 
6815 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6816 	hw->hw_addr = adapter->io_addr;
6817 
6818 	netdev->netdev_ops = &igc_netdev_ops;
6819 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6820 	igc_ethtool_set_ops(netdev);
6821 	netdev->watchdog_timeo = 5 * HZ;
6822 
6823 	netdev->mem_start = pci_resource_start(pdev, 0);
6824 	netdev->mem_end = pci_resource_end(pdev, 0);
6825 
6826 	/* PCI config space info */
6827 	hw->vendor_id = pdev->vendor;
6828 	hw->device_id = pdev->device;
6829 	hw->revision_id = pdev->revision;
6830 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6831 	hw->subsystem_device_id = pdev->subsystem_device;
6832 
6833 	/* Copy the default MAC and PHY function pointers */
6834 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6835 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6836 
6837 	/* Initialize skew-specific constants */
6838 	err = ei->get_invariants(hw);
6839 	if (err)
6840 		goto err_sw_init;
6841 
6842 	/* Add supported features to the features list*/
6843 	netdev->features |= NETIF_F_SG;
6844 	netdev->features |= NETIF_F_TSO;
6845 	netdev->features |= NETIF_F_TSO6;
6846 	netdev->features |= NETIF_F_TSO_ECN;
6847 	netdev->features |= NETIF_F_RXHASH;
6848 	netdev->features |= NETIF_F_RXCSUM;
6849 	netdev->features |= NETIF_F_HW_CSUM;
6850 	netdev->features |= NETIF_F_SCTP_CRC;
6851 	netdev->features |= NETIF_F_HW_TC;
6852 
6853 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6854 				  NETIF_F_GSO_GRE_CSUM | \
6855 				  NETIF_F_GSO_IPXIP4 | \
6856 				  NETIF_F_GSO_IPXIP6 | \
6857 				  NETIF_F_GSO_UDP_TUNNEL | \
6858 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6859 
6860 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6861 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6862 
6863 	/* setup the private structure */
6864 	err = igc_sw_init(adapter);
6865 	if (err)
6866 		goto err_sw_init;
6867 
6868 	/* copy netdev features into list of user selectable features */
6869 	netdev->hw_features |= NETIF_F_NTUPLE;
6870 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6871 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6872 	netdev->hw_features |= netdev->features;
6873 
6874 	netdev->features |= NETIF_F_HIGHDMA;
6875 
6876 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6877 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6878 	netdev->hw_enc_features |= netdev->vlan_features;
6879 
6880 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6881 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
6882 
6883 	/* MTU range: 68 - 9216 */
6884 	netdev->min_mtu = ETH_MIN_MTU;
6885 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6886 
6887 	/* before reading the NVM, reset the controller to put the device in a
6888 	 * known good starting state
6889 	 */
6890 	hw->mac.ops.reset_hw(hw);
6891 
6892 	if (igc_get_flash_presence_i225(hw)) {
6893 		if (hw->nvm.ops.validate(hw) < 0) {
6894 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6895 			err = -EIO;
6896 			goto err_eeprom;
6897 		}
6898 	}
6899 
6900 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6901 		/* copy the MAC address out of the NVM */
6902 		if (hw->mac.ops.read_mac_addr(hw))
6903 			dev_err(&pdev->dev, "NVM Read Error\n");
6904 	}
6905 
6906 	eth_hw_addr_set(netdev, hw->mac.addr);
6907 
6908 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6909 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6910 		err = -EIO;
6911 		goto err_eeprom;
6912 	}
6913 
6914 	/* configure RXPBSIZE and TXPBSIZE */
6915 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6916 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6917 
6918 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6919 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6920 
6921 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6922 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6923 
6924 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6925 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6926 
6927 	/* Initialize link properties that are user-changeable */
6928 	adapter->fc_autoneg = true;
6929 	hw->mac.autoneg = true;
6930 	hw->phy.autoneg_advertised = 0xaf;
6931 
6932 	hw->fc.requested_mode = igc_fc_default;
6933 	hw->fc.current_mode = igc_fc_default;
6934 
6935 	/* By default, support wake on port A */
6936 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6937 
6938 	/* initialize the wol settings based on the eeprom settings */
6939 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6940 		adapter->wol |= IGC_WUFC_MAG;
6941 
6942 	device_set_wakeup_enable(&adapter->pdev->dev,
6943 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6944 
6945 	igc_ptp_init(adapter);
6946 
6947 	igc_tsn_clear_schedule(adapter);
6948 
6949 	/* reset the hardware with the new settings */
6950 	igc_reset(adapter);
6951 
6952 	/* let the f/w know that the h/w is now under the control of the
6953 	 * driver.
6954 	 */
6955 	igc_get_hw_control(adapter);
6956 
6957 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
6958 	err = register_netdev(netdev);
6959 	if (err)
6960 		goto err_register;
6961 
6962 	 /* carrier off reporting is important to ethtool even BEFORE open */
6963 	netif_carrier_off(netdev);
6964 
6965 	/* Check if Media Autosense is enabled */
6966 	adapter->ei = *ei;
6967 
6968 	/* print pcie link status and MAC address */
6969 	pcie_print_link_status(pdev);
6970 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6971 
6972 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6973 	/* Disable EEE for internal PHY devices */
6974 	hw->dev_spec._base.eee_enable = false;
6975 	adapter->flags &= ~IGC_FLAG_EEE;
6976 	igc_set_eee_i225(hw, false, false, false);
6977 
6978 	pm_runtime_put_noidle(&pdev->dev);
6979 
6980 	return 0;
6981 
6982 err_register:
6983 	igc_release_hw_control(adapter);
6984 err_eeprom:
6985 	if (!igc_check_reset_block(hw))
6986 		igc_reset_phy(hw);
6987 err_sw_init:
6988 	igc_clear_interrupt_scheme(adapter);
6989 	iounmap(adapter->io_addr);
6990 err_ioremap:
6991 	free_netdev(netdev);
6992 err_alloc_etherdev:
6993 	pci_release_mem_regions(pdev);
6994 err_pci_reg:
6995 err_dma:
6996 	pci_disable_device(pdev);
6997 	return err;
6998 }
6999 
7000 /**
7001  * igc_remove - Device Removal Routine
7002  * @pdev: PCI device information struct
7003  *
7004  * igc_remove is called by the PCI subsystem to alert the driver
7005  * that it should release a PCI device.  This could be caused by a
7006  * Hot-Plug event, or because the driver is going to be removed from
7007  * memory.
7008  */
7009 static void igc_remove(struct pci_dev *pdev)
7010 {
7011 	struct net_device *netdev = pci_get_drvdata(pdev);
7012 	struct igc_adapter *adapter = netdev_priv(netdev);
7013 
7014 	pm_runtime_get_noresume(&pdev->dev);
7015 
7016 	igc_flush_nfc_rules(adapter);
7017 
7018 	igc_ptp_stop(adapter);
7019 
7020 	pci_disable_ptm(pdev);
7021 	pci_clear_master(pdev);
7022 
7023 	set_bit(__IGC_DOWN, &adapter->state);
7024 
7025 	del_timer_sync(&adapter->watchdog_timer);
7026 	del_timer_sync(&adapter->phy_info_timer);
7027 
7028 	cancel_work_sync(&adapter->reset_task);
7029 	cancel_work_sync(&adapter->watchdog_task);
7030 	hrtimer_cancel(&adapter->hrtimer);
7031 
7032 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7033 	 * would have already happened in close and is redundant.
7034 	 */
7035 	igc_release_hw_control(adapter);
7036 	unregister_netdev(netdev);
7037 
7038 	igc_clear_interrupt_scheme(adapter);
7039 	pci_iounmap(pdev, adapter->io_addr);
7040 	pci_release_mem_regions(pdev);
7041 
7042 	free_netdev(netdev);
7043 
7044 	pci_disable_device(pdev);
7045 }
7046 
7047 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7048 			  bool runtime)
7049 {
7050 	struct net_device *netdev = pci_get_drvdata(pdev);
7051 	struct igc_adapter *adapter = netdev_priv(netdev);
7052 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7053 	struct igc_hw *hw = &adapter->hw;
7054 	u32 ctrl, rctl, status;
7055 	bool wake;
7056 
7057 	rtnl_lock();
7058 	netif_device_detach(netdev);
7059 
7060 	if (netif_running(netdev))
7061 		__igc_close(netdev, true);
7062 
7063 	igc_ptp_suspend(adapter);
7064 
7065 	igc_clear_interrupt_scheme(adapter);
7066 	rtnl_unlock();
7067 
7068 	status = rd32(IGC_STATUS);
7069 	if (status & IGC_STATUS_LU)
7070 		wufc &= ~IGC_WUFC_LNKC;
7071 
7072 	if (wufc) {
7073 		igc_setup_rctl(adapter);
7074 		igc_set_rx_mode(netdev);
7075 
7076 		/* turn on all-multi mode if wake on multicast is enabled */
7077 		if (wufc & IGC_WUFC_MC) {
7078 			rctl = rd32(IGC_RCTL);
7079 			rctl |= IGC_RCTL_MPE;
7080 			wr32(IGC_RCTL, rctl);
7081 		}
7082 
7083 		ctrl = rd32(IGC_CTRL);
7084 		ctrl |= IGC_CTRL_ADVD3WUC;
7085 		wr32(IGC_CTRL, ctrl);
7086 
7087 		/* Allow time for pending master requests to run */
7088 		igc_disable_pcie_master(hw);
7089 
7090 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7091 		wr32(IGC_WUFC, wufc);
7092 	} else {
7093 		wr32(IGC_WUC, 0);
7094 		wr32(IGC_WUFC, 0);
7095 	}
7096 
7097 	wake = wufc || adapter->en_mng_pt;
7098 	if (!wake)
7099 		igc_power_down_phy_copper_base(&adapter->hw);
7100 	else
7101 		igc_power_up_link(adapter);
7102 
7103 	if (enable_wake)
7104 		*enable_wake = wake;
7105 
7106 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7107 	 * would have already happened in close and is redundant.
7108 	 */
7109 	igc_release_hw_control(adapter);
7110 
7111 	pci_disable_device(pdev);
7112 
7113 	return 0;
7114 }
7115 
7116 #ifdef CONFIG_PM
7117 static int __maybe_unused igc_runtime_suspend(struct device *dev)
7118 {
7119 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7120 }
7121 
7122 static void igc_deliver_wake_packet(struct net_device *netdev)
7123 {
7124 	struct igc_adapter *adapter = netdev_priv(netdev);
7125 	struct igc_hw *hw = &adapter->hw;
7126 	struct sk_buff *skb;
7127 	u32 wupl;
7128 
7129 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7130 
7131 	/* WUPM stores only the first 128 bytes of the wake packet.
7132 	 * Read the packet only if we have the whole thing.
7133 	 */
7134 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7135 		return;
7136 
7137 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7138 	if (!skb)
7139 		return;
7140 
7141 	skb_put(skb, wupl);
7142 
7143 	/* Ensure reads are 32-bit aligned */
7144 	wupl = roundup(wupl, 4);
7145 
7146 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7147 
7148 	skb->protocol = eth_type_trans(skb, netdev);
7149 	netif_rx(skb);
7150 }
7151 
7152 static int __maybe_unused igc_resume(struct device *dev)
7153 {
7154 	struct pci_dev *pdev = to_pci_dev(dev);
7155 	struct net_device *netdev = pci_get_drvdata(pdev);
7156 	struct igc_adapter *adapter = netdev_priv(netdev);
7157 	struct igc_hw *hw = &adapter->hw;
7158 	u32 err, val;
7159 
7160 	pci_set_power_state(pdev, PCI_D0);
7161 	pci_restore_state(pdev);
7162 	pci_save_state(pdev);
7163 
7164 	if (!pci_device_is_present(pdev))
7165 		return -ENODEV;
7166 	err = pci_enable_device_mem(pdev);
7167 	if (err) {
7168 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7169 		return err;
7170 	}
7171 	pci_set_master(pdev);
7172 
7173 	pci_enable_wake(pdev, PCI_D3hot, 0);
7174 	pci_enable_wake(pdev, PCI_D3cold, 0);
7175 
7176 	if (igc_init_interrupt_scheme(adapter, true)) {
7177 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7178 		return -ENOMEM;
7179 	}
7180 
7181 	igc_reset(adapter);
7182 
7183 	/* let the f/w know that the h/w is now under the control of the
7184 	 * driver.
7185 	 */
7186 	igc_get_hw_control(adapter);
7187 
7188 	val = rd32(IGC_WUS);
7189 	if (val & WAKE_PKT_WUS)
7190 		igc_deliver_wake_packet(netdev);
7191 
7192 	wr32(IGC_WUS, ~0);
7193 
7194 	rtnl_lock();
7195 	if (!err && netif_running(netdev))
7196 		err = __igc_open(netdev, true);
7197 
7198 	if (!err)
7199 		netif_device_attach(netdev);
7200 	rtnl_unlock();
7201 
7202 	return err;
7203 }
7204 
7205 static int __maybe_unused igc_runtime_resume(struct device *dev)
7206 {
7207 	return igc_resume(dev);
7208 }
7209 
7210 static int __maybe_unused igc_suspend(struct device *dev)
7211 {
7212 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7213 }
7214 
7215 static int __maybe_unused igc_runtime_idle(struct device *dev)
7216 {
7217 	struct net_device *netdev = dev_get_drvdata(dev);
7218 	struct igc_adapter *adapter = netdev_priv(netdev);
7219 
7220 	if (!igc_has_link(adapter))
7221 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7222 
7223 	return -EBUSY;
7224 }
7225 #endif /* CONFIG_PM */
7226 
7227 static void igc_shutdown(struct pci_dev *pdev)
7228 {
7229 	bool wake;
7230 
7231 	__igc_shutdown(pdev, &wake, 0);
7232 
7233 	if (system_state == SYSTEM_POWER_OFF) {
7234 		pci_wake_from_d3(pdev, wake);
7235 		pci_set_power_state(pdev, PCI_D3hot);
7236 	}
7237 }
7238 
7239 /**
7240  *  igc_io_error_detected - called when PCI error is detected
7241  *  @pdev: Pointer to PCI device
7242  *  @state: The current PCI connection state
7243  *
7244  *  This function is called after a PCI bus error affecting
7245  *  this device has been detected.
7246  **/
7247 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7248 					      pci_channel_state_t state)
7249 {
7250 	struct net_device *netdev = pci_get_drvdata(pdev);
7251 	struct igc_adapter *adapter = netdev_priv(netdev);
7252 
7253 	netif_device_detach(netdev);
7254 
7255 	if (state == pci_channel_io_perm_failure)
7256 		return PCI_ERS_RESULT_DISCONNECT;
7257 
7258 	if (netif_running(netdev))
7259 		igc_down(adapter);
7260 	pci_disable_device(pdev);
7261 
7262 	/* Request a slot reset. */
7263 	return PCI_ERS_RESULT_NEED_RESET;
7264 }
7265 
7266 /**
7267  *  igc_io_slot_reset - called after the PCI bus has been reset.
7268  *  @pdev: Pointer to PCI device
7269  *
7270  *  Restart the card from scratch, as if from a cold-boot. Implementation
7271  *  resembles the first-half of the igc_resume routine.
7272  **/
7273 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7274 {
7275 	struct net_device *netdev = pci_get_drvdata(pdev);
7276 	struct igc_adapter *adapter = netdev_priv(netdev);
7277 	struct igc_hw *hw = &adapter->hw;
7278 	pci_ers_result_t result;
7279 
7280 	if (pci_enable_device_mem(pdev)) {
7281 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7282 		result = PCI_ERS_RESULT_DISCONNECT;
7283 	} else {
7284 		pci_set_master(pdev);
7285 		pci_restore_state(pdev);
7286 		pci_save_state(pdev);
7287 
7288 		pci_enable_wake(pdev, PCI_D3hot, 0);
7289 		pci_enable_wake(pdev, PCI_D3cold, 0);
7290 
7291 		/* In case of PCI error, adapter loses its HW address
7292 		 * so we should re-assign it here.
7293 		 */
7294 		hw->hw_addr = adapter->io_addr;
7295 
7296 		igc_reset(adapter);
7297 		wr32(IGC_WUS, ~0);
7298 		result = PCI_ERS_RESULT_RECOVERED;
7299 	}
7300 
7301 	return result;
7302 }
7303 
7304 /**
7305  *  igc_io_resume - called when traffic can start to flow again.
7306  *  @pdev: Pointer to PCI device
7307  *
7308  *  This callback is called when the error recovery driver tells us that
7309  *  its OK to resume normal operation. Implementation resembles the
7310  *  second-half of the igc_resume routine.
7311  */
7312 static void igc_io_resume(struct pci_dev *pdev)
7313 {
7314 	struct net_device *netdev = pci_get_drvdata(pdev);
7315 	struct igc_adapter *adapter = netdev_priv(netdev);
7316 
7317 	rtnl_lock();
7318 	if (netif_running(netdev)) {
7319 		if (igc_open(netdev)) {
7320 			netdev_err(netdev, "igc_open failed after reset\n");
7321 			return;
7322 		}
7323 	}
7324 
7325 	netif_device_attach(netdev);
7326 
7327 	/* let the f/w know that the h/w is now under the control of the
7328 	 * driver.
7329 	 */
7330 	igc_get_hw_control(adapter);
7331 	rtnl_unlock();
7332 }
7333 
7334 static const struct pci_error_handlers igc_err_handler = {
7335 	.error_detected = igc_io_error_detected,
7336 	.slot_reset = igc_io_slot_reset,
7337 	.resume = igc_io_resume,
7338 };
7339 
7340 #ifdef CONFIG_PM
7341 static const struct dev_pm_ops igc_pm_ops = {
7342 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7343 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7344 			   igc_runtime_idle)
7345 };
7346 #endif
7347 
7348 static struct pci_driver igc_driver = {
7349 	.name     = igc_driver_name,
7350 	.id_table = igc_pci_tbl,
7351 	.probe    = igc_probe,
7352 	.remove   = igc_remove,
7353 #ifdef CONFIG_PM
7354 	.driver.pm = &igc_pm_ops,
7355 #endif
7356 	.shutdown = igc_shutdown,
7357 	.err_handler = &igc_err_handler,
7358 };
7359 
7360 /**
7361  * igc_reinit_queues - return error
7362  * @adapter: pointer to adapter structure
7363  */
7364 int igc_reinit_queues(struct igc_adapter *adapter)
7365 {
7366 	struct net_device *netdev = adapter->netdev;
7367 	int err = 0;
7368 
7369 	if (netif_running(netdev))
7370 		igc_close(netdev);
7371 
7372 	igc_reset_interrupt_capability(adapter);
7373 
7374 	if (igc_init_interrupt_scheme(adapter, true)) {
7375 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7376 		return -ENOMEM;
7377 	}
7378 
7379 	if (netif_running(netdev))
7380 		err = igc_open(netdev);
7381 
7382 	return err;
7383 }
7384 
7385 /**
7386  * igc_get_hw_dev - return device
7387  * @hw: pointer to hardware structure
7388  *
7389  * used by hardware layer to print debugging information
7390  */
7391 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7392 {
7393 	struct igc_adapter *adapter = hw->back;
7394 
7395 	return adapter->netdev;
7396 }
7397 
7398 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7399 {
7400 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7401 	u8 idx = ring->reg_idx;
7402 	u32 rxdctl;
7403 
7404 	rxdctl = rd32(IGC_RXDCTL(idx));
7405 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7406 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7407 	wr32(IGC_RXDCTL(idx), rxdctl);
7408 }
7409 
7410 void igc_disable_rx_ring(struct igc_ring *ring)
7411 {
7412 	igc_disable_rx_ring_hw(ring);
7413 	igc_clean_rx_ring(ring);
7414 }
7415 
7416 void igc_enable_rx_ring(struct igc_ring *ring)
7417 {
7418 	struct igc_adapter *adapter = ring->q_vector->adapter;
7419 
7420 	igc_configure_rx_ring(adapter, ring);
7421 
7422 	if (ring->xsk_pool)
7423 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7424 	else
7425 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7426 }
7427 
7428 void igc_disable_tx_ring(struct igc_ring *ring)
7429 {
7430 	igc_disable_tx_ring_hw(ring);
7431 	igc_clean_tx_ring(ring);
7432 }
7433 
7434 void igc_enable_tx_ring(struct igc_ring *ring)
7435 {
7436 	struct igc_adapter *adapter = ring->q_vector->adapter;
7437 
7438 	igc_configure_tx_ring(adapter, ring);
7439 }
7440 
7441 /**
7442  * igc_init_module - Driver Registration Routine
7443  *
7444  * igc_init_module is the first routine called when the driver is
7445  * loaded. All it does is register with the PCI subsystem.
7446  */
7447 static int __init igc_init_module(void)
7448 {
7449 	int ret;
7450 
7451 	pr_info("%s\n", igc_driver_string);
7452 	pr_info("%s\n", igc_copyright);
7453 
7454 	ret = pci_register_driver(&igc_driver);
7455 	return ret;
7456 }
7457 
7458 module_init(igc_init_module);
7459 
7460 /**
7461  * igc_exit_module - Driver Exit Cleanup Routine
7462  *
7463  * igc_exit_module is called just before the driver is removed
7464  * from memory.
7465  */
7466 static void __exit igc_exit_module(void)
7467 {
7468 	pci_unregister_driver(&igc_driver);
7469 }
7470 
7471 module_exit(igc_exit_module);
7472 /* igc_main.c */
7473