1 /******************************************************************************* 2 3 Intel(R) 82576 Virtual Function Linux driver 4 Copyright(c) 2009 - 2010 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/module.h> 31 #include <linux/types.h> 32 #include <linux/init.h> 33 #include <linux/pci.h> 34 #include <linux/vmalloc.h> 35 #include <linux/pagemap.h> 36 #include <linux/delay.h> 37 #include <linux/netdevice.h> 38 #include <linux/tcp.h> 39 #include <linux/ipv6.h> 40 #include <linux/slab.h> 41 #include <net/checksum.h> 42 #include <net/ip6_checksum.h> 43 #include <linux/mii.h> 44 #include <linux/ethtool.h> 45 #include <linux/if_vlan.h> 46 #include <linux/prefetch.h> 47 48 #include "igbvf.h" 49 50 #define DRV_VERSION "2.0.1-k" 51 char igbvf_driver_name[] = "igbvf"; 52 const char igbvf_driver_version[] = DRV_VERSION; 53 static const char igbvf_driver_string[] = 54 "Intel(R) Gigabit Virtual Function Network Driver"; 55 static const char igbvf_copyright[] = 56 "Copyright (c) 2009 - 2011 Intel Corporation."; 57 58 static int igbvf_poll(struct napi_struct *napi, int budget); 59 static void igbvf_reset(struct igbvf_adapter *); 60 static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 61 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 62 63 static struct igbvf_info igbvf_vf_info = { 64 .mac = e1000_vfadapt, 65 .flags = 0, 66 .pba = 10, 67 .init_ops = e1000_init_function_pointers_vf, 68 }; 69 70 static struct igbvf_info igbvf_i350_vf_info = { 71 .mac = e1000_vfadapt_i350, 72 .flags = 0, 73 .pba = 10, 74 .init_ops = e1000_init_function_pointers_vf, 75 }; 76 77 static const struct igbvf_info *igbvf_info_tbl[] = { 78 [board_vf] = &igbvf_vf_info, 79 [board_i350_vf] = &igbvf_i350_vf_info, 80 }; 81 82 /** 83 * igbvf_desc_unused - calculate if we have unused descriptors 84 **/ 85 static int igbvf_desc_unused(struct igbvf_ring *ring) 86 { 87 if (ring->next_to_clean > ring->next_to_use) 88 return ring->next_to_clean - ring->next_to_use - 1; 89 90 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 91 } 92 93 /** 94 * igbvf_receive_skb - helper function to handle Rx indications 95 * @adapter: board private structure 96 * @status: descriptor status field as written by hardware 97 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 98 * @skb: pointer to sk_buff to be indicated to stack 99 **/ 100 static void igbvf_receive_skb(struct igbvf_adapter *adapter, 101 struct net_device *netdev, 102 struct sk_buff *skb, 103 u32 status, u16 vlan) 104 { 105 if (status & E1000_RXD_STAT_VP) { 106 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 107 if (test_bit(vid, adapter->active_vlans)) 108 __vlan_hwaccel_put_tag(skb, vid); 109 } 110 netif_receive_skb(skb); 111 } 112 113 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 114 u32 status_err, struct sk_buff *skb) 115 { 116 skb_checksum_none_assert(skb); 117 118 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 119 if ((status_err & E1000_RXD_STAT_IXSM) || 120 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 121 return; 122 123 /* TCP/UDP checksum error bit is set */ 124 if (status_err & 125 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 126 /* let the stack verify checksum errors */ 127 adapter->hw_csum_err++; 128 return; 129 } 130 131 /* It must be a TCP or UDP packet with a valid checksum */ 132 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 133 skb->ip_summed = CHECKSUM_UNNECESSARY; 134 135 adapter->hw_csum_good++; 136 } 137 138 /** 139 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 140 * @rx_ring: address of ring structure to repopulate 141 * @cleaned_count: number of buffers to repopulate 142 **/ 143 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 144 int cleaned_count) 145 { 146 struct igbvf_adapter *adapter = rx_ring->adapter; 147 struct net_device *netdev = adapter->netdev; 148 struct pci_dev *pdev = adapter->pdev; 149 union e1000_adv_rx_desc *rx_desc; 150 struct igbvf_buffer *buffer_info; 151 struct sk_buff *skb; 152 unsigned int i; 153 int bufsz; 154 155 i = rx_ring->next_to_use; 156 buffer_info = &rx_ring->buffer_info[i]; 157 158 if (adapter->rx_ps_hdr_size) 159 bufsz = adapter->rx_ps_hdr_size; 160 else 161 bufsz = adapter->rx_buffer_len; 162 163 while (cleaned_count--) { 164 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 165 166 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 167 if (!buffer_info->page) { 168 buffer_info->page = alloc_page(GFP_ATOMIC); 169 if (!buffer_info->page) { 170 adapter->alloc_rx_buff_failed++; 171 goto no_buffers; 172 } 173 buffer_info->page_offset = 0; 174 } else { 175 buffer_info->page_offset ^= PAGE_SIZE / 2; 176 } 177 buffer_info->page_dma = 178 dma_map_page(&pdev->dev, buffer_info->page, 179 buffer_info->page_offset, 180 PAGE_SIZE / 2, 181 DMA_FROM_DEVICE); 182 } 183 184 if (!buffer_info->skb) { 185 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 186 if (!skb) { 187 adapter->alloc_rx_buff_failed++; 188 goto no_buffers; 189 } 190 191 buffer_info->skb = skb; 192 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 193 bufsz, 194 DMA_FROM_DEVICE); 195 } 196 /* Refresh the desc even if buffer_addrs didn't change because 197 * each write-back erases this info. */ 198 if (adapter->rx_ps_hdr_size) { 199 rx_desc->read.pkt_addr = 200 cpu_to_le64(buffer_info->page_dma); 201 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 202 } else { 203 rx_desc->read.pkt_addr = 204 cpu_to_le64(buffer_info->dma); 205 rx_desc->read.hdr_addr = 0; 206 } 207 208 i++; 209 if (i == rx_ring->count) 210 i = 0; 211 buffer_info = &rx_ring->buffer_info[i]; 212 } 213 214 no_buffers: 215 if (rx_ring->next_to_use != i) { 216 rx_ring->next_to_use = i; 217 if (i == 0) 218 i = (rx_ring->count - 1); 219 else 220 i--; 221 222 /* Force memory writes to complete before letting h/w 223 * know there are new descriptors to fetch. (Only 224 * applicable for weak-ordered memory model archs, 225 * such as IA-64). */ 226 wmb(); 227 writel(i, adapter->hw.hw_addr + rx_ring->tail); 228 } 229 } 230 231 /** 232 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 233 * @adapter: board private structure 234 * 235 * the return value indicates whether actual cleaning was done, there 236 * is no guarantee that everything was cleaned 237 **/ 238 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 239 int *work_done, int work_to_do) 240 { 241 struct igbvf_ring *rx_ring = adapter->rx_ring; 242 struct net_device *netdev = adapter->netdev; 243 struct pci_dev *pdev = adapter->pdev; 244 union e1000_adv_rx_desc *rx_desc, *next_rxd; 245 struct igbvf_buffer *buffer_info, *next_buffer; 246 struct sk_buff *skb; 247 bool cleaned = false; 248 int cleaned_count = 0; 249 unsigned int total_bytes = 0, total_packets = 0; 250 unsigned int i; 251 u32 length, hlen, staterr; 252 253 i = rx_ring->next_to_clean; 254 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 255 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 256 257 while (staterr & E1000_RXD_STAT_DD) { 258 if (*work_done >= work_to_do) 259 break; 260 (*work_done)++; 261 rmb(); /* read descriptor and rx_buffer_info after status DD */ 262 263 buffer_info = &rx_ring->buffer_info[i]; 264 265 /* HW will not DMA in data larger than the given buffer, even 266 * if it parses the (NFS, of course) header to be larger. In 267 * that case, it fills the header buffer and spills the rest 268 * into the page. 269 */ 270 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) & 271 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; 272 if (hlen > adapter->rx_ps_hdr_size) 273 hlen = adapter->rx_ps_hdr_size; 274 275 length = le16_to_cpu(rx_desc->wb.upper.length); 276 cleaned = true; 277 cleaned_count++; 278 279 skb = buffer_info->skb; 280 prefetch(skb->data - NET_IP_ALIGN); 281 buffer_info->skb = NULL; 282 if (!adapter->rx_ps_hdr_size) { 283 dma_unmap_single(&pdev->dev, buffer_info->dma, 284 adapter->rx_buffer_len, 285 DMA_FROM_DEVICE); 286 buffer_info->dma = 0; 287 skb_put(skb, length); 288 goto send_up; 289 } 290 291 if (!skb_shinfo(skb)->nr_frags) { 292 dma_unmap_single(&pdev->dev, buffer_info->dma, 293 adapter->rx_ps_hdr_size, 294 DMA_FROM_DEVICE); 295 skb_put(skb, hlen); 296 } 297 298 if (length) { 299 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 300 PAGE_SIZE / 2, 301 DMA_FROM_DEVICE); 302 buffer_info->page_dma = 0; 303 304 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 305 buffer_info->page, 306 buffer_info->page_offset, 307 length); 308 309 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 310 (page_count(buffer_info->page) != 1)) 311 buffer_info->page = NULL; 312 else 313 get_page(buffer_info->page); 314 315 skb->len += length; 316 skb->data_len += length; 317 skb->truesize += PAGE_SIZE / 2; 318 } 319 send_up: 320 i++; 321 if (i == rx_ring->count) 322 i = 0; 323 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 324 prefetch(next_rxd); 325 next_buffer = &rx_ring->buffer_info[i]; 326 327 if (!(staterr & E1000_RXD_STAT_EOP)) { 328 buffer_info->skb = next_buffer->skb; 329 buffer_info->dma = next_buffer->dma; 330 next_buffer->skb = skb; 331 next_buffer->dma = 0; 332 goto next_desc; 333 } 334 335 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 336 dev_kfree_skb_irq(skb); 337 goto next_desc; 338 } 339 340 total_bytes += skb->len; 341 total_packets++; 342 343 igbvf_rx_checksum_adv(adapter, staterr, skb); 344 345 skb->protocol = eth_type_trans(skb, netdev); 346 347 igbvf_receive_skb(adapter, netdev, skb, staterr, 348 rx_desc->wb.upper.vlan); 349 350 next_desc: 351 rx_desc->wb.upper.status_error = 0; 352 353 /* return some buffers to hardware, one at a time is too slow */ 354 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 355 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 356 cleaned_count = 0; 357 } 358 359 /* use prefetched values */ 360 rx_desc = next_rxd; 361 buffer_info = next_buffer; 362 363 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 364 } 365 366 rx_ring->next_to_clean = i; 367 cleaned_count = igbvf_desc_unused(rx_ring); 368 369 if (cleaned_count) 370 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 371 372 adapter->total_rx_packets += total_packets; 373 adapter->total_rx_bytes += total_bytes; 374 adapter->net_stats.rx_bytes += total_bytes; 375 adapter->net_stats.rx_packets += total_packets; 376 return cleaned; 377 } 378 379 static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 380 struct igbvf_buffer *buffer_info) 381 { 382 if (buffer_info->dma) { 383 if (buffer_info->mapped_as_page) 384 dma_unmap_page(&adapter->pdev->dev, 385 buffer_info->dma, 386 buffer_info->length, 387 DMA_TO_DEVICE); 388 else 389 dma_unmap_single(&adapter->pdev->dev, 390 buffer_info->dma, 391 buffer_info->length, 392 DMA_TO_DEVICE); 393 buffer_info->dma = 0; 394 } 395 if (buffer_info->skb) { 396 dev_kfree_skb_any(buffer_info->skb); 397 buffer_info->skb = NULL; 398 } 399 buffer_info->time_stamp = 0; 400 } 401 402 /** 403 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 404 * @adapter: board private structure 405 * 406 * Return 0 on success, negative on failure 407 **/ 408 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 409 struct igbvf_ring *tx_ring) 410 { 411 struct pci_dev *pdev = adapter->pdev; 412 int size; 413 414 size = sizeof(struct igbvf_buffer) * tx_ring->count; 415 tx_ring->buffer_info = vzalloc(size); 416 if (!tx_ring->buffer_info) 417 goto err; 418 419 /* round up to nearest 4K */ 420 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 421 tx_ring->size = ALIGN(tx_ring->size, 4096); 422 423 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 424 &tx_ring->dma, GFP_KERNEL); 425 426 if (!tx_ring->desc) 427 goto err; 428 429 tx_ring->adapter = adapter; 430 tx_ring->next_to_use = 0; 431 tx_ring->next_to_clean = 0; 432 433 return 0; 434 err: 435 vfree(tx_ring->buffer_info); 436 dev_err(&adapter->pdev->dev, 437 "Unable to allocate memory for the transmit descriptor ring\n"); 438 return -ENOMEM; 439 } 440 441 /** 442 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 443 * @adapter: board private structure 444 * 445 * Returns 0 on success, negative on failure 446 **/ 447 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 448 struct igbvf_ring *rx_ring) 449 { 450 struct pci_dev *pdev = adapter->pdev; 451 int size, desc_len; 452 453 size = sizeof(struct igbvf_buffer) * rx_ring->count; 454 rx_ring->buffer_info = vzalloc(size); 455 if (!rx_ring->buffer_info) 456 goto err; 457 458 desc_len = sizeof(union e1000_adv_rx_desc); 459 460 /* Round up to nearest 4K */ 461 rx_ring->size = rx_ring->count * desc_len; 462 rx_ring->size = ALIGN(rx_ring->size, 4096); 463 464 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 465 &rx_ring->dma, GFP_KERNEL); 466 467 if (!rx_ring->desc) 468 goto err; 469 470 rx_ring->next_to_clean = 0; 471 rx_ring->next_to_use = 0; 472 473 rx_ring->adapter = adapter; 474 475 return 0; 476 477 err: 478 vfree(rx_ring->buffer_info); 479 rx_ring->buffer_info = NULL; 480 dev_err(&adapter->pdev->dev, 481 "Unable to allocate memory for the receive descriptor ring\n"); 482 return -ENOMEM; 483 } 484 485 /** 486 * igbvf_clean_tx_ring - Free Tx Buffers 487 * @tx_ring: ring to be cleaned 488 **/ 489 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 490 { 491 struct igbvf_adapter *adapter = tx_ring->adapter; 492 struct igbvf_buffer *buffer_info; 493 unsigned long size; 494 unsigned int i; 495 496 if (!tx_ring->buffer_info) 497 return; 498 499 /* Free all the Tx ring sk_buffs */ 500 for (i = 0; i < tx_ring->count; i++) { 501 buffer_info = &tx_ring->buffer_info[i]; 502 igbvf_put_txbuf(adapter, buffer_info); 503 } 504 505 size = sizeof(struct igbvf_buffer) * tx_ring->count; 506 memset(tx_ring->buffer_info, 0, size); 507 508 /* Zero out the descriptor ring */ 509 memset(tx_ring->desc, 0, tx_ring->size); 510 511 tx_ring->next_to_use = 0; 512 tx_ring->next_to_clean = 0; 513 514 writel(0, adapter->hw.hw_addr + tx_ring->head); 515 writel(0, adapter->hw.hw_addr + tx_ring->tail); 516 } 517 518 /** 519 * igbvf_free_tx_resources - Free Tx Resources per Queue 520 * @tx_ring: ring to free resources from 521 * 522 * Free all transmit software resources 523 **/ 524 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 525 { 526 struct pci_dev *pdev = tx_ring->adapter->pdev; 527 528 igbvf_clean_tx_ring(tx_ring); 529 530 vfree(tx_ring->buffer_info); 531 tx_ring->buffer_info = NULL; 532 533 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 534 tx_ring->dma); 535 536 tx_ring->desc = NULL; 537 } 538 539 /** 540 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 541 * @adapter: board private structure 542 **/ 543 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 544 { 545 struct igbvf_adapter *adapter = rx_ring->adapter; 546 struct igbvf_buffer *buffer_info; 547 struct pci_dev *pdev = adapter->pdev; 548 unsigned long size; 549 unsigned int i; 550 551 if (!rx_ring->buffer_info) 552 return; 553 554 /* Free all the Rx ring sk_buffs */ 555 for (i = 0; i < rx_ring->count; i++) { 556 buffer_info = &rx_ring->buffer_info[i]; 557 if (buffer_info->dma) { 558 if (adapter->rx_ps_hdr_size){ 559 dma_unmap_single(&pdev->dev, buffer_info->dma, 560 adapter->rx_ps_hdr_size, 561 DMA_FROM_DEVICE); 562 } else { 563 dma_unmap_single(&pdev->dev, buffer_info->dma, 564 adapter->rx_buffer_len, 565 DMA_FROM_DEVICE); 566 } 567 buffer_info->dma = 0; 568 } 569 570 if (buffer_info->skb) { 571 dev_kfree_skb(buffer_info->skb); 572 buffer_info->skb = NULL; 573 } 574 575 if (buffer_info->page) { 576 if (buffer_info->page_dma) 577 dma_unmap_page(&pdev->dev, 578 buffer_info->page_dma, 579 PAGE_SIZE / 2, 580 DMA_FROM_DEVICE); 581 put_page(buffer_info->page); 582 buffer_info->page = NULL; 583 buffer_info->page_dma = 0; 584 buffer_info->page_offset = 0; 585 } 586 } 587 588 size = sizeof(struct igbvf_buffer) * rx_ring->count; 589 memset(rx_ring->buffer_info, 0, size); 590 591 /* Zero out the descriptor ring */ 592 memset(rx_ring->desc, 0, rx_ring->size); 593 594 rx_ring->next_to_clean = 0; 595 rx_ring->next_to_use = 0; 596 597 writel(0, adapter->hw.hw_addr + rx_ring->head); 598 writel(0, adapter->hw.hw_addr + rx_ring->tail); 599 } 600 601 /** 602 * igbvf_free_rx_resources - Free Rx Resources 603 * @rx_ring: ring to clean the resources from 604 * 605 * Free all receive software resources 606 **/ 607 608 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 609 { 610 struct pci_dev *pdev = rx_ring->adapter->pdev; 611 612 igbvf_clean_rx_ring(rx_ring); 613 614 vfree(rx_ring->buffer_info); 615 rx_ring->buffer_info = NULL; 616 617 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 618 rx_ring->dma); 619 rx_ring->desc = NULL; 620 } 621 622 /** 623 * igbvf_update_itr - update the dynamic ITR value based on statistics 624 * @adapter: pointer to adapter 625 * @itr_setting: current adapter->itr 626 * @packets: the number of packets during this measurement interval 627 * @bytes: the number of bytes during this measurement interval 628 * 629 * Stores a new ITR value based on packets and byte 630 * counts during the last interrupt. The advantage of per interrupt 631 * computation is faster updates and more accurate ITR for the current 632 * traffic pattern. Constants in this function were computed 633 * based on theoretical maximum wire speed and thresholds were set based 634 * on testing data as well as attempting to minimize response time 635 * while increasing bulk throughput. This functionality is controlled 636 * by the InterruptThrottleRate module parameter. 637 **/ 638 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter, 639 u16 itr_setting, int packets, 640 int bytes) 641 { 642 unsigned int retval = itr_setting; 643 644 if (packets == 0) 645 goto update_itr_done; 646 647 switch (itr_setting) { 648 case lowest_latency: 649 /* handle TSO and jumbo frames */ 650 if (bytes/packets > 8000) 651 retval = bulk_latency; 652 else if ((packets < 5) && (bytes > 512)) 653 retval = low_latency; 654 break; 655 case low_latency: /* 50 usec aka 20000 ints/s */ 656 if (bytes > 10000) { 657 /* this if handles the TSO accounting */ 658 if (bytes/packets > 8000) 659 retval = bulk_latency; 660 else if ((packets < 10) || ((bytes/packets) > 1200)) 661 retval = bulk_latency; 662 else if ((packets > 35)) 663 retval = lowest_latency; 664 } else if (bytes/packets > 2000) { 665 retval = bulk_latency; 666 } else if (packets <= 2 && bytes < 512) { 667 retval = lowest_latency; 668 } 669 break; 670 case bulk_latency: /* 250 usec aka 4000 ints/s */ 671 if (bytes > 25000) { 672 if (packets > 35) 673 retval = low_latency; 674 } else if (bytes < 6000) { 675 retval = low_latency; 676 } 677 break; 678 } 679 680 update_itr_done: 681 return retval; 682 } 683 684 static void igbvf_set_itr(struct igbvf_adapter *adapter) 685 { 686 struct e1000_hw *hw = &adapter->hw; 687 u16 current_itr; 688 u32 new_itr = adapter->itr; 689 690 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr, 691 adapter->total_tx_packets, 692 adapter->total_tx_bytes); 693 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 694 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 695 adapter->tx_itr = low_latency; 696 697 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr, 698 adapter->total_rx_packets, 699 adapter->total_rx_bytes); 700 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 701 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 702 adapter->rx_itr = low_latency; 703 704 current_itr = max(adapter->rx_itr, adapter->tx_itr); 705 706 switch (current_itr) { 707 /* counts and packets in update_itr are dependent on these numbers */ 708 case lowest_latency: 709 new_itr = 70000; 710 break; 711 case low_latency: 712 new_itr = 20000; /* aka hwitr = ~200 */ 713 break; 714 case bulk_latency: 715 new_itr = 4000; 716 break; 717 default: 718 break; 719 } 720 721 if (new_itr != adapter->itr) { 722 /* 723 * this attempts to bias the interrupt rate towards Bulk 724 * by adding intermediate steps when interrupt rate is 725 * increasing 726 */ 727 new_itr = new_itr > adapter->itr ? 728 min(adapter->itr + (new_itr >> 2), new_itr) : 729 new_itr; 730 adapter->itr = new_itr; 731 adapter->rx_ring->itr_val = 1952; 732 733 if (adapter->msix_entries) 734 adapter->rx_ring->set_itr = 1; 735 else 736 ew32(ITR, 1952); 737 } 738 } 739 740 /** 741 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 742 * @adapter: board private structure 743 * returns true if ring is completely cleaned 744 **/ 745 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 746 { 747 struct igbvf_adapter *adapter = tx_ring->adapter; 748 struct net_device *netdev = adapter->netdev; 749 struct igbvf_buffer *buffer_info; 750 struct sk_buff *skb; 751 union e1000_adv_tx_desc *tx_desc, *eop_desc; 752 unsigned int total_bytes = 0, total_packets = 0; 753 unsigned int i, eop, count = 0; 754 bool cleaned = false; 755 756 i = tx_ring->next_to_clean; 757 eop = tx_ring->buffer_info[i].next_to_watch; 758 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); 759 760 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && 761 (count < tx_ring->count)) { 762 rmb(); /* read buffer_info after eop_desc status */ 763 for (cleaned = false; !cleaned; count++) { 764 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 765 buffer_info = &tx_ring->buffer_info[i]; 766 cleaned = (i == eop); 767 skb = buffer_info->skb; 768 769 if (skb) { 770 unsigned int segs, bytecount; 771 772 /* gso_segs is currently only valid for tcp */ 773 segs = skb_shinfo(skb)->gso_segs ?: 1; 774 /* multiply data chunks by size of headers */ 775 bytecount = ((segs - 1) * skb_headlen(skb)) + 776 skb->len; 777 total_packets += segs; 778 total_bytes += bytecount; 779 } 780 781 igbvf_put_txbuf(adapter, buffer_info); 782 tx_desc->wb.status = 0; 783 784 i++; 785 if (i == tx_ring->count) 786 i = 0; 787 } 788 eop = tx_ring->buffer_info[i].next_to_watch; 789 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); 790 } 791 792 tx_ring->next_to_clean = i; 793 794 if (unlikely(count && 795 netif_carrier_ok(netdev) && 796 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 797 /* Make sure that anybody stopping the queue after this 798 * sees the new next_to_clean. 799 */ 800 smp_mb(); 801 if (netif_queue_stopped(netdev) && 802 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 803 netif_wake_queue(netdev); 804 ++adapter->restart_queue; 805 } 806 } 807 808 adapter->net_stats.tx_bytes += total_bytes; 809 adapter->net_stats.tx_packets += total_packets; 810 return count < tx_ring->count; 811 } 812 813 static irqreturn_t igbvf_msix_other(int irq, void *data) 814 { 815 struct net_device *netdev = data; 816 struct igbvf_adapter *adapter = netdev_priv(netdev); 817 struct e1000_hw *hw = &adapter->hw; 818 819 adapter->int_counter1++; 820 821 netif_carrier_off(netdev); 822 hw->mac.get_link_status = 1; 823 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 824 mod_timer(&adapter->watchdog_timer, jiffies + 1); 825 826 ew32(EIMS, adapter->eims_other); 827 828 return IRQ_HANDLED; 829 } 830 831 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 832 { 833 struct net_device *netdev = data; 834 struct igbvf_adapter *adapter = netdev_priv(netdev); 835 struct e1000_hw *hw = &adapter->hw; 836 struct igbvf_ring *tx_ring = adapter->tx_ring; 837 838 839 adapter->total_tx_bytes = 0; 840 adapter->total_tx_packets = 0; 841 842 /* auto mask will automatically reenable the interrupt when we write 843 * EICS */ 844 if (!igbvf_clean_tx_irq(tx_ring)) 845 /* Ring was not completely cleaned, so fire another interrupt */ 846 ew32(EICS, tx_ring->eims_value); 847 else 848 ew32(EIMS, tx_ring->eims_value); 849 850 return IRQ_HANDLED; 851 } 852 853 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 854 { 855 struct net_device *netdev = data; 856 struct igbvf_adapter *adapter = netdev_priv(netdev); 857 858 adapter->int_counter0++; 859 860 /* Write the ITR value calculated at the end of the 861 * previous interrupt. 862 */ 863 if (adapter->rx_ring->set_itr) { 864 writel(adapter->rx_ring->itr_val, 865 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 866 adapter->rx_ring->set_itr = 0; 867 } 868 869 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 870 adapter->total_rx_bytes = 0; 871 adapter->total_rx_packets = 0; 872 __napi_schedule(&adapter->rx_ring->napi); 873 } 874 875 return IRQ_HANDLED; 876 } 877 878 #define IGBVF_NO_QUEUE -1 879 880 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 881 int tx_queue, int msix_vector) 882 { 883 struct e1000_hw *hw = &adapter->hw; 884 u32 ivar, index; 885 886 /* 82576 uses a table-based method for assigning vectors. 887 Each queue has a single entry in the table to which we write 888 a vector number along with a "valid" bit. Sadly, the layout 889 of the table is somewhat counterintuitive. */ 890 if (rx_queue > IGBVF_NO_QUEUE) { 891 index = (rx_queue >> 1); 892 ivar = array_er32(IVAR0, index); 893 if (rx_queue & 0x1) { 894 /* vector goes into third byte of register */ 895 ivar = ivar & 0xFF00FFFF; 896 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 897 } else { 898 /* vector goes into low byte of register */ 899 ivar = ivar & 0xFFFFFF00; 900 ivar |= msix_vector | E1000_IVAR_VALID; 901 } 902 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector; 903 array_ew32(IVAR0, index, ivar); 904 } 905 if (tx_queue > IGBVF_NO_QUEUE) { 906 index = (tx_queue >> 1); 907 ivar = array_er32(IVAR0, index); 908 if (tx_queue & 0x1) { 909 /* vector goes into high byte of register */ 910 ivar = ivar & 0x00FFFFFF; 911 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 912 } else { 913 /* vector goes into second byte of register */ 914 ivar = ivar & 0xFFFF00FF; 915 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 916 } 917 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector; 918 array_ew32(IVAR0, index, ivar); 919 } 920 } 921 922 /** 923 * igbvf_configure_msix - Configure MSI-X hardware 924 * 925 * igbvf_configure_msix sets up the hardware to properly 926 * generate MSI-X interrupts. 927 **/ 928 static void igbvf_configure_msix(struct igbvf_adapter *adapter) 929 { 930 u32 tmp; 931 struct e1000_hw *hw = &adapter->hw; 932 struct igbvf_ring *tx_ring = adapter->tx_ring; 933 struct igbvf_ring *rx_ring = adapter->rx_ring; 934 int vector = 0; 935 936 adapter->eims_enable_mask = 0; 937 938 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 939 adapter->eims_enable_mask |= tx_ring->eims_value; 940 if (tx_ring->itr_val) 941 writel(tx_ring->itr_val, 942 hw->hw_addr + tx_ring->itr_register); 943 else 944 writel(1952, hw->hw_addr + tx_ring->itr_register); 945 946 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 947 adapter->eims_enable_mask |= rx_ring->eims_value; 948 if (rx_ring->itr_val) 949 writel(rx_ring->itr_val, 950 hw->hw_addr + rx_ring->itr_register); 951 else 952 writel(1952, hw->hw_addr + rx_ring->itr_register); 953 954 /* set vector for other causes, i.e. link changes */ 955 956 tmp = (vector++ | E1000_IVAR_VALID); 957 958 ew32(IVAR_MISC, tmp); 959 960 adapter->eims_enable_mask = (1 << (vector)) - 1; 961 adapter->eims_other = 1 << (vector - 1); 962 e1e_flush(); 963 } 964 965 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 966 { 967 if (adapter->msix_entries) { 968 pci_disable_msix(adapter->pdev); 969 kfree(adapter->msix_entries); 970 adapter->msix_entries = NULL; 971 } 972 } 973 974 /** 975 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 976 * 977 * Attempt to configure interrupts using the best available 978 * capabilities of the hardware and kernel. 979 **/ 980 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 981 { 982 int err = -ENOMEM; 983 int i; 984 985 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */ 986 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 987 GFP_KERNEL); 988 if (adapter->msix_entries) { 989 for (i = 0; i < 3; i++) 990 adapter->msix_entries[i].entry = i; 991 992 err = pci_enable_msix(adapter->pdev, 993 adapter->msix_entries, 3); 994 } 995 996 if (err) { 997 /* MSI-X failed */ 998 dev_err(&adapter->pdev->dev, 999 "Failed to initialize MSI-X interrupts.\n"); 1000 igbvf_reset_interrupt_capability(adapter); 1001 } 1002 } 1003 1004 /** 1005 * igbvf_request_msix - Initialize MSI-X interrupts 1006 * 1007 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1008 * kernel. 1009 **/ 1010 static int igbvf_request_msix(struct igbvf_adapter *adapter) 1011 { 1012 struct net_device *netdev = adapter->netdev; 1013 int err = 0, vector = 0; 1014 1015 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1016 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1017 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1018 } else { 1019 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1020 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1021 } 1022 1023 err = request_irq(adapter->msix_entries[vector].vector, 1024 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1025 netdev); 1026 if (err) 1027 goto out; 1028 1029 adapter->tx_ring->itr_register = E1000_EITR(vector); 1030 adapter->tx_ring->itr_val = 1952; 1031 vector++; 1032 1033 err = request_irq(adapter->msix_entries[vector].vector, 1034 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1035 netdev); 1036 if (err) 1037 goto out; 1038 1039 adapter->rx_ring->itr_register = E1000_EITR(vector); 1040 adapter->rx_ring->itr_val = 1952; 1041 vector++; 1042 1043 err = request_irq(adapter->msix_entries[vector].vector, 1044 igbvf_msix_other, 0, netdev->name, netdev); 1045 if (err) 1046 goto out; 1047 1048 igbvf_configure_msix(adapter); 1049 return 0; 1050 out: 1051 return err; 1052 } 1053 1054 /** 1055 * igbvf_alloc_queues - Allocate memory for all rings 1056 * @adapter: board private structure to initialize 1057 **/ 1058 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter) 1059 { 1060 struct net_device *netdev = adapter->netdev; 1061 1062 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1063 if (!adapter->tx_ring) 1064 return -ENOMEM; 1065 1066 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1067 if (!adapter->rx_ring) { 1068 kfree(adapter->tx_ring); 1069 return -ENOMEM; 1070 } 1071 1072 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); 1073 1074 return 0; 1075 } 1076 1077 /** 1078 * igbvf_request_irq - initialize interrupts 1079 * 1080 * Attempts to configure interrupts using the best available 1081 * capabilities of the hardware and kernel. 1082 **/ 1083 static int igbvf_request_irq(struct igbvf_adapter *adapter) 1084 { 1085 int err = -1; 1086 1087 /* igbvf supports msi-x only */ 1088 if (adapter->msix_entries) 1089 err = igbvf_request_msix(adapter); 1090 1091 if (!err) 1092 return err; 1093 1094 dev_err(&adapter->pdev->dev, 1095 "Unable to allocate interrupt, Error: %d\n", err); 1096 1097 return err; 1098 } 1099 1100 static void igbvf_free_irq(struct igbvf_adapter *adapter) 1101 { 1102 struct net_device *netdev = adapter->netdev; 1103 int vector; 1104 1105 if (adapter->msix_entries) { 1106 for (vector = 0; vector < 3; vector++) 1107 free_irq(adapter->msix_entries[vector].vector, netdev); 1108 } 1109 } 1110 1111 /** 1112 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1113 **/ 1114 static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1115 { 1116 struct e1000_hw *hw = &adapter->hw; 1117 1118 ew32(EIMC, ~0); 1119 1120 if (adapter->msix_entries) 1121 ew32(EIAC, 0); 1122 } 1123 1124 /** 1125 * igbvf_irq_enable - Enable default interrupt generation settings 1126 **/ 1127 static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1128 { 1129 struct e1000_hw *hw = &adapter->hw; 1130 1131 ew32(EIAC, adapter->eims_enable_mask); 1132 ew32(EIAM, adapter->eims_enable_mask); 1133 ew32(EIMS, adapter->eims_enable_mask); 1134 } 1135 1136 /** 1137 * igbvf_poll - NAPI Rx polling callback 1138 * @napi: struct associated with this polling callback 1139 * @budget: amount of packets driver is allowed to process this poll 1140 **/ 1141 static int igbvf_poll(struct napi_struct *napi, int budget) 1142 { 1143 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1144 struct igbvf_adapter *adapter = rx_ring->adapter; 1145 struct e1000_hw *hw = &adapter->hw; 1146 int work_done = 0; 1147 1148 igbvf_clean_rx_irq(adapter, &work_done, budget); 1149 1150 /* If not enough Rx work done, exit the polling mode */ 1151 if (work_done < budget) { 1152 napi_complete(napi); 1153 1154 if (adapter->itr_setting & 3) 1155 igbvf_set_itr(adapter); 1156 1157 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1158 ew32(EIMS, adapter->rx_ring->eims_value); 1159 } 1160 1161 return work_done; 1162 } 1163 1164 /** 1165 * igbvf_set_rlpml - set receive large packet maximum length 1166 * @adapter: board private structure 1167 * 1168 * Configure the maximum size of packets that will be received 1169 */ 1170 static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1171 { 1172 int max_frame_size; 1173 struct e1000_hw *hw = &adapter->hw; 1174 1175 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1176 e1000_rlpml_set_vf(hw, max_frame_size); 1177 } 1178 1179 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 1180 { 1181 struct igbvf_adapter *adapter = netdev_priv(netdev); 1182 struct e1000_hw *hw = &adapter->hw; 1183 1184 if (hw->mac.ops.set_vfta(hw, vid, true)) { 1185 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); 1186 return -EINVAL; 1187 } 1188 set_bit(vid, adapter->active_vlans); 1189 return 0; 1190 } 1191 1192 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 1193 { 1194 struct igbvf_adapter *adapter = netdev_priv(netdev); 1195 struct e1000_hw *hw = &adapter->hw; 1196 1197 igbvf_irq_disable(adapter); 1198 1199 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1200 igbvf_irq_enable(adapter); 1201 1202 if (hw->mac.ops.set_vfta(hw, vid, false)) { 1203 dev_err(&adapter->pdev->dev, 1204 "Failed to remove vlan id %d\n", vid); 1205 return -EINVAL; 1206 } 1207 clear_bit(vid, adapter->active_vlans); 1208 return 0; 1209 } 1210 1211 static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1212 { 1213 u16 vid; 1214 1215 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1216 igbvf_vlan_rx_add_vid(adapter->netdev, vid); 1217 } 1218 1219 /** 1220 * igbvf_configure_tx - Configure Transmit Unit after Reset 1221 * @adapter: board private structure 1222 * 1223 * Configure the Tx unit of the MAC after a reset. 1224 **/ 1225 static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1226 { 1227 struct e1000_hw *hw = &adapter->hw; 1228 struct igbvf_ring *tx_ring = adapter->tx_ring; 1229 u64 tdba; 1230 u32 txdctl, dca_txctrl; 1231 1232 /* disable transmits */ 1233 txdctl = er32(TXDCTL(0)); 1234 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1235 e1e_flush(); 1236 msleep(10); 1237 1238 /* Setup the HW Tx Head and Tail descriptor pointers */ 1239 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1240 tdba = tx_ring->dma; 1241 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1242 ew32(TDBAH(0), (tdba >> 32)); 1243 ew32(TDH(0), 0); 1244 ew32(TDT(0), 0); 1245 tx_ring->head = E1000_TDH(0); 1246 tx_ring->tail = E1000_TDT(0); 1247 1248 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1249 * MUST be delivered in order or it will completely screw up 1250 * our bookeeping. 1251 */ 1252 dca_txctrl = er32(DCA_TXCTRL(0)); 1253 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1254 ew32(DCA_TXCTRL(0), dca_txctrl); 1255 1256 /* enable transmits */ 1257 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1258 ew32(TXDCTL(0), txdctl); 1259 1260 /* Setup Transmit Descriptor Settings for eop descriptor */ 1261 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1262 1263 /* enable Report Status bit */ 1264 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1265 } 1266 1267 /** 1268 * igbvf_setup_srrctl - configure the receive control registers 1269 * @adapter: Board private structure 1270 **/ 1271 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1272 { 1273 struct e1000_hw *hw = &adapter->hw; 1274 u32 srrctl = 0; 1275 1276 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1277 E1000_SRRCTL_BSIZEHDR_MASK | 1278 E1000_SRRCTL_BSIZEPKT_MASK); 1279 1280 /* Enable queue drop to avoid head of line blocking */ 1281 srrctl |= E1000_SRRCTL_DROP_EN; 1282 1283 /* Setup buffer sizes */ 1284 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1285 E1000_SRRCTL_BSIZEPKT_SHIFT; 1286 1287 if (adapter->rx_buffer_len < 2048) { 1288 adapter->rx_ps_hdr_size = 0; 1289 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1290 } else { 1291 adapter->rx_ps_hdr_size = 128; 1292 srrctl |= adapter->rx_ps_hdr_size << 1293 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1294 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1295 } 1296 1297 ew32(SRRCTL(0), srrctl); 1298 } 1299 1300 /** 1301 * igbvf_configure_rx - Configure Receive Unit after Reset 1302 * @adapter: board private structure 1303 * 1304 * Configure the Rx unit of the MAC after a reset. 1305 **/ 1306 static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1307 { 1308 struct e1000_hw *hw = &adapter->hw; 1309 struct igbvf_ring *rx_ring = adapter->rx_ring; 1310 u64 rdba; 1311 u32 rdlen, rxdctl; 1312 1313 /* disable receives */ 1314 rxdctl = er32(RXDCTL(0)); 1315 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1316 e1e_flush(); 1317 msleep(10); 1318 1319 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc); 1320 1321 /* 1322 * Setup the HW Rx Head and Tail Descriptor Pointers and 1323 * the Base and Length of the Rx Descriptor Ring 1324 */ 1325 rdba = rx_ring->dma; 1326 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1327 ew32(RDBAH(0), (rdba >> 32)); 1328 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1329 rx_ring->head = E1000_RDH(0); 1330 rx_ring->tail = E1000_RDT(0); 1331 ew32(RDH(0), 0); 1332 ew32(RDT(0), 0); 1333 1334 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1335 rxdctl &= 0xFFF00000; 1336 rxdctl |= IGBVF_RX_PTHRESH; 1337 rxdctl |= IGBVF_RX_HTHRESH << 8; 1338 rxdctl |= IGBVF_RX_WTHRESH << 16; 1339 1340 igbvf_set_rlpml(adapter); 1341 1342 /* enable receives */ 1343 ew32(RXDCTL(0), rxdctl); 1344 } 1345 1346 /** 1347 * igbvf_set_multi - Multicast and Promiscuous mode set 1348 * @netdev: network interface device structure 1349 * 1350 * The set_multi entry point is called whenever the multicast address 1351 * list or the network interface flags are updated. This routine is 1352 * responsible for configuring the hardware for proper multicast, 1353 * promiscuous mode, and all-multi behavior. 1354 **/ 1355 static void igbvf_set_multi(struct net_device *netdev) 1356 { 1357 struct igbvf_adapter *adapter = netdev_priv(netdev); 1358 struct e1000_hw *hw = &adapter->hw; 1359 struct netdev_hw_addr *ha; 1360 u8 *mta_list = NULL; 1361 int i; 1362 1363 if (!netdev_mc_empty(netdev)) { 1364 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 1365 if (!mta_list) { 1366 dev_err(&adapter->pdev->dev, 1367 "failed to allocate multicast filter list\n"); 1368 return; 1369 } 1370 } 1371 1372 /* prepare a packed array of only addresses. */ 1373 i = 0; 1374 netdev_for_each_mc_addr(ha, netdev) 1375 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1376 1377 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1378 kfree(mta_list); 1379 } 1380 1381 /** 1382 * igbvf_configure - configure the hardware for Rx and Tx 1383 * @adapter: private board structure 1384 **/ 1385 static void igbvf_configure(struct igbvf_adapter *adapter) 1386 { 1387 igbvf_set_multi(adapter->netdev); 1388 1389 igbvf_restore_vlan(adapter); 1390 1391 igbvf_configure_tx(adapter); 1392 igbvf_setup_srrctl(adapter); 1393 igbvf_configure_rx(adapter); 1394 igbvf_alloc_rx_buffers(adapter->rx_ring, 1395 igbvf_desc_unused(adapter->rx_ring)); 1396 } 1397 1398 /* igbvf_reset - bring the hardware into a known good state 1399 * 1400 * This function boots the hardware and enables some settings that 1401 * require a configuration cycle of the hardware - those cannot be 1402 * set/changed during runtime. After reset the device needs to be 1403 * properly configured for Rx, Tx etc. 1404 */ 1405 static void igbvf_reset(struct igbvf_adapter *adapter) 1406 { 1407 struct e1000_mac_info *mac = &adapter->hw.mac; 1408 struct net_device *netdev = adapter->netdev; 1409 struct e1000_hw *hw = &adapter->hw; 1410 1411 /* Allow time for pending master requests to run */ 1412 if (mac->ops.reset_hw(hw)) 1413 dev_err(&adapter->pdev->dev, "PF still resetting\n"); 1414 1415 mac->ops.init_hw(hw); 1416 1417 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1418 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 1419 netdev->addr_len); 1420 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1421 netdev->addr_len); 1422 } 1423 1424 adapter->last_reset = jiffies; 1425 } 1426 1427 int igbvf_up(struct igbvf_adapter *adapter) 1428 { 1429 struct e1000_hw *hw = &adapter->hw; 1430 1431 /* hardware has been reset, we need to reload some things */ 1432 igbvf_configure(adapter); 1433 1434 clear_bit(__IGBVF_DOWN, &adapter->state); 1435 1436 napi_enable(&adapter->rx_ring->napi); 1437 if (adapter->msix_entries) 1438 igbvf_configure_msix(adapter); 1439 1440 /* Clear any pending interrupts. */ 1441 er32(EICR); 1442 igbvf_irq_enable(adapter); 1443 1444 /* start the watchdog */ 1445 hw->mac.get_link_status = 1; 1446 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1447 1448 1449 return 0; 1450 } 1451 1452 void igbvf_down(struct igbvf_adapter *adapter) 1453 { 1454 struct net_device *netdev = adapter->netdev; 1455 struct e1000_hw *hw = &adapter->hw; 1456 u32 rxdctl, txdctl; 1457 1458 /* 1459 * signal that we're down so the interrupt handler does not 1460 * reschedule our watchdog timer 1461 */ 1462 set_bit(__IGBVF_DOWN, &adapter->state); 1463 1464 /* disable receives in the hardware */ 1465 rxdctl = er32(RXDCTL(0)); 1466 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1467 1468 netif_stop_queue(netdev); 1469 1470 /* disable transmits in the hardware */ 1471 txdctl = er32(TXDCTL(0)); 1472 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1473 1474 /* flush both disables and wait for them to finish */ 1475 e1e_flush(); 1476 msleep(10); 1477 1478 napi_disable(&adapter->rx_ring->napi); 1479 1480 igbvf_irq_disable(adapter); 1481 1482 del_timer_sync(&adapter->watchdog_timer); 1483 1484 netif_carrier_off(netdev); 1485 1486 /* record the stats before reset*/ 1487 igbvf_update_stats(adapter); 1488 1489 adapter->link_speed = 0; 1490 adapter->link_duplex = 0; 1491 1492 igbvf_reset(adapter); 1493 igbvf_clean_tx_ring(adapter->tx_ring); 1494 igbvf_clean_rx_ring(adapter->rx_ring); 1495 } 1496 1497 void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1498 { 1499 might_sleep(); 1500 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1501 msleep(1); 1502 igbvf_down(adapter); 1503 igbvf_up(adapter); 1504 clear_bit(__IGBVF_RESETTING, &adapter->state); 1505 } 1506 1507 /** 1508 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1509 * @adapter: board private structure to initialize 1510 * 1511 * igbvf_sw_init initializes the Adapter private data structure. 1512 * Fields are initialized based on PCI device information and 1513 * OS network device settings (MTU size). 1514 **/ 1515 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter) 1516 { 1517 struct net_device *netdev = adapter->netdev; 1518 s32 rc; 1519 1520 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1521 adapter->rx_ps_hdr_size = 0; 1522 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1523 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1524 1525 adapter->tx_int_delay = 8; 1526 adapter->tx_abs_int_delay = 32; 1527 adapter->rx_int_delay = 0; 1528 adapter->rx_abs_int_delay = 8; 1529 adapter->itr_setting = 3; 1530 adapter->itr = 20000; 1531 1532 /* Set various function pointers */ 1533 adapter->ei->init_ops(&adapter->hw); 1534 1535 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1536 if (rc) 1537 return rc; 1538 1539 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1540 if (rc) 1541 return rc; 1542 1543 igbvf_set_interrupt_capability(adapter); 1544 1545 if (igbvf_alloc_queues(adapter)) 1546 return -ENOMEM; 1547 1548 spin_lock_init(&adapter->tx_queue_lock); 1549 1550 /* Explicitly disable IRQ since the NIC can be in any state. */ 1551 igbvf_irq_disable(adapter); 1552 1553 spin_lock_init(&adapter->stats_lock); 1554 1555 set_bit(__IGBVF_DOWN, &adapter->state); 1556 return 0; 1557 } 1558 1559 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1560 { 1561 struct e1000_hw *hw = &adapter->hw; 1562 1563 adapter->stats.last_gprc = er32(VFGPRC); 1564 adapter->stats.last_gorc = er32(VFGORC); 1565 adapter->stats.last_gptc = er32(VFGPTC); 1566 adapter->stats.last_gotc = er32(VFGOTC); 1567 adapter->stats.last_mprc = er32(VFMPRC); 1568 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1569 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1570 adapter->stats.last_gorlbc = er32(VFGORLBC); 1571 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1572 1573 adapter->stats.base_gprc = er32(VFGPRC); 1574 adapter->stats.base_gorc = er32(VFGORC); 1575 adapter->stats.base_gptc = er32(VFGPTC); 1576 adapter->stats.base_gotc = er32(VFGOTC); 1577 adapter->stats.base_mprc = er32(VFMPRC); 1578 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1579 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1580 adapter->stats.base_gorlbc = er32(VFGORLBC); 1581 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1582 } 1583 1584 /** 1585 * igbvf_open - Called when a network interface is made active 1586 * @netdev: network interface device structure 1587 * 1588 * Returns 0 on success, negative value on failure 1589 * 1590 * The open entry point is called when a network interface is made 1591 * active by the system (IFF_UP). At this point all resources needed 1592 * for transmit and receive operations are allocated, the interrupt 1593 * handler is registered with the OS, the watchdog timer is started, 1594 * and the stack is notified that the interface is ready. 1595 **/ 1596 static int igbvf_open(struct net_device *netdev) 1597 { 1598 struct igbvf_adapter *adapter = netdev_priv(netdev); 1599 struct e1000_hw *hw = &adapter->hw; 1600 int err; 1601 1602 /* disallow open during test */ 1603 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1604 return -EBUSY; 1605 1606 /* allocate transmit descriptors */ 1607 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1608 if (err) 1609 goto err_setup_tx; 1610 1611 /* allocate receive descriptors */ 1612 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1613 if (err) 1614 goto err_setup_rx; 1615 1616 /* 1617 * before we allocate an interrupt, we must be ready to handle it. 1618 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1619 * as soon as we call pci_request_irq, so we have to setup our 1620 * clean_rx handler before we do so. 1621 */ 1622 igbvf_configure(adapter); 1623 1624 err = igbvf_request_irq(adapter); 1625 if (err) 1626 goto err_req_irq; 1627 1628 /* From here on the code is the same as igbvf_up() */ 1629 clear_bit(__IGBVF_DOWN, &adapter->state); 1630 1631 napi_enable(&adapter->rx_ring->napi); 1632 1633 /* clear any pending interrupts */ 1634 er32(EICR); 1635 1636 igbvf_irq_enable(adapter); 1637 1638 /* start the watchdog */ 1639 hw->mac.get_link_status = 1; 1640 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1641 1642 return 0; 1643 1644 err_req_irq: 1645 igbvf_free_rx_resources(adapter->rx_ring); 1646 err_setup_rx: 1647 igbvf_free_tx_resources(adapter->tx_ring); 1648 err_setup_tx: 1649 igbvf_reset(adapter); 1650 1651 return err; 1652 } 1653 1654 /** 1655 * igbvf_close - Disables a network interface 1656 * @netdev: network interface device structure 1657 * 1658 * Returns 0, this is not allowed to fail 1659 * 1660 * The close entry point is called when an interface is de-activated 1661 * by the OS. The hardware is still under the drivers control, but 1662 * needs to be disabled. A global MAC reset is issued to stop the 1663 * hardware, and all transmit and receive resources are freed. 1664 **/ 1665 static int igbvf_close(struct net_device *netdev) 1666 { 1667 struct igbvf_adapter *adapter = netdev_priv(netdev); 1668 1669 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1670 igbvf_down(adapter); 1671 1672 igbvf_free_irq(adapter); 1673 1674 igbvf_free_tx_resources(adapter->tx_ring); 1675 igbvf_free_rx_resources(adapter->rx_ring); 1676 1677 return 0; 1678 } 1679 /** 1680 * igbvf_set_mac - Change the Ethernet Address of the NIC 1681 * @netdev: network interface device structure 1682 * @p: pointer to an address structure 1683 * 1684 * Returns 0 on success, negative on failure 1685 **/ 1686 static int igbvf_set_mac(struct net_device *netdev, void *p) 1687 { 1688 struct igbvf_adapter *adapter = netdev_priv(netdev); 1689 struct e1000_hw *hw = &adapter->hw; 1690 struct sockaddr *addr = p; 1691 1692 if (!is_valid_ether_addr(addr->sa_data)) 1693 return -EADDRNOTAVAIL; 1694 1695 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1696 1697 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1698 1699 if (memcmp(addr->sa_data, hw->mac.addr, 6)) 1700 return -EADDRNOTAVAIL; 1701 1702 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1703 1704 return 0; 1705 } 1706 1707 #define UPDATE_VF_COUNTER(reg, name) \ 1708 { \ 1709 u32 current_counter = er32(reg); \ 1710 if (current_counter < adapter->stats.last_##name) \ 1711 adapter->stats.name += 0x100000000LL; \ 1712 adapter->stats.last_##name = current_counter; \ 1713 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1714 adapter->stats.name |= current_counter; \ 1715 } 1716 1717 /** 1718 * igbvf_update_stats - Update the board statistics counters 1719 * @adapter: board private structure 1720 **/ 1721 void igbvf_update_stats(struct igbvf_adapter *adapter) 1722 { 1723 struct e1000_hw *hw = &adapter->hw; 1724 struct pci_dev *pdev = adapter->pdev; 1725 1726 /* 1727 * Prevent stats update while adapter is being reset, link is down 1728 * or if the pci connection is down. 1729 */ 1730 if (adapter->link_speed == 0) 1731 return; 1732 1733 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1734 return; 1735 1736 if (pci_channel_offline(pdev)) 1737 return; 1738 1739 UPDATE_VF_COUNTER(VFGPRC, gprc); 1740 UPDATE_VF_COUNTER(VFGORC, gorc); 1741 UPDATE_VF_COUNTER(VFGPTC, gptc); 1742 UPDATE_VF_COUNTER(VFGOTC, gotc); 1743 UPDATE_VF_COUNTER(VFMPRC, mprc); 1744 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1745 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1746 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1747 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1748 1749 /* Fill out the OS statistics structure */ 1750 adapter->net_stats.multicast = adapter->stats.mprc; 1751 } 1752 1753 static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1754 { 1755 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n", 1756 adapter->link_speed, 1757 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half"); 1758 } 1759 1760 static bool igbvf_has_link(struct igbvf_adapter *adapter) 1761 { 1762 struct e1000_hw *hw = &adapter->hw; 1763 s32 ret_val = E1000_SUCCESS; 1764 bool link_active; 1765 1766 /* If interface is down, stay link down */ 1767 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1768 return false; 1769 1770 ret_val = hw->mac.ops.check_for_link(hw); 1771 link_active = !hw->mac.get_link_status; 1772 1773 /* if check for link returns error we will need to reset */ 1774 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1775 schedule_work(&adapter->reset_task); 1776 1777 return link_active; 1778 } 1779 1780 /** 1781 * igbvf_watchdog - Timer Call-back 1782 * @data: pointer to adapter cast into an unsigned long 1783 **/ 1784 static void igbvf_watchdog(unsigned long data) 1785 { 1786 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data; 1787 1788 /* Do the rest outside of interrupt context */ 1789 schedule_work(&adapter->watchdog_task); 1790 } 1791 1792 static void igbvf_watchdog_task(struct work_struct *work) 1793 { 1794 struct igbvf_adapter *adapter = container_of(work, 1795 struct igbvf_adapter, 1796 watchdog_task); 1797 struct net_device *netdev = adapter->netdev; 1798 struct e1000_mac_info *mac = &adapter->hw.mac; 1799 struct igbvf_ring *tx_ring = adapter->tx_ring; 1800 struct e1000_hw *hw = &adapter->hw; 1801 u32 link; 1802 int tx_pending = 0; 1803 1804 link = igbvf_has_link(adapter); 1805 1806 if (link) { 1807 if (!netif_carrier_ok(netdev)) { 1808 mac->ops.get_link_up_info(&adapter->hw, 1809 &adapter->link_speed, 1810 &adapter->link_duplex); 1811 igbvf_print_link_info(adapter); 1812 1813 netif_carrier_on(netdev); 1814 netif_wake_queue(netdev); 1815 } 1816 } else { 1817 if (netif_carrier_ok(netdev)) { 1818 adapter->link_speed = 0; 1819 adapter->link_duplex = 0; 1820 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1821 netif_carrier_off(netdev); 1822 netif_stop_queue(netdev); 1823 } 1824 } 1825 1826 if (netif_carrier_ok(netdev)) { 1827 igbvf_update_stats(adapter); 1828 } else { 1829 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1830 tx_ring->count); 1831 if (tx_pending) { 1832 /* 1833 * We've lost link, so the controller stops DMA, 1834 * but we've got queued Tx work that's never going 1835 * to get done, so reset controller to flush Tx. 1836 * (Do the reset outside of interrupt context). 1837 */ 1838 adapter->tx_timeout_count++; 1839 schedule_work(&adapter->reset_task); 1840 } 1841 } 1842 1843 /* Cause software interrupt to ensure Rx ring is cleaned */ 1844 ew32(EICS, adapter->rx_ring->eims_value); 1845 1846 /* Reset the timer */ 1847 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1848 mod_timer(&adapter->watchdog_timer, 1849 round_jiffies(jiffies + (2 * HZ))); 1850 } 1851 1852 #define IGBVF_TX_FLAGS_CSUM 0x00000001 1853 #define IGBVF_TX_FLAGS_VLAN 0x00000002 1854 #define IGBVF_TX_FLAGS_TSO 0x00000004 1855 #define IGBVF_TX_FLAGS_IPV4 0x00000008 1856 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1857 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1858 1859 static int igbvf_tso(struct igbvf_adapter *adapter, 1860 struct igbvf_ring *tx_ring, 1861 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 1862 { 1863 struct e1000_adv_tx_context_desc *context_desc; 1864 unsigned int i; 1865 int err; 1866 struct igbvf_buffer *buffer_info; 1867 u32 info = 0, tu_cmd = 0; 1868 u32 mss_l4len_idx, l4len; 1869 *hdr_len = 0; 1870 1871 if (skb_header_cloned(skb)) { 1872 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1873 if (err) { 1874 dev_err(&adapter->pdev->dev, 1875 "igbvf_tso returning an error\n"); 1876 return err; 1877 } 1878 } 1879 1880 l4len = tcp_hdrlen(skb); 1881 *hdr_len += l4len; 1882 1883 if (skb->protocol == htons(ETH_P_IP)) { 1884 struct iphdr *iph = ip_hdr(skb); 1885 iph->tot_len = 0; 1886 iph->check = 0; 1887 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 1888 iph->daddr, 0, 1889 IPPROTO_TCP, 1890 0); 1891 } else if (skb_is_gso_v6(skb)) { 1892 ipv6_hdr(skb)->payload_len = 0; 1893 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1894 &ipv6_hdr(skb)->daddr, 1895 0, IPPROTO_TCP, 0); 1896 } 1897 1898 i = tx_ring->next_to_use; 1899 1900 buffer_info = &tx_ring->buffer_info[i]; 1901 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1902 /* VLAN MACLEN IPLEN */ 1903 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 1904 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 1905 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 1906 *hdr_len += skb_network_offset(skb); 1907 info |= (skb_transport_header(skb) - skb_network_header(skb)); 1908 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb)); 1909 context_desc->vlan_macip_lens = cpu_to_le32(info); 1910 1911 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1912 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 1913 1914 if (skb->protocol == htons(ETH_P_IP)) 1915 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 1916 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1917 1918 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 1919 1920 /* MSS L4LEN IDX */ 1921 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); 1922 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); 1923 1924 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1925 context_desc->seqnum_seed = 0; 1926 1927 buffer_info->time_stamp = jiffies; 1928 buffer_info->next_to_watch = i; 1929 buffer_info->dma = 0; 1930 i++; 1931 if (i == tx_ring->count) 1932 i = 0; 1933 1934 tx_ring->next_to_use = i; 1935 1936 return true; 1937 } 1938 1939 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter, 1940 struct igbvf_ring *tx_ring, 1941 struct sk_buff *skb, u32 tx_flags) 1942 { 1943 struct e1000_adv_tx_context_desc *context_desc; 1944 unsigned int i; 1945 struct igbvf_buffer *buffer_info; 1946 u32 info = 0, tu_cmd = 0; 1947 1948 if ((skb->ip_summed == CHECKSUM_PARTIAL) || 1949 (tx_flags & IGBVF_TX_FLAGS_VLAN)) { 1950 i = tx_ring->next_to_use; 1951 buffer_info = &tx_ring->buffer_info[i]; 1952 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1953 1954 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 1955 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 1956 1957 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 1958 if (skb->ip_summed == CHECKSUM_PARTIAL) 1959 info |= (skb_transport_header(skb) - 1960 skb_network_header(skb)); 1961 1962 1963 context_desc->vlan_macip_lens = cpu_to_le32(info); 1964 1965 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 1966 1967 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1968 switch (skb->protocol) { 1969 case __constant_htons(ETH_P_IP): 1970 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 1971 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 1972 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1973 break; 1974 case __constant_htons(ETH_P_IPV6): 1975 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 1976 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1977 break; 1978 default: 1979 break; 1980 } 1981 } 1982 1983 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 1984 context_desc->seqnum_seed = 0; 1985 context_desc->mss_l4len_idx = 0; 1986 1987 buffer_info->time_stamp = jiffies; 1988 buffer_info->next_to_watch = i; 1989 buffer_info->dma = 0; 1990 i++; 1991 if (i == tx_ring->count) 1992 i = 0; 1993 tx_ring->next_to_use = i; 1994 1995 return true; 1996 } 1997 1998 return false; 1999 } 2000 2001 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2002 { 2003 struct igbvf_adapter *adapter = netdev_priv(netdev); 2004 2005 /* there is enough descriptors then we don't need to worry */ 2006 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2007 return 0; 2008 2009 netif_stop_queue(netdev); 2010 2011 smp_mb(); 2012 2013 /* We need to check again just in case room has been made available */ 2014 if (igbvf_desc_unused(adapter->tx_ring) < size) 2015 return -EBUSY; 2016 2017 netif_wake_queue(netdev); 2018 2019 ++adapter->restart_queue; 2020 return 0; 2021 } 2022 2023 #define IGBVF_MAX_TXD_PWR 16 2024 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR) 2025 2026 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2027 struct igbvf_ring *tx_ring, 2028 struct sk_buff *skb, 2029 unsigned int first) 2030 { 2031 struct igbvf_buffer *buffer_info; 2032 struct pci_dev *pdev = adapter->pdev; 2033 unsigned int len = skb_headlen(skb); 2034 unsigned int count = 0, i; 2035 unsigned int f; 2036 2037 i = tx_ring->next_to_use; 2038 2039 buffer_info = &tx_ring->buffer_info[i]; 2040 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2041 buffer_info->length = len; 2042 /* set time_stamp *before* dma to help avoid a possible race */ 2043 buffer_info->time_stamp = jiffies; 2044 buffer_info->next_to_watch = i; 2045 buffer_info->mapped_as_page = false; 2046 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2047 DMA_TO_DEVICE); 2048 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2049 goto dma_error; 2050 2051 2052 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2053 const struct skb_frag_struct *frag; 2054 2055 count++; 2056 i++; 2057 if (i == tx_ring->count) 2058 i = 0; 2059 2060 frag = &skb_shinfo(skb)->frags[f]; 2061 len = skb_frag_size(frag); 2062 2063 buffer_info = &tx_ring->buffer_info[i]; 2064 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2065 buffer_info->length = len; 2066 buffer_info->time_stamp = jiffies; 2067 buffer_info->next_to_watch = i; 2068 buffer_info->mapped_as_page = true; 2069 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2070 DMA_TO_DEVICE); 2071 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2072 goto dma_error; 2073 } 2074 2075 tx_ring->buffer_info[i].skb = skb; 2076 tx_ring->buffer_info[first].next_to_watch = i; 2077 2078 return ++count; 2079 2080 dma_error: 2081 dev_err(&pdev->dev, "TX DMA map failed\n"); 2082 2083 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2084 buffer_info->dma = 0; 2085 buffer_info->time_stamp = 0; 2086 buffer_info->length = 0; 2087 buffer_info->next_to_watch = 0; 2088 buffer_info->mapped_as_page = false; 2089 if (count) 2090 count--; 2091 2092 /* clear timestamp and dma mappings for remaining portion of packet */ 2093 while (count--) { 2094 if (i==0) 2095 i += tx_ring->count; 2096 i--; 2097 buffer_info = &tx_ring->buffer_info[i]; 2098 igbvf_put_txbuf(adapter, buffer_info); 2099 } 2100 2101 return 0; 2102 } 2103 2104 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2105 struct igbvf_ring *tx_ring, 2106 int tx_flags, int count, u32 paylen, 2107 u8 hdr_len) 2108 { 2109 union e1000_adv_tx_desc *tx_desc = NULL; 2110 struct igbvf_buffer *buffer_info; 2111 u32 olinfo_status = 0, cmd_type_len; 2112 unsigned int i; 2113 2114 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2115 E1000_ADVTXD_DCMD_DEXT); 2116 2117 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2118 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2119 2120 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2121 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2122 2123 /* insert tcp checksum */ 2124 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2125 2126 /* insert ip checksum */ 2127 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2128 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2129 2130 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2131 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2132 } 2133 2134 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2135 2136 i = tx_ring->next_to_use; 2137 while (count--) { 2138 buffer_info = &tx_ring->buffer_info[i]; 2139 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2140 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2141 tx_desc->read.cmd_type_len = 2142 cpu_to_le32(cmd_type_len | buffer_info->length); 2143 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2144 i++; 2145 if (i == tx_ring->count) 2146 i = 0; 2147 } 2148 2149 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2150 /* Force memory writes to complete before letting h/w 2151 * know there are new descriptors to fetch. (Only 2152 * applicable for weak-ordered memory model archs, 2153 * such as IA-64). */ 2154 wmb(); 2155 2156 tx_ring->next_to_use = i; 2157 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2158 /* we need this if more than one processor can write to our tail 2159 * at a time, it syncronizes IO on IA64/Altix systems */ 2160 mmiowb(); 2161 } 2162 2163 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2164 struct net_device *netdev, 2165 struct igbvf_ring *tx_ring) 2166 { 2167 struct igbvf_adapter *adapter = netdev_priv(netdev); 2168 unsigned int first, tx_flags = 0; 2169 u8 hdr_len = 0; 2170 int count = 0; 2171 int tso = 0; 2172 2173 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2174 dev_kfree_skb_any(skb); 2175 return NETDEV_TX_OK; 2176 } 2177 2178 if (skb->len <= 0) { 2179 dev_kfree_skb_any(skb); 2180 return NETDEV_TX_OK; 2181 } 2182 2183 /* 2184 * need: count + 4 desc gap to keep tail from touching 2185 * + 2 desc gap to keep tail from touching head, 2186 * + 1 desc for skb->data, 2187 * + 1 desc for context descriptor, 2188 * head, otherwise try next time 2189 */ 2190 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2191 /* this is a hard error */ 2192 return NETDEV_TX_BUSY; 2193 } 2194 2195 if (vlan_tx_tag_present(skb)) { 2196 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2197 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT); 2198 } 2199 2200 if (skb->protocol == htons(ETH_P_IP)) 2201 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2202 2203 first = tx_ring->next_to_use; 2204 2205 tso = skb_is_gso(skb) ? 2206 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0; 2207 if (unlikely(tso < 0)) { 2208 dev_kfree_skb_any(skb); 2209 return NETDEV_TX_OK; 2210 } 2211 2212 if (tso) 2213 tx_flags |= IGBVF_TX_FLAGS_TSO; 2214 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) && 2215 (skb->ip_summed == CHECKSUM_PARTIAL)) 2216 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2217 2218 /* 2219 * count reflects descriptors mapped, if 0 then mapping error 2220 * has occurred and we need to rewind the descriptor queue 2221 */ 2222 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first); 2223 2224 if (count) { 2225 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2226 skb->len, hdr_len); 2227 /* Make sure there is space in the ring for the next send. */ 2228 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2229 } else { 2230 dev_kfree_skb_any(skb); 2231 tx_ring->buffer_info[first].time_stamp = 0; 2232 tx_ring->next_to_use = first; 2233 } 2234 2235 return NETDEV_TX_OK; 2236 } 2237 2238 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2239 struct net_device *netdev) 2240 { 2241 struct igbvf_adapter *adapter = netdev_priv(netdev); 2242 struct igbvf_ring *tx_ring; 2243 2244 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2245 dev_kfree_skb_any(skb); 2246 return NETDEV_TX_OK; 2247 } 2248 2249 tx_ring = &adapter->tx_ring[0]; 2250 2251 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2252 } 2253 2254 /** 2255 * igbvf_tx_timeout - Respond to a Tx Hang 2256 * @netdev: network interface device structure 2257 **/ 2258 static void igbvf_tx_timeout(struct net_device *netdev) 2259 { 2260 struct igbvf_adapter *adapter = netdev_priv(netdev); 2261 2262 /* Do the reset outside of interrupt context */ 2263 adapter->tx_timeout_count++; 2264 schedule_work(&adapter->reset_task); 2265 } 2266 2267 static void igbvf_reset_task(struct work_struct *work) 2268 { 2269 struct igbvf_adapter *adapter; 2270 adapter = container_of(work, struct igbvf_adapter, reset_task); 2271 2272 igbvf_reinit_locked(adapter); 2273 } 2274 2275 /** 2276 * igbvf_get_stats - Get System Network Statistics 2277 * @netdev: network interface device structure 2278 * 2279 * Returns the address of the device statistics structure. 2280 * The statistics are actually updated from the timer callback. 2281 **/ 2282 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev) 2283 { 2284 struct igbvf_adapter *adapter = netdev_priv(netdev); 2285 2286 /* only return the current stats */ 2287 return &adapter->net_stats; 2288 } 2289 2290 /** 2291 * igbvf_change_mtu - Change the Maximum Transfer Unit 2292 * @netdev: network interface device structure 2293 * @new_mtu: new value for maximum frame size 2294 * 2295 * Returns 0 on success, negative on failure 2296 **/ 2297 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2298 { 2299 struct igbvf_adapter *adapter = netdev_priv(netdev); 2300 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2301 2302 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 2303 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); 2304 return -EINVAL; 2305 } 2306 2307 #define MAX_STD_JUMBO_FRAME_SIZE 9234 2308 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 2309 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); 2310 return -EINVAL; 2311 } 2312 2313 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2314 msleep(1); 2315 /* igbvf_down has a dependency on max_frame_size */ 2316 adapter->max_frame_size = max_frame; 2317 if (netif_running(netdev)) 2318 igbvf_down(adapter); 2319 2320 /* 2321 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2322 * means we reserve 2 more, this pushes us to allocate from the next 2323 * larger slab size. 2324 * i.e. RXBUFFER_2048 --> size-4096 slab 2325 * However with the new *_jumbo_rx* routines, jumbo receives will use 2326 * fragmented skbs 2327 */ 2328 2329 if (max_frame <= 1024) 2330 adapter->rx_buffer_len = 1024; 2331 else if (max_frame <= 2048) 2332 adapter->rx_buffer_len = 2048; 2333 else 2334 #if (PAGE_SIZE / 2) > 16384 2335 adapter->rx_buffer_len = 16384; 2336 #else 2337 adapter->rx_buffer_len = PAGE_SIZE / 2; 2338 #endif 2339 2340 2341 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2342 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2343 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2344 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2345 ETH_FCS_LEN; 2346 2347 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", 2348 netdev->mtu, new_mtu); 2349 netdev->mtu = new_mtu; 2350 2351 if (netif_running(netdev)) 2352 igbvf_up(adapter); 2353 else 2354 igbvf_reset(adapter); 2355 2356 clear_bit(__IGBVF_RESETTING, &adapter->state); 2357 2358 return 0; 2359 } 2360 2361 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2362 { 2363 switch (cmd) { 2364 default: 2365 return -EOPNOTSUPP; 2366 } 2367 } 2368 2369 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) 2370 { 2371 struct net_device *netdev = pci_get_drvdata(pdev); 2372 struct igbvf_adapter *adapter = netdev_priv(netdev); 2373 #ifdef CONFIG_PM 2374 int retval = 0; 2375 #endif 2376 2377 netif_device_detach(netdev); 2378 2379 if (netif_running(netdev)) { 2380 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2381 igbvf_down(adapter); 2382 igbvf_free_irq(adapter); 2383 } 2384 2385 #ifdef CONFIG_PM 2386 retval = pci_save_state(pdev); 2387 if (retval) 2388 return retval; 2389 #endif 2390 2391 pci_disable_device(pdev); 2392 2393 return 0; 2394 } 2395 2396 #ifdef CONFIG_PM 2397 static int igbvf_resume(struct pci_dev *pdev) 2398 { 2399 struct net_device *netdev = pci_get_drvdata(pdev); 2400 struct igbvf_adapter *adapter = netdev_priv(netdev); 2401 u32 err; 2402 2403 pci_restore_state(pdev); 2404 err = pci_enable_device_mem(pdev); 2405 if (err) { 2406 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 2407 return err; 2408 } 2409 2410 pci_set_master(pdev); 2411 2412 if (netif_running(netdev)) { 2413 err = igbvf_request_irq(adapter); 2414 if (err) 2415 return err; 2416 } 2417 2418 igbvf_reset(adapter); 2419 2420 if (netif_running(netdev)) 2421 igbvf_up(adapter); 2422 2423 netif_device_attach(netdev); 2424 2425 return 0; 2426 } 2427 #endif 2428 2429 static void igbvf_shutdown(struct pci_dev *pdev) 2430 { 2431 igbvf_suspend(pdev, PMSG_SUSPEND); 2432 } 2433 2434 #ifdef CONFIG_NET_POLL_CONTROLLER 2435 /* 2436 * Polling 'interrupt' - used by things like netconsole to send skbs 2437 * without having to re-enable interrupts. It's not called while 2438 * the interrupt routine is executing. 2439 */ 2440 static void igbvf_netpoll(struct net_device *netdev) 2441 { 2442 struct igbvf_adapter *adapter = netdev_priv(netdev); 2443 2444 disable_irq(adapter->pdev->irq); 2445 2446 igbvf_clean_tx_irq(adapter->tx_ring); 2447 2448 enable_irq(adapter->pdev->irq); 2449 } 2450 #endif 2451 2452 /** 2453 * igbvf_io_error_detected - called when PCI error is detected 2454 * @pdev: Pointer to PCI device 2455 * @state: The current pci connection state 2456 * 2457 * This function is called after a PCI bus error affecting 2458 * this device has been detected. 2459 */ 2460 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2461 pci_channel_state_t state) 2462 { 2463 struct net_device *netdev = pci_get_drvdata(pdev); 2464 struct igbvf_adapter *adapter = netdev_priv(netdev); 2465 2466 netif_device_detach(netdev); 2467 2468 if (state == pci_channel_io_perm_failure) 2469 return PCI_ERS_RESULT_DISCONNECT; 2470 2471 if (netif_running(netdev)) 2472 igbvf_down(adapter); 2473 pci_disable_device(pdev); 2474 2475 /* Request a slot slot reset. */ 2476 return PCI_ERS_RESULT_NEED_RESET; 2477 } 2478 2479 /** 2480 * igbvf_io_slot_reset - called after the pci bus has been reset. 2481 * @pdev: Pointer to PCI device 2482 * 2483 * Restart the card from scratch, as if from a cold-boot. Implementation 2484 * resembles the first-half of the igbvf_resume routine. 2485 */ 2486 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2487 { 2488 struct net_device *netdev = pci_get_drvdata(pdev); 2489 struct igbvf_adapter *adapter = netdev_priv(netdev); 2490 2491 if (pci_enable_device_mem(pdev)) { 2492 dev_err(&pdev->dev, 2493 "Cannot re-enable PCI device after reset.\n"); 2494 return PCI_ERS_RESULT_DISCONNECT; 2495 } 2496 pci_set_master(pdev); 2497 2498 igbvf_reset(adapter); 2499 2500 return PCI_ERS_RESULT_RECOVERED; 2501 } 2502 2503 /** 2504 * igbvf_io_resume - called when traffic can start flowing again. 2505 * @pdev: Pointer to PCI device 2506 * 2507 * This callback is called when the error recovery driver tells us that 2508 * its OK to resume normal operation. Implementation resembles the 2509 * second-half of the igbvf_resume routine. 2510 */ 2511 static void igbvf_io_resume(struct pci_dev *pdev) 2512 { 2513 struct net_device *netdev = pci_get_drvdata(pdev); 2514 struct igbvf_adapter *adapter = netdev_priv(netdev); 2515 2516 if (netif_running(netdev)) { 2517 if (igbvf_up(adapter)) { 2518 dev_err(&pdev->dev, 2519 "can't bring device back up after reset\n"); 2520 return; 2521 } 2522 } 2523 2524 netif_device_attach(netdev); 2525 } 2526 2527 static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2528 { 2529 struct e1000_hw *hw = &adapter->hw; 2530 struct net_device *netdev = adapter->netdev; 2531 struct pci_dev *pdev = adapter->pdev; 2532 2533 if (hw->mac.type == e1000_vfadapt_i350) 2534 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2535 else 2536 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2537 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2538 } 2539 2540 static int igbvf_set_features(struct net_device *netdev, 2541 netdev_features_t features) 2542 { 2543 struct igbvf_adapter *adapter = netdev_priv(netdev); 2544 2545 if (features & NETIF_F_RXCSUM) 2546 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2547 else 2548 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2549 2550 return 0; 2551 } 2552 2553 static const struct net_device_ops igbvf_netdev_ops = { 2554 .ndo_open = igbvf_open, 2555 .ndo_stop = igbvf_close, 2556 .ndo_start_xmit = igbvf_xmit_frame, 2557 .ndo_get_stats = igbvf_get_stats, 2558 .ndo_set_rx_mode = igbvf_set_multi, 2559 .ndo_set_mac_address = igbvf_set_mac, 2560 .ndo_change_mtu = igbvf_change_mtu, 2561 .ndo_do_ioctl = igbvf_ioctl, 2562 .ndo_tx_timeout = igbvf_tx_timeout, 2563 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2564 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2565 #ifdef CONFIG_NET_POLL_CONTROLLER 2566 .ndo_poll_controller = igbvf_netpoll, 2567 #endif 2568 .ndo_set_features = igbvf_set_features, 2569 }; 2570 2571 /** 2572 * igbvf_probe - Device Initialization Routine 2573 * @pdev: PCI device information struct 2574 * @ent: entry in igbvf_pci_tbl 2575 * 2576 * Returns 0 on success, negative on failure 2577 * 2578 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2579 * The OS initialization, configuring of the adapter private structure, 2580 * and a hardware reset occur. 2581 **/ 2582 static int __devinit igbvf_probe(struct pci_dev *pdev, 2583 const struct pci_device_id *ent) 2584 { 2585 struct net_device *netdev; 2586 struct igbvf_adapter *adapter; 2587 struct e1000_hw *hw; 2588 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2589 2590 static int cards_found; 2591 int err, pci_using_dac; 2592 2593 err = pci_enable_device_mem(pdev); 2594 if (err) 2595 return err; 2596 2597 pci_using_dac = 0; 2598 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 2599 if (!err) { 2600 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 2601 if (!err) 2602 pci_using_dac = 1; 2603 } else { 2604 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2605 if (err) { 2606 err = dma_set_coherent_mask(&pdev->dev, 2607 DMA_BIT_MASK(32)); 2608 if (err) { 2609 dev_err(&pdev->dev, "No usable DMA " 2610 "configuration, aborting\n"); 2611 goto err_dma; 2612 } 2613 } 2614 } 2615 2616 err = pci_request_regions(pdev, igbvf_driver_name); 2617 if (err) 2618 goto err_pci_reg; 2619 2620 pci_set_master(pdev); 2621 2622 err = -ENOMEM; 2623 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2624 if (!netdev) 2625 goto err_alloc_etherdev; 2626 2627 SET_NETDEV_DEV(netdev, &pdev->dev); 2628 2629 pci_set_drvdata(pdev, netdev); 2630 adapter = netdev_priv(netdev); 2631 hw = &adapter->hw; 2632 adapter->netdev = netdev; 2633 adapter->pdev = pdev; 2634 adapter->ei = ei; 2635 adapter->pba = ei->pba; 2636 adapter->flags = ei->flags; 2637 adapter->hw.back = adapter; 2638 adapter->hw.mac.type = ei->mac; 2639 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 2640 2641 /* PCI config space info */ 2642 2643 hw->vendor_id = pdev->vendor; 2644 hw->device_id = pdev->device; 2645 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2646 hw->subsystem_device_id = pdev->subsystem_device; 2647 hw->revision_id = pdev->revision; 2648 2649 err = -EIO; 2650 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2651 pci_resource_len(pdev, 0)); 2652 2653 if (!adapter->hw.hw_addr) 2654 goto err_ioremap; 2655 2656 if (ei->get_variants) { 2657 err = ei->get_variants(adapter); 2658 if (err) 2659 goto err_ioremap; 2660 } 2661 2662 /* setup adapter struct */ 2663 err = igbvf_sw_init(adapter); 2664 if (err) 2665 goto err_sw_init; 2666 2667 /* construct the net_device struct */ 2668 netdev->netdev_ops = &igbvf_netdev_ops; 2669 2670 igbvf_set_ethtool_ops(netdev); 2671 netdev->watchdog_timeo = 5 * HZ; 2672 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2673 2674 adapter->bd_number = cards_found++; 2675 2676 netdev->hw_features = NETIF_F_SG | 2677 NETIF_F_IP_CSUM | 2678 NETIF_F_IPV6_CSUM | 2679 NETIF_F_TSO | 2680 NETIF_F_TSO6 | 2681 NETIF_F_RXCSUM; 2682 2683 netdev->features = netdev->hw_features | 2684 NETIF_F_HW_VLAN_TX | 2685 NETIF_F_HW_VLAN_RX | 2686 NETIF_F_HW_VLAN_FILTER; 2687 2688 if (pci_using_dac) 2689 netdev->features |= NETIF_F_HIGHDMA; 2690 2691 netdev->vlan_features |= NETIF_F_TSO; 2692 netdev->vlan_features |= NETIF_F_TSO6; 2693 netdev->vlan_features |= NETIF_F_IP_CSUM; 2694 netdev->vlan_features |= NETIF_F_IPV6_CSUM; 2695 netdev->vlan_features |= NETIF_F_SG; 2696 2697 /*reset the controller to put the device in a known good state */ 2698 err = hw->mac.ops.reset_hw(hw); 2699 if (err) { 2700 dev_info(&pdev->dev, 2701 "PF still in reset state, assigning new address." 2702 " Is the PF interface up?\n"); 2703 dev_hw_addr_random(adapter->netdev, hw->mac.addr); 2704 } else { 2705 err = hw->mac.ops.read_mac_addr(hw); 2706 if (err) { 2707 dev_err(&pdev->dev, "Error reading MAC address\n"); 2708 goto err_hw_init; 2709 } 2710 } 2711 2712 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 2713 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 2714 2715 if (!is_valid_ether_addr(netdev->perm_addr)) { 2716 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 2717 netdev->dev_addr); 2718 err = -EIO; 2719 goto err_hw_init; 2720 } 2721 2722 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog, 2723 (unsigned long) adapter); 2724 2725 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2726 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2727 2728 /* ring size defaults */ 2729 adapter->rx_ring->count = 1024; 2730 adapter->tx_ring->count = 1024; 2731 2732 /* reset the hardware with the new settings */ 2733 igbvf_reset(adapter); 2734 2735 strcpy(netdev->name, "eth%d"); 2736 err = register_netdev(netdev); 2737 if (err) 2738 goto err_hw_init; 2739 2740 /* tell the stack to leave us alone until igbvf_open() is called */ 2741 netif_carrier_off(netdev); 2742 netif_stop_queue(netdev); 2743 2744 igbvf_print_device_info(adapter); 2745 2746 igbvf_initialize_last_counter_stats(adapter); 2747 2748 return 0; 2749 2750 err_hw_init: 2751 kfree(adapter->tx_ring); 2752 kfree(adapter->rx_ring); 2753 err_sw_init: 2754 igbvf_reset_interrupt_capability(adapter); 2755 iounmap(adapter->hw.hw_addr); 2756 err_ioremap: 2757 free_netdev(netdev); 2758 err_alloc_etherdev: 2759 pci_release_regions(pdev); 2760 err_pci_reg: 2761 err_dma: 2762 pci_disable_device(pdev); 2763 return err; 2764 } 2765 2766 /** 2767 * igbvf_remove - Device Removal Routine 2768 * @pdev: PCI device information struct 2769 * 2770 * igbvf_remove is called by the PCI subsystem to alert the driver 2771 * that it should release a PCI device. The could be caused by a 2772 * Hot-Plug event, or because the driver is going to be removed from 2773 * memory. 2774 **/ 2775 static void __devexit igbvf_remove(struct pci_dev *pdev) 2776 { 2777 struct net_device *netdev = pci_get_drvdata(pdev); 2778 struct igbvf_adapter *adapter = netdev_priv(netdev); 2779 struct e1000_hw *hw = &adapter->hw; 2780 2781 /* 2782 * The watchdog timer may be rescheduled, so explicitly 2783 * disable it from being rescheduled. 2784 */ 2785 set_bit(__IGBVF_DOWN, &adapter->state); 2786 del_timer_sync(&adapter->watchdog_timer); 2787 2788 cancel_work_sync(&adapter->reset_task); 2789 cancel_work_sync(&adapter->watchdog_task); 2790 2791 unregister_netdev(netdev); 2792 2793 igbvf_reset_interrupt_capability(adapter); 2794 2795 /* 2796 * it is important to delete the napi struct prior to freeing the 2797 * rx ring so that you do not end up with null pointer refs 2798 */ 2799 netif_napi_del(&adapter->rx_ring->napi); 2800 kfree(adapter->tx_ring); 2801 kfree(adapter->rx_ring); 2802 2803 iounmap(hw->hw_addr); 2804 if (hw->flash_address) 2805 iounmap(hw->flash_address); 2806 pci_release_regions(pdev); 2807 2808 free_netdev(netdev); 2809 2810 pci_disable_device(pdev); 2811 } 2812 2813 /* PCI Error Recovery (ERS) */ 2814 static struct pci_error_handlers igbvf_err_handler = { 2815 .error_detected = igbvf_io_error_detected, 2816 .slot_reset = igbvf_io_slot_reset, 2817 .resume = igbvf_io_resume, 2818 }; 2819 2820 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = { 2821 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2822 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2823 { } /* terminate list */ 2824 }; 2825 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2826 2827 /* PCI Device API Driver */ 2828 static struct pci_driver igbvf_driver = { 2829 .name = igbvf_driver_name, 2830 .id_table = igbvf_pci_tbl, 2831 .probe = igbvf_probe, 2832 .remove = __devexit_p(igbvf_remove), 2833 #ifdef CONFIG_PM 2834 /* Power Management Hooks */ 2835 .suspend = igbvf_suspend, 2836 .resume = igbvf_resume, 2837 #endif 2838 .shutdown = igbvf_shutdown, 2839 .err_handler = &igbvf_err_handler 2840 }; 2841 2842 /** 2843 * igbvf_init_module - Driver Registration Routine 2844 * 2845 * igbvf_init_module is the first routine called when the driver is 2846 * loaded. All it does is register with the PCI subsystem. 2847 **/ 2848 static int __init igbvf_init_module(void) 2849 { 2850 int ret; 2851 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version); 2852 pr_info("%s\n", igbvf_copyright); 2853 2854 ret = pci_register_driver(&igbvf_driver); 2855 2856 return ret; 2857 } 2858 module_init(igbvf_init_module); 2859 2860 /** 2861 * igbvf_exit_module - Driver Exit Cleanup Routine 2862 * 2863 * igbvf_exit_module is called just before the driver is removed 2864 * from memory. 2865 **/ 2866 static void __exit igbvf_exit_module(void) 2867 { 2868 pci_unregister_driver(&igbvf_driver); 2869 } 2870 module_exit(igbvf_exit_module); 2871 2872 2873 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 2874 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 2875 MODULE_LICENSE("GPL"); 2876 MODULE_VERSION(DRV_VERSION); 2877 2878 /* netdev.c */ 2879