xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46 
47 enum queue_mode {
48 	QUEUE_MODE_STRICT_PRIORITY,
49 	QUEUE_MODE_STREAM_RESERVATION,
50 };
51 
52 enum tx_queue_prio {
53 	TX_QUEUE_PRIO_HIGH,
54 	TX_QUEUE_PRIO_LOW,
55 };
56 
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 				"Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 				"Copyright (c) 2007-2014 Intel Corporation.";
63 
64 static const struct e1000_info *igb_info_tbl[] = {
65 	[board_82575] = &e1000_82575_info,
66 };
67 
68 static const struct pci_device_id igb_pci_tbl[] = {
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 	/* required last entry */
105 	{0, }
106 };
107 
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109 
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 			    struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 			  netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 				   bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 				bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187 
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 			igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 	.notifier_call	= igb_notify_dca,
204 	.next		= NULL,
205 	.priority	= 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213 
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 		     pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218 
219 static const struct pci_error_handlers igb_err_handler = {
220 	.error_detected = igb_io_error_detected,
221 	.slot_reset = igb_io_slot_reset,
222 	.resume = igb_io_resume,
223 };
224 
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 
227 static struct pci_driver igb_driver = {
228 	.name     = igb_driver_name,
229 	.id_table = igb_pci_tbl,
230 	.probe    = igb_probe,
231 	.remove   = igb_remove,
232 #ifdef CONFIG_PM
233 	.driver.pm = &igb_pm_ops,
234 #endif
235 	.shutdown = igb_shutdown,
236 	.sriov_configure = igb_pci_sriov_configure,
237 	.err_handler = &igb_err_handler
238 };
239 
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244 
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249 
250 struct igb_reg_info {
251 	u32 ofs;
252 	char *name;
253 };
254 
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256 
257 	/* General Registers */
258 	{E1000_CTRL, "CTRL"},
259 	{E1000_STATUS, "STATUS"},
260 	{E1000_CTRL_EXT, "CTRL_EXT"},
261 
262 	/* Interrupt Registers */
263 	{E1000_ICR, "ICR"},
264 
265 	/* RX Registers */
266 	{E1000_RCTL, "RCTL"},
267 	{E1000_RDLEN(0), "RDLEN"},
268 	{E1000_RDH(0), "RDH"},
269 	{E1000_RDT(0), "RDT"},
270 	{E1000_RXDCTL(0), "RXDCTL"},
271 	{E1000_RDBAL(0), "RDBAL"},
272 	{E1000_RDBAH(0), "RDBAH"},
273 
274 	/* TX Registers */
275 	{E1000_TCTL, "TCTL"},
276 	{E1000_TDBAL(0), "TDBAL"},
277 	{E1000_TDBAH(0), "TDBAH"},
278 	{E1000_TDLEN(0), "TDLEN"},
279 	{E1000_TDH(0), "TDH"},
280 	{E1000_TDT(0), "TDT"},
281 	{E1000_TXDCTL(0), "TXDCTL"},
282 	{E1000_TDFH, "TDFH"},
283 	{E1000_TDFT, "TDFT"},
284 	{E1000_TDFHS, "TDFHS"},
285 	{E1000_TDFPC, "TDFPC"},
286 
287 	/* List Terminator */
288 	{}
289 };
290 
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 	int n = 0;
295 	char rname[16];
296 	u32 regs[8];
297 
298 	switch (reginfo->ofs) {
299 	case E1000_RDLEN(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDLEN(n));
302 		break;
303 	case E1000_RDH(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RDH(n));
306 		break;
307 	case E1000_RDT(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDT(n));
310 		break;
311 	case E1000_RXDCTL(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RXDCTL(n));
314 		break;
315 	case E1000_RDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_RDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RDBAH(n));
322 		break;
323 	case E1000_TDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_TDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDBAH(n));
330 		break;
331 	case E1000_TDLEN(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDLEN(n));
334 		break;
335 	case E1000_TDH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDH(n));
338 		break;
339 	case E1000_TDT(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDT(n));
342 		break;
343 	case E1000_TXDCTL(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TXDCTL(n));
346 		break;
347 	default:
348 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 		return;
350 	}
351 
352 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 		regs[2], regs[3]);
355 }
356 
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 	struct net_device *netdev = adapter->netdev;
361 	struct e1000_hw *hw = &adapter->hw;
362 	struct igb_reg_info *reginfo;
363 	struct igb_ring *tx_ring;
364 	union e1000_adv_tx_desc *tx_desc;
365 	struct my_u0 { u64 a; u64 b; } *u0;
366 	struct igb_ring *rx_ring;
367 	union e1000_adv_rx_desc *rx_desc;
368 	u32 staterr;
369 	u16 i, n;
370 
371 	if (!netif_msg_hw(adapter))
372 		return;
373 
374 	/* Print netdevice Info */
375 	if (netdev) {
376 		dev_info(&adapter->pdev->dev, "Net device Info\n");
377 		pr_info("Device Name     state            trans_start\n");
378 		pr_info("%-15s %016lX %016lX\n", netdev->name,
379 			netdev->state, dev_trans_start(netdev));
380 	}
381 
382 	/* Print Registers */
383 	dev_info(&adapter->pdev->dev, "Register Dump\n");
384 	pr_info(" Register Name   Value\n");
385 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 	     reginfo->name; reginfo++) {
387 		igb_regdump(hw, reginfo);
388 	}
389 
390 	/* Print TX Ring Summary */
391 	if (!netdev || !netif_running(netdev))
392 		goto exit;
393 
394 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396 	for (n = 0; n < adapter->num_tx_queues; n++) {
397 		struct igb_tx_buffer *buffer_info;
398 		tx_ring = adapter->tx_ring[n];
399 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 			(u64)dma_unmap_addr(buffer_info, dma),
403 			dma_unmap_len(buffer_info, len),
404 			buffer_info->next_to_watch,
405 			(u64)buffer_info->time_stamp);
406 	}
407 
408 	/* Print TX Rings */
409 	if (!netif_msg_tx_done(adapter))
410 		goto rx_ring_summary;
411 
412 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413 
414 	/* Transmit Descriptor Formats
415 	 *
416 	 * Advanced Transmit Descriptor
417 	 *   +--------------------------------------------------------------+
418 	 * 0 |         Buffer Address [63:0]                                |
419 	 *   +--------------------------------------------------------------+
420 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421 	 *   +--------------------------------------------------------------+
422 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
423 	 */
424 
425 	for (n = 0; n < adapter->num_tx_queues; n++) {
426 		tx_ring = adapter->tx_ring[n];
427 		pr_info("------------------------------------\n");
428 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 		pr_info("------------------------------------\n");
430 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431 
432 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 			const char *next_desc;
434 			struct igb_tx_buffer *buffer_info;
435 			tx_desc = IGB_TX_DESC(tx_ring, i);
436 			buffer_info = &tx_ring->tx_buffer_info[i];
437 			u0 = (struct my_u0 *)tx_desc;
438 			if (i == tx_ring->next_to_use &&
439 			    i == tx_ring->next_to_clean)
440 				next_desc = " NTC/U";
441 			else if (i == tx_ring->next_to_use)
442 				next_desc = " NTU";
443 			else if (i == tx_ring->next_to_clean)
444 				next_desc = " NTC";
445 			else
446 				next_desc = "";
447 
448 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449 				i, le64_to_cpu(u0->a),
450 				le64_to_cpu(u0->b),
451 				(u64)dma_unmap_addr(buffer_info, dma),
452 				dma_unmap_len(buffer_info, len),
453 				buffer_info->next_to_watch,
454 				(u64)buffer_info->time_stamp,
455 				buffer_info->skb, next_desc);
456 
457 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 				print_hex_dump(KERN_INFO, "",
459 					DUMP_PREFIX_ADDRESS,
460 					16, 1, buffer_info->skb->data,
461 					dma_unmap_len(buffer_info, len),
462 					true);
463 		}
464 	}
465 
466 	/* Print RX Rings Summary */
467 rx_ring_summary:
468 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 	pr_info("Queue [NTU] [NTC]\n");
470 	for (n = 0; n < adapter->num_rx_queues; n++) {
471 		rx_ring = adapter->rx_ring[n];
472 		pr_info(" %5d %5X %5X\n",
473 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 	}
475 
476 	/* Print RX Rings */
477 	if (!netif_msg_rx_status(adapter))
478 		goto exit;
479 
480 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481 
482 	/* Advanced Receive Descriptor (Read) Format
483 	 *    63                                           1        0
484 	 *    +-----------------------------------------------------+
485 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486 	 *    +----------------------------------------------+------+
487 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
488 	 *    +-----------------------------------------------------+
489 	 *
490 	 *
491 	 * Advanced Receive Descriptor (Write-Back) Format
492 	 *
493 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
494 	 *   +------------------------------------------------------+
495 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496 	 *   | Checksum   Ident  |   |           |    | Type | Type |
497 	 *   +------------------------------------------------------+
498 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 	 *   +------------------------------------------------------+
500 	 *   63       48 47    32 31            20 19               0
501 	 */
502 
503 	for (n = 0; n < adapter->num_rx_queues; n++) {
504 		rx_ring = adapter->rx_ring[n];
505 		pr_info("------------------------------------\n");
506 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 		pr_info("------------------------------------\n");
508 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510 
511 		for (i = 0; i < rx_ring->count; i++) {
512 			const char *next_desc;
513 			struct igb_rx_buffer *buffer_info;
514 			buffer_info = &rx_ring->rx_buffer_info[i];
515 			rx_desc = IGB_RX_DESC(rx_ring, i);
516 			u0 = (struct my_u0 *)rx_desc;
517 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518 
519 			if (i == rx_ring->next_to_use)
520 				next_desc = " NTU";
521 			else if (i == rx_ring->next_to_clean)
522 				next_desc = " NTC";
523 			else
524 				next_desc = "";
525 
526 			if (staterr & E1000_RXD_STAT_DD) {
527 				/* Descriptor Done */
528 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529 					"RWB", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					next_desc);
533 			} else {
534 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535 					"R  ", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					(u64)buffer_info->dma,
539 					next_desc);
540 
541 				if (netif_msg_pktdata(adapter) &&
542 				    buffer_info->dma && buffer_info->page) {
543 					print_hex_dump(KERN_INFO, "",
544 					  DUMP_PREFIX_ADDRESS,
545 					  16, 1,
546 					  page_address(buffer_info->page) +
547 						      buffer_info->page_offset,
548 					  igb_rx_bufsz(rx_ring), true);
549 				}
550 			}
551 		}
552 	}
553 
554 exit:
555 	return;
556 }
557 
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
565 static int igb_get_i2c_data(void *data)
566 {
567 	struct igb_adapter *adapter = (struct igb_adapter *)data;
568 	struct e1000_hw *hw = &adapter->hw;
569 	s32 i2cctl = rd32(E1000_I2CPARAMS);
570 
571 	return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573 
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	if (state)
588 		i2cctl |= E1000_I2C_DATA_OUT;
589 	else
590 		i2cctl &= ~E1000_I2C_DATA_OUT;
591 
592 	i2cctl &= ~E1000_I2C_DATA_OE_N;
593 	i2cctl |= E1000_I2C_CLK_OE_N;
594 	wr32(E1000_I2CPARAMS, i2cctl);
595 	wrfl();
596 
597 }
598 
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 	struct igb_adapter *adapter = (struct igb_adapter *)data;
609 	struct e1000_hw *hw = &adapter->hw;
610 	s32 i2cctl = rd32(E1000_I2CPARAMS);
611 
612 	if (state) {
613 		i2cctl |= E1000_I2C_CLK_OUT;
614 		i2cctl &= ~E1000_I2C_CLK_OE_N;
615 	} else {
616 		i2cctl &= ~E1000_I2C_CLK_OUT;
617 		i2cctl &= ~E1000_I2C_CLK_OE_N;
618 	}
619 	wr32(E1000_I2CPARAMS, i2cctl);
620 	wrfl();
621 }
622 
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
629 static int igb_get_i2c_clk(void *data)
630 {
631 	struct igb_adapter *adapter = (struct igb_adapter *)data;
632 	struct e1000_hw *hw = &adapter->hw;
633 	s32 i2cctl = rd32(E1000_I2CPARAMS);
634 
635 	return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637 
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 	.setsda		= igb_set_i2c_data,
640 	.setscl		= igb_set_i2c_clk,
641 	.getsda		= igb_get_i2c_data,
642 	.getscl		= igb_get_i2c_clk,
643 	.udelay		= 5,
644 	.timeout	= 20,
645 };
646 
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 	struct igb_adapter *adapter = hw->back;
656 	return adapter->netdev;
657 }
658 
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
665 static int __init igb_init_module(void)
666 {
667 	int ret;
668 
669 	pr_info("%s - version %s\n",
670 	       igb_driver_string, igb_driver_version);
671 	pr_info("%s\n", igb_copyright);
672 
673 #ifdef CONFIG_IGB_DCA
674 	dca_register_notify(&dca_notifier);
675 #endif
676 	ret = pci_register_driver(&igb_driver);
677 	return ret;
678 }
679 
680 module_init(igb_init_module);
681 
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 	dca_unregister_notify(&dca_notifier);
692 #endif
693 	pci_unregister_driver(&igb_driver);
694 }
695 
696 module_exit(igb_exit_module);
697 
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 	int i = 0, j = 0;
709 	u32 rbase_offset = adapter->vfs_allocated_count;
710 
711 	switch (adapter->hw.mac.type) {
712 	case e1000_82576:
713 		/* The queues are allocated for virtualization such that VF 0
714 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 		 * In order to avoid collision we start at the first free queue
716 		 * and continue consuming queues in the same sequence
717 		 */
718 		if (adapter->vfs_allocated_count) {
719 			for (; i < adapter->rss_queues; i++)
720 				adapter->rx_ring[i]->reg_idx = rbase_offset +
721 							       Q_IDX_82576(i);
722 		}
723 		/* Fall through */
724 	case e1000_82575:
725 	case e1000_82580:
726 	case e1000_i350:
727 	case e1000_i354:
728 	case e1000_i210:
729 	case e1000_i211:
730 		/* Fall through */
731 	default:
732 		for (; i < adapter->num_rx_queues; i++)
733 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 		for (; j < adapter->num_tx_queues; j++)
735 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 		break;
737 	}
738 }
739 
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 	u32 value = 0;
745 
746 	if (E1000_REMOVED(hw_addr))
747 		return ~value;
748 
749 	value = readl(&hw_addr[reg]);
750 
751 	/* reads should not return all F's */
752 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 		struct net_device *netdev = igb->netdev;
754 		hw->hw_addr = NULL;
755 		netdev_err(netdev, "PCIe link lost\n");
756 	}
757 
758 	return value;
759 }
760 
761 /**
762  *  igb_write_ivar - configure ivar for given MSI-X vector
763  *  @hw: pointer to the HW structure
764  *  @msix_vector: vector number we are allocating to a given ring
765  *  @index: row index of IVAR register to write within IVAR table
766  *  @offset: column offset of in IVAR, should be multiple of 8
767  *
768  *  This function is intended to handle the writing of the IVAR register
769  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
770  *  each containing an cause allocation for an Rx and Tx ring, and a
771  *  variable number of rows depending on the number of queues supported.
772  **/
773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 			   int index, int offset)
775 {
776 	u32 ivar = array_rd32(E1000_IVAR0, index);
777 
778 	/* clear any bits that are currently set */
779 	ivar &= ~((u32)0xFF << offset);
780 
781 	/* write vector and valid bit */
782 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783 
784 	array_wr32(E1000_IVAR0, index, ivar);
785 }
786 
787 #define IGB_N0_QUEUE -1
788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790 	struct igb_adapter *adapter = q_vector->adapter;
791 	struct e1000_hw *hw = &adapter->hw;
792 	int rx_queue = IGB_N0_QUEUE;
793 	int tx_queue = IGB_N0_QUEUE;
794 	u32 msixbm = 0;
795 
796 	if (q_vector->rx.ring)
797 		rx_queue = q_vector->rx.ring->reg_idx;
798 	if (q_vector->tx.ring)
799 		tx_queue = q_vector->tx.ring->reg_idx;
800 
801 	switch (hw->mac.type) {
802 	case e1000_82575:
803 		/* The 82575 assigns vectors using a bitmask, which matches the
804 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
805 		 * or more queues to a vector, we write the appropriate bits
806 		 * into the MSIXBM register for that vector.
807 		 */
808 		if (rx_queue > IGB_N0_QUEUE)
809 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 		if (tx_queue > IGB_N0_QUEUE)
811 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 			msixbm |= E1000_EIMS_OTHER;
814 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 		q_vector->eims_value = msixbm;
816 		break;
817 	case e1000_82576:
818 		/* 82576 uses a table that essentially consists of 2 columns
819 		 * with 8 rows.  The ordering is column-major so we use the
820 		 * lower 3 bits as the row index, and the 4th bit as the
821 		 * column offset.
822 		 */
823 		if (rx_queue > IGB_N0_QUEUE)
824 			igb_write_ivar(hw, msix_vector,
825 				       rx_queue & 0x7,
826 				       (rx_queue & 0x8) << 1);
827 		if (tx_queue > IGB_N0_QUEUE)
828 			igb_write_ivar(hw, msix_vector,
829 				       tx_queue & 0x7,
830 				       ((tx_queue & 0x8) << 1) + 8);
831 		q_vector->eims_value = BIT(msix_vector);
832 		break;
833 	case e1000_82580:
834 	case e1000_i350:
835 	case e1000_i354:
836 	case e1000_i210:
837 	case e1000_i211:
838 		/* On 82580 and newer adapters the scheme is similar to 82576
839 		 * however instead of ordering column-major we have things
840 		 * ordered row-major.  So we traverse the table by using
841 		 * bit 0 as the column offset, and the remaining bits as the
842 		 * row index.
843 		 */
844 		if (rx_queue > IGB_N0_QUEUE)
845 			igb_write_ivar(hw, msix_vector,
846 				       rx_queue >> 1,
847 				       (rx_queue & 0x1) << 4);
848 		if (tx_queue > IGB_N0_QUEUE)
849 			igb_write_ivar(hw, msix_vector,
850 				       tx_queue >> 1,
851 				       ((tx_queue & 0x1) << 4) + 8);
852 		q_vector->eims_value = BIT(msix_vector);
853 		break;
854 	default:
855 		BUG();
856 		break;
857 	}
858 
859 	/* add q_vector eims value to global eims_enable_mask */
860 	adapter->eims_enable_mask |= q_vector->eims_value;
861 
862 	/* configure q_vector to set itr on first interrupt */
863 	q_vector->set_itr = 1;
864 }
865 
866 /**
867  *  igb_configure_msix - Configure MSI-X hardware
868  *  @adapter: board private structure to initialize
869  *
870  *  igb_configure_msix sets up the hardware to properly
871  *  generate MSI-X interrupts.
872  **/
873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875 	u32 tmp;
876 	int i, vector = 0;
877 	struct e1000_hw *hw = &adapter->hw;
878 
879 	adapter->eims_enable_mask = 0;
880 
881 	/* set vector for other causes, i.e. link changes */
882 	switch (hw->mac.type) {
883 	case e1000_82575:
884 		tmp = rd32(E1000_CTRL_EXT);
885 		/* enable MSI-X PBA support*/
886 		tmp |= E1000_CTRL_EXT_PBA_CLR;
887 
888 		/* Auto-Mask interrupts upon ICR read. */
889 		tmp |= E1000_CTRL_EXT_EIAME;
890 		tmp |= E1000_CTRL_EXT_IRCA;
891 
892 		wr32(E1000_CTRL_EXT, tmp);
893 
894 		/* enable msix_other interrupt */
895 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 		adapter->eims_other = E1000_EIMS_OTHER;
897 
898 		break;
899 
900 	case e1000_82576:
901 	case e1000_82580:
902 	case e1000_i350:
903 	case e1000_i354:
904 	case e1000_i210:
905 	case e1000_i211:
906 		/* Turn on MSI-X capability first, or our settings
907 		 * won't stick.  And it will take days to debug.
908 		 */
909 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
911 		     E1000_GPIE_NSICR);
912 
913 		/* enable msix_other interrupt */
914 		adapter->eims_other = BIT(vector);
915 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
916 
917 		wr32(E1000_IVAR_MISC, tmp);
918 		break;
919 	default:
920 		/* do nothing, since nothing else supports MSI-X */
921 		break;
922 	} /* switch (hw->mac.type) */
923 
924 	adapter->eims_enable_mask |= adapter->eims_other;
925 
926 	for (i = 0; i < adapter->num_q_vectors; i++)
927 		igb_assign_vector(adapter->q_vector[i], vector++);
928 
929 	wrfl();
930 }
931 
932 /**
933  *  igb_request_msix - Initialize MSI-X interrupts
934  *  @adapter: board private structure to initialize
935  *
936  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
937  *  kernel.
938  **/
939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941 	struct net_device *netdev = adapter->netdev;
942 	int i, err = 0, vector = 0, free_vector = 0;
943 
944 	err = request_irq(adapter->msix_entries[vector].vector,
945 			  igb_msix_other, 0, netdev->name, adapter);
946 	if (err)
947 		goto err_out;
948 
949 	for (i = 0; i < adapter->num_q_vectors; i++) {
950 		struct igb_q_vector *q_vector = adapter->q_vector[i];
951 
952 		vector++;
953 
954 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955 
956 		if (q_vector->rx.ring && q_vector->tx.ring)
957 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 				q_vector->rx.ring->queue_index);
959 		else if (q_vector->tx.ring)
960 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 				q_vector->tx.ring->queue_index);
962 		else if (q_vector->rx.ring)
963 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 				q_vector->rx.ring->queue_index);
965 		else
966 			sprintf(q_vector->name, "%s-unused", netdev->name);
967 
968 		err = request_irq(adapter->msix_entries[vector].vector,
969 				  igb_msix_ring, 0, q_vector->name,
970 				  q_vector);
971 		if (err)
972 			goto err_free;
973 	}
974 
975 	igb_configure_msix(adapter);
976 	return 0;
977 
978 err_free:
979 	/* free already assigned IRQs */
980 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981 
982 	vector--;
983 	for (i = 0; i < vector; i++) {
984 		free_irq(adapter->msix_entries[free_vector++].vector,
985 			 adapter->q_vector[i]);
986 	}
987 err_out:
988 	return err;
989 }
990 
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001 
1002 	adapter->q_vector[v_idx] = NULL;
1003 
1004 	/* igb_get_stats64() might access the rings on this vector,
1005 	 * we must wait a grace period before freeing it.
1006 	 */
1007 	if (q_vector)
1008 		kfree_rcu(q_vector, rcu);
1009 }
1010 
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022 
1023 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 	 * allocated. So, q_vector is NULL so we should stop here.
1025 	 */
1026 	if (!q_vector)
1027 		return;
1028 
1029 	if (q_vector->tx.ring)
1030 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031 
1032 	if (q_vector->rx.ring)
1033 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034 
1035 	netif_napi_del(&q_vector->napi);
1036 
1037 }
1038 
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 	int v_idx = adapter->num_q_vectors;
1042 
1043 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 		pci_disable_msix(adapter->pdev);
1045 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 		pci_disable_msi(adapter->pdev);
1047 
1048 	while (v_idx--)
1049 		igb_reset_q_vector(adapter, v_idx);
1050 }
1051 
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 	int v_idx = adapter->num_q_vectors;
1063 
1064 	adapter->num_tx_queues = 0;
1065 	adapter->num_rx_queues = 0;
1066 	adapter->num_q_vectors = 0;
1067 
1068 	while (v_idx--) {
1069 		igb_reset_q_vector(adapter, v_idx);
1070 		igb_free_q_vector(adapter, v_idx);
1071 	}
1072 }
1073 
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 	igb_free_q_vectors(adapter);
1084 	igb_reset_interrupt_capability(adapter);
1085 }
1086 
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 	int err;
1098 	int numvecs, i;
1099 
1100 	if (!msix)
1101 		goto msi_only;
1102 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1103 
1104 	/* Number of supported queues. */
1105 	adapter->num_rx_queues = adapter->rss_queues;
1106 	if (adapter->vfs_allocated_count)
1107 		adapter->num_tx_queues = 1;
1108 	else
1109 		adapter->num_tx_queues = adapter->rss_queues;
1110 
1111 	/* start with one vector for every Rx queue */
1112 	numvecs = adapter->num_rx_queues;
1113 
1114 	/* if Tx handler is separate add 1 for every Tx queue */
1115 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 		numvecs += adapter->num_tx_queues;
1117 
1118 	/* store the number of vectors reserved for queues */
1119 	adapter->num_q_vectors = numvecs;
1120 
1121 	/* add 1 vector for link status interrupts */
1122 	numvecs++;
1123 	for (i = 0; i < numvecs; i++)
1124 		adapter->msix_entries[i].entry = i;
1125 
1126 	err = pci_enable_msix_range(adapter->pdev,
1127 				    adapter->msix_entries,
1128 				    numvecs,
1129 				    numvecs);
1130 	if (err > 0)
1131 		return;
1132 
1133 	igb_reset_interrupt_capability(adapter);
1134 
1135 	/* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 	/* disable SR-IOV for non MSI-X configurations */
1140 	if (adapter->vf_data) {
1141 		struct e1000_hw *hw = &adapter->hw;
1142 		/* disable iov and allow time for transactions to clear */
1143 		pci_disable_sriov(adapter->pdev);
1144 		msleep(500);
1145 
1146 		kfree(adapter->vf_mac_list);
1147 		adapter->vf_mac_list = NULL;
1148 		kfree(adapter->vf_data);
1149 		adapter->vf_data = NULL;
1150 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 		wrfl();
1152 		msleep(100);
1153 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 	}
1155 #endif
1156 	adapter->vfs_allocated_count = 0;
1157 	adapter->rss_queues = 1;
1158 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 	adapter->num_rx_queues = 1;
1160 	adapter->num_tx_queues = 1;
1161 	adapter->num_q_vectors = 1;
1162 	if (!pci_enable_msi(adapter->pdev))
1163 		adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165 
1166 static void igb_add_ring(struct igb_ring *ring,
1167 			 struct igb_ring_container *head)
1168 {
1169 	head->ring = ring;
1170 	head->count++;
1171 }
1172 
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 			      int v_count, int v_idx,
1187 			      int txr_count, int txr_idx,
1188 			      int rxr_count, int rxr_idx)
1189 {
1190 	struct igb_q_vector *q_vector;
1191 	struct igb_ring *ring;
1192 	int ring_count, size;
1193 
1194 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1195 	if (txr_count > 1 || rxr_count > 1)
1196 		return -ENOMEM;
1197 
1198 	ring_count = txr_count + rxr_count;
1199 	size = sizeof(struct igb_q_vector) +
1200 	       (sizeof(struct igb_ring) * ring_count);
1201 
1202 	/* allocate q_vector and rings */
1203 	q_vector = adapter->q_vector[v_idx];
1204 	if (!q_vector) {
1205 		q_vector = kzalloc(size, GFP_KERNEL);
1206 	} else if (size > ksize(q_vector)) {
1207 		kfree_rcu(q_vector, rcu);
1208 		q_vector = kzalloc(size, GFP_KERNEL);
1209 	} else {
1210 		memset(q_vector, 0, size);
1211 	}
1212 	if (!q_vector)
1213 		return -ENOMEM;
1214 
1215 	/* initialize NAPI */
1216 	netif_napi_add(adapter->netdev, &q_vector->napi,
1217 		       igb_poll, 64);
1218 
1219 	/* tie q_vector and adapter together */
1220 	adapter->q_vector[v_idx] = q_vector;
1221 	q_vector->adapter = adapter;
1222 
1223 	/* initialize work limits */
1224 	q_vector->tx.work_limit = adapter->tx_work_limit;
1225 
1226 	/* initialize ITR configuration */
1227 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 	q_vector->itr_val = IGB_START_ITR;
1229 
1230 	/* initialize pointer to rings */
1231 	ring = q_vector->ring;
1232 
1233 	/* intialize ITR */
1234 	if (rxr_count) {
1235 		/* rx or rx/tx vector */
1236 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 			q_vector->itr_val = adapter->rx_itr_setting;
1238 	} else {
1239 		/* tx only vector */
1240 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 			q_vector->itr_val = adapter->tx_itr_setting;
1242 	}
1243 
1244 	if (txr_count) {
1245 		/* assign generic ring traits */
1246 		ring->dev = &adapter->pdev->dev;
1247 		ring->netdev = adapter->netdev;
1248 
1249 		/* configure backlink on ring */
1250 		ring->q_vector = q_vector;
1251 
1252 		/* update q_vector Tx values */
1253 		igb_add_ring(ring, &q_vector->tx);
1254 
1255 		/* For 82575, context index must be unique per ring. */
1256 		if (adapter->hw.mac.type == e1000_82575)
1257 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258 
1259 		/* apply Tx specific ring traits */
1260 		ring->count = adapter->tx_ring_count;
1261 		ring->queue_index = txr_idx;
1262 
1263 		ring->cbs_enable = false;
1264 		ring->idleslope = 0;
1265 		ring->sendslope = 0;
1266 		ring->hicredit = 0;
1267 		ring->locredit = 0;
1268 
1269 		u64_stats_init(&ring->tx_syncp);
1270 		u64_stats_init(&ring->tx_syncp2);
1271 
1272 		/* assign ring to adapter */
1273 		adapter->tx_ring[txr_idx] = ring;
1274 
1275 		/* push pointer to next ring */
1276 		ring++;
1277 	}
1278 
1279 	if (rxr_count) {
1280 		/* assign generic ring traits */
1281 		ring->dev = &adapter->pdev->dev;
1282 		ring->netdev = adapter->netdev;
1283 
1284 		/* configure backlink on ring */
1285 		ring->q_vector = q_vector;
1286 
1287 		/* update q_vector Rx values */
1288 		igb_add_ring(ring, &q_vector->rx);
1289 
1290 		/* set flag indicating ring supports SCTP checksum offload */
1291 		if (adapter->hw.mac.type >= e1000_82576)
1292 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293 
1294 		/* On i350, i354, i210, and i211, loopback VLAN packets
1295 		 * have the tag byte-swapped.
1296 		 */
1297 		if (adapter->hw.mac.type >= e1000_i350)
1298 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299 
1300 		/* apply Rx specific ring traits */
1301 		ring->count = adapter->rx_ring_count;
1302 		ring->queue_index = rxr_idx;
1303 
1304 		u64_stats_init(&ring->rx_syncp);
1305 
1306 		/* assign ring to adapter */
1307 		adapter->rx_ring[rxr_idx] = ring;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 	int q_vectors = adapter->num_q_vectors;
1324 	int rxr_remaining = adapter->num_rx_queues;
1325 	int txr_remaining = adapter->num_tx_queues;
1326 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 	int err;
1328 
1329 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 		for (; rxr_remaining; v_idx++) {
1331 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 						 0, 0, 1, rxr_idx);
1333 
1334 			if (err)
1335 				goto err_out;
1336 
1337 			/* update counts and index */
1338 			rxr_remaining--;
1339 			rxr_idx++;
1340 		}
1341 	}
1342 
1343 	for (; v_idx < q_vectors; v_idx++) {
1344 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346 
1347 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 					 tqpv, txr_idx, rqpv, rxr_idx);
1349 
1350 		if (err)
1351 			goto err_out;
1352 
1353 		/* update counts and index */
1354 		rxr_remaining -= rqpv;
1355 		txr_remaining -= tqpv;
1356 		rxr_idx++;
1357 		txr_idx++;
1358 	}
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	adapter->num_tx_queues = 0;
1364 	adapter->num_rx_queues = 0;
1365 	adapter->num_q_vectors = 0;
1366 
1367 	while (v_idx--)
1368 		igb_free_q_vector(adapter, v_idx);
1369 
1370 	return -ENOMEM;
1371 }
1372 
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 	struct pci_dev *pdev = adapter->pdev;
1383 	int err;
1384 
1385 	igb_set_interrupt_capability(adapter, msix);
1386 
1387 	err = igb_alloc_q_vectors(adapter);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 		goto err_alloc_q_vectors;
1391 	}
1392 
1393 	igb_cache_ring_register(adapter);
1394 
1395 	return 0;
1396 
1397 err_alloc_q_vectors:
1398 	igb_reset_interrupt_capability(adapter);
1399 	return err;
1400 }
1401 
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 	struct net_device *netdev = adapter->netdev;
1412 	struct pci_dev *pdev = adapter->pdev;
1413 	int err = 0;
1414 
1415 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 		err = igb_request_msix(adapter);
1417 		if (!err)
1418 			goto request_done;
1419 		/* fall back to MSI */
1420 		igb_free_all_tx_resources(adapter);
1421 		igb_free_all_rx_resources(adapter);
1422 
1423 		igb_clear_interrupt_scheme(adapter);
1424 		err = igb_init_interrupt_scheme(adapter, false);
1425 		if (err)
1426 			goto request_done;
1427 
1428 		igb_setup_all_tx_resources(adapter);
1429 		igb_setup_all_rx_resources(adapter);
1430 		igb_configure(adapter);
1431 	}
1432 
1433 	igb_assign_vector(adapter->q_vector[0], 0);
1434 
1435 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 				  netdev->name, adapter);
1438 		if (!err)
1439 			goto request_done;
1440 
1441 		/* fall back to legacy interrupts */
1442 		igb_reset_interrupt_capability(adapter);
1443 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 	}
1445 
1446 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 			  netdev->name, adapter);
1448 
1449 	if (err)
1450 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 			err);
1452 
1453 request_done:
1454 	return err;
1455 }
1456 
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 		int vector = 0, i;
1461 
1462 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1463 
1464 		for (i = 0; i < adapter->num_q_vectors; i++)
1465 			free_irq(adapter->msix_entries[vector++].vector,
1466 				 adapter->q_vector[i]);
1467 	} else {
1468 		free_irq(adapter->pdev->irq, adapter);
1469 	}
1470 }
1471 
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 
1480 	/* we need to be careful when disabling interrupts.  The VFs are also
1481 	 * mapped into these registers and so clearing the bits can cause
1482 	 * issues on the VF drivers so we only need to clear what we set
1483 	 */
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 regval = rd32(E1000_EIAM);
1486 
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 
1499 		for (i = 0; i < adapter->num_q_vectors; i++)
1500 			synchronize_irq(adapter->msix_entries[i].vector);
1501 	} else {
1502 		synchronize_irq(adapter->pdev->irq);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 	struct e1000_hw *hw = &adapter->hw;
1513 
1514 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 		u32 regval = rd32(E1000_EIAC);
1517 
1518 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 		regval = rd32(E1000_EIAM);
1520 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 		if (adapter->vfs_allocated_count) {
1523 			wr32(E1000_MBVFIMR, 0xFF);
1524 			ims |= E1000_IMS_VMMB;
1525 		}
1526 		wr32(E1000_IMS, ims);
1527 	} else {
1528 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 	}
1533 }
1534 
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 	struct e1000_hw *hw = &adapter->hw;
1538 	u16 pf_id = adapter->vfs_allocated_count;
1539 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 	u16 old_vid = adapter->mng_vlan_id;
1541 
1542 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 		/* add VID to filter table */
1544 		igb_vfta_set(hw, vid, pf_id, true, true);
1545 		adapter->mng_vlan_id = vid;
1546 	} else {
1547 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 	}
1549 
1550 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 	    (vid != old_vid) &&
1552 	    !test_bit(old_vid, adapter->active_vlans)) {
1553 		/* remove VID from filter table */
1554 		igb_vfta_set(hw, vid, pf_id, false, true);
1555 	}
1556 }
1557 
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 ctrl_ext;
1570 
1571 	/* Let firmware take over control of h/w */
1572 	ctrl_ext = rd32(E1000_CTRL_EXT);
1573 	wr32(E1000_CTRL_EXT,
1574 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576 
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 	struct e1000_hw *hw = &adapter->hw;
1588 	u32 ctrl_ext;
1589 
1590 	/* Let firmware know the driver has taken over */
1591 	ctrl_ext = rd32(E1000_CTRL_EXT);
1592 	wr32(E1000_CTRL_EXT,
1593 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595 
1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 	struct net_device *netdev = adapter->netdev;
1599 	struct e1000_hw *hw = &adapter->hw;
1600 
1601 	WARN_ON(hw->mac.type != e1000_i210);
1602 
1603 	if (enable)
1604 		adapter->flags |= IGB_FLAG_FQTSS;
1605 	else
1606 		adapter->flags &= ~IGB_FLAG_FQTSS;
1607 
1608 	if (netif_running(netdev))
1609 		schedule_work(&adapter->reset_task);
1610 }
1611 
1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616 
1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 				   enum tx_queue_prio prio)
1619 {
1620 	u32 val;
1621 
1622 	WARN_ON(hw->mac.type != e1000_i210);
1623 	WARN_ON(queue < 0 || queue > 4);
1624 
1625 	val = rd32(E1000_I210_TXDCTL(queue));
1626 
1627 	if (prio == TX_QUEUE_PRIO_HIGH)
1628 		val |= E1000_TXDCTL_PRIORITY;
1629 	else
1630 		val &= ~E1000_TXDCTL_PRIORITY;
1631 
1632 	wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634 
1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 	u32 val;
1638 
1639 	WARN_ON(hw->mac.type != e1000_i210);
1640 	WARN_ON(queue < 0 || queue > 1);
1641 
1642 	val = rd32(E1000_I210_TQAVCC(queue));
1643 
1644 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 		val |= E1000_TQAVCC_QUEUEMODE;
1646 	else
1647 		val &= ~E1000_TQAVCC_QUEUEMODE;
1648 
1649 	wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651 
1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < adapter->num_tx_queues; i++) {
1657 		if (adapter->tx_ring[i]->cbs_enable)
1658 			return true;
1659 	}
1660 
1661 	return false;
1662 }
1663 
1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 	int i;
1667 
1668 	for (i = 0; i < adapter->num_tx_queues; i++) {
1669 		if (adapter->tx_ring[i]->launchtime_enable)
1670 			return true;
1671 	}
1672 
1673 	return false;
1674 }
1675 
1676 /**
1677  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678  *  @adapter: pointer to adapter struct
1679  *  @queue: queue number
1680  *
1681  *  Configure CBS and Launchtime for a given hardware queue.
1682  *  Parameters are retrieved from the correct Tx ring, so
1683  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684  *  for setting those correctly prior to this function being called.
1685  **/
1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 	struct igb_ring *ring = adapter->tx_ring[queue];
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	u32 tqavcc, tqavctrl;
1692 	u16 value;
1693 
1694 	WARN_ON(hw->mac.type != e1000_i210);
1695 	WARN_ON(queue < 0 || queue > 1);
1696 
1697 	/* If any of the Qav features is enabled, configure queues as SR and
1698 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 	 * as SP.
1700 	 */
1701 	if (ring->cbs_enable || ring->launchtime_enable) {
1702 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 	} else {
1705 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 	}
1708 
1709 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1710 	if (ring->cbs_enable || queue == 0) {
1711 		/* i210 does not allow the queue 0 to be in the Strict
1712 		 * Priority mode while the Qav mode is enabled, so,
1713 		 * instead of disabling strict priority mode, we give
1714 		 * queue 0 the maximum of credits possible.
1715 		 *
1716 		 * See section 8.12.19 of the i210 datasheet, "Note:
1717 		 * Queue0 QueueMode must be set to 1b when
1718 		 * TransmitMode is set to Qav."
1719 		 */
1720 		if (queue == 0 && !ring->cbs_enable) {
1721 			/* max "linkspeed" idleslope in kbps */
1722 			ring->idleslope = 1000000;
1723 			ring->hicredit = ETH_FRAME_LEN;
1724 		}
1725 
1726 		/* Always set data transfer arbitration to credit-based
1727 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 		 * the queues.
1729 		 */
1730 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733 
1734 		/* According to i210 datasheet section 7.2.7.7, we should set
1735 		 * the 'idleSlope' field from TQAVCC register following the
1736 		 * equation:
1737 		 *
1738 		 * For 100 Mbps link speed:
1739 		 *
1740 		 *     value = BW * 0x7735 * 0.2                          (E1)
1741 		 *
1742 		 * For 1000Mbps link speed:
1743 		 *
1744 		 *     value = BW * 0x7735 * 2                            (E2)
1745 		 *
1746 		 * E1 and E2 can be merged into one equation as shown below.
1747 		 * Note that 'link-speed' is in Mbps.
1748 		 *
1749 		 *     value = BW * 0x7735 * 2 * link-speed
1750 		 *                           --------------               (E3)
1751 		 *                                1000
1752 		 *
1753 		 * 'BW' is the percentage bandwidth out of full link speed
1754 		 * which can be found with the following equation. Note that
1755 		 * idleSlope here is the parameter from this function which
1756 		 * is in kbps.
1757 		 *
1758 		 *     BW =     idleSlope
1759 		 *          -----------------                             (E4)
1760 		 *          link-speed * 1000
1761 		 *
1762 		 * That said, we can come up with a generic equation to
1763 		 * calculate the value we should set it TQAVCC register by
1764 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 		 *
1766 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1767 		 *         -----------------            --------------    (E5)
1768 		 *         link-speed * 1000                 1000
1769 		 *
1770 		 * 'link-speed' is present in both sides of the fraction so
1771 		 * it is canceled out. The final equation is the following:
1772 		 *
1773 		 *     value = idleSlope * 61034
1774 		 *             -----------------                          (E6)
1775 		 *                  1000000
1776 		 *
1777 		 * NOTE: For i210, given the above, we can see that idleslope
1778 		 *       is represented in 16.38431 kbps units by the value at
1779 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1780 		 *       the granularity for idleslope increments.
1781 		 *       For instance, if you want to configure a 2576kbps
1782 		 *       idleslope, the value to be written on the register
1783 		 *       would have to be 157.23. If rounded down, you end
1784 		 *       up with less bandwidth available than originally
1785 		 *       required (~2572 kbps). If rounded up, you end up
1786 		 *       with a higher bandwidth (~2589 kbps). Below the
1787 		 *       approach we take is to always round up the
1788 		 *       calculated value, so the resulting bandwidth might
1789 		 *       be slightly higher for some configurations.
1790 		 */
1791 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792 
1793 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 		tqavcc |= value;
1796 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797 
1798 		wr32(E1000_I210_TQAVHC(queue),
1799 		     0x80000000 + ring->hicredit * 0x7735);
1800 	} else {
1801 
1802 		/* Set idleSlope to zero. */
1803 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806 
1807 		/* Set hiCredit to zero. */
1808 		wr32(E1000_I210_TQAVHC(queue), 0);
1809 
1810 		/* If CBS is not enabled for any queues anymore, then return to
1811 		 * the default state of Data Transmission Arbitration on
1812 		 * TQAVCTRL.
1813 		 */
1814 		if (!is_any_cbs_enabled(adapter)) {
1815 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 		}
1819 	}
1820 
1821 	/* If LaunchTime is enabled, set DataTranTIM. */
1822 	if (ring->launchtime_enable) {
1823 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 		 * for any of the SR queues, and configure fetchtime delta.
1825 		 * XXX NOTE:
1826 		 *     - LaunchTime will be enabled for all SR queues.
1827 		 *     - A fixed offset can be added relative to the launch
1828 		 *       time of all packets if configured at reg LAUNCH_OS0.
1829 		 *       We are keeping it as 0 for now (default value).
1830 		 */
1831 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 	} else {
1836 		/* If Launchtime is not enabled for any SR queues anymore,
1837 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 		 * effectively disabling Launchtime.
1839 		 */
1840 		if (!is_any_txtime_enabled(adapter)) {
1841 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 		}
1846 	}
1847 
1848 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 	 * CBS are not configurable by software so we don't do any 'controller
1850 	 * configuration' in respect to these parameters.
1851 	 */
1852 
1853 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854 		   ring->cbs_enable ? "enabled" : "disabled",
1855 		   ring->launchtime_enable ? "enabled" : "disabled",
1856 		   queue,
1857 		   ring->idleslope, ring->sendslope,
1858 		   ring->hicredit, ring->locredit);
1859 }
1860 
1861 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1862 				  bool enable)
1863 {
1864 	struct igb_ring *ring;
1865 
1866 	if (queue < 0 || queue > adapter->num_tx_queues)
1867 		return -EINVAL;
1868 
1869 	ring = adapter->tx_ring[queue];
1870 	ring->launchtime_enable = enable;
1871 
1872 	return 0;
1873 }
1874 
1875 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876 			       bool enable, int idleslope, int sendslope,
1877 			       int hicredit, int locredit)
1878 {
1879 	struct igb_ring *ring;
1880 
1881 	if (queue < 0 || queue > adapter->num_tx_queues)
1882 		return -EINVAL;
1883 
1884 	ring = adapter->tx_ring[queue];
1885 
1886 	ring->cbs_enable = enable;
1887 	ring->idleslope = idleslope;
1888 	ring->sendslope = sendslope;
1889 	ring->hicredit = hicredit;
1890 	ring->locredit = locredit;
1891 
1892 	return 0;
1893 }
1894 
1895 /**
1896  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897  *  @adapter: pointer to adapter struct
1898  *
1899  *  Configure TQAVCTRL register switching the controller's Tx mode
1900  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1901  *  a call to igb_config_tx_modes() per queue so any previously saved
1902  *  Tx parameters are applied.
1903  **/
1904 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1905 {
1906 	struct net_device *netdev = adapter->netdev;
1907 	struct e1000_hw *hw = &adapter->hw;
1908 	u32 val;
1909 
1910 	/* Only i210 controller supports changing the transmission mode. */
1911 	if (hw->mac.type != e1000_i210)
1912 		return;
1913 
1914 	if (is_fqtss_enabled(adapter)) {
1915 		int i, max_queue;
1916 
1917 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919 		 * so SP queues wait for SR ones.
1920 		 */
1921 		val = rd32(E1000_I210_TQAVCTRL);
1922 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924 		wr32(E1000_I210_TQAVCTRL, val);
1925 
1926 		/* Configure Tx and Rx packet buffers sizes as described in
1927 		 * i210 datasheet section 7.2.7.7.
1928 		 */
1929 		val = rd32(E1000_TXPBS);
1930 		val &= ~I210_TXPBSIZE_MASK;
1931 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1932 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1933 		wr32(E1000_TXPBS, val);
1934 
1935 		val = rd32(E1000_RXPBS);
1936 		val &= ~I210_RXPBSIZE_MASK;
1937 		val |= I210_RXPBSIZE_PB_30KB;
1938 		wr32(E1000_RXPBS, val);
1939 
1940 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941 		 * register should not exceed the buffer size programmed in
1942 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1944 		 * 4kB / 64.
1945 		 *
1946 		 * However, when we do so, no frame from queue 2 and 3 are
1947 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1948 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1949 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1950 		 */
1951 		val = (4096 - 1) / 64;
1952 		wr32(E1000_I210_DTXMXPKTSZ, val);
1953 
1954 		/* Since FQTSS mode is enabled, apply any CBS configuration
1955 		 * previously set. If no previous CBS configuration has been
1956 		 * done, then the initial configuration is applied, which means
1957 		 * CBS is disabled.
1958 		 */
1959 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1961 
1962 		for (i = 0; i < max_queue; i++) {
1963 			igb_config_tx_modes(adapter, i);
1964 		}
1965 	} else {
1966 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1969 
1970 		val = rd32(E1000_I210_TQAVCTRL);
1971 		/* According to Section 8.12.21, the other flags we've set when
1972 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1973 		 * don't set they here.
1974 		 */
1975 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976 		wr32(E1000_I210_TQAVCTRL, val);
1977 	}
1978 
1979 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980 		   "enabled" : "disabled");
1981 }
1982 
1983 /**
1984  *  igb_configure - configure the hardware for RX and TX
1985  *  @adapter: private board structure
1986  **/
1987 static void igb_configure(struct igb_adapter *adapter)
1988 {
1989 	struct net_device *netdev = adapter->netdev;
1990 	int i;
1991 
1992 	igb_get_hw_control(adapter);
1993 	igb_set_rx_mode(netdev);
1994 	igb_setup_tx_mode(adapter);
1995 
1996 	igb_restore_vlan(adapter);
1997 
1998 	igb_setup_tctl(adapter);
1999 	igb_setup_mrqc(adapter);
2000 	igb_setup_rctl(adapter);
2001 
2002 	igb_nfc_filter_restore(adapter);
2003 	igb_configure_tx(adapter);
2004 	igb_configure_rx(adapter);
2005 
2006 	igb_rx_fifo_flush_82575(&adapter->hw);
2007 
2008 	/* call igb_desc_unused which always leaves
2009 	 * at least 1 descriptor unused to make sure
2010 	 * next_to_use != next_to_clean
2011 	 */
2012 	for (i = 0; i < adapter->num_rx_queues; i++) {
2013 		struct igb_ring *ring = adapter->rx_ring[i];
2014 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2015 	}
2016 }
2017 
2018 /**
2019  *  igb_power_up_link - Power up the phy/serdes link
2020  *  @adapter: address of board private structure
2021  **/
2022 void igb_power_up_link(struct igb_adapter *adapter)
2023 {
2024 	igb_reset_phy(&adapter->hw);
2025 
2026 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027 		igb_power_up_phy_copper(&adapter->hw);
2028 	else
2029 		igb_power_up_serdes_link_82575(&adapter->hw);
2030 
2031 	igb_setup_link(&adapter->hw);
2032 }
2033 
2034 /**
2035  *  igb_power_down_link - Power down the phy/serdes link
2036  *  @adapter: address of board private structure
2037  */
2038 static void igb_power_down_link(struct igb_adapter *adapter)
2039 {
2040 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041 		igb_power_down_phy_copper_82575(&adapter->hw);
2042 	else
2043 		igb_shutdown_serdes_link_82575(&adapter->hw);
2044 }
2045 
2046 /**
2047  * Detect and switch function for Media Auto Sense
2048  * @adapter: address of the board private structure
2049  **/
2050 static void igb_check_swap_media(struct igb_adapter *adapter)
2051 {
2052 	struct e1000_hw *hw = &adapter->hw;
2053 	u32 ctrl_ext, connsw;
2054 	bool swap_now = false;
2055 
2056 	ctrl_ext = rd32(E1000_CTRL_EXT);
2057 	connsw = rd32(E1000_CONNSW);
2058 
2059 	/* need to live swap if current media is copper and we have fiber/serdes
2060 	 * to go to.
2061 	 */
2062 
2063 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2064 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2065 		swap_now = true;
2066 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
2067 		/* copper signal takes time to appear */
2068 		if (adapter->copper_tries < 4) {
2069 			adapter->copper_tries++;
2070 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071 			wr32(E1000_CONNSW, connsw);
2072 			return;
2073 		} else {
2074 			adapter->copper_tries = 0;
2075 			if ((connsw & E1000_CONNSW_PHYSD) &&
2076 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077 				swap_now = true;
2078 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079 				wr32(E1000_CONNSW, connsw);
2080 			}
2081 		}
2082 	}
2083 
2084 	if (!swap_now)
2085 		return;
2086 
2087 	switch (hw->phy.media_type) {
2088 	case e1000_media_type_copper:
2089 		netdev_info(adapter->netdev,
2090 			"MAS: changing media to fiber/serdes\n");
2091 		ctrl_ext |=
2092 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094 		adapter->copper_tries = 0;
2095 		break;
2096 	case e1000_media_type_internal_serdes:
2097 	case e1000_media_type_fiber:
2098 		netdev_info(adapter->netdev,
2099 			"MAS: changing media to copper\n");
2100 		ctrl_ext &=
2101 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103 		break;
2104 	default:
2105 		/* shouldn't get here during regular operation */
2106 		netdev_err(adapter->netdev,
2107 			"AMS: Invalid media type found, returning\n");
2108 		break;
2109 	}
2110 	wr32(E1000_CTRL_EXT, ctrl_ext);
2111 }
2112 
2113 /**
2114  *  igb_up - Open the interface and prepare it to handle traffic
2115  *  @adapter: board private structure
2116  **/
2117 int igb_up(struct igb_adapter *adapter)
2118 {
2119 	struct e1000_hw *hw = &adapter->hw;
2120 	int i;
2121 
2122 	/* hardware has been reset, we need to reload some things */
2123 	igb_configure(adapter);
2124 
2125 	clear_bit(__IGB_DOWN, &adapter->state);
2126 
2127 	for (i = 0; i < adapter->num_q_vectors; i++)
2128 		napi_enable(&(adapter->q_vector[i]->napi));
2129 
2130 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131 		igb_configure_msix(adapter);
2132 	else
2133 		igb_assign_vector(adapter->q_vector[0], 0);
2134 
2135 	/* Clear any pending interrupts. */
2136 	rd32(E1000_TSICR);
2137 	rd32(E1000_ICR);
2138 	igb_irq_enable(adapter);
2139 
2140 	/* notify VFs that reset has been completed */
2141 	if (adapter->vfs_allocated_count) {
2142 		u32 reg_data = rd32(E1000_CTRL_EXT);
2143 
2144 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2145 		wr32(E1000_CTRL_EXT, reg_data);
2146 	}
2147 
2148 	netif_tx_start_all_queues(adapter->netdev);
2149 
2150 	/* start the watchdog. */
2151 	hw->mac.get_link_status = 1;
2152 	schedule_work(&adapter->watchdog_task);
2153 
2154 	if ((adapter->flags & IGB_FLAG_EEE) &&
2155 	    (!hw->dev_spec._82575.eee_disable))
2156 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157 
2158 	return 0;
2159 }
2160 
2161 void igb_down(struct igb_adapter *adapter)
2162 {
2163 	struct net_device *netdev = adapter->netdev;
2164 	struct e1000_hw *hw = &adapter->hw;
2165 	u32 tctl, rctl;
2166 	int i;
2167 
2168 	/* signal that we're down so the interrupt handler does not
2169 	 * reschedule our watchdog timer
2170 	 */
2171 	set_bit(__IGB_DOWN, &adapter->state);
2172 
2173 	/* disable receives in the hardware */
2174 	rctl = rd32(E1000_RCTL);
2175 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176 	/* flush and sleep below */
2177 
2178 	igb_nfc_filter_exit(adapter);
2179 
2180 	netif_carrier_off(netdev);
2181 	netif_tx_stop_all_queues(netdev);
2182 
2183 	/* disable transmits in the hardware */
2184 	tctl = rd32(E1000_TCTL);
2185 	tctl &= ~E1000_TCTL_EN;
2186 	wr32(E1000_TCTL, tctl);
2187 	/* flush both disables and wait for them to finish */
2188 	wrfl();
2189 	usleep_range(10000, 11000);
2190 
2191 	igb_irq_disable(adapter);
2192 
2193 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194 
2195 	for (i = 0; i < adapter->num_q_vectors; i++) {
2196 		if (adapter->q_vector[i]) {
2197 			napi_synchronize(&adapter->q_vector[i]->napi);
2198 			napi_disable(&adapter->q_vector[i]->napi);
2199 		}
2200 	}
2201 
2202 	del_timer_sync(&adapter->watchdog_timer);
2203 	del_timer_sync(&adapter->phy_info_timer);
2204 
2205 	/* record the stats before reset*/
2206 	mutex_lock(&adapter->stats64_lock);
2207 	igb_update_stats(adapter);
2208 	mutex_unlock(&adapter->stats64_lock);
2209 
2210 	adapter->link_speed = 0;
2211 	adapter->link_duplex = 0;
2212 
2213 	if (!pci_channel_offline(adapter->pdev))
2214 		igb_reset(adapter);
2215 
2216 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2217 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218 
2219 	igb_clean_all_tx_rings(adapter);
2220 	igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2222 
2223 	/* since we reset the hardware DCA settings were cleared */
2224 	igb_setup_dca(adapter);
2225 #endif
2226 }
2227 
2228 void igb_reinit_locked(struct igb_adapter *adapter)
2229 {
2230 	WARN_ON(in_interrupt());
2231 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232 		usleep_range(1000, 2000);
2233 	igb_down(adapter);
2234 	igb_up(adapter);
2235 	clear_bit(__IGB_RESETTING, &adapter->state);
2236 }
2237 
2238 /** igb_enable_mas - Media Autosense re-enable after swap
2239  *
2240  * @adapter: adapter struct
2241  **/
2242 static void igb_enable_mas(struct igb_adapter *adapter)
2243 {
2244 	struct e1000_hw *hw = &adapter->hw;
2245 	u32 connsw = rd32(E1000_CONNSW);
2246 
2247 	/* configure for SerDes media detect */
2248 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2249 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2250 		connsw |= E1000_CONNSW_ENRGSRC;
2251 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252 		wr32(E1000_CONNSW, connsw);
2253 		wrfl();
2254 	}
2255 }
2256 
2257 void igb_reset(struct igb_adapter *adapter)
2258 {
2259 	struct pci_dev *pdev = adapter->pdev;
2260 	struct e1000_hw *hw = &adapter->hw;
2261 	struct e1000_mac_info *mac = &hw->mac;
2262 	struct e1000_fc_info *fc = &hw->fc;
2263 	u32 pba, hwm;
2264 
2265 	/* Repartition Pba for greater than 9k mtu
2266 	 * To take effect CTRL.RST is required.
2267 	 */
2268 	switch (mac->type) {
2269 	case e1000_i350:
2270 	case e1000_i354:
2271 	case e1000_82580:
2272 		pba = rd32(E1000_RXPBS);
2273 		pba = igb_rxpbs_adjust_82580(pba);
2274 		break;
2275 	case e1000_82576:
2276 		pba = rd32(E1000_RXPBS);
2277 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2278 		break;
2279 	case e1000_82575:
2280 	case e1000_i210:
2281 	case e1000_i211:
2282 	default:
2283 		pba = E1000_PBA_34K;
2284 		break;
2285 	}
2286 
2287 	if (mac->type == e1000_82575) {
2288 		u32 min_rx_space, min_tx_space, needed_tx_space;
2289 
2290 		/* write Rx PBA so that hardware can report correct Tx PBA */
2291 		wr32(E1000_PBA, pba);
2292 
2293 		/* To maintain wire speed transmits, the Tx FIFO should be
2294 		 * large enough to accommodate two full transmit packets,
2295 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2296 		 * the Rx FIFO should be large enough to accommodate at least
2297 		 * one full receive packet and is similarly rounded up and
2298 		 * expressed in KB.
2299 		 */
2300 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2301 
2302 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2303 		 * but don't include Ethernet FCS because hardware appends it.
2304 		 * We only need to round down to the nearest 512 byte block
2305 		 * count since the value we care about is 2 frames, not 1.
2306 		 */
2307 		min_tx_space = adapter->max_frame_size;
2308 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2309 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2310 
2311 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2312 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2313 
2314 		/* If current Tx allocation is less than the min Tx FIFO size,
2315 		 * and the min Tx FIFO size is less than the current Rx FIFO
2316 		 * allocation, take space away from current Rx allocation.
2317 		 */
2318 		if (needed_tx_space < pba) {
2319 			pba -= needed_tx_space;
2320 
2321 			/* if short on Rx space, Rx wins and must trump Tx
2322 			 * adjustment
2323 			 */
2324 			if (pba < min_rx_space)
2325 				pba = min_rx_space;
2326 		}
2327 
2328 		/* adjust PBA for jumbo frames */
2329 		wr32(E1000_PBA, pba);
2330 	}
2331 
2332 	/* flow control settings
2333 	 * The high water mark must be low enough to fit one full frame
2334 	 * after transmitting the pause frame.  As such we must have enough
2335 	 * space to allow for us to complete our current transmit and then
2336 	 * receive the frame that is in progress from the link partner.
2337 	 * Set it to:
2338 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2339 	 */
2340 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2341 
2342 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2343 	fc->low_water = fc->high_water - 16;
2344 	fc->pause_time = 0xFFFF;
2345 	fc->send_xon = 1;
2346 	fc->current_mode = fc->requested_mode;
2347 
2348 	/* disable receive for all VFs and wait one second */
2349 	if (adapter->vfs_allocated_count) {
2350 		int i;
2351 
2352 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2353 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2354 
2355 		/* ping all the active vfs to let them know we are going down */
2356 		igb_ping_all_vfs(adapter);
2357 
2358 		/* disable transmits and receives */
2359 		wr32(E1000_VFRE, 0);
2360 		wr32(E1000_VFTE, 0);
2361 	}
2362 
2363 	/* Allow time for pending master requests to run */
2364 	hw->mac.ops.reset_hw(hw);
2365 	wr32(E1000_WUC, 0);
2366 
2367 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2368 		/* need to resetup here after media swap */
2369 		adapter->ei.get_invariants(hw);
2370 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2371 	}
2372 	if ((mac->type == e1000_82575) &&
2373 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2374 		igb_enable_mas(adapter);
2375 	}
2376 	if (hw->mac.ops.init_hw(hw))
2377 		dev_err(&pdev->dev, "Hardware Error\n");
2378 
2379 	/* RAR registers were cleared during init_hw, clear mac table */
2380 	igb_flush_mac_table(adapter);
2381 	__dev_uc_unsync(adapter->netdev, NULL);
2382 
2383 	/* Recover default RAR entry */
2384 	igb_set_default_mac_filter(adapter);
2385 
2386 	/* Flow control settings reset on hardware reset, so guarantee flow
2387 	 * control is off when forcing speed.
2388 	 */
2389 	if (!hw->mac.autoneg)
2390 		igb_force_mac_fc(hw);
2391 
2392 	igb_init_dmac(adapter, pba);
2393 #ifdef CONFIG_IGB_HWMON
2394 	/* Re-initialize the thermal sensor on i350 devices. */
2395 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2396 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2397 			/* If present, re-initialize the external thermal sensor
2398 			 * interface.
2399 			 */
2400 			if (adapter->ets)
2401 				mac->ops.init_thermal_sensor_thresh(hw);
2402 		}
2403 	}
2404 #endif
2405 	/* Re-establish EEE setting */
2406 	if (hw->phy.media_type == e1000_media_type_copper) {
2407 		switch (mac->type) {
2408 		case e1000_i350:
2409 		case e1000_i210:
2410 		case e1000_i211:
2411 			igb_set_eee_i350(hw, true, true);
2412 			break;
2413 		case e1000_i354:
2414 			igb_set_eee_i354(hw, true, true);
2415 			break;
2416 		default:
2417 			break;
2418 		}
2419 	}
2420 	if (!netif_running(adapter->netdev))
2421 		igb_power_down_link(adapter);
2422 
2423 	igb_update_mng_vlan(adapter);
2424 
2425 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427 
2428 	/* Re-enable PTP, where applicable. */
2429 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430 		igb_ptp_reset(adapter);
2431 
2432 	igb_get_phy_info(hw);
2433 }
2434 
2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436 	netdev_features_t features)
2437 {
2438 	/* Since there is no support for separate Rx/Tx vlan accel
2439 	 * enable/disable make sure Tx flag is always in same state as Rx.
2440 	 */
2441 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2443 	else
2444 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445 
2446 	return features;
2447 }
2448 
2449 static int igb_set_features(struct net_device *netdev,
2450 	netdev_features_t features)
2451 {
2452 	netdev_features_t changed = netdev->features ^ features;
2453 	struct igb_adapter *adapter = netdev_priv(netdev);
2454 
2455 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456 		igb_vlan_mode(netdev, features);
2457 
2458 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459 		return 0;
2460 
2461 	if (!(features & NETIF_F_NTUPLE)) {
2462 		struct hlist_node *node2;
2463 		struct igb_nfc_filter *rule;
2464 
2465 		spin_lock(&adapter->nfc_lock);
2466 		hlist_for_each_entry_safe(rule, node2,
2467 					  &adapter->nfc_filter_list, nfc_node) {
2468 			igb_erase_filter(adapter, rule);
2469 			hlist_del(&rule->nfc_node);
2470 			kfree(rule);
2471 		}
2472 		spin_unlock(&adapter->nfc_lock);
2473 		adapter->nfc_filter_count = 0;
2474 	}
2475 
2476 	netdev->features = features;
2477 
2478 	if (netif_running(netdev))
2479 		igb_reinit_locked(adapter);
2480 	else
2481 		igb_reset(adapter);
2482 
2483 	return 0;
2484 }
2485 
2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487 			   struct net_device *dev,
2488 			   const unsigned char *addr, u16 vid,
2489 			   u16 flags)
2490 {
2491 	/* guarantee we can provide a unique filter for the unicast address */
2492 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2493 		struct igb_adapter *adapter = netdev_priv(dev);
2494 		int vfn = adapter->vfs_allocated_count;
2495 
2496 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2497 			return -ENOMEM;
2498 	}
2499 
2500 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2501 }
2502 
2503 #define IGB_MAX_MAC_HDR_LEN	127
2504 #define IGB_MAX_NETWORK_HDR_LEN	511
2505 
2506 static netdev_features_t
2507 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2508 		   netdev_features_t features)
2509 {
2510 	unsigned int network_hdr_len, mac_hdr_len;
2511 
2512 	/* Make certain the headers can be described by a context descriptor */
2513 	mac_hdr_len = skb_network_header(skb) - skb->data;
2514 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2515 		return features & ~(NETIF_F_HW_CSUM |
2516 				    NETIF_F_SCTP_CRC |
2517 				    NETIF_F_HW_VLAN_CTAG_TX |
2518 				    NETIF_F_TSO |
2519 				    NETIF_F_TSO6);
2520 
2521 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2522 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2523 		return features & ~(NETIF_F_HW_CSUM |
2524 				    NETIF_F_SCTP_CRC |
2525 				    NETIF_F_TSO |
2526 				    NETIF_F_TSO6);
2527 
2528 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2529 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2530 	 */
2531 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2532 		features &= ~NETIF_F_TSO;
2533 
2534 	return features;
2535 }
2536 
2537 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2538 {
2539 	if (!is_fqtss_enabled(adapter)) {
2540 		enable_fqtss(adapter, true);
2541 		return;
2542 	}
2543 
2544 	igb_config_tx_modes(adapter, queue);
2545 
2546 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2547 		enable_fqtss(adapter, false);
2548 }
2549 
2550 static int igb_offload_cbs(struct igb_adapter *adapter,
2551 			   struct tc_cbs_qopt_offload *qopt)
2552 {
2553 	struct e1000_hw *hw = &adapter->hw;
2554 	int err;
2555 
2556 	/* CBS offloading is only supported by i210 controller. */
2557 	if (hw->mac.type != e1000_i210)
2558 		return -EOPNOTSUPP;
2559 
2560 	/* CBS offloading is only supported by queue 0 and queue 1. */
2561 	if (qopt->queue < 0 || qopt->queue > 1)
2562 		return -EINVAL;
2563 
2564 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2565 				  qopt->idleslope, qopt->sendslope,
2566 				  qopt->hicredit, qopt->locredit);
2567 	if (err)
2568 		return err;
2569 
2570 	igb_offload_apply(adapter, qopt->queue);
2571 
2572 	return 0;
2573 }
2574 
2575 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2576 #define VLAN_PRIO_FULL_MASK (0x07)
2577 
2578 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2579 				struct tc_cls_flower_offload *f,
2580 				int traffic_class,
2581 				struct igb_nfc_filter *input)
2582 {
2583 	struct netlink_ext_ack *extack = f->common.extack;
2584 
2585 	if (f->dissector->used_keys &
2586 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2587 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2588 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2589 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2590 		NL_SET_ERR_MSG_MOD(extack,
2591 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2592 		return -EOPNOTSUPP;
2593 	}
2594 
2595 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2596 		struct flow_dissector_key_eth_addrs *key, *mask;
2597 
2598 		key = skb_flow_dissector_target(f->dissector,
2599 						FLOW_DISSECTOR_KEY_ETH_ADDRS,
2600 						f->key);
2601 		mask = skb_flow_dissector_target(f->dissector,
2602 						 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2603 						 f->mask);
2604 
2605 		if (!is_zero_ether_addr(mask->dst)) {
2606 			if (!is_broadcast_ether_addr(mask->dst)) {
2607 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 				return -EINVAL;
2609 			}
2610 
2611 			input->filter.match_flags |=
2612 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2613 			ether_addr_copy(input->filter.dst_addr, key->dst);
2614 		}
2615 
2616 		if (!is_zero_ether_addr(mask->src)) {
2617 			if (!is_broadcast_ether_addr(mask->src)) {
2618 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 				return -EINVAL;
2620 			}
2621 
2622 			input->filter.match_flags |=
2623 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624 			ether_addr_copy(input->filter.src_addr, key->src);
2625 		}
2626 	}
2627 
2628 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2629 		struct flow_dissector_key_basic *key, *mask;
2630 
2631 		key = skb_flow_dissector_target(f->dissector,
2632 						FLOW_DISSECTOR_KEY_BASIC,
2633 						f->key);
2634 		mask = skb_flow_dissector_target(f->dissector,
2635 						 FLOW_DISSECTOR_KEY_BASIC,
2636 						 f->mask);
2637 
2638 		if (mask->n_proto) {
2639 			if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2640 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2641 				return -EINVAL;
2642 			}
2643 
2644 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2645 			input->filter.etype = key->n_proto;
2646 		}
2647 	}
2648 
2649 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2650 		struct flow_dissector_key_vlan *key, *mask;
2651 
2652 		key = skb_flow_dissector_target(f->dissector,
2653 						FLOW_DISSECTOR_KEY_VLAN,
2654 						f->key);
2655 		mask = skb_flow_dissector_target(f->dissector,
2656 						 FLOW_DISSECTOR_KEY_VLAN,
2657 						 f->mask);
2658 
2659 		if (mask->vlan_priority) {
2660 			if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2661 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2662 				return -EINVAL;
2663 			}
2664 
2665 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2666 			input->filter.vlan_tci = key->vlan_priority;
2667 		}
2668 	}
2669 
2670 	input->action = traffic_class;
2671 	input->cookie = f->cookie;
2672 
2673 	return 0;
2674 }
2675 
2676 static int igb_configure_clsflower(struct igb_adapter *adapter,
2677 				   struct tc_cls_flower_offload *cls_flower)
2678 {
2679 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2680 	struct igb_nfc_filter *filter, *f;
2681 	int err, tc;
2682 
2683 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2684 	if (tc < 0) {
2685 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2686 		return -EINVAL;
2687 	}
2688 
2689 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2690 	if (!filter)
2691 		return -ENOMEM;
2692 
2693 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2694 	if (err < 0)
2695 		goto err_parse;
2696 
2697 	spin_lock(&adapter->nfc_lock);
2698 
2699 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2700 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701 			err = -EEXIST;
2702 			NL_SET_ERR_MSG_MOD(extack,
2703 					   "This filter is already set in ethtool");
2704 			goto err_locked;
2705 		}
2706 	}
2707 
2708 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2709 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2710 			err = -EEXIST;
2711 			NL_SET_ERR_MSG_MOD(extack,
2712 					   "This filter is already set in cls_flower");
2713 			goto err_locked;
2714 		}
2715 	}
2716 
2717 	err = igb_add_filter(adapter, filter);
2718 	if (err < 0) {
2719 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2720 		goto err_locked;
2721 	}
2722 
2723 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2724 
2725 	spin_unlock(&adapter->nfc_lock);
2726 
2727 	return 0;
2728 
2729 err_locked:
2730 	spin_unlock(&adapter->nfc_lock);
2731 
2732 err_parse:
2733 	kfree(filter);
2734 
2735 	return err;
2736 }
2737 
2738 static int igb_delete_clsflower(struct igb_adapter *adapter,
2739 				struct tc_cls_flower_offload *cls_flower)
2740 {
2741 	struct igb_nfc_filter *filter;
2742 	int err;
2743 
2744 	spin_lock(&adapter->nfc_lock);
2745 
2746 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2747 		if (filter->cookie == cls_flower->cookie)
2748 			break;
2749 
2750 	if (!filter) {
2751 		err = -ENOENT;
2752 		goto out;
2753 	}
2754 
2755 	err = igb_erase_filter(adapter, filter);
2756 	if (err < 0)
2757 		goto out;
2758 
2759 	hlist_del(&filter->nfc_node);
2760 	kfree(filter);
2761 
2762 out:
2763 	spin_unlock(&adapter->nfc_lock);
2764 
2765 	return err;
2766 }
2767 
2768 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2769 				   struct tc_cls_flower_offload *cls_flower)
2770 {
2771 	switch (cls_flower->command) {
2772 	case TC_CLSFLOWER_REPLACE:
2773 		return igb_configure_clsflower(adapter, cls_flower);
2774 	case TC_CLSFLOWER_DESTROY:
2775 		return igb_delete_clsflower(adapter, cls_flower);
2776 	case TC_CLSFLOWER_STATS:
2777 		return -EOPNOTSUPP;
2778 	default:
2779 		return -EOPNOTSUPP;
2780 	}
2781 }
2782 
2783 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2784 				 void *cb_priv)
2785 {
2786 	struct igb_adapter *adapter = cb_priv;
2787 
2788 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2789 		return -EOPNOTSUPP;
2790 
2791 	switch (type) {
2792 	case TC_SETUP_CLSFLOWER:
2793 		return igb_setup_tc_cls_flower(adapter, type_data);
2794 
2795 	default:
2796 		return -EOPNOTSUPP;
2797 	}
2798 }
2799 
2800 static int igb_setup_tc_block(struct igb_adapter *adapter,
2801 			      struct tc_block_offload *f)
2802 {
2803 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2804 		return -EOPNOTSUPP;
2805 
2806 	switch (f->command) {
2807 	case TC_BLOCK_BIND:
2808 		return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2809 					     adapter, adapter, f->extack);
2810 	case TC_BLOCK_UNBIND:
2811 		tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2812 					adapter);
2813 		return 0;
2814 	default:
2815 		return -EOPNOTSUPP;
2816 	}
2817 }
2818 
2819 static int igb_offload_txtime(struct igb_adapter *adapter,
2820 			      struct tc_etf_qopt_offload *qopt)
2821 {
2822 	struct e1000_hw *hw = &adapter->hw;
2823 	int err;
2824 
2825 	/* Launchtime offloading is only supported by i210 controller. */
2826 	if (hw->mac.type != e1000_i210)
2827 		return -EOPNOTSUPP;
2828 
2829 	/* Launchtime offloading is only supported by queues 0 and 1. */
2830 	if (qopt->queue < 0 || qopt->queue > 1)
2831 		return -EINVAL;
2832 
2833 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2834 	if (err)
2835 		return err;
2836 
2837 	igb_offload_apply(adapter, qopt->queue);
2838 
2839 	return 0;
2840 }
2841 
2842 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2843 			void *type_data)
2844 {
2845 	struct igb_adapter *adapter = netdev_priv(dev);
2846 
2847 	switch (type) {
2848 	case TC_SETUP_QDISC_CBS:
2849 		return igb_offload_cbs(adapter, type_data);
2850 	case TC_SETUP_BLOCK:
2851 		return igb_setup_tc_block(adapter, type_data);
2852 	case TC_SETUP_QDISC_ETF:
2853 		return igb_offload_txtime(adapter, type_data);
2854 
2855 	default:
2856 		return -EOPNOTSUPP;
2857 	}
2858 }
2859 
2860 static const struct net_device_ops igb_netdev_ops = {
2861 	.ndo_open		= igb_open,
2862 	.ndo_stop		= igb_close,
2863 	.ndo_start_xmit		= igb_xmit_frame,
2864 	.ndo_get_stats64	= igb_get_stats64,
2865 	.ndo_set_rx_mode	= igb_set_rx_mode,
2866 	.ndo_set_mac_address	= igb_set_mac,
2867 	.ndo_change_mtu		= igb_change_mtu,
2868 	.ndo_do_ioctl		= igb_ioctl,
2869 	.ndo_tx_timeout		= igb_tx_timeout,
2870 	.ndo_validate_addr	= eth_validate_addr,
2871 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2872 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2873 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2874 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2875 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2876 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2877 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2878 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2879 	.ndo_fix_features	= igb_fix_features,
2880 	.ndo_set_features	= igb_set_features,
2881 	.ndo_fdb_add		= igb_ndo_fdb_add,
2882 	.ndo_features_check	= igb_features_check,
2883 	.ndo_setup_tc		= igb_setup_tc,
2884 };
2885 
2886 /**
2887  * igb_set_fw_version - Configure version string for ethtool
2888  * @adapter: adapter struct
2889  **/
2890 void igb_set_fw_version(struct igb_adapter *adapter)
2891 {
2892 	struct e1000_hw *hw = &adapter->hw;
2893 	struct e1000_fw_version fw;
2894 
2895 	igb_get_fw_version(hw, &fw);
2896 
2897 	switch (hw->mac.type) {
2898 	case e1000_i210:
2899 	case e1000_i211:
2900 		if (!(igb_get_flash_presence_i210(hw))) {
2901 			snprintf(adapter->fw_version,
2902 				 sizeof(adapter->fw_version),
2903 				 "%2d.%2d-%d",
2904 				 fw.invm_major, fw.invm_minor,
2905 				 fw.invm_img_type);
2906 			break;
2907 		}
2908 		/* fall through */
2909 	default:
2910 		/* if option is rom valid, display its version too */
2911 		if (fw.or_valid) {
2912 			snprintf(adapter->fw_version,
2913 				 sizeof(adapter->fw_version),
2914 				 "%d.%d, 0x%08x, %d.%d.%d",
2915 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2916 				 fw.or_major, fw.or_build, fw.or_patch);
2917 		/* no option rom */
2918 		} else if (fw.etrack_id != 0X0000) {
2919 			snprintf(adapter->fw_version,
2920 			    sizeof(adapter->fw_version),
2921 			    "%d.%d, 0x%08x",
2922 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2923 		} else {
2924 		snprintf(adapter->fw_version,
2925 		    sizeof(adapter->fw_version),
2926 		    "%d.%d.%d",
2927 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2928 		}
2929 		break;
2930 	}
2931 }
2932 
2933 /**
2934  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2935  *
2936  * @adapter: adapter struct
2937  **/
2938 static void igb_init_mas(struct igb_adapter *adapter)
2939 {
2940 	struct e1000_hw *hw = &adapter->hw;
2941 	u16 eeprom_data;
2942 
2943 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2944 	switch (hw->bus.func) {
2945 	case E1000_FUNC_0:
2946 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2947 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2948 			netdev_info(adapter->netdev,
2949 				"MAS: Enabling Media Autosense for port %d\n",
2950 				hw->bus.func);
2951 		}
2952 		break;
2953 	case E1000_FUNC_1:
2954 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2955 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2956 			netdev_info(adapter->netdev,
2957 				"MAS: Enabling Media Autosense for port %d\n",
2958 				hw->bus.func);
2959 		}
2960 		break;
2961 	case E1000_FUNC_2:
2962 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2963 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2964 			netdev_info(adapter->netdev,
2965 				"MAS: Enabling Media Autosense for port %d\n",
2966 				hw->bus.func);
2967 		}
2968 		break;
2969 	case E1000_FUNC_3:
2970 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2971 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2972 			netdev_info(adapter->netdev,
2973 				"MAS: Enabling Media Autosense for port %d\n",
2974 				hw->bus.func);
2975 		}
2976 		break;
2977 	default:
2978 		/* Shouldn't get here */
2979 		netdev_err(adapter->netdev,
2980 			"MAS: Invalid port configuration, returning\n");
2981 		break;
2982 	}
2983 }
2984 
2985 /**
2986  *  igb_init_i2c - Init I2C interface
2987  *  @adapter: pointer to adapter structure
2988  **/
2989 static s32 igb_init_i2c(struct igb_adapter *adapter)
2990 {
2991 	s32 status = 0;
2992 
2993 	/* I2C interface supported on i350 devices */
2994 	if (adapter->hw.mac.type != e1000_i350)
2995 		return 0;
2996 
2997 	/* Initialize the i2c bus which is controlled by the registers.
2998 	 * This bus will use the i2c_algo_bit structue that implements
2999 	 * the protocol through toggling of the 4 bits in the register.
3000 	 */
3001 	adapter->i2c_adap.owner = THIS_MODULE;
3002 	adapter->i2c_algo = igb_i2c_algo;
3003 	adapter->i2c_algo.data = adapter;
3004 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3005 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3006 	strlcpy(adapter->i2c_adap.name, "igb BB",
3007 		sizeof(adapter->i2c_adap.name));
3008 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3009 	return status;
3010 }
3011 
3012 /**
3013  *  igb_probe - Device Initialization Routine
3014  *  @pdev: PCI device information struct
3015  *  @ent: entry in igb_pci_tbl
3016  *
3017  *  Returns 0 on success, negative on failure
3018  *
3019  *  igb_probe initializes an adapter identified by a pci_dev structure.
3020  *  The OS initialization, configuring of the adapter private structure,
3021  *  and a hardware reset occur.
3022  **/
3023 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3024 {
3025 	struct net_device *netdev;
3026 	struct igb_adapter *adapter;
3027 	struct e1000_hw *hw;
3028 	u16 eeprom_data = 0;
3029 	s32 ret_val;
3030 	static int global_quad_port_a; /* global quad port a indication */
3031 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3032 	int err, pci_using_dac;
3033 	u8 part_str[E1000_PBANUM_LENGTH];
3034 
3035 	/* Catch broken hardware that put the wrong VF device ID in
3036 	 * the PCIe SR-IOV capability.
3037 	 */
3038 	if (pdev->is_virtfn) {
3039 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3040 			pci_name(pdev), pdev->vendor, pdev->device);
3041 		return -EINVAL;
3042 	}
3043 
3044 	err = pci_enable_device_mem(pdev);
3045 	if (err)
3046 		return err;
3047 
3048 	pci_using_dac = 0;
3049 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3050 	if (!err) {
3051 		pci_using_dac = 1;
3052 	} else {
3053 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3054 		if (err) {
3055 			dev_err(&pdev->dev,
3056 				"No usable DMA configuration, aborting\n");
3057 			goto err_dma;
3058 		}
3059 	}
3060 
3061 	err = pci_request_mem_regions(pdev, igb_driver_name);
3062 	if (err)
3063 		goto err_pci_reg;
3064 
3065 	pci_enable_pcie_error_reporting(pdev);
3066 
3067 	pci_set_master(pdev);
3068 	pci_save_state(pdev);
3069 
3070 	err = -ENOMEM;
3071 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3072 				   IGB_MAX_TX_QUEUES);
3073 	if (!netdev)
3074 		goto err_alloc_etherdev;
3075 
3076 	SET_NETDEV_DEV(netdev, &pdev->dev);
3077 
3078 	pci_set_drvdata(pdev, netdev);
3079 	adapter = netdev_priv(netdev);
3080 	adapter->netdev = netdev;
3081 	adapter->pdev = pdev;
3082 	hw = &adapter->hw;
3083 	hw->back = adapter;
3084 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3085 
3086 	err = -EIO;
3087 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3088 	if (!adapter->io_addr)
3089 		goto err_ioremap;
3090 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3091 	hw->hw_addr = adapter->io_addr;
3092 
3093 	netdev->netdev_ops = &igb_netdev_ops;
3094 	igb_set_ethtool_ops(netdev);
3095 	netdev->watchdog_timeo = 5 * HZ;
3096 
3097 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3098 
3099 	netdev->mem_start = pci_resource_start(pdev, 0);
3100 	netdev->mem_end = pci_resource_end(pdev, 0);
3101 
3102 	/* PCI config space info */
3103 	hw->vendor_id = pdev->vendor;
3104 	hw->device_id = pdev->device;
3105 	hw->revision_id = pdev->revision;
3106 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3107 	hw->subsystem_device_id = pdev->subsystem_device;
3108 
3109 	/* Copy the default MAC, PHY and NVM function pointers */
3110 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3111 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3112 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3113 	/* Initialize skew-specific constants */
3114 	err = ei->get_invariants(hw);
3115 	if (err)
3116 		goto err_sw_init;
3117 
3118 	/* setup the private structure */
3119 	err = igb_sw_init(adapter);
3120 	if (err)
3121 		goto err_sw_init;
3122 
3123 	igb_get_bus_info_pcie(hw);
3124 
3125 	hw->phy.autoneg_wait_to_complete = false;
3126 
3127 	/* Copper options */
3128 	if (hw->phy.media_type == e1000_media_type_copper) {
3129 		hw->phy.mdix = AUTO_ALL_MODES;
3130 		hw->phy.disable_polarity_correction = false;
3131 		hw->phy.ms_type = e1000_ms_hw_default;
3132 	}
3133 
3134 	if (igb_check_reset_block(hw))
3135 		dev_info(&pdev->dev,
3136 			"PHY reset is blocked due to SOL/IDER session.\n");
3137 
3138 	/* features is initialized to 0 in allocation, it might have bits
3139 	 * set by igb_sw_init so we should use an or instead of an
3140 	 * assignment.
3141 	 */
3142 	netdev->features |= NETIF_F_SG |
3143 			    NETIF_F_TSO |
3144 			    NETIF_F_TSO6 |
3145 			    NETIF_F_RXHASH |
3146 			    NETIF_F_RXCSUM |
3147 			    NETIF_F_HW_CSUM;
3148 
3149 	if (hw->mac.type >= e1000_82576)
3150 		netdev->features |= NETIF_F_SCTP_CRC;
3151 
3152 	if (hw->mac.type >= e1000_i350)
3153 		netdev->features |= NETIF_F_HW_TC;
3154 
3155 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3156 				  NETIF_F_GSO_GRE_CSUM | \
3157 				  NETIF_F_GSO_IPXIP4 | \
3158 				  NETIF_F_GSO_IPXIP6 | \
3159 				  NETIF_F_GSO_UDP_TUNNEL | \
3160 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3161 
3162 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3163 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3164 
3165 	/* copy netdev features into list of user selectable features */
3166 	netdev->hw_features |= netdev->features |
3167 			       NETIF_F_HW_VLAN_CTAG_RX |
3168 			       NETIF_F_HW_VLAN_CTAG_TX |
3169 			       NETIF_F_RXALL;
3170 
3171 	if (hw->mac.type >= e1000_i350)
3172 		netdev->hw_features |= NETIF_F_NTUPLE;
3173 
3174 	if (pci_using_dac)
3175 		netdev->features |= NETIF_F_HIGHDMA;
3176 
3177 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3178 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3179 	netdev->hw_enc_features |= netdev->vlan_features;
3180 
3181 	/* set this bit last since it cannot be part of vlan_features */
3182 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3183 			    NETIF_F_HW_VLAN_CTAG_RX |
3184 			    NETIF_F_HW_VLAN_CTAG_TX;
3185 
3186 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3187 
3188 	netdev->priv_flags |= IFF_UNICAST_FLT;
3189 
3190 	/* MTU range: 68 - 9216 */
3191 	netdev->min_mtu = ETH_MIN_MTU;
3192 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3193 
3194 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3195 
3196 	/* before reading the NVM, reset the controller to put the device in a
3197 	 * known good starting state
3198 	 */
3199 	hw->mac.ops.reset_hw(hw);
3200 
3201 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3202 	 * that doesn't contain a checksum
3203 	 */
3204 	switch (hw->mac.type) {
3205 	case e1000_i210:
3206 	case e1000_i211:
3207 		if (igb_get_flash_presence_i210(hw)) {
3208 			if (hw->nvm.ops.validate(hw) < 0) {
3209 				dev_err(&pdev->dev,
3210 					"The NVM Checksum Is Not Valid\n");
3211 				err = -EIO;
3212 				goto err_eeprom;
3213 			}
3214 		}
3215 		break;
3216 	default:
3217 		if (hw->nvm.ops.validate(hw) < 0) {
3218 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3219 			err = -EIO;
3220 			goto err_eeprom;
3221 		}
3222 		break;
3223 	}
3224 
3225 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3226 		/* copy the MAC address out of the NVM */
3227 		if (hw->mac.ops.read_mac_addr(hw))
3228 			dev_err(&pdev->dev, "NVM Read Error\n");
3229 	}
3230 
3231 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3232 
3233 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3234 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3235 		err = -EIO;
3236 		goto err_eeprom;
3237 	}
3238 
3239 	igb_set_default_mac_filter(adapter);
3240 
3241 	/* get firmware version for ethtool -i */
3242 	igb_set_fw_version(adapter);
3243 
3244 	/* configure RXPBSIZE and TXPBSIZE */
3245 	if (hw->mac.type == e1000_i210) {
3246 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3247 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3248 	}
3249 
3250 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3251 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3252 
3253 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3254 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3255 
3256 	/* Initialize link properties that are user-changeable */
3257 	adapter->fc_autoneg = true;
3258 	hw->mac.autoneg = true;
3259 	hw->phy.autoneg_advertised = 0x2f;
3260 
3261 	hw->fc.requested_mode = e1000_fc_default;
3262 	hw->fc.current_mode = e1000_fc_default;
3263 
3264 	igb_validate_mdi_setting(hw);
3265 
3266 	/* By default, support wake on port A */
3267 	if (hw->bus.func == 0)
3268 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3269 
3270 	/* Check the NVM for wake support on non-port A ports */
3271 	if (hw->mac.type >= e1000_82580)
3272 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3273 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3274 				 &eeprom_data);
3275 	else if (hw->bus.func == 1)
3276 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3277 
3278 	if (eeprom_data & IGB_EEPROM_APME)
3279 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3280 
3281 	/* now that we have the eeprom settings, apply the special cases where
3282 	 * the eeprom may be wrong or the board simply won't support wake on
3283 	 * lan on a particular port
3284 	 */
3285 	switch (pdev->device) {
3286 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3287 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288 		break;
3289 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3290 	case E1000_DEV_ID_82576_FIBER:
3291 	case E1000_DEV_ID_82576_SERDES:
3292 		/* Wake events only supported on port A for dual fiber
3293 		 * regardless of eeprom setting
3294 		 */
3295 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3296 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3297 		break;
3298 	case E1000_DEV_ID_82576_QUAD_COPPER:
3299 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3300 		/* if quad port adapter, disable WoL on all but port A */
3301 		if (global_quad_port_a != 0)
3302 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3303 		else
3304 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3305 		/* Reset for multiple quad port adapters */
3306 		if (++global_quad_port_a == 4)
3307 			global_quad_port_a = 0;
3308 		break;
3309 	default:
3310 		/* If the device can't wake, don't set software support */
3311 		if (!device_can_wakeup(&adapter->pdev->dev))
3312 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3313 	}
3314 
3315 	/* initialize the wol settings based on the eeprom settings */
3316 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3317 		adapter->wol |= E1000_WUFC_MAG;
3318 
3319 	/* Some vendors want WoL disabled by default, but still supported */
3320 	if ((hw->mac.type == e1000_i350) &&
3321 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3322 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3323 		adapter->wol = 0;
3324 	}
3325 
3326 	/* Some vendors want the ability to Use the EEPROM setting as
3327 	 * enable/disable only, and not for capability
3328 	 */
3329 	if (((hw->mac.type == e1000_i350) ||
3330 	     (hw->mac.type == e1000_i354)) &&
3331 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3332 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3333 		adapter->wol = 0;
3334 	}
3335 	if (hw->mac.type == e1000_i350) {
3336 		if (((pdev->subsystem_device == 0x5001) ||
3337 		     (pdev->subsystem_device == 0x5002)) &&
3338 				(hw->bus.func == 0)) {
3339 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3340 			adapter->wol = 0;
3341 		}
3342 		if (pdev->subsystem_device == 0x1F52)
3343 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3344 	}
3345 
3346 	device_set_wakeup_enable(&adapter->pdev->dev,
3347 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3348 
3349 	/* reset the hardware with the new settings */
3350 	igb_reset(adapter);
3351 
3352 	/* Init the I2C interface */
3353 	err = igb_init_i2c(adapter);
3354 	if (err) {
3355 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3356 		goto err_eeprom;
3357 	}
3358 
3359 	/* let the f/w know that the h/w is now under the control of the
3360 	 * driver.
3361 	 */
3362 	igb_get_hw_control(adapter);
3363 
3364 	strcpy(netdev->name, "eth%d");
3365 	err = register_netdev(netdev);
3366 	if (err)
3367 		goto err_register;
3368 
3369 	/* carrier off reporting is important to ethtool even BEFORE open */
3370 	netif_carrier_off(netdev);
3371 
3372 #ifdef CONFIG_IGB_DCA
3373 	if (dca_add_requester(&pdev->dev) == 0) {
3374 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3375 		dev_info(&pdev->dev, "DCA enabled\n");
3376 		igb_setup_dca(adapter);
3377 	}
3378 
3379 #endif
3380 #ifdef CONFIG_IGB_HWMON
3381 	/* Initialize the thermal sensor on i350 devices. */
3382 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3383 		u16 ets_word;
3384 
3385 		/* Read the NVM to determine if this i350 device supports an
3386 		 * external thermal sensor.
3387 		 */
3388 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3389 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3390 			adapter->ets = true;
3391 		else
3392 			adapter->ets = false;
3393 		if (igb_sysfs_init(adapter))
3394 			dev_err(&pdev->dev,
3395 				"failed to allocate sysfs resources\n");
3396 	} else {
3397 		adapter->ets = false;
3398 	}
3399 #endif
3400 	/* Check if Media Autosense is enabled */
3401 	adapter->ei = *ei;
3402 	if (hw->dev_spec._82575.mas_capable)
3403 		igb_init_mas(adapter);
3404 
3405 	/* do hw tstamp init after resetting */
3406 	igb_ptp_init(adapter);
3407 
3408 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3409 	/* print bus type/speed/width info, not applicable to i354 */
3410 	if (hw->mac.type != e1000_i354) {
3411 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3412 			 netdev->name,
3413 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3414 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3415 			   "unknown"),
3416 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3417 			  "Width x4" :
3418 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3419 			  "Width x2" :
3420 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3421 			  "Width x1" : "unknown"), netdev->dev_addr);
3422 	}
3423 
3424 	if ((hw->mac.type >= e1000_i210 ||
3425 	     igb_get_flash_presence_i210(hw))) {
3426 		ret_val = igb_read_part_string(hw, part_str,
3427 					       E1000_PBANUM_LENGTH);
3428 	} else {
3429 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3430 	}
3431 
3432 	if (ret_val)
3433 		strcpy(part_str, "Unknown");
3434 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3435 	dev_info(&pdev->dev,
3436 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3437 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3438 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3439 		adapter->num_rx_queues, adapter->num_tx_queues);
3440 	if (hw->phy.media_type == e1000_media_type_copper) {
3441 		switch (hw->mac.type) {
3442 		case e1000_i350:
3443 		case e1000_i210:
3444 		case e1000_i211:
3445 			/* Enable EEE for internal copper PHY devices */
3446 			err = igb_set_eee_i350(hw, true, true);
3447 			if ((!err) &&
3448 			    (!hw->dev_spec._82575.eee_disable)) {
3449 				adapter->eee_advert =
3450 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3451 				adapter->flags |= IGB_FLAG_EEE;
3452 			}
3453 			break;
3454 		case e1000_i354:
3455 			if ((rd32(E1000_CTRL_EXT) &
3456 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3457 				err = igb_set_eee_i354(hw, true, true);
3458 				if ((!err) &&
3459 					(!hw->dev_spec._82575.eee_disable)) {
3460 					adapter->eee_advert =
3461 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3462 					adapter->flags |= IGB_FLAG_EEE;
3463 				}
3464 			}
3465 			break;
3466 		default:
3467 			break;
3468 		}
3469 	}
3470 	pm_runtime_put_noidle(&pdev->dev);
3471 	return 0;
3472 
3473 err_register:
3474 	igb_release_hw_control(adapter);
3475 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3476 err_eeprom:
3477 	if (!igb_check_reset_block(hw))
3478 		igb_reset_phy(hw);
3479 
3480 	if (hw->flash_address)
3481 		iounmap(hw->flash_address);
3482 err_sw_init:
3483 	kfree(adapter->mac_table);
3484 	kfree(adapter->shadow_vfta);
3485 	igb_clear_interrupt_scheme(adapter);
3486 #ifdef CONFIG_PCI_IOV
3487 	igb_disable_sriov(pdev);
3488 #endif
3489 	pci_iounmap(pdev, adapter->io_addr);
3490 err_ioremap:
3491 	free_netdev(netdev);
3492 err_alloc_etherdev:
3493 	pci_release_mem_regions(pdev);
3494 err_pci_reg:
3495 err_dma:
3496 	pci_disable_device(pdev);
3497 	return err;
3498 }
3499 
3500 #ifdef CONFIG_PCI_IOV
3501 static int igb_disable_sriov(struct pci_dev *pdev)
3502 {
3503 	struct net_device *netdev = pci_get_drvdata(pdev);
3504 	struct igb_adapter *adapter = netdev_priv(netdev);
3505 	struct e1000_hw *hw = &adapter->hw;
3506 
3507 	/* reclaim resources allocated to VFs */
3508 	if (adapter->vf_data) {
3509 		/* disable iov and allow time for transactions to clear */
3510 		if (pci_vfs_assigned(pdev)) {
3511 			dev_warn(&pdev->dev,
3512 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3513 			return -EPERM;
3514 		} else {
3515 			pci_disable_sriov(pdev);
3516 			msleep(500);
3517 		}
3518 
3519 		kfree(adapter->vf_mac_list);
3520 		adapter->vf_mac_list = NULL;
3521 		kfree(adapter->vf_data);
3522 		adapter->vf_data = NULL;
3523 		adapter->vfs_allocated_count = 0;
3524 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3525 		wrfl();
3526 		msleep(100);
3527 		dev_info(&pdev->dev, "IOV Disabled\n");
3528 
3529 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3530 		adapter->flags |= IGB_FLAG_DMAC;
3531 	}
3532 
3533 	return 0;
3534 }
3535 
3536 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3537 {
3538 	struct net_device *netdev = pci_get_drvdata(pdev);
3539 	struct igb_adapter *adapter = netdev_priv(netdev);
3540 	int old_vfs = pci_num_vf(pdev);
3541 	struct vf_mac_filter *mac_list;
3542 	int err = 0;
3543 	int num_vf_mac_filters, i;
3544 
3545 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3546 		err = -EPERM;
3547 		goto out;
3548 	}
3549 	if (!num_vfs)
3550 		goto out;
3551 
3552 	if (old_vfs) {
3553 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3554 			 old_vfs, max_vfs);
3555 		adapter->vfs_allocated_count = old_vfs;
3556 	} else
3557 		adapter->vfs_allocated_count = num_vfs;
3558 
3559 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3560 				sizeof(struct vf_data_storage), GFP_KERNEL);
3561 
3562 	/* if allocation failed then we do not support SR-IOV */
3563 	if (!adapter->vf_data) {
3564 		adapter->vfs_allocated_count = 0;
3565 		err = -ENOMEM;
3566 		goto out;
3567 	}
3568 
3569 	/* Due to the limited number of RAR entries calculate potential
3570 	 * number of MAC filters available for the VFs. Reserve entries
3571 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3572 	 * for each VF for VF MAC.
3573 	 */
3574 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3575 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3576 			      adapter->vfs_allocated_count);
3577 
3578 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3579 				       sizeof(struct vf_mac_filter),
3580 				       GFP_KERNEL);
3581 
3582 	mac_list = adapter->vf_mac_list;
3583 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3584 
3585 	if (adapter->vf_mac_list) {
3586 		/* Initialize list of VF MAC filters */
3587 		for (i = 0; i < num_vf_mac_filters; i++) {
3588 			mac_list->vf = -1;
3589 			mac_list->free = true;
3590 			list_add(&mac_list->l, &adapter->vf_macs.l);
3591 			mac_list++;
3592 		}
3593 	} else {
3594 		/* If we could not allocate memory for the VF MAC filters
3595 		 * we can continue without this feature but warn user.
3596 		 */
3597 		dev_err(&pdev->dev,
3598 			"Unable to allocate memory for VF MAC filter list\n");
3599 	}
3600 
3601 	/* only call pci_enable_sriov() if no VFs are allocated already */
3602 	if (!old_vfs) {
3603 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3604 		if (err)
3605 			goto err_out;
3606 	}
3607 	dev_info(&pdev->dev, "%d VFs allocated\n",
3608 		 adapter->vfs_allocated_count);
3609 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3610 		igb_vf_configure(adapter, i);
3611 
3612 	/* DMA Coalescing is not supported in IOV mode. */
3613 	adapter->flags &= ~IGB_FLAG_DMAC;
3614 	goto out;
3615 
3616 err_out:
3617 	kfree(adapter->vf_mac_list);
3618 	adapter->vf_mac_list = NULL;
3619 	kfree(adapter->vf_data);
3620 	adapter->vf_data = NULL;
3621 	adapter->vfs_allocated_count = 0;
3622 out:
3623 	return err;
3624 }
3625 
3626 #endif
3627 /**
3628  *  igb_remove_i2c - Cleanup  I2C interface
3629  *  @adapter: pointer to adapter structure
3630  **/
3631 static void igb_remove_i2c(struct igb_adapter *adapter)
3632 {
3633 	/* free the adapter bus structure */
3634 	i2c_del_adapter(&adapter->i2c_adap);
3635 }
3636 
3637 /**
3638  *  igb_remove - Device Removal Routine
3639  *  @pdev: PCI device information struct
3640  *
3641  *  igb_remove is called by the PCI subsystem to alert the driver
3642  *  that it should release a PCI device.  The could be caused by a
3643  *  Hot-Plug event, or because the driver is going to be removed from
3644  *  memory.
3645  **/
3646 static void igb_remove(struct pci_dev *pdev)
3647 {
3648 	struct net_device *netdev = pci_get_drvdata(pdev);
3649 	struct igb_adapter *adapter = netdev_priv(netdev);
3650 	struct e1000_hw *hw = &adapter->hw;
3651 
3652 	pm_runtime_get_noresume(&pdev->dev);
3653 #ifdef CONFIG_IGB_HWMON
3654 	igb_sysfs_exit(adapter);
3655 #endif
3656 	igb_remove_i2c(adapter);
3657 	igb_ptp_stop(adapter);
3658 	/* The watchdog timer may be rescheduled, so explicitly
3659 	 * disable watchdog from being rescheduled.
3660 	 */
3661 	set_bit(__IGB_DOWN, &adapter->state);
3662 	del_timer_sync(&adapter->watchdog_timer);
3663 	del_timer_sync(&adapter->phy_info_timer);
3664 
3665 	cancel_work_sync(&adapter->reset_task);
3666 	cancel_work_sync(&adapter->watchdog_task);
3667 
3668 #ifdef CONFIG_IGB_DCA
3669 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3670 		dev_info(&pdev->dev, "DCA disabled\n");
3671 		dca_remove_requester(&pdev->dev);
3672 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3673 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3674 	}
3675 #endif
3676 
3677 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3678 	 * would have already happened in close and is redundant.
3679 	 */
3680 	igb_release_hw_control(adapter);
3681 
3682 #ifdef CONFIG_PCI_IOV
3683 	igb_disable_sriov(pdev);
3684 #endif
3685 
3686 	unregister_netdev(netdev);
3687 
3688 	igb_clear_interrupt_scheme(adapter);
3689 
3690 	pci_iounmap(pdev, adapter->io_addr);
3691 	if (hw->flash_address)
3692 		iounmap(hw->flash_address);
3693 	pci_release_mem_regions(pdev);
3694 
3695 	kfree(adapter->mac_table);
3696 	kfree(adapter->shadow_vfta);
3697 	free_netdev(netdev);
3698 
3699 	pci_disable_pcie_error_reporting(pdev);
3700 
3701 	pci_disable_device(pdev);
3702 }
3703 
3704 /**
3705  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3706  *  @adapter: board private structure to initialize
3707  *
3708  *  This function initializes the vf specific data storage and then attempts to
3709  *  allocate the VFs.  The reason for ordering it this way is because it is much
3710  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3711  *  the memory for the VFs.
3712  **/
3713 static void igb_probe_vfs(struct igb_adapter *adapter)
3714 {
3715 #ifdef CONFIG_PCI_IOV
3716 	struct pci_dev *pdev = adapter->pdev;
3717 	struct e1000_hw *hw = &adapter->hw;
3718 
3719 	/* Virtualization features not supported on i210 family. */
3720 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3721 		return;
3722 
3723 	/* Of the below we really only want the effect of getting
3724 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3725 	 * igb_enable_sriov() has no effect.
3726 	 */
3727 	igb_set_interrupt_capability(adapter, true);
3728 	igb_reset_interrupt_capability(adapter);
3729 
3730 	pci_sriov_set_totalvfs(pdev, 7);
3731 	igb_enable_sriov(pdev, max_vfs);
3732 
3733 #endif /* CONFIG_PCI_IOV */
3734 }
3735 
3736 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3737 {
3738 	struct e1000_hw *hw = &adapter->hw;
3739 	unsigned int max_rss_queues;
3740 
3741 	/* Determine the maximum number of RSS queues supported. */
3742 	switch (hw->mac.type) {
3743 	case e1000_i211:
3744 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3745 		break;
3746 	case e1000_82575:
3747 	case e1000_i210:
3748 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3749 		break;
3750 	case e1000_i350:
3751 		/* I350 cannot do RSS and SR-IOV at the same time */
3752 		if (!!adapter->vfs_allocated_count) {
3753 			max_rss_queues = 1;
3754 			break;
3755 		}
3756 		/* fall through */
3757 	case e1000_82576:
3758 		if (!!adapter->vfs_allocated_count) {
3759 			max_rss_queues = 2;
3760 			break;
3761 		}
3762 		/* fall through */
3763 	case e1000_82580:
3764 	case e1000_i354:
3765 	default:
3766 		max_rss_queues = IGB_MAX_RX_QUEUES;
3767 		break;
3768 	}
3769 
3770 	return max_rss_queues;
3771 }
3772 
3773 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3774 {
3775 	u32 max_rss_queues;
3776 
3777 	max_rss_queues = igb_get_max_rss_queues(adapter);
3778 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3779 
3780 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3781 }
3782 
3783 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3784 			      const u32 max_rss_queues)
3785 {
3786 	struct e1000_hw *hw = &adapter->hw;
3787 
3788 	/* Determine if we need to pair queues. */
3789 	switch (hw->mac.type) {
3790 	case e1000_82575:
3791 	case e1000_i211:
3792 		/* Device supports enough interrupts without queue pairing. */
3793 		break;
3794 	case e1000_82576:
3795 	case e1000_82580:
3796 	case e1000_i350:
3797 	case e1000_i354:
3798 	case e1000_i210:
3799 	default:
3800 		/* If rss_queues > half of max_rss_queues, pair the queues in
3801 		 * order to conserve interrupts due to limited supply.
3802 		 */
3803 		if (adapter->rss_queues > (max_rss_queues / 2))
3804 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3805 		else
3806 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3807 		break;
3808 	}
3809 }
3810 
3811 /**
3812  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3813  *  @adapter: board private structure to initialize
3814  *
3815  *  igb_sw_init initializes the Adapter private data structure.
3816  *  Fields are initialized based on PCI device information and
3817  *  OS network device settings (MTU size).
3818  **/
3819 static int igb_sw_init(struct igb_adapter *adapter)
3820 {
3821 	struct e1000_hw *hw = &adapter->hw;
3822 	struct net_device *netdev = adapter->netdev;
3823 	struct pci_dev *pdev = adapter->pdev;
3824 
3825 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3826 
3827 	/* set default ring sizes */
3828 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3829 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3830 
3831 	/* set default ITR values */
3832 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3833 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3834 
3835 	/* set default work limits */
3836 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3837 
3838 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3839 				  VLAN_HLEN;
3840 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3841 
3842 	spin_lock_init(&adapter->nfc_lock);
3843 	mutex_init(&adapter->stats64_lock);
3844 #ifdef CONFIG_PCI_IOV
3845 	switch (hw->mac.type) {
3846 	case e1000_82576:
3847 	case e1000_i350:
3848 		if (max_vfs > 7) {
3849 			dev_warn(&pdev->dev,
3850 				 "Maximum of 7 VFs per PF, using max\n");
3851 			max_vfs = adapter->vfs_allocated_count = 7;
3852 		} else
3853 			adapter->vfs_allocated_count = max_vfs;
3854 		if (adapter->vfs_allocated_count)
3855 			dev_warn(&pdev->dev,
3856 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3857 		break;
3858 	default:
3859 		break;
3860 	}
3861 #endif /* CONFIG_PCI_IOV */
3862 
3863 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3864 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3865 
3866 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3867 				     sizeof(struct igb_mac_addr),
3868 				     GFP_KERNEL);
3869 	if (!adapter->mac_table)
3870 		return -ENOMEM;
3871 
3872 	igb_probe_vfs(adapter);
3873 
3874 	igb_init_queue_configuration(adapter);
3875 
3876 	/* Setup and initialize a copy of the hw vlan table array */
3877 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3878 				       GFP_KERNEL);
3879 	if (!adapter->shadow_vfta)
3880 		return -ENOMEM;
3881 
3882 	/* This call may decrease the number of queues */
3883 	if (igb_init_interrupt_scheme(adapter, true)) {
3884 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3885 		return -ENOMEM;
3886 	}
3887 
3888 	/* Explicitly disable IRQ since the NIC can be in any state. */
3889 	igb_irq_disable(adapter);
3890 
3891 	if (hw->mac.type >= e1000_i350)
3892 		adapter->flags &= ~IGB_FLAG_DMAC;
3893 
3894 	set_bit(__IGB_DOWN, &adapter->state);
3895 	return 0;
3896 }
3897 
3898 /**
3899  *  igb_open - Called when a network interface is made active
3900  *  @netdev: network interface device structure
3901  *
3902  *  Returns 0 on success, negative value on failure
3903  *
3904  *  The open entry point is called when a network interface is made
3905  *  active by the system (IFF_UP).  At this point all resources needed
3906  *  for transmit and receive operations are allocated, the interrupt
3907  *  handler is registered with the OS, the watchdog timer is started,
3908  *  and the stack is notified that the interface is ready.
3909  **/
3910 static int __igb_open(struct net_device *netdev, bool resuming)
3911 {
3912 	struct igb_adapter *adapter = netdev_priv(netdev);
3913 	struct e1000_hw *hw = &adapter->hw;
3914 	struct pci_dev *pdev = adapter->pdev;
3915 	int err;
3916 	int i;
3917 
3918 	/* disallow open during test */
3919 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3920 		WARN_ON(resuming);
3921 		return -EBUSY;
3922 	}
3923 
3924 	if (!resuming)
3925 		pm_runtime_get_sync(&pdev->dev);
3926 
3927 	netif_carrier_off(netdev);
3928 
3929 	/* allocate transmit descriptors */
3930 	err = igb_setup_all_tx_resources(adapter);
3931 	if (err)
3932 		goto err_setup_tx;
3933 
3934 	/* allocate receive descriptors */
3935 	err = igb_setup_all_rx_resources(adapter);
3936 	if (err)
3937 		goto err_setup_rx;
3938 
3939 	igb_power_up_link(adapter);
3940 
3941 	/* before we allocate an interrupt, we must be ready to handle it.
3942 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3943 	 * as soon as we call pci_request_irq, so we have to setup our
3944 	 * clean_rx handler before we do so.
3945 	 */
3946 	igb_configure(adapter);
3947 
3948 	err = igb_request_irq(adapter);
3949 	if (err)
3950 		goto err_req_irq;
3951 
3952 	/* Notify the stack of the actual queue counts. */
3953 	err = netif_set_real_num_tx_queues(adapter->netdev,
3954 					   adapter->num_tx_queues);
3955 	if (err)
3956 		goto err_set_queues;
3957 
3958 	err = netif_set_real_num_rx_queues(adapter->netdev,
3959 					   adapter->num_rx_queues);
3960 	if (err)
3961 		goto err_set_queues;
3962 
3963 	/* From here on the code is the same as igb_up() */
3964 	clear_bit(__IGB_DOWN, &adapter->state);
3965 
3966 	for (i = 0; i < adapter->num_q_vectors; i++)
3967 		napi_enable(&(adapter->q_vector[i]->napi));
3968 
3969 	/* Clear any pending interrupts. */
3970 	rd32(E1000_TSICR);
3971 	rd32(E1000_ICR);
3972 
3973 	igb_irq_enable(adapter);
3974 
3975 	/* notify VFs that reset has been completed */
3976 	if (adapter->vfs_allocated_count) {
3977 		u32 reg_data = rd32(E1000_CTRL_EXT);
3978 
3979 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3980 		wr32(E1000_CTRL_EXT, reg_data);
3981 	}
3982 
3983 	netif_tx_start_all_queues(netdev);
3984 
3985 	if (!resuming)
3986 		pm_runtime_put(&pdev->dev);
3987 
3988 	/* start the watchdog. */
3989 	hw->mac.get_link_status = 1;
3990 	schedule_work(&adapter->watchdog_task);
3991 
3992 	return 0;
3993 
3994 err_set_queues:
3995 	igb_free_irq(adapter);
3996 err_req_irq:
3997 	igb_release_hw_control(adapter);
3998 	igb_power_down_link(adapter);
3999 	igb_free_all_rx_resources(adapter);
4000 err_setup_rx:
4001 	igb_free_all_tx_resources(adapter);
4002 err_setup_tx:
4003 	igb_reset(adapter);
4004 	if (!resuming)
4005 		pm_runtime_put(&pdev->dev);
4006 
4007 	return err;
4008 }
4009 
4010 int igb_open(struct net_device *netdev)
4011 {
4012 	return __igb_open(netdev, false);
4013 }
4014 
4015 /**
4016  *  igb_close - Disables a network interface
4017  *  @netdev: network interface device structure
4018  *
4019  *  Returns 0, this is not allowed to fail
4020  *
4021  *  The close entry point is called when an interface is de-activated
4022  *  by the OS.  The hardware is still under the driver's control, but
4023  *  needs to be disabled.  A global MAC reset is issued to stop the
4024  *  hardware, and all transmit and receive resources are freed.
4025  **/
4026 static int __igb_close(struct net_device *netdev, bool suspending)
4027 {
4028 	struct igb_adapter *adapter = netdev_priv(netdev);
4029 	struct pci_dev *pdev = adapter->pdev;
4030 
4031 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4032 
4033 	if (!suspending)
4034 		pm_runtime_get_sync(&pdev->dev);
4035 
4036 	igb_down(adapter);
4037 	igb_free_irq(adapter);
4038 
4039 	igb_free_all_tx_resources(adapter);
4040 	igb_free_all_rx_resources(adapter);
4041 
4042 	if (!suspending)
4043 		pm_runtime_put_sync(&pdev->dev);
4044 	return 0;
4045 }
4046 
4047 int igb_close(struct net_device *netdev)
4048 {
4049 	if (netif_device_present(netdev) || netdev->dismantle)
4050 		return __igb_close(netdev, false);
4051 	return 0;
4052 }
4053 
4054 /**
4055  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4056  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4057  *
4058  *  Return 0 on success, negative on failure
4059  **/
4060 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4061 {
4062 	struct device *dev = tx_ring->dev;
4063 	int size;
4064 
4065 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4066 
4067 	tx_ring->tx_buffer_info = vmalloc(size);
4068 	if (!tx_ring->tx_buffer_info)
4069 		goto err;
4070 
4071 	/* round up to nearest 4K */
4072 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4073 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4074 
4075 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4076 					   &tx_ring->dma, GFP_KERNEL);
4077 	if (!tx_ring->desc)
4078 		goto err;
4079 
4080 	tx_ring->next_to_use = 0;
4081 	tx_ring->next_to_clean = 0;
4082 
4083 	return 0;
4084 
4085 err:
4086 	vfree(tx_ring->tx_buffer_info);
4087 	tx_ring->tx_buffer_info = NULL;
4088 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4089 	return -ENOMEM;
4090 }
4091 
4092 /**
4093  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4094  *				 (Descriptors) for all queues
4095  *  @adapter: board private structure
4096  *
4097  *  Return 0 on success, negative on failure
4098  **/
4099 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4100 {
4101 	struct pci_dev *pdev = adapter->pdev;
4102 	int i, err = 0;
4103 
4104 	for (i = 0; i < adapter->num_tx_queues; i++) {
4105 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4106 		if (err) {
4107 			dev_err(&pdev->dev,
4108 				"Allocation for Tx Queue %u failed\n", i);
4109 			for (i--; i >= 0; i--)
4110 				igb_free_tx_resources(adapter->tx_ring[i]);
4111 			break;
4112 		}
4113 	}
4114 
4115 	return err;
4116 }
4117 
4118 /**
4119  *  igb_setup_tctl - configure the transmit control registers
4120  *  @adapter: Board private structure
4121  **/
4122 void igb_setup_tctl(struct igb_adapter *adapter)
4123 {
4124 	struct e1000_hw *hw = &adapter->hw;
4125 	u32 tctl;
4126 
4127 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4128 	wr32(E1000_TXDCTL(0), 0);
4129 
4130 	/* Program the Transmit Control Register */
4131 	tctl = rd32(E1000_TCTL);
4132 	tctl &= ~E1000_TCTL_CT;
4133 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4134 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4135 
4136 	igb_config_collision_dist(hw);
4137 
4138 	/* Enable transmits */
4139 	tctl |= E1000_TCTL_EN;
4140 
4141 	wr32(E1000_TCTL, tctl);
4142 }
4143 
4144 /**
4145  *  igb_configure_tx_ring - Configure transmit ring after Reset
4146  *  @adapter: board private structure
4147  *  @ring: tx ring to configure
4148  *
4149  *  Configure a transmit ring after a reset.
4150  **/
4151 void igb_configure_tx_ring(struct igb_adapter *adapter,
4152 			   struct igb_ring *ring)
4153 {
4154 	struct e1000_hw *hw = &adapter->hw;
4155 	u32 txdctl = 0;
4156 	u64 tdba = ring->dma;
4157 	int reg_idx = ring->reg_idx;
4158 
4159 	wr32(E1000_TDLEN(reg_idx),
4160 	     ring->count * sizeof(union e1000_adv_tx_desc));
4161 	wr32(E1000_TDBAL(reg_idx),
4162 	     tdba & 0x00000000ffffffffULL);
4163 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4164 
4165 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4166 	wr32(E1000_TDH(reg_idx), 0);
4167 	writel(0, ring->tail);
4168 
4169 	txdctl |= IGB_TX_PTHRESH;
4170 	txdctl |= IGB_TX_HTHRESH << 8;
4171 	txdctl |= IGB_TX_WTHRESH << 16;
4172 
4173 	/* reinitialize tx_buffer_info */
4174 	memset(ring->tx_buffer_info, 0,
4175 	       sizeof(struct igb_tx_buffer) * ring->count);
4176 
4177 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4178 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4179 }
4180 
4181 /**
4182  *  igb_configure_tx - Configure transmit Unit after Reset
4183  *  @adapter: board private structure
4184  *
4185  *  Configure the Tx unit of the MAC after a reset.
4186  **/
4187 static void igb_configure_tx(struct igb_adapter *adapter)
4188 {
4189 	struct e1000_hw *hw = &adapter->hw;
4190 	int i;
4191 
4192 	/* disable the queues */
4193 	for (i = 0; i < adapter->num_tx_queues; i++)
4194 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4195 
4196 	wrfl();
4197 	usleep_range(10000, 20000);
4198 
4199 	for (i = 0; i < adapter->num_tx_queues; i++)
4200 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4201 }
4202 
4203 /**
4204  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4205  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4206  *
4207  *  Returns 0 on success, negative on failure
4208  **/
4209 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4210 {
4211 	struct device *dev = rx_ring->dev;
4212 	int size;
4213 
4214 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4215 
4216 	rx_ring->rx_buffer_info = vmalloc(size);
4217 	if (!rx_ring->rx_buffer_info)
4218 		goto err;
4219 
4220 	/* Round up to nearest 4K */
4221 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4222 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4223 
4224 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4225 					   &rx_ring->dma, GFP_KERNEL);
4226 	if (!rx_ring->desc)
4227 		goto err;
4228 
4229 	rx_ring->next_to_alloc = 0;
4230 	rx_ring->next_to_clean = 0;
4231 	rx_ring->next_to_use = 0;
4232 
4233 	return 0;
4234 
4235 err:
4236 	vfree(rx_ring->rx_buffer_info);
4237 	rx_ring->rx_buffer_info = NULL;
4238 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4239 	return -ENOMEM;
4240 }
4241 
4242 /**
4243  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4244  *				 (Descriptors) for all queues
4245  *  @adapter: board private structure
4246  *
4247  *  Return 0 on success, negative on failure
4248  **/
4249 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4250 {
4251 	struct pci_dev *pdev = adapter->pdev;
4252 	int i, err = 0;
4253 
4254 	for (i = 0; i < adapter->num_rx_queues; i++) {
4255 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4256 		if (err) {
4257 			dev_err(&pdev->dev,
4258 				"Allocation for Rx Queue %u failed\n", i);
4259 			for (i--; i >= 0; i--)
4260 				igb_free_rx_resources(adapter->rx_ring[i]);
4261 			break;
4262 		}
4263 	}
4264 
4265 	return err;
4266 }
4267 
4268 /**
4269  *  igb_setup_mrqc - configure the multiple receive queue control registers
4270  *  @adapter: Board private structure
4271  **/
4272 static void igb_setup_mrqc(struct igb_adapter *adapter)
4273 {
4274 	struct e1000_hw *hw = &adapter->hw;
4275 	u32 mrqc, rxcsum;
4276 	u32 j, num_rx_queues;
4277 	u32 rss_key[10];
4278 
4279 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4280 	for (j = 0; j < 10; j++)
4281 		wr32(E1000_RSSRK(j), rss_key[j]);
4282 
4283 	num_rx_queues = adapter->rss_queues;
4284 
4285 	switch (hw->mac.type) {
4286 	case e1000_82576:
4287 		/* 82576 supports 2 RSS queues for SR-IOV */
4288 		if (adapter->vfs_allocated_count)
4289 			num_rx_queues = 2;
4290 		break;
4291 	default:
4292 		break;
4293 	}
4294 
4295 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4296 		for (j = 0; j < IGB_RETA_SIZE; j++)
4297 			adapter->rss_indir_tbl[j] =
4298 			(j * num_rx_queues) / IGB_RETA_SIZE;
4299 		adapter->rss_indir_tbl_init = num_rx_queues;
4300 	}
4301 	igb_write_rss_indir_tbl(adapter);
4302 
4303 	/* Disable raw packet checksumming so that RSS hash is placed in
4304 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4305 	 * offloads as they are enabled by default
4306 	 */
4307 	rxcsum = rd32(E1000_RXCSUM);
4308 	rxcsum |= E1000_RXCSUM_PCSD;
4309 
4310 	if (adapter->hw.mac.type >= e1000_82576)
4311 		/* Enable Receive Checksum Offload for SCTP */
4312 		rxcsum |= E1000_RXCSUM_CRCOFL;
4313 
4314 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4315 	wr32(E1000_RXCSUM, rxcsum);
4316 
4317 	/* Generate RSS hash based on packet types, TCP/UDP
4318 	 * port numbers and/or IPv4/v6 src and dst addresses
4319 	 */
4320 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4321 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4322 	       E1000_MRQC_RSS_FIELD_IPV6 |
4323 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4324 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4325 
4326 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4327 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4328 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4329 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4330 
4331 	/* If VMDq is enabled then we set the appropriate mode for that, else
4332 	 * we default to RSS so that an RSS hash is calculated per packet even
4333 	 * if we are only using one queue
4334 	 */
4335 	if (adapter->vfs_allocated_count) {
4336 		if (hw->mac.type > e1000_82575) {
4337 			/* Set the default pool for the PF's first queue */
4338 			u32 vtctl = rd32(E1000_VT_CTL);
4339 
4340 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4341 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4342 			vtctl |= adapter->vfs_allocated_count <<
4343 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4344 			wr32(E1000_VT_CTL, vtctl);
4345 		}
4346 		if (adapter->rss_queues > 1)
4347 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4348 		else
4349 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4350 	} else {
4351 		if (hw->mac.type != e1000_i211)
4352 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4353 	}
4354 	igb_vmm_control(adapter);
4355 
4356 	wr32(E1000_MRQC, mrqc);
4357 }
4358 
4359 /**
4360  *  igb_setup_rctl - configure the receive control registers
4361  *  @adapter: Board private structure
4362  **/
4363 void igb_setup_rctl(struct igb_adapter *adapter)
4364 {
4365 	struct e1000_hw *hw = &adapter->hw;
4366 	u32 rctl;
4367 
4368 	rctl = rd32(E1000_RCTL);
4369 
4370 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4371 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4372 
4373 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4374 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4375 
4376 	/* enable stripping of CRC. It's unlikely this will break BMC
4377 	 * redirection as it did with e1000. Newer features require
4378 	 * that the HW strips the CRC.
4379 	 */
4380 	rctl |= E1000_RCTL_SECRC;
4381 
4382 	/* disable store bad packets and clear size bits. */
4383 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4384 
4385 	/* enable LPE to allow for reception of jumbo frames */
4386 	rctl |= E1000_RCTL_LPE;
4387 
4388 	/* disable queue 0 to prevent tail write w/o re-config */
4389 	wr32(E1000_RXDCTL(0), 0);
4390 
4391 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4392 	 * queue drop for all VF and PF queues to prevent head of line blocking
4393 	 * if an un-trusted VF does not provide descriptors to hardware.
4394 	 */
4395 	if (adapter->vfs_allocated_count) {
4396 		/* set all queue drop enable bits */
4397 		wr32(E1000_QDE, ALL_QUEUES);
4398 	}
4399 
4400 	/* This is useful for sniffing bad packets. */
4401 	if (adapter->netdev->features & NETIF_F_RXALL) {
4402 		/* UPE and MPE will be handled by normal PROMISC logic
4403 		 * in e1000e_set_rx_mode
4404 		 */
4405 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4406 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4407 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4408 
4409 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4410 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4411 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4412 		 * and that breaks VLANs.
4413 		 */
4414 	}
4415 
4416 	wr32(E1000_RCTL, rctl);
4417 }
4418 
4419 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4420 				   int vfn)
4421 {
4422 	struct e1000_hw *hw = &adapter->hw;
4423 	u32 vmolr;
4424 
4425 	if (size > MAX_JUMBO_FRAME_SIZE)
4426 		size = MAX_JUMBO_FRAME_SIZE;
4427 
4428 	vmolr = rd32(E1000_VMOLR(vfn));
4429 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4430 	vmolr |= size | E1000_VMOLR_LPE;
4431 	wr32(E1000_VMOLR(vfn), vmolr);
4432 
4433 	return 0;
4434 }
4435 
4436 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4437 					 int vfn, bool enable)
4438 {
4439 	struct e1000_hw *hw = &adapter->hw;
4440 	u32 val, reg;
4441 
4442 	if (hw->mac.type < e1000_82576)
4443 		return;
4444 
4445 	if (hw->mac.type == e1000_i350)
4446 		reg = E1000_DVMOLR(vfn);
4447 	else
4448 		reg = E1000_VMOLR(vfn);
4449 
4450 	val = rd32(reg);
4451 	if (enable)
4452 		val |= E1000_VMOLR_STRVLAN;
4453 	else
4454 		val &= ~(E1000_VMOLR_STRVLAN);
4455 	wr32(reg, val);
4456 }
4457 
4458 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4459 				 int vfn, bool aupe)
4460 {
4461 	struct e1000_hw *hw = &adapter->hw;
4462 	u32 vmolr;
4463 
4464 	/* This register exists only on 82576 and newer so if we are older then
4465 	 * we should exit and do nothing
4466 	 */
4467 	if (hw->mac.type < e1000_82576)
4468 		return;
4469 
4470 	vmolr = rd32(E1000_VMOLR(vfn));
4471 	if (aupe)
4472 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4473 	else
4474 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4475 
4476 	/* clear all bits that might not be set */
4477 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4478 
4479 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4480 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4481 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4482 	 * multicast packets
4483 	 */
4484 	if (vfn <= adapter->vfs_allocated_count)
4485 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4486 
4487 	wr32(E1000_VMOLR(vfn), vmolr);
4488 }
4489 
4490 /**
4491  *  igb_configure_rx_ring - Configure a receive ring after Reset
4492  *  @adapter: board private structure
4493  *  @ring: receive ring to be configured
4494  *
4495  *  Configure the Rx unit of the MAC after a reset.
4496  **/
4497 void igb_configure_rx_ring(struct igb_adapter *adapter,
4498 			   struct igb_ring *ring)
4499 {
4500 	struct e1000_hw *hw = &adapter->hw;
4501 	union e1000_adv_rx_desc *rx_desc;
4502 	u64 rdba = ring->dma;
4503 	int reg_idx = ring->reg_idx;
4504 	u32 srrctl = 0, rxdctl = 0;
4505 
4506 	/* disable the queue */
4507 	wr32(E1000_RXDCTL(reg_idx), 0);
4508 
4509 	/* Set DMA base address registers */
4510 	wr32(E1000_RDBAL(reg_idx),
4511 	     rdba & 0x00000000ffffffffULL);
4512 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4513 	wr32(E1000_RDLEN(reg_idx),
4514 	     ring->count * sizeof(union e1000_adv_rx_desc));
4515 
4516 	/* initialize head and tail */
4517 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4518 	wr32(E1000_RDH(reg_idx), 0);
4519 	writel(0, ring->tail);
4520 
4521 	/* set descriptor configuration */
4522 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4523 	if (ring_uses_large_buffer(ring))
4524 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4525 	else
4526 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4527 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4528 	if (hw->mac.type >= e1000_82580)
4529 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4530 	/* Only set Drop Enable if we are supporting multiple queues */
4531 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4532 		srrctl |= E1000_SRRCTL_DROP_EN;
4533 
4534 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4535 
4536 	/* set filtering for VMDQ pools */
4537 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4538 
4539 	rxdctl |= IGB_RX_PTHRESH;
4540 	rxdctl |= IGB_RX_HTHRESH << 8;
4541 	rxdctl |= IGB_RX_WTHRESH << 16;
4542 
4543 	/* initialize rx_buffer_info */
4544 	memset(ring->rx_buffer_info, 0,
4545 	       sizeof(struct igb_rx_buffer) * ring->count);
4546 
4547 	/* initialize Rx descriptor 0 */
4548 	rx_desc = IGB_RX_DESC(ring, 0);
4549 	rx_desc->wb.upper.length = 0;
4550 
4551 	/* enable receive descriptor fetching */
4552 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4553 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4554 }
4555 
4556 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4557 				  struct igb_ring *rx_ring)
4558 {
4559 	/* set build_skb and buffer size flags */
4560 	clear_ring_build_skb_enabled(rx_ring);
4561 	clear_ring_uses_large_buffer(rx_ring);
4562 
4563 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4564 		return;
4565 
4566 	set_ring_build_skb_enabled(rx_ring);
4567 
4568 #if (PAGE_SIZE < 8192)
4569 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4570 		return;
4571 
4572 	set_ring_uses_large_buffer(rx_ring);
4573 #endif
4574 }
4575 
4576 /**
4577  *  igb_configure_rx - Configure receive Unit after Reset
4578  *  @adapter: board private structure
4579  *
4580  *  Configure the Rx unit of the MAC after a reset.
4581  **/
4582 static void igb_configure_rx(struct igb_adapter *adapter)
4583 {
4584 	int i;
4585 
4586 	/* set the correct pool for the PF default MAC address in entry 0 */
4587 	igb_set_default_mac_filter(adapter);
4588 
4589 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4590 	 * the Base and Length of the Rx Descriptor Ring
4591 	 */
4592 	for (i = 0; i < adapter->num_rx_queues; i++) {
4593 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4594 
4595 		igb_set_rx_buffer_len(adapter, rx_ring);
4596 		igb_configure_rx_ring(adapter, rx_ring);
4597 	}
4598 }
4599 
4600 /**
4601  *  igb_free_tx_resources - Free Tx Resources per Queue
4602  *  @tx_ring: Tx descriptor ring for a specific queue
4603  *
4604  *  Free all transmit software resources
4605  **/
4606 void igb_free_tx_resources(struct igb_ring *tx_ring)
4607 {
4608 	igb_clean_tx_ring(tx_ring);
4609 
4610 	vfree(tx_ring->tx_buffer_info);
4611 	tx_ring->tx_buffer_info = NULL;
4612 
4613 	/* if not set, then don't free */
4614 	if (!tx_ring->desc)
4615 		return;
4616 
4617 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4618 			  tx_ring->desc, tx_ring->dma);
4619 
4620 	tx_ring->desc = NULL;
4621 }
4622 
4623 /**
4624  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4625  *  @adapter: board private structure
4626  *
4627  *  Free all transmit software resources
4628  **/
4629 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4630 {
4631 	int i;
4632 
4633 	for (i = 0; i < adapter->num_tx_queues; i++)
4634 		if (adapter->tx_ring[i])
4635 			igb_free_tx_resources(adapter->tx_ring[i]);
4636 }
4637 
4638 /**
4639  *  igb_clean_tx_ring - Free Tx Buffers
4640  *  @tx_ring: ring to be cleaned
4641  **/
4642 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4643 {
4644 	u16 i = tx_ring->next_to_clean;
4645 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4646 
4647 	while (i != tx_ring->next_to_use) {
4648 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4649 
4650 		/* Free all the Tx ring sk_buffs */
4651 		dev_kfree_skb_any(tx_buffer->skb);
4652 
4653 		/* unmap skb header data */
4654 		dma_unmap_single(tx_ring->dev,
4655 				 dma_unmap_addr(tx_buffer, dma),
4656 				 dma_unmap_len(tx_buffer, len),
4657 				 DMA_TO_DEVICE);
4658 
4659 		/* check for eop_desc to determine the end of the packet */
4660 		eop_desc = tx_buffer->next_to_watch;
4661 		tx_desc = IGB_TX_DESC(tx_ring, i);
4662 
4663 		/* unmap remaining buffers */
4664 		while (tx_desc != eop_desc) {
4665 			tx_buffer++;
4666 			tx_desc++;
4667 			i++;
4668 			if (unlikely(i == tx_ring->count)) {
4669 				i = 0;
4670 				tx_buffer = tx_ring->tx_buffer_info;
4671 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4672 			}
4673 
4674 			/* unmap any remaining paged data */
4675 			if (dma_unmap_len(tx_buffer, len))
4676 				dma_unmap_page(tx_ring->dev,
4677 					       dma_unmap_addr(tx_buffer, dma),
4678 					       dma_unmap_len(tx_buffer, len),
4679 					       DMA_TO_DEVICE);
4680 		}
4681 
4682 		/* move us one more past the eop_desc for start of next pkt */
4683 		tx_buffer++;
4684 		i++;
4685 		if (unlikely(i == tx_ring->count)) {
4686 			i = 0;
4687 			tx_buffer = tx_ring->tx_buffer_info;
4688 		}
4689 	}
4690 
4691 	/* reset BQL for queue */
4692 	netdev_tx_reset_queue(txring_txq(tx_ring));
4693 
4694 	/* reset next_to_use and next_to_clean */
4695 	tx_ring->next_to_use = 0;
4696 	tx_ring->next_to_clean = 0;
4697 }
4698 
4699 /**
4700  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4701  *  @adapter: board private structure
4702  **/
4703 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4704 {
4705 	int i;
4706 
4707 	for (i = 0; i < adapter->num_tx_queues; i++)
4708 		if (adapter->tx_ring[i])
4709 			igb_clean_tx_ring(adapter->tx_ring[i]);
4710 }
4711 
4712 /**
4713  *  igb_free_rx_resources - Free Rx Resources
4714  *  @rx_ring: ring to clean the resources from
4715  *
4716  *  Free all receive software resources
4717  **/
4718 void igb_free_rx_resources(struct igb_ring *rx_ring)
4719 {
4720 	igb_clean_rx_ring(rx_ring);
4721 
4722 	vfree(rx_ring->rx_buffer_info);
4723 	rx_ring->rx_buffer_info = NULL;
4724 
4725 	/* if not set, then don't free */
4726 	if (!rx_ring->desc)
4727 		return;
4728 
4729 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4730 			  rx_ring->desc, rx_ring->dma);
4731 
4732 	rx_ring->desc = NULL;
4733 }
4734 
4735 /**
4736  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4737  *  @adapter: board private structure
4738  *
4739  *  Free all receive software resources
4740  **/
4741 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4742 {
4743 	int i;
4744 
4745 	for (i = 0; i < adapter->num_rx_queues; i++)
4746 		if (adapter->rx_ring[i])
4747 			igb_free_rx_resources(adapter->rx_ring[i]);
4748 }
4749 
4750 /**
4751  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4752  *  @rx_ring: ring to free buffers from
4753  **/
4754 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4755 {
4756 	u16 i = rx_ring->next_to_clean;
4757 
4758 	if (rx_ring->skb)
4759 		dev_kfree_skb(rx_ring->skb);
4760 	rx_ring->skb = NULL;
4761 
4762 	/* Free all the Rx ring sk_buffs */
4763 	while (i != rx_ring->next_to_alloc) {
4764 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4765 
4766 		/* Invalidate cache lines that may have been written to by
4767 		 * device so that we avoid corrupting memory.
4768 		 */
4769 		dma_sync_single_range_for_cpu(rx_ring->dev,
4770 					      buffer_info->dma,
4771 					      buffer_info->page_offset,
4772 					      igb_rx_bufsz(rx_ring),
4773 					      DMA_FROM_DEVICE);
4774 
4775 		/* free resources associated with mapping */
4776 		dma_unmap_page_attrs(rx_ring->dev,
4777 				     buffer_info->dma,
4778 				     igb_rx_pg_size(rx_ring),
4779 				     DMA_FROM_DEVICE,
4780 				     IGB_RX_DMA_ATTR);
4781 		__page_frag_cache_drain(buffer_info->page,
4782 					buffer_info->pagecnt_bias);
4783 
4784 		i++;
4785 		if (i == rx_ring->count)
4786 			i = 0;
4787 	}
4788 
4789 	rx_ring->next_to_alloc = 0;
4790 	rx_ring->next_to_clean = 0;
4791 	rx_ring->next_to_use = 0;
4792 }
4793 
4794 /**
4795  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4796  *  @adapter: board private structure
4797  **/
4798 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4799 {
4800 	int i;
4801 
4802 	for (i = 0; i < adapter->num_rx_queues; i++)
4803 		if (adapter->rx_ring[i])
4804 			igb_clean_rx_ring(adapter->rx_ring[i]);
4805 }
4806 
4807 /**
4808  *  igb_set_mac - Change the Ethernet Address of the NIC
4809  *  @netdev: network interface device structure
4810  *  @p: pointer to an address structure
4811  *
4812  *  Returns 0 on success, negative on failure
4813  **/
4814 static int igb_set_mac(struct net_device *netdev, void *p)
4815 {
4816 	struct igb_adapter *adapter = netdev_priv(netdev);
4817 	struct e1000_hw *hw = &adapter->hw;
4818 	struct sockaddr *addr = p;
4819 
4820 	if (!is_valid_ether_addr(addr->sa_data))
4821 		return -EADDRNOTAVAIL;
4822 
4823 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4824 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4825 
4826 	/* set the correct pool for the new PF MAC address in entry 0 */
4827 	igb_set_default_mac_filter(adapter);
4828 
4829 	return 0;
4830 }
4831 
4832 /**
4833  *  igb_write_mc_addr_list - write multicast addresses to MTA
4834  *  @netdev: network interface device structure
4835  *
4836  *  Writes multicast address list to the MTA hash table.
4837  *  Returns: -ENOMEM on failure
4838  *           0 on no addresses written
4839  *           X on writing X addresses to MTA
4840  **/
4841 static int igb_write_mc_addr_list(struct net_device *netdev)
4842 {
4843 	struct igb_adapter *adapter = netdev_priv(netdev);
4844 	struct e1000_hw *hw = &adapter->hw;
4845 	struct netdev_hw_addr *ha;
4846 	u8  *mta_list;
4847 	int i;
4848 
4849 	if (netdev_mc_empty(netdev)) {
4850 		/* nothing to program, so clear mc list */
4851 		igb_update_mc_addr_list(hw, NULL, 0);
4852 		igb_restore_vf_multicasts(adapter);
4853 		return 0;
4854 	}
4855 
4856 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4857 	if (!mta_list)
4858 		return -ENOMEM;
4859 
4860 	/* The shared function expects a packed array of only addresses. */
4861 	i = 0;
4862 	netdev_for_each_mc_addr(ha, netdev)
4863 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4864 
4865 	igb_update_mc_addr_list(hw, mta_list, i);
4866 	kfree(mta_list);
4867 
4868 	return netdev_mc_count(netdev);
4869 }
4870 
4871 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4872 {
4873 	struct e1000_hw *hw = &adapter->hw;
4874 	u32 i, pf_id;
4875 
4876 	switch (hw->mac.type) {
4877 	case e1000_i210:
4878 	case e1000_i211:
4879 	case e1000_i350:
4880 		/* VLAN filtering needed for VLAN prio filter */
4881 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4882 			break;
4883 		/* fall through */
4884 	case e1000_82576:
4885 	case e1000_82580:
4886 	case e1000_i354:
4887 		/* VLAN filtering needed for pool filtering */
4888 		if (adapter->vfs_allocated_count)
4889 			break;
4890 		/* fall through */
4891 	default:
4892 		return 1;
4893 	}
4894 
4895 	/* We are already in VLAN promisc, nothing to do */
4896 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4897 		return 0;
4898 
4899 	if (!adapter->vfs_allocated_count)
4900 		goto set_vfta;
4901 
4902 	/* Add PF to all active pools */
4903 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4904 
4905 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4906 		u32 vlvf = rd32(E1000_VLVF(i));
4907 
4908 		vlvf |= BIT(pf_id);
4909 		wr32(E1000_VLVF(i), vlvf);
4910 	}
4911 
4912 set_vfta:
4913 	/* Set all bits in the VLAN filter table array */
4914 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4915 		hw->mac.ops.write_vfta(hw, i, ~0U);
4916 
4917 	/* Set flag so we don't redo unnecessary work */
4918 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4919 
4920 	return 0;
4921 }
4922 
4923 #define VFTA_BLOCK_SIZE 8
4924 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4925 {
4926 	struct e1000_hw *hw = &adapter->hw;
4927 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4928 	u32 vid_start = vfta_offset * 32;
4929 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4930 	u32 i, vid, word, bits, pf_id;
4931 
4932 	/* guarantee that we don't scrub out management VLAN */
4933 	vid = adapter->mng_vlan_id;
4934 	if (vid >= vid_start && vid < vid_end)
4935 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4936 
4937 	if (!adapter->vfs_allocated_count)
4938 		goto set_vfta;
4939 
4940 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4941 
4942 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4943 		u32 vlvf = rd32(E1000_VLVF(i));
4944 
4945 		/* pull VLAN ID from VLVF */
4946 		vid = vlvf & VLAN_VID_MASK;
4947 
4948 		/* only concern ourselves with a certain range */
4949 		if (vid < vid_start || vid >= vid_end)
4950 			continue;
4951 
4952 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4953 			/* record VLAN ID in VFTA */
4954 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4955 
4956 			/* if PF is part of this then continue */
4957 			if (test_bit(vid, adapter->active_vlans))
4958 				continue;
4959 		}
4960 
4961 		/* remove PF from the pool */
4962 		bits = ~BIT(pf_id);
4963 		bits &= rd32(E1000_VLVF(i));
4964 		wr32(E1000_VLVF(i), bits);
4965 	}
4966 
4967 set_vfta:
4968 	/* extract values from active_vlans and write back to VFTA */
4969 	for (i = VFTA_BLOCK_SIZE; i--;) {
4970 		vid = (vfta_offset + i) * 32;
4971 		word = vid / BITS_PER_LONG;
4972 		bits = vid % BITS_PER_LONG;
4973 
4974 		vfta[i] |= adapter->active_vlans[word] >> bits;
4975 
4976 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4977 	}
4978 }
4979 
4980 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4981 {
4982 	u32 i;
4983 
4984 	/* We are not in VLAN promisc, nothing to do */
4985 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4986 		return;
4987 
4988 	/* Set flag so we don't redo unnecessary work */
4989 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4990 
4991 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4992 		igb_scrub_vfta(adapter, i);
4993 }
4994 
4995 /**
4996  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4997  *  @netdev: network interface device structure
4998  *
4999  *  The set_rx_mode entry point is called whenever the unicast or multicast
5000  *  address lists or the network interface flags are updated.  This routine is
5001  *  responsible for configuring the hardware for proper unicast, multicast,
5002  *  promiscuous mode, and all-multi behavior.
5003  **/
5004 static void igb_set_rx_mode(struct net_device *netdev)
5005 {
5006 	struct igb_adapter *adapter = netdev_priv(netdev);
5007 	struct e1000_hw *hw = &adapter->hw;
5008 	unsigned int vfn = adapter->vfs_allocated_count;
5009 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5010 	int count;
5011 
5012 	/* Check for Promiscuous and All Multicast modes */
5013 	if (netdev->flags & IFF_PROMISC) {
5014 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5015 		vmolr |= E1000_VMOLR_MPME;
5016 
5017 		/* enable use of UTA filter to force packets to default pool */
5018 		if (hw->mac.type == e1000_82576)
5019 			vmolr |= E1000_VMOLR_ROPE;
5020 	} else {
5021 		if (netdev->flags & IFF_ALLMULTI) {
5022 			rctl |= E1000_RCTL_MPE;
5023 			vmolr |= E1000_VMOLR_MPME;
5024 		} else {
5025 			/* Write addresses to the MTA, if the attempt fails
5026 			 * then we should just turn on promiscuous mode so
5027 			 * that we can at least receive multicast traffic
5028 			 */
5029 			count = igb_write_mc_addr_list(netdev);
5030 			if (count < 0) {
5031 				rctl |= E1000_RCTL_MPE;
5032 				vmolr |= E1000_VMOLR_MPME;
5033 			} else if (count) {
5034 				vmolr |= E1000_VMOLR_ROMPE;
5035 			}
5036 		}
5037 	}
5038 
5039 	/* Write addresses to available RAR registers, if there is not
5040 	 * sufficient space to store all the addresses then enable
5041 	 * unicast promiscuous mode
5042 	 */
5043 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5044 		rctl |= E1000_RCTL_UPE;
5045 		vmolr |= E1000_VMOLR_ROPE;
5046 	}
5047 
5048 	/* enable VLAN filtering by default */
5049 	rctl |= E1000_RCTL_VFE;
5050 
5051 	/* disable VLAN filtering for modes that require it */
5052 	if ((netdev->flags & IFF_PROMISC) ||
5053 	    (netdev->features & NETIF_F_RXALL)) {
5054 		/* if we fail to set all rules then just clear VFE */
5055 		if (igb_vlan_promisc_enable(adapter))
5056 			rctl &= ~E1000_RCTL_VFE;
5057 	} else {
5058 		igb_vlan_promisc_disable(adapter);
5059 	}
5060 
5061 	/* update state of unicast, multicast, and VLAN filtering modes */
5062 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5063 				     E1000_RCTL_VFE);
5064 	wr32(E1000_RCTL, rctl);
5065 
5066 #if (PAGE_SIZE < 8192)
5067 	if (!adapter->vfs_allocated_count) {
5068 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5069 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5070 	}
5071 #endif
5072 	wr32(E1000_RLPML, rlpml);
5073 
5074 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5075 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5076 	 * we will have issues with VLAN tag stripping not being done for frames
5077 	 * that are only arriving because we are the default pool
5078 	 */
5079 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5080 		return;
5081 
5082 	/* set UTA to appropriate mode */
5083 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5084 
5085 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5086 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5087 
5088 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5089 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5090 #if (PAGE_SIZE < 8192)
5091 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5092 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5093 	else
5094 #endif
5095 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5096 	vmolr |= E1000_VMOLR_LPE;
5097 
5098 	wr32(E1000_VMOLR(vfn), vmolr);
5099 
5100 	igb_restore_vf_multicasts(adapter);
5101 }
5102 
5103 static void igb_check_wvbr(struct igb_adapter *adapter)
5104 {
5105 	struct e1000_hw *hw = &adapter->hw;
5106 	u32 wvbr = 0;
5107 
5108 	switch (hw->mac.type) {
5109 	case e1000_82576:
5110 	case e1000_i350:
5111 		wvbr = rd32(E1000_WVBR);
5112 		if (!wvbr)
5113 			return;
5114 		break;
5115 	default:
5116 		break;
5117 	}
5118 
5119 	adapter->wvbr |= wvbr;
5120 }
5121 
5122 #define IGB_STAGGERED_QUEUE_OFFSET 8
5123 
5124 static void igb_spoof_check(struct igb_adapter *adapter)
5125 {
5126 	int j;
5127 
5128 	if (!adapter->wvbr)
5129 		return;
5130 
5131 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5132 		if (adapter->wvbr & BIT(j) ||
5133 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5134 			dev_warn(&adapter->pdev->dev,
5135 				"Spoof event(s) detected on VF %d\n", j);
5136 			adapter->wvbr &=
5137 				~(BIT(j) |
5138 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5139 		}
5140 	}
5141 }
5142 
5143 /* Need to wait a few seconds after link up to get diagnostic information from
5144  * the phy
5145  */
5146 static void igb_update_phy_info(struct timer_list *t)
5147 {
5148 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5149 	igb_get_phy_info(&adapter->hw);
5150 }
5151 
5152 /**
5153  *  igb_has_link - check shared code for link and determine up/down
5154  *  @adapter: pointer to driver private info
5155  **/
5156 bool igb_has_link(struct igb_adapter *adapter)
5157 {
5158 	struct e1000_hw *hw = &adapter->hw;
5159 	bool link_active = false;
5160 
5161 	/* get_link_status is set on LSC (link status) interrupt or
5162 	 * rx sequence error interrupt.  get_link_status will stay
5163 	 * false until the e1000_check_for_link establishes link
5164 	 * for copper adapters ONLY
5165 	 */
5166 	switch (hw->phy.media_type) {
5167 	case e1000_media_type_copper:
5168 		if (!hw->mac.get_link_status)
5169 			return true;
5170 		/* fall through */
5171 	case e1000_media_type_internal_serdes:
5172 		hw->mac.ops.check_for_link(hw);
5173 		link_active = !hw->mac.get_link_status;
5174 		break;
5175 	default:
5176 	case e1000_media_type_unknown:
5177 		break;
5178 	}
5179 
5180 	if (((hw->mac.type == e1000_i210) ||
5181 	     (hw->mac.type == e1000_i211)) &&
5182 	     (hw->phy.id == I210_I_PHY_ID)) {
5183 		if (!netif_carrier_ok(adapter->netdev)) {
5184 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5185 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5186 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5187 			adapter->link_check_timeout = jiffies;
5188 		}
5189 	}
5190 
5191 	return link_active;
5192 }
5193 
5194 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5195 {
5196 	bool ret = false;
5197 	u32 ctrl_ext, thstat;
5198 
5199 	/* check for thermal sensor event on i350 copper only */
5200 	if (hw->mac.type == e1000_i350) {
5201 		thstat = rd32(E1000_THSTAT);
5202 		ctrl_ext = rd32(E1000_CTRL_EXT);
5203 
5204 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5205 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5206 			ret = !!(thstat & event);
5207 	}
5208 
5209 	return ret;
5210 }
5211 
5212 /**
5213  *  igb_check_lvmmc - check for malformed packets received
5214  *  and indicated in LVMMC register
5215  *  @adapter: pointer to adapter
5216  **/
5217 static void igb_check_lvmmc(struct igb_adapter *adapter)
5218 {
5219 	struct e1000_hw *hw = &adapter->hw;
5220 	u32 lvmmc;
5221 
5222 	lvmmc = rd32(E1000_LVMMC);
5223 	if (lvmmc) {
5224 		if (unlikely(net_ratelimit())) {
5225 			netdev_warn(adapter->netdev,
5226 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5227 				    lvmmc);
5228 		}
5229 	}
5230 }
5231 
5232 /**
5233  *  igb_watchdog - Timer Call-back
5234  *  @data: pointer to adapter cast into an unsigned long
5235  **/
5236 static void igb_watchdog(struct timer_list *t)
5237 {
5238 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5239 	/* Do the rest outside of interrupt context */
5240 	schedule_work(&adapter->watchdog_task);
5241 }
5242 
5243 static void igb_watchdog_task(struct work_struct *work)
5244 {
5245 	struct igb_adapter *adapter = container_of(work,
5246 						   struct igb_adapter,
5247 						   watchdog_task);
5248 	struct e1000_hw *hw = &adapter->hw;
5249 	struct e1000_phy_info *phy = &hw->phy;
5250 	struct net_device *netdev = adapter->netdev;
5251 	u32 link;
5252 	int i;
5253 	u32 connsw;
5254 	u16 phy_data, retry_count = 20;
5255 
5256 	link = igb_has_link(adapter);
5257 
5258 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5259 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5260 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5261 		else
5262 			link = false;
5263 	}
5264 
5265 	/* Force link down if we have fiber to swap to */
5266 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5267 		if (hw->phy.media_type == e1000_media_type_copper) {
5268 			connsw = rd32(E1000_CONNSW);
5269 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5270 				link = 0;
5271 		}
5272 	}
5273 	if (link) {
5274 		/* Perform a reset if the media type changed. */
5275 		if (hw->dev_spec._82575.media_changed) {
5276 			hw->dev_spec._82575.media_changed = false;
5277 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5278 			igb_reset(adapter);
5279 		}
5280 		/* Cancel scheduled suspend requests. */
5281 		pm_runtime_resume(netdev->dev.parent);
5282 
5283 		if (!netif_carrier_ok(netdev)) {
5284 			u32 ctrl;
5285 
5286 			hw->mac.ops.get_speed_and_duplex(hw,
5287 							 &adapter->link_speed,
5288 							 &adapter->link_duplex);
5289 
5290 			ctrl = rd32(E1000_CTRL);
5291 			/* Links status message must follow this format */
5292 			netdev_info(netdev,
5293 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5294 			       netdev->name,
5295 			       adapter->link_speed,
5296 			       adapter->link_duplex == FULL_DUPLEX ?
5297 			       "Full" : "Half",
5298 			       (ctrl & E1000_CTRL_TFCE) &&
5299 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5300 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5301 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5302 
5303 			/* disable EEE if enabled */
5304 			if ((adapter->flags & IGB_FLAG_EEE) &&
5305 				(adapter->link_duplex == HALF_DUPLEX)) {
5306 				dev_info(&adapter->pdev->dev,
5307 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5308 				adapter->hw.dev_spec._82575.eee_disable = true;
5309 				adapter->flags &= ~IGB_FLAG_EEE;
5310 			}
5311 
5312 			/* check if SmartSpeed worked */
5313 			igb_check_downshift(hw);
5314 			if (phy->speed_downgraded)
5315 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5316 
5317 			/* check for thermal sensor event */
5318 			if (igb_thermal_sensor_event(hw,
5319 			    E1000_THSTAT_LINK_THROTTLE))
5320 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5321 
5322 			/* adjust timeout factor according to speed/duplex */
5323 			adapter->tx_timeout_factor = 1;
5324 			switch (adapter->link_speed) {
5325 			case SPEED_10:
5326 				adapter->tx_timeout_factor = 14;
5327 				break;
5328 			case SPEED_100:
5329 				/* maybe add some timeout factor ? */
5330 				break;
5331 			}
5332 
5333 			if (adapter->link_speed != SPEED_1000)
5334 				goto no_wait;
5335 
5336 			/* wait for Remote receiver status OK */
5337 retry_read_status:
5338 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5339 					      &phy_data)) {
5340 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5341 				    retry_count) {
5342 					msleep(100);
5343 					retry_count--;
5344 					goto retry_read_status;
5345 				} else if (!retry_count) {
5346 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5347 				}
5348 			} else {
5349 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5350 			}
5351 no_wait:
5352 			netif_carrier_on(netdev);
5353 
5354 			igb_ping_all_vfs(adapter);
5355 			igb_check_vf_rate_limit(adapter);
5356 
5357 			/* link state has changed, schedule phy info update */
5358 			if (!test_bit(__IGB_DOWN, &adapter->state))
5359 				mod_timer(&adapter->phy_info_timer,
5360 					  round_jiffies(jiffies + 2 * HZ));
5361 		}
5362 	} else {
5363 		if (netif_carrier_ok(netdev)) {
5364 			adapter->link_speed = 0;
5365 			adapter->link_duplex = 0;
5366 
5367 			/* check for thermal sensor event */
5368 			if (igb_thermal_sensor_event(hw,
5369 			    E1000_THSTAT_PWR_DOWN)) {
5370 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5371 			}
5372 
5373 			/* Links status message must follow this format */
5374 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5375 			       netdev->name);
5376 			netif_carrier_off(netdev);
5377 
5378 			igb_ping_all_vfs(adapter);
5379 
5380 			/* link state has changed, schedule phy info update */
5381 			if (!test_bit(__IGB_DOWN, &adapter->state))
5382 				mod_timer(&adapter->phy_info_timer,
5383 					  round_jiffies(jiffies + 2 * HZ));
5384 
5385 			/* link is down, time to check for alternate media */
5386 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5387 				igb_check_swap_media(adapter);
5388 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5389 					schedule_work(&adapter->reset_task);
5390 					/* return immediately */
5391 					return;
5392 				}
5393 			}
5394 			pm_schedule_suspend(netdev->dev.parent,
5395 					    MSEC_PER_SEC * 5);
5396 
5397 		/* also check for alternate media here */
5398 		} else if (!netif_carrier_ok(netdev) &&
5399 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5400 			igb_check_swap_media(adapter);
5401 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5402 				schedule_work(&adapter->reset_task);
5403 				/* return immediately */
5404 				return;
5405 			}
5406 		}
5407 	}
5408 
5409 	mutex_lock(&adapter->stats64_lock);
5410 	igb_update_stats(adapter);
5411 	mutex_unlock(&adapter->stats64_lock);
5412 
5413 	for (i = 0; i < adapter->num_tx_queues; i++) {
5414 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5415 		if (!netif_carrier_ok(netdev)) {
5416 			/* We've lost link, so the controller stops DMA,
5417 			 * but we've got queued Tx work that's never going
5418 			 * to get done, so reset controller to flush Tx.
5419 			 * (Do the reset outside of interrupt context).
5420 			 */
5421 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5422 				adapter->tx_timeout_count++;
5423 				schedule_work(&adapter->reset_task);
5424 				/* return immediately since reset is imminent */
5425 				return;
5426 			}
5427 		}
5428 
5429 		/* Force detection of hung controller every watchdog period */
5430 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5431 	}
5432 
5433 	/* Cause software interrupt to ensure Rx ring is cleaned */
5434 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5435 		u32 eics = 0;
5436 
5437 		for (i = 0; i < adapter->num_q_vectors; i++)
5438 			eics |= adapter->q_vector[i]->eims_value;
5439 		wr32(E1000_EICS, eics);
5440 	} else {
5441 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5442 	}
5443 
5444 	igb_spoof_check(adapter);
5445 	igb_ptp_rx_hang(adapter);
5446 	igb_ptp_tx_hang(adapter);
5447 
5448 	/* Check LVMMC register on i350/i354 only */
5449 	if ((adapter->hw.mac.type == e1000_i350) ||
5450 	    (adapter->hw.mac.type == e1000_i354))
5451 		igb_check_lvmmc(adapter);
5452 
5453 	/* Reset the timer */
5454 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5455 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5456 			mod_timer(&adapter->watchdog_timer,
5457 				  round_jiffies(jiffies +  HZ));
5458 		else
5459 			mod_timer(&adapter->watchdog_timer,
5460 				  round_jiffies(jiffies + 2 * HZ));
5461 	}
5462 }
5463 
5464 enum latency_range {
5465 	lowest_latency = 0,
5466 	low_latency = 1,
5467 	bulk_latency = 2,
5468 	latency_invalid = 255
5469 };
5470 
5471 /**
5472  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5473  *  @q_vector: pointer to q_vector
5474  *
5475  *  Stores a new ITR value based on strictly on packet size.  This
5476  *  algorithm is less sophisticated than that used in igb_update_itr,
5477  *  due to the difficulty of synchronizing statistics across multiple
5478  *  receive rings.  The divisors and thresholds used by this function
5479  *  were determined based on theoretical maximum wire speed and testing
5480  *  data, in order to minimize response time while increasing bulk
5481  *  throughput.
5482  *  This functionality is controlled by ethtool's coalescing settings.
5483  *  NOTE:  This function is called only when operating in a multiqueue
5484  *         receive environment.
5485  **/
5486 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5487 {
5488 	int new_val = q_vector->itr_val;
5489 	int avg_wire_size = 0;
5490 	struct igb_adapter *adapter = q_vector->adapter;
5491 	unsigned int packets;
5492 
5493 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5494 	 * ints/sec - ITR timer value of 120 ticks.
5495 	 */
5496 	if (adapter->link_speed != SPEED_1000) {
5497 		new_val = IGB_4K_ITR;
5498 		goto set_itr_val;
5499 	}
5500 
5501 	packets = q_vector->rx.total_packets;
5502 	if (packets)
5503 		avg_wire_size = q_vector->rx.total_bytes / packets;
5504 
5505 	packets = q_vector->tx.total_packets;
5506 	if (packets)
5507 		avg_wire_size = max_t(u32, avg_wire_size,
5508 				      q_vector->tx.total_bytes / packets);
5509 
5510 	/* if avg_wire_size isn't set no work was done */
5511 	if (!avg_wire_size)
5512 		goto clear_counts;
5513 
5514 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5515 	avg_wire_size += 24;
5516 
5517 	/* Don't starve jumbo frames */
5518 	avg_wire_size = min(avg_wire_size, 3000);
5519 
5520 	/* Give a little boost to mid-size frames */
5521 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5522 		new_val = avg_wire_size / 3;
5523 	else
5524 		new_val = avg_wire_size / 2;
5525 
5526 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5527 	if (new_val < IGB_20K_ITR &&
5528 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5529 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5530 		new_val = IGB_20K_ITR;
5531 
5532 set_itr_val:
5533 	if (new_val != q_vector->itr_val) {
5534 		q_vector->itr_val = new_val;
5535 		q_vector->set_itr = 1;
5536 	}
5537 clear_counts:
5538 	q_vector->rx.total_bytes = 0;
5539 	q_vector->rx.total_packets = 0;
5540 	q_vector->tx.total_bytes = 0;
5541 	q_vector->tx.total_packets = 0;
5542 }
5543 
5544 /**
5545  *  igb_update_itr - update the dynamic ITR value based on statistics
5546  *  @q_vector: pointer to q_vector
5547  *  @ring_container: ring info to update the itr for
5548  *
5549  *  Stores a new ITR value based on packets and byte
5550  *  counts during the last interrupt.  The advantage of per interrupt
5551  *  computation is faster updates and more accurate ITR for the current
5552  *  traffic pattern.  Constants in this function were computed
5553  *  based on theoretical maximum wire speed and thresholds were set based
5554  *  on testing data as well as attempting to minimize response time
5555  *  while increasing bulk throughput.
5556  *  This functionality is controlled by ethtool's coalescing settings.
5557  *  NOTE:  These calculations are only valid when operating in a single-
5558  *         queue environment.
5559  **/
5560 static void igb_update_itr(struct igb_q_vector *q_vector,
5561 			   struct igb_ring_container *ring_container)
5562 {
5563 	unsigned int packets = ring_container->total_packets;
5564 	unsigned int bytes = ring_container->total_bytes;
5565 	u8 itrval = ring_container->itr;
5566 
5567 	/* no packets, exit with status unchanged */
5568 	if (packets == 0)
5569 		return;
5570 
5571 	switch (itrval) {
5572 	case lowest_latency:
5573 		/* handle TSO and jumbo frames */
5574 		if (bytes/packets > 8000)
5575 			itrval = bulk_latency;
5576 		else if ((packets < 5) && (bytes > 512))
5577 			itrval = low_latency;
5578 		break;
5579 	case low_latency:  /* 50 usec aka 20000 ints/s */
5580 		if (bytes > 10000) {
5581 			/* this if handles the TSO accounting */
5582 			if (bytes/packets > 8000)
5583 				itrval = bulk_latency;
5584 			else if ((packets < 10) || ((bytes/packets) > 1200))
5585 				itrval = bulk_latency;
5586 			else if ((packets > 35))
5587 				itrval = lowest_latency;
5588 		} else if (bytes/packets > 2000) {
5589 			itrval = bulk_latency;
5590 		} else if (packets <= 2 && bytes < 512) {
5591 			itrval = lowest_latency;
5592 		}
5593 		break;
5594 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5595 		if (bytes > 25000) {
5596 			if (packets > 35)
5597 				itrval = low_latency;
5598 		} else if (bytes < 1500) {
5599 			itrval = low_latency;
5600 		}
5601 		break;
5602 	}
5603 
5604 	/* clear work counters since we have the values we need */
5605 	ring_container->total_bytes = 0;
5606 	ring_container->total_packets = 0;
5607 
5608 	/* write updated itr to ring container */
5609 	ring_container->itr = itrval;
5610 }
5611 
5612 static void igb_set_itr(struct igb_q_vector *q_vector)
5613 {
5614 	struct igb_adapter *adapter = q_vector->adapter;
5615 	u32 new_itr = q_vector->itr_val;
5616 	u8 current_itr = 0;
5617 
5618 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5619 	if (adapter->link_speed != SPEED_1000) {
5620 		current_itr = 0;
5621 		new_itr = IGB_4K_ITR;
5622 		goto set_itr_now;
5623 	}
5624 
5625 	igb_update_itr(q_vector, &q_vector->tx);
5626 	igb_update_itr(q_vector, &q_vector->rx);
5627 
5628 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5629 
5630 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5631 	if (current_itr == lowest_latency &&
5632 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5633 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5634 		current_itr = low_latency;
5635 
5636 	switch (current_itr) {
5637 	/* counts and packets in update_itr are dependent on these numbers */
5638 	case lowest_latency:
5639 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5640 		break;
5641 	case low_latency:
5642 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5643 		break;
5644 	case bulk_latency:
5645 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5646 		break;
5647 	default:
5648 		break;
5649 	}
5650 
5651 set_itr_now:
5652 	if (new_itr != q_vector->itr_val) {
5653 		/* this attempts to bias the interrupt rate towards Bulk
5654 		 * by adding intermediate steps when interrupt rate is
5655 		 * increasing
5656 		 */
5657 		new_itr = new_itr > q_vector->itr_val ?
5658 			  max((new_itr * q_vector->itr_val) /
5659 			  (new_itr + (q_vector->itr_val >> 2)),
5660 			  new_itr) : new_itr;
5661 		/* Don't write the value here; it resets the adapter's
5662 		 * internal timer, and causes us to delay far longer than
5663 		 * we should between interrupts.  Instead, we write the ITR
5664 		 * value at the beginning of the next interrupt so the timing
5665 		 * ends up being correct.
5666 		 */
5667 		q_vector->itr_val = new_itr;
5668 		q_vector->set_itr = 1;
5669 	}
5670 }
5671 
5672 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5673 			    struct igb_tx_buffer *first,
5674 			    u32 vlan_macip_lens, u32 type_tucmd,
5675 			    u32 mss_l4len_idx)
5676 {
5677 	struct e1000_adv_tx_context_desc *context_desc;
5678 	u16 i = tx_ring->next_to_use;
5679 	struct timespec64 ts;
5680 
5681 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5682 
5683 	i++;
5684 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5685 
5686 	/* set bits to identify this as an advanced context descriptor */
5687 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5688 
5689 	/* For 82575, context index must be unique per ring. */
5690 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5691 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5692 
5693 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5694 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5695 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5696 
5697 	/* We assume there is always a valid tx time available. Invalid times
5698 	 * should have been handled by the upper layers.
5699 	 */
5700 	if (tx_ring->launchtime_enable) {
5701 		ts = ns_to_timespec64(first->skb->tstamp);
5702 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5703 	} else {
5704 		context_desc->seqnum_seed = 0;
5705 	}
5706 }
5707 
5708 static int igb_tso(struct igb_ring *tx_ring,
5709 		   struct igb_tx_buffer *first,
5710 		   u8 *hdr_len)
5711 {
5712 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5713 	struct sk_buff *skb = first->skb;
5714 	union {
5715 		struct iphdr *v4;
5716 		struct ipv6hdr *v6;
5717 		unsigned char *hdr;
5718 	} ip;
5719 	union {
5720 		struct tcphdr *tcp;
5721 		unsigned char *hdr;
5722 	} l4;
5723 	u32 paylen, l4_offset;
5724 	int err;
5725 
5726 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5727 		return 0;
5728 
5729 	if (!skb_is_gso(skb))
5730 		return 0;
5731 
5732 	err = skb_cow_head(skb, 0);
5733 	if (err < 0)
5734 		return err;
5735 
5736 	ip.hdr = skb_network_header(skb);
5737 	l4.hdr = skb_checksum_start(skb);
5738 
5739 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5740 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5741 
5742 	/* initialize outer IP header fields */
5743 	if (ip.v4->version == 4) {
5744 		unsigned char *csum_start = skb_checksum_start(skb);
5745 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5746 
5747 		/* IP header will have to cancel out any data that
5748 		 * is not a part of the outer IP header
5749 		 */
5750 		ip.v4->check = csum_fold(csum_partial(trans_start,
5751 						      csum_start - trans_start,
5752 						      0));
5753 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5754 
5755 		ip.v4->tot_len = 0;
5756 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5757 				   IGB_TX_FLAGS_CSUM |
5758 				   IGB_TX_FLAGS_IPV4;
5759 	} else {
5760 		ip.v6->payload_len = 0;
5761 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5762 				   IGB_TX_FLAGS_CSUM;
5763 	}
5764 
5765 	/* determine offset of inner transport header */
5766 	l4_offset = l4.hdr - skb->data;
5767 
5768 	/* compute length of segmentation header */
5769 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5770 
5771 	/* remove payload length from inner checksum */
5772 	paylen = skb->len - l4_offset;
5773 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5774 
5775 	/* update gso size and bytecount with header size */
5776 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5777 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5778 
5779 	/* MSS L4LEN IDX */
5780 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5781 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5782 
5783 	/* VLAN MACLEN IPLEN */
5784 	vlan_macip_lens = l4.hdr - ip.hdr;
5785 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5786 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5787 
5788 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5789 			type_tucmd, mss_l4len_idx);
5790 
5791 	return 1;
5792 }
5793 
5794 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5795 {
5796 	unsigned int offset = 0;
5797 
5798 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5799 
5800 	return offset == skb_checksum_start_offset(skb);
5801 }
5802 
5803 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5804 {
5805 	struct sk_buff *skb = first->skb;
5806 	u32 vlan_macip_lens = 0;
5807 	u32 type_tucmd = 0;
5808 
5809 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5810 csum_failed:
5811 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5812 		    !tx_ring->launchtime_enable)
5813 			return;
5814 		goto no_csum;
5815 	}
5816 
5817 	switch (skb->csum_offset) {
5818 	case offsetof(struct tcphdr, check):
5819 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5820 		/* fall through */
5821 	case offsetof(struct udphdr, check):
5822 		break;
5823 	case offsetof(struct sctphdr, checksum):
5824 		/* validate that this is actually an SCTP request */
5825 		if (((first->protocol == htons(ETH_P_IP)) &&
5826 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5827 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5828 		     igb_ipv6_csum_is_sctp(skb))) {
5829 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5830 			break;
5831 		}
5832 		/* fall through */
5833 	default:
5834 		skb_checksum_help(skb);
5835 		goto csum_failed;
5836 	}
5837 
5838 	/* update TX checksum flag */
5839 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5840 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5841 			  skb_network_offset(skb);
5842 no_csum:
5843 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5844 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5845 
5846 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5847 }
5848 
5849 #define IGB_SET_FLAG(_input, _flag, _result) \
5850 	((_flag <= _result) ? \
5851 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5852 	 ((u32)(_input & _flag) / (_flag / _result)))
5853 
5854 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5855 {
5856 	/* set type for advanced descriptor with frame checksum insertion */
5857 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5858 		       E1000_ADVTXD_DCMD_DEXT |
5859 		       E1000_ADVTXD_DCMD_IFCS;
5860 
5861 	/* set HW vlan bit if vlan is present */
5862 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5863 				 (E1000_ADVTXD_DCMD_VLE));
5864 
5865 	/* set segmentation bits for TSO */
5866 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5867 				 (E1000_ADVTXD_DCMD_TSE));
5868 
5869 	/* set timestamp bit if present */
5870 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5871 				 (E1000_ADVTXD_MAC_TSTAMP));
5872 
5873 	/* insert frame checksum */
5874 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5875 
5876 	return cmd_type;
5877 }
5878 
5879 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5880 				 union e1000_adv_tx_desc *tx_desc,
5881 				 u32 tx_flags, unsigned int paylen)
5882 {
5883 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5884 
5885 	/* 82575 requires a unique index per ring */
5886 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5887 		olinfo_status |= tx_ring->reg_idx << 4;
5888 
5889 	/* insert L4 checksum */
5890 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5891 				      IGB_TX_FLAGS_CSUM,
5892 				      (E1000_TXD_POPTS_TXSM << 8));
5893 
5894 	/* insert IPv4 checksum */
5895 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5896 				      IGB_TX_FLAGS_IPV4,
5897 				      (E1000_TXD_POPTS_IXSM << 8));
5898 
5899 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5900 }
5901 
5902 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5903 {
5904 	struct net_device *netdev = tx_ring->netdev;
5905 
5906 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5907 
5908 	/* Herbert's original patch had:
5909 	 *  smp_mb__after_netif_stop_queue();
5910 	 * but since that doesn't exist yet, just open code it.
5911 	 */
5912 	smp_mb();
5913 
5914 	/* We need to check again in a case another CPU has just
5915 	 * made room available.
5916 	 */
5917 	if (igb_desc_unused(tx_ring) < size)
5918 		return -EBUSY;
5919 
5920 	/* A reprieve! */
5921 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5922 
5923 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5924 	tx_ring->tx_stats.restart_queue2++;
5925 	u64_stats_update_end(&tx_ring->tx_syncp2);
5926 
5927 	return 0;
5928 }
5929 
5930 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5931 {
5932 	if (igb_desc_unused(tx_ring) >= size)
5933 		return 0;
5934 	return __igb_maybe_stop_tx(tx_ring, size);
5935 }
5936 
5937 static int igb_tx_map(struct igb_ring *tx_ring,
5938 		      struct igb_tx_buffer *first,
5939 		      const u8 hdr_len)
5940 {
5941 	struct sk_buff *skb = first->skb;
5942 	struct igb_tx_buffer *tx_buffer;
5943 	union e1000_adv_tx_desc *tx_desc;
5944 	struct skb_frag_struct *frag;
5945 	dma_addr_t dma;
5946 	unsigned int data_len, size;
5947 	u32 tx_flags = first->tx_flags;
5948 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5949 	u16 i = tx_ring->next_to_use;
5950 
5951 	tx_desc = IGB_TX_DESC(tx_ring, i);
5952 
5953 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5954 
5955 	size = skb_headlen(skb);
5956 	data_len = skb->data_len;
5957 
5958 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5959 
5960 	tx_buffer = first;
5961 
5962 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5963 		if (dma_mapping_error(tx_ring->dev, dma))
5964 			goto dma_error;
5965 
5966 		/* record length, and DMA address */
5967 		dma_unmap_len_set(tx_buffer, len, size);
5968 		dma_unmap_addr_set(tx_buffer, dma, dma);
5969 
5970 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5971 
5972 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5973 			tx_desc->read.cmd_type_len =
5974 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5975 
5976 			i++;
5977 			tx_desc++;
5978 			if (i == tx_ring->count) {
5979 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5980 				i = 0;
5981 			}
5982 			tx_desc->read.olinfo_status = 0;
5983 
5984 			dma += IGB_MAX_DATA_PER_TXD;
5985 			size -= IGB_MAX_DATA_PER_TXD;
5986 
5987 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5988 		}
5989 
5990 		if (likely(!data_len))
5991 			break;
5992 
5993 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5994 
5995 		i++;
5996 		tx_desc++;
5997 		if (i == tx_ring->count) {
5998 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5999 			i = 0;
6000 		}
6001 		tx_desc->read.olinfo_status = 0;
6002 
6003 		size = skb_frag_size(frag);
6004 		data_len -= size;
6005 
6006 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6007 				       size, DMA_TO_DEVICE);
6008 
6009 		tx_buffer = &tx_ring->tx_buffer_info[i];
6010 	}
6011 
6012 	/* write last descriptor with RS and EOP bits */
6013 	cmd_type |= size | IGB_TXD_DCMD;
6014 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6015 
6016 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6017 
6018 	/* set the timestamp */
6019 	first->time_stamp = jiffies;
6020 
6021 	skb_tx_timestamp(skb);
6022 
6023 	/* Force memory writes to complete before letting h/w know there
6024 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6025 	 * memory model archs, such as IA-64).
6026 	 *
6027 	 * We also need this memory barrier to make certain all of the
6028 	 * status bits have been updated before next_to_watch is written.
6029 	 */
6030 	dma_wmb();
6031 
6032 	/* set next_to_watch value indicating a packet is present */
6033 	first->next_to_watch = tx_desc;
6034 
6035 	i++;
6036 	if (i == tx_ring->count)
6037 		i = 0;
6038 
6039 	tx_ring->next_to_use = i;
6040 
6041 	/* Make sure there is space in the ring for the next send. */
6042 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6043 
6044 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6045 		writel(i, tx_ring->tail);
6046 
6047 		/* we need this if more than one processor can write to our tail
6048 		 * at a time, it synchronizes IO on IA64/Altix systems
6049 		 */
6050 		mmiowb();
6051 	}
6052 	return 0;
6053 
6054 dma_error:
6055 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6056 	tx_buffer = &tx_ring->tx_buffer_info[i];
6057 
6058 	/* clear dma mappings for failed tx_buffer_info map */
6059 	while (tx_buffer != first) {
6060 		if (dma_unmap_len(tx_buffer, len))
6061 			dma_unmap_page(tx_ring->dev,
6062 				       dma_unmap_addr(tx_buffer, dma),
6063 				       dma_unmap_len(tx_buffer, len),
6064 				       DMA_TO_DEVICE);
6065 		dma_unmap_len_set(tx_buffer, len, 0);
6066 
6067 		if (i-- == 0)
6068 			i += tx_ring->count;
6069 		tx_buffer = &tx_ring->tx_buffer_info[i];
6070 	}
6071 
6072 	if (dma_unmap_len(tx_buffer, len))
6073 		dma_unmap_single(tx_ring->dev,
6074 				 dma_unmap_addr(tx_buffer, dma),
6075 				 dma_unmap_len(tx_buffer, len),
6076 				 DMA_TO_DEVICE);
6077 	dma_unmap_len_set(tx_buffer, len, 0);
6078 
6079 	dev_kfree_skb_any(tx_buffer->skb);
6080 	tx_buffer->skb = NULL;
6081 
6082 	tx_ring->next_to_use = i;
6083 
6084 	return -1;
6085 }
6086 
6087 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6088 				struct igb_ring *tx_ring)
6089 {
6090 	struct igb_tx_buffer *first;
6091 	int tso;
6092 	u32 tx_flags = 0;
6093 	unsigned short f;
6094 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6095 	__be16 protocol = vlan_get_protocol(skb);
6096 	u8 hdr_len = 0;
6097 
6098 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6099 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6100 	 *       + 2 desc gap to keep tail from touching head,
6101 	 *       + 1 desc for context descriptor,
6102 	 * otherwise try next time
6103 	 */
6104 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6105 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6106 
6107 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6108 		/* this is a hard error */
6109 		return NETDEV_TX_BUSY;
6110 	}
6111 
6112 	/* record the location of the first descriptor for this packet */
6113 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6114 	first->skb = skb;
6115 	first->bytecount = skb->len;
6116 	first->gso_segs = 1;
6117 
6118 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6119 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6120 
6121 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6122 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6123 					   &adapter->state)) {
6124 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6125 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6126 
6127 			adapter->ptp_tx_skb = skb_get(skb);
6128 			adapter->ptp_tx_start = jiffies;
6129 			if (adapter->hw.mac.type == e1000_82576)
6130 				schedule_work(&adapter->ptp_tx_work);
6131 		} else {
6132 			adapter->tx_hwtstamp_skipped++;
6133 		}
6134 	}
6135 
6136 	if (skb_vlan_tag_present(skb)) {
6137 		tx_flags |= IGB_TX_FLAGS_VLAN;
6138 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6139 	}
6140 
6141 	/* record initial flags and protocol */
6142 	first->tx_flags = tx_flags;
6143 	first->protocol = protocol;
6144 
6145 	tso = igb_tso(tx_ring, first, &hdr_len);
6146 	if (tso < 0)
6147 		goto out_drop;
6148 	else if (!tso)
6149 		igb_tx_csum(tx_ring, first);
6150 
6151 	if (igb_tx_map(tx_ring, first, hdr_len))
6152 		goto cleanup_tx_tstamp;
6153 
6154 	return NETDEV_TX_OK;
6155 
6156 out_drop:
6157 	dev_kfree_skb_any(first->skb);
6158 	first->skb = NULL;
6159 cleanup_tx_tstamp:
6160 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6161 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6162 
6163 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6164 		adapter->ptp_tx_skb = NULL;
6165 		if (adapter->hw.mac.type == e1000_82576)
6166 			cancel_work_sync(&adapter->ptp_tx_work);
6167 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6168 	}
6169 
6170 	return NETDEV_TX_OK;
6171 }
6172 
6173 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6174 						    struct sk_buff *skb)
6175 {
6176 	unsigned int r_idx = skb->queue_mapping;
6177 
6178 	if (r_idx >= adapter->num_tx_queues)
6179 		r_idx = r_idx % adapter->num_tx_queues;
6180 
6181 	return adapter->tx_ring[r_idx];
6182 }
6183 
6184 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6185 				  struct net_device *netdev)
6186 {
6187 	struct igb_adapter *adapter = netdev_priv(netdev);
6188 
6189 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6190 	 * in order to meet this minimum size requirement.
6191 	 */
6192 	if (skb_put_padto(skb, 17))
6193 		return NETDEV_TX_OK;
6194 
6195 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6196 }
6197 
6198 /**
6199  *  igb_tx_timeout - Respond to a Tx Hang
6200  *  @netdev: network interface device structure
6201  **/
6202 static void igb_tx_timeout(struct net_device *netdev)
6203 {
6204 	struct igb_adapter *adapter = netdev_priv(netdev);
6205 	struct e1000_hw *hw = &adapter->hw;
6206 
6207 	/* Do the reset outside of interrupt context */
6208 	adapter->tx_timeout_count++;
6209 
6210 	if (hw->mac.type >= e1000_82580)
6211 		hw->dev_spec._82575.global_device_reset = true;
6212 
6213 	schedule_work(&adapter->reset_task);
6214 	wr32(E1000_EICS,
6215 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6216 }
6217 
6218 static void igb_reset_task(struct work_struct *work)
6219 {
6220 	struct igb_adapter *adapter;
6221 	adapter = container_of(work, struct igb_adapter, reset_task);
6222 
6223 	igb_dump(adapter);
6224 	netdev_err(adapter->netdev, "Reset adapter\n");
6225 	igb_reinit_locked(adapter);
6226 }
6227 
6228 /**
6229  *  igb_get_stats64 - Get System Network Statistics
6230  *  @netdev: network interface device structure
6231  *  @stats: rtnl_link_stats64 pointer
6232  **/
6233 static void igb_get_stats64(struct net_device *netdev,
6234 			    struct rtnl_link_stats64 *stats)
6235 {
6236 	struct igb_adapter *adapter = netdev_priv(netdev);
6237 
6238 	mutex_lock(&adapter->stats64_lock);
6239 	igb_update_stats(adapter);
6240 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6241 	mutex_unlock(&adapter->stats64_lock);
6242 }
6243 
6244 /**
6245  *  igb_change_mtu - Change the Maximum Transfer Unit
6246  *  @netdev: network interface device structure
6247  *  @new_mtu: new value for maximum frame size
6248  *
6249  *  Returns 0 on success, negative on failure
6250  **/
6251 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6252 {
6253 	struct igb_adapter *adapter = netdev_priv(netdev);
6254 	struct pci_dev *pdev = adapter->pdev;
6255 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6256 
6257 	/* adjust max frame to be at least the size of a standard frame */
6258 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6259 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6260 
6261 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6262 		usleep_range(1000, 2000);
6263 
6264 	/* igb_down has a dependency on max_frame_size */
6265 	adapter->max_frame_size = max_frame;
6266 
6267 	if (netif_running(netdev))
6268 		igb_down(adapter);
6269 
6270 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6271 		 netdev->mtu, new_mtu);
6272 	netdev->mtu = new_mtu;
6273 
6274 	if (netif_running(netdev))
6275 		igb_up(adapter);
6276 	else
6277 		igb_reset(adapter);
6278 
6279 	clear_bit(__IGB_RESETTING, &adapter->state);
6280 
6281 	return 0;
6282 }
6283 
6284 /**
6285  *  igb_update_stats - Update the board statistics counters
6286  *  @adapter: board private structure
6287  **/
6288 void igb_update_stats(struct igb_adapter *adapter)
6289 {
6290 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6291 	struct e1000_hw *hw = &adapter->hw;
6292 	struct pci_dev *pdev = adapter->pdev;
6293 	u32 reg, mpc;
6294 	int i;
6295 	u64 bytes, packets;
6296 	unsigned int start;
6297 	u64 _bytes, _packets;
6298 
6299 	/* Prevent stats update while adapter is being reset, or if the pci
6300 	 * connection is down.
6301 	 */
6302 	if (adapter->link_speed == 0)
6303 		return;
6304 	if (pci_channel_offline(pdev))
6305 		return;
6306 
6307 	bytes = 0;
6308 	packets = 0;
6309 
6310 	rcu_read_lock();
6311 	for (i = 0; i < adapter->num_rx_queues; i++) {
6312 		struct igb_ring *ring = adapter->rx_ring[i];
6313 		u32 rqdpc = rd32(E1000_RQDPC(i));
6314 		if (hw->mac.type >= e1000_i210)
6315 			wr32(E1000_RQDPC(i), 0);
6316 
6317 		if (rqdpc) {
6318 			ring->rx_stats.drops += rqdpc;
6319 			net_stats->rx_fifo_errors += rqdpc;
6320 		}
6321 
6322 		do {
6323 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6324 			_bytes = ring->rx_stats.bytes;
6325 			_packets = ring->rx_stats.packets;
6326 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6327 		bytes += _bytes;
6328 		packets += _packets;
6329 	}
6330 
6331 	net_stats->rx_bytes = bytes;
6332 	net_stats->rx_packets = packets;
6333 
6334 	bytes = 0;
6335 	packets = 0;
6336 	for (i = 0; i < adapter->num_tx_queues; i++) {
6337 		struct igb_ring *ring = adapter->tx_ring[i];
6338 		do {
6339 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6340 			_bytes = ring->tx_stats.bytes;
6341 			_packets = ring->tx_stats.packets;
6342 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6343 		bytes += _bytes;
6344 		packets += _packets;
6345 	}
6346 	net_stats->tx_bytes = bytes;
6347 	net_stats->tx_packets = packets;
6348 	rcu_read_unlock();
6349 
6350 	/* read stats registers */
6351 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6352 	adapter->stats.gprc += rd32(E1000_GPRC);
6353 	adapter->stats.gorc += rd32(E1000_GORCL);
6354 	rd32(E1000_GORCH); /* clear GORCL */
6355 	adapter->stats.bprc += rd32(E1000_BPRC);
6356 	adapter->stats.mprc += rd32(E1000_MPRC);
6357 	adapter->stats.roc += rd32(E1000_ROC);
6358 
6359 	adapter->stats.prc64 += rd32(E1000_PRC64);
6360 	adapter->stats.prc127 += rd32(E1000_PRC127);
6361 	adapter->stats.prc255 += rd32(E1000_PRC255);
6362 	adapter->stats.prc511 += rd32(E1000_PRC511);
6363 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6364 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6365 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6366 	adapter->stats.sec += rd32(E1000_SEC);
6367 
6368 	mpc = rd32(E1000_MPC);
6369 	adapter->stats.mpc += mpc;
6370 	net_stats->rx_fifo_errors += mpc;
6371 	adapter->stats.scc += rd32(E1000_SCC);
6372 	adapter->stats.ecol += rd32(E1000_ECOL);
6373 	adapter->stats.mcc += rd32(E1000_MCC);
6374 	adapter->stats.latecol += rd32(E1000_LATECOL);
6375 	adapter->stats.dc += rd32(E1000_DC);
6376 	adapter->stats.rlec += rd32(E1000_RLEC);
6377 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6378 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6379 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6380 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6381 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6382 	adapter->stats.gptc += rd32(E1000_GPTC);
6383 	adapter->stats.gotc += rd32(E1000_GOTCL);
6384 	rd32(E1000_GOTCH); /* clear GOTCL */
6385 	adapter->stats.rnbc += rd32(E1000_RNBC);
6386 	adapter->stats.ruc += rd32(E1000_RUC);
6387 	adapter->stats.rfc += rd32(E1000_RFC);
6388 	adapter->stats.rjc += rd32(E1000_RJC);
6389 	adapter->stats.tor += rd32(E1000_TORH);
6390 	adapter->stats.tot += rd32(E1000_TOTH);
6391 	adapter->stats.tpr += rd32(E1000_TPR);
6392 
6393 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6394 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6395 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6396 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6397 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6398 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6399 
6400 	adapter->stats.mptc += rd32(E1000_MPTC);
6401 	adapter->stats.bptc += rd32(E1000_BPTC);
6402 
6403 	adapter->stats.tpt += rd32(E1000_TPT);
6404 	adapter->stats.colc += rd32(E1000_COLC);
6405 
6406 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6407 	/* read internal phy specific stats */
6408 	reg = rd32(E1000_CTRL_EXT);
6409 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6410 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6411 
6412 		/* this stat has invalid values on i210/i211 */
6413 		if ((hw->mac.type != e1000_i210) &&
6414 		    (hw->mac.type != e1000_i211))
6415 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6416 	}
6417 
6418 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6419 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6420 
6421 	adapter->stats.iac += rd32(E1000_IAC);
6422 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6423 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6424 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6425 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6426 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6427 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6428 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6429 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6430 
6431 	/* Fill out the OS statistics structure */
6432 	net_stats->multicast = adapter->stats.mprc;
6433 	net_stats->collisions = adapter->stats.colc;
6434 
6435 	/* Rx Errors */
6436 
6437 	/* RLEC on some newer hardware can be incorrect so build
6438 	 * our own version based on RUC and ROC
6439 	 */
6440 	net_stats->rx_errors = adapter->stats.rxerrc +
6441 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6442 		adapter->stats.ruc + adapter->stats.roc +
6443 		adapter->stats.cexterr;
6444 	net_stats->rx_length_errors = adapter->stats.ruc +
6445 				      adapter->stats.roc;
6446 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6447 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6448 	net_stats->rx_missed_errors = adapter->stats.mpc;
6449 
6450 	/* Tx Errors */
6451 	net_stats->tx_errors = adapter->stats.ecol +
6452 			       adapter->stats.latecol;
6453 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6454 	net_stats->tx_window_errors = adapter->stats.latecol;
6455 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6456 
6457 	/* Tx Dropped needs to be maintained elsewhere */
6458 
6459 	/* Management Stats */
6460 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6461 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6462 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6463 
6464 	/* OS2BMC Stats */
6465 	reg = rd32(E1000_MANC);
6466 	if (reg & E1000_MANC_EN_BMC2OS) {
6467 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6468 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6469 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6470 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6471 	}
6472 }
6473 
6474 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6475 {
6476 	struct e1000_hw *hw = &adapter->hw;
6477 	struct ptp_clock_event event;
6478 	struct timespec64 ts;
6479 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6480 
6481 	if (tsicr & TSINTR_SYS_WRAP) {
6482 		event.type = PTP_CLOCK_PPS;
6483 		if (adapter->ptp_caps.pps)
6484 			ptp_clock_event(adapter->ptp_clock, &event);
6485 		ack |= TSINTR_SYS_WRAP;
6486 	}
6487 
6488 	if (tsicr & E1000_TSICR_TXTS) {
6489 		/* retrieve hardware timestamp */
6490 		schedule_work(&adapter->ptp_tx_work);
6491 		ack |= E1000_TSICR_TXTS;
6492 	}
6493 
6494 	if (tsicr & TSINTR_TT0) {
6495 		spin_lock(&adapter->tmreg_lock);
6496 		ts = timespec64_add(adapter->perout[0].start,
6497 				    adapter->perout[0].period);
6498 		/* u32 conversion of tv_sec is safe until y2106 */
6499 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6500 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6501 		tsauxc = rd32(E1000_TSAUXC);
6502 		tsauxc |= TSAUXC_EN_TT0;
6503 		wr32(E1000_TSAUXC, tsauxc);
6504 		adapter->perout[0].start = ts;
6505 		spin_unlock(&adapter->tmreg_lock);
6506 		ack |= TSINTR_TT0;
6507 	}
6508 
6509 	if (tsicr & TSINTR_TT1) {
6510 		spin_lock(&adapter->tmreg_lock);
6511 		ts = timespec64_add(adapter->perout[1].start,
6512 				    adapter->perout[1].period);
6513 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6514 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6515 		tsauxc = rd32(E1000_TSAUXC);
6516 		tsauxc |= TSAUXC_EN_TT1;
6517 		wr32(E1000_TSAUXC, tsauxc);
6518 		adapter->perout[1].start = ts;
6519 		spin_unlock(&adapter->tmreg_lock);
6520 		ack |= TSINTR_TT1;
6521 	}
6522 
6523 	if (tsicr & TSINTR_AUTT0) {
6524 		nsec = rd32(E1000_AUXSTMPL0);
6525 		sec  = rd32(E1000_AUXSTMPH0);
6526 		event.type = PTP_CLOCK_EXTTS;
6527 		event.index = 0;
6528 		event.timestamp = sec * 1000000000ULL + nsec;
6529 		ptp_clock_event(adapter->ptp_clock, &event);
6530 		ack |= TSINTR_AUTT0;
6531 	}
6532 
6533 	if (tsicr & TSINTR_AUTT1) {
6534 		nsec = rd32(E1000_AUXSTMPL1);
6535 		sec  = rd32(E1000_AUXSTMPH1);
6536 		event.type = PTP_CLOCK_EXTTS;
6537 		event.index = 1;
6538 		event.timestamp = sec * 1000000000ULL + nsec;
6539 		ptp_clock_event(adapter->ptp_clock, &event);
6540 		ack |= TSINTR_AUTT1;
6541 	}
6542 
6543 	/* acknowledge the interrupts */
6544 	wr32(E1000_TSICR, ack);
6545 }
6546 
6547 static irqreturn_t igb_msix_other(int irq, void *data)
6548 {
6549 	struct igb_adapter *adapter = data;
6550 	struct e1000_hw *hw = &adapter->hw;
6551 	u32 icr = rd32(E1000_ICR);
6552 	/* reading ICR causes bit 31 of EICR to be cleared */
6553 
6554 	if (icr & E1000_ICR_DRSTA)
6555 		schedule_work(&adapter->reset_task);
6556 
6557 	if (icr & E1000_ICR_DOUTSYNC) {
6558 		/* HW is reporting DMA is out of sync */
6559 		adapter->stats.doosync++;
6560 		/* The DMA Out of Sync is also indication of a spoof event
6561 		 * in IOV mode. Check the Wrong VM Behavior register to
6562 		 * see if it is really a spoof event.
6563 		 */
6564 		igb_check_wvbr(adapter);
6565 	}
6566 
6567 	/* Check for a mailbox event */
6568 	if (icr & E1000_ICR_VMMB)
6569 		igb_msg_task(adapter);
6570 
6571 	if (icr & E1000_ICR_LSC) {
6572 		hw->mac.get_link_status = 1;
6573 		/* guard against interrupt when we're going down */
6574 		if (!test_bit(__IGB_DOWN, &adapter->state))
6575 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6576 	}
6577 
6578 	if (icr & E1000_ICR_TS)
6579 		igb_tsync_interrupt(adapter);
6580 
6581 	wr32(E1000_EIMS, adapter->eims_other);
6582 
6583 	return IRQ_HANDLED;
6584 }
6585 
6586 static void igb_write_itr(struct igb_q_vector *q_vector)
6587 {
6588 	struct igb_adapter *adapter = q_vector->adapter;
6589 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6590 
6591 	if (!q_vector->set_itr)
6592 		return;
6593 
6594 	if (!itr_val)
6595 		itr_val = 0x4;
6596 
6597 	if (adapter->hw.mac.type == e1000_82575)
6598 		itr_val |= itr_val << 16;
6599 	else
6600 		itr_val |= E1000_EITR_CNT_IGNR;
6601 
6602 	writel(itr_val, q_vector->itr_register);
6603 	q_vector->set_itr = 0;
6604 }
6605 
6606 static irqreturn_t igb_msix_ring(int irq, void *data)
6607 {
6608 	struct igb_q_vector *q_vector = data;
6609 
6610 	/* Write the ITR value calculated from the previous interrupt. */
6611 	igb_write_itr(q_vector);
6612 
6613 	napi_schedule(&q_vector->napi);
6614 
6615 	return IRQ_HANDLED;
6616 }
6617 
6618 #ifdef CONFIG_IGB_DCA
6619 static void igb_update_tx_dca(struct igb_adapter *adapter,
6620 			      struct igb_ring *tx_ring,
6621 			      int cpu)
6622 {
6623 	struct e1000_hw *hw = &adapter->hw;
6624 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6625 
6626 	if (hw->mac.type != e1000_82575)
6627 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6628 
6629 	/* We can enable relaxed ordering for reads, but not writes when
6630 	 * DCA is enabled.  This is due to a known issue in some chipsets
6631 	 * which will cause the DCA tag to be cleared.
6632 	 */
6633 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6634 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6635 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6636 
6637 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6638 }
6639 
6640 static void igb_update_rx_dca(struct igb_adapter *adapter,
6641 			      struct igb_ring *rx_ring,
6642 			      int cpu)
6643 {
6644 	struct e1000_hw *hw = &adapter->hw;
6645 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6646 
6647 	if (hw->mac.type != e1000_82575)
6648 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6649 
6650 	/* We can enable relaxed ordering for reads, but not writes when
6651 	 * DCA is enabled.  This is due to a known issue in some chipsets
6652 	 * which will cause the DCA tag to be cleared.
6653 	 */
6654 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6655 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6656 
6657 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6658 }
6659 
6660 static void igb_update_dca(struct igb_q_vector *q_vector)
6661 {
6662 	struct igb_adapter *adapter = q_vector->adapter;
6663 	int cpu = get_cpu();
6664 
6665 	if (q_vector->cpu == cpu)
6666 		goto out_no_update;
6667 
6668 	if (q_vector->tx.ring)
6669 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6670 
6671 	if (q_vector->rx.ring)
6672 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6673 
6674 	q_vector->cpu = cpu;
6675 out_no_update:
6676 	put_cpu();
6677 }
6678 
6679 static void igb_setup_dca(struct igb_adapter *adapter)
6680 {
6681 	struct e1000_hw *hw = &adapter->hw;
6682 	int i;
6683 
6684 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6685 		return;
6686 
6687 	/* Always use CB2 mode, difference is masked in the CB driver. */
6688 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6689 
6690 	for (i = 0; i < adapter->num_q_vectors; i++) {
6691 		adapter->q_vector[i]->cpu = -1;
6692 		igb_update_dca(adapter->q_vector[i]);
6693 	}
6694 }
6695 
6696 static int __igb_notify_dca(struct device *dev, void *data)
6697 {
6698 	struct net_device *netdev = dev_get_drvdata(dev);
6699 	struct igb_adapter *adapter = netdev_priv(netdev);
6700 	struct pci_dev *pdev = adapter->pdev;
6701 	struct e1000_hw *hw = &adapter->hw;
6702 	unsigned long event = *(unsigned long *)data;
6703 
6704 	switch (event) {
6705 	case DCA_PROVIDER_ADD:
6706 		/* if already enabled, don't do it again */
6707 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6708 			break;
6709 		if (dca_add_requester(dev) == 0) {
6710 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6711 			dev_info(&pdev->dev, "DCA enabled\n");
6712 			igb_setup_dca(adapter);
6713 			break;
6714 		}
6715 		/* Fall Through since DCA is disabled. */
6716 	case DCA_PROVIDER_REMOVE:
6717 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6718 			/* without this a class_device is left
6719 			 * hanging around in the sysfs model
6720 			 */
6721 			dca_remove_requester(dev);
6722 			dev_info(&pdev->dev, "DCA disabled\n");
6723 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6724 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6725 		}
6726 		break;
6727 	}
6728 
6729 	return 0;
6730 }
6731 
6732 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6733 			  void *p)
6734 {
6735 	int ret_val;
6736 
6737 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6738 					 __igb_notify_dca);
6739 
6740 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6741 }
6742 #endif /* CONFIG_IGB_DCA */
6743 
6744 #ifdef CONFIG_PCI_IOV
6745 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6746 {
6747 	unsigned char mac_addr[ETH_ALEN];
6748 
6749 	eth_zero_addr(mac_addr);
6750 	igb_set_vf_mac(adapter, vf, mac_addr);
6751 
6752 	/* By default spoof check is enabled for all VFs */
6753 	adapter->vf_data[vf].spoofchk_enabled = true;
6754 
6755 	/* By default VFs are not trusted */
6756 	adapter->vf_data[vf].trusted = false;
6757 
6758 	return 0;
6759 }
6760 
6761 #endif
6762 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6763 {
6764 	struct e1000_hw *hw = &adapter->hw;
6765 	u32 ping;
6766 	int i;
6767 
6768 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6769 		ping = E1000_PF_CONTROL_MSG;
6770 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6771 			ping |= E1000_VT_MSGTYPE_CTS;
6772 		igb_write_mbx(hw, &ping, 1, i);
6773 	}
6774 }
6775 
6776 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6777 {
6778 	struct e1000_hw *hw = &adapter->hw;
6779 	u32 vmolr = rd32(E1000_VMOLR(vf));
6780 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6781 
6782 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6783 			    IGB_VF_FLAG_MULTI_PROMISC);
6784 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6785 
6786 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6787 		vmolr |= E1000_VMOLR_MPME;
6788 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6789 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6790 	} else {
6791 		/* if we have hashes and we are clearing a multicast promisc
6792 		 * flag we need to write the hashes to the MTA as this step
6793 		 * was previously skipped
6794 		 */
6795 		if (vf_data->num_vf_mc_hashes > 30) {
6796 			vmolr |= E1000_VMOLR_MPME;
6797 		} else if (vf_data->num_vf_mc_hashes) {
6798 			int j;
6799 
6800 			vmolr |= E1000_VMOLR_ROMPE;
6801 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6802 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6803 		}
6804 	}
6805 
6806 	wr32(E1000_VMOLR(vf), vmolr);
6807 
6808 	/* there are flags left unprocessed, likely not supported */
6809 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6810 		return -EINVAL;
6811 
6812 	return 0;
6813 }
6814 
6815 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6816 				  u32 *msgbuf, u32 vf)
6817 {
6818 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6819 	u16 *hash_list = (u16 *)&msgbuf[1];
6820 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6821 	int i;
6822 
6823 	/* salt away the number of multicast addresses assigned
6824 	 * to this VF for later use to restore when the PF multi cast
6825 	 * list changes
6826 	 */
6827 	vf_data->num_vf_mc_hashes = n;
6828 
6829 	/* only up to 30 hash values supported */
6830 	if (n > 30)
6831 		n = 30;
6832 
6833 	/* store the hashes for later use */
6834 	for (i = 0; i < n; i++)
6835 		vf_data->vf_mc_hashes[i] = hash_list[i];
6836 
6837 	/* Flush and reset the mta with the new values */
6838 	igb_set_rx_mode(adapter->netdev);
6839 
6840 	return 0;
6841 }
6842 
6843 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6844 {
6845 	struct e1000_hw *hw = &adapter->hw;
6846 	struct vf_data_storage *vf_data;
6847 	int i, j;
6848 
6849 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6850 		u32 vmolr = rd32(E1000_VMOLR(i));
6851 
6852 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6853 
6854 		vf_data = &adapter->vf_data[i];
6855 
6856 		if ((vf_data->num_vf_mc_hashes > 30) ||
6857 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6858 			vmolr |= E1000_VMOLR_MPME;
6859 		} else if (vf_data->num_vf_mc_hashes) {
6860 			vmolr |= E1000_VMOLR_ROMPE;
6861 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6862 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6863 		}
6864 		wr32(E1000_VMOLR(i), vmolr);
6865 	}
6866 }
6867 
6868 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6869 {
6870 	struct e1000_hw *hw = &adapter->hw;
6871 	u32 pool_mask, vlvf_mask, i;
6872 
6873 	/* create mask for VF and other pools */
6874 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6875 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6876 
6877 	/* drop PF from pool bits */
6878 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6879 			     adapter->vfs_allocated_count);
6880 
6881 	/* Find the vlan filter for this id */
6882 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6883 		u32 vlvf = rd32(E1000_VLVF(i));
6884 		u32 vfta_mask, vid, vfta;
6885 
6886 		/* remove the vf from the pool */
6887 		if (!(vlvf & vlvf_mask))
6888 			continue;
6889 
6890 		/* clear out bit from VLVF */
6891 		vlvf ^= vlvf_mask;
6892 
6893 		/* if other pools are present, just remove ourselves */
6894 		if (vlvf & pool_mask)
6895 			goto update_vlvfb;
6896 
6897 		/* if PF is present, leave VFTA */
6898 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6899 			goto update_vlvf;
6900 
6901 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6902 		vfta_mask = BIT(vid % 32);
6903 
6904 		/* clear bit from VFTA */
6905 		vfta = adapter->shadow_vfta[vid / 32];
6906 		if (vfta & vfta_mask)
6907 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6908 update_vlvf:
6909 		/* clear pool selection enable */
6910 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6911 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6912 		else
6913 			vlvf = 0;
6914 update_vlvfb:
6915 		/* clear pool bits */
6916 		wr32(E1000_VLVF(i), vlvf);
6917 	}
6918 }
6919 
6920 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6921 {
6922 	u32 vlvf;
6923 	int idx;
6924 
6925 	/* short cut the special case */
6926 	if (vlan == 0)
6927 		return 0;
6928 
6929 	/* Search for the VLAN id in the VLVF entries */
6930 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6931 		vlvf = rd32(E1000_VLVF(idx));
6932 		if ((vlvf & VLAN_VID_MASK) == vlan)
6933 			break;
6934 	}
6935 
6936 	return idx;
6937 }
6938 
6939 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6940 {
6941 	struct e1000_hw *hw = &adapter->hw;
6942 	u32 bits, pf_id;
6943 	int idx;
6944 
6945 	idx = igb_find_vlvf_entry(hw, vid);
6946 	if (!idx)
6947 		return;
6948 
6949 	/* See if any other pools are set for this VLAN filter
6950 	 * entry other than the PF.
6951 	 */
6952 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6953 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6954 	bits &= rd32(E1000_VLVF(idx));
6955 
6956 	/* Disable the filter so this falls into the default pool. */
6957 	if (!bits) {
6958 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6959 			wr32(E1000_VLVF(idx), BIT(pf_id));
6960 		else
6961 			wr32(E1000_VLVF(idx), 0);
6962 	}
6963 }
6964 
6965 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6966 			   bool add, u32 vf)
6967 {
6968 	int pf_id = adapter->vfs_allocated_count;
6969 	struct e1000_hw *hw = &adapter->hw;
6970 	int err;
6971 
6972 	/* If VLAN overlaps with one the PF is currently monitoring make
6973 	 * sure that we are able to allocate a VLVF entry.  This may be
6974 	 * redundant but it guarantees PF will maintain visibility to
6975 	 * the VLAN.
6976 	 */
6977 	if (add && test_bit(vid, adapter->active_vlans)) {
6978 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6979 		if (err)
6980 			return err;
6981 	}
6982 
6983 	err = igb_vfta_set(hw, vid, vf, add, false);
6984 
6985 	if (add && !err)
6986 		return err;
6987 
6988 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6989 	 * we may need to drop the PF pool bit in order to allow us to free
6990 	 * up the VLVF resources.
6991 	 */
6992 	if (test_bit(vid, adapter->active_vlans) ||
6993 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6994 		igb_update_pf_vlvf(adapter, vid);
6995 
6996 	return err;
6997 }
6998 
6999 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7000 {
7001 	struct e1000_hw *hw = &adapter->hw;
7002 
7003 	if (vid)
7004 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7005 	else
7006 		wr32(E1000_VMVIR(vf), 0);
7007 }
7008 
7009 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7010 				u16 vlan, u8 qos)
7011 {
7012 	int err;
7013 
7014 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7015 	if (err)
7016 		return err;
7017 
7018 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7019 	igb_set_vmolr(adapter, vf, !vlan);
7020 
7021 	/* revoke access to previous VLAN */
7022 	if (vlan != adapter->vf_data[vf].pf_vlan)
7023 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7024 				false, vf);
7025 
7026 	adapter->vf_data[vf].pf_vlan = vlan;
7027 	adapter->vf_data[vf].pf_qos = qos;
7028 	igb_set_vf_vlan_strip(adapter, vf, true);
7029 	dev_info(&adapter->pdev->dev,
7030 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7031 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7032 		dev_warn(&adapter->pdev->dev,
7033 			 "The VF VLAN has been set, but the PF device is not up.\n");
7034 		dev_warn(&adapter->pdev->dev,
7035 			 "Bring the PF device up before attempting to use the VF device.\n");
7036 	}
7037 
7038 	return err;
7039 }
7040 
7041 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7042 {
7043 	/* Restore tagless access via VLAN 0 */
7044 	igb_set_vf_vlan(adapter, 0, true, vf);
7045 
7046 	igb_set_vmvir(adapter, 0, vf);
7047 	igb_set_vmolr(adapter, vf, true);
7048 
7049 	/* Remove any PF assigned VLAN */
7050 	if (adapter->vf_data[vf].pf_vlan)
7051 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7052 				false, vf);
7053 
7054 	adapter->vf_data[vf].pf_vlan = 0;
7055 	adapter->vf_data[vf].pf_qos = 0;
7056 	igb_set_vf_vlan_strip(adapter, vf, false);
7057 
7058 	return 0;
7059 }
7060 
7061 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7062 			       u16 vlan, u8 qos, __be16 vlan_proto)
7063 {
7064 	struct igb_adapter *adapter = netdev_priv(netdev);
7065 
7066 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7067 		return -EINVAL;
7068 
7069 	if (vlan_proto != htons(ETH_P_8021Q))
7070 		return -EPROTONOSUPPORT;
7071 
7072 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7073 			       igb_disable_port_vlan(adapter, vf);
7074 }
7075 
7076 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7077 {
7078 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7079 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7080 	int ret;
7081 
7082 	if (adapter->vf_data[vf].pf_vlan)
7083 		return -1;
7084 
7085 	/* VLAN 0 is a special case, don't allow it to be removed */
7086 	if (!vid && !add)
7087 		return 0;
7088 
7089 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7090 	if (!ret)
7091 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7092 	return ret;
7093 }
7094 
7095 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7096 {
7097 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7098 
7099 	/* clear flags - except flag that indicates PF has set the MAC */
7100 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7101 	vf_data->last_nack = jiffies;
7102 
7103 	/* reset vlans for device */
7104 	igb_clear_vf_vfta(adapter, vf);
7105 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7106 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7107 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7108 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7109 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7110 
7111 	/* reset multicast table array for vf */
7112 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7113 
7114 	/* Flush and reset the mta with the new values */
7115 	igb_set_rx_mode(adapter->netdev);
7116 }
7117 
7118 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7119 {
7120 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7121 
7122 	/* clear mac address as we were hotplug removed/added */
7123 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7124 		eth_zero_addr(vf_mac);
7125 
7126 	/* process remaining reset events */
7127 	igb_vf_reset(adapter, vf);
7128 }
7129 
7130 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7131 {
7132 	struct e1000_hw *hw = &adapter->hw;
7133 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7134 	u32 reg, msgbuf[3];
7135 	u8 *addr = (u8 *)(&msgbuf[1]);
7136 
7137 	/* process all the same items cleared in a function level reset */
7138 	igb_vf_reset(adapter, vf);
7139 
7140 	/* set vf mac address */
7141 	igb_set_vf_mac(adapter, vf, vf_mac);
7142 
7143 	/* enable transmit and receive for vf */
7144 	reg = rd32(E1000_VFTE);
7145 	wr32(E1000_VFTE, reg | BIT(vf));
7146 	reg = rd32(E1000_VFRE);
7147 	wr32(E1000_VFRE, reg | BIT(vf));
7148 
7149 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7150 
7151 	/* reply to reset with ack and vf mac address */
7152 	if (!is_zero_ether_addr(vf_mac)) {
7153 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7154 		memcpy(addr, vf_mac, ETH_ALEN);
7155 	} else {
7156 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7157 	}
7158 	igb_write_mbx(hw, msgbuf, 3, vf);
7159 }
7160 
7161 static void igb_flush_mac_table(struct igb_adapter *adapter)
7162 {
7163 	struct e1000_hw *hw = &adapter->hw;
7164 	int i;
7165 
7166 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7167 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7168 		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7169 		adapter->mac_table[i].queue = 0;
7170 		igb_rar_set_index(adapter, i);
7171 	}
7172 }
7173 
7174 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7175 {
7176 	struct e1000_hw *hw = &adapter->hw;
7177 	/* do not count rar entries reserved for VFs MAC addresses */
7178 	int rar_entries = hw->mac.rar_entry_count -
7179 			  adapter->vfs_allocated_count;
7180 	int i, count = 0;
7181 
7182 	for (i = 0; i < rar_entries; i++) {
7183 		/* do not count default entries */
7184 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7185 			continue;
7186 
7187 		/* do not count "in use" entries for different queues */
7188 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7189 		    (adapter->mac_table[i].queue != queue))
7190 			continue;
7191 
7192 		count++;
7193 	}
7194 
7195 	return count;
7196 }
7197 
7198 /* Set default MAC address for the PF in the first RAR entry */
7199 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7200 {
7201 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7202 
7203 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7204 	mac_table->queue = adapter->vfs_allocated_count;
7205 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7206 
7207 	igb_rar_set_index(adapter, 0);
7208 }
7209 
7210 /* If the filter to be added and an already existing filter express
7211  * the same address and address type, it should be possible to only
7212  * override the other configurations, for example the queue to steer
7213  * traffic.
7214  */
7215 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7216 				      const u8 *addr, const u8 flags)
7217 {
7218 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7219 		return true;
7220 
7221 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7222 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7223 		return false;
7224 
7225 	if (!ether_addr_equal(addr, entry->addr))
7226 		return false;
7227 
7228 	return true;
7229 }
7230 
7231 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7232  * 'flags' is used to indicate what kind of match is made, match is by
7233  * default for the destination address, if matching by source address
7234  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7235  */
7236 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7237 				    const u8 *addr, const u8 queue,
7238 				    const u8 flags)
7239 {
7240 	struct e1000_hw *hw = &adapter->hw;
7241 	int rar_entries = hw->mac.rar_entry_count -
7242 			  adapter->vfs_allocated_count;
7243 	int i;
7244 
7245 	if (is_zero_ether_addr(addr))
7246 		return -EINVAL;
7247 
7248 	/* Search for the first empty entry in the MAC table.
7249 	 * Do not touch entries at the end of the table reserved for the VF MAC
7250 	 * addresses.
7251 	 */
7252 	for (i = 0; i < rar_entries; i++) {
7253 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7254 					       addr, flags))
7255 			continue;
7256 
7257 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7258 		adapter->mac_table[i].queue = queue;
7259 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7260 
7261 		igb_rar_set_index(adapter, i);
7262 		return i;
7263 	}
7264 
7265 	return -ENOSPC;
7266 }
7267 
7268 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7269 			      const u8 queue)
7270 {
7271 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7272 }
7273 
7274 /* Remove a MAC filter for 'addr' directing matching traffic to
7275  * 'queue', 'flags' is used to indicate what kind of match need to be
7276  * removed, match is by default for the destination address, if
7277  * matching by source address is to be removed the flag
7278  * IGB_MAC_STATE_SRC_ADDR can be used.
7279  */
7280 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7281 				    const u8 *addr, const u8 queue,
7282 				    const u8 flags)
7283 {
7284 	struct e1000_hw *hw = &adapter->hw;
7285 	int rar_entries = hw->mac.rar_entry_count -
7286 			  adapter->vfs_allocated_count;
7287 	int i;
7288 
7289 	if (is_zero_ether_addr(addr))
7290 		return -EINVAL;
7291 
7292 	/* Search for matching entry in the MAC table based on given address
7293 	 * and queue. Do not touch entries at the end of the table reserved
7294 	 * for the VF MAC addresses.
7295 	 */
7296 	for (i = 0; i < rar_entries; i++) {
7297 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7298 			continue;
7299 		if ((adapter->mac_table[i].state & flags) != flags)
7300 			continue;
7301 		if (adapter->mac_table[i].queue != queue)
7302 			continue;
7303 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7304 			continue;
7305 
7306 		/* When a filter for the default address is "deleted",
7307 		 * we return it to its initial configuration
7308 		 */
7309 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7310 			adapter->mac_table[i].state =
7311 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7312 			adapter->mac_table[i].queue =
7313 				adapter->vfs_allocated_count;
7314 		} else {
7315 			adapter->mac_table[i].state = 0;
7316 			adapter->mac_table[i].queue = 0;
7317 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7318 		}
7319 
7320 		igb_rar_set_index(adapter, i);
7321 		return 0;
7322 	}
7323 
7324 	return -ENOENT;
7325 }
7326 
7327 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7328 			      const u8 queue)
7329 {
7330 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7331 }
7332 
7333 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7334 				const u8 *addr, u8 queue, u8 flags)
7335 {
7336 	struct e1000_hw *hw = &adapter->hw;
7337 
7338 	/* In theory, this should be supported on 82575 as well, but
7339 	 * that part wasn't easily accessible during development.
7340 	 */
7341 	if (hw->mac.type != e1000_i210)
7342 		return -EOPNOTSUPP;
7343 
7344 	return igb_add_mac_filter_flags(adapter, addr, queue,
7345 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7346 }
7347 
7348 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7349 				const u8 *addr, u8 queue, u8 flags)
7350 {
7351 	return igb_del_mac_filter_flags(adapter, addr, queue,
7352 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7353 }
7354 
7355 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7356 {
7357 	struct igb_adapter *adapter = netdev_priv(netdev);
7358 	int ret;
7359 
7360 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7361 
7362 	return min_t(int, ret, 0);
7363 }
7364 
7365 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7366 {
7367 	struct igb_adapter *adapter = netdev_priv(netdev);
7368 
7369 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7370 
7371 	return 0;
7372 }
7373 
7374 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7375 				 const u32 info, const u8 *addr)
7376 {
7377 	struct pci_dev *pdev = adapter->pdev;
7378 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7379 	struct list_head *pos;
7380 	struct vf_mac_filter *entry = NULL;
7381 	int ret = 0;
7382 
7383 	switch (info) {
7384 	case E1000_VF_MAC_FILTER_CLR:
7385 		/* remove all unicast MAC filters related to the current VF */
7386 		list_for_each(pos, &adapter->vf_macs.l) {
7387 			entry = list_entry(pos, struct vf_mac_filter, l);
7388 			if (entry->vf == vf) {
7389 				entry->vf = -1;
7390 				entry->free = true;
7391 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7392 			}
7393 		}
7394 		break;
7395 	case E1000_VF_MAC_FILTER_ADD:
7396 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7397 		    !vf_data->trusted) {
7398 			dev_warn(&pdev->dev,
7399 				 "VF %d requested MAC filter but is administratively denied\n",
7400 				 vf);
7401 			return -EINVAL;
7402 		}
7403 		if (!is_valid_ether_addr(addr)) {
7404 			dev_warn(&pdev->dev,
7405 				 "VF %d attempted to set invalid MAC filter\n",
7406 				 vf);
7407 			return -EINVAL;
7408 		}
7409 
7410 		/* try to find empty slot in the list */
7411 		list_for_each(pos, &adapter->vf_macs.l) {
7412 			entry = list_entry(pos, struct vf_mac_filter, l);
7413 			if (entry->free)
7414 				break;
7415 		}
7416 
7417 		if (entry && entry->free) {
7418 			entry->free = false;
7419 			entry->vf = vf;
7420 			ether_addr_copy(entry->vf_mac, addr);
7421 
7422 			ret = igb_add_mac_filter(adapter, addr, vf);
7423 			ret = min_t(int, ret, 0);
7424 		} else {
7425 			ret = -ENOSPC;
7426 		}
7427 
7428 		if (ret == -ENOSPC)
7429 			dev_warn(&pdev->dev,
7430 				 "VF %d has requested MAC filter but there is no space for it\n",
7431 				 vf);
7432 		break;
7433 	default:
7434 		ret = -EINVAL;
7435 		break;
7436 	}
7437 
7438 	return ret;
7439 }
7440 
7441 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7442 {
7443 	struct pci_dev *pdev = adapter->pdev;
7444 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7445 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7446 
7447 	/* The VF MAC Address is stored in a packed array of bytes
7448 	 * starting at the second 32 bit word of the msg array
7449 	 */
7450 	unsigned char *addr = (unsigned char *)&msg[1];
7451 	int ret = 0;
7452 
7453 	if (!info) {
7454 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7455 		    !vf_data->trusted) {
7456 			dev_warn(&pdev->dev,
7457 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7458 				 vf);
7459 			return -EINVAL;
7460 		}
7461 
7462 		if (!is_valid_ether_addr(addr)) {
7463 			dev_warn(&pdev->dev,
7464 				 "VF %d attempted to set invalid MAC\n",
7465 				 vf);
7466 			return -EINVAL;
7467 		}
7468 
7469 		ret = igb_set_vf_mac(adapter, vf, addr);
7470 	} else {
7471 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7472 	}
7473 
7474 	return ret;
7475 }
7476 
7477 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7478 {
7479 	struct e1000_hw *hw = &adapter->hw;
7480 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7481 	u32 msg = E1000_VT_MSGTYPE_NACK;
7482 
7483 	/* if device isn't clear to send it shouldn't be reading either */
7484 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7485 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7486 		igb_write_mbx(hw, &msg, 1, vf);
7487 		vf_data->last_nack = jiffies;
7488 	}
7489 }
7490 
7491 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7492 {
7493 	struct pci_dev *pdev = adapter->pdev;
7494 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7495 	struct e1000_hw *hw = &adapter->hw;
7496 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7497 	s32 retval;
7498 
7499 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7500 
7501 	if (retval) {
7502 		/* if receive failed revoke VF CTS stats and restart init */
7503 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7504 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7505 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7506 			goto unlock;
7507 		goto out;
7508 	}
7509 
7510 	/* this is a message we already processed, do nothing */
7511 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7512 		goto unlock;
7513 
7514 	/* until the vf completes a reset it should not be
7515 	 * allowed to start any configuration.
7516 	 */
7517 	if (msgbuf[0] == E1000_VF_RESET) {
7518 		/* unlocks mailbox */
7519 		igb_vf_reset_msg(adapter, vf);
7520 		return;
7521 	}
7522 
7523 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7524 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7525 			goto unlock;
7526 		retval = -1;
7527 		goto out;
7528 	}
7529 
7530 	switch ((msgbuf[0] & 0xFFFF)) {
7531 	case E1000_VF_SET_MAC_ADDR:
7532 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7533 		break;
7534 	case E1000_VF_SET_PROMISC:
7535 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7536 		break;
7537 	case E1000_VF_SET_MULTICAST:
7538 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7539 		break;
7540 	case E1000_VF_SET_LPE:
7541 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7542 		break;
7543 	case E1000_VF_SET_VLAN:
7544 		retval = -1;
7545 		if (vf_data->pf_vlan)
7546 			dev_warn(&pdev->dev,
7547 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7548 				 vf);
7549 		else
7550 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7551 		break;
7552 	default:
7553 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7554 		retval = -1;
7555 		break;
7556 	}
7557 
7558 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7559 out:
7560 	/* notify the VF of the results of what it sent us */
7561 	if (retval)
7562 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7563 	else
7564 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7565 
7566 	/* unlocks mailbox */
7567 	igb_write_mbx(hw, msgbuf, 1, vf);
7568 	return;
7569 
7570 unlock:
7571 	igb_unlock_mbx(hw, vf);
7572 }
7573 
7574 static void igb_msg_task(struct igb_adapter *adapter)
7575 {
7576 	struct e1000_hw *hw = &adapter->hw;
7577 	u32 vf;
7578 
7579 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7580 		/* process any reset requests */
7581 		if (!igb_check_for_rst(hw, vf))
7582 			igb_vf_reset_event(adapter, vf);
7583 
7584 		/* process any messages pending */
7585 		if (!igb_check_for_msg(hw, vf))
7586 			igb_rcv_msg_from_vf(adapter, vf);
7587 
7588 		/* process any acks */
7589 		if (!igb_check_for_ack(hw, vf))
7590 			igb_rcv_ack_from_vf(adapter, vf);
7591 	}
7592 }
7593 
7594 /**
7595  *  igb_set_uta - Set unicast filter table address
7596  *  @adapter: board private structure
7597  *  @set: boolean indicating if we are setting or clearing bits
7598  *
7599  *  The unicast table address is a register array of 32-bit registers.
7600  *  The table is meant to be used in a way similar to how the MTA is used
7601  *  however due to certain limitations in the hardware it is necessary to
7602  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7603  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7604  **/
7605 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7606 {
7607 	struct e1000_hw *hw = &adapter->hw;
7608 	u32 uta = set ? ~0 : 0;
7609 	int i;
7610 
7611 	/* we only need to do this if VMDq is enabled */
7612 	if (!adapter->vfs_allocated_count)
7613 		return;
7614 
7615 	for (i = hw->mac.uta_reg_count; i--;)
7616 		array_wr32(E1000_UTA, i, uta);
7617 }
7618 
7619 /**
7620  *  igb_intr_msi - Interrupt Handler
7621  *  @irq: interrupt number
7622  *  @data: pointer to a network interface device structure
7623  **/
7624 static irqreturn_t igb_intr_msi(int irq, void *data)
7625 {
7626 	struct igb_adapter *adapter = data;
7627 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7628 	struct e1000_hw *hw = &adapter->hw;
7629 	/* read ICR disables interrupts using IAM */
7630 	u32 icr = rd32(E1000_ICR);
7631 
7632 	igb_write_itr(q_vector);
7633 
7634 	if (icr & E1000_ICR_DRSTA)
7635 		schedule_work(&adapter->reset_task);
7636 
7637 	if (icr & E1000_ICR_DOUTSYNC) {
7638 		/* HW is reporting DMA is out of sync */
7639 		adapter->stats.doosync++;
7640 	}
7641 
7642 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7643 		hw->mac.get_link_status = 1;
7644 		if (!test_bit(__IGB_DOWN, &adapter->state))
7645 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7646 	}
7647 
7648 	if (icr & E1000_ICR_TS)
7649 		igb_tsync_interrupt(adapter);
7650 
7651 	napi_schedule(&q_vector->napi);
7652 
7653 	return IRQ_HANDLED;
7654 }
7655 
7656 /**
7657  *  igb_intr - Legacy Interrupt Handler
7658  *  @irq: interrupt number
7659  *  @data: pointer to a network interface device structure
7660  **/
7661 static irqreturn_t igb_intr(int irq, void *data)
7662 {
7663 	struct igb_adapter *adapter = data;
7664 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7665 	struct e1000_hw *hw = &adapter->hw;
7666 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7667 	 * need for the IMC write
7668 	 */
7669 	u32 icr = rd32(E1000_ICR);
7670 
7671 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7672 	 * not set, then the adapter didn't send an interrupt
7673 	 */
7674 	if (!(icr & E1000_ICR_INT_ASSERTED))
7675 		return IRQ_NONE;
7676 
7677 	igb_write_itr(q_vector);
7678 
7679 	if (icr & E1000_ICR_DRSTA)
7680 		schedule_work(&adapter->reset_task);
7681 
7682 	if (icr & E1000_ICR_DOUTSYNC) {
7683 		/* HW is reporting DMA is out of sync */
7684 		adapter->stats.doosync++;
7685 	}
7686 
7687 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7688 		hw->mac.get_link_status = 1;
7689 		/* guard against interrupt when we're going down */
7690 		if (!test_bit(__IGB_DOWN, &adapter->state))
7691 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7692 	}
7693 
7694 	if (icr & E1000_ICR_TS)
7695 		igb_tsync_interrupt(adapter);
7696 
7697 	napi_schedule(&q_vector->napi);
7698 
7699 	return IRQ_HANDLED;
7700 }
7701 
7702 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7703 {
7704 	struct igb_adapter *adapter = q_vector->adapter;
7705 	struct e1000_hw *hw = &adapter->hw;
7706 
7707 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7708 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7709 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7710 			igb_set_itr(q_vector);
7711 		else
7712 			igb_update_ring_itr(q_vector);
7713 	}
7714 
7715 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7716 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7717 			wr32(E1000_EIMS, q_vector->eims_value);
7718 		else
7719 			igb_irq_enable(adapter);
7720 	}
7721 }
7722 
7723 /**
7724  *  igb_poll - NAPI Rx polling callback
7725  *  @napi: napi polling structure
7726  *  @budget: count of how many packets we should handle
7727  **/
7728 static int igb_poll(struct napi_struct *napi, int budget)
7729 {
7730 	struct igb_q_vector *q_vector = container_of(napi,
7731 						     struct igb_q_vector,
7732 						     napi);
7733 	bool clean_complete = true;
7734 	int work_done = 0;
7735 
7736 #ifdef CONFIG_IGB_DCA
7737 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7738 		igb_update_dca(q_vector);
7739 #endif
7740 	if (q_vector->tx.ring)
7741 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7742 
7743 	if (q_vector->rx.ring) {
7744 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7745 
7746 		work_done += cleaned;
7747 		if (cleaned >= budget)
7748 			clean_complete = false;
7749 	}
7750 
7751 	/* If all work not completed, return budget and keep polling */
7752 	if (!clean_complete)
7753 		return budget;
7754 
7755 	/* Exit the polling mode, but don't re-enable interrupts if stack might
7756 	 * poll us due to busy-polling
7757 	 */
7758 	if (likely(napi_complete_done(napi, work_done)))
7759 		igb_ring_irq_enable(q_vector);
7760 
7761 	return min(work_done, budget - 1);
7762 }
7763 
7764 /**
7765  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7766  *  @q_vector: pointer to q_vector containing needed info
7767  *  @napi_budget: Used to determine if we are in netpoll
7768  *
7769  *  returns true if ring is completely cleaned
7770  **/
7771 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7772 {
7773 	struct igb_adapter *adapter = q_vector->adapter;
7774 	struct igb_ring *tx_ring = q_vector->tx.ring;
7775 	struct igb_tx_buffer *tx_buffer;
7776 	union e1000_adv_tx_desc *tx_desc;
7777 	unsigned int total_bytes = 0, total_packets = 0;
7778 	unsigned int budget = q_vector->tx.work_limit;
7779 	unsigned int i = tx_ring->next_to_clean;
7780 
7781 	if (test_bit(__IGB_DOWN, &adapter->state))
7782 		return true;
7783 
7784 	tx_buffer = &tx_ring->tx_buffer_info[i];
7785 	tx_desc = IGB_TX_DESC(tx_ring, i);
7786 	i -= tx_ring->count;
7787 
7788 	do {
7789 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7790 
7791 		/* if next_to_watch is not set then there is no work pending */
7792 		if (!eop_desc)
7793 			break;
7794 
7795 		/* prevent any other reads prior to eop_desc */
7796 		smp_rmb();
7797 
7798 		/* if DD is not set pending work has not been completed */
7799 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7800 			break;
7801 
7802 		/* clear next_to_watch to prevent false hangs */
7803 		tx_buffer->next_to_watch = NULL;
7804 
7805 		/* update the statistics for this packet */
7806 		total_bytes += tx_buffer->bytecount;
7807 		total_packets += tx_buffer->gso_segs;
7808 
7809 		/* free the skb */
7810 		napi_consume_skb(tx_buffer->skb, napi_budget);
7811 
7812 		/* unmap skb header data */
7813 		dma_unmap_single(tx_ring->dev,
7814 				 dma_unmap_addr(tx_buffer, dma),
7815 				 dma_unmap_len(tx_buffer, len),
7816 				 DMA_TO_DEVICE);
7817 
7818 		/* clear tx_buffer data */
7819 		dma_unmap_len_set(tx_buffer, len, 0);
7820 
7821 		/* clear last DMA location and unmap remaining buffers */
7822 		while (tx_desc != eop_desc) {
7823 			tx_buffer++;
7824 			tx_desc++;
7825 			i++;
7826 			if (unlikely(!i)) {
7827 				i -= tx_ring->count;
7828 				tx_buffer = tx_ring->tx_buffer_info;
7829 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7830 			}
7831 
7832 			/* unmap any remaining paged data */
7833 			if (dma_unmap_len(tx_buffer, len)) {
7834 				dma_unmap_page(tx_ring->dev,
7835 					       dma_unmap_addr(tx_buffer, dma),
7836 					       dma_unmap_len(tx_buffer, len),
7837 					       DMA_TO_DEVICE);
7838 				dma_unmap_len_set(tx_buffer, len, 0);
7839 			}
7840 		}
7841 
7842 		/* move us one more past the eop_desc for start of next pkt */
7843 		tx_buffer++;
7844 		tx_desc++;
7845 		i++;
7846 		if (unlikely(!i)) {
7847 			i -= tx_ring->count;
7848 			tx_buffer = tx_ring->tx_buffer_info;
7849 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7850 		}
7851 
7852 		/* issue prefetch for next Tx descriptor */
7853 		prefetch(tx_desc);
7854 
7855 		/* update budget accounting */
7856 		budget--;
7857 	} while (likely(budget));
7858 
7859 	netdev_tx_completed_queue(txring_txq(tx_ring),
7860 				  total_packets, total_bytes);
7861 	i += tx_ring->count;
7862 	tx_ring->next_to_clean = i;
7863 	u64_stats_update_begin(&tx_ring->tx_syncp);
7864 	tx_ring->tx_stats.bytes += total_bytes;
7865 	tx_ring->tx_stats.packets += total_packets;
7866 	u64_stats_update_end(&tx_ring->tx_syncp);
7867 	q_vector->tx.total_bytes += total_bytes;
7868 	q_vector->tx.total_packets += total_packets;
7869 
7870 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7871 		struct e1000_hw *hw = &adapter->hw;
7872 
7873 		/* Detect a transmit hang in hardware, this serializes the
7874 		 * check with the clearing of time_stamp and movement of i
7875 		 */
7876 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7877 		if (tx_buffer->next_to_watch &&
7878 		    time_after(jiffies, tx_buffer->time_stamp +
7879 			       (adapter->tx_timeout_factor * HZ)) &&
7880 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7881 
7882 			/* detected Tx unit hang */
7883 			dev_err(tx_ring->dev,
7884 				"Detected Tx Unit Hang\n"
7885 				"  Tx Queue             <%d>\n"
7886 				"  TDH                  <%x>\n"
7887 				"  TDT                  <%x>\n"
7888 				"  next_to_use          <%x>\n"
7889 				"  next_to_clean        <%x>\n"
7890 				"buffer_info[next_to_clean]\n"
7891 				"  time_stamp           <%lx>\n"
7892 				"  next_to_watch        <%p>\n"
7893 				"  jiffies              <%lx>\n"
7894 				"  desc.status          <%x>\n",
7895 				tx_ring->queue_index,
7896 				rd32(E1000_TDH(tx_ring->reg_idx)),
7897 				readl(tx_ring->tail),
7898 				tx_ring->next_to_use,
7899 				tx_ring->next_to_clean,
7900 				tx_buffer->time_stamp,
7901 				tx_buffer->next_to_watch,
7902 				jiffies,
7903 				tx_buffer->next_to_watch->wb.status);
7904 			netif_stop_subqueue(tx_ring->netdev,
7905 					    tx_ring->queue_index);
7906 
7907 			/* we are about to reset, no point in enabling stuff */
7908 			return true;
7909 		}
7910 	}
7911 
7912 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7913 	if (unlikely(total_packets &&
7914 	    netif_carrier_ok(tx_ring->netdev) &&
7915 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7916 		/* Make sure that anybody stopping the queue after this
7917 		 * sees the new next_to_clean.
7918 		 */
7919 		smp_mb();
7920 		if (__netif_subqueue_stopped(tx_ring->netdev,
7921 					     tx_ring->queue_index) &&
7922 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7923 			netif_wake_subqueue(tx_ring->netdev,
7924 					    tx_ring->queue_index);
7925 
7926 			u64_stats_update_begin(&tx_ring->tx_syncp);
7927 			tx_ring->tx_stats.restart_queue++;
7928 			u64_stats_update_end(&tx_ring->tx_syncp);
7929 		}
7930 	}
7931 
7932 	return !!budget;
7933 }
7934 
7935 /**
7936  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7937  *  @rx_ring: rx descriptor ring to store buffers on
7938  *  @old_buff: donor buffer to have page reused
7939  *
7940  *  Synchronizes page for reuse by the adapter
7941  **/
7942 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7943 			      struct igb_rx_buffer *old_buff)
7944 {
7945 	struct igb_rx_buffer *new_buff;
7946 	u16 nta = rx_ring->next_to_alloc;
7947 
7948 	new_buff = &rx_ring->rx_buffer_info[nta];
7949 
7950 	/* update, and store next to alloc */
7951 	nta++;
7952 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7953 
7954 	/* Transfer page from old buffer to new buffer.
7955 	 * Move each member individually to avoid possible store
7956 	 * forwarding stalls.
7957 	 */
7958 	new_buff->dma		= old_buff->dma;
7959 	new_buff->page		= old_buff->page;
7960 	new_buff->page_offset	= old_buff->page_offset;
7961 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7962 }
7963 
7964 static inline bool igb_page_is_reserved(struct page *page)
7965 {
7966 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7967 }
7968 
7969 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7970 {
7971 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7972 	struct page *page = rx_buffer->page;
7973 
7974 	/* avoid re-using remote pages */
7975 	if (unlikely(igb_page_is_reserved(page)))
7976 		return false;
7977 
7978 #if (PAGE_SIZE < 8192)
7979 	/* if we are only owner of page we can reuse it */
7980 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7981 		return false;
7982 #else
7983 #define IGB_LAST_OFFSET \
7984 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7985 
7986 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7987 		return false;
7988 #endif
7989 
7990 	/* If we have drained the page fragment pool we need to update
7991 	 * the pagecnt_bias and page count so that we fully restock the
7992 	 * number of references the driver holds.
7993 	 */
7994 	if (unlikely(!pagecnt_bias)) {
7995 		page_ref_add(page, USHRT_MAX);
7996 		rx_buffer->pagecnt_bias = USHRT_MAX;
7997 	}
7998 
7999 	return true;
8000 }
8001 
8002 /**
8003  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8004  *  @rx_ring: rx descriptor ring to transact packets on
8005  *  @rx_buffer: buffer containing page to add
8006  *  @skb: sk_buff to place the data into
8007  *  @size: size of buffer to be added
8008  *
8009  *  This function will add the data contained in rx_buffer->page to the skb.
8010  **/
8011 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8012 			    struct igb_rx_buffer *rx_buffer,
8013 			    struct sk_buff *skb,
8014 			    unsigned int size)
8015 {
8016 #if (PAGE_SIZE < 8192)
8017 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8018 #else
8019 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8020 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8021 				SKB_DATA_ALIGN(size);
8022 #endif
8023 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8024 			rx_buffer->page_offset, size, truesize);
8025 #if (PAGE_SIZE < 8192)
8026 	rx_buffer->page_offset ^= truesize;
8027 #else
8028 	rx_buffer->page_offset += truesize;
8029 #endif
8030 }
8031 
8032 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8033 					 struct igb_rx_buffer *rx_buffer,
8034 					 union e1000_adv_rx_desc *rx_desc,
8035 					 unsigned int size)
8036 {
8037 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8038 #if (PAGE_SIZE < 8192)
8039 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8040 #else
8041 	unsigned int truesize = SKB_DATA_ALIGN(size);
8042 #endif
8043 	unsigned int headlen;
8044 	struct sk_buff *skb;
8045 
8046 	/* prefetch first cache line of first page */
8047 	prefetch(va);
8048 #if L1_CACHE_BYTES < 128
8049 	prefetch(va + L1_CACHE_BYTES);
8050 #endif
8051 
8052 	/* allocate a skb to store the frags */
8053 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8054 	if (unlikely(!skb))
8055 		return NULL;
8056 
8057 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8058 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8059 		va += IGB_TS_HDR_LEN;
8060 		size -= IGB_TS_HDR_LEN;
8061 	}
8062 
8063 	/* Determine available headroom for copy */
8064 	headlen = size;
8065 	if (headlen > IGB_RX_HDR_LEN)
8066 		headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8067 
8068 	/* align pull length to size of long to optimize memcpy performance */
8069 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8070 
8071 	/* update all of the pointers */
8072 	size -= headlen;
8073 	if (size) {
8074 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8075 				(va + headlen) - page_address(rx_buffer->page),
8076 				size, truesize);
8077 #if (PAGE_SIZE < 8192)
8078 		rx_buffer->page_offset ^= truesize;
8079 #else
8080 		rx_buffer->page_offset += truesize;
8081 #endif
8082 	} else {
8083 		rx_buffer->pagecnt_bias++;
8084 	}
8085 
8086 	return skb;
8087 }
8088 
8089 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8090 				     struct igb_rx_buffer *rx_buffer,
8091 				     union e1000_adv_rx_desc *rx_desc,
8092 				     unsigned int size)
8093 {
8094 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8095 #if (PAGE_SIZE < 8192)
8096 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8097 #else
8098 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8099 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8100 #endif
8101 	struct sk_buff *skb;
8102 
8103 	/* prefetch first cache line of first page */
8104 	prefetch(va);
8105 #if L1_CACHE_BYTES < 128
8106 	prefetch(va + L1_CACHE_BYTES);
8107 #endif
8108 
8109 	/* build an skb around the page buffer */
8110 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8111 	if (unlikely(!skb))
8112 		return NULL;
8113 
8114 	/* update pointers within the skb to store the data */
8115 	skb_reserve(skb, IGB_SKB_PAD);
8116 	__skb_put(skb, size);
8117 
8118 	/* pull timestamp out of packet data */
8119 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8120 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8121 		__skb_pull(skb, IGB_TS_HDR_LEN);
8122 	}
8123 
8124 	/* update buffer offset */
8125 #if (PAGE_SIZE < 8192)
8126 	rx_buffer->page_offset ^= truesize;
8127 #else
8128 	rx_buffer->page_offset += truesize;
8129 #endif
8130 
8131 	return skb;
8132 }
8133 
8134 static inline void igb_rx_checksum(struct igb_ring *ring,
8135 				   union e1000_adv_rx_desc *rx_desc,
8136 				   struct sk_buff *skb)
8137 {
8138 	skb_checksum_none_assert(skb);
8139 
8140 	/* Ignore Checksum bit is set */
8141 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8142 		return;
8143 
8144 	/* Rx checksum disabled via ethtool */
8145 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8146 		return;
8147 
8148 	/* TCP/UDP checksum error bit is set */
8149 	if (igb_test_staterr(rx_desc,
8150 			     E1000_RXDEXT_STATERR_TCPE |
8151 			     E1000_RXDEXT_STATERR_IPE)) {
8152 		/* work around errata with sctp packets where the TCPE aka
8153 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8154 		 * packets, (aka let the stack check the crc32c)
8155 		 */
8156 		if (!((skb->len == 60) &&
8157 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8158 			u64_stats_update_begin(&ring->rx_syncp);
8159 			ring->rx_stats.csum_err++;
8160 			u64_stats_update_end(&ring->rx_syncp);
8161 		}
8162 		/* let the stack verify checksum errors */
8163 		return;
8164 	}
8165 	/* It must be a TCP or UDP packet with a valid checksum */
8166 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8167 				      E1000_RXD_STAT_UDPCS))
8168 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8169 
8170 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8171 		le32_to_cpu(rx_desc->wb.upper.status_error));
8172 }
8173 
8174 static inline void igb_rx_hash(struct igb_ring *ring,
8175 			       union e1000_adv_rx_desc *rx_desc,
8176 			       struct sk_buff *skb)
8177 {
8178 	if (ring->netdev->features & NETIF_F_RXHASH)
8179 		skb_set_hash(skb,
8180 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8181 			     PKT_HASH_TYPE_L3);
8182 }
8183 
8184 /**
8185  *  igb_is_non_eop - process handling of non-EOP buffers
8186  *  @rx_ring: Rx ring being processed
8187  *  @rx_desc: Rx descriptor for current buffer
8188  *  @skb: current socket buffer containing buffer in progress
8189  *
8190  *  This function updates next to clean.  If the buffer is an EOP buffer
8191  *  this function exits returning false, otherwise it will place the
8192  *  sk_buff in the next buffer to be chained and return true indicating
8193  *  that this is in fact a non-EOP buffer.
8194  **/
8195 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8196 			   union e1000_adv_rx_desc *rx_desc)
8197 {
8198 	u32 ntc = rx_ring->next_to_clean + 1;
8199 
8200 	/* fetch, update, and store next to clean */
8201 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8202 	rx_ring->next_to_clean = ntc;
8203 
8204 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8205 
8206 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8207 		return false;
8208 
8209 	return true;
8210 }
8211 
8212 /**
8213  *  igb_cleanup_headers - Correct corrupted or empty headers
8214  *  @rx_ring: rx descriptor ring packet is being transacted on
8215  *  @rx_desc: pointer to the EOP Rx descriptor
8216  *  @skb: pointer to current skb being fixed
8217  *
8218  *  Address the case where we are pulling data in on pages only
8219  *  and as such no data is present in the skb header.
8220  *
8221  *  In addition if skb is not at least 60 bytes we need to pad it so that
8222  *  it is large enough to qualify as a valid Ethernet frame.
8223  *
8224  *  Returns true if an error was encountered and skb was freed.
8225  **/
8226 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8227 				union e1000_adv_rx_desc *rx_desc,
8228 				struct sk_buff *skb)
8229 {
8230 	if (unlikely((igb_test_staterr(rx_desc,
8231 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8232 		struct net_device *netdev = rx_ring->netdev;
8233 		if (!(netdev->features & NETIF_F_RXALL)) {
8234 			dev_kfree_skb_any(skb);
8235 			return true;
8236 		}
8237 	}
8238 
8239 	/* if eth_skb_pad returns an error the skb was freed */
8240 	if (eth_skb_pad(skb))
8241 		return true;
8242 
8243 	return false;
8244 }
8245 
8246 /**
8247  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8248  *  @rx_ring: rx descriptor ring packet is being transacted on
8249  *  @rx_desc: pointer to the EOP Rx descriptor
8250  *  @skb: pointer to current skb being populated
8251  *
8252  *  This function checks the ring, descriptor, and packet information in
8253  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8254  *  other fields within the skb.
8255  **/
8256 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8257 				   union e1000_adv_rx_desc *rx_desc,
8258 				   struct sk_buff *skb)
8259 {
8260 	struct net_device *dev = rx_ring->netdev;
8261 
8262 	igb_rx_hash(rx_ring, rx_desc, skb);
8263 
8264 	igb_rx_checksum(rx_ring, rx_desc, skb);
8265 
8266 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8267 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8268 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8269 
8270 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8271 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8272 		u16 vid;
8273 
8274 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8275 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8276 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8277 		else
8278 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8279 
8280 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8281 	}
8282 
8283 	skb_record_rx_queue(skb, rx_ring->queue_index);
8284 
8285 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8286 }
8287 
8288 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8289 					       const unsigned int size)
8290 {
8291 	struct igb_rx_buffer *rx_buffer;
8292 
8293 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8294 	prefetchw(rx_buffer->page);
8295 
8296 	/* we are reusing so sync this buffer for CPU use */
8297 	dma_sync_single_range_for_cpu(rx_ring->dev,
8298 				      rx_buffer->dma,
8299 				      rx_buffer->page_offset,
8300 				      size,
8301 				      DMA_FROM_DEVICE);
8302 
8303 	rx_buffer->pagecnt_bias--;
8304 
8305 	return rx_buffer;
8306 }
8307 
8308 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8309 			      struct igb_rx_buffer *rx_buffer)
8310 {
8311 	if (igb_can_reuse_rx_page(rx_buffer)) {
8312 		/* hand second half of page back to the ring */
8313 		igb_reuse_rx_page(rx_ring, rx_buffer);
8314 	} else {
8315 		/* We are not reusing the buffer so unmap it and free
8316 		 * any references we are holding to it
8317 		 */
8318 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8319 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8320 				     IGB_RX_DMA_ATTR);
8321 		__page_frag_cache_drain(rx_buffer->page,
8322 					rx_buffer->pagecnt_bias);
8323 	}
8324 
8325 	/* clear contents of rx_buffer */
8326 	rx_buffer->page = NULL;
8327 }
8328 
8329 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8330 {
8331 	struct igb_ring *rx_ring = q_vector->rx.ring;
8332 	struct sk_buff *skb = rx_ring->skb;
8333 	unsigned int total_bytes = 0, total_packets = 0;
8334 	u16 cleaned_count = igb_desc_unused(rx_ring);
8335 
8336 	while (likely(total_packets < budget)) {
8337 		union e1000_adv_rx_desc *rx_desc;
8338 		struct igb_rx_buffer *rx_buffer;
8339 		unsigned int size;
8340 
8341 		/* return some buffers to hardware, one at a time is too slow */
8342 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8343 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8344 			cleaned_count = 0;
8345 		}
8346 
8347 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8348 		size = le16_to_cpu(rx_desc->wb.upper.length);
8349 		if (!size)
8350 			break;
8351 
8352 		/* This memory barrier is needed to keep us from reading
8353 		 * any other fields out of the rx_desc until we know the
8354 		 * descriptor has been written back
8355 		 */
8356 		dma_rmb();
8357 
8358 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8359 
8360 		/* retrieve a buffer from the ring */
8361 		if (skb)
8362 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8363 		else if (ring_uses_build_skb(rx_ring))
8364 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8365 		else
8366 			skb = igb_construct_skb(rx_ring, rx_buffer,
8367 						rx_desc, size);
8368 
8369 		/* exit if we failed to retrieve a buffer */
8370 		if (!skb) {
8371 			rx_ring->rx_stats.alloc_failed++;
8372 			rx_buffer->pagecnt_bias++;
8373 			break;
8374 		}
8375 
8376 		igb_put_rx_buffer(rx_ring, rx_buffer);
8377 		cleaned_count++;
8378 
8379 		/* fetch next buffer in frame if non-eop */
8380 		if (igb_is_non_eop(rx_ring, rx_desc))
8381 			continue;
8382 
8383 		/* verify the packet layout is correct */
8384 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8385 			skb = NULL;
8386 			continue;
8387 		}
8388 
8389 		/* probably a little skewed due to removing CRC */
8390 		total_bytes += skb->len;
8391 
8392 		/* populate checksum, timestamp, VLAN, and protocol */
8393 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8394 
8395 		napi_gro_receive(&q_vector->napi, skb);
8396 
8397 		/* reset skb pointer */
8398 		skb = NULL;
8399 
8400 		/* update budget accounting */
8401 		total_packets++;
8402 	}
8403 
8404 	/* place incomplete frames back on ring for completion */
8405 	rx_ring->skb = skb;
8406 
8407 	u64_stats_update_begin(&rx_ring->rx_syncp);
8408 	rx_ring->rx_stats.packets += total_packets;
8409 	rx_ring->rx_stats.bytes += total_bytes;
8410 	u64_stats_update_end(&rx_ring->rx_syncp);
8411 	q_vector->rx.total_packets += total_packets;
8412 	q_vector->rx.total_bytes += total_bytes;
8413 
8414 	if (cleaned_count)
8415 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8416 
8417 	return total_packets;
8418 }
8419 
8420 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8421 {
8422 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8423 }
8424 
8425 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8426 				  struct igb_rx_buffer *bi)
8427 {
8428 	struct page *page = bi->page;
8429 	dma_addr_t dma;
8430 
8431 	/* since we are recycling buffers we should seldom need to alloc */
8432 	if (likely(page))
8433 		return true;
8434 
8435 	/* alloc new page for storage */
8436 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8437 	if (unlikely(!page)) {
8438 		rx_ring->rx_stats.alloc_failed++;
8439 		return false;
8440 	}
8441 
8442 	/* map page for use */
8443 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8444 				 igb_rx_pg_size(rx_ring),
8445 				 DMA_FROM_DEVICE,
8446 				 IGB_RX_DMA_ATTR);
8447 
8448 	/* if mapping failed free memory back to system since
8449 	 * there isn't much point in holding memory we can't use
8450 	 */
8451 	if (dma_mapping_error(rx_ring->dev, dma)) {
8452 		__free_pages(page, igb_rx_pg_order(rx_ring));
8453 
8454 		rx_ring->rx_stats.alloc_failed++;
8455 		return false;
8456 	}
8457 
8458 	bi->dma = dma;
8459 	bi->page = page;
8460 	bi->page_offset = igb_rx_offset(rx_ring);
8461 	bi->pagecnt_bias = 1;
8462 
8463 	return true;
8464 }
8465 
8466 /**
8467  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8468  *  @adapter: address of board private structure
8469  **/
8470 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8471 {
8472 	union e1000_adv_rx_desc *rx_desc;
8473 	struct igb_rx_buffer *bi;
8474 	u16 i = rx_ring->next_to_use;
8475 	u16 bufsz;
8476 
8477 	/* nothing to do */
8478 	if (!cleaned_count)
8479 		return;
8480 
8481 	rx_desc = IGB_RX_DESC(rx_ring, i);
8482 	bi = &rx_ring->rx_buffer_info[i];
8483 	i -= rx_ring->count;
8484 
8485 	bufsz = igb_rx_bufsz(rx_ring);
8486 
8487 	do {
8488 		if (!igb_alloc_mapped_page(rx_ring, bi))
8489 			break;
8490 
8491 		/* sync the buffer for use by the device */
8492 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8493 						 bi->page_offset, bufsz,
8494 						 DMA_FROM_DEVICE);
8495 
8496 		/* Refresh the desc even if buffer_addrs didn't change
8497 		 * because each write-back erases this info.
8498 		 */
8499 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8500 
8501 		rx_desc++;
8502 		bi++;
8503 		i++;
8504 		if (unlikely(!i)) {
8505 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8506 			bi = rx_ring->rx_buffer_info;
8507 			i -= rx_ring->count;
8508 		}
8509 
8510 		/* clear the length for the next_to_use descriptor */
8511 		rx_desc->wb.upper.length = 0;
8512 
8513 		cleaned_count--;
8514 	} while (cleaned_count);
8515 
8516 	i += rx_ring->count;
8517 
8518 	if (rx_ring->next_to_use != i) {
8519 		/* record the next descriptor to use */
8520 		rx_ring->next_to_use = i;
8521 
8522 		/* update next to alloc since we have filled the ring */
8523 		rx_ring->next_to_alloc = i;
8524 
8525 		/* Force memory writes to complete before letting h/w
8526 		 * know there are new descriptors to fetch.  (Only
8527 		 * applicable for weak-ordered memory model archs,
8528 		 * such as IA-64).
8529 		 */
8530 		dma_wmb();
8531 		writel(i, rx_ring->tail);
8532 	}
8533 }
8534 
8535 /**
8536  * igb_mii_ioctl -
8537  * @netdev:
8538  * @ifreq:
8539  * @cmd:
8540  **/
8541 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8542 {
8543 	struct igb_adapter *adapter = netdev_priv(netdev);
8544 	struct mii_ioctl_data *data = if_mii(ifr);
8545 
8546 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8547 		return -EOPNOTSUPP;
8548 
8549 	switch (cmd) {
8550 	case SIOCGMIIPHY:
8551 		data->phy_id = adapter->hw.phy.addr;
8552 		break;
8553 	case SIOCGMIIREG:
8554 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8555 				     &data->val_out))
8556 			return -EIO;
8557 		break;
8558 	case SIOCSMIIREG:
8559 	default:
8560 		return -EOPNOTSUPP;
8561 	}
8562 	return 0;
8563 }
8564 
8565 /**
8566  * igb_ioctl -
8567  * @netdev:
8568  * @ifreq:
8569  * @cmd:
8570  **/
8571 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8572 {
8573 	switch (cmd) {
8574 	case SIOCGMIIPHY:
8575 	case SIOCGMIIREG:
8576 	case SIOCSMIIREG:
8577 		return igb_mii_ioctl(netdev, ifr, cmd);
8578 	case SIOCGHWTSTAMP:
8579 		return igb_ptp_get_ts_config(netdev, ifr);
8580 	case SIOCSHWTSTAMP:
8581 		return igb_ptp_set_ts_config(netdev, ifr);
8582 	default:
8583 		return -EOPNOTSUPP;
8584 	}
8585 }
8586 
8587 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8588 {
8589 	struct igb_adapter *adapter = hw->back;
8590 
8591 	pci_read_config_word(adapter->pdev, reg, value);
8592 }
8593 
8594 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8595 {
8596 	struct igb_adapter *adapter = hw->back;
8597 
8598 	pci_write_config_word(adapter->pdev, reg, *value);
8599 }
8600 
8601 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8602 {
8603 	struct igb_adapter *adapter = hw->back;
8604 
8605 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8606 		return -E1000_ERR_CONFIG;
8607 
8608 	return 0;
8609 }
8610 
8611 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8612 {
8613 	struct igb_adapter *adapter = hw->back;
8614 
8615 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8616 		return -E1000_ERR_CONFIG;
8617 
8618 	return 0;
8619 }
8620 
8621 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8622 {
8623 	struct igb_adapter *adapter = netdev_priv(netdev);
8624 	struct e1000_hw *hw = &adapter->hw;
8625 	u32 ctrl, rctl;
8626 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8627 
8628 	if (enable) {
8629 		/* enable VLAN tag insert/strip */
8630 		ctrl = rd32(E1000_CTRL);
8631 		ctrl |= E1000_CTRL_VME;
8632 		wr32(E1000_CTRL, ctrl);
8633 
8634 		/* Disable CFI check */
8635 		rctl = rd32(E1000_RCTL);
8636 		rctl &= ~E1000_RCTL_CFIEN;
8637 		wr32(E1000_RCTL, rctl);
8638 	} else {
8639 		/* disable VLAN tag insert/strip */
8640 		ctrl = rd32(E1000_CTRL);
8641 		ctrl &= ~E1000_CTRL_VME;
8642 		wr32(E1000_CTRL, ctrl);
8643 	}
8644 
8645 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8646 }
8647 
8648 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8649 			       __be16 proto, u16 vid)
8650 {
8651 	struct igb_adapter *adapter = netdev_priv(netdev);
8652 	struct e1000_hw *hw = &adapter->hw;
8653 	int pf_id = adapter->vfs_allocated_count;
8654 
8655 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8656 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8657 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8658 
8659 	set_bit(vid, adapter->active_vlans);
8660 
8661 	return 0;
8662 }
8663 
8664 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8665 				__be16 proto, u16 vid)
8666 {
8667 	struct igb_adapter *adapter = netdev_priv(netdev);
8668 	int pf_id = adapter->vfs_allocated_count;
8669 	struct e1000_hw *hw = &adapter->hw;
8670 
8671 	/* remove VID from filter table */
8672 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8673 		igb_vfta_set(hw, vid, pf_id, false, true);
8674 
8675 	clear_bit(vid, adapter->active_vlans);
8676 
8677 	return 0;
8678 }
8679 
8680 static void igb_restore_vlan(struct igb_adapter *adapter)
8681 {
8682 	u16 vid = 1;
8683 
8684 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8685 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8686 
8687 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8688 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8689 }
8690 
8691 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8692 {
8693 	struct pci_dev *pdev = adapter->pdev;
8694 	struct e1000_mac_info *mac = &adapter->hw.mac;
8695 
8696 	mac->autoneg = 0;
8697 
8698 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8699 	 * for the switch() below to work
8700 	 */
8701 	if ((spd & 1) || (dplx & ~1))
8702 		goto err_inval;
8703 
8704 	/* Fiber NIC's only allow 1000 gbps Full duplex
8705 	 * and 100Mbps Full duplex for 100baseFx sfp
8706 	 */
8707 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8708 		switch (spd + dplx) {
8709 		case SPEED_10 + DUPLEX_HALF:
8710 		case SPEED_10 + DUPLEX_FULL:
8711 		case SPEED_100 + DUPLEX_HALF:
8712 			goto err_inval;
8713 		default:
8714 			break;
8715 		}
8716 	}
8717 
8718 	switch (spd + dplx) {
8719 	case SPEED_10 + DUPLEX_HALF:
8720 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8721 		break;
8722 	case SPEED_10 + DUPLEX_FULL:
8723 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8724 		break;
8725 	case SPEED_100 + DUPLEX_HALF:
8726 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8727 		break;
8728 	case SPEED_100 + DUPLEX_FULL:
8729 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8730 		break;
8731 	case SPEED_1000 + DUPLEX_FULL:
8732 		mac->autoneg = 1;
8733 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8734 		break;
8735 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8736 	default:
8737 		goto err_inval;
8738 	}
8739 
8740 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8741 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8742 
8743 	return 0;
8744 
8745 err_inval:
8746 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8747 	return -EINVAL;
8748 }
8749 
8750 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8751 			  bool runtime)
8752 {
8753 	struct net_device *netdev = pci_get_drvdata(pdev);
8754 	struct igb_adapter *adapter = netdev_priv(netdev);
8755 	struct e1000_hw *hw = &adapter->hw;
8756 	u32 ctrl, rctl, status;
8757 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8758 #ifdef CONFIG_PM
8759 	int retval = 0;
8760 #endif
8761 
8762 	rtnl_lock();
8763 	netif_device_detach(netdev);
8764 
8765 	if (netif_running(netdev))
8766 		__igb_close(netdev, true);
8767 
8768 	igb_ptp_suspend(adapter);
8769 
8770 	igb_clear_interrupt_scheme(adapter);
8771 	rtnl_unlock();
8772 
8773 #ifdef CONFIG_PM
8774 	if (!runtime) {
8775 		retval = pci_save_state(pdev);
8776 		if (retval)
8777 			return retval;
8778 	}
8779 #endif
8780 
8781 	status = rd32(E1000_STATUS);
8782 	if (status & E1000_STATUS_LU)
8783 		wufc &= ~E1000_WUFC_LNKC;
8784 
8785 	if (wufc) {
8786 		igb_setup_rctl(adapter);
8787 		igb_set_rx_mode(netdev);
8788 
8789 		/* turn on all-multi mode if wake on multicast is enabled */
8790 		if (wufc & E1000_WUFC_MC) {
8791 			rctl = rd32(E1000_RCTL);
8792 			rctl |= E1000_RCTL_MPE;
8793 			wr32(E1000_RCTL, rctl);
8794 		}
8795 
8796 		ctrl = rd32(E1000_CTRL);
8797 		/* advertise wake from D3Cold */
8798 		#define E1000_CTRL_ADVD3WUC 0x00100000
8799 		/* phy power management enable */
8800 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8801 		ctrl |= E1000_CTRL_ADVD3WUC;
8802 		wr32(E1000_CTRL, ctrl);
8803 
8804 		/* Allow time for pending master requests to run */
8805 		igb_disable_pcie_master(hw);
8806 
8807 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8808 		wr32(E1000_WUFC, wufc);
8809 	} else {
8810 		wr32(E1000_WUC, 0);
8811 		wr32(E1000_WUFC, 0);
8812 	}
8813 
8814 	*enable_wake = wufc || adapter->en_mng_pt;
8815 	if (!*enable_wake)
8816 		igb_power_down_link(adapter);
8817 	else
8818 		igb_power_up_link(adapter);
8819 
8820 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8821 	 * would have already happened in close and is redundant.
8822 	 */
8823 	igb_release_hw_control(adapter);
8824 
8825 	pci_disable_device(pdev);
8826 
8827 	return 0;
8828 }
8829 
8830 static void igb_deliver_wake_packet(struct net_device *netdev)
8831 {
8832 	struct igb_adapter *adapter = netdev_priv(netdev);
8833 	struct e1000_hw *hw = &adapter->hw;
8834 	struct sk_buff *skb;
8835 	u32 wupl;
8836 
8837 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8838 
8839 	/* WUPM stores only the first 128 bytes of the wake packet.
8840 	 * Read the packet only if we have the whole thing.
8841 	 */
8842 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8843 		return;
8844 
8845 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8846 	if (!skb)
8847 		return;
8848 
8849 	skb_put(skb, wupl);
8850 
8851 	/* Ensure reads are 32-bit aligned */
8852 	wupl = roundup(wupl, 4);
8853 
8854 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8855 
8856 	skb->protocol = eth_type_trans(skb, netdev);
8857 	netif_rx(skb);
8858 }
8859 
8860 static int __maybe_unused igb_suspend(struct device *dev)
8861 {
8862 	int retval;
8863 	bool wake;
8864 	struct pci_dev *pdev = to_pci_dev(dev);
8865 
8866 	retval = __igb_shutdown(pdev, &wake, 0);
8867 	if (retval)
8868 		return retval;
8869 
8870 	if (wake) {
8871 		pci_prepare_to_sleep(pdev);
8872 	} else {
8873 		pci_wake_from_d3(pdev, false);
8874 		pci_set_power_state(pdev, PCI_D3hot);
8875 	}
8876 
8877 	return 0;
8878 }
8879 
8880 static int __maybe_unused igb_resume(struct device *dev)
8881 {
8882 	struct pci_dev *pdev = to_pci_dev(dev);
8883 	struct net_device *netdev = pci_get_drvdata(pdev);
8884 	struct igb_adapter *adapter = netdev_priv(netdev);
8885 	struct e1000_hw *hw = &adapter->hw;
8886 	u32 err, val;
8887 
8888 	pci_set_power_state(pdev, PCI_D0);
8889 	pci_restore_state(pdev);
8890 	pci_save_state(pdev);
8891 
8892 	if (!pci_device_is_present(pdev))
8893 		return -ENODEV;
8894 	err = pci_enable_device_mem(pdev);
8895 	if (err) {
8896 		dev_err(&pdev->dev,
8897 			"igb: Cannot enable PCI device from suspend\n");
8898 		return err;
8899 	}
8900 	pci_set_master(pdev);
8901 
8902 	pci_enable_wake(pdev, PCI_D3hot, 0);
8903 	pci_enable_wake(pdev, PCI_D3cold, 0);
8904 
8905 	if (igb_init_interrupt_scheme(adapter, true)) {
8906 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8907 		return -ENOMEM;
8908 	}
8909 
8910 	igb_reset(adapter);
8911 
8912 	/* let the f/w know that the h/w is now under the control of the
8913 	 * driver.
8914 	 */
8915 	igb_get_hw_control(adapter);
8916 
8917 	val = rd32(E1000_WUS);
8918 	if (val & WAKE_PKT_WUS)
8919 		igb_deliver_wake_packet(netdev);
8920 
8921 	wr32(E1000_WUS, ~0);
8922 
8923 	rtnl_lock();
8924 	if (!err && netif_running(netdev))
8925 		err = __igb_open(netdev, true);
8926 
8927 	if (!err)
8928 		netif_device_attach(netdev);
8929 	rtnl_unlock();
8930 
8931 	return err;
8932 }
8933 
8934 static int __maybe_unused igb_runtime_idle(struct device *dev)
8935 {
8936 	struct pci_dev *pdev = to_pci_dev(dev);
8937 	struct net_device *netdev = pci_get_drvdata(pdev);
8938 	struct igb_adapter *adapter = netdev_priv(netdev);
8939 
8940 	if (!igb_has_link(adapter))
8941 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8942 
8943 	return -EBUSY;
8944 }
8945 
8946 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8947 {
8948 	struct pci_dev *pdev = to_pci_dev(dev);
8949 	int retval;
8950 	bool wake;
8951 
8952 	retval = __igb_shutdown(pdev, &wake, 1);
8953 	if (retval)
8954 		return retval;
8955 
8956 	if (wake) {
8957 		pci_prepare_to_sleep(pdev);
8958 	} else {
8959 		pci_wake_from_d3(pdev, false);
8960 		pci_set_power_state(pdev, PCI_D3hot);
8961 	}
8962 
8963 	return 0;
8964 }
8965 
8966 static int __maybe_unused igb_runtime_resume(struct device *dev)
8967 {
8968 	return igb_resume(dev);
8969 }
8970 
8971 static void igb_shutdown(struct pci_dev *pdev)
8972 {
8973 	bool wake;
8974 
8975 	__igb_shutdown(pdev, &wake, 0);
8976 
8977 	if (system_state == SYSTEM_POWER_OFF) {
8978 		pci_wake_from_d3(pdev, wake);
8979 		pci_set_power_state(pdev, PCI_D3hot);
8980 	}
8981 }
8982 
8983 #ifdef CONFIG_PCI_IOV
8984 static int igb_sriov_reinit(struct pci_dev *dev)
8985 {
8986 	struct net_device *netdev = pci_get_drvdata(dev);
8987 	struct igb_adapter *adapter = netdev_priv(netdev);
8988 	struct pci_dev *pdev = adapter->pdev;
8989 
8990 	rtnl_lock();
8991 
8992 	if (netif_running(netdev))
8993 		igb_close(netdev);
8994 	else
8995 		igb_reset(adapter);
8996 
8997 	igb_clear_interrupt_scheme(adapter);
8998 
8999 	igb_init_queue_configuration(adapter);
9000 
9001 	if (igb_init_interrupt_scheme(adapter, true)) {
9002 		rtnl_unlock();
9003 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9004 		return -ENOMEM;
9005 	}
9006 
9007 	if (netif_running(netdev))
9008 		igb_open(netdev);
9009 
9010 	rtnl_unlock();
9011 
9012 	return 0;
9013 }
9014 
9015 static int igb_pci_disable_sriov(struct pci_dev *dev)
9016 {
9017 	int err = igb_disable_sriov(dev);
9018 
9019 	if (!err)
9020 		err = igb_sriov_reinit(dev);
9021 
9022 	return err;
9023 }
9024 
9025 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9026 {
9027 	int err = igb_enable_sriov(dev, num_vfs);
9028 
9029 	if (err)
9030 		goto out;
9031 
9032 	err = igb_sriov_reinit(dev);
9033 	if (!err)
9034 		return num_vfs;
9035 
9036 out:
9037 	return err;
9038 }
9039 
9040 #endif
9041 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9042 {
9043 #ifdef CONFIG_PCI_IOV
9044 	if (num_vfs == 0)
9045 		return igb_pci_disable_sriov(dev);
9046 	else
9047 		return igb_pci_enable_sriov(dev, num_vfs);
9048 #endif
9049 	return 0;
9050 }
9051 
9052 /**
9053  *  igb_io_error_detected - called when PCI error is detected
9054  *  @pdev: Pointer to PCI device
9055  *  @state: The current pci connection state
9056  *
9057  *  This function is called after a PCI bus error affecting
9058  *  this device has been detected.
9059  **/
9060 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9061 					      pci_channel_state_t state)
9062 {
9063 	struct net_device *netdev = pci_get_drvdata(pdev);
9064 	struct igb_adapter *adapter = netdev_priv(netdev);
9065 
9066 	netif_device_detach(netdev);
9067 
9068 	if (state == pci_channel_io_perm_failure)
9069 		return PCI_ERS_RESULT_DISCONNECT;
9070 
9071 	if (netif_running(netdev))
9072 		igb_down(adapter);
9073 	pci_disable_device(pdev);
9074 
9075 	/* Request a slot slot reset. */
9076 	return PCI_ERS_RESULT_NEED_RESET;
9077 }
9078 
9079 /**
9080  *  igb_io_slot_reset - called after the pci bus has been reset.
9081  *  @pdev: Pointer to PCI device
9082  *
9083  *  Restart the card from scratch, as if from a cold-boot. Implementation
9084  *  resembles the first-half of the igb_resume routine.
9085  **/
9086 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9087 {
9088 	struct net_device *netdev = pci_get_drvdata(pdev);
9089 	struct igb_adapter *adapter = netdev_priv(netdev);
9090 	struct e1000_hw *hw = &adapter->hw;
9091 	pci_ers_result_t result;
9092 
9093 	if (pci_enable_device_mem(pdev)) {
9094 		dev_err(&pdev->dev,
9095 			"Cannot re-enable PCI device after reset.\n");
9096 		result = PCI_ERS_RESULT_DISCONNECT;
9097 	} else {
9098 		pci_set_master(pdev);
9099 		pci_restore_state(pdev);
9100 		pci_save_state(pdev);
9101 
9102 		pci_enable_wake(pdev, PCI_D3hot, 0);
9103 		pci_enable_wake(pdev, PCI_D3cold, 0);
9104 
9105 		/* In case of PCI error, adapter lose its HW address
9106 		 * so we should re-assign it here.
9107 		 */
9108 		hw->hw_addr = adapter->io_addr;
9109 
9110 		igb_reset(adapter);
9111 		wr32(E1000_WUS, ~0);
9112 		result = PCI_ERS_RESULT_RECOVERED;
9113 	}
9114 
9115 	return result;
9116 }
9117 
9118 /**
9119  *  igb_io_resume - called when traffic can start flowing again.
9120  *  @pdev: Pointer to PCI device
9121  *
9122  *  This callback is called when the error recovery driver tells us that
9123  *  its OK to resume normal operation. Implementation resembles the
9124  *  second-half of the igb_resume routine.
9125  */
9126 static void igb_io_resume(struct pci_dev *pdev)
9127 {
9128 	struct net_device *netdev = pci_get_drvdata(pdev);
9129 	struct igb_adapter *adapter = netdev_priv(netdev);
9130 
9131 	if (netif_running(netdev)) {
9132 		if (igb_up(adapter)) {
9133 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9134 			return;
9135 		}
9136 	}
9137 
9138 	netif_device_attach(netdev);
9139 
9140 	/* let the f/w know that the h/w is now under the control of the
9141 	 * driver.
9142 	 */
9143 	igb_get_hw_control(adapter);
9144 }
9145 
9146 /**
9147  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9148  *  @adapter: Pointer to adapter structure
9149  *  @index: Index of the RAR entry which need to be synced with MAC table
9150  **/
9151 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9152 {
9153 	struct e1000_hw *hw = &adapter->hw;
9154 	u32 rar_low, rar_high;
9155 	u8 *addr = adapter->mac_table[index].addr;
9156 
9157 	/* HW expects these to be in network order when they are plugged
9158 	 * into the registers which are little endian.  In order to guarantee
9159 	 * that ordering we need to do an leXX_to_cpup here in order to be
9160 	 * ready for the byteswap that occurs with writel
9161 	 */
9162 	rar_low = le32_to_cpup((__le32 *)(addr));
9163 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9164 
9165 	/* Indicate to hardware the Address is Valid. */
9166 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9167 		if (is_valid_ether_addr(addr))
9168 			rar_high |= E1000_RAH_AV;
9169 
9170 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9171 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9172 
9173 		switch (hw->mac.type) {
9174 		case e1000_82575:
9175 		case e1000_i210:
9176 			if (adapter->mac_table[index].state &
9177 			    IGB_MAC_STATE_QUEUE_STEERING)
9178 				rar_high |= E1000_RAH_QSEL_ENABLE;
9179 
9180 			rar_high |= E1000_RAH_POOL_1 *
9181 				    adapter->mac_table[index].queue;
9182 			break;
9183 		default:
9184 			rar_high |= E1000_RAH_POOL_1 <<
9185 				    adapter->mac_table[index].queue;
9186 			break;
9187 		}
9188 	}
9189 
9190 	wr32(E1000_RAL(index), rar_low);
9191 	wrfl();
9192 	wr32(E1000_RAH(index), rar_high);
9193 	wrfl();
9194 }
9195 
9196 static int igb_set_vf_mac(struct igb_adapter *adapter,
9197 			  int vf, unsigned char *mac_addr)
9198 {
9199 	struct e1000_hw *hw = &adapter->hw;
9200 	/* VF MAC addresses start at end of receive addresses and moves
9201 	 * towards the first, as a result a collision should not be possible
9202 	 */
9203 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9204 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9205 
9206 	ether_addr_copy(vf_mac_addr, mac_addr);
9207 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9208 	adapter->mac_table[rar_entry].queue = vf;
9209 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9210 	igb_rar_set_index(adapter, rar_entry);
9211 
9212 	return 0;
9213 }
9214 
9215 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9216 {
9217 	struct igb_adapter *adapter = netdev_priv(netdev);
9218 
9219 	if (vf >= adapter->vfs_allocated_count)
9220 		return -EINVAL;
9221 
9222 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9223 	 * flag and allows to overwrite the MAC via VF netdev.  This
9224 	 * is necessary to allow libvirt a way to restore the original
9225 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9226 	 * down a VM.
9227 	 */
9228 	if (is_zero_ether_addr(mac)) {
9229 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9230 		dev_info(&adapter->pdev->dev,
9231 			 "remove administratively set MAC on VF %d\n",
9232 			 vf);
9233 	} else if (is_valid_ether_addr(mac)) {
9234 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9235 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9236 			 mac, vf);
9237 		dev_info(&adapter->pdev->dev,
9238 			 "Reload the VF driver to make this change effective.");
9239 		/* Generate additional warning if PF is down */
9240 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9241 			dev_warn(&adapter->pdev->dev,
9242 				 "The VF MAC address has been set, but the PF device is not up.\n");
9243 			dev_warn(&adapter->pdev->dev,
9244 				 "Bring the PF device up before attempting to use the VF device.\n");
9245 		}
9246 	} else {
9247 		return -EINVAL;
9248 	}
9249 	return igb_set_vf_mac(adapter, vf, mac);
9250 }
9251 
9252 static int igb_link_mbps(int internal_link_speed)
9253 {
9254 	switch (internal_link_speed) {
9255 	case SPEED_100:
9256 		return 100;
9257 	case SPEED_1000:
9258 		return 1000;
9259 	default:
9260 		return 0;
9261 	}
9262 }
9263 
9264 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9265 				  int link_speed)
9266 {
9267 	int rf_dec, rf_int;
9268 	u32 bcnrc_val;
9269 
9270 	if (tx_rate != 0) {
9271 		/* Calculate the rate factor values to set */
9272 		rf_int = link_speed / tx_rate;
9273 		rf_dec = (link_speed - (rf_int * tx_rate));
9274 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9275 			 tx_rate;
9276 
9277 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9278 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9279 			      E1000_RTTBCNRC_RF_INT_MASK);
9280 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9281 	} else {
9282 		bcnrc_val = 0;
9283 	}
9284 
9285 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9286 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9287 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9288 	 */
9289 	wr32(E1000_RTTBCNRM, 0x14);
9290 	wr32(E1000_RTTBCNRC, bcnrc_val);
9291 }
9292 
9293 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9294 {
9295 	int actual_link_speed, i;
9296 	bool reset_rate = false;
9297 
9298 	/* VF TX rate limit was not set or not supported */
9299 	if ((adapter->vf_rate_link_speed == 0) ||
9300 	    (adapter->hw.mac.type != e1000_82576))
9301 		return;
9302 
9303 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9304 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9305 		reset_rate = true;
9306 		adapter->vf_rate_link_speed = 0;
9307 		dev_info(&adapter->pdev->dev,
9308 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9309 	}
9310 
9311 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9312 		if (reset_rate)
9313 			adapter->vf_data[i].tx_rate = 0;
9314 
9315 		igb_set_vf_rate_limit(&adapter->hw, i,
9316 				      adapter->vf_data[i].tx_rate,
9317 				      actual_link_speed);
9318 	}
9319 }
9320 
9321 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9322 			     int min_tx_rate, int max_tx_rate)
9323 {
9324 	struct igb_adapter *adapter = netdev_priv(netdev);
9325 	struct e1000_hw *hw = &adapter->hw;
9326 	int actual_link_speed;
9327 
9328 	if (hw->mac.type != e1000_82576)
9329 		return -EOPNOTSUPP;
9330 
9331 	if (min_tx_rate)
9332 		return -EINVAL;
9333 
9334 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9335 	if ((vf >= adapter->vfs_allocated_count) ||
9336 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9337 	    (max_tx_rate < 0) ||
9338 	    (max_tx_rate > actual_link_speed))
9339 		return -EINVAL;
9340 
9341 	adapter->vf_rate_link_speed = actual_link_speed;
9342 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9343 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9344 
9345 	return 0;
9346 }
9347 
9348 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9349 				   bool setting)
9350 {
9351 	struct igb_adapter *adapter = netdev_priv(netdev);
9352 	struct e1000_hw *hw = &adapter->hw;
9353 	u32 reg_val, reg_offset;
9354 
9355 	if (!adapter->vfs_allocated_count)
9356 		return -EOPNOTSUPP;
9357 
9358 	if (vf >= adapter->vfs_allocated_count)
9359 		return -EINVAL;
9360 
9361 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9362 	reg_val = rd32(reg_offset);
9363 	if (setting)
9364 		reg_val |= (BIT(vf) |
9365 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9366 	else
9367 		reg_val &= ~(BIT(vf) |
9368 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9369 	wr32(reg_offset, reg_val);
9370 
9371 	adapter->vf_data[vf].spoofchk_enabled = setting;
9372 	return 0;
9373 }
9374 
9375 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9376 {
9377 	struct igb_adapter *adapter = netdev_priv(netdev);
9378 
9379 	if (vf >= adapter->vfs_allocated_count)
9380 		return -EINVAL;
9381 	if (adapter->vf_data[vf].trusted == setting)
9382 		return 0;
9383 
9384 	adapter->vf_data[vf].trusted = setting;
9385 
9386 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9387 		 vf, setting ? "" : "not ");
9388 	return 0;
9389 }
9390 
9391 static int igb_ndo_get_vf_config(struct net_device *netdev,
9392 				 int vf, struct ifla_vf_info *ivi)
9393 {
9394 	struct igb_adapter *adapter = netdev_priv(netdev);
9395 	if (vf >= adapter->vfs_allocated_count)
9396 		return -EINVAL;
9397 	ivi->vf = vf;
9398 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9399 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9400 	ivi->min_tx_rate = 0;
9401 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9402 	ivi->qos = adapter->vf_data[vf].pf_qos;
9403 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9404 	ivi->trusted = adapter->vf_data[vf].trusted;
9405 	return 0;
9406 }
9407 
9408 static void igb_vmm_control(struct igb_adapter *adapter)
9409 {
9410 	struct e1000_hw *hw = &adapter->hw;
9411 	u32 reg;
9412 
9413 	switch (hw->mac.type) {
9414 	case e1000_82575:
9415 	case e1000_i210:
9416 	case e1000_i211:
9417 	case e1000_i354:
9418 	default:
9419 		/* replication is not supported for 82575 */
9420 		return;
9421 	case e1000_82576:
9422 		/* notify HW that the MAC is adding vlan tags */
9423 		reg = rd32(E1000_DTXCTL);
9424 		reg |= E1000_DTXCTL_VLAN_ADDED;
9425 		wr32(E1000_DTXCTL, reg);
9426 		/* Fall through */
9427 	case e1000_82580:
9428 		/* enable replication vlan tag stripping */
9429 		reg = rd32(E1000_RPLOLR);
9430 		reg |= E1000_RPLOLR_STRVLAN;
9431 		wr32(E1000_RPLOLR, reg);
9432 		/* Fall through */
9433 	case e1000_i350:
9434 		/* none of the above registers are supported by i350 */
9435 		break;
9436 	}
9437 
9438 	if (adapter->vfs_allocated_count) {
9439 		igb_vmdq_set_loopback_pf(hw, true);
9440 		igb_vmdq_set_replication_pf(hw, true);
9441 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9442 					      adapter->vfs_allocated_count);
9443 	} else {
9444 		igb_vmdq_set_loopback_pf(hw, false);
9445 		igb_vmdq_set_replication_pf(hw, false);
9446 	}
9447 }
9448 
9449 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9450 {
9451 	struct e1000_hw *hw = &adapter->hw;
9452 	u32 dmac_thr;
9453 	u16 hwm;
9454 
9455 	if (hw->mac.type > e1000_82580) {
9456 		if (adapter->flags & IGB_FLAG_DMAC) {
9457 			u32 reg;
9458 
9459 			/* force threshold to 0. */
9460 			wr32(E1000_DMCTXTH, 0);
9461 
9462 			/* DMA Coalescing high water mark needs to be greater
9463 			 * than the Rx threshold. Set hwm to PBA - max frame
9464 			 * size in 16B units, capping it at PBA - 6KB.
9465 			 */
9466 			hwm = 64 * (pba - 6);
9467 			reg = rd32(E1000_FCRTC);
9468 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9469 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9470 				& E1000_FCRTC_RTH_COAL_MASK);
9471 			wr32(E1000_FCRTC, reg);
9472 
9473 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9474 			 * frame size, capping it at PBA - 10KB.
9475 			 */
9476 			dmac_thr = pba - 10;
9477 			reg = rd32(E1000_DMACR);
9478 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9479 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9480 				& E1000_DMACR_DMACTHR_MASK);
9481 
9482 			/* transition to L0x or L1 if available..*/
9483 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9484 
9485 			/* watchdog timer= +-1000 usec in 32usec intervals */
9486 			reg |= (1000 >> 5);
9487 
9488 			/* Disable BMC-to-OS Watchdog Enable */
9489 			if (hw->mac.type != e1000_i354)
9490 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9491 
9492 			wr32(E1000_DMACR, reg);
9493 
9494 			/* no lower threshold to disable
9495 			 * coalescing(smart fifb)-UTRESH=0
9496 			 */
9497 			wr32(E1000_DMCRTRH, 0);
9498 
9499 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9500 
9501 			wr32(E1000_DMCTLX, reg);
9502 
9503 			/* free space in tx packet buffer to wake from
9504 			 * DMA coal
9505 			 */
9506 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9507 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9508 
9509 			/* make low power state decision controlled
9510 			 * by DMA coal
9511 			 */
9512 			reg = rd32(E1000_PCIEMISC);
9513 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9514 			wr32(E1000_PCIEMISC, reg);
9515 		} /* endif adapter->dmac is not disabled */
9516 	} else if (hw->mac.type == e1000_82580) {
9517 		u32 reg = rd32(E1000_PCIEMISC);
9518 
9519 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9520 		wr32(E1000_DMACR, 0);
9521 	}
9522 }
9523 
9524 /**
9525  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9526  *  @hw: pointer to hardware structure
9527  *  @byte_offset: byte offset to read
9528  *  @dev_addr: device address
9529  *  @data: value read
9530  *
9531  *  Performs byte read operation over I2C interface at
9532  *  a specified device address.
9533  **/
9534 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9535 		      u8 dev_addr, u8 *data)
9536 {
9537 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9538 	struct i2c_client *this_client = adapter->i2c_client;
9539 	s32 status;
9540 	u16 swfw_mask = 0;
9541 
9542 	if (!this_client)
9543 		return E1000_ERR_I2C;
9544 
9545 	swfw_mask = E1000_SWFW_PHY0_SM;
9546 
9547 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9548 		return E1000_ERR_SWFW_SYNC;
9549 
9550 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9551 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9552 
9553 	if (status < 0)
9554 		return E1000_ERR_I2C;
9555 	else {
9556 		*data = status;
9557 		return 0;
9558 	}
9559 }
9560 
9561 /**
9562  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9563  *  @hw: pointer to hardware structure
9564  *  @byte_offset: byte offset to write
9565  *  @dev_addr: device address
9566  *  @data: value to write
9567  *
9568  *  Performs byte write operation over I2C interface at
9569  *  a specified device address.
9570  **/
9571 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9572 		       u8 dev_addr, u8 data)
9573 {
9574 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9575 	struct i2c_client *this_client = adapter->i2c_client;
9576 	s32 status;
9577 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9578 
9579 	if (!this_client)
9580 		return E1000_ERR_I2C;
9581 
9582 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9583 		return E1000_ERR_SWFW_SYNC;
9584 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9585 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9586 
9587 	if (status)
9588 		return E1000_ERR_I2C;
9589 	else
9590 		return 0;
9591 
9592 }
9593 
9594 int igb_reinit_queues(struct igb_adapter *adapter)
9595 {
9596 	struct net_device *netdev = adapter->netdev;
9597 	struct pci_dev *pdev = adapter->pdev;
9598 	int err = 0;
9599 
9600 	if (netif_running(netdev))
9601 		igb_close(netdev);
9602 
9603 	igb_reset_interrupt_capability(adapter);
9604 
9605 	if (igb_init_interrupt_scheme(adapter, true)) {
9606 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9607 		return -ENOMEM;
9608 	}
9609 
9610 	if (netif_running(netdev))
9611 		err = igb_open(netdev);
9612 
9613 	return err;
9614 }
9615 
9616 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9617 {
9618 	struct igb_nfc_filter *rule;
9619 
9620 	spin_lock(&adapter->nfc_lock);
9621 
9622 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9623 		igb_erase_filter(adapter, rule);
9624 
9625 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9626 		igb_erase_filter(adapter, rule);
9627 
9628 	spin_unlock(&adapter->nfc_lock);
9629 }
9630 
9631 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9632 {
9633 	struct igb_nfc_filter *rule;
9634 
9635 	spin_lock(&adapter->nfc_lock);
9636 
9637 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9638 		igb_add_filter(adapter, rule);
9639 
9640 	spin_unlock(&adapter->nfc_lock);
9641 }
9642 /* igb_main.c */
9643