xref: /linux/drivers/net/ethernet/intel/igbvf/vf.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3 
4 #include "vf.h"
5 
6 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
7 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
8 				     u16 *duplex);
9 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
10 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
11 
12 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
13 					 u32, u32, u32);
14 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
15 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
16 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
17 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
18 
19 /**
20  *  e1000_init_mac_params_vf - Inits MAC params
21  *  @hw: pointer to the HW structure
22  **/
23 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
24 {
25 	struct e1000_mac_info *mac = &hw->mac;
26 
27 	/* VF's have no MTA Registers - PF feature only */
28 	mac->mta_reg_count = 128;
29 	/* VF's have no access to RAR entries  */
30 	mac->rar_entry_count = 1;
31 
32 	/* Function pointers */
33 	/* reset */
34 	mac->ops.reset_hw = e1000_reset_hw_vf;
35 	/* hw initialization */
36 	mac->ops.init_hw = e1000_init_hw_vf;
37 	/* check for link */
38 	mac->ops.check_for_link = e1000_check_for_link_vf;
39 	/* link info */
40 	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
41 	/* multicast address update */
42 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
43 	/* set mac address */
44 	mac->ops.rar_set = e1000_rar_set_vf;
45 	/* read mac address */
46 	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
47 	/* set mac filter */
48 	mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
49 	/* set vlan filter table array */
50 	mac->ops.set_vfta = e1000_set_vfta_vf;
51 
52 	return E1000_SUCCESS;
53 }
54 
55 /**
56  *  e1000_init_function_pointers_vf - Inits function pointers
57  *  @hw: pointer to the HW structure
58  **/
59 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
60 {
61 	hw->mac.ops.init_params = e1000_init_mac_params_vf;
62 	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
63 }
64 
65 /**
66  *  e1000_get_link_up_info_vf - Gets link info.
67  *  @hw: pointer to the HW structure
68  *  @speed: pointer to 16 bit value to store link speed.
69  *  @duplex: pointer to 16 bit value to store duplex.
70  *
71  *  Since we cannot read the PHY and get accurate link info, we must rely upon
72  *  the status register's data which is often stale and inaccurate.
73  **/
74 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
75 				     u16 *duplex)
76 {
77 	s32 status;
78 
79 	status = er32(STATUS);
80 	if (status & E1000_STATUS_SPEED_1000)
81 		*speed = SPEED_1000;
82 	else if (status & E1000_STATUS_SPEED_100)
83 		*speed = SPEED_100;
84 	else
85 		*speed = SPEED_10;
86 
87 	if (status & E1000_STATUS_FD)
88 		*duplex = FULL_DUPLEX;
89 	else
90 		*duplex = HALF_DUPLEX;
91 
92 	return E1000_SUCCESS;
93 }
94 
95 /**
96  *  e1000_reset_hw_vf - Resets the HW
97  *  @hw: pointer to the HW structure
98  *
99  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
100  *  This is all the reset we can perform on a VF.
101  **/
102 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
103 {
104 	struct e1000_mbx_info *mbx = &hw->mbx;
105 	u32 timeout = E1000_VF_INIT_TIMEOUT;
106 	u32 ret_val = -E1000_ERR_MAC_INIT;
107 	u32 msgbuf[3];
108 	u8 *addr = (u8 *)(&msgbuf[1]);
109 	u32 ctrl;
110 
111 	/* assert VF queue/interrupt reset */
112 	ctrl = er32(CTRL);
113 	ew32(CTRL, ctrl | E1000_CTRL_RST);
114 
115 	/* we cannot initialize while the RSTI / RSTD bits are asserted */
116 	while (!mbx->ops.check_for_rst(hw) && timeout) {
117 		timeout--;
118 		udelay(5);
119 	}
120 
121 	if (timeout) {
122 		/* mailbox timeout can now become active */
123 		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
124 
125 		/* notify PF of VF reset completion */
126 		msgbuf[0] = E1000_VF_RESET;
127 		mbx->ops.write_posted(hw, msgbuf, 1);
128 
129 		mdelay(10);
130 
131 		/* set our "perm_addr" based on info provided by PF */
132 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
133 		if (!ret_val) {
134 			if (msgbuf[0] == (E1000_VF_RESET |
135 					  E1000_VT_MSGTYPE_ACK))
136 				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
137 			else
138 				ret_val = -E1000_ERR_MAC_INIT;
139 		}
140 	}
141 
142 	return ret_val;
143 }
144 
145 /**
146  *  e1000_init_hw_vf - Inits the HW
147  *  @hw: pointer to the HW structure
148  *
149  *  Not much to do here except clear the PF Reset indication if there is one.
150  **/
151 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
152 {
153 	/* attempt to set and restore our mac address */
154 	e1000_rar_set_vf(hw, hw->mac.addr, 0);
155 
156 	return E1000_SUCCESS;
157 }
158 
159 /**
160  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
161  *  @hw: pointer to the HW structure
162  *  @mc_addr: pointer to a multicast address
163  *
164  *  Generates a multicast address hash value which is used to determine
165  *  the multicast filter table array address and new table value.  See
166  *  e1000_mta_set_generic()
167  **/
168 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
169 {
170 	u32 hash_value, hash_mask;
171 	u8 bit_shift = 0;
172 
173 	/* Register count multiplied by bits per register */
174 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
175 
176 	/* The bit_shift is the number of left-shifts
177 	 * where 0xFF would still fall within the hash mask.
178 	 */
179 	while (hash_mask >> bit_shift != 0xFF)
180 		bit_shift++;
181 
182 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
183 				  (((u16)mc_addr[5]) << bit_shift)));
184 
185 	return hash_value;
186 }
187 
188 /**
189  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
190  *  @hw: pointer to the HW structure
191  *  @mc_addr_list: array of multicast addresses to program
192  *  @mc_addr_count: number of multicast addresses to program
193  *  @rar_used_count: the first RAR register free to program
194  *  @rar_count: total number of supported Receive Address Registers
195  *
196  *  Updates the Receive Address Registers and Multicast Table Array.
197  *  The caller must have a packed mc_addr_list of multicast addresses.
198  *  The parameter rar_count will usually be hw->mac.rar_entry_count
199  *  unless there are workarounds that change this.
200  **/
201 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
202 					 u8 *mc_addr_list, u32 mc_addr_count,
203 					 u32 rar_used_count, u32 rar_count)
204 {
205 	struct e1000_mbx_info *mbx = &hw->mbx;
206 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
207 	u16 *hash_list = (u16 *)&msgbuf[1];
208 	u32 hash_value;
209 	u32 cnt, i;
210 	s32 ret_val;
211 
212 	/* Each entry in the list uses 1 16 bit word.  We have 30
213 	 * 16 bit words available in our HW msg buffer (minus 1 for the
214 	 * msg type).  That's 30 hash values if we pack 'em right.  If
215 	 * there are more than 30 MC addresses to add then punt the
216 	 * extras for now and then add code to handle more than 30 later.
217 	 * It would be unusual for a server to request that many multi-cast
218 	 * addresses except for in large enterprise network environments.
219 	 */
220 
221 	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
222 	msgbuf[0] = E1000_VF_SET_MULTICAST;
223 	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
224 
225 	for (i = 0; i < cnt; i++) {
226 		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
227 		hash_list[i] = hash_value & 0x0FFFF;
228 		mc_addr_list += ETH_ALEN;
229 	}
230 
231 	ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
232 	if (!ret_val)
233 		mbx->ops.read_posted(hw, msgbuf, 1);
234 }
235 
236 /**
237  *  e1000_set_vfta_vf - Set/Unset vlan filter table address
238  *  @hw: pointer to the HW structure
239  *  @vid: determines the vfta register and bit to set/unset
240  *  @set: if true then set bit, else clear bit
241  **/
242 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
243 {
244 	struct e1000_mbx_info *mbx = &hw->mbx;
245 	u32 msgbuf[2];
246 	s32 err;
247 
248 	msgbuf[0] = E1000_VF_SET_VLAN;
249 	msgbuf[1] = vid;
250 	/* Setting the 8 bit field MSG INFO to true indicates "add" */
251 	if (set)
252 		msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
253 
254 	mbx->ops.write_posted(hw, msgbuf, 2);
255 
256 	err = mbx->ops.read_posted(hw, msgbuf, 2);
257 
258 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
259 
260 	/* if nacked the vlan was rejected */
261 	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
262 		err = -E1000_ERR_MAC_INIT;
263 
264 	return err;
265 }
266 
267 /**
268  *  e1000_rlpml_set_vf - Set the maximum receive packet length
269  *  @hw: pointer to the HW structure
270  *  @max_size: value to assign to max frame size
271  **/
272 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
273 {
274 	struct e1000_mbx_info *mbx = &hw->mbx;
275 	u32 msgbuf[2];
276 	s32 ret_val;
277 
278 	msgbuf[0] = E1000_VF_SET_LPE;
279 	msgbuf[1] = max_size;
280 
281 	ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
282 	if (!ret_val)
283 		mbx->ops.read_posted(hw, msgbuf, 1);
284 }
285 
286 /**
287  *  e1000_rar_set_vf - set device MAC address
288  *  @hw: pointer to the HW structure
289  *  @addr: pointer to the receive address
290  *  @index: receive address array register
291  **/
292 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
293 {
294 	struct e1000_mbx_info *mbx = &hw->mbx;
295 	u32 msgbuf[3];
296 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
297 	s32 ret_val;
298 
299 	memset(msgbuf, 0, 12);
300 	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
301 	memcpy(msg_addr, addr, ETH_ALEN);
302 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
303 
304 	if (!ret_val)
305 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
306 
307 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
308 
309 	/* if nacked the address was rejected, use "perm_addr" */
310 	if (!ret_val &&
311 	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
312 		e1000_read_mac_addr_vf(hw);
313 }
314 
315 /**
316  *  e1000_read_mac_addr_vf - Read device MAC address
317  *  @hw: pointer to the HW structure
318  **/
319 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
320 {
321 	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
322 
323 	return E1000_SUCCESS;
324 }
325 
326 /**
327  *  e1000_set_uc_addr_vf - Set or clear unicast filters
328  *  @hw: pointer to the HW structure
329  *  @sub_cmd: add or clear filters
330  *  @addr: pointer to the filter MAC address
331  **/
332 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
333 {
334 	struct e1000_mbx_info *mbx = &hw->mbx;
335 	u32 msgbuf[3], msgbuf_chk;
336 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
337 	s32 ret_val;
338 
339 	memset(msgbuf, 0, sizeof(msgbuf));
340 	msgbuf[0] |= sub_cmd;
341 	msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
342 	msgbuf_chk = msgbuf[0];
343 
344 	if (addr)
345 		memcpy(msg_addr, addr, ETH_ALEN);
346 
347 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
348 
349 	if (!ret_val)
350 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
351 
352 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
353 
354 	if (!ret_val) {
355 		msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
356 
357 		if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
358 			return -ENOSPC;
359 	}
360 
361 	return ret_val;
362 }
363 
364 /**
365  *  e1000_check_for_link_vf - Check for link for a virtual interface
366  *  @hw: pointer to the HW structure
367  *
368  *  Checks to see if the underlying PF is still talking to the VF and
369  *  if it is then it reports the link state to the hardware, otherwise
370  *  it reports link down and returns an error.
371  **/
372 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
373 {
374 	struct e1000_mbx_info *mbx = &hw->mbx;
375 	struct e1000_mac_info *mac = &hw->mac;
376 	s32 ret_val = E1000_SUCCESS;
377 	u32 in_msg = 0;
378 
379 	/* We only want to run this if there has been a rst asserted.
380 	 * in this case that could mean a link change, device reset,
381 	 * or a virtual function reset
382 	 */
383 
384 	/* If we were hit with a reset or timeout drop the link */
385 	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
386 		mac->get_link_status = true;
387 
388 	if (!mac->get_link_status)
389 		goto out;
390 
391 	/* if link status is down no point in checking to see if PF is up */
392 	if (!(er32(STATUS) & E1000_STATUS_LU))
393 		goto out;
394 
395 	/* if the read failed it could just be a mailbox collision, best wait
396 	 * until we are called again and don't report an error
397 	 */
398 	if (mbx->ops.read(hw, &in_msg, 1))
399 		goto out;
400 
401 	/* if incoming message isn't clear to send we are waiting on response */
402 	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
403 		/* msg is not CTS and is NACK we must have lost CTS status */
404 		if (in_msg & E1000_VT_MSGTYPE_NACK)
405 			ret_val = -E1000_ERR_MAC_INIT;
406 		goto out;
407 	}
408 
409 	/* the PF is talking, if we timed out in the past we reinit */
410 	if (!mbx->timeout) {
411 		ret_val = -E1000_ERR_MAC_INIT;
412 		goto out;
413 	}
414 
415 	/* if we passed all the tests above then the link is up and we no
416 	 * longer need to check for link
417 	 */
418 	mac->get_link_status = false;
419 
420 out:
421 	return ret_val;
422 }
423 
424