1 /******************************************************************************* 2 3 Intel(R) 82576 Virtual Function Linux driver 4 Copyright(c) 2009 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 #include "vf.h" 28 29 static s32 e1000_check_for_link_vf(struct e1000_hw *hw); 30 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 31 u16 *duplex); 32 static s32 e1000_init_hw_vf(struct e1000_hw *hw); 33 static s32 e1000_reset_hw_vf(struct e1000_hw *hw); 34 35 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, 36 u32, u32, u32); 37 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); 38 static s32 e1000_read_mac_addr_vf(struct e1000_hw *); 39 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool); 40 41 /** 42 * e1000_init_mac_params_vf - Inits MAC params 43 * @hw: pointer to the HW structure 44 **/ 45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) 46 { 47 struct e1000_mac_info *mac = &hw->mac; 48 49 /* VF's have no MTA Registers - PF feature only */ 50 mac->mta_reg_count = 128; 51 /* VF's have no access to RAR entries */ 52 mac->rar_entry_count = 1; 53 54 /* Function pointers */ 55 /* reset */ 56 mac->ops.reset_hw = e1000_reset_hw_vf; 57 /* hw initialization */ 58 mac->ops.init_hw = e1000_init_hw_vf; 59 /* check for link */ 60 mac->ops.check_for_link = e1000_check_for_link_vf; 61 /* link info */ 62 mac->ops.get_link_up_info = e1000_get_link_up_info_vf; 63 /* multicast address update */ 64 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; 65 /* set mac address */ 66 mac->ops.rar_set = e1000_rar_set_vf; 67 /* read mac address */ 68 mac->ops.read_mac_addr = e1000_read_mac_addr_vf; 69 /* set vlan filter table array */ 70 mac->ops.set_vfta = e1000_set_vfta_vf; 71 72 return E1000_SUCCESS; 73 } 74 75 /** 76 * e1000_init_function_pointers_vf - Inits function pointers 77 * @hw: pointer to the HW structure 78 **/ 79 void e1000_init_function_pointers_vf(struct e1000_hw *hw) 80 { 81 hw->mac.ops.init_params = e1000_init_mac_params_vf; 82 hw->mbx.ops.init_params = e1000_init_mbx_params_vf; 83 } 84 85 /** 86 * e1000_get_link_up_info_vf - Gets link info. 87 * @hw: pointer to the HW structure 88 * @speed: pointer to 16 bit value to store link speed. 89 * @duplex: pointer to 16 bit value to store duplex. 90 * 91 * Since we cannot read the PHY and get accurate link info, we must rely upon 92 * the status register's data which is often stale and inaccurate. 93 **/ 94 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 95 u16 *duplex) 96 { 97 s32 status; 98 99 status = er32(STATUS); 100 if (status & E1000_STATUS_SPEED_1000) 101 *speed = SPEED_1000; 102 else if (status & E1000_STATUS_SPEED_100) 103 *speed = SPEED_100; 104 else 105 *speed = SPEED_10; 106 107 if (status & E1000_STATUS_FD) 108 *duplex = FULL_DUPLEX; 109 else 110 *duplex = HALF_DUPLEX; 111 112 return E1000_SUCCESS; 113 } 114 115 /** 116 * e1000_reset_hw_vf - Resets the HW 117 * @hw: pointer to the HW structure 118 * 119 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. 120 * This is all the reset we can perform on a VF. 121 **/ 122 static s32 e1000_reset_hw_vf(struct e1000_hw *hw) 123 { 124 struct e1000_mbx_info *mbx = &hw->mbx; 125 u32 timeout = E1000_VF_INIT_TIMEOUT; 126 u32 ret_val = -E1000_ERR_MAC_INIT; 127 u32 msgbuf[3]; 128 u8 *addr = (u8 *)(&msgbuf[1]); 129 u32 ctrl; 130 131 /* assert VF queue/interrupt reset */ 132 ctrl = er32(CTRL); 133 ew32(CTRL, ctrl | E1000_CTRL_RST); 134 135 /* we cannot initialize while the RSTI / RSTD bits are asserted */ 136 while (!mbx->ops.check_for_rst(hw) && timeout) { 137 timeout--; 138 udelay(5); 139 } 140 141 if (timeout) { 142 /* mailbox timeout can now become active */ 143 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; 144 145 /* notify PF of VF reset completion */ 146 msgbuf[0] = E1000_VF_RESET; 147 mbx->ops.write_posted(hw, msgbuf, 1); 148 149 msleep(10); 150 151 /* set our "perm_addr" based on info provided by PF */ 152 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 153 if (!ret_val) { 154 if (msgbuf[0] == (E1000_VF_RESET | 155 E1000_VT_MSGTYPE_ACK)) 156 memcpy(hw->mac.perm_addr, addr, ETH_ALEN); 157 else 158 ret_val = -E1000_ERR_MAC_INIT; 159 } 160 } 161 162 return ret_val; 163 } 164 165 /** 166 * e1000_init_hw_vf - Inits the HW 167 * @hw: pointer to the HW structure 168 * 169 * Not much to do here except clear the PF Reset indication if there is one. 170 **/ 171 static s32 e1000_init_hw_vf(struct e1000_hw *hw) 172 { 173 /* attempt to set and restore our mac address */ 174 e1000_rar_set_vf(hw, hw->mac.addr, 0); 175 176 return E1000_SUCCESS; 177 } 178 179 /** 180 * e1000_hash_mc_addr_vf - Generate a multicast hash value 181 * @hw: pointer to the HW structure 182 * @mc_addr: pointer to a multicast address 183 * 184 * Generates a multicast address hash value which is used to determine 185 * the multicast filter table array address and new table value. See 186 * e1000_mta_set_generic() 187 **/ 188 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) 189 { 190 u32 hash_value, hash_mask; 191 u8 bit_shift = 0; 192 193 /* Register count multiplied by bits per register */ 194 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 195 196 /* The bit_shift is the number of left-shifts 197 * where 0xFF would still fall within the hash mask. 198 */ 199 while (hash_mask >> bit_shift != 0xFF) 200 bit_shift++; 201 202 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 203 (((u16)mc_addr[5]) << bit_shift))); 204 205 return hash_value; 206 } 207 208 /** 209 * e1000_update_mc_addr_list_vf - Update Multicast addresses 210 * @hw: pointer to the HW structure 211 * @mc_addr_list: array of multicast addresses to program 212 * @mc_addr_count: number of multicast addresses to program 213 * @rar_used_count: the first RAR register free to program 214 * @rar_count: total number of supported Receive Address Registers 215 * 216 * Updates the Receive Address Registers and Multicast Table Array. 217 * The caller must have a packed mc_addr_list of multicast addresses. 218 * The parameter rar_count will usually be hw->mac.rar_entry_count 219 * unless there are workarounds that change this. 220 **/ 221 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, 222 u8 *mc_addr_list, u32 mc_addr_count, 223 u32 rar_used_count, u32 rar_count) 224 { 225 struct e1000_mbx_info *mbx = &hw->mbx; 226 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 227 u16 *hash_list = (u16 *)&msgbuf[1]; 228 u32 hash_value; 229 u32 cnt, i; 230 231 /* Each entry in the list uses 1 16 bit word. We have 30 232 * 16 bit words available in our HW msg buffer (minus 1 for the 233 * msg type). That's 30 hash values if we pack 'em right. If 234 * there are more than 30 MC addresses to add then punt the 235 * extras for now and then add code to handle more than 30 later. 236 * It would be unusual for a server to request that many multi-cast 237 * addresses except for in large enterprise network environments. 238 */ 239 240 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count; 241 msgbuf[0] = E1000_VF_SET_MULTICAST; 242 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT; 243 244 for (i = 0; i < cnt; i++) { 245 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); 246 hash_list[i] = hash_value & 0x0FFFF; 247 mc_addr_list += ETH_ALEN; 248 } 249 250 mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE); 251 } 252 253 /** 254 * e1000_set_vfta_vf - Set/Unset vlan filter table address 255 * @hw: pointer to the HW structure 256 * @vid: determines the vfta register and bit to set/unset 257 * @set: if true then set bit, else clear bit 258 **/ 259 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set) 260 { 261 struct e1000_mbx_info *mbx = &hw->mbx; 262 u32 msgbuf[2]; 263 s32 err; 264 265 msgbuf[0] = E1000_VF_SET_VLAN; 266 msgbuf[1] = vid; 267 /* Setting the 8 bit field MSG INFO to true indicates "add" */ 268 if (set) 269 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT); 270 271 mbx->ops.write_posted(hw, msgbuf, 2); 272 273 err = mbx->ops.read_posted(hw, msgbuf, 2); 274 275 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 276 277 /* if nacked the vlan was rejected */ 278 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))) 279 err = -E1000_ERR_MAC_INIT; 280 281 return err; 282 } 283 284 /** 285 * e1000_rlpml_set_vf - Set the maximum receive packet length 286 * @hw: pointer to the HW structure 287 * @max_size: value to assign to max frame size 288 **/ 289 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) 290 { 291 struct e1000_mbx_info *mbx = &hw->mbx; 292 u32 msgbuf[2]; 293 294 msgbuf[0] = E1000_VF_SET_LPE; 295 msgbuf[1] = max_size; 296 297 mbx->ops.write_posted(hw, msgbuf, 2); 298 } 299 300 /** 301 * e1000_rar_set_vf - set device MAC address 302 * @hw: pointer to the HW structure 303 * @addr: pointer to the receive address 304 * @index: receive address array register 305 **/ 306 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index) 307 { 308 struct e1000_mbx_info *mbx = &hw->mbx; 309 u32 msgbuf[3]; 310 u8 *msg_addr = (u8 *)(&msgbuf[1]); 311 s32 ret_val; 312 313 memset(msgbuf, 0, 12); 314 msgbuf[0] = E1000_VF_SET_MAC_ADDR; 315 memcpy(msg_addr, addr, ETH_ALEN); 316 ret_val = mbx->ops.write_posted(hw, msgbuf, 3); 317 318 if (!ret_val) 319 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 320 321 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 322 323 /* if nacked the address was rejected, use "perm_addr" */ 324 if (!ret_val && 325 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) 326 e1000_read_mac_addr_vf(hw); 327 } 328 329 /** 330 * e1000_read_mac_addr_vf - Read device MAC address 331 * @hw: pointer to the HW structure 332 **/ 333 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) 334 { 335 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN); 336 337 return E1000_SUCCESS; 338 } 339 340 /** 341 * e1000_check_for_link_vf - Check for link for a virtual interface 342 * @hw: pointer to the HW structure 343 * 344 * Checks to see if the underlying PF is still talking to the VF and 345 * if it is then it reports the link state to the hardware, otherwise 346 * it reports link down and returns an error. 347 **/ 348 static s32 e1000_check_for_link_vf(struct e1000_hw *hw) 349 { 350 struct e1000_mbx_info *mbx = &hw->mbx; 351 struct e1000_mac_info *mac = &hw->mac; 352 s32 ret_val = E1000_SUCCESS; 353 u32 in_msg = 0; 354 355 /* We only want to run this if there has been a rst asserted. 356 * in this case that could mean a link change, device reset, 357 * or a virtual function reset 358 */ 359 360 /* If we were hit with a reset or timeout drop the link */ 361 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout) 362 mac->get_link_status = true; 363 364 if (!mac->get_link_status) 365 goto out; 366 367 /* if link status is down no point in checking to see if PF is up */ 368 if (!(er32(STATUS) & E1000_STATUS_LU)) 369 goto out; 370 371 /* if the read failed it could just be a mailbox collision, best wait 372 * until we are called again and don't report an error 373 */ 374 if (mbx->ops.read(hw, &in_msg, 1)) 375 goto out; 376 377 /* if incoming message isn't clear to send we are waiting on response */ 378 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { 379 /* msg is not CTS and is NACK we must have lost CTS status */ 380 if (in_msg & E1000_VT_MSGTYPE_NACK) 381 ret_val = -E1000_ERR_MAC_INIT; 382 goto out; 383 } 384 385 /* the PF is talking, if we timed out in the past we reinit */ 386 if (!mbx->timeout) { 387 ret_val = -E1000_ERR_MAC_INIT; 388 goto out; 389 } 390 391 /* if we passed all the tests above then the link is up and we no 392 * longer need to check for link 393 */ 394 mac->get_link_status = false; 395 396 out: 397 return ret_val; 398 } 399 400