xref: /linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
73 
74 /* SYSTIM read access for the 82576 */
75 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
76 {
77 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
78 	struct e1000_hw *hw = &igb->hw;
79 	u64 val;
80 	u32 lo, hi;
81 
82 	lo = rd32(E1000_SYSTIML);
83 	hi = rd32(E1000_SYSTIMH);
84 
85 	val = ((u64) hi) << 32;
86 	val |= lo;
87 
88 	return val;
89 }
90 
91 /* SYSTIM read access for the 82580 */
92 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
93 {
94 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
95 	struct e1000_hw *hw = &igb->hw;
96 	u32 lo, hi;
97 	u64 val;
98 
99 	/* The timestamp latches on lowest register read. For the 82580
100 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
101 	 * need to provide nanosecond resolution, so we just ignore it.
102 	 */
103 	rd32(E1000_SYSTIMR);
104 	lo = rd32(E1000_SYSTIML);
105 	hi = rd32(E1000_SYSTIMH);
106 
107 	val = ((u64) hi) << 32;
108 	val |= lo;
109 
110 	return val;
111 }
112 
113 /* SYSTIM read access for I210/I211 */
114 static void igb_ptp_read_i210(struct igb_adapter *adapter,
115 			      struct timespec64 *ts)
116 {
117 	struct e1000_hw *hw = &adapter->hw;
118 	u32 sec, nsec;
119 
120 	/* The timestamp latches on lowest register read. For I210/I211, the
121 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
122 	 * resolution, we can ignore it.
123 	 */
124 	rd32(E1000_SYSTIMR);
125 	nsec = rd32(E1000_SYSTIML);
126 	sec = rd32(E1000_SYSTIMH);
127 
128 	ts->tv_sec = sec;
129 	ts->tv_nsec = nsec;
130 }
131 
132 static void igb_ptp_write_i210(struct igb_adapter *adapter,
133 			       const struct timespec64 *ts)
134 {
135 	struct e1000_hw *hw = &adapter->hw;
136 
137 	/* Writing the SYSTIMR register is not necessary as it only provides
138 	 * sub-nanosecond resolution.
139 	 */
140 	wr32(E1000_SYSTIML, ts->tv_nsec);
141 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
142 }
143 
144 /**
145  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
146  * @adapter: board private structure
147  * @hwtstamps: timestamp structure to update
148  * @systim: unsigned 64bit system time value.
149  *
150  * We need to convert the system time value stored in the RX/TXSTMP registers
151  * into a hwtstamp which can be used by the upper level timestamping functions.
152  *
153  * The 'tmreg_lock' spinlock is used to protect the consistency of the
154  * system time value. This is needed because reading the 64 bit time
155  * value involves reading two (or three) 32 bit registers. The first
156  * read latches the value. Ditto for writing.
157  *
158  * In addition, here have extended the system time with an overflow
159  * counter in software.
160  **/
161 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
162 				       struct skb_shared_hwtstamps *hwtstamps,
163 				       u64 systim)
164 {
165 	unsigned long flags;
166 	u64 ns;
167 
168 	memset(hwtstamps, 0, sizeof(*hwtstamps));
169 
170 	switch (adapter->hw.mac.type) {
171 	case e1000_82576:
172 	case e1000_82580:
173 	case e1000_i354:
174 	case e1000_i350:
175 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
176 		ns = timecounter_cyc2time(&adapter->tc, systim);
177 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
178 
179 		hwtstamps->hwtstamp = ns_to_ktime(ns);
180 		break;
181 	case e1000_i210:
182 	case e1000_i211:
183 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
184 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
185 						systim & 0xFFFFFFFF);
186 		break;
187 	default:
188 		break;
189 	}
190 }
191 
192 /* PTP clock operations */
193 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
194 {
195 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
196 					       ptp_caps);
197 	struct e1000_hw *hw = &igb->hw;
198 	int neg_adj = 0;
199 	u64 rate;
200 	u32 incvalue;
201 
202 	if (ppb < 0) {
203 		neg_adj = 1;
204 		ppb = -ppb;
205 	}
206 	rate = ppb;
207 	rate <<= 14;
208 	rate = div_u64(rate, 1953125);
209 
210 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
211 
212 	if (neg_adj)
213 		incvalue -= rate;
214 	else
215 		incvalue += rate;
216 
217 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
218 
219 	return 0;
220 }
221 
222 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
223 {
224 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
225 					       ptp_caps);
226 	struct e1000_hw *hw = &igb->hw;
227 	int neg_adj = 0;
228 	u64 rate;
229 	u32 inca;
230 
231 	if (scaled_ppm < 0) {
232 		neg_adj = 1;
233 		scaled_ppm = -scaled_ppm;
234 	}
235 	rate = scaled_ppm;
236 	rate <<= 13;
237 	rate = div_u64(rate, 15625);
238 
239 	inca = rate & INCVALUE_MASK;
240 	if (neg_adj)
241 		inca |= ISGN;
242 
243 	wr32(E1000_TIMINCA, inca);
244 
245 	return 0;
246 }
247 
248 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
249 {
250 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
251 					       ptp_caps);
252 	unsigned long flags;
253 
254 	spin_lock_irqsave(&igb->tmreg_lock, flags);
255 	timecounter_adjtime(&igb->tc, delta);
256 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
257 
258 	return 0;
259 }
260 
261 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
262 {
263 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 					       ptp_caps);
265 	unsigned long flags;
266 	struct timespec64 now, then = ns_to_timespec64(delta);
267 
268 	spin_lock_irqsave(&igb->tmreg_lock, flags);
269 
270 	igb_ptp_read_i210(igb, &now);
271 	now = timespec64_add(now, then);
272 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
273 
274 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
275 
276 	return 0;
277 }
278 
279 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
280 				  struct timespec64 *ts,
281 				  struct ptp_system_timestamp *sts)
282 {
283 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
284 					       ptp_caps);
285 	struct e1000_hw *hw = &igb->hw;
286 	unsigned long flags;
287 	u32 lo, hi;
288 	u64 ns;
289 
290 	spin_lock_irqsave(&igb->tmreg_lock, flags);
291 
292 	ptp_read_system_prets(sts);
293 	lo = rd32(E1000_SYSTIML);
294 	ptp_read_system_postts(sts);
295 	hi = rd32(E1000_SYSTIMH);
296 
297 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
298 
299 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300 
301 	*ts = ns_to_timespec64(ns);
302 
303 	return 0;
304 }
305 
306 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
307 				  struct timespec64 *ts,
308 				  struct ptp_system_timestamp *sts)
309 {
310 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
311 					       ptp_caps);
312 	struct e1000_hw *hw = &igb->hw;
313 	unsigned long flags;
314 	u32 lo, hi;
315 	u64 ns;
316 
317 	spin_lock_irqsave(&igb->tmreg_lock, flags);
318 
319 	ptp_read_system_prets(sts);
320 	rd32(E1000_SYSTIMR);
321 	ptp_read_system_postts(sts);
322 	lo = rd32(E1000_SYSTIML);
323 	hi = rd32(E1000_SYSTIMH);
324 
325 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
326 
327 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
328 
329 	*ts = ns_to_timespec64(ns);
330 
331 	return 0;
332 }
333 
334 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
335 				 struct timespec64 *ts,
336 				 struct ptp_system_timestamp *sts)
337 {
338 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
339 					       ptp_caps);
340 	struct e1000_hw *hw = &igb->hw;
341 	unsigned long flags;
342 
343 	spin_lock_irqsave(&igb->tmreg_lock, flags);
344 
345 	ptp_read_system_prets(sts);
346 	rd32(E1000_SYSTIMR);
347 	ptp_read_system_postts(sts);
348 	ts->tv_nsec = rd32(E1000_SYSTIML);
349 	ts->tv_sec = rd32(E1000_SYSTIMH);
350 
351 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352 
353 	return 0;
354 }
355 
356 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
357 				 const struct timespec64 *ts)
358 {
359 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
360 					       ptp_caps);
361 	unsigned long flags;
362 	u64 ns;
363 
364 	ns = timespec64_to_ns(ts);
365 
366 	spin_lock_irqsave(&igb->tmreg_lock, flags);
367 
368 	timecounter_init(&igb->tc, &igb->cc, ns);
369 
370 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
371 
372 	return 0;
373 }
374 
375 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
376 				const struct timespec64 *ts)
377 {
378 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
379 					       ptp_caps);
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&igb->tmreg_lock, flags);
383 
384 	igb_ptp_write_i210(igb, ts);
385 
386 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
387 
388 	return 0;
389 }
390 
391 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
392 {
393 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
394 	static const u32 mask[IGB_N_SDP] = {
395 		E1000_CTRL_SDP0_DIR,
396 		E1000_CTRL_SDP1_DIR,
397 		E1000_CTRL_EXT_SDP2_DIR,
398 		E1000_CTRL_EXT_SDP3_DIR,
399 	};
400 
401 	if (input)
402 		*ptr &= ~mask[pin];
403 	else
404 		*ptr |= mask[pin];
405 }
406 
407 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
408 {
409 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
410 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
411 	};
412 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
413 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
414 	};
415 	static const u32 ts_sdp_en[IGB_N_SDP] = {
416 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
417 	};
418 	struct e1000_hw *hw = &igb->hw;
419 	u32 ctrl, ctrl_ext, tssdp = 0;
420 
421 	ctrl = rd32(E1000_CTRL);
422 	ctrl_ext = rd32(E1000_CTRL_EXT);
423 	tssdp = rd32(E1000_TSSDP);
424 
425 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
426 
427 	/* Make sure this pin is not enabled as an output. */
428 	tssdp &= ~ts_sdp_en[pin];
429 
430 	if (chan == 1) {
431 		tssdp &= ~AUX1_SEL_SDP3;
432 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
433 	} else {
434 		tssdp &= ~AUX0_SEL_SDP3;
435 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
436 	}
437 
438 	wr32(E1000_TSSDP, tssdp);
439 	wr32(E1000_CTRL, ctrl);
440 	wr32(E1000_CTRL_EXT, ctrl_ext);
441 }
442 
443 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
444 {
445 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
446 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
447 	};
448 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
449 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
450 	};
451 	static const u32 ts_sdp_en[IGB_N_SDP] = {
452 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
453 	};
454 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
455 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
456 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
457 	};
458 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
459 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
460 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
461 	};
462 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
463 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
464 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
465 	};
466 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
467 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
468 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
469 	};
470 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
471 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
472 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
473 	};
474 	struct e1000_hw *hw = &igb->hw;
475 	u32 ctrl, ctrl_ext, tssdp = 0;
476 
477 	ctrl = rd32(E1000_CTRL);
478 	ctrl_ext = rd32(E1000_CTRL_EXT);
479 	tssdp = rd32(E1000_TSSDP);
480 
481 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
482 
483 	/* Make sure this pin is not enabled as an input. */
484 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
485 		tssdp &= ~AUX0_TS_SDP_EN;
486 
487 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
488 		tssdp &= ~AUX1_TS_SDP_EN;
489 
490 	tssdp &= ~ts_sdp_sel_clr[pin];
491 	if (freq) {
492 		if (chan == 1)
493 			tssdp |= ts_sdp_sel_fc1[pin];
494 		else
495 			tssdp |= ts_sdp_sel_fc0[pin];
496 	} else {
497 		if (chan == 1)
498 			tssdp |= ts_sdp_sel_tt1[pin];
499 		else
500 			tssdp |= ts_sdp_sel_tt0[pin];
501 	}
502 	tssdp |= ts_sdp_en[pin];
503 
504 	wr32(E1000_TSSDP, tssdp);
505 	wr32(E1000_CTRL, ctrl);
506 	wr32(E1000_CTRL_EXT, ctrl_ext);
507 }
508 
509 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
510 					struct ptp_clock_request *rq, int on)
511 {
512 	struct igb_adapter *igb =
513 		container_of(ptp, struct igb_adapter, ptp_caps);
514 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
515 		systimh, level_mask, level, rem;
516 	struct e1000_hw *hw = &igb->hw;
517 	struct timespec64 ts, start;
518 	unsigned long flags;
519 	u64 systim, now;
520 	int pin = -1;
521 	s64 ns;
522 
523 	switch (rq->type) {
524 	case PTP_CLK_REQ_EXTTS:
525 		/* Reject requests with unsupported flags */
526 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
527 					PTP_RISING_EDGE |
528 					PTP_FALLING_EDGE |
529 					PTP_STRICT_FLAGS))
530 			return -EOPNOTSUPP;
531 
532 		if (on) {
533 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
534 					   rq->extts.index);
535 			if (pin < 0)
536 				return -EBUSY;
537 		}
538 		if (rq->extts.index == 1) {
539 			tsauxc_mask = TSAUXC_EN_TS1;
540 			tsim_mask = TSINTR_AUTT1;
541 		} else {
542 			tsauxc_mask = TSAUXC_EN_TS0;
543 			tsim_mask = TSINTR_AUTT0;
544 		}
545 		spin_lock_irqsave(&igb->tmreg_lock, flags);
546 		tsauxc = rd32(E1000_TSAUXC);
547 		tsim = rd32(E1000_TSIM);
548 		if (on) {
549 			igb_pin_extts(igb, rq->extts.index, pin);
550 			tsauxc |= tsauxc_mask;
551 			tsim |= tsim_mask;
552 		} else {
553 			tsauxc &= ~tsauxc_mask;
554 			tsim &= ~tsim_mask;
555 		}
556 		wr32(E1000_TSAUXC, tsauxc);
557 		wr32(E1000_TSIM, tsim);
558 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
559 		return 0;
560 
561 	case PTP_CLK_REQ_PEROUT:
562 		/* Reject requests with unsupported flags */
563 		if (rq->perout.flags)
564 			return -EOPNOTSUPP;
565 
566 		if (on) {
567 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
568 					   rq->perout.index);
569 			if (pin < 0)
570 				return -EBUSY;
571 		}
572 		ts.tv_sec = rq->perout.period.sec;
573 		ts.tv_nsec = rq->perout.period.nsec;
574 		ns = timespec64_to_ns(&ts);
575 		ns = ns >> 1;
576 		if (on && ns < 8LL)
577 			return -EINVAL;
578 		ts = ns_to_timespec64(ns);
579 		if (rq->perout.index == 1) {
580 			tsauxc_mask = TSAUXC_EN_TT1;
581 			tsim_mask = TSINTR_TT1;
582 			trgttiml = E1000_TRGTTIML1;
583 			trgttimh = E1000_TRGTTIMH1;
584 		} else {
585 			tsauxc_mask = TSAUXC_EN_TT0;
586 			tsim_mask = TSINTR_TT0;
587 			trgttiml = E1000_TRGTTIML0;
588 			trgttimh = E1000_TRGTTIMH0;
589 		}
590 		spin_lock_irqsave(&igb->tmreg_lock, flags);
591 		tsauxc = rd32(E1000_TSAUXC);
592 		tsim = rd32(E1000_TSIM);
593 		if (rq->perout.index == 1) {
594 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
595 			tsim &= ~TSINTR_TT1;
596 		} else {
597 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
598 			tsim &= ~TSINTR_TT0;
599 		}
600 		if (on) {
601 			int i = rq->perout.index;
602 
603 			/* read systim registers in sequence */
604 			rd32(E1000_SYSTIMR);
605 			systiml = rd32(E1000_SYSTIML);
606 			systimh = rd32(E1000_SYSTIMH);
607 			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
608 			now = timecounter_cyc2time(&igb->tc, systim);
609 
610 			if (pin < 2) {
611 				level_mask = (i == 1) ? 0x80000 : 0x40000;
612 				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
613 			} else {
614 				level_mask = (i == 1) ? 0x80 : 0x40;
615 				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
616 			}
617 
618 			div_u64_rem(now, ns, &rem);
619 			systim = systim + (ns - rem);
620 
621 			/* synchronize pin level with rising/falling edges */
622 			div_u64_rem(now, ns << 1, &rem);
623 			if (rem < ns) {
624 				/* first half of period */
625 				if (level == 0) {
626 					/* output is already low, skip this period */
627 					systim += ns;
628 				}
629 			} else {
630 				/* second half of period */
631 				if (level == 1) {
632 					/* output is already high, skip this period */
633 					systim += ns;
634 				}
635 			}
636 
637 			start = ns_to_timespec64(systim + (ns - rem));
638 			igb_pin_perout(igb, i, pin, 0);
639 			igb->perout[i].start.tv_sec = start.tv_sec;
640 			igb->perout[i].start.tv_nsec = start.tv_nsec;
641 			igb->perout[i].period.tv_sec = ts.tv_sec;
642 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
643 
644 			wr32(trgttiml, (u32)systim);
645 			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
646 			tsauxc |= tsauxc_mask;
647 			tsim |= tsim_mask;
648 		}
649 		wr32(E1000_TSAUXC, tsauxc);
650 		wr32(E1000_TSIM, tsim);
651 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
652 		return 0;
653 
654 	case PTP_CLK_REQ_PPS:
655 		return -EOPNOTSUPP;
656 	}
657 
658 	return -EOPNOTSUPP;
659 }
660 
661 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
662 				       struct ptp_clock_request *rq, int on)
663 {
664 	struct igb_adapter *igb =
665 		container_of(ptp, struct igb_adapter, ptp_caps);
666 	struct e1000_hw *hw = &igb->hw;
667 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
668 	unsigned long flags;
669 	struct timespec64 ts;
670 	int use_freq = 0, pin = -1;
671 	s64 ns;
672 
673 	switch (rq->type) {
674 	case PTP_CLK_REQ_EXTTS:
675 		/* Reject requests with unsupported flags */
676 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
677 					PTP_RISING_EDGE |
678 					PTP_FALLING_EDGE |
679 					PTP_STRICT_FLAGS))
680 			return -EOPNOTSUPP;
681 
682 		/* Reject requests failing to enable both edges. */
683 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
684 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
685 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
686 			return -EOPNOTSUPP;
687 
688 		if (on) {
689 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
690 					   rq->extts.index);
691 			if (pin < 0)
692 				return -EBUSY;
693 		}
694 		if (rq->extts.index == 1) {
695 			tsauxc_mask = TSAUXC_EN_TS1;
696 			tsim_mask = TSINTR_AUTT1;
697 		} else {
698 			tsauxc_mask = TSAUXC_EN_TS0;
699 			tsim_mask = TSINTR_AUTT0;
700 		}
701 		spin_lock_irqsave(&igb->tmreg_lock, flags);
702 		tsauxc = rd32(E1000_TSAUXC);
703 		tsim = rd32(E1000_TSIM);
704 		if (on) {
705 			igb_pin_extts(igb, rq->extts.index, pin);
706 			tsauxc |= tsauxc_mask;
707 			tsim |= tsim_mask;
708 		} else {
709 			tsauxc &= ~tsauxc_mask;
710 			tsim &= ~tsim_mask;
711 		}
712 		wr32(E1000_TSAUXC, tsauxc);
713 		wr32(E1000_TSIM, tsim);
714 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
715 		return 0;
716 
717 	case PTP_CLK_REQ_PEROUT:
718 		/* Reject requests with unsupported flags */
719 		if (rq->perout.flags)
720 			return -EOPNOTSUPP;
721 
722 		if (on) {
723 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
724 					   rq->perout.index);
725 			if (pin < 0)
726 				return -EBUSY;
727 		}
728 		ts.tv_sec = rq->perout.period.sec;
729 		ts.tv_nsec = rq->perout.period.nsec;
730 		ns = timespec64_to_ns(&ts);
731 		ns = ns >> 1;
732 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
733 			   (ns == 250000000LL) || (ns == 500000000LL))) {
734 			if (ns < 8LL)
735 				return -EINVAL;
736 			use_freq = 1;
737 		}
738 		ts = ns_to_timespec64(ns);
739 		if (rq->perout.index == 1) {
740 			if (use_freq) {
741 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
742 				tsim_mask = 0;
743 			} else {
744 				tsauxc_mask = TSAUXC_EN_TT1;
745 				tsim_mask = TSINTR_TT1;
746 			}
747 			trgttiml = E1000_TRGTTIML1;
748 			trgttimh = E1000_TRGTTIMH1;
749 			freqout = E1000_FREQOUT1;
750 		} else {
751 			if (use_freq) {
752 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
753 				tsim_mask = 0;
754 			} else {
755 				tsauxc_mask = TSAUXC_EN_TT0;
756 				tsim_mask = TSINTR_TT0;
757 			}
758 			trgttiml = E1000_TRGTTIML0;
759 			trgttimh = E1000_TRGTTIMH0;
760 			freqout = E1000_FREQOUT0;
761 		}
762 		spin_lock_irqsave(&igb->tmreg_lock, flags);
763 		tsauxc = rd32(E1000_TSAUXC);
764 		tsim = rd32(E1000_TSIM);
765 		if (rq->perout.index == 1) {
766 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
767 			tsim &= ~TSINTR_TT1;
768 		} else {
769 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
770 			tsim &= ~TSINTR_TT0;
771 		}
772 		if (on) {
773 			int i = rq->perout.index;
774 			igb_pin_perout(igb, i, pin, use_freq);
775 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
776 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
777 			igb->perout[i].period.tv_sec = ts.tv_sec;
778 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
779 			wr32(trgttimh, rq->perout.start.sec);
780 			wr32(trgttiml, rq->perout.start.nsec);
781 			if (use_freq)
782 				wr32(freqout, ns);
783 			tsauxc |= tsauxc_mask;
784 			tsim |= tsim_mask;
785 		}
786 		wr32(E1000_TSAUXC, tsauxc);
787 		wr32(E1000_TSIM, tsim);
788 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
789 		return 0;
790 
791 	case PTP_CLK_REQ_PPS:
792 		spin_lock_irqsave(&igb->tmreg_lock, flags);
793 		tsim = rd32(E1000_TSIM);
794 		if (on)
795 			tsim |= TSINTR_SYS_WRAP;
796 		else
797 			tsim &= ~TSINTR_SYS_WRAP;
798 		igb->pps_sys_wrap_on = !!on;
799 		wr32(E1000_TSIM, tsim);
800 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
801 		return 0;
802 	}
803 
804 	return -EOPNOTSUPP;
805 }
806 
807 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
808 				  struct ptp_clock_request *rq, int on)
809 {
810 	return -EOPNOTSUPP;
811 }
812 
813 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
814 			      enum ptp_pin_function func, unsigned int chan)
815 {
816 	switch (func) {
817 	case PTP_PF_NONE:
818 	case PTP_PF_EXTTS:
819 	case PTP_PF_PEROUT:
820 		break;
821 	case PTP_PF_PHYSYNC:
822 		return -1;
823 	}
824 	return 0;
825 }
826 
827 /**
828  * igb_ptp_tx_work
829  * @work: pointer to work struct
830  *
831  * This work function polls the TSYNCTXCTL valid bit to determine when a
832  * timestamp has been taken for the current stored skb.
833  **/
834 static void igb_ptp_tx_work(struct work_struct *work)
835 {
836 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
837 						   ptp_tx_work);
838 	struct e1000_hw *hw = &adapter->hw;
839 	u32 tsynctxctl;
840 
841 	if (!adapter->ptp_tx_skb)
842 		return;
843 
844 	if (time_is_before_jiffies(adapter->ptp_tx_start +
845 				   IGB_PTP_TX_TIMEOUT)) {
846 		dev_kfree_skb_any(adapter->ptp_tx_skb);
847 		adapter->ptp_tx_skb = NULL;
848 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
849 		adapter->tx_hwtstamp_timeouts++;
850 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
851 		 * interrupt
852 		 */
853 		rd32(E1000_TXSTMPH);
854 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
855 		return;
856 	}
857 
858 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
859 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
860 		igb_ptp_tx_hwtstamp(adapter);
861 	else
862 		/* reschedule to check later */
863 		schedule_work(&adapter->ptp_tx_work);
864 }
865 
866 static void igb_ptp_overflow_check(struct work_struct *work)
867 {
868 	struct igb_adapter *igb =
869 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
870 	struct timespec64 ts;
871 	u64 ns;
872 
873 	/* Update the timecounter */
874 	ns = timecounter_read(&igb->tc);
875 
876 	ts = ns_to_timespec64(ns);
877 	pr_debug("igb overflow check at %lld.%09lu\n",
878 		 (long long) ts.tv_sec, ts.tv_nsec);
879 
880 	schedule_delayed_work(&igb->ptp_overflow_work,
881 			      IGB_SYSTIM_OVERFLOW_PERIOD);
882 }
883 
884 /**
885  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
886  * @adapter: private network adapter structure
887  *
888  * This watchdog task is scheduled to detect error case where hardware has
889  * dropped an Rx packet that was timestamped when the ring is full. The
890  * particular error is rare but leaves the device in a state unable to timestamp
891  * any future packets.
892  **/
893 void igb_ptp_rx_hang(struct igb_adapter *adapter)
894 {
895 	struct e1000_hw *hw = &adapter->hw;
896 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
897 	unsigned long rx_event;
898 
899 	/* Other hardware uses per-packet timestamps */
900 	if (hw->mac.type != e1000_82576)
901 		return;
902 
903 	/* If we don't have a valid timestamp in the registers, just update the
904 	 * timeout counter and exit
905 	 */
906 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
907 		adapter->last_rx_ptp_check = jiffies;
908 		return;
909 	}
910 
911 	/* Determine the most recent watchdog or rx_timestamp event */
912 	rx_event = adapter->last_rx_ptp_check;
913 	if (time_after(adapter->last_rx_timestamp, rx_event))
914 		rx_event = adapter->last_rx_timestamp;
915 
916 	/* Only need to read the high RXSTMP register to clear the lock */
917 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
918 		rd32(E1000_RXSTMPH);
919 		adapter->last_rx_ptp_check = jiffies;
920 		adapter->rx_hwtstamp_cleared++;
921 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
922 	}
923 }
924 
925 /**
926  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
927  * @adapter: private network adapter structure
928  */
929 void igb_ptp_tx_hang(struct igb_adapter *adapter)
930 {
931 	struct e1000_hw *hw = &adapter->hw;
932 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
933 					      IGB_PTP_TX_TIMEOUT);
934 
935 	if (!adapter->ptp_tx_skb)
936 		return;
937 
938 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
939 		return;
940 
941 	/* If we haven't received a timestamp within the timeout, it is
942 	 * reasonable to assume that it will never occur, so we can unlock the
943 	 * timestamp bit when this occurs.
944 	 */
945 	if (timeout) {
946 		cancel_work_sync(&adapter->ptp_tx_work);
947 		dev_kfree_skb_any(adapter->ptp_tx_skb);
948 		adapter->ptp_tx_skb = NULL;
949 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
950 		adapter->tx_hwtstamp_timeouts++;
951 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
952 		 * interrupt
953 		 */
954 		rd32(E1000_TXSTMPH);
955 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
956 	}
957 }
958 
959 /**
960  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
961  * @adapter: Board private structure.
962  *
963  * If we were asked to do hardware stamping and such a time stamp is
964  * available, then it must have been for this skb here because we only
965  * allow only one such packet into the queue.
966  **/
967 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
968 {
969 	struct sk_buff *skb = adapter->ptp_tx_skb;
970 	struct e1000_hw *hw = &adapter->hw;
971 	struct skb_shared_hwtstamps shhwtstamps;
972 	u64 regval;
973 	int adjust = 0;
974 
975 	regval = rd32(E1000_TXSTMPL);
976 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
977 
978 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
979 	/* adjust timestamp for the TX latency based on link speed */
980 	if (adapter->hw.mac.type == e1000_i210) {
981 		switch (adapter->link_speed) {
982 		case SPEED_10:
983 			adjust = IGB_I210_TX_LATENCY_10;
984 			break;
985 		case SPEED_100:
986 			adjust = IGB_I210_TX_LATENCY_100;
987 			break;
988 		case SPEED_1000:
989 			adjust = IGB_I210_TX_LATENCY_1000;
990 			break;
991 		}
992 	}
993 
994 	shhwtstamps.hwtstamp =
995 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
996 
997 	/* Clear the lock early before calling skb_tstamp_tx so that
998 	 * applications are not woken up before the lock bit is clear. We use
999 	 * a copy of the skb pointer to ensure other threads can't change it
1000 	 * while we're notifying the stack.
1001 	 */
1002 	adapter->ptp_tx_skb = NULL;
1003 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1004 
1005 	/* Notify the stack and free the skb after we've unlocked */
1006 	skb_tstamp_tx(skb, &shhwtstamps);
1007 	dev_kfree_skb_any(skb);
1008 }
1009 
1010 /**
1011  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
1012  * @q_vector: Pointer to interrupt specific structure
1013  * @va: Pointer to address containing Rx buffer
1014  * @timestamp: Pointer where timestamp will be stored
1015  *
1016  * This function is meant to retrieve a timestamp from the first buffer of an
1017  * incoming frame.  The value is stored in little endian format starting on
1018  * byte 8
1019  *
1020  * Returns: The timestamp header length or 0 if not available
1021  **/
1022 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1023 			ktime_t *timestamp)
1024 {
1025 	struct igb_adapter *adapter = q_vector->adapter;
1026 	struct skb_shared_hwtstamps ts;
1027 	__le64 *regval = (__le64 *)va;
1028 	int adjust = 0;
1029 
1030 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1031 		return 0;
1032 
1033 	/* The timestamp is recorded in little endian format.
1034 	 * DWORD: 0        1        2        3
1035 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1036 	 */
1037 
1038 	/* check reserved dwords are zero, be/le doesn't matter for zero */
1039 	if (regval[0])
1040 		return 0;
1041 
1042 	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1043 
1044 	/* adjust timestamp for the RX latency based on link speed */
1045 	if (adapter->hw.mac.type == e1000_i210) {
1046 		switch (adapter->link_speed) {
1047 		case SPEED_10:
1048 			adjust = IGB_I210_RX_LATENCY_10;
1049 			break;
1050 		case SPEED_100:
1051 			adjust = IGB_I210_RX_LATENCY_100;
1052 			break;
1053 		case SPEED_1000:
1054 			adjust = IGB_I210_RX_LATENCY_1000;
1055 			break;
1056 		}
1057 	}
1058 
1059 	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1060 
1061 	return IGB_TS_HDR_LEN;
1062 }
1063 
1064 /**
1065  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1066  * @q_vector: Pointer to interrupt specific structure
1067  * @skb: Buffer containing timestamp and packet
1068  *
1069  * This function is meant to retrieve a timestamp from the internal registers
1070  * of the adapter and store it in the skb.
1071  **/
1072 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1073 {
1074 	struct igb_adapter *adapter = q_vector->adapter;
1075 	struct e1000_hw *hw = &adapter->hw;
1076 	int adjust = 0;
1077 	u64 regval;
1078 
1079 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1080 		return;
1081 
1082 	/* If this bit is set, then the RX registers contain the time stamp. No
1083 	 * other packet will be time stamped until we read these registers, so
1084 	 * read the registers to make them available again. Because only one
1085 	 * packet can be time stamped at a time, we know that the register
1086 	 * values must belong to this one here and therefore we don't need to
1087 	 * compare any of the additional attributes stored for it.
1088 	 *
1089 	 * If nothing went wrong, then it should have a shared tx_flags that we
1090 	 * can turn into a skb_shared_hwtstamps.
1091 	 */
1092 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1093 		return;
1094 
1095 	regval = rd32(E1000_RXSTMPL);
1096 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1097 
1098 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1099 
1100 	/* adjust timestamp for the RX latency based on link speed */
1101 	if (adapter->hw.mac.type == e1000_i210) {
1102 		switch (adapter->link_speed) {
1103 		case SPEED_10:
1104 			adjust = IGB_I210_RX_LATENCY_10;
1105 			break;
1106 		case SPEED_100:
1107 			adjust = IGB_I210_RX_LATENCY_100;
1108 			break;
1109 		case SPEED_1000:
1110 			adjust = IGB_I210_RX_LATENCY_1000;
1111 			break;
1112 		}
1113 	}
1114 	skb_hwtstamps(skb)->hwtstamp =
1115 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1116 
1117 	/* Update the last_rx_timestamp timer in order to enable watchdog check
1118 	 * for error case of latched timestamp on a dropped packet.
1119 	 */
1120 	adapter->last_rx_timestamp = jiffies;
1121 }
1122 
1123 /**
1124  * igb_ptp_get_ts_config - get hardware time stamping config
1125  * @netdev: netdev struct
1126  * @ifr: interface struct
1127  *
1128  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1129  * to deconstruct the settings from the registers, just return a shadow copy
1130  * of the last known settings.
1131  **/
1132 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1133 {
1134 	struct igb_adapter *adapter = netdev_priv(netdev);
1135 	struct hwtstamp_config *config = &adapter->tstamp_config;
1136 
1137 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1138 		-EFAULT : 0;
1139 }
1140 
1141 /**
1142  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1143  * @adapter: networking device structure
1144  * @config: hwtstamp configuration
1145  *
1146  * Outgoing time stamping can be enabled and disabled. Play nice and
1147  * disable it when requested, although it shouldn't case any overhead
1148  * when no packet needs it. At most one packet in the queue may be
1149  * marked for time stamping, otherwise it would be impossible to tell
1150  * for sure to which packet the hardware time stamp belongs.
1151  *
1152  * Incoming time stamping has to be configured via the hardware
1153  * filters. Not all combinations are supported, in particular event
1154  * type has to be specified. Matching the kind of event packet is
1155  * not supported, with the exception of "all V2 events regardless of
1156  * level 2 or 4".
1157  */
1158 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1159 				      struct hwtstamp_config *config)
1160 {
1161 	struct e1000_hw *hw = &adapter->hw;
1162 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1163 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1164 	u32 tsync_rx_cfg = 0;
1165 	bool is_l4 = false;
1166 	bool is_l2 = false;
1167 	u32 regval;
1168 
1169 	switch (config->tx_type) {
1170 	case HWTSTAMP_TX_OFF:
1171 		tsync_tx_ctl = 0;
1172 		break;
1173 	case HWTSTAMP_TX_ON:
1174 		break;
1175 	default:
1176 		return -ERANGE;
1177 	}
1178 
1179 	switch (config->rx_filter) {
1180 	case HWTSTAMP_FILTER_NONE:
1181 		tsync_rx_ctl = 0;
1182 		break;
1183 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1184 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1185 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1186 		is_l4 = true;
1187 		break;
1188 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1189 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1190 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1191 		is_l4 = true;
1192 		break;
1193 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1194 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1195 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1196 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1197 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1198 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1199 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1200 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1201 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1202 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1203 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1204 		is_l2 = true;
1205 		is_l4 = true;
1206 		break;
1207 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1208 	case HWTSTAMP_FILTER_NTP_ALL:
1209 	case HWTSTAMP_FILTER_ALL:
1210 		/* 82576 cannot timestamp all packets, which it needs to do to
1211 		 * support both V1 Sync and Delay_Req messages
1212 		 */
1213 		if (hw->mac.type != e1000_82576) {
1214 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1215 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1216 			break;
1217 		}
1218 		fallthrough;
1219 	default:
1220 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1221 		return -ERANGE;
1222 	}
1223 
1224 	if (hw->mac.type == e1000_82575) {
1225 		if (tsync_rx_ctl | tsync_tx_ctl)
1226 			return -EINVAL;
1227 		return 0;
1228 	}
1229 
1230 	/* Per-packet timestamping only works if all packets are
1231 	 * timestamped, so enable timestamping in all packets as
1232 	 * long as one Rx filter was configured.
1233 	 */
1234 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1235 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1236 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1237 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1238 		is_l2 = true;
1239 		is_l4 = true;
1240 
1241 		if ((hw->mac.type == e1000_i210) ||
1242 		    (hw->mac.type == e1000_i211)) {
1243 			regval = rd32(E1000_RXPBS);
1244 			regval |= E1000_RXPBS_CFG_TS_EN;
1245 			wr32(E1000_RXPBS, regval);
1246 		}
1247 	}
1248 
1249 	/* enable/disable TX */
1250 	regval = rd32(E1000_TSYNCTXCTL);
1251 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1252 	regval |= tsync_tx_ctl;
1253 	wr32(E1000_TSYNCTXCTL, regval);
1254 
1255 	/* enable/disable RX */
1256 	regval = rd32(E1000_TSYNCRXCTL);
1257 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1258 	regval |= tsync_rx_ctl;
1259 	wr32(E1000_TSYNCRXCTL, regval);
1260 
1261 	/* define which PTP packets are time stamped */
1262 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1263 
1264 	/* define ethertype filter for timestamped packets */
1265 	if (is_l2)
1266 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1267 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1268 		      E1000_ETQF_1588 | /* enable timestamping */
1269 		      ETH_P_1588));     /* 1588 eth protocol type */
1270 	else
1271 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1272 
1273 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1274 	if (is_l4) {
1275 		u32 ftqf = (IPPROTO_UDP /* UDP */
1276 			| E1000_FTQF_VF_BP /* VF not compared */
1277 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1278 			| E1000_FTQF_MASK); /* mask all inputs */
1279 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1280 
1281 		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1282 		wr32(E1000_IMIREXT(3),
1283 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1284 		if (hw->mac.type == e1000_82576) {
1285 			/* enable source port check */
1286 			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1287 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1288 		}
1289 		wr32(E1000_FTQF(3), ftqf);
1290 	} else {
1291 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1292 	}
1293 	wrfl();
1294 
1295 	/* clear TX/RX time stamp registers, just to be sure */
1296 	regval = rd32(E1000_TXSTMPL);
1297 	regval = rd32(E1000_TXSTMPH);
1298 	regval = rd32(E1000_RXSTMPL);
1299 	regval = rd32(E1000_RXSTMPH);
1300 
1301 	return 0;
1302 }
1303 
1304 /**
1305  * igb_ptp_set_ts_config - set hardware time stamping config
1306  * @netdev: netdev struct
1307  * @ifr: interface struct
1308  *
1309  **/
1310 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1311 {
1312 	struct igb_adapter *adapter = netdev_priv(netdev);
1313 	struct hwtstamp_config config;
1314 	int err;
1315 
1316 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1317 		return -EFAULT;
1318 
1319 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1320 	if (err)
1321 		return err;
1322 
1323 	/* save these settings for future reference */
1324 	memcpy(&adapter->tstamp_config, &config,
1325 	       sizeof(adapter->tstamp_config));
1326 
1327 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1328 		-EFAULT : 0;
1329 }
1330 
1331 /**
1332  * igb_ptp_init - Initialize PTP functionality
1333  * @adapter: Board private structure
1334  *
1335  * This function is called at device probe to initialize the PTP
1336  * functionality.
1337  */
1338 void igb_ptp_init(struct igb_adapter *adapter)
1339 {
1340 	struct e1000_hw *hw = &adapter->hw;
1341 	struct net_device *netdev = adapter->netdev;
1342 
1343 	switch (hw->mac.type) {
1344 	case e1000_82576:
1345 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1346 		adapter->ptp_caps.owner = THIS_MODULE;
1347 		adapter->ptp_caps.max_adj = 999999881;
1348 		adapter->ptp_caps.n_ext_ts = 0;
1349 		adapter->ptp_caps.pps = 0;
1350 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1351 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1352 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1353 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1354 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1355 		adapter->cc.read = igb_ptp_read_82576;
1356 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1357 		adapter->cc.mult = 1;
1358 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1359 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1360 		break;
1361 	case e1000_82580:
1362 	case e1000_i354:
1363 	case e1000_i350:
1364 		igb_ptp_sdp_init(adapter);
1365 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1366 		adapter->ptp_caps.owner = THIS_MODULE;
1367 		adapter->ptp_caps.max_adj = 62499999;
1368 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1369 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1370 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1371 		adapter->ptp_caps.pps = 0;
1372 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1373 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1374 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1375 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1376 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1377 		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1378 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1379 		adapter->cc.read = igb_ptp_read_82580;
1380 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1381 		adapter->cc.mult = 1;
1382 		adapter->cc.shift = 0;
1383 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1384 		break;
1385 	case e1000_i210:
1386 	case e1000_i211:
1387 		igb_ptp_sdp_init(adapter);
1388 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1389 		adapter->ptp_caps.owner = THIS_MODULE;
1390 		adapter->ptp_caps.max_adj = 62499999;
1391 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1392 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1393 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1394 		adapter->ptp_caps.pps = 1;
1395 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1396 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1397 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1398 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1399 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1400 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1401 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1402 		break;
1403 	default:
1404 		adapter->ptp_clock = NULL;
1405 		return;
1406 	}
1407 
1408 	spin_lock_init(&adapter->tmreg_lock);
1409 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1410 
1411 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1412 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1413 				  igb_ptp_overflow_check);
1414 
1415 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1416 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1417 
1418 	igb_ptp_reset(adapter);
1419 
1420 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1421 						&adapter->pdev->dev);
1422 	if (IS_ERR(adapter->ptp_clock)) {
1423 		adapter->ptp_clock = NULL;
1424 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1425 	} else if (adapter->ptp_clock) {
1426 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1427 			 adapter->netdev->name);
1428 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1429 	}
1430 }
1431 
1432 /**
1433  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1434  * @adapter: Board private structure.
1435  **/
1436 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1437 {
1438 	int i;
1439 
1440 	for (i = 0; i < IGB_N_SDP; i++) {
1441 		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1442 
1443 		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1444 		ppd->index = i;
1445 		ppd->func = PTP_PF_NONE;
1446 	}
1447 }
1448 
1449 /**
1450  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1451  * @adapter: Board private structure
1452  *
1453  * This function stops the overflow check work and PTP Tx timestamp work, and
1454  * will prepare the device for OS suspend.
1455  */
1456 void igb_ptp_suspend(struct igb_adapter *adapter)
1457 {
1458 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1459 		return;
1460 
1461 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1462 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1463 
1464 	cancel_work_sync(&adapter->ptp_tx_work);
1465 	if (adapter->ptp_tx_skb) {
1466 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1467 		adapter->ptp_tx_skb = NULL;
1468 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1469 	}
1470 }
1471 
1472 /**
1473  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1474  * @adapter: Board private structure.
1475  *
1476  * This function stops the PTP support and cancels the delayed work.
1477  **/
1478 void igb_ptp_stop(struct igb_adapter *adapter)
1479 {
1480 	igb_ptp_suspend(adapter);
1481 
1482 	if (adapter->ptp_clock) {
1483 		ptp_clock_unregister(adapter->ptp_clock);
1484 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1485 			 adapter->netdev->name);
1486 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1487 	}
1488 }
1489 
1490 /**
1491  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1492  * @adapter: Board private structure.
1493  *
1494  * This function handles the reset work required to re-enable the PTP device.
1495  **/
1496 void igb_ptp_reset(struct igb_adapter *adapter)
1497 {
1498 	struct e1000_hw *hw = &adapter->hw;
1499 	unsigned long flags;
1500 
1501 	/* reset the tstamp_config */
1502 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1503 
1504 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1505 
1506 	switch (adapter->hw.mac.type) {
1507 	case e1000_82576:
1508 		/* Dial the nominal frequency. */
1509 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1510 		break;
1511 	case e1000_82580:
1512 	case e1000_i354:
1513 	case e1000_i350:
1514 	case e1000_i210:
1515 	case e1000_i211:
1516 		wr32(E1000_TSAUXC, 0x0);
1517 		wr32(E1000_TSSDP, 0x0);
1518 		wr32(E1000_TSIM,
1519 		     TSYNC_INTERRUPTS |
1520 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1521 		wr32(E1000_IMS, E1000_IMS_TS);
1522 		break;
1523 	default:
1524 		/* No work to do. */
1525 		goto out;
1526 	}
1527 
1528 	/* Re-initialize the timer. */
1529 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1530 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1531 
1532 		igb_ptp_write_i210(adapter, &ts);
1533 	} else {
1534 		timecounter_init(&adapter->tc, &adapter->cc,
1535 				 ktime_to_ns(ktime_get_real()));
1536 	}
1537 out:
1538 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1539 
1540 	wrfl();
1541 
1542 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1543 		schedule_delayed_work(&adapter->ptp_overflow_work,
1544 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1545 }
1546