1 /******************************************************************************* 2 3 Intel(R) 82576 Virtual Function Linux driver 4 Copyright(c) 2009 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 #include "vf.h" 28 29 static s32 e1000_check_for_link_vf(struct e1000_hw *hw); 30 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 31 u16 *duplex); 32 static s32 e1000_init_hw_vf(struct e1000_hw *hw); 33 static s32 e1000_reset_hw_vf(struct e1000_hw *hw); 34 35 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, 36 u32, u32, u32); 37 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); 38 static s32 e1000_read_mac_addr_vf(struct e1000_hw *); 39 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr); 40 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool); 41 42 /** 43 * e1000_init_mac_params_vf - Inits MAC params 44 * @hw: pointer to the HW structure 45 **/ 46 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) 47 { 48 struct e1000_mac_info *mac = &hw->mac; 49 50 /* VF's have no MTA Registers - PF feature only */ 51 mac->mta_reg_count = 128; 52 /* VF's have no access to RAR entries */ 53 mac->rar_entry_count = 1; 54 55 /* Function pointers */ 56 /* reset */ 57 mac->ops.reset_hw = e1000_reset_hw_vf; 58 /* hw initialization */ 59 mac->ops.init_hw = e1000_init_hw_vf; 60 /* check for link */ 61 mac->ops.check_for_link = e1000_check_for_link_vf; 62 /* link info */ 63 mac->ops.get_link_up_info = e1000_get_link_up_info_vf; 64 /* multicast address update */ 65 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; 66 /* set mac address */ 67 mac->ops.rar_set = e1000_rar_set_vf; 68 /* read mac address */ 69 mac->ops.read_mac_addr = e1000_read_mac_addr_vf; 70 /* set mac filter */ 71 mac->ops.set_uc_addr = e1000_set_uc_addr_vf; 72 /* set vlan filter table array */ 73 mac->ops.set_vfta = e1000_set_vfta_vf; 74 75 return E1000_SUCCESS; 76 } 77 78 /** 79 * e1000_init_function_pointers_vf - Inits function pointers 80 * @hw: pointer to the HW structure 81 **/ 82 void e1000_init_function_pointers_vf(struct e1000_hw *hw) 83 { 84 hw->mac.ops.init_params = e1000_init_mac_params_vf; 85 hw->mbx.ops.init_params = e1000_init_mbx_params_vf; 86 } 87 88 /** 89 * e1000_get_link_up_info_vf - Gets link info. 90 * @hw: pointer to the HW structure 91 * @speed: pointer to 16 bit value to store link speed. 92 * @duplex: pointer to 16 bit value to store duplex. 93 * 94 * Since we cannot read the PHY and get accurate link info, we must rely upon 95 * the status register's data which is often stale and inaccurate. 96 **/ 97 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 98 u16 *duplex) 99 { 100 s32 status; 101 102 status = er32(STATUS); 103 if (status & E1000_STATUS_SPEED_1000) 104 *speed = SPEED_1000; 105 else if (status & E1000_STATUS_SPEED_100) 106 *speed = SPEED_100; 107 else 108 *speed = SPEED_10; 109 110 if (status & E1000_STATUS_FD) 111 *duplex = FULL_DUPLEX; 112 else 113 *duplex = HALF_DUPLEX; 114 115 return E1000_SUCCESS; 116 } 117 118 /** 119 * e1000_reset_hw_vf - Resets the HW 120 * @hw: pointer to the HW structure 121 * 122 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. 123 * This is all the reset we can perform on a VF. 124 **/ 125 static s32 e1000_reset_hw_vf(struct e1000_hw *hw) 126 { 127 struct e1000_mbx_info *mbx = &hw->mbx; 128 u32 timeout = E1000_VF_INIT_TIMEOUT; 129 u32 ret_val = -E1000_ERR_MAC_INIT; 130 u32 msgbuf[3]; 131 u8 *addr = (u8 *)(&msgbuf[1]); 132 u32 ctrl; 133 134 /* assert VF queue/interrupt reset */ 135 ctrl = er32(CTRL); 136 ew32(CTRL, ctrl | E1000_CTRL_RST); 137 138 /* we cannot initialize while the RSTI / RSTD bits are asserted */ 139 while (!mbx->ops.check_for_rst(hw) && timeout) { 140 timeout--; 141 udelay(5); 142 } 143 144 if (timeout) { 145 /* mailbox timeout can now become active */ 146 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; 147 148 /* notify PF of VF reset completion */ 149 msgbuf[0] = E1000_VF_RESET; 150 mbx->ops.write_posted(hw, msgbuf, 1); 151 152 msleep(10); 153 154 /* set our "perm_addr" based on info provided by PF */ 155 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 156 if (!ret_val) { 157 if (msgbuf[0] == (E1000_VF_RESET | 158 E1000_VT_MSGTYPE_ACK)) 159 memcpy(hw->mac.perm_addr, addr, ETH_ALEN); 160 else 161 ret_val = -E1000_ERR_MAC_INIT; 162 } 163 } 164 165 return ret_val; 166 } 167 168 /** 169 * e1000_init_hw_vf - Inits the HW 170 * @hw: pointer to the HW structure 171 * 172 * Not much to do here except clear the PF Reset indication if there is one. 173 **/ 174 static s32 e1000_init_hw_vf(struct e1000_hw *hw) 175 { 176 /* attempt to set and restore our mac address */ 177 e1000_rar_set_vf(hw, hw->mac.addr, 0); 178 179 return E1000_SUCCESS; 180 } 181 182 /** 183 * e1000_hash_mc_addr_vf - Generate a multicast hash value 184 * @hw: pointer to the HW structure 185 * @mc_addr: pointer to a multicast address 186 * 187 * Generates a multicast address hash value which is used to determine 188 * the multicast filter table array address and new table value. See 189 * e1000_mta_set_generic() 190 **/ 191 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) 192 { 193 u32 hash_value, hash_mask; 194 u8 bit_shift = 0; 195 196 /* Register count multiplied by bits per register */ 197 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 198 199 /* The bit_shift is the number of left-shifts 200 * where 0xFF would still fall within the hash mask. 201 */ 202 while (hash_mask >> bit_shift != 0xFF) 203 bit_shift++; 204 205 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 206 (((u16)mc_addr[5]) << bit_shift))); 207 208 return hash_value; 209 } 210 211 /** 212 * e1000_update_mc_addr_list_vf - Update Multicast addresses 213 * @hw: pointer to the HW structure 214 * @mc_addr_list: array of multicast addresses to program 215 * @mc_addr_count: number of multicast addresses to program 216 * @rar_used_count: the first RAR register free to program 217 * @rar_count: total number of supported Receive Address Registers 218 * 219 * Updates the Receive Address Registers and Multicast Table Array. 220 * The caller must have a packed mc_addr_list of multicast addresses. 221 * The parameter rar_count will usually be hw->mac.rar_entry_count 222 * unless there are workarounds that change this. 223 **/ 224 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, 225 u8 *mc_addr_list, u32 mc_addr_count, 226 u32 rar_used_count, u32 rar_count) 227 { 228 struct e1000_mbx_info *mbx = &hw->mbx; 229 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 230 u16 *hash_list = (u16 *)&msgbuf[1]; 231 u32 hash_value; 232 u32 cnt, i; 233 234 /* Each entry in the list uses 1 16 bit word. We have 30 235 * 16 bit words available in our HW msg buffer (minus 1 for the 236 * msg type). That's 30 hash values if we pack 'em right. If 237 * there are more than 30 MC addresses to add then punt the 238 * extras for now and then add code to handle more than 30 later. 239 * It would be unusual for a server to request that many multi-cast 240 * addresses except for in large enterprise network environments. 241 */ 242 243 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count; 244 msgbuf[0] = E1000_VF_SET_MULTICAST; 245 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT; 246 247 for (i = 0; i < cnt; i++) { 248 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); 249 hash_list[i] = hash_value & 0x0FFFF; 250 mc_addr_list += ETH_ALEN; 251 } 252 253 mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE); 254 } 255 256 /** 257 * e1000_set_vfta_vf - Set/Unset vlan filter table address 258 * @hw: pointer to the HW structure 259 * @vid: determines the vfta register and bit to set/unset 260 * @set: if true then set bit, else clear bit 261 **/ 262 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set) 263 { 264 struct e1000_mbx_info *mbx = &hw->mbx; 265 u32 msgbuf[2]; 266 s32 err; 267 268 msgbuf[0] = E1000_VF_SET_VLAN; 269 msgbuf[1] = vid; 270 /* Setting the 8 bit field MSG INFO to true indicates "add" */ 271 if (set) 272 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT); 273 274 mbx->ops.write_posted(hw, msgbuf, 2); 275 276 err = mbx->ops.read_posted(hw, msgbuf, 2); 277 278 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 279 280 /* if nacked the vlan was rejected */ 281 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))) 282 err = -E1000_ERR_MAC_INIT; 283 284 return err; 285 } 286 287 /** 288 * e1000_rlpml_set_vf - Set the maximum receive packet length 289 * @hw: pointer to the HW structure 290 * @max_size: value to assign to max frame size 291 **/ 292 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) 293 { 294 struct e1000_mbx_info *mbx = &hw->mbx; 295 u32 msgbuf[2]; 296 297 msgbuf[0] = E1000_VF_SET_LPE; 298 msgbuf[1] = max_size; 299 300 mbx->ops.write_posted(hw, msgbuf, 2); 301 } 302 303 /** 304 * e1000_rar_set_vf - set device MAC address 305 * @hw: pointer to the HW structure 306 * @addr: pointer to the receive address 307 * @index: receive address array register 308 **/ 309 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index) 310 { 311 struct e1000_mbx_info *mbx = &hw->mbx; 312 u32 msgbuf[3]; 313 u8 *msg_addr = (u8 *)(&msgbuf[1]); 314 s32 ret_val; 315 316 memset(msgbuf, 0, 12); 317 msgbuf[0] = E1000_VF_SET_MAC_ADDR; 318 memcpy(msg_addr, addr, ETH_ALEN); 319 ret_val = mbx->ops.write_posted(hw, msgbuf, 3); 320 321 if (!ret_val) 322 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 323 324 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 325 326 /* if nacked the address was rejected, use "perm_addr" */ 327 if (!ret_val && 328 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) 329 e1000_read_mac_addr_vf(hw); 330 } 331 332 /** 333 * e1000_read_mac_addr_vf - Read device MAC address 334 * @hw: pointer to the HW structure 335 **/ 336 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) 337 { 338 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN); 339 340 return E1000_SUCCESS; 341 } 342 343 /** 344 * e1000_set_uc_addr_vf - Set or clear unicast filters 345 * @hw: pointer to the HW structure 346 * @sub_cmd: add or clear filters 347 * @addr: pointer to the filter MAC address 348 **/ 349 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr) 350 { 351 struct e1000_mbx_info *mbx = &hw->mbx; 352 u32 msgbuf[3], msgbuf_chk; 353 u8 *msg_addr = (u8 *)(&msgbuf[1]); 354 s32 ret_val; 355 356 memset(msgbuf, 0, sizeof(msgbuf)); 357 msgbuf[0] |= sub_cmd; 358 msgbuf[0] |= E1000_VF_SET_MAC_ADDR; 359 msgbuf_chk = msgbuf[0]; 360 361 if (addr) 362 memcpy(msg_addr, addr, ETH_ALEN); 363 364 ret_val = mbx->ops.write_posted(hw, msgbuf, 3); 365 366 if (!ret_val) 367 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 368 369 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 370 371 if (!ret_val) { 372 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 373 374 if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK)) 375 return -ENOSPC; 376 } 377 378 return ret_val; 379 } 380 381 /** 382 * e1000_check_for_link_vf - Check for link for a virtual interface 383 * @hw: pointer to the HW structure 384 * 385 * Checks to see if the underlying PF is still talking to the VF and 386 * if it is then it reports the link state to the hardware, otherwise 387 * it reports link down and returns an error. 388 **/ 389 static s32 e1000_check_for_link_vf(struct e1000_hw *hw) 390 { 391 struct e1000_mbx_info *mbx = &hw->mbx; 392 struct e1000_mac_info *mac = &hw->mac; 393 s32 ret_val = E1000_SUCCESS; 394 u32 in_msg = 0; 395 396 /* We only want to run this if there has been a rst asserted. 397 * in this case that could mean a link change, device reset, 398 * or a virtual function reset 399 */ 400 401 /* If we were hit with a reset or timeout drop the link */ 402 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout) 403 mac->get_link_status = true; 404 405 if (!mac->get_link_status) 406 goto out; 407 408 /* if link status is down no point in checking to see if PF is up */ 409 if (!(er32(STATUS) & E1000_STATUS_LU)) 410 goto out; 411 412 /* if the read failed it could just be a mailbox collision, best wait 413 * until we are called again and don't report an error 414 */ 415 if (mbx->ops.read(hw, &in_msg, 1)) 416 goto out; 417 418 /* if incoming message isn't clear to send we are waiting on response */ 419 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { 420 /* msg is not CTS and is NACK we must have lost CTS status */ 421 if (in_msg & E1000_VT_MSGTYPE_NACK) 422 ret_val = -E1000_ERR_MAC_INIT; 423 goto out; 424 } 425 426 /* the PF is talking, if we timed out in the past we reinit */ 427 if (!mbx->timeout) { 428 ret_val = -E1000_ERR_MAC_INIT; 429 goto out; 430 } 431 432 /* if we passed all the tests above then the link is up and we no 433 * longer need to check for link 434 */ 435 mac->get_link_status = false; 436 437 out: 438 return ret_val; 439 } 440 441