xref: /linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3  *
4  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/pci.h>
23 
24 #include "igb.h"
25 
26 #define INCVALUE_MASK		0x7fffffff
27 #define ISGN			0x80000000
28 
29 /*
30  * The 82580 timesync updates the system timer every 8ns by 8ns,
31  * and this update value cannot be reprogrammed.
32  *
33  * Neither the 82576 nor the 82580 offer registers wide enough to hold
34  * nanoseconds time values for very long. For the 82580, SYSTIM always
35  * counts nanoseconds, but the upper 24 bits are not availible. The
36  * frequency is adjusted by changing the 32 bit fractional nanoseconds
37  * register, TIMINCA.
38  *
39  * For the 82576, the SYSTIM register time unit is affect by the
40  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
41  * field are needed to provide the nominal 16 nanosecond period,
42  * leaving 19 bits for fractional nanoseconds.
43  *
44  * We scale the NIC clock cycle by a large factor so that relatively
45  * small clock corrections can be added or subtracted at each clock
46  * tick. The drawbacks of a large factor are a) that the clock
47  * register overflows more quickly (not such a big deal) and b) that
48  * the increment per tick has to fit into 24 bits.  As a result we
49  * need to use a shift of 19 so we can fit a value of 16 into the
50  * TIMINCA register.
51  *
52  *
53  *             SYSTIMH            SYSTIML
54  *        +--------------+   +---+---+------+
55  *  82576 |      32      |   | 8 | 5 |  19  |
56  *        +--------------+   +---+---+------+
57  *         \________ 45 bits _______/  fract
58  *
59  *        +----------+---+   +--------------+
60  *  82580 |    24    | 8 |   |      32      |
61  *        +----------+---+   +--------------+
62  *          reserved  \______ 40 bits _____/
63  *
64  *
65  * The 45 bit 82576 SYSTIM overflows every
66  *   2^45 * 10^-9 / 3600 = 9.77 hours.
67  *
68  * The 40 bit 82580 SYSTIM overflows every
69  *   2^40 * 10^-9 /  60  = 18.3 minutes.
70  */
71 
72 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
73 #define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75 #define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580			40
77 
78 /*
79  * SYSTIM read access for the 82576
80  */
81 
82 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
83 {
84 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
85 	struct e1000_hw *hw = &igb->hw;
86 	u64 val;
87 	u32 lo, hi;
88 
89 	lo = rd32(E1000_SYSTIML);
90 	hi = rd32(E1000_SYSTIMH);
91 
92 	val = ((u64) hi) << 32;
93 	val |= lo;
94 
95 	return val;
96 }
97 
98 /*
99  * SYSTIM read access for the 82580
100  */
101 
102 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
103 {
104 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
105 	struct e1000_hw *hw = &igb->hw;
106 	u64 val;
107 	u32 lo, hi, jk;
108 
109 	/*
110 	 * The timestamp latches on lowest register read. For the 82580
111 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
112 	 * need to provide nanosecond resolution, so we just ignore it.
113 	 */
114 	jk = rd32(E1000_SYSTIMR);
115 	lo = rd32(E1000_SYSTIML);
116 	hi = rd32(E1000_SYSTIMH);
117 
118 	val = ((u64) hi) << 32;
119 	val |= lo;
120 
121 	return val;
122 }
123 
124 /*
125  * SYSTIM read access for I210/I211
126  */
127 
128 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
129 {
130 	struct e1000_hw *hw = &adapter->hw;
131 	u32 sec, nsec, jk;
132 
133 	/*
134 	 * The timestamp latches on lowest register read. For I210/I211, the
135 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
136 	 * resolution, we can ignore it.
137 	 */
138 	jk = rd32(E1000_SYSTIMR);
139 	nsec = rd32(E1000_SYSTIML);
140 	sec = rd32(E1000_SYSTIMH);
141 
142 	ts->tv_sec = sec;
143 	ts->tv_nsec = nsec;
144 }
145 
146 static void igb_ptp_write_i210(struct igb_adapter *adapter,
147 			       const struct timespec *ts)
148 {
149 	struct e1000_hw *hw = &adapter->hw;
150 
151 	/*
152 	 * Writing the SYSTIMR register is not necessary as it only provides
153 	 * sub-nanosecond resolution.
154 	 */
155 	wr32(E1000_SYSTIML, ts->tv_nsec);
156 	wr32(E1000_SYSTIMH, ts->tv_sec);
157 }
158 
159 /**
160  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
161  * @adapter: board private structure
162  * @hwtstamps: timestamp structure to update
163  * @systim: unsigned 64bit system time value.
164  *
165  * We need to convert the system time value stored in the RX/TXSTMP registers
166  * into a hwtstamp which can be used by the upper level timestamping functions.
167  *
168  * The 'tmreg_lock' spinlock is used to protect the consistency of the
169  * system time value. This is needed because reading the 64 bit time
170  * value involves reading two (or three) 32 bit registers. The first
171  * read latches the value. Ditto for writing.
172  *
173  * In addition, here have extended the system time with an overflow
174  * counter in software.
175  **/
176 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
177 				       struct skb_shared_hwtstamps *hwtstamps,
178 				       u64 systim)
179 {
180 	unsigned long flags;
181 	u64 ns;
182 
183 	switch (adapter->hw.mac.type) {
184 	case e1000_82576:
185 	case e1000_82580:
186 	case e1000_i350:
187 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
188 
189 		ns = timecounter_cyc2time(&adapter->tc, systim);
190 
191 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
192 
193 		memset(hwtstamps, 0, sizeof(*hwtstamps));
194 		hwtstamps->hwtstamp = ns_to_ktime(ns);
195 		break;
196 	case e1000_i210:
197 	case e1000_i211:
198 		memset(hwtstamps, 0, sizeof(*hwtstamps));
199 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
200 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
201 						systim & 0xFFFFFFFF);
202 		break;
203 	default:
204 		break;
205 	}
206 }
207 
208 /*
209  * PTP clock operations
210  */
211 
212 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
213 {
214 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
215 					       ptp_caps);
216 	struct e1000_hw *hw = &igb->hw;
217 	int neg_adj = 0;
218 	u64 rate;
219 	u32 incvalue;
220 
221 	if (ppb < 0) {
222 		neg_adj = 1;
223 		ppb = -ppb;
224 	}
225 	rate = ppb;
226 	rate <<= 14;
227 	rate = div_u64(rate, 1953125);
228 
229 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
230 
231 	if (neg_adj)
232 		incvalue -= rate;
233 	else
234 		incvalue += rate;
235 
236 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
237 
238 	return 0;
239 }
240 
241 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
242 {
243 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 					       ptp_caps);
245 	struct e1000_hw *hw = &igb->hw;
246 	int neg_adj = 0;
247 	u64 rate;
248 	u32 inca;
249 
250 	if (ppb < 0) {
251 		neg_adj = 1;
252 		ppb = -ppb;
253 	}
254 	rate = ppb;
255 	rate <<= 26;
256 	rate = div_u64(rate, 1953125);
257 
258 	inca = rate & INCVALUE_MASK;
259 	if (neg_adj)
260 		inca |= ISGN;
261 
262 	wr32(E1000_TIMINCA, inca);
263 
264 	return 0;
265 }
266 
267 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
268 {
269 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 					       ptp_caps);
271 	unsigned long flags;
272 	s64 now;
273 
274 	spin_lock_irqsave(&igb->tmreg_lock, flags);
275 
276 	now = timecounter_read(&igb->tc);
277 	now += delta;
278 	timecounter_init(&igb->tc, &igb->cc, now);
279 
280 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281 
282 	return 0;
283 }
284 
285 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
286 {
287 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
288 					       ptp_caps);
289 	unsigned long flags;
290 	struct timespec now, then = ns_to_timespec(delta);
291 
292 	spin_lock_irqsave(&igb->tmreg_lock, flags);
293 
294 	igb_ptp_read_i210(igb, &now);
295 	now = timespec_add(now, then);
296 	igb_ptp_write_i210(igb, (const struct timespec *)&now);
297 
298 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299 
300 	return 0;
301 }
302 
303 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
304 				 struct timespec *ts)
305 {
306 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
307 					       ptp_caps);
308 	unsigned long flags;
309 	u64 ns;
310 	u32 remainder;
311 
312 	spin_lock_irqsave(&igb->tmreg_lock, flags);
313 
314 	ns = timecounter_read(&igb->tc);
315 
316 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317 
318 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
319 	ts->tv_nsec = remainder;
320 
321 	return 0;
322 }
323 
324 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
325 				struct timespec *ts)
326 {
327 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
328 					       ptp_caps);
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&igb->tmreg_lock, flags);
332 
333 	igb_ptp_read_i210(igb, ts);
334 
335 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336 
337 	return 0;
338 }
339 
340 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
341 				 const struct timespec *ts)
342 {
343 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 					       ptp_caps);
345 	unsigned long flags;
346 	u64 ns;
347 
348 	ns = ts->tv_sec * 1000000000ULL;
349 	ns += ts->tv_nsec;
350 
351 	spin_lock_irqsave(&igb->tmreg_lock, flags);
352 
353 	timecounter_init(&igb->tc, &igb->cc, ns);
354 
355 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
356 
357 	return 0;
358 }
359 
360 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
361 				const struct timespec *ts)
362 {
363 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
364 					       ptp_caps);
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&igb->tmreg_lock, flags);
368 
369 	igb_ptp_write_i210(igb, ts);
370 
371 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372 
373 	return 0;
374 }
375 
376 static int igb_ptp_enable(struct ptp_clock_info *ptp,
377 			  struct ptp_clock_request *rq, int on)
378 {
379 	return -EOPNOTSUPP;
380 }
381 
382 /**
383  * igb_ptp_tx_work
384  * @work: pointer to work struct
385  *
386  * This work function polls the TSYNCTXCTL valid bit to determine when a
387  * timestamp has been taken for the current stored skb.
388  */
389 void igb_ptp_tx_work(struct work_struct *work)
390 {
391 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
392 						   ptp_tx_work);
393 	struct e1000_hw *hw = &adapter->hw;
394 	u32 tsynctxctl;
395 
396 	if (!adapter->ptp_tx_skb)
397 		return;
398 
399 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
400 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
401 		igb_ptp_tx_hwtstamp(adapter);
402 	else
403 		/* reschedule to check later */
404 		schedule_work(&adapter->ptp_tx_work);
405 }
406 
407 static void igb_ptp_overflow_check(struct work_struct *work)
408 {
409 	struct igb_adapter *igb =
410 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
411 	struct timespec ts;
412 
413 	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
414 
415 	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
416 
417 	schedule_delayed_work(&igb->ptp_overflow_work,
418 			      IGB_SYSTIM_OVERFLOW_PERIOD);
419 }
420 
421 /**
422  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
423  * @adapter: Board private structure.
424  *
425  * If we were asked to do hardware stamping and such a time stamp is
426  * available, then it must have been for this skb here because we only
427  * allow only one such packet into the queue.
428  */
429 void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
430 {
431 	struct e1000_hw *hw = &adapter->hw;
432 	struct skb_shared_hwtstamps shhwtstamps;
433 	u64 regval;
434 
435 	regval = rd32(E1000_TXSTMPL);
436 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
437 
438 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
439 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
440 	dev_kfree_skb_any(adapter->ptp_tx_skb);
441 	adapter->ptp_tx_skb = NULL;
442 }
443 
444 /**
445  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
446  * @q_vector: Pointer to interrupt specific structure
447  * @va: Pointer to address containing Rx buffer
448  * @skb: Buffer containing timestamp and packet
449  *
450  * This function is meant to retrieve a timestamp from the first buffer of an
451  * incoming frame.  The value is stored in little endian format starting on
452  * byte 8.
453  */
454 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
455 			 unsigned char *va,
456 			 struct sk_buff *skb)
457 {
458 	__le64 *regval = (__le64 *)va;
459 
460 	/*
461 	 * The timestamp is recorded in little endian format.
462 	 * DWORD: 0        1        2        3
463 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
464 	 */
465 	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
466 				   le64_to_cpu(regval[1]));
467 }
468 
469 /**
470  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
471  * @q_vector: Pointer to interrupt specific structure
472  * @skb: Buffer containing timestamp and packet
473  *
474  * This function is meant to retrieve a timestamp from the internal registers
475  * of the adapter and store it in the skb.
476  */
477 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
478 			 struct sk_buff *skb)
479 {
480 	struct igb_adapter *adapter = q_vector->adapter;
481 	struct e1000_hw *hw = &adapter->hw;
482 	u64 regval;
483 
484 	/*
485 	 * If this bit is set, then the RX registers contain the time stamp. No
486 	 * other packet will be time stamped until we read these registers, so
487 	 * read the registers to make them available again. Because only one
488 	 * packet can be time stamped at a time, we know that the register
489 	 * values must belong to this one here and therefore we don't need to
490 	 * compare any of the additional attributes stored for it.
491 	 *
492 	 * If nothing went wrong, then it should have a shared tx_flags that we
493 	 * can turn into a skb_shared_hwtstamps.
494 	 */
495 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
496 		return;
497 
498 	regval = rd32(E1000_RXSTMPL);
499 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
500 
501 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
502 }
503 
504 /**
505  * igb_ptp_hwtstamp_ioctl - control hardware time stamping
506  * @netdev:
507  * @ifreq:
508  * @cmd:
509  *
510  * Outgoing time stamping can be enabled and disabled. Play nice and
511  * disable it when requested, although it shouldn't case any overhead
512  * when no packet needs it. At most one packet in the queue may be
513  * marked for time stamping, otherwise it would be impossible to tell
514  * for sure to which packet the hardware time stamp belongs.
515  *
516  * Incoming time stamping has to be configured via the hardware
517  * filters. Not all combinations are supported, in particular event
518  * type has to be specified. Matching the kind of event packet is
519  * not supported, with the exception of "all V2 events regardless of
520  * level 2 or 4".
521  *
522  **/
523 int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
524 			   struct ifreq *ifr, int cmd)
525 {
526 	struct igb_adapter *adapter = netdev_priv(netdev);
527 	struct e1000_hw *hw = &adapter->hw;
528 	struct hwtstamp_config config;
529 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
530 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
531 	u32 tsync_rx_cfg = 0;
532 	bool is_l4 = false;
533 	bool is_l2 = false;
534 	u32 regval;
535 
536 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
537 		return -EFAULT;
538 
539 	/* reserved for future extensions */
540 	if (config.flags)
541 		return -EINVAL;
542 
543 	switch (config.tx_type) {
544 	case HWTSTAMP_TX_OFF:
545 		tsync_tx_ctl = 0;
546 	case HWTSTAMP_TX_ON:
547 		break;
548 	default:
549 		return -ERANGE;
550 	}
551 
552 	switch (config.rx_filter) {
553 	case HWTSTAMP_FILTER_NONE:
554 		tsync_rx_ctl = 0;
555 		break;
556 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
557 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
558 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
559 		is_l4 = true;
560 		break;
561 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
562 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
563 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
564 		is_l4 = true;
565 		break;
566 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
567 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
568 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
569 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
570 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
571 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
572 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
573 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
574 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
575 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
576 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
577 		is_l2 = true;
578 		is_l4 = true;
579 		break;
580 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
581 	case HWTSTAMP_FILTER_ALL:
582 		/* 82576 cannot timestamp all packets, which it needs to do to
583 		 * support both V1 Sync and Delay_Req messages
584 		 */
585 		if (hw->mac.type != e1000_82576) {
586 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
587 			config.rx_filter = HWTSTAMP_FILTER_ALL;
588 			break;
589 		}
590 		/* fall through */
591 	default:
592 		config.rx_filter = HWTSTAMP_FILTER_NONE;
593 		return -ERANGE;
594 	}
595 
596 	if (hw->mac.type == e1000_82575) {
597 		if (tsync_rx_ctl | tsync_tx_ctl)
598 			return -EINVAL;
599 		return 0;
600 	}
601 
602 	/*
603 	 * Per-packet timestamping only works if all packets are
604 	 * timestamped, so enable timestamping in all packets as
605 	 * long as one rx filter was configured.
606 	 */
607 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
608 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
609 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
610 		config.rx_filter = HWTSTAMP_FILTER_ALL;
611 		is_l2 = true;
612 		is_l4 = true;
613 
614 		if ((hw->mac.type == e1000_i210) ||
615 		    (hw->mac.type == e1000_i211)) {
616 			regval = rd32(E1000_RXPBS);
617 			regval |= E1000_RXPBS_CFG_TS_EN;
618 			wr32(E1000_RXPBS, regval);
619 		}
620 	}
621 
622 	/* enable/disable TX */
623 	regval = rd32(E1000_TSYNCTXCTL);
624 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
625 	regval |= tsync_tx_ctl;
626 	wr32(E1000_TSYNCTXCTL, regval);
627 
628 	/* enable/disable RX */
629 	regval = rd32(E1000_TSYNCRXCTL);
630 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
631 	regval |= tsync_rx_ctl;
632 	wr32(E1000_TSYNCRXCTL, regval);
633 
634 	/* define which PTP packets are time stamped */
635 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
636 
637 	/* define ethertype filter for timestamped packets */
638 	if (is_l2)
639 		wr32(E1000_ETQF(3),
640 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
641 		      E1000_ETQF_1588 | /* enable timestamping */
642 		      ETH_P_1588));     /* 1588 eth protocol type */
643 	else
644 		wr32(E1000_ETQF(3), 0);
645 
646 #define PTP_PORT 319
647 	/* L4 Queue Filter[3]: filter by destination port and protocol */
648 	if (is_l4) {
649 		u32 ftqf = (IPPROTO_UDP /* UDP */
650 			| E1000_FTQF_VF_BP /* VF not compared */
651 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
652 			| E1000_FTQF_MASK); /* mask all inputs */
653 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
654 
655 		wr32(E1000_IMIR(3), htons(PTP_PORT));
656 		wr32(E1000_IMIREXT(3),
657 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
658 		if (hw->mac.type == e1000_82576) {
659 			/* enable source port check */
660 			wr32(E1000_SPQF(3), htons(PTP_PORT));
661 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
662 		}
663 		wr32(E1000_FTQF(3), ftqf);
664 	} else {
665 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
666 	}
667 	wrfl();
668 
669 	/* clear TX/RX time stamp registers, just to be sure */
670 	regval = rd32(E1000_TXSTMPL);
671 	regval = rd32(E1000_TXSTMPH);
672 	regval = rd32(E1000_RXSTMPL);
673 	regval = rd32(E1000_RXSTMPH);
674 
675 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
676 		-EFAULT : 0;
677 }
678 
679 void igb_ptp_init(struct igb_adapter *adapter)
680 {
681 	struct e1000_hw *hw = &adapter->hw;
682 	struct net_device *netdev = adapter->netdev;
683 
684 	switch (hw->mac.type) {
685 	case e1000_82576:
686 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
687 		adapter->ptp_caps.owner = THIS_MODULE;
688 		adapter->ptp_caps.max_adj = 1000000000;
689 		adapter->ptp_caps.n_ext_ts = 0;
690 		adapter->ptp_caps.pps = 0;
691 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
692 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
693 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
694 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
695 		adapter->ptp_caps.enable = igb_ptp_enable;
696 		adapter->cc.read = igb_ptp_read_82576;
697 		adapter->cc.mask = CLOCKSOURCE_MASK(64);
698 		adapter->cc.mult = 1;
699 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
700 		/* Dial the nominal frequency. */
701 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
702 		break;
703 	case e1000_82580:
704 	case e1000_i350:
705 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
706 		adapter->ptp_caps.owner = THIS_MODULE;
707 		adapter->ptp_caps.max_adj = 62499999;
708 		adapter->ptp_caps.n_ext_ts = 0;
709 		adapter->ptp_caps.pps = 0;
710 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
711 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
712 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
713 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
714 		adapter->ptp_caps.enable = igb_ptp_enable;
715 		adapter->cc.read = igb_ptp_read_82580;
716 		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
717 		adapter->cc.mult = 1;
718 		adapter->cc.shift = 0;
719 		/* Enable the timer functions by clearing bit 31. */
720 		wr32(E1000_TSAUXC, 0x0);
721 		break;
722 	case e1000_i210:
723 	case e1000_i211:
724 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
725 		adapter->ptp_caps.owner = THIS_MODULE;
726 		adapter->ptp_caps.max_adj = 62499999;
727 		adapter->ptp_caps.n_ext_ts = 0;
728 		adapter->ptp_caps.pps = 0;
729 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
730 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
731 		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
732 		adapter->ptp_caps.settime = igb_ptp_settime_i210;
733 		adapter->ptp_caps.enable = igb_ptp_enable;
734 		/* Enable the timer functions by clearing bit 31. */
735 		wr32(E1000_TSAUXC, 0x0);
736 		break;
737 	default:
738 		adapter->ptp_clock = NULL;
739 		return;
740 	}
741 
742 	wrfl();
743 
744 	spin_lock_init(&adapter->tmreg_lock);
745 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
746 
747 	/* Initialize the clock and overflow work for devices that need it. */
748 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
749 		struct timespec ts = ktime_to_timespec(ktime_get_real());
750 
751 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
752 	} else {
753 		timecounter_init(&adapter->tc, &adapter->cc,
754 				 ktime_to_ns(ktime_get_real()));
755 
756 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
757 				  igb_ptp_overflow_check);
758 
759 		schedule_delayed_work(&adapter->ptp_overflow_work,
760 				      IGB_SYSTIM_OVERFLOW_PERIOD);
761 	}
762 
763 	/* Initialize the time sync interrupts for devices that support it. */
764 	if (hw->mac.type >= e1000_82580) {
765 		wr32(E1000_TSIM, E1000_TSIM_TXTS);
766 		wr32(E1000_IMS, E1000_IMS_TS);
767 	}
768 
769 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
770 						&adapter->pdev->dev);
771 	if (IS_ERR(adapter->ptp_clock)) {
772 		adapter->ptp_clock = NULL;
773 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
774 	} else {
775 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
776 			 adapter->netdev->name);
777 		adapter->flags |= IGB_FLAG_PTP;
778 	}
779 }
780 
781 /**
782  * igb_ptp_stop - Disable PTP device and stop the overflow check.
783  * @adapter: Board private structure.
784  *
785  * This function stops the PTP support and cancels the delayed work.
786  **/
787 void igb_ptp_stop(struct igb_adapter *adapter)
788 {
789 	switch (adapter->hw.mac.type) {
790 	case e1000_82576:
791 	case e1000_82580:
792 	case e1000_i350:
793 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
794 		break;
795 	case e1000_i210:
796 	case e1000_i211:
797 		/* No delayed work to cancel. */
798 		break;
799 	default:
800 		return;
801 	}
802 
803 	cancel_work_sync(&adapter->ptp_tx_work);
804 
805 	if (adapter->ptp_clock) {
806 		ptp_clock_unregister(adapter->ptp_clock);
807 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
808 			 adapter->netdev->name);
809 		adapter->flags &= ~IGB_FLAG_PTP;
810 	}
811 }
812 
813 /**
814  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
815  * @adapter: Board private structure.
816  *
817  * This function handles the reset work required to re-enable the PTP device.
818  **/
819 void igb_ptp_reset(struct igb_adapter *adapter)
820 {
821 	struct e1000_hw *hw = &adapter->hw;
822 
823 	if (!(adapter->flags & IGB_FLAG_PTP))
824 		return;
825 
826 	switch (adapter->hw.mac.type) {
827 	case e1000_82576:
828 		/* Dial the nominal frequency. */
829 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
830 		break;
831 	case e1000_82580:
832 	case e1000_i350:
833 	case e1000_i210:
834 	case e1000_i211:
835 		/* Enable the timer functions and interrupts. */
836 		wr32(E1000_TSAUXC, 0x0);
837 		wr32(E1000_TSIM, E1000_TSIM_TXTS);
838 		wr32(E1000_IMS, E1000_IMS_TS);
839 		break;
840 	default:
841 		/* No work to do. */
842 		return;
843 	}
844 
845 	/* Re-initialize the timer. */
846 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
847 		struct timespec ts = ktime_to_timespec(ktime_get_real());
848 
849 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
850 	} else {
851 		timecounter_init(&adapter->tc, &adapter->cc,
852 				 ktime_to_ns(ktime_get_real()));
853 	}
854 }
855