1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2009 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/bitfield.h> 7 #include <linux/delay.h> 8 #include <linux/ethtool.h> 9 #include <linux/if_vlan.h> 10 #include <linux/init.h> 11 #include <linux/ipv6.h> 12 #include <linux/mii.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/pagemap.h> 16 #include <linux/pci.h> 17 #include <linux/prefetch.h> 18 #include <linux/sctp.h> 19 #include <linux/slab.h> 20 #include <linux/tcp.h> 21 #include <linux/types.h> 22 #include <linux/vmalloc.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include "igbvf.h" 26 27 char igbvf_driver_name[] = "igbvf"; 28 static const char igbvf_driver_string[] = 29 "Intel(R) Gigabit Virtual Function Network Driver"; 30 static const char igbvf_copyright[] = 31 "Copyright (c) 2009 - 2012 Intel Corporation."; 32 33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 34 static int debug = -1; 35 module_param(debug, int, 0); 36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 37 38 static int igbvf_poll(struct napi_struct *napi, int budget); 39 static void igbvf_reset(struct igbvf_adapter *); 40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 42 43 static struct igbvf_info igbvf_vf_info = { 44 .mac = e1000_vfadapt, 45 .flags = 0, 46 .pba = 10, 47 .init_ops = e1000_init_function_pointers_vf, 48 }; 49 50 static struct igbvf_info igbvf_i350_vf_info = { 51 .mac = e1000_vfadapt_i350, 52 .flags = 0, 53 .pba = 10, 54 .init_ops = e1000_init_function_pointers_vf, 55 }; 56 57 static const struct igbvf_info *igbvf_info_tbl[] = { 58 [board_vf] = &igbvf_vf_info, 59 [board_i350_vf] = &igbvf_i350_vf_info, 60 }; 61 62 /** 63 * igbvf_desc_unused - calculate if we have unused descriptors 64 * @ring: address of receive ring structure 65 **/ 66 static int igbvf_desc_unused(struct igbvf_ring *ring) 67 { 68 if (ring->next_to_clean > ring->next_to_use) 69 return ring->next_to_clean - ring->next_to_use - 1; 70 71 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 72 } 73 74 /** 75 * igbvf_receive_skb - helper function to handle Rx indications 76 * @adapter: board private structure 77 * @netdev: pointer to netdev struct 78 * @skb: skb to indicate to stack 79 * @status: descriptor status field as written by hardware 80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 81 * @skb: pointer to sk_buff to be indicated to stack 82 **/ 83 static void igbvf_receive_skb(struct igbvf_adapter *adapter, 84 struct net_device *netdev, 85 struct sk_buff *skb, 86 u32 status, __le16 vlan) 87 { 88 u16 vid; 89 90 if (status & E1000_RXD_STAT_VP) { 91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) && 92 (status & E1000_RXDEXT_STATERR_LB)) 93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK; 94 else 95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 96 if (test_bit(vid, adapter->active_vlans)) 97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 98 } 99 100 napi_gro_receive(&adapter->rx_ring->napi, skb); 101 } 102 103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 104 u32 status_err, struct sk_buff *skb) 105 { 106 skb_checksum_none_assert(skb); 107 108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 109 if ((status_err & E1000_RXD_STAT_IXSM) || 110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 111 return; 112 113 /* TCP/UDP checksum error bit is set */ 114 if (status_err & 115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 116 /* let the stack verify checksum errors */ 117 adapter->hw_csum_err++; 118 return; 119 } 120 121 /* It must be a TCP or UDP packet with a valid checksum */ 122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 123 skb->ip_summed = CHECKSUM_UNNECESSARY; 124 125 adapter->hw_csum_good++; 126 } 127 128 /** 129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 130 * @rx_ring: address of ring structure to repopulate 131 * @cleaned_count: number of buffers to repopulate 132 **/ 133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 134 int cleaned_count) 135 { 136 struct igbvf_adapter *adapter = rx_ring->adapter; 137 struct net_device *netdev = adapter->netdev; 138 struct pci_dev *pdev = adapter->pdev; 139 union e1000_adv_rx_desc *rx_desc; 140 struct igbvf_buffer *buffer_info; 141 struct sk_buff *skb; 142 unsigned int i; 143 int bufsz; 144 145 i = rx_ring->next_to_use; 146 buffer_info = &rx_ring->buffer_info[i]; 147 148 if (adapter->rx_ps_hdr_size) 149 bufsz = adapter->rx_ps_hdr_size; 150 else 151 bufsz = adapter->rx_buffer_len; 152 153 while (cleaned_count--) { 154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 155 156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 157 if (!buffer_info->page) { 158 buffer_info->page = alloc_page(GFP_ATOMIC); 159 if (!buffer_info->page) { 160 adapter->alloc_rx_buff_failed++; 161 goto no_buffers; 162 } 163 buffer_info->page_offset = 0; 164 } else { 165 buffer_info->page_offset ^= PAGE_SIZE / 2; 166 } 167 buffer_info->page_dma = 168 dma_map_page(&pdev->dev, buffer_info->page, 169 buffer_info->page_offset, 170 PAGE_SIZE / 2, 171 DMA_FROM_DEVICE); 172 if (dma_mapping_error(&pdev->dev, 173 buffer_info->page_dma)) { 174 __free_page(buffer_info->page); 175 buffer_info->page = NULL; 176 dev_err(&pdev->dev, "RX DMA map failed\n"); 177 break; 178 } 179 } 180 181 if (!buffer_info->skb) { 182 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 183 if (!skb) { 184 adapter->alloc_rx_buff_failed++; 185 goto no_buffers; 186 } 187 188 buffer_info->skb = skb; 189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 190 bufsz, 191 DMA_FROM_DEVICE); 192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 193 dev_kfree_skb(buffer_info->skb); 194 buffer_info->skb = NULL; 195 dev_err(&pdev->dev, "RX DMA map failed\n"); 196 goto no_buffers; 197 } 198 } 199 /* Refresh the desc even if buffer_addrs didn't change because 200 * each write-back erases this info. 201 */ 202 if (adapter->rx_ps_hdr_size) { 203 rx_desc->read.pkt_addr = 204 cpu_to_le64(buffer_info->page_dma); 205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 206 } else { 207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); 208 rx_desc->read.hdr_addr = 0; 209 } 210 211 i++; 212 if (i == rx_ring->count) 213 i = 0; 214 buffer_info = &rx_ring->buffer_info[i]; 215 } 216 217 no_buffers: 218 if (rx_ring->next_to_use != i) { 219 rx_ring->next_to_use = i; 220 if (i == 0) 221 i = (rx_ring->count - 1); 222 else 223 i--; 224 225 /* Force memory writes to complete before letting h/w 226 * know there are new descriptors to fetch. (Only 227 * applicable for weak-ordered memory model archs, 228 * such as IA-64). 229 */ 230 wmb(); 231 writel(i, adapter->hw.hw_addr + rx_ring->tail); 232 } 233 } 234 235 /** 236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 237 * @adapter: board private structure 238 * @work_done: output parameter used to indicate completed work 239 * @work_to_do: input parameter setting limit of work 240 * 241 * the return value indicates whether actual cleaning was done, there 242 * is no guarantee that everything was cleaned 243 **/ 244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 245 int *work_done, int work_to_do) 246 { 247 struct igbvf_ring *rx_ring = adapter->rx_ring; 248 struct net_device *netdev = adapter->netdev; 249 struct pci_dev *pdev = adapter->pdev; 250 union e1000_adv_rx_desc *rx_desc, *next_rxd; 251 struct igbvf_buffer *buffer_info, *next_buffer; 252 struct sk_buff *skb; 253 bool cleaned = false; 254 int cleaned_count = 0; 255 unsigned int total_bytes = 0, total_packets = 0; 256 unsigned int i; 257 u32 length, hlen, staterr; 258 259 i = rx_ring->next_to_clean; 260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 262 263 while (staterr & E1000_RXD_STAT_DD) { 264 if (*work_done >= work_to_do) 265 break; 266 (*work_done)++; 267 rmb(); /* read descriptor and rx_buffer_info after status DD */ 268 269 buffer_info = &rx_ring->buffer_info[i]; 270 271 /* HW will not DMA in data larger than the given buffer, even 272 * if it parses the (NFS, of course) header to be larger. In 273 * that case, it fills the header buffer and spills the rest 274 * into the page. 275 */ 276 hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info, 277 E1000_RXDADV_HDRBUFLEN_MASK); 278 if (hlen > adapter->rx_ps_hdr_size) 279 hlen = adapter->rx_ps_hdr_size; 280 281 length = le16_to_cpu(rx_desc->wb.upper.length); 282 cleaned = true; 283 cleaned_count++; 284 285 skb = buffer_info->skb; 286 prefetch(skb->data - NET_IP_ALIGN); 287 buffer_info->skb = NULL; 288 if (!adapter->rx_ps_hdr_size) { 289 dma_unmap_single(&pdev->dev, buffer_info->dma, 290 adapter->rx_buffer_len, 291 DMA_FROM_DEVICE); 292 buffer_info->dma = 0; 293 skb_put(skb, length); 294 goto send_up; 295 } 296 297 if (!skb_shinfo(skb)->nr_frags) { 298 dma_unmap_single(&pdev->dev, buffer_info->dma, 299 adapter->rx_ps_hdr_size, 300 DMA_FROM_DEVICE); 301 buffer_info->dma = 0; 302 skb_put(skb, hlen); 303 } 304 305 if (length) { 306 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 307 PAGE_SIZE / 2, 308 DMA_FROM_DEVICE); 309 buffer_info->page_dma = 0; 310 311 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 312 buffer_info->page, 313 buffer_info->page_offset, 314 length); 315 316 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 317 (page_count(buffer_info->page) != 1)) 318 buffer_info->page = NULL; 319 else 320 get_page(buffer_info->page); 321 322 skb->len += length; 323 skb->data_len += length; 324 skb->truesize += PAGE_SIZE / 2; 325 } 326 send_up: 327 i++; 328 if (i == rx_ring->count) 329 i = 0; 330 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 331 prefetch(next_rxd); 332 next_buffer = &rx_ring->buffer_info[i]; 333 334 if (!(staterr & E1000_RXD_STAT_EOP)) { 335 buffer_info->skb = next_buffer->skb; 336 buffer_info->dma = next_buffer->dma; 337 next_buffer->skb = skb; 338 next_buffer->dma = 0; 339 goto next_desc; 340 } 341 342 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 343 dev_kfree_skb_irq(skb); 344 goto next_desc; 345 } 346 347 total_bytes += skb->len; 348 total_packets++; 349 350 igbvf_rx_checksum_adv(adapter, staterr, skb); 351 352 skb->protocol = eth_type_trans(skb, netdev); 353 354 igbvf_receive_skb(adapter, netdev, skb, staterr, 355 rx_desc->wb.upper.vlan); 356 357 next_desc: 358 rx_desc->wb.upper.status_error = 0; 359 360 /* return some buffers to hardware, one at a time is too slow */ 361 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 362 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 363 cleaned_count = 0; 364 } 365 366 /* use prefetched values */ 367 rx_desc = next_rxd; 368 buffer_info = next_buffer; 369 370 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 371 } 372 373 rx_ring->next_to_clean = i; 374 cleaned_count = igbvf_desc_unused(rx_ring); 375 376 if (cleaned_count) 377 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 378 379 adapter->total_rx_packets += total_packets; 380 adapter->total_rx_bytes += total_bytes; 381 netdev->stats.rx_bytes += total_bytes; 382 netdev->stats.rx_packets += total_packets; 383 return cleaned; 384 } 385 386 static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 387 struct igbvf_buffer *buffer_info) 388 { 389 if (buffer_info->dma) { 390 if (buffer_info->mapped_as_page) 391 dma_unmap_page(&adapter->pdev->dev, 392 buffer_info->dma, 393 buffer_info->length, 394 DMA_TO_DEVICE); 395 else 396 dma_unmap_single(&adapter->pdev->dev, 397 buffer_info->dma, 398 buffer_info->length, 399 DMA_TO_DEVICE); 400 buffer_info->dma = 0; 401 } 402 if (buffer_info->skb) { 403 dev_kfree_skb_any(buffer_info->skb); 404 buffer_info->skb = NULL; 405 } 406 buffer_info->time_stamp = 0; 407 } 408 409 /** 410 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 411 * @adapter: board private structure 412 * @tx_ring: ring being initialized 413 * 414 * Return 0 on success, negative on failure 415 **/ 416 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 417 struct igbvf_ring *tx_ring) 418 { 419 struct pci_dev *pdev = adapter->pdev; 420 int size; 421 422 size = sizeof(struct igbvf_buffer) * tx_ring->count; 423 tx_ring->buffer_info = vzalloc(size); 424 if (!tx_ring->buffer_info) 425 goto err; 426 427 /* round up to nearest 4K */ 428 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 429 tx_ring->size = ALIGN(tx_ring->size, 4096); 430 431 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 432 &tx_ring->dma, GFP_KERNEL); 433 if (!tx_ring->desc) 434 goto err; 435 436 tx_ring->adapter = adapter; 437 tx_ring->next_to_use = 0; 438 tx_ring->next_to_clean = 0; 439 440 return 0; 441 err: 442 vfree(tx_ring->buffer_info); 443 dev_err(&adapter->pdev->dev, 444 "Unable to allocate memory for the transmit descriptor ring\n"); 445 return -ENOMEM; 446 } 447 448 /** 449 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 450 * @adapter: board private structure 451 * @rx_ring: ring being initialized 452 * 453 * Returns 0 on success, negative on failure 454 **/ 455 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 456 struct igbvf_ring *rx_ring) 457 { 458 struct pci_dev *pdev = adapter->pdev; 459 int size, desc_len; 460 461 size = sizeof(struct igbvf_buffer) * rx_ring->count; 462 rx_ring->buffer_info = vzalloc(size); 463 if (!rx_ring->buffer_info) 464 goto err; 465 466 desc_len = sizeof(union e1000_adv_rx_desc); 467 468 /* Round up to nearest 4K */ 469 rx_ring->size = rx_ring->count * desc_len; 470 rx_ring->size = ALIGN(rx_ring->size, 4096); 471 472 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 473 &rx_ring->dma, GFP_KERNEL); 474 if (!rx_ring->desc) 475 goto err; 476 477 rx_ring->next_to_clean = 0; 478 rx_ring->next_to_use = 0; 479 480 rx_ring->adapter = adapter; 481 482 return 0; 483 484 err: 485 vfree(rx_ring->buffer_info); 486 rx_ring->buffer_info = NULL; 487 dev_err(&adapter->pdev->dev, 488 "Unable to allocate memory for the receive descriptor ring\n"); 489 return -ENOMEM; 490 } 491 492 /** 493 * igbvf_clean_tx_ring - Free Tx Buffers 494 * @tx_ring: ring to be cleaned 495 **/ 496 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 497 { 498 struct igbvf_adapter *adapter = tx_ring->adapter; 499 struct igbvf_buffer *buffer_info; 500 unsigned long size; 501 unsigned int i; 502 503 if (!tx_ring->buffer_info) 504 return; 505 506 /* Free all the Tx ring sk_buffs */ 507 for (i = 0; i < tx_ring->count; i++) { 508 buffer_info = &tx_ring->buffer_info[i]; 509 igbvf_put_txbuf(adapter, buffer_info); 510 } 511 512 size = sizeof(struct igbvf_buffer) * tx_ring->count; 513 memset(tx_ring->buffer_info, 0, size); 514 515 /* Zero out the descriptor ring */ 516 memset(tx_ring->desc, 0, tx_ring->size); 517 518 tx_ring->next_to_use = 0; 519 tx_ring->next_to_clean = 0; 520 521 writel(0, adapter->hw.hw_addr + tx_ring->head); 522 writel(0, adapter->hw.hw_addr + tx_ring->tail); 523 } 524 525 /** 526 * igbvf_free_tx_resources - Free Tx Resources per Queue 527 * @tx_ring: ring to free resources from 528 * 529 * Free all transmit software resources 530 **/ 531 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 532 { 533 struct pci_dev *pdev = tx_ring->adapter->pdev; 534 535 igbvf_clean_tx_ring(tx_ring); 536 537 vfree(tx_ring->buffer_info); 538 tx_ring->buffer_info = NULL; 539 540 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 541 tx_ring->dma); 542 543 tx_ring->desc = NULL; 544 } 545 546 /** 547 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 548 * @rx_ring: ring structure pointer to free buffers from 549 **/ 550 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 551 { 552 struct igbvf_adapter *adapter = rx_ring->adapter; 553 struct igbvf_buffer *buffer_info; 554 struct pci_dev *pdev = adapter->pdev; 555 unsigned long size; 556 unsigned int i; 557 558 if (!rx_ring->buffer_info) 559 return; 560 561 /* Free all the Rx ring sk_buffs */ 562 for (i = 0; i < rx_ring->count; i++) { 563 buffer_info = &rx_ring->buffer_info[i]; 564 if (buffer_info->dma) { 565 if (adapter->rx_ps_hdr_size) { 566 dma_unmap_single(&pdev->dev, buffer_info->dma, 567 adapter->rx_ps_hdr_size, 568 DMA_FROM_DEVICE); 569 } else { 570 dma_unmap_single(&pdev->dev, buffer_info->dma, 571 adapter->rx_buffer_len, 572 DMA_FROM_DEVICE); 573 } 574 buffer_info->dma = 0; 575 } 576 577 if (buffer_info->skb) { 578 dev_kfree_skb(buffer_info->skb); 579 buffer_info->skb = NULL; 580 } 581 582 if (buffer_info->page) { 583 if (buffer_info->page_dma) 584 dma_unmap_page(&pdev->dev, 585 buffer_info->page_dma, 586 PAGE_SIZE / 2, 587 DMA_FROM_DEVICE); 588 put_page(buffer_info->page); 589 buffer_info->page = NULL; 590 buffer_info->page_dma = 0; 591 buffer_info->page_offset = 0; 592 } 593 } 594 595 size = sizeof(struct igbvf_buffer) * rx_ring->count; 596 memset(rx_ring->buffer_info, 0, size); 597 598 /* Zero out the descriptor ring */ 599 memset(rx_ring->desc, 0, rx_ring->size); 600 601 rx_ring->next_to_clean = 0; 602 rx_ring->next_to_use = 0; 603 604 writel(0, adapter->hw.hw_addr + rx_ring->head); 605 writel(0, adapter->hw.hw_addr + rx_ring->tail); 606 } 607 608 /** 609 * igbvf_free_rx_resources - Free Rx Resources 610 * @rx_ring: ring to clean the resources from 611 * 612 * Free all receive software resources 613 **/ 614 615 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 616 { 617 struct pci_dev *pdev = rx_ring->adapter->pdev; 618 619 igbvf_clean_rx_ring(rx_ring); 620 621 vfree(rx_ring->buffer_info); 622 rx_ring->buffer_info = NULL; 623 624 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 625 rx_ring->dma); 626 rx_ring->desc = NULL; 627 } 628 629 /** 630 * igbvf_update_itr - update the dynamic ITR value based on statistics 631 * @adapter: pointer to adapter 632 * @itr_setting: current adapter->itr 633 * @packets: the number of packets during this measurement interval 634 * @bytes: the number of bytes during this measurement interval 635 * 636 * Stores a new ITR value based on packets and byte counts during the last 637 * interrupt. The advantage of per interrupt computation is faster updates 638 * and more accurate ITR for the current traffic pattern. Constants in this 639 * function were computed based on theoretical maximum wire speed and thresholds 640 * were set based on testing data as well as attempting to minimize response 641 * time while increasing bulk throughput. 642 **/ 643 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter, 644 enum latency_range itr_setting, 645 int packets, int bytes) 646 { 647 enum latency_range retval = itr_setting; 648 649 if (packets == 0) 650 goto update_itr_done; 651 652 switch (itr_setting) { 653 case lowest_latency: 654 /* handle TSO and jumbo frames */ 655 if (bytes/packets > 8000) 656 retval = bulk_latency; 657 else if ((packets < 5) && (bytes > 512)) 658 retval = low_latency; 659 break; 660 case low_latency: /* 50 usec aka 20000 ints/s */ 661 if (bytes > 10000) { 662 /* this if handles the TSO accounting */ 663 if (bytes/packets > 8000) 664 retval = bulk_latency; 665 else if ((packets < 10) || ((bytes/packets) > 1200)) 666 retval = bulk_latency; 667 else if ((packets > 35)) 668 retval = lowest_latency; 669 } else if (bytes/packets > 2000) { 670 retval = bulk_latency; 671 } else if (packets <= 2 && bytes < 512) { 672 retval = lowest_latency; 673 } 674 break; 675 case bulk_latency: /* 250 usec aka 4000 ints/s */ 676 if (bytes > 25000) { 677 if (packets > 35) 678 retval = low_latency; 679 } else if (bytes < 6000) { 680 retval = low_latency; 681 } 682 break; 683 default: 684 break; 685 } 686 687 update_itr_done: 688 return retval; 689 } 690 691 static int igbvf_range_to_itr(enum latency_range current_range) 692 { 693 int new_itr; 694 695 switch (current_range) { 696 /* counts and packets in update_itr are dependent on these numbers */ 697 case lowest_latency: 698 new_itr = IGBVF_70K_ITR; 699 break; 700 case low_latency: 701 new_itr = IGBVF_20K_ITR; 702 break; 703 case bulk_latency: 704 new_itr = IGBVF_4K_ITR; 705 break; 706 default: 707 new_itr = IGBVF_START_ITR; 708 break; 709 } 710 return new_itr; 711 } 712 713 static void igbvf_set_itr(struct igbvf_adapter *adapter) 714 { 715 u32 new_itr; 716 717 adapter->tx_ring->itr_range = 718 igbvf_update_itr(adapter, 719 adapter->tx_ring->itr_val, 720 adapter->total_tx_packets, 721 adapter->total_tx_bytes); 722 723 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 724 if (adapter->requested_itr == 3 && 725 adapter->tx_ring->itr_range == lowest_latency) 726 adapter->tx_ring->itr_range = low_latency; 727 728 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range); 729 730 if (new_itr != adapter->tx_ring->itr_val) { 731 u32 current_itr = adapter->tx_ring->itr_val; 732 /* this attempts to bias the interrupt rate towards Bulk 733 * by adding intermediate steps when interrupt rate is 734 * increasing 735 */ 736 new_itr = new_itr > current_itr ? 737 min(current_itr + (new_itr >> 2), new_itr) : 738 new_itr; 739 adapter->tx_ring->itr_val = new_itr; 740 741 adapter->tx_ring->set_itr = 1; 742 } 743 744 adapter->rx_ring->itr_range = 745 igbvf_update_itr(adapter, adapter->rx_ring->itr_val, 746 adapter->total_rx_packets, 747 adapter->total_rx_bytes); 748 if (adapter->requested_itr == 3 && 749 adapter->rx_ring->itr_range == lowest_latency) 750 adapter->rx_ring->itr_range = low_latency; 751 752 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range); 753 754 if (new_itr != adapter->rx_ring->itr_val) { 755 u32 current_itr = adapter->rx_ring->itr_val; 756 757 new_itr = new_itr > current_itr ? 758 min(current_itr + (new_itr >> 2), new_itr) : 759 new_itr; 760 adapter->rx_ring->itr_val = new_itr; 761 762 adapter->rx_ring->set_itr = 1; 763 } 764 } 765 766 /** 767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 768 * @tx_ring: ring structure to clean descriptors from 769 * 770 * returns true if ring is completely cleaned 771 **/ 772 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 773 { 774 struct igbvf_adapter *adapter = tx_ring->adapter; 775 struct net_device *netdev = adapter->netdev; 776 struct igbvf_buffer *buffer_info; 777 struct sk_buff *skb; 778 union e1000_adv_tx_desc *tx_desc, *eop_desc; 779 unsigned int total_bytes = 0, total_packets = 0; 780 unsigned int i, count = 0; 781 bool cleaned = false; 782 783 i = tx_ring->next_to_clean; 784 buffer_info = &tx_ring->buffer_info[i]; 785 eop_desc = buffer_info->next_to_watch; 786 787 do { 788 /* if next_to_watch is not set then there is no work pending */ 789 if (!eop_desc) 790 break; 791 792 /* prevent any other reads prior to eop_desc */ 793 smp_rmb(); 794 795 /* if DD is not set pending work has not been completed */ 796 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 797 break; 798 799 /* clear next_to_watch to prevent false hangs */ 800 buffer_info->next_to_watch = NULL; 801 802 for (cleaned = false; !cleaned; count++) { 803 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 804 cleaned = (tx_desc == eop_desc); 805 skb = buffer_info->skb; 806 807 if (skb) { 808 unsigned int segs, bytecount; 809 810 /* gso_segs is currently only valid for tcp */ 811 segs = skb_shinfo(skb)->gso_segs ?: 1; 812 /* multiply data chunks by size of headers */ 813 bytecount = ((segs - 1) * skb_headlen(skb)) + 814 skb->len; 815 total_packets += segs; 816 total_bytes += bytecount; 817 } 818 819 igbvf_put_txbuf(adapter, buffer_info); 820 tx_desc->wb.status = 0; 821 822 i++; 823 if (i == tx_ring->count) 824 i = 0; 825 826 buffer_info = &tx_ring->buffer_info[i]; 827 } 828 829 eop_desc = buffer_info->next_to_watch; 830 } while (count < tx_ring->count); 831 832 tx_ring->next_to_clean = i; 833 834 if (unlikely(count && netif_carrier_ok(netdev) && 835 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 836 /* Make sure that anybody stopping the queue after this 837 * sees the new next_to_clean. 838 */ 839 smp_mb(); 840 if (netif_queue_stopped(netdev) && 841 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 842 netif_wake_queue(netdev); 843 ++adapter->restart_queue; 844 } 845 } 846 847 netdev->stats.tx_bytes += total_bytes; 848 netdev->stats.tx_packets += total_packets; 849 return count < tx_ring->count; 850 } 851 852 static irqreturn_t igbvf_msix_other(int irq, void *data) 853 { 854 struct net_device *netdev = data; 855 struct igbvf_adapter *adapter = netdev_priv(netdev); 856 struct e1000_hw *hw = &adapter->hw; 857 858 hw->mac.get_link_status = 1; 859 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 860 mod_timer(&adapter->watchdog_timer, jiffies + 1); 861 862 ew32(EIMS, adapter->eims_other); 863 864 return IRQ_HANDLED; 865 } 866 867 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 868 { 869 struct net_device *netdev = data; 870 struct igbvf_adapter *adapter = netdev_priv(netdev); 871 struct e1000_hw *hw = &adapter->hw; 872 struct igbvf_ring *tx_ring = adapter->tx_ring; 873 874 if (tx_ring->set_itr) { 875 writel(tx_ring->itr_val, 876 adapter->hw.hw_addr + tx_ring->itr_register); 877 adapter->tx_ring->set_itr = 0; 878 } 879 880 adapter->total_tx_bytes = 0; 881 adapter->total_tx_packets = 0; 882 883 /* auto mask will automatically re-enable the interrupt when we write 884 * EICS 885 */ 886 if (!igbvf_clean_tx_irq(tx_ring)) 887 /* Ring was not completely cleaned, so fire another interrupt */ 888 ew32(EICS, tx_ring->eims_value); 889 else 890 ew32(EIMS, tx_ring->eims_value); 891 892 return IRQ_HANDLED; 893 } 894 895 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 896 { 897 struct net_device *netdev = data; 898 struct igbvf_adapter *adapter = netdev_priv(netdev); 899 900 /* Write the ITR value calculated at the end of the 901 * previous interrupt. 902 */ 903 if (adapter->rx_ring->set_itr) { 904 writel(adapter->rx_ring->itr_val, 905 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 906 adapter->rx_ring->set_itr = 0; 907 } 908 909 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 910 adapter->total_rx_bytes = 0; 911 adapter->total_rx_packets = 0; 912 __napi_schedule(&adapter->rx_ring->napi); 913 } 914 915 return IRQ_HANDLED; 916 } 917 918 #define IGBVF_NO_QUEUE -1 919 920 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 921 int tx_queue, int msix_vector) 922 { 923 struct e1000_hw *hw = &adapter->hw; 924 u32 ivar, index; 925 926 /* 82576 uses a table-based method for assigning vectors. 927 * Each queue has a single entry in the table to which we write 928 * a vector number along with a "valid" bit. Sadly, the layout 929 * of the table is somewhat counterintuitive. 930 */ 931 if (rx_queue > IGBVF_NO_QUEUE) { 932 index = (rx_queue >> 1); 933 ivar = array_er32(IVAR0, index); 934 if (rx_queue & 0x1) { 935 /* vector goes into third byte of register */ 936 ivar = ivar & 0xFF00FFFF; 937 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 938 } else { 939 /* vector goes into low byte of register */ 940 ivar = ivar & 0xFFFFFF00; 941 ivar |= msix_vector | E1000_IVAR_VALID; 942 } 943 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector); 944 array_ew32(IVAR0, index, ivar); 945 } 946 if (tx_queue > IGBVF_NO_QUEUE) { 947 index = (tx_queue >> 1); 948 ivar = array_er32(IVAR0, index); 949 if (tx_queue & 0x1) { 950 /* vector goes into high byte of register */ 951 ivar = ivar & 0x00FFFFFF; 952 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 953 } else { 954 /* vector goes into second byte of register */ 955 ivar = ivar & 0xFFFF00FF; 956 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 957 } 958 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector); 959 array_ew32(IVAR0, index, ivar); 960 } 961 } 962 963 /** 964 * igbvf_configure_msix - Configure MSI-X hardware 965 * @adapter: board private structure 966 * 967 * igbvf_configure_msix sets up the hardware to properly 968 * generate MSI-X interrupts. 969 **/ 970 static void igbvf_configure_msix(struct igbvf_adapter *adapter) 971 { 972 u32 tmp; 973 struct e1000_hw *hw = &adapter->hw; 974 struct igbvf_ring *tx_ring = adapter->tx_ring; 975 struct igbvf_ring *rx_ring = adapter->rx_ring; 976 int vector = 0; 977 978 adapter->eims_enable_mask = 0; 979 980 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 981 adapter->eims_enable_mask |= tx_ring->eims_value; 982 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register); 983 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 984 adapter->eims_enable_mask |= rx_ring->eims_value; 985 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register); 986 987 /* set vector for other causes, i.e. link changes */ 988 989 tmp = (vector++ | E1000_IVAR_VALID); 990 991 ew32(IVAR_MISC, tmp); 992 993 adapter->eims_enable_mask = GENMASK(vector - 1, 0); 994 adapter->eims_other = BIT(vector - 1); 995 e1e_flush(); 996 } 997 998 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 999 { 1000 if (adapter->msix_entries) { 1001 pci_disable_msix(adapter->pdev); 1002 kfree(adapter->msix_entries); 1003 adapter->msix_entries = NULL; 1004 } 1005 } 1006 1007 /** 1008 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 1009 * @adapter: board private structure 1010 * 1011 * Attempt to configure interrupts using the best available 1012 * capabilities of the hardware and kernel. 1013 **/ 1014 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 1015 { 1016 int err = -ENOMEM; 1017 int i; 1018 1019 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */ 1020 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 1021 GFP_KERNEL); 1022 if (adapter->msix_entries) { 1023 for (i = 0; i < 3; i++) 1024 adapter->msix_entries[i].entry = i; 1025 1026 err = pci_enable_msix_range(adapter->pdev, 1027 adapter->msix_entries, 3, 3); 1028 } 1029 1030 if (err < 0) { 1031 /* MSI-X failed */ 1032 dev_err(&adapter->pdev->dev, 1033 "Failed to initialize MSI-X interrupts.\n"); 1034 igbvf_reset_interrupt_capability(adapter); 1035 } 1036 } 1037 1038 /** 1039 * igbvf_request_msix - Initialize MSI-X interrupts 1040 * @adapter: board private structure 1041 * 1042 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1043 * kernel. 1044 **/ 1045 static int igbvf_request_msix(struct igbvf_adapter *adapter) 1046 { 1047 struct net_device *netdev = adapter->netdev; 1048 int err = 0, vector = 0; 1049 1050 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1051 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1052 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1053 } else { 1054 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1055 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1056 } 1057 1058 err = request_irq(adapter->msix_entries[vector].vector, 1059 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1060 netdev); 1061 if (err) 1062 goto out; 1063 1064 adapter->tx_ring->itr_register = E1000_EITR(vector); 1065 adapter->tx_ring->itr_val = adapter->current_itr; 1066 vector++; 1067 1068 err = request_irq(adapter->msix_entries[vector].vector, 1069 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1070 netdev); 1071 if (err) 1072 goto free_irq_tx; 1073 1074 adapter->rx_ring->itr_register = E1000_EITR(vector); 1075 adapter->rx_ring->itr_val = adapter->current_itr; 1076 vector++; 1077 1078 err = request_irq(adapter->msix_entries[vector].vector, 1079 igbvf_msix_other, 0, netdev->name, netdev); 1080 if (err) 1081 goto free_irq_rx; 1082 1083 igbvf_configure_msix(adapter); 1084 return 0; 1085 free_irq_rx: 1086 free_irq(adapter->msix_entries[--vector].vector, netdev); 1087 free_irq_tx: 1088 free_irq(adapter->msix_entries[--vector].vector, netdev); 1089 out: 1090 return err; 1091 } 1092 1093 /** 1094 * igbvf_alloc_queues - Allocate memory for all rings 1095 * @adapter: board private structure to initialize 1096 **/ 1097 static int igbvf_alloc_queues(struct igbvf_adapter *adapter) 1098 { 1099 struct net_device *netdev = adapter->netdev; 1100 1101 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1102 if (!adapter->tx_ring) 1103 return -ENOMEM; 1104 1105 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1106 if (!adapter->rx_ring) { 1107 kfree(adapter->tx_ring); 1108 return -ENOMEM; 1109 } 1110 1111 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll); 1112 1113 return 0; 1114 } 1115 1116 /** 1117 * igbvf_request_irq - initialize interrupts 1118 * @adapter: board private structure 1119 * 1120 * Attempts to configure interrupts using the best available 1121 * capabilities of the hardware and kernel. 1122 **/ 1123 static int igbvf_request_irq(struct igbvf_adapter *adapter) 1124 { 1125 int err = -1; 1126 1127 /* igbvf supports msi-x only */ 1128 if (adapter->msix_entries) 1129 err = igbvf_request_msix(adapter); 1130 1131 if (!err) 1132 return err; 1133 1134 dev_err(&adapter->pdev->dev, 1135 "Unable to allocate interrupt, Error: %d\n", err); 1136 1137 return err; 1138 } 1139 1140 static void igbvf_free_irq(struct igbvf_adapter *adapter) 1141 { 1142 struct net_device *netdev = adapter->netdev; 1143 int vector; 1144 1145 if (adapter->msix_entries) { 1146 for (vector = 0; vector < 3; vector++) 1147 free_irq(adapter->msix_entries[vector].vector, netdev); 1148 } 1149 } 1150 1151 /** 1152 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1153 * @adapter: board private structure 1154 **/ 1155 static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1156 { 1157 struct e1000_hw *hw = &adapter->hw; 1158 1159 ew32(EIMC, ~0); 1160 1161 if (adapter->msix_entries) 1162 ew32(EIAC, 0); 1163 } 1164 1165 /** 1166 * igbvf_irq_enable - Enable default interrupt generation settings 1167 * @adapter: board private structure 1168 **/ 1169 static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1170 { 1171 struct e1000_hw *hw = &adapter->hw; 1172 1173 ew32(EIAC, adapter->eims_enable_mask); 1174 ew32(EIAM, adapter->eims_enable_mask); 1175 ew32(EIMS, adapter->eims_enable_mask); 1176 } 1177 1178 /** 1179 * igbvf_poll - NAPI Rx polling callback 1180 * @napi: struct associated with this polling callback 1181 * @budget: amount of packets driver is allowed to process this poll 1182 **/ 1183 static int igbvf_poll(struct napi_struct *napi, int budget) 1184 { 1185 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1186 struct igbvf_adapter *adapter = rx_ring->adapter; 1187 struct e1000_hw *hw = &adapter->hw; 1188 int work_done = 0; 1189 1190 igbvf_clean_rx_irq(adapter, &work_done, budget); 1191 1192 if (work_done == budget) 1193 return budget; 1194 1195 /* Exit the polling mode, but don't re-enable interrupts if stack might 1196 * poll us due to busy-polling 1197 */ 1198 if (likely(napi_complete_done(napi, work_done))) { 1199 if (adapter->requested_itr & 3) 1200 igbvf_set_itr(adapter); 1201 1202 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1203 ew32(EIMS, adapter->rx_ring->eims_value); 1204 } 1205 1206 return work_done; 1207 } 1208 1209 /** 1210 * igbvf_set_rlpml - set receive large packet maximum length 1211 * @adapter: board private structure 1212 * 1213 * Configure the maximum size of packets that will be received 1214 */ 1215 static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1216 { 1217 int max_frame_size; 1218 struct e1000_hw *hw = &adapter->hw; 1219 1220 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1221 1222 spin_lock_bh(&hw->mbx_lock); 1223 1224 e1000_rlpml_set_vf(hw, max_frame_size); 1225 1226 spin_unlock_bh(&hw->mbx_lock); 1227 } 1228 1229 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, 1230 __be16 proto, u16 vid) 1231 { 1232 struct igbvf_adapter *adapter = netdev_priv(netdev); 1233 struct e1000_hw *hw = &adapter->hw; 1234 1235 spin_lock_bh(&hw->mbx_lock); 1236 1237 if (hw->mac.ops.set_vfta(hw, vid, true)) { 1238 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid); 1239 spin_unlock_bh(&hw->mbx_lock); 1240 return -EINVAL; 1241 } 1242 1243 spin_unlock_bh(&hw->mbx_lock); 1244 1245 set_bit(vid, adapter->active_vlans); 1246 return 0; 1247 } 1248 1249 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, 1250 __be16 proto, u16 vid) 1251 { 1252 struct igbvf_adapter *adapter = netdev_priv(netdev); 1253 struct e1000_hw *hw = &adapter->hw; 1254 1255 spin_lock_bh(&hw->mbx_lock); 1256 1257 if (hw->mac.ops.set_vfta(hw, vid, false)) { 1258 dev_err(&adapter->pdev->dev, 1259 "Failed to remove vlan id %d\n", vid); 1260 spin_unlock_bh(&hw->mbx_lock); 1261 return -EINVAL; 1262 } 1263 1264 spin_unlock_bh(&hw->mbx_lock); 1265 1266 clear_bit(vid, adapter->active_vlans); 1267 return 0; 1268 } 1269 1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1271 { 1272 u16 vid; 1273 1274 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1275 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 1276 } 1277 1278 /** 1279 * igbvf_configure_tx - Configure Transmit Unit after Reset 1280 * @adapter: board private structure 1281 * 1282 * Configure the Tx unit of the MAC after a reset. 1283 **/ 1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1285 { 1286 struct e1000_hw *hw = &adapter->hw; 1287 struct igbvf_ring *tx_ring = adapter->tx_ring; 1288 u64 tdba; 1289 u32 txdctl, dca_txctrl; 1290 1291 /* disable transmits */ 1292 txdctl = er32(TXDCTL(0)); 1293 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1294 e1e_flush(); 1295 msleep(10); 1296 1297 /* Setup the HW Tx Head and Tail descriptor pointers */ 1298 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1299 tdba = tx_ring->dma; 1300 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1301 ew32(TDBAH(0), (tdba >> 32)); 1302 ew32(TDH(0), 0); 1303 ew32(TDT(0), 0); 1304 tx_ring->head = E1000_TDH(0); 1305 tx_ring->tail = E1000_TDT(0); 1306 1307 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1308 * MUST be delivered in order or it will completely screw up 1309 * our bookkeeping. 1310 */ 1311 dca_txctrl = er32(DCA_TXCTRL(0)); 1312 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1313 ew32(DCA_TXCTRL(0), dca_txctrl); 1314 1315 /* enable transmits */ 1316 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1317 ew32(TXDCTL(0), txdctl); 1318 1319 /* Setup Transmit Descriptor Settings for eop descriptor */ 1320 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1321 1322 /* enable Report Status bit */ 1323 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1324 } 1325 1326 /** 1327 * igbvf_setup_srrctl - configure the receive control registers 1328 * @adapter: Board private structure 1329 **/ 1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1331 { 1332 struct e1000_hw *hw = &adapter->hw; 1333 u32 srrctl = 0; 1334 1335 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1336 E1000_SRRCTL_BSIZEHDR_MASK | 1337 E1000_SRRCTL_BSIZEPKT_MASK); 1338 1339 /* Enable queue drop to avoid head of line blocking */ 1340 srrctl |= E1000_SRRCTL_DROP_EN; 1341 1342 /* Setup buffer sizes */ 1343 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1344 E1000_SRRCTL_BSIZEPKT_SHIFT; 1345 1346 if (adapter->rx_buffer_len < 2048) { 1347 adapter->rx_ps_hdr_size = 0; 1348 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1349 } else { 1350 adapter->rx_ps_hdr_size = 128; 1351 srrctl |= adapter->rx_ps_hdr_size << 1352 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1353 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1354 } 1355 1356 ew32(SRRCTL(0), srrctl); 1357 } 1358 1359 /** 1360 * igbvf_configure_rx - Configure Receive Unit after Reset 1361 * @adapter: board private structure 1362 * 1363 * Configure the Rx unit of the MAC after a reset. 1364 **/ 1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1366 { 1367 struct e1000_hw *hw = &adapter->hw; 1368 struct igbvf_ring *rx_ring = adapter->rx_ring; 1369 u64 rdba; 1370 u32 rxdctl; 1371 1372 /* disable receives */ 1373 rxdctl = er32(RXDCTL(0)); 1374 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1375 e1e_flush(); 1376 msleep(10); 1377 1378 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1379 * the Base and Length of the Rx Descriptor Ring 1380 */ 1381 rdba = rx_ring->dma; 1382 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1383 ew32(RDBAH(0), (rdba >> 32)); 1384 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1385 rx_ring->head = E1000_RDH(0); 1386 rx_ring->tail = E1000_RDT(0); 1387 ew32(RDH(0), 0); 1388 ew32(RDT(0), 0); 1389 1390 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1391 rxdctl &= 0xFFF00000; 1392 rxdctl |= IGBVF_RX_PTHRESH; 1393 rxdctl |= IGBVF_RX_HTHRESH << 8; 1394 rxdctl |= IGBVF_RX_WTHRESH << 16; 1395 1396 igbvf_set_rlpml(adapter); 1397 1398 /* enable receives */ 1399 ew32(RXDCTL(0), rxdctl); 1400 } 1401 1402 /** 1403 * igbvf_set_multi - Multicast and Promiscuous mode set 1404 * @netdev: network interface device structure 1405 * 1406 * The set_multi entry point is called whenever the multicast address 1407 * list or the network interface flags are updated. This routine is 1408 * responsible for configuring the hardware for proper multicast, 1409 * promiscuous mode, and all-multi behavior. 1410 **/ 1411 static void igbvf_set_multi(struct net_device *netdev) 1412 { 1413 struct igbvf_adapter *adapter = netdev_priv(netdev); 1414 struct e1000_hw *hw = &adapter->hw; 1415 struct netdev_hw_addr *ha; 1416 u8 *mta_list = NULL; 1417 int i; 1418 1419 if (!netdev_mc_empty(netdev)) { 1420 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN, 1421 GFP_ATOMIC); 1422 if (!mta_list) 1423 return; 1424 } 1425 1426 /* prepare a packed array of only addresses. */ 1427 i = 0; 1428 netdev_for_each_mc_addr(ha, netdev) 1429 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1430 1431 spin_lock_bh(&hw->mbx_lock); 1432 1433 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1434 1435 spin_unlock_bh(&hw->mbx_lock); 1436 kfree(mta_list); 1437 } 1438 1439 /** 1440 * igbvf_set_uni - Configure unicast MAC filters 1441 * @netdev: network interface device structure 1442 * 1443 * This routine is responsible for configuring the hardware for proper 1444 * unicast filters. 1445 **/ 1446 static int igbvf_set_uni(struct net_device *netdev) 1447 { 1448 struct igbvf_adapter *adapter = netdev_priv(netdev); 1449 struct e1000_hw *hw = &adapter->hw; 1450 1451 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) { 1452 pr_err("Too many unicast filters - No Space\n"); 1453 return -ENOSPC; 1454 } 1455 1456 spin_lock_bh(&hw->mbx_lock); 1457 1458 /* Clear all unicast MAC filters */ 1459 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL); 1460 1461 spin_unlock_bh(&hw->mbx_lock); 1462 1463 if (!netdev_uc_empty(netdev)) { 1464 struct netdev_hw_addr *ha; 1465 1466 /* Add MAC filters one by one */ 1467 netdev_for_each_uc_addr(ha, netdev) { 1468 spin_lock_bh(&hw->mbx_lock); 1469 1470 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD, 1471 ha->addr); 1472 1473 spin_unlock_bh(&hw->mbx_lock); 1474 udelay(200); 1475 } 1476 } 1477 1478 return 0; 1479 } 1480 1481 static void igbvf_set_rx_mode(struct net_device *netdev) 1482 { 1483 igbvf_set_multi(netdev); 1484 igbvf_set_uni(netdev); 1485 } 1486 1487 /** 1488 * igbvf_configure - configure the hardware for Rx and Tx 1489 * @adapter: private board structure 1490 **/ 1491 static void igbvf_configure(struct igbvf_adapter *adapter) 1492 { 1493 igbvf_set_rx_mode(adapter->netdev); 1494 1495 igbvf_restore_vlan(adapter); 1496 1497 igbvf_configure_tx(adapter); 1498 igbvf_setup_srrctl(adapter); 1499 igbvf_configure_rx(adapter); 1500 igbvf_alloc_rx_buffers(adapter->rx_ring, 1501 igbvf_desc_unused(adapter->rx_ring)); 1502 } 1503 1504 /* igbvf_reset - bring the hardware into a known good state 1505 * @adapter: private board structure 1506 * 1507 * This function boots the hardware and enables some settings that 1508 * require a configuration cycle of the hardware - those cannot be 1509 * set/changed during runtime. After reset the device needs to be 1510 * properly configured for Rx, Tx etc. 1511 */ 1512 static void igbvf_reset(struct igbvf_adapter *adapter) 1513 { 1514 struct e1000_mac_info *mac = &adapter->hw.mac; 1515 struct net_device *netdev = adapter->netdev; 1516 struct e1000_hw *hw = &adapter->hw; 1517 1518 spin_lock_bh(&hw->mbx_lock); 1519 1520 /* Allow time for pending master requests to run */ 1521 if (mac->ops.reset_hw(hw)) 1522 dev_info(&adapter->pdev->dev, "PF still resetting\n"); 1523 1524 mac->ops.init_hw(hw); 1525 1526 spin_unlock_bh(&hw->mbx_lock); 1527 1528 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1529 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 1530 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1531 netdev->addr_len); 1532 } 1533 1534 adapter->last_reset = jiffies; 1535 } 1536 1537 int igbvf_up(struct igbvf_adapter *adapter) 1538 { 1539 struct e1000_hw *hw = &adapter->hw; 1540 1541 /* hardware has been reset, we need to reload some things */ 1542 igbvf_configure(adapter); 1543 1544 clear_bit(__IGBVF_DOWN, &adapter->state); 1545 1546 napi_enable(&adapter->rx_ring->napi); 1547 if (adapter->msix_entries) 1548 igbvf_configure_msix(adapter); 1549 1550 /* Clear any pending interrupts. */ 1551 er32(EICR); 1552 igbvf_irq_enable(adapter); 1553 1554 /* start the watchdog */ 1555 hw->mac.get_link_status = 1; 1556 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1557 1558 return 0; 1559 } 1560 1561 void igbvf_down(struct igbvf_adapter *adapter) 1562 { 1563 struct net_device *netdev = adapter->netdev; 1564 struct e1000_hw *hw = &adapter->hw; 1565 u32 rxdctl, txdctl; 1566 1567 /* signal that we're down so the interrupt handler does not 1568 * reschedule our watchdog timer 1569 */ 1570 set_bit(__IGBVF_DOWN, &adapter->state); 1571 1572 /* disable receives in the hardware */ 1573 rxdctl = er32(RXDCTL(0)); 1574 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1575 1576 netif_carrier_off(netdev); 1577 netif_stop_queue(netdev); 1578 1579 /* disable transmits in the hardware */ 1580 txdctl = er32(TXDCTL(0)); 1581 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1582 1583 /* flush both disables and wait for them to finish */ 1584 e1e_flush(); 1585 msleep(10); 1586 1587 napi_disable(&adapter->rx_ring->napi); 1588 1589 igbvf_irq_disable(adapter); 1590 1591 timer_delete_sync(&adapter->watchdog_timer); 1592 1593 /* record the stats before reset*/ 1594 igbvf_update_stats(adapter); 1595 1596 adapter->link_speed = 0; 1597 adapter->link_duplex = 0; 1598 1599 igbvf_reset(adapter); 1600 igbvf_clean_tx_ring(adapter->tx_ring); 1601 igbvf_clean_rx_ring(adapter->rx_ring); 1602 } 1603 1604 void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1605 { 1606 might_sleep(); 1607 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1608 usleep_range(1000, 2000); 1609 igbvf_down(adapter); 1610 igbvf_up(adapter); 1611 clear_bit(__IGBVF_RESETTING, &adapter->state); 1612 } 1613 1614 /** 1615 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1616 * @adapter: board private structure to initialize 1617 * 1618 * igbvf_sw_init initializes the Adapter private data structure. 1619 * Fields are initialized based on PCI device information and 1620 * OS network device settings (MTU size). 1621 **/ 1622 static int igbvf_sw_init(struct igbvf_adapter *adapter) 1623 { 1624 struct net_device *netdev = adapter->netdev; 1625 s32 rc; 1626 1627 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1628 adapter->rx_ps_hdr_size = 0; 1629 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1630 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1631 1632 adapter->tx_int_delay = 8; 1633 adapter->tx_abs_int_delay = 32; 1634 adapter->rx_int_delay = 0; 1635 adapter->rx_abs_int_delay = 8; 1636 adapter->requested_itr = 3; 1637 adapter->current_itr = IGBVF_START_ITR; 1638 1639 /* Set various function pointers */ 1640 adapter->ei->init_ops(&adapter->hw); 1641 1642 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1643 if (rc) 1644 return rc; 1645 1646 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1647 if (rc) 1648 return rc; 1649 1650 igbvf_set_interrupt_capability(adapter); 1651 1652 if (igbvf_alloc_queues(adapter)) 1653 return -ENOMEM; 1654 1655 /* Explicitly disable IRQ since the NIC can be in any state. */ 1656 igbvf_irq_disable(adapter); 1657 1658 spin_lock_init(&adapter->hw.mbx_lock); 1659 1660 set_bit(__IGBVF_DOWN, &adapter->state); 1661 return 0; 1662 } 1663 1664 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1665 { 1666 struct e1000_hw *hw = &adapter->hw; 1667 1668 adapter->stats.last_gprc = er32(VFGPRC); 1669 adapter->stats.last_gorc = er32(VFGORC); 1670 adapter->stats.last_gptc = er32(VFGPTC); 1671 adapter->stats.last_gotc = er32(VFGOTC); 1672 adapter->stats.last_mprc = er32(VFMPRC); 1673 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1674 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1675 adapter->stats.last_gorlbc = er32(VFGORLBC); 1676 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1677 1678 adapter->stats.base_gprc = er32(VFGPRC); 1679 adapter->stats.base_gorc = er32(VFGORC); 1680 adapter->stats.base_gptc = er32(VFGPTC); 1681 adapter->stats.base_gotc = er32(VFGOTC); 1682 adapter->stats.base_mprc = er32(VFMPRC); 1683 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1684 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1685 adapter->stats.base_gorlbc = er32(VFGORLBC); 1686 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1687 } 1688 1689 /** 1690 * igbvf_open - Called when a network interface is made active 1691 * @netdev: network interface device structure 1692 * 1693 * Returns 0 on success, negative value on failure 1694 * 1695 * The open entry point is called when a network interface is made 1696 * active by the system (IFF_UP). At this point all resources needed 1697 * for transmit and receive operations are allocated, the interrupt 1698 * handler is registered with the OS, the watchdog timer is started, 1699 * and the stack is notified that the interface is ready. 1700 **/ 1701 static int igbvf_open(struct net_device *netdev) 1702 { 1703 struct igbvf_adapter *adapter = netdev_priv(netdev); 1704 struct e1000_hw *hw = &adapter->hw; 1705 int err; 1706 1707 /* disallow open during test */ 1708 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1709 return -EBUSY; 1710 1711 /* allocate transmit descriptors */ 1712 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1713 if (err) 1714 goto err_setup_tx; 1715 1716 /* allocate receive descriptors */ 1717 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1718 if (err) 1719 goto err_setup_rx; 1720 1721 /* before we allocate an interrupt, we must be ready to handle it. 1722 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1723 * as soon as we call pci_request_irq, so we have to setup our 1724 * clean_rx handler before we do so. 1725 */ 1726 igbvf_configure(adapter); 1727 1728 err = igbvf_request_irq(adapter); 1729 if (err) 1730 goto err_req_irq; 1731 1732 /* From here on the code is the same as igbvf_up() */ 1733 clear_bit(__IGBVF_DOWN, &adapter->state); 1734 1735 napi_enable(&adapter->rx_ring->napi); 1736 1737 /* clear any pending interrupts */ 1738 er32(EICR); 1739 1740 igbvf_irq_enable(adapter); 1741 1742 /* start the watchdog */ 1743 hw->mac.get_link_status = 1; 1744 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1745 1746 return 0; 1747 1748 err_req_irq: 1749 igbvf_free_rx_resources(adapter->rx_ring); 1750 err_setup_rx: 1751 igbvf_free_tx_resources(adapter->tx_ring); 1752 err_setup_tx: 1753 igbvf_reset(adapter); 1754 1755 return err; 1756 } 1757 1758 /** 1759 * igbvf_close - Disables a network interface 1760 * @netdev: network interface device structure 1761 * 1762 * Returns 0, this is not allowed to fail 1763 * 1764 * The close entry point is called when an interface is de-activated 1765 * by the OS. The hardware is still under the drivers control, but 1766 * needs to be disabled. A global MAC reset is issued to stop the 1767 * hardware, and all transmit and receive resources are freed. 1768 **/ 1769 static int igbvf_close(struct net_device *netdev) 1770 { 1771 struct igbvf_adapter *adapter = netdev_priv(netdev); 1772 1773 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1774 igbvf_down(adapter); 1775 1776 igbvf_free_irq(adapter); 1777 1778 igbvf_free_tx_resources(adapter->tx_ring); 1779 igbvf_free_rx_resources(adapter->rx_ring); 1780 1781 return 0; 1782 } 1783 1784 /** 1785 * igbvf_set_mac - Change the Ethernet Address of the NIC 1786 * @netdev: network interface device structure 1787 * @p: pointer to an address structure 1788 * 1789 * Returns 0 on success, negative on failure 1790 **/ 1791 static int igbvf_set_mac(struct net_device *netdev, void *p) 1792 { 1793 struct igbvf_adapter *adapter = netdev_priv(netdev); 1794 struct e1000_hw *hw = &adapter->hw; 1795 struct sockaddr *addr = p; 1796 1797 if (!is_valid_ether_addr(addr->sa_data)) 1798 return -EADDRNOTAVAIL; 1799 1800 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1801 1802 spin_lock_bh(&hw->mbx_lock); 1803 1804 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1805 1806 spin_unlock_bh(&hw->mbx_lock); 1807 1808 if (!ether_addr_equal(addr->sa_data, hw->mac.addr)) 1809 return -EADDRNOTAVAIL; 1810 1811 eth_hw_addr_set(netdev, addr->sa_data); 1812 1813 return 0; 1814 } 1815 1816 #define UPDATE_VF_COUNTER(reg, name) \ 1817 { \ 1818 u32 current_counter = er32(reg); \ 1819 if (current_counter < adapter->stats.last_##name) \ 1820 adapter->stats.name += 0x100000000LL; \ 1821 adapter->stats.last_##name = current_counter; \ 1822 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1823 adapter->stats.name |= current_counter; \ 1824 } 1825 1826 /** 1827 * igbvf_update_stats - Update the board statistics counters 1828 * @adapter: board private structure 1829 **/ 1830 void igbvf_update_stats(struct igbvf_adapter *adapter) 1831 { 1832 struct e1000_hw *hw = &adapter->hw; 1833 struct pci_dev *pdev = adapter->pdev; 1834 1835 /* Prevent stats update while adapter is being reset, link is down 1836 * or if the pci connection is down. 1837 */ 1838 if (adapter->link_speed == 0) 1839 return; 1840 1841 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1842 return; 1843 1844 if (pci_channel_offline(pdev)) 1845 return; 1846 1847 UPDATE_VF_COUNTER(VFGPRC, gprc); 1848 UPDATE_VF_COUNTER(VFGORC, gorc); 1849 UPDATE_VF_COUNTER(VFGPTC, gptc); 1850 UPDATE_VF_COUNTER(VFGOTC, gotc); 1851 UPDATE_VF_COUNTER(VFMPRC, mprc); 1852 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1853 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1854 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1855 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1856 1857 /* Fill out the OS statistics structure */ 1858 adapter->netdev->stats.multicast = adapter->stats.mprc; 1859 } 1860 1861 static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1862 { 1863 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n", 1864 adapter->link_speed, 1865 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half"); 1866 } 1867 1868 static bool igbvf_has_link(struct igbvf_adapter *adapter) 1869 { 1870 struct e1000_hw *hw = &adapter->hw; 1871 s32 ret_val = E1000_SUCCESS; 1872 bool link_active; 1873 1874 /* If interface is down, stay link down */ 1875 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1876 return false; 1877 1878 spin_lock_bh(&hw->mbx_lock); 1879 1880 ret_val = hw->mac.ops.check_for_link(hw); 1881 1882 spin_unlock_bh(&hw->mbx_lock); 1883 1884 link_active = !hw->mac.get_link_status; 1885 1886 /* if check for link returns error we will need to reset */ 1887 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1888 schedule_work(&adapter->reset_task); 1889 1890 return link_active; 1891 } 1892 1893 /** 1894 * igbvf_watchdog - Timer Call-back 1895 * @t: timer list pointer containing private struct 1896 **/ 1897 static void igbvf_watchdog(struct timer_list *t) 1898 { 1899 struct igbvf_adapter *adapter = timer_container_of(adapter, t, 1900 watchdog_timer); 1901 1902 /* Do the rest outside of interrupt context */ 1903 schedule_work(&adapter->watchdog_task); 1904 } 1905 1906 static void igbvf_watchdog_task(struct work_struct *work) 1907 { 1908 struct igbvf_adapter *adapter = container_of(work, 1909 struct igbvf_adapter, 1910 watchdog_task); 1911 struct net_device *netdev = adapter->netdev; 1912 struct e1000_mac_info *mac = &adapter->hw.mac; 1913 struct igbvf_ring *tx_ring = adapter->tx_ring; 1914 struct e1000_hw *hw = &adapter->hw; 1915 u32 link; 1916 int tx_pending = 0; 1917 1918 link = igbvf_has_link(adapter); 1919 1920 if (link) { 1921 if (!netif_carrier_ok(netdev)) { 1922 mac->ops.get_link_up_info(&adapter->hw, 1923 &adapter->link_speed, 1924 &adapter->link_duplex); 1925 igbvf_print_link_info(adapter); 1926 1927 netif_carrier_on(netdev); 1928 netif_wake_queue(netdev); 1929 } 1930 } else { 1931 if (netif_carrier_ok(netdev)) { 1932 adapter->link_speed = 0; 1933 adapter->link_duplex = 0; 1934 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1935 netif_carrier_off(netdev); 1936 netif_stop_queue(netdev); 1937 } 1938 } 1939 1940 if (netif_carrier_ok(netdev)) { 1941 igbvf_update_stats(adapter); 1942 } else { 1943 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1944 tx_ring->count); 1945 if (tx_pending) { 1946 /* We've lost link, so the controller stops DMA, 1947 * but we've got queued Tx work that's never going 1948 * to get done, so reset controller to flush Tx. 1949 * (Do the reset outside of interrupt context). 1950 */ 1951 adapter->tx_timeout_count++; 1952 schedule_work(&adapter->reset_task); 1953 } 1954 } 1955 1956 /* Cause software interrupt to ensure Rx ring is cleaned */ 1957 ew32(EICS, adapter->rx_ring->eims_value); 1958 1959 /* Reset the timer */ 1960 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1961 mod_timer(&adapter->watchdog_timer, 1962 round_jiffies(jiffies + (2 * HZ))); 1963 } 1964 1965 #define IGBVF_TX_FLAGS_CSUM 0x00000001 1966 #define IGBVF_TX_FLAGS_VLAN 0x00000002 1967 #define IGBVF_TX_FLAGS_TSO 0x00000004 1968 #define IGBVF_TX_FLAGS_IPV4 0x00000008 1969 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1970 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1971 1972 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens, 1973 u32 type_tucmd, u32 mss_l4len_idx) 1974 { 1975 struct e1000_adv_tx_context_desc *context_desc; 1976 struct igbvf_buffer *buffer_info; 1977 u16 i = tx_ring->next_to_use; 1978 1979 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1980 buffer_info = &tx_ring->buffer_info[i]; 1981 1982 i++; 1983 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1984 1985 /* set bits to identify this as an advanced context descriptor */ 1986 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 1987 1988 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1989 context_desc->seqnum_seed = 0; 1990 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1991 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1992 1993 buffer_info->time_stamp = jiffies; 1994 buffer_info->dma = 0; 1995 } 1996 1997 static int igbvf_tso(struct igbvf_ring *tx_ring, 1998 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 1999 { 2000 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 2001 union { 2002 struct iphdr *v4; 2003 struct ipv6hdr *v6; 2004 unsigned char *hdr; 2005 } ip; 2006 union { 2007 struct tcphdr *tcp; 2008 unsigned char *hdr; 2009 } l4; 2010 u32 paylen, l4_offset; 2011 int err; 2012 2013 if (skb->ip_summed != CHECKSUM_PARTIAL) 2014 return 0; 2015 2016 if (!skb_is_gso(skb)) 2017 return 0; 2018 2019 err = skb_cow_head(skb, 0); 2020 if (err < 0) 2021 return err; 2022 2023 ip.hdr = skb_network_header(skb); 2024 l4.hdr = skb_checksum_start(skb); 2025 2026 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 2027 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2028 2029 /* initialize outer IP header fields */ 2030 if (ip.v4->version == 4) { 2031 unsigned char *csum_start = skb_checksum_start(skb); 2032 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 2033 2034 /* IP header will have to cancel out any data that 2035 * is not a part of the outer IP header 2036 */ 2037 ip.v4->check = csum_fold(csum_partial(trans_start, 2038 csum_start - trans_start, 2039 0)); 2040 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 2041 2042 ip.v4->tot_len = 0; 2043 } else { 2044 ip.v6->payload_len = 0; 2045 } 2046 2047 /* determine offset of inner transport header */ 2048 l4_offset = l4.hdr - skb->data; 2049 2050 /* compute length of segmentation header */ 2051 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2052 2053 /* remove payload length from inner checksum */ 2054 paylen = skb->len - l4_offset; 2055 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2056 2057 /* MSS L4LEN IDX */ 2058 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 2059 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 2060 2061 /* VLAN MACLEN IPLEN */ 2062 vlan_macip_lens = l4.hdr - ip.hdr; 2063 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 2064 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2065 2066 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 2067 2068 return 1; 2069 } 2070 2071 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb, 2072 u32 tx_flags, __be16 protocol) 2073 { 2074 u32 vlan_macip_lens = 0; 2075 u32 type_tucmd = 0; 2076 2077 if (skb->ip_summed != CHECKSUM_PARTIAL) { 2078 csum_failed: 2079 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN)) 2080 return false; 2081 goto no_csum; 2082 } 2083 2084 switch (skb->csum_offset) { 2085 case offsetof(struct tcphdr, check): 2086 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2087 fallthrough; 2088 case offsetof(struct udphdr, check): 2089 break; 2090 case offsetof(struct sctphdr, checksum): 2091 /* validate that this is actually an SCTP request */ 2092 if (skb_csum_is_sctp(skb)) { 2093 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 2094 break; 2095 } 2096 fallthrough; 2097 default: 2098 skb_checksum_help(skb); 2099 goto csum_failed; 2100 } 2101 2102 vlan_macip_lens = skb_checksum_start_offset(skb) - 2103 skb_network_offset(skb); 2104 no_csum: 2105 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 2106 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2107 2108 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 2109 return true; 2110 } 2111 2112 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2113 { 2114 struct igbvf_adapter *adapter = netdev_priv(netdev); 2115 2116 /* there is enough descriptors then we don't need to worry */ 2117 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2118 return 0; 2119 2120 netif_stop_queue(netdev); 2121 2122 /* Herbert's original patch had: 2123 * smp_mb__after_netif_stop_queue(); 2124 * but since that doesn't exist yet, just open code it. 2125 */ 2126 smp_mb(); 2127 2128 /* We need to check again just in case room has been made available */ 2129 if (igbvf_desc_unused(adapter->tx_ring) < size) 2130 return -EBUSY; 2131 2132 netif_wake_queue(netdev); 2133 2134 ++adapter->restart_queue; 2135 return 0; 2136 } 2137 2138 #define IGBVF_MAX_TXD_PWR 16 2139 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR) 2140 2141 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2142 struct igbvf_ring *tx_ring, 2143 struct sk_buff *skb) 2144 { 2145 struct igbvf_buffer *buffer_info; 2146 struct pci_dev *pdev = adapter->pdev; 2147 unsigned int len = skb_headlen(skb); 2148 unsigned int count = 0, i; 2149 unsigned int f; 2150 2151 i = tx_ring->next_to_use; 2152 2153 buffer_info = &tx_ring->buffer_info[i]; 2154 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2155 buffer_info->length = len; 2156 /* set time_stamp *before* dma to help avoid a possible race */ 2157 buffer_info->time_stamp = jiffies; 2158 buffer_info->mapped_as_page = false; 2159 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2160 DMA_TO_DEVICE); 2161 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2162 goto dma_error; 2163 2164 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2165 const skb_frag_t *frag; 2166 2167 count++; 2168 i++; 2169 if (i == tx_ring->count) 2170 i = 0; 2171 2172 frag = &skb_shinfo(skb)->frags[f]; 2173 len = skb_frag_size(frag); 2174 2175 buffer_info = &tx_ring->buffer_info[i]; 2176 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2177 buffer_info->length = len; 2178 buffer_info->time_stamp = jiffies; 2179 buffer_info->mapped_as_page = true; 2180 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2181 DMA_TO_DEVICE); 2182 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2183 goto dma_error; 2184 } 2185 2186 tx_ring->buffer_info[i].skb = skb; 2187 2188 return ++count; 2189 2190 dma_error: 2191 dev_err(&pdev->dev, "TX DMA map failed\n"); 2192 2193 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2194 buffer_info->dma = 0; 2195 buffer_info->time_stamp = 0; 2196 buffer_info->length = 0; 2197 buffer_info->mapped_as_page = false; 2198 if (count) 2199 count--; 2200 2201 /* clear timestamp and dma mappings for remaining portion of packet */ 2202 while (count--) { 2203 if (i == 0) 2204 i += tx_ring->count; 2205 i--; 2206 buffer_info = &tx_ring->buffer_info[i]; 2207 igbvf_put_txbuf(adapter, buffer_info); 2208 } 2209 2210 return 0; 2211 } 2212 2213 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2214 struct igbvf_ring *tx_ring, 2215 int tx_flags, int count, 2216 unsigned int first, u32 paylen, 2217 u8 hdr_len) 2218 { 2219 union e1000_adv_tx_desc *tx_desc = NULL; 2220 struct igbvf_buffer *buffer_info; 2221 u32 olinfo_status = 0, cmd_type_len; 2222 unsigned int i; 2223 2224 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2225 E1000_ADVTXD_DCMD_DEXT); 2226 2227 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2228 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2229 2230 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2231 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2232 2233 /* insert tcp checksum */ 2234 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2235 2236 /* insert ip checksum */ 2237 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2238 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2239 2240 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2241 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2242 } 2243 2244 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2245 2246 i = tx_ring->next_to_use; 2247 while (count--) { 2248 buffer_info = &tx_ring->buffer_info[i]; 2249 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2250 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2251 tx_desc->read.cmd_type_len = 2252 cpu_to_le32(cmd_type_len | buffer_info->length); 2253 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2254 i++; 2255 if (i == tx_ring->count) 2256 i = 0; 2257 } 2258 2259 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2260 /* Force memory writes to complete before letting h/w 2261 * know there are new descriptors to fetch. (Only 2262 * applicable for weak-ordered memory model archs, 2263 * such as IA-64). 2264 */ 2265 wmb(); 2266 2267 tx_ring->buffer_info[first].next_to_watch = tx_desc; 2268 tx_ring->next_to_use = i; 2269 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2270 } 2271 2272 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2273 struct net_device *netdev, 2274 struct igbvf_ring *tx_ring) 2275 { 2276 struct igbvf_adapter *adapter = netdev_priv(netdev); 2277 unsigned int first, tx_flags = 0; 2278 u8 hdr_len = 0; 2279 int count = 0; 2280 int tso = 0; 2281 __be16 protocol = vlan_get_protocol(skb); 2282 2283 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2284 dev_kfree_skb_any(skb); 2285 return NETDEV_TX_OK; 2286 } 2287 2288 if (skb->len <= 0) { 2289 dev_kfree_skb_any(skb); 2290 return NETDEV_TX_OK; 2291 } 2292 2293 /* need: count + 4 desc gap to keep tail from touching 2294 * + 2 desc gap to keep tail from touching head, 2295 * + 1 desc for skb->data, 2296 * + 1 desc for context descriptor, 2297 * head, otherwise try next time 2298 */ 2299 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2300 /* this is a hard error */ 2301 return NETDEV_TX_BUSY; 2302 } 2303 2304 if (skb_vlan_tag_present(skb)) { 2305 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2306 tx_flags |= (skb_vlan_tag_get(skb) << 2307 IGBVF_TX_FLAGS_VLAN_SHIFT); 2308 } 2309 2310 if (protocol == htons(ETH_P_IP)) 2311 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2312 2313 first = tx_ring->next_to_use; 2314 2315 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len); 2316 if (unlikely(tso < 0)) { 2317 dev_kfree_skb_any(skb); 2318 return NETDEV_TX_OK; 2319 } 2320 2321 if (tso) 2322 tx_flags |= IGBVF_TX_FLAGS_TSO; 2323 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) && 2324 (skb->ip_summed == CHECKSUM_PARTIAL)) 2325 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2326 2327 /* count reflects descriptors mapped, if 0 then mapping error 2328 * has occurred and we need to rewind the descriptor queue 2329 */ 2330 count = igbvf_tx_map_adv(adapter, tx_ring, skb); 2331 2332 if (count) { 2333 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2334 first, skb->len, hdr_len); 2335 /* Make sure there is space in the ring for the next send. */ 2336 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2337 } else { 2338 dev_kfree_skb_any(skb); 2339 tx_ring->buffer_info[first].time_stamp = 0; 2340 tx_ring->next_to_use = first; 2341 } 2342 2343 return NETDEV_TX_OK; 2344 } 2345 2346 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2347 struct net_device *netdev) 2348 { 2349 struct igbvf_adapter *adapter = netdev_priv(netdev); 2350 struct igbvf_ring *tx_ring; 2351 2352 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2353 dev_kfree_skb_any(skb); 2354 return NETDEV_TX_OK; 2355 } 2356 2357 tx_ring = &adapter->tx_ring[0]; 2358 2359 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2360 } 2361 2362 /** 2363 * igbvf_tx_timeout - Respond to a Tx Hang 2364 * @netdev: network interface device structure 2365 * @txqueue: queue timing out (unused) 2366 **/ 2367 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 2368 { 2369 struct igbvf_adapter *adapter = netdev_priv(netdev); 2370 2371 /* Do the reset outside of interrupt context */ 2372 adapter->tx_timeout_count++; 2373 schedule_work(&adapter->reset_task); 2374 } 2375 2376 static void igbvf_reset_task(struct work_struct *work) 2377 { 2378 struct igbvf_adapter *adapter; 2379 2380 adapter = container_of(work, struct igbvf_adapter, reset_task); 2381 2382 igbvf_reinit_locked(adapter); 2383 } 2384 2385 /** 2386 * igbvf_change_mtu - Change the Maximum Transfer Unit 2387 * @netdev: network interface device structure 2388 * @new_mtu: new value for maximum frame size 2389 * 2390 * Returns 0 on success, negative on failure 2391 **/ 2392 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2393 { 2394 struct igbvf_adapter *adapter = netdev_priv(netdev); 2395 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2396 2397 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2398 usleep_range(1000, 2000); 2399 /* igbvf_down has a dependency on max_frame_size */ 2400 adapter->max_frame_size = max_frame; 2401 if (netif_running(netdev)) 2402 igbvf_down(adapter); 2403 2404 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2405 * means we reserve 2 more, this pushes us to allocate from the next 2406 * larger slab size. 2407 * i.e. RXBUFFER_2048 --> size-4096 slab 2408 * However with the new *_jumbo_rx* routines, jumbo receives will use 2409 * fragmented skbs 2410 */ 2411 2412 if (max_frame <= 1024) 2413 adapter->rx_buffer_len = 1024; 2414 else if (max_frame <= 2048) 2415 adapter->rx_buffer_len = 2048; 2416 else 2417 #if (PAGE_SIZE / 2) > 16384 2418 adapter->rx_buffer_len = 16384; 2419 #else 2420 adapter->rx_buffer_len = PAGE_SIZE / 2; 2421 #endif 2422 2423 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2424 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2425 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2426 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2427 ETH_FCS_LEN; 2428 2429 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2430 netdev->mtu, new_mtu); 2431 WRITE_ONCE(netdev->mtu, new_mtu); 2432 2433 if (netif_running(netdev)) 2434 igbvf_up(adapter); 2435 else 2436 igbvf_reset(adapter); 2437 2438 clear_bit(__IGBVF_RESETTING, &adapter->state); 2439 2440 return 0; 2441 } 2442 2443 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2444 { 2445 switch (cmd) { 2446 default: 2447 return -EOPNOTSUPP; 2448 } 2449 } 2450 2451 static int igbvf_suspend(struct device *dev_d) 2452 { 2453 struct net_device *netdev = dev_get_drvdata(dev_d); 2454 struct igbvf_adapter *adapter = netdev_priv(netdev); 2455 2456 netif_device_detach(netdev); 2457 2458 if (netif_running(netdev)) { 2459 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2460 igbvf_down(adapter); 2461 igbvf_free_irq(adapter); 2462 } 2463 2464 return 0; 2465 } 2466 2467 static int igbvf_resume(struct device *dev_d) 2468 { 2469 struct pci_dev *pdev = to_pci_dev(dev_d); 2470 struct net_device *netdev = pci_get_drvdata(pdev); 2471 struct igbvf_adapter *adapter = netdev_priv(netdev); 2472 u32 err; 2473 2474 pci_set_master(pdev); 2475 2476 if (netif_running(netdev)) { 2477 err = igbvf_request_irq(adapter); 2478 if (err) 2479 return err; 2480 } 2481 2482 igbvf_reset(adapter); 2483 2484 if (netif_running(netdev)) 2485 igbvf_up(adapter); 2486 2487 netif_device_attach(netdev); 2488 2489 return 0; 2490 } 2491 2492 static void igbvf_shutdown(struct pci_dev *pdev) 2493 { 2494 igbvf_suspend(&pdev->dev); 2495 } 2496 2497 #ifdef CONFIG_NET_POLL_CONTROLLER 2498 /* Polling 'interrupt' - used by things like netconsole to send skbs 2499 * without having to re-enable interrupts. It's not called while 2500 * the interrupt routine is executing. 2501 */ 2502 static void igbvf_netpoll(struct net_device *netdev) 2503 { 2504 struct igbvf_adapter *adapter = netdev_priv(netdev); 2505 2506 disable_irq(adapter->pdev->irq); 2507 2508 igbvf_clean_tx_irq(adapter->tx_ring); 2509 2510 enable_irq(adapter->pdev->irq); 2511 } 2512 #endif 2513 2514 /** 2515 * igbvf_io_error_detected - called when PCI error is detected 2516 * @pdev: Pointer to PCI device 2517 * @state: The current pci connection state 2518 * 2519 * This function is called after a PCI bus error affecting 2520 * this device has been detected. 2521 */ 2522 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2523 pci_channel_state_t state) 2524 { 2525 struct net_device *netdev = pci_get_drvdata(pdev); 2526 struct igbvf_adapter *adapter = netdev_priv(netdev); 2527 2528 netif_device_detach(netdev); 2529 2530 if (state == pci_channel_io_perm_failure) 2531 return PCI_ERS_RESULT_DISCONNECT; 2532 2533 if (netif_running(netdev)) 2534 igbvf_down(adapter); 2535 pci_disable_device(pdev); 2536 2537 /* Request a slot reset. */ 2538 return PCI_ERS_RESULT_NEED_RESET; 2539 } 2540 2541 /** 2542 * igbvf_io_slot_reset - called after the pci bus has been reset. 2543 * @pdev: Pointer to PCI device 2544 * 2545 * Restart the card from scratch, as if from a cold-boot. Implementation 2546 * resembles the first-half of the igbvf_resume routine. 2547 */ 2548 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2549 { 2550 struct net_device *netdev = pci_get_drvdata(pdev); 2551 struct igbvf_adapter *adapter = netdev_priv(netdev); 2552 2553 if (pci_enable_device_mem(pdev)) { 2554 dev_err(&pdev->dev, 2555 "Cannot re-enable PCI device after reset.\n"); 2556 return PCI_ERS_RESULT_DISCONNECT; 2557 } 2558 pci_set_master(pdev); 2559 2560 igbvf_reset(adapter); 2561 2562 return PCI_ERS_RESULT_RECOVERED; 2563 } 2564 2565 /** 2566 * igbvf_io_resume - called when traffic can start flowing again. 2567 * @pdev: Pointer to PCI device 2568 * 2569 * This callback is called when the error recovery driver tells us that 2570 * its OK to resume normal operation. Implementation resembles the 2571 * second-half of the igbvf_resume routine. 2572 */ 2573 static void igbvf_io_resume(struct pci_dev *pdev) 2574 { 2575 struct net_device *netdev = pci_get_drvdata(pdev); 2576 struct igbvf_adapter *adapter = netdev_priv(netdev); 2577 2578 if (netif_running(netdev)) { 2579 if (igbvf_up(adapter)) { 2580 dev_err(&pdev->dev, 2581 "can't bring device back up after reset\n"); 2582 return; 2583 } 2584 } 2585 2586 netif_device_attach(netdev); 2587 } 2588 2589 /** 2590 * igbvf_io_prepare - prepare device driver for PCI reset 2591 * @pdev: PCI device information struct 2592 */ 2593 static void igbvf_io_prepare(struct pci_dev *pdev) 2594 { 2595 struct net_device *netdev = pci_get_drvdata(pdev); 2596 struct igbvf_adapter *adapter = netdev_priv(netdev); 2597 2598 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2599 usleep_range(1000, 2000); 2600 igbvf_down(adapter); 2601 } 2602 2603 /** 2604 * igbvf_io_reset_done - PCI reset done, device driver reset can begin 2605 * @pdev: PCI device information struct 2606 */ 2607 static void igbvf_io_reset_done(struct pci_dev *pdev) 2608 { 2609 struct net_device *netdev = pci_get_drvdata(pdev); 2610 struct igbvf_adapter *adapter = netdev_priv(netdev); 2611 2612 igbvf_up(adapter); 2613 clear_bit(__IGBVF_RESETTING, &adapter->state); 2614 } 2615 2616 static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2617 { 2618 struct e1000_hw *hw = &adapter->hw; 2619 struct net_device *netdev = adapter->netdev; 2620 struct pci_dev *pdev = adapter->pdev; 2621 2622 if (hw->mac.type == e1000_vfadapt_i350) 2623 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2624 else 2625 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2626 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2627 } 2628 2629 static int igbvf_set_features(struct net_device *netdev, 2630 netdev_features_t features) 2631 { 2632 struct igbvf_adapter *adapter = netdev_priv(netdev); 2633 2634 if (features & NETIF_F_RXCSUM) 2635 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2636 else 2637 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2638 2639 return 0; 2640 } 2641 2642 #define IGBVF_MAX_MAC_HDR_LEN 127 2643 #define IGBVF_MAX_NETWORK_HDR_LEN 511 2644 2645 static netdev_features_t 2646 igbvf_features_check(struct sk_buff *skb, struct net_device *dev, 2647 netdev_features_t features) 2648 { 2649 unsigned int network_hdr_len, mac_hdr_len; 2650 2651 /* Make certain the headers can be described by a context descriptor */ 2652 mac_hdr_len = skb_network_offset(skb); 2653 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN)) 2654 return features & ~(NETIF_F_HW_CSUM | 2655 NETIF_F_SCTP_CRC | 2656 NETIF_F_HW_VLAN_CTAG_TX | 2657 NETIF_F_TSO | 2658 NETIF_F_TSO6); 2659 2660 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2661 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN)) 2662 return features & ~(NETIF_F_HW_CSUM | 2663 NETIF_F_SCTP_CRC | 2664 NETIF_F_TSO | 2665 NETIF_F_TSO6); 2666 2667 /* We can only support IPV4 TSO in tunnels if we can mangle the 2668 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2669 */ 2670 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2671 features &= ~NETIF_F_TSO; 2672 2673 return features; 2674 } 2675 2676 static const struct net_device_ops igbvf_netdev_ops = { 2677 .ndo_open = igbvf_open, 2678 .ndo_stop = igbvf_close, 2679 .ndo_start_xmit = igbvf_xmit_frame, 2680 .ndo_set_rx_mode = igbvf_set_rx_mode, 2681 .ndo_set_mac_address = igbvf_set_mac, 2682 .ndo_change_mtu = igbvf_change_mtu, 2683 .ndo_eth_ioctl = igbvf_ioctl, 2684 .ndo_tx_timeout = igbvf_tx_timeout, 2685 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2686 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2687 #ifdef CONFIG_NET_POLL_CONTROLLER 2688 .ndo_poll_controller = igbvf_netpoll, 2689 #endif 2690 .ndo_set_features = igbvf_set_features, 2691 .ndo_features_check = igbvf_features_check, 2692 }; 2693 2694 /** 2695 * igbvf_probe - Device Initialization Routine 2696 * @pdev: PCI device information struct 2697 * @ent: entry in igbvf_pci_tbl 2698 * 2699 * Returns 0 on success, negative on failure 2700 * 2701 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2702 * The OS initialization, configuring of the adapter private structure, 2703 * and a hardware reset occur. 2704 **/ 2705 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2706 { 2707 struct net_device *netdev; 2708 struct igbvf_adapter *adapter; 2709 struct e1000_hw *hw; 2710 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2711 static int cards_found; 2712 int err; 2713 2714 err = pci_enable_device_mem(pdev); 2715 if (err) 2716 return err; 2717 2718 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2719 if (err) { 2720 dev_err(&pdev->dev, 2721 "No usable DMA configuration, aborting\n"); 2722 goto err_dma; 2723 } 2724 2725 err = pci_request_regions(pdev, igbvf_driver_name); 2726 if (err) 2727 goto err_pci_reg; 2728 2729 pci_set_master(pdev); 2730 2731 err = -ENOMEM; 2732 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2733 if (!netdev) 2734 goto err_alloc_etherdev; 2735 2736 SET_NETDEV_DEV(netdev, &pdev->dev); 2737 2738 pci_set_drvdata(pdev, netdev); 2739 adapter = netdev_priv(netdev); 2740 hw = &adapter->hw; 2741 adapter->netdev = netdev; 2742 adapter->pdev = pdev; 2743 adapter->ei = ei; 2744 adapter->pba = ei->pba; 2745 adapter->flags = ei->flags; 2746 adapter->hw.back = adapter; 2747 adapter->hw.mac.type = ei->mac; 2748 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2749 2750 /* PCI config space info */ 2751 2752 hw->vendor_id = pdev->vendor; 2753 hw->device_id = pdev->device; 2754 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2755 hw->subsystem_device_id = pdev->subsystem_device; 2756 hw->revision_id = pdev->revision; 2757 2758 err = -EIO; 2759 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2760 pci_resource_len(pdev, 0)); 2761 2762 if (!adapter->hw.hw_addr) 2763 goto err_ioremap; 2764 2765 if (ei->get_variants) { 2766 err = ei->get_variants(adapter); 2767 if (err) 2768 goto err_get_variants; 2769 } 2770 2771 /* setup adapter struct */ 2772 err = igbvf_sw_init(adapter); 2773 if (err) 2774 goto err_sw_init; 2775 2776 /* construct the net_device struct */ 2777 netdev->netdev_ops = &igbvf_netdev_ops; 2778 2779 igbvf_set_ethtool_ops(netdev); 2780 netdev->watchdog_timeo = 5 * HZ; 2781 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 2782 2783 adapter->bd_number = cards_found++; 2784 2785 netdev->hw_features = NETIF_F_SG | 2786 NETIF_F_TSO | 2787 NETIF_F_TSO6 | 2788 NETIF_F_RXCSUM | 2789 NETIF_F_HW_CSUM | 2790 NETIF_F_SCTP_CRC; 2791 2792 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 2793 NETIF_F_GSO_GRE_CSUM | \ 2794 NETIF_F_GSO_IPXIP4 | \ 2795 NETIF_F_GSO_IPXIP6 | \ 2796 NETIF_F_GSO_UDP_TUNNEL | \ 2797 NETIF_F_GSO_UDP_TUNNEL_CSUM) 2798 2799 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES; 2800 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 2801 IGBVF_GSO_PARTIAL_FEATURES; 2802 2803 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 2804 2805 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 2806 netdev->mpls_features |= NETIF_F_HW_CSUM; 2807 netdev->hw_enc_features |= netdev->vlan_features; 2808 2809 /* set this bit last since it cannot be part of vlan_features */ 2810 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 2811 NETIF_F_HW_VLAN_CTAG_RX | 2812 NETIF_F_HW_VLAN_CTAG_TX; 2813 2814 /* MTU range: 68 - 9216 */ 2815 netdev->min_mtu = ETH_MIN_MTU; 2816 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 2817 2818 spin_lock_bh(&hw->mbx_lock); 2819 2820 /*reset the controller to put the device in a known good state */ 2821 err = hw->mac.ops.reset_hw(hw); 2822 if (err) { 2823 dev_info(&pdev->dev, 2824 "PF still in reset state. Is the PF interface up?\n"); 2825 } else { 2826 err = hw->mac.ops.read_mac_addr(hw); 2827 if (err) 2828 dev_info(&pdev->dev, "Error reading MAC address.\n"); 2829 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2830 dev_info(&pdev->dev, 2831 "MAC address not assigned by administrator.\n"); 2832 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2833 } 2834 2835 spin_unlock_bh(&hw->mbx_lock); 2836 2837 if (!is_valid_ether_addr(netdev->dev_addr)) { 2838 dev_info(&pdev->dev, "Assigning random MAC address.\n"); 2839 eth_hw_addr_random(netdev); 2840 memcpy(adapter->hw.mac.addr, netdev->dev_addr, 2841 netdev->addr_len); 2842 } 2843 2844 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0); 2845 2846 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2847 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2848 2849 /* ring size defaults */ 2850 adapter->rx_ring->count = 1024; 2851 adapter->tx_ring->count = 1024; 2852 2853 /* reset the hardware with the new settings */ 2854 igbvf_reset(adapter); 2855 2856 /* set hardware-specific flags */ 2857 if (adapter->hw.mac.type == e1000_vfadapt_i350) 2858 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP; 2859 2860 strcpy(netdev->name, "eth%d"); 2861 err = register_netdev(netdev); 2862 if (err) 2863 goto err_hw_init; 2864 2865 /* tell the stack to leave us alone until igbvf_open() is called */ 2866 netif_carrier_off(netdev); 2867 netif_stop_queue(netdev); 2868 2869 igbvf_print_device_info(adapter); 2870 2871 igbvf_initialize_last_counter_stats(adapter); 2872 2873 return 0; 2874 2875 err_hw_init: 2876 netif_napi_del(&adapter->rx_ring->napi); 2877 kfree(adapter->tx_ring); 2878 kfree(adapter->rx_ring); 2879 err_sw_init: 2880 igbvf_reset_interrupt_capability(adapter); 2881 err_get_variants: 2882 iounmap(adapter->hw.hw_addr); 2883 err_ioremap: 2884 free_netdev(netdev); 2885 err_alloc_etherdev: 2886 pci_release_regions(pdev); 2887 err_pci_reg: 2888 err_dma: 2889 pci_disable_device(pdev); 2890 return err; 2891 } 2892 2893 /** 2894 * igbvf_remove - Device Removal Routine 2895 * @pdev: PCI device information struct 2896 * 2897 * igbvf_remove is called by the PCI subsystem to alert the driver 2898 * that it should release a PCI device. The could be caused by a 2899 * Hot-Plug event, or because the driver is going to be removed from 2900 * memory. 2901 **/ 2902 static void igbvf_remove(struct pci_dev *pdev) 2903 { 2904 struct net_device *netdev = pci_get_drvdata(pdev); 2905 struct igbvf_adapter *adapter = netdev_priv(netdev); 2906 struct e1000_hw *hw = &adapter->hw; 2907 2908 /* The watchdog timer may be rescheduled, so explicitly 2909 * disable it from being rescheduled. 2910 */ 2911 set_bit(__IGBVF_DOWN, &adapter->state); 2912 timer_delete_sync(&adapter->watchdog_timer); 2913 2914 cancel_work_sync(&adapter->reset_task); 2915 cancel_work_sync(&adapter->watchdog_task); 2916 2917 unregister_netdev(netdev); 2918 2919 igbvf_reset_interrupt_capability(adapter); 2920 2921 /* it is important to delete the NAPI struct prior to freeing the 2922 * Rx ring so that you do not end up with null pointer refs 2923 */ 2924 netif_napi_del(&adapter->rx_ring->napi); 2925 kfree(adapter->tx_ring); 2926 kfree(adapter->rx_ring); 2927 2928 iounmap(hw->hw_addr); 2929 if (hw->flash_address) 2930 iounmap(hw->flash_address); 2931 pci_release_regions(pdev); 2932 2933 free_netdev(netdev); 2934 2935 pci_disable_device(pdev); 2936 } 2937 2938 /* PCI Error Recovery (ERS) */ 2939 static const struct pci_error_handlers igbvf_err_handler = { 2940 .error_detected = igbvf_io_error_detected, 2941 .slot_reset = igbvf_io_slot_reset, 2942 .resume = igbvf_io_resume, 2943 .reset_prepare = igbvf_io_prepare, 2944 .reset_done = igbvf_io_reset_done, 2945 }; 2946 2947 static const struct pci_device_id igbvf_pci_tbl[] = { 2948 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2949 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2950 { } /* terminate list */ 2951 }; 2952 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2953 2954 static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume); 2955 2956 /* PCI Device API Driver */ 2957 static struct pci_driver igbvf_driver = { 2958 .name = igbvf_driver_name, 2959 .id_table = igbvf_pci_tbl, 2960 .probe = igbvf_probe, 2961 .remove = igbvf_remove, 2962 .driver.pm = pm_sleep_ptr(&igbvf_pm_ops), 2963 .shutdown = igbvf_shutdown, 2964 .err_handler = &igbvf_err_handler 2965 }; 2966 2967 /** 2968 * igbvf_init_module - Driver Registration Routine 2969 * 2970 * igbvf_init_module is the first routine called when the driver is 2971 * loaded. All it does is register with the PCI subsystem. 2972 **/ 2973 static int __init igbvf_init_module(void) 2974 { 2975 int ret; 2976 2977 pr_info("%s\n", igbvf_driver_string); 2978 pr_info("%s\n", igbvf_copyright); 2979 2980 ret = pci_register_driver(&igbvf_driver); 2981 2982 return ret; 2983 } 2984 module_init(igbvf_init_module); 2985 2986 /** 2987 * igbvf_exit_module - Driver Exit Cleanup Routine 2988 * 2989 * igbvf_exit_module is called just before the driver is removed 2990 * from memory. 2991 **/ 2992 static void __exit igbvf_exit_module(void) 2993 { 2994 pci_unregister_driver(&igbvf_driver); 2995 } 2996 module_exit(igbvf_exit_module); 2997 2998 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 2999 MODULE_LICENSE("GPL v2"); 3000 3001 /* netdev.c */ 3002