xref: /linux/drivers/net/ethernet/intel/igbvf/netdev.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/ethtool.h>
9 #include <linux/if_vlan.h>
10 #include <linux/init.h>
11 #include <linux/ipv6.h>
12 #include <linux/mii.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/prefetch.h>
18 #include <linux/sctp.h>
19 #include <linux/slab.h>
20 #include <linux/tcp.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include "igbvf.h"
26 
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 		  "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42 
43 static struct igbvf_info igbvf_vf_info = {
44 	.mac		= e1000_vfadapt,
45 	.flags		= 0,
46 	.pba		= 10,
47 	.init_ops	= e1000_init_function_pointers_vf,
48 };
49 
50 static struct igbvf_info igbvf_i350_vf_info = {
51 	.mac		= e1000_vfadapt_i350,
52 	.flags		= 0,
53 	.pba		= 10,
54 	.init_ops	= e1000_init_function_pointers_vf,
55 };
56 
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 	[board_vf]	= &igbvf_vf_info,
59 	[board_i350_vf]	= &igbvf_i350_vf_info,
60 };
61 
62 /**
63  * igbvf_desc_unused - calculate if we have unused descriptors
64  * @ring: address of receive ring structure
65  **/
66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 	if (ring->next_to_clean > ring->next_to_use)
69 		return ring->next_to_clean - ring->next_to_use - 1;
70 
71 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73 
74 /**
75  * igbvf_receive_skb - helper function to handle Rx indications
76  * @adapter: board private structure
77  * @netdev: pointer to netdev struct
78  * @skb: skb to indicate to stack
79  * @status: descriptor status field as written by hardware
80  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81  * @skb: pointer to sk_buff to be indicated to stack
82  **/
83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 			      struct net_device *netdev,
85 			      struct sk_buff *skb,
86 			      u32 status, __le16 vlan)
87 {
88 	u16 vid;
89 
90 	if (status & E1000_RXD_STAT_VP) {
91 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 		    (status & E1000_RXDEXT_STATERR_LB))
93 			vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 		else
95 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 		if (test_bit(vid, adapter->active_vlans))
97 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 	}
99 
100 	napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102 
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 					 u32 status_err, struct sk_buff *skb)
105 {
106 	skb_checksum_none_assert(skb);
107 
108 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 	if ((status_err & E1000_RXD_STAT_IXSM) ||
110 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 		return;
112 
113 	/* TCP/UDP checksum error bit is set */
114 	if (status_err &
115 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 		/* let the stack verify checksum errors */
117 		adapter->hw_csum_err++;
118 		return;
119 	}
120 
121 	/* It must be a TCP or UDP packet with a valid checksum */
122 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 		skb->ip_summed = CHECKSUM_UNNECESSARY;
124 
125 	adapter->hw_csum_good++;
126 }
127 
128 /**
129  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130  * @rx_ring: address of ring structure to repopulate
131  * @cleaned_count: number of buffers to repopulate
132  **/
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 				   int cleaned_count)
135 {
136 	struct igbvf_adapter *adapter = rx_ring->adapter;
137 	struct net_device *netdev = adapter->netdev;
138 	struct pci_dev *pdev = adapter->pdev;
139 	union e1000_adv_rx_desc *rx_desc;
140 	struct igbvf_buffer *buffer_info;
141 	struct sk_buff *skb;
142 	unsigned int i;
143 	int bufsz;
144 
145 	i = rx_ring->next_to_use;
146 	buffer_info = &rx_ring->buffer_info[i];
147 
148 	if (adapter->rx_ps_hdr_size)
149 		bufsz = adapter->rx_ps_hdr_size;
150 	else
151 		bufsz = adapter->rx_buffer_len;
152 
153 	while (cleaned_count--) {
154 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155 
156 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 			if (!buffer_info->page) {
158 				buffer_info->page = alloc_page(GFP_ATOMIC);
159 				if (!buffer_info->page) {
160 					adapter->alloc_rx_buff_failed++;
161 					goto no_buffers;
162 				}
163 				buffer_info->page_offset = 0;
164 			} else {
165 				buffer_info->page_offset ^= PAGE_SIZE / 2;
166 			}
167 			buffer_info->page_dma =
168 				dma_map_page(&pdev->dev, buffer_info->page,
169 					     buffer_info->page_offset,
170 					     PAGE_SIZE / 2,
171 					     DMA_FROM_DEVICE);
172 			if (dma_mapping_error(&pdev->dev,
173 					      buffer_info->page_dma)) {
174 				__free_page(buffer_info->page);
175 				buffer_info->page = NULL;
176 				dev_err(&pdev->dev, "RX DMA map failed\n");
177 				break;
178 			}
179 		}
180 
181 		if (!buffer_info->skb) {
182 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 			if (!skb) {
184 				adapter->alloc_rx_buff_failed++;
185 				goto no_buffers;
186 			}
187 
188 			buffer_info->skb = skb;
189 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 							  bufsz,
191 							  DMA_FROM_DEVICE);
192 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 				dev_kfree_skb(buffer_info->skb);
194 				buffer_info->skb = NULL;
195 				dev_err(&pdev->dev, "RX DMA map failed\n");
196 				goto no_buffers;
197 			}
198 		}
199 		/* Refresh the desc even if buffer_addrs didn't change because
200 		 * each write-back erases this info.
201 		 */
202 		if (adapter->rx_ps_hdr_size) {
203 			rx_desc->read.pkt_addr =
204 			     cpu_to_le64(buffer_info->page_dma);
205 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 		} else {
207 			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 			rx_desc->read.hdr_addr = 0;
209 		}
210 
211 		i++;
212 		if (i == rx_ring->count)
213 			i = 0;
214 		buffer_info = &rx_ring->buffer_info[i];
215 	}
216 
217 no_buffers:
218 	if (rx_ring->next_to_use != i) {
219 		rx_ring->next_to_use = i;
220 		if (i == 0)
221 			i = (rx_ring->count - 1);
222 		else
223 			i--;
224 
225 		/* Force memory writes to complete before letting h/w
226 		 * know there are new descriptors to fetch.  (Only
227 		 * applicable for weak-ordered memory model archs,
228 		 * such as IA-64).
229 		*/
230 		wmb();
231 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 	}
233 }
234 
235 /**
236  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237  * @adapter: board private structure
238  * @work_done: output parameter used to indicate completed work
239  * @work_to_do: input parameter setting limit of work
240  *
241  * the return value indicates whether actual cleaning was done, there
242  * is no guarantee that everything was cleaned
243  **/
244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 			       int *work_done, int work_to_do)
246 {
247 	struct igbvf_ring *rx_ring = adapter->rx_ring;
248 	struct net_device *netdev = adapter->netdev;
249 	struct pci_dev *pdev = adapter->pdev;
250 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 	struct igbvf_buffer *buffer_info, *next_buffer;
252 	struct sk_buff *skb;
253 	bool cleaned = false;
254 	int cleaned_count = 0;
255 	unsigned int total_bytes = 0, total_packets = 0;
256 	unsigned int i;
257 	u32 length, hlen, staterr;
258 
259 	i = rx_ring->next_to_clean;
260 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262 
263 	while (staterr & E1000_RXD_STAT_DD) {
264 		if (*work_done >= work_to_do)
265 			break;
266 		(*work_done)++;
267 		rmb(); /* read descriptor and rx_buffer_info after status DD */
268 
269 		buffer_info = &rx_ring->buffer_info[i];
270 
271 		/* HW will not DMA in data larger than the given buffer, even
272 		 * if it parses the (NFS, of course) header to be larger.  In
273 		 * that case, it fills the header buffer and spills the rest
274 		 * into the page.
275 		 */
276 		hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info,
277 				     E1000_RXDADV_HDRBUFLEN_MASK);
278 		if (hlen > adapter->rx_ps_hdr_size)
279 			hlen = adapter->rx_ps_hdr_size;
280 
281 		length = le16_to_cpu(rx_desc->wb.upper.length);
282 		cleaned = true;
283 		cleaned_count++;
284 
285 		skb = buffer_info->skb;
286 		prefetch(skb->data - NET_IP_ALIGN);
287 		buffer_info->skb = NULL;
288 		if (!adapter->rx_ps_hdr_size) {
289 			dma_unmap_single(&pdev->dev, buffer_info->dma,
290 					 adapter->rx_buffer_len,
291 					 DMA_FROM_DEVICE);
292 			buffer_info->dma = 0;
293 			skb_put(skb, length);
294 			goto send_up;
295 		}
296 
297 		if (!skb_shinfo(skb)->nr_frags) {
298 			dma_unmap_single(&pdev->dev, buffer_info->dma,
299 					 adapter->rx_ps_hdr_size,
300 					 DMA_FROM_DEVICE);
301 			buffer_info->dma = 0;
302 			skb_put(skb, hlen);
303 		}
304 
305 		if (length) {
306 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
307 				       PAGE_SIZE / 2,
308 				       DMA_FROM_DEVICE);
309 			buffer_info->page_dma = 0;
310 
311 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
312 					   buffer_info->page,
313 					   buffer_info->page_offset,
314 					   length);
315 
316 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
317 			    (page_count(buffer_info->page) != 1))
318 				buffer_info->page = NULL;
319 			else
320 				get_page(buffer_info->page);
321 
322 			skb->len += length;
323 			skb->data_len += length;
324 			skb->truesize += PAGE_SIZE / 2;
325 		}
326 send_up:
327 		i++;
328 		if (i == rx_ring->count)
329 			i = 0;
330 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
331 		prefetch(next_rxd);
332 		next_buffer = &rx_ring->buffer_info[i];
333 
334 		if (!(staterr & E1000_RXD_STAT_EOP)) {
335 			buffer_info->skb = next_buffer->skb;
336 			buffer_info->dma = next_buffer->dma;
337 			next_buffer->skb = skb;
338 			next_buffer->dma = 0;
339 			goto next_desc;
340 		}
341 
342 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
343 			dev_kfree_skb_irq(skb);
344 			goto next_desc;
345 		}
346 
347 		total_bytes += skb->len;
348 		total_packets++;
349 
350 		igbvf_rx_checksum_adv(adapter, staterr, skb);
351 
352 		skb->protocol = eth_type_trans(skb, netdev);
353 
354 		igbvf_receive_skb(adapter, netdev, skb, staterr,
355 				  rx_desc->wb.upper.vlan);
356 
357 next_desc:
358 		rx_desc->wb.upper.status_error = 0;
359 
360 		/* return some buffers to hardware, one at a time is too slow */
361 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
362 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
363 			cleaned_count = 0;
364 		}
365 
366 		/* use prefetched values */
367 		rx_desc = next_rxd;
368 		buffer_info = next_buffer;
369 
370 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
371 	}
372 
373 	rx_ring->next_to_clean = i;
374 	cleaned_count = igbvf_desc_unused(rx_ring);
375 
376 	if (cleaned_count)
377 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
378 
379 	adapter->total_rx_packets += total_packets;
380 	adapter->total_rx_bytes += total_bytes;
381 	netdev->stats.rx_bytes += total_bytes;
382 	netdev->stats.rx_packets += total_packets;
383 	return cleaned;
384 }
385 
386 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
387 			    struct igbvf_buffer *buffer_info)
388 {
389 	if (buffer_info->dma) {
390 		if (buffer_info->mapped_as_page)
391 			dma_unmap_page(&adapter->pdev->dev,
392 				       buffer_info->dma,
393 				       buffer_info->length,
394 				       DMA_TO_DEVICE);
395 		else
396 			dma_unmap_single(&adapter->pdev->dev,
397 					 buffer_info->dma,
398 					 buffer_info->length,
399 					 DMA_TO_DEVICE);
400 		buffer_info->dma = 0;
401 	}
402 	if (buffer_info->skb) {
403 		dev_kfree_skb_any(buffer_info->skb);
404 		buffer_info->skb = NULL;
405 	}
406 	buffer_info->time_stamp = 0;
407 }
408 
409 /**
410  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
411  * @adapter: board private structure
412  * @tx_ring: ring being initialized
413  *
414  * Return 0 on success, negative on failure
415  **/
416 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
417 			     struct igbvf_ring *tx_ring)
418 {
419 	struct pci_dev *pdev = adapter->pdev;
420 	int size;
421 
422 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
423 	tx_ring->buffer_info = vzalloc(size);
424 	if (!tx_ring->buffer_info)
425 		goto err;
426 
427 	/* round up to nearest 4K */
428 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
429 	tx_ring->size = ALIGN(tx_ring->size, 4096);
430 
431 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
432 					   &tx_ring->dma, GFP_KERNEL);
433 	if (!tx_ring->desc)
434 		goto err;
435 
436 	tx_ring->adapter = adapter;
437 	tx_ring->next_to_use = 0;
438 	tx_ring->next_to_clean = 0;
439 
440 	return 0;
441 err:
442 	vfree(tx_ring->buffer_info);
443 	dev_err(&adapter->pdev->dev,
444 		"Unable to allocate memory for the transmit descriptor ring\n");
445 	return -ENOMEM;
446 }
447 
448 /**
449  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
450  * @adapter: board private structure
451  * @rx_ring: ring being initialized
452  *
453  * Returns 0 on success, negative on failure
454  **/
455 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
456 			     struct igbvf_ring *rx_ring)
457 {
458 	struct pci_dev *pdev = adapter->pdev;
459 	int size, desc_len;
460 
461 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
462 	rx_ring->buffer_info = vzalloc(size);
463 	if (!rx_ring->buffer_info)
464 		goto err;
465 
466 	desc_len = sizeof(union e1000_adv_rx_desc);
467 
468 	/* Round up to nearest 4K */
469 	rx_ring->size = rx_ring->count * desc_len;
470 	rx_ring->size = ALIGN(rx_ring->size, 4096);
471 
472 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
473 					   &rx_ring->dma, GFP_KERNEL);
474 	if (!rx_ring->desc)
475 		goto err;
476 
477 	rx_ring->next_to_clean = 0;
478 	rx_ring->next_to_use = 0;
479 
480 	rx_ring->adapter = adapter;
481 
482 	return 0;
483 
484 err:
485 	vfree(rx_ring->buffer_info);
486 	rx_ring->buffer_info = NULL;
487 	dev_err(&adapter->pdev->dev,
488 		"Unable to allocate memory for the receive descriptor ring\n");
489 	return -ENOMEM;
490 }
491 
492 /**
493  * igbvf_clean_tx_ring - Free Tx Buffers
494  * @tx_ring: ring to be cleaned
495  **/
496 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
497 {
498 	struct igbvf_adapter *adapter = tx_ring->adapter;
499 	struct igbvf_buffer *buffer_info;
500 	unsigned long size;
501 	unsigned int i;
502 
503 	if (!tx_ring->buffer_info)
504 		return;
505 
506 	/* Free all the Tx ring sk_buffs */
507 	for (i = 0; i < tx_ring->count; i++) {
508 		buffer_info = &tx_ring->buffer_info[i];
509 		igbvf_put_txbuf(adapter, buffer_info);
510 	}
511 
512 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
513 	memset(tx_ring->buffer_info, 0, size);
514 
515 	/* Zero out the descriptor ring */
516 	memset(tx_ring->desc, 0, tx_ring->size);
517 
518 	tx_ring->next_to_use = 0;
519 	tx_ring->next_to_clean = 0;
520 
521 	writel(0, adapter->hw.hw_addr + tx_ring->head);
522 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
523 }
524 
525 /**
526  * igbvf_free_tx_resources - Free Tx Resources per Queue
527  * @tx_ring: ring to free resources from
528  *
529  * Free all transmit software resources
530  **/
531 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
532 {
533 	struct pci_dev *pdev = tx_ring->adapter->pdev;
534 
535 	igbvf_clean_tx_ring(tx_ring);
536 
537 	vfree(tx_ring->buffer_info);
538 	tx_ring->buffer_info = NULL;
539 
540 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
541 			  tx_ring->dma);
542 
543 	tx_ring->desc = NULL;
544 }
545 
546 /**
547  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
548  * @rx_ring: ring structure pointer to free buffers from
549  **/
550 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
551 {
552 	struct igbvf_adapter *adapter = rx_ring->adapter;
553 	struct igbvf_buffer *buffer_info;
554 	struct pci_dev *pdev = adapter->pdev;
555 	unsigned long size;
556 	unsigned int i;
557 
558 	if (!rx_ring->buffer_info)
559 		return;
560 
561 	/* Free all the Rx ring sk_buffs */
562 	for (i = 0; i < rx_ring->count; i++) {
563 		buffer_info = &rx_ring->buffer_info[i];
564 		if (buffer_info->dma) {
565 			if (adapter->rx_ps_hdr_size) {
566 				dma_unmap_single(&pdev->dev, buffer_info->dma,
567 						 adapter->rx_ps_hdr_size,
568 						 DMA_FROM_DEVICE);
569 			} else {
570 				dma_unmap_single(&pdev->dev, buffer_info->dma,
571 						 adapter->rx_buffer_len,
572 						 DMA_FROM_DEVICE);
573 			}
574 			buffer_info->dma = 0;
575 		}
576 
577 		if (buffer_info->skb) {
578 			dev_kfree_skb(buffer_info->skb);
579 			buffer_info->skb = NULL;
580 		}
581 
582 		if (buffer_info->page) {
583 			if (buffer_info->page_dma)
584 				dma_unmap_page(&pdev->dev,
585 					       buffer_info->page_dma,
586 					       PAGE_SIZE / 2,
587 					       DMA_FROM_DEVICE);
588 			put_page(buffer_info->page);
589 			buffer_info->page = NULL;
590 			buffer_info->page_dma = 0;
591 			buffer_info->page_offset = 0;
592 		}
593 	}
594 
595 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
596 	memset(rx_ring->buffer_info, 0, size);
597 
598 	/* Zero out the descriptor ring */
599 	memset(rx_ring->desc, 0, rx_ring->size);
600 
601 	rx_ring->next_to_clean = 0;
602 	rx_ring->next_to_use = 0;
603 
604 	writel(0, adapter->hw.hw_addr + rx_ring->head);
605 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
606 }
607 
608 /**
609  * igbvf_free_rx_resources - Free Rx Resources
610  * @rx_ring: ring to clean the resources from
611  *
612  * Free all receive software resources
613  **/
614 
615 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
616 {
617 	struct pci_dev *pdev = rx_ring->adapter->pdev;
618 
619 	igbvf_clean_rx_ring(rx_ring);
620 
621 	vfree(rx_ring->buffer_info);
622 	rx_ring->buffer_info = NULL;
623 
624 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
625 			  rx_ring->dma);
626 	rx_ring->desc = NULL;
627 }
628 
629 /**
630  * igbvf_update_itr - update the dynamic ITR value based on statistics
631  * @adapter: pointer to adapter
632  * @itr_setting: current adapter->itr
633  * @packets: the number of packets during this measurement interval
634  * @bytes: the number of bytes during this measurement interval
635  *
636  * Stores a new ITR value based on packets and byte counts during the last
637  * interrupt.  The advantage of per interrupt computation is faster updates
638  * and more accurate ITR for the current traffic pattern.  Constants in this
639  * function were computed based on theoretical maximum wire speed and thresholds
640  * were set based on testing data as well as attempting to minimize response
641  * time while increasing bulk throughput.
642  **/
643 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
644 					   enum latency_range itr_setting,
645 					   int packets, int bytes)
646 {
647 	enum latency_range retval = itr_setting;
648 
649 	if (packets == 0)
650 		goto update_itr_done;
651 
652 	switch (itr_setting) {
653 	case lowest_latency:
654 		/* handle TSO and jumbo frames */
655 		if (bytes/packets > 8000)
656 			retval = bulk_latency;
657 		else if ((packets < 5) && (bytes > 512))
658 			retval = low_latency;
659 		break;
660 	case low_latency:  /* 50 usec aka 20000 ints/s */
661 		if (bytes > 10000) {
662 			/* this if handles the TSO accounting */
663 			if (bytes/packets > 8000)
664 				retval = bulk_latency;
665 			else if ((packets < 10) || ((bytes/packets) > 1200))
666 				retval = bulk_latency;
667 			else if ((packets > 35))
668 				retval = lowest_latency;
669 		} else if (bytes/packets > 2000) {
670 			retval = bulk_latency;
671 		} else if (packets <= 2 && bytes < 512) {
672 			retval = lowest_latency;
673 		}
674 		break;
675 	case bulk_latency: /* 250 usec aka 4000 ints/s */
676 		if (bytes > 25000) {
677 			if (packets > 35)
678 				retval = low_latency;
679 		} else if (bytes < 6000) {
680 			retval = low_latency;
681 		}
682 		break;
683 	default:
684 		break;
685 	}
686 
687 update_itr_done:
688 	return retval;
689 }
690 
691 static int igbvf_range_to_itr(enum latency_range current_range)
692 {
693 	int new_itr;
694 
695 	switch (current_range) {
696 	/* counts and packets in update_itr are dependent on these numbers */
697 	case lowest_latency:
698 		new_itr = IGBVF_70K_ITR;
699 		break;
700 	case low_latency:
701 		new_itr = IGBVF_20K_ITR;
702 		break;
703 	case bulk_latency:
704 		new_itr = IGBVF_4K_ITR;
705 		break;
706 	default:
707 		new_itr = IGBVF_START_ITR;
708 		break;
709 	}
710 	return new_itr;
711 }
712 
713 static void igbvf_set_itr(struct igbvf_adapter *adapter)
714 {
715 	u32 new_itr;
716 
717 	adapter->tx_ring->itr_range =
718 			igbvf_update_itr(adapter,
719 					 adapter->tx_ring->itr_val,
720 					 adapter->total_tx_packets,
721 					 adapter->total_tx_bytes);
722 
723 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
724 	if (adapter->requested_itr == 3 &&
725 	    adapter->tx_ring->itr_range == lowest_latency)
726 		adapter->tx_ring->itr_range = low_latency;
727 
728 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
729 
730 	if (new_itr != adapter->tx_ring->itr_val) {
731 		u32 current_itr = adapter->tx_ring->itr_val;
732 		/* this attempts to bias the interrupt rate towards Bulk
733 		 * by adding intermediate steps when interrupt rate is
734 		 * increasing
735 		 */
736 		new_itr = new_itr > current_itr ?
737 			  min(current_itr + (new_itr >> 2), new_itr) :
738 			  new_itr;
739 		adapter->tx_ring->itr_val = new_itr;
740 
741 		adapter->tx_ring->set_itr = 1;
742 	}
743 
744 	adapter->rx_ring->itr_range =
745 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
746 					 adapter->total_rx_packets,
747 					 adapter->total_rx_bytes);
748 	if (adapter->requested_itr == 3 &&
749 	    adapter->rx_ring->itr_range == lowest_latency)
750 		adapter->rx_ring->itr_range = low_latency;
751 
752 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
753 
754 	if (new_itr != adapter->rx_ring->itr_val) {
755 		u32 current_itr = adapter->rx_ring->itr_val;
756 
757 		new_itr = new_itr > current_itr ?
758 			  min(current_itr + (new_itr >> 2), new_itr) :
759 			  new_itr;
760 		adapter->rx_ring->itr_val = new_itr;
761 
762 		adapter->rx_ring->set_itr = 1;
763 	}
764 }
765 
766 /**
767  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768  * @tx_ring: ring structure to clean descriptors from
769  *
770  * returns true if ring is completely cleaned
771  **/
772 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
773 {
774 	struct igbvf_adapter *adapter = tx_ring->adapter;
775 	struct net_device *netdev = adapter->netdev;
776 	struct igbvf_buffer *buffer_info;
777 	struct sk_buff *skb;
778 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
779 	unsigned int total_bytes = 0, total_packets = 0;
780 	unsigned int i, count = 0;
781 	bool cleaned = false;
782 
783 	i = tx_ring->next_to_clean;
784 	buffer_info = &tx_ring->buffer_info[i];
785 	eop_desc = buffer_info->next_to_watch;
786 
787 	do {
788 		/* if next_to_watch is not set then there is no work pending */
789 		if (!eop_desc)
790 			break;
791 
792 		/* prevent any other reads prior to eop_desc */
793 		smp_rmb();
794 
795 		/* if DD is not set pending work has not been completed */
796 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
797 			break;
798 
799 		/* clear next_to_watch to prevent false hangs */
800 		buffer_info->next_to_watch = NULL;
801 
802 		for (cleaned = false; !cleaned; count++) {
803 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
804 			cleaned = (tx_desc == eop_desc);
805 			skb = buffer_info->skb;
806 
807 			if (skb) {
808 				unsigned int segs, bytecount;
809 
810 				/* gso_segs is currently only valid for tcp */
811 				segs = skb_shinfo(skb)->gso_segs ?: 1;
812 				/* multiply data chunks by size of headers */
813 				bytecount = ((segs - 1) * skb_headlen(skb)) +
814 					    skb->len;
815 				total_packets += segs;
816 				total_bytes += bytecount;
817 			}
818 
819 			igbvf_put_txbuf(adapter, buffer_info);
820 			tx_desc->wb.status = 0;
821 
822 			i++;
823 			if (i == tx_ring->count)
824 				i = 0;
825 
826 			buffer_info = &tx_ring->buffer_info[i];
827 		}
828 
829 		eop_desc = buffer_info->next_to_watch;
830 	} while (count < tx_ring->count);
831 
832 	tx_ring->next_to_clean = i;
833 
834 	if (unlikely(count && netif_carrier_ok(netdev) &&
835 	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
836 		/* Make sure that anybody stopping the queue after this
837 		 * sees the new next_to_clean.
838 		 */
839 		smp_mb();
840 		if (netif_queue_stopped(netdev) &&
841 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
842 			netif_wake_queue(netdev);
843 			++adapter->restart_queue;
844 		}
845 	}
846 
847 	netdev->stats.tx_bytes += total_bytes;
848 	netdev->stats.tx_packets += total_packets;
849 	return count < tx_ring->count;
850 }
851 
852 static irqreturn_t igbvf_msix_other(int irq, void *data)
853 {
854 	struct net_device *netdev = data;
855 	struct igbvf_adapter *adapter = netdev_priv(netdev);
856 	struct e1000_hw *hw = &adapter->hw;
857 
858 	hw->mac.get_link_status = 1;
859 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
860 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
861 
862 	ew32(EIMS, adapter->eims_other);
863 
864 	return IRQ_HANDLED;
865 }
866 
867 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
868 {
869 	struct net_device *netdev = data;
870 	struct igbvf_adapter *adapter = netdev_priv(netdev);
871 	struct e1000_hw *hw = &adapter->hw;
872 	struct igbvf_ring *tx_ring = adapter->tx_ring;
873 
874 	if (tx_ring->set_itr) {
875 		writel(tx_ring->itr_val,
876 		       adapter->hw.hw_addr + tx_ring->itr_register);
877 		adapter->tx_ring->set_itr = 0;
878 	}
879 
880 	adapter->total_tx_bytes = 0;
881 	adapter->total_tx_packets = 0;
882 
883 	/* auto mask will automatically re-enable the interrupt when we write
884 	 * EICS
885 	 */
886 	if (!igbvf_clean_tx_irq(tx_ring))
887 		/* Ring was not completely cleaned, so fire another interrupt */
888 		ew32(EICS, tx_ring->eims_value);
889 	else
890 		ew32(EIMS, tx_ring->eims_value);
891 
892 	return IRQ_HANDLED;
893 }
894 
895 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
896 {
897 	struct net_device *netdev = data;
898 	struct igbvf_adapter *adapter = netdev_priv(netdev);
899 
900 	/* Write the ITR value calculated at the end of the
901 	 * previous interrupt.
902 	 */
903 	if (adapter->rx_ring->set_itr) {
904 		writel(adapter->rx_ring->itr_val,
905 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
906 		adapter->rx_ring->set_itr = 0;
907 	}
908 
909 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
910 		adapter->total_rx_bytes = 0;
911 		adapter->total_rx_packets = 0;
912 		__napi_schedule(&adapter->rx_ring->napi);
913 	}
914 
915 	return IRQ_HANDLED;
916 }
917 
918 #define IGBVF_NO_QUEUE -1
919 
920 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
921 				int tx_queue, int msix_vector)
922 {
923 	struct e1000_hw *hw = &adapter->hw;
924 	u32 ivar, index;
925 
926 	/* 82576 uses a table-based method for assigning vectors.
927 	 * Each queue has a single entry in the table to which we write
928 	 * a vector number along with a "valid" bit.  Sadly, the layout
929 	 * of the table is somewhat counterintuitive.
930 	 */
931 	if (rx_queue > IGBVF_NO_QUEUE) {
932 		index = (rx_queue >> 1);
933 		ivar = array_er32(IVAR0, index);
934 		if (rx_queue & 0x1) {
935 			/* vector goes into third byte of register */
936 			ivar = ivar & 0xFF00FFFF;
937 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
938 		} else {
939 			/* vector goes into low byte of register */
940 			ivar = ivar & 0xFFFFFF00;
941 			ivar |= msix_vector | E1000_IVAR_VALID;
942 		}
943 		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
944 		array_ew32(IVAR0, index, ivar);
945 	}
946 	if (tx_queue > IGBVF_NO_QUEUE) {
947 		index = (tx_queue >> 1);
948 		ivar = array_er32(IVAR0, index);
949 		if (tx_queue & 0x1) {
950 			/* vector goes into high byte of register */
951 			ivar = ivar & 0x00FFFFFF;
952 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
953 		} else {
954 			/* vector goes into second byte of register */
955 			ivar = ivar & 0xFFFF00FF;
956 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
957 		}
958 		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
959 		array_ew32(IVAR0, index, ivar);
960 	}
961 }
962 
963 /**
964  * igbvf_configure_msix - Configure MSI-X hardware
965  * @adapter: board private structure
966  *
967  * igbvf_configure_msix sets up the hardware to properly
968  * generate MSI-X interrupts.
969  **/
970 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
971 {
972 	u32 tmp;
973 	struct e1000_hw *hw = &adapter->hw;
974 	struct igbvf_ring *tx_ring = adapter->tx_ring;
975 	struct igbvf_ring *rx_ring = adapter->rx_ring;
976 	int vector = 0;
977 
978 	adapter->eims_enable_mask = 0;
979 
980 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
981 	adapter->eims_enable_mask |= tx_ring->eims_value;
982 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
983 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
984 	adapter->eims_enable_mask |= rx_ring->eims_value;
985 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
986 
987 	/* set vector for other causes, i.e. link changes */
988 
989 	tmp = (vector++ | E1000_IVAR_VALID);
990 
991 	ew32(IVAR_MISC, tmp);
992 
993 	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
994 	adapter->eims_other = BIT(vector - 1);
995 	e1e_flush();
996 }
997 
998 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
999 {
1000 	if (adapter->msix_entries) {
1001 		pci_disable_msix(adapter->pdev);
1002 		kfree(adapter->msix_entries);
1003 		adapter->msix_entries = NULL;
1004 	}
1005 }
1006 
1007 /**
1008  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1009  * @adapter: board private structure
1010  *
1011  * Attempt to configure interrupts using the best available
1012  * capabilities of the hardware and kernel.
1013  **/
1014 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1015 {
1016 	int err = -ENOMEM;
1017 	int i;
1018 
1019 	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1020 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1021 					GFP_KERNEL);
1022 	if (adapter->msix_entries) {
1023 		for (i = 0; i < 3; i++)
1024 			adapter->msix_entries[i].entry = i;
1025 
1026 		err = pci_enable_msix_range(adapter->pdev,
1027 					    adapter->msix_entries, 3, 3);
1028 	}
1029 
1030 	if (err < 0) {
1031 		/* MSI-X failed */
1032 		dev_err(&adapter->pdev->dev,
1033 			"Failed to initialize MSI-X interrupts.\n");
1034 		igbvf_reset_interrupt_capability(adapter);
1035 	}
1036 }
1037 
1038 /**
1039  * igbvf_request_msix - Initialize MSI-X interrupts
1040  * @adapter: board private structure
1041  *
1042  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1043  * kernel.
1044  **/
1045 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1046 {
1047 	struct net_device *netdev = adapter->netdev;
1048 	int err = 0, vector = 0;
1049 
1050 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1051 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1052 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1053 	} else {
1054 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1055 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1056 	}
1057 
1058 	err = request_irq(adapter->msix_entries[vector].vector,
1059 			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1060 			  netdev);
1061 	if (err)
1062 		goto out;
1063 
1064 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1065 	adapter->tx_ring->itr_val = adapter->current_itr;
1066 	vector++;
1067 
1068 	err = request_irq(adapter->msix_entries[vector].vector,
1069 			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1070 			  netdev);
1071 	if (err)
1072 		goto free_irq_tx;
1073 
1074 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1075 	adapter->rx_ring->itr_val = adapter->current_itr;
1076 	vector++;
1077 
1078 	err = request_irq(adapter->msix_entries[vector].vector,
1079 			  igbvf_msix_other, 0, netdev->name, netdev);
1080 	if (err)
1081 		goto free_irq_rx;
1082 
1083 	igbvf_configure_msix(adapter);
1084 	return 0;
1085 free_irq_rx:
1086 	free_irq(adapter->msix_entries[--vector].vector, netdev);
1087 free_irq_tx:
1088 	free_irq(adapter->msix_entries[--vector].vector, netdev);
1089 out:
1090 	return err;
1091 }
1092 
1093 /**
1094  * igbvf_alloc_queues - Allocate memory for all rings
1095  * @adapter: board private structure to initialize
1096  **/
1097 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1098 {
1099 	struct net_device *netdev = adapter->netdev;
1100 
1101 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1102 	if (!adapter->tx_ring)
1103 		return -ENOMEM;
1104 
1105 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 	if (!adapter->rx_ring) {
1107 		kfree(adapter->tx_ring);
1108 		return -ENOMEM;
1109 	}
1110 
1111 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1112 
1113 	return 0;
1114 }
1115 
1116 /**
1117  * igbvf_request_irq - initialize interrupts
1118  * @adapter: board private structure
1119  *
1120  * Attempts to configure interrupts using the best available
1121  * capabilities of the hardware and kernel.
1122  **/
1123 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1124 {
1125 	int err = -1;
1126 
1127 	/* igbvf supports msi-x only */
1128 	if (adapter->msix_entries)
1129 		err = igbvf_request_msix(adapter);
1130 
1131 	if (!err)
1132 		return err;
1133 
1134 	dev_err(&adapter->pdev->dev,
1135 		"Unable to allocate interrupt, Error: %d\n", err);
1136 
1137 	return err;
1138 }
1139 
1140 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1141 {
1142 	struct net_device *netdev = adapter->netdev;
1143 	int vector;
1144 
1145 	if (adapter->msix_entries) {
1146 		for (vector = 0; vector < 3; vector++)
1147 			free_irq(adapter->msix_entries[vector].vector, netdev);
1148 	}
1149 }
1150 
1151 /**
1152  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1153  * @adapter: board private structure
1154  **/
1155 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1156 {
1157 	struct e1000_hw *hw = &adapter->hw;
1158 
1159 	ew32(EIMC, ~0);
1160 
1161 	if (adapter->msix_entries)
1162 		ew32(EIAC, 0);
1163 }
1164 
1165 /**
1166  * igbvf_irq_enable - Enable default interrupt generation settings
1167  * @adapter: board private structure
1168  **/
1169 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1170 {
1171 	struct e1000_hw *hw = &adapter->hw;
1172 
1173 	ew32(EIAC, adapter->eims_enable_mask);
1174 	ew32(EIAM, adapter->eims_enable_mask);
1175 	ew32(EIMS, adapter->eims_enable_mask);
1176 }
1177 
1178 /**
1179  * igbvf_poll - NAPI Rx polling callback
1180  * @napi: struct associated with this polling callback
1181  * @budget: amount of packets driver is allowed to process this poll
1182  **/
1183 static int igbvf_poll(struct napi_struct *napi, int budget)
1184 {
1185 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1186 	struct igbvf_adapter *adapter = rx_ring->adapter;
1187 	struct e1000_hw *hw = &adapter->hw;
1188 	int work_done = 0;
1189 
1190 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1191 
1192 	if (work_done == budget)
1193 		return budget;
1194 
1195 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1196 	 * poll us due to busy-polling
1197 	 */
1198 	if (likely(napi_complete_done(napi, work_done))) {
1199 		if (adapter->requested_itr & 3)
1200 			igbvf_set_itr(adapter);
1201 
1202 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1203 			ew32(EIMS, adapter->rx_ring->eims_value);
1204 	}
1205 
1206 	return work_done;
1207 }
1208 
1209 /**
1210  * igbvf_set_rlpml - set receive large packet maximum length
1211  * @adapter: board private structure
1212  *
1213  * Configure the maximum size of packets that will be received
1214  */
1215 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1216 {
1217 	int max_frame_size;
1218 	struct e1000_hw *hw = &adapter->hw;
1219 
1220 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1221 
1222 	spin_lock_bh(&hw->mbx_lock);
1223 
1224 	e1000_rlpml_set_vf(hw, max_frame_size);
1225 
1226 	spin_unlock_bh(&hw->mbx_lock);
1227 }
1228 
1229 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1230 				 __be16 proto, u16 vid)
1231 {
1232 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1233 	struct e1000_hw *hw = &adapter->hw;
1234 
1235 	spin_lock_bh(&hw->mbx_lock);
1236 
1237 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1238 		dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1239 		spin_unlock_bh(&hw->mbx_lock);
1240 		return -EINVAL;
1241 	}
1242 
1243 	spin_unlock_bh(&hw->mbx_lock);
1244 
1245 	set_bit(vid, adapter->active_vlans);
1246 	return 0;
1247 }
1248 
1249 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1250 				  __be16 proto, u16 vid)
1251 {
1252 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1253 	struct e1000_hw *hw = &adapter->hw;
1254 
1255 	spin_lock_bh(&hw->mbx_lock);
1256 
1257 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1258 		dev_err(&adapter->pdev->dev,
1259 			"Failed to remove vlan id %d\n", vid);
1260 		spin_unlock_bh(&hw->mbx_lock);
1261 		return -EINVAL;
1262 	}
1263 
1264 	spin_unlock_bh(&hw->mbx_lock);
1265 
1266 	clear_bit(vid, adapter->active_vlans);
1267 	return 0;
1268 }
1269 
1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271 {
1272 	u16 vid;
1273 
1274 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275 		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276 }
1277 
1278 /**
1279  * igbvf_configure_tx - Configure Transmit Unit after Reset
1280  * @adapter: board private structure
1281  *
1282  * Configure the Tx unit of the MAC after a reset.
1283  **/
1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285 {
1286 	struct e1000_hw *hw = &adapter->hw;
1287 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1288 	u64 tdba;
1289 	u32 txdctl, dca_txctrl;
1290 
1291 	/* disable transmits */
1292 	txdctl = er32(TXDCTL(0));
1293 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294 	e1e_flush();
1295 	msleep(10);
1296 
1297 	/* Setup the HW Tx Head and Tail descriptor pointers */
1298 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299 	tdba = tx_ring->dma;
1300 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301 	ew32(TDBAH(0), (tdba >> 32));
1302 	ew32(TDH(0), 0);
1303 	ew32(TDT(0), 0);
1304 	tx_ring->head = E1000_TDH(0);
1305 	tx_ring->tail = E1000_TDT(0);
1306 
1307 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1308 	 * MUST be delivered in order or it will completely screw up
1309 	 * our bookkeeping.
1310 	 */
1311 	dca_txctrl = er32(DCA_TXCTRL(0));
1312 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313 	ew32(DCA_TXCTRL(0), dca_txctrl);
1314 
1315 	/* enable transmits */
1316 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317 	ew32(TXDCTL(0), txdctl);
1318 
1319 	/* Setup Transmit Descriptor Settings for eop descriptor */
1320 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321 
1322 	/* enable Report Status bit */
1323 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324 }
1325 
1326 /**
1327  * igbvf_setup_srrctl - configure the receive control registers
1328  * @adapter: Board private structure
1329  **/
1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331 {
1332 	struct e1000_hw *hw = &adapter->hw;
1333 	u32 srrctl = 0;
1334 
1335 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336 		    E1000_SRRCTL_BSIZEHDR_MASK |
1337 		    E1000_SRRCTL_BSIZEPKT_MASK);
1338 
1339 	/* Enable queue drop to avoid head of line blocking */
1340 	srrctl |= E1000_SRRCTL_DROP_EN;
1341 
1342 	/* Setup buffer sizes */
1343 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344 		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1345 
1346 	if (adapter->rx_buffer_len < 2048) {
1347 		adapter->rx_ps_hdr_size = 0;
1348 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349 	} else {
1350 		adapter->rx_ps_hdr_size = 128;
1351 		srrctl |= adapter->rx_ps_hdr_size <<
1352 			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354 	}
1355 
1356 	ew32(SRRCTL(0), srrctl);
1357 }
1358 
1359 /**
1360  * igbvf_configure_rx - Configure Receive Unit after Reset
1361  * @adapter: board private structure
1362  *
1363  * Configure the Rx unit of the MAC after a reset.
1364  **/
1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366 {
1367 	struct e1000_hw *hw = &adapter->hw;
1368 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1369 	u64 rdba;
1370 	u32 rxdctl;
1371 
1372 	/* disable receives */
1373 	rxdctl = er32(RXDCTL(0));
1374 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375 	e1e_flush();
1376 	msleep(10);
1377 
1378 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1379 	 * the Base and Length of the Rx Descriptor Ring
1380 	 */
1381 	rdba = rx_ring->dma;
1382 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1383 	ew32(RDBAH(0), (rdba >> 32));
1384 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1385 	rx_ring->head = E1000_RDH(0);
1386 	rx_ring->tail = E1000_RDT(0);
1387 	ew32(RDH(0), 0);
1388 	ew32(RDT(0), 0);
1389 
1390 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1391 	rxdctl &= 0xFFF00000;
1392 	rxdctl |= IGBVF_RX_PTHRESH;
1393 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1394 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1395 
1396 	igbvf_set_rlpml(adapter);
1397 
1398 	/* enable receives */
1399 	ew32(RXDCTL(0), rxdctl);
1400 }
1401 
1402 /**
1403  * igbvf_set_multi - Multicast and Promiscuous mode set
1404  * @netdev: network interface device structure
1405  *
1406  * The set_multi entry point is called whenever the multicast address
1407  * list or the network interface flags are updated.  This routine is
1408  * responsible for configuring the hardware for proper multicast,
1409  * promiscuous mode, and all-multi behavior.
1410  **/
1411 static void igbvf_set_multi(struct net_device *netdev)
1412 {
1413 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1414 	struct e1000_hw *hw = &adapter->hw;
1415 	struct netdev_hw_addr *ha;
1416 	u8  *mta_list = NULL;
1417 	int i;
1418 
1419 	if (!netdev_mc_empty(netdev)) {
1420 		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1421 					 GFP_ATOMIC);
1422 		if (!mta_list)
1423 			return;
1424 	}
1425 
1426 	/* prepare a packed array of only addresses. */
1427 	i = 0;
1428 	netdev_for_each_mc_addr(ha, netdev)
1429 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1430 
1431 	spin_lock_bh(&hw->mbx_lock);
1432 
1433 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1434 
1435 	spin_unlock_bh(&hw->mbx_lock);
1436 	kfree(mta_list);
1437 }
1438 
1439 /**
1440  * igbvf_set_uni - Configure unicast MAC filters
1441  * @netdev: network interface device structure
1442  *
1443  * This routine is responsible for configuring the hardware for proper
1444  * unicast filters.
1445  **/
1446 static int igbvf_set_uni(struct net_device *netdev)
1447 {
1448 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1449 	struct e1000_hw *hw = &adapter->hw;
1450 
1451 	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1452 		pr_err("Too many unicast filters - No Space\n");
1453 		return -ENOSPC;
1454 	}
1455 
1456 	spin_lock_bh(&hw->mbx_lock);
1457 
1458 	/* Clear all unicast MAC filters */
1459 	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1460 
1461 	spin_unlock_bh(&hw->mbx_lock);
1462 
1463 	if (!netdev_uc_empty(netdev)) {
1464 		struct netdev_hw_addr *ha;
1465 
1466 		/* Add MAC filters one by one */
1467 		netdev_for_each_uc_addr(ha, netdev) {
1468 			spin_lock_bh(&hw->mbx_lock);
1469 
1470 			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1471 						ha->addr);
1472 
1473 			spin_unlock_bh(&hw->mbx_lock);
1474 			udelay(200);
1475 		}
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static void igbvf_set_rx_mode(struct net_device *netdev)
1482 {
1483 	igbvf_set_multi(netdev);
1484 	igbvf_set_uni(netdev);
1485 }
1486 
1487 /**
1488  * igbvf_configure - configure the hardware for Rx and Tx
1489  * @adapter: private board structure
1490  **/
1491 static void igbvf_configure(struct igbvf_adapter *adapter)
1492 {
1493 	igbvf_set_rx_mode(adapter->netdev);
1494 
1495 	igbvf_restore_vlan(adapter);
1496 
1497 	igbvf_configure_tx(adapter);
1498 	igbvf_setup_srrctl(adapter);
1499 	igbvf_configure_rx(adapter);
1500 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1501 			       igbvf_desc_unused(adapter->rx_ring));
1502 }
1503 
1504 /* igbvf_reset - bring the hardware into a known good state
1505  * @adapter: private board structure
1506  *
1507  * This function boots the hardware and enables some settings that
1508  * require a configuration cycle of the hardware - those cannot be
1509  * set/changed during runtime. After reset the device needs to be
1510  * properly configured for Rx, Tx etc.
1511  */
1512 static void igbvf_reset(struct igbvf_adapter *adapter)
1513 {
1514 	struct e1000_mac_info *mac = &adapter->hw.mac;
1515 	struct net_device *netdev = adapter->netdev;
1516 	struct e1000_hw *hw = &adapter->hw;
1517 
1518 	spin_lock_bh(&hw->mbx_lock);
1519 
1520 	/* Allow time for pending master requests to run */
1521 	if (mac->ops.reset_hw(hw))
1522 		dev_info(&adapter->pdev->dev, "PF still resetting\n");
1523 
1524 	mac->ops.init_hw(hw);
1525 
1526 	spin_unlock_bh(&hw->mbx_lock);
1527 
1528 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1529 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1530 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1531 		       netdev->addr_len);
1532 	}
1533 
1534 	adapter->last_reset = jiffies;
1535 }
1536 
1537 int igbvf_up(struct igbvf_adapter *adapter)
1538 {
1539 	struct e1000_hw *hw = &adapter->hw;
1540 
1541 	/* hardware has been reset, we need to reload some things */
1542 	igbvf_configure(adapter);
1543 
1544 	clear_bit(__IGBVF_DOWN, &adapter->state);
1545 
1546 	napi_enable(&adapter->rx_ring->napi);
1547 	if (adapter->msix_entries)
1548 		igbvf_configure_msix(adapter);
1549 
1550 	/* Clear any pending interrupts. */
1551 	er32(EICR);
1552 	igbvf_irq_enable(adapter);
1553 
1554 	/* start the watchdog */
1555 	hw->mac.get_link_status = 1;
1556 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1557 
1558 	return 0;
1559 }
1560 
1561 void igbvf_down(struct igbvf_adapter *adapter)
1562 {
1563 	struct net_device *netdev = adapter->netdev;
1564 	struct e1000_hw *hw = &adapter->hw;
1565 	u32 rxdctl, txdctl;
1566 
1567 	/* signal that we're down so the interrupt handler does not
1568 	 * reschedule our watchdog timer
1569 	 */
1570 	set_bit(__IGBVF_DOWN, &adapter->state);
1571 
1572 	/* disable receives in the hardware */
1573 	rxdctl = er32(RXDCTL(0));
1574 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1575 
1576 	netif_carrier_off(netdev);
1577 	netif_stop_queue(netdev);
1578 
1579 	/* disable transmits in the hardware */
1580 	txdctl = er32(TXDCTL(0));
1581 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1582 
1583 	/* flush both disables and wait for them to finish */
1584 	e1e_flush();
1585 	msleep(10);
1586 
1587 	napi_disable(&adapter->rx_ring->napi);
1588 
1589 	igbvf_irq_disable(adapter);
1590 
1591 	timer_delete_sync(&adapter->watchdog_timer);
1592 
1593 	/* record the stats before reset*/
1594 	igbvf_update_stats(adapter);
1595 
1596 	adapter->link_speed = 0;
1597 	adapter->link_duplex = 0;
1598 
1599 	igbvf_reset(adapter);
1600 	igbvf_clean_tx_ring(adapter->tx_ring);
1601 	igbvf_clean_rx_ring(adapter->rx_ring);
1602 }
1603 
1604 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1605 {
1606 	might_sleep();
1607 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1608 		usleep_range(1000, 2000);
1609 	igbvf_down(adapter);
1610 	igbvf_up(adapter);
1611 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1612 }
1613 
1614 /**
1615  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1616  * @adapter: board private structure to initialize
1617  *
1618  * igbvf_sw_init initializes the Adapter private data structure.
1619  * Fields are initialized based on PCI device information and
1620  * OS network device settings (MTU size).
1621  **/
1622 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1623 {
1624 	struct net_device *netdev = adapter->netdev;
1625 	s32 rc;
1626 
1627 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1628 	adapter->rx_ps_hdr_size = 0;
1629 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1630 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1631 
1632 	adapter->tx_int_delay = 8;
1633 	adapter->tx_abs_int_delay = 32;
1634 	adapter->rx_int_delay = 0;
1635 	adapter->rx_abs_int_delay = 8;
1636 	adapter->requested_itr = 3;
1637 	adapter->current_itr = IGBVF_START_ITR;
1638 
1639 	/* Set various function pointers */
1640 	adapter->ei->init_ops(&adapter->hw);
1641 
1642 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1643 	if (rc)
1644 		return rc;
1645 
1646 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1647 	if (rc)
1648 		return rc;
1649 
1650 	igbvf_set_interrupt_capability(adapter);
1651 
1652 	if (igbvf_alloc_queues(adapter))
1653 		return -ENOMEM;
1654 
1655 	/* Explicitly disable IRQ since the NIC can be in any state. */
1656 	igbvf_irq_disable(adapter);
1657 
1658 	spin_lock_init(&adapter->hw.mbx_lock);
1659 
1660 	set_bit(__IGBVF_DOWN, &adapter->state);
1661 	return 0;
1662 }
1663 
1664 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1665 {
1666 	struct e1000_hw *hw = &adapter->hw;
1667 
1668 	adapter->stats.last_gprc = er32(VFGPRC);
1669 	adapter->stats.last_gorc = er32(VFGORC);
1670 	adapter->stats.last_gptc = er32(VFGPTC);
1671 	adapter->stats.last_gotc = er32(VFGOTC);
1672 	adapter->stats.last_mprc = er32(VFMPRC);
1673 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1674 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1675 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1676 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1677 
1678 	adapter->stats.base_gprc = er32(VFGPRC);
1679 	adapter->stats.base_gorc = er32(VFGORC);
1680 	adapter->stats.base_gptc = er32(VFGPTC);
1681 	adapter->stats.base_gotc = er32(VFGOTC);
1682 	adapter->stats.base_mprc = er32(VFMPRC);
1683 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1684 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1685 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1686 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1687 }
1688 
1689 /**
1690  * igbvf_open - Called when a network interface is made active
1691  * @netdev: network interface device structure
1692  *
1693  * Returns 0 on success, negative value on failure
1694  *
1695  * The open entry point is called when a network interface is made
1696  * active by the system (IFF_UP).  At this point all resources needed
1697  * for transmit and receive operations are allocated, the interrupt
1698  * handler is registered with the OS, the watchdog timer is started,
1699  * and the stack is notified that the interface is ready.
1700  **/
1701 static int igbvf_open(struct net_device *netdev)
1702 {
1703 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1704 	struct e1000_hw *hw = &adapter->hw;
1705 	int err;
1706 
1707 	/* disallow open during test */
1708 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1709 		return -EBUSY;
1710 
1711 	/* allocate transmit descriptors */
1712 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1713 	if (err)
1714 		goto err_setup_tx;
1715 
1716 	/* allocate receive descriptors */
1717 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1718 	if (err)
1719 		goto err_setup_rx;
1720 
1721 	/* before we allocate an interrupt, we must be ready to handle it.
1722 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1723 	 * as soon as we call pci_request_irq, so we have to setup our
1724 	 * clean_rx handler before we do so.
1725 	 */
1726 	igbvf_configure(adapter);
1727 
1728 	err = igbvf_request_irq(adapter);
1729 	if (err)
1730 		goto err_req_irq;
1731 
1732 	/* From here on the code is the same as igbvf_up() */
1733 	clear_bit(__IGBVF_DOWN, &adapter->state);
1734 
1735 	napi_enable(&adapter->rx_ring->napi);
1736 
1737 	/* clear any pending interrupts */
1738 	er32(EICR);
1739 
1740 	igbvf_irq_enable(adapter);
1741 
1742 	/* start the watchdog */
1743 	hw->mac.get_link_status = 1;
1744 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1745 
1746 	return 0;
1747 
1748 err_req_irq:
1749 	igbvf_free_rx_resources(adapter->rx_ring);
1750 err_setup_rx:
1751 	igbvf_free_tx_resources(adapter->tx_ring);
1752 err_setup_tx:
1753 	igbvf_reset(adapter);
1754 
1755 	return err;
1756 }
1757 
1758 /**
1759  * igbvf_close - Disables a network interface
1760  * @netdev: network interface device structure
1761  *
1762  * Returns 0, this is not allowed to fail
1763  *
1764  * The close entry point is called when an interface is de-activated
1765  * by the OS.  The hardware is still under the drivers control, but
1766  * needs to be disabled.  A global MAC reset is issued to stop the
1767  * hardware, and all transmit and receive resources are freed.
1768  **/
1769 static int igbvf_close(struct net_device *netdev)
1770 {
1771 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1772 
1773 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1774 	igbvf_down(adapter);
1775 
1776 	igbvf_free_irq(adapter);
1777 
1778 	igbvf_free_tx_resources(adapter->tx_ring);
1779 	igbvf_free_rx_resources(adapter->rx_ring);
1780 
1781 	return 0;
1782 }
1783 
1784 /**
1785  * igbvf_set_mac - Change the Ethernet Address of the NIC
1786  * @netdev: network interface device structure
1787  * @p: pointer to an address structure
1788  *
1789  * Returns 0 on success, negative on failure
1790  **/
1791 static int igbvf_set_mac(struct net_device *netdev, void *p)
1792 {
1793 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1794 	struct e1000_hw *hw = &adapter->hw;
1795 	struct sockaddr *addr = p;
1796 
1797 	if (!is_valid_ether_addr(addr->sa_data))
1798 		return -EADDRNOTAVAIL;
1799 
1800 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1801 
1802 	spin_lock_bh(&hw->mbx_lock);
1803 
1804 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1805 
1806 	spin_unlock_bh(&hw->mbx_lock);
1807 
1808 	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1809 		return -EADDRNOTAVAIL;
1810 
1811 	eth_hw_addr_set(netdev, addr->sa_data);
1812 
1813 	return 0;
1814 }
1815 
1816 #define UPDATE_VF_COUNTER(reg, name) \
1817 { \
1818 	u32 current_counter = er32(reg); \
1819 	if (current_counter < adapter->stats.last_##name) \
1820 		adapter->stats.name += 0x100000000LL; \
1821 	adapter->stats.last_##name = current_counter; \
1822 	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1823 	adapter->stats.name |= current_counter; \
1824 }
1825 
1826 /**
1827  * igbvf_update_stats - Update the board statistics counters
1828  * @adapter: board private structure
1829 **/
1830 void igbvf_update_stats(struct igbvf_adapter *adapter)
1831 {
1832 	struct e1000_hw *hw = &adapter->hw;
1833 	struct pci_dev *pdev = adapter->pdev;
1834 
1835 	/* Prevent stats update while adapter is being reset, link is down
1836 	 * or if the pci connection is down.
1837 	 */
1838 	if (adapter->link_speed == 0)
1839 		return;
1840 
1841 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1842 		return;
1843 
1844 	if (pci_channel_offline(pdev))
1845 		return;
1846 
1847 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1848 	UPDATE_VF_COUNTER(VFGORC, gorc);
1849 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1850 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1851 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1852 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1853 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1854 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1855 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1856 
1857 	/* Fill out the OS statistics structure */
1858 	adapter->netdev->stats.multicast = adapter->stats.mprc;
1859 }
1860 
1861 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1862 {
1863 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1864 		 adapter->link_speed,
1865 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1866 }
1867 
1868 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1869 {
1870 	struct e1000_hw *hw = &adapter->hw;
1871 	s32 ret_val = E1000_SUCCESS;
1872 	bool link_active;
1873 
1874 	/* If interface is down, stay link down */
1875 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1876 		return false;
1877 
1878 	spin_lock_bh(&hw->mbx_lock);
1879 
1880 	ret_val = hw->mac.ops.check_for_link(hw);
1881 
1882 	spin_unlock_bh(&hw->mbx_lock);
1883 
1884 	link_active = !hw->mac.get_link_status;
1885 
1886 	/* if check for link returns error we will need to reset */
1887 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1888 		schedule_work(&adapter->reset_task);
1889 
1890 	return link_active;
1891 }
1892 
1893 /**
1894  * igbvf_watchdog - Timer Call-back
1895  * @t: timer list pointer containing private struct
1896  **/
1897 static void igbvf_watchdog(struct timer_list *t)
1898 {
1899 	struct igbvf_adapter *adapter = timer_container_of(adapter, t,
1900 							   watchdog_timer);
1901 
1902 	/* Do the rest outside of interrupt context */
1903 	schedule_work(&adapter->watchdog_task);
1904 }
1905 
1906 static void igbvf_watchdog_task(struct work_struct *work)
1907 {
1908 	struct igbvf_adapter *adapter = container_of(work,
1909 						     struct igbvf_adapter,
1910 						     watchdog_task);
1911 	struct net_device *netdev = adapter->netdev;
1912 	struct e1000_mac_info *mac = &adapter->hw.mac;
1913 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1914 	struct e1000_hw *hw = &adapter->hw;
1915 	u32 link;
1916 	int tx_pending = 0;
1917 
1918 	link = igbvf_has_link(adapter);
1919 
1920 	if (link) {
1921 		if (!netif_carrier_ok(netdev)) {
1922 			mac->ops.get_link_up_info(&adapter->hw,
1923 						  &adapter->link_speed,
1924 						  &adapter->link_duplex);
1925 			igbvf_print_link_info(adapter);
1926 
1927 			netif_carrier_on(netdev);
1928 			netif_wake_queue(netdev);
1929 		}
1930 	} else {
1931 		if (netif_carrier_ok(netdev)) {
1932 			adapter->link_speed = 0;
1933 			adapter->link_duplex = 0;
1934 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1935 			netif_carrier_off(netdev);
1936 			netif_stop_queue(netdev);
1937 		}
1938 	}
1939 
1940 	if (netif_carrier_ok(netdev)) {
1941 		igbvf_update_stats(adapter);
1942 	} else {
1943 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1944 			      tx_ring->count);
1945 		if (tx_pending) {
1946 			/* We've lost link, so the controller stops DMA,
1947 			 * but we've got queued Tx work that's never going
1948 			 * to get done, so reset controller to flush Tx.
1949 			 * (Do the reset outside of interrupt context).
1950 			 */
1951 			adapter->tx_timeout_count++;
1952 			schedule_work(&adapter->reset_task);
1953 		}
1954 	}
1955 
1956 	/* Cause software interrupt to ensure Rx ring is cleaned */
1957 	ew32(EICS, adapter->rx_ring->eims_value);
1958 
1959 	/* Reset the timer */
1960 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1961 		mod_timer(&adapter->watchdog_timer,
1962 			  round_jiffies(jiffies + (2 * HZ)));
1963 }
1964 
1965 #define IGBVF_TX_FLAGS_CSUM		0x00000001
1966 #define IGBVF_TX_FLAGS_VLAN		0x00000002
1967 #define IGBVF_TX_FLAGS_TSO		0x00000004
1968 #define IGBVF_TX_FLAGS_IPV4		0x00000008
1969 #define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1970 #define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1971 
1972 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1973 			      u32 type_tucmd, u32 mss_l4len_idx)
1974 {
1975 	struct e1000_adv_tx_context_desc *context_desc;
1976 	struct igbvf_buffer *buffer_info;
1977 	u16 i = tx_ring->next_to_use;
1978 
1979 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1980 	buffer_info = &tx_ring->buffer_info[i];
1981 
1982 	i++;
1983 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1984 
1985 	/* set bits to identify this as an advanced context descriptor */
1986 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1987 
1988 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1989 	context_desc->seqnum_seed	= 0;
1990 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1991 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1992 
1993 	buffer_info->time_stamp = jiffies;
1994 	buffer_info->dma = 0;
1995 }
1996 
1997 static int igbvf_tso(struct igbvf_ring *tx_ring,
1998 		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1999 {
2000 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2001 	union {
2002 		struct iphdr *v4;
2003 		struct ipv6hdr *v6;
2004 		unsigned char *hdr;
2005 	} ip;
2006 	union {
2007 		struct tcphdr *tcp;
2008 		unsigned char *hdr;
2009 	} l4;
2010 	u32 paylen, l4_offset;
2011 	int err;
2012 
2013 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2014 		return 0;
2015 
2016 	if (!skb_is_gso(skb))
2017 		return 0;
2018 
2019 	err = skb_cow_head(skb, 0);
2020 	if (err < 0)
2021 		return err;
2022 
2023 	ip.hdr = skb_network_header(skb);
2024 	l4.hdr = skb_checksum_start(skb);
2025 
2026 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2027 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2028 
2029 	/* initialize outer IP header fields */
2030 	if (ip.v4->version == 4) {
2031 		unsigned char *csum_start = skb_checksum_start(skb);
2032 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2033 
2034 		/* IP header will have to cancel out any data that
2035 		 * is not a part of the outer IP header
2036 		 */
2037 		ip.v4->check = csum_fold(csum_partial(trans_start,
2038 						      csum_start - trans_start,
2039 						      0));
2040 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2041 
2042 		ip.v4->tot_len = 0;
2043 	} else {
2044 		ip.v6->payload_len = 0;
2045 	}
2046 
2047 	/* determine offset of inner transport header */
2048 	l4_offset = l4.hdr - skb->data;
2049 
2050 	/* compute length of segmentation header */
2051 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2052 
2053 	/* remove payload length from inner checksum */
2054 	paylen = skb->len - l4_offset;
2055 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2056 
2057 	/* MSS L4LEN IDX */
2058 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2059 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2060 
2061 	/* VLAN MACLEN IPLEN */
2062 	vlan_macip_lens = l4.hdr - ip.hdr;
2063 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2064 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2065 
2066 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2067 
2068 	return 1;
2069 }
2070 
2071 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2072 			  u32 tx_flags, __be16 protocol)
2073 {
2074 	u32 vlan_macip_lens = 0;
2075 	u32 type_tucmd = 0;
2076 
2077 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2078 csum_failed:
2079 		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2080 			return false;
2081 		goto no_csum;
2082 	}
2083 
2084 	switch (skb->csum_offset) {
2085 	case offsetof(struct tcphdr, check):
2086 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2087 		fallthrough;
2088 	case offsetof(struct udphdr, check):
2089 		break;
2090 	case offsetof(struct sctphdr, checksum):
2091 		/* validate that this is actually an SCTP request */
2092 		if (skb_csum_is_sctp(skb)) {
2093 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2094 			break;
2095 		}
2096 		fallthrough;
2097 	default:
2098 		skb_checksum_help(skb);
2099 		goto csum_failed;
2100 	}
2101 
2102 	vlan_macip_lens = skb_checksum_start_offset(skb) -
2103 			  skb_network_offset(skb);
2104 no_csum:
2105 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2106 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2107 
2108 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2109 	return true;
2110 }
2111 
2112 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2113 {
2114 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2115 
2116 	/* there is enough descriptors then we don't need to worry  */
2117 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2118 		return 0;
2119 
2120 	netif_stop_queue(netdev);
2121 
2122 	/* Herbert's original patch had:
2123 	 *  smp_mb__after_netif_stop_queue();
2124 	 * but since that doesn't exist yet, just open code it.
2125 	 */
2126 	smp_mb();
2127 
2128 	/* We need to check again just in case room has been made available */
2129 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2130 		return -EBUSY;
2131 
2132 	netif_wake_queue(netdev);
2133 
2134 	++adapter->restart_queue;
2135 	return 0;
2136 }
2137 
2138 #define IGBVF_MAX_TXD_PWR	16
2139 #define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2140 
2141 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2142 				   struct igbvf_ring *tx_ring,
2143 				   struct sk_buff *skb)
2144 {
2145 	struct igbvf_buffer *buffer_info;
2146 	struct pci_dev *pdev = adapter->pdev;
2147 	unsigned int len = skb_headlen(skb);
2148 	unsigned int count = 0, i;
2149 	unsigned int f;
2150 
2151 	i = tx_ring->next_to_use;
2152 
2153 	buffer_info = &tx_ring->buffer_info[i];
2154 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2155 	buffer_info->length = len;
2156 	/* set time_stamp *before* dma to help avoid a possible race */
2157 	buffer_info->time_stamp = jiffies;
2158 	buffer_info->mapped_as_page = false;
2159 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2160 					  DMA_TO_DEVICE);
2161 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2162 		goto dma_error;
2163 
2164 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2165 		const skb_frag_t *frag;
2166 
2167 		count++;
2168 		i++;
2169 		if (i == tx_ring->count)
2170 			i = 0;
2171 
2172 		frag = &skb_shinfo(skb)->frags[f];
2173 		len = skb_frag_size(frag);
2174 
2175 		buffer_info = &tx_ring->buffer_info[i];
2176 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2177 		buffer_info->length = len;
2178 		buffer_info->time_stamp = jiffies;
2179 		buffer_info->mapped_as_page = true;
2180 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2181 						    DMA_TO_DEVICE);
2182 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2183 			goto dma_error;
2184 	}
2185 
2186 	tx_ring->buffer_info[i].skb = skb;
2187 
2188 	return ++count;
2189 
2190 dma_error:
2191 	dev_err(&pdev->dev, "TX DMA map failed\n");
2192 
2193 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2194 	buffer_info->dma = 0;
2195 	buffer_info->time_stamp = 0;
2196 	buffer_info->length = 0;
2197 	buffer_info->mapped_as_page = false;
2198 	if (count)
2199 		count--;
2200 
2201 	/* clear timestamp and dma mappings for remaining portion of packet */
2202 	while (count--) {
2203 		if (i == 0)
2204 			i += tx_ring->count;
2205 		i--;
2206 		buffer_info = &tx_ring->buffer_info[i];
2207 		igbvf_put_txbuf(adapter, buffer_info);
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2214 				      struct igbvf_ring *tx_ring,
2215 				      int tx_flags, int count,
2216 				      unsigned int first, u32 paylen,
2217 				      u8 hdr_len)
2218 {
2219 	union e1000_adv_tx_desc *tx_desc = NULL;
2220 	struct igbvf_buffer *buffer_info;
2221 	u32 olinfo_status = 0, cmd_type_len;
2222 	unsigned int i;
2223 
2224 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2225 			E1000_ADVTXD_DCMD_DEXT);
2226 
2227 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2228 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2229 
2230 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2231 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2232 
2233 		/* insert tcp checksum */
2234 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2235 
2236 		/* insert ip checksum */
2237 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2238 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2239 
2240 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2241 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2242 	}
2243 
2244 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2245 
2246 	i = tx_ring->next_to_use;
2247 	while (count--) {
2248 		buffer_info = &tx_ring->buffer_info[i];
2249 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2250 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2251 		tx_desc->read.cmd_type_len =
2252 			 cpu_to_le32(cmd_type_len | buffer_info->length);
2253 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2254 		i++;
2255 		if (i == tx_ring->count)
2256 			i = 0;
2257 	}
2258 
2259 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2260 	/* Force memory writes to complete before letting h/w
2261 	 * know there are new descriptors to fetch.  (Only
2262 	 * applicable for weak-ordered memory model archs,
2263 	 * such as IA-64).
2264 	 */
2265 	wmb();
2266 
2267 	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2268 	tx_ring->next_to_use = i;
2269 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2270 }
2271 
2272 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2273 					     struct net_device *netdev,
2274 					     struct igbvf_ring *tx_ring)
2275 {
2276 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2277 	unsigned int first, tx_flags = 0;
2278 	u8 hdr_len = 0;
2279 	int count = 0;
2280 	int tso = 0;
2281 	__be16 protocol = vlan_get_protocol(skb);
2282 
2283 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2284 		dev_kfree_skb_any(skb);
2285 		return NETDEV_TX_OK;
2286 	}
2287 
2288 	if (skb->len <= 0) {
2289 		dev_kfree_skb_any(skb);
2290 		return NETDEV_TX_OK;
2291 	}
2292 
2293 	/* need: count + 4 desc gap to keep tail from touching
2294 	 *       + 2 desc gap to keep tail from touching head,
2295 	 *       + 1 desc for skb->data,
2296 	 *       + 1 desc for context descriptor,
2297 	 * head, otherwise try next time
2298 	 */
2299 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2300 		/* this is a hard error */
2301 		return NETDEV_TX_BUSY;
2302 	}
2303 
2304 	if (skb_vlan_tag_present(skb)) {
2305 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2306 		tx_flags |= (skb_vlan_tag_get(skb) <<
2307 			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2308 	}
2309 
2310 	if (protocol == htons(ETH_P_IP))
2311 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2312 
2313 	first = tx_ring->next_to_use;
2314 
2315 	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2316 	if (unlikely(tso < 0)) {
2317 		dev_kfree_skb_any(skb);
2318 		return NETDEV_TX_OK;
2319 	}
2320 
2321 	if (tso)
2322 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2323 	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2324 		 (skb->ip_summed == CHECKSUM_PARTIAL))
2325 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2326 
2327 	/* count reflects descriptors mapped, if 0 then mapping error
2328 	 * has occurred and we need to rewind the descriptor queue
2329 	 */
2330 	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2331 
2332 	if (count) {
2333 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2334 				   first, skb->len, hdr_len);
2335 		/* Make sure there is space in the ring for the next send. */
2336 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2337 	} else {
2338 		dev_kfree_skb_any(skb);
2339 		tx_ring->buffer_info[first].time_stamp = 0;
2340 		tx_ring->next_to_use = first;
2341 	}
2342 
2343 	return NETDEV_TX_OK;
2344 }
2345 
2346 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2347 				    struct net_device *netdev)
2348 {
2349 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2350 	struct igbvf_ring *tx_ring;
2351 
2352 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2353 		dev_kfree_skb_any(skb);
2354 		return NETDEV_TX_OK;
2355 	}
2356 
2357 	tx_ring = &adapter->tx_ring[0];
2358 
2359 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2360 }
2361 
2362 /**
2363  * igbvf_tx_timeout - Respond to a Tx Hang
2364  * @netdev: network interface device structure
2365  * @txqueue: queue timing out (unused)
2366  **/
2367 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2368 {
2369 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2370 
2371 	/* Do the reset outside of interrupt context */
2372 	adapter->tx_timeout_count++;
2373 	schedule_work(&adapter->reset_task);
2374 }
2375 
2376 static void igbvf_reset_task(struct work_struct *work)
2377 {
2378 	struct igbvf_adapter *adapter;
2379 
2380 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2381 
2382 	igbvf_reinit_locked(adapter);
2383 }
2384 
2385 /**
2386  * igbvf_change_mtu - Change the Maximum Transfer Unit
2387  * @netdev: network interface device structure
2388  * @new_mtu: new value for maximum frame size
2389  *
2390  * Returns 0 on success, negative on failure
2391  **/
2392 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2393 {
2394 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2395 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2396 
2397 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2398 		usleep_range(1000, 2000);
2399 	/* igbvf_down has a dependency on max_frame_size */
2400 	adapter->max_frame_size = max_frame;
2401 	if (netif_running(netdev))
2402 		igbvf_down(adapter);
2403 
2404 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2405 	 * means we reserve 2 more, this pushes us to allocate from the next
2406 	 * larger slab size.
2407 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2408 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2409 	 * fragmented skbs
2410 	 */
2411 
2412 	if (max_frame <= 1024)
2413 		adapter->rx_buffer_len = 1024;
2414 	else if (max_frame <= 2048)
2415 		adapter->rx_buffer_len = 2048;
2416 	else
2417 #if (PAGE_SIZE / 2) > 16384
2418 		adapter->rx_buffer_len = 16384;
2419 #else
2420 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2421 #endif
2422 
2423 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2424 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2425 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2426 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2427 					 ETH_FCS_LEN;
2428 
2429 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
2430 		   netdev->mtu, new_mtu);
2431 	WRITE_ONCE(netdev->mtu, new_mtu);
2432 
2433 	if (netif_running(netdev))
2434 		igbvf_up(adapter);
2435 	else
2436 		igbvf_reset(adapter);
2437 
2438 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2439 
2440 	return 0;
2441 }
2442 
2443 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2444 {
2445 	switch (cmd) {
2446 	default:
2447 		return -EOPNOTSUPP;
2448 	}
2449 }
2450 
2451 static int igbvf_suspend(struct device *dev_d)
2452 {
2453 	struct net_device *netdev = dev_get_drvdata(dev_d);
2454 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2455 
2456 	netif_device_detach(netdev);
2457 
2458 	if (netif_running(netdev)) {
2459 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2460 		igbvf_down(adapter);
2461 		igbvf_free_irq(adapter);
2462 	}
2463 
2464 	return 0;
2465 }
2466 
2467 static int igbvf_resume(struct device *dev_d)
2468 {
2469 	struct pci_dev *pdev = to_pci_dev(dev_d);
2470 	struct net_device *netdev = pci_get_drvdata(pdev);
2471 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2472 	u32 err;
2473 
2474 	pci_set_master(pdev);
2475 
2476 	if (netif_running(netdev)) {
2477 		err = igbvf_request_irq(adapter);
2478 		if (err)
2479 			return err;
2480 	}
2481 
2482 	igbvf_reset(adapter);
2483 
2484 	if (netif_running(netdev))
2485 		igbvf_up(adapter);
2486 
2487 	netif_device_attach(netdev);
2488 
2489 	return 0;
2490 }
2491 
2492 static void igbvf_shutdown(struct pci_dev *pdev)
2493 {
2494 	igbvf_suspend(&pdev->dev);
2495 }
2496 
2497 #ifdef CONFIG_NET_POLL_CONTROLLER
2498 /* Polling 'interrupt' - used by things like netconsole to send skbs
2499  * without having to re-enable interrupts. It's not called while
2500  * the interrupt routine is executing.
2501  */
2502 static void igbvf_netpoll(struct net_device *netdev)
2503 {
2504 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2505 
2506 	disable_irq(adapter->pdev->irq);
2507 
2508 	igbvf_clean_tx_irq(adapter->tx_ring);
2509 
2510 	enable_irq(adapter->pdev->irq);
2511 }
2512 #endif
2513 
2514 /**
2515  * igbvf_io_error_detected - called when PCI error is detected
2516  * @pdev: Pointer to PCI device
2517  * @state: The current pci connection state
2518  *
2519  * This function is called after a PCI bus error affecting
2520  * this device has been detected.
2521  */
2522 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2523 						pci_channel_state_t state)
2524 {
2525 	struct net_device *netdev = pci_get_drvdata(pdev);
2526 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2527 
2528 	netif_device_detach(netdev);
2529 
2530 	if (state == pci_channel_io_perm_failure)
2531 		return PCI_ERS_RESULT_DISCONNECT;
2532 
2533 	if (netif_running(netdev))
2534 		igbvf_down(adapter);
2535 	pci_disable_device(pdev);
2536 
2537 	/* Request a slot reset. */
2538 	return PCI_ERS_RESULT_NEED_RESET;
2539 }
2540 
2541 /**
2542  * igbvf_io_slot_reset - called after the pci bus has been reset.
2543  * @pdev: Pointer to PCI device
2544  *
2545  * Restart the card from scratch, as if from a cold-boot. Implementation
2546  * resembles the first-half of the igbvf_resume routine.
2547  */
2548 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2549 {
2550 	struct net_device *netdev = pci_get_drvdata(pdev);
2551 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2552 
2553 	if (pci_enable_device_mem(pdev)) {
2554 		dev_err(&pdev->dev,
2555 			"Cannot re-enable PCI device after reset.\n");
2556 		return PCI_ERS_RESULT_DISCONNECT;
2557 	}
2558 	pci_set_master(pdev);
2559 
2560 	igbvf_reset(adapter);
2561 
2562 	return PCI_ERS_RESULT_RECOVERED;
2563 }
2564 
2565 /**
2566  * igbvf_io_resume - called when traffic can start flowing again.
2567  * @pdev: Pointer to PCI device
2568  *
2569  * This callback is called when the error recovery driver tells us that
2570  * its OK to resume normal operation. Implementation resembles the
2571  * second-half of the igbvf_resume routine.
2572  */
2573 static void igbvf_io_resume(struct pci_dev *pdev)
2574 {
2575 	struct net_device *netdev = pci_get_drvdata(pdev);
2576 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2577 
2578 	if (netif_running(netdev)) {
2579 		if (igbvf_up(adapter)) {
2580 			dev_err(&pdev->dev,
2581 				"can't bring device back up after reset\n");
2582 			return;
2583 		}
2584 	}
2585 
2586 	netif_device_attach(netdev);
2587 }
2588 
2589 /**
2590  * igbvf_io_prepare - prepare device driver for PCI reset
2591  * @pdev: PCI device information struct
2592  */
2593 static void igbvf_io_prepare(struct pci_dev *pdev)
2594 {
2595 	struct net_device *netdev = pci_get_drvdata(pdev);
2596 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2597 
2598 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2599 		usleep_range(1000, 2000);
2600 	igbvf_down(adapter);
2601 }
2602 
2603 /**
2604  * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2605  * @pdev: PCI device information struct
2606  */
2607 static void igbvf_io_reset_done(struct pci_dev *pdev)
2608 {
2609 	struct net_device *netdev = pci_get_drvdata(pdev);
2610 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2611 
2612 	igbvf_up(adapter);
2613 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2614 }
2615 
2616 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2617 {
2618 	struct e1000_hw *hw = &adapter->hw;
2619 	struct net_device *netdev = adapter->netdev;
2620 	struct pci_dev *pdev = adapter->pdev;
2621 
2622 	if (hw->mac.type == e1000_vfadapt_i350)
2623 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2624 	else
2625 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2626 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2627 }
2628 
2629 static int igbvf_set_features(struct net_device *netdev,
2630 			      netdev_features_t features)
2631 {
2632 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2633 
2634 	if (features & NETIF_F_RXCSUM)
2635 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2636 	else
2637 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2638 
2639 	return 0;
2640 }
2641 
2642 #define IGBVF_MAX_MAC_HDR_LEN		127
2643 #define IGBVF_MAX_NETWORK_HDR_LEN	511
2644 
2645 static netdev_features_t
2646 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2647 		     netdev_features_t features)
2648 {
2649 	unsigned int network_hdr_len, mac_hdr_len;
2650 
2651 	/* Make certain the headers can be described by a context descriptor */
2652 	mac_hdr_len = skb_network_offset(skb);
2653 	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2654 		return features & ~(NETIF_F_HW_CSUM |
2655 				    NETIF_F_SCTP_CRC |
2656 				    NETIF_F_HW_VLAN_CTAG_TX |
2657 				    NETIF_F_TSO |
2658 				    NETIF_F_TSO6);
2659 
2660 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2661 	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2662 		return features & ~(NETIF_F_HW_CSUM |
2663 				    NETIF_F_SCTP_CRC |
2664 				    NETIF_F_TSO |
2665 				    NETIF_F_TSO6);
2666 
2667 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2668 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2669 	 */
2670 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2671 		features &= ~NETIF_F_TSO;
2672 
2673 	return features;
2674 }
2675 
2676 static const struct net_device_ops igbvf_netdev_ops = {
2677 	.ndo_open		= igbvf_open,
2678 	.ndo_stop		= igbvf_close,
2679 	.ndo_start_xmit		= igbvf_xmit_frame,
2680 	.ndo_set_rx_mode	= igbvf_set_rx_mode,
2681 	.ndo_set_mac_address	= igbvf_set_mac,
2682 	.ndo_change_mtu		= igbvf_change_mtu,
2683 	.ndo_eth_ioctl		= igbvf_ioctl,
2684 	.ndo_tx_timeout		= igbvf_tx_timeout,
2685 	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2686 	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2687 #ifdef CONFIG_NET_POLL_CONTROLLER
2688 	.ndo_poll_controller	= igbvf_netpoll,
2689 #endif
2690 	.ndo_set_features	= igbvf_set_features,
2691 	.ndo_features_check	= igbvf_features_check,
2692 };
2693 
2694 /**
2695  * igbvf_probe - Device Initialization Routine
2696  * @pdev: PCI device information struct
2697  * @ent: entry in igbvf_pci_tbl
2698  *
2699  * Returns 0 on success, negative on failure
2700  *
2701  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2702  * The OS initialization, configuring of the adapter private structure,
2703  * and a hardware reset occur.
2704  **/
2705 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2706 {
2707 	struct net_device *netdev;
2708 	struct igbvf_adapter *adapter;
2709 	struct e1000_hw *hw;
2710 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2711 	static int cards_found;
2712 	int err;
2713 
2714 	err = pci_enable_device_mem(pdev);
2715 	if (err)
2716 		return err;
2717 
2718 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2719 	if (err) {
2720 		dev_err(&pdev->dev,
2721 			"No usable DMA configuration, aborting\n");
2722 		goto err_dma;
2723 	}
2724 
2725 	err = pci_request_regions(pdev, igbvf_driver_name);
2726 	if (err)
2727 		goto err_pci_reg;
2728 
2729 	pci_set_master(pdev);
2730 
2731 	err = -ENOMEM;
2732 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2733 	if (!netdev)
2734 		goto err_alloc_etherdev;
2735 
2736 	SET_NETDEV_DEV(netdev, &pdev->dev);
2737 
2738 	pci_set_drvdata(pdev, netdev);
2739 	adapter = netdev_priv(netdev);
2740 	hw = &adapter->hw;
2741 	adapter->netdev = netdev;
2742 	adapter->pdev = pdev;
2743 	adapter->ei = ei;
2744 	adapter->pba = ei->pba;
2745 	adapter->flags = ei->flags;
2746 	adapter->hw.back = adapter;
2747 	adapter->hw.mac.type = ei->mac;
2748 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2749 
2750 	/* PCI config space info */
2751 
2752 	hw->vendor_id = pdev->vendor;
2753 	hw->device_id = pdev->device;
2754 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2755 	hw->subsystem_device_id = pdev->subsystem_device;
2756 	hw->revision_id = pdev->revision;
2757 
2758 	err = -EIO;
2759 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2760 				      pci_resource_len(pdev, 0));
2761 
2762 	if (!adapter->hw.hw_addr)
2763 		goto err_ioremap;
2764 
2765 	if (ei->get_variants) {
2766 		err = ei->get_variants(adapter);
2767 		if (err)
2768 			goto err_get_variants;
2769 	}
2770 
2771 	/* setup adapter struct */
2772 	err = igbvf_sw_init(adapter);
2773 	if (err)
2774 		goto err_sw_init;
2775 
2776 	/* construct the net_device struct */
2777 	netdev->netdev_ops = &igbvf_netdev_ops;
2778 
2779 	igbvf_set_ethtool_ops(netdev);
2780 	netdev->watchdog_timeo = 5 * HZ;
2781 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2782 
2783 	adapter->bd_number = cards_found++;
2784 
2785 	netdev->hw_features = NETIF_F_SG |
2786 			      NETIF_F_TSO |
2787 			      NETIF_F_TSO6 |
2788 			      NETIF_F_RXCSUM |
2789 			      NETIF_F_HW_CSUM |
2790 			      NETIF_F_SCTP_CRC;
2791 
2792 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2793 				    NETIF_F_GSO_GRE_CSUM | \
2794 				    NETIF_F_GSO_IPXIP4 | \
2795 				    NETIF_F_GSO_IPXIP6 | \
2796 				    NETIF_F_GSO_UDP_TUNNEL | \
2797 				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2798 
2799 	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2800 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2801 			       IGBVF_GSO_PARTIAL_FEATURES;
2802 
2803 	netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2804 
2805 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2806 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2807 	netdev->hw_enc_features |= netdev->vlan_features;
2808 
2809 	/* set this bit last since it cannot be part of vlan_features */
2810 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2811 			    NETIF_F_HW_VLAN_CTAG_RX |
2812 			    NETIF_F_HW_VLAN_CTAG_TX;
2813 
2814 	/* MTU range: 68 - 9216 */
2815 	netdev->min_mtu = ETH_MIN_MTU;
2816 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2817 
2818 	spin_lock_bh(&hw->mbx_lock);
2819 
2820 	/*reset the controller to put the device in a known good state */
2821 	err = hw->mac.ops.reset_hw(hw);
2822 	if (err) {
2823 		dev_info(&pdev->dev,
2824 			 "PF still in reset state. Is the PF interface up?\n");
2825 	} else {
2826 		err = hw->mac.ops.read_mac_addr(hw);
2827 		if (err)
2828 			dev_info(&pdev->dev, "Error reading MAC address.\n");
2829 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2830 			dev_info(&pdev->dev,
2831 				 "MAC address not assigned by administrator.\n");
2832 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2833 	}
2834 
2835 	spin_unlock_bh(&hw->mbx_lock);
2836 
2837 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2838 		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2839 		eth_hw_addr_random(netdev);
2840 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2841 		       netdev->addr_len);
2842 	}
2843 
2844 	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2845 
2846 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2847 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2848 
2849 	/* ring size defaults */
2850 	adapter->rx_ring->count = 1024;
2851 	adapter->tx_ring->count = 1024;
2852 
2853 	/* reset the hardware with the new settings */
2854 	igbvf_reset(adapter);
2855 
2856 	/* set hardware-specific flags */
2857 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2858 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2859 
2860 	strcpy(netdev->name, "eth%d");
2861 	err = register_netdev(netdev);
2862 	if (err)
2863 		goto err_hw_init;
2864 
2865 	/* tell the stack to leave us alone until igbvf_open() is called */
2866 	netif_carrier_off(netdev);
2867 	netif_stop_queue(netdev);
2868 
2869 	igbvf_print_device_info(adapter);
2870 
2871 	igbvf_initialize_last_counter_stats(adapter);
2872 
2873 	return 0;
2874 
2875 err_hw_init:
2876 	netif_napi_del(&adapter->rx_ring->napi);
2877 	kfree(adapter->tx_ring);
2878 	kfree(adapter->rx_ring);
2879 err_sw_init:
2880 	igbvf_reset_interrupt_capability(adapter);
2881 err_get_variants:
2882 	iounmap(adapter->hw.hw_addr);
2883 err_ioremap:
2884 	free_netdev(netdev);
2885 err_alloc_etherdev:
2886 	pci_release_regions(pdev);
2887 err_pci_reg:
2888 err_dma:
2889 	pci_disable_device(pdev);
2890 	return err;
2891 }
2892 
2893 /**
2894  * igbvf_remove - Device Removal Routine
2895  * @pdev: PCI device information struct
2896  *
2897  * igbvf_remove is called by the PCI subsystem to alert the driver
2898  * that it should release a PCI device.  The could be caused by a
2899  * Hot-Plug event, or because the driver is going to be removed from
2900  * memory.
2901  **/
2902 static void igbvf_remove(struct pci_dev *pdev)
2903 {
2904 	struct net_device *netdev = pci_get_drvdata(pdev);
2905 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2906 	struct e1000_hw *hw = &adapter->hw;
2907 
2908 	/* The watchdog timer may be rescheduled, so explicitly
2909 	 * disable it from being rescheduled.
2910 	 */
2911 	set_bit(__IGBVF_DOWN, &adapter->state);
2912 	timer_delete_sync(&adapter->watchdog_timer);
2913 
2914 	cancel_work_sync(&adapter->reset_task);
2915 	cancel_work_sync(&adapter->watchdog_task);
2916 
2917 	unregister_netdev(netdev);
2918 
2919 	igbvf_reset_interrupt_capability(adapter);
2920 
2921 	/* it is important to delete the NAPI struct prior to freeing the
2922 	 * Rx ring so that you do not end up with null pointer refs
2923 	 */
2924 	netif_napi_del(&adapter->rx_ring->napi);
2925 	kfree(adapter->tx_ring);
2926 	kfree(adapter->rx_ring);
2927 
2928 	iounmap(hw->hw_addr);
2929 	if (hw->flash_address)
2930 		iounmap(hw->flash_address);
2931 	pci_release_regions(pdev);
2932 
2933 	free_netdev(netdev);
2934 
2935 	pci_disable_device(pdev);
2936 }
2937 
2938 /* PCI Error Recovery (ERS) */
2939 static const struct pci_error_handlers igbvf_err_handler = {
2940 	.error_detected = igbvf_io_error_detected,
2941 	.slot_reset = igbvf_io_slot_reset,
2942 	.resume = igbvf_io_resume,
2943 	.reset_prepare = igbvf_io_prepare,
2944 	.reset_done = igbvf_io_reset_done,
2945 };
2946 
2947 static const struct pci_device_id igbvf_pci_tbl[] = {
2948 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2949 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2950 	{ } /* terminate list */
2951 };
2952 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2953 
2954 static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2955 
2956 /* PCI Device API Driver */
2957 static struct pci_driver igbvf_driver = {
2958 	.name		= igbvf_driver_name,
2959 	.id_table	= igbvf_pci_tbl,
2960 	.probe		= igbvf_probe,
2961 	.remove		= igbvf_remove,
2962 	.driver.pm	= pm_sleep_ptr(&igbvf_pm_ops),
2963 	.shutdown	= igbvf_shutdown,
2964 	.err_handler	= &igbvf_err_handler
2965 };
2966 
2967 /**
2968  * igbvf_init_module - Driver Registration Routine
2969  *
2970  * igbvf_init_module is the first routine called when the driver is
2971  * loaded. All it does is register with the PCI subsystem.
2972  **/
2973 static int __init igbvf_init_module(void)
2974 {
2975 	int ret;
2976 
2977 	pr_info("%s\n", igbvf_driver_string);
2978 	pr_info("%s\n", igbvf_copyright);
2979 
2980 	ret = pci_register_driver(&igbvf_driver);
2981 
2982 	return ret;
2983 }
2984 module_init(igbvf_init_module);
2985 
2986 /**
2987  * igbvf_exit_module - Driver Exit Cleanup Routine
2988  *
2989  * igbvf_exit_module is called just before the driver is removed
2990  * from memory.
2991  **/
2992 static void __exit igbvf_exit_module(void)
2993 {
2994 	pci_unregister_driver(&igbvf_driver);
2995 }
2996 module_exit(igbvf_exit_module);
2997 
2998 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2999 MODULE_LICENSE("GPL v2");
3000 
3001 /* netdev.c */
3002