1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */ 3 4 #include <linux/module.h> 5 #include <linux/device.h> 6 #include <linux/pci.h> 7 #include <linux/ptp_classify.h> 8 9 #include "igb.h" 10 11 #define INCVALUE_MASK 0x7fffffff 12 #define ISGN 0x80000000 13 14 /* The 82580 timesync updates the system timer every 8ns by 8ns, 15 * and this update value cannot be reprogrammed. 16 * 17 * Neither the 82576 nor the 82580 offer registers wide enough to hold 18 * nanoseconds time values for very long. For the 82580, SYSTIM always 19 * counts nanoseconds, but the upper 24 bits are not available. The 20 * frequency is adjusted by changing the 32 bit fractional nanoseconds 21 * register, TIMINCA. 22 * 23 * For the 82576, the SYSTIM register time unit is affect by the 24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this 25 * field are needed to provide the nominal 16 nanosecond period, 26 * leaving 19 bits for fractional nanoseconds. 27 * 28 * We scale the NIC clock cycle by a large factor so that relatively 29 * small clock corrections can be added or subtracted at each clock 30 * tick. The drawbacks of a large factor are a) that the clock 31 * register overflows more quickly (not such a big deal) and b) that 32 * the increment per tick has to fit into 24 bits. As a result we 33 * need to use a shift of 19 so we can fit a value of 16 into the 34 * TIMINCA register. 35 * 36 * 37 * SYSTIMH SYSTIML 38 * +--------------+ +---+---+------+ 39 * 82576 | 32 | | 8 | 5 | 19 | 40 * +--------------+ +---+---+------+ 41 * \________ 45 bits _______/ fract 42 * 43 * +----------+---+ +--------------+ 44 * 82580 | 24 | 8 | | 32 | 45 * +----------+---+ +--------------+ 46 * reserved \______ 40 bits _____/ 47 * 48 * 49 * The 45 bit 82576 SYSTIM overflows every 50 * 2^45 * 10^-9 / 3600 = 9.77 hours. 51 * 52 * The 40 bit 82580 SYSTIM overflows every 53 * 2^40 * 10^-9 / 60 = 18.3 minutes. 54 * 55 * SYSTIM is converted to real time using a timecounter. As 56 * timecounter_cyc2time() allows old timestamps, the timecounter needs 57 * to be updated at least once per half of the SYSTIM interval. 58 * Scheduling of delayed work is not very accurate, and also the NIC 59 * clock can be adjusted to run up to 6% faster and the system clock 60 * up to 10% slower, so we aim for 6 minutes to be sure the actual 61 * interval in the NIC time is shorter than 9.16 minutes. 62 */ 63 64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6) 65 #define IGB_PTP_TX_TIMEOUT (HZ * 15) 66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT) 67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0) 68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT) 69 #define IGB_NBITS_82580 40 70 #define IGB_82580_BASE_PERIOD 0x800000000 71 72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); 73 static void igb_ptp_sdp_init(struct igb_adapter *adapter); 74 75 /* SYSTIM read access for the 82576 */ 76 static u64 igb_ptp_read_82576(const struct cyclecounter *cc) 77 { 78 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 79 struct e1000_hw *hw = &igb->hw; 80 u64 val; 81 u32 lo, hi; 82 83 lo = rd32(E1000_SYSTIML); 84 hi = rd32(E1000_SYSTIMH); 85 86 val = ((u64) hi) << 32; 87 val |= lo; 88 89 return val; 90 } 91 92 /* SYSTIM read access for the 82580 */ 93 static u64 igb_ptp_read_82580(const struct cyclecounter *cc) 94 { 95 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 96 struct e1000_hw *hw = &igb->hw; 97 u32 lo, hi; 98 u64 val; 99 100 /* The timestamp latches on lowest register read. For the 82580 101 * the lowest register is SYSTIMR instead of SYSTIML. However we only 102 * need to provide nanosecond resolution, so we just ignore it. 103 */ 104 rd32(E1000_SYSTIMR); 105 lo = rd32(E1000_SYSTIML); 106 hi = rd32(E1000_SYSTIMH); 107 108 val = ((u64) hi) << 32; 109 val |= lo; 110 111 return val; 112 } 113 114 /* SYSTIM read access for I210/I211 */ 115 static void igb_ptp_read_i210(struct igb_adapter *adapter, 116 struct timespec64 *ts) 117 { 118 struct e1000_hw *hw = &adapter->hw; 119 u32 sec, nsec; 120 121 /* The timestamp latches on lowest register read. For I210/I211, the 122 * lowest register is SYSTIMR. Since we only need to provide nanosecond 123 * resolution, we can ignore it. 124 */ 125 rd32(E1000_SYSTIMR); 126 nsec = rd32(E1000_SYSTIML); 127 sec = rd32(E1000_SYSTIMH); 128 129 ts->tv_sec = sec; 130 ts->tv_nsec = nsec; 131 } 132 133 static void igb_ptp_write_i210(struct igb_adapter *adapter, 134 const struct timespec64 *ts) 135 { 136 struct e1000_hw *hw = &adapter->hw; 137 138 /* Writing the SYSTIMR register is not necessary as it only provides 139 * sub-nanosecond resolution. 140 */ 141 wr32(E1000_SYSTIML, ts->tv_nsec); 142 wr32(E1000_SYSTIMH, (u32)ts->tv_sec); 143 } 144 145 /** 146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp 147 * @adapter: board private structure 148 * @hwtstamps: timestamp structure to update 149 * @systim: unsigned 64bit system time value. 150 * 151 * We need to convert the system time value stored in the RX/TXSTMP registers 152 * into a hwtstamp which can be used by the upper level timestamping functions. 153 * 154 * The 'tmreg_lock' spinlock is used to protect the consistency of the 155 * system time value. This is needed because reading the 64 bit time 156 * value involves reading two (or three) 32 bit registers. The first 157 * read latches the value. Ditto for writing. 158 * 159 * In addition, here have extended the system time with an overflow 160 * counter in software. 161 **/ 162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, 163 struct skb_shared_hwtstamps *hwtstamps, 164 u64 systim) 165 { 166 unsigned long flags; 167 u64 ns; 168 169 memset(hwtstamps, 0, sizeof(*hwtstamps)); 170 171 switch (adapter->hw.mac.type) { 172 case e1000_82576: 173 case e1000_82580: 174 case e1000_i354: 175 case e1000_i350: 176 spin_lock_irqsave(&adapter->tmreg_lock, flags); 177 ns = timecounter_cyc2time(&adapter->tc, systim); 178 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 179 180 hwtstamps->hwtstamp = ns_to_ktime(ns); 181 break; 182 case e1000_i210: 183 case e1000_i211: 184 /* Upper 32 bits contain s, lower 32 bits contain ns. */ 185 hwtstamps->hwtstamp = ktime_set(systim >> 32, 186 systim & 0xFFFFFFFF); 187 break; 188 default: 189 break; 190 } 191 } 192 193 /* PTP clock operations */ 194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm) 195 { 196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 197 ptp_caps); 198 struct e1000_hw *hw = &igb->hw; 199 u64 incvalue; 200 201 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm); 202 203 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); 204 205 return 0; 206 } 207 208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm) 209 { 210 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 211 ptp_caps); 212 struct e1000_hw *hw = &igb->hw; 213 bool neg_adj; 214 u64 rate; 215 u32 inca; 216 217 neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate); 218 219 inca = rate & INCVALUE_MASK; 220 if (neg_adj) 221 inca |= ISGN; 222 223 wr32(E1000_TIMINCA, inca); 224 225 return 0; 226 } 227 228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) 229 { 230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 231 ptp_caps); 232 unsigned long flags; 233 234 spin_lock_irqsave(&igb->tmreg_lock, flags); 235 timecounter_adjtime(&igb->tc, delta); 236 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 237 238 return 0; 239 } 240 241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) 242 { 243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 244 ptp_caps); 245 unsigned long flags; 246 struct timespec64 now, then = ns_to_timespec64(delta); 247 248 spin_lock_irqsave(&igb->tmreg_lock, flags); 249 250 igb_ptp_read_i210(igb, &now); 251 now = timespec64_add(now, then); 252 igb_ptp_write_i210(igb, (const struct timespec64 *)&now); 253 254 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 255 256 return 0; 257 } 258 259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp, 260 struct timespec64 *ts, 261 struct ptp_system_timestamp *sts) 262 { 263 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 264 ptp_caps); 265 struct e1000_hw *hw = &igb->hw; 266 unsigned long flags; 267 u32 lo, hi; 268 u64 ns; 269 270 spin_lock_irqsave(&igb->tmreg_lock, flags); 271 272 ptp_read_system_prets(sts); 273 lo = rd32(E1000_SYSTIML); 274 ptp_read_system_postts(sts); 275 hi = rd32(E1000_SYSTIMH); 276 277 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo); 278 279 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 280 281 *ts = ns_to_timespec64(ns); 282 283 return 0; 284 } 285 286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp, 287 struct timespec64 *ts, 288 struct ptp_system_timestamp *sts) 289 { 290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 291 ptp_caps); 292 struct e1000_hw *hw = &igb->hw; 293 unsigned long flags; 294 u32 lo, hi; 295 u64 ns; 296 297 spin_lock_irqsave(&igb->tmreg_lock, flags); 298 299 ptp_read_system_prets(sts); 300 rd32(E1000_SYSTIMR); 301 ptp_read_system_postts(sts); 302 lo = rd32(E1000_SYSTIML); 303 hi = rd32(E1000_SYSTIMH); 304 305 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo); 306 307 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 308 309 *ts = ns_to_timespec64(ns); 310 311 return 0; 312 } 313 314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp, 315 struct timespec64 *ts, 316 struct ptp_system_timestamp *sts) 317 { 318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 319 ptp_caps); 320 struct e1000_hw *hw = &igb->hw; 321 unsigned long flags; 322 323 spin_lock_irqsave(&igb->tmreg_lock, flags); 324 325 ptp_read_system_prets(sts); 326 rd32(E1000_SYSTIMR); 327 ptp_read_system_postts(sts); 328 ts->tv_nsec = rd32(E1000_SYSTIML); 329 ts->tv_sec = rd32(E1000_SYSTIMH); 330 331 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 332 333 return 0; 334 } 335 336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, 337 const struct timespec64 *ts) 338 { 339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 340 ptp_caps); 341 unsigned long flags; 342 u64 ns; 343 344 ns = timespec64_to_ns(ts); 345 346 spin_lock_irqsave(&igb->tmreg_lock, flags); 347 348 timecounter_init(&igb->tc, &igb->cc, ns); 349 350 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 351 352 return 0; 353 } 354 355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, 356 const struct timespec64 *ts) 357 { 358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 359 ptp_caps); 360 unsigned long flags; 361 362 spin_lock_irqsave(&igb->tmreg_lock, flags); 363 364 igb_ptp_write_i210(igb, ts); 365 366 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 367 368 return 0; 369 } 370 371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) 372 { 373 u32 *ptr = pin < 2 ? ctrl : ctrl_ext; 374 static const u32 mask[IGB_N_SDP] = { 375 E1000_CTRL_SDP0_DIR, 376 E1000_CTRL_SDP1_DIR, 377 E1000_CTRL_EXT_SDP2_DIR, 378 E1000_CTRL_EXT_SDP3_DIR, 379 }; 380 381 if (input) 382 *ptr &= ~mask[pin]; 383 else 384 *ptr |= mask[pin]; 385 } 386 387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin) 388 { 389 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 390 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 391 }; 392 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 393 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 394 }; 395 static const u32 ts_sdp_en[IGB_N_SDP] = { 396 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 397 }; 398 struct e1000_hw *hw = &igb->hw; 399 u32 ctrl, ctrl_ext, tssdp = 0; 400 401 ctrl = rd32(E1000_CTRL); 402 ctrl_ext = rd32(E1000_CTRL_EXT); 403 tssdp = rd32(E1000_TSSDP); 404 405 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext); 406 407 /* Make sure this pin is not enabled as an output. */ 408 tssdp &= ~ts_sdp_en[pin]; 409 410 if (chan == 1) { 411 tssdp &= ~AUX1_SEL_SDP3; 412 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN; 413 } else { 414 tssdp &= ~AUX0_SEL_SDP3; 415 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN; 416 } 417 418 wr32(E1000_TSSDP, tssdp); 419 wr32(E1000_CTRL, ctrl); 420 wr32(E1000_CTRL_EXT, ctrl_ext); 421 } 422 423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq) 424 { 425 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 426 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 427 }; 428 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 429 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 430 }; 431 static const u32 ts_sdp_en[IGB_N_SDP] = { 432 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 433 }; 434 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = { 435 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0, 436 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0, 437 }; 438 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = { 439 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1, 440 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1, 441 }; 442 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = { 443 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0, 444 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0, 445 }; 446 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = { 447 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 448 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 449 }; 450 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = { 451 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 452 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 453 }; 454 struct e1000_hw *hw = &igb->hw; 455 u32 ctrl, ctrl_ext, tssdp = 0; 456 457 ctrl = rd32(E1000_CTRL); 458 ctrl_ext = rd32(E1000_CTRL_EXT); 459 tssdp = rd32(E1000_TSSDP); 460 461 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext); 462 463 /* Make sure this pin is not enabled as an input. */ 464 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin]) 465 tssdp &= ~AUX0_TS_SDP_EN; 466 467 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin]) 468 tssdp &= ~AUX1_TS_SDP_EN; 469 470 tssdp &= ~ts_sdp_sel_clr[pin]; 471 if (freq) { 472 if (chan == 1) 473 tssdp |= ts_sdp_sel_fc1[pin]; 474 else 475 tssdp |= ts_sdp_sel_fc0[pin]; 476 } else { 477 if (chan == 1) 478 tssdp |= ts_sdp_sel_tt1[pin]; 479 else 480 tssdp |= ts_sdp_sel_tt0[pin]; 481 } 482 tssdp |= ts_sdp_en[pin]; 483 484 wr32(E1000_TSSDP, tssdp); 485 wr32(E1000_CTRL, ctrl); 486 wr32(E1000_CTRL_EXT, ctrl_ext); 487 } 488 489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp, 490 struct ptp_clock_request *rq, int on) 491 { 492 struct igb_adapter *igb = 493 container_of(ptp, struct igb_adapter, ptp_caps); 494 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml, 495 systimh, level_mask, level, rem; 496 struct e1000_hw *hw = &igb->hw; 497 struct timespec64 ts, start; 498 unsigned long flags; 499 u64 systim, now; 500 int pin = -1; 501 s64 ns; 502 503 switch (rq->type) { 504 case PTP_CLK_REQ_EXTTS: 505 /* Reject requests with unsupported flags */ 506 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 507 PTP_RISING_EDGE | 508 PTP_FALLING_EDGE | 509 PTP_STRICT_FLAGS)) 510 return -EOPNOTSUPP; 511 512 if (on) { 513 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, 514 rq->extts.index); 515 if (pin < 0) 516 return -EBUSY; 517 } 518 if (rq->extts.index == 1) { 519 tsauxc_mask = TSAUXC_EN_TS1; 520 tsim_mask = TSINTR_AUTT1; 521 } else { 522 tsauxc_mask = TSAUXC_EN_TS0; 523 tsim_mask = TSINTR_AUTT0; 524 } 525 spin_lock_irqsave(&igb->tmreg_lock, flags); 526 tsauxc = rd32(E1000_TSAUXC); 527 tsim = rd32(E1000_TSIM); 528 if (on) { 529 igb_pin_extts(igb, rq->extts.index, pin); 530 tsauxc |= tsauxc_mask; 531 tsim |= tsim_mask; 532 } else { 533 tsauxc &= ~tsauxc_mask; 534 tsim &= ~tsim_mask; 535 } 536 wr32(E1000_TSAUXC, tsauxc); 537 wr32(E1000_TSIM, tsim); 538 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 539 return 0; 540 541 case PTP_CLK_REQ_PEROUT: 542 /* Reject requests with unsupported flags */ 543 if (rq->perout.flags) 544 return -EOPNOTSUPP; 545 546 if (on) { 547 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, 548 rq->perout.index); 549 if (pin < 0) 550 return -EBUSY; 551 } 552 ts.tv_sec = rq->perout.period.sec; 553 ts.tv_nsec = rq->perout.period.nsec; 554 ns = timespec64_to_ns(&ts); 555 ns = ns >> 1; 556 if (on && ns < 8LL) 557 return -EINVAL; 558 ts = ns_to_timespec64(ns); 559 if (rq->perout.index == 1) { 560 tsauxc_mask = TSAUXC_EN_TT1; 561 tsim_mask = TSINTR_TT1; 562 trgttiml = E1000_TRGTTIML1; 563 trgttimh = E1000_TRGTTIMH1; 564 } else { 565 tsauxc_mask = TSAUXC_EN_TT0; 566 tsim_mask = TSINTR_TT0; 567 trgttiml = E1000_TRGTTIML0; 568 trgttimh = E1000_TRGTTIMH0; 569 } 570 spin_lock_irqsave(&igb->tmreg_lock, flags); 571 tsauxc = rd32(E1000_TSAUXC); 572 tsim = rd32(E1000_TSIM); 573 if (rq->perout.index == 1) { 574 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1); 575 tsim &= ~TSINTR_TT1; 576 } else { 577 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0); 578 tsim &= ~TSINTR_TT0; 579 } 580 if (on) { 581 int i = rq->perout.index; 582 583 /* read systim registers in sequence */ 584 rd32(E1000_SYSTIMR); 585 systiml = rd32(E1000_SYSTIML); 586 systimh = rd32(E1000_SYSTIMH); 587 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml); 588 now = timecounter_cyc2time(&igb->tc, systim); 589 590 if (pin < 2) { 591 level_mask = (i == 1) ? 0x80000 : 0x40000; 592 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0; 593 } else { 594 level_mask = (i == 1) ? 0x80 : 0x40; 595 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0; 596 } 597 598 div_u64_rem(now, ns, &rem); 599 systim = systim + (ns - rem); 600 601 /* synchronize pin level with rising/falling edges */ 602 div_u64_rem(now, ns << 1, &rem); 603 if (rem < ns) { 604 /* first half of period */ 605 if (level == 0) { 606 /* output is already low, skip this period */ 607 systim += ns; 608 } 609 } else { 610 /* second half of period */ 611 if (level == 1) { 612 /* output is already high, skip this period */ 613 systim += ns; 614 } 615 } 616 617 start = ns_to_timespec64(systim + (ns - rem)); 618 igb_pin_perout(igb, i, pin, 0); 619 igb->perout[i].start.tv_sec = start.tv_sec; 620 igb->perout[i].start.tv_nsec = start.tv_nsec; 621 igb->perout[i].period.tv_sec = ts.tv_sec; 622 igb->perout[i].period.tv_nsec = ts.tv_nsec; 623 624 wr32(trgttiml, (u32)systim); 625 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF); 626 tsauxc |= tsauxc_mask; 627 tsim |= tsim_mask; 628 } 629 wr32(E1000_TSAUXC, tsauxc); 630 wr32(E1000_TSIM, tsim); 631 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 632 return 0; 633 634 case PTP_CLK_REQ_PPS: 635 return -EOPNOTSUPP; 636 } 637 638 return -EOPNOTSUPP; 639 } 640 641 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp, 642 struct ptp_clock_request *rq, int on) 643 { 644 struct igb_adapter *igb = 645 container_of(ptp, struct igb_adapter, ptp_caps); 646 struct e1000_hw *hw = &igb->hw; 647 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; 648 unsigned long flags; 649 struct timespec64 ts; 650 int use_freq = 0, pin = -1; 651 s64 ns; 652 653 switch (rq->type) { 654 case PTP_CLK_REQ_EXTTS: 655 /* Reject requests with unsupported flags */ 656 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 657 PTP_RISING_EDGE | 658 PTP_FALLING_EDGE | 659 PTP_STRICT_FLAGS)) 660 return -EOPNOTSUPP; 661 662 /* Reject requests failing to enable both edges. */ 663 if ((rq->extts.flags & PTP_STRICT_FLAGS) && 664 (rq->extts.flags & PTP_ENABLE_FEATURE) && 665 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) 666 return -EOPNOTSUPP; 667 668 if (on) { 669 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, 670 rq->extts.index); 671 if (pin < 0) 672 return -EBUSY; 673 } 674 if (rq->extts.index == 1) { 675 tsauxc_mask = TSAUXC_EN_TS1; 676 tsim_mask = TSINTR_AUTT1; 677 } else { 678 tsauxc_mask = TSAUXC_EN_TS0; 679 tsim_mask = TSINTR_AUTT0; 680 } 681 spin_lock_irqsave(&igb->tmreg_lock, flags); 682 tsauxc = rd32(E1000_TSAUXC); 683 tsim = rd32(E1000_TSIM); 684 if (on) { 685 igb_pin_extts(igb, rq->extts.index, pin); 686 tsauxc |= tsauxc_mask; 687 tsim |= tsim_mask; 688 } else { 689 tsauxc &= ~tsauxc_mask; 690 tsim &= ~tsim_mask; 691 } 692 wr32(E1000_TSAUXC, tsauxc); 693 wr32(E1000_TSIM, tsim); 694 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 695 return 0; 696 697 case PTP_CLK_REQ_PEROUT: 698 /* Reject requests with unsupported flags */ 699 if (rq->perout.flags) 700 return -EOPNOTSUPP; 701 702 if (on) { 703 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, 704 rq->perout.index); 705 if (pin < 0) 706 return -EBUSY; 707 } 708 ts.tv_sec = rq->perout.period.sec; 709 ts.tv_nsec = rq->perout.period.nsec; 710 ns = timespec64_to_ns(&ts); 711 ns = ns >> 1; 712 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) || 713 (ns == 250000000LL) || (ns == 500000000LL))) { 714 if (ns < 8LL) 715 return -EINVAL; 716 use_freq = 1; 717 } 718 ts = ns_to_timespec64(ns); 719 if (rq->perout.index == 1) { 720 if (use_freq) { 721 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1; 722 tsim_mask = 0; 723 } else { 724 tsauxc_mask = TSAUXC_EN_TT1; 725 tsim_mask = TSINTR_TT1; 726 } 727 trgttiml = E1000_TRGTTIML1; 728 trgttimh = E1000_TRGTTIMH1; 729 freqout = E1000_FREQOUT1; 730 } else { 731 if (use_freq) { 732 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0; 733 tsim_mask = 0; 734 } else { 735 tsauxc_mask = TSAUXC_EN_TT0; 736 tsim_mask = TSINTR_TT0; 737 } 738 trgttiml = E1000_TRGTTIML0; 739 trgttimh = E1000_TRGTTIMH0; 740 freqout = E1000_FREQOUT0; 741 } 742 spin_lock_irqsave(&igb->tmreg_lock, flags); 743 tsauxc = rd32(E1000_TSAUXC); 744 tsim = rd32(E1000_TSIM); 745 if (rq->perout.index == 1) { 746 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1); 747 tsim &= ~TSINTR_TT1; 748 } else { 749 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0); 750 tsim &= ~TSINTR_TT0; 751 } 752 if (on) { 753 int i = rq->perout.index; 754 igb_pin_perout(igb, i, pin, use_freq); 755 igb->perout[i].start.tv_sec = rq->perout.start.sec; 756 igb->perout[i].start.tv_nsec = rq->perout.start.nsec; 757 igb->perout[i].period.tv_sec = ts.tv_sec; 758 igb->perout[i].period.tv_nsec = ts.tv_nsec; 759 wr32(trgttimh, rq->perout.start.sec); 760 wr32(trgttiml, rq->perout.start.nsec); 761 if (use_freq) 762 wr32(freqout, ns); 763 tsauxc |= tsauxc_mask; 764 tsim |= tsim_mask; 765 } 766 wr32(E1000_TSAUXC, tsauxc); 767 wr32(E1000_TSIM, tsim); 768 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 769 return 0; 770 771 case PTP_CLK_REQ_PPS: 772 spin_lock_irqsave(&igb->tmreg_lock, flags); 773 tsim = rd32(E1000_TSIM); 774 if (on) 775 tsim |= TSINTR_SYS_WRAP; 776 else 777 tsim &= ~TSINTR_SYS_WRAP; 778 igb->pps_sys_wrap_on = !!on; 779 wr32(E1000_TSIM, tsim); 780 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 781 return 0; 782 } 783 784 return -EOPNOTSUPP; 785 } 786 787 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp, 788 struct ptp_clock_request *rq, int on) 789 { 790 return -EOPNOTSUPP; 791 } 792 793 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, 794 enum ptp_pin_function func, unsigned int chan) 795 { 796 switch (func) { 797 case PTP_PF_NONE: 798 case PTP_PF_EXTTS: 799 case PTP_PF_PEROUT: 800 break; 801 case PTP_PF_PHYSYNC: 802 return -1; 803 } 804 return 0; 805 } 806 807 /** 808 * igb_ptp_tx_work 809 * @work: pointer to work struct 810 * 811 * This work function polls the TSYNCTXCTL valid bit to determine when a 812 * timestamp has been taken for the current stored skb. 813 **/ 814 static void igb_ptp_tx_work(struct work_struct *work) 815 { 816 struct igb_adapter *adapter = container_of(work, struct igb_adapter, 817 ptp_tx_work); 818 struct e1000_hw *hw = &adapter->hw; 819 u32 tsynctxctl; 820 821 if (!adapter->ptp_tx_skb) 822 return; 823 824 if (time_is_before_jiffies(adapter->ptp_tx_start + 825 IGB_PTP_TX_TIMEOUT)) { 826 dev_kfree_skb_any(adapter->ptp_tx_skb); 827 adapter->ptp_tx_skb = NULL; 828 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 829 adapter->tx_hwtstamp_timeouts++; 830 /* Clear the tx valid bit in TSYNCTXCTL register to enable 831 * interrupt 832 */ 833 rd32(E1000_TXSTMPH); 834 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 835 return; 836 } 837 838 tsynctxctl = rd32(E1000_TSYNCTXCTL); 839 if (tsynctxctl & E1000_TSYNCTXCTL_VALID) 840 igb_ptp_tx_hwtstamp(adapter); 841 else 842 /* reschedule to check later */ 843 schedule_work(&adapter->ptp_tx_work); 844 } 845 846 static void igb_ptp_overflow_check(struct work_struct *work) 847 { 848 struct igb_adapter *igb = 849 container_of(work, struct igb_adapter, ptp_overflow_work.work); 850 struct timespec64 ts; 851 u64 ns; 852 853 /* Update the timecounter */ 854 ns = timecounter_read(&igb->tc); 855 856 ts = ns_to_timespec64(ns); 857 pr_debug("igb overflow check at %lld.%09lu\n", 858 (long long) ts.tv_sec, ts.tv_nsec); 859 860 schedule_delayed_work(&igb->ptp_overflow_work, 861 IGB_SYSTIM_OVERFLOW_PERIOD); 862 } 863 864 /** 865 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched 866 * @adapter: private network adapter structure 867 * 868 * This watchdog task is scheduled to detect error case where hardware has 869 * dropped an Rx packet that was timestamped when the ring is full. The 870 * particular error is rare but leaves the device in a state unable to timestamp 871 * any future packets. 872 **/ 873 void igb_ptp_rx_hang(struct igb_adapter *adapter) 874 { 875 struct e1000_hw *hw = &adapter->hw; 876 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); 877 unsigned long rx_event; 878 879 /* Other hardware uses per-packet timestamps */ 880 if (hw->mac.type != e1000_82576) 881 return; 882 883 /* If we don't have a valid timestamp in the registers, just update the 884 * timeout counter and exit 885 */ 886 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { 887 adapter->last_rx_ptp_check = jiffies; 888 return; 889 } 890 891 /* Determine the most recent watchdog or rx_timestamp event */ 892 rx_event = adapter->last_rx_ptp_check; 893 if (time_after(adapter->last_rx_timestamp, rx_event)) 894 rx_event = adapter->last_rx_timestamp; 895 896 /* Only need to read the high RXSTMP register to clear the lock */ 897 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 898 rd32(E1000_RXSTMPH); 899 adapter->last_rx_ptp_check = jiffies; 900 adapter->rx_hwtstamp_cleared++; 901 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n"); 902 } 903 } 904 905 /** 906 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes 907 * @adapter: private network adapter structure 908 */ 909 void igb_ptp_tx_hang(struct igb_adapter *adapter) 910 { 911 struct e1000_hw *hw = &adapter->hw; 912 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 913 IGB_PTP_TX_TIMEOUT); 914 915 if (!adapter->ptp_tx_skb) 916 return; 917 918 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state)) 919 return; 920 921 /* If we haven't received a timestamp within the timeout, it is 922 * reasonable to assume that it will never occur, so we can unlock the 923 * timestamp bit when this occurs. 924 */ 925 if (timeout) { 926 cancel_work_sync(&adapter->ptp_tx_work); 927 dev_kfree_skb_any(adapter->ptp_tx_skb); 928 adapter->ptp_tx_skb = NULL; 929 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 930 adapter->tx_hwtstamp_timeouts++; 931 /* Clear the tx valid bit in TSYNCTXCTL register to enable 932 * interrupt 933 */ 934 rd32(E1000_TXSTMPH); 935 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 936 } 937 } 938 939 /** 940 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp 941 * @adapter: Board private structure. 942 * 943 * If we were asked to do hardware stamping and such a time stamp is 944 * available, then it must have been for this skb here because we only 945 * allow only one such packet into the queue. 946 **/ 947 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) 948 { 949 struct sk_buff *skb = adapter->ptp_tx_skb; 950 struct e1000_hw *hw = &adapter->hw; 951 struct skb_shared_hwtstamps shhwtstamps; 952 u64 regval; 953 int adjust = 0; 954 955 regval = rd32(E1000_TXSTMPL); 956 regval |= (u64)rd32(E1000_TXSTMPH) << 32; 957 958 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); 959 /* adjust timestamp for the TX latency based on link speed */ 960 if (adapter->hw.mac.type == e1000_i210) { 961 switch (adapter->link_speed) { 962 case SPEED_10: 963 adjust = IGB_I210_TX_LATENCY_10; 964 break; 965 case SPEED_100: 966 adjust = IGB_I210_TX_LATENCY_100; 967 break; 968 case SPEED_1000: 969 adjust = IGB_I210_TX_LATENCY_1000; 970 break; 971 } 972 } 973 974 shhwtstamps.hwtstamp = 975 ktime_add_ns(shhwtstamps.hwtstamp, adjust); 976 977 /* Clear the lock early before calling skb_tstamp_tx so that 978 * applications are not woken up before the lock bit is clear. We use 979 * a copy of the skb pointer to ensure other threads can't change it 980 * while we're notifying the stack. 981 */ 982 adapter->ptp_tx_skb = NULL; 983 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 984 985 /* Notify the stack and free the skb after we've unlocked */ 986 skb_tstamp_tx(skb, &shhwtstamps); 987 dev_kfree_skb_any(skb); 988 } 989 990 /** 991 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp 992 * @q_vector: Pointer to interrupt specific structure 993 * @va: Pointer to address containing Rx buffer 994 * @timestamp: Pointer where timestamp will be stored 995 * 996 * This function is meant to retrieve a timestamp from the first buffer of an 997 * incoming frame. The value is stored in little endian format starting on 998 * byte 8 999 * 1000 * Returns: The timestamp header length or 0 if not available 1001 **/ 1002 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va, 1003 ktime_t *timestamp) 1004 { 1005 struct igb_adapter *adapter = q_vector->adapter; 1006 struct skb_shared_hwtstamps ts; 1007 __le64 *regval = (__le64 *)va; 1008 int adjust = 0; 1009 1010 if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) 1011 return 0; 1012 1013 /* The timestamp is recorded in little endian format. 1014 * DWORD: 0 1 2 3 1015 * Field: Reserved Reserved SYSTIML SYSTIMH 1016 */ 1017 1018 /* check reserved dwords are zero, be/le doesn't matter for zero */ 1019 if (regval[0]) 1020 return 0; 1021 1022 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1])); 1023 1024 /* adjust timestamp for the RX latency based on link speed */ 1025 if (adapter->hw.mac.type == e1000_i210) { 1026 switch (adapter->link_speed) { 1027 case SPEED_10: 1028 adjust = IGB_I210_RX_LATENCY_10; 1029 break; 1030 case SPEED_100: 1031 adjust = IGB_I210_RX_LATENCY_100; 1032 break; 1033 case SPEED_1000: 1034 adjust = IGB_I210_RX_LATENCY_1000; 1035 break; 1036 } 1037 } 1038 1039 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust); 1040 1041 return IGB_TS_HDR_LEN; 1042 } 1043 1044 /** 1045 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register 1046 * @q_vector: Pointer to interrupt specific structure 1047 * @skb: Buffer containing timestamp and packet 1048 * 1049 * This function is meant to retrieve a timestamp from the internal registers 1050 * of the adapter and store it in the skb. 1051 **/ 1052 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb) 1053 { 1054 struct igb_adapter *adapter = q_vector->adapter; 1055 struct e1000_hw *hw = &adapter->hw; 1056 int adjust = 0; 1057 u64 regval; 1058 1059 if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) 1060 return; 1061 1062 /* If this bit is set, then the RX registers contain the time stamp. No 1063 * other packet will be time stamped until we read these registers, so 1064 * read the registers to make them available again. Because only one 1065 * packet can be time stamped at a time, we know that the register 1066 * values must belong to this one here and therefore we don't need to 1067 * compare any of the additional attributes stored for it. 1068 * 1069 * If nothing went wrong, then it should have a shared tx_flags that we 1070 * can turn into a skb_shared_hwtstamps. 1071 */ 1072 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 1073 return; 1074 1075 regval = rd32(E1000_RXSTMPL); 1076 regval |= (u64)rd32(E1000_RXSTMPH) << 32; 1077 1078 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 1079 1080 /* adjust timestamp for the RX latency based on link speed */ 1081 if (adapter->hw.mac.type == e1000_i210) { 1082 switch (adapter->link_speed) { 1083 case SPEED_10: 1084 adjust = IGB_I210_RX_LATENCY_10; 1085 break; 1086 case SPEED_100: 1087 adjust = IGB_I210_RX_LATENCY_100; 1088 break; 1089 case SPEED_1000: 1090 adjust = IGB_I210_RX_LATENCY_1000; 1091 break; 1092 } 1093 } 1094 skb_hwtstamps(skb)->hwtstamp = 1095 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust); 1096 1097 /* Update the last_rx_timestamp timer in order to enable watchdog check 1098 * for error case of latched timestamp on a dropped packet. 1099 */ 1100 adapter->last_rx_timestamp = jiffies; 1101 } 1102 1103 /** 1104 * igb_ptp_get_ts_config - get hardware time stamping config 1105 * @netdev: netdev struct 1106 * @ifr: interface struct 1107 * 1108 * Get the hwtstamp_config settings to return to the user. Rather than attempt 1109 * to deconstruct the settings from the registers, just return a shadow copy 1110 * of the last known settings. 1111 **/ 1112 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) 1113 { 1114 struct igb_adapter *adapter = netdev_priv(netdev); 1115 struct hwtstamp_config *config = &adapter->tstamp_config; 1116 1117 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 1118 -EFAULT : 0; 1119 } 1120 1121 /** 1122 * igb_ptp_set_timestamp_mode - setup hardware for timestamping 1123 * @adapter: networking device structure 1124 * @config: hwtstamp configuration 1125 * 1126 * Outgoing time stamping can be enabled and disabled. Play nice and 1127 * disable it when requested, although it shouldn't case any overhead 1128 * when no packet needs it. At most one packet in the queue may be 1129 * marked for time stamping, otherwise it would be impossible to tell 1130 * for sure to which packet the hardware time stamp belongs. 1131 * 1132 * Incoming time stamping has to be configured via the hardware 1133 * filters. Not all combinations are supported, in particular event 1134 * type has to be specified. Matching the kind of event packet is 1135 * not supported, with the exception of "all V2 events regardless of 1136 * level 2 or 4". 1137 */ 1138 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter, 1139 struct hwtstamp_config *config) 1140 { 1141 struct e1000_hw *hw = &adapter->hw; 1142 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 1143 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 1144 u32 tsync_rx_cfg = 0; 1145 bool is_l4 = false; 1146 bool is_l2 = false; 1147 u32 regval; 1148 1149 switch (config->tx_type) { 1150 case HWTSTAMP_TX_OFF: 1151 tsync_tx_ctl = 0; 1152 break; 1153 case HWTSTAMP_TX_ON: 1154 break; 1155 default: 1156 return -ERANGE; 1157 } 1158 1159 switch (config->rx_filter) { 1160 case HWTSTAMP_FILTER_NONE: 1161 tsync_rx_ctl = 0; 1162 break; 1163 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1164 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 1165 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; 1166 is_l4 = true; 1167 break; 1168 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1169 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 1170 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; 1171 is_l4 = true; 1172 break; 1173 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1174 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1175 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1176 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1177 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1178 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1179 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1180 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1181 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1182 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 1183 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1184 is_l2 = true; 1185 is_l4 = true; 1186 break; 1187 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1188 case HWTSTAMP_FILTER_NTP_ALL: 1189 case HWTSTAMP_FILTER_ALL: 1190 /* 82576 cannot timestamp all packets, which it needs to do to 1191 * support both V1 Sync and Delay_Req messages 1192 */ 1193 if (hw->mac.type != e1000_82576) { 1194 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 1195 config->rx_filter = HWTSTAMP_FILTER_ALL; 1196 break; 1197 } 1198 fallthrough; 1199 default: 1200 config->rx_filter = HWTSTAMP_FILTER_NONE; 1201 return -ERANGE; 1202 } 1203 1204 if (hw->mac.type == e1000_82575) { 1205 if (tsync_rx_ctl | tsync_tx_ctl) 1206 return -EINVAL; 1207 return 0; 1208 } 1209 1210 /* Per-packet timestamping only works if all packets are 1211 * timestamped, so enable timestamping in all packets as 1212 * long as one Rx filter was configured. 1213 */ 1214 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { 1215 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 1216 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 1217 config->rx_filter = HWTSTAMP_FILTER_ALL; 1218 is_l2 = true; 1219 is_l4 = true; 1220 1221 if ((hw->mac.type == e1000_i210) || 1222 (hw->mac.type == e1000_i211)) { 1223 regval = rd32(E1000_RXPBS); 1224 regval |= E1000_RXPBS_CFG_TS_EN; 1225 wr32(E1000_RXPBS, regval); 1226 } 1227 } 1228 1229 /* enable/disable TX */ 1230 regval = rd32(E1000_TSYNCTXCTL); 1231 regval &= ~E1000_TSYNCTXCTL_ENABLED; 1232 regval |= tsync_tx_ctl; 1233 wr32(E1000_TSYNCTXCTL, regval); 1234 1235 /* enable/disable RX */ 1236 regval = rd32(E1000_TSYNCRXCTL); 1237 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 1238 regval |= tsync_rx_ctl; 1239 wr32(E1000_TSYNCRXCTL, regval); 1240 1241 /* define which PTP packets are time stamped */ 1242 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); 1243 1244 /* define ethertype filter for timestamped packets */ 1245 if (is_l2) 1246 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 1247 (E1000_ETQF_FILTER_ENABLE | /* enable filter */ 1248 E1000_ETQF_1588 | /* enable timestamping */ 1249 ETH_P_1588)); /* 1588 eth protocol type */ 1250 else 1251 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0); 1252 1253 /* L4 Queue Filter[3]: filter by destination port and protocol */ 1254 if (is_l4) { 1255 u32 ftqf = (IPPROTO_UDP /* UDP */ 1256 | E1000_FTQF_VF_BP /* VF not compared */ 1257 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ 1258 | E1000_FTQF_MASK); /* mask all inputs */ 1259 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ 1260 1261 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT)); 1262 wr32(E1000_IMIREXT(3), 1263 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); 1264 if (hw->mac.type == e1000_82576) { 1265 /* enable source port check */ 1266 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT)); 1267 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; 1268 } 1269 wr32(E1000_FTQF(3), ftqf); 1270 } else { 1271 wr32(E1000_FTQF(3), E1000_FTQF_MASK); 1272 } 1273 wrfl(); 1274 1275 /* clear TX/RX time stamp registers, just to be sure */ 1276 regval = rd32(E1000_TXSTMPL); 1277 regval = rd32(E1000_TXSTMPH); 1278 regval = rd32(E1000_RXSTMPL); 1279 regval = rd32(E1000_RXSTMPH); 1280 1281 return 0; 1282 } 1283 1284 /** 1285 * igb_ptp_set_ts_config - set hardware time stamping config 1286 * @netdev: netdev struct 1287 * @ifr: interface struct 1288 * 1289 **/ 1290 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) 1291 { 1292 struct igb_adapter *adapter = netdev_priv(netdev); 1293 struct hwtstamp_config config; 1294 int err; 1295 1296 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1297 return -EFAULT; 1298 1299 err = igb_ptp_set_timestamp_mode(adapter, &config); 1300 if (err) 1301 return err; 1302 1303 /* save these settings for future reference */ 1304 memcpy(&adapter->tstamp_config, &config, 1305 sizeof(adapter->tstamp_config)); 1306 1307 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1308 -EFAULT : 0; 1309 } 1310 1311 /** 1312 * igb_ptp_init - Initialize PTP functionality 1313 * @adapter: Board private structure 1314 * 1315 * This function is called at device probe to initialize the PTP 1316 * functionality. 1317 */ 1318 void igb_ptp_init(struct igb_adapter *adapter) 1319 { 1320 struct e1000_hw *hw = &adapter->hw; 1321 struct net_device *netdev = adapter->netdev; 1322 1323 switch (hw->mac.type) { 1324 case e1000_82576: 1325 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1326 adapter->ptp_caps.owner = THIS_MODULE; 1327 adapter->ptp_caps.max_adj = 999999881; 1328 adapter->ptp_caps.n_ext_ts = 0; 1329 adapter->ptp_caps.pps = 0; 1330 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576; 1331 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1332 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576; 1333 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1334 adapter->ptp_caps.enable = igb_ptp_feature_enable; 1335 adapter->cc.read = igb_ptp_read_82576; 1336 adapter->cc.mask = CYCLECOUNTER_MASK(64); 1337 adapter->cc.mult = 1; 1338 adapter->cc.shift = IGB_82576_TSYNC_SHIFT; 1339 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; 1340 break; 1341 case e1000_82580: 1342 case e1000_i354: 1343 case e1000_i350: 1344 igb_ptp_sdp_init(adapter); 1345 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1346 adapter->ptp_caps.owner = THIS_MODULE; 1347 adapter->ptp_caps.max_adj = 62499999; 1348 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; 1349 adapter->ptp_caps.n_per_out = IGB_N_PEROUT; 1350 adapter->ptp_caps.n_pins = IGB_N_SDP; 1351 adapter->ptp_caps.pps = 0; 1352 adapter->ptp_caps.pin_config = adapter->sdp_config; 1353 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; 1354 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1355 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580; 1356 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1357 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580; 1358 adapter->ptp_caps.verify = igb_ptp_verify_pin; 1359 adapter->cc.read = igb_ptp_read_82580; 1360 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580); 1361 adapter->cc.mult = 1; 1362 adapter->cc.shift = 0; 1363 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; 1364 break; 1365 case e1000_i210: 1366 case e1000_i211: 1367 igb_ptp_sdp_init(adapter); 1368 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1369 adapter->ptp_caps.owner = THIS_MODULE; 1370 adapter->ptp_caps.max_adj = 62499999; 1371 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; 1372 adapter->ptp_caps.n_per_out = IGB_N_PEROUT; 1373 adapter->ptp_caps.n_pins = IGB_N_SDP; 1374 adapter->ptp_caps.pps = 1; 1375 adapter->ptp_caps.pin_config = adapter->sdp_config; 1376 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; 1377 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; 1378 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210; 1379 adapter->ptp_caps.settime64 = igb_ptp_settime_i210; 1380 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210; 1381 adapter->ptp_caps.verify = igb_ptp_verify_pin; 1382 break; 1383 default: 1384 adapter->ptp_clock = NULL; 1385 return; 1386 } 1387 1388 spin_lock_init(&adapter->tmreg_lock); 1389 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); 1390 1391 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1392 INIT_DELAYED_WORK(&adapter->ptp_overflow_work, 1393 igb_ptp_overflow_check); 1394 1395 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1396 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1397 1398 igb_ptp_reset(adapter); 1399 1400 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1401 &adapter->pdev->dev); 1402 if (IS_ERR(adapter->ptp_clock)) { 1403 adapter->ptp_clock = NULL; 1404 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); 1405 } else if (adapter->ptp_clock) { 1406 dev_info(&adapter->pdev->dev, "added PHC on %s\n", 1407 adapter->netdev->name); 1408 adapter->ptp_flags |= IGB_PTP_ENABLED; 1409 } 1410 } 1411 1412 /** 1413 * igb_ptp_sdp_init - utility function which inits the SDP config structs 1414 * @adapter: Board private structure. 1415 **/ 1416 void igb_ptp_sdp_init(struct igb_adapter *adapter) 1417 { 1418 int i; 1419 1420 for (i = 0; i < IGB_N_SDP; i++) { 1421 struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; 1422 1423 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); 1424 ppd->index = i; 1425 ppd->func = PTP_PF_NONE; 1426 } 1427 } 1428 1429 /** 1430 * igb_ptp_suspend - Disable PTP work items and prepare for suspend 1431 * @adapter: Board private structure 1432 * 1433 * This function stops the overflow check work and PTP Tx timestamp work, and 1434 * will prepare the device for OS suspend. 1435 */ 1436 void igb_ptp_suspend(struct igb_adapter *adapter) 1437 { 1438 if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) 1439 return; 1440 1441 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1442 cancel_delayed_work_sync(&adapter->ptp_overflow_work); 1443 1444 cancel_work_sync(&adapter->ptp_tx_work); 1445 if (adapter->ptp_tx_skb) { 1446 dev_kfree_skb_any(adapter->ptp_tx_skb); 1447 adapter->ptp_tx_skb = NULL; 1448 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 1449 } 1450 } 1451 1452 /** 1453 * igb_ptp_stop - Disable PTP device and stop the overflow check. 1454 * @adapter: Board private structure. 1455 * 1456 * This function stops the PTP support and cancels the delayed work. 1457 **/ 1458 void igb_ptp_stop(struct igb_adapter *adapter) 1459 { 1460 igb_ptp_suspend(adapter); 1461 1462 if (adapter->ptp_clock) { 1463 ptp_clock_unregister(adapter->ptp_clock); 1464 dev_info(&adapter->pdev->dev, "removed PHC on %s\n", 1465 adapter->netdev->name); 1466 adapter->ptp_flags &= ~IGB_PTP_ENABLED; 1467 } 1468 } 1469 1470 /** 1471 * igb_ptp_reset - Re-enable the adapter for PTP following a reset. 1472 * @adapter: Board private structure. 1473 * 1474 * This function handles the reset work required to re-enable the PTP device. 1475 **/ 1476 void igb_ptp_reset(struct igb_adapter *adapter) 1477 { 1478 struct e1000_hw *hw = &adapter->hw; 1479 unsigned long flags; 1480 1481 /* reset the tstamp_config */ 1482 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1483 1484 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1485 1486 switch (adapter->hw.mac.type) { 1487 case e1000_82576: 1488 /* Dial the nominal frequency. */ 1489 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); 1490 break; 1491 case e1000_82580: 1492 case e1000_i354: 1493 case e1000_i350: 1494 case e1000_i210: 1495 case e1000_i211: 1496 wr32(E1000_TSAUXC, 0x0); 1497 wr32(E1000_TSSDP, 0x0); 1498 wr32(E1000_TSIM, 1499 TSYNC_INTERRUPTS | 1500 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0)); 1501 wr32(E1000_IMS, E1000_IMS_TS); 1502 break; 1503 default: 1504 /* No work to do. */ 1505 goto out; 1506 } 1507 1508 /* Re-initialize the timer. */ 1509 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { 1510 struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); 1511 1512 igb_ptp_write_i210(adapter, &ts); 1513 } else { 1514 timecounter_init(&adapter->tc, &adapter->cc, 1515 ktime_to_ns(ktime_get_real())); 1516 } 1517 out: 1518 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1519 1520 wrfl(); 1521 1522 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1523 schedule_delayed_work(&adapter->ptp_overflow_work, 1524 IGB_SYSTIM_OVERFLOW_PERIOD); 1525 } 1526