xref: /linux/drivers/net/ethernet/intel/igbvf/netdev.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/ethtool.h>
9 #include <linux/if_vlan.h>
10 #include <linux/init.h>
11 #include <linux/ipv6.h>
12 #include <linux/mii.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/prefetch.h>
18 #include <linux/sctp.h>
19 #include <linux/slab.h>
20 #include <linux/tcp.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include "igbvf.h"
26 
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 		  "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42 
43 static struct igbvf_info igbvf_vf_info = {
44 	.mac		= e1000_vfadapt,
45 	.flags		= 0,
46 	.pba		= 10,
47 	.init_ops	= e1000_init_function_pointers_vf,
48 };
49 
50 static struct igbvf_info igbvf_i350_vf_info = {
51 	.mac		= e1000_vfadapt_i350,
52 	.flags		= 0,
53 	.pba		= 10,
54 	.init_ops	= e1000_init_function_pointers_vf,
55 };
56 
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 	[board_vf]	= &igbvf_vf_info,
59 	[board_i350_vf]	= &igbvf_i350_vf_info,
60 };
61 
62 /**
63  * igbvf_desc_unused - calculate if we have unused descriptors
64  * @ring: address of receive ring structure
65  **/
66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 	if (ring->next_to_clean > ring->next_to_use)
69 		return ring->next_to_clean - ring->next_to_use - 1;
70 
71 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73 
74 /**
75  * igbvf_receive_skb - helper function to handle Rx indications
76  * @adapter: board private structure
77  * @netdev: pointer to netdev struct
78  * @skb: skb to indicate to stack
79  * @status: descriptor status field as written by hardware
80  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81  * @skb: pointer to sk_buff to be indicated to stack
82  **/
83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 			      struct net_device *netdev,
85 			      struct sk_buff *skb,
86 			      u32 status, __le16 vlan)
87 {
88 	u16 vid;
89 
90 	if (status & E1000_RXD_STAT_VP) {
91 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 		    (status & E1000_RXDEXT_STATERR_LB))
93 			vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 		else
95 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 		if (test_bit(vid, adapter->active_vlans))
97 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 	}
99 
100 	napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102 
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 					 u32 status_err, struct sk_buff *skb)
105 {
106 	skb_checksum_none_assert(skb);
107 
108 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 	if ((status_err & E1000_RXD_STAT_IXSM) ||
110 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 		return;
112 
113 	/* TCP/UDP checksum error bit is set */
114 	if (status_err &
115 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 		/* let the stack verify checksum errors */
117 		adapter->hw_csum_err++;
118 		return;
119 	}
120 
121 	/* It must be a TCP or UDP packet with a valid checksum */
122 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 		skb->ip_summed = CHECKSUM_UNNECESSARY;
124 
125 	adapter->hw_csum_good++;
126 }
127 
128 /**
129  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130  * @rx_ring: address of ring structure to repopulate
131  * @cleaned_count: number of buffers to repopulate
132  **/
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 				   int cleaned_count)
135 {
136 	struct igbvf_adapter *adapter = rx_ring->adapter;
137 	struct net_device *netdev = adapter->netdev;
138 	struct pci_dev *pdev = adapter->pdev;
139 	union e1000_adv_rx_desc *rx_desc;
140 	struct igbvf_buffer *buffer_info;
141 	struct sk_buff *skb;
142 	unsigned int i;
143 	int bufsz;
144 
145 	i = rx_ring->next_to_use;
146 	buffer_info = &rx_ring->buffer_info[i];
147 
148 	if (adapter->rx_ps_hdr_size)
149 		bufsz = adapter->rx_ps_hdr_size;
150 	else
151 		bufsz = adapter->rx_buffer_len;
152 
153 	while (cleaned_count--) {
154 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155 
156 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 			if (!buffer_info->page) {
158 				buffer_info->page = alloc_page(GFP_ATOMIC);
159 				if (!buffer_info->page) {
160 					adapter->alloc_rx_buff_failed++;
161 					goto no_buffers;
162 				}
163 				buffer_info->page_offset = 0;
164 			} else {
165 				buffer_info->page_offset ^= PAGE_SIZE / 2;
166 			}
167 			buffer_info->page_dma =
168 				dma_map_page(&pdev->dev, buffer_info->page,
169 					     buffer_info->page_offset,
170 					     PAGE_SIZE / 2,
171 					     DMA_FROM_DEVICE);
172 			if (dma_mapping_error(&pdev->dev,
173 					      buffer_info->page_dma)) {
174 				__free_page(buffer_info->page);
175 				buffer_info->page = NULL;
176 				dev_err(&pdev->dev, "RX DMA map failed\n");
177 				break;
178 			}
179 		}
180 
181 		if (!buffer_info->skb) {
182 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 			if (!skb) {
184 				adapter->alloc_rx_buff_failed++;
185 				goto no_buffers;
186 			}
187 
188 			buffer_info->skb = skb;
189 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 							  bufsz,
191 							  DMA_FROM_DEVICE);
192 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 				dev_kfree_skb(buffer_info->skb);
194 				buffer_info->skb = NULL;
195 				dev_err(&pdev->dev, "RX DMA map failed\n");
196 				goto no_buffers;
197 			}
198 		}
199 		/* Refresh the desc even if buffer_addrs didn't change because
200 		 * each write-back erases this info.
201 		 */
202 		if (adapter->rx_ps_hdr_size) {
203 			rx_desc->read.pkt_addr =
204 			     cpu_to_le64(buffer_info->page_dma);
205 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 		} else {
207 			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 			rx_desc->read.hdr_addr = 0;
209 		}
210 
211 		i++;
212 		if (i == rx_ring->count)
213 			i = 0;
214 		buffer_info = &rx_ring->buffer_info[i];
215 	}
216 
217 no_buffers:
218 	if (rx_ring->next_to_use != i) {
219 		rx_ring->next_to_use = i;
220 		if (i == 0)
221 			i = (rx_ring->count - 1);
222 		else
223 			i--;
224 
225 		/* Force memory writes to complete before letting h/w
226 		 * know there are new descriptors to fetch.  (Only
227 		 * applicable for weak-ordered memory model archs,
228 		 * such as IA-64).
229 		*/
230 		wmb();
231 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 	}
233 }
234 
235 /**
236  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237  * @adapter: board private structure
238  * @work_done: output parameter used to indicate completed work
239  * @work_to_do: input parameter setting limit of work
240  *
241  * the return value indicates whether actual cleaning was done, there
242  * is no guarantee that everything was cleaned
243  **/
244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 			       int *work_done, int work_to_do)
246 {
247 	struct igbvf_ring *rx_ring = adapter->rx_ring;
248 	struct net_device *netdev = adapter->netdev;
249 	struct pci_dev *pdev = adapter->pdev;
250 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 	struct igbvf_buffer *buffer_info, *next_buffer;
252 	struct sk_buff *skb;
253 	bool cleaned = false;
254 	int cleaned_count = 0;
255 	unsigned int total_bytes = 0, total_packets = 0;
256 	unsigned int i;
257 	u32 length, hlen, staterr;
258 
259 	i = rx_ring->next_to_clean;
260 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262 
263 	while (staterr & E1000_RXD_STAT_DD) {
264 		if (*work_done >= work_to_do)
265 			break;
266 		(*work_done)++;
267 		rmb(); /* read descriptor and rx_buffer_info after status DD */
268 
269 		buffer_info = &rx_ring->buffer_info[i];
270 
271 		/* HW will not DMA in data larger than the given buffer, even
272 		 * if it parses the (NFS, of course) header to be larger.  In
273 		 * that case, it fills the header buffer and spills the rest
274 		 * into the page.
275 		 */
276 		hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info,
277 				     E1000_RXDADV_HDRBUFLEN_MASK);
278 		if (hlen > adapter->rx_ps_hdr_size)
279 			hlen = adapter->rx_ps_hdr_size;
280 
281 		length = le16_to_cpu(rx_desc->wb.upper.length);
282 		cleaned = true;
283 		cleaned_count++;
284 
285 		skb = buffer_info->skb;
286 		prefetch(skb->data - NET_IP_ALIGN);
287 		buffer_info->skb = NULL;
288 		if (!adapter->rx_ps_hdr_size) {
289 			dma_unmap_single(&pdev->dev, buffer_info->dma,
290 					 adapter->rx_buffer_len,
291 					 DMA_FROM_DEVICE);
292 			buffer_info->dma = 0;
293 			skb_put(skb, length);
294 			goto send_up;
295 		}
296 
297 		if (!skb_shinfo(skb)->nr_frags) {
298 			dma_unmap_single(&pdev->dev, buffer_info->dma,
299 					 adapter->rx_ps_hdr_size,
300 					 DMA_FROM_DEVICE);
301 			buffer_info->dma = 0;
302 			skb_put(skb, hlen);
303 		}
304 
305 		if (length) {
306 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
307 				       PAGE_SIZE / 2,
308 				       DMA_FROM_DEVICE);
309 			buffer_info->page_dma = 0;
310 
311 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
312 					   buffer_info->page,
313 					   buffer_info->page_offset,
314 					   length);
315 
316 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
317 			    (page_count(buffer_info->page) != 1))
318 				buffer_info->page = NULL;
319 			else
320 				get_page(buffer_info->page);
321 
322 			skb->len += length;
323 			skb->data_len += length;
324 			skb->truesize += PAGE_SIZE / 2;
325 		}
326 send_up:
327 		i++;
328 		if (i == rx_ring->count)
329 			i = 0;
330 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
331 		prefetch(next_rxd);
332 		next_buffer = &rx_ring->buffer_info[i];
333 
334 		if (!(staterr & E1000_RXD_STAT_EOP)) {
335 			buffer_info->skb = next_buffer->skb;
336 			buffer_info->dma = next_buffer->dma;
337 			next_buffer->skb = skb;
338 			next_buffer->dma = 0;
339 			goto next_desc;
340 		}
341 
342 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
343 			dev_kfree_skb_irq(skb);
344 			goto next_desc;
345 		}
346 
347 		total_bytes += skb->len;
348 		total_packets++;
349 
350 		igbvf_rx_checksum_adv(adapter, staterr, skb);
351 
352 		skb->protocol = eth_type_trans(skb, netdev);
353 
354 		igbvf_receive_skb(adapter, netdev, skb, staterr,
355 				  rx_desc->wb.upper.vlan);
356 
357 next_desc:
358 		rx_desc->wb.upper.status_error = 0;
359 
360 		/* return some buffers to hardware, one at a time is too slow */
361 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
362 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
363 			cleaned_count = 0;
364 		}
365 
366 		/* use prefetched values */
367 		rx_desc = next_rxd;
368 		buffer_info = next_buffer;
369 
370 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
371 	}
372 
373 	rx_ring->next_to_clean = i;
374 	cleaned_count = igbvf_desc_unused(rx_ring);
375 
376 	if (cleaned_count)
377 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
378 
379 	adapter->total_rx_packets += total_packets;
380 	adapter->total_rx_bytes += total_bytes;
381 	netdev->stats.rx_bytes += total_bytes;
382 	netdev->stats.rx_packets += total_packets;
383 	return cleaned;
384 }
385 
386 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
387 			    struct igbvf_buffer *buffer_info)
388 {
389 	if (buffer_info->dma) {
390 		if (buffer_info->mapped_as_page)
391 			dma_unmap_page(&adapter->pdev->dev,
392 				       buffer_info->dma,
393 				       buffer_info->length,
394 				       DMA_TO_DEVICE);
395 		else
396 			dma_unmap_single(&adapter->pdev->dev,
397 					 buffer_info->dma,
398 					 buffer_info->length,
399 					 DMA_TO_DEVICE);
400 		buffer_info->dma = 0;
401 	}
402 	if (buffer_info->skb) {
403 		dev_kfree_skb_any(buffer_info->skb);
404 		buffer_info->skb = NULL;
405 	}
406 	buffer_info->time_stamp = 0;
407 }
408 
409 /**
410  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
411  * @adapter: board private structure
412  * @tx_ring: ring being initialized
413  *
414  * Return 0 on success, negative on failure
415  **/
416 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
417 			     struct igbvf_ring *tx_ring)
418 {
419 	struct pci_dev *pdev = adapter->pdev;
420 	int size;
421 
422 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
423 	tx_ring->buffer_info = vzalloc(size);
424 	if (!tx_ring->buffer_info)
425 		goto err;
426 
427 	/* round up to nearest 4K */
428 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
429 	tx_ring->size = ALIGN(tx_ring->size, 4096);
430 
431 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
432 					   &tx_ring->dma, GFP_KERNEL);
433 	if (!tx_ring->desc)
434 		goto err;
435 
436 	tx_ring->adapter = adapter;
437 	tx_ring->next_to_use = 0;
438 	tx_ring->next_to_clean = 0;
439 
440 	return 0;
441 err:
442 	vfree(tx_ring->buffer_info);
443 	dev_err(&adapter->pdev->dev,
444 		"Unable to allocate memory for the transmit descriptor ring\n");
445 	return -ENOMEM;
446 }
447 
448 /**
449  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
450  * @adapter: board private structure
451  * @rx_ring: ring being initialized
452  *
453  * Returns 0 on success, negative on failure
454  **/
455 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
456 			     struct igbvf_ring *rx_ring)
457 {
458 	struct pci_dev *pdev = adapter->pdev;
459 	int size, desc_len;
460 
461 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
462 	rx_ring->buffer_info = vzalloc(size);
463 	if (!rx_ring->buffer_info)
464 		goto err;
465 
466 	desc_len = sizeof(union e1000_adv_rx_desc);
467 
468 	/* Round up to nearest 4K */
469 	rx_ring->size = rx_ring->count * desc_len;
470 	rx_ring->size = ALIGN(rx_ring->size, 4096);
471 
472 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
473 					   &rx_ring->dma, GFP_KERNEL);
474 	if (!rx_ring->desc)
475 		goto err;
476 
477 	rx_ring->next_to_clean = 0;
478 	rx_ring->next_to_use = 0;
479 
480 	rx_ring->adapter = adapter;
481 
482 	return 0;
483 
484 err:
485 	vfree(rx_ring->buffer_info);
486 	rx_ring->buffer_info = NULL;
487 	dev_err(&adapter->pdev->dev,
488 		"Unable to allocate memory for the receive descriptor ring\n");
489 	return -ENOMEM;
490 }
491 
492 /**
493  * igbvf_clean_tx_ring - Free Tx Buffers
494  * @tx_ring: ring to be cleaned
495  **/
496 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
497 {
498 	struct igbvf_adapter *adapter = tx_ring->adapter;
499 	struct igbvf_buffer *buffer_info;
500 	unsigned long size;
501 	unsigned int i;
502 
503 	if (!tx_ring->buffer_info)
504 		return;
505 
506 	/* Free all the Tx ring sk_buffs */
507 	for (i = 0; i < tx_ring->count; i++) {
508 		buffer_info = &tx_ring->buffer_info[i];
509 		igbvf_put_txbuf(adapter, buffer_info);
510 	}
511 
512 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
513 	memset(tx_ring->buffer_info, 0, size);
514 
515 	/* Zero out the descriptor ring */
516 	memset(tx_ring->desc, 0, tx_ring->size);
517 
518 	tx_ring->next_to_use = 0;
519 	tx_ring->next_to_clean = 0;
520 
521 	writel(0, adapter->hw.hw_addr + tx_ring->head);
522 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
523 }
524 
525 /**
526  * igbvf_free_tx_resources - Free Tx Resources per Queue
527  * @tx_ring: ring to free resources from
528  *
529  * Free all transmit software resources
530  **/
531 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
532 {
533 	struct pci_dev *pdev = tx_ring->adapter->pdev;
534 
535 	igbvf_clean_tx_ring(tx_ring);
536 
537 	vfree(tx_ring->buffer_info);
538 	tx_ring->buffer_info = NULL;
539 
540 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
541 			  tx_ring->dma);
542 
543 	tx_ring->desc = NULL;
544 }
545 
546 /**
547  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
548  * @rx_ring: ring structure pointer to free buffers from
549  **/
550 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
551 {
552 	struct igbvf_adapter *adapter = rx_ring->adapter;
553 	struct igbvf_buffer *buffer_info;
554 	struct pci_dev *pdev = adapter->pdev;
555 	unsigned long size;
556 	unsigned int i;
557 
558 	if (!rx_ring->buffer_info)
559 		return;
560 
561 	/* Free all the Rx ring sk_buffs */
562 	for (i = 0; i < rx_ring->count; i++) {
563 		buffer_info = &rx_ring->buffer_info[i];
564 		if (buffer_info->dma) {
565 			if (adapter->rx_ps_hdr_size) {
566 				dma_unmap_single(&pdev->dev, buffer_info->dma,
567 						 adapter->rx_ps_hdr_size,
568 						 DMA_FROM_DEVICE);
569 			} else {
570 				dma_unmap_single(&pdev->dev, buffer_info->dma,
571 						 adapter->rx_buffer_len,
572 						 DMA_FROM_DEVICE);
573 			}
574 			buffer_info->dma = 0;
575 		}
576 
577 		if (buffer_info->skb) {
578 			dev_kfree_skb(buffer_info->skb);
579 			buffer_info->skb = NULL;
580 		}
581 
582 		if (buffer_info->page) {
583 			if (buffer_info->page_dma)
584 				dma_unmap_page(&pdev->dev,
585 					       buffer_info->page_dma,
586 					       PAGE_SIZE / 2,
587 					       DMA_FROM_DEVICE);
588 			put_page(buffer_info->page);
589 			buffer_info->page = NULL;
590 			buffer_info->page_dma = 0;
591 			buffer_info->page_offset = 0;
592 		}
593 	}
594 
595 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
596 	memset(rx_ring->buffer_info, 0, size);
597 
598 	/* Zero out the descriptor ring */
599 	memset(rx_ring->desc, 0, rx_ring->size);
600 
601 	rx_ring->next_to_clean = 0;
602 	rx_ring->next_to_use = 0;
603 
604 	writel(0, adapter->hw.hw_addr + rx_ring->head);
605 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
606 }
607 
608 /**
609  * igbvf_free_rx_resources - Free Rx Resources
610  * @rx_ring: ring to clean the resources from
611  *
612  * Free all receive software resources
613  **/
614 
615 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
616 {
617 	struct pci_dev *pdev = rx_ring->adapter->pdev;
618 
619 	igbvf_clean_rx_ring(rx_ring);
620 
621 	vfree(rx_ring->buffer_info);
622 	rx_ring->buffer_info = NULL;
623 
624 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
625 			  rx_ring->dma);
626 	rx_ring->desc = NULL;
627 }
628 
629 /**
630  * igbvf_update_itr - update the dynamic ITR value based on statistics
631  * @adapter: pointer to adapter
632  * @itr_setting: current adapter->itr
633  * @packets: the number of packets during this measurement interval
634  * @bytes: the number of bytes during this measurement interval
635  *
636  * Stores a new ITR value based on packets and byte counts during the last
637  * interrupt.  The advantage of per interrupt computation is faster updates
638  * and more accurate ITR for the current traffic pattern.  Constants in this
639  * function were computed based on theoretical maximum wire speed and thresholds
640  * were set based on testing data as well as attempting to minimize response
641  * time while increasing bulk throughput.
642  **/
643 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
644 					   enum latency_range itr_setting,
645 					   int packets, int bytes)
646 {
647 	enum latency_range retval = itr_setting;
648 
649 	if (packets == 0)
650 		goto update_itr_done;
651 
652 	switch (itr_setting) {
653 	case lowest_latency:
654 		/* handle TSO and jumbo frames */
655 		if (bytes/packets > 8000)
656 			retval = bulk_latency;
657 		else if ((packets < 5) && (bytes > 512))
658 			retval = low_latency;
659 		break;
660 	case low_latency:  /* 50 usec aka 20000 ints/s */
661 		if (bytes > 10000) {
662 			/* this if handles the TSO accounting */
663 			if (bytes/packets > 8000)
664 				retval = bulk_latency;
665 			else if ((packets < 10) || ((bytes/packets) > 1200))
666 				retval = bulk_latency;
667 			else if ((packets > 35))
668 				retval = lowest_latency;
669 		} else if (bytes/packets > 2000) {
670 			retval = bulk_latency;
671 		} else if (packets <= 2 && bytes < 512) {
672 			retval = lowest_latency;
673 		}
674 		break;
675 	case bulk_latency: /* 250 usec aka 4000 ints/s */
676 		if (bytes > 25000) {
677 			if (packets > 35)
678 				retval = low_latency;
679 		} else if (bytes < 6000) {
680 			retval = low_latency;
681 		}
682 		break;
683 	default:
684 		break;
685 	}
686 
687 update_itr_done:
688 	return retval;
689 }
690 
691 static int igbvf_range_to_itr(enum latency_range current_range)
692 {
693 	int new_itr;
694 
695 	switch (current_range) {
696 	/* counts and packets in update_itr are dependent on these numbers */
697 	case lowest_latency:
698 		new_itr = IGBVF_70K_ITR;
699 		break;
700 	case low_latency:
701 		new_itr = IGBVF_20K_ITR;
702 		break;
703 	case bulk_latency:
704 		new_itr = IGBVF_4K_ITR;
705 		break;
706 	default:
707 		new_itr = IGBVF_START_ITR;
708 		break;
709 	}
710 	return new_itr;
711 }
712 
713 static void igbvf_set_itr(struct igbvf_adapter *adapter)
714 {
715 	u32 new_itr;
716 
717 	adapter->tx_ring->itr_range =
718 			igbvf_update_itr(adapter,
719 					 adapter->tx_ring->itr_val,
720 					 adapter->total_tx_packets,
721 					 adapter->total_tx_bytes);
722 
723 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
724 	if (adapter->requested_itr == 3 &&
725 	    adapter->tx_ring->itr_range == lowest_latency)
726 		adapter->tx_ring->itr_range = low_latency;
727 
728 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
729 
730 	if (new_itr != adapter->tx_ring->itr_val) {
731 		u32 current_itr = adapter->tx_ring->itr_val;
732 		/* this attempts to bias the interrupt rate towards Bulk
733 		 * by adding intermediate steps when interrupt rate is
734 		 * increasing
735 		 */
736 		new_itr = new_itr > current_itr ?
737 			  min(current_itr + (new_itr >> 2), new_itr) :
738 			  new_itr;
739 		adapter->tx_ring->itr_val = new_itr;
740 
741 		adapter->tx_ring->set_itr = 1;
742 	}
743 
744 	adapter->rx_ring->itr_range =
745 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
746 					 adapter->total_rx_packets,
747 					 adapter->total_rx_bytes);
748 	if (adapter->requested_itr == 3 &&
749 	    adapter->rx_ring->itr_range == lowest_latency)
750 		adapter->rx_ring->itr_range = low_latency;
751 
752 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
753 
754 	if (new_itr != adapter->rx_ring->itr_val) {
755 		u32 current_itr = adapter->rx_ring->itr_val;
756 
757 		new_itr = new_itr > current_itr ?
758 			  min(current_itr + (new_itr >> 2), new_itr) :
759 			  new_itr;
760 		adapter->rx_ring->itr_val = new_itr;
761 
762 		adapter->rx_ring->set_itr = 1;
763 	}
764 }
765 
766 /**
767  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768  * @tx_ring: ring structure to clean descriptors from
769  *
770  * returns true if ring is completely cleaned
771  **/
772 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
773 {
774 	struct igbvf_adapter *adapter = tx_ring->adapter;
775 	struct net_device *netdev = adapter->netdev;
776 	struct igbvf_buffer *buffer_info;
777 	struct sk_buff *skb;
778 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
779 	unsigned int total_bytes = 0, total_packets = 0;
780 	unsigned int i, count = 0;
781 	bool cleaned = false;
782 
783 	i = tx_ring->next_to_clean;
784 	buffer_info = &tx_ring->buffer_info[i];
785 	eop_desc = buffer_info->next_to_watch;
786 
787 	do {
788 		/* if next_to_watch is not set then there is no work pending */
789 		if (!eop_desc)
790 			break;
791 
792 		/* prevent any other reads prior to eop_desc */
793 		smp_rmb();
794 
795 		/* if DD is not set pending work has not been completed */
796 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
797 			break;
798 
799 		/* clear next_to_watch to prevent false hangs */
800 		buffer_info->next_to_watch = NULL;
801 
802 		for (cleaned = false; !cleaned; count++) {
803 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
804 			cleaned = (tx_desc == eop_desc);
805 			skb = buffer_info->skb;
806 
807 			if (skb) {
808 				unsigned int segs, bytecount;
809 
810 				/* gso_segs is currently only valid for tcp */
811 				segs = skb_shinfo(skb)->gso_segs ?: 1;
812 				/* multiply data chunks by size of headers */
813 				bytecount = ((segs - 1) * skb_headlen(skb)) +
814 					    skb->len;
815 				total_packets += segs;
816 				total_bytes += bytecount;
817 			}
818 
819 			igbvf_put_txbuf(adapter, buffer_info);
820 			tx_desc->wb.status = 0;
821 
822 			i++;
823 			if (i == tx_ring->count)
824 				i = 0;
825 
826 			buffer_info = &tx_ring->buffer_info[i];
827 		}
828 
829 		eop_desc = buffer_info->next_to_watch;
830 	} while (count < tx_ring->count);
831 
832 	tx_ring->next_to_clean = i;
833 
834 	if (unlikely(count && netif_carrier_ok(netdev) &&
835 	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
836 		/* Make sure that anybody stopping the queue after this
837 		 * sees the new next_to_clean.
838 		 */
839 		smp_mb();
840 		if (netif_queue_stopped(netdev) &&
841 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
842 			netif_wake_queue(netdev);
843 			++adapter->restart_queue;
844 		}
845 	}
846 
847 	netdev->stats.tx_bytes += total_bytes;
848 	netdev->stats.tx_packets += total_packets;
849 	return count < tx_ring->count;
850 }
851 
852 static irqreturn_t igbvf_msix_other(int irq, void *data)
853 {
854 	struct net_device *netdev = data;
855 	struct igbvf_adapter *adapter = netdev_priv(netdev);
856 	struct e1000_hw *hw = &adapter->hw;
857 
858 	adapter->int_counter1++;
859 
860 	hw->mac.get_link_status = 1;
861 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
862 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
863 
864 	ew32(EIMS, adapter->eims_other);
865 
866 	return IRQ_HANDLED;
867 }
868 
869 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
870 {
871 	struct net_device *netdev = data;
872 	struct igbvf_adapter *adapter = netdev_priv(netdev);
873 	struct e1000_hw *hw = &adapter->hw;
874 	struct igbvf_ring *tx_ring = adapter->tx_ring;
875 
876 	if (tx_ring->set_itr) {
877 		writel(tx_ring->itr_val,
878 		       adapter->hw.hw_addr + tx_ring->itr_register);
879 		adapter->tx_ring->set_itr = 0;
880 	}
881 
882 	adapter->total_tx_bytes = 0;
883 	adapter->total_tx_packets = 0;
884 
885 	/* auto mask will automatically re-enable the interrupt when we write
886 	 * EICS
887 	 */
888 	if (!igbvf_clean_tx_irq(tx_ring))
889 		/* Ring was not completely cleaned, so fire another interrupt */
890 		ew32(EICS, tx_ring->eims_value);
891 	else
892 		ew32(EIMS, tx_ring->eims_value);
893 
894 	return IRQ_HANDLED;
895 }
896 
897 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
898 {
899 	struct net_device *netdev = data;
900 	struct igbvf_adapter *adapter = netdev_priv(netdev);
901 
902 	adapter->int_counter0++;
903 
904 	/* Write the ITR value calculated at the end of the
905 	 * previous interrupt.
906 	 */
907 	if (adapter->rx_ring->set_itr) {
908 		writel(adapter->rx_ring->itr_val,
909 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
910 		adapter->rx_ring->set_itr = 0;
911 	}
912 
913 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
914 		adapter->total_rx_bytes = 0;
915 		adapter->total_rx_packets = 0;
916 		__napi_schedule(&adapter->rx_ring->napi);
917 	}
918 
919 	return IRQ_HANDLED;
920 }
921 
922 #define IGBVF_NO_QUEUE -1
923 
924 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
925 				int tx_queue, int msix_vector)
926 {
927 	struct e1000_hw *hw = &adapter->hw;
928 	u32 ivar, index;
929 
930 	/* 82576 uses a table-based method for assigning vectors.
931 	 * Each queue has a single entry in the table to which we write
932 	 * a vector number along with a "valid" bit.  Sadly, the layout
933 	 * of the table is somewhat counterintuitive.
934 	 */
935 	if (rx_queue > IGBVF_NO_QUEUE) {
936 		index = (rx_queue >> 1);
937 		ivar = array_er32(IVAR0, index);
938 		if (rx_queue & 0x1) {
939 			/* vector goes into third byte of register */
940 			ivar = ivar & 0xFF00FFFF;
941 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
942 		} else {
943 			/* vector goes into low byte of register */
944 			ivar = ivar & 0xFFFFFF00;
945 			ivar |= msix_vector | E1000_IVAR_VALID;
946 		}
947 		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
948 		array_ew32(IVAR0, index, ivar);
949 	}
950 	if (tx_queue > IGBVF_NO_QUEUE) {
951 		index = (tx_queue >> 1);
952 		ivar = array_er32(IVAR0, index);
953 		if (tx_queue & 0x1) {
954 			/* vector goes into high byte of register */
955 			ivar = ivar & 0x00FFFFFF;
956 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
957 		} else {
958 			/* vector goes into second byte of register */
959 			ivar = ivar & 0xFFFF00FF;
960 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
961 		}
962 		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
963 		array_ew32(IVAR0, index, ivar);
964 	}
965 }
966 
967 /**
968  * igbvf_configure_msix - Configure MSI-X hardware
969  * @adapter: board private structure
970  *
971  * igbvf_configure_msix sets up the hardware to properly
972  * generate MSI-X interrupts.
973  **/
974 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
975 {
976 	u32 tmp;
977 	struct e1000_hw *hw = &adapter->hw;
978 	struct igbvf_ring *tx_ring = adapter->tx_ring;
979 	struct igbvf_ring *rx_ring = adapter->rx_ring;
980 	int vector = 0;
981 
982 	adapter->eims_enable_mask = 0;
983 
984 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
985 	adapter->eims_enable_mask |= tx_ring->eims_value;
986 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
987 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
988 	adapter->eims_enable_mask |= rx_ring->eims_value;
989 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
990 
991 	/* set vector for other causes, i.e. link changes */
992 
993 	tmp = (vector++ | E1000_IVAR_VALID);
994 
995 	ew32(IVAR_MISC, tmp);
996 
997 	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
998 	adapter->eims_other = BIT(vector - 1);
999 	e1e_flush();
1000 }
1001 
1002 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1003 {
1004 	if (adapter->msix_entries) {
1005 		pci_disable_msix(adapter->pdev);
1006 		kfree(adapter->msix_entries);
1007 		adapter->msix_entries = NULL;
1008 	}
1009 }
1010 
1011 /**
1012  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1013  * @adapter: board private structure
1014  *
1015  * Attempt to configure interrupts using the best available
1016  * capabilities of the hardware and kernel.
1017  **/
1018 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1019 {
1020 	int err = -ENOMEM;
1021 	int i;
1022 
1023 	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1024 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1025 					GFP_KERNEL);
1026 	if (adapter->msix_entries) {
1027 		for (i = 0; i < 3; i++)
1028 			adapter->msix_entries[i].entry = i;
1029 
1030 		err = pci_enable_msix_range(adapter->pdev,
1031 					    adapter->msix_entries, 3, 3);
1032 	}
1033 
1034 	if (err < 0) {
1035 		/* MSI-X failed */
1036 		dev_err(&adapter->pdev->dev,
1037 			"Failed to initialize MSI-X interrupts.\n");
1038 		igbvf_reset_interrupt_capability(adapter);
1039 	}
1040 }
1041 
1042 /**
1043  * igbvf_request_msix - Initialize MSI-X interrupts
1044  * @adapter: board private structure
1045  *
1046  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1047  * kernel.
1048  **/
1049 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1050 {
1051 	struct net_device *netdev = adapter->netdev;
1052 	int err = 0, vector = 0;
1053 
1054 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1055 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1056 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1057 	} else {
1058 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1059 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1060 	}
1061 
1062 	err = request_irq(adapter->msix_entries[vector].vector,
1063 			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1064 			  netdev);
1065 	if (err)
1066 		goto out;
1067 
1068 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1069 	adapter->tx_ring->itr_val = adapter->current_itr;
1070 	vector++;
1071 
1072 	err = request_irq(adapter->msix_entries[vector].vector,
1073 			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1074 			  netdev);
1075 	if (err)
1076 		goto free_irq_tx;
1077 
1078 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1079 	adapter->rx_ring->itr_val = adapter->current_itr;
1080 	vector++;
1081 
1082 	err = request_irq(adapter->msix_entries[vector].vector,
1083 			  igbvf_msix_other, 0, netdev->name, netdev);
1084 	if (err)
1085 		goto free_irq_rx;
1086 
1087 	igbvf_configure_msix(adapter);
1088 	return 0;
1089 free_irq_rx:
1090 	free_irq(adapter->msix_entries[--vector].vector, netdev);
1091 free_irq_tx:
1092 	free_irq(adapter->msix_entries[--vector].vector, netdev);
1093 out:
1094 	return err;
1095 }
1096 
1097 /**
1098  * igbvf_alloc_queues - Allocate memory for all rings
1099  * @adapter: board private structure to initialize
1100  **/
1101 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102 {
1103 	struct net_device *netdev = adapter->netdev;
1104 
1105 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 	if (!adapter->tx_ring)
1107 		return -ENOMEM;
1108 
1109 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110 	if (!adapter->rx_ring) {
1111 		kfree(adapter->tx_ring);
1112 		return -ENOMEM;
1113 	}
1114 
1115 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * igbvf_request_irq - initialize interrupts
1122  * @adapter: board private structure
1123  *
1124  * Attempts to configure interrupts using the best available
1125  * capabilities of the hardware and kernel.
1126  **/
1127 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1128 {
1129 	int err = -1;
1130 
1131 	/* igbvf supports msi-x only */
1132 	if (adapter->msix_entries)
1133 		err = igbvf_request_msix(adapter);
1134 
1135 	if (!err)
1136 		return err;
1137 
1138 	dev_err(&adapter->pdev->dev,
1139 		"Unable to allocate interrupt, Error: %d\n", err);
1140 
1141 	return err;
1142 }
1143 
1144 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1145 {
1146 	struct net_device *netdev = adapter->netdev;
1147 	int vector;
1148 
1149 	if (adapter->msix_entries) {
1150 		for (vector = 0; vector < 3; vector++)
1151 			free_irq(adapter->msix_entries[vector].vector, netdev);
1152 	}
1153 }
1154 
1155 /**
1156  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1157  * @adapter: board private structure
1158  **/
1159 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1160 {
1161 	struct e1000_hw *hw = &adapter->hw;
1162 
1163 	ew32(EIMC, ~0);
1164 
1165 	if (adapter->msix_entries)
1166 		ew32(EIAC, 0);
1167 }
1168 
1169 /**
1170  * igbvf_irq_enable - Enable default interrupt generation settings
1171  * @adapter: board private structure
1172  **/
1173 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1174 {
1175 	struct e1000_hw *hw = &adapter->hw;
1176 
1177 	ew32(EIAC, adapter->eims_enable_mask);
1178 	ew32(EIAM, adapter->eims_enable_mask);
1179 	ew32(EIMS, adapter->eims_enable_mask);
1180 }
1181 
1182 /**
1183  * igbvf_poll - NAPI Rx polling callback
1184  * @napi: struct associated with this polling callback
1185  * @budget: amount of packets driver is allowed to process this poll
1186  **/
1187 static int igbvf_poll(struct napi_struct *napi, int budget)
1188 {
1189 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1190 	struct igbvf_adapter *adapter = rx_ring->adapter;
1191 	struct e1000_hw *hw = &adapter->hw;
1192 	int work_done = 0;
1193 
1194 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1195 
1196 	if (work_done == budget)
1197 		return budget;
1198 
1199 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1200 	 * poll us due to busy-polling
1201 	 */
1202 	if (likely(napi_complete_done(napi, work_done))) {
1203 		if (adapter->requested_itr & 3)
1204 			igbvf_set_itr(adapter);
1205 
1206 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1207 			ew32(EIMS, adapter->rx_ring->eims_value);
1208 	}
1209 
1210 	return work_done;
1211 }
1212 
1213 /**
1214  * igbvf_set_rlpml - set receive large packet maximum length
1215  * @adapter: board private structure
1216  *
1217  * Configure the maximum size of packets that will be received
1218  */
1219 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1220 {
1221 	int max_frame_size;
1222 	struct e1000_hw *hw = &adapter->hw;
1223 
1224 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1225 
1226 	spin_lock_bh(&hw->mbx_lock);
1227 
1228 	e1000_rlpml_set_vf(hw, max_frame_size);
1229 
1230 	spin_unlock_bh(&hw->mbx_lock);
1231 }
1232 
1233 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 				 __be16 proto, u16 vid)
1235 {
1236 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 	struct e1000_hw *hw = &adapter->hw;
1238 
1239 	spin_lock_bh(&hw->mbx_lock);
1240 
1241 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1242 		dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1243 		spin_unlock_bh(&hw->mbx_lock);
1244 		return -EINVAL;
1245 	}
1246 
1247 	spin_unlock_bh(&hw->mbx_lock);
1248 
1249 	set_bit(vid, adapter->active_vlans);
1250 	return 0;
1251 }
1252 
1253 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1254 				  __be16 proto, u16 vid)
1255 {
1256 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1257 	struct e1000_hw *hw = &adapter->hw;
1258 
1259 	spin_lock_bh(&hw->mbx_lock);
1260 
1261 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262 		dev_err(&adapter->pdev->dev,
1263 			"Failed to remove vlan id %d\n", vid);
1264 		spin_unlock_bh(&hw->mbx_lock);
1265 		return -EINVAL;
1266 	}
1267 
1268 	spin_unlock_bh(&hw->mbx_lock);
1269 
1270 	clear_bit(vid, adapter->active_vlans);
1271 	return 0;
1272 }
1273 
1274 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1275 {
1276 	u16 vid;
1277 
1278 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1279 		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1280 }
1281 
1282 /**
1283  * igbvf_configure_tx - Configure Transmit Unit after Reset
1284  * @adapter: board private structure
1285  *
1286  * Configure the Tx unit of the MAC after a reset.
1287  **/
1288 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1289 {
1290 	struct e1000_hw *hw = &adapter->hw;
1291 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1292 	u64 tdba;
1293 	u32 txdctl, dca_txctrl;
1294 
1295 	/* disable transmits */
1296 	txdctl = er32(TXDCTL(0));
1297 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1298 	e1e_flush();
1299 	msleep(10);
1300 
1301 	/* Setup the HW Tx Head and Tail descriptor pointers */
1302 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1303 	tdba = tx_ring->dma;
1304 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1305 	ew32(TDBAH(0), (tdba >> 32));
1306 	ew32(TDH(0), 0);
1307 	ew32(TDT(0), 0);
1308 	tx_ring->head = E1000_TDH(0);
1309 	tx_ring->tail = E1000_TDT(0);
1310 
1311 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1312 	 * MUST be delivered in order or it will completely screw up
1313 	 * our bookkeeping.
1314 	 */
1315 	dca_txctrl = er32(DCA_TXCTRL(0));
1316 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1317 	ew32(DCA_TXCTRL(0), dca_txctrl);
1318 
1319 	/* enable transmits */
1320 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1321 	ew32(TXDCTL(0), txdctl);
1322 
1323 	/* Setup Transmit Descriptor Settings for eop descriptor */
1324 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1325 
1326 	/* enable Report Status bit */
1327 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1328 }
1329 
1330 /**
1331  * igbvf_setup_srrctl - configure the receive control registers
1332  * @adapter: Board private structure
1333  **/
1334 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1335 {
1336 	struct e1000_hw *hw = &adapter->hw;
1337 	u32 srrctl = 0;
1338 
1339 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1340 		    E1000_SRRCTL_BSIZEHDR_MASK |
1341 		    E1000_SRRCTL_BSIZEPKT_MASK);
1342 
1343 	/* Enable queue drop to avoid head of line blocking */
1344 	srrctl |= E1000_SRRCTL_DROP_EN;
1345 
1346 	/* Setup buffer sizes */
1347 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1348 		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1349 
1350 	if (adapter->rx_buffer_len < 2048) {
1351 		adapter->rx_ps_hdr_size = 0;
1352 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1353 	} else {
1354 		adapter->rx_ps_hdr_size = 128;
1355 		srrctl |= adapter->rx_ps_hdr_size <<
1356 			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1357 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1358 	}
1359 
1360 	ew32(SRRCTL(0), srrctl);
1361 }
1362 
1363 /**
1364  * igbvf_configure_rx - Configure Receive Unit after Reset
1365  * @adapter: board private structure
1366  *
1367  * Configure the Rx unit of the MAC after a reset.
1368  **/
1369 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1370 {
1371 	struct e1000_hw *hw = &adapter->hw;
1372 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1373 	u64 rdba;
1374 	u32 rxdctl;
1375 
1376 	/* disable receives */
1377 	rxdctl = er32(RXDCTL(0));
1378 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1379 	e1e_flush();
1380 	msleep(10);
1381 
1382 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1383 	 * the Base and Length of the Rx Descriptor Ring
1384 	 */
1385 	rdba = rx_ring->dma;
1386 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1387 	ew32(RDBAH(0), (rdba >> 32));
1388 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1389 	rx_ring->head = E1000_RDH(0);
1390 	rx_ring->tail = E1000_RDT(0);
1391 	ew32(RDH(0), 0);
1392 	ew32(RDT(0), 0);
1393 
1394 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1395 	rxdctl &= 0xFFF00000;
1396 	rxdctl |= IGBVF_RX_PTHRESH;
1397 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1398 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1399 
1400 	igbvf_set_rlpml(adapter);
1401 
1402 	/* enable receives */
1403 	ew32(RXDCTL(0), rxdctl);
1404 }
1405 
1406 /**
1407  * igbvf_set_multi - Multicast and Promiscuous mode set
1408  * @netdev: network interface device structure
1409  *
1410  * The set_multi entry point is called whenever the multicast address
1411  * list or the network interface flags are updated.  This routine is
1412  * responsible for configuring the hardware for proper multicast,
1413  * promiscuous mode, and all-multi behavior.
1414  **/
1415 static void igbvf_set_multi(struct net_device *netdev)
1416 {
1417 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1418 	struct e1000_hw *hw = &adapter->hw;
1419 	struct netdev_hw_addr *ha;
1420 	u8  *mta_list = NULL;
1421 	int i;
1422 
1423 	if (!netdev_mc_empty(netdev)) {
1424 		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1425 					 GFP_ATOMIC);
1426 		if (!mta_list)
1427 			return;
1428 	}
1429 
1430 	/* prepare a packed array of only addresses. */
1431 	i = 0;
1432 	netdev_for_each_mc_addr(ha, netdev)
1433 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1434 
1435 	spin_lock_bh(&hw->mbx_lock);
1436 
1437 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1438 
1439 	spin_unlock_bh(&hw->mbx_lock);
1440 	kfree(mta_list);
1441 }
1442 
1443 /**
1444  * igbvf_set_uni - Configure unicast MAC filters
1445  * @netdev: network interface device structure
1446  *
1447  * This routine is responsible for configuring the hardware for proper
1448  * unicast filters.
1449  **/
1450 static int igbvf_set_uni(struct net_device *netdev)
1451 {
1452 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1453 	struct e1000_hw *hw = &adapter->hw;
1454 
1455 	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1456 		pr_err("Too many unicast filters - No Space\n");
1457 		return -ENOSPC;
1458 	}
1459 
1460 	spin_lock_bh(&hw->mbx_lock);
1461 
1462 	/* Clear all unicast MAC filters */
1463 	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1464 
1465 	spin_unlock_bh(&hw->mbx_lock);
1466 
1467 	if (!netdev_uc_empty(netdev)) {
1468 		struct netdev_hw_addr *ha;
1469 
1470 		/* Add MAC filters one by one */
1471 		netdev_for_each_uc_addr(ha, netdev) {
1472 			spin_lock_bh(&hw->mbx_lock);
1473 
1474 			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1475 						ha->addr);
1476 
1477 			spin_unlock_bh(&hw->mbx_lock);
1478 			udelay(200);
1479 		}
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 static void igbvf_set_rx_mode(struct net_device *netdev)
1486 {
1487 	igbvf_set_multi(netdev);
1488 	igbvf_set_uni(netdev);
1489 }
1490 
1491 /**
1492  * igbvf_configure - configure the hardware for Rx and Tx
1493  * @adapter: private board structure
1494  **/
1495 static void igbvf_configure(struct igbvf_adapter *adapter)
1496 {
1497 	igbvf_set_rx_mode(adapter->netdev);
1498 
1499 	igbvf_restore_vlan(adapter);
1500 
1501 	igbvf_configure_tx(adapter);
1502 	igbvf_setup_srrctl(adapter);
1503 	igbvf_configure_rx(adapter);
1504 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1505 			       igbvf_desc_unused(adapter->rx_ring));
1506 }
1507 
1508 /* igbvf_reset - bring the hardware into a known good state
1509  * @adapter: private board structure
1510  *
1511  * This function boots the hardware and enables some settings that
1512  * require a configuration cycle of the hardware - those cannot be
1513  * set/changed during runtime. After reset the device needs to be
1514  * properly configured for Rx, Tx etc.
1515  */
1516 static void igbvf_reset(struct igbvf_adapter *adapter)
1517 {
1518 	struct e1000_mac_info *mac = &adapter->hw.mac;
1519 	struct net_device *netdev = adapter->netdev;
1520 	struct e1000_hw *hw = &adapter->hw;
1521 
1522 	spin_lock_bh(&hw->mbx_lock);
1523 
1524 	/* Allow time for pending master requests to run */
1525 	if (mac->ops.reset_hw(hw))
1526 		dev_info(&adapter->pdev->dev, "PF still resetting\n");
1527 
1528 	mac->ops.init_hw(hw);
1529 
1530 	spin_unlock_bh(&hw->mbx_lock);
1531 
1532 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1533 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1534 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1535 		       netdev->addr_len);
1536 	}
1537 
1538 	adapter->last_reset = jiffies;
1539 }
1540 
1541 int igbvf_up(struct igbvf_adapter *adapter)
1542 {
1543 	struct e1000_hw *hw = &adapter->hw;
1544 
1545 	/* hardware has been reset, we need to reload some things */
1546 	igbvf_configure(adapter);
1547 
1548 	clear_bit(__IGBVF_DOWN, &adapter->state);
1549 
1550 	napi_enable(&adapter->rx_ring->napi);
1551 	if (adapter->msix_entries)
1552 		igbvf_configure_msix(adapter);
1553 
1554 	/* Clear any pending interrupts. */
1555 	er32(EICR);
1556 	igbvf_irq_enable(adapter);
1557 
1558 	/* start the watchdog */
1559 	hw->mac.get_link_status = 1;
1560 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1561 
1562 	return 0;
1563 }
1564 
1565 void igbvf_down(struct igbvf_adapter *adapter)
1566 {
1567 	struct net_device *netdev = adapter->netdev;
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 rxdctl, txdctl;
1570 
1571 	/* signal that we're down so the interrupt handler does not
1572 	 * reschedule our watchdog timer
1573 	 */
1574 	set_bit(__IGBVF_DOWN, &adapter->state);
1575 
1576 	/* disable receives in the hardware */
1577 	rxdctl = er32(RXDCTL(0));
1578 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1579 
1580 	netif_carrier_off(netdev);
1581 	netif_stop_queue(netdev);
1582 
1583 	/* disable transmits in the hardware */
1584 	txdctl = er32(TXDCTL(0));
1585 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1586 
1587 	/* flush both disables and wait for them to finish */
1588 	e1e_flush();
1589 	msleep(10);
1590 
1591 	napi_disable(&adapter->rx_ring->napi);
1592 
1593 	igbvf_irq_disable(adapter);
1594 
1595 	del_timer_sync(&adapter->watchdog_timer);
1596 
1597 	/* record the stats before reset*/
1598 	igbvf_update_stats(adapter);
1599 
1600 	adapter->link_speed = 0;
1601 	adapter->link_duplex = 0;
1602 
1603 	igbvf_reset(adapter);
1604 	igbvf_clean_tx_ring(adapter->tx_ring);
1605 	igbvf_clean_rx_ring(adapter->rx_ring);
1606 }
1607 
1608 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1609 {
1610 	might_sleep();
1611 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1612 		usleep_range(1000, 2000);
1613 	igbvf_down(adapter);
1614 	igbvf_up(adapter);
1615 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1616 }
1617 
1618 /**
1619  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1620  * @adapter: board private structure to initialize
1621  *
1622  * igbvf_sw_init initializes the Adapter private data structure.
1623  * Fields are initialized based on PCI device information and
1624  * OS network device settings (MTU size).
1625  **/
1626 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1627 {
1628 	struct net_device *netdev = adapter->netdev;
1629 	s32 rc;
1630 
1631 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1632 	adapter->rx_ps_hdr_size = 0;
1633 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1634 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1635 
1636 	adapter->tx_int_delay = 8;
1637 	adapter->tx_abs_int_delay = 32;
1638 	adapter->rx_int_delay = 0;
1639 	adapter->rx_abs_int_delay = 8;
1640 	adapter->requested_itr = 3;
1641 	adapter->current_itr = IGBVF_START_ITR;
1642 
1643 	/* Set various function pointers */
1644 	adapter->ei->init_ops(&adapter->hw);
1645 
1646 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1647 	if (rc)
1648 		return rc;
1649 
1650 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1651 	if (rc)
1652 		return rc;
1653 
1654 	igbvf_set_interrupt_capability(adapter);
1655 
1656 	if (igbvf_alloc_queues(adapter))
1657 		return -ENOMEM;
1658 
1659 	/* Explicitly disable IRQ since the NIC can be in any state. */
1660 	igbvf_irq_disable(adapter);
1661 
1662 	spin_lock_init(&adapter->hw.mbx_lock);
1663 
1664 	set_bit(__IGBVF_DOWN, &adapter->state);
1665 	return 0;
1666 }
1667 
1668 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1669 {
1670 	struct e1000_hw *hw = &adapter->hw;
1671 
1672 	adapter->stats.last_gprc = er32(VFGPRC);
1673 	adapter->stats.last_gorc = er32(VFGORC);
1674 	adapter->stats.last_gptc = er32(VFGPTC);
1675 	adapter->stats.last_gotc = er32(VFGOTC);
1676 	adapter->stats.last_mprc = er32(VFMPRC);
1677 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1678 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1679 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1680 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1681 
1682 	adapter->stats.base_gprc = er32(VFGPRC);
1683 	adapter->stats.base_gorc = er32(VFGORC);
1684 	adapter->stats.base_gptc = er32(VFGPTC);
1685 	adapter->stats.base_gotc = er32(VFGOTC);
1686 	adapter->stats.base_mprc = er32(VFMPRC);
1687 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1688 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1689 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1690 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1691 }
1692 
1693 /**
1694  * igbvf_open - Called when a network interface is made active
1695  * @netdev: network interface device structure
1696  *
1697  * Returns 0 on success, negative value on failure
1698  *
1699  * The open entry point is called when a network interface is made
1700  * active by the system (IFF_UP).  At this point all resources needed
1701  * for transmit and receive operations are allocated, the interrupt
1702  * handler is registered with the OS, the watchdog timer is started,
1703  * and the stack is notified that the interface is ready.
1704  **/
1705 static int igbvf_open(struct net_device *netdev)
1706 {
1707 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1708 	struct e1000_hw *hw = &adapter->hw;
1709 	int err;
1710 
1711 	/* disallow open during test */
1712 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1713 		return -EBUSY;
1714 
1715 	/* allocate transmit descriptors */
1716 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1717 	if (err)
1718 		goto err_setup_tx;
1719 
1720 	/* allocate receive descriptors */
1721 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1722 	if (err)
1723 		goto err_setup_rx;
1724 
1725 	/* before we allocate an interrupt, we must be ready to handle it.
1726 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 	 * as soon as we call pci_request_irq, so we have to setup our
1728 	 * clean_rx handler before we do so.
1729 	 */
1730 	igbvf_configure(adapter);
1731 
1732 	err = igbvf_request_irq(adapter);
1733 	if (err)
1734 		goto err_req_irq;
1735 
1736 	/* From here on the code is the same as igbvf_up() */
1737 	clear_bit(__IGBVF_DOWN, &adapter->state);
1738 
1739 	napi_enable(&adapter->rx_ring->napi);
1740 
1741 	/* clear any pending interrupts */
1742 	er32(EICR);
1743 
1744 	igbvf_irq_enable(adapter);
1745 
1746 	/* start the watchdog */
1747 	hw->mac.get_link_status = 1;
1748 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1749 
1750 	return 0;
1751 
1752 err_req_irq:
1753 	igbvf_free_rx_resources(adapter->rx_ring);
1754 err_setup_rx:
1755 	igbvf_free_tx_resources(adapter->tx_ring);
1756 err_setup_tx:
1757 	igbvf_reset(adapter);
1758 
1759 	return err;
1760 }
1761 
1762 /**
1763  * igbvf_close - Disables a network interface
1764  * @netdev: network interface device structure
1765  *
1766  * Returns 0, this is not allowed to fail
1767  *
1768  * The close entry point is called when an interface is de-activated
1769  * by the OS.  The hardware is still under the drivers control, but
1770  * needs to be disabled.  A global MAC reset is issued to stop the
1771  * hardware, and all transmit and receive resources are freed.
1772  **/
1773 static int igbvf_close(struct net_device *netdev)
1774 {
1775 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1776 
1777 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1778 	igbvf_down(adapter);
1779 
1780 	igbvf_free_irq(adapter);
1781 
1782 	igbvf_free_tx_resources(adapter->tx_ring);
1783 	igbvf_free_rx_resources(adapter->rx_ring);
1784 
1785 	return 0;
1786 }
1787 
1788 /**
1789  * igbvf_set_mac - Change the Ethernet Address of the NIC
1790  * @netdev: network interface device structure
1791  * @p: pointer to an address structure
1792  *
1793  * Returns 0 on success, negative on failure
1794  **/
1795 static int igbvf_set_mac(struct net_device *netdev, void *p)
1796 {
1797 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1798 	struct e1000_hw *hw = &adapter->hw;
1799 	struct sockaddr *addr = p;
1800 
1801 	if (!is_valid_ether_addr(addr->sa_data))
1802 		return -EADDRNOTAVAIL;
1803 
1804 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1805 
1806 	spin_lock_bh(&hw->mbx_lock);
1807 
1808 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1809 
1810 	spin_unlock_bh(&hw->mbx_lock);
1811 
1812 	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1813 		return -EADDRNOTAVAIL;
1814 
1815 	eth_hw_addr_set(netdev, addr->sa_data);
1816 
1817 	return 0;
1818 }
1819 
1820 #define UPDATE_VF_COUNTER(reg, name) \
1821 { \
1822 	u32 current_counter = er32(reg); \
1823 	if (current_counter < adapter->stats.last_##name) \
1824 		adapter->stats.name += 0x100000000LL; \
1825 	adapter->stats.last_##name = current_counter; \
1826 	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1827 	adapter->stats.name |= current_counter; \
1828 }
1829 
1830 /**
1831  * igbvf_update_stats - Update the board statistics counters
1832  * @adapter: board private structure
1833 **/
1834 void igbvf_update_stats(struct igbvf_adapter *adapter)
1835 {
1836 	struct e1000_hw *hw = &adapter->hw;
1837 	struct pci_dev *pdev = adapter->pdev;
1838 
1839 	/* Prevent stats update while adapter is being reset, link is down
1840 	 * or if the pci connection is down.
1841 	 */
1842 	if (adapter->link_speed == 0)
1843 		return;
1844 
1845 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1846 		return;
1847 
1848 	if (pci_channel_offline(pdev))
1849 		return;
1850 
1851 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1852 	UPDATE_VF_COUNTER(VFGORC, gorc);
1853 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1854 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1855 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1856 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1857 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1858 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1859 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1860 
1861 	/* Fill out the OS statistics structure */
1862 	adapter->netdev->stats.multicast = adapter->stats.mprc;
1863 }
1864 
1865 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1866 {
1867 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1868 		 adapter->link_speed,
1869 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1870 }
1871 
1872 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1873 {
1874 	struct e1000_hw *hw = &adapter->hw;
1875 	s32 ret_val = E1000_SUCCESS;
1876 	bool link_active;
1877 
1878 	/* If interface is down, stay link down */
1879 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1880 		return false;
1881 
1882 	spin_lock_bh(&hw->mbx_lock);
1883 
1884 	ret_val = hw->mac.ops.check_for_link(hw);
1885 
1886 	spin_unlock_bh(&hw->mbx_lock);
1887 
1888 	link_active = !hw->mac.get_link_status;
1889 
1890 	/* if check for link returns error we will need to reset */
1891 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1892 		schedule_work(&adapter->reset_task);
1893 
1894 	return link_active;
1895 }
1896 
1897 /**
1898  * igbvf_watchdog - Timer Call-back
1899  * @t: timer list pointer containing private struct
1900  **/
1901 static void igbvf_watchdog(struct timer_list *t)
1902 {
1903 	struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1904 
1905 	/* Do the rest outside of interrupt context */
1906 	schedule_work(&adapter->watchdog_task);
1907 }
1908 
1909 static void igbvf_watchdog_task(struct work_struct *work)
1910 {
1911 	struct igbvf_adapter *adapter = container_of(work,
1912 						     struct igbvf_adapter,
1913 						     watchdog_task);
1914 	struct net_device *netdev = adapter->netdev;
1915 	struct e1000_mac_info *mac = &adapter->hw.mac;
1916 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1917 	struct e1000_hw *hw = &adapter->hw;
1918 	u32 link;
1919 	int tx_pending = 0;
1920 
1921 	link = igbvf_has_link(adapter);
1922 
1923 	if (link) {
1924 		if (!netif_carrier_ok(netdev)) {
1925 			mac->ops.get_link_up_info(&adapter->hw,
1926 						  &adapter->link_speed,
1927 						  &adapter->link_duplex);
1928 			igbvf_print_link_info(adapter);
1929 
1930 			netif_carrier_on(netdev);
1931 			netif_wake_queue(netdev);
1932 		}
1933 	} else {
1934 		if (netif_carrier_ok(netdev)) {
1935 			adapter->link_speed = 0;
1936 			adapter->link_duplex = 0;
1937 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1938 			netif_carrier_off(netdev);
1939 			netif_stop_queue(netdev);
1940 		}
1941 	}
1942 
1943 	if (netif_carrier_ok(netdev)) {
1944 		igbvf_update_stats(adapter);
1945 	} else {
1946 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1947 			      tx_ring->count);
1948 		if (tx_pending) {
1949 			/* We've lost link, so the controller stops DMA,
1950 			 * but we've got queued Tx work that's never going
1951 			 * to get done, so reset controller to flush Tx.
1952 			 * (Do the reset outside of interrupt context).
1953 			 */
1954 			adapter->tx_timeout_count++;
1955 			schedule_work(&adapter->reset_task);
1956 		}
1957 	}
1958 
1959 	/* Cause software interrupt to ensure Rx ring is cleaned */
1960 	ew32(EICS, adapter->rx_ring->eims_value);
1961 
1962 	/* Reset the timer */
1963 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1964 		mod_timer(&adapter->watchdog_timer,
1965 			  round_jiffies(jiffies + (2 * HZ)));
1966 }
1967 
1968 #define IGBVF_TX_FLAGS_CSUM		0x00000001
1969 #define IGBVF_TX_FLAGS_VLAN		0x00000002
1970 #define IGBVF_TX_FLAGS_TSO		0x00000004
1971 #define IGBVF_TX_FLAGS_IPV4		0x00000008
1972 #define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1973 #define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1974 
1975 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1976 			      u32 type_tucmd, u32 mss_l4len_idx)
1977 {
1978 	struct e1000_adv_tx_context_desc *context_desc;
1979 	struct igbvf_buffer *buffer_info;
1980 	u16 i = tx_ring->next_to_use;
1981 
1982 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1983 	buffer_info = &tx_ring->buffer_info[i];
1984 
1985 	i++;
1986 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1987 
1988 	/* set bits to identify this as an advanced context descriptor */
1989 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1990 
1991 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1992 	context_desc->seqnum_seed	= 0;
1993 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1994 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1995 
1996 	buffer_info->time_stamp = jiffies;
1997 	buffer_info->dma = 0;
1998 }
1999 
2000 static int igbvf_tso(struct igbvf_ring *tx_ring,
2001 		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2002 {
2003 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2004 	union {
2005 		struct iphdr *v4;
2006 		struct ipv6hdr *v6;
2007 		unsigned char *hdr;
2008 	} ip;
2009 	union {
2010 		struct tcphdr *tcp;
2011 		unsigned char *hdr;
2012 	} l4;
2013 	u32 paylen, l4_offset;
2014 	int err;
2015 
2016 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2017 		return 0;
2018 
2019 	if (!skb_is_gso(skb))
2020 		return 0;
2021 
2022 	err = skb_cow_head(skb, 0);
2023 	if (err < 0)
2024 		return err;
2025 
2026 	ip.hdr = skb_network_header(skb);
2027 	l4.hdr = skb_checksum_start(skb);
2028 
2029 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2030 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2031 
2032 	/* initialize outer IP header fields */
2033 	if (ip.v4->version == 4) {
2034 		unsigned char *csum_start = skb_checksum_start(skb);
2035 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2036 
2037 		/* IP header will have to cancel out any data that
2038 		 * is not a part of the outer IP header
2039 		 */
2040 		ip.v4->check = csum_fold(csum_partial(trans_start,
2041 						      csum_start - trans_start,
2042 						      0));
2043 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2044 
2045 		ip.v4->tot_len = 0;
2046 	} else {
2047 		ip.v6->payload_len = 0;
2048 	}
2049 
2050 	/* determine offset of inner transport header */
2051 	l4_offset = l4.hdr - skb->data;
2052 
2053 	/* compute length of segmentation header */
2054 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2055 
2056 	/* remove payload length from inner checksum */
2057 	paylen = skb->len - l4_offset;
2058 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2059 
2060 	/* MSS L4LEN IDX */
2061 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2062 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2063 
2064 	/* VLAN MACLEN IPLEN */
2065 	vlan_macip_lens = l4.hdr - ip.hdr;
2066 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2067 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2068 
2069 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2070 
2071 	return 1;
2072 }
2073 
2074 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2075 			  u32 tx_flags, __be16 protocol)
2076 {
2077 	u32 vlan_macip_lens = 0;
2078 	u32 type_tucmd = 0;
2079 
2080 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2081 csum_failed:
2082 		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2083 			return false;
2084 		goto no_csum;
2085 	}
2086 
2087 	switch (skb->csum_offset) {
2088 	case offsetof(struct tcphdr, check):
2089 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2090 		fallthrough;
2091 	case offsetof(struct udphdr, check):
2092 		break;
2093 	case offsetof(struct sctphdr, checksum):
2094 		/* validate that this is actually an SCTP request */
2095 		if (skb_csum_is_sctp(skb)) {
2096 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2097 			break;
2098 		}
2099 		fallthrough;
2100 	default:
2101 		skb_checksum_help(skb);
2102 		goto csum_failed;
2103 	}
2104 
2105 	vlan_macip_lens = skb_checksum_start_offset(skb) -
2106 			  skb_network_offset(skb);
2107 no_csum:
2108 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2109 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2110 
2111 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2112 	return true;
2113 }
2114 
2115 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2116 {
2117 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2118 
2119 	/* there is enough descriptors then we don't need to worry  */
2120 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2121 		return 0;
2122 
2123 	netif_stop_queue(netdev);
2124 
2125 	/* Herbert's original patch had:
2126 	 *  smp_mb__after_netif_stop_queue();
2127 	 * but since that doesn't exist yet, just open code it.
2128 	 */
2129 	smp_mb();
2130 
2131 	/* We need to check again just in case room has been made available */
2132 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2133 		return -EBUSY;
2134 
2135 	netif_wake_queue(netdev);
2136 
2137 	++adapter->restart_queue;
2138 	return 0;
2139 }
2140 
2141 #define IGBVF_MAX_TXD_PWR	16
2142 #define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2143 
2144 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2145 				   struct igbvf_ring *tx_ring,
2146 				   struct sk_buff *skb)
2147 {
2148 	struct igbvf_buffer *buffer_info;
2149 	struct pci_dev *pdev = adapter->pdev;
2150 	unsigned int len = skb_headlen(skb);
2151 	unsigned int count = 0, i;
2152 	unsigned int f;
2153 
2154 	i = tx_ring->next_to_use;
2155 
2156 	buffer_info = &tx_ring->buffer_info[i];
2157 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2158 	buffer_info->length = len;
2159 	/* set time_stamp *before* dma to help avoid a possible race */
2160 	buffer_info->time_stamp = jiffies;
2161 	buffer_info->mapped_as_page = false;
2162 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2163 					  DMA_TO_DEVICE);
2164 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2165 		goto dma_error;
2166 
2167 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2168 		const skb_frag_t *frag;
2169 
2170 		count++;
2171 		i++;
2172 		if (i == tx_ring->count)
2173 			i = 0;
2174 
2175 		frag = &skb_shinfo(skb)->frags[f];
2176 		len = skb_frag_size(frag);
2177 
2178 		buffer_info = &tx_ring->buffer_info[i];
2179 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2180 		buffer_info->length = len;
2181 		buffer_info->time_stamp = jiffies;
2182 		buffer_info->mapped_as_page = true;
2183 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2184 						    DMA_TO_DEVICE);
2185 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2186 			goto dma_error;
2187 	}
2188 
2189 	tx_ring->buffer_info[i].skb = skb;
2190 
2191 	return ++count;
2192 
2193 dma_error:
2194 	dev_err(&pdev->dev, "TX DMA map failed\n");
2195 
2196 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2197 	buffer_info->dma = 0;
2198 	buffer_info->time_stamp = 0;
2199 	buffer_info->length = 0;
2200 	buffer_info->mapped_as_page = false;
2201 	if (count)
2202 		count--;
2203 
2204 	/* clear timestamp and dma mappings for remaining portion of packet */
2205 	while (count--) {
2206 		if (i == 0)
2207 			i += tx_ring->count;
2208 		i--;
2209 		buffer_info = &tx_ring->buffer_info[i];
2210 		igbvf_put_txbuf(adapter, buffer_info);
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2217 				      struct igbvf_ring *tx_ring,
2218 				      int tx_flags, int count,
2219 				      unsigned int first, u32 paylen,
2220 				      u8 hdr_len)
2221 {
2222 	union e1000_adv_tx_desc *tx_desc = NULL;
2223 	struct igbvf_buffer *buffer_info;
2224 	u32 olinfo_status = 0, cmd_type_len;
2225 	unsigned int i;
2226 
2227 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2228 			E1000_ADVTXD_DCMD_DEXT);
2229 
2230 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2231 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2232 
2233 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2234 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2235 
2236 		/* insert tcp checksum */
2237 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2238 
2239 		/* insert ip checksum */
2240 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2241 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2242 
2243 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2244 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245 	}
2246 
2247 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2248 
2249 	i = tx_ring->next_to_use;
2250 	while (count--) {
2251 		buffer_info = &tx_ring->buffer_info[i];
2252 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2253 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2254 		tx_desc->read.cmd_type_len =
2255 			 cpu_to_le32(cmd_type_len | buffer_info->length);
2256 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2257 		i++;
2258 		if (i == tx_ring->count)
2259 			i = 0;
2260 	}
2261 
2262 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2263 	/* Force memory writes to complete before letting h/w
2264 	 * know there are new descriptors to fetch.  (Only
2265 	 * applicable for weak-ordered memory model archs,
2266 	 * such as IA-64).
2267 	 */
2268 	wmb();
2269 
2270 	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2271 	tx_ring->next_to_use = i;
2272 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2273 }
2274 
2275 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2276 					     struct net_device *netdev,
2277 					     struct igbvf_ring *tx_ring)
2278 {
2279 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 	unsigned int first, tx_flags = 0;
2281 	u8 hdr_len = 0;
2282 	int count = 0;
2283 	int tso = 0;
2284 	__be16 protocol = vlan_get_protocol(skb);
2285 
2286 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 		dev_kfree_skb_any(skb);
2288 		return NETDEV_TX_OK;
2289 	}
2290 
2291 	if (skb->len <= 0) {
2292 		dev_kfree_skb_any(skb);
2293 		return NETDEV_TX_OK;
2294 	}
2295 
2296 	/* need: count + 4 desc gap to keep tail from touching
2297 	 *       + 2 desc gap to keep tail from touching head,
2298 	 *       + 1 desc for skb->data,
2299 	 *       + 1 desc for context descriptor,
2300 	 * head, otherwise try next time
2301 	 */
2302 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2303 		/* this is a hard error */
2304 		return NETDEV_TX_BUSY;
2305 	}
2306 
2307 	if (skb_vlan_tag_present(skb)) {
2308 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2309 		tx_flags |= (skb_vlan_tag_get(skb) <<
2310 			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2311 	}
2312 
2313 	if (protocol == htons(ETH_P_IP))
2314 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2315 
2316 	first = tx_ring->next_to_use;
2317 
2318 	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2319 	if (unlikely(tso < 0)) {
2320 		dev_kfree_skb_any(skb);
2321 		return NETDEV_TX_OK;
2322 	}
2323 
2324 	if (tso)
2325 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2326 	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2327 		 (skb->ip_summed == CHECKSUM_PARTIAL))
2328 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2329 
2330 	/* count reflects descriptors mapped, if 0 then mapping error
2331 	 * has occurred and we need to rewind the descriptor queue
2332 	 */
2333 	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2334 
2335 	if (count) {
2336 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2337 				   first, skb->len, hdr_len);
2338 		/* Make sure there is space in the ring for the next send. */
2339 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2340 	} else {
2341 		dev_kfree_skb_any(skb);
2342 		tx_ring->buffer_info[first].time_stamp = 0;
2343 		tx_ring->next_to_use = first;
2344 	}
2345 
2346 	return NETDEV_TX_OK;
2347 }
2348 
2349 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2350 				    struct net_device *netdev)
2351 {
2352 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2353 	struct igbvf_ring *tx_ring;
2354 
2355 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2356 		dev_kfree_skb_any(skb);
2357 		return NETDEV_TX_OK;
2358 	}
2359 
2360 	tx_ring = &adapter->tx_ring[0];
2361 
2362 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2363 }
2364 
2365 /**
2366  * igbvf_tx_timeout - Respond to a Tx Hang
2367  * @netdev: network interface device structure
2368  * @txqueue: queue timing out (unused)
2369  **/
2370 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2371 {
2372 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2373 
2374 	/* Do the reset outside of interrupt context */
2375 	adapter->tx_timeout_count++;
2376 	schedule_work(&adapter->reset_task);
2377 }
2378 
2379 static void igbvf_reset_task(struct work_struct *work)
2380 {
2381 	struct igbvf_adapter *adapter;
2382 
2383 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2384 
2385 	igbvf_reinit_locked(adapter);
2386 }
2387 
2388 /**
2389  * igbvf_change_mtu - Change the Maximum Transfer Unit
2390  * @netdev: network interface device structure
2391  * @new_mtu: new value for maximum frame size
2392  *
2393  * Returns 0 on success, negative on failure
2394  **/
2395 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2396 {
2397 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2398 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2399 
2400 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2401 		usleep_range(1000, 2000);
2402 	/* igbvf_down has a dependency on max_frame_size */
2403 	adapter->max_frame_size = max_frame;
2404 	if (netif_running(netdev))
2405 		igbvf_down(adapter);
2406 
2407 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2408 	 * means we reserve 2 more, this pushes us to allocate from the next
2409 	 * larger slab size.
2410 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2411 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2412 	 * fragmented skbs
2413 	 */
2414 
2415 	if (max_frame <= 1024)
2416 		adapter->rx_buffer_len = 1024;
2417 	else if (max_frame <= 2048)
2418 		adapter->rx_buffer_len = 2048;
2419 	else
2420 #if (PAGE_SIZE / 2) > 16384
2421 		adapter->rx_buffer_len = 16384;
2422 #else
2423 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2424 #endif
2425 
2426 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2427 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2428 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2429 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2430 					 ETH_FCS_LEN;
2431 
2432 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
2433 		   netdev->mtu, new_mtu);
2434 	WRITE_ONCE(netdev->mtu, new_mtu);
2435 
2436 	if (netif_running(netdev))
2437 		igbvf_up(adapter);
2438 	else
2439 		igbvf_reset(adapter);
2440 
2441 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2442 
2443 	return 0;
2444 }
2445 
2446 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2447 {
2448 	switch (cmd) {
2449 	default:
2450 		return -EOPNOTSUPP;
2451 	}
2452 }
2453 
2454 static int igbvf_suspend(struct device *dev_d)
2455 {
2456 	struct net_device *netdev = dev_get_drvdata(dev_d);
2457 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2458 
2459 	netif_device_detach(netdev);
2460 
2461 	if (netif_running(netdev)) {
2462 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2463 		igbvf_down(adapter);
2464 		igbvf_free_irq(adapter);
2465 	}
2466 
2467 	return 0;
2468 }
2469 
2470 static int igbvf_resume(struct device *dev_d)
2471 {
2472 	struct pci_dev *pdev = to_pci_dev(dev_d);
2473 	struct net_device *netdev = pci_get_drvdata(pdev);
2474 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2475 	u32 err;
2476 
2477 	pci_set_master(pdev);
2478 
2479 	if (netif_running(netdev)) {
2480 		err = igbvf_request_irq(adapter);
2481 		if (err)
2482 			return err;
2483 	}
2484 
2485 	igbvf_reset(adapter);
2486 
2487 	if (netif_running(netdev))
2488 		igbvf_up(adapter);
2489 
2490 	netif_device_attach(netdev);
2491 
2492 	return 0;
2493 }
2494 
2495 static void igbvf_shutdown(struct pci_dev *pdev)
2496 {
2497 	igbvf_suspend(&pdev->dev);
2498 }
2499 
2500 #ifdef CONFIG_NET_POLL_CONTROLLER
2501 /* Polling 'interrupt' - used by things like netconsole to send skbs
2502  * without having to re-enable interrupts. It's not called while
2503  * the interrupt routine is executing.
2504  */
2505 static void igbvf_netpoll(struct net_device *netdev)
2506 {
2507 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2508 
2509 	disable_irq(adapter->pdev->irq);
2510 
2511 	igbvf_clean_tx_irq(adapter->tx_ring);
2512 
2513 	enable_irq(adapter->pdev->irq);
2514 }
2515 #endif
2516 
2517 /**
2518  * igbvf_io_error_detected - called when PCI error is detected
2519  * @pdev: Pointer to PCI device
2520  * @state: The current pci connection state
2521  *
2522  * This function is called after a PCI bus error affecting
2523  * this device has been detected.
2524  */
2525 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526 						pci_channel_state_t state)
2527 {
2528 	struct net_device *netdev = pci_get_drvdata(pdev);
2529 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2530 
2531 	netif_device_detach(netdev);
2532 
2533 	if (state == pci_channel_io_perm_failure)
2534 		return PCI_ERS_RESULT_DISCONNECT;
2535 
2536 	if (netif_running(netdev))
2537 		igbvf_down(adapter);
2538 	pci_disable_device(pdev);
2539 
2540 	/* Request a slot reset. */
2541 	return PCI_ERS_RESULT_NEED_RESET;
2542 }
2543 
2544 /**
2545  * igbvf_io_slot_reset - called after the pci bus has been reset.
2546  * @pdev: Pointer to PCI device
2547  *
2548  * Restart the card from scratch, as if from a cold-boot. Implementation
2549  * resembles the first-half of the igbvf_resume routine.
2550  */
2551 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2552 {
2553 	struct net_device *netdev = pci_get_drvdata(pdev);
2554 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2555 
2556 	if (pci_enable_device_mem(pdev)) {
2557 		dev_err(&pdev->dev,
2558 			"Cannot re-enable PCI device after reset.\n");
2559 		return PCI_ERS_RESULT_DISCONNECT;
2560 	}
2561 	pci_set_master(pdev);
2562 
2563 	igbvf_reset(adapter);
2564 
2565 	return PCI_ERS_RESULT_RECOVERED;
2566 }
2567 
2568 /**
2569  * igbvf_io_resume - called when traffic can start flowing again.
2570  * @pdev: Pointer to PCI device
2571  *
2572  * This callback is called when the error recovery driver tells us that
2573  * its OK to resume normal operation. Implementation resembles the
2574  * second-half of the igbvf_resume routine.
2575  */
2576 static void igbvf_io_resume(struct pci_dev *pdev)
2577 {
2578 	struct net_device *netdev = pci_get_drvdata(pdev);
2579 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2580 
2581 	if (netif_running(netdev)) {
2582 		if (igbvf_up(adapter)) {
2583 			dev_err(&pdev->dev,
2584 				"can't bring device back up after reset\n");
2585 			return;
2586 		}
2587 	}
2588 
2589 	netif_device_attach(netdev);
2590 }
2591 
2592 /**
2593  * igbvf_io_prepare - prepare device driver for PCI reset
2594  * @pdev: PCI device information struct
2595  */
2596 static void igbvf_io_prepare(struct pci_dev *pdev)
2597 {
2598 	struct net_device *netdev = pci_get_drvdata(pdev);
2599 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2600 
2601 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2602 		usleep_range(1000, 2000);
2603 	igbvf_down(adapter);
2604 }
2605 
2606 /**
2607  * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2608  * @pdev: PCI device information struct
2609  */
2610 static void igbvf_io_reset_done(struct pci_dev *pdev)
2611 {
2612 	struct net_device *netdev = pci_get_drvdata(pdev);
2613 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2614 
2615 	igbvf_up(adapter);
2616 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2617 }
2618 
2619 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2620 {
2621 	struct e1000_hw *hw = &adapter->hw;
2622 	struct net_device *netdev = adapter->netdev;
2623 	struct pci_dev *pdev = adapter->pdev;
2624 
2625 	if (hw->mac.type == e1000_vfadapt_i350)
2626 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2627 	else
2628 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2629 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2630 }
2631 
2632 static int igbvf_set_features(struct net_device *netdev,
2633 			      netdev_features_t features)
2634 {
2635 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2636 
2637 	if (features & NETIF_F_RXCSUM)
2638 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2639 	else
2640 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2641 
2642 	return 0;
2643 }
2644 
2645 #define IGBVF_MAX_MAC_HDR_LEN		127
2646 #define IGBVF_MAX_NETWORK_HDR_LEN	511
2647 
2648 static netdev_features_t
2649 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2650 		     netdev_features_t features)
2651 {
2652 	unsigned int network_hdr_len, mac_hdr_len;
2653 
2654 	/* Make certain the headers can be described by a context descriptor */
2655 	mac_hdr_len = skb_network_offset(skb);
2656 	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2657 		return features & ~(NETIF_F_HW_CSUM |
2658 				    NETIF_F_SCTP_CRC |
2659 				    NETIF_F_HW_VLAN_CTAG_TX |
2660 				    NETIF_F_TSO |
2661 				    NETIF_F_TSO6);
2662 
2663 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2664 	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2665 		return features & ~(NETIF_F_HW_CSUM |
2666 				    NETIF_F_SCTP_CRC |
2667 				    NETIF_F_TSO |
2668 				    NETIF_F_TSO6);
2669 
2670 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2671 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2672 	 */
2673 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2674 		features &= ~NETIF_F_TSO;
2675 
2676 	return features;
2677 }
2678 
2679 static const struct net_device_ops igbvf_netdev_ops = {
2680 	.ndo_open		= igbvf_open,
2681 	.ndo_stop		= igbvf_close,
2682 	.ndo_start_xmit		= igbvf_xmit_frame,
2683 	.ndo_set_rx_mode	= igbvf_set_rx_mode,
2684 	.ndo_set_mac_address	= igbvf_set_mac,
2685 	.ndo_change_mtu		= igbvf_change_mtu,
2686 	.ndo_eth_ioctl		= igbvf_ioctl,
2687 	.ndo_tx_timeout		= igbvf_tx_timeout,
2688 	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2689 	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2690 #ifdef CONFIG_NET_POLL_CONTROLLER
2691 	.ndo_poll_controller	= igbvf_netpoll,
2692 #endif
2693 	.ndo_set_features	= igbvf_set_features,
2694 	.ndo_features_check	= igbvf_features_check,
2695 };
2696 
2697 /**
2698  * igbvf_probe - Device Initialization Routine
2699  * @pdev: PCI device information struct
2700  * @ent: entry in igbvf_pci_tbl
2701  *
2702  * Returns 0 on success, negative on failure
2703  *
2704  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2705  * The OS initialization, configuring of the adapter private structure,
2706  * and a hardware reset occur.
2707  **/
2708 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2709 {
2710 	struct net_device *netdev;
2711 	struct igbvf_adapter *adapter;
2712 	struct e1000_hw *hw;
2713 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2714 	static int cards_found;
2715 	int err;
2716 
2717 	err = pci_enable_device_mem(pdev);
2718 	if (err)
2719 		return err;
2720 
2721 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2722 	if (err) {
2723 		dev_err(&pdev->dev,
2724 			"No usable DMA configuration, aborting\n");
2725 		goto err_dma;
2726 	}
2727 
2728 	err = pci_request_regions(pdev, igbvf_driver_name);
2729 	if (err)
2730 		goto err_pci_reg;
2731 
2732 	pci_set_master(pdev);
2733 
2734 	err = -ENOMEM;
2735 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2736 	if (!netdev)
2737 		goto err_alloc_etherdev;
2738 
2739 	SET_NETDEV_DEV(netdev, &pdev->dev);
2740 
2741 	pci_set_drvdata(pdev, netdev);
2742 	adapter = netdev_priv(netdev);
2743 	hw = &adapter->hw;
2744 	adapter->netdev = netdev;
2745 	adapter->pdev = pdev;
2746 	adapter->ei = ei;
2747 	adapter->pba = ei->pba;
2748 	adapter->flags = ei->flags;
2749 	adapter->hw.back = adapter;
2750 	adapter->hw.mac.type = ei->mac;
2751 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2752 
2753 	/* PCI config space info */
2754 
2755 	hw->vendor_id = pdev->vendor;
2756 	hw->device_id = pdev->device;
2757 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2758 	hw->subsystem_device_id = pdev->subsystem_device;
2759 	hw->revision_id = pdev->revision;
2760 
2761 	err = -EIO;
2762 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2763 				      pci_resource_len(pdev, 0));
2764 
2765 	if (!adapter->hw.hw_addr)
2766 		goto err_ioremap;
2767 
2768 	if (ei->get_variants) {
2769 		err = ei->get_variants(adapter);
2770 		if (err)
2771 			goto err_get_variants;
2772 	}
2773 
2774 	/* setup adapter struct */
2775 	err = igbvf_sw_init(adapter);
2776 	if (err)
2777 		goto err_sw_init;
2778 
2779 	/* construct the net_device struct */
2780 	netdev->netdev_ops = &igbvf_netdev_ops;
2781 
2782 	igbvf_set_ethtool_ops(netdev);
2783 	netdev->watchdog_timeo = 5 * HZ;
2784 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2785 
2786 	adapter->bd_number = cards_found++;
2787 
2788 	netdev->hw_features = NETIF_F_SG |
2789 			      NETIF_F_TSO |
2790 			      NETIF_F_TSO6 |
2791 			      NETIF_F_RXCSUM |
2792 			      NETIF_F_HW_CSUM |
2793 			      NETIF_F_SCTP_CRC;
2794 
2795 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2796 				    NETIF_F_GSO_GRE_CSUM | \
2797 				    NETIF_F_GSO_IPXIP4 | \
2798 				    NETIF_F_GSO_IPXIP6 | \
2799 				    NETIF_F_GSO_UDP_TUNNEL | \
2800 				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2801 
2802 	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2803 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2804 			       IGBVF_GSO_PARTIAL_FEATURES;
2805 
2806 	netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2807 
2808 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2809 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2810 	netdev->hw_enc_features |= netdev->vlan_features;
2811 
2812 	/* set this bit last since it cannot be part of vlan_features */
2813 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2814 			    NETIF_F_HW_VLAN_CTAG_RX |
2815 			    NETIF_F_HW_VLAN_CTAG_TX;
2816 
2817 	/* MTU range: 68 - 9216 */
2818 	netdev->min_mtu = ETH_MIN_MTU;
2819 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2820 
2821 	spin_lock_bh(&hw->mbx_lock);
2822 
2823 	/*reset the controller to put the device in a known good state */
2824 	err = hw->mac.ops.reset_hw(hw);
2825 	if (err) {
2826 		dev_info(&pdev->dev,
2827 			 "PF still in reset state. Is the PF interface up?\n");
2828 	} else {
2829 		err = hw->mac.ops.read_mac_addr(hw);
2830 		if (err)
2831 			dev_info(&pdev->dev, "Error reading MAC address.\n");
2832 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2833 			dev_info(&pdev->dev,
2834 				 "MAC address not assigned by administrator.\n");
2835 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2836 	}
2837 
2838 	spin_unlock_bh(&hw->mbx_lock);
2839 
2840 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2841 		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2842 		eth_hw_addr_random(netdev);
2843 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2844 		       netdev->addr_len);
2845 	}
2846 
2847 	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2848 
2849 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2850 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2851 
2852 	/* ring size defaults */
2853 	adapter->rx_ring->count = 1024;
2854 	adapter->tx_ring->count = 1024;
2855 
2856 	/* reset the hardware with the new settings */
2857 	igbvf_reset(adapter);
2858 
2859 	/* set hardware-specific flags */
2860 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2861 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2862 
2863 	strcpy(netdev->name, "eth%d");
2864 	err = register_netdev(netdev);
2865 	if (err)
2866 		goto err_hw_init;
2867 
2868 	/* tell the stack to leave us alone until igbvf_open() is called */
2869 	netif_carrier_off(netdev);
2870 	netif_stop_queue(netdev);
2871 
2872 	igbvf_print_device_info(adapter);
2873 
2874 	igbvf_initialize_last_counter_stats(adapter);
2875 
2876 	return 0;
2877 
2878 err_hw_init:
2879 	netif_napi_del(&adapter->rx_ring->napi);
2880 	kfree(adapter->tx_ring);
2881 	kfree(adapter->rx_ring);
2882 err_sw_init:
2883 	igbvf_reset_interrupt_capability(adapter);
2884 err_get_variants:
2885 	iounmap(adapter->hw.hw_addr);
2886 err_ioremap:
2887 	free_netdev(netdev);
2888 err_alloc_etherdev:
2889 	pci_release_regions(pdev);
2890 err_pci_reg:
2891 err_dma:
2892 	pci_disable_device(pdev);
2893 	return err;
2894 }
2895 
2896 /**
2897  * igbvf_remove - Device Removal Routine
2898  * @pdev: PCI device information struct
2899  *
2900  * igbvf_remove is called by the PCI subsystem to alert the driver
2901  * that it should release a PCI device.  The could be caused by a
2902  * Hot-Plug event, or because the driver is going to be removed from
2903  * memory.
2904  **/
2905 static void igbvf_remove(struct pci_dev *pdev)
2906 {
2907 	struct net_device *netdev = pci_get_drvdata(pdev);
2908 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2909 	struct e1000_hw *hw = &adapter->hw;
2910 
2911 	/* The watchdog timer may be rescheduled, so explicitly
2912 	 * disable it from being rescheduled.
2913 	 */
2914 	set_bit(__IGBVF_DOWN, &adapter->state);
2915 	del_timer_sync(&adapter->watchdog_timer);
2916 
2917 	cancel_work_sync(&adapter->reset_task);
2918 	cancel_work_sync(&adapter->watchdog_task);
2919 
2920 	unregister_netdev(netdev);
2921 
2922 	igbvf_reset_interrupt_capability(adapter);
2923 
2924 	/* it is important to delete the NAPI struct prior to freeing the
2925 	 * Rx ring so that you do not end up with null pointer refs
2926 	 */
2927 	netif_napi_del(&adapter->rx_ring->napi);
2928 	kfree(adapter->tx_ring);
2929 	kfree(adapter->rx_ring);
2930 
2931 	iounmap(hw->hw_addr);
2932 	if (hw->flash_address)
2933 		iounmap(hw->flash_address);
2934 	pci_release_regions(pdev);
2935 
2936 	free_netdev(netdev);
2937 
2938 	pci_disable_device(pdev);
2939 }
2940 
2941 /* PCI Error Recovery (ERS) */
2942 static const struct pci_error_handlers igbvf_err_handler = {
2943 	.error_detected = igbvf_io_error_detected,
2944 	.slot_reset = igbvf_io_slot_reset,
2945 	.resume = igbvf_io_resume,
2946 	.reset_prepare = igbvf_io_prepare,
2947 	.reset_done = igbvf_io_reset_done,
2948 };
2949 
2950 static const struct pci_device_id igbvf_pci_tbl[] = {
2951 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2952 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2953 	{ } /* terminate list */
2954 };
2955 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2956 
2957 static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2958 
2959 /* PCI Device API Driver */
2960 static struct pci_driver igbvf_driver = {
2961 	.name		= igbvf_driver_name,
2962 	.id_table	= igbvf_pci_tbl,
2963 	.probe		= igbvf_probe,
2964 	.remove		= igbvf_remove,
2965 	.driver.pm	= pm_sleep_ptr(&igbvf_pm_ops),
2966 	.shutdown	= igbvf_shutdown,
2967 	.err_handler	= &igbvf_err_handler
2968 };
2969 
2970 /**
2971  * igbvf_init_module - Driver Registration Routine
2972  *
2973  * igbvf_init_module is the first routine called when the driver is
2974  * loaded. All it does is register with the PCI subsystem.
2975  **/
2976 static int __init igbvf_init_module(void)
2977 {
2978 	int ret;
2979 
2980 	pr_info("%s\n", igbvf_driver_string);
2981 	pr_info("%s\n", igbvf_copyright);
2982 
2983 	ret = pci_register_driver(&igbvf_driver);
2984 
2985 	return ret;
2986 }
2987 module_init(igbvf_init_module);
2988 
2989 /**
2990  * igbvf_exit_module - Driver Exit Cleanup Routine
2991  *
2992  * igbvf_exit_module is called just before the driver is removed
2993  * from memory.
2994  **/
2995 static void __exit igbvf_exit_module(void)
2996 {
2997 	pci_unregister_driver(&igbvf_driver);
2998 }
2999 module_exit(igbvf_exit_module);
3000 
3001 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3002 MODULE_LICENSE("GPL v2");
3003 
3004 /* netdev.c */
3005