xref: /linux/drivers/net/ethernet/intel/igbvf/netdev.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*******************************************************************************
2 
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2010 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47 
48 #include "igbvf.h"
49 
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 		  "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 		  "Copyright (c) 2009 - 2011 Intel Corporation.";
57 
58 static int igbvf_poll(struct napi_struct *napi, int budget);
59 static void igbvf_reset(struct igbvf_adapter *);
60 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
61 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
62 
63 static struct igbvf_info igbvf_vf_info = {
64 	.mac                    = e1000_vfadapt,
65 	.flags                  = 0,
66 	.pba                    = 10,
67 	.init_ops               = e1000_init_function_pointers_vf,
68 };
69 
70 static struct igbvf_info igbvf_i350_vf_info = {
71 	.mac			= e1000_vfadapt_i350,
72 	.flags			= 0,
73 	.pba			= 10,
74 	.init_ops		= e1000_init_function_pointers_vf,
75 };
76 
77 static const struct igbvf_info *igbvf_info_tbl[] = {
78 	[board_vf]              = &igbvf_vf_info,
79 	[board_i350_vf]		= &igbvf_i350_vf_info,
80 };
81 
82 /**
83  * igbvf_desc_unused - calculate if we have unused descriptors
84  **/
85 static int igbvf_desc_unused(struct igbvf_ring *ring)
86 {
87 	if (ring->next_to_clean > ring->next_to_use)
88 		return ring->next_to_clean - ring->next_to_use - 1;
89 
90 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
91 }
92 
93 /**
94  * igbvf_receive_skb - helper function to handle Rx indications
95  * @adapter: board private structure
96  * @status: descriptor status field as written by hardware
97  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
98  * @skb: pointer to sk_buff to be indicated to stack
99  **/
100 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
101                               struct net_device *netdev,
102                               struct sk_buff *skb,
103                               u32 status, u16 vlan)
104 {
105 	if (status & E1000_RXD_STAT_VP) {
106 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
107 		if (test_bit(vid, adapter->active_vlans))
108 			__vlan_hwaccel_put_tag(skb, vid);
109 	}
110 	netif_receive_skb(skb);
111 }
112 
113 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
114                                          u32 status_err, struct sk_buff *skb)
115 {
116 	skb_checksum_none_assert(skb);
117 
118 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
119 	if ((status_err & E1000_RXD_STAT_IXSM) ||
120 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
121 		return;
122 
123 	/* TCP/UDP checksum error bit is set */
124 	if (status_err &
125 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
126 		/* let the stack verify checksum errors */
127 		adapter->hw_csum_err++;
128 		return;
129 	}
130 
131 	/* It must be a TCP or UDP packet with a valid checksum */
132 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
133 		skb->ip_summed = CHECKSUM_UNNECESSARY;
134 
135 	adapter->hw_csum_good++;
136 }
137 
138 /**
139  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
140  * @rx_ring: address of ring structure to repopulate
141  * @cleaned_count: number of buffers to repopulate
142  **/
143 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
144                                    int cleaned_count)
145 {
146 	struct igbvf_adapter *adapter = rx_ring->adapter;
147 	struct net_device *netdev = adapter->netdev;
148 	struct pci_dev *pdev = adapter->pdev;
149 	union e1000_adv_rx_desc *rx_desc;
150 	struct igbvf_buffer *buffer_info;
151 	struct sk_buff *skb;
152 	unsigned int i;
153 	int bufsz;
154 
155 	i = rx_ring->next_to_use;
156 	buffer_info = &rx_ring->buffer_info[i];
157 
158 	if (adapter->rx_ps_hdr_size)
159 		bufsz = adapter->rx_ps_hdr_size;
160 	else
161 		bufsz = adapter->rx_buffer_len;
162 
163 	while (cleaned_count--) {
164 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
165 
166 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
167 			if (!buffer_info->page) {
168 				buffer_info->page = alloc_page(GFP_ATOMIC);
169 				if (!buffer_info->page) {
170 					adapter->alloc_rx_buff_failed++;
171 					goto no_buffers;
172 				}
173 				buffer_info->page_offset = 0;
174 			} else {
175 				buffer_info->page_offset ^= PAGE_SIZE / 2;
176 			}
177 			buffer_info->page_dma =
178 				dma_map_page(&pdev->dev, buffer_info->page,
179 				             buffer_info->page_offset,
180 				             PAGE_SIZE / 2,
181 					     DMA_FROM_DEVICE);
182 		}
183 
184 		if (!buffer_info->skb) {
185 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
186 			if (!skb) {
187 				adapter->alloc_rx_buff_failed++;
188 				goto no_buffers;
189 			}
190 
191 			buffer_info->skb = skb;
192 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
193 			                                  bufsz,
194 							  DMA_FROM_DEVICE);
195 		}
196 		/* Refresh the desc even if buffer_addrs didn't change because
197 		 * each write-back erases this info. */
198 		if (adapter->rx_ps_hdr_size) {
199 			rx_desc->read.pkt_addr =
200 			     cpu_to_le64(buffer_info->page_dma);
201 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
202 		} else {
203 			rx_desc->read.pkt_addr =
204 			     cpu_to_le64(buffer_info->dma);
205 			rx_desc->read.hdr_addr = 0;
206 		}
207 
208 		i++;
209 		if (i == rx_ring->count)
210 			i = 0;
211 		buffer_info = &rx_ring->buffer_info[i];
212 	}
213 
214 no_buffers:
215 	if (rx_ring->next_to_use != i) {
216 		rx_ring->next_to_use = i;
217 		if (i == 0)
218 			i = (rx_ring->count - 1);
219 		else
220 			i--;
221 
222 		/* Force memory writes to complete before letting h/w
223 		 * know there are new descriptors to fetch.  (Only
224 		 * applicable for weak-ordered memory model archs,
225 		 * such as IA-64). */
226 		wmb();
227 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
228 	}
229 }
230 
231 /**
232  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
233  * @adapter: board private structure
234  *
235  * the return value indicates whether actual cleaning was done, there
236  * is no guarantee that everything was cleaned
237  **/
238 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
239                                int *work_done, int work_to_do)
240 {
241 	struct igbvf_ring *rx_ring = adapter->rx_ring;
242 	struct net_device *netdev = adapter->netdev;
243 	struct pci_dev *pdev = adapter->pdev;
244 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
245 	struct igbvf_buffer *buffer_info, *next_buffer;
246 	struct sk_buff *skb;
247 	bool cleaned = false;
248 	int cleaned_count = 0;
249 	unsigned int total_bytes = 0, total_packets = 0;
250 	unsigned int i;
251 	u32 length, hlen, staterr;
252 
253 	i = rx_ring->next_to_clean;
254 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
255 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
256 
257 	while (staterr & E1000_RXD_STAT_DD) {
258 		if (*work_done >= work_to_do)
259 			break;
260 		(*work_done)++;
261 		rmb(); /* read descriptor and rx_buffer_info after status DD */
262 
263 		buffer_info = &rx_ring->buffer_info[i];
264 
265 		/* HW will not DMA in data larger than the given buffer, even
266 		 * if it parses the (NFS, of course) header to be larger.  In
267 		 * that case, it fills the header buffer and spills the rest
268 		 * into the page.
269 		 */
270 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
271 		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
272 		if (hlen > adapter->rx_ps_hdr_size)
273 			hlen = adapter->rx_ps_hdr_size;
274 
275 		length = le16_to_cpu(rx_desc->wb.upper.length);
276 		cleaned = true;
277 		cleaned_count++;
278 
279 		skb = buffer_info->skb;
280 		prefetch(skb->data - NET_IP_ALIGN);
281 		buffer_info->skb = NULL;
282 		if (!adapter->rx_ps_hdr_size) {
283 			dma_unmap_single(&pdev->dev, buffer_info->dma,
284 			                 adapter->rx_buffer_len,
285 					 DMA_FROM_DEVICE);
286 			buffer_info->dma = 0;
287 			skb_put(skb, length);
288 			goto send_up;
289 		}
290 
291 		if (!skb_shinfo(skb)->nr_frags) {
292 			dma_unmap_single(&pdev->dev, buffer_info->dma,
293 			                 adapter->rx_ps_hdr_size,
294 					 DMA_FROM_DEVICE);
295 			skb_put(skb, hlen);
296 		}
297 
298 		if (length) {
299 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
300 			               PAGE_SIZE / 2,
301 				       DMA_FROM_DEVICE);
302 			buffer_info->page_dma = 0;
303 
304 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
305 			                   buffer_info->page,
306 			                   buffer_info->page_offset,
307 			                   length);
308 
309 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
310 			    (page_count(buffer_info->page) != 1))
311 				buffer_info->page = NULL;
312 			else
313 				get_page(buffer_info->page);
314 
315 			skb->len += length;
316 			skb->data_len += length;
317 			skb->truesize += PAGE_SIZE / 2;
318 		}
319 send_up:
320 		i++;
321 		if (i == rx_ring->count)
322 			i = 0;
323 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
324 		prefetch(next_rxd);
325 		next_buffer = &rx_ring->buffer_info[i];
326 
327 		if (!(staterr & E1000_RXD_STAT_EOP)) {
328 			buffer_info->skb = next_buffer->skb;
329 			buffer_info->dma = next_buffer->dma;
330 			next_buffer->skb = skb;
331 			next_buffer->dma = 0;
332 			goto next_desc;
333 		}
334 
335 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
336 			dev_kfree_skb_irq(skb);
337 			goto next_desc;
338 		}
339 
340 		total_bytes += skb->len;
341 		total_packets++;
342 
343 		igbvf_rx_checksum_adv(adapter, staterr, skb);
344 
345 		skb->protocol = eth_type_trans(skb, netdev);
346 
347 		igbvf_receive_skb(adapter, netdev, skb, staterr,
348 		                  rx_desc->wb.upper.vlan);
349 
350 next_desc:
351 		rx_desc->wb.upper.status_error = 0;
352 
353 		/* return some buffers to hardware, one at a time is too slow */
354 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
355 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
356 			cleaned_count = 0;
357 		}
358 
359 		/* use prefetched values */
360 		rx_desc = next_rxd;
361 		buffer_info = next_buffer;
362 
363 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
364 	}
365 
366 	rx_ring->next_to_clean = i;
367 	cleaned_count = igbvf_desc_unused(rx_ring);
368 
369 	if (cleaned_count)
370 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
371 
372 	adapter->total_rx_packets += total_packets;
373 	adapter->total_rx_bytes += total_bytes;
374 	adapter->net_stats.rx_bytes += total_bytes;
375 	adapter->net_stats.rx_packets += total_packets;
376 	return cleaned;
377 }
378 
379 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
380                             struct igbvf_buffer *buffer_info)
381 {
382 	if (buffer_info->dma) {
383 		if (buffer_info->mapped_as_page)
384 			dma_unmap_page(&adapter->pdev->dev,
385 				       buffer_info->dma,
386 				       buffer_info->length,
387 				       DMA_TO_DEVICE);
388 		else
389 			dma_unmap_single(&adapter->pdev->dev,
390 					 buffer_info->dma,
391 					 buffer_info->length,
392 					 DMA_TO_DEVICE);
393 		buffer_info->dma = 0;
394 	}
395 	if (buffer_info->skb) {
396 		dev_kfree_skb_any(buffer_info->skb);
397 		buffer_info->skb = NULL;
398 	}
399 	buffer_info->time_stamp = 0;
400 }
401 
402 /**
403  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
404  * @adapter: board private structure
405  *
406  * Return 0 on success, negative on failure
407  **/
408 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
409                              struct igbvf_ring *tx_ring)
410 {
411 	struct pci_dev *pdev = adapter->pdev;
412 	int size;
413 
414 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
415 	tx_ring->buffer_info = vzalloc(size);
416 	if (!tx_ring->buffer_info)
417 		goto err;
418 
419 	/* round up to nearest 4K */
420 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
421 	tx_ring->size = ALIGN(tx_ring->size, 4096);
422 
423 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
424 					   &tx_ring->dma, GFP_KERNEL);
425 
426 	if (!tx_ring->desc)
427 		goto err;
428 
429 	tx_ring->adapter = adapter;
430 	tx_ring->next_to_use = 0;
431 	tx_ring->next_to_clean = 0;
432 
433 	return 0;
434 err:
435 	vfree(tx_ring->buffer_info);
436 	dev_err(&adapter->pdev->dev,
437 	        "Unable to allocate memory for the transmit descriptor ring\n");
438 	return -ENOMEM;
439 }
440 
441 /**
442  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
443  * @adapter: board private structure
444  *
445  * Returns 0 on success, negative on failure
446  **/
447 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
448 			     struct igbvf_ring *rx_ring)
449 {
450 	struct pci_dev *pdev = adapter->pdev;
451 	int size, desc_len;
452 
453 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
454 	rx_ring->buffer_info = vzalloc(size);
455 	if (!rx_ring->buffer_info)
456 		goto err;
457 
458 	desc_len = sizeof(union e1000_adv_rx_desc);
459 
460 	/* Round up to nearest 4K */
461 	rx_ring->size = rx_ring->count * desc_len;
462 	rx_ring->size = ALIGN(rx_ring->size, 4096);
463 
464 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
465 					   &rx_ring->dma, GFP_KERNEL);
466 
467 	if (!rx_ring->desc)
468 		goto err;
469 
470 	rx_ring->next_to_clean = 0;
471 	rx_ring->next_to_use = 0;
472 
473 	rx_ring->adapter = adapter;
474 
475 	return 0;
476 
477 err:
478 	vfree(rx_ring->buffer_info);
479 	rx_ring->buffer_info = NULL;
480 	dev_err(&adapter->pdev->dev,
481 	        "Unable to allocate memory for the receive descriptor ring\n");
482 	return -ENOMEM;
483 }
484 
485 /**
486  * igbvf_clean_tx_ring - Free Tx Buffers
487  * @tx_ring: ring to be cleaned
488  **/
489 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
490 {
491 	struct igbvf_adapter *adapter = tx_ring->adapter;
492 	struct igbvf_buffer *buffer_info;
493 	unsigned long size;
494 	unsigned int i;
495 
496 	if (!tx_ring->buffer_info)
497 		return;
498 
499 	/* Free all the Tx ring sk_buffs */
500 	for (i = 0; i < tx_ring->count; i++) {
501 		buffer_info = &tx_ring->buffer_info[i];
502 		igbvf_put_txbuf(adapter, buffer_info);
503 	}
504 
505 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
506 	memset(tx_ring->buffer_info, 0, size);
507 
508 	/* Zero out the descriptor ring */
509 	memset(tx_ring->desc, 0, tx_ring->size);
510 
511 	tx_ring->next_to_use = 0;
512 	tx_ring->next_to_clean = 0;
513 
514 	writel(0, adapter->hw.hw_addr + tx_ring->head);
515 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
516 }
517 
518 /**
519  * igbvf_free_tx_resources - Free Tx Resources per Queue
520  * @tx_ring: ring to free resources from
521  *
522  * Free all transmit software resources
523  **/
524 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
525 {
526 	struct pci_dev *pdev = tx_ring->adapter->pdev;
527 
528 	igbvf_clean_tx_ring(tx_ring);
529 
530 	vfree(tx_ring->buffer_info);
531 	tx_ring->buffer_info = NULL;
532 
533 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
534 			  tx_ring->dma);
535 
536 	tx_ring->desc = NULL;
537 }
538 
539 /**
540  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
541  * @adapter: board private structure
542  **/
543 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
544 {
545 	struct igbvf_adapter *adapter = rx_ring->adapter;
546 	struct igbvf_buffer *buffer_info;
547 	struct pci_dev *pdev = adapter->pdev;
548 	unsigned long size;
549 	unsigned int i;
550 
551 	if (!rx_ring->buffer_info)
552 		return;
553 
554 	/* Free all the Rx ring sk_buffs */
555 	for (i = 0; i < rx_ring->count; i++) {
556 		buffer_info = &rx_ring->buffer_info[i];
557 		if (buffer_info->dma) {
558 			if (adapter->rx_ps_hdr_size){
559 				dma_unmap_single(&pdev->dev, buffer_info->dma,
560 				                 adapter->rx_ps_hdr_size,
561 						 DMA_FROM_DEVICE);
562 			} else {
563 				dma_unmap_single(&pdev->dev, buffer_info->dma,
564 				                 adapter->rx_buffer_len,
565 						 DMA_FROM_DEVICE);
566 			}
567 			buffer_info->dma = 0;
568 		}
569 
570 		if (buffer_info->skb) {
571 			dev_kfree_skb(buffer_info->skb);
572 			buffer_info->skb = NULL;
573 		}
574 
575 		if (buffer_info->page) {
576 			if (buffer_info->page_dma)
577 				dma_unmap_page(&pdev->dev,
578 					       buffer_info->page_dma,
579 				               PAGE_SIZE / 2,
580 					       DMA_FROM_DEVICE);
581 			put_page(buffer_info->page);
582 			buffer_info->page = NULL;
583 			buffer_info->page_dma = 0;
584 			buffer_info->page_offset = 0;
585 		}
586 	}
587 
588 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
589 	memset(rx_ring->buffer_info, 0, size);
590 
591 	/* Zero out the descriptor ring */
592 	memset(rx_ring->desc, 0, rx_ring->size);
593 
594 	rx_ring->next_to_clean = 0;
595 	rx_ring->next_to_use = 0;
596 
597 	writel(0, adapter->hw.hw_addr + rx_ring->head);
598 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
599 }
600 
601 /**
602  * igbvf_free_rx_resources - Free Rx Resources
603  * @rx_ring: ring to clean the resources from
604  *
605  * Free all receive software resources
606  **/
607 
608 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
609 {
610 	struct pci_dev *pdev = rx_ring->adapter->pdev;
611 
612 	igbvf_clean_rx_ring(rx_ring);
613 
614 	vfree(rx_ring->buffer_info);
615 	rx_ring->buffer_info = NULL;
616 
617 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
618 	                  rx_ring->dma);
619 	rx_ring->desc = NULL;
620 }
621 
622 /**
623  * igbvf_update_itr - update the dynamic ITR value based on statistics
624  * @adapter: pointer to adapter
625  * @itr_setting: current adapter->itr
626  * @packets: the number of packets during this measurement interval
627  * @bytes: the number of bytes during this measurement interval
628  *
629  *      Stores a new ITR value based on packets and byte
630  *      counts during the last interrupt.  The advantage of per interrupt
631  *      computation is faster updates and more accurate ITR for the current
632  *      traffic pattern.  Constants in this function were computed
633  *      based on theoretical maximum wire speed and thresholds were set based
634  *      on testing data as well as attempting to minimize response time
635  *      while increasing bulk throughput.  This functionality is controlled
636  *      by the InterruptThrottleRate module parameter.
637  **/
638 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
639                                      u16 itr_setting, int packets,
640                                      int bytes)
641 {
642 	unsigned int retval = itr_setting;
643 
644 	if (packets == 0)
645 		goto update_itr_done;
646 
647 	switch (itr_setting) {
648 	case lowest_latency:
649 		/* handle TSO and jumbo frames */
650 		if (bytes/packets > 8000)
651 			retval = bulk_latency;
652 		else if ((packets < 5) && (bytes > 512))
653 			retval = low_latency;
654 		break;
655 	case low_latency:  /* 50 usec aka 20000 ints/s */
656 		if (bytes > 10000) {
657 			/* this if handles the TSO accounting */
658 			if (bytes/packets > 8000)
659 				retval = bulk_latency;
660 			else if ((packets < 10) || ((bytes/packets) > 1200))
661 				retval = bulk_latency;
662 			else if ((packets > 35))
663 				retval = lowest_latency;
664 		} else if (bytes/packets > 2000) {
665 			retval = bulk_latency;
666 		} else if (packets <= 2 && bytes < 512) {
667 			retval = lowest_latency;
668 		}
669 		break;
670 	case bulk_latency: /* 250 usec aka 4000 ints/s */
671 		if (bytes > 25000) {
672 			if (packets > 35)
673 				retval = low_latency;
674 		} else if (bytes < 6000) {
675 			retval = low_latency;
676 		}
677 		break;
678 	}
679 
680 update_itr_done:
681 	return retval;
682 }
683 
684 static void igbvf_set_itr(struct igbvf_adapter *adapter)
685 {
686 	struct e1000_hw *hw = &adapter->hw;
687 	u16 current_itr;
688 	u32 new_itr = adapter->itr;
689 
690 	adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
691 	                                   adapter->total_tx_packets,
692 	                                   adapter->total_tx_bytes);
693 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
694 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
695 		adapter->tx_itr = low_latency;
696 
697 	adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
698 	                                   adapter->total_rx_packets,
699 	                                   adapter->total_rx_bytes);
700 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
701 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
702 		adapter->rx_itr = low_latency;
703 
704 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
705 
706 	switch (current_itr) {
707 	/* counts and packets in update_itr are dependent on these numbers */
708 	case lowest_latency:
709 		new_itr = 70000;
710 		break;
711 	case low_latency:
712 		new_itr = 20000; /* aka hwitr = ~200 */
713 		break;
714 	case bulk_latency:
715 		new_itr = 4000;
716 		break;
717 	default:
718 		break;
719 	}
720 
721 	if (new_itr != adapter->itr) {
722 		/*
723 		 * this attempts to bias the interrupt rate towards Bulk
724 		 * by adding intermediate steps when interrupt rate is
725 		 * increasing
726 		 */
727 		new_itr = new_itr > adapter->itr ?
728 		             min(adapter->itr + (new_itr >> 2), new_itr) :
729 		             new_itr;
730 		adapter->itr = new_itr;
731 		adapter->rx_ring->itr_val = 1952;
732 
733 		if (adapter->msix_entries)
734 			adapter->rx_ring->set_itr = 1;
735 		else
736 			ew32(ITR, 1952);
737 	}
738 }
739 
740 /**
741  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
742  * @adapter: board private structure
743  * returns true if ring is completely cleaned
744  **/
745 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
746 {
747 	struct igbvf_adapter *adapter = tx_ring->adapter;
748 	struct net_device *netdev = adapter->netdev;
749 	struct igbvf_buffer *buffer_info;
750 	struct sk_buff *skb;
751 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
752 	unsigned int total_bytes = 0, total_packets = 0;
753 	unsigned int i, eop, count = 0;
754 	bool cleaned = false;
755 
756 	i = tx_ring->next_to_clean;
757 	eop = tx_ring->buffer_info[i].next_to_watch;
758 	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
759 
760 	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
761 	       (count < tx_ring->count)) {
762 		rmb();	/* read buffer_info after eop_desc status */
763 		for (cleaned = false; !cleaned; count++) {
764 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
765 			buffer_info = &tx_ring->buffer_info[i];
766 			cleaned = (i == eop);
767 			skb = buffer_info->skb;
768 
769 			if (skb) {
770 				unsigned int segs, bytecount;
771 
772 				/* gso_segs is currently only valid for tcp */
773 				segs = skb_shinfo(skb)->gso_segs ?: 1;
774 				/* multiply data chunks by size of headers */
775 				bytecount = ((segs - 1) * skb_headlen(skb)) +
776 				            skb->len;
777 				total_packets += segs;
778 				total_bytes += bytecount;
779 			}
780 
781 			igbvf_put_txbuf(adapter, buffer_info);
782 			tx_desc->wb.status = 0;
783 
784 			i++;
785 			if (i == tx_ring->count)
786 				i = 0;
787 		}
788 		eop = tx_ring->buffer_info[i].next_to_watch;
789 		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
790 	}
791 
792 	tx_ring->next_to_clean = i;
793 
794 	if (unlikely(count &&
795 	             netif_carrier_ok(netdev) &&
796 	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
797 		/* Make sure that anybody stopping the queue after this
798 		 * sees the new next_to_clean.
799 		 */
800 		smp_mb();
801 		if (netif_queue_stopped(netdev) &&
802 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
803 			netif_wake_queue(netdev);
804 			++adapter->restart_queue;
805 		}
806 	}
807 
808 	adapter->net_stats.tx_bytes += total_bytes;
809 	adapter->net_stats.tx_packets += total_packets;
810 	return count < tx_ring->count;
811 }
812 
813 static irqreturn_t igbvf_msix_other(int irq, void *data)
814 {
815 	struct net_device *netdev = data;
816 	struct igbvf_adapter *adapter = netdev_priv(netdev);
817 	struct e1000_hw *hw = &adapter->hw;
818 
819 	adapter->int_counter1++;
820 
821 	netif_carrier_off(netdev);
822 	hw->mac.get_link_status = 1;
823 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
824 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
825 
826 	ew32(EIMS, adapter->eims_other);
827 
828 	return IRQ_HANDLED;
829 }
830 
831 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
832 {
833 	struct net_device *netdev = data;
834 	struct igbvf_adapter *adapter = netdev_priv(netdev);
835 	struct e1000_hw *hw = &adapter->hw;
836 	struct igbvf_ring *tx_ring = adapter->tx_ring;
837 
838 
839 	adapter->total_tx_bytes = 0;
840 	adapter->total_tx_packets = 0;
841 
842 	/* auto mask will automatically reenable the interrupt when we write
843 	 * EICS */
844 	if (!igbvf_clean_tx_irq(tx_ring))
845 		/* Ring was not completely cleaned, so fire another interrupt */
846 		ew32(EICS, tx_ring->eims_value);
847 	else
848 		ew32(EIMS, tx_ring->eims_value);
849 
850 	return IRQ_HANDLED;
851 }
852 
853 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
854 {
855 	struct net_device *netdev = data;
856 	struct igbvf_adapter *adapter = netdev_priv(netdev);
857 
858 	adapter->int_counter0++;
859 
860 	/* Write the ITR value calculated at the end of the
861 	 * previous interrupt.
862 	 */
863 	if (adapter->rx_ring->set_itr) {
864 		writel(adapter->rx_ring->itr_val,
865 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
866 		adapter->rx_ring->set_itr = 0;
867 	}
868 
869 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
870 		adapter->total_rx_bytes = 0;
871 		adapter->total_rx_packets = 0;
872 		__napi_schedule(&adapter->rx_ring->napi);
873 	}
874 
875 	return IRQ_HANDLED;
876 }
877 
878 #define IGBVF_NO_QUEUE -1
879 
880 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
881                                 int tx_queue, int msix_vector)
882 {
883 	struct e1000_hw *hw = &adapter->hw;
884 	u32 ivar, index;
885 
886 	/* 82576 uses a table-based method for assigning vectors.
887 	   Each queue has a single entry in the table to which we write
888 	   a vector number along with a "valid" bit.  Sadly, the layout
889 	   of the table is somewhat counterintuitive. */
890 	if (rx_queue > IGBVF_NO_QUEUE) {
891 		index = (rx_queue >> 1);
892 		ivar = array_er32(IVAR0, index);
893 		if (rx_queue & 0x1) {
894 			/* vector goes into third byte of register */
895 			ivar = ivar & 0xFF00FFFF;
896 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
897 		} else {
898 			/* vector goes into low byte of register */
899 			ivar = ivar & 0xFFFFFF00;
900 			ivar |= msix_vector | E1000_IVAR_VALID;
901 		}
902 		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
903 		array_ew32(IVAR0, index, ivar);
904 	}
905 	if (tx_queue > IGBVF_NO_QUEUE) {
906 		index = (tx_queue >> 1);
907 		ivar = array_er32(IVAR0, index);
908 		if (tx_queue & 0x1) {
909 			/* vector goes into high byte of register */
910 			ivar = ivar & 0x00FFFFFF;
911 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
912 		} else {
913 			/* vector goes into second byte of register */
914 			ivar = ivar & 0xFFFF00FF;
915 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
916 		}
917 		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
918 		array_ew32(IVAR0, index, ivar);
919 	}
920 }
921 
922 /**
923  * igbvf_configure_msix - Configure MSI-X hardware
924  *
925  * igbvf_configure_msix sets up the hardware to properly
926  * generate MSI-X interrupts.
927  **/
928 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
929 {
930 	u32 tmp;
931 	struct e1000_hw *hw = &adapter->hw;
932 	struct igbvf_ring *tx_ring = adapter->tx_ring;
933 	struct igbvf_ring *rx_ring = adapter->rx_ring;
934 	int vector = 0;
935 
936 	adapter->eims_enable_mask = 0;
937 
938 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
939 	adapter->eims_enable_mask |= tx_ring->eims_value;
940 	if (tx_ring->itr_val)
941 		writel(tx_ring->itr_val,
942 		       hw->hw_addr + tx_ring->itr_register);
943 	else
944 		writel(1952, hw->hw_addr + tx_ring->itr_register);
945 
946 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
947 	adapter->eims_enable_mask |= rx_ring->eims_value;
948 	if (rx_ring->itr_val)
949 		writel(rx_ring->itr_val,
950 		       hw->hw_addr + rx_ring->itr_register);
951 	else
952 		writel(1952, hw->hw_addr + rx_ring->itr_register);
953 
954 	/* set vector for other causes, i.e. link changes */
955 
956 	tmp = (vector++ | E1000_IVAR_VALID);
957 
958 	ew32(IVAR_MISC, tmp);
959 
960 	adapter->eims_enable_mask = (1 << (vector)) - 1;
961 	adapter->eims_other = 1 << (vector - 1);
962 	e1e_flush();
963 }
964 
965 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
966 {
967 	if (adapter->msix_entries) {
968 		pci_disable_msix(adapter->pdev);
969 		kfree(adapter->msix_entries);
970 		adapter->msix_entries = NULL;
971 	}
972 }
973 
974 /**
975  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
976  *
977  * Attempt to configure interrupts using the best available
978  * capabilities of the hardware and kernel.
979  **/
980 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
981 {
982 	int err = -ENOMEM;
983 	int i;
984 
985 	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
986 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
987 	                                GFP_KERNEL);
988 	if (adapter->msix_entries) {
989 		for (i = 0; i < 3; i++)
990 			adapter->msix_entries[i].entry = i;
991 
992 		err = pci_enable_msix(adapter->pdev,
993 		                      adapter->msix_entries, 3);
994 	}
995 
996 	if (err) {
997 		/* MSI-X failed */
998 		dev_err(&adapter->pdev->dev,
999 		        "Failed to initialize MSI-X interrupts.\n");
1000 		igbvf_reset_interrupt_capability(adapter);
1001 	}
1002 }
1003 
1004 /**
1005  * igbvf_request_msix - Initialize MSI-X interrupts
1006  *
1007  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1008  * kernel.
1009  **/
1010 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1011 {
1012 	struct net_device *netdev = adapter->netdev;
1013 	int err = 0, vector = 0;
1014 
1015 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1016 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1017 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1018 	} else {
1019 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1020 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1021 	}
1022 
1023 	err = request_irq(adapter->msix_entries[vector].vector,
1024 	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1025 	                  netdev);
1026 	if (err)
1027 		goto out;
1028 
1029 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1030 	adapter->tx_ring->itr_val = 1952;
1031 	vector++;
1032 
1033 	err = request_irq(adapter->msix_entries[vector].vector,
1034 	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1035 	                  netdev);
1036 	if (err)
1037 		goto out;
1038 
1039 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1040 	adapter->rx_ring->itr_val = 1952;
1041 	vector++;
1042 
1043 	err = request_irq(adapter->msix_entries[vector].vector,
1044 	                  igbvf_msix_other, 0, netdev->name, netdev);
1045 	if (err)
1046 		goto out;
1047 
1048 	igbvf_configure_msix(adapter);
1049 	return 0;
1050 out:
1051 	return err;
1052 }
1053 
1054 /**
1055  * igbvf_alloc_queues - Allocate memory for all rings
1056  * @adapter: board private structure to initialize
1057  **/
1058 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1059 {
1060 	struct net_device *netdev = adapter->netdev;
1061 
1062 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1063 	if (!adapter->tx_ring)
1064 		return -ENOMEM;
1065 
1066 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1067 	if (!adapter->rx_ring) {
1068 		kfree(adapter->tx_ring);
1069 		return -ENOMEM;
1070 	}
1071 
1072 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  * igbvf_request_irq - initialize interrupts
1079  *
1080  * Attempts to configure interrupts using the best available
1081  * capabilities of the hardware and kernel.
1082  **/
1083 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1084 {
1085 	int err = -1;
1086 
1087 	/* igbvf supports msi-x only */
1088 	if (adapter->msix_entries)
1089 		err = igbvf_request_msix(adapter);
1090 
1091 	if (!err)
1092 		return err;
1093 
1094 	dev_err(&adapter->pdev->dev,
1095 	        "Unable to allocate interrupt, Error: %d\n", err);
1096 
1097 	return err;
1098 }
1099 
1100 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1101 {
1102 	struct net_device *netdev = adapter->netdev;
1103 	int vector;
1104 
1105 	if (adapter->msix_entries) {
1106 		for (vector = 0; vector < 3; vector++)
1107 			free_irq(adapter->msix_entries[vector].vector, netdev);
1108 	}
1109 }
1110 
1111 /**
1112  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1113  **/
1114 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1115 {
1116 	struct e1000_hw *hw = &adapter->hw;
1117 
1118 	ew32(EIMC, ~0);
1119 
1120 	if (adapter->msix_entries)
1121 		ew32(EIAC, 0);
1122 }
1123 
1124 /**
1125  * igbvf_irq_enable - Enable default interrupt generation settings
1126  **/
1127 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1128 {
1129 	struct e1000_hw *hw = &adapter->hw;
1130 
1131 	ew32(EIAC, adapter->eims_enable_mask);
1132 	ew32(EIAM, adapter->eims_enable_mask);
1133 	ew32(EIMS, adapter->eims_enable_mask);
1134 }
1135 
1136 /**
1137  * igbvf_poll - NAPI Rx polling callback
1138  * @napi: struct associated with this polling callback
1139  * @budget: amount of packets driver is allowed to process this poll
1140  **/
1141 static int igbvf_poll(struct napi_struct *napi, int budget)
1142 {
1143 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1144 	struct igbvf_adapter *adapter = rx_ring->adapter;
1145 	struct e1000_hw *hw = &adapter->hw;
1146 	int work_done = 0;
1147 
1148 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1149 
1150 	/* If not enough Rx work done, exit the polling mode */
1151 	if (work_done < budget) {
1152 		napi_complete(napi);
1153 
1154 		if (adapter->itr_setting & 3)
1155 			igbvf_set_itr(adapter);
1156 
1157 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1158 			ew32(EIMS, adapter->rx_ring->eims_value);
1159 	}
1160 
1161 	return work_done;
1162 }
1163 
1164 /**
1165  * igbvf_set_rlpml - set receive large packet maximum length
1166  * @adapter: board private structure
1167  *
1168  * Configure the maximum size of packets that will be received
1169  */
1170 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1171 {
1172 	int max_frame_size;
1173 	struct e1000_hw *hw = &adapter->hw;
1174 
1175 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1176 	e1000_rlpml_set_vf(hw, max_frame_size);
1177 }
1178 
1179 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1180 {
1181 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1182 	struct e1000_hw *hw = &adapter->hw;
1183 
1184 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1185 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1186 		return -EINVAL;
1187 	}
1188 	set_bit(vid, adapter->active_vlans);
1189 	return 0;
1190 }
1191 
1192 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1193 {
1194 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1195 	struct e1000_hw *hw = &adapter->hw;
1196 
1197 	igbvf_irq_disable(adapter);
1198 
1199 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1200 		igbvf_irq_enable(adapter);
1201 
1202 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1203 		dev_err(&adapter->pdev->dev,
1204 		        "Failed to remove vlan id %d\n", vid);
1205 		return -EINVAL;
1206 	}
1207 	clear_bit(vid, adapter->active_vlans);
1208 	return 0;
1209 }
1210 
1211 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1212 {
1213 	u16 vid;
1214 
1215 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1216 		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1217 }
1218 
1219 /**
1220  * igbvf_configure_tx - Configure Transmit Unit after Reset
1221  * @adapter: board private structure
1222  *
1223  * Configure the Tx unit of the MAC after a reset.
1224  **/
1225 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1226 {
1227 	struct e1000_hw *hw = &adapter->hw;
1228 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1229 	u64 tdba;
1230 	u32 txdctl, dca_txctrl;
1231 
1232 	/* disable transmits */
1233 	txdctl = er32(TXDCTL(0));
1234 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1235 	e1e_flush();
1236 	msleep(10);
1237 
1238 	/* Setup the HW Tx Head and Tail descriptor pointers */
1239 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1240 	tdba = tx_ring->dma;
1241 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1242 	ew32(TDBAH(0), (tdba >> 32));
1243 	ew32(TDH(0), 0);
1244 	ew32(TDT(0), 0);
1245 	tx_ring->head = E1000_TDH(0);
1246 	tx_ring->tail = E1000_TDT(0);
1247 
1248 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1249 	 * MUST be delivered in order or it will completely screw up
1250 	 * our bookeeping.
1251 	 */
1252 	dca_txctrl = er32(DCA_TXCTRL(0));
1253 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1254 	ew32(DCA_TXCTRL(0), dca_txctrl);
1255 
1256 	/* enable transmits */
1257 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1258 	ew32(TXDCTL(0), txdctl);
1259 
1260 	/* Setup Transmit Descriptor Settings for eop descriptor */
1261 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1262 
1263 	/* enable Report Status bit */
1264 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1265 }
1266 
1267 /**
1268  * igbvf_setup_srrctl - configure the receive control registers
1269  * @adapter: Board private structure
1270  **/
1271 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1272 {
1273 	struct e1000_hw *hw = &adapter->hw;
1274 	u32 srrctl = 0;
1275 
1276 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1277 	            E1000_SRRCTL_BSIZEHDR_MASK |
1278 	            E1000_SRRCTL_BSIZEPKT_MASK);
1279 
1280 	/* Enable queue drop to avoid head of line blocking */
1281 	srrctl |= E1000_SRRCTL_DROP_EN;
1282 
1283 	/* Setup buffer sizes */
1284 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1285 	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1286 
1287 	if (adapter->rx_buffer_len < 2048) {
1288 		adapter->rx_ps_hdr_size = 0;
1289 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1290 	} else {
1291 		adapter->rx_ps_hdr_size = 128;
1292 		srrctl |= adapter->rx_ps_hdr_size <<
1293 		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1294 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1295 	}
1296 
1297 	ew32(SRRCTL(0), srrctl);
1298 }
1299 
1300 /**
1301  * igbvf_configure_rx - Configure Receive Unit after Reset
1302  * @adapter: board private structure
1303  *
1304  * Configure the Rx unit of the MAC after a reset.
1305  **/
1306 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1307 {
1308 	struct e1000_hw *hw = &adapter->hw;
1309 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1310 	u64 rdba;
1311 	u32 rdlen, rxdctl;
1312 
1313 	/* disable receives */
1314 	rxdctl = er32(RXDCTL(0));
1315 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1316 	e1e_flush();
1317 	msleep(10);
1318 
1319 	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1320 
1321 	/*
1322 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1323 	 * the Base and Length of the Rx Descriptor Ring
1324 	 */
1325 	rdba = rx_ring->dma;
1326 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1327 	ew32(RDBAH(0), (rdba >> 32));
1328 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1329 	rx_ring->head = E1000_RDH(0);
1330 	rx_ring->tail = E1000_RDT(0);
1331 	ew32(RDH(0), 0);
1332 	ew32(RDT(0), 0);
1333 
1334 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1335 	rxdctl &= 0xFFF00000;
1336 	rxdctl |= IGBVF_RX_PTHRESH;
1337 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1338 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1339 
1340 	igbvf_set_rlpml(adapter);
1341 
1342 	/* enable receives */
1343 	ew32(RXDCTL(0), rxdctl);
1344 }
1345 
1346 /**
1347  * igbvf_set_multi - Multicast and Promiscuous mode set
1348  * @netdev: network interface device structure
1349  *
1350  * The set_multi entry point is called whenever the multicast address
1351  * list or the network interface flags are updated.  This routine is
1352  * responsible for configuring the hardware for proper multicast,
1353  * promiscuous mode, and all-multi behavior.
1354  **/
1355 static void igbvf_set_multi(struct net_device *netdev)
1356 {
1357 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1358 	struct e1000_hw *hw = &adapter->hw;
1359 	struct netdev_hw_addr *ha;
1360 	u8  *mta_list = NULL;
1361 	int i;
1362 
1363 	if (!netdev_mc_empty(netdev)) {
1364 		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1365 		if (!mta_list) {
1366 			dev_err(&adapter->pdev->dev,
1367 			        "failed to allocate multicast filter list\n");
1368 			return;
1369 		}
1370 	}
1371 
1372 	/* prepare a packed array of only addresses. */
1373 	i = 0;
1374 	netdev_for_each_mc_addr(ha, netdev)
1375 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1376 
1377 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1378 	kfree(mta_list);
1379 }
1380 
1381 /**
1382  * igbvf_configure - configure the hardware for Rx and Tx
1383  * @adapter: private board structure
1384  **/
1385 static void igbvf_configure(struct igbvf_adapter *adapter)
1386 {
1387 	igbvf_set_multi(adapter->netdev);
1388 
1389 	igbvf_restore_vlan(adapter);
1390 
1391 	igbvf_configure_tx(adapter);
1392 	igbvf_setup_srrctl(adapter);
1393 	igbvf_configure_rx(adapter);
1394 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1395 	                       igbvf_desc_unused(adapter->rx_ring));
1396 }
1397 
1398 /* igbvf_reset - bring the hardware into a known good state
1399  *
1400  * This function boots the hardware and enables some settings that
1401  * require a configuration cycle of the hardware - those cannot be
1402  * set/changed during runtime. After reset the device needs to be
1403  * properly configured for Rx, Tx etc.
1404  */
1405 static void igbvf_reset(struct igbvf_adapter *adapter)
1406 {
1407 	struct e1000_mac_info *mac = &adapter->hw.mac;
1408 	struct net_device *netdev = adapter->netdev;
1409 	struct e1000_hw *hw = &adapter->hw;
1410 
1411 	/* Allow time for pending master requests to run */
1412 	if (mac->ops.reset_hw(hw))
1413 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1414 
1415 	mac->ops.init_hw(hw);
1416 
1417 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1418 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1419 		       netdev->addr_len);
1420 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1421 		       netdev->addr_len);
1422 	}
1423 
1424 	adapter->last_reset = jiffies;
1425 }
1426 
1427 int igbvf_up(struct igbvf_adapter *adapter)
1428 {
1429 	struct e1000_hw *hw = &adapter->hw;
1430 
1431 	/* hardware has been reset, we need to reload some things */
1432 	igbvf_configure(adapter);
1433 
1434 	clear_bit(__IGBVF_DOWN, &adapter->state);
1435 
1436 	napi_enable(&adapter->rx_ring->napi);
1437 	if (adapter->msix_entries)
1438 		igbvf_configure_msix(adapter);
1439 
1440 	/* Clear any pending interrupts. */
1441 	er32(EICR);
1442 	igbvf_irq_enable(adapter);
1443 
1444 	/* start the watchdog */
1445 	hw->mac.get_link_status = 1;
1446 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1447 
1448 
1449 	return 0;
1450 }
1451 
1452 void igbvf_down(struct igbvf_adapter *adapter)
1453 {
1454 	struct net_device *netdev = adapter->netdev;
1455 	struct e1000_hw *hw = &adapter->hw;
1456 	u32 rxdctl, txdctl;
1457 
1458 	/*
1459 	 * signal that we're down so the interrupt handler does not
1460 	 * reschedule our watchdog timer
1461 	 */
1462 	set_bit(__IGBVF_DOWN, &adapter->state);
1463 
1464 	/* disable receives in the hardware */
1465 	rxdctl = er32(RXDCTL(0));
1466 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1467 
1468 	netif_stop_queue(netdev);
1469 
1470 	/* disable transmits in the hardware */
1471 	txdctl = er32(TXDCTL(0));
1472 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1473 
1474 	/* flush both disables and wait for them to finish */
1475 	e1e_flush();
1476 	msleep(10);
1477 
1478 	napi_disable(&adapter->rx_ring->napi);
1479 
1480 	igbvf_irq_disable(adapter);
1481 
1482 	del_timer_sync(&adapter->watchdog_timer);
1483 
1484 	netif_carrier_off(netdev);
1485 
1486 	/* record the stats before reset*/
1487 	igbvf_update_stats(adapter);
1488 
1489 	adapter->link_speed = 0;
1490 	adapter->link_duplex = 0;
1491 
1492 	igbvf_reset(adapter);
1493 	igbvf_clean_tx_ring(adapter->tx_ring);
1494 	igbvf_clean_rx_ring(adapter->rx_ring);
1495 }
1496 
1497 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1498 {
1499 	might_sleep();
1500 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1501 		msleep(1);
1502 	igbvf_down(adapter);
1503 	igbvf_up(adapter);
1504 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1505 }
1506 
1507 /**
1508  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1509  * @adapter: board private structure to initialize
1510  *
1511  * igbvf_sw_init initializes the Adapter private data structure.
1512  * Fields are initialized based on PCI device information and
1513  * OS network device settings (MTU size).
1514  **/
1515 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1516 {
1517 	struct net_device *netdev = adapter->netdev;
1518 	s32 rc;
1519 
1520 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1521 	adapter->rx_ps_hdr_size = 0;
1522 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1523 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1524 
1525 	adapter->tx_int_delay = 8;
1526 	adapter->tx_abs_int_delay = 32;
1527 	adapter->rx_int_delay = 0;
1528 	adapter->rx_abs_int_delay = 8;
1529 	adapter->itr_setting = 3;
1530 	adapter->itr = 20000;
1531 
1532 	/* Set various function pointers */
1533 	adapter->ei->init_ops(&adapter->hw);
1534 
1535 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1536 	if (rc)
1537 		return rc;
1538 
1539 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1540 	if (rc)
1541 		return rc;
1542 
1543 	igbvf_set_interrupt_capability(adapter);
1544 
1545 	if (igbvf_alloc_queues(adapter))
1546 		return -ENOMEM;
1547 
1548 	spin_lock_init(&adapter->tx_queue_lock);
1549 
1550 	/* Explicitly disable IRQ since the NIC can be in any state. */
1551 	igbvf_irq_disable(adapter);
1552 
1553 	spin_lock_init(&adapter->stats_lock);
1554 
1555 	set_bit(__IGBVF_DOWN, &adapter->state);
1556 	return 0;
1557 }
1558 
1559 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1560 {
1561 	struct e1000_hw *hw = &adapter->hw;
1562 
1563 	adapter->stats.last_gprc = er32(VFGPRC);
1564 	adapter->stats.last_gorc = er32(VFGORC);
1565 	adapter->stats.last_gptc = er32(VFGPTC);
1566 	adapter->stats.last_gotc = er32(VFGOTC);
1567 	adapter->stats.last_mprc = er32(VFMPRC);
1568 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1569 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1570 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1571 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1572 
1573 	adapter->stats.base_gprc = er32(VFGPRC);
1574 	adapter->stats.base_gorc = er32(VFGORC);
1575 	adapter->stats.base_gptc = er32(VFGPTC);
1576 	adapter->stats.base_gotc = er32(VFGOTC);
1577 	adapter->stats.base_mprc = er32(VFMPRC);
1578 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1579 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1580 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1581 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1582 }
1583 
1584 /**
1585  * igbvf_open - Called when a network interface is made active
1586  * @netdev: network interface device structure
1587  *
1588  * Returns 0 on success, negative value on failure
1589  *
1590  * The open entry point is called when a network interface is made
1591  * active by the system (IFF_UP).  At this point all resources needed
1592  * for transmit and receive operations are allocated, the interrupt
1593  * handler is registered with the OS, the watchdog timer is started,
1594  * and the stack is notified that the interface is ready.
1595  **/
1596 static int igbvf_open(struct net_device *netdev)
1597 {
1598 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1599 	struct e1000_hw *hw = &adapter->hw;
1600 	int err;
1601 
1602 	/* disallow open during test */
1603 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1604 		return -EBUSY;
1605 
1606 	/* allocate transmit descriptors */
1607 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1608 	if (err)
1609 		goto err_setup_tx;
1610 
1611 	/* allocate receive descriptors */
1612 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1613 	if (err)
1614 		goto err_setup_rx;
1615 
1616 	/*
1617 	 * before we allocate an interrupt, we must be ready to handle it.
1618 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1619 	 * as soon as we call pci_request_irq, so we have to setup our
1620 	 * clean_rx handler before we do so.
1621 	 */
1622 	igbvf_configure(adapter);
1623 
1624 	err = igbvf_request_irq(adapter);
1625 	if (err)
1626 		goto err_req_irq;
1627 
1628 	/* From here on the code is the same as igbvf_up() */
1629 	clear_bit(__IGBVF_DOWN, &adapter->state);
1630 
1631 	napi_enable(&adapter->rx_ring->napi);
1632 
1633 	/* clear any pending interrupts */
1634 	er32(EICR);
1635 
1636 	igbvf_irq_enable(adapter);
1637 
1638 	/* start the watchdog */
1639 	hw->mac.get_link_status = 1;
1640 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1641 
1642 	return 0;
1643 
1644 err_req_irq:
1645 	igbvf_free_rx_resources(adapter->rx_ring);
1646 err_setup_rx:
1647 	igbvf_free_tx_resources(adapter->tx_ring);
1648 err_setup_tx:
1649 	igbvf_reset(adapter);
1650 
1651 	return err;
1652 }
1653 
1654 /**
1655  * igbvf_close - Disables a network interface
1656  * @netdev: network interface device structure
1657  *
1658  * Returns 0, this is not allowed to fail
1659  *
1660  * The close entry point is called when an interface is de-activated
1661  * by the OS.  The hardware is still under the drivers control, but
1662  * needs to be disabled.  A global MAC reset is issued to stop the
1663  * hardware, and all transmit and receive resources are freed.
1664  **/
1665 static int igbvf_close(struct net_device *netdev)
1666 {
1667 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1668 
1669 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1670 	igbvf_down(adapter);
1671 
1672 	igbvf_free_irq(adapter);
1673 
1674 	igbvf_free_tx_resources(adapter->tx_ring);
1675 	igbvf_free_rx_resources(adapter->rx_ring);
1676 
1677 	return 0;
1678 }
1679 /**
1680  * igbvf_set_mac - Change the Ethernet Address of the NIC
1681  * @netdev: network interface device structure
1682  * @p: pointer to an address structure
1683  *
1684  * Returns 0 on success, negative on failure
1685  **/
1686 static int igbvf_set_mac(struct net_device *netdev, void *p)
1687 {
1688 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1689 	struct e1000_hw *hw = &adapter->hw;
1690 	struct sockaddr *addr = p;
1691 
1692 	if (!is_valid_ether_addr(addr->sa_data))
1693 		return -EADDRNOTAVAIL;
1694 
1695 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1696 
1697 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1698 
1699 	if (memcmp(addr->sa_data, hw->mac.addr, 6))
1700 		return -EADDRNOTAVAIL;
1701 
1702 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1703 
1704 	return 0;
1705 }
1706 
1707 #define UPDATE_VF_COUNTER(reg, name)                                    \
1708 	{                                                               \
1709 		u32 current_counter = er32(reg);                        \
1710 		if (current_counter < adapter->stats.last_##name)       \
1711 			adapter->stats.name += 0x100000000LL;           \
1712 		adapter->stats.last_##name = current_counter;           \
1713 		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1714 		adapter->stats.name |= current_counter;                 \
1715 	}
1716 
1717 /**
1718  * igbvf_update_stats - Update the board statistics counters
1719  * @adapter: board private structure
1720 **/
1721 void igbvf_update_stats(struct igbvf_adapter *adapter)
1722 {
1723 	struct e1000_hw *hw = &adapter->hw;
1724 	struct pci_dev *pdev = adapter->pdev;
1725 
1726 	/*
1727 	 * Prevent stats update while adapter is being reset, link is down
1728 	 * or if the pci connection is down.
1729 	 */
1730 	if (adapter->link_speed == 0)
1731 		return;
1732 
1733 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1734 		return;
1735 
1736 	if (pci_channel_offline(pdev))
1737 		return;
1738 
1739 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1740 	UPDATE_VF_COUNTER(VFGORC, gorc);
1741 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1742 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1743 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1744 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1745 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1746 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1747 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1748 
1749 	/* Fill out the OS statistics structure */
1750 	adapter->net_stats.multicast = adapter->stats.mprc;
1751 }
1752 
1753 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1754 {
1755 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1756 		 adapter->link_speed,
1757 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1758 }
1759 
1760 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1761 {
1762 	struct e1000_hw *hw = &adapter->hw;
1763 	s32 ret_val = E1000_SUCCESS;
1764 	bool link_active;
1765 
1766 	/* If interface is down, stay link down */
1767 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1768 		return false;
1769 
1770 	ret_val = hw->mac.ops.check_for_link(hw);
1771 	link_active = !hw->mac.get_link_status;
1772 
1773 	/* if check for link returns error we will need to reset */
1774 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1775 		schedule_work(&adapter->reset_task);
1776 
1777 	return link_active;
1778 }
1779 
1780 /**
1781  * igbvf_watchdog - Timer Call-back
1782  * @data: pointer to adapter cast into an unsigned long
1783  **/
1784 static void igbvf_watchdog(unsigned long data)
1785 {
1786 	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1787 
1788 	/* Do the rest outside of interrupt context */
1789 	schedule_work(&adapter->watchdog_task);
1790 }
1791 
1792 static void igbvf_watchdog_task(struct work_struct *work)
1793 {
1794 	struct igbvf_adapter *adapter = container_of(work,
1795 	                                             struct igbvf_adapter,
1796 	                                             watchdog_task);
1797 	struct net_device *netdev = adapter->netdev;
1798 	struct e1000_mac_info *mac = &adapter->hw.mac;
1799 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1800 	struct e1000_hw *hw = &adapter->hw;
1801 	u32 link;
1802 	int tx_pending = 0;
1803 
1804 	link = igbvf_has_link(adapter);
1805 
1806 	if (link) {
1807 		if (!netif_carrier_ok(netdev)) {
1808 			mac->ops.get_link_up_info(&adapter->hw,
1809 			                          &adapter->link_speed,
1810 			                          &adapter->link_duplex);
1811 			igbvf_print_link_info(adapter);
1812 
1813 			netif_carrier_on(netdev);
1814 			netif_wake_queue(netdev);
1815 		}
1816 	} else {
1817 		if (netif_carrier_ok(netdev)) {
1818 			adapter->link_speed = 0;
1819 			adapter->link_duplex = 0;
1820 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1821 			netif_carrier_off(netdev);
1822 			netif_stop_queue(netdev);
1823 		}
1824 	}
1825 
1826 	if (netif_carrier_ok(netdev)) {
1827 		igbvf_update_stats(adapter);
1828 	} else {
1829 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1830 		              tx_ring->count);
1831 		if (tx_pending) {
1832 			/*
1833 			 * We've lost link, so the controller stops DMA,
1834 			 * but we've got queued Tx work that's never going
1835 			 * to get done, so reset controller to flush Tx.
1836 			 * (Do the reset outside of interrupt context).
1837 			 */
1838 			adapter->tx_timeout_count++;
1839 			schedule_work(&adapter->reset_task);
1840 		}
1841 	}
1842 
1843 	/* Cause software interrupt to ensure Rx ring is cleaned */
1844 	ew32(EICS, adapter->rx_ring->eims_value);
1845 
1846 	/* Reset the timer */
1847 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1848 		mod_timer(&adapter->watchdog_timer,
1849 			  round_jiffies(jiffies + (2 * HZ)));
1850 }
1851 
1852 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1853 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1854 #define IGBVF_TX_FLAGS_TSO              0x00000004
1855 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1856 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1857 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1858 
1859 static int igbvf_tso(struct igbvf_adapter *adapter,
1860                      struct igbvf_ring *tx_ring,
1861                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1862 {
1863 	struct e1000_adv_tx_context_desc *context_desc;
1864 	unsigned int i;
1865 	int err;
1866 	struct igbvf_buffer *buffer_info;
1867 	u32 info = 0, tu_cmd = 0;
1868 	u32 mss_l4len_idx, l4len;
1869 	*hdr_len = 0;
1870 
1871 	if (skb_header_cloned(skb)) {
1872 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1873 		if (err) {
1874 			dev_err(&adapter->pdev->dev,
1875 			        "igbvf_tso returning an error\n");
1876 			return err;
1877 		}
1878 	}
1879 
1880 	l4len = tcp_hdrlen(skb);
1881 	*hdr_len += l4len;
1882 
1883 	if (skb->protocol == htons(ETH_P_IP)) {
1884 		struct iphdr *iph = ip_hdr(skb);
1885 		iph->tot_len = 0;
1886 		iph->check = 0;
1887 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1888 		                                         iph->daddr, 0,
1889 		                                         IPPROTO_TCP,
1890 		                                         0);
1891 	} else if (skb_is_gso_v6(skb)) {
1892 		ipv6_hdr(skb)->payload_len = 0;
1893 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1894 		                                       &ipv6_hdr(skb)->daddr,
1895 		                                       0, IPPROTO_TCP, 0);
1896 	}
1897 
1898 	i = tx_ring->next_to_use;
1899 
1900 	buffer_info = &tx_ring->buffer_info[i];
1901 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1902 	/* VLAN MACLEN IPLEN */
1903 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1904 		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1905 	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1906 	*hdr_len += skb_network_offset(skb);
1907 	info |= (skb_transport_header(skb) - skb_network_header(skb));
1908 	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1909 	context_desc->vlan_macip_lens = cpu_to_le32(info);
1910 
1911 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1912 	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1913 
1914 	if (skb->protocol == htons(ETH_P_IP))
1915 		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1916 	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1917 
1918 	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1919 
1920 	/* MSS L4LEN IDX */
1921 	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1922 	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1923 
1924 	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1925 	context_desc->seqnum_seed = 0;
1926 
1927 	buffer_info->time_stamp = jiffies;
1928 	buffer_info->next_to_watch = i;
1929 	buffer_info->dma = 0;
1930 	i++;
1931 	if (i == tx_ring->count)
1932 		i = 0;
1933 
1934 	tx_ring->next_to_use = i;
1935 
1936 	return true;
1937 }
1938 
1939 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1940                                  struct igbvf_ring *tx_ring,
1941                                  struct sk_buff *skb, u32 tx_flags)
1942 {
1943 	struct e1000_adv_tx_context_desc *context_desc;
1944 	unsigned int i;
1945 	struct igbvf_buffer *buffer_info;
1946 	u32 info = 0, tu_cmd = 0;
1947 
1948 	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1949 	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1950 		i = tx_ring->next_to_use;
1951 		buffer_info = &tx_ring->buffer_info[i];
1952 		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1953 
1954 		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1955 			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1956 
1957 		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1958 		if (skb->ip_summed == CHECKSUM_PARTIAL)
1959 			info |= (skb_transport_header(skb) -
1960 			         skb_network_header(skb));
1961 
1962 
1963 		context_desc->vlan_macip_lens = cpu_to_le32(info);
1964 
1965 		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1966 
1967 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1968 			switch (skb->protocol) {
1969 			case __constant_htons(ETH_P_IP):
1970 				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1971 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1972 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1973 				break;
1974 			case __constant_htons(ETH_P_IPV6):
1975 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1976 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1977 				break;
1978 			default:
1979 				break;
1980 			}
1981 		}
1982 
1983 		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1984 		context_desc->seqnum_seed = 0;
1985 		context_desc->mss_l4len_idx = 0;
1986 
1987 		buffer_info->time_stamp = jiffies;
1988 		buffer_info->next_to_watch = i;
1989 		buffer_info->dma = 0;
1990 		i++;
1991 		if (i == tx_ring->count)
1992 			i = 0;
1993 		tx_ring->next_to_use = i;
1994 
1995 		return true;
1996 	}
1997 
1998 	return false;
1999 }
2000 
2001 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2002 {
2003 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2004 
2005 	/* there is enough descriptors then we don't need to worry  */
2006 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2007 		return 0;
2008 
2009 	netif_stop_queue(netdev);
2010 
2011 	smp_mb();
2012 
2013 	/* We need to check again just in case room has been made available */
2014 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2015 		return -EBUSY;
2016 
2017 	netif_wake_queue(netdev);
2018 
2019 	++adapter->restart_queue;
2020 	return 0;
2021 }
2022 
2023 #define IGBVF_MAX_TXD_PWR       16
2024 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2025 
2026 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2027                                    struct igbvf_ring *tx_ring,
2028                                    struct sk_buff *skb,
2029                                    unsigned int first)
2030 {
2031 	struct igbvf_buffer *buffer_info;
2032 	struct pci_dev *pdev = adapter->pdev;
2033 	unsigned int len = skb_headlen(skb);
2034 	unsigned int count = 0, i;
2035 	unsigned int f;
2036 
2037 	i = tx_ring->next_to_use;
2038 
2039 	buffer_info = &tx_ring->buffer_info[i];
2040 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2041 	buffer_info->length = len;
2042 	/* set time_stamp *before* dma to help avoid a possible race */
2043 	buffer_info->time_stamp = jiffies;
2044 	buffer_info->next_to_watch = i;
2045 	buffer_info->mapped_as_page = false;
2046 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2047 					  DMA_TO_DEVICE);
2048 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2049 		goto dma_error;
2050 
2051 
2052 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2053 		const struct skb_frag_struct *frag;
2054 
2055 		count++;
2056 		i++;
2057 		if (i == tx_ring->count)
2058 			i = 0;
2059 
2060 		frag = &skb_shinfo(skb)->frags[f];
2061 		len = skb_frag_size(frag);
2062 
2063 		buffer_info = &tx_ring->buffer_info[i];
2064 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2065 		buffer_info->length = len;
2066 		buffer_info->time_stamp = jiffies;
2067 		buffer_info->next_to_watch = i;
2068 		buffer_info->mapped_as_page = true;
2069 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2070 						DMA_TO_DEVICE);
2071 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2072 			goto dma_error;
2073 	}
2074 
2075 	tx_ring->buffer_info[i].skb = skb;
2076 	tx_ring->buffer_info[first].next_to_watch = i;
2077 
2078 	return ++count;
2079 
2080 dma_error:
2081 	dev_err(&pdev->dev, "TX DMA map failed\n");
2082 
2083 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2084 	buffer_info->dma = 0;
2085 	buffer_info->time_stamp = 0;
2086 	buffer_info->length = 0;
2087 	buffer_info->next_to_watch = 0;
2088 	buffer_info->mapped_as_page = false;
2089 	if (count)
2090 		count--;
2091 
2092 	/* clear timestamp and dma mappings for remaining portion of packet */
2093 	while (count--) {
2094 		if (i==0)
2095 			i += tx_ring->count;
2096 		i--;
2097 		buffer_info = &tx_ring->buffer_info[i];
2098 		igbvf_put_txbuf(adapter, buffer_info);
2099 	}
2100 
2101 	return 0;
2102 }
2103 
2104 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2105                                       struct igbvf_ring *tx_ring,
2106                                       int tx_flags, int count, u32 paylen,
2107                                       u8 hdr_len)
2108 {
2109 	union e1000_adv_tx_desc *tx_desc = NULL;
2110 	struct igbvf_buffer *buffer_info;
2111 	u32 olinfo_status = 0, cmd_type_len;
2112 	unsigned int i;
2113 
2114 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2115 	                E1000_ADVTXD_DCMD_DEXT);
2116 
2117 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2118 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2119 
2120 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2121 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2122 
2123 		/* insert tcp checksum */
2124 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2125 
2126 		/* insert ip checksum */
2127 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2128 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2129 
2130 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2131 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2132 	}
2133 
2134 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2135 
2136 	i = tx_ring->next_to_use;
2137 	while (count--) {
2138 		buffer_info = &tx_ring->buffer_info[i];
2139 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2140 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2141 		tx_desc->read.cmd_type_len =
2142 		         cpu_to_le32(cmd_type_len | buffer_info->length);
2143 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2144 		i++;
2145 		if (i == tx_ring->count)
2146 			i = 0;
2147 	}
2148 
2149 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2150 	/* Force memory writes to complete before letting h/w
2151 	 * know there are new descriptors to fetch.  (Only
2152 	 * applicable for weak-ordered memory model archs,
2153 	 * such as IA-64). */
2154 	wmb();
2155 
2156 	tx_ring->next_to_use = i;
2157 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2158 	/* we need this if more than one processor can write to our tail
2159 	 * at a time, it syncronizes IO on IA64/Altix systems */
2160 	mmiowb();
2161 }
2162 
2163 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2164 					     struct net_device *netdev,
2165 					     struct igbvf_ring *tx_ring)
2166 {
2167 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2168 	unsigned int first, tx_flags = 0;
2169 	u8 hdr_len = 0;
2170 	int count = 0;
2171 	int tso = 0;
2172 
2173 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2174 		dev_kfree_skb_any(skb);
2175 		return NETDEV_TX_OK;
2176 	}
2177 
2178 	if (skb->len <= 0) {
2179 		dev_kfree_skb_any(skb);
2180 		return NETDEV_TX_OK;
2181 	}
2182 
2183 	/*
2184 	 * need: count + 4 desc gap to keep tail from touching
2185          *       + 2 desc gap to keep tail from touching head,
2186          *       + 1 desc for skb->data,
2187          *       + 1 desc for context descriptor,
2188 	 * head, otherwise try next time
2189 	 */
2190 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2191 		/* this is a hard error */
2192 		return NETDEV_TX_BUSY;
2193 	}
2194 
2195 	if (vlan_tx_tag_present(skb)) {
2196 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2197 		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2198 	}
2199 
2200 	if (skb->protocol == htons(ETH_P_IP))
2201 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2202 
2203 	first = tx_ring->next_to_use;
2204 
2205 	tso = skb_is_gso(skb) ?
2206 		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2207 	if (unlikely(tso < 0)) {
2208 		dev_kfree_skb_any(skb);
2209 		return NETDEV_TX_OK;
2210 	}
2211 
2212 	if (tso)
2213 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2214 	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2215 	         (skb->ip_summed == CHECKSUM_PARTIAL))
2216 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2217 
2218 	/*
2219 	 * count reflects descriptors mapped, if 0 then mapping error
2220 	 * has occurred and we need to rewind the descriptor queue
2221 	 */
2222 	count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2223 
2224 	if (count) {
2225 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2226 		                   skb->len, hdr_len);
2227 		/* Make sure there is space in the ring for the next send. */
2228 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2229 	} else {
2230 		dev_kfree_skb_any(skb);
2231 		tx_ring->buffer_info[first].time_stamp = 0;
2232 		tx_ring->next_to_use = first;
2233 	}
2234 
2235 	return NETDEV_TX_OK;
2236 }
2237 
2238 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2239 				    struct net_device *netdev)
2240 {
2241 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2242 	struct igbvf_ring *tx_ring;
2243 
2244 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2245 		dev_kfree_skb_any(skb);
2246 		return NETDEV_TX_OK;
2247 	}
2248 
2249 	tx_ring = &adapter->tx_ring[0];
2250 
2251 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2252 }
2253 
2254 /**
2255  * igbvf_tx_timeout - Respond to a Tx Hang
2256  * @netdev: network interface device structure
2257  **/
2258 static void igbvf_tx_timeout(struct net_device *netdev)
2259 {
2260 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2261 
2262 	/* Do the reset outside of interrupt context */
2263 	adapter->tx_timeout_count++;
2264 	schedule_work(&adapter->reset_task);
2265 }
2266 
2267 static void igbvf_reset_task(struct work_struct *work)
2268 {
2269 	struct igbvf_adapter *adapter;
2270 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2271 
2272 	igbvf_reinit_locked(adapter);
2273 }
2274 
2275 /**
2276  * igbvf_get_stats - Get System Network Statistics
2277  * @netdev: network interface device structure
2278  *
2279  * Returns the address of the device statistics structure.
2280  * The statistics are actually updated from the timer callback.
2281  **/
2282 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2283 {
2284 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2285 
2286 	/* only return the current stats */
2287 	return &adapter->net_stats;
2288 }
2289 
2290 /**
2291  * igbvf_change_mtu - Change the Maximum Transfer Unit
2292  * @netdev: network interface device structure
2293  * @new_mtu: new value for maximum frame size
2294  *
2295  * Returns 0 on success, negative on failure
2296  **/
2297 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2298 {
2299 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2300 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2301 
2302 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2303 		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2304 		return -EINVAL;
2305 	}
2306 
2307 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2308 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2309 		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2310 		return -EINVAL;
2311 	}
2312 
2313 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2314 		msleep(1);
2315 	/* igbvf_down has a dependency on max_frame_size */
2316 	adapter->max_frame_size = max_frame;
2317 	if (netif_running(netdev))
2318 		igbvf_down(adapter);
2319 
2320 	/*
2321 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2322 	 * means we reserve 2 more, this pushes us to allocate from the next
2323 	 * larger slab size.
2324 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2325 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2326 	 * fragmented skbs
2327 	 */
2328 
2329 	if (max_frame <= 1024)
2330 		adapter->rx_buffer_len = 1024;
2331 	else if (max_frame <= 2048)
2332 		adapter->rx_buffer_len = 2048;
2333 	else
2334 #if (PAGE_SIZE / 2) > 16384
2335 		adapter->rx_buffer_len = 16384;
2336 #else
2337 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2338 #endif
2339 
2340 
2341 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2342 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2343 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2344 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2345 		                         ETH_FCS_LEN;
2346 
2347 	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2348 	         netdev->mtu, new_mtu);
2349 	netdev->mtu = new_mtu;
2350 
2351 	if (netif_running(netdev))
2352 		igbvf_up(adapter);
2353 	else
2354 		igbvf_reset(adapter);
2355 
2356 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2357 
2358 	return 0;
2359 }
2360 
2361 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2362 {
2363 	switch (cmd) {
2364 	default:
2365 		return -EOPNOTSUPP;
2366 	}
2367 }
2368 
2369 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2370 {
2371 	struct net_device *netdev = pci_get_drvdata(pdev);
2372 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2373 #ifdef CONFIG_PM
2374 	int retval = 0;
2375 #endif
2376 
2377 	netif_device_detach(netdev);
2378 
2379 	if (netif_running(netdev)) {
2380 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2381 		igbvf_down(adapter);
2382 		igbvf_free_irq(adapter);
2383 	}
2384 
2385 #ifdef CONFIG_PM
2386 	retval = pci_save_state(pdev);
2387 	if (retval)
2388 		return retval;
2389 #endif
2390 
2391 	pci_disable_device(pdev);
2392 
2393 	return 0;
2394 }
2395 
2396 #ifdef CONFIG_PM
2397 static int igbvf_resume(struct pci_dev *pdev)
2398 {
2399 	struct net_device *netdev = pci_get_drvdata(pdev);
2400 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2401 	u32 err;
2402 
2403 	pci_restore_state(pdev);
2404 	err = pci_enable_device_mem(pdev);
2405 	if (err) {
2406 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2407 		return err;
2408 	}
2409 
2410 	pci_set_master(pdev);
2411 
2412 	if (netif_running(netdev)) {
2413 		err = igbvf_request_irq(adapter);
2414 		if (err)
2415 			return err;
2416 	}
2417 
2418 	igbvf_reset(adapter);
2419 
2420 	if (netif_running(netdev))
2421 		igbvf_up(adapter);
2422 
2423 	netif_device_attach(netdev);
2424 
2425 	return 0;
2426 }
2427 #endif
2428 
2429 static void igbvf_shutdown(struct pci_dev *pdev)
2430 {
2431 	igbvf_suspend(pdev, PMSG_SUSPEND);
2432 }
2433 
2434 #ifdef CONFIG_NET_POLL_CONTROLLER
2435 /*
2436  * Polling 'interrupt' - used by things like netconsole to send skbs
2437  * without having to re-enable interrupts. It's not called while
2438  * the interrupt routine is executing.
2439  */
2440 static void igbvf_netpoll(struct net_device *netdev)
2441 {
2442 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2443 
2444 	disable_irq(adapter->pdev->irq);
2445 
2446 	igbvf_clean_tx_irq(adapter->tx_ring);
2447 
2448 	enable_irq(adapter->pdev->irq);
2449 }
2450 #endif
2451 
2452 /**
2453  * igbvf_io_error_detected - called when PCI error is detected
2454  * @pdev: Pointer to PCI device
2455  * @state: The current pci connection state
2456  *
2457  * This function is called after a PCI bus error affecting
2458  * this device has been detected.
2459  */
2460 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2461                                                 pci_channel_state_t state)
2462 {
2463 	struct net_device *netdev = pci_get_drvdata(pdev);
2464 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2465 
2466 	netif_device_detach(netdev);
2467 
2468 	if (state == pci_channel_io_perm_failure)
2469 		return PCI_ERS_RESULT_DISCONNECT;
2470 
2471 	if (netif_running(netdev))
2472 		igbvf_down(adapter);
2473 	pci_disable_device(pdev);
2474 
2475 	/* Request a slot slot reset. */
2476 	return PCI_ERS_RESULT_NEED_RESET;
2477 }
2478 
2479 /**
2480  * igbvf_io_slot_reset - called after the pci bus has been reset.
2481  * @pdev: Pointer to PCI device
2482  *
2483  * Restart the card from scratch, as if from a cold-boot. Implementation
2484  * resembles the first-half of the igbvf_resume routine.
2485  */
2486 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2487 {
2488 	struct net_device *netdev = pci_get_drvdata(pdev);
2489 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2490 
2491 	if (pci_enable_device_mem(pdev)) {
2492 		dev_err(&pdev->dev,
2493 			"Cannot re-enable PCI device after reset.\n");
2494 		return PCI_ERS_RESULT_DISCONNECT;
2495 	}
2496 	pci_set_master(pdev);
2497 
2498 	igbvf_reset(adapter);
2499 
2500 	return PCI_ERS_RESULT_RECOVERED;
2501 }
2502 
2503 /**
2504  * igbvf_io_resume - called when traffic can start flowing again.
2505  * @pdev: Pointer to PCI device
2506  *
2507  * This callback is called when the error recovery driver tells us that
2508  * its OK to resume normal operation. Implementation resembles the
2509  * second-half of the igbvf_resume routine.
2510  */
2511 static void igbvf_io_resume(struct pci_dev *pdev)
2512 {
2513 	struct net_device *netdev = pci_get_drvdata(pdev);
2514 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2515 
2516 	if (netif_running(netdev)) {
2517 		if (igbvf_up(adapter)) {
2518 			dev_err(&pdev->dev,
2519 				"can't bring device back up after reset\n");
2520 			return;
2521 		}
2522 	}
2523 
2524 	netif_device_attach(netdev);
2525 }
2526 
2527 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2528 {
2529 	struct e1000_hw *hw = &adapter->hw;
2530 	struct net_device *netdev = adapter->netdev;
2531 	struct pci_dev *pdev = adapter->pdev;
2532 
2533 	if (hw->mac.type == e1000_vfadapt_i350)
2534 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2535 	else
2536 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2537 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2538 }
2539 
2540 static int igbvf_set_features(struct net_device *netdev,
2541 	netdev_features_t features)
2542 {
2543 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2544 
2545 	if (features & NETIF_F_RXCSUM)
2546 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2547 	else
2548 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2549 
2550 	return 0;
2551 }
2552 
2553 static const struct net_device_ops igbvf_netdev_ops = {
2554 	.ndo_open                       = igbvf_open,
2555 	.ndo_stop                       = igbvf_close,
2556 	.ndo_start_xmit                 = igbvf_xmit_frame,
2557 	.ndo_get_stats                  = igbvf_get_stats,
2558 	.ndo_set_rx_mode		= igbvf_set_multi,
2559 	.ndo_set_mac_address            = igbvf_set_mac,
2560 	.ndo_change_mtu                 = igbvf_change_mtu,
2561 	.ndo_do_ioctl                   = igbvf_ioctl,
2562 	.ndo_tx_timeout                 = igbvf_tx_timeout,
2563 	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2564 	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2565 #ifdef CONFIG_NET_POLL_CONTROLLER
2566 	.ndo_poll_controller            = igbvf_netpoll,
2567 #endif
2568 	.ndo_set_features               = igbvf_set_features,
2569 };
2570 
2571 /**
2572  * igbvf_probe - Device Initialization Routine
2573  * @pdev: PCI device information struct
2574  * @ent: entry in igbvf_pci_tbl
2575  *
2576  * Returns 0 on success, negative on failure
2577  *
2578  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2579  * The OS initialization, configuring of the adapter private structure,
2580  * and a hardware reset occur.
2581  **/
2582 static int __devinit igbvf_probe(struct pci_dev *pdev,
2583                                  const struct pci_device_id *ent)
2584 {
2585 	struct net_device *netdev;
2586 	struct igbvf_adapter *adapter;
2587 	struct e1000_hw *hw;
2588 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2589 
2590 	static int cards_found;
2591 	int err, pci_using_dac;
2592 
2593 	err = pci_enable_device_mem(pdev);
2594 	if (err)
2595 		return err;
2596 
2597 	pci_using_dac = 0;
2598 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2599 	if (!err) {
2600 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2601 		if (!err)
2602 			pci_using_dac = 1;
2603 	} else {
2604 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2605 		if (err) {
2606 			err = dma_set_coherent_mask(&pdev->dev,
2607 						    DMA_BIT_MASK(32));
2608 			if (err) {
2609 				dev_err(&pdev->dev, "No usable DMA "
2610 				        "configuration, aborting\n");
2611 				goto err_dma;
2612 			}
2613 		}
2614 	}
2615 
2616 	err = pci_request_regions(pdev, igbvf_driver_name);
2617 	if (err)
2618 		goto err_pci_reg;
2619 
2620 	pci_set_master(pdev);
2621 
2622 	err = -ENOMEM;
2623 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2624 	if (!netdev)
2625 		goto err_alloc_etherdev;
2626 
2627 	SET_NETDEV_DEV(netdev, &pdev->dev);
2628 
2629 	pci_set_drvdata(pdev, netdev);
2630 	adapter = netdev_priv(netdev);
2631 	hw = &adapter->hw;
2632 	adapter->netdev = netdev;
2633 	adapter->pdev = pdev;
2634 	adapter->ei = ei;
2635 	adapter->pba = ei->pba;
2636 	adapter->flags = ei->flags;
2637 	adapter->hw.back = adapter;
2638 	adapter->hw.mac.type = ei->mac;
2639 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2640 
2641 	/* PCI config space info */
2642 
2643 	hw->vendor_id = pdev->vendor;
2644 	hw->device_id = pdev->device;
2645 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2646 	hw->subsystem_device_id = pdev->subsystem_device;
2647 	hw->revision_id = pdev->revision;
2648 
2649 	err = -EIO;
2650 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2651 	                              pci_resource_len(pdev, 0));
2652 
2653 	if (!adapter->hw.hw_addr)
2654 		goto err_ioremap;
2655 
2656 	if (ei->get_variants) {
2657 		err = ei->get_variants(adapter);
2658 		if (err)
2659 			goto err_ioremap;
2660 	}
2661 
2662 	/* setup adapter struct */
2663 	err = igbvf_sw_init(adapter);
2664 	if (err)
2665 		goto err_sw_init;
2666 
2667 	/* construct the net_device struct */
2668 	netdev->netdev_ops = &igbvf_netdev_ops;
2669 
2670 	igbvf_set_ethtool_ops(netdev);
2671 	netdev->watchdog_timeo = 5 * HZ;
2672 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2673 
2674 	adapter->bd_number = cards_found++;
2675 
2676 	netdev->hw_features = NETIF_F_SG |
2677 	                   NETIF_F_IP_CSUM |
2678 			   NETIF_F_IPV6_CSUM |
2679 			   NETIF_F_TSO |
2680 			   NETIF_F_TSO6 |
2681 			   NETIF_F_RXCSUM;
2682 
2683 	netdev->features = netdev->hw_features |
2684 	                   NETIF_F_HW_VLAN_TX |
2685 	                   NETIF_F_HW_VLAN_RX |
2686 	                   NETIF_F_HW_VLAN_FILTER;
2687 
2688 	if (pci_using_dac)
2689 		netdev->features |= NETIF_F_HIGHDMA;
2690 
2691 	netdev->vlan_features |= NETIF_F_TSO;
2692 	netdev->vlan_features |= NETIF_F_TSO6;
2693 	netdev->vlan_features |= NETIF_F_IP_CSUM;
2694 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2695 	netdev->vlan_features |= NETIF_F_SG;
2696 
2697 	/*reset the controller to put the device in a known good state */
2698 	err = hw->mac.ops.reset_hw(hw);
2699 	if (err) {
2700 		dev_info(&pdev->dev,
2701 			 "PF still in reset state, assigning new address."
2702 			 " Is the PF interface up?\n");
2703 		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2704 	} else {
2705 		err = hw->mac.ops.read_mac_addr(hw);
2706 		if (err) {
2707 			dev_err(&pdev->dev, "Error reading MAC address\n");
2708 			goto err_hw_init;
2709 		}
2710 	}
2711 
2712 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2713 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2714 
2715 	if (!is_valid_ether_addr(netdev->perm_addr)) {
2716 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2717 		        netdev->dev_addr);
2718 		err = -EIO;
2719 		goto err_hw_init;
2720 	}
2721 
2722 	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2723 	            (unsigned long) adapter);
2724 
2725 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2726 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2727 
2728 	/* ring size defaults */
2729 	adapter->rx_ring->count = 1024;
2730 	adapter->tx_ring->count = 1024;
2731 
2732 	/* reset the hardware with the new settings */
2733 	igbvf_reset(adapter);
2734 
2735 	strcpy(netdev->name, "eth%d");
2736 	err = register_netdev(netdev);
2737 	if (err)
2738 		goto err_hw_init;
2739 
2740 	/* tell the stack to leave us alone until igbvf_open() is called */
2741 	netif_carrier_off(netdev);
2742 	netif_stop_queue(netdev);
2743 
2744 	igbvf_print_device_info(adapter);
2745 
2746 	igbvf_initialize_last_counter_stats(adapter);
2747 
2748 	return 0;
2749 
2750 err_hw_init:
2751 	kfree(adapter->tx_ring);
2752 	kfree(adapter->rx_ring);
2753 err_sw_init:
2754 	igbvf_reset_interrupt_capability(adapter);
2755 	iounmap(adapter->hw.hw_addr);
2756 err_ioremap:
2757 	free_netdev(netdev);
2758 err_alloc_etherdev:
2759 	pci_release_regions(pdev);
2760 err_pci_reg:
2761 err_dma:
2762 	pci_disable_device(pdev);
2763 	return err;
2764 }
2765 
2766 /**
2767  * igbvf_remove - Device Removal Routine
2768  * @pdev: PCI device information struct
2769  *
2770  * igbvf_remove is called by the PCI subsystem to alert the driver
2771  * that it should release a PCI device.  The could be caused by a
2772  * Hot-Plug event, or because the driver is going to be removed from
2773  * memory.
2774  **/
2775 static void __devexit igbvf_remove(struct pci_dev *pdev)
2776 {
2777 	struct net_device *netdev = pci_get_drvdata(pdev);
2778 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2779 	struct e1000_hw *hw = &adapter->hw;
2780 
2781 	/*
2782 	 * The watchdog timer may be rescheduled, so explicitly
2783 	 * disable it from being rescheduled.
2784 	 */
2785 	set_bit(__IGBVF_DOWN, &adapter->state);
2786 	del_timer_sync(&adapter->watchdog_timer);
2787 
2788 	cancel_work_sync(&adapter->reset_task);
2789 	cancel_work_sync(&adapter->watchdog_task);
2790 
2791 	unregister_netdev(netdev);
2792 
2793 	igbvf_reset_interrupt_capability(adapter);
2794 
2795 	/*
2796 	 * it is important to delete the napi struct prior to freeing the
2797 	 * rx ring so that you do not end up with null pointer refs
2798 	 */
2799 	netif_napi_del(&adapter->rx_ring->napi);
2800 	kfree(adapter->tx_ring);
2801 	kfree(adapter->rx_ring);
2802 
2803 	iounmap(hw->hw_addr);
2804 	if (hw->flash_address)
2805 		iounmap(hw->flash_address);
2806 	pci_release_regions(pdev);
2807 
2808 	free_netdev(netdev);
2809 
2810 	pci_disable_device(pdev);
2811 }
2812 
2813 /* PCI Error Recovery (ERS) */
2814 static struct pci_error_handlers igbvf_err_handler = {
2815 	.error_detected = igbvf_io_error_detected,
2816 	.slot_reset = igbvf_io_slot_reset,
2817 	.resume = igbvf_io_resume,
2818 };
2819 
2820 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2823 	{ } /* terminate list */
2824 };
2825 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2826 
2827 /* PCI Device API Driver */
2828 static struct pci_driver igbvf_driver = {
2829 	.name     = igbvf_driver_name,
2830 	.id_table = igbvf_pci_tbl,
2831 	.probe    = igbvf_probe,
2832 	.remove   = __devexit_p(igbvf_remove),
2833 #ifdef CONFIG_PM
2834 	/* Power Management Hooks */
2835 	.suspend  = igbvf_suspend,
2836 	.resume   = igbvf_resume,
2837 #endif
2838 	.shutdown = igbvf_shutdown,
2839 	.err_handler = &igbvf_err_handler
2840 };
2841 
2842 /**
2843  * igbvf_init_module - Driver Registration Routine
2844  *
2845  * igbvf_init_module is the first routine called when the driver is
2846  * loaded. All it does is register with the PCI subsystem.
2847  **/
2848 static int __init igbvf_init_module(void)
2849 {
2850 	int ret;
2851 	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2852 	pr_info("%s\n", igbvf_copyright);
2853 
2854 	ret = pci_register_driver(&igbvf_driver);
2855 
2856 	return ret;
2857 }
2858 module_init(igbvf_init_module);
2859 
2860 /**
2861  * igbvf_exit_module - Driver Exit Cleanup Routine
2862  *
2863  * igbvf_exit_module is called just before the driver is removed
2864  * from memory.
2865  **/
2866 static void __exit igbvf_exit_module(void)
2867 {
2868 	pci_unregister_driver(&igbvf_driver);
2869 }
2870 module_exit(igbvf_exit_module);
2871 
2872 
2873 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2874 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2875 MODULE_LICENSE("GPL");
2876 MODULE_VERSION(DRV_VERSION);
2877 
2878 /* netdev.c */
2879