1 /******************************************************************************* 2 3 Intel(R) 82576 Virtual Function Linux driver 4 Copyright(c) 2009 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 28 29 #include <linux/module.h> 30 #include <linux/types.h> 31 #include <linux/init.h> 32 #include <linux/pci.h> 33 #include <linux/vmalloc.h> 34 #include <linux/pagemap.h> 35 #include <linux/delay.h> 36 #include <linux/netdevice.h> 37 #include <linux/tcp.h> 38 #include <linux/ipv6.h> 39 #include <linux/slab.h> 40 #include <net/checksum.h> 41 #include <net/ip6_checksum.h> 42 #include <linux/mii.h> 43 #include <linux/ethtool.h> 44 #include <linux/if_vlan.h> 45 #include <linux/prefetch.h> 46 47 #include "igbvf.h" 48 49 #define DRV_VERSION "2.0.2-k" 50 char igbvf_driver_name[] = "igbvf"; 51 const char igbvf_driver_version[] = DRV_VERSION; 52 static const char igbvf_driver_string[] = 53 "Intel(R) Gigabit Virtual Function Network Driver"; 54 static const char igbvf_copyright[] = 55 "Copyright (c) 2009 - 2012 Intel Corporation."; 56 57 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 58 static int debug = -1; 59 module_param(debug, int, 0); 60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 61 62 static int igbvf_poll(struct napi_struct *napi, int budget); 63 static void igbvf_reset(struct igbvf_adapter *); 64 static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 65 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 66 67 static struct igbvf_info igbvf_vf_info = { 68 .mac = e1000_vfadapt, 69 .flags = 0, 70 .pba = 10, 71 .init_ops = e1000_init_function_pointers_vf, 72 }; 73 74 static struct igbvf_info igbvf_i350_vf_info = { 75 .mac = e1000_vfadapt_i350, 76 .flags = 0, 77 .pba = 10, 78 .init_ops = e1000_init_function_pointers_vf, 79 }; 80 81 static const struct igbvf_info *igbvf_info_tbl[] = { 82 [board_vf] = &igbvf_vf_info, 83 [board_i350_vf] = &igbvf_i350_vf_info, 84 }; 85 86 /** 87 * igbvf_desc_unused - calculate if we have unused descriptors 88 * @rx_ring: address of receive ring structure 89 **/ 90 static int igbvf_desc_unused(struct igbvf_ring *ring) 91 { 92 if (ring->next_to_clean > ring->next_to_use) 93 return ring->next_to_clean - ring->next_to_use - 1; 94 95 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 96 } 97 98 /** 99 * igbvf_receive_skb - helper function to handle Rx indications 100 * @adapter: board private structure 101 * @status: descriptor status field as written by hardware 102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 103 * @skb: pointer to sk_buff to be indicated to stack 104 **/ 105 static void igbvf_receive_skb(struct igbvf_adapter *adapter, 106 struct net_device *netdev, 107 struct sk_buff *skb, 108 u32 status, u16 vlan) 109 { 110 u16 vid; 111 112 if (status & E1000_RXD_STAT_VP) { 113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) && 114 (status & E1000_RXDEXT_STATERR_LB)) 115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 116 else 117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 118 if (test_bit(vid, adapter->active_vlans)) 119 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 120 } 121 122 napi_gro_receive(&adapter->rx_ring->napi, skb); 123 } 124 125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 126 u32 status_err, struct sk_buff *skb) 127 { 128 skb_checksum_none_assert(skb); 129 130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 131 if ((status_err & E1000_RXD_STAT_IXSM) || 132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 133 return; 134 135 /* TCP/UDP checksum error bit is set */ 136 if (status_err & 137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 138 /* let the stack verify checksum errors */ 139 adapter->hw_csum_err++; 140 return; 141 } 142 143 /* It must be a TCP or UDP packet with a valid checksum */ 144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 145 skb->ip_summed = CHECKSUM_UNNECESSARY; 146 147 adapter->hw_csum_good++; 148 } 149 150 /** 151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 152 * @rx_ring: address of ring structure to repopulate 153 * @cleaned_count: number of buffers to repopulate 154 **/ 155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 156 int cleaned_count) 157 { 158 struct igbvf_adapter *adapter = rx_ring->adapter; 159 struct net_device *netdev = adapter->netdev; 160 struct pci_dev *pdev = adapter->pdev; 161 union e1000_adv_rx_desc *rx_desc; 162 struct igbvf_buffer *buffer_info; 163 struct sk_buff *skb; 164 unsigned int i; 165 int bufsz; 166 167 i = rx_ring->next_to_use; 168 buffer_info = &rx_ring->buffer_info[i]; 169 170 if (adapter->rx_ps_hdr_size) 171 bufsz = adapter->rx_ps_hdr_size; 172 else 173 bufsz = adapter->rx_buffer_len; 174 175 while (cleaned_count--) { 176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 177 178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 179 if (!buffer_info->page) { 180 buffer_info->page = alloc_page(GFP_ATOMIC); 181 if (!buffer_info->page) { 182 adapter->alloc_rx_buff_failed++; 183 goto no_buffers; 184 } 185 buffer_info->page_offset = 0; 186 } else { 187 buffer_info->page_offset ^= PAGE_SIZE / 2; 188 } 189 buffer_info->page_dma = 190 dma_map_page(&pdev->dev, buffer_info->page, 191 buffer_info->page_offset, 192 PAGE_SIZE / 2, 193 DMA_FROM_DEVICE); 194 if (dma_mapping_error(&pdev->dev, 195 buffer_info->page_dma)) { 196 __free_page(buffer_info->page); 197 buffer_info->page = NULL; 198 dev_err(&pdev->dev, "RX DMA map failed\n"); 199 break; 200 } 201 } 202 203 if (!buffer_info->skb) { 204 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 205 if (!skb) { 206 adapter->alloc_rx_buff_failed++; 207 goto no_buffers; 208 } 209 210 buffer_info->skb = skb; 211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 212 bufsz, 213 DMA_FROM_DEVICE); 214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 215 dev_kfree_skb(buffer_info->skb); 216 buffer_info->skb = NULL; 217 dev_err(&pdev->dev, "RX DMA map failed\n"); 218 goto no_buffers; 219 } 220 } 221 /* Refresh the desc even if buffer_addrs didn't change because 222 * each write-back erases this info. 223 */ 224 if (adapter->rx_ps_hdr_size) { 225 rx_desc->read.pkt_addr = 226 cpu_to_le64(buffer_info->page_dma); 227 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 228 } else { 229 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); 230 rx_desc->read.hdr_addr = 0; 231 } 232 233 i++; 234 if (i == rx_ring->count) 235 i = 0; 236 buffer_info = &rx_ring->buffer_info[i]; 237 } 238 239 no_buffers: 240 if (rx_ring->next_to_use != i) { 241 rx_ring->next_to_use = i; 242 if (i == 0) 243 i = (rx_ring->count - 1); 244 else 245 i--; 246 247 /* Force memory writes to complete before letting h/w 248 * know there are new descriptors to fetch. (Only 249 * applicable for weak-ordered memory model archs, 250 * such as IA-64). 251 */ 252 wmb(); 253 writel(i, adapter->hw.hw_addr + rx_ring->tail); 254 } 255 } 256 257 /** 258 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 259 * @adapter: board private structure 260 * 261 * the return value indicates whether actual cleaning was done, there 262 * is no guarantee that everything was cleaned 263 **/ 264 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 265 int *work_done, int work_to_do) 266 { 267 struct igbvf_ring *rx_ring = adapter->rx_ring; 268 struct net_device *netdev = adapter->netdev; 269 struct pci_dev *pdev = adapter->pdev; 270 union e1000_adv_rx_desc *rx_desc, *next_rxd; 271 struct igbvf_buffer *buffer_info, *next_buffer; 272 struct sk_buff *skb; 273 bool cleaned = false; 274 int cleaned_count = 0; 275 unsigned int total_bytes = 0, total_packets = 0; 276 unsigned int i; 277 u32 length, hlen, staterr; 278 279 i = rx_ring->next_to_clean; 280 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 281 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 282 283 while (staterr & E1000_RXD_STAT_DD) { 284 if (*work_done >= work_to_do) 285 break; 286 (*work_done)++; 287 rmb(); /* read descriptor and rx_buffer_info after status DD */ 288 289 buffer_info = &rx_ring->buffer_info[i]; 290 291 /* HW will not DMA in data larger than the given buffer, even 292 * if it parses the (NFS, of course) header to be larger. In 293 * that case, it fills the header buffer and spills the rest 294 * into the page. 295 */ 296 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) 297 & E1000_RXDADV_HDRBUFLEN_MASK) >> 298 E1000_RXDADV_HDRBUFLEN_SHIFT; 299 if (hlen > adapter->rx_ps_hdr_size) 300 hlen = adapter->rx_ps_hdr_size; 301 302 length = le16_to_cpu(rx_desc->wb.upper.length); 303 cleaned = true; 304 cleaned_count++; 305 306 skb = buffer_info->skb; 307 prefetch(skb->data - NET_IP_ALIGN); 308 buffer_info->skb = NULL; 309 if (!adapter->rx_ps_hdr_size) { 310 dma_unmap_single(&pdev->dev, buffer_info->dma, 311 adapter->rx_buffer_len, 312 DMA_FROM_DEVICE); 313 buffer_info->dma = 0; 314 skb_put(skb, length); 315 goto send_up; 316 } 317 318 if (!skb_shinfo(skb)->nr_frags) { 319 dma_unmap_single(&pdev->dev, buffer_info->dma, 320 adapter->rx_ps_hdr_size, 321 DMA_FROM_DEVICE); 322 buffer_info->dma = 0; 323 skb_put(skb, hlen); 324 } 325 326 if (length) { 327 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 328 PAGE_SIZE / 2, 329 DMA_FROM_DEVICE); 330 buffer_info->page_dma = 0; 331 332 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 333 buffer_info->page, 334 buffer_info->page_offset, 335 length); 336 337 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 338 (page_count(buffer_info->page) != 1)) 339 buffer_info->page = NULL; 340 else 341 get_page(buffer_info->page); 342 343 skb->len += length; 344 skb->data_len += length; 345 skb->truesize += PAGE_SIZE / 2; 346 } 347 send_up: 348 i++; 349 if (i == rx_ring->count) 350 i = 0; 351 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 352 prefetch(next_rxd); 353 next_buffer = &rx_ring->buffer_info[i]; 354 355 if (!(staterr & E1000_RXD_STAT_EOP)) { 356 buffer_info->skb = next_buffer->skb; 357 buffer_info->dma = next_buffer->dma; 358 next_buffer->skb = skb; 359 next_buffer->dma = 0; 360 goto next_desc; 361 } 362 363 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 364 dev_kfree_skb_irq(skb); 365 goto next_desc; 366 } 367 368 total_bytes += skb->len; 369 total_packets++; 370 371 igbvf_rx_checksum_adv(adapter, staterr, skb); 372 373 skb->protocol = eth_type_trans(skb, netdev); 374 375 igbvf_receive_skb(adapter, netdev, skb, staterr, 376 rx_desc->wb.upper.vlan); 377 378 next_desc: 379 rx_desc->wb.upper.status_error = 0; 380 381 /* return some buffers to hardware, one at a time is too slow */ 382 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 383 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 384 cleaned_count = 0; 385 } 386 387 /* use prefetched values */ 388 rx_desc = next_rxd; 389 buffer_info = next_buffer; 390 391 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 392 } 393 394 rx_ring->next_to_clean = i; 395 cleaned_count = igbvf_desc_unused(rx_ring); 396 397 if (cleaned_count) 398 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 399 400 adapter->total_rx_packets += total_packets; 401 adapter->total_rx_bytes += total_bytes; 402 adapter->net_stats.rx_bytes += total_bytes; 403 adapter->net_stats.rx_packets += total_packets; 404 return cleaned; 405 } 406 407 static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 408 struct igbvf_buffer *buffer_info) 409 { 410 if (buffer_info->dma) { 411 if (buffer_info->mapped_as_page) 412 dma_unmap_page(&adapter->pdev->dev, 413 buffer_info->dma, 414 buffer_info->length, 415 DMA_TO_DEVICE); 416 else 417 dma_unmap_single(&adapter->pdev->dev, 418 buffer_info->dma, 419 buffer_info->length, 420 DMA_TO_DEVICE); 421 buffer_info->dma = 0; 422 } 423 if (buffer_info->skb) { 424 dev_kfree_skb_any(buffer_info->skb); 425 buffer_info->skb = NULL; 426 } 427 buffer_info->time_stamp = 0; 428 } 429 430 /** 431 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 432 * @adapter: board private structure 433 * 434 * Return 0 on success, negative on failure 435 **/ 436 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 437 struct igbvf_ring *tx_ring) 438 { 439 struct pci_dev *pdev = adapter->pdev; 440 int size; 441 442 size = sizeof(struct igbvf_buffer) * tx_ring->count; 443 tx_ring->buffer_info = vzalloc(size); 444 if (!tx_ring->buffer_info) 445 goto err; 446 447 /* round up to nearest 4K */ 448 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 449 tx_ring->size = ALIGN(tx_ring->size, 4096); 450 451 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 452 &tx_ring->dma, GFP_KERNEL); 453 if (!tx_ring->desc) 454 goto err; 455 456 tx_ring->adapter = adapter; 457 tx_ring->next_to_use = 0; 458 tx_ring->next_to_clean = 0; 459 460 return 0; 461 err: 462 vfree(tx_ring->buffer_info); 463 dev_err(&adapter->pdev->dev, 464 "Unable to allocate memory for the transmit descriptor ring\n"); 465 return -ENOMEM; 466 } 467 468 /** 469 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 470 * @adapter: board private structure 471 * 472 * Returns 0 on success, negative on failure 473 **/ 474 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 475 struct igbvf_ring *rx_ring) 476 { 477 struct pci_dev *pdev = adapter->pdev; 478 int size, desc_len; 479 480 size = sizeof(struct igbvf_buffer) * rx_ring->count; 481 rx_ring->buffer_info = vzalloc(size); 482 if (!rx_ring->buffer_info) 483 goto err; 484 485 desc_len = sizeof(union e1000_adv_rx_desc); 486 487 /* Round up to nearest 4K */ 488 rx_ring->size = rx_ring->count * desc_len; 489 rx_ring->size = ALIGN(rx_ring->size, 4096); 490 491 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 492 &rx_ring->dma, GFP_KERNEL); 493 if (!rx_ring->desc) 494 goto err; 495 496 rx_ring->next_to_clean = 0; 497 rx_ring->next_to_use = 0; 498 499 rx_ring->adapter = adapter; 500 501 return 0; 502 503 err: 504 vfree(rx_ring->buffer_info); 505 rx_ring->buffer_info = NULL; 506 dev_err(&adapter->pdev->dev, 507 "Unable to allocate memory for the receive descriptor ring\n"); 508 return -ENOMEM; 509 } 510 511 /** 512 * igbvf_clean_tx_ring - Free Tx Buffers 513 * @tx_ring: ring to be cleaned 514 **/ 515 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 516 { 517 struct igbvf_adapter *adapter = tx_ring->adapter; 518 struct igbvf_buffer *buffer_info; 519 unsigned long size; 520 unsigned int i; 521 522 if (!tx_ring->buffer_info) 523 return; 524 525 /* Free all the Tx ring sk_buffs */ 526 for (i = 0; i < tx_ring->count; i++) { 527 buffer_info = &tx_ring->buffer_info[i]; 528 igbvf_put_txbuf(adapter, buffer_info); 529 } 530 531 size = sizeof(struct igbvf_buffer) * tx_ring->count; 532 memset(tx_ring->buffer_info, 0, size); 533 534 /* Zero out the descriptor ring */ 535 memset(tx_ring->desc, 0, tx_ring->size); 536 537 tx_ring->next_to_use = 0; 538 tx_ring->next_to_clean = 0; 539 540 writel(0, adapter->hw.hw_addr + tx_ring->head); 541 writel(0, adapter->hw.hw_addr + tx_ring->tail); 542 } 543 544 /** 545 * igbvf_free_tx_resources - Free Tx Resources per Queue 546 * @tx_ring: ring to free resources from 547 * 548 * Free all transmit software resources 549 **/ 550 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 551 { 552 struct pci_dev *pdev = tx_ring->adapter->pdev; 553 554 igbvf_clean_tx_ring(tx_ring); 555 556 vfree(tx_ring->buffer_info); 557 tx_ring->buffer_info = NULL; 558 559 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 560 tx_ring->dma); 561 562 tx_ring->desc = NULL; 563 } 564 565 /** 566 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 567 * @adapter: board private structure 568 **/ 569 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 570 { 571 struct igbvf_adapter *adapter = rx_ring->adapter; 572 struct igbvf_buffer *buffer_info; 573 struct pci_dev *pdev = adapter->pdev; 574 unsigned long size; 575 unsigned int i; 576 577 if (!rx_ring->buffer_info) 578 return; 579 580 /* Free all the Rx ring sk_buffs */ 581 for (i = 0; i < rx_ring->count; i++) { 582 buffer_info = &rx_ring->buffer_info[i]; 583 if (buffer_info->dma) { 584 if (adapter->rx_ps_hdr_size) { 585 dma_unmap_single(&pdev->dev, buffer_info->dma, 586 adapter->rx_ps_hdr_size, 587 DMA_FROM_DEVICE); 588 } else { 589 dma_unmap_single(&pdev->dev, buffer_info->dma, 590 adapter->rx_buffer_len, 591 DMA_FROM_DEVICE); 592 } 593 buffer_info->dma = 0; 594 } 595 596 if (buffer_info->skb) { 597 dev_kfree_skb(buffer_info->skb); 598 buffer_info->skb = NULL; 599 } 600 601 if (buffer_info->page) { 602 if (buffer_info->page_dma) 603 dma_unmap_page(&pdev->dev, 604 buffer_info->page_dma, 605 PAGE_SIZE / 2, 606 DMA_FROM_DEVICE); 607 put_page(buffer_info->page); 608 buffer_info->page = NULL; 609 buffer_info->page_dma = 0; 610 buffer_info->page_offset = 0; 611 } 612 } 613 614 size = sizeof(struct igbvf_buffer) * rx_ring->count; 615 memset(rx_ring->buffer_info, 0, size); 616 617 /* Zero out the descriptor ring */ 618 memset(rx_ring->desc, 0, rx_ring->size); 619 620 rx_ring->next_to_clean = 0; 621 rx_ring->next_to_use = 0; 622 623 writel(0, adapter->hw.hw_addr + rx_ring->head); 624 writel(0, adapter->hw.hw_addr + rx_ring->tail); 625 } 626 627 /** 628 * igbvf_free_rx_resources - Free Rx Resources 629 * @rx_ring: ring to clean the resources from 630 * 631 * Free all receive software resources 632 **/ 633 634 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 635 { 636 struct pci_dev *pdev = rx_ring->adapter->pdev; 637 638 igbvf_clean_rx_ring(rx_ring); 639 640 vfree(rx_ring->buffer_info); 641 rx_ring->buffer_info = NULL; 642 643 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 644 rx_ring->dma); 645 rx_ring->desc = NULL; 646 } 647 648 /** 649 * igbvf_update_itr - update the dynamic ITR value based on statistics 650 * @adapter: pointer to adapter 651 * @itr_setting: current adapter->itr 652 * @packets: the number of packets during this measurement interval 653 * @bytes: the number of bytes during this measurement interval 654 * 655 * Stores a new ITR value based on packets and byte counts during the last 656 * interrupt. The advantage of per interrupt computation is faster updates 657 * and more accurate ITR for the current traffic pattern. Constants in this 658 * function were computed based on theoretical maximum wire speed and thresholds 659 * were set based on testing data as well as attempting to minimize response 660 * time while increasing bulk throughput. 661 **/ 662 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter, 663 enum latency_range itr_setting, 664 int packets, int bytes) 665 { 666 enum latency_range retval = itr_setting; 667 668 if (packets == 0) 669 goto update_itr_done; 670 671 switch (itr_setting) { 672 case lowest_latency: 673 /* handle TSO and jumbo frames */ 674 if (bytes/packets > 8000) 675 retval = bulk_latency; 676 else if ((packets < 5) && (bytes > 512)) 677 retval = low_latency; 678 break; 679 case low_latency: /* 50 usec aka 20000 ints/s */ 680 if (bytes > 10000) { 681 /* this if handles the TSO accounting */ 682 if (bytes/packets > 8000) 683 retval = bulk_latency; 684 else if ((packets < 10) || ((bytes/packets) > 1200)) 685 retval = bulk_latency; 686 else if ((packets > 35)) 687 retval = lowest_latency; 688 } else if (bytes/packets > 2000) { 689 retval = bulk_latency; 690 } else if (packets <= 2 && bytes < 512) { 691 retval = lowest_latency; 692 } 693 break; 694 case bulk_latency: /* 250 usec aka 4000 ints/s */ 695 if (bytes > 25000) { 696 if (packets > 35) 697 retval = low_latency; 698 } else if (bytes < 6000) { 699 retval = low_latency; 700 } 701 break; 702 default: 703 break; 704 } 705 706 update_itr_done: 707 return retval; 708 } 709 710 static int igbvf_range_to_itr(enum latency_range current_range) 711 { 712 int new_itr; 713 714 switch (current_range) { 715 /* counts and packets in update_itr are dependent on these numbers */ 716 case lowest_latency: 717 new_itr = IGBVF_70K_ITR; 718 break; 719 case low_latency: 720 new_itr = IGBVF_20K_ITR; 721 break; 722 case bulk_latency: 723 new_itr = IGBVF_4K_ITR; 724 break; 725 default: 726 new_itr = IGBVF_START_ITR; 727 break; 728 } 729 return new_itr; 730 } 731 732 static void igbvf_set_itr(struct igbvf_adapter *adapter) 733 { 734 u32 new_itr; 735 736 adapter->tx_ring->itr_range = 737 igbvf_update_itr(adapter, 738 adapter->tx_ring->itr_val, 739 adapter->total_tx_packets, 740 adapter->total_tx_bytes); 741 742 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 743 if (adapter->requested_itr == 3 && 744 adapter->tx_ring->itr_range == lowest_latency) 745 adapter->tx_ring->itr_range = low_latency; 746 747 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range); 748 749 if (new_itr != adapter->tx_ring->itr_val) { 750 u32 current_itr = adapter->tx_ring->itr_val; 751 /* this attempts to bias the interrupt rate towards Bulk 752 * by adding intermediate steps when interrupt rate is 753 * increasing 754 */ 755 new_itr = new_itr > current_itr ? 756 min(current_itr + (new_itr >> 2), new_itr) : 757 new_itr; 758 adapter->tx_ring->itr_val = new_itr; 759 760 adapter->tx_ring->set_itr = 1; 761 } 762 763 adapter->rx_ring->itr_range = 764 igbvf_update_itr(adapter, adapter->rx_ring->itr_val, 765 adapter->total_rx_packets, 766 adapter->total_rx_bytes); 767 if (adapter->requested_itr == 3 && 768 adapter->rx_ring->itr_range == lowest_latency) 769 adapter->rx_ring->itr_range = low_latency; 770 771 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range); 772 773 if (new_itr != adapter->rx_ring->itr_val) { 774 u32 current_itr = adapter->rx_ring->itr_val; 775 776 new_itr = new_itr > current_itr ? 777 min(current_itr + (new_itr >> 2), new_itr) : 778 new_itr; 779 adapter->rx_ring->itr_val = new_itr; 780 781 adapter->rx_ring->set_itr = 1; 782 } 783 } 784 785 /** 786 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 787 * @adapter: board private structure 788 * 789 * returns true if ring is completely cleaned 790 **/ 791 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 792 { 793 struct igbvf_adapter *adapter = tx_ring->adapter; 794 struct net_device *netdev = adapter->netdev; 795 struct igbvf_buffer *buffer_info; 796 struct sk_buff *skb; 797 union e1000_adv_tx_desc *tx_desc, *eop_desc; 798 unsigned int total_bytes = 0, total_packets = 0; 799 unsigned int i, count = 0; 800 bool cleaned = false; 801 802 i = tx_ring->next_to_clean; 803 buffer_info = &tx_ring->buffer_info[i]; 804 eop_desc = buffer_info->next_to_watch; 805 806 do { 807 /* if next_to_watch is not set then there is no work pending */ 808 if (!eop_desc) 809 break; 810 811 /* prevent any other reads prior to eop_desc */ 812 read_barrier_depends(); 813 814 /* if DD is not set pending work has not been completed */ 815 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 816 break; 817 818 /* clear next_to_watch to prevent false hangs */ 819 buffer_info->next_to_watch = NULL; 820 821 for (cleaned = false; !cleaned; count++) { 822 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 823 cleaned = (tx_desc == eop_desc); 824 skb = buffer_info->skb; 825 826 if (skb) { 827 unsigned int segs, bytecount; 828 829 /* gso_segs is currently only valid for tcp */ 830 segs = skb_shinfo(skb)->gso_segs ?: 1; 831 /* multiply data chunks by size of headers */ 832 bytecount = ((segs - 1) * skb_headlen(skb)) + 833 skb->len; 834 total_packets += segs; 835 total_bytes += bytecount; 836 } 837 838 igbvf_put_txbuf(adapter, buffer_info); 839 tx_desc->wb.status = 0; 840 841 i++; 842 if (i == tx_ring->count) 843 i = 0; 844 845 buffer_info = &tx_ring->buffer_info[i]; 846 } 847 848 eop_desc = buffer_info->next_to_watch; 849 } while (count < tx_ring->count); 850 851 tx_ring->next_to_clean = i; 852 853 if (unlikely(count && netif_carrier_ok(netdev) && 854 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 855 /* Make sure that anybody stopping the queue after this 856 * sees the new next_to_clean. 857 */ 858 smp_mb(); 859 if (netif_queue_stopped(netdev) && 860 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 861 netif_wake_queue(netdev); 862 ++adapter->restart_queue; 863 } 864 } 865 866 adapter->net_stats.tx_bytes += total_bytes; 867 adapter->net_stats.tx_packets += total_packets; 868 return count < tx_ring->count; 869 } 870 871 static irqreturn_t igbvf_msix_other(int irq, void *data) 872 { 873 struct net_device *netdev = data; 874 struct igbvf_adapter *adapter = netdev_priv(netdev); 875 struct e1000_hw *hw = &adapter->hw; 876 877 adapter->int_counter1++; 878 879 netif_carrier_off(netdev); 880 hw->mac.get_link_status = 1; 881 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 882 mod_timer(&adapter->watchdog_timer, jiffies + 1); 883 884 ew32(EIMS, adapter->eims_other); 885 886 return IRQ_HANDLED; 887 } 888 889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 890 { 891 struct net_device *netdev = data; 892 struct igbvf_adapter *adapter = netdev_priv(netdev); 893 struct e1000_hw *hw = &adapter->hw; 894 struct igbvf_ring *tx_ring = adapter->tx_ring; 895 896 if (tx_ring->set_itr) { 897 writel(tx_ring->itr_val, 898 adapter->hw.hw_addr + tx_ring->itr_register); 899 adapter->tx_ring->set_itr = 0; 900 } 901 902 adapter->total_tx_bytes = 0; 903 adapter->total_tx_packets = 0; 904 905 /* auto mask will automatically re-enable the interrupt when we write 906 * EICS 907 */ 908 if (!igbvf_clean_tx_irq(tx_ring)) 909 /* Ring was not completely cleaned, so fire another interrupt */ 910 ew32(EICS, tx_ring->eims_value); 911 else 912 ew32(EIMS, tx_ring->eims_value); 913 914 return IRQ_HANDLED; 915 } 916 917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 918 { 919 struct net_device *netdev = data; 920 struct igbvf_adapter *adapter = netdev_priv(netdev); 921 922 adapter->int_counter0++; 923 924 /* Write the ITR value calculated at the end of the 925 * previous interrupt. 926 */ 927 if (adapter->rx_ring->set_itr) { 928 writel(adapter->rx_ring->itr_val, 929 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 930 adapter->rx_ring->set_itr = 0; 931 } 932 933 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 934 adapter->total_rx_bytes = 0; 935 adapter->total_rx_packets = 0; 936 __napi_schedule(&adapter->rx_ring->napi); 937 } 938 939 return IRQ_HANDLED; 940 } 941 942 #define IGBVF_NO_QUEUE -1 943 944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 945 int tx_queue, int msix_vector) 946 { 947 struct e1000_hw *hw = &adapter->hw; 948 u32 ivar, index; 949 950 /* 82576 uses a table-based method for assigning vectors. 951 * Each queue has a single entry in the table to which we write 952 * a vector number along with a "valid" bit. Sadly, the layout 953 * of the table is somewhat counterintuitive. 954 */ 955 if (rx_queue > IGBVF_NO_QUEUE) { 956 index = (rx_queue >> 1); 957 ivar = array_er32(IVAR0, index); 958 if (rx_queue & 0x1) { 959 /* vector goes into third byte of register */ 960 ivar = ivar & 0xFF00FFFF; 961 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 962 } else { 963 /* vector goes into low byte of register */ 964 ivar = ivar & 0xFFFFFF00; 965 ivar |= msix_vector | E1000_IVAR_VALID; 966 } 967 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector; 968 array_ew32(IVAR0, index, ivar); 969 } 970 if (tx_queue > IGBVF_NO_QUEUE) { 971 index = (tx_queue >> 1); 972 ivar = array_er32(IVAR0, index); 973 if (tx_queue & 0x1) { 974 /* vector goes into high byte of register */ 975 ivar = ivar & 0x00FFFFFF; 976 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 977 } else { 978 /* vector goes into second byte of register */ 979 ivar = ivar & 0xFFFF00FF; 980 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 981 } 982 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector; 983 array_ew32(IVAR0, index, ivar); 984 } 985 } 986 987 /** 988 * igbvf_configure_msix - Configure MSI-X hardware 989 * @adapter: board private structure 990 * 991 * igbvf_configure_msix sets up the hardware to properly 992 * generate MSI-X interrupts. 993 **/ 994 static void igbvf_configure_msix(struct igbvf_adapter *adapter) 995 { 996 u32 tmp; 997 struct e1000_hw *hw = &adapter->hw; 998 struct igbvf_ring *tx_ring = adapter->tx_ring; 999 struct igbvf_ring *rx_ring = adapter->rx_ring; 1000 int vector = 0; 1001 1002 adapter->eims_enable_mask = 0; 1003 1004 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 1005 adapter->eims_enable_mask |= tx_ring->eims_value; 1006 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register); 1007 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 1008 adapter->eims_enable_mask |= rx_ring->eims_value; 1009 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register); 1010 1011 /* set vector for other causes, i.e. link changes */ 1012 1013 tmp = (vector++ | E1000_IVAR_VALID); 1014 1015 ew32(IVAR_MISC, tmp); 1016 1017 adapter->eims_enable_mask = (1 << (vector)) - 1; 1018 adapter->eims_other = 1 << (vector - 1); 1019 e1e_flush(); 1020 } 1021 1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 1023 { 1024 if (adapter->msix_entries) { 1025 pci_disable_msix(adapter->pdev); 1026 kfree(adapter->msix_entries); 1027 adapter->msix_entries = NULL; 1028 } 1029 } 1030 1031 /** 1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 1033 * @adapter: board private structure 1034 * 1035 * Attempt to configure interrupts using the best available 1036 * capabilities of the hardware and kernel. 1037 **/ 1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 1039 { 1040 int err = -ENOMEM; 1041 int i; 1042 1043 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */ 1044 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 1045 GFP_KERNEL); 1046 if (adapter->msix_entries) { 1047 for (i = 0; i < 3; i++) 1048 adapter->msix_entries[i].entry = i; 1049 1050 err = pci_enable_msix_range(adapter->pdev, 1051 adapter->msix_entries, 3, 3); 1052 } 1053 1054 if (err < 0) { 1055 /* MSI-X failed */ 1056 dev_err(&adapter->pdev->dev, 1057 "Failed to initialize MSI-X interrupts.\n"); 1058 igbvf_reset_interrupt_capability(adapter); 1059 } 1060 } 1061 1062 /** 1063 * igbvf_request_msix - Initialize MSI-X interrupts 1064 * @adapter: board private structure 1065 * 1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1067 * kernel. 1068 **/ 1069 static int igbvf_request_msix(struct igbvf_adapter *adapter) 1070 { 1071 struct net_device *netdev = adapter->netdev; 1072 int err = 0, vector = 0; 1073 1074 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1075 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1076 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1077 } else { 1078 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1079 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1080 } 1081 1082 err = request_irq(adapter->msix_entries[vector].vector, 1083 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1084 netdev); 1085 if (err) 1086 goto out; 1087 1088 adapter->tx_ring->itr_register = E1000_EITR(vector); 1089 adapter->tx_ring->itr_val = adapter->current_itr; 1090 vector++; 1091 1092 err = request_irq(adapter->msix_entries[vector].vector, 1093 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1094 netdev); 1095 if (err) 1096 goto out; 1097 1098 adapter->rx_ring->itr_register = E1000_EITR(vector); 1099 adapter->rx_ring->itr_val = adapter->current_itr; 1100 vector++; 1101 1102 err = request_irq(adapter->msix_entries[vector].vector, 1103 igbvf_msix_other, 0, netdev->name, netdev); 1104 if (err) 1105 goto out; 1106 1107 igbvf_configure_msix(adapter); 1108 return 0; 1109 out: 1110 return err; 1111 } 1112 1113 /** 1114 * igbvf_alloc_queues - Allocate memory for all rings 1115 * @adapter: board private structure to initialize 1116 **/ 1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter) 1118 { 1119 struct net_device *netdev = adapter->netdev; 1120 1121 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1122 if (!adapter->tx_ring) 1123 return -ENOMEM; 1124 1125 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1126 if (!adapter->rx_ring) { 1127 kfree(adapter->tx_ring); 1128 return -ENOMEM; 1129 } 1130 1131 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * igbvf_request_irq - initialize interrupts 1138 * @adapter: board private structure 1139 * 1140 * Attempts to configure interrupts using the best available 1141 * capabilities of the hardware and kernel. 1142 **/ 1143 static int igbvf_request_irq(struct igbvf_adapter *adapter) 1144 { 1145 int err = -1; 1146 1147 /* igbvf supports msi-x only */ 1148 if (adapter->msix_entries) 1149 err = igbvf_request_msix(adapter); 1150 1151 if (!err) 1152 return err; 1153 1154 dev_err(&adapter->pdev->dev, 1155 "Unable to allocate interrupt, Error: %d\n", err); 1156 1157 return err; 1158 } 1159 1160 static void igbvf_free_irq(struct igbvf_adapter *adapter) 1161 { 1162 struct net_device *netdev = adapter->netdev; 1163 int vector; 1164 1165 if (adapter->msix_entries) { 1166 for (vector = 0; vector < 3; vector++) 1167 free_irq(adapter->msix_entries[vector].vector, netdev); 1168 } 1169 } 1170 1171 /** 1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1173 * @adapter: board private structure 1174 **/ 1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1176 { 1177 struct e1000_hw *hw = &adapter->hw; 1178 1179 ew32(EIMC, ~0); 1180 1181 if (adapter->msix_entries) 1182 ew32(EIAC, 0); 1183 } 1184 1185 /** 1186 * igbvf_irq_enable - Enable default interrupt generation settings 1187 * @adapter: board private structure 1188 **/ 1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1190 { 1191 struct e1000_hw *hw = &adapter->hw; 1192 1193 ew32(EIAC, adapter->eims_enable_mask); 1194 ew32(EIAM, adapter->eims_enable_mask); 1195 ew32(EIMS, adapter->eims_enable_mask); 1196 } 1197 1198 /** 1199 * igbvf_poll - NAPI Rx polling callback 1200 * @napi: struct associated with this polling callback 1201 * @budget: amount of packets driver is allowed to process this poll 1202 **/ 1203 static int igbvf_poll(struct napi_struct *napi, int budget) 1204 { 1205 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1206 struct igbvf_adapter *adapter = rx_ring->adapter; 1207 struct e1000_hw *hw = &adapter->hw; 1208 int work_done = 0; 1209 1210 igbvf_clean_rx_irq(adapter, &work_done, budget); 1211 1212 /* If not enough Rx work done, exit the polling mode */ 1213 if (work_done < budget) { 1214 napi_complete(napi); 1215 1216 if (adapter->requested_itr & 3) 1217 igbvf_set_itr(adapter); 1218 1219 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1220 ew32(EIMS, adapter->rx_ring->eims_value); 1221 } 1222 1223 return work_done; 1224 } 1225 1226 /** 1227 * igbvf_set_rlpml - set receive large packet maximum length 1228 * @adapter: board private structure 1229 * 1230 * Configure the maximum size of packets that will be received 1231 */ 1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1233 { 1234 int max_frame_size; 1235 struct e1000_hw *hw = &adapter->hw; 1236 1237 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1238 e1000_rlpml_set_vf(hw, max_frame_size); 1239 } 1240 1241 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, 1242 __be16 proto, u16 vid) 1243 { 1244 struct igbvf_adapter *adapter = netdev_priv(netdev); 1245 struct e1000_hw *hw = &adapter->hw; 1246 1247 if (hw->mac.ops.set_vfta(hw, vid, true)) { 1248 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); 1249 return -EINVAL; 1250 } 1251 set_bit(vid, adapter->active_vlans); 1252 return 0; 1253 } 1254 1255 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, 1256 __be16 proto, u16 vid) 1257 { 1258 struct igbvf_adapter *adapter = netdev_priv(netdev); 1259 struct e1000_hw *hw = &adapter->hw; 1260 1261 if (hw->mac.ops.set_vfta(hw, vid, false)) { 1262 dev_err(&adapter->pdev->dev, 1263 "Failed to remove vlan id %d\n", vid); 1264 return -EINVAL; 1265 } 1266 clear_bit(vid, adapter->active_vlans); 1267 return 0; 1268 } 1269 1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1271 { 1272 u16 vid; 1273 1274 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1275 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 1276 } 1277 1278 /** 1279 * igbvf_configure_tx - Configure Transmit Unit after Reset 1280 * @adapter: board private structure 1281 * 1282 * Configure the Tx unit of the MAC after a reset. 1283 **/ 1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1285 { 1286 struct e1000_hw *hw = &adapter->hw; 1287 struct igbvf_ring *tx_ring = adapter->tx_ring; 1288 u64 tdba; 1289 u32 txdctl, dca_txctrl; 1290 1291 /* disable transmits */ 1292 txdctl = er32(TXDCTL(0)); 1293 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1294 e1e_flush(); 1295 msleep(10); 1296 1297 /* Setup the HW Tx Head and Tail descriptor pointers */ 1298 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1299 tdba = tx_ring->dma; 1300 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1301 ew32(TDBAH(0), (tdba >> 32)); 1302 ew32(TDH(0), 0); 1303 ew32(TDT(0), 0); 1304 tx_ring->head = E1000_TDH(0); 1305 tx_ring->tail = E1000_TDT(0); 1306 1307 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1308 * MUST be delivered in order or it will completely screw up 1309 * our bookkeeping. 1310 */ 1311 dca_txctrl = er32(DCA_TXCTRL(0)); 1312 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1313 ew32(DCA_TXCTRL(0), dca_txctrl); 1314 1315 /* enable transmits */ 1316 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1317 ew32(TXDCTL(0), txdctl); 1318 1319 /* Setup Transmit Descriptor Settings for eop descriptor */ 1320 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1321 1322 /* enable Report Status bit */ 1323 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1324 } 1325 1326 /** 1327 * igbvf_setup_srrctl - configure the receive control registers 1328 * @adapter: Board private structure 1329 **/ 1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1331 { 1332 struct e1000_hw *hw = &adapter->hw; 1333 u32 srrctl = 0; 1334 1335 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1336 E1000_SRRCTL_BSIZEHDR_MASK | 1337 E1000_SRRCTL_BSIZEPKT_MASK); 1338 1339 /* Enable queue drop to avoid head of line blocking */ 1340 srrctl |= E1000_SRRCTL_DROP_EN; 1341 1342 /* Setup buffer sizes */ 1343 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1344 E1000_SRRCTL_BSIZEPKT_SHIFT; 1345 1346 if (adapter->rx_buffer_len < 2048) { 1347 adapter->rx_ps_hdr_size = 0; 1348 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1349 } else { 1350 adapter->rx_ps_hdr_size = 128; 1351 srrctl |= adapter->rx_ps_hdr_size << 1352 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1353 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1354 } 1355 1356 ew32(SRRCTL(0), srrctl); 1357 } 1358 1359 /** 1360 * igbvf_configure_rx - Configure Receive Unit after Reset 1361 * @adapter: board private structure 1362 * 1363 * Configure the Rx unit of the MAC after a reset. 1364 **/ 1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1366 { 1367 struct e1000_hw *hw = &adapter->hw; 1368 struct igbvf_ring *rx_ring = adapter->rx_ring; 1369 u64 rdba; 1370 u32 rdlen, rxdctl; 1371 1372 /* disable receives */ 1373 rxdctl = er32(RXDCTL(0)); 1374 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1375 e1e_flush(); 1376 msleep(10); 1377 1378 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc); 1379 1380 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1381 * the Base and Length of the Rx Descriptor Ring 1382 */ 1383 rdba = rx_ring->dma; 1384 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1385 ew32(RDBAH(0), (rdba >> 32)); 1386 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1387 rx_ring->head = E1000_RDH(0); 1388 rx_ring->tail = E1000_RDT(0); 1389 ew32(RDH(0), 0); 1390 ew32(RDT(0), 0); 1391 1392 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1393 rxdctl &= 0xFFF00000; 1394 rxdctl |= IGBVF_RX_PTHRESH; 1395 rxdctl |= IGBVF_RX_HTHRESH << 8; 1396 rxdctl |= IGBVF_RX_WTHRESH << 16; 1397 1398 igbvf_set_rlpml(adapter); 1399 1400 /* enable receives */ 1401 ew32(RXDCTL(0), rxdctl); 1402 } 1403 1404 /** 1405 * igbvf_set_multi - Multicast and Promiscuous mode set 1406 * @netdev: network interface device structure 1407 * 1408 * The set_multi entry point is called whenever the multicast address 1409 * list or the network interface flags are updated. This routine is 1410 * responsible for configuring the hardware for proper multicast, 1411 * promiscuous mode, and all-multi behavior. 1412 **/ 1413 static void igbvf_set_multi(struct net_device *netdev) 1414 { 1415 struct igbvf_adapter *adapter = netdev_priv(netdev); 1416 struct e1000_hw *hw = &adapter->hw; 1417 struct netdev_hw_addr *ha; 1418 u8 *mta_list = NULL; 1419 int i; 1420 1421 if (!netdev_mc_empty(netdev)) { 1422 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN, 1423 GFP_ATOMIC); 1424 if (!mta_list) 1425 return; 1426 } 1427 1428 /* prepare a packed array of only addresses. */ 1429 i = 0; 1430 netdev_for_each_mc_addr(ha, netdev) 1431 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1432 1433 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1434 kfree(mta_list); 1435 } 1436 1437 /** 1438 * igbvf_configure - configure the hardware for Rx and Tx 1439 * @adapter: private board structure 1440 **/ 1441 static void igbvf_configure(struct igbvf_adapter *adapter) 1442 { 1443 igbvf_set_multi(adapter->netdev); 1444 1445 igbvf_restore_vlan(adapter); 1446 1447 igbvf_configure_tx(adapter); 1448 igbvf_setup_srrctl(adapter); 1449 igbvf_configure_rx(adapter); 1450 igbvf_alloc_rx_buffers(adapter->rx_ring, 1451 igbvf_desc_unused(adapter->rx_ring)); 1452 } 1453 1454 /* igbvf_reset - bring the hardware into a known good state 1455 * @adapter: private board structure 1456 * 1457 * This function boots the hardware and enables some settings that 1458 * require a configuration cycle of the hardware - those cannot be 1459 * set/changed during runtime. After reset the device needs to be 1460 * properly configured for Rx, Tx etc. 1461 */ 1462 static void igbvf_reset(struct igbvf_adapter *adapter) 1463 { 1464 struct e1000_mac_info *mac = &adapter->hw.mac; 1465 struct net_device *netdev = adapter->netdev; 1466 struct e1000_hw *hw = &adapter->hw; 1467 1468 /* Allow time for pending master requests to run */ 1469 if (mac->ops.reset_hw(hw)) 1470 dev_err(&adapter->pdev->dev, "PF still resetting\n"); 1471 1472 mac->ops.init_hw(hw); 1473 1474 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1475 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 1476 netdev->addr_len); 1477 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1478 netdev->addr_len); 1479 } 1480 1481 adapter->last_reset = jiffies; 1482 } 1483 1484 int igbvf_up(struct igbvf_adapter *adapter) 1485 { 1486 struct e1000_hw *hw = &adapter->hw; 1487 1488 /* hardware has been reset, we need to reload some things */ 1489 igbvf_configure(adapter); 1490 1491 clear_bit(__IGBVF_DOWN, &adapter->state); 1492 1493 napi_enable(&adapter->rx_ring->napi); 1494 if (adapter->msix_entries) 1495 igbvf_configure_msix(adapter); 1496 1497 /* Clear any pending interrupts. */ 1498 er32(EICR); 1499 igbvf_irq_enable(adapter); 1500 1501 /* start the watchdog */ 1502 hw->mac.get_link_status = 1; 1503 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1504 1505 return 0; 1506 } 1507 1508 void igbvf_down(struct igbvf_adapter *adapter) 1509 { 1510 struct net_device *netdev = adapter->netdev; 1511 struct e1000_hw *hw = &adapter->hw; 1512 u32 rxdctl, txdctl; 1513 1514 /* signal that we're down so the interrupt handler does not 1515 * reschedule our watchdog timer 1516 */ 1517 set_bit(__IGBVF_DOWN, &adapter->state); 1518 1519 /* disable receives in the hardware */ 1520 rxdctl = er32(RXDCTL(0)); 1521 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1522 1523 netif_carrier_off(netdev); 1524 netif_stop_queue(netdev); 1525 1526 /* disable transmits in the hardware */ 1527 txdctl = er32(TXDCTL(0)); 1528 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1529 1530 /* flush both disables and wait for them to finish */ 1531 e1e_flush(); 1532 msleep(10); 1533 1534 napi_disable(&adapter->rx_ring->napi); 1535 1536 igbvf_irq_disable(adapter); 1537 1538 del_timer_sync(&adapter->watchdog_timer); 1539 1540 /* record the stats before reset*/ 1541 igbvf_update_stats(adapter); 1542 1543 adapter->link_speed = 0; 1544 adapter->link_duplex = 0; 1545 1546 igbvf_reset(adapter); 1547 igbvf_clean_tx_ring(adapter->tx_ring); 1548 igbvf_clean_rx_ring(adapter->rx_ring); 1549 } 1550 1551 void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1552 { 1553 might_sleep(); 1554 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1555 usleep_range(1000, 2000); 1556 igbvf_down(adapter); 1557 igbvf_up(adapter); 1558 clear_bit(__IGBVF_RESETTING, &adapter->state); 1559 } 1560 1561 /** 1562 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1563 * @adapter: board private structure to initialize 1564 * 1565 * igbvf_sw_init initializes the Adapter private data structure. 1566 * Fields are initialized based on PCI device information and 1567 * OS network device settings (MTU size). 1568 **/ 1569 static int igbvf_sw_init(struct igbvf_adapter *adapter) 1570 { 1571 struct net_device *netdev = adapter->netdev; 1572 s32 rc; 1573 1574 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1575 adapter->rx_ps_hdr_size = 0; 1576 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1577 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1578 1579 adapter->tx_int_delay = 8; 1580 adapter->tx_abs_int_delay = 32; 1581 adapter->rx_int_delay = 0; 1582 adapter->rx_abs_int_delay = 8; 1583 adapter->requested_itr = 3; 1584 adapter->current_itr = IGBVF_START_ITR; 1585 1586 /* Set various function pointers */ 1587 adapter->ei->init_ops(&adapter->hw); 1588 1589 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1590 if (rc) 1591 return rc; 1592 1593 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1594 if (rc) 1595 return rc; 1596 1597 igbvf_set_interrupt_capability(adapter); 1598 1599 if (igbvf_alloc_queues(adapter)) 1600 return -ENOMEM; 1601 1602 spin_lock_init(&adapter->tx_queue_lock); 1603 1604 /* Explicitly disable IRQ since the NIC can be in any state. */ 1605 igbvf_irq_disable(adapter); 1606 1607 spin_lock_init(&adapter->stats_lock); 1608 1609 set_bit(__IGBVF_DOWN, &adapter->state); 1610 return 0; 1611 } 1612 1613 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1614 { 1615 struct e1000_hw *hw = &adapter->hw; 1616 1617 adapter->stats.last_gprc = er32(VFGPRC); 1618 adapter->stats.last_gorc = er32(VFGORC); 1619 adapter->stats.last_gptc = er32(VFGPTC); 1620 adapter->stats.last_gotc = er32(VFGOTC); 1621 adapter->stats.last_mprc = er32(VFMPRC); 1622 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1623 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1624 adapter->stats.last_gorlbc = er32(VFGORLBC); 1625 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1626 1627 adapter->stats.base_gprc = er32(VFGPRC); 1628 adapter->stats.base_gorc = er32(VFGORC); 1629 adapter->stats.base_gptc = er32(VFGPTC); 1630 adapter->stats.base_gotc = er32(VFGOTC); 1631 adapter->stats.base_mprc = er32(VFMPRC); 1632 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1633 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1634 adapter->stats.base_gorlbc = er32(VFGORLBC); 1635 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1636 } 1637 1638 /** 1639 * igbvf_open - Called when a network interface is made active 1640 * @netdev: network interface device structure 1641 * 1642 * Returns 0 on success, negative value on failure 1643 * 1644 * The open entry point is called when a network interface is made 1645 * active by the system (IFF_UP). At this point all resources needed 1646 * for transmit and receive operations are allocated, the interrupt 1647 * handler is registered with the OS, the watchdog timer is started, 1648 * and the stack is notified that the interface is ready. 1649 **/ 1650 static int igbvf_open(struct net_device *netdev) 1651 { 1652 struct igbvf_adapter *adapter = netdev_priv(netdev); 1653 struct e1000_hw *hw = &adapter->hw; 1654 int err; 1655 1656 /* disallow open during test */ 1657 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1658 return -EBUSY; 1659 1660 /* allocate transmit descriptors */ 1661 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1662 if (err) 1663 goto err_setup_tx; 1664 1665 /* allocate receive descriptors */ 1666 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1667 if (err) 1668 goto err_setup_rx; 1669 1670 /* before we allocate an interrupt, we must be ready to handle it. 1671 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1672 * as soon as we call pci_request_irq, so we have to setup our 1673 * clean_rx handler before we do so. 1674 */ 1675 igbvf_configure(adapter); 1676 1677 err = igbvf_request_irq(adapter); 1678 if (err) 1679 goto err_req_irq; 1680 1681 /* From here on the code is the same as igbvf_up() */ 1682 clear_bit(__IGBVF_DOWN, &adapter->state); 1683 1684 napi_enable(&adapter->rx_ring->napi); 1685 1686 /* clear any pending interrupts */ 1687 er32(EICR); 1688 1689 igbvf_irq_enable(adapter); 1690 1691 /* start the watchdog */ 1692 hw->mac.get_link_status = 1; 1693 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1694 1695 return 0; 1696 1697 err_req_irq: 1698 igbvf_free_rx_resources(adapter->rx_ring); 1699 err_setup_rx: 1700 igbvf_free_tx_resources(adapter->tx_ring); 1701 err_setup_tx: 1702 igbvf_reset(adapter); 1703 1704 return err; 1705 } 1706 1707 /** 1708 * igbvf_close - Disables a network interface 1709 * @netdev: network interface device structure 1710 * 1711 * Returns 0, this is not allowed to fail 1712 * 1713 * The close entry point is called when an interface is de-activated 1714 * by the OS. The hardware is still under the drivers control, but 1715 * needs to be disabled. A global MAC reset is issued to stop the 1716 * hardware, and all transmit and receive resources are freed. 1717 **/ 1718 static int igbvf_close(struct net_device *netdev) 1719 { 1720 struct igbvf_adapter *adapter = netdev_priv(netdev); 1721 1722 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1723 igbvf_down(adapter); 1724 1725 igbvf_free_irq(adapter); 1726 1727 igbvf_free_tx_resources(adapter->tx_ring); 1728 igbvf_free_rx_resources(adapter->rx_ring); 1729 1730 return 0; 1731 } 1732 1733 /** 1734 * igbvf_set_mac - Change the Ethernet Address of the NIC 1735 * @netdev: network interface device structure 1736 * @p: pointer to an address structure 1737 * 1738 * Returns 0 on success, negative on failure 1739 **/ 1740 static int igbvf_set_mac(struct net_device *netdev, void *p) 1741 { 1742 struct igbvf_adapter *adapter = netdev_priv(netdev); 1743 struct e1000_hw *hw = &adapter->hw; 1744 struct sockaddr *addr = p; 1745 1746 if (!is_valid_ether_addr(addr->sa_data)) 1747 return -EADDRNOTAVAIL; 1748 1749 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1750 1751 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1752 1753 if (!ether_addr_equal(addr->sa_data, hw->mac.addr)) 1754 return -EADDRNOTAVAIL; 1755 1756 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1757 1758 return 0; 1759 } 1760 1761 #define UPDATE_VF_COUNTER(reg, name) \ 1762 { \ 1763 u32 current_counter = er32(reg); \ 1764 if (current_counter < adapter->stats.last_##name) \ 1765 adapter->stats.name += 0x100000000LL; \ 1766 adapter->stats.last_##name = current_counter; \ 1767 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1768 adapter->stats.name |= current_counter; \ 1769 } 1770 1771 /** 1772 * igbvf_update_stats - Update the board statistics counters 1773 * @adapter: board private structure 1774 **/ 1775 void igbvf_update_stats(struct igbvf_adapter *adapter) 1776 { 1777 struct e1000_hw *hw = &adapter->hw; 1778 struct pci_dev *pdev = adapter->pdev; 1779 1780 /* Prevent stats update while adapter is being reset, link is down 1781 * or if the pci connection is down. 1782 */ 1783 if (adapter->link_speed == 0) 1784 return; 1785 1786 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1787 return; 1788 1789 if (pci_channel_offline(pdev)) 1790 return; 1791 1792 UPDATE_VF_COUNTER(VFGPRC, gprc); 1793 UPDATE_VF_COUNTER(VFGORC, gorc); 1794 UPDATE_VF_COUNTER(VFGPTC, gptc); 1795 UPDATE_VF_COUNTER(VFGOTC, gotc); 1796 UPDATE_VF_COUNTER(VFMPRC, mprc); 1797 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1798 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1799 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1800 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1801 1802 /* Fill out the OS statistics structure */ 1803 adapter->net_stats.multicast = adapter->stats.mprc; 1804 } 1805 1806 static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1807 { 1808 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n", 1809 adapter->link_speed, 1810 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half"); 1811 } 1812 1813 static bool igbvf_has_link(struct igbvf_adapter *adapter) 1814 { 1815 struct e1000_hw *hw = &adapter->hw; 1816 s32 ret_val = E1000_SUCCESS; 1817 bool link_active; 1818 1819 /* If interface is down, stay link down */ 1820 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1821 return false; 1822 1823 ret_val = hw->mac.ops.check_for_link(hw); 1824 link_active = !hw->mac.get_link_status; 1825 1826 /* if check for link returns error we will need to reset */ 1827 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1828 schedule_work(&adapter->reset_task); 1829 1830 return link_active; 1831 } 1832 1833 /** 1834 * igbvf_watchdog - Timer Call-back 1835 * @data: pointer to adapter cast into an unsigned long 1836 **/ 1837 static void igbvf_watchdog(unsigned long data) 1838 { 1839 struct igbvf_adapter *adapter = (struct igbvf_adapter *)data; 1840 1841 /* Do the rest outside of interrupt context */ 1842 schedule_work(&adapter->watchdog_task); 1843 } 1844 1845 static void igbvf_watchdog_task(struct work_struct *work) 1846 { 1847 struct igbvf_adapter *adapter = container_of(work, 1848 struct igbvf_adapter, 1849 watchdog_task); 1850 struct net_device *netdev = adapter->netdev; 1851 struct e1000_mac_info *mac = &adapter->hw.mac; 1852 struct igbvf_ring *tx_ring = adapter->tx_ring; 1853 struct e1000_hw *hw = &adapter->hw; 1854 u32 link; 1855 int tx_pending = 0; 1856 1857 link = igbvf_has_link(adapter); 1858 1859 if (link) { 1860 if (!netif_carrier_ok(netdev)) { 1861 mac->ops.get_link_up_info(&adapter->hw, 1862 &adapter->link_speed, 1863 &adapter->link_duplex); 1864 igbvf_print_link_info(adapter); 1865 1866 netif_carrier_on(netdev); 1867 netif_wake_queue(netdev); 1868 } 1869 } else { 1870 if (netif_carrier_ok(netdev)) { 1871 adapter->link_speed = 0; 1872 adapter->link_duplex = 0; 1873 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1874 netif_carrier_off(netdev); 1875 netif_stop_queue(netdev); 1876 } 1877 } 1878 1879 if (netif_carrier_ok(netdev)) { 1880 igbvf_update_stats(adapter); 1881 } else { 1882 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1883 tx_ring->count); 1884 if (tx_pending) { 1885 /* We've lost link, so the controller stops DMA, 1886 * but we've got queued Tx work that's never going 1887 * to get done, so reset controller to flush Tx. 1888 * (Do the reset outside of interrupt context). 1889 */ 1890 adapter->tx_timeout_count++; 1891 schedule_work(&adapter->reset_task); 1892 } 1893 } 1894 1895 /* Cause software interrupt to ensure Rx ring is cleaned */ 1896 ew32(EICS, adapter->rx_ring->eims_value); 1897 1898 /* Reset the timer */ 1899 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1900 mod_timer(&adapter->watchdog_timer, 1901 round_jiffies(jiffies + (2 * HZ))); 1902 } 1903 1904 #define IGBVF_TX_FLAGS_CSUM 0x00000001 1905 #define IGBVF_TX_FLAGS_VLAN 0x00000002 1906 #define IGBVF_TX_FLAGS_TSO 0x00000004 1907 #define IGBVF_TX_FLAGS_IPV4 0x00000008 1908 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1909 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1910 1911 static int igbvf_tso(struct igbvf_adapter *adapter, 1912 struct igbvf_ring *tx_ring, 1913 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len, 1914 __be16 protocol) 1915 { 1916 struct e1000_adv_tx_context_desc *context_desc; 1917 struct igbvf_buffer *buffer_info; 1918 u32 info = 0, tu_cmd = 0; 1919 u32 mss_l4len_idx, l4len; 1920 unsigned int i; 1921 int err; 1922 1923 *hdr_len = 0; 1924 1925 err = skb_cow_head(skb, 0); 1926 if (err < 0) { 1927 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n"); 1928 return err; 1929 } 1930 1931 l4len = tcp_hdrlen(skb); 1932 *hdr_len += l4len; 1933 1934 if (protocol == htons(ETH_P_IP)) { 1935 struct iphdr *iph = ip_hdr(skb); 1936 1937 iph->tot_len = 0; 1938 iph->check = 0; 1939 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 1940 iph->daddr, 0, 1941 IPPROTO_TCP, 1942 0); 1943 } else if (skb_is_gso_v6(skb)) { 1944 ipv6_hdr(skb)->payload_len = 0; 1945 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1946 &ipv6_hdr(skb)->daddr, 1947 0, IPPROTO_TCP, 0); 1948 } 1949 1950 i = tx_ring->next_to_use; 1951 1952 buffer_info = &tx_ring->buffer_info[i]; 1953 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1954 /* VLAN MACLEN IPLEN */ 1955 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 1956 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 1957 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 1958 *hdr_len += skb_network_offset(skb); 1959 info |= (skb_transport_header(skb) - skb_network_header(skb)); 1960 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb)); 1961 context_desc->vlan_macip_lens = cpu_to_le32(info); 1962 1963 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1964 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 1965 1966 if (protocol == htons(ETH_P_IP)) 1967 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 1968 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1969 1970 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 1971 1972 /* MSS L4LEN IDX */ 1973 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); 1974 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); 1975 1976 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1977 context_desc->seqnum_seed = 0; 1978 1979 buffer_info->time_stamp = jiffies; 1980 buffer_info->dma = 0; 1981 i++; 1982 if (i == tx_ring->count) 1983 i = 0; 1984 1985 tx_ring->next_to_use = i; 1986 1987 return true; 1988 } 1989 1990 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter, 1991 struct igbvf_ring *tx_ring, 1992 struct sk_buff *skb, u32 tx_flags, 1993 __be16 protocol) 1994 { 1995 struct e1000_adv_tx_context_desc *context_desc; 1996 unsigned int i; 1997 struct igbvf_buffer *buffer_info; 1998 u32 info = 0, tu_cmd = 0; 1999 2000 if ((skb->ip_summed == CHECKSUM_PARTIAL) || 2001 (tx_flags & IGBVF_TX_FLAGS_VLAN)) { 2002 i = tx_ring->next_to_use; 2003 buffer_info = &tx_ring->buffer_info[i]; 2004 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 2005 2006 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2007 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 2008 2009 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 2010 if (skb->ip_summed == CHECKSUM_PARTIAL) 2011 info |= (skb_transport_header(skb) - 2012 skb_network_header(skb)); 2013 2014 context_desc->vlan_macip_lens = cpu_to_le32(info); 2015 2016 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 2017 2018 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2019 switch (protocol) { 2020 case htons(ETH_P_IP): 2021 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 2022 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2023 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 2024 break; 2025 case htons(ETH_P_IPV6): 2026 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2027 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 2028 break; 2029 default: 2030 break; 2031 } 2032 } 2033 2034 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 2035 context_desc->seqnum_seed = 0; 2036 context_desc->mss_l4len_idx = 0; 2037 2038 buffer_info->time_stamp = jiffies; 2039 buffer_info->dma = 0; 2040 i++; 2041 if (i == tx_ring->count) 2042 i = 0; 2043 tx_ring->next_to_use = i; 2044 2045 return true; 2046 } 2047 2048 return false; 2049 } 2050 2051 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2052 { 2053 struct igbvf_adapter *adapter = netdev_priv(netdev); 2054 2055 /* there is enough descriptors then we don't need to worry */ 2056 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2057 return 0; 2058 2059 netif_stop_queue(netdev); 2060 2061 /* Herbert's original patch had: 2062 * smp_mb__after_netif_stop_queue(); 2063 * but since that doesn't exist yet, just open code it. 2064 */ 2065 smp_mb(); 2066 2067 /* We need to check again just in case room has been made available */ 2068 if (igbvf_desc_unused(adapter->tx_ring) < size) 2069 return -EBUSY; 2070 2071 netif_wake_queue(netdev); 2072 2073 ++adapter->restart_queue; 2074 return 0; 2075 } 2076 2077 #define IGBVF_MAX_TXD_PWR 16 2078 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR) 2079 2080 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2081 struct igbvf_ring *tx_ring, 2082 struct sk_buff *skb) 2083 { 2084 struct igbvf_buffer *buffer_info; 2085 struct pci_dev *pdev = adapter->pdev; 2086 unsigned int len = skb_headlen(skb); 2087 unsigned int count = 0, i; 2088 unsigned int f; 2089 2090 i = tx_ring->next_to_use; 2091 2092 buffer_info = &tx_ring->buffer_info[i]; 2093 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2094 buffer_info->length = len; 2095 /* set time_stamp *before* dma to help avoid a possible race */ 2096 buffer_info->time_stamp = jiffies; 2097 buffer_info->mapped_as_page = false; 2098 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2099 DMA_TO_DEVICE); 2100 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2101 goto dma_error; 2102 2103 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2104 const struct skb_frag_struct *frag; 2105 2106 count++; 2107 i++; 2108 if (i == tx_ring->count) 2109 i = 0; 2110 2111 frag = &skb_shinfo(skb)->frags[f]; 2112 len = skb_frag_size(frag); 2113 2114 buffer_info = &tx_ring->buffer_info[i]; 2115 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2116 buffer_info->length = len; 2117 buffer_info->time_stamp = jiffies; 2118 buffer_info->mapped_as_page = true; 2119 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2120 DMA_TO_DEVICE); 2121 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2122 goto dma_error; 2123 } 2124 2125 tx_ring->buffer_info[i].skb = skb; 2126 2127 return ++count; 2128 2129 dma_error: 2130 dev_err(&pdev->dev, "TX DMA map failed\n"); 2131 2132 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2133 buffer_info->dma = 0; 2134 buffer_info->time_stamp = 0; 2135 buffer_info->length = 0; 2136 buffer_info->mapped_as_page = false; 2137 if (count) 2138 count--; 2139 2140 /* clear timestamp and dma mappings for remaining portion of packet */ 2141 while (count--) { 2142 if (i == 0) 2143 i += tx_ring->count; 2144 i--; 2145 buffer_info = &tx_ring->buffer_info[i]; 2146 igbvf_put_txbuf(adapter, buffer_info); 2147 } 2148 2149 return 0; 2150 } 2151 2152 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2153 struct igbvf_ring *tx_ring, 2154 int tx_flags, int count, 2155 unsigned int first, u32 paylen, 2156 u8 hdr_len) 2157 { 2158 union e1000_adv_tx_desc *tx_desc = NULL; 2159 struct igbvf_buffer *buffer_info; 2160 u32 olinfo_status = 0, cmd_type_len; 2161 unsigned int i; 2162 2163 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2164 E1000_ADVTXD_DCMD_DEXT); 2165 2166 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2167 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2168 2169 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2170 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2171 2172 /* insert tcp checksum */ 2173 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2174 2175 /* insert ip checksum */ 2176 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2177 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2178 2179 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2180 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2181 } 2182 2183 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2184 2185 i = tx_ring->next_to_use; 2186 while (count--) { 2187 buffer_info = &tx_ring->buffer_info[i]; 2188 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2189 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2190 tx_desc->read.cmd_type_len = 2191 cpu_to_le32(cmd_type_len | buffer_info->length); 2192 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2193 i++; 2194 if (i == tx_ring->count) 2195 i = 0; 2196 } 2197 2198 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2199 /* Force memory writes to complete before letting h/w 2200 * know there are new descriptors to fetch. (Only 2201 * applicable for weak-ordered memory model archs, 2202 * such as IA-64). 2203 */ 2204 wmb(); 2205 2206 tx_ring->buffer_info[first].next_to_watch = tx_desc; 2207 tx_ring->next_to_use = i; 2208 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2209 /* we need this if more than one processor can write to our tail 2210 * at a time, it synchronizes IO on IA64/Altix systems 2211 */ 2212 mmiowb(); 2213 } 2214 2215 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2216 struct net_device *netdev, 2217 struct igbvf_ring *tx_ring) 2218 { 2219 struct igbvf_adapter *adapter = netdev_priv(netdev); 2220 unsigned int first, tx_flags = 0; 2221 u8 hdr_len = 0; 2222 int count = 0; 2223 int tso = 0; 2224 __be16 protocol = vlan_get_protocol(skb); 2225 2226 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2227 dev_kfree_skb_any(skb); 2228 return NETDEV_TX_OK; 2229 } 2230 2231 if (skb->len <= 0) { 2232 dev_kfree_skb_any(skb); 2233 return NETDEV_TX_OK; 2234 } 2235 2236 /* need: count + 4 desc gap to keep tail from touching 2237 * + 2 desc gap to keep tail from touching head, 2238 * + 1 desc for skb->data, 2239 * + 1 desc for context descriptor, 2240 * head, otherwise try next time 2241 */ 2242 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2243 /* this is a hard error */ 2244 return NETDEV_TX_BUSY; 2245 } 2246 2247 if (skb_vlan_tag_present(skb)) { 2248 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2249 tx_flags |= (skb_vlan_tag_get(skb) << 2250 IGBVF_TX_FLAGS_VLAN_SHIFT); 2251 } 2252 2253 if (protocol == htons(ETH_P_IP)) 2254 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2255 2256 first = tx_ring->next_to_use; 2257 2258 tso = skb_is_gso(skb) ? 2259 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0; 2260 if (unlikely(tso < 0)) { 2261 dev_kfree_skb_any(skb); 2262 return NETDEV_TX_OK; 2263 } 2264 2265 if (tso) 2266 tx_flags |= IGBVF_TX_FLAGS_TSO; 2267 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) && 2268 (skb->ip_summed == CHECKSUM_PARTIAL)) 2269 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2270 2271 /* count reflects descriptors mapped, if 0 then mapping error 2272 * has occurred and we need to rewind the descriptor queue 2273 */ 2274 count = igbvf_tx_map_adv(adapter, tx_ring, skb); 2275 2276 if (count) { 2277 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2278 first, skb->len, hdr_len); 2279 /* Make sure there is space in the ring for the next send. */ 2280 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2281 } else { 2282 dev_kfree_skb_any(skb); 2283 tx_ring->buffer_info[first].time_stamp = 0; 2284 tx_ring->next_to_use = first; 2285 } 2286 2287 return NETDEV_TX_OK; 2288 } 2289 2290 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2291 struct net_device *netdev) 2292 { 2293 struct igbvf_adapter *adapter = netdev_priv(netdev); 2294 struct igbvf_ring *tx_ring; 2295 2296 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2297 dev_kfree_skb_any(skb); 2298 return NETDEV_TX_OK; 2299 } 2300 2301 tx_ring = &adapter->tx_ring[0]; 2302 2303 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2304 } 2305 2306 /** 2307 * igbvf_tx_timeout - Respond to a Tx Hang 2308 * @netdev: network interface device structure 2309 **/ 2310 static void igbvf_tx_timeout(struct net_device *netdev) 2311 { 2312 struct igbvf_adapter *adapter = netdev_priv(netdev); 2313 2314 /* Do the reset outside of interrupt context */ 2315 adapter->tx_timeout_count++; 2316 schedule_work(&adapter->reset_task); 2317 } 2318 2319 static void igbvf_reset_task(struct work_struct *work) 2320 { 2321 struct igbvf_adapter *adapter; 2322 2323 adapter = container_of(work, struct igbvf_adapter, reset_task); 2324 2325 igbvf_reinit_locked(adapter); 2326 } 2327 2328 /** 2329 * igbvf_get_stats - Get System Network Statistics 2330 * @netdev: network interface device structure 2331 * 2332 * Returns the address of the device statistics structure. 2333 * The statistics are actually updated from the timer callback. 2334 **/ 2335 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev) 2336 { 2337 struct igbvf_adapter *adapter = netdev_priv(netdev); 2338 2339 /* only return the current stats */ 2340 return &adapter->net_stats; 2341 } 2342 2343 /** 2344 * igbvf_change_mtu - Change the Maximum Transfer Unit 2345 * @netdev: network interface device structure 2346 * @new_mtu: new value for maximum frame size 2347 * 2348 * Returns 0 on success, negative on failure 2349 **/ 2350 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2351 { 2352 struct igbvf_adapter *adapter = netdev_priv(netdev); 2353 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2354 2355 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN || 2356 max_frame > MAX_JUMBO_FRAME_SIZE) 2357 return -EINVAL; 2358 2359 #define MAX_STD_JUMBO_FRAME_SIZE 9234 2360 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 2361 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); 2362 return -EINVAL; 2363 } 2364 2365 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2366 usleep_range(1000, 2000); 2367 /* igbvf_down has a dependency on max_frame_size */ 2368 adapter->max_frame_size = max_frame; 2369 if (netif_running(netdev)) 2370 igbvf_down(adapter); 2371 2372 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2373 * means we reserve 2 more, this pushes us to allocate from the next 2374 * larger slab size. 2375 * i.e. RXBUFFER_2048 --> size-4096 slab 2376 * However with the new *_jumbo_rx* routines, jumbo receives will use 2377 * fragmented skbs 2378 */ 2379 2380 if (max_frame <= 1024) 2381 adapter->rx_buffer_len = 1024; 2382 else if (max_frame <= 2048) 2383 adapter->rx_buffer_len = 2048; 2384 else 2385 #if (PAGE_SIZE / 2) > 16384 2386 adapter->rx_buffer_len = 16384; 2387 #else 2388 adapter->rx_buffer_len = PAGE_SIZE / 2; 2389 #endif 2390 2391 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2392 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2393 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2394 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2395 ETH_FCS_LEN; 2396 2397 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", 2398 netdev->mtu, new_mtu); 2399 netdev->mtu = new_mtu; 2400 2401 if (netif_running(netdev)) 2402 igbvf_up(adapter); 2403 else 2404 igbvf_reset(adapter); 2405 2406 clear_bit(__IGBVF_RESETTING, &adapter->state); 2407 2408 return 0; 2409 } 2410 2411 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2412 { 2413 switch (cmd) { 2414 default: 2415 return -EOPNOTSUPP; 2416 } 2417 } 2418 2419 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) 2420 { 2421 struct net_device *netdev = pci_get_drvdata(pdev); 2422 struct igbvf_adapter *adapter = netdev_priv(netdev); 2423 #ifdef CONFIG_PM 2424 int retval = 0; 2425 #endif 2426 2427 netif_device_detach(netdev); 2428 2429 if (netif_running(netdev)) { 2430 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2431 igbvf_down(adapter); 2432 igbvf_free_irq(adapter); 2433 } 2434 2435 #ifdef CONFIG_PM 2436 retval = pci_save_state(pdev); 2437 if (retval) 2438 return retval; 2439 #endif 2440 2441 pci_disable_device(pdev); 2442 2443 return 0; 2444 } 2445 2446 #ifdef CONFIG_PM 2447 static int igbvf_resume(struct pci_dev *pdev) 2448 { 2449 struct net_device *netdev = pci_get_drvdata(pdev); 2450 struct igbvf_adapter *adapter = netdev_priv(netdev); 2451 u32 err; 2452 2453 pci_restore_state(pdev); 2454 err = pci_enable_device_mem(pdev); 2455 if (err) { 2456 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 2457 return err; 2458 } 2459 2460 pci_set_master(pdev); 2461 2462 if (netif_running(netdev)) { 2463 err = igbvf_request_irq(adapter); 2464 if (err) 2465 return err; 2466 } 2467 2468 igbvf_reset(adapter); 2469 2470 if (netif_running(netdev)) 2471 igbvf_up(adapter); 2472 2473 netif_device_attach(netdev); 2474 2475 return 0; 2476 } 2477 #endif 2478 2479 static void igbvf_shutdown(struct pci_dev *pdev) 2480 { 2481 igbvf_suspend(pdev, PMSG_SUSPEND); 2482 } 2483 2484 #ifdef CONFIG_NET_POLL_CONTROLLER 2485 /* Polling 'interrupt' - used by things like netconsole to send skbs 2486 * without having to re-enable interrupts. It's not called while 2487 * the interrupt routine is executing. 2488 */ 2489 static void igbvf_netpoll(struct net_device *netdev) 2490 { 2491 struct igbvf_adapter *adapter = netdev_priv(netdev); 2492 2493 disable_irq(adapter->pdev->irq); 2494 2495 igbvf_clean_tx_irq(adapter->tx_ring); 2496 2497 enable_irq(adapter->pdev->irq); 2498 } 2499 #endif 2500 2501 /** 2502 * igbvf_io_error_detected - called when PCI error is detected 2503 * @pdev: Pointer to PCI device 2504 * @state: The current pci connection state 2505 * 2506 * This function is called after a PCI bus error affecting 2507 * this device has been detected. 2508 */ 2509 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2510 pci_channel_state_t state) 2511 { 2512 struct net_device *netdev = pci_get_drvdata(pdev); 2513 struct igbvf_adapter *adapter = netdev_priv(netdev); 2514 2515 netif_device_detach(netdev); 2516 2517 if (state == pci_channel_io_perm_failure) 2518 return PCI_ERS_RESULT_DISCONNECT; 2519 2520 if (netif_running(netdev)) 2521 igbvf_down(adapter); 2522 pci_disable_device(pdev); 2523 2524 /* Request a slot slot reset. */ 2525 return PCI_ERS_RESULT_NEED_RESET; 2526 } 2527 2528 /** 2529 * igbvf_io_slot_reset - called after the pci bus has been reset. 2530 * @pdev: Pointer to PCI device 2531 * 2532 * Restart the card from scratch, as if from a cold-boot. Implementation 2533 * resembles the first-half of the igbvf_resume routine. 2534 */ 2535 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2536 { 2537 struct net_device *netdev = pci_get_drvdata(pdev); 2538 struct igbvf_adapter *adapter = netdev_priv(netdev); 2539 2540 if (pci_enable_device_mem(pdev)) { 2541 dev_err(&pdev->dev, 2542 "Cannot re-enable PCI device after reset.\n"); 2543 return PCI_ERS_RESULT_DISCONNECT; 2544 } 2545 pci_set_master(pdev); 2546 2547 igbvf_reset(adapter); 2548 2549 return PCI_ERS_RESULT_RECOVERED; 2550 } 2551 2552 /** 2553 * igbvf_io_resume - called when traffic can start flowing again. 2554 * @pdev: Pointer to PCI device 2555 * 2556 * This callback is called when the error recovery driver tells us that 2557 * its OK to resume normal operation. Implementation resembles the 2558 * second-half of the igbvf_resume routine. 2559 */ 2560 static void igbvf_io_resume(struct pci_dev *pdev) 2561 { 2562 struct net_device *netdev = pci_get_drvdata(pdev); 2563 struct igbvf_adapter *adapter = netdev_priv(netdev); 2564 2565 if (netif_running(netdev)) { 2566 if (igbvf_up(adapter)) { 2567 dev_err(&pdev->dev, 2568 "can't bring device back up after reset\n"); 2569 return; 2570 } 2571 } 2572 2573 netif_device_attach(netdev); 2574 } 2575 2576 static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2577 { 2578 struct e1000_hw *hw = &adapter->hw; 2579 struct net_device *netdev = adapter->netdev; 2580 struct pci_dev *pdev = adapter->pdev; 2581 2582 if (hw->mac.type == e1000_vfadapt_i350) 2583 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2584 else 2585 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2586 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2587 } 2588 2589 static int igbvf_set_features(struct net_device *netdev, 2590 netdev_features_t features) 2591 { 2592 struct igbvf_adapter *adapter = netdev_priv(netdev); 2593 2594 if (features & NETIF_F_RXCSUM) 2595 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2596 else 2597 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2598 2599 return 0; 2600 } 2601 2602 static const struct net_device_ops igbvf_netdev_ops = { 2603 .ndo_open = igbvf_open, 2604 .ndo_stop = igbvf_close, 2605 .ndo_start_xmit = igbvf_xmit_frame, 2606 .ndo_get_stats = igbvf_get_stats, 2607 .ndo_set_rx_mode = igbvf_set_multi, 2608 .ndo_set_mac_address = igbvf_set_mac, 2609 .ndo_change_mtu = igbvf_change_mtu, 2610 .ndo_do_ioctl = igbvf_ioctl, 2611 .ndo_tx_timeout = igbvf_tx_timeout, 2612 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2613 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2614 #ifdef CONFIG_NET_POLL_CONTROLLER 2615 .ndo_poll_controller = igbvf_netpoll, 2616 #endif 2617 .ndo_set_features = igbvf_set_features, 2618 }; 2619 2620 /** 2621 * igbvf_probe - Device Initialization Routine 2622 * @pdev: PCI device information struct 2623 * @ent: entry in igbvf_pci_tbl 2624 * 2625 * Returns 0 on success, negative on failure 2626 * 2627 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2628 * The OS initialization, configuring of the adapter private structure, 2629 * and a hardware reset occur. 2630 **/ 2631 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2632 { 2633 struct net_device *netdev; 2634 struct igbvf_adapter *adapter; 2635 struct e1000_hw *hw; 2636 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2637 2638 static int cards_found; 2639 int err, pci_using_dac; 2640 2641 err = pci_enable_device_mem(pdev); 2642 if (err) 2643 return err; 2644 2645 pci_using_dac = 0; 2646 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2647 if (!err) { 2648 pci_using_dac = 1; 2649 } else { 2650 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2651 if (err) { 2652 dev_err(&pdev->dev, 2653 "No usable DMA configuration, aborting\n"); 2654 goto err_dma; 2655 } 2656 } 2657 2658 err = pci_request_regions(pdev, igbvf_driver_name); 2659 if (err) 2660 goto err_pci_reg; 2661 2662 pci_set_master(pdev); 2663 2664 err = -ENOMEM; 2665 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2666 if (!netdev) 2667 goto err_alloc_etherdev; 2668 2669 SET_NETDEV_DEV(netdev, &pdev->dev); 2670 2671 pci_set_drvdata(pdev, netdev); 2672 adapter = netdev_priv(netdev); 2673 hw = &adapter->hw; 2674 adapter->netdev = netdev; 2675 adapter->pdev = pdev; 2676 adapter->ei = ei; 2677 adapter->pba = ei->pba; 2678 adapter->flags = ei->flags; 2679 adapter->hw.back = adapter; 2680 adapter->hw.mac.type = ei->mac; 2681 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2682 2683 /* PCI config space info */ 2684 2685 hw->vendor_id = pdev->vendor; 2686 hw->device_id = pdev->device; 2687 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2688 hw->subsystem_device_id = pdev->subsystem_device; 2689 hw->revision_id = pdev->revision; 2690 2691 err = -EIO; 2692 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2693 pci_resource_len(pdev, 0)); 2694 2695 if (!adapter->hw.hw_addr) 2696 goto err_ioremap; 2697 2698 if (ei->get_variants) { 2699 err = ei->get_variants(adapter); 2700 if (err) 2701 goto err_get_variants; 2702 } 2703 2704 /* setup adapter struct */ 2705 err = igbvf_sw_init(adapter); 2706 if (err) 2707 goto err_sw_init; 2708 2709 /* construct the net_device struct */ 2710 netdev->netdev_ops = &igbvf_netdev_ops; 2711 2712 igbvf_set_ethtool_ops(netdev); 2713 netdev->watchdog_timeo = 5 * HZ; 2714 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2715 2716 adapter->bd_number = cards_found++; 2717 2718 netdev->hw_features = NETIF_F_SG | 2719 NETIF_F_IP_CSUM | 2720 NETIF_F_IPV6_CSUM | 2721 NETIF_F_TSO | 2722 NETIF_F_TSO6 | 2723 NETIF_F_RXCSUM; 2724 2725 netdev->features = netdev->hw_features | 2726 NETIF_F_HW_VLAN_CTAG_TX | 2727 NETIF_F_HW_VLAN_CTAG_RX | 2728 NETIF_F_HW_VLAN_CTAG_FILTER; 2729 2730 if (pci_using_dac) 2731 netdev->features |= NETIF_F_HIGHDMA; 2732 2733 netdev->vlan_features |= NETIF_F_TSO; 2734 netdev->vlan_features |= NETIF_F_TSO6; 2735 netdev->vlan_features |= NETIF_F_IP_CSUM; 2736 netdev->vlan_features |= NETIF_F_IPV6_CSUM; 2737 netdev->vlan_features |= NETIF_F_SG; 2738 2739 /*reset the controller to put the device in a known good state */ 2740 err = hw->mac.ops.reset_hw(hw); 2741 if (err) { 2742 dev_info(&pdev->dev, 2743 "PF still in reset state. Is the PF interface up?\n"); 2744 } else { 2745 err = hw->mac.ops.read_mac_addr(hw); 2746 if (err) 2747 dev_info(&pdev->dev, "Error reading MAC address.\n"); 2748 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2749 dev_info(&pdev->dev, 2750 "MAC address not assigned by administrator.\n"); 2751 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 2752 netdev->addr_len); 2753 } 2754 2755 if (!is_valid_ether_addr(netdev->dev_addr)) { 2756 dev_info(&pdev->dev, "Assigning random MAC address.\n"); 2757 eth_hw_addr_random(netdev); 2758 memcpy(adapter->hw.mac.addr, netdev->dev_addr, 2759 netdev->addr_len); 2760 } 2761 2762 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog, 2763 (unsigned long)adapter); 2764 2765 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2766 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2767 2768 /* ring size defaults */ 2769 adapter->rx_ring->count = 1024; 2770 adapter->tx_ring->count = 1024; 2771 2772 /* reset the hardware with the new settings */ 2773 igbvf_reset(adapter); 2774 2775 /* set hardware-specific flags */ 2776 if (adapter->hw.mac.type == e1000_vfadapt_i350) 2777 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP; 2778 2779 strcpy(netdev->name, "eth%d"); 2780 err = register_netdev(netdev); 2781 if (err) 2782 goto err_hw_init; 2783 2784 /* tell the stack to leave us alone until igbvf_open() is called */ 2785 netif_carrier_off(netdev); 2786 netif_stop_queue(netdev); 2787 2788 igbvf_print_device_info(adapter); 2789 2790 igbvf_initialize_last_counter_stats(adapter); 2791 2792 return 0; 2793 2794 err_hw_init: 2795 kfree(adapter->tx_ring); 2796 kfree(adapter->rx_ring); 2797 err_sw_init: 2798 igbvf_reset_interrupt_capability(adapter); 2799 err_get_variants: 2800 iounmap(adapter->hw.hw_addr); 2801 err_ioremap: 2802 free_netdev(netdev); 2803 err_alloc_etherdev: 2804 pci_release_regions(pdev); 2805 err_pci_reg: 2806 err_dma: 2807 pci_disable_device(pdev); 2808 return err; 2809 } 2810 2811 /** 2812 * igbvf_remove - Device Removal Routine 2813 * @pdev: PCI device information struct 2814 * 2815 * igbvf_remove is called by the PCI subsystem to alert the driver 2816 * that it should release a PCI device. The could be caused by a 2817 * Hot-Plug event, or because the driver is going to be removed from 2818 * memory. 2819 **/ 2820 static void igbvf_remove(struct pci_dev *pdev) 2821 { 2822 struct net_device *netdev = pci_get_drvdata(pdev); 2823 struct igbvf_adapter *adapter = netdev_priv(netdev); 2824 struct e1000_hw *hw = &adapter->hw; 2825 2826 /* The watchdog timer may be rescheduled, so explicitly 2827 * disable it from being rescheduled. 2828 */ 2829 set_bit(__IGBVF_DOWN, &adapter->state); 2830 del_timer_sync(&adapter->watchdog_timer); 2831 2832 cancel_work_sync(&adapter->reset_task); 2833 cancel_work_sync(&adapter->watchdog_task); 2834 2835 unregister_netdev(netdev); 2836 2837 igbvf_reset_interrupt_capability(adapter); 2838 2839 /* it is important to delete the NAPI struct prior to freeing the 2840 * Rx ring so that you do not end up with null pointer refs 2841 */ 2842 netif_napi_del(&adapter->rx_ring->napi); 2843 kfree(adapter->tx_ring); 2844 kfree(adapter->rx_ring); 2845 2846 iounmap(hw->hw_addr); 2847 if (hw->flash_address) 2848 iounmap(hw->flash_address); 2849 pci_release_regions(pdev); 2850 2851 free_netdev(netdev); 2852 2853 pci_disable_device(pdev); 2854 } 2855 2856 /* PCI Error Recovery (ERS) */ 2857 static const struct pci_error_handlers igbvf_err_handler = { 2858 .error_detected = igbvf_io_error_detected, 2859 .slot_reset = igbvf_io_slot_reset, 2860 .resume = igbvf_io_resume, 2861 }; 2862 2863 static const struct pci_device_id igbvf_pci_tbl[] = { 2864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2866 { } /* terminate list */ 2867 }; 2868 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2869 2870 /* PCI Device API Driver */ 2871 static struct pci_driver igbvf_driver = { 2872 .name = igbvf_driver_name, 2873 .id_table = igbvf_pci_tbl, 2874 .probe = igbvf_probe, 2875 .remove = igbvf_remove, 2876 #ifdef CONFIG_PM 2877 /* Power Management Hooks */ 2878 .suspend = igbvf_suspend, 2879 .resume = igbvf_resume, 2880 #endif 2881 .shutdown = igbvf_shutdown, 2882 .err_handler = &igbvf_err_handler 2883 }; 2884 2885 /** 2886 * igbvf_init_module - Driver Registration Routine 2887 * 2888 * igbvf_init_module is the first routine called when the driver is 2889 * loaded. All it does is register with the PCI subsystem. 2890 **/ 2891 static int __init igbvf_init_module(void) 2892 { 2893 int ret; 2894 2895 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version); 2896 pr_info("%s\n", igbvf_copyright); 2897 2898 ret = pci_register_driver(&igbvf_driver); 2899 2900 return ret; 2901 } 2902 module_init(igbvf_init_module); 2903 2904 /** 2905 * igbvf_exit_module - Driver Exit Cleanup Routine 2906 * 2907 * igbvf_exit_module is called just before the driver is removed 2908 * from memory. 2909 **/ 2910 static void __exit igbvf_exit_module(void) 2911 { 2912 pci_unregister_driver(&igbvf_driver); 2913 } 2914 module_exit(igbvf_exit_module); 2915 2916 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 2917 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 2918 MODULE_LICENSE("GPL"); 2919 MODULE_VERSION(DRV_VERSION); 2920 2921 /* netdev.c */ 2922