xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { u64 a; u64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state)
581 		i2cctl |= E1000_I2C_DATA_OUT;
582 	else
583 		i2cctl &= ~E1000_I2C_DATA_OUT;
584 
585 	i2cctl &= ~E1000_I2C_DATA_OE_N;
586 	i2cctl |= E1000_I2C_CLK_OE_N;
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 
590 }
591 
592 /**
593  *  igb_set_i2c_clk - Sets the I2C SCL clock
594  *  @data: pointer to hardware structure
595  *  @state: state to set clock
596  *
597  *  Sets the I2C clock line to state
598  **/
599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 	struct igb_adapter *adapter = (struct igb_adapter *)data;
602 	struct e1000_hw *hw = &adapter->hw;
603 	s32 i2cctl = rd32(E1000_I2CPARAMS);
604 
605 	if (state) {
606 		i2cctl |= E1000_I2C_CLK_OUT;
607 		i2cctl &= ~E1000_I2C_CLK_OE_N;
608 	} else {
609 		i2cctl &= ~E1000_I2C_CLK_OUT;
610 		i2cctl &= ~E1000_I2C_CLK_OE_N;
611 	}
612 	wr32(E1000_I2CPARAMS, i2cctl);
613 	wrfl();
614 }
615 
616 /**
617  *  igb_get_i2c_clk - Gets the I2C SCL clock state
618  *  @data: pointer to hardware structure
619  *
620  *  Gets the I2C clock state
621  **/
622 static int igb_get_i2c_clk(void *data)
623 {
624 	struct igb_adapter *adapter = (struct igb_adapter *)data;
625 	struct e1000_hw *hw = &adapter->hw;
626 	s32 i2cctl = rd32(E1000_I2CPARAMS);
627 
628 	return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630 
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 	.setsda		= igb_set_i2c_data,
633 	.setscl		= igb_set_i2c_clk,
634 	.getsda		= igb_get_i2c_data,
635 	.getscl		= igb_get_i2c_clk,
636 	.udelay		= 5,
637 	.timeout	= 20,
638 };
639 
640 /**
641  *  igb_get_hw_dev - return device
642  *  @hw: pointer to hardware structure
643  *
644  *  used by hardware layer to print debugging information
645  **/
646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 	struct igb_adapter *adapter = hw->back;
649 	return adapter->netdev;
650 }
651 
652 /**
653  *  igb_init_module - Driver Registration Routine
654  *
655  *  igb_init_module is the first routine called when the driver is
656  *  loaded. All it does is register with the PCI subsystem.
657  **/
658 static int __init igb_init_module(void)
659 {
660 	int ret;
661 
662 	pr_info("%s\n", igb_driver_string);
663 	pr_info("%s\n", igb_copyright);
664 
665 #ifdef CONFIG_IGB_DCA
666 	dca_register_notify(&dca_notifier);
667 #endif
668 	ret = pci_register_driver(&igb_driver);
669 	return ret;
670 }
671 
672 module_init(igb_init_module);
673 
674 /**
675  *  igb_exit_module - Driver Exit Cleanup Routine
676  *
677  *  igb_exit_module is called just before the driver is removed
678  *  from memory.
679  **/
680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 	dca_unregister_notify(&dca_notifier);
684 #endif
685 	pci_unregister_driver(&igb_driver);
686 }
687 
688 module_exit(igb_exit_module);
689 
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692  *  igb_cache_ring_register - Descriptor ring to register mapping
693  *  @adapter: board private structure to initialize
694  *
695  *  Once we know the feature-set enabled for the device, we'll cache
696  *  the register offset the descriptor ring is assigned to.
697  **/
698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 	int i = 0, j = 0;
701 	u32 rbase_offset = adapter->vfs_allocated_count;
702 
703 	switch (adapter->hw.mac.type) {
704 	case e1000_82576:
705 		/* The queues are allocated for virtualization such that VF 0
706 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 		 * In order to avoid collision we start at the first free queue
708 		 * and continue consuming queues in the same sequence
709 		 */
710 		if (adapter->vfs_allocated_count) {
711 			for (; i < adapter->rss_queues; i++)
712 				adapter->rx_ring[i]->reg_idx = rbase_offset +
713 							       Q_IDX_82576(i);
714 		}
715 		fallthrough;
716 	case e1000_82575:
717 	case e1000_82580:
718 	case e1000_i350:
719 	case e1000_i354:
720 	case e1000_i210:
721 	case e1000_i211:
722 	default:
723 		for (; i < adapter->num_rx_queues; i++)
724 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 		for (; j < adapter->num_tx_queues; j++)
726 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 		break;
728 	}
729 }
730 
731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 	u32 value = 0;
736 
737 	if (E1000_REMOVED(hw_addr))
738 		return ~value;
739 
740 	value = readl(&hw_addr[reg]);
741 
742 	/* reads should not return all F's */
743 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 		struct net_device *netdev = igb->netdev;
745 		hw->hw_addr = NULL;
746 		netdev_err(netdev, "PCIe link lost\n");
747 		WARN(pci_device_is_present(igb->pdev),
748 		     "igb: Failed to read reg 0x%x!\n", reg);
749 	}
750 
751 	return value;
752 }
753 
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 			   int index, int offset)
768 {
769 	u32 ivar = array_rd32(E1000_IVAR0, index);
770 
771 	/* clear any bits that are currently set */
772 	ivar &= ~((u32)0xFF << offset);
773 
774 	/* write vector and valid bit */
775 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776 
777 	array_wr32(E1000_IVAR0, index, ivar);
778 }
779 
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 	struct igb_adapter *adapter = q_vector->adapter;
784 	struct e1000_hw *hw = &adapter->hw;
785 	int rx_queue = IGB_N0_QUEUE;
786 	int tx_queue = IGB_N0_QUEUE;
787 	u32 msixbm = 0;
788 
789 	if (q_vector->rx.ring)
790 		rx_queue = q_vector->rx.ring->reg_idx;
791 	if (q_vector->tx.ring)
792 		tx_queue = q_vector->tx.ring->reg_idx;
793 
794 	switch (hw->mac.type) {
795 	case e1000_82575:
796 		/* The 82575 assigns vectors using a bitmask, which matches the
797 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798 		 * or more queues to a vector, we write the appropriate bits
799 		 * into the MSIXBM register for that vector.
800 		 */
801 		if (rx_queue > IGB_N0_QUEUE)
802 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 		if (tx_queue > IGB_N0_QUEUE)
804 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 			msixbm |= E1000_EIMS_OTHER;
807 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 		q_vector->eims_value = msixbm;
809 		break;
810 	case e1000_82576:
811 		/* 82576 uses a table that essentially consists of 2 columns
812 		 * with 8 rows.  The ordering is column-major so we use the
813 		 * lower 3 bits as the row index, and the 4th bit as the
814 		 * column offset.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       rx_queue & 0x7,
819 				       (rx_queue & 0x8) << 1);
820 		if (tx_queue > IGB_N0_QUEUE)
821 			igb_write_ivar(hw, msix_vector,
822 				       tx_queue & 0x7,
823 				       ((tx_queue & 0x8) << 1) + 8);
824 		q_vector->eims_value = BIT(msix_vector);
825 		break;
826 	case e1000_82580:
827 	case e1000_i350:
828 	case e1000_i354:
829 	case e1000_i210:
830 	case e1000_i211:
831 		/* On 82580 and newer adapters the scheme is similar to 82576
832 		 * however instead of ordering column-major we have things
833 		 * ordered row-major.  So we traverse the table by using
834 		 * bit 0 as the column offset, and the remaining bits as the
835 		 * row index.
836 		 */
837 		if (rx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       rx_queue >> 1,
840 				       (rx_queue & 0x1) << 4);
841 		if (tx_queue > IGB_N0_QUEUE)
842 			igb_write_ivar(hw, msix_vector,
843 				       tx_queue >> 1,
844 				       ((tx_queue & 0x1) << 4) + 8);
845 		q_vector->eims_value = BIT(msix_vector);
846 		break;
847 	default:
848 		BUG();
849 		break;
850 	}
851 
852 	/* add q_vector eims value to global eims_enable_mask */
853 	adapter->eims_enable_mask |= q_vector->eims_value;
854 
855 	/* configure q_vector to set itr on first interrupt */
856 	q_vector->set_itr = 1;
857 }
858 
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 	u32 tmp;
869 	int i, vector = 0;
870 	struct e1000_hw *hw = &adapter->hw;
871 
872 	adapter->eims_enable_mask = 0;
873 
874 	/* set vector for other causes, i.e. link changes */
875 	switch (hw->mac.type) {
876 	case e1000_82575:
877 		tmp = rd32(E1000_CTRL_EXT);
878 		/* enable MSI-X PBA support*/
879 		tmp |= E1000_CTRL_EXT_PBA_CLR;
880 
881 		/* Auto-Mask interrupts upon ICR read. */
882 		tmp |= E1000_CTRL_EXT_EIAME;
883 		tmp |= E1000_CTRL_EXT_IRCA;
884 
885 		wr32(E1000_CTRL_EXT, tmp);
886 
887 		/* enable msix_other interrupt */
888 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 		adapter->eims_other = E1000_EIMS_OTHER;
890 
891 		break;
892 
893 	case e1000_82576:
894 	case e1000_82580:
895 	case e1000_i350:
896 	case e1000_i354:
897 	case e1000_i210:
898 	case e1000_i211:
899 		/* Turn on MSI-X capability first, or our settings
900 		 * won't stick.  And it will take days to debug.
901 		 */
902 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 		     E1000_GPIE_NSICR);
905 
906 		/* enable msix_other interrupt */
907 		adapter->eims_other = BIT(vector);
908 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909 
910 		wr32(E1000_IVAR_MISC, tmp);
911 		break;
912 	default:
913 		/* do nothing, since nothing else supports MSI-X */
914 		break;
915 	} /* switch (hw->mac.type) */
916 
917 	adapter->eims_enable_mask |= adapter->eims_other;
918 
919 	for (i = 0; i < adapter->num_q_vectors; i++)
920 		igb_assign_vector(adapter->q_vector[i], vector++);
921 
922 	wrfl();
923 }
924 
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 	struct net_device *netdev = adapter->netdev;
935 	int i, err = 0, vector = 0, free_vector = 0;
936 
937 	err = request_irq(adapter->msix_entries[vector].vector,
938 			  igb_msix_other, 0, netdev->name, adapter);
939 	if (err)
940 		goto err_out;
941 
942 	for (i = 0; i < adapter->num_q_vectors; i++) {
943 		struct igb_q_vector *q_vector = adapter->q_vector[i];
944 
945 		vector++;
946 
947 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
948 
949 		if (q_vector->rx.ring && q_vector->tx.ring)
950 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951 				q_vector->rx.ring->queue_index);
952 		else if (q_vector->tx.ring)
953 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954 				q_vector->tx.ring->queue_index);
955 		else if (q_vector->rx.ring)
956 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957 				q_vector->rx.ring->queue_index);
958 		else
959 			sprintf(q_vector->name, "%s-unused", netdev->name);
960 
961 		err = request_irq(adapter->msix_entries[vector].vector,
962 				  igb_msix_ring, 0, q_vector->name,
963 				  q_vector);
964 		if (err)
965 			goto err_free;
966 	}
967 
968 	igb_configure_msix(adapter);
969 	return 0;
970 
971 err_free:
972 	/* free already assigned IRQs */
973 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974 
975 	vector--;
976 	for (i = 0; i < vector; i++) {
977 		free_irq(adapter->msix_entries[free_vector++].vector,
978 			 adapter->q_vector[i]);
979 	}
980 err_out:
981 	return err;
982 }
983 
984 /**
985  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
986  *  @adapter: board private structure to initialize
987  *  @v_idx: Index of vector to be freed
988  *
989  *  This function frees the memory allocated to the q_vector.
990  **/
991 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
992 {
993 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994 
995 	adapter->q_vector[v_idx] = NULL;
996 
997 	/* igb_get_stats64() might access the rings on this vector,
998 	 * we must wait a grace period before freeing it.
999 	 */
1000 	if (q_vector)
1001 		kfree_rcu(q_vector, rcu);
1002 }
1003 
1004 /**
1005  *  igb_reset_q_vector - Reset config for interrupt vector
1006  *  @adapter: board private structure to initialize
1007  *  @v_idx: Index of vector to be reset
1008  *
1009  *  If NAPI is enabled it will delete any references to the
1010  *  NAPI struct. This is preparation for igb_free_q_vector.
1011  **/
1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013 {
1014 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015 
1016 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1017 	 * allocated. So, q_vector is NULL so we should stop here.
1018 	 */
1019 	if (!q_vector)
1020 		return;
1021 
1022 	if (q_vector->tx.ring)
1023 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1024 
1025 	if (q_vector->rx.ring)
1026 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1027 
1028 	netif_napi_del(&q_vector->napi);
1029 
1030 }
1031 
1032 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1033 {
1034 	int v_idx = adapter->num_q_vectors;
1035 
1036 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1037 		pci_disable_msix(adapter->pdev);
1038 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1039 		pci_disable_msi(adapter->pdev);
1040 
1041 	while (v_idx--)
1042 		igb_reset_q_vector(adapter, v_idx);
1043 }
1044 
1045 /**
1046  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function frees the memory allocated to the q_vectors.  In addition if
1050  *  NAPI is enabled it will delete any references to the NAPI struct prior
1051  *  to freeing the q_vector.
1052  **/
1053 static void igb_free_q_vectors(struct igb_adapter *adapter)
1054 {
1055 	int v_idx = adapter->num_q_vectors;
1056 
1057 	adapter->num_tx_queues = 0;
1058 	adapter->num_rx_queues = 0;
1059 	adapter->num_q_vectors = 0;
1060 
1061 	while (v_idx--) {
1062 		igb_reset_q_vector(adapter, v_idx);
1063 		igb_free_q_vector(adapter, v_idx);
1064 	}
1065 }
1066 
1067 /**
1068  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069  *  @adapter: board private structure to initialize
1070  *
1071  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1072  *  MSI-X interrupts allocated.
1073  */
1074 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1075 {
1076 	igb_free_q_vectors(adapter);
1077 	igb_reset_interrupt_capability(adapter);
1078 }
1079 
1080 /**
1081  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1082  *  @adapter: board private structure to initialize
1083  *  @msix: boolean value of MSIX capability
1084  *
1085  *  Attempt to configure interrupts using the best available
1086  *  capabilities of the hardware and kernel.
1087  **/
1088 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1089 {
1090 	int err;
1091 	int numvecs, i;
1092 
1093 	if (!msix)
1094 		goto msi_only;
1095 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1096 
1097 	/* Number of supported queues. */
1098 	adapter->num_rx_queues = adapter->rss_queues;
1099 	if (adapter->vfs_allocated_count)
1100 		adapter->num_tx_queues = 1;
1101 	else
1102 		adapter->num_tx_queues = adapter->rss_queues;
1103 
1104 	/* start with one vector for every Rx queue */
1105 	numvecs = adapter->num_rx_queues;
1106 
1107 	/* if Tx handler is separate add 1 for every Tx queue */
1108 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1109 		numvecs += adapter->num_tx_queues;
1110 
1111 	/* store the number of vectors reserved for queues */
1112 	adapter->num_q_vectors = numvecs;
1113 
1114 	/* add 1 vector for link status interrupts */
1115 	numvecs++;
1116 	for (i = 0; i < numvecs; i++)
1117 		adapter->msix_entries[i].entry = i;
1118 
1119 	err = pci_enable_msix_range(adapter->pdev,
1120 				    adapter->msix_entries,
1121 				    numvecs,
1122 				    numvecs);
1123 	if (err > 0)
1124 		return;
1125 
1126 	igb_reset_interrupt_capability(adapter);
1127 
1128 	/* If we can't do MSI-X, try MSI */
1129 msi_only:
1130 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1131 #ifdef CONFIG_PCI_IOV
1132 	/* disable SR-IOV for non MSI-X configurations */
1133 	if (adapter->vf_data) {
1134 		struct e1000_hw *hw = &adapter->hw;
1135 		/* disable iov and allow time for transactions to clear */
1136 		pci_disable_sriov(adapter->pdev);
1137 		msleep(500);
1138 
1139 		kfree(adapter->vf_mac_list);
1140 		adapter->vf_mac_list = NULL;
1141 		kfree(adapter->vf_data);
1142 		adapter->vf_data = NULL;
1143 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1144 		wrfl();
1145 		msleep(100);
1146 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1147 	}
1148 #endif
1149 	adapter->vfs_allocated_count = 0;
1150 	adapter->rss_queues = 1;
1151 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1152 	adapter->num_rx_queues = 1;
1153 	adapter->num_tx_queues = 1;
1154 	adapter->num_q_vectors = 1;
1155 	if (!pci_enable_msi(adapter->pdev))
1156 		adapter->flags |= IGB_FLAG_HAS_MSI;
1157 }
1158 
1159 static void igb_add_ring(struct igb_ring *ring,
1160 			 struct igb_ring_container *head)
1161 {
1162 	head->ring = ring;
1163 	head->count++;
1164 }
1165 
1166 /**
1167  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168  *  @adapter: board private structure to initialize
1169  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1170  *  @v_idx: index of vector in adapter struct
1171  *  @txr_count: total number of Tx rings to allocate
1172  *  @txr_idx: index of first Tx ring to allocate
1173  *  @rxr_count: total number of Rx rings to allocate
1174  *  @rxr_idx: index of first Rx ring to allocate
1175  *
1176  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1177  **/
1178 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1179 			      int v_count, int v_idx,
1180 			      int txr_count, int txr_idx,
1181 			      int rxr_count, int rxr_idx)
1182 {
1183 	struct igb_q_vector *q_vector;
1184 	struct igb_ring *ring;
1185 	int ring_count;
1186 	size_t size;
1187 
1188 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189 	if (txr_count > 1 || rxr_count > 1)
1190 		return -ENOMEM;
1191 
1192 	ring_count = txr_count + rxr_count;
1193 	size = struct_size(q_vector, ring, ring_count);
1194 
1195 	/* allocate q_vector and rings */
1196 	q_vector = adapter->q_vector[v_idx];
1197 	if (!q_vector) {
1198 		q_vector = kzalloc(size, GFP_KERNEL);
1199 	} else if (size > ksize(q_vector)) {
1200 		kfree_rcu(q_vector, rcu);
1201 		q_vector = kzalloc(size, GFP_KERNEL);
1202 	} else {
1203 		memset(q_vector, 0, size);
1204 	}
1205 	if (!q_vector)
1206 		return -ENOMEM;
1207 
1208 	/* initialize NAPI */
1209 	netif_napi_add(adapter->netdev, &q_vector->napi,
1210 		       igb_poll, 64);
1211 
1212 	/* tie q_vector and adapter together */
1213 	adapter->q_vector[v_idx] = q_vector;
1214 	q_vector->adapter = adapter;
1215 
1216 	/* initialize work limits */
1217 	q_vector->tx.work_limit = adapter->tx_work_limit;
1218 
1219 	/* initialize ITR configuration */
1220 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1221 	q_vector->itr_val = IGB_START_ITR;
1222 
1223 	/* initialize pointer to rings */
1224 	ring = q_vector->ring;
1225 
1226 	/* intialize ITR */
1227 	if (rxr_count) {
1228 		/* rx or rx/tx vector */
1229 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1230 			q_vector->itr_val = adapter->rx_itr_setting;
1231 	} else {
1232 		/* tx only vector */
1233 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1234 			q_vector->itr_val = adapter->tx_itr_setting;
1235 	}
1236 
1237 	if (txr_count) {
1238 		/* assign generic ring traits */
1239 		ring->dev = &adapter->pdev->dev;
1240 		ring->netdev = adapter->netdev;
1241 
1242 		/* configure backlink on ring */
1243 		ring->q_vector = q_vector;
1244 
1245 		/* update q_vector Tx values */
1246 		igb_add_ring(ring, &q_vector->tx);
1247 
1248 		/* For 82575, context index must be unique per ring. */
1249 		if (adapter->hw.mac.type == e1000_82575)
1250 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1251 
1252 		/* apply Tx specific ring traits */
1253 		ring->count = adapter->tx_ring_count;
1254 		ring->queue_index = txr_idx;
1255 
1256 		ring->cbs_enable = false;
1257 		ring->idleslope = 0;
1258 		ring->sendslope = 0;
1259 		ring->hicredit = 0;
1260 		ring->locredit = 0;
1261 
1262 		u64_stats_init(&ring->tx_syncp);
1263 		u64_stats_init(&ring->tx_syncp2);
1264 
1265 		/* assign ring to adapter */
1266 		adapter->tx_ring[txr_idx] = ring;
1267 
1268 		/* push pointer to next ring */
1269 		ring++;
1270 	}
1271 
1272 	if (rxr_count) {
1273 		/* assign generic ring traits */
1274 		ring->dev = &adapter->pdev->dev;
1275 		ring->netdev = adapter->netdev;
1276 
1277 		/* configure backlink on ring */
1278 		ring->q_vector = q_vector;
1279 
1280 		/* update q_vector Rx values */
1281 		igb_add_ring(ring, &q_vector->rx);
1282 
1283 		/* set flag indicating ring supports SCTP checksum offload */
1284 		if (adapter->hw.mac.type >= e1000_82576)
1285 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286 
1287 		/* On i350, i354, i210, and i211, loopback VLAN packets
1288 		 * have the tag byte-swapped.
1289 		 */
1290 		if (adapter->hw.mac.type >= e1000_i350)
1291 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292 
1293 		/* apply Rx specific ring traits */
1294 		ring->count = adapter->rx_ring_count;
1295 		ring->queue_index = rxr_idx;
1296 
1297 		u64_stats_init(&ring->rx_syncp);
1298 
1299 		/* assign ring to adapter */
1300 		adapter->rx_ring[rxr_idx] = ring;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 
1307 /**
1308  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309  *  @adapter: board private structure to initialize
1310  *
1311  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312  *  return -ENOMEM.
1313  **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316 	int q_vectors = adapter->num_q_vectors;
1317 	int rxr_remaining = adapter->num_rx_queues;
1318 	int txr_remaining = adapter->num_tx_queues;
1319 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 	int err;
1321 
1322 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 		for (; rxr_remaining; v_idx++) {
1324 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 						 0, 0, 1, rxr_idx);
1326 
1327 			if (err)
1328 				goto err_out;
1329 
1330 			/* update counts and index */
1331 			rxr_remaining--;
1332 			rxr_idx++;
1333 		}
1334 	}
1335 
1336 	for (; v_idx < q_vectors; v_idx++) {
1337 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339 
1340 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 					 tqpv, txr_idx, rqpv, rxr_idx);
1342 
1343 		if (err)
1344 			goto err_out;
1345 
1346 		/* update counts and index */
1347 		rxr_remaining -= rqpv;
1348 		txr_remaining -= tqpv;
1349 		rxr_idx++;
1350 		txr_idx++;
1351 	}
1352 
1353 	return 0;
1354 
1355 err_out:
1356 	adapter->num_tx_queues = 0;
1357 	adapter->num_rx_queues = 0;
1358 	adapter->num_q_vectors = 0;
1359 
1360 	while (v_idx--)
1361 		igb_free_q_vector(adapter, v_idx);
1362 
1363 	return -ENOMEM;
1364 }
1365 
1366 /**
1367  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368  *  @adapter: board private structure to initialize
1369  *  @msix: boolean value of MSIX capability
1370  *
1371  *  This function initializes the interrupts and allocates all of the queues.
1372  **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375 	struct pci_dev *pdev = adapter->pdev;
1376 	int err;
1377 
1378 	igb_set_interrupt_capability(adapter, msix);
1379 
1380 	err = igb_alloc_q_vectors(adapter);
1381 	if (err) {
1382 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 		goto err_alloc_q_vectors;
1384 	}
1385 
1386 	igb_cache_ring_register(adapter);
1387 
1388 	return 0;
1389 
1390 err_alloc_q_vectors:
1391 	igb_reset_interrupt_capability(adapter);
1392 	return err;
1393 }
1394 
1395 /**
1396  *  igb_request_irq - initialize interrupts
1397  *  @adapter: board private structure to initialize
1398  *
1399  *  Attempts to configure interrupts using the best available
1400  *  capabilities of the hardware and kernel.
1401  **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404 	struct net_device *netdev = adapter->netdev;
1405 	struct pci_dev *pdev = adapter->pdev;
1406 	int err = 0;
1407 
1408 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 		err = igb_request_msix(adapter);
1410 		if (!err)
1411 			goto request_done;
1412 		/* fall back to MSI */
1413 		igb_free_all_tx_resources(adapter);
1414 		igb_free_all_rx_resources(adapter);
1415 
1416 		igb_clear_interrupt_scheme(adapter);
1417 		err = igb_init_interrupt_scheme(adapter, false);
1418 		if (err)
1419 			goto request_done;
1420 
1421 		igb_setup_all_tx_resources(adapter);
1422 		igb_setup_all_rx_resources(adapter);
1423 		igb_configure(adapter);
1424 	}
1425 
1426 	igb_assign_vector(adapter->q_vector[0], 0);
1427 
1428 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 				  netdev->name, adapter);
1431 		if (!err)
1432 			goto request_done;
1433 
1434 		/* fall back to legacy interrupts */
1435 		igb_reset_interrupt_capability(adapter);
1436 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 	}
1438 
1439 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 			  netdev->name, adapter);
1441 
1442 	if (err)
1443 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 			err);
1445 
1446 request_done:
1447 	return err;
1448 }
1449 
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 		int vector = 0, i;
1454 
1455 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1456 
1457 		for (i = 0; i < adapter->num_q_vectors; i++)
1458 			free_irq(adapter->msix_entries[vector++].vector,
1459 				 adapter->q_vector[i]);
1460 	} else {
1461 		free_irq(adapter->pdev->irq, adapter);
1462 	}
1463 }
1464 
1465 /**
1466  *  igb_irq_disable - Mask off interrupt generation on the NIC
1467  *  @adapter: board private structure
1468  **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 
1473 	/* we need to be careful when disabling interrupts.  The VFs are also
1474 	 * mapped into these registers and so clearing the bits can cause
1475 	 * issues on the VF drivers so we only need to clear what we set
1476 	 */
1477 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 		u32 regval = rd32(E1000_EIAM);
1479 
1480 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 		regval = rd32(E1000_EIAC);
1483 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 	}
1485 
1486 	wr32(E1000_IAM, 0);
1487 	wr32(E1000_IMC, ~0);
1488 	wrfl();
1489 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 		int i;
1491 
1492 		for (i = 0; i < adapter->num_q_vectors; i++)
1493 			synchronize_irq(adapter->msix_entries[i].vector);
1494 	} else {
1495 		synchronize_irq(adapter->pdev->irq);
1496 	}
1497 }
1498 
1499 /**
1500  *  igb_irq_enable - Enable default interrupt generation settings
1501  *  @adapter: board private structure
1502  **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505 	struct e1000_hw *hw = &adapter->hw;
1506 
1507 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 		u32 regval = rd32(E1000_EIAC);
1510 
1511 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 		regval = rd32(E1000_EIAM);
1513 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 		if (adapter->vfs_allocated_count) {
1516 			wr32(E1000_MBVFIMR, 0xFF);
1517 			ims |= E1000_IMS_VMMB;
1518 		}
1519 		wr32(E1000_IMS, ims);
1520 	} else {
1521 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 				E1000_IMS_DRSTA);
1523 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 				E1000_IMS_DRSTA);
1525 	}
1526 }
1527 
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530 	struct e1000_hw *hw = &adapter->hw;
1531 	u16 pf_id = adapter->vfs_allocated_count;
1532 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 	u16 old_vid = adapter->mng_vlan_id;
1534 
1535 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 		/* add VID to filter table */
1537 		igb_vfta_set(hw, vid, pf_id, true, true);
1538 		adapter->mng_vlan_id = vid;
1539 	} else {
1540 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 	}
1542 
1543 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 	    (vid != old_vid) &&
1545 	    !test_bit(old_vid, adapter->active_vlans)) {
1546 		/* remove VID from filter table */
1547 		igb_vfta_set(hw, vid, pf_id, false, true);
1548 	}
1549 }
1550 
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561 	struct e1000_hw *hw = &adapter->hw;
1562 	u32 ctrl_ext;
1563 
1564 	/* Let firmware take over control of h/w */
1565 	ctrl_ext = rd32(E1000_CTRL_EXT);
1566 	wr32(E1000_CTRL_EXT,
1567 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569 
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580 	struct e1000_hw *hw = &adapter->hw;
1581 	u32 ctrl_ext;
1582 
1583 	/* Let firmware know the driver has taken over */
1584 	ctrl_ext = rd32(E1000_CTRL_EXT);
1585 	wr32(E1000_CTRL_EXT,
1586 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588 
1589 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1590 {
1591 	struct net_device *netdev = adapter->netdev;
1592 	struct e1000_hw *hw = &adapter->hw;
1593 
1594 	WARN_ON(hw->mac.type != e1000_i210);
1595 
1596 	if (enable)
1597 		adapter->flags |= IGB_FLAG_FQTSS;
1598 	else
1599 		adapter->flags &= ~IGB_FLAG_FQTSS;
1600 
1601 	if (netif_running(netdev))
1602 		schedule_work(&adapter->reset_task);
1603 }
1604 
1605 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1606 {
1607 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1608 }
1609 
1610 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1611 				   enum tx_queue_prio prio)
1612 {
1613 	u32 val;
1614 
1615 	WARN_ON(hw->mac.type != e1000_i210);
1616 	WARN_ON(queue < 0 || queue > 4);
1617 
1618 	val = rd32(E1000_I210_TXDCTL(queue));
1619 
1620 	if (prio == TX_QUEUE_PRIO_HIGH)
1621 		val |= E1000_TXDCTL_PRIORITY;
1622 	else
1623 		val &= ~E1000_TXDCTL_PRIORITY;
1624 
1625 	wr32(E1000_I210_TXDCTL(queue), val);
1626 }
1627 
1628 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1629 {
1630 	u32 val;
1631 
1632 	WARN_ON(hw->mac.type != e1000_i210);
1633 	WARN_ON(queue < 0 || queue > 1);
1634 
1635 	val = rd32(E1000_I210_TQAVCC(queue));
1636 
1637 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1638 		val |= E1000_TQAVCC_QUEUEMODE;
1639 	else
1640 		val &= ~E1000_TQAVCC_QUEUEMODE;
1641 
1642 	wr32(E1000_I210_TQAVCC(queue), val);
1643 }
1644 
1645 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1646 {
1647 	int i;
1648 
1649 	for (i = 0; i < adapter->num_tx_queues; i++) {
1650 		if (adapter->tx_ring[i]->cbs_enable)
1651 			return true;
1652 	}
1653 
1654 	return false;
1655 }
1656 
1657 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1658 {
1659 	int i;
1660 
1661 	for (i = 0; i < adapter->num_tx_queues; i++) {
1662 		if (adapter->tx_ring[i]->launchtime_enable)
1663 			return true;
1664 	}
1665 
1666 	return false;
1667 }
1668 
1669 /**
1670  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671  *  @adapter: pointer to adapter struct
1672  *  @queue: queue number
1673  *
1674  *  Configure CBS and Launchtime for a given hardware queue.
1675  *  Parameters are retrieved from the correct Tx ring, so
1676  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1677  *  for setting those correctly prior to this function being called.
1678  **/
1679 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1680 {
1681 	struct igb_ring *ring = adapter->tx_ring[queue];
1682 	struct net_device *netdev = adapter->netdev;
1683 	struct e1000_hw *hw = &adapter->hw;
1684 	u32 tqavcc, tqavctrl;
1685 	u16 value;
1686 
1687 	WARN_ON(hw->mac.type != e1000_i210);
1688 	WARN_ON(queue < 0 || queue > 1);
1689 
1690 	/* If any of the Qav features is enabled, configure queues as SR and
1691 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1692 	 * as SP.
1693 	 */
1694 	if (ring->cbs_enable || ring->launchtime_enable) {
1695 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1696 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1697 	} else {
1698 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1699 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1700 	}
1701 
1702 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1703 	if (ring->cbs_enable || queue == 0) {
1704 		/* i210 does not allow the queue 0 to be in the Strict
1705 		 * Priority mode while the Qav mode is enabled, so,
1706 		 * instead of disabling strict priority mode, we give
1707 		 * queue 0 the maximum of credits possible.
1708 		 *
1709 		 * See section 8.12.19 of the i210 datasheet, "Note:
1710 		 * Queue0 QueueMode must be set to 1b when
1711 		 * TransmitMode is set to Qav."
1712 		 */
1713 		if (queue == 0 && !ring->cbs_enable) {
1714 			/* max "linkspeed" idleslope in kbps */
1715 			ring->idleslope = 1000000;
1716 			ring->hicredit = ETH_FRAME_LEN;
1717 		}
1718 
1719 		/* Always set data transfer arbitration to credit-based
1720 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1721 		 * the queues.
1722 		 */
1723 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1724 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1725 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1726 
1727 		/* According to i210 datasheet section 7.2.7.7, we should set
1728 		 * the 'idleSlope' field from TQAVCC register following the
1729 		 * equation:
1730 		 *
1731 		 * For 100 Mbps link speed:
1732 		 *
1733 		 *     value = BW * 0x7735 * 0.2                          (E1)
1734 		 *
1735 		 * For 1000Mbps link speed:
1736 		 *
1737 		 *     value = BW * 0x7735 * 2                            (E2)
1738 		 *
1739 		 * E1 and E2 can be merged into one equation as shown below.
1740 		 * Note that 'link-speed' is in Mbps.
1741 		 *
1742 		 *     value = BW * 0x7735 * 2 * link-speed
1743 		 *                           --------------               (E3)
1744 		 *                                1000
1745 		 *
1746 		 * 'BW' is the percentage bandwidth out of full link speed
1747 		 * which can be found with the following equation. Note that
1748 		 * idleSlope here is the parameter from this function which
1749 		 * is in kbps.
1750 		 *
1751 		 *     BW =     idleSlope
1752 		 *          -----------------                             (E4)
1753 		 *          link-speed * 1000
1754 		 *
1755 		 * That said, we can come up with a generic equation to
1756 		 * calculate the value we should set it TQAVCC register by
1757 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1758 		 *
1759 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1760 		 *         -----------------            --------------    (E5)
1761 		 *         link-speed * 1000                 1000
1762 		 *
1763 		 * 'link-speed' is present in both sides of the fraction so
1764 		 * it is canceled out. The final equation is the following:
1765 		 *
1766 		 *     value = idleSlope * 61034
1767 		 *             -----------------                          (E6)
1768 		 *                  1000000
1769 		 *
1770 		 * NOTE: For i210, given the above, we can see that idleslope
1771 		 *       is represented in 16.38431 kbps units by the value at
1772 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1773 		 *       the granularity for idleslope increments.
1774 		 *       For instance, if you want to configure a 2576kbps
1775 		 *       idleslope, the value to be written on the register
1776 		 *       would have to be 157.23. If rounded down, you end
1777 		 *       up with less bandwidth available than originally
1778 		 *       required (~2572 kbps). If rounded up, you end up
1779 		 *       with a higher bandwidth (~2589 kbps). Below the
1780 		 *       approach we take is to always round up the
1781 		 *       calculated value, so the resulting bandwidth might
1782 		 *       be slightly higher for some configurations.
1783 		 */
1784 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1785 
1786 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1787 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1788 		tqavcc |= value;
1789 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790 
1791 		wr32(E1000_I210_TQAVHC(queue),
1792 		     0x80000000 + ring->hicredit * 0x7735);
1793 	} else {
1794 
1795 		/* Set idleSlope to zero. */
1796 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1797 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		/* Set hiCredit to zero. */
1801 		wr32(E1000_I210_TQAVHC(queue), 0);
1802 
1803 		/* If CBS is not enabled for any queues anymore, then return to
1804 		 * the default state of Data Transmission Arbitration on
1805 		 * TQAVCTRL.
1806 		 */
1807 		if (!is_any_cbs_enabled(adapter)) {
1808 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1809 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1810 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1811 		}
1812 	}
1813 
1814 	/* If LaunchTime is enabled, set DataTranTIM. */
1815 	if (ring->launchtime_enable) {
1816 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817 		 * for any of the SR queues, and configure fetchtime delta.
1818 		 * XXX NOTE:
1819 		 *     - LaunchTime will be enabled for all SR queues.
1820 		 *     - A fixed offset can be added relative to the launch
1821 		 *       time of all packets if configured at reg LAUNCH_OS0.
1822 		 *       We are keeping it as 0 for now (default value).
1823 		 */
1824 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1825 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1826 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1827 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1828 	} else {
1829 		/* If Launchtime is not enabled for any SR queues anymore,
1830 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831 		 * effectively disabling Launchtime.
1832 		 */
1833 		if (!is_any_txtime_enabled(adapter)) {
1834 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1835 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1836 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1837 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838 		}
1839 	}
1840 
1841 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1842 	 * CBS are not configurable by software so we don't do any 'controller
1843 	 * configuration' in respect to these parameters.
1844 	 */
1845 
1846 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847 		   ring->cbs_enable ? "enabled" : "disabled",
1848 		   ring->launchtime_enable ? "enabled" : "disabled",
1849 		   queue,
1850 		   ring->idleslope, ring->sendslope,
1851 		   ring->hicredit, ring->locredit);
1852 }
1853 
1854 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1855 				  bool enable)
1856 {
1857 	struct igb_ring *ring;
1858 
1859 	if (queue < 0 || queue > adapter->num_tx_queues)
1860 		return -EINVAL;
1861 
1862 	ring = adapter->tx_ring[queue];
1863 	ring->launchtime_enable = enable;
1864 
1865 	return 0;
1866 }
1867 
1868 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1869 			       bool enable, int idleslope, int sendslope,
1870 			       int hicredit, int locredit)
1871 {
1872 	struct igb_ring *ring;
1873 
1874 	if (queue < 0 || queue > adapter->num_tx_queues)
1875 		return -EINVAL;
1876 
1877 	ring = adapter->tx_ring[queue];
1878 
1879 	ring->cbs_enable = enable;
1880 	ring->idleslope = idleslope;
1881 	ring->sendslope = sendslope;
1882 	ring->hicredit = hicredit;
1883 	ring->locredit = locredit;
1884 
1885 	return 0;
1886 }
1887 
1888 /**
1889  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890  *  @adapter: pointer to adapter struct
1891  *
1892  *  Configure TQAVCTRL register switching the controller's Tx mode
1893  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1894  *  a call to igb_config_tx_modes() per queue so any previously saved
1895  *  Tx parameters are applied.
1896  **/
1897 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1898 {
1899 	struct net_device *netdev = adapter->netdev;
1900 	struct e1000_hw *hw = &adapter->hw;
1901 	u32 val;
1902 
1903 	/* Only i210 controller supports changing the transmission mode. */
1904 	if (hw->mac.type != e1000_i210)
1905 		return;
1906 
1907 	if (is_fqtss_enabled(adapter)) {
1908 		int i, max_queue;
1909 
1910 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912 		 * so SP queues wait for SR ones.
1913 		 */
1914 		val = rd32(E1000_I210_TQAVCTRL);
1915 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1916 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1917 		wr32(E1000_I210_TQAVCTRL, val);
1918 
1919 		/* Configure Tx and Rx packet buffers sizes as described in
1920 		 * i210 datasheet section 7.2.7.7.
1921 		 */
1922 		val = rd32(E1000_TXPBS);
1923 		val &= ~I210_TXPBSIZE_MASK;
1924 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1925 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1926 		wr32(E1000_TXPBS, val);
1927 
1928 		val = rd32(E1000_RXPBS);
1929 		val &= ~I210_RXPBSIZE_MASK;
1930 		val |= I210_RXPBSIZE_PB_30KB;
1931 		wr32(E1000_RXPBS, val);
1932 
1933 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934 		 * register should not exceed the buffer size programmed in
1935 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1937 		 * 4kB / 64.
1938 		 *
1939 		 * However, when we do so, no frame from queue 2 and 3 are
1940 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1941 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1942 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1943 		 */
1944 		val = (4096 - 1) / 64;
1945 		wr32(E1000_I210_DTXMXPKTSZ, val);
1946 
1947 		/* Since FQTSS mode is enabled, apply any CBS configuration
1948 		 * previously set. If no previous CBS configuration has been
1949 		 * done, then the initial configuration is applied, which means
1950 		 * CBS is disabled.
1951 		 */
1952 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1953 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1954 
1955 		for (i = 0; i < max_queue; i++) {
1956 			igb_config_tx_modes(adapter, i);
1957 		}
1958 	} else {
1959 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1960 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1961 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1962 
1963 		val = rd32(E1000_I210_TQAVCTRL);
1964 		/* According to Section 8.12.21, the other flags we've set when
1965 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1966 		 * don't set they here.
1967 		 */
1968 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1969 		wr32(E1000_I210_TQAVCTRL, val);
1970 	}
1971 
1972 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1973 		   "enabled" : "disabled");
1974 }
1975 
1976 /**
1977  *  igb_configure - configure the hardware for RX and TX
1978  *  @adapter: private board structure
1979  **/
1980 static void igb_configure(struct igb_adapter *adapter)
1981 {
1982 	struct net_device *netdev = adapter->netdev;
1983 	int i;
1984 
1985 	igb_get_hw_control(adapter);
1986 	igb_set_rx_mode(netdev);
1987 	igb_setup_tx_mode(adapter);
1988 
1989 	igb_restore_vlan(adapter);
1990 
1991 	igb_setup_tctl(adapter);
1992 	igb_setup_mrqc(adapter);
1993 	igb_setup_rctl(adapter);
1994 
1995 	igb_nfc_filter_restore(adapter);
1996 	igb_configure_tx(adapter);
1997 	igb_configure_rx(adapter);
1998 
1999 	igb_rx_fifo_flush_82575(&adapter->hw);
2000 
2001 	/* call igb_desc_unused which always leaves
2002 	 * at least 1 descriptor unused to make sure
2003 	 * next_to_use != next_to_clean
2004 	 */
2005 	for (i = 0; i < adapter->num_rx_queues; i++) {
2006 		struct igb_ring *ring = adapter->rx_ring[i];
2007 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2008 	}
2009 }
2010 
2011 /**
2012  *  igb_power_up_link - Power up the phy/serdes link
2013  *  @adapter: address of board private structure
2014  **/
2015 void igb_power_up_link(struct igb_adapter *adapter)
2016 {
2017 	igb_reset_phy(&adapter->hw);
2018 
2019 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020 		igb_power_up_phy_copper(&adapter->hw);
2021 	else
2022 		igb_power_up_serdes_link_82575(&adapter->hw);
2023 
2024 	igb_setup_link(&adapter->hw);
2025 }
2026 
2027 /**
2028  *  igb_power_down_link - Power down the phy/serdes link
2029  *  @adapter: address of board private structure
2030  */
2031 static void igb_power_down_link(struct igb_adapter *adapter)
2032 {
2033 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034 		igb_power_down_phy_copper_82575(&adapter->hw);
2035 	else
2036 		igb_shutdown_serdes_link_82575(&adapter->hw);
2037 }
2038 
2039 /**
2040  * Detect and switch function for Media Auto Sense
2041  * @adapter: address of the board private structure
2042  **/
2043 static void igb_check_swap_media(struct igb_adapter *adapter)
2044 {
2045 	struct e1000_hw *hw = &adapter->hw;
2046 	u32 ctrl_ext, connsw;
2047 	bool swap_now = false;
2048 
2049 	ctrl_ext = rd32(E1000_CTRL_EXT);
2050 	connsw = rd32(E1000_CONNSW);
2051 
2052 	/* need to live swap if current media is copper and we have fiber/serdes
2053 	 * to go to.
2054 	 */
2055 
2056 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2057 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2058 		swap_now = true;
2059 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2060 		   !(connsw & E1000_CONNSW_SERDESD)) {
2061 		/* copper signal takes time to appear */
2062 		if (adapter->copper_tries < 4) {
2063 			adapter->copper_tries++;
2064 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2065 			wr32(E1000_CONNSW, connsw);
2066 			return;
2067 		} else {
2068 			adapter->copper_tries = 0;
2069 			if ((connsw & E1000_CONNSW_PHYSD) &&
2070 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2071 				swap_now = true;
2072 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2073 				wr32(E1000_CONNSW, connsw);
2074 			}
2075 		}
2076 	}
2077 
2078 	if (!swap_now)
2079 		return;
2080 
2081 	switch (hw->phy.media_type) {
2082 	case e1000_media_type_copper:
2083 		netdev_info(adapter->netdev,
2084 			"MAS: changing media to fiber/serdes\n");
2085 		ctrl_ext |=
2086 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2087 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2088 		adapter->copper_tries = 0;
2089 		break;
2090 	case e1000_media_type_internal_serdes:
2091 	case e1000_media_type_fiber:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to copper\n");
2094 		ctrl_ext &=
2095 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		break;
2098 	default:
2099 		/* shouldn't get here during regular operation */
2100 		netdev_err(adapter->netdev,
2101 			"AMS: Invalid media type found, returning\n");
2102 		break;
2103 	}
2104 	wr32(E1000_CTRL_EXT, ctrl_ext);
2105 }
2106 
2107 /**
2108  *  igb_up - Open the interface and prepare it to handle traffic
2109  *  @adapter: board private structure
2110  **/
2111 int igb_up(struct igb_adapter *adapter)
2112 {
2113 	struct e1000_hw *hw = &adapter->hw;
2114 	int i;
2115 
2116 	/* hardware has been reset, we need to reload some things */
2117 	igb_configure(adapter);
2118 
2119 	clear_bit(__IGB_DOWN, &adapter->state);
2120 
2121 	for (i = 0; i < adapter->num_q_vectors; i++)
2122 		napi_enable(&(adapter->q_vector[i]->napi));
2123 
2124 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2125 		igb_configure_msix(adapter);
2126 	else
2127 		igb_assign_vector(adapter->q_vector[0], 0);
2128 
2129 	/* Clear any pending interrupts. */
2130 	rd32(E1000_TSICR);
2131 	rd32(E1000_ICR);
2132 	igb_irq_enable(adapter);
2133 
2134 	/* notify VFs that reset has been completed */
2135 	if (adapter->vfs_allocated_count) {
2136 		u32 reg_data = rd32(E1000_CTRL_EXT);
2137 
2138 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2139 		wr32(E1000_CTRL_EXT, reg_data);
2140 	}
2141 
2142 	netif_tx_start_all_queues(adapter->netdev);
2143 
2144 	/* start the watchdog. */
2145 	hw->mac.get_link_status = 1;
2146 	schedule_work(&adapter->watchdog_task);
2147 
2148 	if ((adapter->flags & IGB_FLAG_EEE) &&
2149 	    (!hw->dev_spec._82575.eee_disable))
2150 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2151 
2152 	return 0;
2153 }
2154 
2155 void igb_down(struct igb_adapter *adapter)
2156 {
2157 	struct net_device *netdev = adapter->netdev;
2158 	struct e1000_hw *hw = &adapter->hw;
2159 	u32 tctl, rctl;
2160 	int i;
2161 
2162 	/* signal that we're down so the interrupt handler does not
2163 	 * reschedule our watchdog timer
2164 	 */
2165 	set_bit(__IGB_DOWN, &adapter->state);
2166 
2167 	/* disable receives in the hardware */
2168 	rctl = rd32(E1000_RCTL);
2169 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170 	/* flush and sleep below */
2171 
2172 	igb_nfc_filter_exit(adapter);
2173 
2174 	netif_carrier_off(netdev);
2175 	netif_tx_stop_all_queues(netdev);
2176 
2177 	/* disable transmits in the hardware */
2178 	tctl = rd32(E1000_TCTL);
2179 	tctl &= ~E1000_TCTL_EN;
2180 	wr32(E1000_TCTL, tctl);
2181 	/* flush both disables and wait for them to finish */
2182 	wrfl();
2183 	usleep_range(10000, 11000);
2184 
2185 	igb_irq_disable(adapter);
2186 
2187 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2188 
2189 	for (i = 0; i < adapter->num_q_vectors; i++) {
2190 		if (adapter->q_vector[i]) {
2191 			napi_synchronize(&adapter->q_vector[i]->napi);
2192 			napi_disable(&adapter->q_vector[i]->napi);
2193 		}
2194 	}
2195 
2196 	del_timer_sync(&adapter->watchdog_timer);
2197 	del_timer_sync(&adapter->phy_info_timer);
2198 
2199 	/* record the stats before reset*/
2200 	spin_lock(&adapter->stats64_lock);
2201 	igb_update_stats(adapter);
2202 	spin_unlock(&adapter->stats64_lock);
2203 
2204 	adapter->link_speed = 0;
2205 	adapter->link_duplex = 0;
2206 
2207 	if (!pci_channel_offline(adapter->pdev))
2208 		igb_reset(adapter);
2209 
2210 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2211 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2212 
2213 	igb_clean_all_tx_rings(adapter);
2214 	igb_clean_all_rx_rings(adapter);
2215 #ifdef CONFIG_IGB_DCA
2216 
2217 	/* since we reset the hardware DCA settings were cleared */
2218 	igb_setup_dca(adapter);
2219 #endif
2220 }
2221 
2222 void igb_reinit_locked(struct igb_adapter *adapter)
2223 {
2224 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225 		usleep_range(1000, 2000);
2226 	igb_down(adapter);
2227 	igb_up(adapter);
2228 	clear_bit(__IGB_RESETTING, &adapter->state);
2229 }
2230 
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2232  *
2233  * @adapter: adapter struct
2234  **/
2235 static void igb_enable_mas(struct igb_adapter *adapter)
2236 {
2237 	struct e1000_hw *hw = &adapter->hw;
2238 	u32 connsw = rd32(E1000_CONNSW);
2239 
2240 	/* configure for SerDes media detect */
2241 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2242 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2243 		connsw |= E1000_CONNSW_ENRGSRC;
2244 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245 		wr32(E1000_CONNSW, connsw);
2246 		wrfl();
2247 	}
2248 }
2249 
2250 void igb_reset(struct igb_adapter *adapter)
2251 {
2252 	struct pci_dev *pdev = adapter->pdev;
2253 	struct e1000_hw *hw = &adapter->hw;
2254 	struct e1000_mac_info *mac = &hw->mac;
2255 	struct e1000_fc_info *fc = &hw->fc;
2256 	u32 pba, hwm;
2257 
2258 	/* Repartition Pba for greater than 9k mtu
2259 	 * To take effect CTRL.RST is required.
2260 	 */
2261 	switch (mac->type) {
2262 	case e1000_i350:
2263 	case e1000_i354:
2264 	case e1000_82580:
2265 		pba = rd32(E1000_RXPBS);
2266 		pba = igb_rxpbs_adjust_82580(pba);
2267 		break;
2268 	case e1000_82576:
2269 		pba = rd32(E1000_RXPBS);
2270 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2271 		break;
2272 	case e1000_82575:
2273 	case e1000_i210:
2274 	case e1000_i211:
2275 	default:
2276 		pba = E1000_PBA_34K;
2277 		break;
2278 	}
2279 
2280 	if (mac->type == e1000_82575) {
2281 		u32 min_rx_space, min_tx_space, needed_tx_space;
2282 
2283 		/* write Rx PBA so that hardware can report correct Tx PBA */
2284 		wr32(E1000_PBA, pba);
2285 
2286 		/* To maintain wire speed transmits, the Tx FIFO should be
2287 		 * large enough to accommodate two full transmit packets,
2288 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2289 		 * the Rx FIFO should be large enough to accommodate at least
2290 		 * one full receive packet and is similarly rounded up and
2291 		 * expressed in KB.
2292 		 */
2293 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294 
2295 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2296 		 * but don't include Ethernet FCS because hardware appends it.
2297 		 * We only need to round down to the nearest 512 byte block
2298 		 * count since the value we care about is 2 frames, not 1.
2299 		 */
2300 		min_tx_space = adapter->max_frame_size;
2301 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303 
2304 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2305 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306 
2307 		/* If current Tx allocation is less than the min Tx FIFO size,
2308 		 * and the min Tx FIFO size is less than the current Rx FIFO
2309 		 * allocation, take space away from current Rx allocation.
2310 		 */
2311 		if (needed_tx_space < pba) {
2312 			pba -= needed_tx_space;
2313 
2314 			/* if short on Rx space, Rx wins and must trump Tx
2315 			 * adjustment
2316 			 */
2317 			if (pba < min_rx_space)
2318 				pba = min_rx_space;
2319 		}
2320 
2321 		/* adjust PBA for jumbo frames */
2322 		wr32(E1000_PBA, pba);
2323 	}
2324 
2325 	/* flow control settings
2326 	 * The high water mark must be low enough to fit one full frame
2327 	 * after transmitting the pause frame.  As such we must have enough
2328 	 * space to allow for us to complete our current transmit and then
2329 	 * receive the frame that is in progress from the link partner.
2330 	 * Set it to:
2331 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332 	 */
2333 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334 
2335 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2336 	fc->low_water = fc->high_water - 16;
2337 	fc->pause_time = 0xFFFF;
2338 	fc->send_xon = 1;
2339 	fc->current_mode = fc->requested_mode;
2340 
2341 	/* disable receive for all VFs and wait one second */
2342 	if (adapter->vfs_allocated_count) {
2343 		int i;
2344 
2345 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347 
2348 		/* ping all the active vfs to let them know we are going down */
2349 		igb_ping_all_vfs(adapter);
2350 
2351 		/* disable transmits and receives */
2352 		wr32(E1000_VFRE, 0);
2353 		wr32(E1000_VFTE, 0);
2354 	}
2355 
2356 	/* Allow time for pending master requests to run */
2357 	hw->mac.ops.reset_hw(hw);
2358 	wr32(E1000_WUC, 0);
2359 
2360 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361 		/* need to resetup here after media swap */
2362 		adapter->ei.get_invariants(hw);
2363 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364 	}
2365 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367 		igb_enable_mas(adapter);
2368 	}
2369 	if (hw->mac.ops.init_hw(hw))
2370 		dev_err(&pdev->dev, "Hardware Error\n");
2371 
2372 	/* RAR registers were cleared during init_hw, clear mac table */
2373 	igb_flush_mac_table(adapter);
2374 	__dev_uc_unsync(adapter->netdev, NULL);
2375 
2376 	/* Recover default RAR entry */
2377 	igb_set_default_mac_filter(adapter);
2378 
2379 	/* Flow control settings reset on hardware reset, so guarantee flow
2380 	 * control is off when forcing speed.
2381 	 */
2382 	if (!hw->mac.autoneg)
2383 		igb_force_mac_fc(hw);
2384 
2385 	igb_init_dmac(adapter, pba);
2386 #ifdef CONFIG_IGB_HWMON
2387 	/* Re-initialize the thermal sensor on i350 devices. */
2388 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390 			/* If present, re-initialize the external thermal sensor
2391 			 * interface.
2392 			 */
2393 			if (adapter->ets)
2394 				mac->ops.init_thermal_sensor_thresh(hw);
2395 		}
2396 	}
2397 #endif
2398 	/* Re-establish EEE setting */
2399 	if (hw->phy.media_type == e1000_media_type_copper) {
2400 		switch (mac->type) {
2401 		case e1000_i350:
2402 		case e1000_i210:
2403 		case e1000_i211:
2404 			igb_set_eee_i350(hw, true, true);
2405 			break;
2406 		case e1000_i354:
2407 			igb_set_eee_i354(hw, true, true);
2408 			break;
2409 		default:
2410 			break;
2411 		}
2412 	}
2413 	if (!netif_running(adapter->netdev))
2414 		igb_power_down_link(adapter);
2415 
2416 	igb_update_mng_vlan(adapter);
2417 
2418 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420 
2421 	/* Re-enable PTP, where applicable. */
2422 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423 		igb_ptp_reset(adapter);
2424 
2425 	igb_get_phy_info(hw);
2426 }
2427 
2428 static netdev_features_t igb_fix_features(struct net_device *netdev,
2429 	netdev_features_t features)
2430 {
2431 	/* Since there is no support for separate Rx/Tx vlan accel
2432 	 * enable/disable make sure Tx flag is always in same state as Rx.
2433 	 */
2434 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2436 	else
2437 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438 
2439 	return features;
2440 }
2441 
2442 static int igb_set_features(struct net_device *netdev,
2443 	netdev_features_t features)
2444 {
2445 	netdev_features_t changed = netdev->features ^ features;
2446 	struct igb_adapter *adapter = netdev_priv(netdev);
2447 
2448 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449 		igb_vlan_mode(netdev, features);
2450 
2451 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452 		return 0;
2453 
2454 	if (!(features & NETIF_F_NTUPLE)) {
2455 		struct hlist_node *node2;
2456 		struct igb_nfc_filter *rule;
2457 
2458 		spin_lock(&adapter->nfc_lock);
2459 		hlist_for_each_entry_safe(rule, node2,
2460 					  &adapter->nfc_filter_list, nfc_node) {
2461 			igb_erase_filter(adapter, rule);
2462 			hlist_del(&rule->nfc_node);
2463 			kfree(rule);
2464 		}
2465 		spin_unlock(&adapter->nfc_lock);
2466 		adapter->nfc_filter_count = 0;
2467 	}
2468 
2469 	netdev->features = features;
2470 
2471 	if (netif_running(netdev))
2472 		igb_reinit_locked(adapter);
2473 	else
2474 		igb_reset(adapter);
2475 
2476 	return 1;
2477 }
2478 
2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480 			   struct net_device *dev,
2481 			   const unsigned char *addr, u16 vid,
2482 			   u16 flags,
2483 			   struct netlink_ext_ack *extack)
2484 {
2485 	/* guarantee we can provide a unique filter for the unicast address */
2486 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487 		struct igb_adapter *adapter = netdev_priv(dev);
2488 		int vfn = adapter->vfs_allocated_count;
2489 
2490 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491 			return -ENOMEM;
2492 	}
2493 
2494 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495 }
2496 
2497 #define IGB_MAX_MAC_HDR_LEN	127
2498 #define IGB_MAX_NETWORK_HDR_LEN	511
2499 
2500 static netdev_features_t
2501 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502 		   netdev_features_t features)
2503 {
2504 	unsigned int network_hdr_len, mac_hdr_len;
2505 
2506 	/* Make certain the headers can be described by a context descriptor */
2507 	mac_hdr_len = skb_network_header(skb) - skb->data;
2508 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509 		return features & ~(NETIF_F_HW_CSUM |
2510 				    NETIF_F_SCTP_CRC |
2511 				    NETIF_F_GSO_UDP_L4 |
2512 				    NETIF_F_HW_VLAN_CTAG_TX |
2513 				    NETIF_F_TSO |
2514 				    NETIF_F_TSO6);
2515 
2516 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518 		return features & ~(NETIF_F_HW_CSUM |
2519 				    NETIF_F_SCTP_CRC |
2520 				    NETIF_F_GSO_UDP_L4 |
2521 				    NETIF_F_TSO |
2522 				    NETIF_F_TSO6);
2523 
2524 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2525 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526 	 */
2527 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528 		features &= ~NETIF_F_TSO;
2529 
2530 	return features;
2531 }
2532 
2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534 {
2535 	if (!is_fqtss_enabled(adapter)) {
2536 		enable_fqtss(adapter, true);
2537 		return;
2538 	}
2539 
2540 	igb_config_tx_modes(adapter, queue);
2541 
2542 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543 		enable_fqtss(adapter, false);
2544 }
2545 
2546 static int igb_offload_cbs(struct igb_adapter *adapter,
2547 			   struct tc_cbs_qopt_offload *qopt)
2548 {
2549 	struct e1000_hw *hw = &adapter->hw;
2550 	int err;
2551 
2552 	/* CBS offloading is only supported by i210 controller. */
2553 	if (hw->mac.type != e1000_i210)
2554 		return -EOPNOTSUPP;
2555 
2556 	/* CBS offloading is only supported by queue 0 and queue 1. */
2557 	if (qopt->queue < 0 || qopt->queue > 1)
2558 		return -EINVAL;
2559 
2560 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561 				  qopt->idleslope, qopt->sendslope,
2562 				  qopt->hicredit, qopt->locredit);
2563 	if (err)
2564 		return err;
2565 
2566 	igb_offload_apply(adapter, qopt->queue);
2567 
2568 	return 0;
2569 }
2570 
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2573 
2574 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575 				struct flow_cls_offload *f,
2576 				int traffic_class,
2577 				struct igb_nfc_filter *input)
2578 {
2579 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580 	struct flow_dissector *dissector = rule->match.dissector;
2581 	struct netlink_ext_ack *extack = f->common.extack;
2582 
2583 	if (dissector->used_keys &
2584 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588 		NL_SET_ERR_MSG_MOD(extack,
2589 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590 		return -EOPNOTSUPP;
2591 	}
2592 
2593 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594 		struct flow_match_eth_addrs match;
2595 
2596 		flow_rule_match_eth_addrs(rule, &match);
2597 		if (!is_zero_ether_addr(match.mask->dst)) {
2598 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2599 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600 				return -EINVAL;
2601 			}
2602 
2603 			input->filter.match_flags |=
2604 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2605 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606 		}
2607 
2608 		if (!is_zero_ether_addr(match.mask->src)) {
2609 			if (!is_broadcast_ether_addr(match.mask->src)) {
2610 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611 				return -EINVAL;
2612 			}
2613 
2614 			input->filter.match_flags |=
2615 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616 			ether_addr_copy(input->filter.src_addr, match.key->src);
2617 		}
2618 	}
2619 
2620 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621 		struct flow_match_basic match;
2622 
2623 		flow_rule_match_basic(rule, &match);
2624 		if (match.mask->n_proto) {
2625 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627 				return -EINVAL;
2628 			}
2629 
2630 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631 			input->filter.etype = match.key->n_proto;
2632 		}
2633 	}
2634 
2635 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636 		struct flow_match_vlan match;
2637 
2638 		flow_rule_match_vlan(rule, &match);
2639 		if (match.mask->vlan_priority) {
2640 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642 				return -EINVAL;
2643 			}
2644 
2645 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646 			input->filter.vlan_tci = match.key->vlan_priority;
2647 		}
2648 	}
2649 
2650 	input->action = traffic_class;
2651 	input->cookie = f->cookie;
2652 
2653 	return 0;
2654 }
2655 
2656 static int igb_configure_clsflower(struct igb_adapter *adapter,
2657 				   struct flow_cls_offload *cls_flower)
2658 {
2659 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2660 	struct igb_nfc_filter *filter, *f;
2661 	int err, tc;
2662 
2663 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664 	if (tc < 0) {
2665 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666 		return -EINVAL;
2667 	}
2668 
2669 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670 	if (!filter)
2671 		return -ENOMEM;
2672 
2673 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674 	if (err < 0)
2675 		goto err_parse;
2676 
2677 	spin_lock(&adapter->nfc_lock);
2678 
2679 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681 			err = -EEXIST;
2682 			NL_SET_ERR_MSG_MOD(extack,
2683 					   "This filter is already set in ethtool");
2684 			goto err_locked;
2685 		}
2686 	}
2687 
2688 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690 			err = -EEXIST;
2691 			NL_SET_ERR_MSG_MOD(extack,
2692 					   "This filter is already set in cls_flower");
2693 			goto err_locked;
2694 		}
2695 	}
2696 
2697 	err = igb_add_filter(adapter, filter);
2698 	if (err < 0) {
2699 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700 		goto err_locked;
2701 	}
2702 
2703 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704 
2705 	spin_unlock(&adapter->nfc_lock);
2706 
2707 	return 0;
2708 
2709 err_locked:
2710 	spin_unlock(&adapter->nfc_lock);
2711 
2712 err_parse:
2713 	kfree(filter);
2714 
2715 	return err;
2716 }
2717 
2718 static int igb_delete_clsflower(struct igb_adapter *adapter,
2719 				struct flow_cls_offload *cls_flower)
2720 {
2721 	struct igb_nfc_filter *filter;
2722 	int err;
2723 
2724 	spin_lock(&adapter->nfc_lock);
2725 
2726 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727 		if (filter->cookie == cls_flower->cookie)
2728 			break;
2729 
2730 	if (!filter) {
2731 		err = -ENOENT;
2732 		goto out;
2733 	}
2734 
2735 	err = igb_erase_filter(adapter, filter);
2736 	if (err < 0)
2737 		goto out;
2738 
2739 	hlist_del(&filter->nfc_node);
2740 	kfree(filter);
2741 
2742 out:
2743 	spin_unlock(&adapter->nfc_lock);
2744 
2745 	return err;
2746 }
2747 
2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749 				   struct flow_cls_offload *cls_flower)
2750 {
2751 	switch (cls_flower->command) {
2752 	case FLOW_CLS_REPLACE:
2753 		return igb_configure_clsflower(adapter, cls_flower);
2754 	case FLOW_CLS_DESTROY:
2755 		return igb_delete_clsflower(adapter, cls_flower);
2756 	case FLOW_CLS_STATS:
2757 		return -EOPNOTSUPP;
2758 	default:
2759 		return -EOPNOTSUPP;
2760 	}
2761 }
2762 
2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764 				 void *cb_priv)
2765 {
2766 	struct igb_adapter *adapter = cb_priv;
2767 
2768 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769 		return -EOPNOTSUPP;
2770 
2771 	switch (type) {
2772 	case TC_SETUP_CLSFLOWER:
2773 		return igb_setup_tc_cls_flower(adapter, type_data);
2774 
2775 	default:
2776 		return -EOPNOTSUPP;
2777 	}
2778 }
2779 
2780 static int igb_offload_txtime(struct igb_adapter *adapter,
2781 			      struct tc_etf_qopt_offload *qopt)
2782 {
2783 	struct e1000_hw *hw = &adapter->hw;
2784 	int err;
2785 
2786 	/* Launchtime offloading is only supported by i210 controller. */
2787 	if (hw->mac.type != e1000_i210)
2788 		return -EOPNOTSUPP;
2789 
2790 	/* Launchtime offloading is only supported by queues 0 and 1. */
2791 	if (qopt->queue < 0 || qopt->queue > 1)
2792 		return -EINVAL;
2793 
2794 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795 	if (err)
2796 		return err;
2797 
2798 	igb_offload_apply(adapter, qopt->queue);
2799 
2800 	return 0;
2801 }
2802 
2803 static LIST_HEAD(igb_block_cb_list);
2804 
2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806 			void *type_data)
2807 {
2808 	struct igb_adapter *adapter = netdev_priv(dev);
2809 
2810 	switch (type) {
2811 	case TC_SETUP_QDISC_CBS:
2812 		return igb_offload_cbs(adapter, type_data);
2813 	case TC_SETUP_BLOCK:
2814 		return flow_block_cb_setup_simple(type_data,
2815 						  &igb_block_cb_list,
2816 						  igb_setup_tc_block_cb,
2817 						  adapter, adapter, true);
2818 
2819 	case TC_SETUP_QDISC_ETF:
2820 		return igb_offload_txtime(adapter, type_data);
2821 
2822 	default:
2823 		return -EOPNOTSUPP;
2824 	}
2825 }
2826 
2827 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2828 {
2829 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2830 	struct igb_adapter *adapter = netdev_priv(dev);
2831 	struct bpf_prog *prog = bpf->prog, *old_prog;
2832 	bool running = netif_running(dev);
2833 	bool need_reset;
2834 
2835 	/* verify igb ring attributes are sufficient for XDP */
2836 	for (i = 0; i < adapter->num_rx_queues; i++) {
2837 		struct igb_ring *ring = adapter->rx_ring[i];
2838 
2839 		if (frame_size > igb_rx_bufsz(ring)) {
2840 			NL_SET_ERR_MSG_MOD(bpf->extack,
2841 					   "The RX buffer size is too small for the frame size");
2842 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2843 				    igb_rx_bufsz(ring), frame_size);
2844 			return -EINVAL;
2845 		}
2846 	}
2847 
2848 	old_prog = xchg(&adapter->xdp_prog, prog);
2849 	need_reset = (!!prog != !!old_prog);
2850 
2851 	/* device is up and bpf is added/removed, must setup the RX queues */
2852 	if (need_reset && running) {
2853 		igb_close(dev);
2854 	} else {
2855 		for (i = 0; i < adapter->num_rx_queues; i++)
2856 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2857 			    adapter->xdp_prog);
2858 	}
2859 
2860 	if (old_prog)
2861 		bpf_prog_put(old_prog);
2862 
2863 	/* bpf is just replaced, RXQ and MTU are already setup */
2864 	if (!need_reset)
2865 		return 0;
2866 
2867 	if (running)
2868 		igb_open(dev);
2869 
2870 	return 0;
2871 }
2872 
2873 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2874 {
2875 	switch (xdp->command) {
2876 	case XDP_SETUP_PROG:
2877 		return igb_xdp_setup(dev, xdp);
2878 	default:
2879 		return -EINVAL;
2880 	}
2881 }
2882 
2883 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2884 {
2885 	/* Force memory writes to complete before letting h/w know there
2886 	 * are new descriptors to fetch.
2887 	 */
2888 	wmb();
2889 	writel(ring->next_to_use, ring->tail);
2890 }
2891 
2892 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2893 {
2894 	unsigned int r_idx = smp_processor_id();
2895 
2896 	if (r_idx >= adapter->num_tx_queues)
2897 		r_idx = r_idx % adapter->num_tx_queues;
2898 
2899 	return adapter->tx_ring[r_idx];
2900 }
2901 
2902 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2903 {
2904 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2905 	int cpu = smp_processor_id();
2906 	struct igb_ring *tx_ring;
2907 	struct netdev_queue *nq;
2908 	u32 ret;
2909 
2910 	if (unlikely(!xdpf))
2911 		return IGB_XDP_CONSUMED;
2912 
2913 	/* During program transitions its possible adapter->xdp_prog is assigned
2914 	 * but ring has not been configured yet. In this case simply abort xmit.
2915 	 */
2916 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2917 	if (unlikely(!tx_ring))
2918 		return IGB_XDP_CONSUMED;
2919 
2920 	nq = txring_txq(tx_ring);
2921 	__netif_tx_lock(nq, cpu);
2922 	/* Avoid transmit queue timeout since we share it with the slow path */
2923 	nq->trans_start = jiffies;
2924 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2925 	__netif_tx_unlock(nq);
2926 
2927 	return ret;
2928 }
2929 
2930 static int igb_xdp_xmit(struct net_device *dev, int n,
2931 			struct xdp_frame **frames, u32 flags)
2932 {
2933 	struct igb_adapter *adapter = netdev_priv(dev);
2934 	int cpu = smp_processor_id();
2935 	struct igb_ring *tx_ring;
2936 	struct netdev_queue *nq;
2937 	int drops = 0;
2938 	int i;
2939 
2940 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2941 		return -ENETDOWN;
2942 
2943 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2944 		return -EINVAL;
2945 
2946 	/* During program transitions its possible adapter->xdp_prog is assigned
2947 	 * but ring has not been configured yet. In this case simply abort xmit.
2948 	 */
2949 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2950 	if (unlikely(!tx_ring))
2951 		return -ENXIO;
2952 
2953 	nq = txring_txq(tx_ring);
2954 	__netif_tx_lock(nq, cpu);
2955 
2956 	/* Avoid transmit queue timeout since we share it with the slow path */
2957 	nq->trans_start = jiffies;
2958 
2959 	for (i = 0; i < n; i++) {
2960 		struct xdp_frame *xdpf = frames[i];
2961 		int err;
2962 
2963 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2964 		if (err != IGB_XDP_TX) {
2965 			xdp_return_frame_rx_napi(xdpf);
2966 			drops++;
2967 		}
2968 	}
2969 
2970 	__netif_tx_unlock(nq);
2971 
2972 	if (unlikely(flags & XDP_XMIT_FLUSH))
2973 		igb_xdp_ring_update_tail(tx_ring);
2974 
2975 	return n - drops;
2976 }
2977 
2978 static const struct net_device_ops igb_netdev_ops = {
2979 	.ndo_open		= igb_open,
2980 	.ndo_stop		= igb_close,
2981 	.ndo_start_xmit		= igb_xmit_frame,
2982 	.ndo_get_stats64	= igb_get_stats64,
2983 	.ndo_set_rx_mode	= igb_set_rx_mode,
2984 	.ndo_set_mac_address	= igb_set_mac,
2985 	.ndo_change_mtu		= igb_change_mtu,
2986 	.ndo_do_ioctl		= igb_ioctl,
2987 	.ndo_tx_timeout		= igb_tx_timeout,
2988 	.ndo_validate_addr	= eth_validate_addr,
2989 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2990 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2991 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2992 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2993 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2994 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2995 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2996 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2997 	.ndo_fix_features	= igb_fix_features,
2998 	.ndo_set_features	= igb_set_features,
2999 	.ndo_fdb_add		= igb_ndo_fdb_add,
3000 	.ndo_features_check	= igb_features_check,
3001 	.ndo_setup_tc		= igb_setup_tc,
3002 	.ndo_bpf		= igb_xdp,
3003 	.ndo_xdp_xmit		= igb_xdp_xmit,
3004 };
3005 
3006 /**
3007  * igb_set_fw_version - Configure version string for ethtool
3008  * @adapter: adapter struct
3009  **/
3010 void igb_set_fw_version(struct igb_adapter *adapter)
3011 {
3012 	struct e1000_hw *hw = &adapter->hw;
3013 	struct e1000_fw_version fw;
3014 
3015 	igb_get_fw_version(hw, &fw);
3016 
3017 	switch (hw->mac.type) {
3018 	case e1000_i210:
3019 	case e1000_i211:
3020 		if (!(igb_get_flash_presence_i210(hw))) {
3021 			snprintf(adapter->fw_version,
3022 				 sizeof(adapter->fw_version),
3023 				 "%2d.%2d-%d",
3024 				 fw.invm_major, fw.invm_minor,
3025 				 fw.invm_img_type);
3026 			break;
3027 		}
3028 		fallthrough;
3029 	default:
3030 		/* if option is rom valid, display its version too */
3031 		if (fw.or_valid) {
3032 			snprintf(adapter->fw_version,
3033 				 sizeof(adapter->fw_version),
3034 				 "%d.%d, 0x%08x, %d.%d.%d",
3035 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3036 				 fw.or_major, fw.or_build, fw.or_patch);
3037 		/* no option rom */
3038 		} else if (fw.etrack_id != 0X0000) {
3039 			snprintf(adapter->fw_version,
3040 			    sizeof(adapter->fw_version),
3041 			    "%d.%d, 0x%08x",
3042 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3043 		} else {
3044 		snprintf(adapter->fw_version,
3045 		    sizeof(adapter->fw_version),
3046 		    "%d.%d.%d",
3047 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3048 		}
3049 		break;
3050 	}
3051 }
3052 
3053 /**
3054  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3055  *
3056  * @adapter: adapter struct
3057  **/
3058 static void igb_init_mas(struct igb_adapter *adapter)
3059 {
3060 	struct e1000_hw *hw = &adapter->hw;
3061 	u16 eeprom_data;
3062 
3063 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3064 	switch (hw->bus.func) {
3065 	case E1000_FUNC_0:
3066 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3067 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3068 			netdev_info(adapter->netdev,
3069 				"MAS: Enabling Media Autosense for port %d\n",
3070 				hw->bus.func);
3071 		}
3072 		break;
3073 	case E1000_FUNC_1:
3074 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3075 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3076 			netdev_info(adapter->netdev,
3077 				"MAS: Enabling Media Autosense for port %d\n",
3078 				hw->bus.func);
3079 		}
3080 		break;
3081 	case E1000_FUNC_2:
3082 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3083 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3084 			netdev_info(adapter->netdev,
3085 				"MAS: Enabling Media Autosense for port %d\n",
3086 				hw->bus.func);
3087 		}
3088 		break;
3089 	case E1000_FUNC_3:
3090 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3091 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3092 			netdev_info(adapter->netdev,
3093 				"MAS: Enabling Media Autosense for port %d\n",
3094 				hw->bus.func);
3095 		}
3096 		break;
3097 	default:
3098 		/* Shouldn't get here */
3099 		netdev_err(adapter->netdev,
3100 			"MAS: Invalid port configuration, returning\n");
3101 		break;
3102 	}
3103 }
3104 
3105 /**
3106  *  igb_init_i2c - Init I2C interface
3107  *  @adapter: pointer to adapter structure
3108  **/
3109 static s32 igb_init_i2c(struct igb_adapter *adapter)
3110 {
3111 	s32 status = 0;
3112 
3113 	/* I2C interface supported on i350 devices */
3114 	if (adapter->hw.mac.type != e1000_i350)
3115 		return 0;
3116 
3117 	/* Initialize the i2c bus which is controlled by the registers.
3118 	 * This bus will use the i2c_algo_bit structue that implements
3119 	 * the protocol through toggling of the 4 bits in the register.
3120 	 */
3121 	adapter->i2c_adap.owner = THIS_MODULE;
3122 	adapter->i2c_algo = igb_i2c_algo;
3123 	adapter->i2c_algo.data = adapter;
3124 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3125 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3126 	strlcpy(adapter->i2c_adap.name, "igb BB",
3127 		sizeof(adapter->i2c_adap.name));
3128 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3129 	return status;
3130 }
3131 
3132 /**
3133  *  igb_probe - Device Initialization Routine
3134  *  @pdev: PCI device information struct
3135  *  @ent: entry in igb_pci_tbl
3136  *
3137  *  Returns 0 on success, negative on failure
3138  *
3139  *  igb_probe initializes an adapter identified by a pci_dev structure.
3140  *  The OS initialization, configuring of the adapter private structure,
3141  *  and a hardware reset occur.
3142  **/
3143 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3144 {
3145 	struct net_device *netdev;
3146 	struct igb_adapter *adapter;
3147 	struct e1000_hw *hw;
3148 	u16 eeprom_data = 0;
3149 	s32 ret_val;
3150 	static int global_quad_port_a; /* global quad port a indication */
3151 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3152 	int err, pci_using_dac;
3153 	u8 part_str[E1000_PBANUM_LENGTH];
3154 
3155 	/* Catch broken hardware that put the wrong VF device ID in
3156 	 * the PCIe SR-IOV capability.
3157 	 */
3158 	if (pdev->is_virtfn) {
3159 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3160 			pci_name(pdev), pdev->vendor, pdev->device);
3161 		return -EINVAL;
3162 	}
3163 
3164 	err = pci_enable_device_mem(pdev);
3165 	if (err)
3166 		return err;
3167 
3168 	pci_using_dac = 0;
3169 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3170 	if (!err) {
3171 		pci_using_dac = 1;
3172 	} else {
3173 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3174 		if (err) {
3175 			dev_err(&pdev->dev,
3176 				"No usable DMA configuration, aborting\n");
3177 			goto err_dma;
3178 		}
3179 	}
3180 
3181 	err = pci_request_mem_regions(pdev, igb_driver_name);
3182 	if (err)
3183 		goto err_pci_reg;
3184 
3185 	pci_enable_pcie_error_reporting(pdev);
3186 
3187 	pci_set_master(pdev);
3188 	pci_save_state(pdev);
3189 
3190 	err = -ENOMEM;
3191 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3192 				   IGB_MAX_TX_QUEUES);
3193 	if (!netdev)
3194 		goto err_alloc_etherdev;
3195 
3196 	SET_NETDEV_DEV(netdev, &pdev->dev);
3197 
3198 	pci_set_drvdata(pdev, netdev);
3199 	adapter = netdev_priv(netdev);
3200 	adapter->netdev = netdev;
3201 	adapter->pdev = pdev;
3202 	hw = &adapter->hw;
3203 	hw->back = adapter;
3204 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3205 
3206 	err = -EIO;
3207 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3208 	if (!adapter->io_addr)
3209 		goto err_ioremap;
3210 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3211 	hw->hw_addr = adapter->io_addr;
3212 
3213 	netdev->netdev_ops = &igb_netdev_ops;
3214 	igb_set_ethtool_ops(netdev);
3215 	netdev->watchdog_timeo = 5 * HZ;
3216 
3217 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3218 
3219 	netdev->mem_start = pci_resource_start(pdev, 0);
3220 	netdev->mem_end = pci_resource_end(pdev, 0);
3221 
3222 	/* PCI config space info */
3223 	hw->vendor_id = pdev->vendor;
3224 	hw->device_id = pdev->device;
3225 	hw->revision_id = pdev->revision;
3226 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3227 	hw->subsystem_device_id = pdev->subsystem_device;
3228 
3229 	/* Copy the default MAC, PHY and NVM function pointers */
3230 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3231 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3232 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3233 	/* Initialize skew-specific constants */
3234 	err = ei->get_invariants(hw);
3235 	if (err)
3236 		goto err_sw_init;
3237 
3238 	/* setup the private structure */
3239 	err = igb_sw_init(adapter);
3240 	if (err)
3241 		goto err_sw_init;
3242 
3243 	igb_get_bus_info_pcie(hw);
3244 
3245 	hw->phy.autoneg_wait_to_complete = false;
3246 
3247 	/* Copper options */
3248 	if (hw->phy.media_type == e1000_media_type_copper) {
3249 		hw->phy.mdix = AUTO_ALL_MODES;
3250 		hw->phy.disable_polarity_correction = false;
3251 		hw->phy.ms_type = e1000_ms_hw_default;
3252 	}
3253 
3254 	if (igb_check_reset_block(hw))
3255 		dev_info(&pdev->dev,
3256 			"PHY reset is blocked due to SOL/IDER session.\n");
3257 
3258 	/* features is initialized to 0 in allocation, it might have bits
3259 	 * set by igb_sw_init so we should use an or instead of an
3260 	 * assignment.
3261 	 */
3262 	netdev->features |= NETIF_F_SG |
3263 			    NETIF_F_TSO |
3264 			    NETIF_F_TSO6 |
3265 			    NETIF_F_RXHASH |
3266 			    NETIF_F_RXCSUM |
3267 			    NETIF_F_HW_CSUM;
3268 
3269 	if (hw->mac.type >= e1000_82576)
3270 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3271 
3272 	if (hw->mac.type >= e1000_i350)
3273 		netdev->features |= NETIF_F_HW_TC;
3274 
3275 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3276 				  NETIF_F_GSO_GRE_CSUM | \
3277 				  NETIF_F_GSO_IPXIP4 | \
3278 				  NETIF_F_GSO_IPXIP6 | \
3279 				  NETIF_F_GSO_UDP_TUNNEL | \
3280 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3281 
3282 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3283 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3284 
3285 	/* copy netdev features into list of user selectable features */
3286 	netdev->hw_features |= netdev->features |
3287 			       NETIF_F_HW_VLAN_CTAG_RX |
3288 			       NETIF_F_HW_VLAN_CTAG_TX |
3289 			       NETIF_F_RXALL;
3290 
3291 	if (hw->mac.type >= e1000_i350)
3292 		netdev->hw_features |= NETIF_F_NTUPLE;
3293 
3294 	if (pci_using_dac)
3295 		netdev->features |= NETIF_F_HIGHDMA;
3296 
3297 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3298 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3299 	netdev->hw_enc_features |= netdev->vlan_features;
3300 
3301 	/* set this bit last since it cannot be part of vlan_features */
3302 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3303 			    NETIF_F_HW_VLAN_CTAG_RX |
3304 			    NETIF_F_HW_VLAN_CTAG_TX;
3305 
3306 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3307 
3308 	netdev->priv_flags |= IFF_UNICAST_FLT;
3309 
3310 	/* MTU range: 68 - 9216 */
3311 	netdev->min_mtu = ETH_MIN_MTU;
3312 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3313 
3314 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3315 
3316 	/* before reading the NVM, reset the controller to put the device in a
3317 	 * known good starting state
3318 	 */
3319 	hw->mac.ops.reset_hw(hw);
3320 
3321 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3322 	 * that doesn't contain a checksum
3323 	 */
3324 	switch (hw->mac.type) {
3325 	case e1000_i210:
3326 	case e1000_i211:
3327 		if (igb_get_flash_presence_i210(hw)) {
3328 			if (hw->nvm.ops.validate(hw) < 0) {
3329 				dev_err(&pdev->dev,
3330 					"The NVM Checksum Is Not Valid\n");
3331 				err = -EIO;
3332 				goto err_eeprom;
3333 			}
3334 		}
3335 		break;
3336 	default:
3337 		if (hw->nvm.ops.validate(hw) < 0) {
3338 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3339 			err = -EIO;
3340 			goto err_eeprom;
3341 		}
3342 		break;
3343 	}
3344 
3345 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3346 		/* copy the MAC address out of the NVM */
3347 		if (hw->mac.ops.read_mac_addr(hw))
3348 			dev_err(&pdev->dev, "NVM Read Error\n");
3349 	}
3350 
3351 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3352 
3353 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3354 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3355 		err = -EIO;
3356 		goto err_eeprom;
3357 	}
3358 
3359 	igb_set_default_mac_filter(adapter);
3360 
3361 	/* get firmware version for ethtool -i */
3362 	igb_set_fw_version(adapter);
3363 
3364 	/* configure RXPBSIZE and TXPBSIZE */
3365 	if (hw->mac.type == e1000_i210) {
3366 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3367 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3368 	}
3369 
3370 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3371 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3372 
3373 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3374 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3375 
3376 	/* Initialize link properties that are user-changeable */
3377 	adapter->fc_autoneg = true;
3378 	hw->mac.autoneg = true;
3379 	hw->phy.autoneg_advertised = 0x2f;
3380 
3381 	hw->fc.requested_mode = e1000_fc_default;
3382 	hw->fc.current_mode = e1000_fc_default;
3383 
3384 	igb_validate_mdi_setting(hw);
3385 
3386 	/* By default, support wake on port A */
3387 	if (hw->bus.func == 0)
3388 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3389 
3390 	/* Check the NVM for wake support on non-port A ports */
3391 	if (hw->mac.type >= e1000_82580)
3392 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3393 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3394 				 &eeprom_data);
3395 	else if (hw->bus.func == 1)
3396 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3397 
3398 	if (eeprom_data & IGB_EEPROM_APME)
3399 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3400 
3401 	/* now that we have the eeprom settings, apply the special cases where
3402 	 * the eeprom may be wrong or the board simply won't support wake on
3403 	 * lan on a particular port
3404 	 */
3405 	switch (pdev->device) {
3406 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3407 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3408 		break;
3409 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3410 	case E1000_DEV_ID_82576_FIBER:
3411 	case E1000_DEV_ID_82576_SERDES:
3412 		/* Wake events only supported on port A for dual fiber
3413 		 * regardless of eeprom setting
3414 		 */
3415 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3416 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3417 		break;
3418 	case E1000_DEV_ID_82576_QUAD_COPPER:
3419 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3420 		/* if quad port adapter, disable WoL on all but port A */
3421 		if (global_quad_port_a != 0)
3422 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3423 		else
3424 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3425 		/* Reset for multiple quad port adapters */
3426 		if (++global_quad_port_a == 4)
3427 			global_quad_port_a = 0;
3428 		break;
3429 	default:
3430 		/* If the device can't wake, don't set software support */
3431 		if (!device_can_wakeup(&adapter->pdev->dev))
3432 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3433 	}
3434 
3435 	/* initialize the wol settings based on the eeprom settings */
3436 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3437 		adapter->wol |= E1000_WUFC_MAG;
3438 
3439 	/* Some vendors want WoL disabled by default, but still supported */
3440 	if ((hw->mac.type == e1000_i350) &&
3441 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3442 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3443 		adapter->wol = 0;
3444 	}
3445 
3446 	/* Some vendors want the ability to Use the EEPROM setting as
3447 	 * enable/disable only, and not for capability
3448 	 */
3449 	if (((hw->mac.type == e1000_i350) ||
3450 	     (hw->mac.type == e1000_i354)) &&
3451 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3452 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3453 		adapter->wol = 0;
3454 	}
3455 	if (hw->mac.type == e1000_i350) {
3456 		if (((pdev->subsystem_device == 0x5001) ||
3457 		     (pdev->subsystem_device == 0x5002)) &&
3458 				(hw->bus.func == 0)) {
3459 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3460 			adapter->wol = 0;
3461 		}
3462 		if (pdev->subsystem_device == 0x1F52)
3463 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3464 	}
3465 
3466 	device_set_wakeup_enable(&adapter->pdev->dev,
3467 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3468 
3469 	/* reset the hardware with the new settings */
3470 	igb_reset(adapter);
3471 
3472 	/* Init the I2C interface */
3473 	err = igb_init_i2c(adapter);
3474 	if (err) {
3475 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3476 		goto err_eeprom;
3477 	}
3478 
3479 	/* let the f/w know that the h/w is now under the control of the
3480 	 * driver.
3481 	 */
3482 	igb_get_hw_control(adapter);
3483 
3484 	strcpy(netdev->name, "eth%d");
3485 	err = register_netdev(netdev);
3486 	if (err)
3487 		goto err_register;
3488 
3489 	/* carrier off reporting is important to ethtool even BEFORE open */
3490 	netif_carrier_off(netdev);
3491 
3492 #ifdef CONFIG_IGB_DCA
3493 	if (dca_add_requester(&pdev->dev) == 0) {
3494 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3495 		dev_info(&pdev->dev, "DCA enabled\n");
3496 		igb_setup_dca(adapter);
3497 	}
3498 
3499 #endif
3500 #ifdef CONFIG_IGB_HWMON
3501 	/* Initialize the thermal sensor on i350 devices. */
3502 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3503 		u16 ets_word;
3504 
3505 		/* Read the NVM to determine if this i350 device supports an
3506 		 * external thermal sensor.
3507 		 */
3508 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3509 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3510 			adapter->ets = true;
3511 		else
3512 			adapter->ets = false;
3513 		if (igb_sysfs_init(adapter))
3514 			dev_err(&pdev->dev,
3515 				"failed to allocate sysfs resources\n");
3516 	} else {
3517 		adapter->ets = false;
3518 	}
3519 #endif
3520 	/* Check if Media Autosense is enabled */
3521 	adapter->ei = *ei;
3522 	if (hw->dev_spec._82575.mas_capable)
3523 		igb_init_mas(adapter);
3524 
3525 	/* do hw tstamp init after resetting */
3526 	igb_ptp_init(adapter);
3527 
3528 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3529 	/* print bus type/speed/width info, not applicable to i354 */
3530 	if (hw->mac.type != e1000_i354) {
3531 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3532 			 netdev->name,
3533 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3534 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3535 			   "unknown"),
3536 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3537 			  "Width x4" :
3538 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3539 			  "Width x2" :
3540 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3541 			  "Width x1" : "unknown"), netdev->dev_addr);
3542 	}
3543 
3544 	if ((hw->mac.type == e1000_82576 &&
3545 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3546 	    (hw->mac.type >= e1000_i210 ||
3547 	     igb_get_flash_presence_i210(hw))) {
3548 		ret_val = igb_read_part_string(hw, part_str,
3549 					       E1000_PBANUM_LENGTH);
3550 	} else {
3551 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3552 	}
3553 
3554 	if (ret_val)
3555 		strcpy(part_str, "Unknown");
3556 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3557 	dev_info(&pdev->dev,
3558 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3559 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3560 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3561 		adapter->num_rx_queues, adapter->num_tx_queues);
3562 	if (hw->phy.media_type == e1000_media_type_copper) {
3563 		switch (hw->mac.type) {
3564 		case e1000_i350:
3565 		case e1000_i210:
3566 		case e1000_i211:
3567 			/* Enable EEE for internal copper PHY devices */
3568 			err = igb_set_eee_i350(hw, true, true);
3569 			if ((!err) &&
3570 			    (!hw->dev_spec._82575.eee_disable)) {
3571 				adapter->eee_advert =
3572 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3573 				adapter->flags |= IGB_FLAG_EEE;
3574 			}
3575 			break;
3576 		case e1000_i354:
3577 			if ((rd32(E1000_CTRL_EXT) &
3578 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3579 				err = igb_set_eee_i354(hw, true, true);
3580 				if ((!err) &&
3581 					(!hw->dev_spec._82575.eee_disable)) {
3582 					adapter->eee_advert =
3583 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3584 					adapter->flags |= IGB_FLAG_EEE;
3585 				}
3586 			}
3587 			break;
3588 		default:
3589 			break;
3590 		}
3591 	}
3592 
3593 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3594 
3595 	pm_runtime_put_noidle(&pdev->dev);
3596 	return 0;
3597 
3598 err_register:
3599 	igb_release_hw_control(adapter);
3600 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3601 err_eeprom:
3602 	if (!igb_check_reset_block(hw))
3603 		igb_reset_phy(hw);
3604 
3605 	if (hw->flash_address)
3606 		iounmap(hw->flash_address);
3607 err_sw_init:
3608 	kfree(adapter->mac_table);
3609 	kfree(adapter->shadow_vfta);
3610 	igb_clear_interrupt_scheme(adapter);
3611 #ifdef CONFIG_PCI_IOV
3612 	igb_disable_sriov(pdev);
3613 #endif
3614 	pci_iounmap(pdev, adapter->io_addr);
3615 err_ioremap:
3616 	free_netdev(netdev);
3617 err_alloc_etherdev:
3618 	pci_release_mem_regions(pdev);
3619 err_pci_reg:
3620 err_dma:
3621 	pci_disable_device(pdev);
3622 	return err;
3623 }
3624 
3625 #ifdef CONFIG_PCI_IOV
3626 static int igb_disable_sriov(struct pci_dev *pdev)
3627 {
3628 	struct net_device *netdev = pci_get_drvdata(pdev);
3629 	struct igb_adapter *adapter = netdev_priv(netdev);
3630 	struct e1000_hw *hw = &adapter->hw;
3631 
3632 	/* reclaim resources allocated to VFs */
3633 	if (adapter->vf_data) {
3634 		/* disable iov and allow time for transactions to clear */
3635 		if (pci_vfs_assigned(pdev)) {
3636 			dev_warn(&pdev->dev,
3637 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3638 			return -EPERM;
3639 		} else {
3640 			pci_disable_sriov(pdev);
3641 			msleep(500);
3642 		}
3643 
3644 		kfree(adapter->vf_mac_list);
3645 		adapter->vf_mac_list = NULL;
3646 		kfree(adapter->vf_data);
3647 		adapter->vf_data = NULL;
3648 		adapter->vfs_allocated_count = 0;
3649 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3650 		wrfl();
3651 		msleep(100);
3652 		dev_info(&pdev->dev, "IOV Disabled\n");
3653 
3654 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3655 		adapter->flags |= IGB_FLAG_DMAC;
3656 	}
3657 
3658 	return 0;
3659 }
3660 
3661 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3662 {
3663 	struct net_device *netdev = pci_get_drvdata(pdev);
3664 	struct igb_adapter *adapter = netdev_priv(netdev);
3665 	int old_vfs = pci_num_vf(pdev);
3666 	struct vf_mac_filter *mac_list;
3667 	int err = 0;
3668 	int num_vf_mac_filters, i;
3669 
3670 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3671 		err = -EPERM;
3672 		goto out;
3673 	}
3674 	if (!num_vfs)
3675 		goto out;
3676 
3677 	if (old_vfs) {
3678 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3679 			 old_vfs, max_vfs);
3680 		adapter->vfs_allocated_count = old_vfs;
3681 	} else
3682 		adapter->vfs_allocated_count = num_vfs;
3683 
3684 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3685 				sizeof(struct vf_data_storage), GFP_KERNEL);
3686 
3687 	/* if allocation failed then we do not support SR-IOV */
3688 	if (!adapter->vf_data) {
3689 		adapter->vfs_allocated_count = 0;
3690 		err = -ENOMEM;
3691 		goto out;
3692 	}
3693 
3694 	/* Due to the limited number of RAR entries calculate potential
3695 	 * number of MAC filters available for the VFs. Reserve entries
3696 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3697 	 * for each VF for VF MAC.
3698 	 */
3699 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3700 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3701 			      adapter->vfs_allocated_count);
3702 
3703 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3704 				       sizeof(struct vf_mac_filter),
3705 				       GFP_KERNEL);
3706 
3707 	mac_list = adapter->vf_mac_list;
3708 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3709 
3710 	if (adapter->vf_mac_list) {
3711 		/* Initialize list of VF MAC filters */
3712 		for (i = 0; i < num_vf_mac_filters; i++) {
3713 			mac_list->vf = -1;
3714 			mac_list->free = true;
3715 			list_add(&mac_list->l, &adapter->vf_macs.l);
3716 			mac_list++;
3717 		}
3718 	} else {
3719 		/* If we could not allocate memory for the VF MAC filters
3720 		 * we can continue without this feature but warn user.
3721 		 */
3722 		dev_err(&pdev->dev,
3723 			"Unable to allocate memory for VF MAC filter list\n");
3724 	}
3725 
3726 	/* only call pci_enable_sriov() if no VFs are allocated already */
3727 	if (!old_vfs) {
3728 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3729 		if (err)
3730 			goto err_out;
3731 	}
3732 	dev_info(&pdev->dev, "%d VFs allocated\n",
3733 		 adapter->vfs_allocated_count);
3734 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3735 		igb_vf_configure(adapter, i);
3736 
3737 	/* DMA Coalescing is not supported in IOV mode. */
3738 	adapter->flags &= ~IGB_FLAG_DMAC;
3739 	goto out;
3740 
3741 err_out:
3742 	kfree(adapter->vf_mac_list);
3743 	adapter->vf_mac_list = NULL;
3744 	kfree(adapter->vf_data);
3745 	adapter->vf_data = NULL;
3746 	adapter->vfs_allocated_count = 0;
3747 out:
3748 	return err;
3749 }
3750 
3751 #endif
3752 /**
3753  *  igb_remove_i2c - Cleanup  I2C interface
3754  *  @adapter: pointer to adapter structure
3755  **/
3756 static void igb_remove_i2c(struct igb_adapter *adapter)
3757 {
3758 	/* free the adapter bus structure */
3759 	i2c_del_adapter(&adapter->i2c_adap);
3760 }
3761 
3762 /**
3763  *  igb_remove - Device Removal Routine
3764  *  @pdev: PCI device information struct
3765  *
3766  *  igb_remove is called by the PCI subsystem to alert the driver
3767  *  that it should release a PCI device.  The could be caused by a
3768  *  Hot-Plug event, or because the driver is going to be removed from
3769  *  memory.
3770  **/
3771 static void igb_remove(struct pci_dev *pdev)
3772 {
3773 	struct net_device *netdev = pci_get_drvdata(pdev);
3774 	struct igb_adapter *adapter = netdev_priv(netdev);
3775 	struct e1000_hw *hw = &adapter->hw;
3776 
3777 	pm_runtime_get_noresume(&pdev->dev);
3778 #ifdef CONFIG_IGB_HWMON
3779 	igb_sysfs_exit(adapter);
3780 #endif
3781 	igb_remove_i2c(adapter);
3782 	igb_ptp_stop(adapter);
3783 	/* The watchdog timer may be rescheduled, so explicitly
3784 	 * disable watchdog from being rescheduled.
3785 	 */
3786 	set_bit(__IGB_DOWN, &adapter->state);
3787 	del_timer_sync(&adapter->watchdog_timer);
3788 	del_timer_sync(&adapter->phy_info_timer);
3789 
3790 	cancel_work_sync(&adapter->reset_task);
3791 	cancel_work_sync(&adapter->watchdog_task);
3792 
3793 #ifdef CONFIG_IGB_DCA
3794 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3795 		dev_info(&pdev->dev, "DCA disabled\n");
3796 		dca_remove_requester(&pdev->dev);
3797 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3798 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3799 	}
3800 #endif
3801 
3802 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3803 	 * would have already happened in close and is redundant.
3804 	 */
3805 	igb_release_hw_control(adapter);
3806 
3807 #ifdef CONFIG_PCI_IOV
3808 	igb_disable_sriov(pdev);
3809 #endif
3810 
3811 	unregister_netdev(netdev);
3812 
3813 	igb_clear_interrupt_scheme(adapter);
3814 
3815 	pci_iounmap(pdev, adapter->io_addr);
3816 	if (hw->flash_address)
3817 		iounmap(hw->flash_address);
3818 	pci_release_mem_regions(pdev);
3819 
3820 	kfree(adapter->mac_table);
3821 	kfree(adapter->shadow_vfta);
3822 	free_netdev(netdev);
3823 
3824 	pci_disable_pcie_error_reporting(pdev);
3825 
3826 	pci_disable_device(pdev);
3827 }
3828 
3829 /**
3830  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3831  *  @adapter: board private structure to initialize
3832  *
3833  *  This function initializes the vf specific data storage and then attempts to
3834  *  allocate the VFs.  The reason for ordering it this way is because it is much
3835  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3836  *  the memory for the VFs.
3837  **/
3838 static void igb_probe_vfs(struct igb_adapter *adapter)
3839 {
3840 #ifdef CONFIG_PCI_IOV
3841 	struct pci_dev *pdev = adapter->pdev;
3842 	struct e1000_hw *hw = &adapter->hw;
3843 
3844 	/* Virtualization features not supported on i210 family. */
3845 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3846 		return;
3847 
3848 	/* Of the below we really only want the effect of getting
3849 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3850 	 * igb_enable_sriov() has no effect.
3851 	 */
3852 	igb_set_interrupt_capability(adapter, true);
3853 	igb_reset_interrupt_capability(adapter);
3854 
3855 	pci_sriov_set_totalvfs(pdev, 7);
3856 	igb_enable_sriov(pdev, max_vfs);
3857 
3858 #endif /* CONFIG_PCI_IOV */
3859 }
3860 
3861 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3862 {
3863 	struct e1000_hw *hw = &adapter->hw;
3864 	unsigned int max_rss_queues;
3865 
3866 	/* Determine the maximum number of RSS queues supported. */
3867 	switch (hw->mac.type) {
3868 	case e1000_i211:
3869 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3870 		break;
3871 	case e1000_82575:
3872 	case e1000_i210:
3873 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3874 		break;
3875 	case e1000_i350:
3876 		/* I350 cannot do RSS and SR-IOV at the same time */
3877 		if (!!adapter->vfs_allocated_count) {
3878 			max_rss_queues = 1;
3879 			break;
3880 		}
3881 		fallthrough;
3882 	case e1000_82576:
3883 		if (!!adapter->vfs_allocated_count) {
3884 			max_rss_queues = 2;
3885 			break;
3886 		}
3887 		fallthrough;
3888 	case e1000_82580:
3889 	case e1000_i354:
3890 	default:
3891 		max_rss_queues = IGB_MAX_RX_QUEUES;
3892 		break;
3893 	}
3894 
3895 	return max_rss_queues;
3896 }
3897 
3898 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3899 {
3900 	u32 max_rss_queues;
3901 
3902 	max_rss_queues = igb_get_max_rss_queues(adapter);
3903 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3904 
3905 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3906 }
3907 
3908 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3909 			      const u32 max_rss_queues)
3910 {
3911 	struct e1000_hw *hw = &adapter->hw;
3912 
3913 	/* Determine if we need to pair queues. */
3914 	switch (hw->mac.type) {
3915 	case e1000_82575:
3916 	case e1000_i211:
3917 		/* Device supports enough interrupts without queue pairing. */
3918 		break;
3919 	case e1000_82576:
3920 	case e1000_82580:
3921 	case e1000_i350:
3922 	case e1000_i354:
3923 	case e1000_i210:
3924 	default:
3925 		/* If rss_queues > half of max_rss_queues, pair the queues in
3926 		 * order to conserve interrupts due to limited supply.
3927 		 */
3928 		if (adapter->rss_queues > (max_rss_queues / 2))
3929 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3930 		else
3931 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3932 		break;
3933 	}
3934 }
3935 
3936 /**
3937  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3938  *  @adapter: board private structure to initialize
3939  *
3940  *  igb_sw_init initializes the Adapter private data structure.
3941  *  Fields are initialized based on PCI device information and
3942  *  OS network device settings (MTU size).
3943  **/
3944 static int igb_sw_init(struct igb_adapter *adapter)
3945 {
3946 	struct e1000_hw *hw = &adapter->hw;
3947 	struct net_device *netdev = adapter->netdev;
3948 	struct pci_dev *pdev = adapter->pdev;
3949 
3950 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3951 
3952 	/* set default ring sizes */
3953 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3954 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3955 
3956 	/* set default ITR values */
3957 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3958 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3959 
3960 	/* set default work limits */
3961 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3962 
3963 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3964 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3965 
3966 	spin_lock_init(&adapter->nfc_lock);
3967 	spin_lock_init(&adapter->stats64_lock);
3968 #ifdef CONFIG_PCI_IOV
3969 	switch (hw->mac.type) {
3970 	case e1000_82576:
3971 	case e1000_i350:
3972 		if (max_vfs > 7) {
3973 			dev_warn(&pdev->dev,
3974 				 "Maximum of 7 VFs per PF, using max\n");
3975 			max_vfs = adapter->vfs_allocated_count = 7;
3976 		} else
3977 			adapter->vfs_allocated_count = max_vfs;
3978 		if (adapter->vfs_allocated_count)
3979 			dev_warn(&pdev->dev,
3980 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3981 		break;
3982 	default:
3983 		break;
3984 	}
3985 #endif /* CONFIG_PCI_IOV */
3986 
3987 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3988 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3989 
3990 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3991 				     sizeof(struct igb_mac_addr),
3992 				     GFP_KERNEL);
3993 	if (!adapter->mac_table)
3994 		return -ENOMEM;
3995 
3996 	igb_probe_vfs(adapter);
3997 
3998 	igb_init_queue_configuration(adapter);
3999 
4000 	/* Setup and initialize a copy of the hw vlan table array */
4001 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4002 				       GFP_KERNEL);
4003 	if (!adapter->shadow_vfta)
4004 		return -ENOMEM;
4005 
4006 	/* This call may decrease the number of queues */
4007 	if (igb_init_interrupt_scheme(adapter, true)) {
4008 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4009 		return -ENOMEM;
4010 	}
4011 
4012 	/* Explicitly disable IRQ since the NIC can be in any state. */
4013 	igb_irq_disable(adapter);
4014 
4015 	if (hw->mac.type >= e1000_i350)
4016 		adapter->flags &= ~IGB_FLAG_DMAC;
4017 
4018 	set_bit(__IGB_DOWN, &adapter->state);
4019 	return 0;
4020 }
4021 
4022 /**
4023  *  igb_open - Called when a network interface is made active
4024  *  @netdev: network interface device structure
4025  *  @resuming: indicates whether we are in a resume call
4026  *
4027  *  Returns 0 on success, negative value on failure
4028  *
4029  *  The open entry point is called when a network interface is made
4030  *  active by the system (IFF_UP).  At this point all resources needed
4031  *  for transmit and receive operations are allocated, the interrupt
4032  *  handler is registered with the OS, the watchdog timer is started,
4033  *  and the stack is notified that the interface is ready.
4034  **/
4035 static int __igb_open(struct net_device *netdev, bool resuming)
4036 {
4037 	struct igb_adapter *adapter = netdev_priv(netdev);
4038 	struct e1000_hw *hw = &adapter->hw;
4039 	struct pci_dev *pdev = adapter->pdev;
4040 	int err;
4041 	int i;
4042 
4043 	/* disallow open during test */
4044 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4045 		WARN_ON(resuming);
4046 		return -EBUSY;
4047 	}
4048 
4049 	if (!resuming)
4050 		pm_runtime_get_sync(&pdev->dev);
4051 
4052 	netif_carrier_off(netdev);
4053 
4054 	/* allocate transmit descriptors */
4055 	err = igb_setup_all_tx_resources(adapter);
4056 	if (err)
4057 		goto err_setup_tx;
4058 
4059 	/* allocate receive descriptors */
4060 	err = igb_setup_all_rx_resources(adapter);
4061 	if (err)
4062 		goto err_setup_rx;
4063 
4064 	igb_power_up_link(adapter);
4065 
4066 	/* before we allocate an interrupt, we must be ready to handle it.
4067 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4068 	 * as soon as we call pci_request_irq, so we have to setup our
4069 	 * clean_rx handler before we do so.
4070 	 */
4071 	igb_configure(adapter);
4072 
4073 	err = igb_request_irq(adapter);
4074 	if (err)
4075 		goto err_req_irq;
4076 
4077 	/* Notify the stack of the actual queue counts. */
4078 	err = netif_set_real_num_tx_queues(adapter->netdev,
4079 					   adapter->num_tx_queues);
4080 	if (err)
4081 		goto err_set_queues;
4082 
4083 	err = netif_set_real_num_rx_queues(adapter->netdev,
4084 					   adapter->num_rx_queues);
4085 	if (err)
4086 		goto err_set_queues;
4087 
4088 	/* From here on the code is the same as igb_up() */
4089 	clear_bit(__IGB_DOWN, &adapter->state);
4090 
4091 	for (i = 0; i < adapter->num_q_vectors; i++)
4092 		napi_enable(&(adapter->q_vector[i]->napi));
4093 
4094 	/* Clear any pending interrupts. */
4095 	rd32(E1000_TSICR);
4096 	rd32(E1000_ICR);
4097 
4098 	igb_irq_enable(adapter);
4099 
4100 	/* notify VFs that reset has been completed */
4101 	if (adapter->vfs_allocated_count) {
4102 		u32 reg_data = rd32(E1000_CTRL_EXT);
4103 
4104 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4105 		wr32(E1000_CTRL_EXT, reg_data);
4106 	}
4107 
4108 	netif_tx_start_all_queues(netdev);
4109 
4110 	if (!resuming)
4111 		pm_runtime_put(&pdev->dev);
4112 
4113 	/* start the watchdog. */
4114 	hw->mac.get_link_status = 1;
4115 	schedule_work(&adapter->watchdog_task);
4116 
4117 	return 0;
4118 
4119 err_set_queues:
4120 	igb_free_irq(adapter);
4121 err_req_irq:
4122 	igb_release_hw_control(adapter);
4123 	igb_power_down_link(adapter);
4124 	igb_free_all_rx_resources(adapter);
4125 err_setup_rx:
4126 	igb_free_all_tx_resources(adapter);
4127 err_setup_tx:
4128 	igb_reset(adapter);
4129 	if (!resuming)
4130 		pm_runtime_put(&pdev->dev);
4131 
4132 	return err;
4133 }
4134 
4135 int igb_open(struct net_device *netdev)
4136 {
4137 	return __igb_open(netdev, false);
4138 }
4139 
4140 /**
4141  *  igb_close - Disables a network interface
4142  *  @netdev: network interface device structure
4143  *  @suspending: indicates we are in a suspend call
4144  *
4145  *  Returns 0, this is not allowed to fail
4146  *
4147  *  The close entry point is called when an interface is de-activated
4148  *  by the OS.  The hardware is still under the driver's control, but
4149  *  needs to be disabled.  A global MAC reset is issued to stop the
4150  *  hardware, and all transmit and receive resources are freed.
4151  **/
4152 static int __igb_close(struct net_device *netdev, bool suspending)
4153 {
4154 	struct igb_adapter *adapter = netdev_priv(netdev);
4155 	struct pci_dev *pdev = adapter->pdev;
4156 
4157 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4158 
4159 	if (!suspending)
4160 		pm_runtime_get_sync(&pdev->dev);
4161 
4162 	igb_down(adapter);
4163 	igb_free_irq(adapter);
4164 
4165 	igb_free_all_tx_resources(adapter);
4166 	igb_free_all_rx_resources(adapter);
4167 
4168 	if (!suspending)
4169 		pm_runtime_put_sync(&pdev->dev);
4170 	return 0;
4171 }
4172 
4173 int igb_close(struct net_device *netdev)
4174 {
4175 	if (netif_device_present(netdev) || netdev->dismantle)
4176 		return __igb_close(netdev, false);
4177 	return 0;
4178 }
4179 
4180 /**
4181  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4182  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4183  *
4184  *  Return 0 on success, negative on failure
4185  **/
4186 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4187 {
4188 	struct device *dev = tx_ring->dev;
4189 	int size;
4190 
4191 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4192 
4193 	tx_ring->tx_buffer_info = vmalloc(size);
4194 	if (!tx_ring->tx_buffer_info)
4195 		goto err;
4196 
4197 	/* round up to nearest 4K */
4198 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4199 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4200 
4201 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4202 					   &tx_ring->dma, GFP_KERNEL);
4203 	if (!tx_ring->desc)
4204 		goto err;
4205 
4206 	tx_ring->next_to_use = 0;
4207 	tx_ring->next_to_clean = 0;
4208 
4209 	return 0;
4210 
4211 err:
4212 	vfree(tx_ring->tx_buffer_info);
4213 	tx_ring->tx_buffer_info = NULL;
4214 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4215 	return -ENOMEM;
4216 }
4217 
4218 /**
4219  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4220  *				 (Descriptors) for all queues
4221  *  @adapter: board private structure
4222  *
4223  *  Return 0 on success, negative on failure
4224  **/
4225 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4226 {
4227 	struct pci_dev *pdev = adapter->pdev;
4228 	int i, err = 0;
4229 
4230 	for (i = 0; i < adapter->num_tx_queues; i++) {
4231 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4232 		if (err) {
4233 			dev_err(&pdev->dev,
4234 				"Allocation for Tx Queue %u failed\n", i);
4235 			for (i--; i >= 0; i--)
4236 				igb_free_tx_resources(adapter->tx_ring[i]);
4237 			break;
4238 		}
4239 	}
4240 
4241 	return err;
4242 }
4243 
4244 /**
4245  *  igb_setup_tctl - configure the transmit control registers
4246  *  @adapter: Board private structure
4247  **/
4248 void igb_setup_tctl(struct igb_adapter *adapter)
4249 {
4250 	struct e1000_hw *hw = &adapter->hw;
4251 	u32 tctl;
4252 
4253 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4254 	wr32(E1000_TXDCTL(0), 0);
4255 
4256 	/* Program the Transmit Control Register */
4257 	tctl = rd32(E1000_TCTL);
4258 	tctl &= ~E1000_TCTL_CT;
4259 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4260 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4261 
4262 	igb_config_collision_dist(hw);
4263 
4264 	/* Enable transmits */
4265 	tctl |= E1000_TCTL_EN;
4266 
4267 	wr32(E1000_TCTL, tctl);
4268 }
4269 
4270 /**
4271  *  igb_configure_tx_ring - Configure transmit ring after Reset
4272  *  @adapter: board private structure
4273  *  @ring: tx ring to configure
4274  *
4275  *  Configure a transmit ring after a reset.
4276  **/
4277 void igb_configure_tx_ring(struct igb_adapter *adapter,
4278 			   struct igb_ring *ring)
4279 {
4280 	struct e1000_hw *hw = &adapter->hw;
4281 	u32 txdctl = 0;
4282 	u64 tdba = ring->dma;
4283 	int reg_idx = ring->reg_idx;
4284 
4285 	wr32(E1000_TDLEN(reg_idx),
4286 	     ring->count * sizeof(union e1000_adv_tx_desc));
4287 	wr32(E1000_TDBAL(reg_idx),
4288 	     tdba & 0x00000000ffffffffULL);
4289 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4290 
4291 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4292 	wr32(E1000_TDH(reg_idx), 0);
4293 	writel(0, ring->tail);
4294 
4295 	txdctl |= IGB_TX_PTHRESH;
4296 	txdctl |= IGB_TX_HTHRESH << 8;
4297 	txdctl |= IGB_TX_WTHRESH << 16;
4298 
4299 	/* reinitialize tx_buffer_info */
4300 	memset(ring->tx_buffer_info, 0,
4301 	       sizeof(struct igb_tx_buffer) * ring->count);
4302 
4303 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4304 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4305 }
4306 
4307 /**
4308  *  igb_configure_tx - Configure transmit Unit after Reset
4309  *  @adapter: board private structure
4310  *
4311  *  Configure the Tx unit of the MAC after a reset.
4312  **/
4313 static void igb_configure_tx(struct igb_adapter *adapter)
4314 {
4315 	struct e1000_hw *hw = &adapter->hw;
4316 	int i;
4317 
4318 	/* disable the queues */
4319 	for (i = 0; i < adapter->num_tx_queues; i++)
4320 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4321 
4322 	wrfl();
4323 	usleep_range(10000, 20000);
4324 
4325 	for (i = 0; i < adapter->num_tx_queues; i++)
4326 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4327 }
4328 
4329 /**
4330  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4331  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4332  *
4333  *  Returns 0 on success, negative on failure
4334  **/
4335 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4336 {
4337 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4338 	struct device *dev = rx_ring->dev;
4339 	int size;
4340 
4341 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4342 
4343 	rx_ring->rx_buffer_info = vmalloc(size);
4344 	if (!rx_ring->rx_buffer_info)
4345 		goto err;
4346 
4347 	/* Round up to nearest 4K */
4348 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4349 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4350 
4351 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4352 					   &rx_ring->dma, GFP_KERNEL);
4353 	if (!rx_ring->desc)
4354 		goto err;
4355 
4356 	rx_ring->next_to_alloc = 0;
4357 	rx_ring->next_to_clean = 0;
4358 	rx_ring->next_to_use = 0;
4359 
4360 	rx_ring->xdp_prog = adapter->xdp_prog;
4361 
4362 	/* XDP RX-queue info */
4363 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4364 			     rx_ring->queue_index, 0) < 0)
4365 		goto err;
4366 
4367 	return 0;
4368 
4369 err:
4370 	vfree(rx_ring->rx_buffer_info);
4371 	rx_ring->rx_buffer_info = NULL;
4372 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4373 	return -ENOMEM;
4374 }
4375 
4376 /**
4377  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4378  *				 (Descriptors) for all queues
4379  *  @adapter: board private structure
4380  *
4381  *  Return 0 on success, negative on failure
4382  **/
4383 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4384 {
4385 	struct pci_dev *pdev = adapter->pdev;
4386 	int i, err = 0;
4387 
4388 	for (i = 0; i < adapter->num_rx_queues; i++) {
4389 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4390 		if (err) {
4391 			dev_err(&pdev->dev,
4392 				"Allocation for Rx Queue %u failed\n", i);
4393 			for (i--; i >= 0; i--)
4394 				igb_free_rx_resources(adapter->rx_ring[i]);
4395 			break;
4396 		}
4397 	}
4398 
4399 	return err;
4400 }
4401 
4402 /**
4403  *  igb_setup_mrqc - configure the multiple receive queue control registers
4404  *  @adapter: Board private structure
4405  **/
4406 static void igb_setup_mrqc(struct igb_adapter *adapter)
4407 {
4408 	struct e1000_hw *hw = &adapter->hw;
4409 	u32 mrqc, rxcsum;
4410 	u32 j, num_rx_queues;
4411 	u32 rss_key[10];
4412 
4413 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4414 	for (j = 0; j < 10; j++)
4415 		wr32(E1000_RSSRK(j), rss_key[j]);
4416 
4417 	num_rx_queues = adapter->rss_queues;
4418 
4419 	switch (hw->mac.type) {
4420 	case e1000_82576:
4421 		/* 82576 supports 2 RSS queues for SR-IOV */
4422 		if (adapter->vfs_allocated_count)
4423 			num_rx_queues = 2;
4424 		break;
4425 	default:
4426 		break;
4427 	}
4428 
4429 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4430 		for (j = 0; j < IGB_RETA_SIZE; j++)
4431 			adapter->rss_indir_tbl[j] =
4432 			(j * num_rx_queues) / IGB_RETA_SIZE;
4433 		adapter->rss_indir_tbl_init = num_rx_queues;
4434 	}
4435 	igb_write_rss_indir_tbl(adapter);
4436 
4437 	/* Disable raw packet checksumming so that RSS hash is placed in
4438 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4439 	 * offloads as they are enabled by default
4440 	 */
4441 	rxcsum = rd32(E1000_RXCSUM);
4442 	rxcsum |= E1000_RXCSUM_PCSD;
4443 
4444 	if (adapter->hw.mac.type >= e1000_82576)
4445 		/* Enable Receive Checksum Offload for SCTP */
4446 		rxcsum |= E1000_RXCSUM_CRCOFL;
4447 
4448 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4449 	wr32(E1000_RXCSUM, rxcsum);
4450 
4451 	/* Generate RSS hash based on packet types, TCP/UDP
4452 	 * port numbers and/or IPv4/v6 src and dst addresses
4453 	 */
4454 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4455 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4456 	       E1000_MRQC_RSS_FIELD_IPV6 |
4457 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4458 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4459 
4460 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4461 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4462 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4463 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4464 
4465 	/* If VMDq is enabled then we set the appropriate mode for that, else
4466 	 * we default to RSS so that an RSS hash is calculated per packet even
4467 	 * if we are only using one queue
4468 	 */
4469 	if (adapter->vfs_allocated_count) {
4470 		if (hw->mac.type > e1000_82575) {
4471 			/* Set the default pool for the PF's first queue */
4472 			u32 vtctl = rd32(E1000_VT_CTL);
4473 
4474 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4475 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4476 			vtctl |= adapter->vfs_allocated_count <<
4477 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4478 			wr32(E1000_VT_CTL, vtctl);
4479 		}
4480 		if (adapter->rss_queues > 1)
4481 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4482 		else
4483 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4484 	} else {
4485 		if (hw->mac.type != e1000_i211)
4486 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4487 	}
4488 	igb_vmm_control(adapter);
4489 
4490 	wr32(E1000_MRQC, mrqc);
4491 }
4492 
4493 /**
4494  *  igb_setup_rctl - configure the receive control registers
4495  *  @adapter: Board private structure
4496  **/
4497 void igb_setup_rctl(struct igb_adapter *adapter)
4498 {
4499 	struct e1000_hw *hw = &adapter->hw;
4500 	u32 rctl;
4501 
4502 	rctl = rd32(E1000_RCTL);
4503 
4504 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4505 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4506 
4507 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4508 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4509 
4510 	/* enable stripping of CRC. It's unlikely this will break BMC
4511 	 * redirection as it did with e1000. Newer features require
4512 	 * that the HW strips the CRC.
4513 	 */
4514 	rctl |= E1000_RCTL_SECRC;
4515 
4516 	/* disable store bad packets and clear size bits. */
4517 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4518 
4519 	/* enable LPE to allow for reception of jumbo frames */
4520 	rctl |= E1000_RCTL_LPE;
4521 
4522 	/* disable queue 0 to prevent tail write w/o re-config */
4523 	wr32(E1000_RXDCTL(0), 0);
4524 
4525 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4526 	 * queue drop for all VF and PF queues to prevent head of line blocking
4527 	 * if an un-trusted VF does not provide descriptors to hardware.
4528 	 */
4529 	if (adapter->vfs_allocated_count) {
4530 		/* set all queue drop enable bits */
4531 		wr32(E1000_QDE, ALL_QUEUES);
4532 	}
4533 
4534 	/* This is useful for sniffing bad packets. */
4535 	if (adapter->netdev->features & NETIF_F_RXALL) {
4536 		/* UPE and MPE will be handled by normal PROMISC logic
4537 		 * in e1000e_set_rx_mode
4538 		 */
4539 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4540 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4541 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4542 
4543 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4544 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4545 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4546 		 * and that breaks VLANs.
4547 		 */
4548 	}
4549 
4550 	wr32(E1000_RCTL, rctl);
4551 }
4552 
4553 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4554 				   int vfn)
4555 {
4556 	struct e1000_hw *hw = &adapter->hw;
4557 	u32 vmolr;
4558 
4559 	if (size > MAX_JUMBO_FRAME_SIZE)
4560 		size = MAX_JUMBO_FRAME_SIZE;
4561 
4562 	vmolr = rd32(E1000_VMOLR(vfn));
4563 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4564 	vmolr |= size | E1000_VMOLR_LPE;
4565 	wr32(E1000_VMOLR(vfn), vmolr);
4566 
4567 	return 0;
4568 }
4569 
4570 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4571 					 int vfn, bool enable)
4572 {
4573 	struct e1000_hw *hw = &adapter->hw;
4574 	u32 val, reg;
4575 
4576 	if (hw->mac.type < e1000_82576)
4577 		return;
4578 
4579 	if (hw->mac.type == e1000_i350)
4580 		reg = E1000_DVMOLR(vfn);
4581 	else
4582 		reg = E1000_VMOLR(vfn);
4583 
4584 	val = rd32(reg);
4585 	if (enable)
4586 		val |= E1000_VMOLR_STRVLAN;
4587 	else
4588 		val &= ~(E1000_VMOLR_STRVLAN);
4589 	wr32(reg, val);
4590 }
4591 
4592 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4593 				 int vfn, bool aupe)
4594 {
4595 	struct e1000_hw *hw = &adapter->hw;
4596 	u32 vmolr;
4597 
4598 	/* This register exists only on 82576 and newer so if we are older then
4599 	 * we should exit and do nothing
4600 	 */
4601 	if (hw->mac.type < e1000_82576)
4602 		return;
4603 
4604 	vmolr = rd32(E1000_VMOLR(vfn));
4605 	if (aupe)
4606 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4607 	else
4608 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4609 
4610 	/* clear all bits that might not be set */
4611 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4612 
4613 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4614 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4615 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4616 	 * multicast packets
4617 	 */
4618 	if (vfn <= adapter->vfs_allocated_count)
4619 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4620 
4621 	wr32(E1000_VMOLR(vfn), vmolr);
4622 }
4623 
4624 /**
4625  *  igb_setup_srrctl - configure the split and replication receive control
4626  *                     registers
4627  *  @adapter: Board private structure
4628  *  @ring: receive ring to be configured
4629  **/
4630 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4631 {
4632 	struct e1000_hw *hw = &adapter->hw;
4633 	int reg_idx = ring->reg_idx;
4634 	u32 srrctl = 0;
4635 
4636 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4637 	if (ring_uses_large_buffer(ring))
4638 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4639 	else
4640 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4641 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4642 	if (hw->mac.type >= e1000_82580)
4643 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4644 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4645 	 * queues and rx flow control is disabled
4646 	 */
4647 	if (adapter->vfs_allocated_count ||
4648 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4649 	     adapter->num_rx_queues > 1))
4650 		srrctl |= E1000_SRRCTL_DROP_EN;
4651 
4652 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4653 }
4654 
4655 /**
4656  *  igb_configure_rx_ring - Configure a receive ring after Reset
4657  *  @adapter: board private structure
4658  *  @ring: receive ring to be configured
4659  *
4660  *  Configure the Rx unit of the MAC after a reset.
4661  **/
4662 void igb_configure_rx_ring(struct igb_adapter *adapter,
4663 			   struct igb_ring *ring)
4664 {
4665 	struct e1000_hw *hw = &adapter->hw;
4666 	union e1000_adv_rx_desc *rx_desc;
4667 	u64 rdba = ring->dma;
4668 	int reg_idx = ring->reg_idx;
4669 	u32 rxdctl = 0;
4670 
4671 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4672 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4673 					   MEM_TYPE_PAGE_SHARED, NULL));
4674 
4675 	/* disable the queue */
4676 	wr32(E1000_RXDCTL(reg_idx), 0);
4677 
4678 	/* Set DMA base address registers */
4679 	wr32(E1000_RDBAL(reg_idx),
4680 	     rdba & 0x00000000ffffffffULL);
4681 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4682 	wr32(E1000_RDLEN(reg_idx),
4683 	     ring->count * sizeof(union e1000_adv_rx_desc));
4684 
4685 	/* initialize head and tail */
4686 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4687 	wr32(E1000_RDH(reg_idx), 0);
4688 	writel(0, ring->tail);
4689 
4690 	/* set descriptor configuration */
4691 	igb_setup_srrctl(adapter, ring);
4692 
4693 	/* set filtering for VMDQ pools */
4694 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4695 
4696 	rxdctl |= IGB_RX_PTHRESH;
4697 	rxdctl |= IGB_RX_HTHRESH << 8;
4698 	rxdctl |= IGB_RX_WTHRESH << 16;
4699 
4700 	/* initialize rx_buffer_info */
4701 	memset(ring->rx_buffer_info, 0,
4702 	       sizeof(struct igb_rx_buffer) * ring->count);
4703 
4704 	/* initialize Rx descriptor 0 */
4705 	rx_desc = IGB_RX_DESC(ring, 0);
4706 	rx_desc->wb.upper.length = 0;
4707 
4708 	/* enable receive descriptor fetching */
4709 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4710 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4711 }
4712 
4713 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4714 				  struct igb_ring *rx_ring)
4715 {
4716 	/* set build_skb and buffer size flags */
4717 	clear_ring_build_skb_enabled(rx_ring);
4718 	clear_ring_uses_large_buffer(rx_ring);
4719 
4720 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4721 		return;
4722 
4723 	set_ring_build_skb_enabled(rx_ring);
4724 
4725 #if (PAGE_SIZE < 8192)
4726 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4727 		return;
4728 
4729 	set_ring_uses_large_buffer(rx_ring);
4730 #endif
4731 }
4732 
4733 /**
4734  *  igb_configure_rx - Configure receive Unit after Reset
4735  *  @adapter: board private structure
4736  *
4737  *  Configure the Rx unit of the MAC after a reset.
4738  **/
4739 static void igb_configure_rx(struct igb_adapter *adapter)
4740 {
4741 	int i;
4742 
4743 	/* set the correct pool for the PF default MAC address in entry 0 */
4744 	igb_set_default_mac_filter(adapter);
4745 
4746 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4747 	 * the Base and Length of the Rx Descriptor Ring
4748 	 */
4749 	for (i = 0; i < adapter->num_rx_queues; i++) {
4750 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4751 
4752 		igb_set_rx_buffer_len(adapter, rx_ring);
4753 		igb_configure_rx_ring(adapter, rx_ring);
4754 	}
4755 }
4756 
4757 /**
4758  *  igb_free_tx_resources - Free Tx Resources per Queue
4759  *  @tx_ring: Tx descriptor ring for a specific queue
4760  *
4761  *  Free all transmit software resources
4762  **/
4763 void igb_free_tx_resources(struct igb_ring *tx_ring)
4764 {
4765 	igb_clean_tx_ring(tx_ring);
4766 
4767 	vfree(tx_ring->tx_buffer_info);
4768 	tx_ring->tx_buffer_info = NULL;
4769 
4770 	/* if not set, then don't free */
4771 	if (!tx_ring->desc)
4772 		return;
4773 
4774 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4775 			  tx_ring->desc, tx_ring->dma);
4776 
4777 	tx_ring->desc = NULL;
4778 }
4779 
4780 /**
4781  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4782  *  @adapter: board private structure
4783  *
4784  *  Free all transmit software resources
4785  **/
4786 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4787 {
4788 	int i;
4789 
4790 	for (i = 0; i < adapter->num_tx_queues; i++)
4791 		if (adapter->tx_ring[i])
4792 			igb_free_tx_resources(adapter->tx_ring[i]);
4793 }
4794 
4795 /**
4796  *  igb_clean_tx_ring - Free Tx Buffers
4797  *  @tx_ring: ring to be cleaned
4798  **/
4799 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4800 {
4801 	u16 i = tx_ring->next_to_clean;
4802 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4803 
4804 	while (i != tx_ring->next_to_use) {
4805 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4806 
4807 		/* Free all the Tx ring sk_buffs */
4808 		dev_kfree_skb_any(tx_buffer->skb);
4809 
4810 		/* unmap skb header data */
4811 		dma_unmap_single(tx_ring->dev,
4812 				 dma_unmap_addr(tx_buffer, dma),
4813 				 dma_unmap_len(tx_buffer, len),
4814 				 DMA_TO_DEVICE);
4815 
4816 		/* check for eop_desc to determine the end of the packet */
4817 		eop_desc = tx_buffer->next_to_watch;
4818 		tx_desc = IGB_TX_DESC(tx_ring, i);
4819 
4820 		/* unmap remaining buffers */
4821 		while (tx_desc != eop_desc) {
4822 			tx_buffer++;
4823 			tx_desc++;
4824 			i++;
4825 			if (unlikely(i == tx_ring->count)) {
4826 				i = 0;
4827 				tx_buffer = tx_ring->tx_buffer_info;
4828 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4829 			}
4830 
4831 			/* unmap any remaining paged data */
4832 			if (dma_unmap_len(tx_buffer, len))
4833 				dma_unmap_page(tx_ring->dev,
4834 					       dma_unmap_addr(tx_buffer, dma),
4835 					       dma_unmap_len(tx_buffer, len),
4836 					       DMA_TO_DEVICE);
4837 		}
4838 
4839 		/* move us one more past the eop_desc for start of next pkt */
4840 		tx_buffer++;
4841 		i++;
4842 		if (unlikely(i == tx_ring->count)) {
4843 			i = 0;
4844 			tx_buffer = tx_ring->tx_buffer_info;
4845 		}
4846 	}
4847 
4848 	/* reset BQL for queue */
4849 	netdev_tx_reset_queue(txring_txq(tx_ring));
4850 
4851 	/* reset next_to_use and next_to_clean */
4852 	tx_ring->next_to_use = 0;
4853 	tx_ring->next_to_clean = 0;
4854 }
4855 
4856 /**
4857  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4858  *  @adapter: board private structure
4859  **/
4860 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4861 {
4862 	int i;
4863 
4864 	for (i = 0; i < adapter->num_tx_queues; i++)
4865 		if (adapter->tx_ring[i])
4866 			igb_clean_tx_ring(adapter->tx_ring[i]);
4867 }
4868 
4869 /**
4870  *  igb_free_rx_resources - Free Rx Resources
4871  *  @rx_ring: ring to clean the resources from
4872  *
4873  *  Free all receive software resources
4874  **/
4875 void igb_free_rx_resources(struct igb_ring *rx_ring)
4876 {
4877 	igb_clean_rx_ring(rx_ring);
4878 
4879 	rx_ring->xdp_prog = NULL;
4880 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4881 	vfree(rx_ring->rx_buffer_info);
4882 	rx_ring->rx_buffer_info = NULL;
4883 
4884 	/* if not set, then don't free */
4885 	if (!rx_ring->desc)
4886 		return;
4887 
4888 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4889 			  rx_ring->desc, rx_ring->dma);
4890 
4891 	rx_ring->desc = NULL;
4892 }
4893 
4894 /**
4895  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4896  *  @adapter: board private structure
4897  *
4898  *  Free all receive software resources
4899  **/
4900 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4901 {
4902 	int i;
4903 
4904 	for (i = 0; i < adapter->num_rx_queues; i++)
4905 		if (adapter->rx_ring[i])
4906 			igb_free_rx_resources(adapter->rx_ring[i]);
4907 }
4908 
4909 /**
4910  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4911  *  @rx_ring: ring to free buffers from
4912  **/
4913 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4914 {
4915 	u16 i = rx_ring->next_to_clean;
4916 
4917 	dev_kfree_skb(rx_ring->skb);
4918 	rx_ring->skb = NULL;
4919 
4920 	/* Free all the Rx ring sk_buffs */
4921 	while (i != rx_ring->next_to_alloc) {
4922 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4923 
4924 		/* Invalidate cache lines that may have been written to by
4925 		 * device so that we avoid corrupting memory.
4926 		 */
4927 		dma_sync_single_range_for_cpu(rx_ring->dev,
4928 					      buffer_info->dma,
4929 					      buffer_info->page_offset,
4930 					      igb_rx_bufsz(rx_ring),
4931 					      DMA_FROM_DEVICE);
4932 
4933 		/* free resources associated with mapping */
4934 		dma_unmap_page_attrs(rx_ring->dev,
4935 				     buffer_info->dma,
4936 				     igb_rx_pg_size(rx_ring),
4937 				     DMA_FROM_DEVICE,
4938 				     IGB_RX_DMA_ATTR);
4939 		__page_frag_cache_drain(buffer_info->page,
4940 					buffer_info->pagecnt_bias);
4941 
4942 		i++;
4943 		if (i == rx_ring->count)
4944 			i = 0;
4945 	}
4946 
4947 	rx_ring->next_to_alloc = 0;
4948 	rx_ring->next_to_clean = 0;
4949 	rx_ring->next_to_use = 0;
4950 }
4951 
4952 /**
4953  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4954  *  @adapter: board private structure
4955  **/
4956 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4957 {
4958 	int i;
4959 
4960 	for (i = 0; i < adapter->num_rx_queues; i++)
4961 		if (adapter->rx_ring[i])
4962 			igb_clean_rx_ring(adapter->rx_ring[i]);
4963 }
4964 
4965 /**
4966  *  igb_set_mac - Change the Ethernet Address of the NIC
4967  *  @netdev: network interface device structure
4968  *  @p: pointer to an address structure
4969  *
4970  *  Returns 0 on success, negative on failure
4971  **/
4972 static int igb_set_mac(struct net_device *netdev, void *p)
4973 {
4974 	struct igb_adapter *adapter = netdev_priv(netdev);
4975 	struct e1000_hw *hw = &adapter->hw;
4976 	struct sockaddr *addr = p;
4977 
4978 	if (!is_valid_ether_addr(addr->sa_data))
4979 		return -EADDRNOTAVAIL;
4980 
4981 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4982 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4983 
4984 	/* set the correct pool for the new PF MAC address in entry 0 */
4985 	igb_set_default_mac_filter(adapter);
4986 
4987 	return 0;
4988 }
4989 
4990 /**
4991  *  igb_write_mc_addr_list - write multicast addresses to MTA
4992  *  @netdev: network interface device structure
4993  *
4994  *  Writes multicast address list to the MTA hash table.
4995  *  Returns: -ENOMEM on failure
4996  *           0 on no addresses written
4997  *           X on writing X addresses to MTA
4998  **/
4999 static int igb_write_mc_addr_list(struct net_device *netdev)
5000 {
5001 	struct igb_adapter *adapter = netdev_priv(netdev);
5002 	struct e1000_hw *hw = &adapter->hw;
5003 	struct netdev_hw_addr *ha;
5004 	u8  *mta_list;
5005 	int i;
5006 
5007 	if (netdev_mc_empty(netdev)) {
5008 		/* nothing to program, so clear mc list */
5009 		igb_update_mc_addr_list(hw, NULL, 0);
5010 		igb_restore_vf_multicasts(adapter);
5011 		return 0;
5012 	}
5013 
5014 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5015 	if (!mta_list)
5016 		return -ENOMEM;
5017 
5018 	/* The shared function expects a packed array of only addresses. */
5019 	i = 0;
5020 	netdev_for_each_mc_addr(ha, netdev)
5021 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5022 
5023 	igb_update_mc_addr_list(hw, mta_list, i);
5024 	kfree(mta_list);
5025 
5026 	return netdev_mc_count(netdev);
5027 }
5028 
5029 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5030 {
5031 	struct e1000_hw *hw = &adapter->hw;
5032 	u32 i, pf_id;
5033 
5034 	switch (hw->mac.type) {
5035 	case e1000_i210:
5036 	case e1000_i211:
5037 	case e1000_i350:
5038 		/* VLAN filtering needed for VLAN prio filter */
5039 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5040 			break;
5041 		fallthrough;
5042 	case e1000_82576:
5043 	case e1000_82580:
5044 	case e1000_i354:
5045 		/* VLAN filtering needed for pool filtering */
5046 		if (adapter->vfs_allocated_count)
5047 			break;
5048 		fallthrough;
5049 	default:
5050 		return 1;
5051 	}
5052 
5053 	/* We are already in VLAN promisc, nothing to do */
5054 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5055 		return 0;
5056 
5057 	if (!adapter->vfs_allocated_count)
5058 		goto set_vfta;
5059 
5060 	/* Add PF to all active pools */
5061 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5062 
5063 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5064 		u32 vlvf = rd32(E1000_VLVF(i));
5065 
5066 		vlvf |= BIT(pf_id);
5067 		wr32(E1000_VLVF(i), vlvf);
5068 	}
5069 
5070 set_vfta:
5071 	/* Set all bits in the VLAN filter table array */
5072 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5073 		hw->mac.ops.write_vfta(hw, i, ~0U);
5074 
5075 	/* Set flag so we don't redo unnecessary work */
5076 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5077 
5078 	return 0;
5079 }
5080 
5081 #define VFTA_BLOCK_SIZE 8
5082 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5083 {
5084 	struct e1000_hw *hw = &adapter->hw;
5085 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5086 	u32 vid_start = vfta_offset * 32;
5087 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5088 	u32 i, vid, word, bits, pf_id;
5089 
5090 	/* guarantee that we don't scrub out management VLAN */
5091 	vid = adapter->mng_vlan_id;
5092 	if (vid >= vid_start && vid < vid_end)
5093 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5094 
5095 	if (!adapter->vfs_allocated_count)
5096 		goto set_vfta;
5097 
5098 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5099 
5100 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5101 		u32 vlvf = rd32(E1000_VLVF(i));
5102 
5103 		/* pull VLAN ID from VLVF */
5104 		vid = vlvf & VLAN_VID_MASK;
5105 
5106 		/* only concern ourselves with a certain range */
5107 		if (vid < vid_start || vid >= vid_end)
5108 			continue;
5109 
5110 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5111 			/* record VLAN ID in VFTA */
5112 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5113 
5114 			/* if PF is part of this then continue */
5115 			if (test_bit(vid, adapter->active_vlans))
5116 				continue;
5117 		}
5118 
5119 		/* remove PF from the pool */
5120 		bits = ~BIT(pf_id);
5121 		bits &= rd32(E1000_VLVF(i));
5122 		wr32(E1000_VLVF(i), bits);
5123 	}
5124 
5125 set_vfta:
5126 	/* extract values from active_vlans and write back to VFTA */
5127 	for (i = VFTA_BLOCK_SIZE; i--;) {
5128 		vid = (vfta_offset + i) * 32;
5129 		word = vid / BITS_PER_LONG;
5130 		bits = vid % BITS_PER_LONG;
5131 
5132 		vfta[i] |= adapter->active_vlans[word] >> bits;
5133 
5134 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5135 	}
5136 }
5137 
5138 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5139 {
5140 	u32 i;
5141 
5142 	/* We are not in VLAN promisc, nothing to do */
5143 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5144 		return;
5145 
5146 	/* Set flag so we don't redo unnecessary work */
5147 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5148 
5149 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5150 		igb_scrub_vfta(adapter, i);
5151 }
5152 
5153 /**
5154  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5155  *  @netdev: network interface device structure
5156  *
5157  *  The set_rx_mode entry point is called whenever the unicast or multicast
5158  *  address lists or the network interface flags are updated.  This routine is
5159  *  responsible for configuring the hardware for proper unicast, multicast,
5160  *  promiscuous mode, and all-multi behavior.
5161  **/
5162 static void igb_set_rx_mode(struct net_device *netdev)
5163 {
5164 	struct igb_adapter *adapter = netdev_priv(netdev);
5165 	struct e1000_hw *hw = &adapter->hw;
5166 	unsigned int vfn = adapter->vfs_allocated_count;
5167 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5168 	int count;
5169 
5170 	/* Check for Promiscuous and All Multicast modes */
5171 	if (netdev->flags & IFF_PROMISC) {
5172 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5173 		vmolr |= E1000_VMOLR_MPME;
5174 
5175 		/* enable use of UTA filter to force packets to default pool */
5176 		if (hw->mac.type == e1000_82576)
5177 			vmolr |= E1000_VMOLR_ROPE;
5178 	} else {
5179 		if (netdev->flags & IFF_ALLMULTI) {
5180 			rctl |= E1000_RCTL_MPE;
5181 			vmolr |= E1000_VMOLR_MPME;
5182 		} else {
5183 			/* Write addresses to the MTA, if the attempt fails
5184 			 * then we should just turn on promiscuous mode so
5185 			 * that we can at least receive multicast traffic
5186 			 */
5187 			count = igb_write_mc_addr_list(netdev);
5188 			if (count < 0) {
5189 				rctl |= E1000_RCTL_MPE;
5190 				vmolr |= E1000_VMOLR_MPME;
5191 			} else if (count) {
5192 				vmolr |= E1000_VMOLR_ROMPE;
5193 			}
5194 		}
5195 	}
5196 
5197 	/* Write addresses to available RAR registers, if there is not
5198 	 * sufficient space to store all the addresses then enable
5199 	 * unicast promiscuous mode
5200 	 */
5201 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5202 		rctl |= E1000_RCTL_UPE;
5203 		vmolr |= E1000_VMOLR_ROPE;
5204 	}
5205 
5206 	/* enable VLAN filtering by default */
5207 	rctl |= E1000_RCTL_VFE;
5208 
5209 	/* disable VLAN filtering for modes that require it */
5210 	if ((netdev->flags & IFF_PROMISC) ||
5211 	    (netdev->features & NETIF_F_RXALL)) {
5212 		/* if we fail to set all rules then just clear VFE */
5213 		if (igb_vlan_promisc_enable(adapter))
5214 			rctl &= ~E1000_RCTL_VFE;
5215 	} else {
5216 		igb_vlan_promisc_disable(adapter);
5217 	}
5218 
5219 	/* update state of unicast, multicast, and VLAN filtering modes */
5220 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5221 				     E1000_RCTL_VFE);
5222 	wr32(E1000_RCTL, rctl);
5223 
5224 #if (PAGE_SIZE < 8192)
5225 	if (!adapter->vfs_allocated_count) {
5226 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5227 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5228 	}
5229 #endif
5230 	wr32(E1000_RLPML, rlpml);
5231 
5232 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5233 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5234 	 * we will have issues with VLAN tag stripping not being done for frames
5235 	 * that are only arriving because we are the default pool
5236 	 */
5237 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5238 		return;
5239 
5240 	/* set UTA to appropriate mode */
5241 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5242 
5243 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5244 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5245 
5246 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5247 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5248 #if (PAGE_SIZE < 8192)
5249 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5250 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5251 	else
5252 #endif
5253 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5254 	vmolr |= E1000_VMOLR_LPE;
5255 
5256 	wr32(E1000_VMOLR(vfn), vmolr);
5257 
5258 	igb_restore_vf_multicasts(adapter);
5259 }
5260 
5261 static void igb_check_wvbr(struct igb_adapter *adapter)
5262 {
5263 	struct e1000_hw *hw = &adapter->hw;
5264 	u32 wvbr = 0;
5265 
5266 	switch (hw->mac.type) {
5267 	case e1000_82576:
5268 	case e1000_i350:
5269 		wvbr = rd32(E1000_WVBR);
5270 		if (!wvbr)
5271 			return;
5272 		break;
5273 	default:
5274 		break;
5275 	}
5276 
5277 	adapter->wvbr |= wvbr;
5278 }
5279 
5280 #define IGB_STAGGERED_QUEUE_OFFSET 8
5281 
5282 static void igb_spoof_check(struct igb_adapter *adapter)
5283 {
5284 	int j;
5285 
5286 	if (!adapter->wvbr)
5287 		return;
5288 
5289 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5290 		if (adapter->wvbr & BIT(j) ||
5291 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5292 			dev_warn(&adapter->pdev->dev,
5293 				"Spoof event(s) detected on VF %d\n", j);
5294 			adapter->wvbr &=
5295 				~(BIT(j) |
5296 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5297 		}
5298 	}
5299 }
5300 
5301 /* Need to wait a few seconds after link up to get diagnostic information from
5302  * the phy
5303  */
5304 static void igb_update_phy_info(struct timer_list *t)
5305 {
5306 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5307 	igb_get_phy_info(&adapter->hw);
5308 }
5309 
5310 /**
5311  *  igb_has_link - check shared code for link and determine up/down
5312  *  @adapter: pointer to driver private info
5313  **/
5314 bool igb_has_link(struct igb_adapter *adapter)
5315 {
5316 	struct e1000_hw *hw = &adapter->hw;
5317 	bool link_active = false;
5318 
5319 	/* get_link_status is set on LSC (link status) interrupt or
5320 	 * rx sequence error interrupt.  get_link_status will stay
5321 	 * false until the e1000_check_for_link establishes link
5322 	 * for copper adapters ONLY
5323 	 */
5324 	switch (hw->phy.media_type) {
5325 	case e1000_media_type_copper:
5326 		if (!hw->mac.get_link_status)
5327 			return true;
5328 		fallthrough;
5329 	case e1000_media_type_internal_serdes:
5330 		hw->mac.ops.check_for_link(hw);
5331 		link_active = !hw->mac.get_link_status;
5332 		break;
5333 	default:
5334 	case e1000_media_type_unknown:
5335 		break;
5336 	}
5337 
5338 	if (((hw->mac.type == e1000_i210) ||
5339 	     (hw->mac.type == e1000_i211)) &&
5340 	     (hw->phy.id == I210_I_PHY_ID)) {
5341 		if (!netif_carrier_ok(adapter->netdev)) {
5342 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5343 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5344 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5345 			adapter->link_check_timeout = jiffies;
5346 		}
5347 	}
5348 
5349 	return link_active;
5350 }
5351 
5352 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5353 {
5354 	bool ret = false;
5355 	u32 ctrl_ext, thstat;
5356 
5357 	/* check for thermal sensor event on i350 copper only */
5358 	if (hw->mac.type == e1000_i350) {
5359 		thstat = rd32(E1000_THSTAT);
5360 		ctrl_ext = rd32(E1000_CTRL_EXT);
5361 
5362 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5363 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5364 			ret = !!(thstat & event);
5365 	}
5366 
5367 	return ret;
5368 }
5369 
5370 /**
5371  *  igb_check_lvmmc - check for malformed packets received
5372  *  and indicated in LVMMC register
5373  *  @adapter: pointer to adapter
5374  **/
5375 static void igb_check_lvmmc(struct igb_adapter *adapter)
5376 {
5377 	struct e1000_hw *hw = &adapter->hw;
5378 	u32 lvmmc;
5379 
5380 	lvmmc = rd32(E1000_LVMMC);
5381 	if (lvmmc) {
5382 		if (unlikely(net_ratelimit())) {
5383 			netdev_warn(adapter->netdev,
5384 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5385 				    lvmmc);
5386 		}
5387 	}
5388 }
5389 
5390 /**
5391  *  igb_watchdog - Timer Call-back
5392  *  @t: pointer to timer_list containing our private info pointer
5393  **/
5394 static void igb_watchdog(struct timer_list *t)
5395 {
5396 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5397 	/* Do the rest outside of interrupt context */
5398 	schedule_work(&adapter->watchdog_task);
5399 }
5400 
5401 static void igb_watchdog_task(struct work_struct *work)
5402 {
5403 	struct igb_adapter *adapter = container_of(work,
5404 						   struct igb_adapter,
5405 						   watchdog_task);
5406 	struct e1000_hw *hw = &adapter->hw;
5407 	struct e1000_phy_info *phy = &hw->phy;
5408 	struct net_device *netdev = adapter->netdev;
5409 	u32 link;
5410 	int i;
5411 	u32 connsw;
5412 	u16 phy_data, retry_count = 20;
5413 
5414 	link = igb_has_link(adapter);
5415 
5416 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5417 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5418 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5419 		else
5420 			link = false;
5421 	}
5422 
5423 	/* Force link down if we have fiber to swap to */
5424 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5425 		if (hw->phy.media_type == e1000_media_type_copper) {
5426 			connsw = rd32(E1000_CONNSW);
5427 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5428 				link = 0;
5429 		}
5430 	}
5431 	if (link) {
5432 		/* Perform a reset if the media type changed. */
5433 		if (hw->dev_spec._82575.media_changed) {
5434 			hw->dev_spec._82575.media_changed = false;
5435 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5436 			igb_reset(adapter);
5437 		}
5438 		/* Cancel scheduled suspend requests. */
5439 		pm_runtime_resume(netdev->dev.parent);
5440 
5441 		if (!netif_carrier_ok(netdev)) {
5442 			u32 ctrl;
5443 
5444 			hw->mac.ops.get_speed_and_duplex(hw,
5445 							 &adapter->link_speed,
5446 							 &adapter->link_duplex);
5447 
5448 			ctrl = rd32(E1000_CTRL);
5449 			/* Links status message must follow this format */
5450 			netdev_info(netdev,
5451 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5452 			       netdev->name,
5453 			       adapter->link_speed,
5454 			       adapter->link_duplex == FULL_DUPLEX ?
5455 			       "Full" : "Half",
5456 			       (ctrl & E1000_CTRL_TFCE) &&
5457 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5458 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5459 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5460 
5461 			/* disable EEE if enabled */
5462 			if ((adapter->flags & IGB_FLAG_EEE) &&
5463 				(adapter->link_duplex == HALF_DUPLEX)) {
5464 				dev_info(&adapter->pdev->dev,
5465 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5466 				adapter->hw.dev_spec._82575.eee_disable = true;
5467 				adapter->flags &= ~IGB_FLAG_EEE;
5468 			}
5469 
5470 			/* check if SmartSpeed worked */
5471 			igb_check_downshift(hw);
5472 			if (phy->speed_downgraded)
5473 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5474 
5475 			/* check for thermal sensor event */
5476 			if (igb_thermal_sensor_event(hw,
5477 			    E1000_THSTAT_LINK_THROTTLE))
5478 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5479 
5480 			/* adjust timeout factor according to speed/duplex */
5481 			adapter->tx_timeout_factor = 1;
5482 			switch (adapter->link_speed) {
5483 			case SPEED_10:
5484 				adapter->tx_timeout_factor = 14;
5485 				break;
5486 			case SPEED_100:
5487 				/* maybe add some timeout factor ? */
5488 				break;
5489 			}
5490 
5491 			if (adapter->link_speed != SPEED_1000)
5492 				goto no_wait;
5493 
5494 			/* wait for Remote receiver status OK */
5495 retry_read_status:
5496 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5497 					      &phy_data)) {
5498 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5499 				    retry_count) {
5500 					msleep(100);
5501 					retry_count--;
5502 					goto retry_read_status;
5503 				} else if (!retry_count) {
5504 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5505 				}
5506 			} else {
5507 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5508 			}
5509 no_wait:
5510 			netif_carrier_on(netdev);
5511 
5512 			igb_ping_all_vfs(adapter);
5513 			igb_check_vf_rate_limit(adapter);
5514 
5515 			/* link state has changed, schedule phy info update */
5516 			if (!test_bit(__IGB_DOWN, &adapter->state))
5517 				mod_timer(&adapter->phy_info_timer,
5518 					  round_jiffies(jiffies + 2 * HZ));
5519 		}
5520 	} else {
5521 		if (netif_carrier_ok(netdev)) {
5522 			adapter->link_speed = 0;
5523 			adapter->link_duplex = 0;
5524 
5525 			/* check for thermal sensor event */
5526 			if (igb_thermal_sensor_event(hw,
5527 			    E1000_THSTAT_PWR_DOWN)) {
5528 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5529 			}
5530 
5531 			/* Links status message must follow this format */
5532 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5533 			       netdev->name);
5534 			netif_carrier_off(netdev);
5535 
5536 			igb_ping_all_vfs(adapter);
5537 
5538 			/* link state has changed, schedule phy info update */
5539 			if (!test_bit(__IGB_DOWN, &adapter->state))
5540 				mod_timer(&adapter->phy_info_timer,
5541 					  round_jiffies(jiffies + 2 * HZ));
5542 
5543 			/* link is down, time to check for alternate media */
5544 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5545 				igb_check_swap_media(adapter);
5546 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5547 					schedule_work(&adapter->reset_task);
5548 					/* return immediately */
5549 					return;
5550 				}
5551 			}
5552 			pm_schedule_suspend(netdev->dev.parent,
5553 					    MSEC_PER_SEC * 5);
5554 
5555 		/* also check for alternate media here */
5556 		} else if (!netif_carrier_ok(netdev) &&
5557 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5558 			igb_check_swap_media(adapter);
5559 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5560 				schedule_work(&adapter->reset_task);
5561 				/* return immediately */
5562 				return;
5563 			}
5564 		}
5565 	}
5566 
5567 	spin_lock(&adapter->stats64_lock);
5568 	igb_update_stats(adapter);
5569 	spin_unlock(&adapter->stats64_lock);
5570 
5571 	for (i = 0; i < adapter->num_tx_queues; i++) {
5572 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5573 		if (!netif_carrier_ok(netdev)) {
5574 			/* We've lost link, so the controller stops DMA,
5575 			 * but we've got queued Tx work that's never going
5576 			 * to get done, so reset controller to flush Tx.
5577 			 * (Do the reset outside of interrupt context).
5578 			 */
5579 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5580 				adapter->tx_timeout_count++;
5581 				schedule_work(&adapter->reset_task);
5582 				/* return immediately since reset is imminent */
5583 				return;
5584 			}
5585 		}
5586 
5587 		/* Force detection of hung controller every watchdog period */
5588 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5589 	}
5590 
5591 	/* Cause software interrupt to ensure Rx ring is cleaned */
5592 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5593 		u32 eics = 0;
5594 
5595 		for (i = 0; i < adapter->num_q_vectors; i++)
5596 			eics |= adapter->q_vector[i]->eims_value;
5597 		wr32(E1000_EICS, eics);
5598 	} else {
5599 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5600 	}
5601 
5602 	igb_spoof_check(adapter);
5603 	igb_ptp_rx_hang(adapter);
5604 	igb_ptp_tx_hang(adapter);
5605 
5606 	/* Check LVMMC register on i350/i354 only */
5607 	if ((adapter->hw.mac.type == e1000_i350) ||
5608 	    (adapter->hw.mac.type == e1000_i354))
5609 		igb_check_lvmmc(adapter);
5610 
5611 	/* Reset the timer */
5612 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5613 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5614 			mod_timer(&adapter->watchdog_timer,
5615 				  round_jiffies(jiffies +  HZ));
5616 		else
5617 			mod_timer(&adapter->watchdog_timer,
5618 				  round_jiffies(jiffies + 2 * HZ));
5619 	}
5620 }
5621 
5622 enum latency_range {
5623 	lowest_latency = 0,
5624 	low_latency = 1,
5625 	bulk_latency = 2,
5626 	latency_invalid = 255
5627 };
5628 
5629 /**
5630  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5631  *  @q_vector: pointer to q_vector
5632  *
5633  *  Stores a new ITR value based on strictly on packet size.  This
5634  *  algorithm is less sophisticated than that used in igb_update_itr,
5635  *  due to the difficulty of synchronizing statistics across multiple
5636  *  receive rings.  The divisors and thresholds used by this function
5637  *  were determined based on theoretical maximum wire speed and testing
5638  *  data, in order to minimize response time while increasing bulk
5639  *  throughput.
5640  *  This functionality is controlled by ethtool's coalescing settings.
5641  *  NOTE:  This function is called only when operating in a multiqueue
5642  *         receive environment.
5643  **/
5644 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5645 {
5646 	int new_val = q_vector->itr_val;
5647 	int avg_wire_size = 0;
5648 	struct igb_adapter *adapter = q_vector->adapter;
5649 	unsigned int packets;
5650 
5651 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5652 	 * ints/sec - ITR timer value of 120 ticks.
5653 	 */
5654 	if (adapter->link_speed != SPEED_1000) {
5655 		new_val = IGB_4K_ITR;
5656 		goto set_itr_val;
5657 	}
5658 
5659 	packets = q_vector->rx.total_packets;
5660 	if (packets)
5661 		avg_wire_size = q_vector->rx.total_bytes / packets;
5662 
5663 	packets = q_vector->tx.total_packets;
5664 	if (packets)
5665 		avg_wire_size = max_t(u32, avg_wire_size,
5666 				      q_vector->tx.total_bytes / packets);
5667 
5668 	/* if avg_wire_size isn't set no work was done */
5669 	if (!avg_wire_size)
5670 		goto clear_counts;
5671 
5672 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5673 	avg_wire_size += 24;
5674 
5675 	/* Don't starve jumbo frames */
5676 	avg_wire_size = min(avg_wire_size, 3000);
5677 
5678 	/* Give a little boost to mid-size frames */
5679 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5680 		new_val = avg_wire_size / 3;
5681 	else
5682 		new_val = avg_wire_size / 2;
5683 
5684 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5685 	if (new_val < IGB_20K_ITR &&
5686 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5687 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5688 		new_val = IGB_20K_ITR;
5689 
5690 set_itr_val:
5691 	if (new_val != q_vector->itr_val) {
5692 		q_vector->itr_val = new_val;
5693 		q_vector->set_itr = 1;
5694 	}
5695 clear_counts:
5696 	q_vector->rx.total_bytes = 0;
5697 	q_vector->rx.total_packets = 0;
5698 	q_vector->tx.total_bytes = 0;
5699 	q_vector->tx.total_packets = 0;
5700 }
5701 
5702 /**
5703  *  igb_update_itr - update the dynamic ITR value based on statistics
5704  *  @q_vector: pointer to q_vector
5705  *  @ring_container: ring info to update the itr for
5706  *
5707  *  Stores a new ITR value based on packets and byte
5708  *  counts during the last interrupt.  The advantage of per interrupt
5709  *  computation is faster updates and more accurate ITR for the current
5710  *  traffic pattern.  Constants in this function were computed
5711  *  based on theoretical maximum wire speed and thresholds were set based
5712  *  on testing data as well as attempting to minimize response time
5713  *  while increasing bulk throughput.
5714  *  This functionality is controlled by ethtool's coalescing settings.
5715  *  NOTE:  These calculations are only valid when operating in a single-
5716  *         queue environment.
5717  **/
5718 static void igb_update_itr(struct igb_q_vector *q_vector,
5719 			   struct igb_ring_container *ring_container)
5720 {
5721 	unsigned int packets = ring_container->total_packets;
5722 	unsigned int bytes = ring_container->total_bytes;
5723 	u8 itrval = ring_container->itr;
5724 
5725 	/* no packets, exit with status unchanged */
5726 	if (packets == 0)
5727 		return;
5728 
5729 	switch (itrval) {
5730 	case lowest_latency:
5731 		/* handle TSO and jumbo frames */
5732 		if (bytes/packets > 8000)
5733 			itrval = bulk_latency;
5734 		else if ((packets < 5) && (bytes > 512))
5735 			itrval = low_latency;
5736 		break;
5737 	case low_latency:  /* 50 usec aka 20000 ints/s */
5738 		if (bytes > 10000) {
5739 			/* this if handles the TSO accounting */
5740 			if (bytes/packets > 8000)
5741 				itrval = bulk_latency;
5742 			else if ((packets < 10) || ((bytes/packets) > 1200))
5743 				itrval = bulk_latency;
5744 			else if ((packets > 35))
5745 				itrval = lowest_latency;
5746 		} else if (bytes/packets > 2000) {
5747 			itrval = bulk_latency;
5748 		} else if (packets <= 2 && bytes < 512) {
5749 			itrval = lowest_latency;
5750 		}
5751 		break;
5752 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5753 		if (bytes > 25000) {
5754 			if (packets > 35)
5755 				itrval = low_latency;
5756 		} else if (bytes < 1500) {
5757 			itrval = low_latency;
5758 		}
5759 		break;
5760 	}
5761 
5762 	/* clear work counters since we have the values we need */
5763 	ring_container->total_bytes = 0;
5764 	ring_container->total_packets = 0;
5765 
5766 	/* write updated itr to ring container */
5767 	ring_container->itr = itrval;
5768 }
5769 
5770 static void igb_set_itr(struct igb_q_vector *q_vector)
5771 {
5772 	struct igb_adapter *adapter = q_vector->adapter;
5773 	u32 new_itr = q_vector->itr_val;
5774 	u8 current_itr = 0;
5775 
5776 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5777 	if (adapter->link_speed != SPEED_1000) {
5778 		current_itr = 0;
5779 		new_itr = IGB_4K_ITR;
5780 		goto set_itr_now;
5781 	}
5782 
5783 	igb_update_itr(q_vector, &q_vector->tx);
5784 	igb_update_itr(q_vector, &q_vector->rx);
5785 
5786 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5787 
5788 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5789 	if (current_itr == lowest_latency &&
5790 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5791 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5792 		current_itr = low_latency;
5793 
5794 	switch (current_itr) {
5795 	/* counts and packets in update_itr are dependent on these numbers */
5796 	case lowest_latency:
5797 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5798 		break;
5799 	case low_latency:
5800 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5801 		break;
5802 	case bulk_latency:
5803 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5804 		break;
5805 	default:
5806 		break;
5807 	}
5808 
5809 set_itr_now:
5810 	if (new_itr != q_vector->itr_val) {
5811 		/* this attempts to bias the interrupt rate towards Bulk
5812 		 * by adding intermediate steps when interrupt rate is
5813 		 * increasing
5814 		 */
5815 		new_itr = new_itr > q_vector->itr_val ?
5816 			  max((new_itr * q_vector->itr_val) /
5817 			  (new_itr + (q_vector->itr_val >> 2)),
5818 			  new_itr) : new_itr;
5819 		/* Don't write the value here; it resets the adapter's
5820 		 * internal timer, and causes us to delay far longer than
5821 		 * we should between interrupts.  Instead, we write the ITR
5822 		 * value at the beginning of the next interrupt so the timing
5823 		 * ends up being correct.
5824 		 */
5825 		q_vector->itr_val = new_itr;
5826 		q_vector->set_itr = 1;
5827 	}
5828 }
5829 
5830 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5831 			    struct igb_tx_buffer *first,
5832 			    u32 vlan_macip_lens, u32 type_tucmd,
5833 			    u32 mss_l4len_idx)
5834 {
5835 	struct e1000_adv_tx_context_desc *context_desc;
5836 	u16 i = tx_ring->next_to_use;
5837 	struct timespec64 ts;
5838 
5839 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5840 
5841 	i++;
5842 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5843 
5844 	/* set bits to identify this as an advanced context descriptor */
5845 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5846 
5847 	/* For 82575, context index must be unique per ring. */
5848 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5849 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5850 
5851 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5852 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5853 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5854 
5855 	/* We assume there is always a valid tx time available. Invalid times
5856 	 * should have been handled by the upper layers.
5857 	 */
5858 	if (tx_ring->launchtime_enable) {
5859 		ts = ktime_to_timespec64(first->skb->tstamp);
5860 		first->skb->tstamp = ktime_set(0, 0);
5861 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5862 	} else {
5863 		context_desc->seqnum_seed = 0;
5864 	}
5865 }
5866 
5867 static int igb_tso(struct igb_ring *tx_ring,
5868 		   struct igb_tx_buffer *first,
5869 		   u8 *hdr_len)
5870 {
5871 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5872 	struct sk_buff *skb = first->skb;
5873 	union {
5874 		struct iphdr *v4;
5875 		struct ipv6hdr *v6;
5876 		unsigned char *hdr;
5877 	} ip;
5878 	union {
5879 		struct tcphdr *tcp;
5880 		struct udphdr *udp;
5881 		unsigned char *hdr;
5882 	} l4;
5883 	u32 paylen, l4_offset;
5884 	int err;
5885 
5886 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5887 		return 0;
5888 
5889 	if (!skb_is_gso(skb))
5890 		return 0;
5891 
5892 	err = skb_cow_head(skb, 0);
5893 	if (err < 0)
5894 		return err;
5895 
5896 	ip.hdr = skb_network_header(skb);
5897 	l4.hdr = skb_checksum_start(skb);
5898 
5899 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5900 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5901 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5902 
5903 	/* initialize outer IP header fields */
5904 	if (ip.v4->version == 4) {
5905 		unsigned char *csum_start = skb_checksum_start(skb);
5906 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5907 
5908 		/* IP header will have to cancel out any data that
5909 		 * is not a part of the outer IP header
5910 		 */
5911 		ip.v4->check = csum_fold(csum_partial(trans_start,
5912 						      csum_start - trans_start,
5913 						      0));
5914 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5915 
5916 		ip.v4->tot_len = 0;
5917 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5918 				   IGB_TX_FLAGS_CSUM |
5919 				   IGB_TX_FLAGS_IPV4;
5920 	} else {
5921 		ip.v6->payload_len = 0;
5922 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5923 				   IGB_TX_FLAGS_CSUM;
5924 	}
5925 
5926 	/* determine offset of inner transport header */
5927 	l4_offset = l4.hdr - skb->data;
5928 
5929 	/* remove payload length from inner checksum */
5930 	paylen = skb->len - l4_offset;
5931 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5932 		/* compute length of segmentation header */
5933 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5934 		csum_replace_by_diff(&l4.tcp->check,
5935 			(__force __wsum)htonl(paylen));
5936 	} else {
5937 		/* compute length of segmentation header */
5938 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5939 		csum_replace_by_diff(&l4.udp->check,
5940 				     (__force __wsum)htonl(paylen));
5941 	}
5942 
5943 	/* update gso size and bytecount with header size */
5944 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5945 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5946 
5947 	/* MSS L4LEN IDX */
5948 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5949 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5950 
5951 	/* VLAN MACLEN IPLEN */
5952 	vlan_macip_lens = l4.hdr - ip.hdr;
5953 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5954 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5955 
5956 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5957 			type_tucmd, mss_l4len_idx);
5958 
5959 	return 1;
5960 }
5961 
5962 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5963 {
5964 	unsigned int offset = 0;
5965 
5966 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5967 
5968 	return offset == skb_checksum_start_offset(skb);
5969 }
5970 
5971 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5972 {
5973 	struct sk_buff *skb = first->skb;
5974 	u32 vlan_macip_lens = 0;
5975 	u32 type_tucmd = 0;
5976 
5977 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5978 csum_failed:
5979 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5980 		    !tx_ring->launchtime_enable)
5981 			return;
5982 		goto no_csum;
5983 	}
5984 
5985 	switch (skb->csum_offset) {
5986 	case offsetof(struct tcphdr, check):
5987 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5988 		fallthrough;
5989 	case offsetof(struct udphdr, check):
5990 		break;
5991 	case offsetof(struct sctphdr, checksum):
5992 		/* validate that this is actually an SCTP request */
5993 		if (((first->protocol == htons(ETH_P_IP)) &&
5994 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5995 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5996 		     igb_ipv6_csum_is_sctp(skb))) {
5997 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5998 			break;
5999 		}
6000 		fallthrough;
6001 	default:
6002 		skb_checksum_help(skb);
6003 		goto csum_failed;
6004 	}
6005 
6006 	/* update TX checksum flag */
6007 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6008 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6009 			  skb_network_offset(skb);
6010 no_csum:
6011 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6012 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6013 
6014 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6015 }
6016 
6017 #define IGB_SET_FLAG(_input, _flag, _result) \
6018 	((_flag <= _result) ? \
6019 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6020 	 ((u32)(_input & _flag) / (_flag / _result)))
6021 
6022 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6023 {
6024 	/* set type for advanced descriptor with frame checksum insertion */
6025 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6026 		       E1000_ADVTXD_DCMD_DEXT |
6027 		       E1000_ADVTXD_DCMD_IFCS;
6028 
6029 	/* set HW vlan bit if vlan is present */
6030 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6031 				 (E1000_ADVTXD_DCMD_VLE));
6032 
6033 	/* set segmentation bits for TSO */
6034 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6035 				 (E1000_ADVTXD_DCMD_TSE));
6036 
6037 	/* set timestamp bit if present */
6038 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6039 				 (E1000_ADVTXD_MAC_TSTAMP));
6040 
6041 	/* insert frame checksum */
6042 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6043 
6044 	return cmd_type;
6045 }
6046 
6047 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6048 				 union e1000_adv_tx_desc *tx_desc,
6049 				 u32 tx_flags, unsigned int paylen)
6050 {
6051 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6052 
6053 	/* 82575 requires a unique index per ring */
6054 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6055 		olinfo_status |= tx_ring->reg_idx << 4;
6056 
6057 	/* insert L4 checksum */
6058 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6059 				      IGB_TX_FLAGS_CSUM,
6060 				      (E1000_TXD_POPTS_TXSM << 8));
6061 
6062 	/* insert IPv4 checksum */
6063 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6064 				      IGB_TX_FLAGS_IPV4,
6065 				      (E1000_TXD_POPTS_IXSM << 8));
6066 
6067 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6068 }
6069 
6070 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6071 {
6072 	struct net_device *netdev = tx_ring->netdev;
6073 
6074 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6075 
6076 	/* Herbert's original patch had:
6077 	 *  smp_mb__after_netif_stop_queue();
6078 	 * but since that doesn't exist yet, just open code it.
6079 	 */
6080 	smp_mb();
6081 
6082 	/* We need to check again in a case another CPU has just
6083 	 * made room available.
6084 	 */
6085 	if (igb_desc_unused(tx_ring) < size)
6086 		return -EBUSY;
6087 
6088 	/* A reprieve! */
6089 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6090 
6091 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6092 	tx_ring->tx_stats.restart_queue2++;
6093 	u64_stats_update_end(&tx_ring->tx_syncp2);
6094 
6095 	return 0;
6096 }
6097 
6098 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6099 {
6100 	if (igb_desc_unused(tx_ring) >= size)
6101 		return 0;
6102 	return __igb_maybe_stop_tx(tx_ring, size);
6103 }
6104 
6105 static int igb_tx_map(struct igb_ring *tx_ring,
6106 		      struct igb_tx_buffer *first,
6107 		      const u8 hdr_len)
6108 {
6109 	struct sk_buff *skb = first->skb;
6110 	struct igb_tx_buffer *tx_buffer;
6111 	union e1000_adv_tx_desc *tx_desc;
6112 	skb_frag_t *frag;
6113 	dma_addr_t dma;
6114 	unsigned int data_len, size;
6115 	u32 tx_flags = first->tx_flags;
6116 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6117 	u16 i = tx_ring->next_to_use;
6118 
6119 	tx_desc = IGB_TX_DESC(tx_ring, i);
6120 
6121 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6122 
6123 	size = skb_headlen(skb);
6124 	data_len = skb->data_len;
6125 
6126 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6127 
6128 	tx_buffer = first;
6129 
6130 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6131 		if (dma_mapping_error(tx_ring->dev, dma))
6132 			goto dma_error;
6133 
6134 		/* record length, and DMA address */
6135 		dma_unmap_len_set(tx_buffer, len, size);
6136 		dma_unmap_addr_set(tx_buffer, dma, dma);
6137 
6138 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6139 
6140 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6141 			tx_desc->read.cmd_type_len =
6142 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6143 
6144 			i++;
6145 			tx_desc++;
6146 			if (i == tx_ring->count) {
6147 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6148 				i = 0;
6149 			}
6150 			tx_desc->read.olinfo_status = 0;
6151 
6152 			dma += IGB_MAX_DATA_PER_TXD;
6153 			size -= IGB_MAX_DATA_PER_TXD;
6154 
6155 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6156 		}
6157 
6158 		if (likely(!data_len))
6159 			break;
6160 
6161 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6162 
6163 		i++;
6164 		tx_desc++;
6165 		if (i == tx_ring->count) {
6166 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6167 			i = 0;
6168 		}
6169 		tx_desc->read.olinfo_status = 0;
6170 
6171 		size = skb_frag_size(frag);
6172 		data_len -= size;
6173 
6174 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6175 				       size, DMA_TO_DEVICE);
6176 
6177 		tx_buffer = &tx_ring->tx_buffer_info[i];
6178 	}
6179 
6180 	/* write last descriptor with RS and EOP bits */
6181 	cmd_type |= size | IGB_TXD_DCMD;
6182 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6183 
6184 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6185 
6186 	/* set the timestamp */
6187 	first->time_stamp = jiffies;
6188 
6189 	skb_tx_timestamp(skb);
6190 
6191 	/* Force memory writes to complete before letting h/w know there
6192 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6193 	 * memory model archs, such as IA-64).
6194 	 *
6195 	 * We also need this memory barrier to make certain all of the
6196 	 * status bits have been updated before next_to_watch is written.
6197 	 */
6198 	dma_wmb();
6199 
6200 	/* set next_to_watch value indicating a packet is present */
6201 	first->next_to_watch = tx_desc;
6202 
6203 	i++;
6204 	if (i == tx_ring->count)
6205 		i = 0;
6206 
6207 	tx_ring->next_to_use = i;
6208 
6209 	/* Make sure there is space in the ring for the next send. */
6210 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6211 
6212 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6213 		writel(i, tx_ring->tail);
6214 	}
6215 	return 0;
6216 
6217 dma_error:
6218 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6219 	tx_buffer = &tx_ring->tx_buffer_info[i];
6220 
6221 	/* clear dma mappings for failed tx_buffer_info map */
6222 	while (tx_buffer != first) {
6223 		if (dma_unmap_len(tx_buffer, len))
6224 			dma_unmap_page(tx_ring->dev,
6225 				       dma_unmap_addr(tx_buffer, dma),
6226 				       dma_unmap_len(tx_buffer, len),
6227 				       DMA_TO_DEVICE);
6228 		dma_unmap_len_set(tx_buffer, len, 0);
6229 
6230 		if (i-- == 0)
6231 			i += tx_ring->count;
6232 		tx_buffer = &tx_ring->tx_buffer_info[i];
6233 	}
6234 
6235 	if (dma_unmap_len(tx_buffer, len))
6236 		dma_unmap_single(tx_ring->dev,
6237 				 dma_unmap_addr(tx_buffer, dma),
6238 				 dma_unmap_len(tx_buffer, len),
6239 				 DMA_TO_DEVICE);
6240 	dma_unmap_len_set(tx_buffer, len, 0);
6241 
6242 	dev_kfree_skb_any(tx_buffer->skb);
6243 	tx_buffer->skb = NULL;
6244 
6245 	tx_ring->next_to_use = i;
6246 
6247 	return -1;
6248 }
6249 
6250 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6251 		      struct igb_ring *tx_ring,
6252 		      struct xdp_frame *xdpf)
6253 {
6254 	union e1000_adv_tx_desc *tx_desc;
6255 	u32 len, cmd_type, olinfo_status;
6256 	struct igb_tx_buffer *tx_buffer;
6257 	dma_addr_t dma;
6258 	u16 i;
6259 
6260 	len = xdpf->len;
6261 
6262 	if (unlikely(!igb_desc_unused(tx_ring)))
6263 		return IGB_XDP_CONSUMED;
6264 
6265 	dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6266 	if (dma_mapping_error(tx_ring->dev, dma))
6267 		return IGB_XDP_CONSUMED;
6268 
6269 	/* record the location of the first descriptor for this packet */
6270 	tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6271 	tx_buffer->bytecount = len;
6272 	tx_buffer->gso_segs = 1;
6273 	tx_buffer->protocol = 0;
6274 
6275 	i = tx_ring->next_to_use;
6276 	tx_desc = IGB_TX_DESC(tx_ring, i);
6277 
6278 	dma_unmap_len_set(tx_buffer, len, len);
6279 	dma_unmap_addr_set(tx_buffer, dma, dma);
6280 	tx_buffer->type = IGB_TYPE_XDP;
6281 	tx_buffer->xdpf = xdpf;
6282 
6283 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
6284 
6285 	/* put descriptor type bits */
6286 	cmd_type = E1000_ADVTXD_DTYP_DATA |
6287 		   E1000_ADVTXD_DCMD_DEXT |
6288 		   E1000_ADVTXD_DCMD_IFCS;
6289 	cmd_type |= len | IGB_TXD_DCMD;
6290 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6291 
6292 	olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT);
6293 	/* 82575 requires a unique index per ring */
6294 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6295 		olinfo_status |= tx_ring->reg_idx << 4;
6296 
6297 	tx_desc->read.olinfo_status = olinfo_status;
6298 
6299 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6300 
6301 	/* set the timestamp */
6302 	tx_buffer->time_stamp = jiffies;
6303 
6304 	/* Avoid any potential race with xdp_xmit and cleanup */
6305 	smp_wmb();
6306 
6307 	/* set next_to_watch value indicating a packet is present */
6308 	i++;
6309 	if (i == tx_ring->count)
6310 		i = 0;
6311 
6312 	tx_buffer->next_to_watch = tx_desc;
6313 	tx_ring->next_to_use = i;
6314 
6315 	/* Make sure there is space in the ring for the next send. */
6316 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6317 
6318 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6319 		writel(i, tx_ring->tail);
6320 
6321 	return IGB_XDP_TX;
6322 }
6323 
6324 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6325 				struct igb_ring *tx_ring)
6326 {
6327 	struct igb_tx_buffer *first;
6328 	int tso;
6329 	u32 tx_flags = 0;
6330 	unsigned short f;
6331 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6332 	__be16 protocol = vlan_get_protocol(skb);
6333 	u8 hdr_len = 0;
6334 
6335 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6336 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6337 	 *       + 2 desc gap to keep tail from touching head,
6338 	 *       + 1 desc for context descriptor,
6339 	 * otherwise try next time
6340 	 */
6341 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6342 		count += TXD_USE_COUNT(skb_frag_size(
6343 						&skb_shinfo(skb)->frags[f]));
6344 
6345 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6346 		/* this is a hard error */
6347 		return NETDEV_TX_BUSY;
6348 	}
6349 
6350 	/* record the location of the first descriptor for this packet */
6351 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6352 	first->type = IGB_TYPE_SKB;
6353 	first->skb = skb;
6354 	first->bytecount = skb->len;
6355 	first->gso_segs = 1;
6356 
6357 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6358 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6359 
6360 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6361 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6362 					   &adapter->state)) {
6363 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6364 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6365 
6366 			adapter->ptp_tx_skb = skb_get(skb);
6367 			adapter->ptp_tx_start = jiffies;
6368 			if (adapter->hw.mac.type == e1000_82576)
6369 				schedule_work(&adapter->ptp_tx_work);
6370 		} else {
6371 			adapter->tx_hwtstamp_skipped++;
6372 		}
6373 	}
6374 
6375 	if (skb_vlan_tag_present(skb)) {
6376 		tx_flags |= IGB_TX_FLAGS_VLAN;
6377 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6378 	}
6379 
6380 	/* record initial flags and protocol */
6381 	first->tx_flags = tx_flags;
6382 	first->protocol = protocol;
6383 
6384 	tso = igb_tso(tx_ring, first, &hdr_len);
6385 	if (tso < 0)
6386 		goto out_drop;
6387 	else if (!tso)
6388 		igb_tx_csum(tx_ring, first);
6389 
6390 	if (igb_tx_map(tx_ring, first, hdr_len))
6391 		goto cleanup_tx_tstamp;
6392 
6393 	return NETDEV_TX_OK;
6394 
6395 out_drop:
6396 	dev_kfree_skb_any(first->skb);
6397 	first->skb = NULL;
6398 cleanup_tx_tstamp:
6399 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6400 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6401 
6402 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6403 		adapter->ptp_tx_skb = NULL;
6404 		if (adapter->hw.mac.type == e1000_82576)
6405 			cancel_work_sync(&adapter->ptp_tx_work);
6406 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6407 	}
6408 
6409 	return NETDEV_TX_OK;
6410 }
6411 
6412 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6413 						    struct sk_buff *skb)
6414 {
6415 	unsigned int r_idx = skb->queue_mapping;
6416 
6417 	if (r_idx >= adapter->num_tx_queues)
6418 		r_idx = r_idx % adapter->num_tx_queues;
6419 
6420 	return adapter->tx_ring[r_idx];
6421 }
6422 
6423 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6424 				  struct net_device *netdev)
6425 {
6426 	struct igb_adapter *adapter = netdev_priv(netdev);
6427 
6428 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6429 	 * in order to meet this minimum size requirement.
6430 	 */
6431 	if (skb_put_padto(skb, 17))
6432 		return NETDEV_TX_OK;
6433 
6434 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6435 }
6436 
6437 /**
6438  *  igb_tx_timeout - Respond to a Tx Hang
6439  *  @netdev: network interface device structure
6440  *  @txqueue: number of the Tx queue that hung (unused)
6441  **/
6442 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6443 {
6444 	struct igb_adapter *adapter = netdev_priv(netdev);
6445 	struct e1000_hw *hw = &adapter->hw;
6446 
6447 	/* Do the reset outside of interrupt context */
6448 	adapter->tx_timeout_count++;
6449 
6450 	if (hw->mac.type >= e1000_82580)
6451 		hw->dev_spec._82575.global_device_reset = true;
6452 
6453 	schedule_work(&adapter->reset_task);
6454 	wr32(E1000_EICS,
6455 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6456 }
6457 
6458 static void igb_reset_task(struct work_struct *work)
6459 {
6460 	struct igb_adapter *adapter;
6461 	adapter = container_of(work, struct igb_adapter, reset_task);
6462 
6463 	rtnl_lock();
6464 	/* If we're already down or resetting, just bail */
6465 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6466 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6467 		rtnl_unlock();
6468 		return;
6469 	}
6470 
6471 	igb_dump(adapter);
6472 	netdev_err(adapter->netdev, "Reset adapter\n");
6473 	igb_reinit_locked(adapter);
6474 	rtnl_unlock();
6475 }
6476 
6477 /**
6478  *  igb_get_stats64 - Get System Network Statistics
6479  *  @netdev: network interface device structure
6480  *  @stats: rtnl_link_stats64 pointer
6481  **/
6482 static void igb_get_stats64(struct net_device *netdev,
6483 			    struct rtnl_link_stats64 *stats)
6484 {
6485 	struct igb_adapter *adapter = netdev_priv(netdev);
6486 
6487 	spin_lock(&adapter->stats64_lock);
6488 	igb_update_stats(adapter);
6489 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6490 	spin_unlock(&adapter->stats64_lock);
6491 }
6492 
6493 /**
6494  *  igb_change_mtu - Change the Maximum Transfer Unit
6495  *  @netdev: network interface device structure
6496  *  @new_mtu: new value for maximum frame size
6497  *
6498  *  Returns 0 on success, negative on failure
6499  **/
6500 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6501 {
6502 	struct igb_adapter *adapter = netdev_priv(netdev);
6503 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6504 
6505 	if (adapter->xdp_prog) {
6506 		int i;
6507 
6508 		for (i = 0; i < adapter->num_rx_queues; i++) {
6509 			struct igb_ring *ring = adapter->rx_ring[i];
6510 
6511 			if (max_frame > igb_rx_bufsz(ring)) {
6512 				netdev_warn(adapter->netdev,
6513 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6514 					    max_frame);
6515 				return -EINVAL;
6516 			}
6517 		}
6518 	}
6519 
6520 	/* adjust max frame to be at least the size of a standard frame */
6521 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6522 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6523 
6524 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6525 		usleep_range(1000, 2000);
6526 
6527 	/* igb_down has a dependency on max_frame_size */
6528 	adapter->max_frame_size = max_frame;
6529 
6530 	if (netif_running(netdev))
6531 		igb_down(adapter);
6532 
6533 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6534 		   netdev->mtu, new_mtu);
6535 	netdev->mtu = new_mtu;
6536 
6537 	if (netif_running(netdev))
6538 		igb_up(adapter);
6539 	else
6540 		igb_reset(adapter);
6541 
6542 	clear_bit(__IGB_RESETTING, &adapter->state);
6543 
6544 	return 0;
6545 }
6546 
6547 /**
6548  *  igb_update_stats - Update the board statistics counters
6549  *  @adapter: board private structure
6550  **/
6551 void igb_update_stats(struct igb_adapter *adapter)
6552 {
6553 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6554 	struct e1000_hw *hw = &adapter->hw;
6555 	struct pci_dev *pdev = adapter->pdev;
6556 	u32 reg, mpc;
6557 	int i;
6558 	u64 bytes, packets;
6559 	unsigned int start;
6560 	u64 _bytes, _packets;
6561 
6562 	/* Prevent stats update while adapter is being reset, or if the pci
6563 	 * connection is down.
6564 	 */
6565 	if (adapter->link_speed == 0)
6566 		return;
6567 	if (pci_channel_offline(pdev))
6568 		return;
6569 
6570 	bytes = 0;
6571 	packets = 0;
6572 
6573 	rcu_read_lock();
6574 	for (i = 0; i < adapter->num_rx_queues; i++) {
6575 		struct igb_ring *ring = adapter->rx_ring[i];
6576 		u32 rqdpc = rd32(E1000_RQDPC(i));
6577 		if (hw->mac.type >= e1000_i210)
6578 			wr32(E1000_RQDPC(i), 0);
6579 
6580 		if (rqdpc) {
6581 			ring->rx_stats.drops += rqdpc;
6582 			net_stats->rx_fifo_errors += rqdpc;
6583 		}
6584 
6585 		do {
6586 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6587 			_bytes = ring->rx_stats.bytes;
6588 			_packets = ring->rx_stats.packets;
6589 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6590 		bytes += _bytes;
6591 		packets += _packets;
6592 	}
6593 
6594 	net_stats->rx_bytes = bytes;
6595 	net_stats->rx_packets = packets;
6596 
6597 	bytes = 0;
6598 	packets = 0;
6599 	for (i = 0; i < adapter->num_tx_queues; i++) {
6600 		struct igb_ring *ring = adapter->tx_ring[i];
6601 		do {
6602 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6603 			_bytes = ring->tx_stats.bytes;
6604 			_packets = ring->tx_stats.packets;
6605 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6606 		bytes += _bytes;
6607 		packets += _packets;
6608 	}
6609 	net_stats->tx_bytes = bytes;
6610 	net_stats->tx_packets = packets;
6611 	rcu_read_unlock();
6612 
6613 	/* read stats registers */
6614 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6615 	adapter->stats.gprc += rd32(E1000_GPRC);
6616 	adapter->stats.gorc += rd32(E1000_GORCL);
6617 	rd32(E1000_GORCH); /* clear GORCL */
6618 	adapter->stats.bprc += rd32(E1000_BPRC);
6619 	adapter->stats.mprc += rd32(E1000_MPRC);
6620 	adapter->stats.roc += rd32(E1000_ROC);
6621 
6622 	adapter->stats.prc64 += rd32(E1000_PRC64);
6623 	adapter->stats.prc127 += rd32(E1000_PRC127);
6624 	adapter->stats.prc255 += rd32(E1000_PRC255);
6625 	adapter->stats.prc511 += rd32(E1000_PRC511);
6626 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6627 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6628 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6629 	adapter->stats.sec += rd32(E1000_SEC);
6630 
6631 	mpc = rd32(E1000_MPC);
6632 	adapter->stats.mpc += mpc;
6633 	net_stats->rx_fifo_errors += mpc;
6634 	adapter->stats.scc += rd32(E1000_SCC);
6635 	adapter->stats.ecol += rd32(E1000_ECOL);
6636 	adapter->stats.mcc += rd32(E1000_MCC);
6637 	adapter->stats.latecol += rd32(E1000_LATECOL);
6638 	adapter->stats.dc += rd32(E1000_DC);
6639 	adapter->stats.rlec += rd32(E1000_RLEC);
6640 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6641 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6642 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6643 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6644 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6645 	adapter->stats.gptc += rd32(E1000_GPTC);
6646 	adapter->stats.gotc += rd32(E1000_GOTCL);
6647 	rd32(E1000_GOTCH); /* clear GOTCL */
6648 	adapter->stats.rnbc += rd32(E1000_RNBC);
6649 	adapter->stats.ruc += rd32(E1000_RUC);
6650 	adapter->stats.rfc += rd32(E1000_RFC);
6651 	adapter->stats.rjc += rd32(E1000_RJC);
6652 	adapter->stats.tor += rd32(E1000_TORH);
6653 	adapter->stats.tot += rd32(E1000_TOTH);
6654 	adapter->stats.tpr += rd32(E1000_TPR);
6655 
6656 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6657 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6658 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6659 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6660 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6661 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6662 
6663 	adapter->stats.mptc += rd32(E1000_MPTC);
6664 	adapter->stats.bptc += rd32(E1000_BPTC);
6665 
6666 	adapter->stats.tpt += rd32(E1000_TPT);
6667 	adapter->stats.colc += rd32(E1000_COLC);
6668 
6669 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6670 	/* read internal phy specific stats */
6671 	reg = rd32(E1000_CTRL_EXT);
6672 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6673 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6674 
6675 		/* this stat has invalid values on i210/i211 */
6676 		if ((hw->mac.type != e1000_i210) &&
6677 		    (hw->mac.type != e1000_i211))
6678 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6679 	}
6680 
6681 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6682 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6683 
6684 	adapter->stats.iac += rd32(E1000_IAC);
6685 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6686 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6687 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6688 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6689 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6690 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6691 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6692 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6693 
6694 	/* Fill out the OS statistics structure */
6695 	net_stats->multicast = adapter->stats.mprc;
6696 	net_stats->collisions = adapter->stats.colc;
6697 
6698 	/* Rx Errors */
6699 
6700 	/* RLEC on some newer hardware can be incorrect so build
6701 	 * our own version based on RUC and ROC
6702 	 */
6703 	net_stats->rx_errors = adapter->stats.rxerrc +
6704 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6705 		adapter->stats.ruc + adapter->stats.roc +
6706 		adapter->stats.cexterr;
6707 	net_stats->rx_length_errors = adapter->stats.ruc +
6708 				      adapter->stats.roc;
6709 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6710 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6711 	net_stats->rx_missed_errors = adapter->stats.mpc;
6712 
6713 	/* Tx Errors */
6714 	net_stats->tx_errors = adapter->stats.ecol +
6715 			       adapter->stats.latecol;
6716 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6717 	net_stats->tx_window_errors = adapter->stats.latecol;
6718 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6719 
6720 	/* Tx Dropped needs to be maintained elsewhere */
6721 
6722 	/* Management Stats */
6723 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6724 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6725 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6726 
6727 	/* OS2BMC Stats */
6728 	reg = rd32(E1000_MANC);
6729 	if (reg & E1000_MANC_EN_BMC2OS) {
6730 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6731 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6732 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6733 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6734 	}
6735 }
6736 
6737 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6738 {
6739 	struct e1000_hw *hw = &adapter->hw;
6740 	struct ptp_clock_event event;
6741 	struct timespec64 ts;
6742 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6743 
6744 	if (tsicr & TSINTR_SYS_WRAP) {
6745 		event.type = PTP_CLOCK_PPS;
6746 		if (adapter->ptp_caps.pps)
6747 			ptp_clock_event(adapter->ptp_clock, &event);
6748 		ack |= TSINTR_SYS_WRAP;
6749 	}
6750 
6751 	if (tsicr & E1000_TSICR_TXTS) {
6752 		/* retrieve hardware timestamp */
6753 		schedule_work(&adapter->ptp_tx_work);
6754 		ack |= E1000_TSICR_TXTS;
6755 	}
6756 
6757 	if (tsicr & TSINTR_TT0) {
6758 		spin_lock(&adapter->tmreg_lock);
6759 		ts = timespec64_add(adapter->perout[0].start,
6760 				    adapter->perout[0].period);
6761 		/* u32 conversion of tv_sec is safe until y2106 */
6762 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6763 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6764 		tsauxc = rd32(E1000_TSAUXC);
6765 		tsauxc |= TSAUXC_EN_TT0;
6766 		wr32(E1000_TSAUXC, tsauxc);
6767 		adapter->perout[0].start = ts;
6768 		spin_unlock(&adapter->tmreg_lock);
6769 		ack |= TSINTR_TT0;
6770 	}
6771 
6772 	if (tsicr & TSINTR_TT1) {
6773 		spin_lock(&adapter->tmreg_lock);
6774 		ts = timespec64_add(adapter->perout[1].start,
6775 				    adapter->perout[1].period);
6776 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6777 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6778 		tsauxc = rd32(E1000_TSAUXC);
6779 		tsauxc |= TSAUXC_EN_TT1;
6780 		wr32(E1000_TSAUXC, tsauxc);
6781 		adapter->perout[1].start = ts;
6782 		spin_unlock(&adapter->tmreg_lock);
6783 		ack |= TSINTR_TT1;
6784 	}
6785 
6786 	if (tsicr & TSINTR_AUTT0) {
6787 		nsec = rd32(E1000_AUXSTMPL0);
6788 		sec  = rd32(E1000_AUXSTMPH0);
6789 		event.type = PTP_CLOCK_EXTTS;
6790 		event.index = 0;
6791 		event.timestamp = sec * 1000000000ULL + nsec;
6792 		ptp_clock_event(adapter->ptp_clock, &event);
6793 		ack |= TSINTR_AUTT0;
6794 	}
6795 
6796 	if (tsicr & TSINTR_AUTT1) {
6797 		nsec = rd32(E1000_AUXSTMPL1);
6798 		sec  = rd32(E1000_AUXSTMPH1);
6799 		event.type = PTP_CLOCK_EXTTS;
6800 		event.index = 1;
6801 		event.timestamp = sec * 1000000000ULL + nsec;
6802 		ptp_clock_event(adapter->ptp_clock, &event);
6803 		ack |= TSINTR_AUTT1;
6804 	}
6805 
6806 	/* acknowledge the interrupts */
6807 	wr32(E1000_TSICR, ack);
6808 }
6809 
6810 static irqreturn_t igb_msix_other(int irq, void *data)
6811 {
6812 	struct igb_adapter *adapter = data;
6813 	struct e1000_hw *hw = &adapter->hw;
6814 	u32 icr = rd32(E1000_ICR);
6815 	/* reading ICR causes bit 31 of EICR to be cleared */
6816 
6817 	if (icr & E1000_ICR_DRSTA)
6818 		schedule_work(&adapter->reset_task);
6819 
6820 	if (icr & E1000_ICR_DOUTSYNC) {
6821 		/* HW is reporting DMA is out of sync */
6822 		adapter->stats.doosync++;
6823 		/* The DMA Out of Sync is also indication of a spoof event
6824 		 * in IOV mode. Check the Wrong VM Behavior register to
6825 		 * see if it is really a spoof event.
6826 		 */
6827 		igb_check_wvbr(adapter);
6828 	}
6829 
6830 	/* Check for a mailbox event */
6831 	if (icr & E1000_ICR_VMMB)
6832 		igb_msg_task(adapter);
6833 
6834 	if (icr & E1000_ICR_LSC) {
6835 		hw->mac.get_link_status = 1;
6836 		/* guard against interrupt when we're going down */
6837 		if (!test_bit(__IGB_DOWN, &adapter->state))
6838 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6839 	}
6840 
6841 	if (icr & E1000_ICR_TS)
6842 		igb_tsync_interrupt(adapter);
6843 
6844 	wr32(E1000_EIMS, adapter->eims_other);
6845 
6846 	return IRQ_HANDLED;
6847 }
6848 
6849 static void igb_write_itr(struct igb_q_vector *q_vector)
6850 {
6851 	struct igb_adapter *adapter = q_vector->adapter;
6852 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6853 
6854 	if (!q_vector->set_itr)
6855 		return;
6856 
6857 	if (!itr_val)
6858 		itr_val = 0x4;
6859 
6860 	if (adapter->hw.mac.type == e1000_82575)
6861 		itr_val |= itr_val << 16;
6862 	else
6863 		itr_val |= E1000_EITR_CNT_IGNR;
6864 
6865 	writel(itr_val, q_vector->itr_register);
6866 	q_vector->set_itr = 0;
6867 }
6868 
6869 static irqreturn_t igb_msix_ring(int irq, void *data)
6870 {
6871 	struct igb_q_vector *q_vector = data;
6872 
6873 	/* Write the ITR value calculated from the previous interrupt. */
6874 	igb_write_itr(q_vector);
6875 
6876 	napi_schedule(&q_vector->napi);
6877 
6878 	return IRQ_HANDLED;
6879 }
6880 
6881 #ifdef CONFIG_IGB_DCA
6882 static void igb_update_tx_dca(struct igb_adapter *adapter,
6883 			      struct igb_ring *tx_ring,
6884 			      int cpu)
6885 {
6886 	struct e1000_hw *hw = &adapter->hw;
6887 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6888 
6889 	if (hw->mac.type != e1000_82575)
6890 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6891 
6892 	/* We can enable relaxed ordering for reads, but not writes when
6893 	 * DCA is enabled.  This is due to a known issue in some chipsets
6894 	 * which will cause the DCA tag to be cleared.
6895 	 */
6896 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6897 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6898 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6899 
6900 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6901 }
6902 
6903 static void igb_update_rx_dca(struct igb_adapter *adapter,
6904 			      struct igb_ring *rx_ring,
6905 			      int cpu)
6906 {
6907 	struct e1000_hw *hw = &adapter->hw;
6908 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6909 
6910 	if (hw->mac.type != e1000_82575)
6911 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6912 
6913 	/* We can enable relaxed ordering for reads, but not writes when
6914 	 * DCA is enabled.  This is due to a known issue in some chipsets
6915 	 * which will cause the DCA tag to be cleared.
6916 	 */
6917 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6918 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6919 
6920 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6921 }
6922 
6923 static void igb_update_dca(struct igb_q_vector *q_vector)
6924 {
6925 	struct igb_adapter *adapter = q_vector->adapter;
6926 	int cpu = get_cpu();
6927 
6928 	if (q_vector->cpu == cpu)
6929 		goto out_no_update;
6930 
6931 	if (q_vector->tx.ring)
6932 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6933 
6934 	if (q_vector->rx.ring)
6935 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6936 
6937 	q_vector->cpu = cpu;
6938 out_no_update:
6939 	put_cpu();
6940 }
6941 
6942 static void igb_setup_dca(struct igb_adapter *adapter)
6943 {
6944 	struct e1000_hw *hw = &adapter->hw;
6945 	int i;
6946 
6947 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6948 		return;
6949 
6950 	/* Always use CB2 mode, difference is masked in the CB driver. */
6951 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6952 
6953 	for (i = 0; i < adapter->num_q_vectors; i++) {
6954 		adapter->q_vector[i]->cpu = -1;
6955 		igb_update_dca(adapter->q_vector[i]);
6956 	}
6957 }
6958 
6959 static int __igb_notify_dca(struct device *dev, void *data)
6960 {
6961 	struct net_device *netdev = dev_get_drvdata(dev);
6962 	struct igb_adapter *adapter = netdev_priv(netdev);
6963 	struct pci_dev *pdev = adapter->pdev;
6964 	struct e1000_hw *hw = &adapter->hw;
6965 	unsigned long event = *(unsigned long *)data;
6966 
6967 	switch (event) {
6968 	case DCA_PROVIDER_ADD:
6969 		/* if already enabled, don't do it again */
6970 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6971 			break;
6972 		if (dca_add_requester(dev) == 0) {
6973 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6974 			dev_info(&pdev->dev, "DCA enabled\n");
6975 			igb_setup_dca(adapter);
6976 			break;
6977 		}
6978 		fallthrough; /* since DCA is disabled. */
6979 	case DCA_PROVIDER_REMOVE:
6980 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6981 			/* without this a class_device is left
6982 			 * hanging around in the sysfs model
6983 			 */
6984 			dca_remove_requester(dev);
6985 			dev_info(&pdev->dev, "DCA disabled\n");
6986 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6987 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6988 		}
6989 		break;
6990 	}
6991 
6992 	return 0;
6993 }
6994 
6995 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6996 			  void *p)
6997 {
6998 	int ret_val;
6999 
7000 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7001 					 __igb_notify_dca);
7002 
7003 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7004 }
7005 #endif /* CONFIG_IGB_DCA */
7006 
7007 #ifdef CONFIG_PCI_IOV
7008 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7009 {
7010 	unsigned char mac_addr[ETH_ALEN];
7011 
7012 	eth_zero_addr(mac_addr);
7013 	igb_set_vf_mac(adapter, vf, mac_addr);
7014 
7015 	/* By default spoof check is enabled for all VFs */
7016 	adapter->vf_data[vf].spoofchk_enabled = true;
7017 
7018 	/* By default VFs are not trusted */
7019 	adapter->vf_data[vf].trusted = false;
7020 
7021 	return 0;
7022 }
7023 
7024 #endif
7025 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7026 {
7027 	struct e1000_hw *hw = &adapter->hw;
7028 	u32 ping;
7029 	int i;
7030 
7031 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7032 		ping = E1000_PF_CONTROL_MSG;
7033 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7034 			ping |= E1000_VT_MSGTYPE_CTS;
7035 		igb_write_mbx(hw, &ping, 1, i);
7036 	}
7037 }
7038 
7039 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7040 {
7041 	struct e1000_hw *hw = &adapter->hw;
7042 	u32 vmolr = rd32(E1000_VMOLR(vf));
7043 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7044 
7045 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7046 			    IGB_VF_FLAG_MULTI_PROMISC);
7047 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7048 
7049 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7050 		vmolr |= E1000_VMOLR_MPME;
7051 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7052 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7053 	} else {
7054 		/* if we have hashes and we are clearing a multicast promisc
7055 		 * flag we need to write the hashes to the MTA as this step
7056 		 * was previously skipped
7057 		 */
7058 		if (vf_data->num_vf_mc_hashes > 30) {
7059 			vmolr |= E1000_VMOLR_MPME;
7060 		} else if (vf_data->num_vf_mc_hashes) {
7061 			int j;
7062 
7063 			vmolr |= E1000_VMOLR_ROMPE;
7064 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7065 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7066 		}
7067 	}
7068 
7069 	wr32(E1000_VMOLR(vf), vmolr);
7070 
7071 	/* there are flags left unprocessed, likely not supported */
7072 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7073 		return -EINVAL;
7074 
7075 	return 0;
7076 }
7077 
7078 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7079 				  u32 *msgbuf, u32 vf)
7080 {
7081 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7082 	u16 *hash_list = (u16 *)&msgbuf[1];
7083 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7084 	int i;
7085 
7086 	/* salt away the number of multicast addresses assigned
7087 	 * to this VF for later use to restore when the PF multi cast
7088 	 * list changes
7089 	 */
7090 	vf_data->num_vf_mc_hashes = n;
7091 
7092 	/* only up to 30 hash values supported */
7093 	if (n > 30)
7094 		n = 30;
7095 
7096 	/* store the hashes for later use */
7097 	for (i = 0; i < n; i++)
7098 		vf_data->vf_mc_hashes[i] = hash_list[i];
7099 
7100 	/* Flush and reset the mta with the new values */
7101 	igb_set_rx_mode(adapter->netdev);
7102 
7103 	return 0;
7104 }
7105 
7106 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7107 {
7108 	struct e1000_hw *hw = &adapter->hw;
7109 	struct vf_data_storage *vf_data;
7110 	int i, j;
7111 
7112 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7113 		u32 vmolr = rd32(E1000_VMOLR(i));
7114 
7115 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7116 
7117 		vf_data = &adapter->vf_data[i];
7118 
7119 		if ((vf_data->num_vf_mc_hashes > 30) ||
7120 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7121 			vmolr |= E1000_VMOLR_MPME;
7122 		} else if (vf_data->num_vf_mc_hashes) {
7123 			vmolr |= E1000_VMOLR_ROMPE;
7124 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7125 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7126 		}
7127 		wr32(E1000_VMOLR(i), vmolr);
7128 	}
7129 }
7130 
7131 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7132 {
7133 	struct e1000_hw *hw = &adapter->hw;
7134 	u32 pool_mask, vlvf_mask, i;
7135 
7136 	/* create mask for VF and other pools */
7137 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7138 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7139 
7140 	/* drop PF from pool bits */
7141 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7142 			     adapter->vfs_allocated_count);
7143 
7144 	/* Find the vlan filter for this id */
7145 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7146 		u32 vlvf = rd32(E1000_VLVF(i));
7147 		u32 vfta_mask, vid, vfta;
7148 
7149 		/* remove the vf from the pool */
7150 		if (!(vlvf & vlvf_mask))
7151 			continue;
7152 
7153 		/* clear out bit from VLVF */
7154 		vlvf ^= vlvf_mask;
7155 
7156 		/* if other pools are present, just remove ourselves */
7157 		if (vlvf & pool_mask)
7158 			goto update_vlvfb;
7159 
7160 		/* if PF is present, leave VFTA */
7161 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7162 			goto update_vlvf;
7163 
7164 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7165 		vfta_mask = BIT(vid % 32);
7166 
7167 		/* clear bit from VFTA */
7168 		vfta = adapter->shadow_vfta[vid / 32];
7169 		if (vfta & vfta_mask)
7170 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7171 update_vlvf:
7172 		/* clear pool selection enable */
7173 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7174 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7175 		else
7176 			vlvf = 0;
7177 update_vlvfb:
7178 		/* clear pool bits */
7179 		wr32(E1000_VLVF(i), vlvf);
7180 	}
7181 }
7182 
7183 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7184 {
7185 	u32 vlvf;
7186 	int idx;
7187 
7188 	/* short cut the special case */
7189 	if (vlan == 0)
7190 		return 0;
7191 
7192 	/* Search for the VLAN id in the VLVF entries */
7193 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7194 		vlvf = rd32(E1000_VLVF(idx));
7195 		if ((vlvf & VLAN_VID_MASK) == vlan)
7196 			break;
7197 	}
7198 
7199 	return idx;
7200 }
7201 
7202 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7203 {
7204 	struct e1000_hw *hw = &adapter->hw;
7205 	u32 bits, pf_id;
7206 	int idx;
7207 
7208 	idx = igb_find_vlvf_entry(hw, vid);
7209 	if (!idx)
7210 		return;
7211 
7212 	/* See if any other pools are set for this VLAN filter
7213 	 * entry other than the PF.
7214 	 */
7215 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7216 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7217 	bits &= rd32(E1000_VLVF(idx));
7218 
7219 	/* Disable the filter so this falls into the default pool. */
7220 	if (!bits) {
7221 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7222 			wr32(E1000_VLVF(idx), BIT(pf_id));
7223 		else
7224 			wr32(E1000_VLVF(idx), 0);
7225 	}
7226 }
7227 
7228 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7229 			   bool add, u32 vf)
7230 {
7231 	int pf_id = adapter->vfs_allocated_count;
7232 	struct e1000_hw *hw = &adapter->hw;
7233 	int err;
7234 
7235 	/* If VLAN overlaps with one the PF is currently monitoring make
7236 	 * sure that we are able to allocate a VLVF entry.  This may be
7237 	 * redundant but it guarantees PF will maintain visibility to
7238 	 * the VLAN.
7239 	 */
7240 	if (add && test_bit(vid, adapter->active_vlans)) {
7241 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7242 		if (err)
7243 			return err;
7244 	}
7245 
7246 	err = igb_vfta_set(hw, vid, vf, add, false);
7247 
7248 	if (add && !err)
7249 		return err;
7250 
7251 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7252 	 * we may need to drop the PF pool bit in order to allow us to free
7253 	 * up the VLVF resources.
7254 	 */
7255 	if (test_bit(vid, adapter->active_vlans) ||
7256 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7257 		igb_update_pf_vlvf(adapter, vid);
7258 
7259 	return err;
7260 }
7261 
7262 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7263 {
7264 	struct e1000_hw *hw = &adapter->hw;
7265 
7266 	if (vid)
7267 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7268 	else
7269 		wr32(E1000_VMVIR(vf), 0);
7270 }
7271 
7272 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7273 				u16 vlan, u8 qos)
7274 {
7275 	int err;
7276 
7277 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7278 	if (err)
7279 		return err;
7280 
7281 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7282 	igb_set_vmolr(adapter, vf, !vlan);
7283 
7284 	/* revoke access to previous VLAN */
7285 	if (vlan != adapter->vf_data[vf].pf_vlan)
7286 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7287 				false, vf);
7288 
7289 	adapter->vf_data[vf].pf_vlan = vlan;
7290 	adapter->vf_data[vf].pf_qos = qos;
7291 	igb_set_vf_vlan_strip(adapter, vf, true);
7292 	dev_info(&adapter->pdev->dev,
7293 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7294 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7295 		dev_warn(&adapter->pdev->dev,
7296 			 "The VF VLAN has been set, but the PF device is not up.\n");
7297 		dev_warn(&adapter->pdev->dev,
7298 			 "Bring the PF device up before attempting to use the VF device.\n");
7299 	}
7300 
7301 	return err;
7302 }
7303 
7304 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7305 {
7306 	/* Restore tagless access via VLAN 0 */
7307 	igb_set_vf_vlan(adapter, 0, true, vf);
7308 
7309 	igb_set_vmvir(adapter, 0, vf);
7310 	igb_set_vmolr(adapter, vf, true);
7311 
7312 	/* Remove any PF assigned VLAN */
7313 	if (adapter->vf_data[vf].pf_vlan)
7314 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7315 				false, vf);
7316 
7317 	adapter->vf_data[vf].pf_vlan = 0;
7318 	adapter->vf_data[vf].pf_qos = 0;
7319 	igb_set_vf_vlan_strip(adapter, vf, false);
7320 
7321 	return 0;
7322 }
7323 
7324 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7325 			       u16 vlan, u8 qos, __be16 vlan_proto)
7326 {
7327 	struct igb_adapter *adapter = netdev_priv(netdev);
7328 
7329 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7330 		return -EINVAL;
7331 
7332 	if (vlan_proto != htons(ETH_P_8021Q))
7333 		return -EPROTONOSUPPORT;
7334 
7335 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7336 			       igb_disable_port_vlan(adapter, vf);
7337 }
7338 
7339 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7340 {
7341 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7342 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7343 	int ret;
7344 
7345 	if (adapter->vf_data[vf].pf_vlan)
7346 		return -1;
7347 
7348 	/* VLAN 0 is a special case, don't allow it to be removed */
7349 	if (!vid && !add)
7350 		return 0;
7351 
7352 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7353 	if (!ret)
7354 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7355 	return ret;
7356 }
7357 
7358 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7359 {
7360 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7361 
7362 	/* clear flags - except flag that indicates PF has set the MAC */
7363 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7364 	vf_data->last_nack = jiffies;
7365 
7366 	/* reset vlans for device */
7367 	igb_clear_vf_vfta(adapter, vf);
7368 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7369 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7370 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7371 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7372 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7373 
7374 	/* reset multicast table array for vf */
7375 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7376 
7377 	/* Flush and reset the mta with the new values */
7378 	igb_set_rx_mode(adapter->netdev);
7379 }
7380 
7381 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7382 {
7383 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7384 
7385 	/* clear mac address as we were hotplug removed/added */
7386 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7387 		eth_zero_addr(vf_mac);
7388 
7389 	/* process remaining reset events */
7390 	igb_vf_reset(adapter, vf);
7391 }
7392 
7393 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7394 {
7395 	struct e1000_hw *hw = &adapter->hw;
7396 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7397 	u32 reg, msgbuf[3];
7398 	u8 *addr = (u8 *)(&msgbuf[1]);
7399 
7400 	/* process all the same items cleared in a function level reset */
7401 	igb_vf_reset(adapter, vf);
7402 
7403 	/* set vf mac address */
7404 	igb_set_vf_mac(adapter, vf, vf_mac);
7405 
7406 	/* enable transmit and receive for vf */
7407 	reg = rd32(E1000_VFTE);
7408 	wr32(E1000_VFTE, reg | BIT(vf));
7409 	reg = rd32(E1000_VFRE);
7410 	wr32(E1000_VFRE, reg | BIT(vf));
7411 
7412 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7413 
7414 	/* reply to reset with ack and vf mac address */
7415 	if (!is_zero_ether_addr(vf_mac)) {
7416 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7417 		memcpy(addr, vf_mac, ETH_ALEN);
7418 	} else {
7419 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7420 	}
7421 	igb_write_mbx(hw, msgbuf, 3, vf);
7422 }
7423 
7424 static void igb_flush_mac_table(struct igb_adapter *adapter)
7425 {
7426 	struct e1000_hw *hw = &adapter->hw;
7427 	int i;
7428 
7429 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7430 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7431 		eth_zero_addr(adapter->mac_table[i].addr);
7432 		adapter->mac_table[i].queue = 0;
7433 		igb_rar_set_index(adapter, i);
7434 	}
7435 }
7436 
7437 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7438 {
7439 	struct e1000_hw *hw = &adapter->hw;
7440 	/* do not count rar entries reserved for VFs MAC addresses */
7441 	int rar_entries = hw->mac.rar_entry_count -
7442 			  adapter->vfs_allocated_count;
7443 	int i, count = 0;
7444 
7445 	for (i = 0; i < rar_entries; i++) {
7446 		/* do not count default entries */
7447 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7448 			continue;
7449 
7450 		/* do not count "in use" entries for different queues */
7451 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7452 		    (adapter->mac_table[i].queue != queue))
7453 			continue;
7454 
7455 		count++;
7456 	}
7457 
7458 	return count;
7459 }
7460 
7461 /* Set default MAC address for the PF in the first RAR entry */
7462 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7463 {
7464 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7465 
7466 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7467 	mac_table->queue = adapter->vfs_allocated_count;
7468 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7469 
7470 	igb_rar_set_index(adapter, 0);
7471 }
7472 
7473 /* If the filter to be added and an already existing filter express
7474  * the same address and address type, it should be possible to only
7475  * override the other configurations, for example the queue to steer
7476  * traffic.
7477  */
7478 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7479 				      const u8 *addr, const u8 flags)
7480 {
7481 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7482 		return true;
7483 
7484 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7485 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7486 		return false;
7487 
7488 	if (!ether_addr_equal(addr, entry->addr))
7489 		return false;
7490 
7491 	return true;
7492 }
7493 
7494 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7495  * 'flags' is used to indicate what kind of match is made, match is by
7496  * default for the destination address, if matching by source address
7497  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7498  */
7499 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7500 				    const u8 *addr, const u8 queue,
7501 				    const u8 flags)
7502 {
7503 	struct e1000_hw *hw = &adapter->hw;
7504 	int rar_entries = hw->mac.rar_entry_count -
7505 			  adapter->vfs_allocated_count;
7506 	int i;
7507 
7508 	if (is_zero_ether_addr(addr))
7509 		return -EINVAL;
7510 
7511 	/* Search for the first empty entry in the MAC table.
7512 	 * Do not touch entries at the end of the table reserved for the VF MAC
7513 	 * addresses.
7514 	 */
7515 	for (i = 0; i < rar_entries; i++) {
7516 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7517 					       addr, flags))
7518 			continue;
7519 
7520 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7521 		adapter->mac_table[i].queue = queue;
7522 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7523 
7524 		igb_rar_set_index(adapter, i);
7525 		return i;
7526 	}
7527 
7528 	return -ENOSPC;
7529 }
7530 
7531 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7532 			      const u8 queue)
7533 {
7534 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7535 }
7536 
7537 /* Remove a MAC filter for 'addr' directing matching traffic to
7538  * 'queue', 'flags' is used to indicate what kind of match need to be
7539  * removed, match is by default for the destination address, if
7540  * matching by source address is to be removed the flag
7541  * IGB_MAC_STATE_SRC_ADDR can be used.
7542  */
7543 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7544 				    const u8 *addr, const u8 queue,
7545 				    const u8 flags)
7546 {
7547 	struct e1000_hw *hw = &adapter->hw;
7548 	int rar_entries = hw->mac.rar_entry_count -
7549 			  adapter->vfs_allocated_count;
7550 	int i;
7551 
7552 	if (is_zero_ether_addr(addr))
7553 		return -EINVAL;
7554 
7555 	/* Search for matching entry in the MAC table based on given address
7556 	 * and queue. Do not touch entries at the end of the table reserved
7557 	 * for the VF MAC addresses.
7558 	 */
7559 	for (i = 0; i < rar_entries; i++) {
7560 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7561 			continue;
7562 		if ((adapter->mac_table[i].state & flags) != flags)
7563 			continue;
7564 		if (adapter->mac_table[i].queue != queue)
7565 			continue;
7566 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7567 			continue;
7568 
7569 		/* When a filter for the default address is "deleted",
7570 		 * we return it to its initial configuration
7571 		 */
7572 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7573 			adapter->mac_table[i].state =
7574 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7575 			adapter->mac_table[i].queue =
7576 				adapter->vfs_allocated_count;
7577 		} else {
7578 			adapter->mac_table[i].state = 0;
7579 			adapter->mac_table[i].queue = 0;
7580 			eth_zero_addr(adapter->mac_table[i].addr);
7581 		}
7582 
7583 		igb_rar_set_index(adapter, i);
7584 		return 0;
7585 	}
7586 
7587 	return -ENOENT;
7588 }
7589 
7590 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7591 			      const u8 queue)
7592 {
7593 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7594 }
7595 
7596 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7597 				const u8 *addr, u8 queue, u8 flags)
7598 {
7599 	struct e1000_hw *hw = &adapter->hw;
7600 
7601 	/* In theory, this should be supported on 82575 as well, but
7602 	 * that part wasn't easily accessible during development.
7603 	 */
7604 	if (hw->mac.type != e1000_i210)
7605 		return -EOPNOTSUPP;
7606 
7607 	return igb_add_mac_filter_flags(adapter, addr, queue,
7608 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7609 }
7610 
7611 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7612 				const u8 *addr, u8 queue, u8 flags)
7613 {
7614 	return igb_del_mac_filter_flags(adapter, addr, queue,
7615 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7616 }
7617 
7618 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7619 {
7620 	struct igb_adapter *adapter = netdev_priv(netdev);
7621 	int ret;
7622 
7623 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7624 
7625 	return min_t(int, ret, 0);
7626 }
7627 
7628 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7629 {
7630 	struct igb_adapter *adapter = netdev_priv(netdev);
7631 
7632 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7633 
7634 	return 0;
7635 }
7636 
7637 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7638 				 const u32 info, const u8 *addr)
7639 {
7640 	struct pci_dev *pdev = adapter->pdev;
7641 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7642 	struct list_head *pos;
7643 	struct vf_mac_filter *entry = NULL;
7644 	int ret = 0;
7645 
7646 	switch (info) {
7647 	case E1000_VF_MAC_FILTER_CLR:
7648 		/* remove all unicast MAC filters related to the current VF */
7649 		list_for_each(pos, &adapter->vf_macs.l) {
7650 			entry = list_entry(pos, struct vf_mac_filter, l);
7651 			if (entry->vf == vf) {
7652 				entry->vf = -1;
7653 				entry->free = true;
7654 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7655 			}
7656 		}
7657 		break;
7658 	case E1000_VF_MAC_FILTER_ADD:
7659 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7660 		    !vf_data->trusted) {
7661 			dev_warn(&pdev->dev,
7662 				 "VF %d requested MAC filter but is administratively denied\n",
7663 				 vf);
7664 			return -EINVAL;
7665 		}
7666 		if (!is_valid_ether_addr(addr)) {
7667 			dev_warn(&pdev->dev,
7668 				 "VF %d attempted to set invalid MAC filter\n",
7669 				 vf);
7670 			return -EINVAL;
7671 		}
7672 
7673 		/* try to find empty slot in the list */
7674 		list_for_each(pos, &adapter->vf_macs.l) {
7675 			entry = list_entry(pos, struct vf_mac_filter, l);
7676 			if (entry->free)
7677 				break;
7678 		}
7679 
7680 		if (entry && entry->free) {
7681 			entry->free = false;
7682 			entry->vf = vf;
7683 			ether_addr_copy(entry->vf_mac, addr);
7684 
7685 			ret = igb_add_mac_filter(adapter, addr, vf);
7686 			ret = min_t(int, ret, 0);
7687 		} else {
7688 			ret = -ENOSPC;
7689 		}
7690 
7691 		if (ret == -ENOSPC)
7692 			dev_warn(&pdev->dev,
7693 				 "VF %d has requested MAC filter but there is no space for it\n",
7694 				 vf);
7695 		break;
7696 	default:
7697 		ret = -EINVAL;
7698 		break;
7699 	}
7700 
7701 	return ret;
7702 }
7703 
7704 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7705 {
7706 	struct pci_dev *pdev = adapter->pdev;
7707 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7708 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7709 
7710 	/* The VF MAC Address is stored in a packed array of bytes
7711 	 * starting at the second 32 bit word of the msg array
7712 	 */
7713 	unsigned char *addr = (unsigned char *)&msg[1];
7714 	int ret = 0;
7715 
7716 	if (!info) {
7717 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7718 		    !vf_data->trusted) {
7719 			dev_warn(&pdev->dev,
7720 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7721 				 vf);
7722 			return -EINVAL;
7723 		}
7724 
7725 		if (!is_valid_ether_addr(addr)) {
7726 			dev_warn(&pdev->dev,
7727 				 "VF %d attempted to set invalid MAC\n",
7728 				 vf);
7729 			return -EINVAL;
7730 		}
7731 
7732 		ret = igb_set_vf_mac(adapter, vf, addr);
7733 	} else {
7734 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7735 	}
7736 
7737 	return ret;
7738 }
7739 
7740 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7741 {
7742 	struct e1000_hw *hw = &adapter->hw;
7743 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7744 	u32 msg = E1000_VT_MSGTYPE_NACK;
7745 
7746 	/* if device isn't clear to send it shouldn't be reading either */
7747 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7748 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7749 		igb_write_mbx(hw, &msg, 1, vf);
7750 		vf_data->last_nack = jiffies;
7751 	}
7752 }
7753 
7754 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7755 {
7756 	struct pci_dev *pdev = adapter->pdev;
7757 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7758 	struct e1000_hw *hw = &adapter->hw;
7759 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7760 	s32 retval;
7761 
7762 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7763 
7764 	if (retval) {
7765 		/* if receive failed revoke VF CTS stats and restart init */
7766 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7767 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7768 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7769 			goto unlock;
7770 		goto out;
7771 	}
7772 
7773 	/* this is a message we already processed, do nothing */
7774 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7775 		goto unlock;
7776 
7777 	/* until the vf completes a reset it should not be
7778 	 * allowed to start any configuration.
7779 	 */
7780 	if (msgbuf[0] == E1000_VF_RESET) {
7781 		/* unlocks mailbox */
7782 		igb_vf_reset_msg(adapter, vf);
7783 		return;
7784 	}
7785 
7786 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7787 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7788 			goto unlock;
7789 		retval = -1;
7790 		goto out;
7791 	}
7792 
7793 	switch ((msgbuf[0] & 0xFFFF)) {
7794 	case E1000_VF_SET_MAC_ADDR:
7795 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7796 		break;
7797 	case E1000_VF_SET_PROMISC:
7798 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7799 		break;
7800 	case E1000_VF_SET_MULTICAST:
7801 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7802 		break;
7803 	case E1000_VF_SET_LPE:
7804 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7805 		break;
7806 	case E1000_VF_SET_VLAN:
7807 		retval = -1;
7808 		if (vf_data->pf_vlan)
7809 			dev_warn(&pdev->dev,
7810 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7811 				 vf);
7812 		else
7813 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7814 		break;
7815 	default:
7816 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7817 		retval = -1;
7818 		break;
7819 	}
7820 
7821 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7822 out:
7823 	/* notify the VF of the results of what it sent us */
7824 	if (retval)
7825 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7826 	else
7827 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7828 
7829 	/* unlocks mailbox */
7830 	igb_write_mbx(hw, msgbuf, 1, vf);
7831 	return;
7832 
7833 unlock:
7834 	igb_unlock_mbx(hw, vf);
7835 }
7836 
7837 static void igb_msg_task(struct igb_adapter *adapter)
7838 {
7839 	struct e1000_hw *hw = &adapter->hw;
7840 	u32 vf;
7841 
7842 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7843 		/* process any reset requests */
7844 		if (!igb_check_for_rst(hw, vf))
7845 			igb_vf_reset_event(adapter, vf);
7846 
7847 		/* process any messages pending */
7848 		if (!igb_check_for_msg(hw, vf))
7849 			igb_rcv_msg_from_vf(adapter, vf);
7850 
7851 		/* process any acks */
7852 		if (!igb_check_for_ack(hw, vf))
7853 			igb_rcv_ack_from_vf(adapter, vf);
7854 	}
7855 }
7856 
7857 /**
7858  *  igb_set_uta - Set unicast filter table address
7859  *  @adapter: board private structure
7860  *  @set: boolean indicating if we are setting or clearing bits
7861  *
7862  *  The unicast table address is a register array of 32-bit registers.
7863  *  The table is meant to be used in a way similar to how the MTA is used
7864  *  however due to certain limitations in the hardware it is necessary to
7865  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7866  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7867  **/
7868 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7869 {
7870 	struct e1000_hw *hw = &adapter->hw;
7871 	u32 uta = set ? ~0 : 0;
7872 	int i;
7873 
7874 	/* we only need to do this if VMDq is enabled */
7875 	if (!adapter->vfs_allocated_count)
7876 		return;
7877 
7878 	for (i = hw->mac.uta_reg_count; i--;)
7879 		array_wr32(E1000_UTA, i, uta);
7880 }
7881 
7882 /**
7883  *  igb_intr_msi - Interrupt Handler
7884  *  @irq: interrupt number
7885  *  @data: pointer to a network interface device structure
7886  **/
7887 static irqreturn_t igb_intr_msi(int irq, void *data)
7888 {
7889 	struct igb_adapter *adapter = data;
7890 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7891 	struct e1000_hw *hw = &adapter->hw;
7892 	/* read ICR disables interrupts using IAM */
7893 	u32 icr = rd32(E1000_ICR);
7894 
7895 	igb_write_itr(q_vector);
7896 
7897 	if (icr & E1000_ICR_DRSTA)
7898 		schedule_work(&adapter->reset_task);
7899 
7900 	if (icr & E1000_ICR_DOUTSYNC) {
7901 		/* HW is reporting DMA is out of sync */
7902 		adapter->stats.doosync++;
7903 	}
7904 
7905 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7906 		hw->mac.get_link_status = 1;
7907 		if (!test_bit(__IGB_DOWN, &adapter->state))
7908 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7909 	}
7910 
7911 	if (icr & E1000_ICR_TS)
7912 		igb_tsync_interrupt(adapter);
7913 
7914 	napi_schedule(&q_vector->napi);
7915 
7916 	return IRQ_HANDLED;
7917 }
7918 
7919 /**
7920  *  igb_intr - Legacy Interrupt Handler
7921  *  @irq: interrupt number
7922  *  @data: pointer to a network interface device structure
7923  **/
7924 static irqreturn_t igb_intr(int irq, void *data)
7925 {
7926 	struct igb_adapter *adapter = data;
7927 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7928 	struct e1000_hw *hw = &adapter->hw;
7929 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7930 	 * need for the IMC write
7931 	 */
7932 	u32 icr = rd32(E1000_ICR);
7933 
7934 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7935 	 * not set, then the adapter didn't send an interrupt
7936 	 */
7937 	if (!(icr & E1000_ICR_INT_ASSERTED))
7938 		return IRQ_NONE;
7939 
7940 	igb_write_itr(q_vector);
7941 
7942 	if (icr & E1000_ICR_DRSTA)
7943 		schedule_work(&adapter->reset_task);
7944 
7945 	if (icr & E1000_ICR_DOUTSYNC) {
7946 		/* HW is reporting DMA is out of sync */
7947 		adapter->stats.doosync++;
7948 	}
7949 
7950 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7951 		hw->mac.get_link_status = 1;
7952 		/* guard against interrupt when we're going down */
7953 		if (!test_bit(__IGB_DOWN, &adapter->state))
7954 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7955 	}
7956 
7957 	if (icr & E1000_ICR_TS)
7958 		igb_tsync_interrupt(adapter);
7959 
7960 	napi_schedule(&q_vector->napi);
7961 
7962 	return IRQ_HANDLED;
7963 }
7964 
7965 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7966 {
7967 	struct igb_adapter *adapter = q_vector->adapter;
7968 	struct e1000_hw *hw = &adapter->hw;
7969 
7970 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7971 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7972 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7973 			igb_set_itr(q_vector);
7974 		else
7975 			igb_update_ring_itr(q_vector);
7976 	}
7977 
7978 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7979 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7980 			wr32(E1000_EIMS, q_vector->eims_value);
7981 		else
7982 			igb_irq_enable(adapter);
7983 	}
7984 }
7985 
7986 /**
7987  *  igb_poll - NAPI Rx polling callback
7988  *  @napi: napi polling structure
7989  *  @budget: count of how many packets we should handle
7990  **/
7991 static int igb_poll(struct napi_struct *napi, int budget)
7992 {
7993 	struct igb_q_vector *q_vector = container_of(napi,
7994 						     struct igb_q_vector,
7995 						     napi);
7996 	bool clean_complete = true;
7997 	int work_done = 0;
7998 
7999 #ifdef CONFIG_IGB_DCA
8000 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8001 		igb_update_dca(q_vector);
8002 #endif
8003 	if (q_vector->tx.ring)
8004 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8005 
8006 	if (q_vector->rx.ring) {
8007 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8008 
8009 		work_done += cleaned;
8010 		if (cleaned >= budget)
8011 			clean_complete = false;
8012 	}
8013 
8014 	/* If all work not completed, return budget and keep polling */
8015 	if (!clean_complete)
8016 		return budget;
8017 
8018 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8019 	 * poll us due to busy-polling
8020 	 */
8021 	if (likely(napi_complete_done(napi, work_done)))
8022 		igb_ring_irq_enable(q_vector);
8023 
8024 	return min(work_done, budget - 1);
8025 }
8026 
8027 /**
8028  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8029  *  @q_vector: pointer to q_vector containing needed info
8030  *  @napi_budget: Used to determine if we are in netpoll
8031  *
8032  *  returns true if ring is completely cleaned
8033  **/
8034 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8035 {
8036 	struct igb_adapter *adapter = q_vector->adapter;
8037 	struct igb_ring *tx_ring = q_vector->tx.ring;
8038 	struct igb_tx_buffer *tx_buffer;
8039 	union e1000_adv_tx_desc *tx_desc;
8040 	unsigned int total_bytes = 0, total_packets = 0;
8041 	unsigned int budget = q_vector->tx.work_limit;
8042 	unsigned int i = tx_ring->next_to_clean;
8043 
8044 	if (test_bit(__IGB_DOWN, &adapter->state))
8045 		return true;
8046 
8047 	tx_buffer = &tx_ring->tx_buffer_info[i];
8048 	tx_desc = IGB_TX_DESC(tx_ring, i);
8049 	i -= tx_ring->count;
8050 
8051 	do {
8052 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8053 
8054 		/* if next_to_watch is not set then there is no work pending */
8055 		if (!eop_desc)
8056 			break;
8057 
8058 		/* prevent any other reads prior to eop_desc */
8059 		smp_rmb();
8060 
8061 		/* if DD is not set pending work has not been completed */
8062 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8063 			break;
8064 
8065 		/* clear next_to_watch to prevent false hangs */
8066 		tx_buffer->next_to_watch = NULL;
8067 
8068 		/* update the statistics for this packet */
8069 		total_bytes += tx_buffer->bytecount;
8070 		total_packets += tx_buffer->gso_segs;
8071 
8072 		/* free the skb */
8073 		if (tx_buffer->type == IGB_TYPE_SKB)
8074 			napi_consume_skb(tx_buffer->skb, napi_budget);
8075 		else
8076 			xdp_return_frame(tx_buffer->xdpf);
8077 
8078 		/* unmap skb header data */
8079 		dma_unmap_single(tx_ring->dev,
8080 				 dma_unmap_addr(tx_buffer, dma),
8081 				 dma_unmap_len(tx_buffer, len),
8082 				 DMA_TO_DEVICE);
8083 
8084 		/* clear tx_buffer data */
8085 		dma_unmap_len_set(tx_buffer, len, 0);
8086 
8087 		/* clear last DMA location and unmap remaining buffers */
8088 		while (tx_desc != eop_desc) {
8089 			tx_buffer++;
8090 			tx_desc++;
8091 			i++;
8092 			if (unlikely(!i)) {
8093 				i -= tx_ring->count;
8094 				tx_buffer = tx_ring->tx_buffer_info;
8095 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8096 			}
8097 
8098 			/* unmap any remaining paged data */
8099 			if (dma_unmap_len(tx_buffer, len)) {
8100 				dma_unmap_page(tx_ring->dev,
8101 					       dma_unmap_addr(tx_buffer, dma),
8102 					       dma_unmap_len(tx_buffer, len),
8103 					       DMA_TO_DEVICE);
8104 				dma_unmap_len_set(tx_buffer, len, 0);
8105 			}
8106 		}
8107 
8108 		/* move us one more past the eop_desc for start of next pkt */
8109 		tx_buffer++;
8110 		tx_desc++;
8111 		i++;
8112 		if (unlikely(!i)) {
8113 			i -= tx_ring->count;
8114 			tx_buffer = tx_ring->tx_buffer_info;
8115 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8116 		}
8117 
8118 		/* issue prefetch for next Tx descriptor */
8119 		prefetch(tx_desc);
8120 
8121 		/* update budget accounting */
8122 		budget--;
8123 	} while (likely(budget));
8124 
8125 	netdev_tx_completed_queue(txring_txq(tx_ring),
8126 				  total_packets, total_bytes);
8127 	i += tx_ring->count;
8128 	tx_ring->next_to_clean = i;
8129 	u64_stats_update_begin(&tx_ring->tx_syncp);
8130 	tx_ring->tx_stats.bytes += total_bytes;
8131 	tx_ring->tx_stats.packets += total_packets;
8132 	u64_stats_update_end(&tx_ring->tx_syncp);
8133 	q_vector->tx.total_bytes += total_bytes;
8134 	q_vector->tx.total_packets += total_packets;
8135 
8136 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8137 		struct e1000_hw *hw = &adapter->hw;
8138 
8139 		/* Detect a transmit hang in hardware, this serializes the
8140 		 * check with the clearing of time_stamp and movement of i
8141 		 */
8142 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8143 		if (tx_buffer->next_to_watch &&
8144 		    time_after(jiffies, tx_buffer->time_stamp +
8145 			       (adapter->tx_timeout_factor * HZ)) &&
8146 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8147 
8148 			/* detected Tx unit hang */
8149 			dev_err(tx_ring->dev,
8150 				"Detected Tx Unit Hang\n"
8151 				"  Tx Queue             <%d>\n"
8152 				"  TDH                  <%x>\n"
8153 				"  TDT                  <%x>\n"
8154 				"  next_to_use          <%x>\n"
8155 				"  next_to_clean        <%x>\n"
8156 				"buffer_info[next_to_clean]\n"
8157 				"  time_stamp           <%lx>\n"
8158 				"  next_to_watch        <%p>\n"
8159 				"  jiffies              <%lx>\n"
8160 				"  desc.status          <%x>\n",
8161 				tx_ring->queue_index,
8162 				rd32(E1000_TDH(tx_ring->reg_idx)),
8163 				readl(tx_ring->tail),
8164 				tx_ring->next_to_use,
8165 				tx_ring->next_to_clean,
8166 				tx_buffer->time_stamp,
8167 				tx_buffer->next_to_watch,
8168 				jiffies,
8169 				tx_buffer->next_to_watch->wb.status);
8170 			netif_stop_subqueue(tx_ring->netdev,
8171 					    tx_ring->queue_index);
8172 
8173 			/* we are about to reset, no point in enabling stuff */
8174 			return true;
8175 		}
8176 	}
8177 
8178 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8179 	if (unlikely(total_packets &&
8180 	    netif_carrier_ok(tx_ring->netdev) &&
8181 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8182 		/* Make sure that anybody stopping the queue after this
8183 		 * sees the new next_to_clean.
8184 		 */
8185 		smp_mb();
8186 		if (__netif_subqueue_stopped(tx_ring->netdev,
8187 					     tx_ring->queue_index) &&
8188 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8189 			netif_wake_subqueue(tx_ring->netdev,
8190 					    tx_ring->queue_index);
8191 
8192 			u64_stats_update_begin(&tx_ring->tx_syncp);
8193 			tx_ring->tx_stats.restart_queue++;
8194 			u64_stats_update_end(&tx_ring->tx_syncp);
8195 		}
8196 	}
8197 
8198 	return !!budget;
8199 }
8200 
8201 /**
8202  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8203  *  @rx_ring: rx descriptor ring to store buffers on
8204  *  @old_buff: donor buffer to have page reused
8205  *
8206  *  Synchronizes page for reuse by the adapter
8207  **/
8208 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8209 			      struct igb_rx_buffer *old_buff)
8210 {
8211 	struct igb_rx_buffer *new_buff;
8212 	u16 nta = rx_ring->next_to_alloc;
8213 
8214 	new_buff = &rx_ring->rx_buffer_info[nta];
8215 
8216 	/* update, and store next to alloc */
8217 	nta++;
8218 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8219 
8220 	/* Transfer page from old buffer to new buffer.
8221 	 * Move each member individually to avoid possible store
8222 	 * forwarding stalls.
8223 	 */
8224 	new_buff->dma		= old_buff->dma;
8225 	new_buff->page		= old_buff->page;
8226 	new_buff->page_offset	= old_buff->page_offset;
8227 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8228 }
8229 
8230 static inline bool igb_page_is_reserved(struct page *page)
8231 {
8232 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8233 }
8234 
8235 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
8236 {
8237 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8238 	struct page *page = rx_buffer->page;
8239 
8240 	/* avoid re-using remote pages */
8241 	if (unlikely(igb_page_is_reserved(page)))
8242 		return false;
8243 
8244 #if (PAGE_SIZE < 8192)
8245 	/* if we are only owner of page we can reuse it */
8246 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
8247 		return false;
8248 #else
8249 #define IGB_LAST_OFFSET \
8250 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8251 
8252 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8253 		return false;
8254 #endif
8255 
8256 	/* If we have drained the page fragment pool we need to update
8257 	 * the pagecnt_bias and page count so that we fully restock the
8258 	 * number of references the driver holds.
8259 	 */
8260 	if (unlikely(pagecnt_bias == 1)) {
8261 		page_ref_add(page, USHRT_MAX - 1);
8262 		rx_buffer->pagecnt_bias = USHRT_MAX;
8263 	}
8264 
8265 	return true;
8266 }
8267 
8268 /**
8269  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8270  *  @rx_ring: rx descriptor ring to transact packets on
8271  *  @rx_buffer: buffer containing page to add
8272  *  @skb: sk_buff to place the data into
8273  *  @size: size of buffer to be added
8274  *
8275  *  This function will add the data contained in rx_buffer->page to the skb.
8276  **/
8277 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8278 			    struct igb_rx_buffer *rx_buffer,
8279 			    struct sk_buff *skb,
8280 			    unsigned int size)
8281 {
8282 #if (PAGE_SIZE < 8192)
8283 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8284 #else
8285 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8286 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8287 				SKB_DATA_ALIGN(size);
8288 #endif
8289 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8290 			rx_buffer->page_offset, size, truesize);
8291 #if (PAGE_SIZE < 8192)
8292 	rx_buffer->page_offset ^= truesize;
8293 #else
8294 	rx_buffer->page_offset += truesize;
8295 #endif
8296 }
8297 
8298 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8299 					 struct igb_rx_buffer *rx_buffer,
8300 					 struct xdp_buff *xdp,
8301 					 union e1000_adv_rx_desc *rx_desc)
8302 {
8303 #if (PAGE_SIZE < 8192)
8304 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8305 #else
8306 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8307 					       xdp->data_hard_start);
8308 #endif
8309 	unsigned int size = xdp->data_end - xdp->data;
8310 	unsigned int headlen;
8311 	struct sk_buff *skb;
8312 
8313 	/* prefetch first cache line of first page */
8314 	net_prefetch(xdp->data);
8315 
8316 	/* allocate a skb to store the frags */
8317 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8318 	if (unlikely(!skb))
8319 		return NULL;
8320 
8321 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8322 		igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb);
8323 		xdp->data += IGB_TS_HDR_LEN;
8324 		size -= IGB_TS_HDR_LEN;
8325 	}
8326 
8327 	/* Determine available headroom for copy */
8328 	headlen = size;
8329 	if (headlen > IGB_RX_HDR_LEN)
8330 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8331 
8332 	/* align pull length to size of long to optimize memcpy performance */
8333 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8334 
8335 	/* update all of the pointers */
8336 	size -= headlen;
8337 	if (size) {
8338 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8339 				(xdp->data + headlen) - page_address(rx_buffer->page),
8340 				size, truesize);
8341 #if (PAGE_SIZE < 8192)
8342 		rx_buffer->page_offset ^= truesize;
8343 #else
8344 		rx_buffer->page_offset += truesize;
8345 #endif
8346 	} else {
8347 		rx_buffer->pagecnt_bias++;
8348 	}
8349 
8350 	return skb;
8351 }
8352 
8353 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8354 				     struct igb_rx_buffer *rx_buffer,
8355 				     struct xdp_buff *xdp,
8356 				     union e1000_adv_rx_desc *rx_desc)
8357 {
8358 #if (PAGE_SIZE < 8192)
8359 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8360 #else
8361 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8362 				SKB_DATA_ALIGN(xdp->data_end -
8363 					       xdp->data_hard_start);
8364 #endif
8365 	unsigned int metasize = xdp->data - xdp->data_meta;
8366 	struct sk_buff *skb;
8367 
8368 	/* prefetch first cache line of first page */
8369 	net_prefetch(xdp->data_meta);
8370 
8371 	/* build an skb around the page buffer */
8372 	skb = build_skb(xdp->data_hard_start, truesize);
8373 	if (unlikely(!skb))
8374 		return NULL;
8375 
8376 	/* update pointers within the skb to store the data */
8377 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8378 	__skb_put(skb, xdp->data_end - xdp->data);
8379 
8380 	if (metasize)
8381 		skb_metadata_set(skb, metasize);
8382 
8383 	/* pull timestamp out of packet data */
8384 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8385 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8386 		__skb_pull(skb, IGB_TS_HDR_LEN);
8387 	}
8388 
8389 	/* update buffer offset */
8390 #if (PAGE_SIZE < 8192)
8391 	rx_buffer->page_offset ^= truesize;
8392 #else
8393 	rx_buffer->page_offset += truesize;
8394 #endif
8395 
8396 	return skb;
8397 }
8398 
8399 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8400 				   struct igb_ring *rx_ring,
8401 				   struct xdp_buff *xdp)
8402 {
8403 	int err, result = IGB_XDP_PASS;
8404 	struct bpf_prog *xdp_prog;
8405 	u32 act;
8406 
8407 	rcu_read_lock();
8408 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8409 
8410 	if (!xdp_prog)
8411 		goto xdp_out;
8412 
8413 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8414 
8415 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8416 	switch (act) {
8417 	case XDP_PASS:
8418 		break;
8419 	case XDP_TX:
8420 		result = igb_xdp_xmit_back(adapter, xdp);
8421 		break;
8422 	case XDP_REDIRECT:
8423 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8424 		if (!err)
8425 			result = IGB_XDP_REDIR;
8426 		else
8427 			result = IGB_XDP_CONSUMED;
8428 		break;
8429 	default:
8430 		bpf_warn_invalid_xdp_action(act);
8431 		fallthrough;
8432 	case XDP_ABORTED:
8433 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8434 		fallthrough;
8435 	case XDP_DROP:
8436 		result = IGB_XDP_CONSUMED;
8437 		break;
8438 	}
8439 xdp_out:
8440 	rcu_read_unlock();
8441 	return ERR_PTR(-result);
8442 }
8443 
8444 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8445 					  unsigned int size)
8446 {
8447 	unsigned int truesize;
8448 
8449 #if (PAGE_SIZE < 8192)
8450 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8451 #else
8452 	truesize = ring_uses_build_skb(rx_ring) ?
8453 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8454 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8455 		SKB_DATA_ALIGN(size);
8456 #endif
8457 	return truesize;
8458 }
8459 
8460 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8461 			       struct igb_rx_buffer *rx_buffer,
8462 			       unsigned int size)
8463 {
8464 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8465 #if (PAGE_SIZE < 8192)
8466 	rx_buffer->page_offset ^= truesize;
8467 #else
8468 	rx_buffer->page_offset += truesize;
8469 #endif
8470 }
8471 
8472 static inline void igb_rx_checksum(struct igb_ring *ring,
8473 				   union e1000_adv_rx_desc *rx_desc,
8474 				   struct sk_buff *skb)
8475 {
8476 	skb_checksum_none_assert(skb);
8477 
8478 	/* Ignore Checksum bit is set */
8479 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8480 		return;
8481 
8482 	/* Rx checksum disabled via ethtool */
8483 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8484 		return;
8485 
8486 	/* TCP/UDP checksum error bit is set */
8487 	if (igb_test_staterr(rx_desc,
8488 			     E1000_RXDEXT_STATERR_TCPE |
8489 			     E1000_RXDEXT_STATERR_IPE)) {
8490 		/* work around errata with sctp packets where the TCPE aka
8491 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8492 		 * packets, (aka let the stack check the crc32c)
8493 		 */
8494 		if (!((skb->len == 60) &&
8495 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8496 			u64_stats_update_begin(&ring->rx_syncp);
8497 			ring->rx_stats.csum_err++;
8498 			u64_stats_update_end(&ring->rx_syncp);
8499 		}
8500 		/* let the stack verify checksum errors */
8501 		return;
8502 	}
8503 	/* It must be a TCP or UDP packet with a valid checksum */
8504 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8505 				      E1000_RXD_STAT_UDPCS))
8506 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8507 
8508 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8509 		le32_to_cpu(rx_desc->wb.upper.status_error));
8510 }
8511 
8512 static inline void igb_rx_hash(struct igb_ring *ring,
8513 			       union e1000_adv_rx_desc *rx_desc,
8514 			       struct sk_buff *skb)
8515 {
8516 	if (ring->netdev->features & NETIF_F_RXHASH)
8517 		skb_set_hash(skb,
8518 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8519 			     PKT_HASH_TYPE_L3);
8520 }
8521 
8522 /**
8523  *  igb_is_non_eop - process handling of non-EOP buffers
8524  *  @rx_ring: Rx ring being processed
8525  *  @rx_desc: Rx descriptor for current buffer
8526  *
8527  *  This function updates next to clean.  If the buffer is an EOP buffer
8528  *  this function exits returning false, otherwise it will place the
8529  *  sk_buff in the next buffer to be chained and return true indicating
8530  *  that this is in fact a non-EOP buffer.
8531  **/
8532 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8533 			   union e1000_adv_rx_desc *rx_desc)
8534 {
8535 	u32 ntc = rx_ring->next_to_clean + 1;
8536 
8537 	/* fetch, update, and store next to clean */
8538 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8539 	rx_ring->next_to_clean = ntc;
8540 
8541 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8542 
8543 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8544 		return false;
8545 
8546 	return true;
8547 }
8548 
8549 /**
8550  *  igb_cleanup_headers - Correct corrupted or empty headers
8551  *  @rx_ring: rx descriptor ring packet is being transacted on
8552  *  @rx_desc: pointer to the EOP Rx descriptor
8553  *  @skb: pointer to current skb being fixed
8554  *
8555  *  Address the case where we are pulling data in on pages only
8556  *  and as such no data is present in the skb header.
8557  *
8558  *  In addition if skb is not at least 60 bytes we need to pad it so that
8559  *  it is large enough to qualify as a valid Ethernet frame.
8560  *
8561  *  Returns true if an error was encountered and skb was freed.
8562  **/
8563 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8564 				union e1000_adv_rx_desc *rx_desc,
8565 				struct sk_buff *skb)
8566 {
8567 	/* XDP packets use error pointer so abort at this point */
8568 	if (IS_ERR(skb))
8569 		return true;
8570 
8571 	if (unlikely((igb_test_staterr(rx_desc,
8572 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8573 		struct net_device *netdev = rx_ring->netdev;
8574 		if (!(netdev->features & NETIF_F_RXALL)) {
8575 			dev_kfree_skb_any(skb);
8576 			return true;
8577 		}
8578 	}
8579 
8580 	/* if eth_skb_pad returns an error the skb was freed */
8581 	if (eth_skb_pad(skb))
8582 		return true;
8583 
8584 	return false;
8585 }
8586 
8587 /**
8588  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8589  *  @rx_ring: rx descriptor ring packet is being transacted on
8590  *  @rx_desc: pointer to the EOP Rx descriptor
8591  *  @skb: pointer to current skb being populated
8592  *
8593  *  This function checks the ring, descriptor, and packet information in
8594  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8595  *  other fields within the skb.
8596  **/
8597 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8598 				   union e1000_adv_rx_desc *rx_desc,
8599 				   struct sk_buff *skb)
8600 {
8601 	struct net_device *dev = rx_ring->netdev;
8602 
8603 	igb_rx_hash(rx_ring, rx_desc, skb);
8604 
8605 	igb_rx_checksum(rx_ring, rx_desc, skb);
8606 
8607 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8608 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8609 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8610 
8611 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8612 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8613 		u16 vid;
8614 
8615 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8616 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8617 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8618 		else
8619 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8620 
8621 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8622 	}
8623 
8624 	skb_record_rx_queue(skb, rx_ring->queue_index);
8625 
8626 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8627 }
8628 
8629 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8630 {
8631 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8632 }
8633 
8634 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8635 					       const unsigned int size)
8636 {
8637 	struct igb_rx_buffer *rx_buffer;
8638 
8639 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8640 	prefetchw(rx_buffer->page);
8641 
8642 	/* we are reusing so sync this buffer for CPU use */
8643 	dma_sync_single_range_for_cpu(rx_ring->dev,
8644 				      rx_buffer->dma,
8645 				      rx_buffer->page_offset,
8646 				      size,
8647 				      DMA_FROM_DEVICE);
8648 
8649 	rx_buffer->pagecnt_bias--;
8650 
8651 	return rx_buffer;
8652 }
8653 
8654 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8655 			      struct igb_rx_buffer *rx_buffer)
8656 {
8657 	if (igb_can_reuse_rx_page(rx_buffer)) {
8658 		/* hand second half of page back to the ring */
8659 		igb_reuse_rx_page(rx_ring, rx_buffer);
8660 	} else {
8661 		/* We are not reusing the buffer so unmap it and free
8662 		 * any references we are holding to it
8663 		 */
8664 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8665 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8666 				     IGB_RX_DMA_ATTR);
8667 		__page_frag_cache_drain(rx_buffer->page,
8668 					rx_buffer->pagecnt_bias);
8669 	}
8670 
8671 	/* clear contents of rx_buffer */
8672 	rx_buffer->page = NULL;
8673 }
8674 
8675 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8676 {
8677 	struct igb_adapter *adapter = q_vector->adapter;
8678 	struct igb_ring *rx_ring = q_vector->rx.ring;
8679 	struct sk_buff *skb = rx_ring->skb;
8680 	unsigned int total_bytes = 0, total_packets = 0;
8681 	u16 cleaned_count = igb_desc_unused(rx_ring);
8682 	unsigned int xdp_xmit = 0;
8683 	struct xdp_buff xdp;
8684 
8685 	xdp.rxq = &rx_ring->xdp_rxq;
8686 
8687 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8688 #if (PAGE_SIZE < 8192)
8689 	xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8690 #endif
8691 
8692 	while (likely(total_packets < budget)) {
8693 		union e1000_adv_rx_desc *rx_desc;
8694 		struct igb_rx_buffer *rx_buffer;
8695 		unsigned int size;
8696 
8697 		/* return some buffers to hardware, one at a time is too slow */
8698 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8699 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8700 			cleaned_count = 0;
8701 		}
8702 
8703 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8704 		size = le16_to_cpu(rx_desc->wb.upper.length);
8705 		if (!size)
8706 			break;
8707 
8708 		/* This memory barrier is needed to keep us from reading
8709 		 * any other fields out of the rx_desc until we know the
8710 		 * descriptor has been written back
8711 		 */
8712 		dma_rmb();
8713 
8714 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8715 
8716 		/* retrieve a buffer from the ring */
8717 		if (!skb) {
8718 			xdp.data = page_address(rx_buffer->page) +
8719 				   rx_buffer->page_offset;
8720 			xdp.data_meta = xdp.data;
8721 			xdp.data_hard_start = xdp.data -
8722 					      igb_rx_offset(rx_ring);
8723 			xdp.data_end = xdp.data + size;
8724 #if (PAGE_SIZE > 4096)
8725 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8726 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8727 #endif
8728 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8729 		}
8730 
8731 		if (IS_ERR(skb)) {
8732 			unsigned int xdp_res = -PTR_ERR(skb);
8733 
8734 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8735 				xdp_xmit |= xdp_res;
8736 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8737 			} else {
8738 				rx_buffer->pagecnt_bias++;
8739 			}
8740 			total_packets++;
8741 			total_bytes += size;
8742 		} else if (skb)
8743 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8744 		else if (ring_uses_build_skb(rx_ring))
8745 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8746 		else
8747 			skb = igb_construct_skb(rx_ring, rx_buffer,
8748 						&xdp, rx_desc);
8749 
8750 		/* exit if we failed to retrieve a buffer */
8751 		if (!skb) {
8752 			rx_ring->rx_stats.alloc_failed++;
8753 			rx_buffer->pagecnt_bias++;
8754 			break;
8755 		}
8756 
8757 		igb_put_rx_buffer(rx_ring, rx_buffer);
8758 		cleaned_count++;
8759 
8760 		/* fetch next buffer in frame if non-eop */
8761 		if (igb_is_non_eop(rx_ring, rx_desc))
8762 			continue;
8763 
8764 		/* verify the packet layout is correct */
8765 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8766 			skb = NULL;
8767 			continue;
8768 		}
8769 
8770 		/* probably a little skewed due to removing CRC */
8771 		total_bytes += skb->len;
8772 
8773 		/* populate checksum, timestamp, VLAN, and protocol */
8774 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8775 
8776 		napi_gro_receive(&q_vector->napi, skb);
8777 
8778 		/* reset skb pointer */
8779 		skb = NULL;
8780 
8781 		/* update budget accounting */
8782 		total_packets++;
8783 	}
8784 
8785 	/* place incomplete frames back on ring for completion */
8786 	rx_ring->skb = skb;
8787 
8788 	if (xdp_xmit & IGB_XDP_REDIR)
8789 		xdp_do_flush();
8790 
8791 	if (xdp_xmit & IGB_XDP_TX) {
8792 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8793 
8794 		igb_xdp_ring_update_tail(tx_ring);
8795 	}
8796 
8797 	u64_stats_update_begin(&rx_ring->rx_syncp);
8798 	rx_ring->rx_stats.packets += total_packets;
8799 	rx_ring->rx_stats.bytes += total_bytes;
8800 	u64_stats_update_end(&rx_ring->rx_syncp);
8801 	q_vector->rx.total_packets += total_packets;
8802 	q_vector->rx.total_bytes += total_bytes;
8803 
8804 	if (cleaned_count)
8805 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8806 
8807 	return total_packets;
8808 }
8809 
8810 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8811 				  struct igb_rx_buffer *bi)
8812 {
8813 	struct page *page = bi->page;
8814 	dma_addr_t dma;
8815 
8816 	/* since we are recycling buffers we should seldom need to alloc */
8817 	if (likely(page))
8818 		return true;
8819 
8820 	/* alloc new page for storage */
8821 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8822 	if (unlikely(!page)) {
8823 		rx_ring->rx_stats.alloc_failed++;
8824 		return false;
8825 	}
8826 
8827 	/* map page for use */
8828 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8829 				 igb_rx_pg_size(rx_ring),
8830 				 DMA_FROM_DEVICE,
8831 				 IGB_RX_DMA_ATTR);
8832 
8833 	/* if mapping failed free memory back to system since
8834 	 * there isn't much point in holding memory we can't use
8835 	 */
8836 	if (dma_mapping_error(rx_ring->dev, dma)) {
8837 		__free_pages(page, igb_rx_pg_order(rx_ring));
8838 
8839 		rx_ring->rx_stats.alloc_failed++;
8840 		return false;
8841 	}
8842 
8843 	bi->dma = dma;
8844 	bi->page = page;
8845 	bi->page_offset = igb_rx_offset(rx_ring);
8846 	page_ref_add(page, USHRT_MAX - 1);
8847 	bi->pagecnt_bias = USHRT_MAX;
8848 
8849 	return true;
8850 }
8851 
8852 /**
8853  *  igb_alloc_rx_buffers - Replace used receive buffers
8854  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8855  *  @cleaned_count: count of buffers to allocate
8856  **/
8857 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8858 {
8859 	union e1000_adv_rx_desc *rx_desc;
8860 	struct igb_rx_buffer *bi;
8861 	u16 i = rx_ring->next_to_use;
8862 	u16 bufsz;
8863 
8864 	/* nothing to do */
8865 	if (!cleaned_count)
8866 		return;
8867 
8868 	rx_desc = IGB_RX_DESC(rx_ring, i);
8869 	bi = &rx_ring->rx_buffer_info[i];
8870 	i -= rx_ring->count;
8871 
8872 	bufsz = igb_rx_bufsz(rx_ring);
8873 
8874 	do {
8875 		if (!igb_alloc_mapped_page(rx_ring, bi))
8876 			break;
8877 
8878 		/* sync the buffer for use by the device */
8879 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8880 						 bi->page_offset, bufsz,
8881 						 DMA_FROM_DEVICE);
8882 
8883 		/* Refresh the desc even if buffer_addrs didn't change
8884 		 * because each write-back erases this info.
8885 		 */
8886 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8887 
8888 		rx_desc++;
8889 		bi++;
8890 		i++;
8891 		if (unlikely(!i)) {
8892 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8893 			bi = rx_ring->rx_buffer_info;
8894 			i -= rx_ring->count;
8895 		}
8896 
8897 		/* clear the length for the next_to_use descriptor */
8898 		rx_desc->wb.upper.length = 0;
8899 
8900 		cleaned_count--;
8901 	} while (cleaned_count);
8902 
8903 	i += rx_ring->count;
8904 
8905 	if (rx_ring->next_to_use != i) {
8906 		/* record the next descriptor to use */
8907 		rx_ring->next_to_use = i;
8908 
8909 		/* update next to alloc since we have filled the ring */
8910 		rx_ring->next_to_alloc = i;
8911 
8912 		/* Force memory writes to complete before letting h/w
8913 		 * know there are new descriptors to fetch.  (Only
8914 		 * applicable for weak-ordered memory model archs,
8915 		 * such as IA-64).
8916 		 */
8917 		dma_wmb();
8918 		writel(i, rx_ring->tail);
8919 	}
8920 }
8921 
8922 /**
8923  * igb_mii_ioctl -
8924  * @netdev: pointer to netdev struct
8925  * @ifr: interface structure
8926  * @cmd: ioctl command to execute
8927  **/
8928 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8929 {
8930 	struct igb_adapter *adapter = netdev_priv(netdev);
8931 	struct mii_ioctl_data *data = if_mii(ifr);
8932 
8933 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8934 		return -EOPNOTSUPP;
8935 
8936 	switch (cmd) {
8937 	case SIOCGMIIPHY:
8938 		data->phy_id = adapter->hw.phy.addr;
8939 		break;
8940 	case SIOCGMIIREG:
8941 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8942 				     &data->val_out))
8943 			return -EIO;
8944 		break;
8945 	case SIOCSMIIREG:
8946 	default:
8947 		return -EOPNOTSUPP;
8948 	}
8949 	return 0;
8950 }
8951 
8952 /**
8953  * igb_ioctl -
8954  * @netdev: pointer to netdev struct
8955  * @ifr: interface structure
8956  * @cmd: ioctl command to execute
8957  **/
8958 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8959 {
8960 	switch (cmd) {
8961 	case SIOCGMIIPHY:
8962 	case SIOCGMIIREG:
8963 	case SIOCSMIIREG:
8964 		return igb_mii_ioctl(netdev, ifr, cmd);
8965 	case SIOCGHWTSTAMP:
8966 		return igb_ptp_get_ts_config(netdev, ifr);
8967 	case SIOCSHWTSTAMP:
8968 		return igb_ptp_set_ts_config(netdev, ifr);
8969 	default:
8970 		return -EOPNOTSUPP;
8971 	}
8972 }
8973 
8974 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8975 {
8976 	struct igb_adapter *adapter = hw->back;
8977 
8978 	pci_read_config_word(adapter->pdev, reg, value);
8979 }
8980 
8981 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8982 {
8983 	struct igb_adapter *adapter = hw->back;
8984 
8985 	pci_write_config_word(adapter->pdev, reg, *value);
8986 }
8987 
8988 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8989 {
8990 	struct igb_adapter *adapter = hw->back;
8991 
8992 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8993 		return -E1000_ERR_CONFIG;
8994 
8995 	return 0;
8996 }
8997 
8998 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8999 {
9000 	struct igb_adapter *adapter = hw->back;
9001 
9002 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9003 		return -E1000_ERR_CONFIG;
9004 
9005 	return 0;
9006 }
9007 
9008 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9009 {
9010 	struct igb_adapter *adapter = netdev_priv(netdev);
9011 	struct e1000_hw *hw = &adapter->hw;
9012 	u32 ctrl, rctl;
9013 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9014 
9015 	if (enable) {
9016 		/* enable VLAN tag insert/strip */
9017 		ctrl = rd32(E1000_CTRL);
9018 		ctrl |= E1000_CTRL_VME;
9019 		wr32(E1000_CTRL, ctrl);
9020 
9021 		/* Disable CFI check */
9022 		rctl = rd32(E1000_RCTL);
9023 		rctl &= ~E1000_RCTL_CFIEN;
9024 		wr32(E1000_RCTL, rctl);
9025 	} else {
9026 		/* disable VLAN tag insert/strip */
9027 		ctrl = rd32(E1000_CTRL);
9028 		ctrl &= ~E1000_CTRL_VME;
9029 		wr32(E1000_CTRL, ctrl);
9030 	}
9031 
9032 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9033 }
9034 
9035 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9036 			       __be16 proto, u16 vid)
9037 {
9038 	struct igb_adapter *adapter = netdev_priv(netdev);
9039 	struct e1000_hw *hw = &adapter->hw;
9040 	int pf_id = adapter->vfs_allocated_count;
9041 
9042 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9043 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9044 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9045 
9046 	set_bit(vid, adapter->active_vlans);
9047 
9048 	return 0;
9049 }
9050 
9051 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9052 				__be16 proto, u16 vid)
9053 {
9054 	struct igb_adapter *adapter = netdev_priv(netdev);
9055 	int pf_id = adapter->vfs_allocated_count;
9056 	struct e1000_hw *hw = &adapter->hw;
9057 
9058 	/* remove VID from filter table */
9059 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9060 		igb_vfta_set(hw, vid, pf_id, false, true);
9061 
9062 	clear_bit(vid, adapter->active_vlans);
9063 
9064 	return 0;
9065 }
9066 
9067 static void igb_restore_vlan(struct igb_adapter *adapter)
9068 {
9069 	u16 vid = 1;
9070 
9071 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9072 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9073 
9074 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9075 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9076 }
9077 
9078 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9079 {
9080 	struct pci_dev *pdev = adapter->pdev;
9081 	struct e1000_mac_info *mac = &adapter->hw.mac;
9082 
9083 	mac->autoneg = 0;
9084 
9085 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9086 	 * for the switch() below to work
9087 	 */
9088 	if ((spd & 1) || (dplx & ~1))
9089 		goto err_inval;
9090 
9091 	/* Fiber NIC's only allow 1000 gbps Full duplex
9092 	 * and 100Mbps Full duplex for 100baseFx sfp
9093 	 */
9094 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9095 		switch (spd + dplx) {
9096 		case SPEED_10 + DUPLEX_HALF:
9097 		case SPEED_10 + DUPLEX_FULL:
9098 		case SPEED_100 + DUPLEX_HALF:
9099 			goto err_inval;
9100 		default:
9101 			break;
9102 		}
9103 	}
9104 
9105 	switch (spd + dplx) {
9106 	case SPEED_10 + DUPLEX_HALF:
9107 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9108 		break;
9109 	case SPEED_10 + DUPLEX_FULL:
9110 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9111 		break;
9112 	case SPEED_100 + DUPLEX_HALF:
9113 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9114 		break;
9115 	case SPEED_100 + DUPLEX_FULL:
9116 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9117 		break;
9118 	case SPEED_1000 + DUPLEX_FULL:
9119 		mac->autoneg = 1;
9120 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9121 		break;
9122 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9123 	default:
9124 		goto err_inval;
9125 	}
9126 
9127 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9128 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9129 
9130 	return 0;
9131 
9132 err_inval:
9133 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9134 	return -EINVAL;
9135 }
9136 
9137 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9138 			  bool runtime)
9139 {
9140 	struct net_device *netdev = pci_get_drvdata(pdev);
9141 	struct igb_adapter *adapter = netdev_priv(netdev);
9142 	struct e1000_hw *hw = &adapter->hw;
9143 	u32 ctrl, rctl, status;
9144 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9145 	bool wake;
9146 
9147 	rtnl_lock();
9148 	netif_device_detach(netdev);
9149 
9150 	if (netif_running(netdev))
9151 		__igb_close(netdev, true);
9152 
9153 	igb_ptp_suspend(adapter);
9154 
9155 	igb_clear_interrupt_scheme(adapter);
9156 	rtnl_unlock();
9157 
9158 	status = rd32(E1000_STATUS);
9159 	if (status & E1000_STATUS_LU)
9160 		wufc &= ~E1000_WUFC_LNKC;
9161 
9162 	if (wufc) {
9163 		igb_setup_rctl(adapter);
9164 		igb_set_rx_mode(netdev);
9165 
9166 		/* turn on all-multi mode if wake on multicast is enabled */
9167 		if (wufc & E1000_WUFC_MC) {
9168 			rctl = rd32(E1000_RCTL);
9169 			rctl |= E1000_RCTL_MPE;
9170 			wr32(E1000_RCTL, rctl);
9171 		}
9172 
9173 		ctrl = rd32(E1000_CTRL);
9174 		ctrl |= E1000_CTRL_ADVD3WUC;
9175 		wr32(E1000_CTRL, ctrl);
9176 
9177 		/* Allow time for pending master requests to run */
9178 		igb_disable_pcie_master(hw);
9179 
9180 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9181 		wr32(E1000_WUFC, wufc);
9182 	} else {
9183 		wr32(E1000_WUC, 0);
9184 		wr32(E1000_WUFC, 0);
9185 	}
9186 
9187 	wake = wufc || adapter->en_mng_pt;
9188 	if (!wake)
9189 		igb_power_down_link(adapter);
9190 	else
9191 		igb_power_up_link(adapter);
9192 
9193 	if (enable_wake)
9194 		*enable_wake = wake;
9195 
9196 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9197 	 * would have already happened in close and is redundant.
9198 	 */
9199 	igb_release_hw_control(adapter);
9200 
9201 	pci_disable_device(pdev);
9202 
9203 	return 0;
9204 }
9205 
9206 static void igb_deliver_wake_packet(struct net_device *netdev)
9207 {
9208 	struct igb_adapter *adapter = netdev_priv(netdev);
9209 	struct e1000_hw *hw = &adapter->hw;
9210 	struct sk_buff *skb;
9211 	u32 wupl;
9212 
9213 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9214 
9215 	/* WUPM stores only the first 128 bytes of the wake packet.
9216 	 * Read the packet only if we have the whole thing.
9217 	 */
9218 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9219 		return;
9220 
9221 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9222 	if (!skb)
9223 		return;
9224 
9225 	skb_put(skb, wupl);
9226 
9227 	/* Ensure reads are 32-bit aligned */
9228 	wupl = roundup(wupl, 4);
9229 
9230 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9231 
9232 	skb->protocol = eth_type_trans(skb, netdev);
9233 	netif_rx(skb);
9234 }
9235 
9236 static int __maybe_unused igb_suspend(struct device *dev)
9237 {
9238 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9239 }
9240 
9241 static int __maybe_unused igb_resume(struct device *dev)
9242 {
9243 	struct pci_dev *pdev = to_pci_dev(dev);
9244 	struct net_device *netdev = pci_get_drvdata(pdev);
9245 	struct igb_adapter *adapter = netdev_priv(netdev);
9246 	struct e1000_hw *hw = &adapter->hw;
9247 	u32 err, val;
9248 
9249 	pci_set_power_state(pdev, PCI_D0);
9250 	pci_restore_state(pdev);
9251 	pci_save_state(pdev);
9252 
9253 	if (!pci_device_is_present(pdev))
9254 		return -ENODEV;
9255 	err = pci_enable_device_mem(pdev);
9256 	if (err) {
9257 		dev_err(&pdev->dev,
9258 			"igb: Cannot enable PCI device from suspend\n");
9259 		return err;
9260 	}
9261 	pci_set_master(pdev);
9262 
9263 	pci_enable_wake(pdev, PCI_D3hot, 0);
9264 	pci_enable_wake(pdev, PCI_D3cold, 0);
9265 
9266 	if (igb_init_interrupt_scheme(adapter, true)) {
9267 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9268 		return -ENOMEM;
9269 	}
9270 
9271 	igb_reset(adapter);
9272 
9273 	/* let the f/w know that the h/w is now under the control of the
9274 	 * driver.
9275 	 */
9276 	igb_get_hw_control(adapter);
9277 
9278 	val = rd32(E1000_WUS);
9279 	if (val & WAKE_PKT_WUS)
9280 		igb_deliver_wake_packet(netdev);
9281 
9282 	wr32(E1000_WUS, ~0);
9283 
9284 	rtnl_lock();
9285 	if (!err && netif_running(netdev))
9286 		err = __igb_open(netdev, true);
9287 
9288 	if (!err)
9289 		netif_device_attach(netdev);
9290 	rtnl_unlock();
9291 
9292 	return err;
9293 }
9294 
9295 static int __maybe_unused igb_runtime_idle(struct device *dev)
9296 {
9297 	struct net_device *netdev = dev_get_drvdata(dev);
9298 	struct igb_adapter *adapter = netdev_priv(netdev);
9299 
9300 	if (!igb_has_link(adapter))
9301 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9302 
9303 	return -EBUSY;
9304 }
9305 
9306 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9307 {
9308 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9309 }
9310 
9311 static int __maybe_unused igb_runtime_resume(struct device *dev)
9312 {
9313 	return igb_resume(dev);
9314 }
9315 
9316 static void igb_shutdown(struct pci_dev *pdev)
9317 {
9318 	bool wake;
9319 
9320 	__igb_shutdown(pdev, &wake, 0);
9321 
9322 	if (system_state == SYSTEM_POWER_OFF) {
9323 		pci_wake_from_d3(pdev, wake);
9324 		pci_set_power_state(pdev, PCI_D3hot);
9325 	}
9326 }
9327 
9328 #ifdef CONFIG_PCI_IOV
9329 static int igb_sriov_reinit(struct pci_dev *dev)
9330 {
9331 	struct net_device *netdev = pci_get_drvdata(dev);
9332 	struct igb_adapter *adapter = netdev_priv(netdev);
9333 	struct pci_dev *pdev = adapter->pdev;
9334 
9335 	rtnl_lock();
9336 
9337 	if (netif_running(netdev))
9338 		igb_close(netdev);
9339 	else
9340 		igb_reset(adapter);
9341 
9342 	igb_clear_interrupt_scheme(adapter);
9343 
9344 	igb_init_queue_configuration(adapter);
9345 
9346 	if (igb_init_interrupt_scheme(adapter, true)) {
9347 		rtnl_unlock();
9348 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9349 		return -ENOMEM;
9350 	}
9351 
9352 	if (netif_running(netdev))
9353 		igb_open(netdev);
9354 
9355 	rtnl_unlock();
9356 
9357 	return 0;
9358 }
9359 
9360 static int igb_pci_disable_sriov(struct pci_dev *dev)
9361 {
9362 	int err = igb_disable_sriov(dev);
9363 
9364 	if (!err)
9365 		err = igb_sriov_reinit(dev);
9366 
9367 	return err;
9368 }
9369 
9370 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9371 {
9372 	int err = igb_enable_sriov(dev, num_vfs);
9373 
9374 	if (err)
9375 		goto out;
9376 
9377 	err = igb_sriov_reinit(dev);
9378 	if (!err)
9379 		return num_vfs;
9380 
9381 out:
9382 	return err;
9383 }
9384 
9385 #endif
9386 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9387 {
9388 #ifdef CONFIG_PCI_IOV
9389 	if (num_vfs == 0)
9390 		return igb_pci_disable_sriov(dev);
9391 	else
9392 		return igb_pci_enable_sriov(dev, num_vfs);
9393 #endif
9394 	return 0;
9395 }
9396 
9397 /**
9398  *  igb_io_error_detected - called when PCI error is detected
9399  *  @pdev: Pointer to PCI device
9400  *  @state: The current pci connection state
9401  *
9402  *  This function is called after a PCI bus error affecting
9403  *  this device has been detected.
9404  **/
9405 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9406 					      pci_channel_state_t state)
9407 {
9408 	struct net_device *netdev = pci_get_drvdata(pdev);
9409 	struct igb_adapter *adapter = netdev_priv(netdev);
9410 
9411 	netif_device_detach(netdev);
9412 
9413 	if (state == pci_channel_io_perm_failure)
9414 		return PCI_ERS_RESULT_DISCONNECT;
9415 
9416 	if (netif_running(netdev))
9417 		igb_down(adapter);
9418 	pci_disable_device(pdev);
9419 
9420 	/* Request a slot slot reset. */
9421 	return PCI_ERS_RESULT_NEED_RESET;
9422 }
9423 
9424 /**
9425  *  igb_io_slot_reset - called after the pci bus has been reset.
9426  *  @pdev: Pointer to PCI device
9427  *
9428  *  Restart the card from scratch, as if from a cold-boot. Implementation
9429  *  resembles the first-half of the igb_resume routine.
9430  **/
9431 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9432 {
9433 	struct net_device *netdev = pci_get_drvdata(pdev);
9434 	struct igb_adapter *adapter = netdev_priv(netdev);
9435 	struct e1000_hw *hw = &adapter->hw;
9436 	pci_ers_result_t result;
9437 
9438 	if (pci_enable_device_mem(pdev)) {
9439 		dev_err(&pdev->dev,
9440 			"Cannot re-enable PCI device after reset.\n");
9441 		result = PCI_ERS_RESULT_DISCONNECT;
9442 	} else {
9443 		pci_set_master(pdev);
9444 		pci_restore_state(pdev);
9445 		pci_save_state(pdev);
9446 
9447 		pci_enable_wake(pdev, PCI_D3hot, 0);
9448 		pci_enable_wake(pdev, PCI_D3cold, 0);
9449 
9450 		/* In case of PCI error, adapter lose its HW address
9451 		 * so we should re-assign it here.
9452 		 */
9453 		hw->hw_addr = adapter->io_addr;
9454 
9455 		igb_reset(adapter);
9456 		wr32(E1000_WUS, ~0);
9457 		result = PCI_ERS_RESULT_RECOVERED;
9458 	}
9459 
9460 	return result;
9461 }
9462 
9463 /**
9464  *  igb_io_resume - called when traffic can start flowing again.
9465  *  @pdev: Pointer to PCI device
9466  *
9467  *  This callback is called when the error recovery driver tells us that
9468  *  its OK to resume normal operation. Implementation resembles the
9469  *  second-half of the igb_resume routine.
9470  */
9471 static void igb_io_resume(struct pci_dev *pdev)
9472 {
9473 	struct net_device *netdev = pci_get_drvdata(pdev);
9474 	struct igb_adapter *adapter = netdev_priv(netdev);
9475 
9476 	if (netif_running(netdev)) {
9477 		if (igb_up(adapter)) {
9478 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9479 			return;
9480 		}
9481 	}
9482 
9483 	netif_device_attach(netdev);
9484 
9485 	/* let the f/w know that the h/w is now under the control of the
9486 	 * driver.
9487 	 */
9488 	igb_get_hw_control(adapter);
9489 }
9490 
9491 /**
9492  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9493  *  @adapter: Pointer to adapter structure
9494  *  @index: Index of the RAR entry which need to be synced with MAC table
9495  **/
9496 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9497 {
9498 	struct e1000_hw *hw = &adapter->hw;
9499 	u32 rar_low, rar_high;
9500 	u8 *addr = adapter->mac_table[index].addr;
9501 
9502 	/* HW expects these to be in network order when they are plugged
9503 	 * into the registers which are little endian.  In order to guarantee
9504 	 * that ordering we need to do an leXX_to_cpup here in order to be
9505 	 * ready for the byteswap that occurs with writel
9506 	 */
9507 	rar_low = le32_to_cpup((__le32 *)(addr));
9508 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9509 
9510 	/* Indicate to hardware the Address is Valid. */
9511 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9512 		if (is_valid_ether_addr(addr))
9513 			rar_high |= E1000_RAH_AV;
9514 
9515 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9516 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9517 
9518 		switch (hw->mac.type) {
9519 		case e1000_82575:
9520 		case e1000_i210:
9521 			if (adapter->mac_table[index].state &
9522 			    IGB_MAC_STATE_QUEUE_STEERING)
9523 				rar_high |= E1000_RAH_QSEL_ENABLE;
9524 
9525 			rar_high |= E1000_RAH_POOL_1 *
9526 				    adapter->mac_table[index].queue;
9527 			break;
9528 		default:
9529 			rar_high |= E1000_RAH_POOL_1 <<
9530 				    adapter->mac_table[index].queue;
9531 			break;
9532 		}
9533 	}
9534 
9535 	wr32(E1000_RAL(index), rar_low);
9536 	wrfl();
9537 	wr32(E1000_RAH(index), rar_high);
9538 	wrfl();
9539 }
9540 
9541 static int igb_set_vf_mac(struct igb_adapter *adapter,
9542 			  int vf, unsigned char *mac_addr)
9543 {
9544 	struct e1000_hw *hw = &adapter->hw;
9545 	/* VF MAC addresses start at end of receive addresses and moves
9546 	 * towards the first, as a result a collision should not be possible
9547 	 */
9548 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9549 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9550 
9551 	ether_addr_copy(vf_mac_addr, mac_addr);
9552 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9553 	adapter->mac_table[rar_entry].queue = vf;
9554 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9555 	igb_rar_set_index(adapter, rar_entry);
9556 
9557 	return 0;
9558 }
9559 
9560 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9561 {
9562 	struct igb_adapter *adapter = netdev_priv(netdev);
9563 
9564 	if (vf >= adapter->vfs_allocated_count)
9565 		return -EINVAL;
9566 
9567 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9568 	 * flag and allows to overwrite the MAC via VF netdev.  This
9569 	 * is necessary to allow libvirt a way to restore the original
9570 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9571 	 * down a VM.
9572 	 */
9573 	if (is_zero_ether_addr(mac)) {
9574 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9575 		dev_info(&adapter->pdev->dev,
9576 			 "remove administratively set MAC on VF %d\n",
9577 			 vf);
9578 	} else if (is_valid_ether_addr(mac)) {
9579 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9580 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9581 			 mac, vf);
9582 		dev_info(&adapter->pdev->dev,
9583 			 "Reload the VF driver to make this change effective.");
9584 		/* Generate additional warning if PF is down */
9585 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9586 			dev_warn(&adapter->pdev->dev,
9587 				 "The VF MAC address has been set, but the PF device is not up.\n");
9588 			dev_warn(&adapter->pdev->dev,
9589 				 "Bring the PF device up before attempting to use the VF device.\n");
9590 		}
9591 	} else {
9592 		return -EINVAL;
9593 	}
9594 	return igb_set_vf_mac(adapter, vf, mac);
9595 }
9596 
9597 static int igb_link_mbps(int internal_link_speed)
9598 {
9599 	switch (internal_link_speed) {
9600 	case SPEED_100:
9601 		return 100;
9602 	case SPEED_1000:
9603 		return 1000;
9604 	default:
9605 		return 0;
9606 	}
9607 }
9608 
9609 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9610 				  int link_speed)
9611 {
9612 	int rf_dec, rf_int;
9613 	u32 bcnrc_val;
9614 
9615 	if (tx_rate != 0) {
9616 		/* Calculate the rate factor values to set */
9617 		rf_int = link_speed / tx_rate;
9618 		rf_dec = (link_speed - (rf_int * tx_rate));
9619 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9620 			 tx_rate;
9621 
9622 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9623 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9624 			      E1000_RTTBCNRC_RF_INT_MASK);
9625 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9626 	} else {
9627 		bcnrc_val = 0;
9628 	}
9629 
9630 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9631 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9632 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9633 	 */
9634 	wr32(E1000_RTTBCNRM, 0x14);
9635 	wr32(E1000_RTTBCNRC, bcnrc_val);
9636 }
9637 
9638 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9639 {
9640 	int actual_link_speed, i;
9641 	bool reset_rate = false;
9642 
9643 	/* VF TX rate limit was not set or not supported */
9644 	if ((adapter->vf_rate_link_speed == 0) ||
9645 	    (adapter->hw.mac.type != e1000_82576))
9646 		return;
9647 
9648 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9649 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9650 		reset_rate = true;
9651 		adapter->vf_rate_link_speed = 0;
9652 		dev_info(&adapter->pdev->dev,
9653 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9654 	}
9655 
9656 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9657 		if (reset_rate)
9658 			adapter->vf_data[i].tx_rate = 0;
9659 
9660 		igb_set_vf_rate_limit(&adapter->hw, i,
9661 				      adapter->vf_data[i].tx_rate,
9662 				      actual_link_speed);
9663 	}
9664 }
9665 
9666 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9667 			     int min_tx_rate, int max_tx_rate)
9668 {
9669 	struct igb_adapter *adapter = netdev_priv(netdev);
9670 	struct e1000_hw *hw = &adapter->hw;
9671 	int actual_link_speed;
9672 
9673 	if (hw->mac.type != e1000_82576)
9674 		return -EOPNOTSUPP;
9675 
9676 	if (min_tx_rate)
9677 		return -EINVAL;
9678 
9679 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9680 	if ((vf >= adapter->vfs_allocated_count) ||
9681 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9682 	    (max_tx_rate < 0) ||
9683 	    (max_tx_rate > actual_link_speed))
9684 		return -EINVAL;
9685 
9686 	adapter->vf_rate_link_speed = actual_link_speed;
9687 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9688 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9689 
9690 	return 0;
9691 }
9692 
9693 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9694 				   bool setting)
9695 {
9696 	struct igb_adapter *adapter = netdev_priv(netdev);
9697 	struct e1000_hw *hw = &adapter->hw;
9698 	u32 reg_val, reg_offset;
9699 
9700 	if (!adapter->vfs_allocated_count)
9701 		return -EOPNOTSUPP;
9702 
9703 	if (vf >= adapter->vfs_allocated_count)
9704 		return -EINVAL;
9705 
9706 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9707 	reg_val = rd32(reg_offset);
9708 	if (setting)
9709 		reg_val |= (BIT(vf) |
9710 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9711 	else
9712 		reg_val &= ~(BIT(vf) |
9713 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9714 	wr32(reg_offset, reg_val);
9715 
9716 	adapter->vf_data[vf].spoofchk_enabled = setting;
9717 	return 0;
9718 }
9719 
9720 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9721 {
9722 	struct igb_adapter *adapter = netdev_priv(netdev);
9723 
9724 	if (vf >= adapter->vfs_allocated_count)
9725 		return -EINVAL;
9726 	if (adapter->vf_data[vf].trusted == setting)
9727 		return 0;
9728 
9729 	adapter->vf_data[vf].trusted = setting;
9730 
9731 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9732 		 vf, setting ? "" : "not ");
9733 	return 0;
9734 }
9735 
9736 static int igb_ndo_get_vf_config(struct net_device *netdev,
9737 				 int vf, struct ifla_vf_info *ivi)
9738 {
9739 	struct igb_adapter *adapter = netdev_priv(netdev);
9740 	if (vf >= adapter->vfs_allocated_count)
9741 		return -EINVAL;
9742 	ivi->vf = vf;
9743 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9744 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9745 	ivi->min_tx_rate = 0;
9746 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9747 	ivi->qos = adapter->vf_data[vf].pf_qos;
9748 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9749 	ivi->trusted = adapter->vf_data[vf].trusted;
9750 	return 0;
9751 }
9752 
9753 static void igb_vmm_control(struct igb_adapter *adapter)
9754 {
9755 	struct e1000_hw *hw = &adapter->hw;
9756 	u32 reg;
9757 
9758 	switch (hw->mac.type) {
9759 	case e1000_82575:
9760 	case e1000_i210:
9761 	case e1000_i211:
9762 	case e1000_i354:
9763 	default:
9764 		/* replication is not supported for 82575 */
9765 		return;
9766 	case e1000_82576:
9767 		/* notify HW that the MAC is adding vlan tags */
9768 		reg = rd32(E1000_DTXCTL);
9769 		reg |= E1000_DTXCTL_VLAN_ADDED;
9770 		wr32(E1000_DTXCTL, reg);
9771 		fallthrough;
9772 	case e1000_82580:
9773 		/* enable replication vlan tag stripping */
9774 		reg = rd32(E1000_RPLOLR);
9775 		reg |= E1000_RPLOLR_STRVLAN;
9776 		wr32(E1000_RPLOLR, reg);
9777 		fallthrough;
9778 	case e1000_i350:
9779 		/* none of the above registers are supported by i350 */
9780 		break;
9781 	}
9782 
9783 	if (adapter->vfs_allocated_count) {
9784 		igb_vmdq_set_loopback_pf(hw, true);
9785 		igb_vmdq_set_replication_pf(hw, true);
9786 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9787 					      adapter->vfs_allocated_count);
9788 	} else {
9789 		igb_vmdq_set_loopback_pf(hw, false);
9790 		igb_vmdq_set_replication_pf(hw, false);
9791 	}
9792 }
9793 
9794 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9795 {
9796 	struct e1000_hw *hw = &adapter->hw;
9797 	u32 dmac_thr;
9798 	u16 hwm;
9799 
9800 	if (hw->mac.type > e1000_82580) {
9801 		if (adapter->flags & IGB_FLAG_DMAC) {
9802 			u32 reg;
9803 
9804 			/* force threshold to 0. */
9805 			wr32(E1000_DMCTXTH, 0);
9806 
9807 			/* DMA Coalescing high water mark needs to be greater
9808 			 * than the Rx threshold. Set hwm to PBA - max frame
9809 			 * size in 16B units, capping it at PBA - 6KB.
9810 			 */
9811 			hwm = 64 * (pba - 6);
9812 			reg = rd32(E1000_FCRTC);
9813 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9814 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9815 				& E1000_FCRTC_RTH_COAL_MASK);
9816 			wr32(E1000_FCRTC, reg);
9817 
9818 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9819 			 * frame size, capping it at PBA - 10KB.
9820 			 */
9821 			dmac_thr = pba - 10;
9822 			reg = rd32(E1000_DMACR);
9823 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9824 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9825 				& E1000_DMACR_DMACTHR_MASK);
9826 
9827 			/* transition to L0x or L1 if available..*/
9828 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9829 
9830 			/* watchdog timer= +-1000 usec in 32usec intervals */
9831 			reg |= (1000 >> 5);
9832 
9833 			/* Disable BMC-to-OS Watchdog Enable */
9834 			if (hw->mac.type != e1000_i354)
9835 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9836 
9837 			wr32(E1000_DMACR, reg);
9838 
9839 			/* no lower threshold to disable
9840 			 * coalescing(smart fifb)-UTRESH=0
9841 			 */
9842 			wr32(E1000_DMCRTRH, 0);
9843 
9844 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9845 
9846 			wr32(E1000_DMCTLX, reg);
9847 
9848 			/* free space in tx packet buffer to wake from
9849 			 * DMA coal
9850 			 */
9851 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9852 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9853 
9854 			/* make low power state decision controlled
9855 			 * by DMA coal
9856 			 */
9857 			reg = rd32(E1000_PCIEMISC);
9858 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9859 			wr32(E1000_PCIEMISC, reg);
9860 		} /* endif adapter->dmac is not disabled */
9861 	} else if (hw->mac.type == e1000_82580) {
9862 		u32 reg = rd32(E1000_PCIEMISC);
9863 
9864 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9865 		wr32(E1000_DMACR, 0);
9866 	}
9867 }
9868 
9869 /**
9870  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9871  *  @hw: pointer to hardware structure
9872  *  @byte_offset: byte offset to read
9873  *  @dev_addr: device address
9874  *  @data: value read
9875  *
9876  *  Performs byte read operation over I2C interface at
9877  *  a specified device address.
9878  **/
9879 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9880 		      u8 dev_addr, u8 *data)
9881 {
9882 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9883 	struct i2c_client *this_client = adapter->i2c_client;
9884 	s32 status;
9885 	u16 swfw_mask = 0;
9886 
9887 	if (!this_client)
9888 		return E1000_ERR_I2C;
9889 
9890 	swfw_mask = E1000_SWFW_PHY0_SM;
9891 
9892 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9893 		return E1000_ERR_SWFW_SYNC;
9894 
9895 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9896 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9897 
9898 	if (status < 0)
9899 		return E1000_ERR_I2C;
9900 	else {
9901 		*data = status;
9902 		return 0;
9903 	}
9904 }
9905 
9906 /**
9907  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9908  *  @hw: pointer to hardware structure
9909  *  @byte_offset: byte offset to write
9910  *  @dev_addr: device address
9911  *  @data: value to write
9912  *
9913  *  Performs byte write operation over I2C interface at
9914  *  a specified device address.
9915  **/
9916 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9917 		       u8 dev_addr, u8 data)
9918 {
9919 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9920 	struct i2c_client *this_client = adapter->i2c_client;
9921 	s32 status;
9922 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9923 
9924 	if (!this_client)
9925 		return E1000_ERR_I2C;
9926 
9927 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9928 		return E1000_ERR_SWFW_SYNC;
9929 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9930 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9931 
9932 	if (status)
9933 		return E1000_ERR_I2C;
9934 	else
9935 		return 0;
9936 
9937 }
9938 
9939 int igb_reinit_queues(struct igb_adapter *adapter)
9940 {
9941 	struct net_device *netdev = adapter->netdev;
9942 	struct pci_dev *pdev = adapter->pdev;
9943 	int err = 0;
9944 
9945 	if (netif_running(netdev))
9946 		igb_close(netdev);
9947 
9948 	igb_reset_interrupt_capability(adapter);
9949 
9950 	if (igb_init_interrupt_scheme(adapter, true)) {
9951 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9952 		return -ENOMEM;
9953 	}
9954 
9955 	if (netif_running(netdev))
9956 		err = igb_open(netdev);
9957 
9958 	return err;
9959 }
9960 
9961 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9962 {
9963 	struct igb_nfc_filter *rule;
9964 
9965 	spin_lock(&adapter->nfc_lock);
9966 
9967 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9968 		igb_erase_filter(adapter, rule);
9969 
9970 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9971 		igb_erase_filter(adapter, rule);
9972 
9973 	spin_unlock(&adapter->nfc_lock);
9974 }
9975 
9976 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9977 {
9978 	struct igb_nfc_filter *rule;
9979 
9980 	spin_lock(&adapter->nfc_lock);
9981 
9982 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9983 		igb_add_filter(adapter, rule);
9984 
9985 	spin_unlock(&adapter->nfc_lock);
9986 }
9987 /* igb_main.c */
9988