1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580 2 * 3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 #include <linux/module.h> 19 #include <linux/device.h> 20 #include <linux/pci.h> 21 #include <linux/ptp_classify.h> 22 23 #include "igb.h" 24 25 #define INCVALUE_MASK 0x7fffffff 26 #define ISGN 0x80000000 27 28 /* The 82580 timesync updates the system timer every 8ns by 8ns, 29 * and this update value cannot be reprogrammed. 30 * 31 * Neither the 82576 nor the 82580 offer registers wide enough to hold 32 * nanoseconds time values for very long. For the 82580, SYSTIM always 33 * counts nanoseconds, but the upper 24 bits are not available. The 34 * frequency is adjusted by changing the 32 bit fractional nanoseconds 35 * register, TIMINCA. 36 * 37 * For the 82576, the SYSTIM register time unit is affect by the 38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this 39 * field are needed to provide the nominal 16 nanosecond period, 40 * leaving 19 bits for fractional nanoseconds. 41 * 42 * We scale the NIC clock cycle by a large factor so that relatively 43 * small clock corrections can be added or subtracted at each clock 44 * tick. The drawbacks of a large factor are a) that the clock 45 * register overflows more quickly (not such a big deal) and b) that 46 * the increment per tick has to fit into 24 bits. As a result we 47 * need to use a shift of 19 so we can fit a value of 16 into the 48 * TIMINCA register. 49 * 50 * 51 * SYSTIMH SYSTIML 52 * +--------------+ +---+---+------+ 53 * 82576 | 32 | | 8 | 5 | 19 | 54 * +--------------+ +---+---+------+ 55 * \________ 45 bits _______/ fract 56 * 57 * +----------+---+ +--------------+ 58 * 82580 | 24 | 8 | | 32 | 59 * +----------+---+ +--------------+ 60 * reserved \______ 40 bits _____/ 61 * 62 * 63 * The 45 bit 82576 SYSTIM overflows every 64 * 2^45 * 10^-9 / 3600 = 9.77 hours. 65 * 66 * The 40 bit 82580 SYSTIM overflows every 67 * 2^40 * 10^-9 / 60 = 18.3 minutes. 68 */ 69 70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9) 71 #define IGB_PTP_TX_TIMEOUT (HZ * 15) 72 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT) 73 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1) 74 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT) 75 #define IGB_NBITS_82580 40 76 77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); 78 79 /* SYSTIM read access for the 82576 */ 80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc) 81 { 82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 83 struct e1000_hw *hw = &igb->hw; 84 u64 val; 85 u32 lo, hi; 86 87 lo = rd32(E1000_SYSTIML); 88 hi = rd32(E1000_SYSTIMH); 89 90 val = ((u64) hi) << 32; 91 val |= lo; 92 93 return val; 94 } 95 96 /* SYSTIM read access for the 82580 */ 97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc) 98 { 99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 100 struct e1000_hw *hw = &igb->hw; 101 u32 lo, hi; 102 u64 val; 103 104 /* The timestamp latches on lowest register read. For the 82580 105 * the lowest register is SYSTIMR instead of SYSTIML. However we only 106 * need to provide nanosecond resolution, so we just ignore it. 107 */ 108 rd32(E1000_SYSTIMR); 109 lo = rd32(E1000_SYSTIML); 110 hi = rd32(E1000_SYSTIMH); 111 112 val = ((u64) hi) << 32; 113 val |= lo; 114 115 return val; 116 } 117 118 /* SYSTIM read access for I210/I211 */ 119 static void igb_ptp_read_i210(struct igb_adapter *adapter, 120 struct timespec64 *ts) 121 { 122 struct e1000_hw *hw = &adapter->hw; 123 u32 sec, nsec; 124 125 /* The timestamp latches on lowest register read. For I210/I211, the 126 * lowest register is SYSTIMR. Since we only need to provide nanosecond 127 * resolution, we can ignore it. 128 */ 129 rd32(E1000_SYSTIMR); 130 nsec = rd32(E1000_SYSTIML); 131 sec = rd32(E1000_SYSTIMH); 132 133 ts->tv_sec = sec; 134 ts->tv_nsec = nsec; 135 } 136 137 static void igb_ptp_write_i210(struct igb_adapter *adapter, 138 const struct timespec64 *ts) 139 { 140 struct e1000_hw *hw = &adapter->hw; 141 142 /* Writing the SYSTIMR register is not necessary as it only provides 143 * sub-nanosecond resolution. 144 */ 145 wr32(E1000_SYSTIML, ts->tv_nsec); 146 wr32(E1000_SYSTIMH, ts->tv_sec); 147 } 148 149 /** 150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp 151 * @adapter: board private structure 152 * @hwtstamps: timestamp structure to update 153 * @systim: unsigned 64bit system time value. 154 * 155 * We need to convert the system time value stored in the RX/TXSTMP registers 156 * into a hwtstamp which can be used by the upper level timestamping functions. 157 * 158 * The 'tmreg_lock' spinlock is used to protect the consistency of the 159 * system time value. This is needed because reading the 64 bit time 160 * value involves reading two (or three) 32 bit registers. The first 161 * read latches the value. Ditto for writing. 162 * 163 * In addition, here have extended the system time with an overflow 164 * counter in software. 165 **/ 166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, 167 struct skb_shared_hwtstamps *hwtstamps, 168 u64 systim) 169 { 170 unsigned long flags; 171 u64 ns; 172 173 switch (adapter->hw.mac.type) { 174 case e1000_82576: 175 case e1000_82580: 176 case e1000_i354: 177 case e1000_i350: 178 spin_lock_irqsave(&adapter->tmreg_lock, flags); 179 180 ns = timecounter_cyc2time(&adapter->tc, systim); 181 182 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 183 184 memset(hwtstamps, 0, sizeof(*hwtstamps)); 185 hwtstamps->hwtstamp = ns_to_ktime(ns); 186 break; 187 case e1000_i210: 188 case e1000_i211: 189 memset(hwtstamps, 0, sizeof(*hwtstamps)); 190 /* Upper 32 bits contain s, lower 32 bits contain ns. */ 191 hwtstamps->hwtstamp = ktime_set(systim >> 32, 192 systim & 0xFFFFFFFF); 193 break; 194 default: 195 break; 196 } 197 } 198 199 /* PTP clock operations */ 200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb) 201 { 202 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 203 ptp_caps); 204 struct e1000_hw *hw = &igb->hw; 205 int neg_adj = 0; 206 u64 rate; 207 u32 incvalue; 208 209 if (ppb < 0) { 210 neg_adj = 1; 211 ppb = -ppb; 212 } 213 rate = ppb; 214 rate <<= 14; 215 rate = div_u64(rate, 1953125); 216 217 incvalue = 16 << IGB_82576_TSYNC_SHIFT; 218 219 if (neg_adj) 220 incvalue -= rate; 221 else 222 incvalue += rate; 223 224 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); 225 226 return 0; 227 } 228 229 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb) 230 { 231 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 232 ptp_caps); 233 struct e1000_hw *hw = &igb->hw; 234 int neg_adj = 0; 235 u64 rate; 236 u32 inca; 237 238 if (ppb < 0) { 239 neg_adj = 1; 240 ppb = -ppb; 241 } 242 rate = ppb; 243 rate <<= 26; 244 rate = div_u64(rate, 1953125); 245 246 inca = rate & INCVALUE_MASK; 247 if (neg_adj) 248 inca |= ISGN; 249 250 wr32(E1000_TIMINCA, inca); 251 252 return 0; 253 } 254 255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) 256 { 257 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 258 ptp_caps); 259 unsigned long flags; 260 261 spin_lock_irqsave(&igb->tmreg_lock, flags); 262 timecounter_adjtime(&igb->tc, delta); 263 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 264 265 return 0; 266 } 267 268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) 269 { 270 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 271 ptp_caps); 272 unsigned long flags; 273 struct timespec64 now, then = ns_to_timespec64(delta); 274 275 spin_lock_irqsave(&igb->tmreg_lock, flags); 276 277 igb_ptp_read_i210(igb, &now); 278 now = timespec64_add(now, then); 279 igb_ptp_write_i210(igb, (const struct timespec64 *)&now); 280 281 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 282 283 return 0; 284 } 285 286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp, 287 struct timespec64 *ts) 288 { 289 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 290 ptp_caps); 291 unsigned long flags; 292 u64 ns; 293 294 spin_lock_irqsave(&igb->tmreg_lock, flags); 295 296 ns = timecounter_read(&igb->tc); 297 298 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 299 300 *ts = ns_to_timespec64(ns); 301 302 return 0; 303 } 304 305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp, 306 struct timespec64 *ts) 307 { 308 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 309 ptp_caps); 310 unsigned long flags; 311 312 spin_lock_irqsave(&igb->tmreg_lock, flags); 313 314 igb_ptp_read_i210(igb, ts); 315 316 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 317 318 return 0; 319 } 320 321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, 322 const struct timespec64 *ts) 323 { 324 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 325 ptp_caps); 326 unsigned long flags; 327 u64 ns; 328 329 ns = timespec64_to_ns(ts); 330 331 spin_lock_irqsave(&igb->tmreg_lock, flags); 332 333 timecounter_init(&igb->tc, &igb->cc, ns); 334 335 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 336 337 return 0; 338 } 339 340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, 341 const struct timespec64 *ts) 342 { 343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 344 ptp_caps); 345 unsigned long flags; 346 347 spin_lock_irqsave(&igb->tmreg_lock, flags); 348 349 igb_ptp_write_i210(igb, ts); 350 351 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 352 353 return 0; 354 } 355 356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) 357 { 358 u32 *ptr = pin < 2 ? ctrl : ctrl_ext; 359 static const u32 mask[IGB_N_SDP] = { 360 E1000_CTRL_SDP0_DIR, 361 E1000_CTRL_SDP1_DIR, 362 E1000_CTRL_EXT_SDP2_DIR, 363 E1000_CTRL_EXT_SDP3_DIR, 364 }; 365 366 if (input) 367 *ptr &= ~mask[pin]; 368 else 369 *ptr |= mask[pin]; 370 } 371 372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin) 373 { 374 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 375 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 376 }; 377 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 378 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 379 }; 380 static const u32 ts_sdp_en[IGB_N_SDP] = { 381 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 382 }; 383 struct e1000_hw *hw = &igb->hw; 384 u32 ctrl, ctrl_ext, tssdp = 0; 385 386 ctrl = rd32(E1000_CTRL); 387 ctrl_ext = rd32(E1000_CTRL_EXT); 388 tssdp = rd32(E1000_TSSDP); 389 390 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext); 391 392 /* Make sure this pin is not enabled as an output. */ 393 tssdp &= ~ts_sdp_en[pin]; 394 395 if (chan == 1) { 396 tssdp &= ~AUX1_SEL_SDP3; 397 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN; 398 } else { 399 tssdp &= ~AUX0_SEL_SDP3; 400 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN; 401 } 402 403 wr32(E1000_TSSDP, tssdp); 404 wr32(E1000_CTRL, ctrl); 405 wr32(E1000_CTRL_EXT, ctrl_ext); 406 } 407 408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq) 409 { 410 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 411 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 412 }; 413 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 414 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 415 }; 416 static const u32 ts_sdp_en[IGB_N_SDP] = { 417 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 418 }; 419 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = { 420 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0, 421 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0, 422 }; 423 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = { 424 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1, 425 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1, 426 }; 427 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = { 428 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0, 429 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0, 430 }; 431 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = { 432 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 433 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 434 }; 435 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = { 436 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 437 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 438 }; 439 struct e1000_hw *hw = &igb->hw; 440 u32 ctrl, ctrl_ext, tssdp = 0; 441 442 ctrl = rd32(E1000_CTRL); 443 ctrl_ext = rd32(E1000_CTRL_EXT); 444 tssdp = rd32(E1000_TSSDP); 445 446 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext); 447 448 /* Make sure this pin is not enabled as an input. */ 449 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin]) 450 tssdp &= ~AUX0_TS_SDP_EN; 451 452 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin]) 453 tssdp &= ~AUX1_TS_SDP_EN; 454 455 tssdp &= ~ts_sdp_sel_clr[pin]; 456 if (freq) { 457 if (chan == 1) 458 tssdp |= ts_sdp_sel_fc1[pin]; 459 else 460 tssdp |= ts_sdp_sel_fc0[pin]; 461 } else { 462 if (chan == 1) 463 tssdp |= ts_sdp_sel_tt1[pin]; 464 else 465 tssdp |= ts_sdp_sel_tt0[pin]; 466 } 467 tssdp |= ts_sdp_en[pin]; 468 469 wr32(E1000_TSSDP, tssdp); 470 wr32(E1000_CTRL, ctrl); 471 wr32(E1000_CTRL_EXT, ctrl_ext); 472 } 473 474 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp, 475 struct ptp_clock_request *rq, int on) 476 { 477 struct igb_adapter *igb = 478 container_of(ptp, struct igb_adapter, ptp_caps); 479 struct e1000_hw *hw = &igb->hw; 480 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; 481 unsigned long flags; 482 struct timespec ts; 483 int use_freq = 0, pin = -1; 484 s64 ns; 485 486 switch (rq->type) { 487 case PTP_CLK_REQ_EXTTS: 488 if (on) { 489 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, 490 rq->extts.index); 491 if (pin < 0) 492 return -EBUSY; 493 } 494 if (rq->extts.index == 1) { 495 tsauxc_mask = TSAUXC_EN_TS1; 496 tsim_mask = TSINTR_AUTT1; 497 } else { 498 tsauxc_mask = TSAUXC_EN_TS0; 499 tsim_mask = TSINTR_AUTT0; 500 } 501 spin_lock_irqsave(&igb->tmreg_lock, flags); 502 tsauxc = rd32(E1000_TSAUXC); 503 tsim = rd32(E1000_TSIM); 504 if (on) { 505 igb_pin_extts(igb, rq->extts.index, pin); 506 tsauxc |= tsauxc_mask; 507 tsim |= tsim_mask; 508 } else { 509 tsauxc &= ~tsauxc_mask; 510 tsim &= ~tsim_mask; 511 } 512 wr32(E1000_TSAUXC, tsauxc); 513 wr32(E1000_TSIM, tsim); 514 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 515 return 0; 516 517 case PTP_CLK_REQ_PEROUT: 518 if (on) { 519 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, 520 rq->perout.index); 521 if (pin < 0) 522 return -EBUSY; 523 } 524 ts.tv_sec = rq->perout.period.sec; 525 ts.tv_nsec = rq->perout.period.nsec; 526 ns = timespec_to_ns(&ts); 527 ns = ns >> 1; 528 if (on && ns <= 70000000LL) { 529 if (ns < 8LL) 530 return -EINVAL; 531 use_freq = 1; 532 } 533 ts = ns_to_timespec(ns); 534 if (rq->perout.index == 1) { 535 if (use_freq) { 536 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1; 537 tsim_mask = 0; 538 } else { 539 tsauxc_mask = TSAUXC_EN_TT1; 540 tsim_mask = TSINTR_TT1; 541 } 542 trgttiml = E1000_TRGTTIML1; 543 trgttimh = E1000_TRGTTIMH1; 544 freqout = E1000_FREQOUT1; 545 } else { 546 if (use_freq) { 547 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0; 548 tsim_mask = 0; 549 } else { 550 tsauxc_mask = TSAUXC_EN_TT0; 551 tsim_mask = TSINTR_TT0; 552 } 553 trgttiml = E1000_TRGTTIML0; 554 trgttimh = E1000_TRGTTIMH0; 555 freqout = E1000_FREQOUT0; 556 } 557 spin_lock_irqsave(&igb->tmreg_lock, flags); 558 tsauxc = rd32(E1000_TSAUXC); 559 tsim = rd32(E1000_TSIM); 560 if (rq->perout.index == 1) { 561 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1); 562 tsim &= ~TSINTR_TT1; 563 } else { 564 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0); 565 tsim &= ~TSINTR_TT0; 566 } 567 if (on) { 568 int i = rq->perout.index; 569 igb_pin_perout(igb, i, pin, use_freq); 570 igb->perout[i].start.tv_sec = rq->perout.start.sec; 571 igb->perout[i].start.tv_nsec = rq->perout.start.nsec; 572 igb->perout[i].period.tv_sec = ts.tv_sec; 573 igb->perout[i].period.tv_nsec = ts.tv_nsec; 574 wr32(trgttimh, rq->perout.start.sec); 575 wr32(trgttiml, rq->perout.start.nsec); 576 if (use_freq) 577 wr32(freqout, ns); 578 tsauxc |= tsauxc_mask; 579 tsim |= tsim_mask; 580 } 581 wr32(E1000_TSAUXC, tsauxc); 582 wr32(E1000_TSIM, tsim); 583 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 584 return 0; 585 586 case PTP_CLK_REQ_PPS: 587 spin_lock_irqsave(&igb->tmreg_lock, flags); 588 tsim = rd32(E1000_TSIM); 589 if (on) 590 tsim |= TSINTR_SYS_WRAP; 591 else 592 tsim &= ~TSINTR_SYS_WRAP; 593 wr32(E1000_TSIM, tsim); 594 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 595 return 0; 596 } 597 598 return -EOPNOTSUPP; 599 } 600 601 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp, 602 struct ptp_clock_request *rq, int on) 603 { 604 return -EOPNOTSUPP; 605 } 606 607 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, 608 enum ptp_pin_function func, unsigned int chan) 609 { 610 switch (func) { 611 case PTP_PF_NONE: 612 case PTP_PF_EXTTS: 613 case PTP_PF_PEROUT: 614 break; 615 case PTP_PF_PHYSYNC: 616 return -1; 617 } 618 return 0; 619 } 620 621 /** 622 * igb_ptp_tx_work 623 * @work: pointer to work struct 624 * 625 * This work function polls the TSYNCTXCTL valid bit to determine when a 626 * timestamp has been taken for the current stored skb. 627 **/ 628 static void igb_ptp_tx_work(struct work_struct *work) 629 { 630 struct igb_adapter *adapter = container_of(work, struct igb_adapter, 631 ptp_tx_work); 632 struct e1000_hw *hw = &adapter->hw; 633 u32 tsynctxctl; 634 635 if (!adapter->ptp_tx_skb) 636 return; 637 638 if (time_is_before_jiffies(adapter->ptp_tx_start + 639 IGB_PTP_TX_TIMEOUT)) { 640 dev_kfree_skb_any(adapter->ptp_tx_skb); 641 adapter->ptp_tx_skb = NULL; 642 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 643 adapter->tx_hwtstamp_timeouts++; 644 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 645 return; 646 } 647 648 tsynctxctl = rd32(E1000_TSYNCTXCTL); 649 if (tsynctxctl & E1000_TSYNCTXCTL_VALID) 650 igb_ptp_tx_hwtstamp(adapter); 651 else 652 /* reschedule to check later */ 653 schedule_work(&adapter->ptp_tx_work); 654 } 655 656 static void igb_ptp_overflow_check(struct work_struct *work) 657 { 658 struct igb_adapter *igb = 659 container_of(work, struct igb_adapter, ptp_overflow_work.work); 660 struct timespec64 ts; 661 662 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts); 663 664 pr_debug("igb overflow check at %lld.%09lu\n", 665 (long long) ts.tv_sec, ts.tv_nsec); 666 667 schedule_delayed_work(&igb->ptp_overflow_work, 668 IGB_SYSTIM_OVERFLOW_PERIOD); 669 } 670 671 /** 672 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched 673 * @adapter: private network adapter structure 674 * 675 * This watchdog task is scheduled to detect error case where hardware has 676 * dropped an Rx packet that was timestamped when the ring is full. The 677 * particular error is rare but leaves the device in a state unable to timestamp 678 * any future packets. 679 **/ 680 void igb_ptp_rx_hang(struct igb_adapter *adapter) 681 { 682 struct e1000_hw *hw = &adapter->hw; 683 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); 684 unsigned long rx_event; 685 686 if (hw->mac.type != e1000_82576) 687 return; 688 689 /* If we don't have a valid timestamp in the registers, just update the 690 * timeout counter and exit 691 */ 692 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { 693 adapter->last_rx_ptp_check = jiffies; 694 return; 695 } 696 697 /* Determine the most recent watchdog or rx_timestamp event */ 698 rx_event = adapter->last_rx_ptp_check; 699 if (time_after(adapter->last_rx_timestamp, rx_event)) 700 rx_event = adapter->last_rx_timestamp; 701 702 /* Only need to read the high RXSTMP register to clear the lock */ 703 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 704 rd32(E1000_RXSTMPH); 705 adapter->last_rx_ptp_check = jiffies; 706 adapter->rx_hwtstamp_cleared++; 707 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n"); 708 } 709 } 710 711 /** 712 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp 713 * @adapter: Board private structure. 714 * 715 * If we were asked to do hardware stamping and such a time stamp is 716 * available, then it must have been for this skb here because we only 717 * allow only one such packet into the queue. 718 **/ 719 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) 720 { 721 struct e1000_hw *hw = &adapter->hw; 722 struct skb_shared_hwtstamps shhwtstamps; 723 u64 regval; 724 725 regval = rd32(E1000_TXSTMPL); 726 regval |= (u64)rd32(E1000_TXSTMPH) << 32; 727 728 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); 729 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps); 730 dev_kfree_skb_any(adapter->ptp_tx_skb); 731 adapter->ptp_tx_skb = NULL; 732 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 733 } 734 735 /** 736 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp 737 * @q_vector: Pointer to interrupt specific structure 738 * @va: Pointer to address containing Rx buffer 739 * @skb: Buffer containing timestamp and packet 740 * 741 * This function is meant to retrieve a timestamp from the first buffer of an 742 * incoming frame. The value is stored in little endian format starting on 743 * byte 8. 744 **/ 745 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, 746 unsigned char *va, 747 struct sk_buff *skb) 748 { 749 __le64 *regval = (__le64 *)va; 750 751 /* The timestamp is recorded in little endian format. 752 * DWORD: 0 1 2 3 753 * Field: Reserved Reserved SYSTIML SYSTIMH 754 */ 755 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), 756 le64_to_cpu(regval[1])); 757 } 758 759 /** 760 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register 761 * @q_vector: Pointer to interrupt specific structure 762 * @skb: Buffer containing timestamp and packet 763 * 764 * This function is meant to retrieve a timestamp from the internal registers 765 * of the adapter and store it in the skb. 766 **/ 767 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, 768 struct sk_buff *skb) 769 { 770 struct igb_adapter *adapter = q_vector->adapter; 771 struct e1000_hw *hw = &adapter->hw; 772 u64 regval; 773 774 /* If this bit is set, then the RX registers contain the time stamp. No 775 * other packet will be time stamped until we read these registers, so 776 * read the registers to make them available again. Because only one 777 * packet can be time stamped at a time, we know that the register 778 * values must belong to this one here and therefore we don't need to 779 * compare any of the additional attributes stored for it. 780 * 781 * If nothing went wrong, then it should have a shared tx_flags that we 782 * can turn into a skb_shared_hwtstamps. 783 */ 784 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 785 return; 786 787 regval = rd32(E1000_RXSTMPL); 788 regval |= (u64)rd32(E1000_RXSTMPH) << 32; 789 790 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 791 792 /* Update the last_rx_timestamp timer in order to enable watchdog check 793 * for error case of latched timestamp on a dropped packet. 794 */ 795 adapter->last_rx_timestamp = jiffies; 796 } 797 798 /** 799 * igb_ptp_get_ts_config - get hardware time stamping config 800 * @netdev: 801 * @ifreq: 802 * 803 * Get the hwtstamp_config settings to return to the user. Rather than attempt 804 * to deconstruct the settings from the registers, just return a shadow copy 805 * of the last known settings. 806 **/ 807 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) 808 { 809 struct igb_adapter *adapter = netdev_priv(netdev); 810 struct hwtstamp_config *config = &adapter->tstamp_config; 811 812 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 813 -EFAULT : 0; 814 } 815 816 /** 817 * igb_ptp_set_timestamp_mode - setup hardware for timestamping 818 * @adapter: networking device structure 819 * @config: hwtstamp configuration 820 * 821 * Outgoing time stamping can be enabled and disabled. Play nice and 822 * disable it when requested, although it shouldn't case any overhead 823 * when no packet needs it. At most one packet in the queue may be 824 * marked for time stamping, otherwise it would be impossible to tell 825 * for sure to which packet the hardware time stamp belongs. 826 * 827 * Incoming time stamping has to be configured via the hardware 828 * filters. Not all combinations are supported, in particular event 829 * type has to be specified. Matching the kind of event packet is 830 * not supported, with the exception of "all V2 events regardless of 831 * level 2 or 4". 832 */ 833 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter, 834 struct hwtstamp_config *config) 835 { 836 struct e1000_hw *hw = &adapter->hw; 837 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 838 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 839 u32 tsync_rx_cfg = 0; 840 bool is_l4 = false; 841 bool is_l2 = false; 842 u32 regval; 843 844 /* reserved for future extensions */ 845 if (config->flags) 846 return -EINVAL; 847 848 switch (config->tx_type) { 849 case HWTSTAMP_TX_OFF: 850 tsync_tx_ctl = 0; 851 case HWTSTAMP_TX_ON: 852 break; 853 default: 854 return -ERANGE; 855 } 856 857 switch (config->rx_filter) { 858 case HWTSTAMP_FILTER_NONE: 859 tsync_rx_ctl = 0; 860 break; 861 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 862 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 863 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; 864 is_l4 = true; 865 break; 866 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 867 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 868 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; 869 is_l4 = true; 870 break; 871 case HWTSTAMP_FILTER_PTP_V2_EVENT: 872 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 873 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 874 case HWTSTAMP_FILTER_PTP_V2_SYNC: 875 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 876 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 877 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 878 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 879 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 880 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 881 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 882 is_l2 = true; 883 is_l4 = true; 884 break; 885 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 886 case HWTSTAMP_FILTER_ALL: 887 /* 82576 cannot timestamp all packets, which it needs to do to 888 * support both V1 Sync and Delay_Req messages 889 */ 890 if (hw->mac.type != e1000_82576) { 891 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 892 config->rx_filter = HWTSTAMP_FILTER_ALL; 893 break; 894 } 895 /* fall through */ 896 default: 897 config->rx_filter = HWTSTAMP_FILTER_NONE; 898 return -ERANGE; 899 } 900 901 if (hw->mac.type == e1000_82575) { 902 if (tsync_rx_ctl | tsync_tx_ctl) 903 return -EINVAL; 904 return 0; 905 } 906 907 /* Per-packet timestamping only works if all packets are 908 * timestamped, so enable timestamping in all packets as 909 * long as one Rx filter was configured. 910 */ 911 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { 912 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 913 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 914 config->rx_filter = HWTSTAMP_FILTER_ALL; 915 is_l2 = true; 916 is_l4 = true; 917 918 if ((hw->mac.type == e1000_i210) || 919 (hw->mac.type == e1000_i211)) { 920 regval = rd32(E1000_RXPBS); 921 regval |= E1000_RXPBS_CFG_TS_EN; 922 wr32(E1000_RXPBS, regval); 923 } 924 } 925 926 /* enable/disable TX */ 927 regval = rd32(E1000_TSYNCTXCTL); 928 regval &= ~E1000_TSYNCTXCTL_ENABLED; 929 regval |= tsync_tx_ctl; 930 wr32(E1000_TSYNCTXCTL, regval); 931 932 /* enable/disable RX */ 933 regval = rd32(E1000_TSYNCRXCTL); 934 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 935 regval |= tsync_rx_ctl; 936 wr32(E1000_TSYNCRXCTL, regval); 937 938 /* define which PTP packets are time stamped */ 939 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); 940 941 /* define ethertype filter for timestamped packets */ 942 if (is_l2) 943 wr32(E1000_ETQF(3), 944 (E1000_ETQF_FILTER_ENABLE | /* enable filter */ 945 E1000_ETQF_1588 | /* enable timestamping */ 946 ETH_P_1588)); /* 1588 eth protocol type */ 947 else 948 wr32(E1000_ETQF(3), 0); 949 950 /* L4 Queue Filter[3]: filter by destination port and protocol */ 951 if (is_l4) { 952 u32 ftqf = (IPPROTO_UDP /* UDP */ 953 | E1000_FTQF_VF_BP /* VF not compared */ 954 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ 955 | E1000_FTQF_MASK); /* mask all inputs */ 956 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ 957 958 wr32(E1000_IMIR(3), htons(PTP_EV_PORT)); 959 wr32(E1000_IMIREXT(3), 960 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); 961 if (hw->mac.type == e1000_82576) { 962 /* enable source port check */ 963 wr32(E1000_SPQF(3), htons(PTP_EV_PORT)); 964 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; 965 } 966 wr32(E1000_FTQF(3), ftqf); 967 } else { 968 wr32(E1000_FTQF(3), E1000_FTQF_MASK); 969 } 970 wrfl(); 971 972 /* clear TX/RX time stamp registers, just to be sure */ 973 regval = rd32(E1000_TXSTMPL); 974 regval = rd32(E1000_TXSTMPH); 975 regval = rd32(E1000_RXSTMPL); 976 regval = rd32(E1000_RXSTMPH); 977 978 return 0; 979 } 980 981 /** 982 * igb_ptp_set_ts_config - set hardware time stamping config 983 * @netdev: 984 * @ifreq: 985 * 986 **/ 987 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) 988 { 989 struct igb_adapter *adapter = netdev_priv(netdev); 990 struct hwtstamp_config config; 991 int err; 992 993 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 994 return -EFAULT; 995 996 err = igb_ptp_set_timestamp_mode(adapter, &config); 997 if (err) 998 return err; 999 1000 /* save these settings for future reference */ 1001 memcpy(&adapter->tstamp_config, &config, 1002 sizeof(adapter->tstamp_config)); 1003 1004 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1005 -EFAULT : 0; 1006 } 1007 1008 void igb_ptp_init(struct igb_adapter *adapter) 1009 { 1010 struct e1000_hw *hw = &adapter->hw; 1011 struct net_device *netdev = adapter->netdev; 1012 int i; 1013 1014 switch (hw->mac.type) { 1015 case e1000_82576: 1016 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1017 adapter->ptp_caps.owner = THIS_MODULE; 1018 adapter->ptp_caps.max_adj = 999999881; 1019 adapter->ptp_caps.n_ext_ts = 0; 1020 adapter->ptp_caps.pps = 0; 1021 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576; 1022 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1023 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576; 1024 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1025 adapter->ptp_caps.enable = igb_ptp_feature_enable; 1026 adapter->cc.read = igb_ptp_read_82576; 1027 adapter->cc.mask = CYCLECOUNTER_MASK(64); 1028 adapter->cc.mult = 1; 1029 adapter->cc.shift = IGB_82576_TSYNC_SHIFT; 1030 /* Dial the nominal frequency. */ 1031 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); 1032 break; 1033 case e1000_82580: 1034 case e1000_i354: 1035 case e1000_i350: 1036 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1037 adapter->ptp_caps.owner = THIS_MODULE; 1038 adapter->ptp_caps.max_adj = 62499999; 1039 adapter->ptp_caps.n_ext_ts = 0; 1040 adapter->ptp_caps.pps = 0; 1041 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; 1042 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1043 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576; 1044 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1045 adapter->ptp_caps.enable = igb_ptp_feature_enable; 1046 adapter->cc.read = igb_ptp_read_82580; 1047 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580); 1048 adapter->cc.mult = 1; 1049 adapter->cc.shift = 0; 1050 /* Enable the timer functions by clearing bit 31. */ 1051 wr32(E1000_TSAUXC, 0x0); 1052 break; 1053 case e1000_i210: 1054 case e1000_i211: 1055 for (i = 0; i < IGB_N_SDP; i++) { 1056 struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; 1057 1058 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); 1059 ppd->index = i; 1060 ppd->func = PTP_PF_NONE; 1061 } 1062 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1063 adapter->ptp_caps.owner = THIS_MODULE; 1064 adapter->ptp_caps.max_adj = 62499999; 1065 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; 1066 adapter->ptp_caps.n_per_out = IGB_N_PEROUT; 1067 adapter->ptp_caps.n_pins = IGB_N_SDP; 1068 adapter->ptp_caps.pps = 1; 1069 adapter->ptp_caps.pin_config = adapter->sdp_config; 1070 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; 1071 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; 1072 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210; 1073 adapter->ptp_caps.settime64 = igb_ptp_settime_i210; 1074 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210; 1075 adapter->ptp_caps.verify = igb_ptp_verify_pin; 1076 /* Enable the timer functions by clearing bit 31. */ 1077 wr32(E1000_TSAUXC, 0x0); 1078 break; 1079 default: 1080 adapter->ptp_clock = NULL; 1081 return; 1082 } 1083 1084 wrfl(); 1085 1086 spin_lock_init(&adapter->tmreg_lock); 1087 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); 1088 1089 /* Initialize the clock and overflow work for devices that need it. */ 1090 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { 1091 struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); 1092 1093 igb_ptp_settime_i210(&adapter->ptp_caps, &ts); 1094 } else { 1095 timecounter_init(&adapter->tc, &adapter->cc, 1096 ktime_to_ns(ktime_get_real())); 1097 1098 INIT_DELAYED_WORK(&adapter->ptp_overflow_work, 1099 igb_ptp_overflow_check); 1100 1101 schedule_delayed_work(&adapter->ptp_overflow_work, 1102 IGB_SYSTIM_OVERFLOW_PERIOD); 1103 } 1104 1105 /* Initialize the time sync interrupts for devices that support it. */ 1106 if (hw->mac.type >= e1000_82580) { 1107 wr32(E1000_TSIM, TSYNC_INTERRUPTS); 1108 wr32(E1000_IMS, E1000_IMS_TS); 1109 } 1110 1111 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1112 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1113 1114 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1115 &adapter->pdev->dev); 1116 if (IS_ERR(adapter->ptp_clock)) { 1117 adapter->ptp_clock = NULL; 1118 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); 1119 } else { 1120 dev_info(&adapter->pdev->dev, "added PHC on %s\n", 1121 adapter->netdev->name); 1122 adapter->flags |= IGB_FLAG_PTP; 1123 } 1124 } 1125 1126 /** 1127 * igb_ptp_stop - Disable PTP device and stop the overflow check. 1128 * @adapter: Board private structure. 1129 * 1130 * This function stops the PTP support and cancels the delayed work. 1131 **/ 1132 void igb_ptp_stop(struct igb_adapter *adapter) 1133 { 1134 switch (adapter->hw.mac.type) { 1135 case e1000_82576: 1136 case e1000_82580: 1137 case e1000_i354: 1138 case e1000_i350: 1139 cancel_delayed_work_sync(&adapter->ptp_overflow_work); 1140 break; 1141 case e1000_i210: 1142 case e1000_i211: 1143 /* No delayed work to cancel. */ 1144 break; 1145 default: 1146 return; 1147 } 1148 1149 cancel_work_sync(&adapter->ptp_tx_work); 1150 if (adapter->ptp_tx_skb) { 1151 dev_kfree_skb_any(adapter->ptp_tx_skb); 1152 adapter->ptp_tx_skb = NULL; 1153 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 1154 } 1155 1156 if (adapter->ptp_clock) { 1157 ptp_clock_unregister(adapter->ptp_clock); 1158 dev_info(&adapter->pdev->dev, "removed PHC on %s\n", 1159 adapter->netdev->name); 1160 adapter->flags &= ~IGB_FLAG_PTP; 1161 } 1162 } 1163 1164 /** 1165 * igb_ptp_reset - Re-enable the adapter for PTP following a reset. 1166 * @adapter: Board private structure. 1167 * 1168 * This function handles the reset work required to re-enable the PTP device. 1169 **/ 1170 void igb_ptp_reset(struct igb_adapter *adapter) 1171 { 1172 struct e1000_hw *hw = &adapter->hw; 1173 unsigned long flags; 1174 1175 if (!(adapter->flags & IGB_FLAG_PTP)) 1176 return; 1177 1178 /* reset the tstamp_config */ 1179 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1180 1181 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1182 1183 switch (adapter->hw.mac.type) { 1184 case e1000_82576: 1185 /* Dial the nominal frequency. */ 1186 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); 1187 break; 1188 case e1000_82580: 1189 case e1000_i354: 1190 case e1000_i350: 1191 case e1000_i210: 1192 case e1000_i211: 1193 wr32(E1000_TSAUXC, 0x0); 1194 wr32(E1000_TSSDP, 0x0); 1195 wr32(E1000_TSIM, TSYNC_INTERRUPTS); 1196 wr32(E1000_IMS, E1000_IMS_TS); 1197 break; 1198 default: 1199 /* No work to do. */ 1200 goto out; 1201 } 1202 1203 /* Re-initialize the timer. */ 1204 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { 1205 struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); 1206 1207 igb_ptp_write_i210(adapter, &ts); 1208 } else { 1209 timecounter_init(&adapter->tc, &adapter->cc, 1210 ktime_to_ns(ktime_get_real())); 1211 } 1212 out: 1213 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1214 } 1215