1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/pci.h> 5 #include <linux/delay.h> 6 7 #include "igc_mac.h" 8 #include "igc_hw.h" 9 10 /** 11 * igc_disable_pcie_master - Disables PCI-express master access 12 * @hw: pointer to the HW structure 13 * 14 * Returns 0 (0) if successful, else returns -10 15 * (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 16 * the master requests to be disabled. 17 * 18 * Disables PCI-Express master access and verifies there are no pending 19 * requests. 20 */ 21 s32 igc_disable_pcie_master(struct igc_hw *hw) 22 { 23 s32 timeout = MASTER_DISABLE_TIMEOUT; 24 s32 ret_val = 0; 25 u32 ctrl; 26 27 ctrl = rd32(IGC_CTRL); 28 ctrl |= IGC_CTRL_GIO_MASTER_DISABLE; 29 wr32(IGC_CTRL, ctrl); 30 31 while (timeout) { 32 if (!(rd32(IGC_STATUS) & 33 IGC_STATUS_GIO_MASTER_ENABLE)) 34 break; 35 usleep_range(2000, 3000); 36 timeout--; 37 } 38 39 if (!timeout) { 40 hw_dbg("Master requests are pending.\n"); 41 ret_val = -IGC_ERR_MASTER_REQUESTS_PENDING; 42 goto out; 43 } 44 45 out: 46 return ret_val; 47 } 48 49 /** 50 * igc_init_rx_addrs - Initialize receive addresses 51 * @hw: pointer to the HW structure 52 * @rar_count: receive address registers 53 * 54 * Setup the receive address registers by setting the base receive address 55 * register to the devices MAC address and clearing all the other receive 56 * address registers to 0. 57 */ 58 void igc_init_rx_addrs(struct igc_hw *hw, u16 rar_count) 59 { 60 u8 mac_addr[ETH_ALEN] = {0}; 61 u32 i; 62 63 /* Setup the receive address */ 64 hw_dbg("Programming MAC Address into RAR[0]\n"); 65 66 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 67 68 /* Zero out the other (rar_entry_count - 1) receive addresses */ 69 hw_dbg("Clearing RAR[1-%u]\n", rar_count - 1); 70 for (i = 1; i < rar_count; i++) 71 hw->mac.ops.rar_set(hw, mac_addr, i); 72 } 73 74 /** 75 * igc_set_fc_watermarks - Set flow control high/low watermarks 76 * @hw: pointer to the HW structure 77 * 78 * Sets the flow control high/low threshold (watermark) registers. If 79 * flow control XON frame transmission is enabled, then set XON frame 80 * transmission as well. 81 */ 82 static s32 igc_set_fc_watermarks(struct igc_hw *hw) 83 { 84 u32 fcrtl = 0, fcrth = 0; 85 86 /* Set the flow control receive threshold registers. Normally, 87 * these registers will be set to a default threshold that may be 88 * adjusted later by the driver's runtime code. However, if the 89 * ability to transmit pause frames is not enabled, then these 90 * registers will be set to 0. 91 */ 92 if (hw->fc.current_mode & igc_fc_tx_pause) { 93 /* We need to set up the Receive Threshold high and low water 94 * marks as well as (optionally) enabling the transmission of 95 * XON frames. 96 */ 97 fcrtl = hw->fc.low_water; 98 if (hw->fc.send_xon) 99 fcrtl |= IGC_FCRTL_XONE; 100 101 fcrth = hw->fc.high_water; 102 } 103 wr32(IGC_FCRTL, fcrtl); 104 wr32(IGC_FCRTH, fcrth); 105 106 return 0; 107 } 108 109 /** 110 * igc_setup_link - Setup flow control and link settings 111 * @hw: pointer to the HW structure 112 * 113 * Determines which flow control settings to use, then configures flow 114 * control. Calls the appropriate media-specific link configuration 115 * function. Assuming the adapter has a valid link partner, a valid link 116 * should be established. Assumes the hardware has previously been reset 117 * and the transmitter and receiver are not enabled. 118 */ 119 s32 igc_setup_link(struct igc_hw *hw) 120 { 121 s32 ret_val = 0; 122 123 /* In the case of the phy reset being blocked, we already have a link. 124 * We do not need to set it up again. 125 */ 126 if (igc_check_reset_block(hw)) 127 goto out; 128 129 /* If requested flow control is set to default, set flow control 130 * to the both 'rx' and 'tx' pause frames. 131 */ 132 if (hw->fc.requested_mode == igc_fc_default) 133 hw->fc.requested_mode = igc_fc_full; 134 135 /* We want to save off the original Flow Control configuration just 136 * in case we get disconnected and then reconnected into a different 137 * hub or switch with different Flow Control capabilities. 138 */ 139 hw->fc.current_mode = hw->fc.requested_mode; 140 141 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 142 143 /* Call the necessary media_type subroutine to configure the link. */ 144 ret_val = hw->mac.ops.setup_physical_interface(hw); 145 if (ret_val) 146 goto out; 147 148 /* Initialize the flow control address, type, and PAUSE timer 149 * registers to their default values. This is done even if flow 150 * control is disabled, because it does not hurt anything to 151 * initialize these registers. 152 */ 153 hw_dbg("Initializing the Flow Control address, type and timer regs\n"); 154 wr32(IGC_FCT, FLOW_CONTROL_TYPE); 155 wr32(IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH); 156 wr32(IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW); 157 158 wr32(IGC_FCTTV, hw->fc.pause_time); 159 160 ret_val = igc_set_fc_watermarks(hw); 161 162 out: 163 return ret_val; 164 } 165 166 /** 167 * igc_force_mac_fc - Force the MAC's flow control settings 168 * @hw: pointer to the HW structure 169 * 170 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 171 * device control register to reflect the adapter settings. TFCE and RFCE 172 * need to be explicitly set by software when a copper PHY is used because 173 * autonegotiation is managed by the PHY rather than the MAC. Software must 174 * also configure these bits when link is forced on a fiber connection. 175 */ 176 s32 igc_force_mac_fc(struct igc_hw *hw) 177 { 178 s32 ret_val = 0; 179 u32 ctrl; 180 181 ctrl = rd32(IGC_CTRL); 182 183 /* Because we didn't get link via the internal auto-negotiation 184 * mechanism (we either forced link or we got link via PHY 185 * auto-neg), we have to manually enable/disable transmit an 186 * receive flow control. 187 * 188 * The "Case" statement below enables/disable flow control 189 * according to the "hw->fc.current_mode" parameter. 190 * 191 * The possible values of the "fc" parameter are: 192 * 0: Flow control is completely disabled 193 * 1: Rx flow control is enabled (we can receive pause 194 * frames but not send pause frames). 195 * 2: Tx flow control is enabled (we can send pause frames 196 * but we do not receive pause frames). 197 * 3: Both Rx and TX flow control (symmetric) is enabled. 198 * other: No other values should be possible at this point. 199 */ 200 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 201 202 switch (hw->fc.current_mode) { 203 case igc_fc_none: 204 ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE)); 205 break; 206 case igc_fc_rx_pause: 207 ctrl &= (~IGC_CTRL_TFCE); 208 ctrl |= IGC_CTRL_RFCE; 209 break; 210 case igc_fc_tx_pause: 211 ctrl &= (~IGC_CTRL_RFCE); 212 ctrl |= IGC_CTRL_TFCE; 213 break; 214 case igc_fc_full: 215 ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE); 216 break; 217 default: 218 hw_dbg("Flow control param set incorrectly\n"); 219 ret_val = -IGC_ERR_CONFIG; 220 goto out; 221 } 222 223 wr32(IGC_CTRL, ctrl); 224 225 out: 226 return ret_val; 227 } 228 229 /** 230 * igc_clear_hw_cntrs_base - Clear base hardware counters 231 * @hw: pointer to the HW structure 232 * 233 * Clears the base hardware counters by reading the counter registers. 234 */ 235 void igc_clear_hw_cntrs_base(struct igc_hw *hw) 236 { 237 rd32(IGC_CRCERRS); 238 rd32(IGC_MPC); 239 rd32(IGC_SCC); 240 rd32(IGC_ECOL); 241 rd32(IGC_MCC); 242 rd32(IGC_LATECOL); 243 rd32(IGC_COLC); 244 rd32(IGC_RERC); 245 rd32(IGC_DC); 246 rd32(IGC_RLEC); 247 rd32(IGC_XONRXC); 248 rd32(IGC_XONTXC); 249 rd32(IGC_XOFFRXC); 250 rd32(IGC_XOFFTXC); 251 rd32(IGC_FCRUC); 252 rd32(IGC_GPRC); 253 rd32(IGC_BPRC); 254 rd32(IGC_MPRC); 255 rd32(IGC_GPTC); 256 rd32(IGC_GORCL); 257 rd32(IGC_GORCH); 258 rd32(IGC_GOTCL); 259 rd32(IGC_GOTCH); 260 rd32(IGC_RNBC); 261 rd32(IGC_RUC); 262 rd32(IGC_RFC); 263 rd32(IGC_ROC); 264 rd32(IGC_RJC); 265 rd32(IGC_TORL); 266 rd32(IGC_TORH); 267 rd32(IGC_TOTL); 268 rd32(IGC_TOTH); 269 rd32(IGC_TPR); 270 rd32(IGC_TPT); 271 rd32(IGC_MPTC); 272 rd32(IGC_BPTC); 273 274 rd32(IGC_PRC64); 275 rd32(IGC_PRC127); 276 rd32(IGC_PRC255); 277 rd32(IGC_PRC511); 278 rd32(IGC_PRC1023); 279 rd32(IGC_PRC1522); 280 rd32(IGC_PTC64); 281 rd32(IGC_PTC127); 282 rd32(IGC_PTC255); 283 rd32(IGC_PTC511); 284 rd32(IGC_PTC1023); 285 rd32(IGC_PTC1522); 286 287 rd32(IGC_ALGNERRC); 288 rd32(IGC_RXERRC); 289 rd32(IGC_TNCRS); 290 rd32(IGC_HTDPMC); 291 rd32(IGC_TSCTC); 292 293 rd32(IGC_MGTPRC); 294 rd32(IGC_MGTPDC); 295 rd32(IGC_MGTPTC); 296 297 rd32(IGC_IAC); 298 299 rd32(IGC_RPTHC); 300 rd32(IGC_TLPIC); 301 rd32(IGC_RLPIC); 302 rd32(IGC_HGPTC); 303 rd32(IGC_RXDMTC); 304 rd32(IGC_HGORCL); 305 rd32(IGC_HGORCH); 306 rd32(IGC_HGOTCL); 307 rd32(IGC_HGOTCH); 308 rd32(IGC_LENERRS); 309 } 310 311 /** 312 * igc_rar_set - Set receive address register 313 * @hw: pointer to the HW structure 314 * @addr: pointer to the receive address 315 * @index: receive address array register 316 * 317 * Sets the receive address array register at index to the address passed 318 * in by addr. 319 */ 320 void igc_rar_set(struct igc_hw *hw, u8 *addr, u32 index) 321 { 322 u32 rar_low, rar_high; 323 324 /* HW expects these in little endian so we reverse the byte order 325 * from network order (big endian) to little endian 326 */ 327 rar_low = ((u32)addr[0] | 328 ((u32)addr[1] << 8) | 329 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 330 331 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 332 333 /* If MAC address zero, no need to set the AV bit */ 334 if (rar_low || rar_high) 335 rar_high |= IGC_RAH_AV; 336 337 /* Some bridges will combine consecutive 32-bit writes into 338 * a single burst write, which will malfunction on some parts. 339 * The flushes avoid this. 340 */ 341 wr32(IGC_RAL(index), rar_low); 342 wrfl(); 343 wr32(IGC_RAH(index), rar_high); 344 wrfl(); 345 } 346 347 /** 348 * igc_check_for_copper_link - Check for link (Copper) 349 * @hw: pointer to the HW structure 350 * 351 * Checks to see of the link status of the hardware has changed. If a 352 * change in link status has been detected, then we read the PHY registers 353 * to get the current speed/duplex if link exists. 354 */ 355 s32 igc_check_for_copper_link(struct igc_hw *hw) 356 { 357 struct igc_mac_info *mac = &hw->mac; 358 bool link = false; 359 s32 ret_val; 360 361 /* We only want to go out to the PHY registers to see if Auto-Neg 362 * has completed and/or if our link status has changed. The 363 * get_link_status flag is set upon receiving a Link Status 364 * Change or Rx Sequence Error interrupt. 365 */ 366 if (!mac->get_link_status) { 367 ret_val = 0; 368 goto out; 369 } 370 371 /* First we want to see if the MII Status Register reports 372 * link. If so, then we want to get the current speed/duplex 373 * of the PHY. 374 */ 375 ret_val = igc_phy_has_link(hw, 1, 0, &link); 376 if (ret_val) 377 goto out; 378 379 if (!link) 380 goto out; /* No link detected */ 381 382 mac->get_link_status = false; 383 384 /* Check if there was DownShift, must be checked 385 * immediately after link-up 386 */ 387 igc_check_downshift(hw); 388 389 /* Auto-Neg is enabled. Auto Speed Detection takes care 390 * of MAC speed/duplex configuration. So we only need to 391 * configure Collision Distance in the MAC. 392 */ 393 igc_config_collision_dist(hw); 394 395 /* Configure Flow Control now that Auto-Neg has completed. 396 * First, we need to restore the desired flow control 397 * settings because we may have had to re-autoneg with a 398 * different link partner. 399 */ 400 ret_val = igc_config_fc_after_link_up(hw); 401 if (ret_val) 402 hw_dbg("Error configuring flow control\n"); 403 404 out: 405 /* Now that we are aware of our link settings, we can set the LTR 406 * thresholds. 407 */ 408 ret_val = igc_set_ltr_i225(hw, link); 409 410 return ret_val; 411 } 412 413 /** 414 * igc_config_collision_dist - Configure collision distance 415 * @hw: pointer to the HW structure 416 * 417 * Configures the collision distance to the default value and is used 418 * during link setup. Currently no func pointer exists and all 419 * implementations are handled in the generic version of this function. 420 */ 421 void igc_config_collision_dist(struct igc_hw *hw) 422 { 423 u32 tctl; 424 425 tctl = rd32(IGC_TCTL); 426 427 tctl &= ~IGC_TCTL_COLD; 428 tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT; 429 430 wr32(IGC_TCTL, tctl); 431 wrfl(); 432 } 433 434 /** 435 * igc_config_fc_after_link_up - Configures flow control after link 436 * @hw: pointer to the HW structure 437 * 438 * Checks the status of auto-negotiation after link up to ensure that the 439 * speed and duplex were not forced. If the link needed to be forced, then 440 * flow control needs to be forced also. If auto-negotiation is enabled 441 * and did not fail, then we configure flow control based on our link 442 * partner. 443 */ 444 s32 igc_config_fc_after_link_up(struct igc_hw *hw) 445 { 446 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 447 struct igc_mac_info *mac = &hw->mac; 448 u16 speed, duplex; 449 s32 ret_val = 0; 450 451 /* Check for the case where we have fiber media and auto-neg failed 452 * so we had to force link. In this case, we need to force the 453 * configuration of the MAC to match the "fc" parameter. 454 */ 455 if (mac->autoneg_failed) 456 ret_val = igc_force_mac_fc(hw); 457 458 if (ret_val) { 459 hw_dbg("Error forcing flow control settings\n"); 460 goto out; 461 } 462 463 /* In auto-neg, we need to check and see if Auto-Neg has completed, 464 * and if so, how the PHY and link partner has flow control 465 * configured. 466 */ 467 468 /* Read the MII Status Register and check to see if AutoNeg 469 * has completed. We read this twice because this reg has 470 * some "sticky" (latched) bits. 471 */ 472 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, 473 &mii_status_reg); 474 if (ret_val) 475 goto out; 476 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, 477 &mii_status_reg); 478 if (ret_val) 479 goto out; 480 481 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { 482 hw_dbg("Copper PHY and Auto Neg has not completed.\n"); 483 goto out; 484 } 485 486 /* The AutoNeg process has completed, so we now need to 487 * read both the Auto Negotiation Advertisement 488 * Register (Address 4) and the Auto_Negotiation Base 489 * Page Ability Register (Address 5) to determine how 490 * flow control was negotiated. 491 */ 492 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, 493 &mii_nway_adv_reg); 494 if (ret_val) 495 goto out; 496 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, 497 &mii_nway_lp_ability_reg); 498 if (ret_val) 499 goto out; 500 /* Two bits in the Auto Negotiation Advertisement Register 501 * (Address 4) and two bits in the Auto Negotiation Base 502 * Page Ability Register (Address 5) determine flow control 503 * for both the PHY and the link partner. The following 504 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 505 * 1999, describes these PAUSE resolution bits and how flow 506 * control is determined based upon these settings. 507 * NOTE: DC = Don't Care 508 * 509 * LOCAL DEVICE | LINK PARTNER 510 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 511 *-------|---------|-------|---------|-------------------- 512 * 0 | 0 | DC | DC | igc_fc_none 513 * 0 | 1 | 0 | DC | igc_fc_none 514 * 0 | 1 | 1 | 0 | igc_fc_none 515 * 0 | 1 | 1 | 1 | igc_fc_tx_pause 516 * 1 | 0 | 0 | DC | igc_fc_none 517 * 1 | DC | 1 | DC | igc_fc_full 518 * 1 | 1 | 0 | 0 | igc_fc_none 519 * 1 | 1 | 0 | 1 | igc_fc_rx_pause 520 * 521 * Are both PAUSE bits set to 1? If so, this implies 522 * Symmetric Flow Control is enabled at both ends. The 523 * ASM_DIR bits are irrelevant per the spec. 524 * 525 * For Symmetric Flow Control: 526 * 527 * LOCAL DEVICE | LINK PARTNER 528 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 529 *-------|---------|-------|---------|-------------------- 530 * 1 | DC | 1 | DC | IGC_fc_full 531 * 532 */ 533 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 534 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 535 /* Now we need to check if the user selected RX ONLY 536 * of pause frames. In this case, we had to advertise 537 * FULL flow control because we could not advertise RX 538 * ONLY. Hence, we must now check to see if we need to 539 * turn OFF the TRANSMISSION of PAUSE frames. 540 */ 541 if (hw->fc.requested_mode == igc_fc_full) { 542 hw->fc.current_mode = igc_fc_full; 543 hw_dbg("Flow Control = FULL.\n"); 544 } else { 545 hw->fc.current_mode = igc_fc_rx_pause; 546 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 547 } 548 } 549 550 /* For receiving PAUSE frames ONLY. 551 * 552 * LOCAL DEVICE | LINK PARTNER 553 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 554 *-------|---------|-------|---------|-------------------- 555 * 0 | 1 | 1 | 1 | igc_fc_tx_pause 556 */ 557 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 558 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 559 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 560 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 561 hw->fc.current_mode = igc_fc_tx_pause; 562 hw_dbg("Flow Control = TX PAUSE frames only.\n"); 563 } 564 /* For transmitting PAUSE frames ONLY. 565 * 566 * LOCAL DEVICE | LINK PARTNER 567 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 568 *-------|---------|-------|---------|-------------------- 569 * 1 | 1 | 0 | 1 | igc_fc_rx_pause 570 */ 571 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 572 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 573 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 574 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 575 hw->fc.current_mode = igc_fc_rx_pause; 576 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 577 } 578 /* Per the IEEE spec, at this point flow control should be 579 * disabled. However, we want to consider that we could 580 * be connected to a legacy switch that doesn't advertise 581 * desired flow control, but can be forced on the link 582 * partner. So if we advertised no flow control, that is 583 * what we will resolve to. If we advertised some kind of 584 * receive capability (Rx Pause Only or Full Flow Control) 585 * and the link partner advertised none, we will configure 586 * ourselves to enable Rx Flow Control only. We can do 587 * this safely for two reasons: If the link partner really 588 * didn't want flow control enabled, and we enable Rx, no 589 * harm done since we won't be receiving any PAUSE frames 590 * anyway. If the intent on the link partner was to have 591 * flow control enabled, then by us enabling RX only, we 592 * can at least receive pause frames and process them. 593 * This is a good idea because in most cases, since we are 594 * predominantly a server NIC, more times than not we will 595 * be asked to delay transmission of packets than asking 596 * our link partner to pause transmission of frames. 597 */ 598 else if ((hw->fc.requested_mode == igc_fc_none) || 599 (hw->fc.requested_mode == igc_fc_tx_pause) || 600 (hw->fc.strict_ieee)) { 601 hw->fc.current_mode = igc_fc_none; 602 hw_dbg("Flow Control = NONE.\n"); 603 } else { 604 hw->fc.current_mode = igc_fc_rx_pause; 605 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 606 } 607 608 /* Now we need to do one last check... If we auto- 609 * negotiated to HALF DUPLEX, flow control should not be 610 * enabled per IEEE 802.3 spec. 611 */ 612 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); 613 if (ret_val) { 614 hw_dbg("Error getting link speed and duplex\n"); 615 goto out; 616 } 617 618 if (duplex == HALF_DUPLEX) 619 hw->fc.current_mode = igc_fc_none; 620 621 /* Now we call a subroutine to actually force the MAC 622 * controller to use the correct flow control settings. 623 */ 624 ret_val = igc_force_mac_fc(hw); 625 if (ret_val) { 626 hw_dbg("Error forcing flow control settings\n"); 627 goto out; 628 } 629 630 out: 631 return ret_val; 632 } 633 634 /** 635 * igc_get_auto_rd_done - Check for auto read completion 636 * @hw: pointer to the HW structure 637 * 638 * Check EEPROM for Auto Read done bit. 639 */ 640 s32 igc_get_auto_rd_done(struct igc_hw *hw) 641 { 642 s32 ret_val = 0; 643 s32 i = 0; 644 645 while (i < AUTO_READ_DONE_TIMEOUT) { 646 if (rd32(IGC_EECD) & IGC_EECD_AUTO_RD) 647 break; 648 usleep_range(1000, 2000); 649 i++; 650 } 651 652 if (i == AUTO_READ_DONE_TIMEOUT) { 653 hw_dbg("Auto read by HW from NVM has not completed.\n"); 654 ret_val = -IGC_ERR_RESET; 655 goto out; 656 } 657 658 out: 659 return ret_val; 660 } 661 662 /** 663 * igc_get_speed_and_duplex_copper - Retrieve current speed/duplex 664 * @hw: pointer to the HW structure 665 * @speed: stores the current speed 666 * @duplex: stores the current duplex 667 * 668 * Read the status register for the current speed/duplex and store the current 669 * speed and duplex for copper connections. 670 */ 671 s32 igc_get_speed_and_duplex_copper(struct igc_hw *hw, u16 *speed, 672 u16 *duplex) 673 { 674 u32 status; 675 676 status = rd32(IGC_STATUS); 677 if (status & IGC_STATUS_SPEED_1000) { 678 /* For I225, STATUS will indicate 1G speed in both 1 Gbps 679 * and 2.5 Gbps link modes. An additional bit is used 680 * to differentiate between 1 Gbps and 2.5 Gbps. 681 */ 682 if (hw->mac.type == igc_i225 && 683 (status & IGC_STATUS_SPEED_2500)) { 684 *speed = SPEED_2500; 685 hw_dbg("2500 Mbs, "); 686 } else { 687 *speed = SPEED_1000; 688 hw_dbg("1000 Mbs, "); 689 } 690 } else if (status & IGC_STATUS_SPEED_100) { 691 *speed = SPEED_100; 692 hw_dbg("100 Mbs, "); 693 } else { 694 *speed = SPEED_10; 695 hw_dbg("10 Mbs, "); 696 } 697 698 if (status & IGC_STATUS_FD) { 699 *duplex = FULL_DUPLEX; 700 hw_dbg("Full Duplex\n"); 701 } else { 702 *duplex = HALF_DUPLEX; 703 hw_dbg("Half Duplex\n"); 704 } 705 706 return 0; 707 } 708 709 /** 710 * igc_put_hw_semaphore - Release hardware semaphore 711 * @hw: pointer to the HW structure 712 * 713 * Release hardware semaphore used to access the PHY or NVM 714 */ 715 void igc_put_hw_semaphore(struct igc_hw *hw) 716 { 717 u32 swsm; 718 719 swsm = rd32(IGC_SWSM); 720 721 swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI); 722 723 wr32(IGC_SWSM, swsm); 724 } 725 726 /** 727 * igc_enable_mng_pass_thru - Enable processing of ARP's 728 * @hw: pointer to the HW structure 729 * 730 * Verifies the hardware needs to leave interface enabled so that frames can 731 * be directed to and from the management interface. 732 */ 733 bool igc_enable_mng_pass_thru(struct igc_hw *hw) 734 { 735 bool ret_val = false; 736 u32 fwsm, factps; 737 u32 manc; 738 739 if (!hw->mac.asf_firmware_present) 740 goto out; 741 742 manc = rd32(IGC_MANC); 743 744 if (!(manc & IGC_MANC_RCV_TCO_EN)) 745 goto out; 746 747 if (hw->mac.arc_subsystem_valid) { 748 fwsm = rd32(IGC_FWSM); 749 factps = rd32(IGC_FACTPS); 750 751 if (!(factps & IGC_FACTPS_MNGCG) && 752 ((fwsm & IGC_FWSM_MODE_MASK) == 753 (igc_mng_mode_pt << IGC_FWSM_MODE_SHIFT))) { 754 ret_val = true; 755 goto out; 756 } 757 } else { 758 if ((manc & IGC_MANC_SMBUS_EN) && 759 !(manc & IGC_MANC_ASF_EN)) { 760 ret_val = true; 761 goto out; 762 } 763 } 764 765 out: 766 return ret_val; 767 } 768 769 /** 770 * igc_hash_mc_addr - Generate a multicast hash value 771 * @hw: pointer to the HW structure 772 * @mc_addr: pointer to a multicast address 773 * 774 * Generates a multicast address hash value which is used to determine 775 * the multicast filter table array address and new table value. See 776 * igc_mta_set() 777 **/ 778 static u32 igc_hash_mc_addr(struct igc_hw *hw, u8 *mc_addr) 779 { 780 u32 hash_value, hash_mask; 781 u8 bit_shift = 0; 782 783 /* Register count multiplied by bits per register */ 784 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 785 786 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts 787 * where 0xFF would still fall within the hash mask. 788 */ 789 while (hash_mask >> bit_shift != 0xFF) 790 bit_shift++; 791 792 /* The portion of the address that is used for the hash table 793 * is determined by the mc_filter_type setting. 794 * The algorithm is such that there is a total of 8 bits of shifting. 795 * The bit_shift for a mc_filter_type of 0 represents the number of 796 * left-shifts where the MSB of mc_addr[5] would still fall within 797 * the hash_mask. Case 0 does this exactly. Since there are a total 798 * of 8 bits of shifting, then mc_addr[4] will shift right the 799 * remaining number of bits. Thus 8 - bit_shift. The rest of the 800 * cases are a variation of this algorithm...essentially raising the 801 * number of bits to shift mc_addr[5] left, while still keeping the 802 * 8-bit shifting total. 803 * 804 * For example, given the following Destination MAC Address and an 805 * MTA register count of 128 (thus a 4096-bit vector and 0xFFF mask), 806 * we can see that the bit_shift for case 0 is 4. These are the hash 807 * values resulting from each mc_filter_type... 808 * [0] [1] [2] [3] [4] [5] 809 * 01 AA 00 12 34 56 810 * LSB MSB 811 * 812 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 813 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 814 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 815 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 816 */ 817 switch (hw->mac.mc_filter_type) { 818 default: 819 case 0: 820 break; 821 case 1: 822 bit_shift += 1; 823 break; 824 case 2: 825 bit_shift += 2; 826 break; 827 case 3: 828 bit_shift += 4; 829 break; 830 } 831 832 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 833 (((u16)mc_addr[5]) << bit_shift))); 834 835 return hash_value; 836 } 837 838 /** 839 * igc_update_mc_addr_list - Update Multicast addresses 840 * @hw: pointer to the HW structure 841 * @mc_addr_list: array of multicast addresses to program 842 * @mc_addr_count: number of multicast addresses to program 843 * 844 * Updates entire Multicast Table Array. 845 * The caller must have a packed mc_addr_list of multicast addresses. 846 **/ 847 void igc_update_mc_addr_list(struct igc_hw *hw, 848 u8 *mc_addr_list, u32 mc_addr_count) 849 { 850 u32 hash_value, hash_bit, hash_reg; 851 int i; 852 853 /* clear mta_shadow */ 854 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 855 856 /* update mta_shadow from mc_addr_list */ 857 for (i = 0; (u32)i < mc_addr_count; i++) { 858 hash_value = igc_hash_mc_addr(hw, mc_addr_list); 859 860 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 861 hash_bit = hash_value & 0x1F; 862 863 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); 864 mc_addr_list += ETH_ALEN; 865 } 866 867 /* replace the entire MTA table */ 868 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 869 array_wr32(IGC_MTA, i, hw->mac.mta_shadow[i]); 870 wrfl(); 871 } 872