xref: /linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
73 
74 /* SYSTIM read access for the 82576 */
75 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
76 {
77 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
78 	struct e1000_hw *hw = &igb->hw;
79 	u64 val;
80 	u32 lo, hi;
81 
82 	lo = rd32(E1000_SYSTIML);
83 	hi = rd32(E1000_SYSTIMH);
84 
85 	val = ((u64) hi) << 32;
86 	val |= lo;
87 
88 	return val;
89 }
90 
91 /* SYSTIM read access for the 82580 */
92 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
93 {
94 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
95 	struct e1000_hw *hw = &igb->hw;
96 	u32 lo, hi;
97 	u64 val;
98 
99 	/* The timestamp latches on lowest register read. For the 82580
100 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
101 	 * need to provide nanosecond resolution, so we just ignore it.
102 	 */
103 	rd32(E1000_SYSTIMR);
104 	lo = rd32(E1000_SYSTIML);
105 	hi = rd32(E1000_SYSTIMH);
106 
107 	val = ((u64) hi) << 32;
108 	val |= lo;
109 
110 	return val;
111 }
112 
113 /* SYSTIM read access for I210/I211 */
114 static void igb_ptp_read_i210(struct igb_adapter *adapter,
115 			      struct timespec64 *ts)
116 {
117 	struct e1000_hw *hw = &adapter->hw;
118 	u32 sec, nsec;
119 
120 	/* The timestamp latches on lowest register read. For I210/I211, the
121 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
122 	 * resolution, we can ignore it.
123 	 */
124 	rd32(E1000_SYSTIMR);
125 	nsec = rd32(E1000_SYSTIML);
126 	sec = rd32(E1000_SYSTIMH);
127 
128 	ts->tv_sec = sec;
129 	ts->tv_nsec = nsec;
130 }
131 
132 static void igb_ptp_write_i210(struct igb_adapter *adapter,
133 			       const struct timespec64 *ts)
134 {
135 	struct e1000_hw *hw = &adapter->hw;
136 
137 	/* Writing the SYSTIMR register is not necessary as it only provides
138 	 * sub-nanosecond resolution.
139 	 */
140 	wr32(E1000_SYSTIML, ts->tv_nsec);
141 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
142 }
143 
144 /**
145  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
146  * @adapter: board private structure
147  * @hwtstamps: timestamp structure to update
148  * @systim: unsigned 64bit system time value.
149  *
150  * We need to convert the system time value stored in the RX/TXSTMP registers
151  * into a hwtstamp which can be used by the upper level timestamping functions.
152  *
153  * The 'tmreg_lock' spinlock is used to protect the consistency of the
154  * system time value. This is needed because reading the 64 bit time
155  * value involves reading two (or three) 32 bit registers. The first
156  * read latches the value. Ditto for writing.
157  *
158  * In addition, here have extended the system time with an overflow
159  * counter in software.
160  **/
161 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
162 				       struct skb_shared_hwtstamps *hwtstamps,
163 				       u64 systim)
164 {
165 	unsigned long flags;
166 	u64 ns;
167 
168 	memset(hwtstamps, 0, sizeof(*hwtstamps));
169 
170 	switch (adapter->hw.mac.type) {
171 	case e1000_82576:
172 	case e1000_82580:
173 	case e1000_i354:
174 	case e1000_i350:
175 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
176 		ns = timecounter_cyc2time(&adapter->tc, systim);
177 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
178 
179 		hwtstamps->hwtstamp = ns_to_ktime(ns);
180 		break;
181 	case e1000_i210:
182 	case e1000_i211:
183 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
184 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
185 						systim & 0xFFFFFFFF);
186 		break;
187 	default:
188 		break;
189 	}
190 }
191 
192 /* PTP clock operations */
193 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
194 {
195 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
196 					       ptp_caps);
197 	struct e1000_hw *hw = &igb->hw;
198 	int neg_adj = 0;
199 	u64 rate;
200 	u32 incvalue;
201 
202 	if (scaled_ppm < 0) {
203 		neg_adj = 1;
204 		scaled_ppm = -scaled_ppm;
205 	}
206 
207 	incvalue = INCVALUE_82576;
208 	rate = mul_u64_u64_div_u64(incvalue, (u64)scaled_ppm,
209 				   1000000ULL << 16);
210 
211 	if (neg_adj)
212 		incvalue -= rate;
213 	else
214 		incvalue += rate;
215 
216 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
217 
218 	return 0;
219 }
220 
221 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
222 {
223 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
224 					       ptp_caps);
225 	struct e1000_hw *hw = &igb->hw;
226 	int neg_adj = 0;
227 	u64 rate;
228 	u32 inca;
229 
230 	if (scaled_ppm < 0) {
231 		neg_adj = 1;
232 		scaled_ppm = -scaled_ppm;
233 	}
234 	rate = scaled_ppm;
235 	rate <<= 13;
236 	rate = div_u64(rate, 15625);
237 
238 	inca = rate & INCVALUE_MASK;
239 	if (neg_adj)
240 		inca |= ISGN;
241 
242 	wr32(E1000_TIMINCA, inca);
243 
244 	return 0;
245 }
246 
247 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
248 {
249 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
250 					       ptp_caps);
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&igb->tmreg_lock, flags);
254 	timecounter_adjtime(&igb->tc, delta);
255 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
256 
257 	return 0;
258 }
259 
260 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
261 {
262 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
263 					       ptp_caps);
264 	unsigned long flags;
265 	struct timespec64 now, then = ns_to_timespec64(delta);
266 
267 	spin_lock_irqsave(&igb->tmreg_lock, flags);
268 
269 	igb_ptp_read_i210(igb, &now);
270 	now = timespec64_add(now, then);
271 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
272 
273 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
274 
275 	return 0;
276 }
277 
278 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
279 				  struct timespec64 *ts,
280 				  struct ptp_system_timestamp *sts)
281 {
282 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
283 					       ptp_caps);
284 	struct e1000_hw *hw = &igb->hw;
285 	unsigned long flags;
286 	u32 lo, hi;
287 	u64 ns;
288 
289 	spin_lock_irqsave(&igb->tmreg_lock, flags);
290 
291 	ptp_read_system_prets(sts);
292 	lo = rd32(E1000_SYSTIML);
293 	ptp_read_system_postts(sts);
294 	hi = rd32(E1000_SYSTIMH);
295 
296 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
297 
298 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299 
300 	*ts = ns_to_timespec64(ns);
301 
302 	return 0;
303 }
304 
305 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
306 				  struct timespec64 *ts,
307 				  struct ptp_system_timestamp *sts)
308 {
309 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310 					       ptp_caps);
311 	struct e1000_hw *hw = &igb->hw;
312 	unsigned long flags;
313 	u32 lo, hi;
314 	u64 ns;
315 
316 	spin_lock_irqsave(&igb->tmreg_lock, flags);
317 
318 	ptp_read_system_prets(sts);
319 	rd32(E1000_SYSTIMR);
320 	ptp_read_system_postts(sts);
321 	lo = rd32(E1000_SYSTIML);
322 	hi = rd32(E1000_SYSTIMH);
323 
324 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
325 
326 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
327 
328 	*ts = ns_to_timespec64(ns);
329 
330 	return 0;
331 }
332 
333 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
334 				 struct timespec64 *ts,
335 				 struct ptp_system_timestamp *sts)
336 {
337 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
338 					       ptp_caps);
339 	struct e1000_hw *hw = &igb->hw;
340 	unsigned long flags;
341 
342 	spin_lock_irqsave(&igb->tmreg_lock, flags);
343 
344 	ptp_read_system_prets(sts);
345 	rd32(E1000_SYSTIMR);
346 	ptp_read_system_postts(sts);
347 	ts->tv_nsec = rd32(E1000_SYSTIML);
348 	ts->tv_sec = rd32(E1000_SYSTIMH);
349 
350 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351 
352 	return 0;
353 }
354 
355 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
356 				 const struct timespec64 *ts)
357 {
358 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 					       ptp_caps);
360 	unsigned long flags;
361 	u64 ns;
362 
363 	ns = timespec64_to_ns(ts);
364 
365 	spin_lock_irqsave(&igb->tmreg_lock, flags);
366 
367 	timecounter_init(&igb->tc, &igb->cc, ns);
368 
369 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
370 
371 	return 0;
372 }
373 
374 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
375 				const struct timespec64 *ts)
376 {
377 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
378 					       ptp_caps);
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&igb->tmreg_lock, flags);
382 
383 	igb_ptp_write_i210(igb, ts);
384 
385 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
386 
387 	return 0;
388 }
389 
390 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
391 {
392 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
393 	static const u32 mask[IGB_N_SDP] = {
394 		E1000_CTRL_SDP0_DIR,
395 		E1000_CTRL_SDP1_DIR,
396 		E1000_CTRL_EXT_SDP2_DIR,
397 		E1000_CTRL_EXT_SDP3_DIR,
398 	};
399 
400 	if (input)
401 		*ptr &= ~mask[pin];
402 	else
403 		*ptr |= mask[pin];
404 }
405 
406 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
407 {
408 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
409 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
410 	};
411 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
412 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
413 	};
414 	static const u32 ts_sdp_en[IGB_N_SDP] = {
415 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
416 	};
417 	struct e1000_hw *hw = &igb->hw;
418 	u32 ctrl, ctrl_ext, tssdp = 0;
419 
420 	ctrl = rd32(E1000_CTRL);
421 	ctrl_ext = rd32(E1000_CTRL_EXT);
422 	tssdp = rd32(E1000_TSSDP);
423 
424 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
425 
426 	/* Make sure this pin is not enabled as an output. */
427 	tssdp &= ~ts_sdp_en[pin];
428 
429 	if (chan == 1) {
430 		tssdp &= ~AUX1_SEL_SDP3;
431 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
432 	} else {
433 		tssdp &= ~AUX0_SEL_SDP3;
434 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
435 	}
436 
437 	wr32(E1000_TSSDP, tssdp);
438 	wr32(E1000_CTRL, ctrl);
439 	wr32(E1000_CTRL_EXT, ctrl_ext);
440 }
441 
442 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
443 {
444 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
445 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
446 	};
447 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
448 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
449 	};
450 	static const u32 ts_sdp_en[IGB_N_SDP] = {
451 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
452 	};
453 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
454 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
455 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
456 	};
457 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
458 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
459 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
460 	};
461 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
462 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
463 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
464 	};
465 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
466 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
467 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
468 	};
469 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
470 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
471 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
472 	};
473 	struct e1000_hw *hw = &igb->hw;
474 	u32 ctrl, ctrl_ext, tssdp = 0;
475 
476 	ctrl = rd32(E1000_CTRL);
477 	ctrl_ext = rd32(E1000_CTRL_EXT);
478 	tssdp = rd32(E1000_TSSDP);
479 
480 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
481 
482 	/* Make sure this pin is not enabled as an input. */
483 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
484 		tssdp &= ~AUX0_TS_SDP_EN;
485 
486 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
487 		tssdp &= ~AUX1_TS_SDP_EN;
488 
489 	tssdp &= ~ts_sdp_sel_clr[pin];
490 	if (freq) {
491 		if (chan == 1)
492 			tssdp |= ts_sdp_sel_fc1[pin];
493 		else
494 			tssdp |= ts_sdp_sel_fc0[pin];
495 	} else {
496 		if (chan == 1)
497 			tssdp |= ts_sdp_sel_tt1[pin];
498 		else
499 			tssdp |= ts_sdp_sel_tt0[pin];
500 	}
501 	tssdp |= ts_sdp_en[pin];
502 
503 	wr32(E1000_TSSDP, tssdp);
504 	wr32(E1000_CTRL, ctrl);
505 	wr32(E1000_CTRL_EXT, ctrl_ext);
506 }
507 
508 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
509 					struct ptp_clock_request *rq, int on)
510 {
511 	struct igb_adapter *igb =
512 		container_of(ptp, struct igb_adapter, ptp_caps);
513 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
514 		systimh, level_mask, level, rem;
515 	struct e1000_hw *hw = &igb->hw;
516 	struct timespec64 ts, start;
517 	unsigned long flags;
518 	u64 systim, now;
519 	int pin = -1;
520 	s64 ns;
521 
522 	switch (rq->type) {
523 	case PTP_CLK_REQ_EXTTS:
524 		/* Reject requests with unsupported flags */
525 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
526 					PTP_RISING_EDGE |
527 					PTP_FALLING_EDGE |
528 					PTP_STRICT_FLAGS))
529 			return -EOPNOTSUPP;
530 
531 		if (on) {
532 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
533 					   rq->extts.index);
534 			if (pin < 0)
535 				return -EBUSY;
536 		}
537 		if (rq->extts.index == 1) {
538 			tsauxc_mask = TSAUXC_EN_TS1;
539 			tsim_mask = TSINTR_AUTT1;
540 		} else {
541 			tsauxc_mask = TSAUXC_EN_TS0;
542 			tsim_mask = TSINTR_AUTT0;
543 		}
544 		spin_lock_irqsave(&igb->tmreg_lock, flags);
545 		tsauxc = rd32(E1000_TSAUXC);
546 		tsim = rd32(E1000_TSIM);
547 		if (on) {
548 			igb_pin_extts(igb, rq->extts.index, pin);
549 			tsauxc |= tsauxc_mask;
550 			tsim |= tsim_mask;
551 		} else {
552 			tsauxc &= ~tsauxc_mask;
553 			tsim &= ~tsim_mask;
554 		}
555 		wr32(E1000_TSAUXC, tsauxc);
556 		wr32(E1000_TSIM, tsim);
557 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
558 		return 0;
559 
560 	case PTP_CLK_REQ_PEROUT:
561 		/* Reject requests with unsupported flags */
562 		if (rq->perout.flags)
563 			return -EOPNOTSUPP;
564 
565 		if (on) {
566 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
567 					   rq->perout.index);
568 			if (pin < 0)
569 				return -EBUSY;
570 		}
571 		ts.tv_sec = rq->perout.period.sec;
572 		ts.tv_nsec = rq->perout.period.nsec;
573 		ns = timespec64_to_ns(&ts);
574 		ns = ns >> 1;
575 		if (on && ns < 8LL)
576 			return -EINVAL;
577 		ts = ns_to_timespec64(ns);
578 		if (rq->perout.index == 1) {
579 			tsauxc_mask = TSAUXC_EN_TT1;
580 			tsim_mask = TSINTR_TT1;
581 			trgttiml = E1000_TRGTTIML1;
582 			trgttimh = E1000_TRGTTIMH1;
583 		} else {
584 			tsauxc_mask = TSAUXC_EN_TT0;
585 			tsim_mask = TSINTR_TT0;
586 			trgttiml = E1000_TRGTTIML0;
587 			trgttimh = E1000_TRGTTIMH0;
588 		}
589 		spin_lock_irqsave(&igb->tmreg_lock, flags);
590 		tsauxc = rd32(E1000_TSAUXC);
591 		tsim = rd32(E1000_TSIM);
592 		if (rq->perout.index == 1) {
593 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
594 			tsim &= ~TSINTR_TT1;
595 		} else {
596 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
597 			tsim &= ~TSINTR_TT0;
598 		}
599 		if (on) {
600 			int i = rq->perout.index;
601 
602 			/* read systim registers in sequence */
603 			rd32(E1000_SYSTIMR);
604 			systiml = rd32(E1000_SYSTIML);
605 			systimh = rd32(E1000_SYSTIMH);
606 			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
607 			now = timecounter_cyc2time(&igb->tc, systim);
608 
609 			if (pin < 2) {
610 				level_mask = (i == 1) ? 0x80000 : 0x40000;
611 				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
612 			} else {
613 				level_mask = (i == 1) ? 0x80 : 0x40;
614 				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
615 			}
616 
617 			div_u64_rem(now, ns, &rem);
618 			systim = systim + (ns - rem);
619 
620 			/* synchronize pin level with rising/falling edges */
621 			div_u64_rem(now, ns << 1, &rem);
622 			if (rem < ns) {
623 				/* first half of period */
624 				if (level == 0) {
625 					/* output is already low, skip this period */
626 					systim += ns;
627 				}
628 			} else {
629 				/* second half of period */
630 				if (level == 1) {
631 					/* output is already high, skip this period */
632 					systim += ns;
633 				}
634 			}
635 
636 			start = ns_to_timespec64(systim + (ns - rem));
637 			igb_pin_perout(igb, i, pin, 0);
638 			igb->perout[i].start.tv_sec = start.tv_sec;
639 			igb->perout[i].start.tv_nsec = start.tv_nsec;
640 			igb->perout[i].period.tv_sec = ts.tv_sec;
641 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
642 
643 			wr32(trgttiml, (u32)systim);
644 			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
645 			tsauxc |= tsauxc_mask;
646 			tsim |= tsim_mask;
647 		}
648 		wr32(E1000_TSAUXC, tsauxc);
649 		wr32(E1000_TSIM, tsim);
650 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
651 		return 0;
652 
653 	case PTP_CLK_REQ_PPS:
654 		return -EOPNOTSUPP;
655 	}
656 
657 	return -EOPNOTSUPP;
658 }
659 
660 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
661 				       struct ptp_clock_request *rq, int on)
662 {
663 	struct igb_adapter *igb =
664 		container_of(ptp, struct igb_adapter, ptp_caps);
665 	struct e1000_hw *hw = &igb->hw;
666 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
667 	unsigned long flags;
668 	struct timespec64 ts;
669 	int use_freq = 0, pin = -1;
670 	s64 ns;
671 
672 	switch (rq->type) {
673 	case PTP_CLK_REQ_EXTTS:
674 		/* Reject requests with unsupported flags */
675 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
676 					PTP_RISING_EDGE |
677 					PTP_FALLING_EDGE |
678 					PTP_STRICT_FLAGS))
679 			return -EOPNOTSUPP;
680 
681 		/* Reject requests failing to enable both edges. */
682 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
683 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
684 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
685 			return -EOPNOTSUPP;
686 
687 		if (on) {
688 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
689 					   rq->extts.index);
690 			if (pin < 0)
691 				return -EBUSY;
692 		}
693 		if (rq->extts.index == 1) {
694 			tsauxc_mask = TSAUXC_EN_TS1;
695 			tsim_mask = TSINTR_AUTT1;
696 		} else {
697 			tsauxc_mask = TSAUXC_EN_TS0;
698 			tsim_mask = TSINTR_AUTT0;
699 		}
700 		spin_lock_irqsave(&igb->tmreg_lock, flags);
701 		tsauxc = rd32(E1000_TSAUXC);
702 		tsim = rd32(E1000_TSIM);
703 		if (on) {
704 			igb_pin_extts(igb, rq->extts.index, pin);
705 			tsauxc |= tsauxc_mask;
706 			tsim |= tsim_mask;
707 		} else {
708 			tsauxc &= ~tsauxc_mask;
709 			tsim &= ~tsim_mask;
710 		}
711 		wr32(E1000_TSAUXC, tsauxc);
712 		wr32(E1000_TSIM, tsim);
713 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
714 		return 0;
715 
716 	case PTP_CLK_REQ_PEROUT:
717 		/* Reject requests with unsupported flags */
718 		if (rq->perout.flags)
719 			return -EOPNOTSUPP;
720 
721 		if (on) {
722 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
723 					   rq->perout.index);
724 			if (pin < 0)
725 				return -EBUSY;
726 		}
727 		ts.tv_sec = rq->perout.period.sec;
728 		ts.tv_nsec = rq->perout.period.nsec;
729 		ns = timespec64_to_ns(&ts);
730 		ns = ns >> 1;
731 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
732 			   (ns == 250000000LL) || (ns == 500000000LL))) {
733 			if (ns < 8LL)
734 				return -EINVAL;
735 			use_freq = 1;
736 		}
737 		ts = ns_to_timespec64(ns);
738 		if (rq->perout.index == 1) {
739 			if (use_freq) {
740 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
741 				tsim_mask = 0;
742 			} else {
743 				tsauxc_mask = TSAUXC_EN_TT1;
744 				tsim_mask = TSINTR_TT1;
745 			}
746 			trgttiml = E1000_TRGTTIML1;
747 			trgttimh = E1000_TRGTTIMH1;
748 			freqout = E1000_FREQOUT1;
749 		} else {
750 			if (use_freq) {
751 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
752 				tsim_mask = 0;
753 			} else {
754 				tsauxc_mask = TSAUXC_EN_TT0;
755 				tsim_mask = TSINTR_TT0;
756 			}
757 			trgttiml = E1000_TRGTTIML0;
758 			trgttimh = E1000_TRGTTIMH0;
759 			freqout = E1000_FREQOUT0;
760 		}
761 		spin_lock_irqsave(&igb->tmreg_lock, flags);
762 		tsauxc = rd32(E1000_TSAUXC);
763 		tsim = rd32(E1000_TSIM);
764 		if (rq->perout.index == 1) {
765 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
766 			tsim &= ~TSINTR_TT1;
767 		} else {
768 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
769 			tsim &= ~TSINTR_TT0;
770 		}
771 		if (on) {
772 			int i = rq->perout.index;
773 			igb_pin_perout(igb, i, pin, use_freq);
774 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
775 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
776 			igb->perout[i].period.tv_sec = ts.tv_sec;
777 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
778 			wr32(trgttimh, rq->perout.start.sec);
779 			wr32(trgttiml, rq->perout.start.nsec);
780 			if (use_freq)
781 				wr32(freqout, ns);
782 			tsauxc |= tsauxc_mask;
783 			tsim |= tsim_mask;
784 		}
785 		wr32(E1000_TSAUXC, tsauxc);
786 		wr32(E1000_TSIM, tsim);
787 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
788 		return 0;
789 
790 	case PTP_CLK_REQ_PPS:
791 		spin_lock_irqsave(&igb->tmreg_lock, flags);
792 		tsim = rd32(E1000_TSIM);
793 		if (on)
794 			tsim |= TSINTR_SYS_WRAP;
795 		else
796 			tsim &= ~TSINTR_SYS_WRAP;
797 		igb->pps_sys_wrap_on = !!on;
798 		wr32(E1000_TSIM, tsim);
799 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
800 		return 0;
801 	}
802 
803 	return -EOPNOTSUPP;
804 }
805 
806 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
807 				  struct ptp_clock_request *rq, int on)
808 {
809 	return -EOPNOTSUPP;
810 }
811 
812 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
813 			      enum ptp_pin_function func, unsigned int chan)
814 {
815 	switch (func) {
816 	case PTP_PF_NONE:
817 	case PTP_PF_EXTTS:
818 	case PTP_PF_PEROUT:
819 		break;
820 	case PTP_PF_PHYSYNC:
821 		return -1;
822 	}
823 	return 0;
824 }
825 
826 /**
827  * igb_ptp_tx_work
828  * @work: pointer to work struct
829  *
830  * This work function polls the TSYNCTXCTL valid bit to determine when a
831  * timestamp has been taken for the current stored skb.
832  **/
833 static void igb_ptp_tx_work(struct work_struct *work)
834 {
835 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
836 						   ptp_tx_work);
837 	struct e1000_hw *hw = &adapter->hw;
838 	u32 tsynctxctl;
839 
840 	if (!adapter->ptp_tx_skb)
841 		return;
842 
843 	if (time_is_before_jiffies(adapter->ptp_tx_start +
844 				   IGB_PTP_TX_TIMEOUT)) {
845 		dev_kfree_skb_any(adapter->ptp_tx_skb);
846 		adapter->ptp_tx_skb = NULL;
847 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
848 		adapter->tx_hwtstamp_timeouts++;
849 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
850 		 * interrupt
851 		 */
852 		rd32(E1000_TXSTMPH);
853 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
854 		return;
855 	}
856 
857 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
858 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
859 		igb_ptp_tx_hwtstamp(adapter);
860 	else
861 		/* reschedule to check later */
862 		schedule_work(&adapter->ptp_tx_work);
863 }
864 
865 static void igb_ptp_overflow_check(struct work_struct *work)
866 {
867 	struct igb_adapter *igb =
868 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
869 	struct timespec64 ts;
870 	u64 ns;
871 
872 	/* Update the timecounter */
873 	ns = timecounter_read(&igb->tc);
874 
875 	ts = ns_to_timespec64(ns);
876 	pr_debug("igb overflow check at %lld.%09lu\n",
877 		 (long long) ts.tv_sec, ts.tv_nsec);
878 
879 	schedule_delayed_work(&igb->ptp_overflow_work,
880 			      IGB_SYSTIM_OVERFLOW_PERIOD);
881 }
882 
883 /**
884  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
885  * @adapter: private network adapter structure
886  *
887  * This watchdog task is scheduled to detect error case where hardware has
888  * dropped an Rx packet that was timestamped when the ring is full. The
889  * particular error is rare but leaves the device in a state unable to timestamp
890  * any future packets.
891  **/
892 void igb_ptp_rx_hang(struct igb_adapter *adapter)
893 {
894 	struct e1000_hw *hw = &adapter->hw;
895 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
896 	unsigned long rx_event;
897 
898 	/* Other hardware uses per-packet timestamps */
899 	if (hw->mac.type != e1000_82576)
900 		return;
901 
902 	/* If we don't have a valid timestamp in the registers, just update the
903 	 * timeout counter and exit
904 	 */
905 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
906 		adapter->last_rx_ptp_check = jiffies;
907 		return;
908 	}
909 
910 	/* Determine the most recent watchdog or rx_timestamp event */
911 	rx_event = adapter->last_rx_ptp_check;
912 	if (time_after(adapter->last_rx_timestamp, rx_event))
913 		rx_event = adapter->last_rx_timestamp;
914 
915 	/* Only need to read the high RXSTMP register to clear the lock */
916 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
917 		rd32(E1000_RXSTMPH);
918 		adapter->last_rx_ptp_check = jiffies;
919 		adapter->rx_hwtstamp_cleared++;
920 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
921 	}
922 }
923 
924 /**
925  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
926  * @adapter: private network adapter structure
927  */
928 void igb_ptp_tx_hang(struct igb_adapter *adapter)
929 {
930 	struct e1000_hw *hw = &adapter->hw;
931 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
932 					      IGB_PTP_TX_TIMEOUT);
933 
934 	if (!adapter->ptp_tx_skb)
935 		return;
936 
937 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
938 		return;
939 
940 	/* If we haven't received a timestamp within the timeout, it is
941 	 * reasonable to assume that it will never occur, so we can unlock the
942 	 * timestamp bit when this occurs.
943 	 */
944 	if (timeout) {
945 		cancel_work_sync(&adapter->ptp_tx_work);
946 		dev_kfree_skb_any(adapter->ptp_tx_skb);
947 		adapter->ptp_tx_skb = NULL;
948 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
949 		adapter->tx_hwtstamp_timeouts++;
950 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
951 		 * interrupt
952 		 */
953 		rd32(E1000_TXSTMPH);
954 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
955 	}
956 }
957 
958 /**
959  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
960  * @adapter: Board private structure.
961  *
962  * If we were asked to do hardware stamping and such a time stamp is
963  * available, then it must have been for this skb here because we only
964  * allow only one such packet into the queue.
965  **/
966 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
967 {
968 	struct sk_buff *skb = adapter->ptp_tx_skb;
969 	struct e1000_hw *hw = &adapter->hw;
970 	struct skb_shared_hwtstamps shhwtstamps;
971 	u64 regval;
972 	int adjust = 0;
973 
974 	regval = rd32(E1000_TXSTMPL);
975 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
976 
977 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
978 	/* adjust timestamp for the TX latency based on link speed */
979 	if (adapter->hw.mac.type == e1000_i210) {
980 		switch (adapter->link_speed) {
981 		case SPEED_10:
982 			adjust = IGB_I210_TX_LATENCY_10;
983 			break;
984 		case SPEED_100:
985 			adjust = IGB_I210_TX_LATENCY_100;
986 			break;
987 		case SPEED_1000:
988 			adjust = IGB_I210_TX_LATENCY_1000;
989 			break;
990 		}
991 	}
992 
993 	shhwtstamps.hwtstamp =
994 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
995 
996 	/* Clear the lock early before calling skb_tstamp_tx so that
997 	 * applications are not woken up before the lock bit is clear. We use
998 	 * a copy of the skb pointer to ensure other threads can't change it
999 	 * while we're notifying the stack.
1000 	 */
1001 	adapter->ptp_tx_skb = NULL;
1002 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1003 
1004 	/* Notify the stack and free the skb after we've unlocked */
1005 	skb_tstamp_tx(skb, &shhwtstamps);
1006 	dev_kfree_skb_any(skb);
1007 }
1008 
1009 /**
1010  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
1011  * @q_vector: Pointer to interrupt specific structure
1012  * @va: Pointer to address containing Rx buffer
1013  * @timestamp: Pointer where timestamp will be stored
1014  *
1015  * This function is meant to retrieve a timestamp from the first buffer of an
1016  * incoming frame.  The value is stored in little endian format starting on
1017  * byte 8
1018  *
1019  * Returns: The timestamp header length or 0 if not available
1020  **/
1021 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1022 			ktime_t *timestamp)
1023 {
1024 	struct igb_adapter *adapter = q_vector->adapter;
1025 	struct skb_shared_hwtstamps ts;
1026 	__le64 *regval = (__le64 *)va;
1027 	int adjust = 0;
1028 
1029 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1030 		return 0;
1031 
1032 	/* The timestamp is recorded in little endian format.
1033 	 * DWORD: 0        1        2        3
1034 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1035 	 */
1036 
1037 	/* check reserved dwords are zero, be/le doesn't matter for zero */
1038 	if (regval[0])
1039 		return 0;
1040 
1041 	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1042 
1043 	/* adjust timestamp for the RX latency based on link speed */
1044 	if (adapter->hw.mac.type == e1000_i210) {
1045 		switch (adapter->link_speed) {
1046 		case SPEED_10:
1047 			adjust = IGB_I210_RX_LATENCY_10;
1048 			break;
1049 		case SPEED_100:
1050 			adjust = IGB_I210_RX_LATENCY_100;
1051 			break;
1052 		case SPEED_1000:
1053 			adjust = IGB_I210_RX_LATENCY_1000;
1054 			break;
1055 		}
1056 	}
1057 
1058 	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1059 
1060 	return IGB_TS_HDR_LEN;
1061 }
1062 
1063 /**
1064  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1065  * @q_vector: Pointer to interrupt specific structure
1066  * @skb: Buffer containing timestamp and packet
1067  *
1068  * This function is meant to retrieve a timestamp from the internal registers
1069  * of the adapter and store it in the skb.
1070  **/
1071 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1072 {
1073 	struct igb_adapter *adapter = q_vector->adapter;
1074 	struct e1000_hw *hw = &adapter->hw;
1075 	int adjust = 0;
1076 	u64 regval;
1077 
1078 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1079 		return;
1080 
1081 	/* If this bit is set, then the RX registers contain the time stamp. No
1082 	 * other packet will be time stamped until we read these registers, so
1083 	 * read the registers to make them available again. Because only one
1084 	 * packet can be time stamped at a time, we know that the register
1085 	 * values must belong to this one here and therefore we don't need to
1086 	 * compare any of the additional attributes stored for it.
1087 	 *
1088 	 * If nothing went wrong, then it should have a shared tx_flags that we
1089 	 * can turn into a skb_shared_hwtstamps.
1090 	 */
1091 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1092 		return;
1093 
1094 	regval = rd32(E1000_RXSTMPL);
1095 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1096 
1097 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1098 
1099 	/* adjust timestamp for the RX latency based on link speed */
1100 	if (adapter->hw.mac.type == e1000_i210) {
1101 		switch (adapter->link_speed) {
1102 		case SPEED_10:
1103 			adjust = IGB_I210_RX_LATENCY_10;
1104 			break;
1105 		case SPEED_100:
1106 			adjust = IGB_I210_RX_LATENCY_100;
1107 			break;
1108 		case SPEED_1000:
1109 			adjust = IGB_I210_RX_LATENCY_1000;
1110 			break;
1111 		}
1112 	}
1113 	skb_hwtstamps(skb)->hwtstamp =
1114 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1115 
1116 	/* Update the last_rx_timestamp timer in order to enable watchdog check
1117 	 * for error case of latched timestamp on a dropped packet.
1118 	 */
1119 	adapter->last_rx_timestamp = jiffies;
1120 }
1121 
1122 /**
1123  * igb_ptp_get_ts_config - get hardware time stamping config
1124  * @netdev: netdev struct
1125  * @ifr: interface struct
1126  *
1127  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1128  * to deconstruct the settings from the registers, just return a shadow copy
1129  * of the last known settings.
1130  **/
1131 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1132 {
1133 	struct igb_adapter *adapter = netdev_priv(netdev);
1134 	struct hwtstamp_config *config = &adapter->tstamp_config;
1135 
1136 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1137 		-EFAULT : 0;
1138 }
1139 
1140 /**
1141  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1142  * @adapter: networking device structure
1143  * @config: hwtstamp configuration
1144  *
1145  * Outgoing time stamping can be enabled and disabled. Play nice and
1146  * disable it when requested, although it shouldn't case any overhead
1147  * when no packet needs it. At most one packet in the queue may be
1148  * marked for time stamping, otherwise it would be impossible to tell
1149  * for sure to which packet the hardware time stamp belongs.
1150  *
1151  * Incoming time stamping has to be configured via the hardware
1152  * filters. Not all combinations are supported, in particular event
1153  * type has to be specified. Matching the kind of event packet is
1154  * not supported, with the exception of "all V2 events regardless of
1155  * level 2 or 4".
1156  */
1157 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1158 				      struct hwtstamp_config *config)
1159 {
1160 	struct e1000_hw *hw = &adapter->hw;
1161 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1162 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1163 	u32 tsync_rx_cfg = 0;
1164 	bool is_l4 = false;
1165 	bool is_l2 = false;
1166 	u32 regval;
1167 
1168 	switch (config->tx_type) {
1169 	case HWTSTAMP_TX_OFF:
1170 		tsync_tx_ctl = 0;
1171 		break;
1172 	case HWTSTAMP_TX_ON:
1173 		break;
1174 	default:
1175 		return -ERANGE;
1176 	}
1177 
1178 	switch (config->rx_filter) {
1179 	case HWTSTAMP_FILTER_NONE:
1180 		tsync_rx_ctl = 0;
1181 		break;
1182 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1183 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1184 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1185 		is_l4 = true;
1186 		break;
1187 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1188 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1189 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1190 		is_l4 = true;
1191 		break;
1192 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1193 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1194 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1195 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1196 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1197 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1198 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1199 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1200 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1201 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1202 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1203 		is_l2 = true;
1204 		is_l4 = true;
1205 		break;
1206 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1207 	case HWTSTAMP_FILTER_NTP_ALL:
1208 	case HWTSTAMP_FILTER_ALL:
1209 		/* 82576 cannot timestamp all packets, which it needs to do to
1210 		 * support both V1 Sync and Delay_Req messages
1211 		 */
1212 		if (hw->mac.type != e1000_82576) {
1213 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1214 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1215 			break;
1216 		}
1217 		fallthrough;
1218 	default:
1219 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1220 		return -ERANGE;
1221 	}
1222 
1223 	if (hw->mac.type == e1000_82575) {
1224 		if (tsync_rx_ctl | tsync_tx_ctl)
1225 			return -EINVAL;
1226 		return 0;
1227 	}
1228 
1229 	/* Per-packet timestamping only works if all packets are
1230 	 * timestamped, so enable timestamping in all packets as
1231 	 * long as one Rx filter was configured.
1232 	 */
1233 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1234 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1235 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1236 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1237 		is_l2 = true;
1238 		is_l4 = true;
1239 
1240 		if ((hw->mac.type == e1000_i210) ||
1241 		    (hw->mac.type == e1000_i211)) {
1242 			regval = rd32(E1000_RXPBS);
1243 			regval |= E1000_RXPBS_CFG_TS_EN;
1244 			wr32(E1000_RXPBS, regval);
1245 		}
1246 	}
1247 
1248 	/* enable/disable TX */
1249 	regval = rd32(E1000_TSYNCTXCTL);
1250 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1251 	regval |= tsync_tx_ctl;
1252 	wr32(E1000_TSYNCTXCTL, regval);
1253 
1254 	/* enable/disable RX */
1255 	regval = rd32(E1000_TSYNCRXCTL);
1256 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1257 	regval |= tsync_rx_ctl;
1258 	wr32(E1000_TSYNCRXCTL, regval);
1259 
1260 	/* define which PTP packets are time stamped */
1261 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1262 
1263 	/* define ethertype filter for timestamped packets */
1264 	if (is_l2)
1265 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1266 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1267 		      E1000_ETQF_1588 | /* enable timestamping */
1268 		      ETH_P_1588));     /* 1588 eth protocol type */
1269 	else
1270 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1271 
1272 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1273 	if (is_l4) {
1274 		u32 ftqf = (IPPROTO_UDP /* UDP */
1275 			| E1000_FTQF_VF_BP /* VF not compared */
1276 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1277 			| E1000_FTQF_MASK); /* mask all inputs */
1278 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1279 
1280 		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1281 		wr32(E1000_IMIREXT(3),
1282 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1283 		if (hw->mac.type == e1000_82576) {
1284 			/* enable source port check */
1285 			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1286 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1287 		}
1288 		wr32(E1000_FTQF(3), ftqf);
1289 	} else {
1290 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1291 	}
1292 	wrfl();
1293 
1294 	/* clear TX/RX time stamp registers, just to be sure */
1295 	regval = rd32(E1000_TXSTMPL);
1296 	regval = rd32(E1000_TXSTMPH);
1297 	regval = rd32(E1000_RXSTMPL);
1298 	regval = rd32(E1000_RXSTMPH);
1299 
1300 	return 0;
1301 }
1302 
1303 /**
1304  * igb_ptp_set_ts_config - set hardware time stamping config
1305  * @netdev: netdev struct
1306  * @ifr: interface struct
1307  *
1308  **/
1309 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1310 {
1311 	struct igb_adapter *adapter = netdev_priv(netdev);
1312 	struct hwtstamp_config config;
1313 	int err;
1314 
1315 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1316 		return -EFAULT;
1317 
1318 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1319 	if (err)
1320 		return err;
1321 
1322 	/* save these settings for future reference */
1323 	memcpy(&adapter->tstamp_config, &config,
1324 	       sizeof(adapter->tstamp_config));
1325 
1326 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1327 		-EFAULT : 0;
1328 }
1329 
1330 /**
1331  * igb_ptp_init - Initialize PTP functionality
1332  * @adapter: Board private structure
1333  *
1334  * This function is called at device probe to initialize the PTP
1335  * functionality.
1336  */
1337 void igb_ptp_init(struct igb_adapter *adapter)
1338 {
1339 	struct e1000_hw *hw = &adapter->hw;
1340 	struct net_device *netdev = adapter->netdev;
1341 
1342 	switch (hw->mac.type) {
1343 	case e1000_82576:
1344 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1345 		adapter->ptp_caps.owner = THIS_MODULE;
1346 		adapter->ptp_caps.max_adj = 999999881;
1347 		adapter->ptp_caps.n_ext_ts = 0;
1348 		adapter->ptp_caps.pps = 0;
1349 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1350 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1351 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1352 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1353 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1354 		adapter->cc.read = igb_ptp_read_82576;
1355 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1356 		adapter->cc.mult = 1;
1357 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1358 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1359 		break;
1360 	case e1000_82580:
1361 	case e1000_i354:
1362 	case e1000_i350:
1363 		igb_ptp_sdp_init(adapter);
1364 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1365 		adapter->ptp_caps.owner = THIS_MODULE;
1366 		adapter->ptp_caps.max_adj = 62499999;
1367 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1368 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1369 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1370 		adapter->ptp_caps.pps = 0;
1371 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1372 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1373 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1374 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1375 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1376 		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1377 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1378 		adapter->cc.read = igb_ptp_read_82580;
1379 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1380 		adapter->cc.mult = 1;
1381 		adapter->cc.shift = 0;
1382 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1383 		break;
1384 	case e1000_i210:
1385 	case e1000_i211:
1386 		igb_ptp_sdp_init(adapter);
1387 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1388 		adapter->ptp_caps.owner = THIS_MODULE;
1389 		adapter->ptp_caps.max_adj = 62499999;
1390 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1391 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1392 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1393 		adapter->ptp_caps.pps = 1;
1394 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1395 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1396 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1397 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1398 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1399 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1400 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1401 		break;
1402 	default:
1403 		adapter->ptp_clock = NULL;
1404 		return;
1405 	}
1406 
1407 	spin_lock_init(&adapter->tmreg_lock);
1408 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1409 
1410 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1411 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1412 				  igb_ptp_overflow_check);
1413 
1414 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1415 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1416 
1417 	igb_ptp_reset(adapter);
1418 
1419 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1420 						&adapter->pdev->dev);
1421 	if (IS_ERR(adapter->ptp_clock)) {
1422 		adapter->ptp_clock = NULL;
1423 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1424 	} else if (adapter->ptp_clock) {
1425 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1426 			 adapter->netdev->name);
1427 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1428 	}
1429 }
1430 
1431 /**
1432  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1433  * @adapter: Board private structure.
1434  **/
1435 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1436 {
1437 	int i;
1438 
1439 	for (i = 0; i < IGB_N_SDP; i++) {
1440 		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1441 
1442 		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1443 		ppd->index = i;
1444 		ppd->func = PTP_PF_NONE;
1445 	}
1446 }
1447 
1448 /**
1449  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1450  * @adapter: Board private structure
1451  *
1452  * This function stops the overflow check work and PTP Tx timestamp work, and
1453  * will prepare the device for OS suspend.
1454  */
1455 void igb_ptp_suspend(struct igb_adapter *adapter)
1456 {
1457 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1458 		return;
1459 
1460 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1461 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1462 
1463 	cancel_work_sync(&adapter->ptp_tx_work);
1464 	if (adapter->ptp_tx_skb) {
1465 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1466 		adapter->ptp_tx_skb = NULL;
1467 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1468 	}
1469 }
1470 
1471 /**
1472  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1473  * @adapter: Board private structure.
1474  *
1475  * This function stops the PTP support and cancels the delayed work.
1476  **/
1477 void igb_ptp_stop(struct igb_adapter *adapter)
1478 {
1479 	igb_ptp_suspend(adapter);
1480 
1481 	if (adapter->ptp_clock) {
1482 		ptp_clock_unregister(adapter->ptp_clock);
1483 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1484 			 adapter->netdev->name);
1485 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1486 	}
1487 }
1488 
1489 /**
1490  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1491  * @adapter: Board private structure.
1492  *
1493  * This function handles the reset work required to re-enable the PTP device.
1494  **/
1495 void igb_ptp_reset(struct igb_adapter *adapter)
1496 {
1497 	struct e1000_hw *hw = &adapter->hw;
1498 	unsigned long flags;
1499 
1500 	/* reset the tstamp_config */
1501 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1502 
1503 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1504 
1505 	switch (adapter->hw.mac.type) {
1506 	case e1000_82576:
1507 		/* Dial the nominal frequency. */
1508 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1509 		break;
1510 	case e1000_82580:
1511 	case e1000_i354:
1512 	case e1000_i350:
1513 	case e1000_i210:
1514 	case e1000_i211:
1515 		wr32(E1000_TSAUXC, 0x0);
1516 		wr32(E1000_TSSDP, 0x0);
1517 		wr32(E1000_TSIM,
1518 		     TSYNC_INTERRUPTS |
1519 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1520 		wr32(E1000_IMS, E1000_IMS_TS);
1521 		break;
1522 	default:
1523 		/* No work to do. */
1524 		goto out;
1525 	}
1526 
1527 	/* Re-initialize the timer. */
1528 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1529 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1530 
1531 		igb_ptp_write_i210(adapter, &ts);
1532 	} else {
1533 		timecounter_init(&adapter->tc, &adapter->cc,
1534 				 ktime_to_ns(ktime_get_real()));
1535 	}
1536 out:
1537 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1538 
1539 	wrfl();
1540 
1541 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1542 		schedule_delayed_work(&adapter->ptp_overflow_work,
1543 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1544 }
1545