1 /******************************************************************************* 2 3 Intel(R) 82576 Virtual Function Linux driver 4 Copyright(c) 2009 - 2010 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #include <linux/module.h> 29 #include <linux/types.h> 30 #include <linux/init.h> 31 #include <linux/pci.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pagemap.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/tcp.h> 37 #include <linux/ipv6.h> 38 #include <linux/slab.h> 39 #include <net/checksum.h> 40 #include <net/ip6_checksum.h> 41 #include <linux/mii.h> 42 #include <linux/ethtool.h> 43 #include <linux/if_vlan.h> 44 #include <linux/prefetch.h> 45 46 #include "igbvf.h" 47 48 #define DRV_VERSION "2.0.1-k" 49 char igbvf_driver_name[] = "igbvf"; 50 const char igbvf_driver_version[] = DRV_VERSION; 51 static const char igbvf_driver_string[] = 52 "Intel(R) Gigabit Virtual Function Network Driver"; 53 static const char igbvf_copyright[] = 54 "Copyright (c) 2009 - 2011 Intel Corporation."; 55 56 static int igbvf_poll(struct napi_struct *napi, int budget); 57 static void igbvf_reset(struct igbvf_adapter *); 58 static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 59 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 60 61 static struct igbvf_info igbvf_vf_info = { 62 .mac = e1000_vfadapt, 63 .flags = 0, 64 .pba = 10, 65 .init_ops = e1000_init_function_pointers_vf, 66 }; 67 68 static struct igbvf_info igbvf_i350_vf_info = { 69 .mac = e1000_vfadapt_i350, 70 .flags = 0, 71 .pba = 10, 72 .init_ops = e1000_init_function_pointers_vf, 73 }; 74 75 static const struct igbvf_info *igbvf_info_tbl[] = { 76 [board_vf] = &igbvf_vf_info, 77 [board_i350_vf] = &igbvf_i350_vf_info, 78 }; 79 80 /** 81 * igbvf_desc_unused - calculate if we have unused descriptors 82 **/ 83 static int igbvf_desc_unused(struct igbvf_ring *ring) 84 { 85 if (ring->next_to_clean > ring->next_to_use) 86 return ring->next_to_clean - ring->next_to_use - 1; 87 88 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 89 } 90 91 /** 92 * igbvf_receive_skb - helper function to handle Rx indications 93 * @adapter: board private structure 94 * @status: descriptor status field as written by hardware 95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 96 * @skb: pointer to sk_buff to be indicated to stack 97 **/ 98 static void igbvf_receive_skb(struct igbvf_adapter *adapter, 99 struct net_device *netdev, 100 struct sk_buff *skb, 101 u32 status, u16 vlan) 102 { 103 if (status & E1000_RXD_STAT_VP) { 104 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 105 if (test_bit(vid, adapter->active_vlans)) 106 __vlan_hwaccel_put_tag(skb, vid); 107 } 108 netif_receive_skb(skb); 109 } 110 111 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 112 u32 status_err, struct sk_buff *skb) 113 { 114 skb_checksum_none_assert(skb); 115 116 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 117 if ((status_err & E1000_RXD_STAT_IXSM) || 118 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 119 return; 120 121 /* TCP/UDP checksum error bit is set */ 122 if (status_err & 123 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 124 /* let the stack verify checksum errors */ 125 adapter->hw_csum_err++; 126 return; 127 } 128 129 /* It must be a TCP or UDP packet with a valid checksum */ 130 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 131 skb->ip_summed = CHECKSUM_UNNECESSARY; 132 133 adapter->hw_csum_good++; 134 } 135 136 /** 137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 138 * @rx_ring: address of ring structure to repopulate 139 * @cleaned_count: number of buffers to repopulate 140 **/ 141 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 142 int cleaned_count) 143 { 144 struct igbvf_adapter *adapter = rx_ring->adapter; 145 struct net_device *netdev = adapter->netdev; 146 struct pci_dev *pdev = adapter->pdev; 147 union e1000_adv_rx_desc *rx_desc; 148 struct igbvf_buffer *buffer_info; 149 struct sk_buff *skb; 150 unsigned int i; 151 int bufsz; 152 153 i = rx_ring->next_to_use; 154 buffer_info = &rx_ring->buffer_info[i]; 155 156 if (adapter->rx_ps_hdr_size) 157 bufsz = adapter->rx_ps_hdr_size; 158 else 159 bufsz = adapter->rx_buffer_len; 160 161 while (cleaned_count--) { 162 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 163 164 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 165 if (!buffer_info->page) { 166 buffer_info->page = alloc_page(GFP_ATOMIC); 167 if (!buffer_info->page) { 168 adapter->alloc_rx_buff_failed++; 169 goto no_buffers; 170 } 171 buffer_info->page_offset = 0; 172 } else { 173 buffer_info->page_offset ^= PAGE_SIZE / 2; 174 } 175 buffer_info->page_dma = 176 dma_map_page(&pdev->dev, buffer_info->page, 177 buffer_info->page_offset, 178 PAGE_SIZE / 2, 179 DMA_FROM_DEVICE); 180 } 181 182 if (!buffer_info->skb) { 183 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 184 if (!skb) { 185 adapter->alloc_rx_buff_failed++; 186 goto no_buffers; 187 } 188 189 buffer_info->skb = skb; 190 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 191 bufsz, 192 DMA_FROM_DEVICE); 193 } 194 /* Refresh the desc even if buffer_addrs didn't change because 195 * each write-back erases this info. */ 196 if (adapter->rx_ps_hdr_size) { 197 rx_desc->read.pkt_addr = 198 cpu_to_le64(buffer_info->page_dma); 199 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 200 } else { 201 rx_desc->read.pkt_addr = 202 cpu_to_le64(buffer_info->dma); 203 rx_desc->read.hdr_addr = 0; 204 } 205 206 i++; 207 if (i == rx_ring->count) 208 i = 0; 209 buffer_info = &rx_ring->buffer_info[i]; 210 } 211 212 no_buffers: 213 if (rx_ring->next_to_use != i) { 214 rx_ring->next_to_use = i; 215 if (i == 0) 216 i = (rx_ring->count - 1); 217 else 218 i--; 219 220 /* Force memory writes to complete before letting h/w 221 * know there are new descriptors to fetch. (Only 222 * applicable for weak-ordered memory model archs, 223 * such as IA-64). */ 224 wmb(); 225 writel(i, adapter->hw.hw_addr + rx_ring->tail); 226 } 227 } 228 229 /** 230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 231 * @adapter: board private structure 232 * 233 * the return value indicates whether actual cleaning was done, there 234 * is no guarantee that everything was cleaned 235 **/ 236 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 237 int *work_done, int work_to_do) 238 { 239 struct igbvf_ring *rx_ring = adapter->rx_ring; 240 struct net_device *netdev = adapter->netdev; 241 struct pci_dev *pdev = adapter->pdev; 242 union e1000_adv_rx_desc *rx_desc, *next_rxd; 243 struct igbvf_buffer *buffer_info, *next_buffer; 244 struct sk_buff *skb; 245 bool cleaned = false; 246 int cleaned_count = 0; 247 unsigned int total_bytes = 0, total_packets = 0; 248 unsigned int i; 249 u32 length, hlen, staterr; 250 251 i = rx_ring->next_to_clean; 252 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 253 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 254 255 while (staterr & E1000_RXD_STAT_DD) { 256 if (*work_done >= work_to_do) 257 break; 258 (*work_done)++; 259 rmb(); /* read descriptor and rx_buffer_info after status DD */ 260 261 buffer_info = &rx_ring->buffer_info[i]; 262 263 /* HW will not DMA in data larger than the given buffer, even 264 * if it parses the (NFS, of course) header to be larger. In 265 * that case, it fills the header buffer and spills the rest 266 * into the page. 267 */ 268 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) & 269 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; 270 if (hlen > adapter->rx_ps_hdr_size) 271 hlen = adapter->rx_ps_hdr_size; 272 273 length = le16_to_cpu(rx_desc->wb.upper.length); 274 cleaned = true; 275 cleaned_count++; 276 277 skb = buffer_info->skb; 278 prefetch(skb->data - NET_IP_ALIGN); 279 buffer_info->skb = NULL; 280 if (!adapter->rx_ps_hdr_size) { 281 dma_unmap_single(&pdev->dev, buffer_info->dma, 282 adapter->rx_buffer_len, 283 DMA_FROM_DEVICE); 284 buffer_info->dma = 0; 285 skb_put(skb, length); 286 goto send_up; 287 } 288 289 if (!skb_shinfo(skb)->nr_frags) { 290 dma_unmap_single(&pdev->dev, buffer_info->dma, 291 adapter->rx_ps_hdr_size, 292 DMA_FROM_DEVICE); 293 skb_put(skb, hlen); 294 } 295 296 if (length) { 297 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 298 PAGE_SIZE / 2, 299 DMA_FROM_DEVICE); 300 buffer_info->page_dma = 0; 301 302 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 303 buffer_info->page, 304 buffer_info->page_offset, 305 length); 306 307 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 308 (page_count(buffer_info->page) != 1)) 309 buffer_info->page = NULL; 310 else 311 get_page(buffer_info->page); 312 313 skb->len += length; 314 skb->data_len += length; 315 skb->truesize += PAGE_SIZE / 2; 316 } 317 send_up: 318 i++; 319 if (i == rx_ring->count) 320 i = 0; 321 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 322 prefetch(next_rxd); 323 next_buffer = &rx_ring->buffer_info[i]; 324 325 if (!(staterr & E1000_RXD_STAT_EOP)) { 326 buffer_info->skb = next_buffer->skb; 327 buffer_info->dma = next_buffer->dma; 328 next_buffer->skb = skb; 329 next_buffer->dma = 0; 330 goto next_desc; 331 } 332 333 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 334 dev_kfree_skb_irq(skb); 335 goto next_desc; 336 } 337 338 total_bytes += skb->len; 339 total_packets++; 340 341 igbvf_rx_checksum_adv(adapter, staterr, skb); 342 343 skb->protocol = eth_type_trans(skb, netdev); 344 345 igbvf_receive_skb(adapter, netdev, skb, staterr, 346 rx_desc->wb.upper.vlan); 347 348 next_desc: 349 rx_desc->wb.upper.status_error = 0; 350 351 /* return some buffers to hardware, one at a time is too slow */ 352 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 353 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 354 cleaned_count = 0; 355 } 356 357 /* use prefetched values */ 358 rx_desc = next_rxd; 359 buffer_info = next_buffer; 360 361 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 362 } 363 364 rx_ring->next_to_clean = i; 365 cleaned_count = igbvf_desc_unused(rx_ring); 366 367 if (cleaned_count) 368 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 369 370 adapter->total_rx_packets += total_packets; 371 adapter->total_rx_bytes += total_bytes; 372 adapter->net_stats.rx_bytes += total_bytes; 373 adapter->net_stats.rx_packets += total_packets; 374 return cleaned; 375 } 376 377 static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 378 struct igbvf_buffer *buffer_info) 379 { 380 if (buffer_info->dma) { 381 if (buffer_info->mapped_as_page) 382 dma_unmap_page(&adapter->pdev->dev, 383 buffer_info->dma, 384 buffer_info->length, 385 DMA_TO_DEVICE); 386 else 387 dma_unmap_single(&adapter->pdev->dev, 388 buffer_info->dma, 389 buffer_info->length, 390 DMA_TO_DEVICE); 391 buffer_info->dma = 0; 392 } 393 if (buffer_info->skb) { 394 dev_kfree_skb_any(buffer_info->skb); 395 buffer_info->skb = NULL; 396 } 397 buffer_info->time_stamp = 0; 398 } 399 400 /** 401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 402 * @adapter: board private structure 403 * 404 * Return 0 on success, negative on failure 405 **/ 406 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 407 struct igbvf_ring *tx_ring) 408 { 409 struct pci_dev *pdev = adapter->pdev; 410 int size; 411 412 size = sizeof(struct igbvf_buffer) * tx_ring->count; 413 tx_ring->buffer_info = vzalloc(size); 414 if (!tx_ring->buffer_info) 415 goto err; 416 417 /* round up to nearest 4K */ 418 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 419 tx_ring->size = ALIGN(tx_ring->size, 4096); 420 421 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 422 &tx_ring->dma, GFP_KERNEL); 423 424 if (!tx_ring->desc) 425 goto err; 426 427 tx_ring->adapter = adapter; 428 tx_ring->next_to_use = 0; 429 tx_ring->next_to_clean = 0; 430 431 return 0; 432 err: 433 vfree(tx_ring->buffer_info); 434 dev_err(&adapter->pdev->dev, 435 "Unable to allocate memory for the transmit descriptor ring\n"); 436 return -ENOMEM; 437 } 438 439 /** 440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 441 * @adapter: board private structure 442 * 443 * Returns 0 on success, negative on failure 444 **/ 445 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 446 struct igbvf_ring *rx_ring) 447 { 448 struct pci_dev *pdev = adapter->pdev; 449 int size, desc_len; 450 451 size = sizeof(struct igbvf_buffer) * rx_ring->count; 452 rx_ring->buffer_info = vzalloc(size); 453 if (!rx_ring->buffer_info) 454 goto err; 455 456 desc_len = sizeof(union e1000_adv_rx_desc); 457 458 /* Round up to nearest 4K */ 459 rx_ring->size = rx_ring->count * desc_len; 460 rx_ring->size = ALIGN(rx_ring->size, 4096); 461 462 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 463 &rx_ring->dma, GFP_KERNEL); 464 465 if (!rx_ring->desc) 466 goto err; 467 468 rx_ring->next_to_clean = 0; 469 rx_ring->next_to_use = 0; 470 471 rx_ring->adapter = adapter; 472 473 return 0; 474 475 err: 476 vfree(rx_ring->buffer_info); 477 rx_ring->buffer_info = NULL; 478 dev_err(&adapter->pdev->dev, 479 "Unable to allocate memory for the receive descriptor ring\n"); 480 return -ENOMEM; 481 } 482 483 /** 484 * igbvf_clean_tx_ring - Free Tx Buffers 485 * @tx_ring: ring to be cleaned 486 **/ 487 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 488 { 489 struct igbvf_adapter *adapter = tx_ring->adapter; 490 struct igbvf_buffer *buffer_info; 491 unsigned long size; 492 unsigned int i; 493 494 if (!tx_ring->buffer_info) 495 return; 496 497 /* Free all the Tx ring sk_buffs */ 498 for (i = 0; i < tx_ring->count; i++) { 499 buffer_info = &tx_ring->buffer_info[i]; 500 igbvf_put_txbuf(adapter, buffer_info); 501 } 502 503 size = sizeof(struct igbvf_buffer) * tx_ring->count; 504 memset(tx_ring->buffer_info, 0, size); 505 506 /* Zero out the descriptor ring */ 507 memset(tx_ring->desc, 0, tx_ring->size); 508 509 tx_ring->next_to_use = 0; 510 tx_ring->next_to_clean = 0; 511 512 writel(0, adapter->hw.hw_addr + tx_ring->head); 513 writel(0, adapter->hw.hw_addr + tx_ring->tail); 514 } 515 516 /** 517 * igbvf_free_tx_resources - Free Tx Resources per Queue 518 * @tx_ring: ring to free resources from 519 * 520 * Free all transmit software resources 521 **/ 522 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 523 { 524 struct pci_dev *pdev = tx_ring->adapter->pdev; 525 526 igbvf_clean_tx_ring(tx_ring); 527 528 vfree(tx_ring->buffer_info); 529 tx_ring->buffer_info = NULL; 530 531 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 532 tx_ring->dma); 533 534 tx_ring->desc = NULL; 535 } 536 537 /** 538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 539 * @adapter: board private structure 540 **/ 541 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 542 { 543 struct igbvf_adapter *adapter = rx_ring->adapter; 544 struct igbvf_buffer *buffer_info; 545 struct pci_dev *pdev = adapter->pdev; 546 unsigned long size; 547 unsigned int i; 548 549 if (!rx_ring->buffer_info) 550 return; 551 552 /* Free all the Rx ring sk_buffs */ 553 for (i = 0; i < rx_ring->count; i++) { 554 buffer_info = &rx_ring->buffer_info[i]; 555 if (buffer_info->dma) { 556 if (adapter->rx_ps_hdr_size){ 557 dma_unmap_single(&pdev->dev, buffer_info->dma, 558 adapter->rx_ps_hdr_size, 559 DMA_FROM_DEVICE); 560 } else { 561 dma_unmap_single(&pdev->dev, buffer_info->dma, 562 adapter->rx_buffer_len, 563 DMA_FROM_DEVICE); 564 } 565 buffer_info->dma = 0; 566 } 567 568 if (buffer_info->skb) { 569 dev_kfree_skb(buffer_info->skb); 570 buffer_info->skb = NULL; 571 } 572 573 if (buffer_info->page) { 574 if (buffer_info->page_dma) 575 dma_unmap_page(&pdev->dev, 576 buffer_info->page_dma, 577 PAGE_SIZE / 2, 578 DMA_FROM_DEVICE); 579 put_page(buffer_info->page); 580 buffer_info->page = NULL; 581 buffer_info->page_dma = 0; 582 buffer_info->page_offset = 0; 583 } 584 } 585 586 size = sizeof(struct igbvf_buffer) * rx_ring->count; 587 memset(rx_ring->buffer_info, 0, size); 588 589 /* Zero out the descriptor ring */ 590 memset(rx_ring->desc, 0, rx_ring->size); 591 592 rx_ring->next_to_clean = 0; 593 rx_ring->next_to_use = 0; 594 595 writel(0, adapter->hw.hw_addr + rx_ring->head); 596 writel(0, adapter->hw.hw_addr + rx_ring->tail); 597 } 598 599 /** 600 * igbvf_free_rx_resources - Free Rx Resources 601 * @rx_ring: ring to clean the resources from 602 * 603 * Free all receive software resources 604 **/ 605 606 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 607 { 608 struct pci_dev *pdev = rx_ring->adapter->pdev; 609 610 igbvf_clean_rx_ring(rx_ring); 611 612 vfree(rx_ring->buffer_info); 613 rx_ring->buffer_info = NULL; 614 615 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 616 rx_ring->dma); 617 rx_ring->desc = NULL; 618 } 619 620 /** 621 * igbvf_update_itr - update the dynamic ITR value based on statistics 622 * @adapter: pointer to adapter 623 * @itr_setting: current adapter->itr 624 * @packets: the number of packets during this measurement interval 625 * @bytes: the number of bytes during this measurement interval 626 * 627 * Stores a new ITR value based on packets and byte 628 * counts during the last interrupt. The advantage of per interrupt 629 * computation is faster updates and more accurate ITR for the current 630 * traffic pattern. Constants in this function were computed 631 * based on theoretical maximum wire speed and thresholds were set based 632 * on testing data as well as attempting to minimize response time 633 * while increasing bulk throughput. This functionality is controlled 634 * by the InterruptThrottleRate module parameter. 635 **/ 636 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter, 637 u16 itr_setting, int packets, 638 int bytes) 639 { 640 unsigned int retval = itr_setting; 641 642 if (packets == 0) 643 goto update_itr_done; 644 645 switch (itr_setting) { 646 case lowest_latency: 647 /* handle TSO and jumbo frames */ 648 if (bytes/packets > 8000) 649 retval = bulk_latency; 650 else if ((packets < 5) && (bytes > 512)) 651 retval = low_latency; 652 break; 653 case low_latency: /* 50 usec aka 20000 ints/s */ 654 if (bytes > 10000) { 655 /* this if handles the TSO accounting */ 656 if (bytes/packets > 8000) 657 retval = bulk_latency; 658 else if ((packets < 10) || ((bytes/packets) > 1200)) 659 retval = bulk_latency; 660 else if ((packets > 35)) 661 retval = lowest_latency; 662 } else if (bytes/packets > 2000) { 663 retval = bulk_latency; 664 } else if (packets <= 2 && bytes < 512) { 665 retval = lowest_latency; 666 } 667 break; 668 case bulk_latency: /* 250 usec aka 4000 ints/s */ 669 if (bytes > 25000) { 670 if (packets > 35) 671 retval = low_latency; 672 } else if (bytes < 6000) { 673 retval = low_latency; 674 } 675 break; 676 } 677 678 update_itr_done: 679 return retval; 680 } 681 682 static void igbvf_set_itr(struct igbvf_adapter *adapter) 683 { 684 struct e1000_hw *hw = &adapter->hw; 685 u16 current_itr; 686 u32 new_itr = adapter->itr; 687 688 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr, 689 adapter->total_tx_packets, 690 adapter->total_tx_bytes); 691 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 692 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 693 adapter->tx_itr = low_latency; 694 695 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr, 696 adapter->total_rx_packets, 697 adapter->total_rx_bytes); 698 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 699 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 700 adapter->rx_itr = low_latency; 701 702 current_itr = max(adapter->rx_itr, adapter->tx_itr); 703 704 switch (current_itr) { 705 /* counts and packets in update_itr are dependent on these numbers */ 706 case lowest_latency: 707 new_itr = 70000; 708 break; 709 case low_latency: 710 new_itr = 20000; /* aka hwitr = ~200 */ 711 break; 712 case bulk_latency: 713 new_itr = 4000; 714 break; 715 default: 716 break; 717 } 718 719 if (new_itr != adapter->itr) { 720 /* 721 * this attempts to bias the interrupt rate towards Bulk 722 * by adding intermediate steps when interrupt rate is 723 * increasing 724 */ 725 new_itr = new_itr > adapter->itr ? 726 min(adapter->itr + (new_itr >> 2), new_itr) : 727 new_itr; 728 adapter->itr = new_itr; 729 adapter->rx_ring->itr_val = 1952; 730 731 if (adapter->msix_entries) 732 adapter->rx_ring->set_itr = 1; 733 else 734 ew32(ITR, 1952); 735 } 736 } 737 738 /** 739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 740 * @adapter: board private structure 741 * returns true if ring is completely cleaned 742 **/ 743 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 744 { 745 struct igbvf_adapter *adapter = tx_ring->adapter; 746 struct net_device *netdev = adapter->netdev; 747 struct igbvf_buffer *buffer_info; 748 struct sk_buff *skb; 749 union e1000_adv_tx_desc *tx_desc, *eop_desc; 750 unsigned int total_bytes = 0, total_packets = 0; 751 unsigned int i, eop, count = 0; 752 bool cleaned = false; 753 754 i = tx_ring->next_to_clean; 755 eop = tx_ring->buffer_info[i].next_to_watch; 756 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); 757 758 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && 759 (count < tx_ring->count)) { 760 rmb(); /* read buffer_info after eop_desc status */ 761 for (cleaned = false; !cleaned; count++) { 762 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 763 buffer_info = &tx_ring->buffer_info[i]; 764 cleaned = (i == eop); 765 skb = buffer_info->skb; 766 767 if (skb) { 768 unsigned int segs, bytecount; 769 770 /* gso_segs is currently only valid for tcp */ 771 segs = skb_shinfo(skb)->gso_segs ?: 1; 772 /* multiply data chunks by size of headers */ 773 bytecount = ((segs - 1) * skb_headlen(skb)) + 774 skb->len; 775 total_packets += segs; 776 total_bytes += bytecount; 777 } 778 779 igbvf_put_txbuf(adapter, buffer_info); 780 tx_desc->wb.status = 0; 781 782 i++; 783 if (i == tx_ring->count) 784 i = 0; 785 } 786 eop = tx_ring->buffer_info[i].next_to_watch; 787 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); 788 } 789 790 tx_ring->next_to_clean = i; 791 792 if (unlikely(count && 793 netif_carrier_ok(netdev) && 794 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 795 /* Make sure that anybody stopping the queue after this 796 * sees the new next_to_clean. 797 */ 798 smp_mb(); 799 if (netif_queue_stopped(netdev) && 800 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 801 netif_wake_queue(netdev); 802 ++adapter->restart_queue; 803 } 804 } 805 806 adapter->net_stats.tx_bytes += total_bytes; 807 adapter->net_stats.tx_packets += total_packets; 808 return count < tx_ring->count; 809 } 810 811 static irqreturn_t igbvf_msix_other(int irq, void *data) 812 { 813 struct net_device *netdev = data; 814 struct igbvf_adapter *adapter = netdev_priv(netdev); 815 struct e1000_hw *hw = &adapter->hw; 816 817 adapter->int_counter1++; 818 819 netif_carrier_off(netdev); 820 hw->mac.get_link_status = 1; 821 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 822 mod_timer(&adapter->watchdog_timer, jiffies + 1); 823 824 ew32(EIMS, adapter->eims_other); 825 826 return IRQ_HANDLED; 827 } 828 829 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 830 { 831 struct net_device *netdev = data; 832 struct igbvf_adapter *adapter = netdev_priv(netdev); 833 struct e1000_hw *hw = &adapter->hw; 834 struct igbvf_ring *tx_ring = adapter->tx_ring; 835 836 837 adapter->total_tx_bytes = 0; 838 adapter->total_tx_packets = 0; 839 840 /* auto mask will automatically reenable the interrupt when we write 841 * EICS */ 842 if (!igbvf_clean_tx_irq(tx_ring)) 843 /* Ring was not completely cleaned, so fire another interrupt */ 844 ew32(EICS, tx_ring->eims_value); 845 else 846 ew32(EIMS, tx_ring->eims_value); 847 848 return IRQ_HANDLED; 849 } 850 851 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 852 { 853 struct net_device *netdev = data; 854 struct igbvf_adapter *adapter = netdev_priv(netdev); 855 856 adapter->int_counter0++; 857 858 /* Write the ITR value calculated at the end of the 859 * previous interrupt. 860 */ 861 if (adapter->rx_ring->set_itr) { 862 writel(adapter->rx_ring->itr_val, 863 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 864 adapter->rx_ring->set_itr = 0; 865 } 866 867 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 868 adapter->total_rx_bytes = 0; 869 adapter->total_rx_packets = 0; 870 __napi_schedule(&adapter->rx_ring->napi); 871 } 872 873 return IRQ_HANDLED; 874 } 875 876 #define IGBVF_NO_QUEUE -1 877 878 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 879 int tx_queue, int msix_vector) 880 { 881 struct e1000_hw *hw = &adapter->hw; 882 u32 ivar, index; 883 884 /* 82576 uses a table-based method for assigning vectors. 885 Each queue has a single entry in the table to which we write 886 a vector number along with a "valid" bit. Sadly, the layout 887 of the table is somewhat counterintuitive. */ 888 if (rx_queue > IGBVF_NO_QUEUE) { 889 index = (rx_queue >> 1); 890 ivar = array_er32(IVAR0, index); 891 if (rx_queue & 0x1) { 892 /* vector goes into third byte of register */ 893 ivar = ivar & 0xFF00FFFF; 894 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 895 } else { 896 /* vector goes into low byte of register */ 897 ivar = ivar & 0xFFFFFF00; 898 ivar |= msix_vector | E1000_IVAR_VALID; 899 } 900 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector; 901 array_ew32(IVAR0, index, ivar); 902 } 903 if (tx_queue > IGBVF_NO_QUEUE) { 904 index = (tx_queue >> 1); 905 ivar = array_er32(IVAR0, index); 906 if (tx_queue & 0x1) { 907 /* vector goes into high byte of register */ 908 ivar = ivar & 0x00FFFFFF; 909 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 910 } else { 911 /* vector goes into second byte of register */ 912 ivar = ivar & 0xFFFF00FF; 913 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 914 } 915 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector; 916 array_ew32(IVAR0, index, ivar); 917 } 918 } 919 920 /** 921 * igbvf_configure_msix - Configure MSI-X hardware 922 * 923 * igbvf_configure_msix sets up the hardware to properly 924 * generate MSI-X interrupts. 925 **/ 926 static void igbvf_configure_msix(struct igbvf_adapter *adapter) 927 { 928 u32 tmp; 929 struct e1000_hw *hw = &adapter->hw; 930 struct igbvf_ring *tx_ring = adapter->tx_ring; 931 struct igbvf_ring *rx_ring = adapter->rx_ring; 932 int vector = 0; 933 934 adapter->eims_enable_mask = 0; 935 936 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 937 adapter->eims_enable_mask |= tx_ring->eims_value; 938 if (tx_ring->itr_val) 939 writel(tx_ring->itr_val, 940 hw->hw_addr + tx_ring->itr_register); 941 else 942 writel(1952, hw->hw_addr + tx_ring->itr_register); 943 944 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 945 adapter->eims_enable_mask |= rx_ring->eims_value; 946 if (rx_ring->itr_val) 947 writel(rx_ring->itr_val, 948 hw->hw_addr + rx_ring->itr_register); 949 else 950 writel(1952, hw->hw_addr + rx_ring->itr_register); 951 952 /* set vector for other causes, i.e. link changes */ 953 954 tmp = (vector++ | E1000_IVAR_VALID); 955 956 ew32(IVAR_MISC, tmp); 957 958 adapter->eims_enable_mask = (1 << (vector)) - 1; 959 adapter->eims_other = 1 << (vector - 1); 960 e1e_flush(); 961 } 962 963 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 964 { 965 if (adapter->msix_entries) { 966 pci_disable_msix(adapter->pdev); 967 kfree(adapter->msix_entries); 968 adapter->msix_entries = NULL; 969 } 970 } 971 972 /** 973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 974 * 975 * Attempt to configure interrupts using the best available 976 * capabilities of the hardware and kernel. 977 **/ 978 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 979 { 980 int err = -ENOMEM; 981 int i; 982 983 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */ 984 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 985 GFP_KERNEL); 986 if (adapter->msix_entries) { 987 for (i = 0; i < 3; i++) 988 adapter->msix_entries[i].entry = i; 989 990 err = pci_enable_msix(adapter->pdev, 991 adapter->msix_entries, 3); 992 } 993 994 if (err) { 995 /* MSI-X failed */ 996 dev_err(&adapter->pdev->dev, 997 "Failed to initialize MSI-X interrupts.\n"); 998 igbvf_reset_interrupt_capability(adapter); 999 } 1000 } 1001 1002 /** 1003 * igbvf_request_msix - Initialize MSI-X interrupts 1004 * 1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1006 * kernel. 1007 **/ 1008 static int igbvf_request_msix(struct igbvf_adapter *adapter) 1009 { 1010 struct net_device *netdev = adapter->netdev; 1011 int err = 0, vector = 0; 1012 1013 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1014 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1015 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1016 } else { 1017 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1018 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1019 } 1020 1021 err = request_irq(adapter->msix_entries[vector].vector, 1022 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1023 netdev); 1024 if (err) 1025 goto out; 1026 1027 adapter->tx_ring->itr_register = E1000_EITR(vector); 1028 adapter->tx_ring->itr_val = 1952; 1029 vector++; 1030 1031 err = request_irq(adapter->msix_entries[vector].vector, 1032 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1033 netdev); 1034 if (err) 1035 goto out; 1036 1037 adapter->rx_ring->itr_register = E1000_EITR(vector); 1038 adapter->rx_ring->itr_val = 1952; 1039 vector++; 1040 1041 err = request_irq(adapter->msix_entries[vector].vector, 1042 igbvf_msix_other, 0, netdev->name, netdev); 1043 if (err) 1044 goto out; 1045 1046 igbvf_configure_msix(adapter); 1047 return 0; 1048 out: 1049 return err; 1050 } 1051 1052 /** 1053 * igbvf_alloc_queues - Allocate memory for all rings 1054 * @adapter: board private structure to initialize 1055 **/ 1056 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter) 1057 { 1058 struct net_device *netdev = adapter->netdev; 1059 1060 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1061 if (!adapter->tx_ring) 1062 return -ENOMEM; 1063 1064 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1065 if (!adapter->rx_ring) { 1066 kfree(adapter->tx_ring); 1067 return -ENOMEM; 1068 } 1069 1070 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * igbvf_request_irq - initialize interrupts 1077 * 1078 * Attempts to configure interrupts using the best available 1079 * capabilities of the hardware and kernel. 1080 **/ 1081 static int igbvf_request_irq(struct igbvf_adapter *adapter) 1082 { 1083 int err = -1; 1084 1085 /* igbvf supports msi-x only */ 1086 if (adapter->msix_entries) 1087 err = igbvf_request_msix(adapter); 1088 1089 if (!err) 1090 return err; 1091 1092 dev_err(&adapter->pdev->dev, 1093 "Unable to allocate interrupt, Error: %d\n", err); 1094 1095 return err; 1096 } 1097 1098 static void igbvf_free_irq(struct igbvf_adapter *adapter) 1099 { 1100 struct net_device *netdev = adapter->netdev; 1101 int vector; 1102 1103 if (adapter->msix_entries) { 1104 for (vector = 0; vector < 3; vector++) 1105 free_irq(adapter->msix_entries[vector].vector, netdev); 1106 } 1107 } 1108 1109 /** 1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1111 **/ 1112 static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1113 { 1114 struct e1000_hw *hw = &adapter->hw; 1115 1116 ew32(EIMC, ~0); 1117 1118 if (adapter->msix_entries) 1119 ew32(EIAC, 0); 1120 } 1121 1122 /** 1123 * igbvf_irq_enable - Enable default interrupt generation settings 1124 **/ 1125 static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1126 { 1127 struct e1000_hw *hw = &adapter->hw; 1128 1129 ew32(EIAC, adapter->eims_enable_mask); 1130 ew32(EIAM, adapter->eims_enable_mask); 1131 ew32(EIMS, adapter->eims_enable_mask); 1132 } 1133 1134 /** 1135 * igbvf_poll - NAPI Rx polling callback 1136 * @napi: struct associated with this polling callback 1137 * @budget: amount of packets driver is allowed to process this poll 1138 **/ 1139 static int igbvf_poll(struct napi_struct *napi, int budget) 1140 { 1141 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1142 struct igbvf_adapter *adapter = rx_ring->adapter; 1143 struct e1000_hw *hw = &adapter->hw; 1144 int work_done = 0; 1145 1146 igbvf_clean_rx_irq(adapter, &work_done, budget); 1147 1148 /* If not enough Rx work done, exit the polling mode */ 1149 if (work_done < budget) { 1150 napi_complete(napi); 1151 1152 if (adapter->itr_setting & 3) 1153 igbvf_set_itr(adapter); 1154 1155 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1156 ew32(EIMS, adapter->rx_ring->eims_value); 1157 } 1158 1159 return work_done; 1160 } 1161 1162 /** 1163 * igbvf_set_rlpml - set receive large packet maximum length 1164 * @adapter: board private structure 1165 * 1166 * Configure the maximum size of packets that will be received 1167 */ 1168 static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1169 { 1170 int max_frame_size; 1171 struct e1000_hw *hw = &adapter->hw; 1172 1173 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1174 e1000_rlpml_set_vf(hw, max_frame_size); 1175 } 1176 1177 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 1178 { 1179 struct igbvf_adapter *adapter = netdev_priv(netdev); 1180 struct e1000_hw *hw = &adapter->hw; 1181 1182 if (hw->mac.ops.set_vfta(hw, vid, true)) 1183 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); 1184 else 1185 set_bit(vid, adapter->active_vlans); 1186 } 1187 1188 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 1189 { 1190 struct igbvf_adapter *adapter = netdev_priv(netdev); 1191 struct e1000_hw *hw = &adapter->hw; 1192 1193 igbvf_irq_disable(adapter); 1194 1195 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1196 igbvf_irq_enable(adapter); 1197 1198 if (hw->mac.ops.set_vfta(hw, vid, false)) 1199 dev_err(&adapter->pdev->dev, 1200 "Failed to remove vlan id %d\n", vid); 1201 else 1202 clear_bit(vid, adapter->active_vlans); 1203 } 1204 1205 static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1206 { 1207 u16 vid; 1208 1209 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1210 igbvf_vlan_rx_add_vid(adapter->netdev, vid); 1211 } 1212 1213 /** 1214 * igbvf_configure_tx - Configure Transmit Unit after Reset 1215 * @adapter: board private structure 1216 * 1217 * Configure the Tx unit of the MAC after a reset. 1218 **/ 1219 static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1220 { 1221 struct e1000_hw *hw = &adapter->hw; 1222 struct igbvf_ring *tx_ring = adapter->tx_ring; 1223 u64 tdba; 1224 u32 txdctl, dca_txctrl; 1225 1226 /* disable transmits */ 1227 txdctl = er32(TXDCTL(0)); 1228 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1229 e1e_flush(); 1230 msleep(10); 1231 1232 /* Setup the HW Tx Head and Tail descriptor pointers */ 1233 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1234 tdba = tx_ring->dma; 1235 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1236 ew32(TDBAH(0), (tdba >> 32)); 1237 ew32(TDH(0), 0); 1238 ew32(TDT(0), 0); 1239 tx_ring->head = E1000_TDH(0); 1240 tx_ring->tail = E1000_TDT(0); 1241 1242 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1243 * MUST be delivered in order or it will completely screw up 1244 * our bookeeping. 1245 */ 1246 dca_txctrl = er32(DCA_TXCTRL(0)); 1247 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1248 ew32(DCA_TXCTRL(0), dca_txctrl); 1249 1250 /* enable transmits */ 1251 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1252 ew32(TXDCTL(0), txdctl); 1253 1254 /* Setup Transmit Descriptor Settings for eop descriptor */ 1255 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1256 1257 /* enable Report Status bit */ 1258 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1259 } 1260 1261 /** 1262 * igbvf_setup_srrctl - configure the receive control registers 1263 * @adapter: Board private structure 1264 **/ 1265 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1266 { 1267 struct e1000_hw *hw = &adapter->hw; 1268 u32 srrctl = 0; 1269 1270 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1271 E1000_SRRCTL_BSIZEHDR_MASK | 1272 E1000_SRRCTL_BSIZEPKT_MASK); 1273 1274 /* Enable queue drop to avoid head of line blocking */ 1275 srrctl |= E1000_SRRCTL_DROP_EN; 1276 1277 /* Setup buffer sizes */ 1278 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1279 E1000_SRRCTL_BSIZEPKT_SHIFT; 1280 1281 if (adapter->rx_buffer_len < 2048) { 1282 adapter->rx_ps_hdr_size = 0; 1283 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1284 } else { 1285 adapter->rx_ps_hdr_size = 128; 1286 srrctl |= adapter->rx_ps_hdr_size << 1287 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1288 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1289 } 1290 1291 ew32(SRRCTL(0), srrctl); 1292 } 1293 1294 /** 1295 * igbvf_configure_rx - Configure Receive Unit after Reset 1296 * @adapter: board private structure 1297 * 1298 * Configure the Rx unit of the MAC after a reset. 1299 **/ 1300 static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1301 { 1302 struct e1000_hw *hw = &adapter->hw; 1303 struct igbvf_ring *rx_ring = adapter->rx_ring; 1304 u64 rdba; 1305 u32 rdlen, rxdctl; 1306 1307 /* disable receives */ 1308 rxdctl = er32(RXDCTL(0)); 1309 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1310 e1e_flush(); 1311 msleep(10); 1312 1313 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc); 1314 1315 /* 1316 * Setup the HW Rx Head and Tail Descriptor Pointers and 1317 * the Base and Length of the Rx Descriptor Ring 1318 */ 1319 rdba = rx_ring->dma; 1320 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1321 ew32(RDBAH(0), (rdba >> 32)); 1322 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1323 rx_ring->head = E1000_RDH(0); 1324 rx_ring->tail = E1000_RDT(0); 1325 ew32(RDH(0), 0); 1326 ew32(RDT(0), 0); 1327 1328 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1329 rxdctl &= 0xFFF00000; 1330 rxdctl |= IGBVF_RX_PTHRESH; 1331 rxdctl |= IGBVF_RX_HTHRESH << 8; 1332 rxdctl |= IGBVF_RX_WTHRESH << 16; 1333 1334 igbvf_set_rlpml(adapter); 1335 1336 /* enable receives */ 1337 ew32(RXDCTL(0), rxdctl); 1338 } 1339 1340 /** 1341 * igbvf_set_multi - Multicast and Promiscuous mode set 1342 * @netdev: network interface device structure 1343 * 1344 * The set_multi entry point is called whenever the multicast address 1345 * list or the network interface flags are updated. This routine is 1346 * responsible for configuring the hardware for proper multicast, 1347 * promiscuous mode, and all-multi behavior. 1348 **/ 1349 static void igbvf_set_multi(struct net_device *netdev) 1350 { 1351 struct igbvf_adapter *adapter = netdev_priv(netdev); 1352 struct e1000_hw *hw = &adapter->hw; 1353 struct netdev_hw_addr *ha; 1354 u8 *mta_list = NULL; 1355 int i; 1356 1357 if (!netdev_mc_empty(netdev)) { 1358 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 1359 if (!mta_list) { 1360 dev_err(&adapter->pdev->dev, 1361 "failed to allocate multicast filter list\n"); 1362 return; 1363 } 1364 } 1365 1366 /* prepare a packed array of only addresses. */ 1367 i = 0; 1368 netdev_for_each_mc_addr(ha, netdev) 1369 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1370 1371 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1372 kfree(mta_list); 1373 } 1374 1375 /** 1376 * igbvf_configure - configure the hardware for Rx and Tx 1377 * @adapter: private board structure 1378 **/ 1379 static void igbvf_configure(struct igbvf_adapter *adapter) 1380 { 1381 igbvf_set_multi(adapter->netdev); 1382 1383 igbvf_restore_vlan(adapter); 1384 1385 igbvf_configure_tx(adapter); 1386 igbvf_setup_srrctl(adapter); 1387 igbvf_configure_rx(adapter); 1388 igbvf_alloc_rx_buffers(adapter->rx_ring, 1389 igbvf_desc_unused(adapter->rx_ring)); 1390 } 1391 1392 /* igbvf_reset - bring the hardware into a known good state 1393 * 1394 * This function boots the hardware and enables some settings that 1395 * require a configuration cycle of the hardware - those cannot be 1396 * set/changed during runtime. After reset the device needs to be 1397 * properly configured for Rx, Tx etc. 1398 */ 1399 static void igbvf_reset(struct igbvf_adapter *adapter) 1400 { 1401 struct e1000_mac_info *mac = &adapter->hw.mac; 1402 struct net_device *netdev = adapter->netdev; 1403 struct e1000_hw *hw = &adapter->hw; 1404 1405 /* Allow time for pending master requests to run */ 1406 if (mac->ops.reset_hw(hw)) 1407 dev_err(&adapter->pdev->dev, "PF still resetting\n"); 1408 1409 mac->ops.init_hw(hw); 1410 1411 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1412 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 1413 netdev->addr_len); 1414 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1415 netdev->addr_len); 1416 } 1417 1418 adapter->last_reset = jiffies; 1419 } 1420 1421 int igbvf_up(struct igbvf_adapter *adapter) 1422 { 1423 struct e1000_hw *hw = &adapter->hw; 1424 1425 /* hardware has been reset, we need to reload some things */ 1426 igbvf_configure(adapter); 1427 1428 clear_bit(__IGBVF_DOWN, &adapter->state); 1429 1430 napi_enable(&adapter->rx_ring->napi); 1431 if (adapter->msix_entries) 1432 igbvf_configure_msix(adapter); 1433 1434 /* Clear any pending interrupts. */ 1435 er32(EICR); 1436 igbvf_irq_enable(adapter); 1437 1438 /* start the watchdog */ 1439 hw->mac.get_link_status = 1; 1440 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1441 1442 1443 return 0; 1444 } 1445 1446 void igbvf_down(struct igbvf_adapter *adapter) 1447 { 1448 struct net_device *netdev = adapter->netdev; 1449 struct e1000_hw *hw = &adapter->hw; 1450 u32 rxdctl, txdctl; 1451 1452 /* 1453 * signal that we're down so the interrupt handler does not 1454 * reschedule our watchdog timer 1455 */ 1456 set_bit(__IGBVF_DOWN, &adapter->state); 1457 1458 /* disable receives in the hardware */ 1459 rxdctl = er32(RXDCTL(0)); 1460 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1461 1462 netif_stop_queue(netdev); 1463 1464 /* disable transmits in the hardware */ 1465 txdctl = er32(TXDCTL(0)); 1466 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1467 1468 /* flush both disables and wait for them to finish */ 1469 e1e_flush(); 1470 msleep(10); 1471 1472 napi_disable(&adapter->rx_ring->napi); 1473 1474 igbvf_irq_disable(adapter); 1475 1476 del_timer_sync(&adapter->watchdog_timer); 1477 1478 netif_carrier_off(netdev); 1479 1480 /* record the stats before reset*/ 1481 igbvf_update_stats(adapter); 1482 1483 adapter->link_speed = 0; 1484 adapter->link_duplex = 0; 1485 1486 igbvf_reset(adapter); 1487 igbvf_clean_tx_ring(adapter->tx_ring); 1488 igbvf_clean_rx_ring(adapter->rx_ring); 1489 } 1490 1491 void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1492 { 1493 might_sleep(); 1494 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1495 msleep(1); 1496 igbvf_down(adapter); 1497 igbvf_up(adapter); 1498 clear_bit(__IGBVF_RESETTING, &adapter->state); 1499 } 1500 1501 /** 1502 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1503 * @adapter: board private structure to initialize 1504 * 1505 * igbvf_sw_init initializes the Adapter private data structure. 1506 * Fields are initialized based on PCI device information and 1507 * OS network device settings (MTU size). 1508 **/ 1509 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter) 1510 { 1511 struct net_device *netdev = adapter->netdev; 1512 s32 rc; 1513 1514 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1515 adapter->rx_ps_hdr_size = 0; 1516 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1517 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1518 1519 adapter->tx_int_delay = 8; 1520 adapter->tx_abs_int_delay = 32; 1521 adapter->rx_int_delay = 0; 1522 adapter->rx_abs_int_delay = 8; 1523 adapter->itr_setting = 3; 1524 adapter->itr = 20000; 1525 1526 /* Set various function pointers */ 1527 adapter->ei->init_ops(&adapter->hw); 1528 1529 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1530 if (rc) 1531 return rc; 1532 1533 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1534 if (rc) 1535 return rc; 1536 1537 igbvf_set_interrupt_capability(adapter); 1538 1539 if (igbvf_alloc_queues(adapter)) 1540 return -ENOMEM; 1541 1542 spin_lock_init(&adapter->tx_queue_lock); 1543 1544 /* Explicitly disable IRQ since the NIC can be in any state. */ 1545 igbvf_irq_disable(adapter); 1546 1547 spin_lock_init(&adapter->stats_lock); 1548 1549 set_bit(__IGBVF_DOWN, &adapter->state); 1550 return 0; 1551 } 1552 1553 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1554 { 1555 struct e1000_hw *hw = &adapter->hw; 1556 1557 adapter->stats.last_gprc = er32(VFGPRC); 1558 adapter->stats.last_gorc = er32(VFGORC); 1559 adapter->stats.last_gptc = er32(VFGPTC); 1560 adapter->stats.last_gotc = er32(VFGOTC); 1561 adapter->stats.last_mprc = er32(VFMPRC); 1562 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1563 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1564 adapter->stats.last_gorlbc = er32(VFGORLBC); 1565 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1566 1567 adapter->stats.base_gprc = er32(VFGPRC); 1568 adapter->stats.base_gorc = er32(VFGORC); 1569 adapter->stats.base_gptc = er32(VFGPTC); 1570 adapter->stats.base_gotc = er32(VFGOTC); 1571 adapter->stats.base_mprc = er32(VFMPRC); 1572 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1573 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1574 adapter->stats.base_gorlbc = er32(VFGORLBC); 1575 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1576 } 1577 1578 /** 1579 * igbvf_open - Called when a network interface is made active 1580 * @netdev: network interface device structure 1581 * 1582 * Returns 0 on success, negative value on failure 1583 * 1584 * The open entry point is called when a network interface is made 1585 * active by the system (IFF_UP). At this point all resources needed 1586 * for transmit and receive operations are allocated, the interrupt 1587 * handler is registered with the OS, the watchdog timer is started, 1588 * and the stack is notified that the interface is ready. 1589 **/ 1590 static int igbvf_open(struct net_device *netdev) 1591 { 1592 struct igbvf_adapter *adapter = netdev_priv(netdev); 1593 struct e1000_hw *hw = &adapter->hw; 1594 int err; 1595 1596 /* disallow open during test */ 1597 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1598 return -EBUSY; 1599 1600 /* allocate transmit descriptors */ 1601 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1602 if (err) 1603 goto err_setup_tx; 1604 1605 /* allocate receive descriptors */ 1606 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1607 if (err) 1608 goto err_setup_rx; 1609 1610 /* 1611 * before we allocate an interrupt, we must be ready to handle it. 1612 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1613 * as soon as we call pci_request_irq, so we have to setup our 1614 * clean_rx handler before we do so. 1615 */ 1616 igbvf_configure(adapter); 1617 1618 err = igbvf_request_irq(adapter); 1619 if (err) 1620 goto err_req_irq; 1621 1622 /* From here on the code is the same as igbvf_up() */ 1623 clear_bit(__IGBVF_DOWN, &adapter->state); 1624 1625 napi_enable(&adapter->rx_ring->napi); 1626 1627 /* clear any pending interrupts */ 1628 er32(EICR); 1629 1630 igbvf_irq_enable(adapter); 1631 1632 /* start the watchdog */ 1633 hw->mac.get_link_status = 1; 1634 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1635 1636 return 0; 1637 1638 err_req_irq: 1639 igbvf_free_rx_resources(adapter->rx_ring); 1640 err_setup_rx: 1641 igbvf_free_tx_resources(adapter->tx_ring); 1642 err_setup_tx: 1643 igbvf_reset(adapter); 1644 1645 return err; 1646 } 1647 1648 /** 1649 * igbvf_close - Disables a network interface 1650 * @netdev: network interface device structure 1651 * 1652 * Returns 0, this is not allowed to fail 1653 * 1654 * The close entry point is called when an interface is de-activated 1655 * by the OS. The hardware is still under the drivers control, but 1656 * needs to be disabled. A global MAC reset is issued to stop the 1657 * hardware, and all transmit and receive resources are freed. 1658 **/ 1659 static int igbvf_close(struct net_device *netdev) 1660 { 1661 struct igbvf_adapter *adapter = netdev_priv(netdev); 1662 1663 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1664 igbvf_down(adapter); 1665 1666 igbvf_free_irq(adapter); 1667 1668 igbvf_free_tx_resources(adapter->tx_ring); 1669 igbvf_free_rx_resources(adapter->rx_ring); 1670 1671 return 0; 1672 } 1673 /** 1674 * igbvf_set_mac - Change the Ethernet Address of the NIC 1675 * @netdev: network interface device structure 1676 * @p: pointer to an address structure 1677 * 1678 * Returns 0 on success, negative on failure 1679 **/ 1680 static int igbvf_set_mac(struct net_device *netdev, void *p) 1681 { 1682 struct igbvf_adapter *adapter = netdev_priv(netdev); 1683 struct e1000_hw *hw = &adapter->hw; 1684 struct sockaddr *addr = p; 1685 1686 if (!is_valid_ether_addr(addr->sa_data)) 1687 return -EADDRNOTAVAIL; 1688 1689 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1690 1691 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1692 1693 if (memcmp(addr->sa_data, hw->mac.addr, 6)) 1694 return -EADDRNOTAVAIL; 1695 1696 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1697 1698 return 0; 1699 } 1700 1701 #define UPDATE_VF_COUNTER(reg, name) \ 1702 { \ 1703 u32 current_counter = er32(reg); \ 1704 if (current_counter < adapter->stats.last_##name) \ 1705 adapter->stats.name += 0x100000000LL; \ 1706 adapter->stats.last_##name = current_counter; \ 1707 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1708 adapter->stats.name |= current_counter; \ 1709 } 1710 1711 /** 1712 * igbvf_update_stats - Update the board statistics counters 1713 * @adapter: board private structure 1714 **/ 1715 void igbvf_update_stats(struct igbvf_adapter *adapter) 1716 { 1717 struct e1000_hw *hw = &adapter->hw; 1718 struct pci_dev *pdev = adapter->pdev; 1719 1720 /* 1721 * Prevent stats update while adapter is being reset, link is down 1722 * or if the pci connection is down. 1723 */ 1724 if (adapter->link_speed == 0) 1725 return; 1726 1727 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1728 return; 1729 1730 if (pci_channel_offline(pdev)) 1731 return; 1732 1733 UPDATE_VF_COUNTER(VFGPRC, gprc); 1734 UPDATE_VF_COUNTER(VFGORC, gorc); 1735 UPDATE_VF_COUNTER(VFGPTC, gptc); 1736 UPDATE_VF_COUNTER(VFGOTC, gotc); 1737 UPDATE_VF_COUNTER(VFMPRC, mprc); 1738 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1739 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1740 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1741 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1742 1743 /* Fill out the OS statistics structure */ 1744 adapter->net_stats.multicast = adapter->stats.mprc; 1745 } 1746 1747 static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1748 { 1749 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n", 1750 adapter->link_speed, 1751 ((adapter->link_duplex == FULL_DUPLEX) ? 1752 "Full Duplex" : "Half Duplex")); 1753 } 1754 1755 static bool igbvf_has_link(struct igbvf_adapter *adapter) 1756 { 1757 struct e1000_hw *hw = &adapter->hw; 1758 s32 ret_val = E1000_SUCCESS; 1759 bool link_active; 1760 1761 /* If interface is down, stay link down */ 1762 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1763 return false; 1764 1765 ret_val = hw->mac.ops.check_for_link(hw); 1766 link_active = !hw->mac.get_link_status; 1767 1768 /* if check for link returns error we will need to reset */ 1769 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1770 schedule_work(&adapter->reset_task); 1771 1772 return link_active; 1773 } 1774 1775 /** 1776 * igbvf_watchdog - Timer Call-back 1777 * @data: pointer to adapter cast into an unsigned long 1778 **/ 1779 static void igbvf_watchdog(unsigned long data) 1780 { 1781 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data; 1782 1783 /* Do the rest outside of interrupt context */ 1784 schedule_work(&adapter->watchdog_task); 1785 } 1786 1787 static void igbvf_watchdog_task(struct work_struct *work) 1788 { 1789 struct igbvf_adapter *adapter = container_of(work, 1790 struct igbvf_adapter, 1791 watchdog_task); 1792 struct net_device *netdev = adapter->netdev; 1793 struct e1000_mac_info *mac = &adapter->hw.mac; 1794 struct igbvf_ring *tx_ring = adapter->tx_ring; 1795 struct e1000_hw *hw = &adapter->hw; 1796 u32 link; 1797 int tx_pending = 0; 1798 1799 link = igbvf_has_link(adapter); 1800 1801 if (link) { 1802 if (!netif_carrier_ok(netdev)) { 1803 mac->ops.get_link_up_info(&adapter->hw, 1804 &adapter->link_speed, 1805 &adapter->link_duplex); 1806 igbvf_print_link_info(adapter); 1807 1808 netif_carrier_on(netdev); 1809 netif_wake_queue(netdev); 1810 } 1811 } else { 1812 if (netif_carrier_ok(netdev)) { 1813 adapter->link_speed = 0; 1814 adapter->link_duplex = 0; 1815 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1816 netif_carrier_off(netdev); 1817 netif_stop_queue(netdev); 1818 } 1819 } 1820 1821 if (netif_carrier_ok(netdev)) { 1822 igbvf_update_stats(adapter); 1823 } else { 1824 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1825 tx_ring->count); 1826 if (tx_pending) { 1827 /* 1828 * We've lost link, so the controller stops DMA, 1829 * but we've got queued Tx work that's never going 1830 * to get done, so reset controller to flush Tx. 1831 * (Do the reset outside of interrupt context). 1832 */ 1833 adapter->tx_timeout_count++; 1834 schedule_work(&adapter->reset_task); 1835 } 1836 } 1837 1838 /* Cause software interrupt to ensure Rx ring is cleaned */ 1839 ew32(EICS, adapter->rx_ring->eims_value); 1840 1841 /* Reset the timer */ 1842 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1843 mod_timer(&adapter->watchdog_timer, 1844 round_jiffies(jiffies + (2 * HZ))); 1845 } 1846 1847 #define IGBVF_TX_FLAGS_CSUM 0x00000001 1848 #define IGBVF_TX_FLAGS_VLAN 0x00000002 1849 #define IGBVF_TX_FLAGS_TSO 0x00000004 1850 #define IGBVF_TX_FLAGS_IPV4 0x00000008 1851 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1852 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1853 1854 static int igbvf_tso(struct igbvf_adapter *adapter, 1855 struct igbvf_ring *tx_ring, 1856 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 1857 { 1858 struct e1000_adv_tx_context_desc *context_desc; 1859 unsigned int i; 1860 int err; 1861 struct igbvf_buffer *buffer_info; 1862 u32 info = 0, tu_cmd = 0; 1863 u32 mss_l4len_idx, l4len; 1864 *hdr_len = 0; 1865 1866 if (skb_header_cloned(skb)) { 1867 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1868 if (err) { 1869 dev_err(&adapter->pdev->dev, 1870 "igbvf_tso returning an error\n"); 1871 return err; 1872 } 1873 } 1874 1875 l4len = tcp_hdrlen(skb); 1876 *hdr_len += l4len; 1877 1878 if (skb->protocol == htons(ETH_P_IP)) { 1879 struct iphdr *iph = ip_hdr(skb); 1880 iph->tot_len = 0; 1881 iph->check = 0; 1882 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 1883 iph->daddr, 0, 1884 IPPROTO_TCP, 1885 0); 1886 } else if (skb_is_gso_v6(skb)) { 1887 ipv6_hdr(skb)->payload_len = 0; 1888 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1889 &ipv6_hdr(skb)->daddr, 1890 0, IPPROTO_TCP, 0); 1891 } 1892 1893 i = tx_ring->next_to_use; 1894 1895 buffer_info = &tx_ring->buffer_info[i]; 1896 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1897 /* VLAN MACLEN IPLEN */ 1898 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 1899 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 1900 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 1901 *hdr_len += skb_network_offset(skb); 1902 info |= (skb_transport_header(skb) - skb_network_header(skb)); 1903 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb)); 1904 context_desc->vlan_macip_lens = cpu_to_le32(info); 1905 1906 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1907 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 1908 1909 if (skb->protocol == htons(ETH_P_IP)) 1910 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 1911 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1912 1913 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 1914 1915 /* MSS L4LEN IDX */ 1916 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); 1917 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); 1918 1919 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1920 context_desc->seqnum_seed = 0; 1921 1922 buffer_info->time_stamp = jiffies; 1923 buffer_info->next_to_watch = i; 1924 buffer_info->dma = 0; 1925 i++; 1926 if (i == tx_ring->count) 1927 i = 0; 1928 1929 tx_ring->next_to_use = i; 1930 1931 return true; 1932 } 1933 1934 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter, 1935 struct igbvf_ring *tx_ring, 1936 struct sk_buff *skb, u32 tx_flags) 1937 { 1938 struct e1000_adv_tx_context_desc *context_desc; 1939 unsigned int i; 1940 struct igbvf_buffer *buffer_info; 1941 u32 info = 0, tu_cmd = 0; 1942 1943 if ((skb->ip_summed == CHECKSUM_PARTIAL) || 1944 (tx_flags & IGBVF_TX_FLAGS_VLAN)) { 1945 i = tx_ring->next_to_use; 1946 buffer_info = &tx_ring->buffer_info[i]; 1947 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1948 1949 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 1950 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 1951 1952 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 1953 if (skb->ip_summed == CHECKSUM_PARTIAL) 1954 info |= (skb_transport_header(skb) - 1955 skb_network_header(skb)); 1956 1957 1958 context_desc->vlan_macip_lens = cpu_to_le32(info); 1959 1960 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 1961 1962 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1963 switch (skb->protocol) { 1964 case __constant_htons(ETH_P_IP): 1965 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 1966 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 1967 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1968 break; 1969 case __constant_htons(ETH_P_IPV6): 1970 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 1971 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1972 break; 1973 default: 1974 break; 1975 } 1976 } 1977 1978 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 1979 context_desc->seqnum_seed = 0; 1980 context_desc->mss_l4len_idx = 0; 1981 1982 buffer_info->time_stamp = jiffies; 1983 buffer_info->next_to_watch = i; 1984 buffer_info->dma = 0; 1985 i++; 1986 if (i == tx_ring->count) 1987 i = 0; 1988 tx_ring->next_to_use = i; 1989 1990 return true; 1991 } 1992 1993 return false; 1994 } 1995 1996 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 1997 { 1998 struct igbvf_adapter *adapter = netdev_priv(netdev); 1999 2000 /* there is enough descriptors then we don't need to worry */ 2001 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2002 return 0; 2003 2004 netif_stop_queue(netdev); 2005 2006 smp_mb(); 2007 2008 /* We need to check again just in case room has been made available */ 2009 if (igbvf_desc_unused(adapter->tx_ring) < size) 2010 return -EBUSY; 2011 2012 netif_wake_queue(netdev); 2013 2014 ++adapter->restart_queue; 2015 return 0; 2016 } 2017 2018 #define IGBVF_MAX_TXD_PWR 16 2019 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR) 2020 2021 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2022 struct igbvf_ring *tx_ring, 2023 struct sk_buff *skb, 2024 unsigned int first) 2025 { 2026 struct igbvf_buffer *buffer_info; 2027 struct pci_dev *pdev = adapter->pdev; 2028 unsigned int len = skb_headlen(skb); 2029 unsigned int count = 0, i; 2030 unsigned int f; 2031 2032 i = tx_ring->next_to_use; 2033 2034 buffer_info = &tx_ring->buffer_info[i]; 2035 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2036 buffer_info->length = len; 2037 /* set time_stamp *before* dma to help avoid a possible race */ 2038 buffer_info->time_stamp = jiffies; 2039 buffer_info->next_to_watch = i; 2040 buffer_info->mapped_as_page = false; 2041 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2042 DMA_TO_DEVICE); 2043 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2044 goto dma_error; 2045 2046 2047 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2048 const struct skb_frag_struct *frag; 2049 2050 count++; 2051 i++; 2052 if (i == tx_ring->count) 2053 i = 0; 2054 2055 frag = &skb_shinfo(skb)->frags[f]; 2056 len = skb_frag_size(frag); 2057 2058 buffer_info = &tx_ring->buffer_info[i]; 2059 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2060 buffer_info->length = len; 2061 buffer_info->time_stamp = jiffies; 2062 buffer_info->next_to_watch = i; 2063 buffer_info->mapped_as_page = true; 2064 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2065 DMA_TO_DEVICE); 2066 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2067 goto dma_error; 2068 } 2069 2070 tx_ring->buffer_info[i].skb = skb; 2071 tx_ring->buffer_info[first].next_to_watch = i; 2072 2073 return ++count; 2074 2075 dma_error: 2076 dev_err(&pdev->dev, "TX DMA map failed\n"); 2077 2078 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2079 buffer_info->dma = 0; 2080 buffer_info->time_stamp = 0; 2081 buffer_info->length = 0; 2082 buffer_info->next_to_watch = 0; 2083 buffer_info->mapped_as_page = false; 2084 if (count) 2085 count--; 2086 2087 /* clear timestamp and dma mappings for remaining portion of packet */ 2088 while (count--) { 2089 if (i==0) 2090 i += tx_ring->count; 2091 i--; 2092 buffer_info = &tx_ring->buffer_info[i]; 2093 igbvf_put_txbuf(adapter, buffer_info); 2094 } 2095 2096 return 0; 2097 } 2098 2099 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2100 struct igbvf_ring *tx_ring, 2101 int tx_flags, int count, u32 paylen, 2102 u8 hdr_len) 2103 { 2104 union e1000_adv_tx_desc *tx_desc = NULL; 2105 struct igbvf_buffer *buffer_info; 2106 u32 olinfo_status = 0, cmd_type_len; 2107 unsigned int i; 2108 2109 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2110 E1000_ADVTXD_DCMD_DEXT); 2111 2112 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2113 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2114 2115 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2116 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2117 2118 /* insert tcp checksum */ 2119 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2120 2121 /* insert ip checksum */ 2122 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2123 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2124 2125 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2126 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2127 } 2128 2129 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2130 2131 i = tx_ring->next_to_use; 2132 while (count--) { 2133 buffer_info = &tx_ring->buffer_info[i]; 2134 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2135 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2136 tx_desc->read.cmd_type_len = 2137 cpu_to_le32(cmd_type_len | buffer_info->length); 2138 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2139 i++; 2140 if (i == tx_ring->count) 2141 i = 0; 2142 } 2143 2144 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2145 /* Force memory writes to complete before letting h/w 2146 * know there are new descriptors to fetch. (Only 2147 * applicable for weak-ordered memory model archs, 2148 * such as IA-64). */ 2149 wmb(); 2150 2151 tx_ring->next_to_use = i; 2152 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2153 /* we need this if more than one processor can write to our tail 2154 * at a time, it syncronizes IO on IA64/Altix systems */ 2155 mmiowb(); 2156 } 2157 2158 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2159 struct net_device *netdev, 2160 struct igbvf_ring *tx_ring) 2161 { 2162 struct igbvf_adapter *adapter = netdev_priv(netdev); 2163 unsigned int first, tx_flags = 0; 2164 u8 hdr_len = 0; 2165 int count = 0; 2166 int tso = 0; 2167 2168 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2169 dev_kfree_skb_any(skb); 2170 return NETDEV_TX_OK; 2171 } 2172 2173 if (skb->len <= 0) { 2174 dev_kfree_skb_any(skb); 2175 return NETDEV_TX_OK; 2176 } 2177 2178 /* 2179 * need: count + 4 desc gap to keep tail from touching 2180 * + 2 desc gap to keep tail from touching head, 2181 * + 1 desc for skb->data, 2182 * + 1 desc for context descriptor, 2183 * head, otherwise try next time 2184 */ 2185 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2186 /* this is a hard error */ 2187 return NETDEV_TX_BUSY; 2188 } 2189 2190 if (vlan_tx_tag_present(skb)) { 2191 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2192 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT); 2193 } 2194 2195 if (skb->protocol == htons(ETH_P_IP)) 2196 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2197 2198 first = tx_ring->next_to_use; 2199 2200 tso = skb_is_gso(skb) ? 2201 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0; 2202 if (unlikely(tso < 0)) { 2203 dev_kfree_skb_any(skb); 2204 return NETDEV_TX_OK; 2205 } 2206 2207 if (tso) 2208 tx_flags |= IGBVF_TX_FLAGS_TSO; 2209 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) && 2210 (skb->ip_summed == CHECKSUM_PARTIAL)) 2211 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2212 2213 /* 2214 * count reflects descriptors mapped, if 0 then mapping error 2215 * has occurred and we need to rewind the descriptor queue 2216 */ 2217 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first); 2218 2219 if (count) { 2220 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2221 skb->len, hdr_len); 2222 /* Make sure there is space in the ring for the next send. */ 2223 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2224 } else { 2225 dev_kfree_skb_any(skb); 2226 tx_ring->buffer_info[first].time_stamp = 0; 2227 tx_ring->next_to_use = first; 2228 } 2229 2230 return NETDEV_TX_OK; 2231 } 2232 2233 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2234 struct net_device *netdev) 2235 { 2236 struct igbvf_adapter *adapter = netdev_priv(netdev); 2237 struct igbvf_ring *tx_ring; 2238 2239 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2240 dev_kfree_skb_any(skb); 2241 return NETDEV_TX_OK; 2242 } 2243 2244 tx_ring = &adapter->tx_ring[0]; 2245 2246 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2247 } 2248 2249 /** 2250 * igbvf_tx_timeout - Respond to a Tx Hang 2251 * @netdev: network interface device structure 2252 **/ 2253 static void igbvf_tx_timeout(struct net_device *netdev) 2254 { 2255 struct igbvf_adapter *adapter = netdev_priv(netdev); 2256 2257 /* Do the reset outside of interrupt context */ 2258 adapter->tx_timeout_count++; 2259 schedule_work(&adapter->reset_task); 2260 } 2261 2262 static void igbvf_reset_task(struct work_struct *work) 2263 { 2264 struct igbvf_adapter *adapter; 2265 adapter = container_of(work, struct igbvf_adapter, reset_task); 2266 2267 igbvf_reinit_locked(adapter); 2268 } 2269 2270 /** 2271 * igbvf_get_stats - Get System Network Statistics 2272 * @netdev: network interface device structure 2273 * 2274 * Returns the address of the device statistics structure. 2275 * The statistics are actually updated from the timer callback. 2276 **/ 2277 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev) 2278 { 2279 struct igbvf_adapter *adapter = netdev_priv(netdev); 2280 2281 /* only return the current stats */ 2282 return &adapter->net_stats; 2283 } 2284 2285 /** 2286 * igbvf_change_mtu - Change the Maximum Transfer Unit 2287 * @netdev: network interface device structure 2288 * @new_mtu: new value for maximum frame size 2289 * 2290 * Returns 0 on success, negative on failure 2291 **/ 2292 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2293 { 2294 struct igbvf_adapter *adapter = netdev_priv(netdev); 2295 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2296 2297 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 2298 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); 2299 return -EINVAL; 2300 } 2301 2302 #define MAX_STD_JUMBO_FRAME_SIZE 9234 2303 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 2304 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); 2305 return -EINVAL; 2306 } 2307 2308 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2309 msleep(1); 2310 /* igbvf_down has a dependency on max_frame_size */ 2311 adapter->max_frame_size = max_frame; 2312 if (netif_running(netdev)) 2313 igbvf_down(adapter); 2314 2315 /* 2316 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2317 * means we reserve 2 more, this pushes us to allocate from the next 2318 * larger slab size. 2319 * i.e. RXBUFFER_2048 --> size-4096 slab 2320 * However with the new *_jumbo_rx* routines, jumbo receives will use 2321 * fragmented skbs 2322 */ 2323 2324 if (max_frame <= 1024) 2325 adapter->rx_buffer_len = 1024; 2326 else if (max_frame <= 2048) 2327 adapter->rx_buffer_len = 2048; 2328 else 2329 #if (PAGE_SIZE / 2) > 16384 2330 adapter->rx_buffer_len = 16384; 2331 #else 2332 adapter->rx_buffer_len = PAGE_SIZE / 2; 2333 #endif 2334 2335 2336 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2337 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2338 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2339 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2340 ETH_FCS_LEN; 2341 2342 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", 2343 netdev->mtu, new_mtu); 2344 netdev->mtu = new_mtu; 2345 2346 if (netif_running(netdev)) 2347 igbvf_up(adapter); 2348 else 2349 igbvf_reset(adapter); 2350 2351 clear_bit(__IGBVF_RESETTING, &adapter->state); 2352 2353 return 0; 2354 } 2355 2356 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2357 { 2358 switch (cmd) { 2359 default: 2360 return -EOPNOTSUPP; 2361 } 2362 } 2363 2364 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) 2365 { 2366 struct net_device *netdev = pci_get_drvdata(pdev); 2367 struct igbvf_adapter *adapter = netdev_priv(netdev); 2368 #ifdef CONFIG_PM 2369 int retval = 0; 2370 #endif 2371 2372 netif_device_detach(netdev); 2373 2374 if (netif_running(netdev)) { 2375 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2376 igbvf_down(adapter); 2377 igbvf_free_irq(adapter); 2378 } 2379 2380 #ifdef CONFIG_PM 2381 retval = pci_save_state(pdev); 2382 if (retval) 2383 return retval; 2384 #endif 2385 2386 pci_disable_device(pdev); 2387 2388 return 0; 2389 } 2390 2391 #ifdef CONFIG_PM 2392 static int igbvf_resume(struct pci_dev *pdev) 2393 { 2394 struct net_device *netdev = pci_get_drvdata(pdev); 2395 struct igbvf_adapter *adapter = netdev_priv(netdev); 2396 u32 err; 2397 2398 pci_restore_state(pdev); 2399 err = pci_enable_device_mem(pdev); 2400 if (err) { 2401 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 2402 return err; 2403 } 2404 2405 pci_set_master(pdev); 2406 2407 if (netif_running(netdev)) { 2408 err = igbvf_request_irq(adapter); 2409 if (err) 2410 return err; 2411 } 2412 2413 igbvf_reset(adapter); 2414 2415 if (netif_running(netdev)) 2416 igbvf_up(adapter); 2417 2418 netif_device_attach(netdev); 2419 2420 return 0; 2421 } 2422 #endif 2423 2424 static void igbvf_shutdown(struct pci_dev *pdev) 2425 { 2426 igbvf_suspend(pdev, PMSG_SUSPEND); 2427 } 2428 2429 #ifdef CONFIG_NET_POLL_CONTROLLER 2430 /* 2431 * Polling 'interrupt' - used by things like netconsole to send skbs 2432 * without having to re-enable interrupts. It's not called while 2433 * the interrupt routine is executing. 2434 */ 2435 static void igbvf_netpoll(struct net_device *netdev) 2436 { 2437 struct igbvf_adapter *adapter = netdev_priv(netdev); 2438 2439 disable_irq(adapter->pdev->irq); 2440 2441 igbvf_clean_tx_irq(adapter->tx_ring); 2442 2443 enable_irq(adapter->pdev->irq); 2444 } 2445 #endif 2446 2447 /** 2448 * igbvf_io_error_detected - called when PCI error is detected 2449 * @pdev: Pointer to PCI device 2450 * @state: The current pci connection state 2451 * 2452 * This function is called after a PCI bus error affecting 2453 * this device has been detected. 2454 */ 2455 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2456 pci_channel_state_t state) 2457 { 2458 struct net_device *netdev = pci_get_drvdata(pdev); 2459 struct igbvf_adapter *adapter = netdev_priv(netdev); 2460 2461 netif_device_detach(netdev); 2462 2463 if (state == pci_channel_io_perm_failure) 2464 return PCI_ERS_RESULT_DISCONNECT; 2465 2466 if (netif_running(netdev)) 2467 igbvf_down(adapter); 2468 pci_disable_device(pdev); 2469 2470 /* Request a slot slot reset. */ 2471 return PCI_ERS_RESULT_NEED_RESET; 2472 } 2473 2474 /** 2475 * igbvf_io_slot_reset - called after the pci bus has been reset. 2476 * @pdev: Pointer to PCI device 2477 * 2478 * Restart the card from scratch, as if from a cold-boot. Implementation 2479 * resembles the first-half of the igbvf_resume routine. 2480 */ 2481 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2482 { 2483 struct net_device *netdev = pci_get_drvdata(pdev); 2484 struct igbvf_adapter *adapter = netdev_priv(netdev); 2485 2486 if (pci_enable_device_mem(pdev)) { 2487 dev_err(&pdev->dev, 2488 "Cannot re-enable PCI device after reset.\n"); 2489 return PCI_ERS_RESULT_DISCONNECT; 2490 } 2491 pci_set_master(pdev); 2492 2493 igbvf_reset(adapter); 2494 2495 return PCI_ERS_RESULT_RECOVERED; 2496 } 2497 2498 /** 2499 * igbvf_io_resume - called when traffic can start flowing again. 2500 * @pdev: Pointer to PCI device 2501 * 2502 * This callback is called when the error recovery driver tells us that 2503 * its OK to resume normal operation. Implementation resembles the 2504 * second-half of the igbvf_resume routine. 2505 */ 2506 static void igbvf_io_resume(struct pci_dev *pdev) 2507 { 2508 struct net_device *netdev = pci_get_drvdata(pdev); 2509 struct igbvf_adapter *adapter = netdev_priv(netdev); 2510 2511 if (netif_running(netdev)) { 2512 if (igbvf_up(adapter)) { 2513 dev_err(&pdev->dev, 2514 "can't bring device back up after reset\n"); 2515 return; 2516 } 2517 } 2518 2519 netif_device_attach(netdev); 2520 } 2521 2522 static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2523 { 2524 struct e1000_hw *hw = &adapter->hw; 2525 struct net_device *netdev = adapter->netdev; 2526 struct pci_dev *pdev = adapter->pdev; 2527 2528 if (hw->mac.type == e1000_vfadapt_i350) 2529 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2530 else 2531 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2532 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2533 } 2534 2535 static int igbvf_set_features(struct net_device *netdev, u32 features) 2536 { 2537 struct igbvf_adapter *adapter = netdev_priv(netdev); 2538 2539 if (features & NETIF_F_RXCSUM) 2540 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2541 else 2542 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2543 2544 return 0; 2545 } 2546 2547 static const struct net_device_ops igbvf_netdev_ops = { 2548 .ndo_open = igbvf_open, 2549 .ndo_stop = igbvf_close, 2550 .ndo_start_xmit = igbvf_xmit_frame, 2551 .ndo_get_stats = igbvf_get_stats, 2552 .ndo_set_rx_mode = igbvf_set_multi, 2553 .ndo_set_mac_address = igbvf_set_mac, 2554 .ndo_change_mtu = igbvf_change_mtu, 2555 .ndo_do_ioctl = igbvf_ioctl, 2556 .ndo_tx_timeout = igbvf_tx_timeout, 2557 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2558 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2559 #ifdef CONFIG_NET_POLL_CONTROLLER 2560 .ndo_poll_controller = igbvf_netpoll, 2561 #endif 2562 .ndo_set_features = igbvf_set_features, 2563 }; 2564 2565 /** 2566 * igbvf_probe - Device Initialization Routine 2567 * @pdev: PCI device information struct 2568 * @ent: entry in igbvf_pci_tbl 2569 * 2570 * Returns 0 on success, negative on failure 2571 * 2572 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2573 * The OS initialization, configuring of the adapter private structure, 2574 * and a hardware reset occur. 2575 **/ 2576 static int __devinit igbvf_probe(struct pci_dev *pdev, 2577 const struct pci_device_id *ent) 2578 { 2579 struct net_device *netdev; 2580 struct igbvf_adapter *adapter; 2581 struct e1000_hw *hw; 2582 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2583 2584 static int cards_found; 2585 int err, pci_using_dac; 2586 2587 err = pci_enable_device_mem(pdev); 2588 if (err) 2589 return err; 2590 2591 pci_using_dac = 0; 2592 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 2593 if (!err) { 2594 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 2595 if (!err) 2596 pci_using_dac = 1; 2597 } else { 2598 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2599 if (err) { 2600 err = dma_set_coherent_mask(&pdev->dev, 2601 DMA_BIT_MASK(32)); 2602 if (err) { 2603 dev_err(&pdev->dev, "No usable DMA " 2604 "configuration, aborting\n"); 2605 goto err_dma; 2606 } 2607 } 2608 } 2609 2610 err = pci_request_regions(pdev, igbvf_driver_name); 2611 if (err) 2612 goto err_pci_reg; 2613 2614 pci_set_master(pdev); 2615 2616 err = -ENOMEM; 2617 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2618 if (!netdev) 2619 goto err_alloc_etherdev; 2620 2621 SET_NETDEV_DEV(netdev, &pdev->dev); 2622 2623 pci_set_drvdata(pdev, netdev); 2624 adapter = netdev_priv(netdev); 2625 hw = &adapter->hw; 2626 adapter->netdev = netdev; 2627 adapter->pdev = pdev; 2628 adapter->ei = ei; 2629 adapter->pba = ei->pba; 2630 adapter->flags = ei->flags; 2631 adapter->hw.back = adapter; 2632 adapter->hw.mac.type = ei->mac; 2633 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 2634 2635 /* PCI config space info */ 2636 2637 hw->vendor_id = pdev->vendor; 2638 hw->device_id = pdev->device; 2639 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2640 hw->subsystem_device_id = pdev->subsystem_device; 2641 hw->revision_id = pdev->revision; 2642 2643 err = -EIO; 2644 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2645 pci_resource_len(pdev, 0)); 2646 2647 if (!adapter->hw.hw_addr) 2648 goto err_ioremap; 2649 2650 if (ei->get_variants) { 2651 err = ei->get_variants(adapter); 2652 if (err) 2653 goto err_ioremap; 2654 } 2655 2656 /* setup adapter struct */ 2657 err = igbvf_sw_init(adapter); 2658 if (err) 2659 goto err_sw_init; 2660 2661 /* construct the net_device struct */ 2662 netdev->netdev_ops = &igbvf_netdev_ops; 2663 2664 igbvf_set_ethtool_ops(netdev); 2665 netdev->watchdog_timeo = 5 * HZ; 2666 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2667 2668 adapter->bd_number = cards_found++; 2669 2670 netdev->hw_features = NETIF_F_SG | 2671 NETIF_F_IP_CSUM | 2672 NETIF_F_IPV6_CSUM | 2673 NETIF_F_TSO | 2674 NETIF_F_TSO6 | 2675 NETIF_F_RXCSUM; 2676 2677 netdev->features = netdev->hw_features | 2678 NETIF_F_HW_VLAN_TX | 2679 NETIF_F_HW_VLAN_RX | 2680 NETIF_F_HW_VLAN_FILTER; 2681 2682 if (pci_using_dac) 2683 netdev->features |= NETIF_F_HIGHDMA; 2684 2685 netdev->vlan_features |= NETIF_F_TSO; 2686 netdev->vlan_features |= NETIF_F_TSO6; 2687 netdev->vlan_features |= NETIF_F_IP_CSUM; 2688 netdev->vlan_features |= NETIF_F_IPV6_CSUM; 2689 netdev->vlan_features |= NETIF_F_SG; 2690 2691 /*reset the controller to put the device in a known good state */ 2692 err = hw->mac.ops.reset_hw(hw); 2693 if (err) { 2694 dev_info(&pdev->dev, 2695 "PF still in reset state, assigning new address." 2696 " Is the PF interface up?\n"); 2697 dev_hw_addr_random(adapter->netdev, hw->mac.addr); 2698 } else { 2699 err = hw->mac.ops.read_mac_addr(hw); 2700 if (err) { 2701 dev_err(&pdev->dev, "Error reading MAC address\n"); 2702 goto err_hw_init; 2703 } 2704 } 2705 2706 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 2707 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 2708 2709 if (!is_valid_ether_addr(netdev->perm_addr)) { 2710 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 2711 netdev->dev_addr); 2712 err = -EIO; 2713 goto err_hw_init; 2714 } 2715 2716 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog, 2717 (unsigned long) adapter); 2718 2719 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2720 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2721 2722 /* ring size defaults */ 2723 adapter->rx_ring->count = 1024; 2724 adapter->tx_ring->count = 1024; 2725 2726 /* reset the hardware with the new settings */ 2727 igbvf_reset(adapter); 2728 2729 strcpy(netdev->name, "eth%d"); 2730 err = register_netdev(netdev); 2731 if (err) 2732 goto err_hw_init; 2733 2734 /* tell the stack to leave us alone until igbvf_open() is called */ 2735 netif_carrier_off(netdev); 2736 netif_stop_queue(netdev); 2737 2738 igbvf_print_device_info(adapter); 2739 2740 igbvf_initialize_last_counter_stats(adapter); 2741 2742 return 0; 2743 2744 err_hw_init: 2745 kfree(adapter->tx_ring); 2746 kfree(adapter->rx_ring); 2747 err_sw_init: 2748 igbvf_reset_interrupt_capability(adapter); 2749 iounmap(adapter->hw.hw_addr); 2750 err_ioremap: 2751 free_netdev(netdev); 2752 err_alloc_etherdev: 2753 pci_release_regions(pdev); 2754 err_pci_reg: 2755 err_dma: 2756 pci_disable_device(pdev); 2757 return err; 2758 } 2759 2760 /** 2761 * igbvf_remove - Device Removal Routine 2762 * @pdev: PCI device information struct 2763 * 2764 * igbvf_remove is called by the PCI subsystem to alert the driver 2765 * that it should release a PCI device. The could be caused by a 2766 * Hot-Plug event, or because the driver is going to be removed from 2767 * memory. 2768 **/ 2769 static void __devexit igbvf_remove(struct pci_dev *pdev) 2770 { 2771 struct net_device *netdev = pci_get_drvdata(pdev); 2772 struct igbvf_adapter *adapter = netdev_priv(netdev); 2773 struct e1000_hw *hw = &adapter->hw; 2774 2775 /* 2776 * The watchdog timer may be rescheduled, so explicitly 2777 * disable it from being rescheduled. 2778 */ 2779 set_bit(__IGBVF_DOWN, &adapter->state); 2780 del_timer_sync(&adapter->watchdog_timer); 2781 2782 cancel_work_sync(&adapter->reset_task); 2783 cancel_work_sync(&adapter->watchdog_task); 2784 2785 unregister_netdev(netdev); 2786 2787 igbvf_reset_interrupt_capability(adapter); 2788 2789 /* 2790 * it is important to delete the napi struct prior to freeing the 2791 * rx ring so that you do not end up with null pointer refs 2792 */ 2793 netif_napi_del(&adapter->rx_ring->napi); 2794 kfree(adapter->tx_ring); 2795 kfree(adapter->rx_ring); 2796 2797 iounmap(hw->hw_addr); 2798 if (hw->flash_address) 2799 iounmap(hw->flash_address); 2800 pci_release_regions(pdev); 2801 2802 free_netdev(netdev); 2803 2804 pci_disable_device(pdev); 2805 } 2806 2807 /* PCI Error Recovery (ERS) */ 2808 static struct pci_error_handlers igbvf_err_handler = { 2809 .error_detected = igbvf_io_error_detected, 2810 .slot_reset = igbvf_io_slot_reset, 2811 .resume = igbvf_io_resume, 2812 }; 2813 2814 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = { 2815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2817 { } /* terminate list */ 2818 }; 2819 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2820 2821 /* PCI Device API Driver */ 2822 static struct pci_driver igbvf_driver = { 2823 .name = igbvf_driver_name, 2824 .id_table = igbvf_pci_tbl, 2825 .probe = igbvf_probe, 2826 .remove = __devexit_p(igbvf_remove), 2827 #ifdef CONFIG_PM 2828 /* Power Management Hooks */ 2829 .suspend = igbvf_suspend, 2830 .resume = igbvf_resume, 2831 #endif 2832 .shutdown = igbvf_shutdown, 2833 .err_handler = &igbvf_err_handler 2834 }; 2835 2836 /** 2837 * igbvf_init_module - Driver Registration Routine 2838 * 2839 * igbvf_init_module is the first routine called when the driver is 2840 * loaded. All it does is register with the PCI subsystem. 2841 **/ 2842 static int __init igbvf_init_module(void) 2843 { 2844 int ret; 2845 printk(KERN_INFO "%s - version %s\n", 2846 igbvf_driver_string, igbvf_driver_version); 2847 printk(KERN_INFO "%s\n", igbvf_copyright); 2848 2849 ret = pci_register_driver(&igbvf_driver); 2850 2851 return ret; 2852 } 2853 module_init(igbvf_init_module); 2854 2855 /** 2856 * igbvf_exit_module - Driver Exit Cleanup Routine 2857 * 2858 * igbvf_exit_module is called just before the driver is removed 2859 * from memory. 2860 **/ 2861 static void __exit igbvf_exit_module(void) 2862 { 2863 pci_unregister_driver(&igbvf_driver); 2864 } 2865 module_exit(igbvf_exit_module); 2866 2867 2868 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 2869 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 2870 MODULE_LICENSE("GPL"); 2871 MODULE_VERSION(DRV_VERSION); 2872 2873 /* netdev.c */ 2874