xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41 
42 enum queue_mode {
43 	QUEUE_MODE_STRICT_PRIORITY,
44 	QUEUE_MODE_STREAM_RESERVATION,
45 };
46 
47 enum tx_queue_prio {
48 	TX_QUEUE_PRIO_HIGH,
49 	TX_QUEUE_PRIO_LOW,
50 };
51 
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 				"Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 				"Copyright (c) 2007-2014 Intel Corporation.";
57 
58 static const struct e1000_info *igb_info_tbl[] = {
59 	[board_82575] = &e1000_82575_info,
60 };
61 
62 static const struct pci_device_id igb_pci_tbl[] = {
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 	/* required last entry */
99 	{0, }
100 };
101 
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103 
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_clean_tx_ring(struct igb_ring *);
119 static void igb_clean_rx_ring(struct igb_ring *);
120 static void igb_set_rx_mode(struct net_device *);
121 static void igb_update_phy_info(struct timer_list *);
122 static void igb_watchdog(struct timer_list *);
123 static void igb_watchdog_task(struct work_struct *);
124 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
125 static void igb_get_stats64(struct net_device *dev,
126 			    struct rtnl_link_stats64 *stats);
127 static int igb_change_mtu(struct net_device *, int);
128 static int igb_set_mac(struct net_device *, void *);
129 static void igb_set_uta(struct igb_adapter *adapter, bool set);
130 static irqreturn_t igb_intr(int irq, void *);
131 static irqreturn_t igb_intr_msi(int irq, void *);
132 static irqreturn_t igb_msix_other(int irq, void *);
133 static irqreturn_t igb_msix_ring(int irq, void *);
134 #ifdef CONFIG_IGB_DCA
135 static void igb_update_dca(struct igb_q_vector *);
136 static void igb_setup_dca(struct igb_adapter *);
137 #endif /* CONFIG_IGB_DCA */
138 static int igb_poll(struct napi_struct *, int);
139 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
140 static int igb_clean_rx_irq(struct igb_q_vector *, int);
141 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
142 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
143 static void igb_reset_task(struct work_struct *);
144 static void igb_vlan_mode(struct net_device *netdev,
145 			  netdev_features_t features);
146 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
147 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
148 static void igb_restore_vlan(struct igb_adapter *);
149 static void igb_rar_set_index(struct igb_adapter *, u32);
150 static void igb_ping_all_vfs(struct igb_adapter *);
151 static void igb_msg_task(struct igb_adapter *);
152 static void igb_vmm_control(struct igb_adapter *);
153 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
154 static void igb_flush_mac_table(struct igb_adapter *);
155 static int igb_available_rars(struct igb_adapter *, u8);
156 static void igb_set_default_mac_filter(struct igb_adapter *);
157 static int igb_uc_sync(struct net_device *, const unsigned char *);
158 static int igb_uc_unsync(struct net_device *, const unsigned char *);
159 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
160 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
161 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
162 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
163 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
164 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
165 				   bool setting);
166 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
167 				bool setting);
168 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
169 				 struct ifla_vf_info *ivi);
170 static void igb_check_vf_rate_limit(struct igb_adapter *);
171 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
172 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
173 
174 #ifdef CONFIG_PCI_IOV
175 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
176 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
177 #endif
178 
179 #ifdef CONFIG_IGB_DCA
180 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
181 static struct notifier_block dca_notifier = {
182 	.notifier_call	= igb_notify_dca,
183 	.next		= NULL,
184 	.priority	= 0
185 };
186 #endif
187 #ifdef CONFIG_PCI_IOV
188 static unsigned int max_vfs;
189 module_param(max_vfs, uint, 0444);
190 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
191 #endif /* CONFIG_PCI_IOV */
192 
193 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
194 		     pci_channel_state_t);
195 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
196 static void igb_io_resume(struct pci_dev *);
197 
198 static const struct pci_error_handlers igb_err_handler = {
199 	.error_detected = igb_io_error_detected,
200 	.slot_reset = igb_io_slot_reset,
201 	.resume = igb_io_resume,
202 };
203 
204 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
205 
206 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
207 MODULE_LICENSE("GPL v2");
208 
209 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
210 static int debug = -1;
211 module_param(debug, int, 0);
212 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
213 
214 struct igb_reg_info {
215 	u32 ofs;
216 	char *name;
217 };
218 
219 static const struct igb_reg_info igb_reg_info_tbl[] = {
220 
221 	/* General Registers */
222 	{E1000_CTRL, "CTRL"},
223 	{E1000_STATUS, "STATUS"},
224 	{E1000_CTRL_EXT, "CTRL_EXT"},
225 
226 	/* Interrupt Registers */
227 	{E1000_ICR, "ICR"},
228 
229 	/* RX Registers */
230 	{E1000_RCTL, "RCTL"},
231 	{E1000_RDLEN(0), "RDLEN"},
232 	{E1000_RDH(0), "RDH"},
233 	{E1000_RDT(0), "RDT"},
234 	{E1000_RXDCTL(0), "RXDCTL"},
235 	{E1000_RDBAL(0), "RDBAL"},
236 	{E1000_RDBAH(0), "RDBAH"},
237 
238 	/* TX Registers */
239 	{E1000_TCTL, "TCTL"},
240 	{E1000_TDBAL(0), "TDBAL"},
241 	{E1000_TDBAH(0), "TDBAH"},
242 	{E1000_TDLEN(0), "TDLEN"},
243 	{E1000_TDH(0), "TDH"},
244 	{E1000_TDT(0), "TDT"},
245 	{E1000_TXDCTL(0), "TXDCTL"},
246 	{E1000_TDFH, "TDFH"},
247 	{E1000_TDFT, "TDFT"},
248 	{E1000_TDFHS, "TDFHS"},
249 	{E1000_TDFPC, "TDFPC"},
250 
251 	/* List Terminator */
252 	{}
253 };
254 
255 /* igb_regdump - register printout routine */
256 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
257 {
258 	int n = 0;
259 	char rname[16];
260 	u32 regs[8];
261 
262 	switch (reginfo->ofs) {
263 	case E1000_RDLEN(0):
264 		for (n = 0; n < 4; n++)
265 			regs[n] = rd32(E1000_RDLEN(n));
266 		break;
267 	case E1000_RDH(0):
268 		for (n = 0; n < 4; n++)
269 			regs[n] = rd32(E1000_RDH(n));
270 		break;
271 	case E1000_RDT(0):
272 		for (n = 0; n < 4; n++)
273 			regs[n] = rd32(E1000_RDT(n));
274 		break;
275 	case E1000_RXDCTL(0):
276 		for (n = 0; n < 4; n++)
277 			regs[n] = rd32(E1000_RXDCTL(n));
278 		break;
279 	case E1000_RDBAL(0):
280 		for (n = 0; n < 4; n++)
281 			regs[n] = rd32(E1000_RDBAL(n));
282 		break;
283 	case E1000_RDBAH(0):
284 		for (n = 0; n < 4; n++)
285 			regs[n] = rd32(E1000_RDBAH(n));
286 		break;
287 	case E1000_TDBAL(0):
288 		for (n = 0; n < 4; n++)
289 			regs[n] = rd32(E1000_TDBAL(n));
290 		break;
291 	case E1000_TDBAH(0):
292 		for (n = 0; n < 4; n++)
293 			regs[n] = rd32(E1000_TDBAH(n));
294 		break;
295 	case E1000_TDLEN(0):
296 		for (n = 0; n < 4; n++)
297 			regs[n] = rd32(E1000_TDLEN(n));
298 		break;
299 	case E1000_TDH(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_TDH(n));
302 		break;
303 	case E1000_TDT(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_TDT(n));
306 		break;
307 	case E1000_TXDCTL(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_TXDCTL(n));
310 		break;
311 	default:
312 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
313 		return;
314 	}
315 
316 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
317 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
318 		regs[2], regs[3]);
319 }
320 
321 /* igb_dump - Print registers, Tx-rings and Rx-rings */
322 static void igb_dump(struct igb_adapter *adapter)
323 {
324 	struct net_device *netdev = adapter->netdev;
325 	struct e1000_hw *hw = &adapter->hw;
326 	struct igb_reg_info *reginfo;
327 	struct igb_ring *tx_ring;
328 	union e1000_adv_tx_desc *tx_desc;
329 	struct my_u0 { __le64 a; __le64 b; } *u0;
330 	struct igb_ring *rx_ring;
331 	union e1000_adv_rx_desc *rx_desc;
332 	u32 staterr;
333 	u16 i, n;
334 
335 	if (!netif_msg_hw(adapter))
336 		return;
337 
338 	/* Print netdevice Info */
339 	if (netdev) {
340 		dev_info(&adapter->pdev->dev, "Net device Info\n");
341 		pr_info("Device Name     state            trans_start\n");
342 		pr_info("%-15s %016lX %016lX\n", netdev->name,
343 			netdev->state, dev_trans_start(netdev));
344 	}
345 
346 	/* Print Registers */
347 	dev_info(&adapter->pdev->dev, "Register Dump\n");
348 	pr_info(" Register Name   Value\n");
349 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
350 	     reginfo->name; reginfo++) {
351 		igb_regdump(hw, reginfo);
352 	}
353 
354 	/* Print TX Ring Summary */
355 	if (!netdev || !netif_running(netdev))
356 		goto exit;
357 
358 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
359 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
360 	for (n = 0; n < adapter->num_tx_queues; n++) {
361 		struct igb_tx_buffer *buffer_info;
362 		tx_ring = adapter->tx_ring[n];
363 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
364 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
365 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
366 			(u64)dma_unmap_addr(buffer_info, dma),
367 			dma_unmap_len(buffer_info, len),
368 			buffer_info->next_to_watch,
369 			(u64)buffer_info->time_stamp);
370 	}
371 
372 	/* Print TX Rings */
373 	if (!netif_msg_tx_done(adapter))
374 		goto rx_ring_summary;
375 
376 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
377 
378 	/* Transmit Descriptor Formats
379 	 *
380 	 * Advanced Transmit Descriptor
381 	 *   +--------------------------------------------------------------+
382 	 * 0 |         Buffer Address [63:0]                                |
383 	 *   +--------------------------------------------------------------+
384 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
385 	 *   +--------------------------------------------------------------+
386 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
387 	 */
388 
389 	for (n = 0; n < adapter->num_tx_queues; n++) {
390 		tx_ring = adapter->tx_ring[n];
391 		pr_info("------------------------------------\n");
392 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
393 		pr_info("------------------------------------\n");
394 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
395 
396 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
397 			const char *next_desc;
398 			struct igb_tx_buffer *buffer_info;
399 			tx_desc = IGB_TX_DESC(tx_ring, i);
400 			buffer_info = &tx_ring->tx_buffer_info[i];
401 			u0 = (struct my_u0 *)tx_desc;
402 			if (i == tx_ring->next_to_use &&
403 			    i == tx_ring->next_to_clean)
404 				next_desc = " NTC/U";
405 			else if (i == tx_ring->next_to_use)
406 				next_desc = " NTU";
407 			else if (i == tx_ring->next_to_clean)
408 				next_desc = " NTC";
409 			else
410 				next_desc = "";
411 
412 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
413 				i, le64_to_cpu(u0->a),
414 				le64_to_cpu(u0->b),
415 				(u64)dma_unmap_addr(buffer_info, dma),
416 				dma_unmap_len(buffer_info, len),
417 				buffer_info->next_to_watch,
418 				(u64)buffer_info->time_stamp,
419 				buffer_info->skb, next_desc);
420 
421 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
422 				print_hex_dump(KERN_INFO, "",
423 					DUMP_PREFIX_ADDRESS,
424 					16, 1, buffer_info->skb->data,
425 					dma_unmap_len(buffer_info, len),
426 					true);
427 		}
428 	}
429 
430 	/* Print RX Rings Summary */
431 rx_ring_summary:
432 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
433 	pr_info("Queue [NTU] [NTC]\n");
434 	for (n = 0; n < adapter->num_rx_queues; n++) {
435 		rx_ring = adapter->rx_ring[n];
436 		pr_info(" %5d %5X %5X\n",
437 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
438 	}
439 
440 	/* Print RX Rings */
441 	if (!netif_msg_rx_status(adapter))
442 		goto exit;
443 
444 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
445 
446 	/* Advanced Receive Descriptor (Read) Format
447 	 *    63                                           1        0
448 	 *    +-----------------------------------------------------+
449 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
450 	 *    +----------------------------------------------+------+
451 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
452 	 *    +-----------------------------------------------------+
453 	 *
454 	 *
455 	 * Advanced Receive Descriptor (Write-Back) Format
456 	 *
457 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
458 	 *   +------------------------------------------------------+
459 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
460 	 *   | Checksum   Ident  |   |           |    | Type | Type |
461 	 *   +------------------------------------------------------+
462 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
463 	 *   +------------------------------------------------------+
464 	 *   63       48 47    32 31            20 19               0
465 	 */
466 
467 	for (n = 0; n < adapter->num_rx_queues; n++) {
468 		rx_ring = adapter->rx_ring[n];
469 		pr_info("------------------------------------\n");
470 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
471 		pr_info("------------------------------------\n");
472 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
473 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
474 
475 		for (i = 0; i < rx_ring->count; i++) {
476 			const char *next_desc;
477 			struct igb_rx_buffer *buffer_info;
478 			buffer_info = &rx_ring->rx_buffer_info[i];
479 			rx_desc = IGB_RX_DESC(rx_ring, i);
480 			u0 = (struct my_u0 *)rx_desc;
481 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
482 
483 			if (i == rx_ring->next_to_use)
484 				next_desc = " NTU";
485 			else if (i == rx_ring->next_to_clean)
486 				next_desc = " NTC";
487 			else
488 				next_desc = "";
489 
490 			if (staterr & E1000_RXD_STAT_DD) {
491 				/* Descriptor Done */
492 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
493 					"RWB", i,
494 					le64_to_cpu(u0->a),
495 					le64_to_cpu(u0->b),
496 					next_desc);
497 			} else {
498 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
499 					"R  ", i,
500 					le64_to_cpu(u0->a),
501 					le64_to_cpu(u0->b),
502 					(u64)buffer_info->dma,
503 					next_desc);
504 
505 				if (netif_msg_pktdata(adapter) &&
506 				    buffer_info->dma && buffer_info->page) {
507 					print_hex_dump(KERN_INFO, "",
508 					  DUMP_PREFIX_ADDRESS,
509 					  16, 1,
510 					  page_address(buffer_info->page) +
511 						      buffer_info->page_offset,
512 					  igb_rx_bufsz(rx_ring), true);
513 				}
514 			}
515 		}
516 	}
517 
518 exit:
519 	return;
520 }
521 
522 /**
523  *  igb_get_i2c_data - Reads the I2C SDA data bit
524  *  @data: opaque pointer to adapter struct
525  *
526  *  Returns the I2C data bit value
527  **/
528 static int igb_get_i2c_data(void *data)
529 {
530 	struct igb_adapter *adapter = (struct igb_adapter *)data;
531 	struct e1000_hw *hw = &adapter->hw;
532 	s32 i2cctl = rd32(E1000_I2CPARAMS);
533 
534 	return !!(i2cctl & E1000_I2C_DATA_IN);
535 }
536 
537 /**
538  *  igb_set_i2c_data - Sets the I2C data bit
539  *  @data: pointer to hardware structure
540  *  @state: I2C data value (0 or 1) to set
541  *
542  *  Sets the I2C data bit
543  **/
544 static void igb_set_i2c_data(void *data, int state)
545 {
546 	struct igb_adapter *adapter = (struct igb_adapter *)data;
547 	struct e1000_hw *hw = &adapter->hw;
548 	s32 i2cctl = rd32(E1000_I2CPARAMS);
549 
550 	if (state) {
551 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
552 	} else {
553 		i2cctl &= ~E1000_I2C_DATA_OE_N;
554 		i2cctl &= ~E1000_I2C_DATA_OUT;
555 	}
556 
557 	wr32(E1000_I2CPARAMS, i2cctl);
558 	wrfl();
559 }
560 
561 /**
562  *  igb_set_i2c_clk - Sets the I2C SCL clock
563  *  @data: pointer to hardware structure
564  *  @state: state to set clock
565  *
566  *  Sets the I2C clock line to state
567  **/
568 static void igb_set_i2c_clk(void *data, int state)
569 {
570 	struct igb_adapter *adapter = (struct igb_adapter *)data;
571 	struct e1000_hw *hw = &adapter->hw;
572 	s32 i2cctl = rd32(E1000_I2CPARAMS);
573 
574 	if (state) {
575 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
576 	} else {
577 		i2cctl &= ~E1000_I2C_CLK_OUT;
578 		i2cctl &= ~E1000_I2C_CLK_OE_N;
579 	}
580 	wr32(E1000_I2CPARAMS, i2cctl);
581 	wrfl();
582 }
583 
584 /**
585  *  igb_get_i2c_clk - Gets the I2C SCL clock state
586  *  @data: pointer to hardware structure
587  *
588  *  Gets the I2C clock state
589  **/
590 static int igb_get_i2c_clk(void *data)
591 {
592 	struct igb_adapter *adapter = (struct igb_adapter *)data;
593 	struct e1000_hw *hw = &adapter->hw;
594 	s32 i2cctl = rd32(E1000_I2CPARAMS);
595 
596 	return !!(i2cctl & E1000_I2C_CLK_IN);
597 }
598 
599 static const struct i2c_algo_bit_data igb_i2c_algo = {
600 	.setsda		= igb_set_i2c_data,
601 	.setscl		= igb_set_i2c_clk,
602 	.getsda		= igb_get_i2c_data,
603 	.getscl		= igb_get_i2c_clk,
604 	.udelay		= 5,
605 	.timeout	= 20,
606 };
607 
608 /**
609  *  igb_get_hw_dev - return device
610  *  @hw: pointer to hardware structure
611  *
612  *  used by hardware layer to print debugging information
613  **/
614 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
615 {
616 	struct igb_adapter *adapter = hw->back;
617 	return adapter->netdev;
618 }
619 
620 static struct pci_driver igb_driver;
621 
622 /**
623  *  igb_init_module - Driver Registration Routine
624  *
625  *  igb_init_module is the first routine called when the driver is
626  *  loaded. All it does is register with the PCI subsystem.
627  **/
628 static int __init igb_init_module(void)
629 {
630 	int ret;
631 
632 	pr_info("%s\n", igb_driver_string);
633 	pr_info("%s\n", igb_copyright);
634 
635 #ifdef CONFIG_IGB_DCA
636 	dca_register_notify(&dca_notifier);
637 #endif
638 	ret = pci_register_driver(&igb_driver);
639 	return ret;
640 }
641 
642 module_init(igb_init_module);
643 
644 /**
645  *  igb_exit_module - Driver Exit Cleanup Routine
646  *
647  *  igb_exit_module is called just before the driver is removed
648  *  from memory.
649  **/
650 static void __exit igb_exit_module(void)
651 {
652 #ifdef CONFIG_IGB_DCA
653 	dca_unregister_notify(&dca_notifier);
654 #endif
655 	pci_unregister_driver(&igb_driver);
656 }
657 
658 module_exit(igb_exit_module);
659 
660 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
661 /**
662  *  igb_cache_ring_register - Descriptor ring to register mapping
663  *  @adapter: board private structure to initialize
664  *
665  *  Once we know the feature-set enabled for the device, we'll cache
666  *  the register offset the descriptor ring is assigned to.
667  **/
668 static void igb_cache_ring_register(struct igb_adapter *adapter)
669 {
670 	int i = 0, j = 0;
671 	u32 rbase_offset = adapter->vfs_allocated_count;
672 
673 	switch (adapter->hw.mac.type) {
674 	case e1000_82576:
675 		/* The queues are allocated for virtualization such that VF 0
676 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
677 		 * In order to avoid collision we start at the first free queue
678 		 * and continue consuming queues in the same sequence
679 		 */
680 		if (adapter->vfs_allocated_count) {
681 			for (; i < adapter->rss_queues; i++)
682 				adapter->rx_ring[i]->reg_idx = rbase_offset +
683 							       Q_IDX_82576(i);
684 		}
685 		fallthrough;
686 	case e1000_82575:
687 	case e1000_82580:
688 	case e1000_i350:
689 	case e1000_i354:
690 	case e1000_i210:
691 	case e1000_i211:
692 	default:
693 		for (; i < adapter->num_rx_queues; i++)
694 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
695 		for (; j < adapter->num_tx_queues; j++)
696 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
697 		break;
698 	}
699 }
700 
701 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
702 {
703 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
704 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
705 	u32 value = 0;
706 
707 	if (E1000_REMOVED(hw_addr))
708 		return ~value;
709 
710 	value = readl(&hw_addr[reg]);
711 
712 	/* reads should not return all F's */
713 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
714 		struct net_device *netdev = igb->netdev;
715 		hw->hw_addr = NULL;
716 		netdev_err(netdev, "PCIe link lost\n");
717 		WARN(pci_device_is_present(igb->pdev),
718 		     "igb: Failed to read reg 0x%x!\n", reg);
719 	}
720 
721 	return value;
722 }
723 
724 /**
725  *  igb_write_ivar - configure ivar for given MSI-X vector
726  *  @hw: pointer to the HW structure
727  *  @msix_vector: vector number we are allocating to a given ring
728  *  @index: row index of IVAR register to write within IVAR table
729  *  @offset: column offset of in IVAR, should be multiple of 8
730  *
731  *  This function is intended to handle the writing of the IVAR register
732  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
733  *  each containing an cause allocation for an Rx and Tx ring, and a
734  *  variable number of rows depending on the number of queues supported.
735  **/
736 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
737 			   int index, int offset)
738 {
739 	u32 ivar = array_rd32(E1000_IVAR0, index);
740 
741 	/* clear any bits that are currently set */
742 	ivar &= ~((u32)0xFF << offset);
743 
744 	/* write vector and valid bit */
745 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
746 
747 	array_wr32(E1000_IVAR0, index, ivar);
748 }
749 
750 #define IGB_N0_QUEUE -1
751 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
752 {
753 	struct igb_adapter *adapter = q_vector->adapter;
754 	struct e1000_hw *hw = &adapter->hw;
755 	int rx_queue = IGB_N0_QUEUE;
756 	int tx_queue = IGB_N0_QUEUE;
757 	u32 msixbm = 0;
758 
759 	if (q_vector->rx.ring)
760 		rx_queue = q_vector->rx.ring->reg_idx;
761 	if (q_vector->tx.ring)
762 		tx_queue = q_vector->tx.ring->reg_idx;
763 
764 	switch (hw->mac.type) {
765 	case e1000_82575:
766 		/* The 82575 assigns vectors using a bitmask, which matches the
767 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
768 		 * or more queues to a vector, we write the appropriate bits
769 		 * into the MSIXBM register for that vector.
770 		 */
771 		if (rx_queue > IGB_N0_QUEUE)
772 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
773 		if (tx_queue > IGB_N0_QUEUE)
774 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
775 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
776 			msixbm |= E1000_EIMS_OTHER;
777 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
778 		q_vector->eims_value = msixbm;
779 		break;
780 	case e1000_82576:
781 		/* 82576 uses a table that essentially consists of 2 columns
782 		 * with 8 rows.  The ordering is column-major so we use the
783 		 * lower 3 bits as the row index, and the 4th bit as the
784 		 * column offset.
785 		 */
786 		if (rx_queue > IGB_N0_QUEUE)
787 			igb_write_ivar(hw, msix_vector,
788 				       rx_queue & 0x7,
789 				       (rx_queue & 0x8) << 1);
790 		if (tx_queue > IGB_N0_QUEUE)
791 			igb_write_ivar(hw, msix_vector,
792 				       tx_queue & 0x7,
793 				       ((tx_queue & 0x8) << 1) + 8);
794 		q_vector->eims_value = BIT(msix_vector);
795 		break;
796 	case e1000_82580:
797 	case e1000_i350:
798 	case e1000_i354:
799 	case e1000_i210:
800 	case e1000_i211:
801 		/* On 82580 and newer adapters the scheme is similar to 82576
802 		 * however instead of ordering column-major we have things
803 		 * ordered row-major.  So we traverse the table by using
804 		 * bit 0 as the column offset, and the remaining bits as the
805 		 * row index.
806 		 */
807 		if (rx_queue > IGB_N0_QUEUE)
808 			igb_write_ivar(hw, msix_vector,
809 				       rx_queue >> 1,
810 				       (rx_queue & 0x1) << 4);
811 		if (tx_queue > IGB_N0_QUEUE)
812 			igb_write_ivar(hw, msix_vector,
813 				       tx_queue >> 1,
814 				       ((tx_queue & 0x1) << 4) + 8);
815 		q_vector->eims_value = BIT(msix_vector);
816 		break;
817 	default:
818 		BUG();
819 		break;
820 	}
821 
822 	/* add q_vector eims value to global eims_enable_mask */
823 	adapter->eims_enable_mask |= q_vector->eims_value;
824 
825 	/* configure q_vector to set itr on first interrupt */
826 	q_vector->set_itr = 1;
827 }
828 
829 /**
830  *  igb_configure_msix - Configure MSI-X hardware
831  *  @adapter: board private structure to initialize
832  *
833  *  igb_configure_msix sets up the hardware to properly
834  *  generate MSI-X interrupts.
835  **/
836 static void igb_configure_msix(struct igb_adapter *adapter)
837 {
838 	u32 tmp;
839 	int i, vector = 0;
840 	struct e1000_hw *hw = &adapter->hw;
841 
842 	adapter->eims_enable_mask = 0;
843 
844 	/* set vector for other causes, i.e. link changes */
845 	switch (hw->mac.type) {
846 	case e1000_82575:
847 		tmp = rd32(E1000_CTRL_EXT);
848 		/* enable MSI-X PBA support*/
849 		tmp |= E1000_CTRL_EXT_PBA_CLR;
850 
851 		/* Auto-Mask interrupts upon ICR read. */
852 		tmp |= E1000_CTRL_EXT_EIAME;
853 		tmp |= E1000_CTRL_EXT_IRCA;
854 
855 		wr32(E1000_CTRL_EXT, tmp);
856 
857 		/* enable msix_other interrupt */
858 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
859 		adapter->eims_other = E1000_EIMS_OTHER;
860 
861 		break;
862 
863 	case e1000_82576:
864 	case e1000_82580:
865 	case e1000_i350:
866 	case e1000_i354:
867 	case e1000_i210:
868 	case e1000_i211:
869 		/* Turn on MSI-X capability first, or our settings
870 		 * won't stick.  And it will take days to debug.
871 		 */
872 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
873 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
874 		     E1000_GPIE_NSICR);
875 
876 		/* enable msix_other interrupt */
877 		adapter->eims_other = BIT(vector);
878 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
879 
880 		wr32(E1000_IVAR_MISC, tmp);
881 		break;
882 	default:
883 		/* do nothing, since nothing else supports MSI-X */
884 		break;
885 	} /* switch (hw->mac.type) */
886 
887 	adapter->eims_enable_mask |= adapter->eims_other;
888 
889 	for (i = 0; i < adapter->num_q_vectors; i++)
890 		igb_assign_vector(adapter->q_vector[i], vector++);
891 
892 	wrfl();
893 }
894 
895 /**
896  *  igb_request_msix - Initialize MSI-X interrupts
897  *  @adapter: board private structure to initialize
898  *
899  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
900  *  kernel.
901  **/
902 static int igb_request_msix(struct igb_adapter *adapter)
903 {
904 	unsigned int num_q_vectors = adapter->num_q_vectors;
905 	struct net_device *netdev = adapter->netdev;
906 	int i, err = 0, vector = 0, free_vector = 0;
907 
908 	err = request_irq(adapter->msix_entries[vector].vector,
909 			  igb_msix_other, 0, netdev->name, adapter);
910 	if (err)
911 		goto err_out;
912 
913 	if (num_q_vectors > MAX_Q_VECTORS) {
914 		num_q_vectors = MAX_Q_VECTORS;
915 		dev_warn(&adapter->pdev->dev,
916 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
917 			 adapter->num_q_vectors, MAX_Q_VECTORS);
918 	}
919 	for (i = 0; i < num_q_vectors; i++) {
920 		struct igb_q_vector *q_vector = adapter->q_vector[i];
921 
922 		vector++;
923 
924 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
925 
926 		if (q_vector->rx.ring && q_vector->tx.ring)
927 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
928 				q_vector->rx.ring->queue_index);
929 		else if (q_vector->tx.ring)
930 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
931 				q_vector->tx.ring->queue_index);
932 		else if (q_vector->rx.ring)
933 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
934 				q_vector->rx.ring->queue_index);
935 		else
936 			sprintf(q_vector->name, "%s-unused", netdev->name);
937 
938 		err = request_irq(adapter->msix_entries[vector].vector,
939 				  igb_msix_ring, 0, q_vector->name,
940 				  q_vector);
941 		if (err)
942 			goto err_free;
943 	}
944 
945 	igb_configure_msix(adapter);
946 	return 0;
947 
948 err_free:
949 	/* free already assigned IRQs */
950 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
951 
952 	vector--;
953 	for (i = 0; i < vector; i++) {
954 		free_irq(adapter->msix_entries[free_vector++].vector,
955 			 adapter->q_vector[i]);
956 	}
957 err_out:
958 	return err;
959 }
960 
961 /**
962  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
963  *  @adapter: board private structure to initialize
964  *  @v_idx: Index of vector to be freed
965  *
966  *  This function frees the memory allocated to the q_vector.
967  **/
968 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
969 {
970 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
971 
972 	adapter->q_vector[v_idx] = NULL;
973 
974 	/* igb_get_stats64() might access the rings on this vector,
975 	 * we must wait a grace period before freeing it.
976 	 */
977 	if (q_vector)
978 		kfree_rcu(q_vector, rcu);
979 }
980 
981 /**
982  *  igb_reset_q_vector - Reset config for interrupt vector
983  *  @adapter: board private structure to initialize
984  *  @v_idx: Index of vector to be reset
985  *
986  *  If NAPI is enabled it will delete any references to the
987  *  NAPI struct. This is preparation for igb_free_q_vector.
988  **/
989 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
990 {
991 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
992 
993 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
994 	 * allocated. So, q_vector is NULL so we should stop here.
995 	 */
996 	if (!q_vector)
997 		return;
998 
999 	if (q_vector->tx.ring)
1000 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1001 
1002 	if (q_vector->rx.ring)
1003 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1004 
1005 	netif_napi_del(&q_vector->napi);
1006 
1007 }
1008 
1009 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1010 {
1011 	int v_idx = adapter->num_q_vectors;
1012 
1013 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1014 		pci_disable_msix(adapter->pdev);
1015 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1016 		pci_disable_msi(adapter->pdev);
1017 
1018 	while (v_idx--)
1019 		igb_reset_q_vector(adapter, v_idx);
1020 }
1021 
1022 /**
1023  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024  *  @adapter: board private structure to initialize
1025  *
1026  *  This function frees the memory allocated to the q_vectors.  In addition if
1027  *  NAPI is enabled it will delete any references to the NAPI struct prior
1028  *  to freeing the q_vector.
1029  **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032 	int v_idx = adapter->num_q_vectors;
1033 
1034 	adapter->num_tx_queues = 0;
1035 	adapter->num_rx_queues = 0;
1036 	adapter->num_q_vectors = 0;
1037 
1038 	while (v_idx--) {
1039 		igb_reset_q_vector(adapter, v_idx);
1040 		igb_free_q_vector(adapter, v_idx);
1041 	}
1042 }
1043 
1044 /**
1045  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1046  *  @adapter: board private structure to initialize
1047  *
1048  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1049  *  MSI-X interrupts allocated.
1050  */
1051 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1052 {
1053 	igb_free_q_vectors(adapter);
1054 	igb_reset_interrupt_capability(adapter);
1055 }
1056 
1057 /**
1058  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1059  *  @adapter: board private structure to initialize
1060  *  @msix: boolean value of MSIX capability
1061  *
1062  *  Attempt to configure interrupts using the best available
1063  *  capabilities of the hardware and kernel.
1064  **/
1065 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066 {
1067 	int err;
1068 	int numvecs, i;
1069 
1070 	if (!msix)
1071 		goto msi_only;
1072 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1073 
1074 	/* Number of supported queues. */
1075 	adapter->num_rx_queues = adapter->rss_queues;
1076 	if (adapter->vfs_allocated_count)
1077 		adapter->num_tx_queues = 1;
1078 	else
1079 		adapter->num_tx_queues = adapter->rss_queues;
1080 
1081 	/* start with one vector for every Rx queue */
1082 	numvecs = adapter->num_rx_queues;
1083 
1084 	/* if Tx handler is separate add 1 for every Tx queue */
1085 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1086 		numvecs += adapter->num_tx_queues;
1087 
1088 	/* store the number of vectors reserved for queues */
1089 	adapter->num_q_vectors = numvecs;
1090 
1091 	/* add 1 vector for link status interrupts */
1092 	numvecs++;
1093 	for (i = 0; i < numvecs; i++)
1094 		adapter->msix_entries[i].entry = i;
1095 
1096 	err = pci_enable_msix_range(adapter->pdev,
1097 				    adapter->msix_entries,
1098 				    numvecs,
1099 				    numvecs);
1100 	if (err > 0)
1101 		return;
1102 
1103 	igb_reset_interrupt_capability(adapter);
1104 
1105 	/* If we can't do MSI-X, try MSI */
1106 msi_only:
1107 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1108 #ifdef CONFIG_PCI_IOV
1109 	/* disable SR-IOV for non MSI-X configurations */
1110 	if (adapter->vf_data) {
1111 		struct e1000_hw *hw = &adapter->hw;
1112 		/* disable iov and allow time for transactions to clear */
1113 		pci_disable_sriov(adapter->pdev);
1114 		msleep(500);
1115 
1116 		kfree(adapter->vf_mac_list);
1117 		adapter->vf_mac_list = NULL;
1118 		kfree(adapter->vf_data);
1119 		adapter->vf_data = NULL;
1120 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1121 		wrfl();
1122 		msleep(100);
1123 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1124 	}
1125 #endif
1126 	adapter->vfs_allocated_count = 0;
1127 	adapter->rss_queues = 1;
1128 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1129 	adapter->num_rx_queues = 1;
1130 	adapter->num_tx_queues = 1;
1131 	adapter->num_q_vectors = 1;
1132 	if (!pci_enable_msi(adapter->pdev))
1133 		adapter->flags |= IGB_FLAG_HAS_MSI;
1134 }
1135 
1136 static void igb_add_ring(struct igb_ring *ring,
1137 			 struct igb_ring_container *head)
1138 {
1139 	head->ring = ring;
1140 	head->count++;
1141 }
1142 
1143 /**
1144  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1145  *  @adapter: board private structure to initialize
1146  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1147  *  @v_idx: index of vector in adapter struct
1148  *  @txr_count: total number of Tx rings to allocate
1149  *  @txr_idx: index of first Tx ring to allocate
1150  *  @rxr_count: total number of Rx rings to allocate
1151  *  @rxr_idx: index of first Rx ring to allocate
1152  *
1153  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1154  **/
1155 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1156 			      int v_count, int v_idx,
1157 			      int txr_count, int txr_idx,
1158 			      int rxr_count, int rxr_idx)
1159 {
1160 	struct igb_q_vector *q_vector;
1161 	struct igb_ring *ring;
1162 	int ring_count;
1163 	size_t size;
1164 
1165 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1166 	if (txr_count > 1 || rxr_count > 1)
1167 		return -ENOMEM;
1168 
1169 	ring_count = txr_count + rxr_count;
1170 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1171 
1172 	/* allocate q_vector and rings */
1173 	q_vector = adapter->q_vector[v_idx];
1174 	if (!q_vector) {
1175 		q_vector = kzalloc(size, GFP_KERNEL);
1176 	} else if (size > ksize(q_vector)) {
1177 		struct igb_q_vector *new_q_vector;
1178 
1179 		new_q_vector = kzalloc(size, GFP_KERNEL);
1180 		if (new_q_vector)
1181 			kfree_rcu(q_vector, rcu);
1182 		q_vector = new_q_vector;
1183 	} else {
1184 		memset(q_vector, 0, size);
1185 	}
1186 	if (!q_vector)
1187 		return -ENOMEM;
1188 
1189 	/* initialize NAPI */
1190 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1191 
1192 	/* tie q_vector and adapter together */
1193 	adapter->q_vector[v_idx] = q_vector;
1194 	q_vector->adapter = adapter;
1195 
1196 	/* initialize work limits */
1197 	q_vector->tx.work_limit = adapter->tx_work_limit;
1198 
1199 	/* initialize ITR configuration */
1200 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1201 	q_vector->itr_val = IGB_START_ITR;
1202 
1203 	/* initialize pointer to rings */
1204 	ring = q_vector->ring;
1205 
1206 	/* intialize ITR */
1207 	if (rxr_count) {
1208 		/* rx or rx/tx vector */
1209 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1210 			q_vector->itr_val = adapter->rx_itr_setting;
1211 	} else {
1212 		/* tx only vector */
1213 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1214 			q_vector->itr_val = adapter->tx_itr_setting;
1215 	}
1216 
1217 	if (txr_count) {
1218 		/* assign generic ring traits */
1219 		ring->dev = &adapter->pdev->dev;
1220 		ring->netdev = adapter->netdev;
1221 
1222 		/* configure backlink on ring */
1223 		ring->q_vector = q_vector;
1224 
1225 		/* update q_vector Tx values */
1226 		igb_add_ring(ring, &q_vector->tx);
1227 
1228 		/* For 82575, context index must be unique per ring. */
1229 		if (adapter->hw.mac.type == e1000_82575)
1230 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1231 
1232 		/* apply Tx specific ring traits */
1233 		ring->count = adapter->tx_ring_count;
1234 		ring->queue_index = txr_idx;
1235 
1236 		ring->cbs_enable = false;
1237 		ring->idleslope = 0;
1238 		ring->sendslope = 0;
1239 		ring->hicredit = 0;
1240 		ring->locredit = 0;
1241 
1242 		u64_stats_init(&ring->tx_syncp);
1243 		u64_stats_init(&ring->tx_syncp2);
1244 
1245 		/* assign ring to adapter */
1246 		adapter->tx_ring[txr_idx] = ring;
1247 
1248 		/* push pointer to next ring */
1249 		ring++;
1250 	}
1251 
1252 	if (rxr_count) {
1253 		/* assign generic ring traits */
1254 		ring->dev = &adapter->pdev->dev;
1255 		ring->netdev = adapter->netdev;
1256 
1257 		/* configure backlink on ring */
1258 		ring->q_vector = q_vector;
1259 
1260 		/* update q_vector Rx values */
1261 		igb_add_ring(ring, &q_vector->rx);
1262 
1263 		/* set flag indicating ring supports SCTP checksum offload */
1264 		if (adapter->hw.mac.type >= e1000_82576)
1265 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1266 
1267 		/* On i350, i354, i210, and i211, loopback VLAN packets
1268 		 * have the tag byte-swapped.
1269 		 */
1270 		if (adapter->hw.mac.type >= e1000_i350)
1271 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1272 
1273 		/* apply Rx specific ring traits */
1274 		ring->count = adapter->rx_ring_count;
1275 		ring->queue_index = rxr_idx;
1276 
1277 		u64_stats_init(&ring->rx_syncp);
1278 
1279 		/* assign ring to adapter */
1280 		adapter->rx_ring[rxr_idx] = ring;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 
1287 /**
1288  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1289  *  @adapter: board private structure to initialize
1290  *
1291  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1292  *  return -ENOMEM.
1293  **/
1294 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1295 {
1296 	int q_vectors = adapter->num_q_vectors;
1297 	int rxr_remaining = adapter->num_rx_queues;
1298 	int txr_remaining = adapter->num_tx_queues;
1299 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1300 	int err;
1301 
1302 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1303 		for (; rxr_remaining; v_idx++) {
1304 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1305 						 0, 0, 1, rxr_idx);
1306 
1307 			if (err)
1308 				goto err_out;
1309 
1310 			/* update counts and index */
1311 			rxr_remaining--;
1312 			rxr_idx++;
1313 		}
1314 	}
1315 
1316 	for (; v_idx < q_vectors; v_idx++) {
1317 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1318 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1319 
1320 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1321 					 tqpv, txr_idx, rqpv, rxr_idx);
1322 
1323 		if (err)
1324 			goto err_out;
1325 
1326 		/* update counts and index */
1327 		rxr_remaining -= rqpv;
1328 		txr_remaining -= tqpv;
1329 		rxr_idx++;
1330 		txr_idx++;
1331 	}
1332 
1333 	return 0;
1334 
1335 err_out:
1336 	adapter->num_tx_queues = 0;
1337 	adapter->num_rx_queues = 0;
1338 	adapter->num_q_vectors = 0;
1339 
1340 	while (v_idx--)
1341 		igb_free_q_vector(adapter, v_idx);
1342 
1343 	return -ENOMEM;
1344 }
1345 
1346 /**
1347  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1348  *  @adapter: board private structure to initialize
1349  *  @msix: boolean value of MSIX capability
1350  *
1351  *  This function initializes the interrupts and allocates all of the queues.
1352  **/
1353 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1354 {
1355 	struct pci_dev *pdev = adapter->pdev;
1356 	int err;
1357 
1358 	igb_set_interrupt_capability(adapter, msix);
1359 
1360 	err = igb_alloc_q_vectors(adapter);
1361 	if (err) {
1362 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1363 		goto err_alloc_q_vectors;
1364 	}
1365 
1366 	igb_cache_ring_register(adapter);
1367 
1368 	return 0;
1369 
1370 err_alloc_q_vectors:
1371 	igb_reset_interrupt_capability(adapter);
1372 	return err;
1373 }
1374 
1375 /**
1376  *  igb_request_irq - initialize interrupts
1377  *  @adapter: board private structure to initialize
1378  *
1379  *  Attempts to configure interrupts using the best available
1380  *  capabilities of the hardware and kernel.
1381  **/
1382 static int igb_request_irq(struct igb_adapter *adapter)
1383 {
1384 	struct net_device *netdev = adapter->netdev;
1385 	struct pci_dev *pdev = adapter->pdev;
1386 	int err = 0;
1387 
1388 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1389 		err = igb_request_msix(adapter);
1390 		if (!err)
1391 			goto request_done;
1392 		/* fall back to MSI */
1393 		igb_free_all_tx_resources(adapter);
1394 		igb_free_all_rx_resources(adapter);
1395 
1396 		igb_clear_interrupt_scheme(adapter);
1397 		err = igb_init_interrupt_scheme(adapter, false);
1398 		if (err)
1399 			goto request_done;
1400 
1401 		igb_setup_all_tx_resources(adapter);
1402 		igb_setup_all_rx_resources(adapter);
1403 		igb_configure(adapter);
1404 	}
1405 
1406 	igb_assign_vector(adapter->q_vector[0], 0);
1407 
1408 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1409 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1410 				  netdev->name, adapter);
1411 		if (!err)
1412 			goto request_done;
1413 
1414 		/* fall back to legacy interrupts */
1415 		igb_reset_interrupt_capability(adapter);
1416 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1417 	}
1418 
1419 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1420 			  netdev->name, adapter);
1421 
1422 	if (err)
1423 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1424 			err);
1425 
1426 request_done:
1427 	return err;
1428 }
1429 
1430 static void igb_free_irq(struct igb_adapter *adapter)
1431 {
1432 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1433 		int vector = 0, i;
1434 
1435 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1436 
1437 		for (i = 0; i < adapter->num_q_vectors; i++)
1438 			free_irq(adapter->msix_entries[vector++].vector,
1439 				 adapter->q_vector[i]);
1440 	} else {
1441 		free_irq(adapter->pdev->irq, adapter);
1442 	}
1443 }
1444 
1445 /**
1446  *  igb_irq_disable - Mask off interrupt generation on the NIC
1447  *  @adapter: board private structure
1448  **/
1449 static void igb_irq_disable(struct igb_adapter *adapter)
1450 {
1451 	struct e1000_hw *hw = &adapter->hw;
1452 
1453 	/* we need to be careful when disabling interrupts.  The VFs are also
1454 	 * mapped into these registers and so clearing the bits can cause
1455 	 * issues on the VF drivers so we only need to clear what we set
1456 	 */
1457 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1458 		u32 regval = rd32(E1000_EIAM);
1459 
1460 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1461 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1462 		regval = rd32(E1000_EIAC);
1463 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1464 	}
1465 
1466 	wr32(E1000_IAM, 0);
1467 	wr32(E1000_IMC, ~0);
1468 	wrfl();
1469 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1470 		int i;
1471 
1472 		for (i = 0; i < adapter->num_q_vectors; i++)
1473 			synchronize_irq(adapter->msix_entries[i].vector);
1474 	} else {
1475 		synchronize_irq(adapter->pdev->irq);
1476 	}
1477 }
1478 
1479 /**
1480  *  igb_irq_enable - Enable default interrupt generation settings
1481  *  @adapter: board private structure
1482  **/
1483 static void igb_irq_enable(struct igb_adapter *adapter)
1484 {
1485 	struct e1000_hw *hw = &adapter->hw;
1486 
1487 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1488 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1489 		u32 regval = rd32(E1000_EIAC);
1490 
1491 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1492 		regval = rd32(E1000_EIAM);
1493 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1494 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1495 		if (adapter->vfs_allocated_count) {
1496 			wr32(E1000_MBVFIMR, 0xFF);
1497 			ims |= E1000_IMS_VMMB;
1498 		}
1499 		wr32(E1000_IMS, ims);
1500 	} else {
1501 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1502 				E1000_IMS_DRSTA);
1503 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1504 				E1000_IMS_DRSTA);
1505 	}
1506 }
1507 
1508 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1509 {
1510 	struct e1000_hw *hw = &adapter->hw;
1511 	u16 pf_id = adapter->vfs_allocated_count;
1512 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1513 	u16 old_vid = adapter->mng_vlan_id;
1514 
1515 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1516 		/* add VID to filter table */
1517 		igb_vfta_set(hw, vid, pf_id, true, true);
1518 		adapter->mng_vlan_id = vid;
1519 	} else {
1520 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1521 	}
1522 
1523 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1524 	    (vid != old_vid) &&
1525 	    !test_bit(old_vid, adapter->active_vlans)) {
1526 		/* remove VID from filter table */
1527 		igb_vfta_set(hw, vid, pf_id, false, true);
1528 	}
1529 }
1530 
1531 /**
1532  *  igb_release_hw_control - release control of the h/w to f/w
1533  *  @adapter: address of board private structure
1534  *
1535  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1536  *  For ASF and Pass Through versions of f/w this means that the
1537  *  driver is no longer loaded.
1538  **/
1539 static void igb_release_hw_control(struct igb_adapter *adapter)
1540 {
1541 	struct e1000_hw *hw = &adapter->hw;
1542 	u32 ctrl_ext;
1543 
1544 	/* Let firmware take over control of h/w */
1545 	ctrl_ext = rd32(E1000_CTRL_EXT);
1546 	wr32(E1000_CTRL_EXT,
1547 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1548 }
1549 
1550 /**
1551  *  igb_get_hw_control - get control of the h/w from f/w
1552  *  @adapter: address of board private structure
1553  *
1554  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1555  *  For ASF and Pass Through versions of f/w this means that
1556  *  the driver is loaded.
1557  **/
1558 static void igb_get_hw_control(struct igb_adapter *adapter)
1559 {
1560 	struct e1000_hw *hw = &adapter->hw;
1561 	u32 ctrl_ext;
1562 
1563 	/* Let firmware know the driver has taken over */
1564 	ctrl_ext = rd32(E1000_CTRL_EXT);
1565 	wr32(E1000_CTRL_EXT,
1566 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1567 }
1568 
1569 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1570 {
1571 	struct net_device *netdev = adapter->netdev;
1572 	struct e1000_hw *hw = &adapter->hw;
1573 
1574 	WARN_ON(hw->mac.type != e1000_i210);
1575 
1576 	if (enable)
1577 		adapter->flags |= IGB_FLAG_FQTSS;
1578 	else
1579 		adapter->flags &= ~IGB_FLAG_FQTSS;
1580 
1581 	if (netif_running(netdev))
1582 		schedule_work(&adapter->reset_task);
1583 }
1584 
1585 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1586 {
1587 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1588 }
1589 
1590 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1591 				   enum tx_queue_prio prio)
1592 {
1593 	u32 val;
1594 
1595 	WARN_ON(hw->mac.type != e1000_i210);
1596 	WARN_ON(queue < 0 || queue > 4);
1597 
1598 	val = rd32(E1000_I210_TXDCTL(queue));
1599 
1600 	if (prio == TX_QUEUE_PRIO_HIGH)
1601 		val |= E1000_TXDCTL_PRIORITY;
1602 	else
1603 		val &= ~E1000_TXDCTL_PRIORITY;
1604 
1605 	wr32(E1000_I210_TXDCTL(queue), val);
1606 }
1607 
1608 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1609 {
1610 	u32 val;
1611 
1612 	WARN_ON(hw->mac.type != e1000_i210);
1613 	WARN_ON(queue < 0 || queue > 1);
1614 
1615 	val = rd32(E1000_I210_TQAVCC(queue));
1616 
1617 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1618 		val |= E1000_TQAVCC_QUEUEMODE;
1619 	else
1620 		val &= ~E1000_TQAVCC_QUEUEMODE;
1621 
1622 	wr32(E1000_I210_TQAVCC(queue), val);
1623 }
1624 
1625 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1626 {
1627 	int i;
1628 
1629 	for (i = 0; i < adapter->num_tx_queues; i++) {
1630 		if (adapter->tx_ring[i]->cbs_enable)
1631 			return true;
1632 	}
1633 
1634 	return false;
1635 }
1636 
1637 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1638 {
1639 	int i;
1640 
1641 	for (i = 0; i < adapter->num_tx_queues; i++) {
1642 		if (adapter->tx_ring[i]->launchtime_enable)
1643 			return true;
1644 	}
1645 
1646 	return false;
1647 }
1648 
1649 /**
1650  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1651  *  @adapter: pointer to adapter struct
1652  *  @queue: queue number
1653  *
1654  *  Configure CBS and Launchtime for a given hardware queue.
1655  *  Parameters are retrieved from the correct Tx ring, so
1656  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1657  *  for setting those correctly prior to this function being called.
1658  **/
1659 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1660 {
1661 	struct net_device *netdev = adapter->netdev;
1662 	struct e1000_hw *hw = &adapter->hw;
1663 	struct igb_ring *ring;
1664 	u32 tqavcc, tqavctrl;
1665 	u16 value;
1666 
1667 	WARN_ON(hw->mac.type != e1000_i210);
1668 	WARN_ON(queue < 0 || queue > 1);
1669 	ring = adapter->tx_ring[queue];
1670 
1671 	/* If any of the Qav features is enabled, configure queues as SR and
1672 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1673 	 * as SP.
1674 	 */
1675 	if (ring->cbs_enable || ring->launchtime_enable) {
1676 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1677 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1678 	} else {
1679 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1680 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1681 	}
1682 
1683 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1684 	if (ring->cbs_enable || queue == 0) {
1685 		/* i210 does not allow the queue 0 to be in the Strict
1686 		 * Priority mode while the Qav mode is enabled, so,
1687 		 * instead of disabling strict priority mode, we give
1688 		 * queue 0 the maximum of credits possible.
1689 		 *
1690 		 * See section 8.12.19 of the i210 datasheet, "Note:
1691 		 * Queue0 QueueMode must be set to 1b when
1692 		 * TransmitMode is set to Qav."
1693 		 */
1694 		if (queue == 0 && !ring->cbs_enable) {
1695 			/* max "linkspeed" idleslope in kbps */
1696 			ring->idleslope = 1000000;
1697 			ring->hicredit = ETH_FRAME_LEN;
1698 		}
1699 
1700 		/* Always set data transfer arbitration to credit-based
1701 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1702 		 * the queues.
1703 		 */
1704 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1705 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1706 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1707 
1708 		/* According to i210 datasheet section 7.2.7.7, we should set
1709 		 * the 'idleSlope' field from TQAVCC register following the
1710 		 * equation:
1711 		 *
1712 		 * For 100 Mbps link speed:
1713 		 *
1714 		 *     value = BW * 0x7735 * 0.2                          (E1)
1715 		 *
1716 		 * For 1000Mbps link speed:
1717 		 *
1718 		 *     value = BW * 0x7735 * 2                            (E2)
1719 		 *
1720 		 * E1 and E2 can be merged into one equation as shown below.
1721 		 * Note that 'link-speed' is in Mbps.
1722 		 *
1723 		 *     value = BW * 0x7735 * 2 * link-speed
1724 		 *                           --------------               (E3)
1725 		 *                                1000
1726 		 *
1727 		 * 'BW' is the percentage bandwidth out of full link speed
1728 		 * which can be found with the following equation. Note that
1729 		 * idleSlope here is the parameter from this function which
1730 		 * is in kbps.
1731 		 *
1732 		 *     BW =     idleSlope
1733 		 *          -----------------                             (E4)
1734 		 *          link-speed * 1000
1735 		 *
1736 		 * That said, we can come up with a generic equation to
1737 		 * calculate the value we should set it TQAVCC register by
1738 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1739 		 *
1740 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1741 		 *         -----------------            --------------    (E5)
1742 		 *         link-speed * 1000                 1000
1743 		 *
1744 		 * 'link-speed' is present in both sides of the fraction so
1745 		 * it is canceled out. The final equation is the following:
1746 		 *
1747 		 *     value = idleSlope * 61034
1748 		 *             -----------------                          (E6)
1749 		 *                  1000000
1750 		 *
1751 		 * NOTE: For i210, given the above, we can see that idleslope
1752 		 *       is represented in 16.38431 kbps units by the value at
1753 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1754 		 *       the granularity for idleslope increments.
1755 		 *       For instance, if you want to configure a 2576kbps
1756 		 *       idleslope, the value to be written on the register
1757 		 *       would have to be 157.23. If rounded down, you end
1758 		 *       up with less bandwidth available than originally
1759 		 *       required (~2572 kbps). If rounded up, you end up
1760 		 *       with a higher bandwidth (~2589 kbps). Below the
1761 		 *       approach we take is to always round up the
1762 		 *       calculated value, so the resulting bandwidth might
1763 		 *       be slightly higher for some configurations.
1764 		 */
1765 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1766 
1767 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1768 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1769 		tqavcc |= value;
1770 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1771 
1772 		wr32(E1000_I210_TQAVHC(queue),
1773 		     0x80000000 + ring->hicredit * 0x7735);
1774 	} else {
1775 
1776 		/* Set idleSlope to zero. */
1777 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1778 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1779 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1780 
1781 		/* Set hiCredit to zero. */
1782 		wr32(E1000_I210_TQAVHC(queue), 0);
1783 
1784 		/* If CBS is not enabled for any queues anymore, then return to
1785 		 * the default state of Data Transmission Arbitration on
1786 		 * TQAVCTRL.
1787 		 */
1788 		if (!is_any_cbs_enabled(adapter)) {
1789 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1790 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1791 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1792 		}
1793 	}
1794 
1795 	/* If LaunchTime is enabled, set DataTranTIM. */
1796 	if (ring->launchtime_enable) {
1797 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1798 		 * for any of the SR queues, and configure fetchtime delta.
1799 		 * XXX NOTE:
1800 		 *     - LaunchTime will be enabled for all SR queues.
1801 		 *     - A fixed offset can be added relative to the launch
1802 		 *       time of all packets if configured at reg LAUNCH_OS0.
1803 		 *       We are keeping it as 0 for now (default value).
1804 		 */
1805 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1806 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1807 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1808 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1809 	} else {
1810 		/* If Launchtime is not enabled for any SR queues anymore,
1811 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1812 		 * effectively disabling Launchtime.
1813 		 */
1814 		if (!is_any_txtime_enabled(adapter)) {
1815 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1817 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1818 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819 		}
1820 	}
1821 
1822 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1823 	 * CBS are not configurable by software so we don't do any 'controller
1824 	 * configuration' in respect to these parameters.
1825 	 */
1826 
1827 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1828 		   ring->cbs_enable ? "enabled" : "disabled",
1829 		   ring->launchtime_enable ? "enabled" : "disabled",
1830 		   queue,
1831 		   ring->idleslope, ring->sendslope,
1832 		   ring->hicredit, ring->locredit);
1833 }
1834 
1835 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1836 				  bool enable)
1837 {
1838 	struct igb_ring *ring;
1839 
1840 	if (queue < 0 || queue > adapter->num_tx_queues)
1841 		return -EINVAL;
1842 
1843 	ring = adapter->tx_ring[queue];
1844 	ring->launchtime_enable = enable;
1845 
1846 	return 0;
1847 }
1848 
1849 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1850 			       bool enable, int idleslope, int sendslope,
1851 			       int hicredit, int locredit)
1852 {
1853 	struct igb_ring *ring;
1854 
1855 	if (queue < 0 || queue > adapter->num_tx_queues)
1856 		return -EINVAL;
1857 
1858 	ring = adapter->tx_ring[queue];
1859 
1860 	ring->cbs_enable = enable;
1861 	ring->idleslope = idleslope;
1862 	ring->sendslope = sendslope;
1863 	ring->hicredit = hicredit;
1864 	ring->locredit = locredit;
1865 
1866 	return 0;
1867 }
1868 
1869 /**
1870  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1871  *  @adapter: pointer to adapter struct
1872  *
1873  *  Configure TQAVCTRL register switching the controller's Tx mode
1874  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1875  *  a call to igb_config_tx_modes() per queue so any previously saved
1876  *  Tx parameters are applied.
1877  **/
1878 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1879 {
1880 	struct net_device *netdev = adapter->netdev;
1881 	struct e1000_hw *hw = &adapter->hw;
1882 	u32 val;
1883 
1884 	/* Only i210 controller supports changing the transmission mode. */
1885 	if (hw->mac.type != e1000_i210)
1886 		return;
1887 
1888 	if (is_fqtss_enabled(adapter)) {
1889 		int i, max_queue;
1890 
1891 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1892 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1893 		 * so SP queues wait for SR ones.
1894 		 */
1895 		val = rd32(E1000_I210_TQAVCTRL);
1896 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1897 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1898 		wr32(E1000_I210_TQAVCTRL, val);
1899 
1900 		/* Configure Tx and Rx packet buffers sizes as described in
1901 		 * i210 datasheet section 7.2.7.7.
1902 		 */
1903 		val = rd32(E1000_TXPBS);
1904 		val &= ~I210_TXPBSIZE_MASK;
1905 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1906 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1907 		wr32(E1000_TXPBS, val);
1908 
1909 		val = rd32(E1000_RXPBS);
1910 		val &= ~I210_RXPBSIZE_MASK;
1911 		val |= I210_RXPBSIZE_PB_30KB;
1912 		wr32(E1000_RXPBS, val);
1913 
1914 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1915 		 * register should not exceed the buffer size programmed in
1916 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1917 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1918 		 * 4kB / 64.
1919 		 *
1920 		 * However, when we do so, no frame from queue 2 and 3 are
1921 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1922 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1923 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1924 		 */
1925 		val = (4096 - 1) / 64;
1926 		wr32(E1000_I210_DTXMXPKTSZ, val);
1927 
1928 		/* Since FQTSS mode is enabled, apply any CBS configuration
1929 		 * previously set. If no previous CBS configuration has been
1930 		 * done, then the initial configuration is applied, which means
1931 		 * CBS is disabled.
1932 		 */
1933 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1934 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1935 
1936 		for (i = 0; i < max_queue; i++) {
1937 			igb_config_tx_modes(adapter, i);
1938 		}
1939 	} else {
1940 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1941 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1942 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1943 
1944 		val = rd32(E1000_I210_TQAVCTRL);
1945 		/* According to Section 8.12.21, the other flags we've set when
1946 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1947 		 * don't set they here.
1948 		 */
1949 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1950 		wr32(E1000_I210_TQAVCTRL, val);
1951 	}
1952 
1953 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1954 		   "enabled" : "disabled");
1955 }
1956 
1957 /**
1958  *  igb_configure - configure the hardware for RX and TX
1959  *  @adapter: private board structure
1960  **/
1961 static void igb_configure(struct igb_adapter *adapter)
1962 {
1963 	struct net_device *netdev = adapter->netdev;
1964 	int i;
1965 
1966 	igb_get_hw_control(adapter);
1967 	igb_set_rx_mode(netdev);
1968 	igb_setup_tx_mode(adapter);
1969 
1970 	igb_restore_vlan(adapter);
1971 
1972 	igb_setup_tctl(adapter);
1973 	igb_setup_mrqc(adapter);
1974 	igb_setup_rctl(adapter);
1975 
1976 	igb_nfc_filter_restore(adapter);
1977 	igb_configure_tx(adapter);
1978 	igb_configure_rx(adapter);
1979 
1980 	igb_rx_fifo_flush_82575(&adapter->hw);
1981 
1982 	/* call igb_desc_unused which always leaves
1983 	 * at least 1 descriptor unused to make sure
1984 	 * next_to_use != next_to_clean
1985 	 */
1986 	for (i = 0; i < adapter->num_rx_queues; i++) {
1987 		struct igb_ring *ring = adapter->rx_ring[i];
1988 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1989 	}
1990 }
1991 
1992 /**
1993  *  igb_power_up_link - Power up the phy/serdes link
1994  *  @adapter: address of board private structure
1995  **/
1996 void igb_power_up_link(struct igb_adapter *adapter)
1997 {
1998 	igb_reset_phy(&adapter->hw);
1999 
2000 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2001 		igb_power_up_phy_copper(&adapter->hw);
2002 	else
2003 		igb_power_up_serdes_link_82575(&adapter->hw);
2004 
2005 	igb_setup_link(&adapter->hw);
2006 }
2007 
2008 /**
2009  *  igb_power_down_link - Power down the phy/serdes link
2010  *  @adapter: address of board private structure
2011  */
2012 static void igb_power_down_link(struct igb_adapter *adapter)
2013 {
2014 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2015 		igb_power_down_phy_copper_82575(&adapter->hw);
2016 	else
2017 		igb_shutdown_serdes_link_82575(&adapter->hw);
2018 }
2019 
2020 /**
2021  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2022  * @adapter: address of the board private structure
2023  **/
2024 static void igb_check_swap_media(struct igb_adapter *adapter)
2025 {
2026 	struct e1000_hw *hw = &adapter->hw;
2027 	u32 ctrl_ext, connsw;
2028 	bool swap_now = false;
2029 
2030 	ctrl_ext = rd32(E1000_CTRL_EXT);
2031 	connsw = rd32(E1000_CONNSW);
2032 
2033 	/* need to live swap if current media is copper and we have fiber/serdes
2034 	 * to go to.
2035 	 */
2036 
2037 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2038 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2039 		swap_now = true;
2040 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2041 		   !(connsw & E1000_CONNSW_SERDESD)) {
2042 		/* copper signal takes time to appear */
2043 		if (adapter->copper_tries < 4) {
2044 			adapter->copper_tries++;
2045 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2046 			wr32(E1000_CONNSW, connsw);
2047 			return;
2048 		} else {
2049 			adapter->copper_tries = 0;
2050 			if ((connsw & E1000_CONNSW_PHYSD) &&
2051 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2052 				swap_now = true;
2053 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2054 				wr32(E1000_CONNSW, connsw);
2055 			}
2056 		}
2057 	}
2058 
2059 	if (!swap_now)
2060 		return;
2061 
2062 	switch (hw->phy.media_type) {
2063 	case e1000_media_type_copper:
2064 		netdev_info(adapter->netdev,
2065 			"MAS: changing media to fiber/serdes\n");
2066 		ctrl_ext |=
2067 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2068 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2069 		adapter->copper_tries = 0;
2070 		break;
2071 	case e1000_media_type_internal_serdes:
2072 	case e1000_media_type_fiber:
2073 		netdev_info(adapter->netdev,
2074 			"MAS: changing media to copper\n");
2075 		ctrl_ext &=
2076 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2077 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2078 		break;
2079 	default:
2080 		/* shouldn't get here during regular operation */
2081 		netdev_err(adapter->netdev,
2082 			"AMS: Invalid media type found, returning\n");
2083 		break;
2084 	}
2085 	wr32(E1000_CTRL_EXT, ctrl_ext);
2086 }
2087 
2088 /**
2089  *  igb_up - Open the interface and prepare it to handle traffic
2090  *  @adapter: board private structure
2091  **/
2092 int igb_up(struct igb_adapter *adapter)
2093 {
2094 	struct e1000_hw *hw = &adapter->hw;
2095 	int i;
2096 
2097 	/* hardware has been reset, we need to reload some things */
2098 	igb_configure(adapter);
2099 
2100 	clear_bit(__IGB_DOWN, &adapter->state);
2101 
2102 	for (i = 0; i < adapter->num_q_vectors; i++)
2103 		napi_enable(&(adapter->q_vector[i]->napi));
2104 
2105 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2106 		igb_configure_msix(adapter);
2107 	else
2108 		igb_assign_vector(adapter->q_vector[0], 0);
2109 
2110 	/* Clear any pending interrupts. */
2111 	rd32(E1000_TSICR);
2112 	rd32(E1000_ICR);
2113 	igb_irq_enable(adapter);
2114 
2115 	/* notify VFs that reset has been completed */
2116 	if (adapter->vfs_allocated_count) {
2117 		u32 reg_data = rd32(E1000_CTRL_EXT);
2118 
2119 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2120 		wr32(E1000_CTRL_EXT, reg_data);
2121 	}
2122 
2123 	netif_tx_start_all_queues(adapter->netdev);
2124 
2125 	/* start the watchdog. */
2126 	hw->mac.get_link_status = 1;
2127 	schedule_work(&adapter->watchdog_task);
2128 
2129 	if ((adapter->flags & IGB_FLAG_EEE) &&
2130 	    (!hw->dev_spec._82575.eee_disable))
2131 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2132 
2133 	return 0;
2134 }
2135 
2136 void igb_down(struct igb_adapter *adapter)
2137 {
2138 	struct net_device *netdev = adapter->netdev;
2139 	struct e1000_hw *hw = &adapter->hw;
2140 	u32 tctl, rctl;
2141 	int i;
2142 
2143 	/* signal that we're down so the interrupt handler does not
2144 	 * reschedule our watchdog timer
2145 	 */
2146 	set_bit(__IGB_DOWN, &adapter->state);
2147 
2148 	/* disable receives in the hardware */
2149 	rctl = rd32(E1000_RCTL);
2150 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2151 	/* flush and sleep below */
2152 
2153 	igb_nfc_filter_exit(adapter);
2154 
2155 	netif_carrier_off(netdev);
2156 	netif_tx_stop_all_queues(netdev);
2157 
2158 	/* disable transmits in the hardware */
2159 	tctl = rd32(E1000_TCTL);
2160 	tctl &= ~E1000_TCTL_EN;
2161 	wr32(E1000_TCTL, tctl);
2162 	/* flush both disables and wait for them to finish */
2163 	wrfl();
2164 	usleep_range(10000, 11000);
2165 
2166 	igb_irq_disable(adapter);
2167 
2168 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2169 
2170 	for (i = 0; i < adapter->num_q_vectors; i++) {
2171 		if (adapter->q_vector[i]) {
2172 			napi_synchronize(&adapter->q_vector[i]->napi);
2173 			napi_disable(&adapter->q_vector[i]->napi);
2174 		}
2175 	}
2176 
2177 	del_timer_sync(&adapter->watchdog_timer);
2178 	del_timer_sync(&adapter->phy_info_timer);
2179 
2180 	/* record the stats before reset*/
2181 	spin_lock(&adapter->stats64_lock);
2182 	igb_update_stats(adapter);
2183 	spin_unlock(&adapter->stats64_lock);
2184 
2185 	adapter->link_speed = 0;
2186 	adapter->link_duplex = 0;
2187 
2188 	if (!pci_channel_offline(adapter->pdev))
2189 		igb_reset(adapter);
2190 
2191 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2192 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2193 
2194 	igb_clean_all_tx_rings(adapter);
2195 	igb_clean_all_rx_rings(adapter);
2196 #ifdef CONFIG_IGB_DCA
2197 
2198 	/* since we reset the hardware DCA settings were cleared */
2199 	igb_setup_dca(adapter);
2200 #endif
2201 }
2202 
2203 void igb_reinit_locked(struct igb_adapter *adapter)
2204 {
2205 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2206 		usleep_range(1000, 2000);
2207 	igb_down(adapter);
2208 	igb_up(adapter);
2209 	clear_bit(__IGB_RESETTING, &adapter->state);
2210 }
2211 
2212 /** igb_enable_mas - Media Autosense re-enable after swap
2213  *
2214  * @adapter: adapter struct
2215  **/
2216 static void igb_enable_mas(struct igb_adapter *adapter)
2217 {
2218 	struct e1000_hw *hw = &adapter->hw;
2219 	u32 connsw = rd32(E1000_CONNSW);
2220 
2221 	/* configure for SerDes media detect */
2222 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2223 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2224 		connsw |= E1000_CONNSW_ENRGSRC;
2225 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2226 		wr32(E1000_CONNSW, connsw);
2227 		wrfl();
2228 	}
2229 }
2230 
2231 #ifdef CONFIG_IGB_HWMON
2232 /**
2233  *  igb_set_i2c_bb - Init I2C interface
2234  *  @hw: pointer to hardware structure
2235  **/
2236 static void igb_set_i2c_bb(struct e1000_hw *hw)
2237 {
2238 	u32 ctrl_ext;
2239 	s32 i2cctl;
2240 
2241 	ctrl_ext = rd32(E1000_CTRL_EXT);
2242 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2243 	wr32(E1000_CTRL_EXT, ctrl_ext);
2244 	wrfl();
2245 
2246 	i2cctl = rd32(E1000_I2CPARAMS);
2247 	i2cctl |= E1000_I2CBB_EN
2248 		| E1000_I2C_CLK_OE_N
2249 		| E1000_I2C_DATA_OE_N;
2250 	wr32(E1000_I2CPARAMS, i2cctl);
2251 	wrfl();
2252 }
2253 #endif
2254 
2255 void igb_reset(struct igb_adapter *adapter)
2256 {
2257 	struct pci_dev *pdev = adapter->pdev;
2258 	struct e1000_hw *hw = &adapter->hw;
2259 	struct e1000_mac_info *mac = &hw->mac;
2260 	struct e1000_fc_info *fc = &hw->fc;
2261 	u32 pba, hwm;
2262 
2263 	/* Repartition Pba for greater than 9k mtu
2264 	 * To take effect CTRL.RST is required.
2265 	 */
2266 	switch (mac->type) {
2267 	case e1000_i350:
2268 	case e1000_i354:
2269 	case e1000_82580:
2270 		pba = rd32(E1000_RXPBS);
2271 		pba = igb_rxpbs_adjust_82580(pba);
2272 		break;
2273 	case e1000_82576:
2274 		pba = rd32(E1000_RXPBS);
2275 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2276 		break;
2277 	case e1000_82575:
2278 	case e1000_i210:
2279 	case e1000_i211:
2280 	default:
2281 		pba = E1000_PBA_34K;
2282 		break;
2283 	}
2284 
2285 	if (mac->type == e1000_82575) {
2286 		u32 min_rx_space, min_tx_space, needed_tx_space;
2287 
2288 		/* write Rx PBA so that hardware can report correct Tx PBA */
2289 		wr32(E1000_PBA, pba);
2290 
2291 		/* To maintain wire speed transmits, the Tx FIFO should be
2292 		 * large enough to accommodate two full transmit packets,
2293 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2294 		 * the Rx FIFO should be large enough to accommodate at least
2295 		 * one full receive packet and is similarly rounded up and
2296 		 * expressed in KB.
2297 		 */
2298 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2299 
2300 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2301 		 * but don't include Ethernet FCS because hardware appends it.
2302 		 * We only need to round down to the nearest 512 byte block
2303 		 * count since the value we care about is 2 frames, not 1.
2304 		 */
2305 		min_tx_space = adapter->max_frame_size;
2306 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2307 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2308 
2309 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2310 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2311 
2312 		/* If current Tx allocation is less than the min Tx FIFO size,
2313 		 * and the min Tx FIFO size is less than the current Rx FIFO
2314 		 * allocation, take space away from current Rx allocation.
2315 		 */
2316 		if (needed_tx_space < pba) {
2317 			pba -= needed_tx_space;
2318 
2319 			/* if short on Rx space, Rx wins and must trump Tx
2320 			 * adjustment
2321 			 */
2322 			if (pba < min_rx_space)
2323 				pba = min_rx_space;
2324 		}
2325 
2326 		/* adjust PBA for jumbo frames */
2327 		wr32(E1000_PBA, pba);
2328 	}
2329 
2330 	/* flow control settings
2331 	 * The high water mark must be low enough to fit one full frame
2332 	 * after transmitting the pause frame.  As such we must have enough
2333 	 * space to allow for us to complete our current transmit and then
2334 	 * receive the frame that is in progress from the link partner.
2335 	 * Set it to:
2336 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2337 	 */
2338 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2339 
2340 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2341 	fc->low_water = fc->high_water - 16;
2342 	fc->pause_time = 0xFFFF;
2343 	fc->send_xon = 1;
2344 	fc->current_mode = fc->requested_mode;
2345 
2346 	/* disable receive for all VFs and wait one second */
2347 	if (adapter->vfs_allocated_count) {
2348 		int i;
2349 
2350 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2351 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2352 
2353 		/* ping all the active vfs to let them know we are going down */
2354 		igb_ping_all_vfs(adapter);
2355 
2356 		/* disable transmits and receives */
2357 		wr32(E1000_VFRE, 0);
2358 		wr32(E1000_VFTE, 0);
2359 	}
2360 
2361 	/* Allow time for pending master requests to run */
2362 	hw->mac.ops.reset_hw(hw);
2363 	wr32(E1000_WUC, 0);
2364 
2365 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2366 		/* need to resetup here after media swap */
2367 		adapter->ei.get_invariants(hw);
2368 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2369 	}
2370 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2371 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2372 		igb_enable_mas(adapter);
2373 	}
2374 	if (hw->mac.ops.init_hw(hw))
2375 		dev_err(&pdev->dev, "Hardware Error\n");
2376 
2377 	/* RAR registers were cleared during init_hw, clear mac table */
2378 	igb_flush_mac_table(adapter);
2379 	__dev_uc_unsync(adapter->netdev, NULL);
2380 
2381 	/* Recover default RAR entry */
2382 	igb_set_default_mac_filter(adapter);
2383 
2384 	/* Flow control settings reset on hardware reset, so guarantee flow
2385 	 * control is off when forcing speed.
2386 	 */
2387 	if (!hw->mac.autoneg)
2388 		igb_force_mac_fc(hw);
2389 
2390 	igb_init_dmac(adapter, pba);
2391 #ifdef CONFIG_IGB_HWMON
2392 	/* Re-initialize the thermal sensor on i350 devices. */
2393 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2394 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2395 			/* If present, re-initialize the external thermal sensor
2396 			 * interface.
2397 			 */
2398 			if (adapter->ets)
2399 				igb_set_i2c_bb(hw);
2400 			mac->ops.init_thermal_sensor_thresh(hw);
2401 		}
2402 	}
2403 #endif
2404 	/* Re-establish EEE setting */
2405 	if (hw->phy.media_type == e1000_media_type_copper) {
2406 		switch (mac->type) {
2407 		case e1000_i350:
2408 		case e1000_i210:
2409 		case e1000_i211:
2410 			igb_set_eee_i350(hw, true, true);
2411 			break;
2412 		case e1000_i354:
2413 			igb_set_eee_i354(hw, true, true);
2414 			break;
2415 		default:
2416 			break;
2417 		}
2418 	}
2419 	if (!netif_running(adapter->netdev))
2420 		igb_power_down_link(adapter);
2421 
2422 	igb_update_mng_vlan(adapter);
2423 
2424 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2425 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2426 
2427 	/* Re-enable PTP, where applicable. */
2428 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2429 		igb_ptp_reset(adapter);
2430 
2431 	igb_get_phy_info(hw);
2432 }
2433 
2434 static netdev_features_t igb_fix_features(struct net_device *netdev,
2435 	netdev_features_t features)
2436 {
2437 	/* Since there is no support for separate Rx/Tx vlan accel
2438 	 * enable/disable make sure Tx flag is always in same state as Rx.
2439 	 */
2440 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2441 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2442 	else
2443 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2444 
2445 	return features;
2446 }
2447 
2448 static int igb_set_features(struct net_device *netdev,
2449 	netdev_features_t features)
2450 {
2451 	netdev_features_t changed = netdev->features ^ features;
2452 	struct igb_adapter *adapter = netdev_priv(netdev);
2453 
2454 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2455 		igb_vlan_mode(netdev, features);
2456 
2457 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2458 		return 0;
2459 
2460 	if (!(features & NETIF_F_NTUPLE)) {
2461 		struct hlist_node *node2;
2462 		struct igb_nfc_filter *rule;
2463 
2464 		spin_lock(&adapter->nfc_lock);
2465 		hlist_for_each_entry_safe(rule, node2,
2466 					  &adapter->nfc_filter_list, nfc_node) {
2467 			igb_erase_filter(adapter, rule);
2468 			hlist_del(&rule->nfc_node);
2469 			kfree(rule);
2470 		}
2471 		spin_unlock(&adapter->nfc_lock);
2472 		adapter->nfc_filter_count = 0;
2473 	}
2474 
2475 	netdev->features = features;
2476 
2477 	if (netif_running(netdev))
2478 		igb_reinit_locked(adapter);
2479 	else
2480 		igb_reset(adapter);
2481 
2482 	return 1;
2483 }
2484 
2485 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2486 			   struct net_device *dev,
2487 			   const unsigned char *addr, u16 vid,
2488 			   u16 flags,
2489 			   struct netlink_ext_ack *extack)
2490 {
2491 	/* guarantee we can provide a unique filter for the unicast address */
2492 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2493 		struct igb_adapter *adapter = netdev_priv(dev);
2494 		int vfn = adapter->vfs_allocated_count;
2495 
2496 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2497 			return -ENOMEM;
2498 	}
2499 
2500 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2501 }
2502 
2503 #define IGB_MAX_MAC_HDR_LEN	127
2504 #define IGB_MAX_NETWORK_HDR_LEN	511
2505 
2506 static netdev_features_t
2507 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2508 		   netdev_features_t features)
2509 {
2510 	unsigned int network_hdr_len, mac_hdr_len;
2511 
2512 	/* Make certain the headers can be described by a context descriptor */
2513 	mac_hdr_len = skb_network_offset(skb);
2514 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2515 		return features & ~(NETIF_F_HW_CSUM |
2516 				    NETIF_F_SCTP_CRC |
2517 				    NETIF_F_GSO_UDP_L4 |
2518 				    NETIF_F_HW_VLAN_CTAG_TX |
2519 				    NETIF_F_TSO |
2520 				    NETIF_F_TSO6);
2521 
2522 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2524 		return features & ~(NETIF_F_HW_CSUM |
2525 				    NETIF_F_SCTP_CRC |
2526 				    NETIF_F_GSO_UDP_L4 |
2527 				    NETIF_F_TSO |
2528 				    NETIF_F_TSO6);
2529 
2530 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2531 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532 	 */
2533 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534 		features &= ~NETIF_F_TSO;
2535 
2536 	return features;
2537 }
2538 
2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541 	if (!is_fqtss_enabled(adapter)) {
2542 		enable_fqtss(adapter, true);
2543 		return;
2544 	}
2545 
2546 	igb_config_tx_modes(adapter, queue);
2547 
2548 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549 		enable_fqtss(adapter, false);
2550 }
2551 
2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553 			   struct tc_cbs_qopt_offload *qopt)
2554 {
2555 	struct e1000_hw *hw = &adapter->hw;
2556 	int err;
2557 
2558 	/* CBS offloading is only supported by i210 controller. */
2559 	if (hw->mac.type != e1000_i210)
2560 		return -EOPNOTSUPP;
2561 
2562 	/* CBS offloading is only supported by queue 0 and queue 1. */
2563 	if (qopt->queue < 0 || qopt->queue > 1)
2564 		return -EINVAL;
2565 
2566 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567 				  qopt->idleslope, qopt->sendslope,
2568 				  qopt->hicredit, qopt->locredit);
2569 	if (err)
2570 		return err;
2571 
2572 	igb_offload_apply(adapter, qopt->queue);
2573 
2574 	return 0;
2575 }
2576 
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579 
2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581 				struct flow_cls_offload *f,
2582 				int traffic_class,
2583 				struct igb_nfc_filter *input)
2584 {
2585 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2586 	struct flow_dissector *dissector = rule->match.dissector;
2587 	struct netlink_ext_ack *extack = f->common.extack;
2588 
2589 	if (dissector->used_keys &
2590 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2591 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2592 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2593 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2594 		NL_SET_ERR_MSG_MOD(extack,
2595 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2596 		return -EOPNOTSUPP;
2597 	}
2598 
2599 	if (flow_rule_match_has_control_flags(rule, extack))
2600 		return -EOPNOTSUPP;
2601 
2602 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2603 		struct flow_match_eth_addrs match;
2604 
2605 		flow_rule_match_eth_addrs(rule, &match);
2606 		if (!is_zero_ether_addr(match.mask->dst)) {
2607 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2608 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2609 				return -EINVAL;
2610 			}
2611 
2612 			input->filter.match_flags |=
2613 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2615 		}
2616 
2617 		if (!is_zero_ether_addr(match.mask->src)) {
2618 			if (!is_broadcast_ether_addr(match.mask->src)) {
2619 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2620 				return -EINVAL;
2621 			}
2622 
2623 			input->filter.match_flags |=
2624 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 			ether_addr_copy(input->filter.src_addr, match.key->src);
2626 		}
2627 	}
2628 
2629 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2630 		struct flow_match_basic match;
2631 
2632 		flow_rule_match_basic(rule, &match);
2633 		if (match.mask->n_proto) {
2634 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2635 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2636 				return -EINVAL;
2637 			}
2638 
2639 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2640 			input->filter.etype = match.key->n_proto;
2641 		}
2642 	}
2643 
2644 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2645 		struct flow_match_vlan match;
2646 
2647 		flow_rule_match_vlan(rule, &match);
2648 		if (match.mask->vlan_priority) {
2649 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2650 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2651 				return -EINVAL;
2652 			}
2653 
2654 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2655 			input->filter.vlan_tci =
2656 				(__force __be16)match.key->vlan_priority;
2657 		}
2658 	}
2659 
2660 	input->action = traffic_class;
2661 	input->cookie = f->cookie;
2662 
2663 	return 0;
2664 }
2665 
2666 static int igb_configure_clsflower(struct igb_adapter *adapter,
2667 				   struct flow_cls_offload *cls_flower)
2668 {
2669 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2670 	struct igb_nfc_filter *filter, *f;
2671 	int err, tc;
2672 
2673 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2674 	if (tc < 0) {
2675 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2676 		return -EINVAL;
2677 	}
2678 
2679 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2680 	if (!filter)
2681 		return -ENOMEM;
2682 
2683 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2684 	if (err < 0)
2685 		goto err_parse;
2686 
2687 	spin_lock(&adapter->nfc_lock);
2688 
2689 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2690 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2691 			err = -EEXIST;
2692 			NL_SET_ERR_MSG_MOD(extack,
2693 					   "This filter is already set in ethtool");
2694 			goto err_locked;
2695 		}
2696 	}
2697 
2698 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2699 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2700 			err = -EEXIST;
2701 			NL_SET_ERR_MSG_MOD(extack,
2702 					   "This filter is already set in cls_flower");
2703 			goto err_locked;
2704 		}
2705 	}
2706 
2707 	err = igb_add_filter(adapter, filter);
2708 	if (err < 0) {
2709 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2710 		goto err_locked;
2711 	}
2712 
2713 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2714 
2715 	spin_unlock(&adapter->nfc_lock);
2716 
2717 	return 0;
2718 
2719 err_locked:
2720 	spin_unlock(&adapter->nfc_lock);
2721 
2722 err_parse:
2723 	kfree(filter);
2724 
2725 	return err;
2726 }
2727 
2728 static int igb_delete_clsflower(struct igb_adapter *adapter,
2729 				struct flow_cls_offload *cls_flower)
2730 {
2731 	struct igb_nfc_filter *filter;
2732 	int err;
2733 
2734 	spin_lock(&adapter->nfc_lock);
2735 
2736 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2737 		if (filter->cookie == cls_flower->cookie)
2738 			break;
2739 
2740 	if (!filter) {
2741 		err = -ENOENT;
2742 		goto out;
2743 	}
2744 
2745 	err = igb_erase_filter(adapter, filter);
2746 	if (err < 0)
2747 		goto out;
2748 
2749 	hlist_del(&filter->nfc_node);
2750 	kfree(filter);
2751 
2752 out:
2753 	spin_unlock(&adapter->nfc_lock);
2754 
2755 	return err;
2756 }
2757 
2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2759 				   struct flow_cls_offload *cls_flower)
2760 {
2761 	switch (cls_flower->command) {
2762 	case FLOW_CLS_REPLACE:
2763 		return igb_configure_clsflower(adapter, cls_flower);
2764 	case FLOW_CLS_DESTROY:
2765 		return igb_delete_clsflower(adapter, cls_flower);
2766 	case FLOW_CLS_STATS:
2767 		return -EOPNOTSUPP;
2768 	default:
2769 		return -EOPNOTSUPP;
2770 	}
2771 }
2772 
2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2774 				 void *cb_priv)
2775 {
2776 	struct igb_adapter *adapter = cb_priv;
2777 
2778 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2779 		return -EOPNOTSUPP;
2780 
2781 	switch (type) {
2782 	case TC_SETUP_CLSFLOWER:
2783 		return igb_setup_tc_cls_flower(adapter, type_data);
2784 
2785 	default:
2786 		return -EOPNOTSUPP;
2787 	}
2788 }
2789 
2790 static int igb_offload_txtime(struct igb_adapter *adapter,
2791 			      struct tc_etf_qopt_offload *qopt)
2792 {
2793 	struct e1000_hw *hw = &adapter->hw;
2794 	int err;
2795 
2796 	/* Launchtime offloading is only supported by i210 controller. */
2797 	if (hw->mac.type != e1000_i210)
2798 		return -EOPNOTSUPP;
2799 
2800 	/* Launchtime offloading is only supported by queues 0 and 1. */
2801 	if (qopt->queue < 0 || qopt->queue > 1)
2802 		return -EINVAL;
2803 
2804 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2805 	if (err)
2806 		return err;
2807 
2808 	igb_offload_apply(adapter, qopt->queue);
2809 
2810 	return 0;
2811 }
2812 
2813 static int igb_tc_query_caps(struct igb_adapter *adapter,
2814 			     struct tc_query_caps_base *base)
2815 {
2816 	switch (base->type) {
2817 	case TC_SETUP_QDISC_TAPRIO: {
2818 		struct tc_taprio_caps *caps = base->caps;
2819 
2820 		caps->broken_mqprio = true;
2821 
2822 		return 0;
2823 	}
2824 	default:
2825 		return -EOPNOTSUPP;
2826 	}
2827 }
2828 
2829 static LIST_HEAD(igb_block_cb_list);
2830 
2831 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2832 			void *type_data)
2833 {
2834 	struct igb_adapter *adapter = netdev_priv(dev);
2835 
2836 	switch (type) {
2837 	case TC_QUERY_CAPS:
2838 		return igb_tc_query_caps(adapter, type_data);
2839 	case TC_SETUP_QDISC_CBS:
2840 		return igb_offload_cbs(adapter, type_data);
2841 	case TC_SETUP_BLOCK:
2842 		return flow_block_cb_setup_simple(type_data,
2843 						  &igb_block_cb_list,
2844 						  igb_setup_tc_block_cb,
2845 						  adapter, adapter, true);
2846 
2847 	case TC_SETUP_QDISC_ETF:
2848 		return igb_offload_txtime(adapter, type_data);
2849 
2850 	default:
2851 		return -EOPNOTSUPP;
2852 	}
2853 }
2854 
2855 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2856 {
2857 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2858 	struct igb_adapter *adapter = netdev_priv(dev);
2859 	struct bpf_prog *prog = bpf->prog, *old_prog;
2860 	bool running = netif_running(dev);
2861 	bool need_reset;
2862 
2863 	/* verify igb ring attributes are sufficient for XDP */
2864 	for (i = 0; i < adapter->num_rx_queues; i++) {
2865 		struct igb_ring *ring = adapter->rx_ring[i];
2866 
2867 		if (frame_size > igb_rx_bufsz(ring)) {
2868 			NL_SET_ERR_MSG_MOD(bpf->extack,
2869 					   "The RX buffer size is too small for the frame size");
2870 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2871 				    igb_rx_bufsz(ring), frame_size);
2872 			return -EINVAL;
2873 		}
2874 	}
2875 
2876 	old_prog = xchg(&adapter->xdp_prog, prog);
2877 	need_reset = (!!prog != !!old_prog);
2878 
2879 	/* device is up and bpf is added/removed, must setup the RX queues */
2880 	if (need_reset && running) {
2881 		igb_close(dev);
2882 	} else {
2883 		for (i = 0; i < adapter->num_rx_queues; i++)
2884 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2885 			    adapter->xdp_prog);
2886 	}
2887 
2888 	if (old_prog)
2889 		bpf_prog_put(old_prog);
2890 
2891 	/* bpf is just replaced, RXQ and MTU are already setup */
2892 	if (!need_reset) {
2893 		return 0;
2894 	} else {
2895 		if (prog)
2896 			xdp_features_set_redirect_target(dev, true);
2897 		else
2898 			xdp_features_clear_redirect_target(dev);
2899 	}
2900 
2901 	if (running)
2902 		igb_open(dev);
2903 
2904 	return 0;
2905 }
2906 
2907 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2908 {
2909 	switch (xdp->command) {
2910 	case XDP_SETUP_PROG:
2911 		return igb_xdp_setup(dev, xdp);
2912 	default:
2913 		return -EINVAL;
2914 	}
2915 }
2916 
2917 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2918 {
2919 	/* Force memory writes to complete before letting h/w know there
2920 	 * are new descriptors to fetch.
2921 	 */
2922 	wmb();
2923 	writel(ring->next_to_use, ring->tail);
2924 }
2925 
2926 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2927 {
2928 	unsigned int r_idx = smp_processor_id();
2929 
2930 	if (r_idx >= adapter->num_tx_queues)
2931 		r_idx = r_idx % adapter->num_tx_queues;
2932 
2933 	return adapter->tx_ring[r_idx];
2934 }
2935 
2936 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2937 {
2938 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2939 	int cpu = smp_processor_id();
2940 	struct igb_ring *tx_ring;
2941 	struct netdev_queue *nq;
2942 	u32 ret;
2943 
2944 	if (unlikely(!xdpf))
2945 		return IGB_XDP_CONSUMED;
2946 
2947 	/* During program transitions its possible adapter->xdp_prog is assigned
2948 	 * but ring has not been configured yet. In this case simply abort xmit.
2949 	 */
2950 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2951 	if (unlikely(!tx_ring))
2952 		return IGB_XDP_CONSUMED;
2953 
2954 	nq = txring_txq(tx_ring);
2955 	__netif_tx_lock(nq, cpu);
2956 	/* Avoid transmit queue timeout since we share it with the slow path */
2957 	txq_trans_cond_update(nq);
2958 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2959 	__netif_tx_unlock(nq);
2960 
2961 	return ret;
2962 }
2963 
2964 static int igb_xdp_xmit(struct net_device *dev, int n,
2965 			struct xdp_frame **frames, u32 flags)
2966 {
2967 	struct igb_adapter *adapter = netdev_priv(dev);
2968 	int cpu = smp_processor_id();
2969 	struct igb_ring *tx_ring;
2970 	struct netdev_queue *nq;
2971 	int nxmit = 0;
2972 	int i;
2973 
2974 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2975 		return -ENETDOWN;
2976 
2977 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2978 		return -EINVAL;
2979 
2980 	/* During program transitions its possible adapter->xdp_prog is assigned
2981 	 * but ring has not been configured yet. In this case simply abort xmit.
2982 	 */
2983 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2984 	if (unlikely(!tx_ring))
2985 		return -ENXIO;
2986 
2987 	nq = txring_txq(tx_ring);
2988 	__netif_tx_lock(nq, cpu);
2989 
2990 	/* Avoid transmit queue timeout since we share it with the slow path */
2991 	txq_trans_cond_update(nq);
2992 
2993 	for (i = 0; i < n; i++) {
2994 		struct xdp_frame *xdpf = frames[i];
2995 		int err;
2996 
2997 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2998 		if (err != IGB_XDP_TX)
2999 			break;
3000 		nxmit++;
3001 	}
3002 
3003 	__netif_tx_unlock(nq);
3004 
3005 	if (unlikely(flags & XDP_XMIT_FLUSH))
3006 		igb_xdp_ring_update_tail(tx_ring);
3007 
3008 	return nxmit;
3009 }
3010 
3011 static const struct net_device_ops igb_netdev_ops = {
3012 	.ndo_open		= igb_open,
3013 	.ndo_stop		= igb_close,
3014 	.ndo_start_xmit		= igb_xmit_frame,
3015 	.ndo_get_stats64	= igb_get_stats64,
3016 	.ndo_set_rx_mode	= igb_set_rx_mode,
3017 	.ndo_set_mac_address	= igb_set_mac,
3018 	.ndo_change_mtu		= igb_change_mtu,
3019 	.ndo_eth_ioctl		= igb_ioctl,
3020 	.ndo_tx_timeout		= igb_tx_timeout,
3021 	.ndo_validate_addr	= eth_validate_addr,
3022 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3023 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3024 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3025 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3026 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3027 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3028 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3029 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3030 	.ndo_fix_features	= igb_fix_features,
3031 	.ndo_set_features	= igb_set_features,
3032 	.ndo_fdb_add		= igb_ndo_fdb_add,
3033 	.ndo_features_check	= igb_features_check,
3034 	.ndo_setup_tc		= igb_setup_tc,
3035 	.ndo_bpf		= igb_xdp,
3036 	.ndo_xdp_xmit		= igb_xdp_xmit,
3037 };
3038 
3039 /**
3040  * igb_set_fw_version - Configure version string for ethtool
3041  * @adapter: adapter struct
3042  **/
3043 void igb_set_fw_version(struct igb_adapter *adapter)
3044 {
3045 	struct e1000_hw *hw = &adapter->hw;
3046 	struct e1000_fw_version fw;
3047 
3048 	igb_get_fw_version(hw, &fw);
3049 
3050 	switch (hw->mac.type) {
3051 	case e1000_i210:
3052 	case e1000_i211:
3053 		if (!(igb_get_flash_presence_i210(hw))) {
3054 			snprintf(adapter->fw_version,
3055 				 sizeof(adapter->fw_version),
3056 				 "%2d.%2d-%d",
3057 				 fw.invm_major, fw.invm_minor,
3058 				 fw.invm_img_type);
3059 			break;
3060 		}
3061 		fallthrough;
3062 	default:
3063 		/* if option rom is valid, display its version too */
3064 		if (fw.or_valid) {
3065 			snprintf(adapter->fw_version,
3066 				 sizeof(adapter->fw_version),
3067 				 "%d.%d, 0x%08x, %d.%d.%d",
3068 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3069 				 fw.or_major, fw.or_build, fw.or_patch);
3070 		/* no option rom */
3071 		} else if (fw.etrack_id != 0X0000) {
3072 			snprintf(adapter->fw_version,
3073 				 sizeof(adapter->fw_version),
3074 				 "%d.%d, 0x%08x",
3075 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
3076 		} else {
3077 			snprintf(adapter->fw_version,
3078 				 sizeof(adapter->fw_version),
3079 				 "%d.%d.%d",
3080 				 fw.eep_major, fw.eep_minor, fw.eep_build);
3081 		}
3082 		break;
3083 	}
3084 }
3085 
3086 /**
3087  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3088  *
3089  * @adapter: adapter struct
3090  **/
3091 static void igb_init_mas(struct igb_adapter *adapter)
3092 {
3093 	struct e1000_hw *hw = &adapter->hw;
3094 	u16 eeprom_data;
3095 
3096 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3097 	switch (hw->bus.func) {
3098 	case E1000_FUNC_0:
3099 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3100 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3101 			netdev_info(adapter->netdev,
3102 				"MAS: Enabling Media Autosense for port %d\n",
3103 				hw->bus.func);
3104 		}
3105 		break;
3106 	case E1000_FUNC_1:
3107 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3108 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3109 			netdev_info(adapter->netdev,
3110 				"MAS: Enabling Media Autosense for port %d\n",
3111 				hw->bus.func);
3112 		}
3113 		break;
3114 	case E1000_FUNC_2:
3115 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3116 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3117 			netdev_info(adapter->netdev,
3118 				"MAS: Enabling Media Autosense for port %d\n",
3119 				hw->bus.func);
3120 		}
3121 		break;
3122 	case E1000_FUNC_3:
3123 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3124 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3125 			netdev_info(adapter->netdev,
3126 				"MAS: Enabling Media Autosense for port %d\n",
3127 				hw->bus.func);
3128 		}
3129 		break;
3130 	default:
3131 		/* Shouldn't get here */
3132 		netdev_err(adapter->netdev,
3133 			"MAS: Invalid port configuration, returning\n");
3134 		break;
3135 	}
3136 }
3137 
3138 /**
3139  *  igb_init_i2c - Init I2C interface
3140  *  @adapter: pointer to adapter structure
3141  **/
3142 static s32 igb_init_i2c(struct igb_adapter *adapter)
3143 {
3144 	s32 status = 0;
3145 
3146 	/* I2C interface supported on i350 devices */
3147 	if (adapter->hw.mac.type != e1000_i350)
3148 		return 0;
3149 
3150 	/* Initialize the i2c bus which is controlled by the registers.
3151 	 * This bus will use the i2c_algo_bit structure that implements
3152 	 * the protocol through toggling of the 4 bits in the register.
3153 	 */
3154 	adapter->i2c_adap.owner = THIS_MODULE;
3155 	adapter->i2c_algo = igb_i2c_algo;
3156 	adapter->i2c_algo.data = adapter;
3157 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3158 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3159 	strscpy(adapter->i2c_adap.name, "igb BB",
3160 		sizeof(adapter->i2c_adap.name));
3161 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3162 	return status;
3163 }
3164 
3165 /**
3166  *  igb_probe - Device Initialization Routine
3167  *  @pdev: PCI device information struct
3168  *  @ent: entry in igb_pci_tbl
3169  *
3170  *  Returns 0 on success, negative on failure
3171  *
3172  *  igb_probe initializes an adapter identified by a pci_dev structure.
3173  *  The OS initialization, configuring of the adapter private structure,
3174  *  and a hardware reset occur.
3175  **/
3176 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3177 {
3178 	struct net_device *netdev;
3179 	struct igb_adapter *adapter;
3180 	struct e1000_hw *hw;
3181 	u16 eeprom_data = 0;
3182 	s32 ret_val;
3183 	static int global_quad_port_a; /* global quad port a indication */
3184 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3185 	u8 part_str[E1000_PBANUM_LENGTH];
3186 	int err;
3187 
3188 	/* Catch broken hardware that put the wrong VF device ID in
3189 	 * the PCIe SR-IOV capability.
3190 	 */
3191 	if (pdev->is_virtfn) {
3192 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3193 			pci_name(pdev), pdev->vendor, pdev->device);
3194 		return -EINVAL;
3195 	}
3196 
3197 	err = pci_enable_device_mem(pdev);
3198 	if (err)
3199 		return err;
3200 
3201 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3202 	if (err) {
3203 		dev_err(&pdev->dev,
3204 			"No usable DMA configuration, aborting\n");
3205 		goto err_dma;
3206 	}
3207 
3208 	err = pci_request_mem_regions(pdev, igb_driver_name);
3209 	if (err)
3210 		goto err_pci_reg;
3211 
3212 	pci_set_master(pdev);
3213 	pci_save_state(pdev);
3214 
3215 	err = -ENOMEM;
3216 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3217 				   IGB_MAX_TX_QUEUES);
3218 	if (!netdev)
3219 		goto err_alloc_etherdev;
3220 
3221 	SET_NETDEV_DEV(netdev, &pdev->dev);
3222 
3223 	pci_set_drvdata(pdev, netdev);
3224 	adapter = netdev_priv(netdev);
3225 	adapter->netdev = netdev;
3226 	adapter->pdev = pdev;
3227 	hw = &adapter->hw;
3228 	hw->back = adapter;
3229 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3230 
3231 	err = -EIO;
3232 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3233 	if (!adapter->io_addr)
3234 		goto err_ioremap;
3235 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3236 	hw->hw_addr = adapter->io_addr;
3237 
3238 	netdev->netdev_ops = &igb_netdev_ops;
3239 	igb_set_ethtool_ops(netdev);
3240 	netdev->watchdog_timeo = 5 * HZ;
3241 
3242 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3243 
3244 	netdev->mem_start = pci_resource_start(pdev, 0);
3245 	netdev->mem_end = pci_resource_end(pdev, 0);
3246 
3247 	/* PCI config space info */
3248 	hw->vendor_id = pdev->vendor;
3249 	hw->device_id = pdev->device;
3250 	hw->revision_id = pdev->revision;
3251 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3252 	hw->subsystem_device_id = pdev->subsystem_device;
3253 
3254 	/* Copy the default MAC, PHY and NVM function pointers */
3255 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3256 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3257 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3258 	/* Initialize skew-specific constants */
3259 	err = ei->get_invariants(hw);
3260 	if (err)
3261 		goto err_sw_init;
3262 
3263 	/* setup the private structure */
3264 	err = igb_sw_init(adapter);
3265 	if (err)
3266 		goto err_sw_init;
3267 
3268 	igb_get_bus_info_pcie(hw);
3269 
3270 	hw->phy.autoneg_wait_to_complete = false;
3271 
3272 	/* Copper options */
3273 	if (hw->phy.media_type == e1000_media_type_copper) {
3274 		hw->phy.mdix = AUTO_ALL_MODES;
3275 		hw->phy.disable_polarity_correction = false;
3276 		hw->phy.ms_type = e1000_ms_hw_default;
3277 	}
3278 
3279 	if (igb_check_reset_block(hw))
3280 		dev_info(&pdev->dev,
3281 			"PHY reset is blocked due to SOL/IDER session.\n");
3282 
3283 	/* features is initialized to 0 in allocation, it might have bits
3284 	 * set by igb_sw_init so we should use an or instead of an
3285 	 * assignment.
3286 	 */
3287 	netdev->features |= NETIF_F_SG |
3288 			    NETIF_F_TSO |
3289 			    NETIF_F_TSO6 |
3290 			    NETIF_F_RXHASH |
3291 			    NETIF_F_RXCSUM |
3292 			    NETIF_F_HW_CSUM;
3293 
3294 	if (hw->mac.type >= e1000_82576)
3295 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3296 
3297 	if (hw->mac.type >= e1000_i350)
3298 		netdev->features |= NETIF_F_HW_TC;
3299 
3300 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3301 				  NETIF_F_GSO_GRE_CSUM | \
3302 				  NETIF_F_GSO_IPXIP4 | \
3303 				  NETIF_F_GSO_IPXIP6 | \
3304 				  NETIF_F_GSO_UDP_TUNNEL | \
3305 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3306 
3307 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3308 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3309 
3310 	/* copy netdev features into list of user selectable features */
3311 	netdev->hw_features |= netdev->features |
3312 			       NETIF_F_HW_VLAN_CTAG_RX |
3313 			       NETIF_F_HW_VLAN_CTAG_TX |
3314 			       NETIF_F_RXALL;
3315 
3316 	if (hw->mac.type >= e1000_i350)
3317 		netdev->hw_features |= NETIF_F_NTUPLE;
3318 
3319 	netdev->features |= NETIF_F_HIGHDMA;
3320 
3321 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3322 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3323 	netdev->hw_enc_features |= netdev->vlan_features;
3324 
3325 	/* set this bit last since it cannot be part of vlan_features */
3326 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3327 			    NETIF_F_HW_VLAN_CTAG_RX |
3328 			    NETIF_F_HW_VLAN_CTAG_TX;
3329 
3330 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3331 
3332 	netdev->priv_flags |= IFF_UNICAST_FLT;
3333 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3334 
3335 	/* MTU range: 68 - 9216 */
3336 	netdev->min_mtu = ETH_MIN_MTU;
3337 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3338 
3339 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3340 
3341 	/* before reading the NVM, reset the controller to put the device in a
3342 	 * known good starting state
3343 	 */
3344 	hw->mac.ops.reset_hw(hw);
3345 
3346 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3347 	 * that doesn't contain a checksum
3348 	 */
3349 	switch (hw->mac.type) {
3350 	case e1000_i210:
3351 	case e1000_i211:
3352 		if (igb_get_flash_presence_i210(hw)) {
3353 			if (hw->nvm.ops.validate(hw) < 0) {
3354 				dev_err(&pdev->dev,
3355 					"The NVM Checksum Is Not Valid\n");
3356 				err = -EIO;
3357 				goto err_eeprom;
3358 			}
3359 		}
3360 		break;
3361 	default:
3362 		if (hw->nvm.ops.validate(hw) < 0) {
3363 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3364 			err = -EIO;
3365 			goto err_eeprom;
3366 		}
3367 		break;
3368 	}
3369 
3370 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3371 		/* copy the MAC address out of the NVM */
3372 		if (hw->mac.ops.read_mac_addr(hw))
3373 			dev_err(&pdev->dev, "NVM Read Error\n");
3374 	}
3375 
3376 	eth_hw_addr_set(netdev, hw->mac.addr);
3377 
3378 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3379 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3380 		err = -EIO;
3381 		goto err_eeprom;
3382 	}
3383 
3384 	igb_set_default_mac_filter(adapter);
3385 
3386 	/* get firmware version for ethtool -i */
3387 	igb_set_fw_version(adapter);
3388 
3389 	/* configure RXPBSIZE and TXPBSIZE */
3390 	if (hw->mac.type == e1000_i210) {
3391 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3392 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3393 	}
3394 
3395 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3396 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3397 
3398 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3399 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3400 
3401 	/* Initialize link properties that are user-changeable */
3402 	adapter->fc_autoneg = true;
3403 	hw->mac.autoneg = true;
3404 	hw->phy.autoneg_advertised = 0x2f;
3405 
3406 	hw->fc.requested_mode = e1000_fc_default;
3407 	hw->fc.current_mode = e1000_fc_default;
3408 
3409 	igb_validate_mdi_setting(hw);
3410 
3411 	/* By default, support wake on port A */
3412 	if (hw->bus.func == 0)
3413 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3414 
3415 	/* Check the NVM for wake support on non-port A ports */
3416 	if (hw->mac.type >= e1000_82580)
3417 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3418 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3419 				 &eeprom_data);
3420 	else if (hw->bus.func == 1)
3421 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3422 
3423 	if (eeprom_data & IGB_EEPROM_APME)
3424 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3425 
3426 	/* now that we have the eeprom settings, apply the special cases where
3427 	 * the eeprom may be wrong or the board simply won't support wake on
3428 	 * lan on a particular port
3429 	 */
3430 	switch (pdev->device) {
3431 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3432 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3433 		break;
3434 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3435 	case E1000_DEV_ID_82576_FIBER:
3436 	case E1000_DEV_ID_82576_SERDES:
3437 		/* Wake events only supported on port A for dual fiber
3438 		 * regardless of eeprom setting
3439 		 */
3440 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3441 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3442 		break;
3443 	case E1000_DEV_ID_82576_QUAD_COPPER:
3444 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3445 		/* if quad port adapter, disable WoL on all but port A */
3446 		if (global_quad_port_a != 0)
3447 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3448 		else
3449 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3450 		/* Reset for multiple quad port adapters */
3451 		if (++global_quad_port_a == 4)
3452 			global_quad_port_a = 0;
3453 		break;
3454 	default:
3455 		/* If the device can't wake, don't set software support */
3456 		if (!device_can_wakeup(&adapter->pdev->dev))
3457 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3458 	}
3459 
3460 	/* initialize the wol settings based on the eeprom settings */
3461 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3462 		adapter->wol |= E1000_WUFC_MAG;
3463 
3464 	/* Some vendors want WoL disabled by default, but still supported */
3465 	if ((hw->mac.type == e1000_i350) &&
3466 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3467 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3468 		adapter->wol = 0;
3469 	}
3470 
3471 	/* Some vendors want the ability to Use the EEPROM setting as
3472 	 * enable/disable only, and not for capability
3473 	 */
3474 	if (((hw->mac.type == e1000_i350) ||
3475 	     (hw->mac.type == e1000_i354)) &&
3476 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3477 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3478 		adapter->wol = 0;
3479 	}
3480 	if (hw->mac.type == e1000_i350) {
3481 		if (((pdev->subsystem_device == 0x5001) ||
3482 		     (pdev->subsystem_device == 0x5002)) &&
3483 				(hw->bus.func == 0)) {
3484 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3485 			adapter->wol = 0;
3486 		}
3487 		if (pdev->subsystem_device == 0x1F52)
3488 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3489 	}
3490 
3491 	device_set_wakeup_enable(&adapter->pdev->dev,
3492 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3493 
3494 	/* reset the hardware with the new settings */
3495 	igb_reset(adapter);
3496 
3497 	/* Init the I2C interface */
3498 	err = igb_init_i2c(adapter);
3499 	if (err) {
3500 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3501 		goto err_eeprom;
3502 	}
3503 
3504 	/* let the f/w know that the h/w is now under the control of the
3505 	 * driver.
3506 	 */
3507 	igb_get_hw_control(adapter);
3508 
3509 	strcpy(netdev->name, "eth%d");
3510 	err = register_netdev(netdev);
3511 	if (err)
3512 		goto err_register;
3513 
3514 	/* carrier off reporting is important to ethtool even BEFORE open */
3515 	netif_carrier_off(netdev);
3516 
3517 #ifdef CONFIG_IGB_DCA
3518 	if (dca_add_requester(&pdev->dev) == 0) {
3519 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3520 		dev_info(&pdev->dev, "DCA enabled\n");
3521 		igb_setup_dca(adapter);
3522 	}
3523 
3524 #endif
3525 #ifdef CONFIG_IGB_HWMON
3526 	/* Initialize the thermal sensor on i350 devices. */
3527 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3528 		u16 ets_word;
3529 
3530 		/* Read the NVM to determine if this i350 device supports an
3531 		 * external thermal sensor.
3532 		 */
3533 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3534 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3535 			adapter->ets = true;
3536 		else
3537 			adapter->ets = false;
3538 		/* Only enable I2C bit banging if an external thermal
3539 		 * sensor is supported.
3540 		 */
3541 		if (adapter->ets)
3542 			igb_set_i2c_bb(hw);
3543 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3544 		if (igb_sysfs_init(adapter))
3545 			dev_err(&pdev->dev,
3546 				"failed to allocate sysfs resources\n");
3547 	} else {
3548 		adapter->ets = false;
3549 	}
3550 #endif
3551 	/* Check if Media Autosense is enabled */
3552 	adapter->ei = *ei;
3553 	if (hw->dev_spec._82575.mas_capable)
3554 		igb_init_mas(adapter);
3555 
3556 	/* do hw tstamp init after resetting */
3557 	igb_ptp_init(adapter);
3558 
3559 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3560 	/* print bus type/speed/width info, not applicable to i354 */
3561 	if (hw->mac.type != e1000_i354) {
3562 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3563 			 netdev->name,
3564 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3565 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3566 			   "unknown"),
3567 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3568 			  "Width x4" :
3569 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3570 			  "Width x2" :
3571 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3572 			  "Width x1" : "unknown"), netdev->dev_addr);
3573 	}
3574 
3575 	if ((hw->mac.type == e1000_82576 &&
3576 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3577 	    (hw->mac.type >= e1000_i210 ||
3578 	     igb_get_flash_presence_i210(hw))) {
3579 		ret_val = igb_read_part_string(hw, part_str,
3580 					       E1000_PBANUM_LENGTH);
3581 	} else {
3582 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3583 	}
3584 
3585 	if (ret_val)
3586 		strcpy(part_str, "Unknown");
3587 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3588 	dev_info(&pdev->dev,
3589 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3590 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3591 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3592 		adapter->num_rx_queues, adapter->num_tx_queues);
3593 	if (hw->phy.media_type == e1000_media_type_copper) {
3594 		switch (hw->mac.type) {
3595 		case e1000_i350:
3596 		case e1000_i210:
3597 		case e1000_i211:
3598 			/* Enable EEE for internal copper PHY devices */
3599 			err = igb_set_eee_i350(hw, true, true);
3600 			if ((!err) &&
3601 			    (!hw->dev_spec._82575.eee_disable)) {
3602 				adapter->eee_advert =
3603 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3604 				adapter->flags |= IGB_FLAG_EEE;
3605 			}
3606 			break;
3607 		case e1000_i354:
3608 			if ((rd32(E1000_CTRL_EXT) &
3609 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3610 				err = igb_set_eee_i354(hw, true, true);
3611 				if ((!err) &&
3612 					(!hw->dev_spec._82575.eee_disable)) {
3613 					adapter->eee_advert =
3614 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3615 					adapter->flags |= IGB_FLAG_EEE;
3616 				}
3617 			}
3618 			break;
3619 		default:
3620 			break;
3621 		}
3622 	}
3623 
3624 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3625 
3626 	pm_runtime_put_noidle(&pdev->dev);
3627 	return 0;
3628 
3629 err_register:
3630 	igb_release_hw_control(adapter);
3631 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3632 err_eeprom:
3633 	if (!igb_check_reset_block(hw))
3634 		igb_reset_phy(hw);
3635 
3636 	if (hw->flash_address)
3637 		iounmap(hw->flash_address);
3638 err_sw_init:
3639 	kfree(adapter->mac_table);
3640 	kfree(adapter->shadow_vfta);
3641 	igb_clear_interrupt_scheme(adapter);
3642 #ifdef CONFIG_PCI_IOV
3643 	igb_disable_sriov(pdev, false);
3644 #endif
3645 	pci_iounmap(pdev, adapter->io_addr);
3646 err_ioremap:
3647 	free_netdev(netdev);
3648 err_alloc_etherdev:
3649 	pci_release_mem_regions(pdev);
3650 err_pci_reg:
3651 err_dma:
3652 	pci_disable_device(pdev);
3653 	return err;
3654 }
3655 
3656 #ifdef CONFIG_PCI_IOV
3657 static int igb_sriov_reinit(struct pci_dev *dev)
3658 {
3659 	struct net_device *netdev = pci_get_drvdata(dev);
3660 	struct igb_adapter *adapter = netdev_priv(netdev);
3661 	struct pci_dev *pdev = adapter->pdev;
3662 
3663 	rtnl_lock();
3664 
3665 	if (netif_running(netdev))
3666 		igb_close(netdev);
3667 	else
3668 		igb_reset(adapter);
3669 
3670 	igb_clear_interrupt_scheme(adapter);
3671 
3672 	igb_init_queue_configuration(adapter);
3673 
3674 	if (igb_init_interrupt_scheme(adapter, true)) {
3675 		rtnl_unlock();
3676 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3677 		return -ENOMEM;
3678 	}
3679 
3680 	if (netif_running(netdev))
3681 		igb_open(netdev);
3682 
3683 	rtnl_unlock();
3684 
3685 	return 0;
3686 }
3687 
3688 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3689 {
3690 	struct net_device *netdev = pci_get_drvdata(pdev);
3691 	struct igb_adapter *adapter = netdev_priv(netdev);
3692 	struct e1000_hw *hw = &adapter->hw;
3693 	unsigned long flags;
3694 
3695 	/* reclaim resources allocated to VFs */
3696 	if (adapter->vf_data) {
3697 		/* disable iov and allow time for transactions to clear */
3698 		if (pci_vfs_assigned(pdev)) {
3699 			dev_warn(&pdev->dev,
3700 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3701 			return -EPERM;
3702 		} else {
3703 			pci_disable_sriov(pdev);
3704 			msleep(500);
3705 		}
3706 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3707 		kfree(adapter->vf_mac_list);
3708 		adapter->vf_mac_list = NULL;
3709 		kfree(adapter->vf_data);
3710 		adapter->vf_data = NULL;
3711 		adapter->vfs_allocated_count = 0;
3712 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3713 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3714 		wrfl();
3715 		msleep(100);
3716 		dev_info(&pdev->dev, "IOV Disabled\n");
3717 
3718 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3719 		adapter->flags |= IGB_FLAG_DMAC;
3720 	}
3721 
3722 	return reinit ? igb_sriov_reinit(pdev) : 0;
3723 }
3724 
3725 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3726 {
3727 	struct net_device *netdev = pci_get_drvdata(pdev);
3728 	struct igb_adapter *adapter = netdev_priv(netdev);
3729 	int old_vfs = pci_num_vf(pdev);
3730 	struct vf_mac_filter *mac_list;
3731 	int err = 0;
3732 	int num_vf_mac_filters, i;
3733 
3734 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3735 		err = -EPERM;
3736 		goto out;
3737 	}
3738 	if (!num_vfs)
3739 		goto out;
3740 
3741 	if (old_vfs) {
3742 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3743 			 old_vfs, max_vfs);
3744 		adapter->vfs_allocated_count = old_vfs;
3745 	} else
3746 		adapter->vfs_allocated_count = num_vfs;
3747 
3748 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3749 				sizeof(struct vf_data_storage), GFP_KERNEL);
3750 
3751 	/* if allocation failed then we do not support SR-IOV */
3752 	if (!adapter->vf_data) {
3753 		adapter->vfs_allocated_count = 0;
3754 		err = -ENOMEM;
3755 		goto out;
3756 	}
3757 
3758 	/* Due to the limited number of RAR entries calculate potential
3759 	 * number of MAC filters available for the VFs. Reserve entries
3760 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3761 	 * for each VF for VF MAC.
3762 	 */
3763 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3764 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3765 			      adapter->vfs_allocated_count);
3766 
3767 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3768 				       sizeof(struct vf_mac_filter),
3769 				       GFP_KERNEL);
3770 
3771 	mac_list = adapter->vf_mac_list;
3772 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3773 
3774 	if (adapter->vf_mac_list) {
3775 		/* Initialize list of VF MAC filters */
3776 		for (i = 0; i < num_vf_mac_filters; i++) {
3777 			mac_list->vf = -1;
3778 			mac_list->free = true;
3779 			list_add(&mac_list->l, &adapter->vf_macs.l);
3780 			mac_list++;
3781 		}
3782 	} else {
3783 		/* If we could not allocate memory for the VF MAC filters
3784 		 * we can continue without this feature but warn user.
3785 		 */
3786 		dev_err(&pdev->dev,
3787 			"Unable to allocate memory for VF MAC filter list\n");
3788 	}
3789 
3790 	dev_info(&pdev->dev, "%d VFs allocated\n",
3791 		 adapter->vfs_allocated_count);
3792 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3793 		igb_vf_configure(adapter, i);
3794 
3795 	/* DMA Coalescing is not supported in IOV mode. */
3796 	adapter->flags &= ~IGB_FLAG_DMAC;
3797 
3798 	if (reinit) {
3799 		err = igb_sriov_reinit(pdev);
3800 		if (err)
3801 			goto err_out;
3802 	}
3803 
3804 	/* only call pci_enable_sriov() if no VFs are allocated already */
3805 	if (!old_vfs) {
3806 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3807 		if (err)
3808 			goto err_out;
3809 	}
3810 
3811 	goto out;
3812 
3813 err_out:
3814 	kfree(adapter->vf_mac_list);
3815 	adapter->vf_mac_list = NULL;
3816 	kfree(adapter->vf_data);
3817 	adapter->vf_data = NULL;
3818 	adapter->vfs_allocated_count = 0;
3819 out:
3820 	return err;
3821 }
3822 
3823 #endif
3824 /**
3825  *  igb_remove_i2c - Cleanup  I2C interface
3826  *  @adapter: pointer to adapter structure
3827  **/
3828 static void igb_remove_i2c(struct igb_adapter *adapter)
3829 {
3830 	/* free the adapter bus structure */
3831 	i2c_del_adapter(&adapter->i2c_adap);
3832 }
3833 
3834 /**
3835  *  igb_remove - Device Removal Routine
3836  *  @pdev: PCI device information struct
3837  *
3838  *  igb_remove is called by the PCI subsystem to alert the driver
3839  *  that it should release a PCI device.  The could be caused by a
3840  *  Hot-Plug event, or because the driver is going to be removed from
3841  *  memory.
3842  **/
3843 static void igb_remove(struct pci_dev *pdev)
3844 {
3845 	struct net_device *netdev = pci_get_drvdata(pdev);
3846 	struct igb_adapter *adapter = netdev_priv(netdev);
3847 	struct e1000_hw *hw = &adapter->hw;
3848 
3849 	pm_runtime_get_noresume(&pdev->dev);
3850 #ifdef CONFIG_IGB_HWMON
3851 	igb_sysfs_exit(adapter);
3852 #endif
3853 	igb_remove_i2c(adapter);
3854 	igb_ptp_stop(adapter);
3855 	/* The watchdog timer may be rescheduled, so explicitly
3856 	 * disable watchdog from being rescheduled.
3857 	 */
3858 	set_bit(__IGB_DOWN, &adapter->state);
3859 	del_timer_sync(&adapter->watchdog_timer);
3860 	del_timer_sync(&adapter->phy_info_timer);
3861 
3862 	cancel_work_sync(&adapter->reset_task);
3863 	cancel_work_sync(&adapter->watchdog_task);
3864 
3865 #ifdef CONFIG_IGB_DCA
3866 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3867 		dev_info(&pdev->dev, "DCA disabled\n");
3868 		dca_remove_requester(&pdev->dev);
3869 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3870 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3871 	}
3872 #endif
3873 
3874 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3875 	 * would have already happened in close and is redundant.
3876 	 */
3877 	igb_release_hw_control(adapter);
3878 
3879 #ifdef CONFIG_PCI_IOV
3880 	igb_disable_sriov(pdev, false);
3881 #endif
3882 
3883 	unregister_netdev(netdev);
3884 
3885 	igb_clear_interrupt_scheme(adapter);
3886 
3887 	pci_iounmap(pdev, adapter->io_addr);
3888 	if (hw->flash_address)
3889 		iounmap(hw->flash_address);
3890 	pci_release_mem_regions(pdev);
3891 
3892 	kfree(adapter->mac_table);
3893 	kfree(adapter->shadow_vfta);
3894 	free_netdev(netdev);
3895 
3896 	pci_disable_device(pdev);
3897 }
3898 
3899 /**
3900  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3901  *  @adapter: board private structure to initialize
3902  *
3903  *  This function initializes the vf specific data storage and then attempts to
3904  *  allocate the VFs.  The reason for ordering it this way is because it is much
3905  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3906  *  the memory for the VFs.
3907  **/
3908 static void igb_probe_vfs(struct igb_adapter *adapter)
3909 {
3910 #ifdef CONFIG_PCI_IOV
3911 	struct pci_dev *pdev = adapter->pdev;
3912 	struct e1000_hw *hw = &adapter->hw;
3913 
3914 	/* Virtualization features not supported on i210 and 82580 family. */
3915 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3916 	    (hw->mac.type == e1000_82580))
3917 		return;
3918 
3919 	/* Of the below we really only want the effect of getting
3920 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3921 	 * igb_enable_sriov() has no effect.
3922 	 */
3923 	igb_set_interrupt_capability(adapter, true);
3924 	igb_reset_interrupt_capability(adapter);
3925 
3926 	pci_sriov_set_totalvfs(pdev, 7);
3927 	igb_enable_sriov(pdev, max_vfs, false);
3928 
3929 #endif /* CONFIG_PCI_IOV */
3930 }
3931 
3932 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3933 {
3934 	struct e1000_hw *hw = &adapter->hw;
3935 	unsigned int max_rss_queues;
3936 
3937 	/* Determine the maximum number of RSS queues supported. */
3938 	switch (hw->mac.type) {
3939 	case e1000_i211:
3940 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3941 		break;
3942 	case e1000_82575:
3943 	case e1000_i210:
3944 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3945 		break;
3946 	case e1000_i350:
3947 		/* I350 cannot do RSS and SR-IOV at the same time */
3948 		if (!!adapter->vfs_allocated_count) {
3949 			max_rss_queues = 1;
3950 			break;
3951 		}
3952 		fallthrough;
3953 	case e1000_82576:
3954 		if (!!adapter->vfs_allocated_count) {
3955 			max_rss_queues = 2;
3956 			break;
3957 		}
3958 		fallthrough;
3959 	case e1000_82580:
3960 	case e1000_i354:
3961 	default:
3962 		max_rss_queues = IGB_MAX_RX_QUEUES;
3963 		break;
3964 	}
3965 
3966 	return max_rss_queues;
3967 }
3968 
3969 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3970 {
3971 	u32 max_rss_queues;
3972 
3973 	max_rss_queues = igb_get_max_rss_queues(adapter);
3974 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3975 
3976 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3977 }
3978 
3979 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3980 			      const u32 max_rss_queues)
3981 {
3982 	struct e1000_hw *hw = &adapter->hw;
3983 
3984 	/* Determine if we need to pair queues. */
3985 	switch (hw->mac.type) {
3986 	case e1000_82575:
3987 	case e1000_i211:
3988 		/* Device supports enough interrupts without queue pairing. */
3989 		break;
3990 	case e1000_82576:
3991 	case e1000_82580:
3992 	case e1000_i350:
3993 	case e1000_i354:
3994 	case e1000_i210:
3995 	default:
3996 		/* If rss_queues > half of max_rss_queues, pair the queues in
3997 		 * order to conserve interrupts due to limited supply.
3998 		 */
3999 		if (adapter->rss_queues > (max_rss_queues / 2))
4000 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4001 		else
4002 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4003 		break;
4004 	}
4005 }
4006 
4007 /**
4008  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4009  *  @adapter: board private structure to initialize
4010  *
4011  *  igb_sw_init initializes the Adapter private data structure.
4012  *  Fields are initialized based on PCI device information and
4013  *  OS network device settings (MTU size).
4014  **/
4015 static int igb_sw_init(struct igb_adapter *adapter)
4016 {
4017 	struct e1000_hw *hw = &adapter->hw;
4018 	struct net_device *netdev = adapter->netdev;
4019 	struct pci_dev *pdev = adapter->pdev;
4020 
4021 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4022 
4023 	/* set default ring sizes */
4024 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4025 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4026 
4027 	/* set default ITR values */
4028 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4029 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4030 
4031 	/* set default work limits */
4032 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4033 
4034 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4035 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4036 
4037 	spin_lock_init(&adapter->nfc_lock);
4038 	spin_lock_init(&adapter->stats64_lock);
4039 
4040 	/* init spinlock to avoid concurrency of VF resources */
4041 	spin_lock_init(&adapter->vfs_lock);
4042 #ifdef CONFIG_PCI_IOV
4043 	switch (hw->mac.type) {
4044 	case e1000_82576:
4045 	case e1000_i350:
4046 		if (max_vfs > 7) {
4047 			dev_warn(&pdev->dev,
4048 				 "Maximum of 7 VFs per PF, using max\n");
4049 			max_vfs = adapter->vfs_allocated_count = 7;
4050 		} else
4051 			adapter->vfs_allocated_count = max_vfs;
4052 		if (adapter->vfs_allocated_count)
4053 			dev_warn(&pdev->dev,
4054 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4055 		break;
4056 	default:
4057 		break;
4058 	}
4059 #endif /* CONFIG_PCI_IOV */
4060 
4061 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4062 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4063 
4064 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4065 				     sizeof(struct igb_mac_addr),
4066 				     GFP_KERNEL);
4067 	if (!adapter->mac_table)
4068 		return -ENOMEM;
4069 
4070 	igb_probe_vfs(adapter);
4071 
4072 	igb_init_queue_configuration(adapter);
4073 
4074 	/* Setup and initialize a copy of the hw vlan table array */
4075 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4076 				       GFP_KERNEL);
4077 	if (!adapter->shadow_vfta)
4078 		return -ENOMEM;
4079 
4080 	/* This call may decrease the number of queues */
4081 	if (igb_init_interrupt_scheme(adapter, true)) {
4082 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4083 		return -ENOMEM;
4084 	}
4085 
4086 	/* Explicitly disable IRQ since the NIC can be in any state. */
4087 	igb_irq_disable(adapter);
4088 
4089 	if (hw->mac.type >= e1000_i350)
4090 		adapter->flags &= ~IGB_FLAG_DMAC;
4091 
4092 	set_bit(__IGB_DOWN, &adapter->state);
4093 	return 0;
4094 }
4095 
4096 /**
4097  *  __igb_open - Called when a network interface is made active
4098  *  @netdev: network interface device structure
4099  *  @resuming: indicates whether we are in a resume call
4100  *
4101  *  Returns 0 on success, negative value on failure
4102  *
4103  *  The open entry point is called when a network interface is made
4104  *  active by the system (IFF_UP).  At this point all resources needed
4105  *  for transmit and receive operations are allocated, the interrupt
4106  *  handler is registered with the OS, the watchdog timer is started,
4107  *  and the stack is notified that the interface is ready.
4108  **/
4109 static int __igb_open(struct net_device *netdev, bool resuming)
4110 {
4111 	struct igb_adapter *adapter = netdev_priv(netdev);
4112 	struct e1000_hw *hw = &adapter->hw;
4113 	struct pci_dev *pdev = adapter->pdev;
4114 	int err;
4115 	int i;
4116 
4117 	/* disallow open during test */
4118 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4119 		WARN_ON(resuming);
4120 		return -EBUSY;
4121 	}
4122 
4123 	if (!resuming)
4124 		pm_runtime_get_sync(&pdev->dev);
4125 
4126 	netif_carrier_off(netdev);
4127 
4128 	/* allocate transmit descriptors */
4129 	err = igb_setup_all_tx_resources(adapter);
4130 	if (err)
4131 		goto err_setup_tx;
4132 
4133 	/* allocate receive descriptors */
4134 	err = igb_setup_all_rx_resources(adapter);
4135 	if (err)
4136 		goto err_setup_rx;
4137 
4138 	igb_power_up_link(adapter);
4139 
4140 	/* before we allocate an interrupt, we must be ready to handle it.
4141 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4142 	 * as soon as we call pci_request_irq, so we have to setup our
4143 	 * clean_rx handler before we do so.
4144 	 */
4145 	igb_configure(adapter);
4146 
4147 	err = igb_request_irq(adapter);
4148 	if (err)
4149 		goto err_req_irq;
4150 
4151 	/* Notify the stack of the actual queue counts. */
4152 	err = netif_set_real_num_tx_queues(adapter->netdev,
4153 					   adapter->num_tx_queues);
4154 	if (err)
4155 		goto err_set_queues;
4156 
4157 	err = netif_set_real_num_rx_queues(adapter->netdev,
4158 					   adapter->num_rx_queues);
4159 	if (err)
4160 		goto err_set_queues;
4161 
4162 	/* From here on the code is the same as igb_up() */
4163 	clear_bit(__IGB_DOWN, &adapter->state);
4164 
4165 	for (i = 0; i < adapter->num_q_vectors; i++)
4166 		napi_enable(&(adapter->q_vector[i]->napi));
4167 
4168 	/* Clear any pending interrupts. */
4169 	rd32(E1000_TSICR);
4170 	rd32(E1000_ICR);
4171 
4172 	igb_irq_enable(adapter);
4173 
4174 	/* notify VFs that reset has been completed */
4175 	if (adapter->vfs_allocated_count) {
4176 		u32 reg_data = rd32(E1000_CTRL_EXT);
4177 
4178 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4179 		wr32(E1000_CTRL_EXT, reg_data);
4180 	}
4181 
4182 	netif_tx_start_all_queues(netdev);
4183 
4184 	if (!resuming)
4185 		pm_runtime_put(&pdev->dev);
4186 
4187 	/* start the watchdog. */
4188 	hw->mac.get_link_status = 1;
4189 	schedule_work(&adapter->watchdog_task);
4190 
4191 	return 0;
4192 
4193 err_set_queues:
4194 	igb_free_irq(adapter);
4195 err_req_irq:
4196 	igb_release_hw_control(adapter);
4197 	igb_power_down_link(adapter);
4198 	igb_free_all_rx_resources(adapter);
4199 err_setup_rx:
4200 	igb_free_all_tx_resources(adapter);
4201 err_setup_tx:
4202 	igb_reset(adapter);
4203 	if (!resuming)
4204 		pm_runtime_put(&pdev->dev);
4205 
4206 	return err;
4207 }
4208 
4209 int igb_open(struct net_device *netdev)
4210 {
4211 	return __igb_open(netdev, false);
4212 }
4213 
4214 /**
4215  *  __igb_close - Disables a network interface
4216  *  @netdev: network interface device structure
4217  *  @suspending: indicates we are in a suspend call
4218  *
4219  *  Returns 0, this is not allowed to fail
4220  *
4221  *  The close entry point is called when an interface is de-activated
4222  *  by the OS.  The hardware is still under the driver's control, but
4223  *  needs to be disabled.  A global MAC reset is issued to stop the
4224  *  hardware, and all transmit and receive resources are freed.
4225  **/
4226 static int __igb_close(struct net_device *netdev, bool suspending)
4227 {
4228 	struct igb_adapter *adapter = netdev_priv(netdev);
4229 	struct pci_dev *pdev = adapter->pdev;
4230 
4231 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4232 
4233 	if (!suspending)
4234 		pm_runtime_get_sync(&pdev->dev);
4235 
4236 	igb_down(adapter);
4237 	igb_free_irq(adapter);
4238 
4239 	igb_free_all_tx_resources(adapter);
4240 	igb_free_all_rx_resources(adapter);
4241 
4242 	if (!suspending)
4243 		pm_runtime_put_sync(&pdev->dev);
4244 	return 0;
4245 }
4246 
4247 int igb_close(struct net_device *netdev)
4248 {
4249 	if (netif_device_present(netdev) || netdev->dismantle)
4250 		return __igb_close(netdev, false);
4251 	return 0;
4252 }
4253 
4254 /**
4255  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4256  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4257  *
4258  *  Return 0 on success, negative on failure
4259  **/
4260 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4261 {
4262 	struct device *dev = tx_ring->dev;
4263 	int size;
4264 
4265 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4266 
4267 	tx_ring->tx_buffer_info = vmalloc(size);
4268 	if (!tx_ring->tx_buffer_info)
4269 		goto err;
4270 
4271 	/* round up to nearest 4K */
4272 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4273 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4274 
4275 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4276 					   &tx_ring->dma, GFP_KERNEL);
4277 	if (!tx_ring->desc)
4278 		goto err;
4279 
4280 	tx_ring->next_to_use = 0;
4281 	tx_ring->next_to_clean = 0;
4282 
4283 	return 0;
4284 
4285 err:
4286 	vfree(tx_ring->tx_buffer_info);
4287 	tx_ring->tx_buffer_info = NULL;
4288 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4289 	return -ENOMEM;
4290 }
4291 
4292 /**
4293  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4294  *				 (Descriptors) for all queues
4295  *  @adapter: board private structure
4296  *
4297  *  Return 0 on success, negative on failure
4298  **/
4299 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4300 {
4301 	struct pci_dev *pdev = adapter->pdev;
4302 	int i, err = 0;
4303 
4304 	for (i = 0; i < adapter->num_tx_queues; i++) {
4305 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4306 		if (err) {
4307 			dev_err(&pdev->dev,
4308 				"Allocation for Tx Queue %u failed\n", i);
4309 			for (i--; i >= 0; i--)
4310 				igb_free_tx_resources(adapter->tx_ring[i]);
4311 			break;
4312 		}
4313 	}
4314 
4315 	return err;
4316 }
4317 
4318 /**
4319  *  igb_setup_tctl - configure the transmit control registers
4320  *  @adapter: Board private structure
4321  **/
4322 void igb_setup_tctl(struct igb_adapter *adapter)
4323 {
4324 	struct e1000_hw *hw = &adapter->hw;
4325 	u32 tctl;
4326 
4327 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4328 	wr32(E1000_TXDCTL(0), 0);
4329 
4330 	/* Program the Transmit Control Register */
4331 	tctl = rd32(E1000_TCTL);
4332 	tctl &= ~E1000_TCTL_CT;
4333 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4334 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4335 
4336 	igb_config_collision_dist(hw);
4337 
4338 	/* Enable transmits */
4339 	tctl |= E1000_TCTL_EN;
4340 
4341 	wr32(E1000_TCTL, tctl);
4342 }
4343 
4344 /**
4345  *  igb_configure_tx_ring - Configure transmit ring after Reset
4346  *  @adapter: board private structure
4347  *  @ring: tx ring to configure
4348  *
4349  *  Configure a transmit ring after a reset.
4350  **/
4351 void igb_configure_tx_ring(struct igb_adapter *adapter,
4352 			   struct igb_ring *ring)
4353 {
4354 	struct e1000_hw *hw = &adapter->hw;
4355 	u32 txdctl = 0;
4356 	u64 tdba = ring->dma;
4357 	int reg_idx = ring->reg_idx;
4358 
4359 	wr32(E1000_TDLEN(reg_idx),
4360 	     ring->count * sizeof(union e1000_adv_tx_desc));
4361 	wr32(E1000_TDBAL(reg_idx),
4362 	     tdba & 0x00000000ffffffffULL);
4363 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4364 
4365 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4366 	wr32(E1000_TDH(reg_idx), 0);
4367 	writel(0, ring->tail);
4368 
4369 	txdctl |= IGB_TX_PTHRESH;
4370 	txdctl |= IGB_TX_HTHRESH << 8;
4371 	txdctl |= IGB_TX_WTHRESH << 16;
4372 
4373 	/* reinitialize tx_buffer_info */
4374 	memset(ring->tx_buffer_info, 0,
4375 	       sizeof(struct igb_tx_buffer) * ring->count);
4376 
4377 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4378 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4379 }
4380 
4381 /**
4382  *  igb_configure_tx - Configure transmit Unit after Reset
4383  *  @adapter: board private structure
4384  *
4385  *  Configure the Tx unit of the MAC after a reset.
4386  **/
4387 static void igb_configure_tx(struct igb_adapter *adapter)
4388 {
4389 	struct e1000_hw *hw = &adapter->hw;
4390 	int i;
4391 
4392 	/* disable the queues */
4393 	for (i = 0; i < adapter->num_tx_queues; i++)
4394 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4395 
4396 	wrfl();
4397 	usleep_range(10000, 20000);
4398 
4399 	for (i = 0; i < adapter->num_tx_queues; i++)
4400 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4401 }
4402 
4403 /**
4404  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4405  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4406  *
4407  *  Returns 0 on success, negative on failure
4408  **/
4409 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4410 {
4411 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4412 	struct device *dev = rx_ring->dev;
4413 	int size, res;
4414 
4415 	/* XDP RX-queue info */
4416 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4417 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4418 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4419 			       rx_ring->queue_index, 0);
4420 	if (res < 0) {
4421 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4422 			rx_ring->queue_index);
4423 		return res;
4424 	}
4425 
4426 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4427 
4428 	rx_ring->rx_buffer_info = vmalloc(size);
4429 	if (!rx_ring->rx_buffer_info)
4430 		goto err;
4431 
4432 	/* Round up to nearest 4K */
4433 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4434 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4435 
4436 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4437 					   &rx_ring->dma, GFP_KERNEL);
4438 	if (!rx_ring->desc)
4439 		goto err;
4440 
4441 	rx_ring->next_to_alloc = 0;
4442 	rx_ring->next_to_clean = 0;
4443 	rx_ring->next_to_use = 0;
4444 
4445 	rx_ring->xdp_prog = adapter->xdp_prog;
4446 
4447 	return 0;
4448 
4449 err:
4450 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4451 	vfree(rx_ring->rx_buffer_info);
4452 	rx_ring->rx_buffer_info = NULL;
4453 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4454 	return -ENOMEM;
4455 }
4456 
4457 /**
4458  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4459  *				 (Descriptors) for all queues
4460  *  @adapter: board private structure
4461  *
4462  *  Return 0 on success, negative on failure
4463  **/
4464 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4465 {
4466 	struct pci_dev *pdev = adapter->pdev;
4467 	int i, err = 0;
4468 
4469 	for (i = 0; i < adapter->num_rx_queues; i++) {
4470 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4471 		if (err) {
4472 			dev_err(&pdev->dev,
4473 				"Allocation for Rx Queue %u failed\n", i);
4474 			for (i--; i >= 0; i--)
4475 				igb_free_rx_resources(adapter->rx_ring[i]);
4476 			break;
4477 		}
4478 	}
4479 
4480 	return err;
4481 }
4482 
4483 /**
4484  *  igb_setup_mrqc - configure the multiple receive queue control registers
4485  *  @adapter: Board private structure
4486  **/
4487 static void igb_setup_mrqc(struct igb_adapter *adapter)
4488 {
4489 	struct e1000_hw *hw = &adapter->hw;
4490 	u32 mrqc, rxcsum;
4491 	u32 j, num_rx_queues;
4492 	u32 rss_key[10];
4493 
4494 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4495 	for (j = 0; j < 10; j++)
4496 		wr32(E1000_RSSRK(j), rss_key[j]);
4497 
4498 	num_rx_queues = adapter->rss_queues;
4499 
4500 	switch (hw->mac.type) {
4501 	case e1000_82576:
4502 		/* 82576 supports 2 RSS queues for SR-IOV */
4503 		if (adapter->vfs_allocated_count)
4504 			num_rx_queues = 2;
4505 		break;
4506 	default:
4507 		break;
4508 	}
4509 
4510 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4511 		for (j = 0; j < IGB_RETA_SIZE; j++)
4512 			adapter->rss_indir_tbl[j] =
4513 			(j * num_rx_queues) / IGB_RETA_SIZE;
4514 		adapter->rss_indir_tbl_init = num_rx_queues;
4515 	}
4516 	igb_write_rss_indir_tbl(adapter);
4517 
4518 	/* Disable raw packet checksumming so that RSS hash is placed in
4519 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4520 	 * offloads as they are enabled by default
4521 	 */
4522 	rxcsum = rd32(E1000_RXCSUM);
4523 	rxcsum |= E1000_RXCSUM_PCSD;
4524 
4525 	if (adapter->hw.mac.type >= e1000_82576)
4526 		/* Enable Receive Checksum Offload for SCTP */
4527 		rxcsum |= E1000_RXCSUM_CRCOFL;
4528 
4529 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4530 	wr32(E1000_RXCSUM, rxcsum);
4531 
4532 	/* Generate RSS hash based on packet types, TCP/UDP
4533 	 * port numbers and/or IPv4/v6 src and dst addresses
4534 	 */
4535 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4536 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4537 	       E1000_MRQC_RSS_FIELD_IPV6 |
4538 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4539 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4540 
4541 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4542 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4543 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4544 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4545 
4546 	/* If VMDq is enabled then we set the appropriate mode for that, else
4547 	 * we default to RSS so that an RSS hash is calculated per packet even
4548 	 * if we are only using one queue
4549 	 */
4550 	if (adapter->vfs_allocated_count) {
4551 		if (hw->mac.type > e1000_82575) {
4552 			/* Set the default pool for the PF's first queue */
4553 			u32 vtctl = rd32(E1000_VT_CTL);
4554 
4555 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4556 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4557 			vtctl |= adapter->vfs_allocated_count <<
4558 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4559 			wr32(E1000_VT_CTL, vtctl);
4560 		}
4561 		if (adapter->rss_queues > 1)
4562 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4563 		else
4564 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4565 	} else {
4566 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4567 	}
4568 	igb_vmm_control(adapter);
4569 
4570 	wr32(E1000_MRQC, mrqc);
4571 }
4572 
4573 /**
4574  *  igb_setup_rctl - configure the receive control registers
4575  *  @adapter: Board private structure
4576  **/
4577 void igb_setup_rctl(struct igb_adapter *adapter)
4578 {
4579 	struct e1000_hw *hw = &adapter->hw;
4580 	u32 rctl;
4581 
4582 	rctl = rd32(E1000_RCTL);
4583 
4584 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4585 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4586 
4587 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4588 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4589 
4590 	/* enable stripping of CRC. It's unlikely this will break BMC
4591 	 * redirection as it did with e1000. Newer features require
4592 	 * that the HW strips the CRC.
4593 	 */
4594 	rctl |= E1000_RCTL_SECRC;
4595 
4596 	/* disable store bad packets and clear size bits. */
4597 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4598 
4599 	/* enable LPE to allow for reception of jumbo frames */
4600 	rctl |= E1000_RCTL_LPE;
4601 
4602 	/* disable queue 0 to prevent tail write w/o re-config */
4603 	wr32(E1000_RXDCTL(0), 0);
4604 
4605 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4606 	 * queue drop for all VF and PF queues to prevent head of line blocking
4607 	 * if an un-trusted VF does not provide descriptors to hardware.
4608 	 */
4609 	if (adapter->vfs_allocated_count) {
4610 		/* set all queue drop enable bits */
4611 		wr32(E1000_QDE, ALL_QUEUES);
4612 	}
4613 
4614 	/* This is useful for sniffing bad packets. */
4615 	if (adapter->netdev->features & NETIF_F_RXALL) {
4616 		/* UPE and MPE will be handled by normal PROMISC logic
4617 		 * in e1000e_set_rx_mode
4618 		 */
4619 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4620 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4621 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4622 
4623 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4624 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4625 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4626 		 * and that breaks VLANs.
4627 		 */
4628 	}
4629 
4630 	wr32(E1000_RCTL, rctl);
4631 }
4632 
4633 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4634 				   int vfn)
4635 {
4636 	struct e1000_hw *hw = &adapter->hw;
4637 	u32 vmolr;
4638 
4639 	if (size > MAX_JUMBO_FRAME_SIZE)
4640 		size = MAX_JUMBO_FRAME_SIZE;
4641 
4642 	vmolr = rd32(E1000_VMOLR(vfn));
4643 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4644 	vmolr |= size | E1000_VMOLR_LPE;
4645 	wr32(E1000_VMOLR(vfn), vmolr);
4646 
4647 	return 0;
4648 }
4649 
4650 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4651 					 int vfn, bool enable)
4652 {
4653 	struct e1000_hw *hw = &adapter->hw;
4654 	u32 val, reg;
4655 
4656 	if (hw->mac.type < e1000_82576)
4657 		return;
4658 
4659 	if (hw->mac.type == e1000_i350)
4660 		reg = E1000_DVMOLR(vfn);
4661 	else
4662 		reg = E1000_VMOLR(vfn);
4663 
4664 	val = rd32(reg);
4665 	if (enable)
4666 		val |= E1000_VMOLR_STRVLAN;
4667 	else
4668 		val &= ~(E1000_VMOLR_STRVLAN);
4669 	wr32(reg, val);
4670 }
4671 
4672 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4673 				 int vfn, bool aupe)
4674 {
4675 	struct e1000_hw *hw = &adapter->hw;
4676 	u32 vmolr;
4677 
4678 	/* This register exists only on 82576 and newer so if we are older then
4679 	 * we should exit and do nothing
4680 	 */
4681 	if (hw->mac.type < e1000_82576)
4682 		return;
4683 
4684 	vmolr = rd32(E1000_VMOLR(vfn));
4685 	if (aupe)
4686 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4687 	else
4688 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4689 
4690 	/* clear all bits that might not be set */
4691 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4692 
4693 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4694 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4695 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4696 	 * multicast packets
4697 	 */
4698 	if (vfn <= adapter->vfs_allocated_count)
4699 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4700 
4701 	wr32(E1000_VMOLR(vfn), vmolr);
4702 }
4703 
4704 /**
4705  *  igb_setup_srrctl - configure the split and replication receive control
4706  *                     registers
4707  *  @adapter: Board private structure
4708  *  @ring: receive ring to be configured
4709  **/
4710 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4711 {
4712 	struct e1000_hw *hw = &adapter->hw;
4713 	int reg_idx = ring->reg_idx;
4714 	u32 srrctl = 0;
4715 
4716 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4717 	if (ring_uses_large_buffer(ring))
4718 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4719 	else
4720 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4721 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4722 	if (hw->mac.type >= e1000_82580)
4723 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4724 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4725 	 * queues and rx flow control is disabled
4726 	 */
4727 	if (adapter->vfs_allocated_count ||
4728 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4729 	     adapter->num_rx_queues > 1))
4730 		srrctl |= E1000_SRRCTL_DROP_EN;
4731 
4732 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4733 }
4734 
4735 /**
4736  *  igb_configure_rx_ring - Configure a receive ring after Reset
4737  *  @adapter: board private structure
4738  *  @ring: receive ring to be configured
4739  *
4740  *  Configure the Rx unit of the MAC after a reset.
4741  **/
4742 void igb_configure_rx_ring(struct igb_adapter *adapter,
4743 			   struct igb_ring *ring)
4744 {
4745 	struct e1000_hw *hw = &adapter->hw;
4746 	union e1000_adv_rx_desc *rx_desc;
4747 	u64 rdba = ring->dma;
4748 	int reg_idx = ring->reg_idx;
4749 	u32 rxdctl = 0;
4750 
4751 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4752 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4753 					   MEM_TYPE_PAGE_SHARED, NULL));
4754 
4755 	/* disable the queue */
4756 	wr32(E1000_RXDCTL(reg_idx), 0);
4757 
4758 	/* Set DMA base address registers */
4759 	wr32(E1000_RDBAL(reg_idx),
4760 	     rdba & 0x00000000ffffffffULL);
4761 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4762 	wr32(E1000_RDLEN(reg_idx),
4763 	     ring->count * sizeof(union e1000_adv_rx_desc));
4764 
4765 	/* initialize head and tail */
4766 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4767 	wr32(E1000_RDH(reg_idx), 0);
4768 	writel(0, ring->tail);
4769 
4770 	/* set descriptor configuration */
4771 	igb_setup_srrctl(adapter, ring);
4772 
4773 	/* set filtering for VMDQ pools */
4774 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4775 
4776 	rxdctl |= IGB_RX_PTHRESH;
4777 	rxdctl |= IGB_RX_HTHRESH << 8;
4778 	rxdctl |= IGB_RX_WTHRESH << 16;
4779 
4780 	/* initialize rx_buffer_info */
4781 	memset(ring->rx_buffer_info, 0,
4782 	       sizeof(struct igb_rx_buffer) * ring->count);
4783 
4784 	/* initialize Rx descriptor 0 */
4785 	rx_desc = IGB_RX_DESC(ring, 0);
4786 	rx_desc->wb.upper.length = 0;
4787 
4788 	/* enable receive descriptor fetching */
4789 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4790 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4791 }
4792 
4793 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4794 				  struct igb_ring *rx_ring)
4795 {
4796 #if (PAGE_SIZE < 8192)
4797 	struct e1000_hw *hw = &adapter->hw;
4798 #endif
4799 
4800 	/* set build_skb and buffer size flags */
4801 	clear_ring_build_skb_enabled(rx_ring);
4802 	clear_ring_uses_large_buffer(rx_ring);
4803 
4804 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4805 		return;
4806 
4807 	set_ring_build_skb_enabled(rx_ring);
4808 
4809 #if (PAGE_SIZE < 8192)
4810 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4811 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4812 		set_ring_uses_large_buffer(rx_ring);
4813 #endif
4814 }
4815 
4816 /**
4817  *  igb_configure_rx - Configure receive Unit after Reset
4818  *  @adapter: board private structure
4819  *
4820  *  Configure the Rx unit of the MAC after a reset.
4821  **/
4822 static void igb_configure_rx(struct igb_adapter *adapter)
4823 {
4824 	int i;
4825 
4826 	/* set the correct pool for the PF default MAC address in entry 0 */
4827 	igb_set_default_mac_filter(adapter);
4828 
4829 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4830 	 * the Base and Length of the Rx Descriptor Ring
4831 	 */
4832 	for (i = 0; i < adapter->num_rx_queues; i++) {
4833 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4834 
4835 		igb_set_rx_buffer_len(adapter, rx_ring);
4836 		igb_configure_rx_ring(adapter, rx_ring);
4837 	}
4838 }
4839 
4840 /**
4841  *  igb_free_tx_resources - Free Tx Resources per Queue
4842  *  @tx_ring: Tx descriptor ring for a specific queue
4843  *
4844  *  Free all transmit software resources
4845  **/
4846 void igb_free_tx_resources(struct igb_ring *tx_ring)
4847 {
4848 	igb_clean_tx_ring(tx_ring);
4849 
4850 	vfree(tx_ring->tx_buffer_info);
4851 	tx_ring->tx_buffer_info = NULL;
4852 
4853 	/* if not set, then don't free */
4854 	if (!tx_ring->desc)
4855 		return;
4856 
4857 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4858 			  tx_ring->desc, tx_ring->dma);
4859 
4860 	tx_ring->desc = NULL;
4861 }
4862 
4863 /**
4864  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4865  *  @adapter: board private structure
4866  *
4867  *  Free all transmit software resources
4868  **/
4869 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4870 {
4871 	int i;
4872 
4873 	for (i = 0; i < adapter->num_tx_queues; i++)
4874 		if (adapter->tx_ring[i])
4875 			igb_free_tx_resources(adapter->tx_ring[i]);
4876 }
4877 
4878 /**
4879  *  igb_clean_tx_ring - Free Tx Buffers
4880  *  @tx_ring: ring to be cleaned
4881  **/
4882 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4883 {
4884 	u16 i = tx_ring->next_to_clean;
4885 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4886 
4887 	while (i != tx_ring->next_to_use) {
4888 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4889 
4890 		/* Free all the Tx ring sk_buffs or xdp frames */
4891 		if (tx_buffer->type == IGB_TYPE_SKB)
4892 			dev_kfree_skb_any(tx_buffer->skb);
4893 		else
4894 			xdp_return_frame(tx_buffer->xdpf);
4895 
4896 		/* unmap skb header data */
4897 		dma_unmap_single(tx_ring->dev,
4898 				 dma_unmap_addr(tx_buffer, dma),
4899 				 dma_unmap_len(tx_buffer, len),
4900 				 DMA_TO_DEVICE);
4901 
4902 		/* check for eop_desc to determine the end of the packet */
4903 		eop_desc = tx_buffer->next_to_watch;
4904 		tx_desc = IGB_TX_DESC(tx_ring, i);
4905 
4906 		/* unmap remaining buffers */
4907 		while (tx_desc != eop_desc) {
4908 			tx_buffer++;
4909 			tx_desc++;
4910 			i++;
4911 			if (unlikely(i == tx_ring->count)) {
4912 				i = 0;
4913 				tx_buffer = tx_ring->tx_buffer_info;
4914 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4915 			}
4916 
4917 			/* unmap any remaining paged data */
4918 			if (dma_unmap_len(tx_buffer, len))
4919 				dma_unmap_page(tx_ring->dev,
4920 					       dma_unmap_addr(tx_buffer, dma),
4921 					       dma_unmap_len(tx_buffer, len),
4922 					       DMA_TO_DEVICE);
4923 		}
4924 
4925 		tx_buffer->next_to_watch = NULL;
4926 
4927 		/* move us one more past the eop_desc for start of next pkt */
4928 		tx_buffer++;
4929 		i++;
4930 		if (unlikely(i == tx_ring->count)) {
4931 			i = 0;
4932 			tx_buffer = tx_ring->tx_buffer_info;
4933 		}
4934 	}
4935 
4936 	/* reset BQL for queue */
4937 	netdev_tx_reset_queue(txring_txq(tx_ring));
4938 
4939 	/* reset next_to_use and next_to_clean */
4940 	tx_ring->next_to_use = 0;
4941 	tx_ring->next_to_clean = 0;
4942 }
4943 
4944 /**
4945  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4946  *  @adapter: board private structure
4947  **/
4948 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4949 {
4950 	int i;
4951 
4952 	for (i = 0; i < adapter->num_tx_queues; i++)
4953 		if (adapter->tx_ring[i])
4954 			igb_clean_tx_ring(adapter->tx_ring[i]);
4955 }
4956 
4957 /**
4958  *  igb_free_rx_resources - Free Rx Resources
4959  *  @rx_ring: ring to clean the resources from
4960  *
4961  *  Free all receive software resources
4962  **/
4963 void igb_free_rx_resources(struct igb_ring *rx_ring)
4964 {
4965 	igb_clean_rx_ring(rx_ring);
4966 
4967 	rx_ring->xdp_prog = NULL;
4968 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4969 	vfree(rx_ring->rx_buffer_info);
4970 	rx_ring->rx_buffer_info = NULL;
4971 
4972 	/* if not set, then don't free */
4973 	if (!rx_ring->desc)
4974 		return;
4975 
4976 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4977 			  rx_ring->desc, rx_ring->dma);
4978 
4979 	rx_ring->desc = NULL;
4980 }
4981 
4982 /**
4983  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4984  *  @adapter: board private structure
4985  *
4986  *  Free all receive software resources
4987  **/
4988 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4989 {
4990 	int i;
4991 
4992 	for (i = 0; i < adapter->num_rx_queues; i++)
4993 		if (adapter->rx_ring[i])
4994 			igb_free_rx_resources(adapter->rx_ring[i]);
4995 }
4996 
4997 /**
4998  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4999  *  @rx_ring: ring to free buffers from
5000  **/
5001 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5002 {
5003 	u16 i = rx_ring->next_to_clean;
5004 
5005 	dev_kfree_skb(rx_ring->skb);
5006 	rx_ring->skb = NULL;
5007 
5008 	/* Free all the Rx ring sk_buffs */
5009 	while (i != rx_ring->next_to_alloc) {
5010 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5011 
5012 		/* Invalidate cache lines that may have been written to by
5013 		 * device so that we avoid corrupting memory.
5014 		 */
5015 		dma_sync_single_range_for_cpu(rx_ring->dev,
5016 					      buffer_info->dma,
5017 					      buffer_info->page_offset,
5018 					      igb_rx_bufsz(rx_ring),
5019 					      DMA_FROM_DEVICE);
5020 
5021 		/* free resources associated with mapping */
5022 		dma_unmap_page_attrs(rx_ring->dev,
5023 				     buffer_info->dma,
5024 				     igb_rx_pg_size(rx_ring),
5025 				     DMA_FROM_DEVICE,
5026 				     IGB_RX_DMA_ATTR);
5027 		__page_frag_cache_drain(buffer_info->page,
5028 					buffer_info->pagecnt_bias);
5029 
5030 		i++;
5031 		if (i == rx_ring->count)
5032 			i = 0;
5033 	}
5034 
5035 	rx_ring->next_to_alloc = 0;
5036 	rx_ring->next_to_clean = 0;
5037 	rx_ring->next_to_use = 0;
5038 }
5039 
5040 /**
5041  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5042  *  @adapter: board private structure
5043  **/
5044 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5045 {
5046 	int i;
5047 
5048 	for (i = 0; i < adapter->num_rx_queues; i++)
5049 		if (adapter->rx_ring[i])
5050 			igb_clean_rx_ring(adapter->rx_ring[i]);
5051 }
5052 
5053 /**
5054  *  igb_set_mac - Change the Ethernet Address of the NIC
5055  *  @netdev: network interface device structure
5056  *  @p: pointer to an address structure
5057  *
5058  *  Returns 0 on success, negative on failure
5059  **/
5060 static int igb_set_mac(struct net_device *netdev, void *p)
5061 {
5062 	struct igb_adapter *adapter = netdev_priv(netdev);
5063 	struct e1000_hw *hw = &adapter->hw;
5064 	struct sockaddr *addr = p;
5065 
5066 	if (!is_valid_ether_addr(addr->sa_data))
5067 		return -EADDRNOTAVAIL;
5068 
5069 	eth_hw_addr_set(netdev, addr->sa_data);
5070 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5071 
5072 	/* set the correct pool for the new PF MAC address in entry 0 */
5073 	igb_set_default_mac_filter(adapter);
5074 
5075 	return 0;
5076 }
5077 
5078 /**
5079  *  igb_write_mc_addr_list - write multicast addresses to MTA
5080  *  @netdev: network interface device structure
5081  *
5082  *  Writes multicast address list to the MTA hash table.
5083  *  Returns: -ENOMEM on failure
5084  *           0 on no addresses written
5085  *           X on writing X addresses to MTA
5086  **/
5087 static int igb_write_mc_addr_list(struct net_device *netdev)
5088 {
5089 	struct igb_adapter *adapter = netdev_priv(netdev);
5090 	struct e1000_hw *hw = &adapter->hw;
5091 	struct netdev_hw_addr *ha;
5092 	u8  *mta_list;
5093 	int i;
5094 
5095 	if (netdev_mc_empty(netdev)) {
5096 		/* nothing to program, so clear mc list */
5097 		igb_update_mc_addr_list(hw, NULL, 0);
5098 		igb_restore_vf_multicasts(adapter);
5099 		return 0;
5100 	}
5101 
5102 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5103 	if (!mta_list)
5104 		return -ENOMEM;
5105 
5106 	/* The shared function expects a packed array of only addresses. */
5107 	i = 0;
5108 	netdev_for_each_mc_addr(ha, netdev)
5109 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5110 
5111 	igb_update_mc_addr_list(hw, mta_list, i);
5112 	kfree(mta_list);
5113 
5114 	return netdev_mc_count(netdev);
5115 }
5116 
5117 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5118 {
5119 	struct e1000_hw *hw = &adapter->hw;
5120 	u32 i, pf_id;
5121 
5122 	switch (hw->mac.type) {
5123 	case e1000_i210:
5124 	case e1000_i211:
5125 	case e1000_i350:
5126 		/* VLAN filtering needed for VLAN prio filter */
5127 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5128 			break;
5129 		fallthrough;
5130 	case e1000_82576:
5131 	case e1000_82580:
5132 	case e1000_i354:
5133 		/* VLAN filtering needed for pool filtering */
5134 		if (adapter->vfs_allocated_count)
5135 			break;
5136 		fallthrough;
5137 	default:
5138 		return 1;
5139 	}
5140 
5141 	/* We are already in VLAN promisc, nothing to do */
5142 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5143 		return 0;
5144 
5145 	if (!adapter->vfs_allocated_count)
5146 		goto set_vfta;
5147 
5148 	/* Add PF to all active pools */
5149 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5150 
5151 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5152 		u32 vlvf = rd32(E1000_VLVF(i));
5153 
5154 		vlvf |= BIT(pf_id);
5155 		wr32(E1000_VLVF(i), vlvf);
5156 	}
5157 
5158 set_vfta:
5159 	/* Set all bits in the VLAN filter table array */
5160 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5161 		hw->mac.ops.write_vfta(hw, i, ~0U);
5162 
5163 	/* Set flag so we don't redo unnecessary work */
5164 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5165 
5166 	return 0;
5167 }
5168 
5169 #define VFTA_BLOCK_SIZE 8
5170 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5171 {
5172 	struct e1000_hw *hw = &adapter->hw;
5173 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5174 	u32 vid_start = vfta_offset * 32;
5175 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5176 	u32 i, vid, word, bits, pf_id;
5177 
5178 	/* guarantee that we don't scrub out management VLAN */
5179 	vid = adapter->mng_vlan_id;
5180 	if (vid >= vid_start && vid < vid_end)
5181 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5182 
5183 	if (!adapter->vfs_allocated_count)
5184 		goto set_vfta;
5185 
5186 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5187 
5188 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5189 		u32 vlvf = rd32(E1000_VLVF(i));
5190 
5191 		/* pull VLAN ID from VLVF */
5192 		vid = vlvf & VLAN_VID_MASK;
5193 
5194 		/* only concern ourselves with a certain range */
5195 		if (vid < vid_start || vid >= vid_end)
5196 			continue;
5197 
5198 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5199 			/* record VLAN ID in VFTA */
5200 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5201 
5202 			/* if PF is part of this then continue */
5203 			if (test_bit(vid, adapter->active_vlans))
5204 				continue;
5205 		}
5206 
5207 		/* remove PF from the pool */
5208 		bits = ~BIT(pf_id);
5209 		bits &= rd32(E1000_VLVF(i));
5210 		wr32(E1000_VLVF(i), bits);
5211 	}
5212 
5213 set_vfta:
5214 	/* extract values from active_vlans and write back to VFTA */
5215 	for (i = VFTA_BLOCK_SIZE; i--;) {
5216 		vid = (vfta_offset + i) * 32;
5217 		word = vid / BITS_PER_LONG;
5218 		bits = vid % BITS_PER_LONG;
5219 
5220 		vfta[i] |= adapter->active_vlans[word] >> bits;
5221 
5222 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5223 	}
5224 }
5225 
5226 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5227 {
5228 	u32 i;
5229 
5230 	/* We are not in VLAN promisc, nothing to do */
5231 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5232 		return;
5233 
5234 	/* Set flag so we don't redo unnecessary work */
5235 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5236 
5237 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5238 		igb_scrub_vfta(adapter, i);
5239 }
5240 
5241 /**
5242  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5243  *  @netdev: network interface device structure
5244  *
5245  *  The set_rx_mode entry point is called whenever the unicast or multicast
5246  *  address lists or the network interface flags are updated.  This routine is
5247  *  responsible for configuring the hardware for proper unicast, multicast,
5248  *  promiscuous mode, and all-multi behavior.
5249  **/
5250 static void igb_set_rx_mode(struct net_device *netdev)
5251 {
5252 	struct igb_adapter *adapter = netdev_priv(netdev);
5253 	struct e1000_hw *hw = &adapter->hw;
5254 	unsigned int vfn = adapter->vfs_allocated_count;
5255 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5256 	int count;
5257 
5258 	/* Check for Promiscuous and All Multicast modes */
5259 	if (netdev->flags & IFF_PROMISC) {
5260 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5261 		vmolr |= E1000_VMOLR_MPME;
5262 
5263 		/* enable use of UTA filter to force packets to default pool */
5264 		if (hw->mac.type == e1000_82576)
5265 			vmolr |= E1000_VMOLR_ROPE;
5266 	} else {
5267 		if (netdev->flags & IFF_ALLMULTI) {
5268 			rctl |= E1000_RCTL_MPE;
5269 			vmolr |= E1000_VMOLR_MPME;
5270 		} else {
5271 			/* Write addresses to the MTA, if the attempt fails
5272 			 * then we should just turn on promiscuous mode so
5273 			 * that we can at least receive multicast traffic
5274 			 */
5275 			count = igb_write_mc_addr_list(netdev);
5276 			if (count < 0) {
5277 				rctl |= E1000_RCTL_MPE;
5278 				vmolr |= E1000_VMOLR_MPME;
5279 			} else if (count) {
5280 				vmolr |= E1000_VMOLR_ROMPE;
5281 			}
5282 		}
5283 	}
5284 
5285 	/* Write addresses to available RAR registers, if there is not
5286 	 * sufficient space to store all the addresses then enable
5287 	 * unicast promiscuous mode
5288 	 */
5289 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5290 		rctl |= E1000_RCTL_UPE;
5291 		vmolr |= E1000_VMOLR_ROPE;
5292 	}
5293 
5294 	/* enable VLAN filtering by default */
5295 	rctl |= E1000_RCTL_VFE;
5296 
5297 	/* disable VLAN filtering for modes that require it */
5298 	if ((netdev->flags & IFF_PROMISC) ||
5299 	    (netdev->features & NETIF_F_RXALL)) {
5300 		/* if we fail to set all rules then just clear VFE */
5301 		if (igb_vlan_promisc_enable(adapter))
5302 			rctl &= ~E1000_RCTL_VFE;
5303 	} else {
5304 		igb_vlan_promisc_disable(adapter);
5305 	}
5306 
5307 	/* update state of unicast, multicast, and VLAN filtering modes */
5308 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5309 				     E1000_RCTL_VFE);
5310 	wr32(E1000_RCTL, rctl);
5311 
5312 #if (PAGE_SIZE < 8192)
5313 	if (!adapter->vfs_allocated_count) {
5314 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5315 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5316 	}
5317 #endif
5318 	wr32(E1000_RLPML, rlpml);
5319 
5320 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5321 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5322 	 * we will have issues with VLAN tag stripping not being done for frames
5323 	 * that are only arriving because we are the default pool
5324 	 */
5325 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5326 		return;
5327 
5328 	/* set UTA to appropriate mode */
5329 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5330 
5331 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5332 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5333 
5334 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5335 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5336 #if (PAGE_SIZE < 8192)
5337 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5338 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5339 	else
5340 #endif
5341 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5342 	vmolr |= E1000_VMOLR_LPE;
5343 
5344 	wr32(E1000_VMOLR(vfn), vmolr);
5345 
5346 	igb_restore_vf_multicasts(adapter);
5347 }
5348 
5349 static void igb_check_wvbr(struct igb_adapter *adapter)
5350 {
5351 	struct e1000_hw *hw = &adapter->hw;
5352 	u32 wvbr = 0;
5353 
5354 	switch (hw->mac.type) {
5355 	case e1000_82576:
5356 	case e1000_i350:
5357 		wvbr = rd32(E1000_WVBR);
5358 		if (!wvbr)
5359 			return;
5360 		break;
5361 	default:
5362 		break;
5363 	}
5364 
5365 	adapter->wvbr |= wvbr;
5366 }
5367 
5368 #define IGB_STAGGERED_QUEUE_OFFSET 8
5369 
5370 static void igb_spoof_check(struct igb_adapter *adapter)
5371 {
5372 	int j;
5373 
5374 	if (!adapter->wvbr)
5375 		return;
5376 
5377 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5378 		if (adapter->wvbr & BIT(j) ||
5379 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5380 			dev_warn(&adapter->pdev->dev,
5381 				"Spoof event(s) detected on VF %d\n", j);
5382 			adapter->wvbr &=
5383 				~(BIT(j) |
5384 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5385 		}
5386 	}
5387 }
5388 
5389 /* Need to wait a few seconds after link up to get diagnostic information from
5390  * the phy
5391  */
5392 static void igb_update_phy_info(struct timer_list *t)
5393 {
5394 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5395 	igb_get_phy_info(&adapter->hw);
5396 }
5397 
5398 /**
5399  *  igb_has_link - check shared code for link and determine up/down
5400  *  @adapter: pointer to driver private info
5401  **/
5402 bool igb_has_link(struct igb_adapter *adapter)
5403 {
5404 	struct e1000_hw *hw = &adapter->hw;
5405 	bool link_active = false;
5406 
5407 	/* get_link_status is set on LSC (link status) interrupt or
5408 	 * rx sequence error interrupt.  get_link_status will stay
5409 	 * false until the e1000_check_for_link establishes link
5410 	 * for copper adapters ONLY
5411 	 */
5412 	switch (hw->phy.media_type) {
5413 	case e1000_media_type_copper:
5414 		if (!hw->mac.get_link_status)
5415 			return true;
5416 		fallthrough;
5417 	case e1000_media_type_internal_serdes:
5418 		hw->mac.ops.check_for_link(hw);
5419 		link_active = !hw->mac.get_link_status;
5420 		break;
5421 	default:
5422 	case e1000_media_type_unknown:
5423 		break;
5424 	}
5425 
5426 	if (((hw->mac.type == e1000_i210) ||
5427 	     (hw->mac.type == e1000_i211)) &&
5428 	     (hw->phy.id == I210_I_PHY_ID)) {
5429 		if (!netif_carrier_ok(adapter->netdev)) {
5430 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5431 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5432 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5433 			adapter->link_check_timeout = jiffies;
5434 		}
5435 	}
5436 
5437 	return link_active;
5438 }
5439 
5440 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5441 {
5442 	bool ret = false;
5443 	u32 ctrl_ext, thstat;
5444 
5445 	/* check for thermal sensor event on i350 copper only */
5446 	if (hw->mac.type == e1000_i350) {
5447 		thstat = rd32(E1000_THSTAT);
5448 		ctrl_ext = rd32(E1000_CTRL_EXT);
5449 
5450 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5451 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5452 			ret = !!(thstat & event);
5453 	}
5454 
5455 	return ret;
5456 }
5457 
5458 /**
5459  *  igb_check_lvmmc - check for malformed packets received
5460  *  and indicated in LVMMC register
5461  *  @adapter: pointer to adapter
5462  **/
5463 static void igb_check_lvmmc(struct igb_adapter *adapter)
5464 {
5465 	struct e1000_hw *hw = &adapter->hw;
5466 	u32 lvmmc;
5467 
5468 	lvmmc = rd32(E1000_LVMMC);
5469 	if (lvmmc) {
5470 		if (unlikely(net_ratelimit())) {
5471 			netdev_warn(adapter->netdev,
5472 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5473 				    lvmmc);
5474 		}
5475 	}
5476 }
5477 
5478 /**
5479  *  igb_watchdog - Timer Call-back
5480  *  @t: pointer to timer_list containing our private info pointer
5481  **/
5482 static void igb_watchdog(struct timer_list *t)
5483 {
5484 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5485 	/* Do the rest outside of interrupt context */
5486 	schedule_work(&adapter->watchdog_task);
5487 }
5488 
5489 static void igb_watchdog_task(struct work_struct *work)
5490 {
5491 	struct igb_adapter *adapter = container_of(work,
5492 						   struct igb_adapter,
5493 						   watchdog_task);
5494 	struct e1000_hw *hw = &adapter->hw;
5495 	struct e1000_phy_info *phy = &hw->phy;
5496 	struct net_device *netdev = adapter->netdev;
5497 	u32 link;
5498 	int i;
5499 	u32 connsw;
5500 	u16 phy_data, retry_count = 20;
5501 
5502 	link = igb_has_link(adapter);
5503 
5504 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5505 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5506 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5507 		else
5508 			link = false;
5509 	}
5510 
5511 	/* Force link down if we have fiber to swap to */
5512 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5513 		if (hw->phy.media_type == e1000_media_type_copper) {
5514 			connsw = rd32(E1000_CONNSW);
5515 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5516 				link = 0;
5517 		}
5518 	}
5519 	if (link) {
5520 		/* Perform a reset if the media type changed. */
5521 		if (hw->dev_spec._82575.media_changed) {
5522 			hw->dev_spec._82575.media_changed = false;
5523 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5524 			igb_reset(adapter);
5525 		}
5526 		/* Cancel scheduled suspend requests. */
5527 		pm_runtime_resume(netdev->dev.parent);
5528 
5529 		if (!netif_carrier_ok(netdev)) {
5530 			u32 ctrl;
5531 
5532 			hw->mac.ops.get_speed_and_duplex(hw,
5533 							 &adapter->link_speed,
5534 							 &adapter->link_duplex);
5535 
5536 			ctrl = rd32(E1000_CTRL);
5537 			/* Links status message must follow this format */
5538 			netdev_info(netdev,
5539 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5540 			       netdev->name,
5541 			       adapter->link_speed,
5542 			       adapter->link_duplex == FULL_DUPLEX ?
5543 			       "Full" : "Half",
5544 			       (ctrl & E1000_CTRL_TFCE) &&
5545 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5546 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5547 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5548 
5549 			/* disable EEE if enabled */
5550 			if ((adapter->flags & IGB_FLAG_EEE) &&
5551 				(adapter->link_duplex == HALF_DUPLEX)) {
5552 				dev_info(&adapter->pdev->dev,
5553 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5554 				adapter->hw.dev_spec._82575.eee_disable = true;
5555 				adapter->flags &= ~IGB_FLAG_EEE;
5556 			}
5557 
5558 			/* check if SmartSpeed worked */
5559 			igb_check_downshift(hw);
5560 			if (phy->speed_downgraded)
5561 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5562 
5563 			/* check for thermal sensor event */
5564 			if (igb_thermal_sensor_event(hw,
5565 			    E1000_THSTAT_LINK_THROTTLE))
5566 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5567 
5568 			/* adjust timeout factor according to speed/duplex */
5569 			adapter->tx_timeout_factor = 1;
5570 			switch (adapter->link_speed) {
5571 			case SPEED_10:
5572 				adapter->tx_timeout_factor = 14;
5573 				break;
5574 			case SPEED_100:
5575 				/* maybe add some timeout factor ? */
5576 				break;
5577 			}
5578 
5579 			if (adapter->link_speed != SPEED_1000 ||
5580 			    !hw->phy.ops.read_reg)
5581 				goto no_wait;
5582 
5583 			/* wait for Remote receiver status OK */
5584 retry_read_status:
5585 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5586 					      &phy_data)) {
5587 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5588 				    retry_count) {
5589 					msleep(100);
5590 					retry_count--;
5591 					goto retry_read_status;
5592 				} else if (!retry_count) {
5593 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5594 				}
5595 			} else {
5596 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5597 			}
5598 no_wait:
5599 			netif_carrier_on(netdev);
5600 
5601 			igb_ping_all_vfs(adapter);
5602 			igb_check_vf_rate_limit(adapter);
5603 
5604 			/* link state has changed, schedule phy info update */
5605 			if (!test_bit(__IGB_DOWN, &adapter->state))
5606 				mod_timer(&adapter->phy_info_timer,
5607 					  round_jiffies(jiffies + 2 * HZ));
5608 		}
5609 	} else {
5610 		if (netif_carrier_ok(netdev)) {
5611 			adapter->link_speed = 0;
5612 			adapter->link_duplex = 0;
5613 
5614 			/* check for thermal sensor event */
5615 			if (igb_thermal_sensor_event(hw,
5616 			    E1000_THSTAT_PWR_DOWN)) {
5617 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5618 			}
5619 
5620 			/* Links status message must follow this format */
5621 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5622 			       netdev->name);
5623 			netif_carrier_off(netdev);
5624 
5625 			igb_ping_all_vfs(adapter);
5626 
5627 			/* link state has changed, schedule phy info update */
5628 			if (!test_bit(__IGB_DOWN, &adapter->state))
5629 				mod_timer(&adapter->phy_info_timer,
5630 					  round_jiffies(jiffies + 2 * HZ));
5631 
5632 			/* link is down, time to check for alternate media */
5633 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5634 				igb_check_swap_media(adapter);
5635 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5636 					schedule_work(&adapter->reset_task);
5637 					/* return immediately */
5638 					return;
5639 				}
5640 			}
5641 			pm_schedule_suspend(netdev->dev.parent,
5642 					    MSEC_PER_SEC * 5);
5643 
5644 		/* also check for alternate media here */
5645 		} else if (!netif_carrier_ok(netdev) &&
5646 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5647 			igb_check_swap_media(adapter);
5648 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5649 				schedule_work(&adapter->reset_task);
5650 				/* return immediately */
5651 				return;
5652 			}
5653 		}
5654 	}
5655 
5656 	spin_lock(&adapter->stats64_lock);
5657 	igb_update_stats(adapter);
5658 	spin_unlock(&adapter->stats64_lock);
5659 
5660 	for (i = 0; i < adapter->num_tx_queues; i++) {
5661 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5662 		if (!netif_carrier_ok(netdev)) {
5663 			/* We've lost link, so the controller stops DMA,
5664 			 * but we've got queued Tx work that's never going
5665 			 * to get done, so reset controller to flush Tx.
5666 			 * (Do the reset outside of interrupt context).
5667 			 */
5668 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5669 				adapter->tx_timeout_count++;
5670 				schedule_work(&adapter->reset_task);
5671 				/* return immediately since reset is imminent */
5672 				return;
5673 			}
5674 		}
5675 
5676 		/* Force detection of hung controller every watchdog period */
5677 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5678 	}
5679 
5680 	/* Cause software interrupt to ensure Rx ring is cleaned */
5681 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5682 		u32 eics = 0;
5683 
5684 		for (i = 0; i < adapter->num_q_vectors; i++)
5685 			eics |= adapter->q_vector[i]->eims_value;
5686 		wr32(E1000_EICS, eics);
5687 	} else {
5688 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5689 	}
5690 
5691 	igb_spoof_check(adapter);
5692 	igb_ptp_rx_hang(adapter);
5693 	igb_ptp_tx_hang(adapter);
5694 
5695 	/* Check LVMMC register on i350/i354 only */
5696 	if ((adapter->hw.mac.type == e1000_i350) ||
5697 	    (adapter->hw.mac.type == e1000_i354))
5698 		igb_check_lvmmc(adapter);
5699 
5700 	/* Reset the timer */
5701 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5702 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5703 			mod_timer(&adapter->watchdog_timer,
5704 				  round_jiffies(jiffies +  HZ));
5705 		else
5706 			mod_timer(&adapter->watchdog_timer,
5707 				  round_jiffies(jiffies + 2 * HZ));
5708 	}
5709 }
5710 
5711 enum latency_range {
5712 	lowest_latency = 0,
5713 	low_latency = 1,
5714 	bulk_latency = 2,
5715 	latency_invalid = 255
5716 };
5717 
5718 /**
5719  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5720  *  @q_vector: pointer to q_vector
5721  *
5722  *  Stores a new ITR value based on strictly on packet size.  This
5723  *  algorithm is less sophisticated than that used in igb_update_itr,
5724  *  due to the difficulty of synchronizing statistics across multiple
5725  *  receive rings.  The divisors and thresholds used by this function
5726  *  were determined based on theoretical maximum wire speed and testing
5727  *  data, in order to minimize response time while increasing bulk
5728  *  throughput.
5729  *  This functionality is controlled by ethtool's coalescing settings.
5730  *  NOTE:  This function is called only when operating in a multiqueue
5731  *         receive environment.
5732  **/
5733 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5734 {
5735 	int new_val = q_vector->itr_val;
5736 	int avg_wire_size = 0;
5737 	struct igb_adapter *adapter = q_vector->adapter;
5738 	unsigned int packets;
5739 
5740 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5741 	 * ints/sec - ITR timer value of 120 ticks.
5742 	 */
5743 	if (adapter->link_speed != SPEED_1000) {
5744 		new_val = IGB_4K_ITR;
5745 		goto set_itr_val;
5746 	}
5747 
5748 	packets = q_vector->rx.total_packets;
5749 	if (packets)
5750 		avg_wire_size = q_vector->rx.total_bytes / packets;
5751 
5752 	packets = q_vector->tx.total_packets;
5753 	if (packets)
5754 		avg_wire_size = max_t(u32, avg_wire_size,
5755 				      q_vector->tx.total_bytes / packets);
5756 
5757 	/* if avg_wire_size isn't set no work was done */
5758 	if (!avg_wire_size)
5759 		goto clear_counts;
5760 
5761 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5762 	avg_wire_size += 24;
5763 
5764 	/* Don't starve jumbo frames */
5765 	avg_wire_size = min(avg_wire_size, 3000);
5766 
5767 	/* Give a little boost to mid-size frames */
5768 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5769 		new_val = avg_wire_size / 3;
5770 	else
5771 		new_val = avg_wire_size / 2;
5772 
5773 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5774 	if (new_val < IGB_20K_ITR &&
5775 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5776 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5777 		new_val = IGB_20K_ITR;
5778 
5779 set_itr_val:
5780 	if (new_val != q_vector->itr_val) {
5781 		q_vector->itr_val = new_val;
5782 		q_vector->set_itr = 1;
5783 	}
5784 clear_counts:
5785 	q_vector->rx.total_bytes = 0;
5786 	q_vector->rx.total_packets = 0;
5787 	q_vector->tx.total_bytes = 0;
5788 	q_vector->tx.total_packets = 0;
5789 }
5790 
5791 /**
5792  *  igb_update_itr - update the dynamic ITR value based on statistics
5793  *  @q_vector: pointer to q_vector
5794  *  @ring_container: ring info to update the itr for
5795  *
5796  *  Stores a new ITR value based on packets and byte
5797  *  counts during the last interrupt.  The advantage of per interrupt
5798  *  computation is faster updates and more accurate ITR for the current
5799  *  traffic pattern.  Constants in this function were computed
5800  *  based on theoretical maximum wire speed and thresholds were set based
5801  *  on testing data as well as attempting to minimize response time
5802  *  while increasing bulk throughput.
5803  *  This functionality is controlled by ethtool's coalescing settings.
5804  *  NOTE:  These calculations are only valid when operating in a single-
5805  *         queue environment.
5806  **/
5807 static void igb_update_itr(struct igb_q_vector *q_vector,
5808 			   struct igb_ring_container *ring_container)
5809 {
5810 	unsigned int packets = ring_container->total_packets;
5811 	unsigned int bytes = ring_container->total_bytes;
5812 	u8 itrval = ring_container->itr;
5813 
5814 	/* no packets, exit with status unchanged */
5815 	if (packets == 0)
5816 		return;
5817 
5818 	switch (itrval) {
5819 	case lowest_latency:
5820 		/* handle TSO and jumbo frames */
5821 		if (bytes/packets > 8000)
5822 			itrval = bulk_latency;
5823 		else if ((packets < 5) && (bytes > 512))
5824 			itrval = low_latency;
5825 		break;
5826 	case low_latency:  /* 50 usec aka 20000 ints/s */
5827 		if (bytes > 10000) {
5828 			/* this if handles the TSO accounting */
5829 			if (bytes/packets > 8000)
5830 				itrval = bulk_latency;
5831 			else if ((packets < 10) || ((bytes/packets) > 1200))
5832 				itrval = bulk_latency;
5833 			else if ((packets > 35))
5834 				itrval = lowest_latency;
5835 		} else if (bytes/packets > 2000) {
5836 			itrval = bulk_latency;
5837 		} else if (packets <= 2 && bytes < 512) {
5838 			itrval = lowest_latency;
5839 		}
5840 		break;
5841 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5842 		if (bytes > 25000) {
5843 			if (packets > 35)
5844 				itrval = low_latency;
5845 		} else if (bytes < 1500) {
5846 			itrval = low_latency;
5847 		}
5848 		break;
5849 	}
5850 
5851 	/* clear work counters since we have the values we need */
5852 	ring_container->total_bytes = 0;
5853 	ring_container->total_packets = 0;
5854 
5855 	/* write updated itr to ring container */
5856 	ring_container->itr = itrval;
5857 }
5858 
5859 static void igb_set_itr(struct igb_q_vector *q_vector)
5860 {
5861 	struct igb_adapter *adapter = q_vector->adapter;
5862 	u32 new_itr = q_vector->itr_val;
5863 	u8 current_itr = 0;
5864 
5865 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5866 	if (adapter->link_speed != SPEED_1000) {
5867 		current_itr = 0;
5868 		new_itr = IGB_4K_ITR;
5869 		goto set_itr_now;
5870 	}
5871 
5872 	igb_update_itr(q_vector, &q_vector->tx);
5873 	igb_update_itr(q_vector, &q_vector->rx);
5874 
5875 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5876 
5877 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5878 	if (current_itr == lowest_latency &&
5879 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5880 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5881 		current_itr = low_latency;
5882 
5883 	switch (current_itr) {
5884 	/* counts and packets in update_itr are dependent on these numbers */
5885 	case lowest_latency:
5886 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5887 		break;
5888 	case low_latency:
5889 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5890 		break;
5891 	case bulk_latency:
5892 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5893 		break;
5894 	default:
5895 		break;
5896 	}
5897 
5898 set_itr_now:
5899 	if (new_itr != q_vector->itr_val) {
5900 		/* this attempts to bias the interrupt rate towards Bulk
5901 		 * by adding intermediate steps when interrupt rate is
5902 		 * increasing
5903 		 */
5904 		new_itr = new_itr > q_vector->itr_val ?
5905 			  max((new_itr * q_vector->itr_val) /
5906 			  (new_itr + (q_vector->itr_val >> 2)),
5907 			  new_itr) : new_itr;
5908 		/* Don't write the value here; it resets the adapter's
5909 		 * internal timer, and causes us to delay far longer than
5910 		 * we should between interrupts.  Instead, we write the ITR
5911 		 * value at the beginning of the next interrupt so the timing
5912 		 * ends up being correct.
5913 		 */
5914 		q_vector->itr_val = new_itr;
5915 		q_vector->set_itr = 1;
5916 	}
5917 }
5918 
5919 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5920 			    struct igb_tx_buffer *first,
5921 			    u32 vlan_macip_lens, u32 type_tucmd,
5922 			    u32 mss_l4len_idx)
5923 {
5924 	struct e1000_adv_tx_context_desc *context_desc;
5925 	u16 i = tx_ring->next_to_use;
5926 	struct timespec64 ts;
5927 
5928 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5929 
5930 	i++;
5931 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5932 
5933 	/* set bits to identify this as an advanced context descriptor */
5934 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5935 
5936 	/* For 82575, context index must be unique per ring. */
5937 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5938 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5939 
5940 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5941 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5942 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5943 
5944 	/* We assume there is always a valid tx time available. Invalid times
5945 	 * should have been handled by the upper layers.
5946 	 */
5947 	if (tx_ring->launchtime_enable) {
5948 		ts = ktime_to_timespec64(first->skb->tstamp);
5949 		skb_txtime_consumed(first->skb);
5950 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5951 	} else {
5952 		context_desc->seqnum_seed = 0;
5953 	}
5954 }
5955 
5956 static int igb_tso(struct igb_ring *tx_ring,
5957 		   struct igb_tx_buffer *first,
5958 		   u8 *hdr_len)
5959 {
5960 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5961 	struct sk_buff *skb = first->skb;
5962 	union {
5963 		struct iphdr *v4;
5964 		struct ipv6hdr *v6;
5965 		unsigned char *hdr;
5966 	} ip;
5967 	union {
5968 		struct tcphdr *tcp;
5969 		struct udphdr *udp;
5970 		unsigned char *hdr;
5971 	} l4;
5972 	u32 paylen, l4_offset;
5973 	int err;
5974 
5975 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5976 		return 0;
5977 
5978 	if (!skb_is_gso(skb))
5979 		return 0;
5980 
5981 	err = skb_cow_head(skb, 0);
5982 	if (err < 0)
5983 		return err;
5984 
5985 	ip.hdr = skb_network_header(skb);
5986 	l4.hdr = skb_checksum_start(skb);
5987 
5988 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5989 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5990 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5991 
5992 	/* initialize outer IP header fields */
5993 	if (ip.v4->version == 4) {
5994 		unsigned char *csum_start = skb_checksum_start(skb);
5995 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5996 
5997 		/* IP header will have to cancel out any data that
5998 		 * is not a part of the outer IP header
5999 		 */
6000 		ip.v4->check = csum_fold(csum_partial(trans_start,
6001 						      csum_start - trans_start,
6002 						      0));
6003 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6004 
6005 		ip.v4->tot_len = 0;
6006 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6007 				   IGB_TX_FLAGS_CSUM |
6008 				   IGB_TX_FLAGS_IPV4;
6009 	} else {
6010 		ip.v6->payload_len = 0;
6011 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6012 				   IGB_TX_FLAGS_CSUM;
6013 	}
6014 
6015 	/* determine offset of inner transport header */
6016 	l4_offset = l4.hdr - skb->data;
6017 
6018 	/* remove payload length from inner checksum */
6019 	paylen = skb->len - l4_offset;
6020 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6021 		/* compute length of segmentation header */
6022 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6023 		csum_replace_by_diff(&l4.tcp->check,
6024 			(__force __wsum)htonl(paylen));
6025 	} else {
6026 		/* compute length of segmentation header */
6027 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6028 		csum_replace_by_diff(&l4.udp->check,
6029 				     (__force __wsum)htonl(paylen));
6030 	}
6031 
6032 	/* update gso size and bytecount with header size */
6033 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6034 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6035 
6036 	/* MSS L4LEN IDX */
6037 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6038 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6039 
6040 	/* VLAN MACLEN IPLEN */
6041 	vlan_macip_lens = l4.hdr - ip.hdr;
6042 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6043 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6044 
6045 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6046 			type_tucmd, mss_l4len_idx);
6047 
6048 	return 1;
6049 }
6050 
6051 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6052 {
6053 	struct sk_buff *skb = first->skb;
6054 	u32 vlan_macip_lens = 0;
6055 	u32 type_tucmd = 0;
6056 
6057 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6058 csum_failed:
6059 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6060 		    !tx_ring->launchtime_enable)
6061 			return;
6062 		goto no_csum;
6063 	}
6064 
6065 	switch (skb->csum_offset) {
6066 	case offsetof(struct tcphdr, check):
6067 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6068 		fallthrough;
6069 	case offsetof(struct udphdr, check):
6070 		break;
6071 	case offsetof(struct sctphdr, checksum):
6072 		/* validate that this is actually an SCTP request */
6073 		if (skb_csum_is_sctp(skb)) {
6074 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6075 			break;
6076 		}
6077 		fallthrough;
6078 	default:
6079 		skb_checksum_help(skb);
6080 		goto csum_failed;
6081 	}
6082 
6083 	/* update TX checksum flag */
6084 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6085 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6086 			  skb_network_offset(skb);
6087 no_csum:
6088 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6089 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6090 
6091 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6092 }
6093 
6094 #define IGB_SET_FLAG(_input, _flag, _result) \
6095 	((_flag <= _result) ? \
6096 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6097 	 ((u32)(_input & _flag) / (_flag / _result)))
6098 
6099 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6100 {
6101 	/* set type for advanced descriptor with frame checksum insertion */
6102 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6103 		       E1000_ADVTXD_DCMD_DEXT |
6104 		       E1000_ADVTXD_DCMD_IFCS;
6105 
6106 	/* set HW vlan bit if vlan is present */
6107 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6108 				 (E1000_ADVTXD_DCMD_VLE));
6109 
6110 	/* set segmentation bits for TSO */
6111 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6112 				 (E1000_ADVTXD_DCMD_TSE));
6113 
6114 	/* set timestamp bit if present */
6115 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6116 				 (E1000_ADVTXD_MAC_TSTAMP));
6117 
6118 	/* insert frame checksum */
6119 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6120 
6121 	return cmd_type;
6122 }
6123 
6124 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6125 				 union e1000_adv_tx_desc *tx_desc,
6126 				 u32 tx_flags, unsigned int paylen)
6127 {
6128 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6129 
6130 	/* 82575 requires a unique index per ring */
6131 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6132 		olinfo_status |= tx_ring->reg_idx << 4;
6133 
6134 	/* insert L4 checksum */
6135 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6136 				      IGB_TX_FLAGS_CSUM,
6137 				      (E1000_TXD_POPTS_TXSM << 8));
6138 
6139 	/* insert IPv4 checksum */
6140 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6141 				      IGB_TX_FLAGS_IPV4,
6142 				      (E1000_TXD_POPTS_IXSM << 8));
6143 
6144 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6145 }
6146 
6147 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6148 {
6149 	struct net_device *netdev = tx_ring->netdev;
6150 
6151 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6152 
6153 	/* Herbert's original patch had:
6154 	 *  smp_mb__after_netif_stop_queue();
6155 	 * but since that doesn't exist yet, just open code it.
6156 	 */
6157 	smp_mb();
6158 
6159 	/* We need to check again in a case another CPU has just
6160 	 * made room available.
6161 	 */
6162 	if (igb_desc_unused(tx_ring) < size)
6163 		return -EBUSY;
6164 
6165 	/* A reprieve! */
6166 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6167 
6168 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6169 	tx_ring->tx_stats.restart_queue2++;
6170 	u64_stats_update_end(&tx_ring->tx_syncp2);
6171 
6172 	return 0;
6173 }
6174 
6175 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6176 {
6177 	if (igb_desc_unused(tx_ring) >= size)
6178 		return 0;
6179 	return __igb_maybe_stop_tx(tx_ring, size);
6180 }
6181 
6182 static int igb_tx_map(struct igb_ring *tx_ring,
6183 		      struct igb_tx_buffer *first,
6184 		      const u8 hdr_len)
6185 {
6186 	struct sk_buff *skb = first->skb;
6187 	struct igb_tx_buffer *tx_buffer;
6188 	union e1000_adv_tx_desc *tx_desc;
6189 	skb_frag_t *frag;
6190 	dma_addr_t dma;
6191 	unsigned int data_len, size;
6192 	u32 tx_flags = first->tx_flags;
6193 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6194 	u16 i = tx_ring->next_to_use;
6195 
6196 	tx_desc = IGB_TX_DESC(tx_ring, i);
6197 
6198 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6199 
6200 	size = skb_headlen(skb);
6201 	data_len = skb->data_len;
6202 
6203 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6204 
6205 	tx_buffer = first;
6206 
6207 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6208 		if (dma_mapping_error(tx_ring->dev, dma))
6209 			goto dma_error;
6210 
6211 		/* record length, and DMA address */
6212 		dma_unmap_len_set(tx_buffer, len, size);
6213 		dma_unmap_addr_set(tx_buffer, dma, dma);
6214 
6215 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6216 
6217 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6218 			tx_desc->read.cmd_type_len =
6219 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6220 
6221 			i++;
6222 			tx_desc++;
6223 			if (i == tx_ring->count) {
6224 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6225 				i = 0;
6226 			}
6227 			tx_desc->read.olinfo_status = 0;
6228 
6229 			dma += IGB_MAX_DATA_PER_TXD;
6230 			size -= IGB_MAX_DATA_PER_TXD;
6231 
6232 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6233 		}
6234 
6235 		if (likely(!data_len))
6236 			break;
6237 
6238 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6239 
6240 		i++;
6241 		tx_desc++;
6242 		if (i == tx_ring->count) {
6243 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6244 			i = 0;
6245 		}
6246 		tx_desc->read.olinfo_status = 0;
6247 
6248 		size = skb_frag_size(frag);
6249 		data_len -= size;
6250 
6251 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6252 				       size, DMA_TO_DEVICE);
6253 
6254 		tx_buffer = &tx_ring->tx_buffer_info[i];
6255 	}
6256 
6257 	/* write last descriptor with RS and EOP bits */
6258 	cmd_type |= size | IGB_TXD_DCMD;
6259 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6260 
6261 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6262 
6263 	/* set the timestamp */
6264 	first->time_stamp = jiffies;
6265 
6266 	skb_tx_timestamp(skb);
6267 
6268 	/* Force memory writes to complete before letting h/w know there
6269 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6270 	 * memory model archs, such as IA-64).
6271 	 *
6272 	 * We also need this memory barrier to make certain all of the
6273 	 * status bits have been updated before next_to_watch is written.
6274 	 */
6275 	dma_wmb();
6276 
6277 	/* set next_to_watch value indicating a packet is present */
6278 	first->next_to_watch = tx_desc;
6279 
6280 	i++;
6281 	if (i == tx_ring->count)
6282 		i = 0;
6283 
6284 	tx_ring->next_to_use = i;
6285 
6286 	/* Make sure there is space in the ring for the next send. */
6287 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6288 
6289 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6290 		writel(i, tx_ring->tail);
6291 	}
6292 	return 0;
6293 
6294 dma_error:
6295 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6296 	tx_buffer = &tx_ring->tx_buffer_info[i];
6297 
6298 	/* clear dma mappings for failed tx_buffer_info map */
6299 	while (tx_buffer != first) {
6300 		if (dma_unmap_len(tx_buffer, len))
6301 			dma_unmap_page(tx_ring->dev,
6302 				       dma_unmap_addr(tx_buffer, dma),
6303 				       dma_unmap_len(tx_buffer, len),
6304 				       DMA_TO_DEVICE);
6305 		dma_unmap_len_set(tx_buffer, len, 0);
6306 
6307 		if (i-- == 0)
6308 			i += tx_ring->count;
6309 		tx_buffer = &tx_ring->tx_buffer_info[i];
6310 	}
6311 
6312 	if (dma_unmap_len(tx_buffer, len))
6313 		dma_unmap_single(tx_ring->dev,
6314 				 dma_unmap_addr(tx_buffer, dma),
6315 				 dma_unmap_len(tx_buffer, len),
6316 				 DMA_TO_DEVICE);
6317 	dma_unmap_len_set(tx_buffer, len, 0);
6318 
6319 	dev_kfree_skb_any(tx_buffer->skb);
6320 	tx_buffer->skb = NULL;
6321 
6322 	tx_ring->next_to_use = i;
6323 
6324 	return -1;
6325 }
6326 
6327 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6328 		      struct igb_ring *tx_ring,
6329 		      struct xdp_frame *xdpf)
6330 {
6331 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6332 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6333 	u16 count, i, index = tx_ring->next_to_use;
6334 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6335 	struct igb_tx_buffer *tx_buffer = tx_head;
6336 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6337 	u32 len = xdpf->len, cmd_type, olinfo_status;
6338 	void *data = xdpf->data;
6339 
6340 	count = TXD_USE_COUNT(len);
6341 	for (i = 0; i < nr_frags; i++)
6342 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6343 
6344 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6345 		return IGB_XDP_CONSUMED;
6346 
6347 	i = 0;
6348 	/* record the location of the first descriptor for this packet */
6349 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6350 	tx_head->type = IGB_TYPE_XDP;
6351 	tx_head->gso_segs = 1;
6352 	tx_head->xdpf = xdpf;
6353 
6354 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6355 	/* 82575 requires a unique index per ring */
6356 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6357 		olinfo_status |= tx_ring->reg_idx << 4;
6358 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6359 
6360 	for (;;) {
6361 		dma_addr_t dma;
6362 
6363 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6364 		if (dma_mapping_error(tx_ring->dev, dma))
6365 			goto unmap;
6366 
6367 		/* record length, and DMA address */
6368 		dma_unmap_len_set(tx_buffer, len, len);
6369 		dma_unmap_addr_set(tx_buffer, dma, dma);
6370 
6371 		/* put descriptor type bits */
6372 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6373 			   E1000_ADVTXD_DCMD_IFCS | len;
6374 
6375 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6376 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6377 
6378 		tx_buffer->protocol = 0;
6379 
6380 		if (++index == tx_ring->count)
6381 			index = 0;
6382 
6383 		if (i == nr_frags)
6384 			break;
6385 
6386 		tx_buffer = &tx_ring->tx_buffer_info[index];
6387 		tx_desc = IGB_TX_DESC(tx_ring, index);
6388 		tx_desc->read.olinfo_status = 0;
6389 
6390 		data = skb_frag_address(&sinfo->frags[i]);
6391 		len = skb_frag_size(&sinfo->frags[i]);
6392 		i++;
6393 	}
6394 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6395 
6396 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6397 	/* set the timestamp */
6398 	tx_head->time_stamp = jiffies;
6399 
6400 	/* Avoid any potential race with xdp_xmit and cleanup */
6401 	smp_wmb();
6402 
6403 	/* set next_to_watch value indicating a packet is present */
6404 	tx_head->next_to_watch = tx_desc;
6405 	tx_ring->next_to_use = index;
6406 
6407 	/* Make sure there is space in the ring for the next send. */
6408 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6409 
6410 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6411 		writel(index, tx_ring->tail);
6412 
6413 	return IGB_XDP_TX;
6414 
6415 unmap:
6416 	for (;;) {
6417 		tx_buffer = &tx_ring->tx_buffer_info[index];
6418 		if (dma_unmap_len(tx_buffer, len))
6419 			dma_unmap_page(tx_ring->dev,
6420 				       dma_unmap_addr(tx_buffer, dma),
6421 				       dma_unmap_len(tx_buffer, len),
6422 				       DMA_TO_DEVICE);
6423 		dma_unmap_len_set(tx_buffer, len, 0);
6424 		if (tx_buffer == tx_head)
6425 			break;
6426 
6427 		if (!index)
6428 			index += tx_ring->count;
6429 		index--;
6430 	}
6431 
6432 	return IGB_XDP_CONSUMED;
6433 }
6434 
6435 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6436 				struct igb_ring *tx_ring)
6437 {
6438 	struct igb_tx_buffer *first;
6439 	int tso;
6440 	u32 tx_flags = 0;
6441 	unsigned short f;
6442 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6443 	__be16 protocol = vlan_get_protocol(skb);
6444 	u8 hdr_len = 0;
6445 
6446 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6447 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6448 	 *       + 2 desc gap to keep tail from touching head,
6449 	 *       + 1 desc for context descriptor,
6450 	 * otherwise try next time
6451 	 */
6452 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6453 		count += TXD_USE_COUNT(skb_frag_size(
6454 						&skb_shinfo(skb)->frags[f]));
6455 
6456 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6457 		/* this is a hard error */
6458 		return NETDEV_TX_BUSY;
6459 	}
6460 
6461 	/* record the location of the first descriptor for this packet */
6462 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6463 	first->type = IGB_TYPE_SKB;
6464 	first->skb = skb;
6465 	first->bytecount = skb->len;
6466 	first->gso_segs = 1;
6467 
6468 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6469 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6470 
6471 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6472 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6473 					   &adapter->state)) {
6474 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6475 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6476 
6477 			adapter->ptp_tx_skb = skb_get(skb);
6478 			adapter->ptp_tx_start = jiffies;
6479 			if (adapter->hw.mac.type == e1000_82576)
6480 				schedule_work(&adapter->ptp_tx_work);
6481 		} else {
6482 			adapter->tx_hwtstamp_skipped++;
6483 		}
6484 	}
6485 
6486 	if (skb_vlan_tag_present(skb)) {
6487 		tx_flags |= IGB_TX_FLAGS_VLAN;
6488 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6489 	}
6490 
6491 	/* record initial flags and protocol */
6492 	first->tx_flags = tx_flags;
6493 	first->protocol = protocol;
6494 
6495 	tso = igb_tso(tx_ring, first, &hdr_len);
6496 	if (tso < 0)
6497 		goto out_drop;
6498 	else if (!tso)
6499 		igb_tx_csum(tx_ring, first);
6500 
6501 	if (igb_tx_map(tx_ring, first, hdr_len))
6502 		goto cleanup_tx_tstamp;
6503 
6504 	return NETDEV_TX_OK;
6505 
6506 out_drop:
6507 	dev_kfree_skb_any(first->skb);
6508 	first->skb = NULL;
6509 cleanup_tx_tstamp:
6510 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6511 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6512 
6513 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6514 		adapter->ptp_tx_skb = NULL;
6515 		if (adapter->hw.mac.type == e1000_82576)
6516 			cancel_work_sync(&adapter->ptp_tx_work);
6517 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6518 	}
6519 
6520 	return NETDEV_TX_OK;
6521 }
6522 
6523 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6524 						    struct sk_buff *skb)
6525 {
6526 	unsigned int r_idx = skb->queue_mapping;
6527 
6528 	if (r_idx >= adapter->num_tx_queues)
6529 		r_idx = r_idx % adapter->num_tx_queues;
6530 
6531 	return adapter->tx_ring[r_idx];
6532 }
6533 
6534 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6535 				  struct net_device *netdev)
6536 {
6537 	struct igb_adapter *adapter = netdev_priv(netdev);
6538 
6539 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6540 	 * in order to meet this minimum size requirement.
6541 	 */
6542 	if (skb_put_padto(skb, 17))
6543 		return NETDEV_TX_OK;
6544 
6545 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6546 }
6547 
6548 /**
6549  *  igb_tx_timeout - Respond to a Tx Hang
6550  *  @netdev: network interface device structure
6551  *  @txqueue: number of the Tx queue that hung (unused)
6552  **/
6553 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6554 {
6555 	struct igb_adapter *adapter = netdev_priv(netdev);
6556 	struct e1000_hw *hw = &adapter->hw;
6557 
6558 	/* Do the reset outside of interrupt context */
6559 	adapter->tx_timeout_count++;
6560 
6561 	if (hw->mac.type >= e1000_82580)
6562 		hw->dev_spec._82575.global_device_reset = true;
6563 
6564 	schedule_work(&adapter->reset_task);
6565 	wr32(E1000_EICS,
6566 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6567 }
6568 
6569 static void igb_reset_task(struct work_struct *work)
6570 {
6571 	struct igb_adapter *adapter;
6572 	adapter = container_of(work, struct igb_adapter, reset_task);
6573 
6574 	rtnl_lock();
6575 	/* If we're already down or resetting, just bail */
6576 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6577 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6578 		rtnl_unlock();
6579 		return;
6580 	}
6581 
6582 	igb_dump(adapter);
6583 	netdev_err(adapter->netdev, "Reset adapter\n");
6584 	igb_reinit_locked(adapter);
6585 	rtnl_unlock();
6586 }
6587 
6588 /**
6589  *  igb_get_stats64 - Get System Network Statistics
6590  *  @netdev: network interface device structure
6591  *  @stats: rtnl_link_stats64 pointer
6592  **/
6593 static void igb_get_stats64(struct net_device *netdev,
6594 			    struct rtnl_link_stats64 *stats)
6595 {
6596 	struct igb_adapter *adapter = netdev_priv(netdev);
6597 
6598 	spin_lock(&adapter->stats64_lock);
6599 	igb_update_stats(adapter);
6600 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6601 	spin_unlock(&adapter->stats64_lock);
6602 }
6603 
6604 /**
6605  *  igb_change_mtu - Change the Maximum Transfer Unit
6606  *  @netdev: network interface device structure
6607  *  @new_mtu: new value for maximum frame size
6608  *
6609  *  Returns 0 on success, negative on failure
6610  **/
6611 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6612 {
6613 	struct igb_adapter *adapter = netdev_priv(netdev);
6614 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6615 
6616 	if (adapter->xdp_prog) {
6617 		int i;
6618 
6619 		for (i = 0; i < adapter->num_rx_queues; i++) {
6620 			struct igb_ring *ring = adapter->rx_ring[i];
6621 
6622 			if (max_frame > igb_rx_bufsz(ring)) {
6623 				netdev_warn(adapter->netdev,
6624 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6625 					    max_frame);
6626 				return -EINVAL;
6627 			}
6628 		}
6629 	}
6630 
6631 	/* adjust max frame to be at least the size of a standard frame */
6632 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6633 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6634 
6635 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6636 		usleep_range(1000, 2000);
6637 
6638 	/* igb_down has a dependency on max_frame_size */
6639 	adapter->max_frame_size = max_frame;
6640 
6641 	if (netif_running(netdev))
6642 		igb_down(adapter);
6643 
6644 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6645 		   netdev->mtu, new_mtu);
6646 	WRITE_ONCE(netdev->mtu, new_mtu);
6647 
6648 	if (netif_running(netdev))
6649 		igb_up(adapter);
6650 	else
6651 		igb_reset(adapter);
6652 
6653 	clear_bit(__IGB_RESETTING, &adapter->state);
6654 
6655 	return 0;
6656 }
6657 
6658 /**
6659  *  igb_update_stats - Update the board statistics counters
6660  *  @adapter: board private structure
6661  **/
6662 void igb_update_stats(struct igb_adapter *adapter)
6663 {
6664 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6665 	struct e1000_hw *hw = &adapter->hw;
6666 	struct pci_dev *pdev = adapter->pdev;
6667 	u32 reg, mpc;
6668 	int i;
6669 	u64 bytes, packets;
6670 	unsigned int start;
6671 	u64 _bytes, _packets;
6672 
6673 	/* Prevent stats update while adapter is being reset, or if the pci
6674 	 * connection is down.
6675 	 */
6676 	if (adapter->link_speed == 0)
6677 		return;
6678 	if (pci_channel_offline(pdev))
6679 		return;
6680 
6681 	bytes = 0;
6682 	packets = 0;
6683 
6684 	rcu_read_lock();
6685 	for (i = 0; i < adapter->num_rx_queues; i++) {
6686 		struct igb_ring *ring = adapter->rx_ring[i];
6687 		u32 rqdpc = rd32(E1000_RQDPC(i));
6688 		if (hw->mac.type >= e1000_i210)
6689 			wr32(E1000_RQDPC(i), 0);
6690 
6691 		if (rqdpc) {
6692 			ring->rx_stats.drops += rqdpc;
6693 			net_stats->rx_fifo_errors += rqdpc;
6694 		}
6695 
6696 		do {
6697 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6698 			_bytes = ring->rx_stats.bytes;
6699 			_packets = ring->rx_stats.packets;
6700 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6701 		bytes += _bytes;
6702 		packets += _packets;
6703 	}
6704 
6705 	net_stats->rx_bytes = bytes;
6706 	net_stats->rx_packets = packets;
6707 
6708 	bytes = 0;
6709 	packets = 0;
6710 	for (i = 0; i < adapter->num_tx_queues; i++) {
6711 		struct igb_ring *ring = adapter->tx_ring[i];
6712 		do {
6713 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6714 			_bytes = ring->tx_stats.bytes;
6715 			_packets = ring->tx_stats.packets;
6716 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6717 		bytes += _bytes;
6718 		packets += _packets;
6719 	}
6720 	net_stats->tx_bytes = bytes;
6721 	net_stats->tx_packets = packets;
6722 	rcu_read_unlock();
6723 
6724 	/* read stats registers */
6725 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6726 	adapter->stats.gprc += rd32(E1000_GPRC);
6727 	adapter->stats.gorc += rd32(E1000_GORCL);
6728 	rd32(E1000_GORCH); /* clear GORCL */
6729 	adapter->stats.bprc += rd32(E1000_BPRC);
6730 	adapter->stats.mprc += rd32(E1000_MPRC);
6731 	adapter->stats.roc += rd32(E1000_ROC);
6732 
6733 	adapter->stats.prc64 += rd32(E1000_PRC64);
6734 	adapter->stats.prc127 += rd32(E1000_PRC127);
6735 	adapter->stats.prc255 += rd32(E1000_PRC255);
6736 	adapter->stats.prc511 += rd32(E1000_PRC511);
6737 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6738 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6739 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6740 	adapter->stats.sec += rd32(E1000_SEC);
6741 
6742 	mpc = rd32(E1000_MPC);
6743 	adapter->stats.mpc += mpc;
6744 	net_stats->rx_fifo_errors += mpc;
6745 	adapter->stats.scc += rd32(E1000_SCC);
6746 	adapter->stats.ecol += rd32(E1000_ECOL);
6747 	adapter->stats.mcc += rd32(E1000_MCC);
6748 	adapter->stats.latecol += rd32(E1000_LATECOL);
6749 	adapter->stats.dc += rd32(E1000_DC);
6750 	adapter->stats.rlec += rd32(E1000_RLEC);
6751 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6752 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6753 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6754 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6755 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6756 	adapter->stats.gptc += rd32(E1000_GPTC);
6757 	adapter->stats.gotc += rd32(E1000_GOTCL);
6758 	rd32(E1000_GOTCH); /* clear GOTCL */
6759 	adapter->stats.rnbc += rd32(E1000_RNBC);
6760 	adapter->stats.ruc += rd32(E1000_RUC);
6761 	adapter->stats.rfc += rd32(E1000_RFC);
6762 	adapter->stats.rjc += rd32(E1000_RJC);
6763 	adapter->stats.tor += rd32(E1000_TORH);
6764 	adapter->stats.tot += rd32(E1000_TOTH);
6765 	adapter->stats.tpr += rd32(E1000_TPR);
6766 
6767 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6768 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6769 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6770 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6771 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6772 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6773 
6774 	adapter->stats.mptc += rd32(E1000_MPTC);
6775 	adapter->stats.bptc += rd32(E1000_BPTC);
6776 
6777 	adapter->stats.tpt += rd32(E1000_TPT);
6778 	adapter->stats.colc += rd32(E1000_COLC);
6779 
6780 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6781 	/* read internal phy specific stats */
6782 	reg = rd32(E1000_CTRL_EXT);
6783 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6784 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6785 
6786 		/* this stat has invalid values on i210/i211 */
6787 		if ((hw->mac.type != e1000_i210) &&
6788 		    (hw->mac.type != e1000_i211))
6789 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6790 	}
6791 
6792 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6793 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6794 
6795 	adapter->stats.iac += rd32(E1000_IAC);
6796 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6797 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6798 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6799 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6800 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6801 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6802 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6803 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6804 
6805 	/* Fill out the OS statistics structure */
6806 	net_stats->multicast = adapter->stats.mprc;
6807 	net_stats->collisions = adapter->stats.colc;
6808 
6809 	/* Rx Errors */
6810 
6811 	/* RLEC on some newer hardware can be incorrect so build
6812 	 * our own version based on RUC and ROC
6813 	 */
6814 	net_stats->rx_errors = adapter->stats.rxerrc +
6815 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6816 		adapter->stats.ruc + adapter->stats.roc +
6817 		adapter->stats.cexterr;
6818 	net_stats->rx_length_errors = adapter->stats.ruc +
6819 				      adapter->stats.roc;
6820 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6821 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6822 	net_stats->rx_missed_errors = adapter->stats.mpc;
6823 
6824 	/* Tx Errors */
6825 	net_stats->tx_errors = adapter->stats.ecol +
6826 			       adapter->stats.latecol;
6827 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6828 	net_stats->tx_window_errors = adapter->stats.latecol;
6829 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6830 
6831 	/* Tx Dropped needs to be maintained elsewhere */
6832 
6833 	/* Management Stats */
6834 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6835 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6836 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6837 
6838 	/* OS2BMC Stats */
6839 	reg = rd32(E1000_MANC);
6840 	if (reg & E1000_MANC_EN_BMC2OS) {
6841 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6842 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6843 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6844 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6845 	}
6846 }
6847 
6848 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6849 {
6850 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6851 	struct e1000_hw *hw = &adapter->hw;
6852 	struct timespec64 ts;
6853 	u32 tsauxc;
6854 
6855 	if (pin < 0 || pin >= IGB_N_SDP)
6856 		return;
6857 
6858 	spin_lock(&adapter->tmreg_lock);
6859 
6860 	if (hw->mac.type == e1000_82580 ||
6861 	    hw->mac.type == e1000_i354 ||
6862 	    hw->mac.type == e1000_i350) {
6863 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6864 		u32 systiml, systimh, level_mask, level, rem;
6865 		u64 systim, now;
6866 
6867 		/* read systim registers in sequence */
6868 		rd32(E1000_SYSTIMR);
6869 		systiml = rd32(E1000_SYSTIML);
6870 		systimh = rd32(E1000_SYSTIMH);
6871 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6872 		now = timecounter_cyc2time(&adapter->tc, systim);
6873 
6874 		if (pin < 2) {
6875 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6876 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6877 		} else {
6878 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6879 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6880 		}
6881 
6882 		div_u64_rem(now, ns, &rem);
6883 		systim = systim + (ns - rem);
6884 
6885 		/* synchronize pin level with rising/falling edges */
6886 		div_u64_rem(now, ns << 1, &rem);
6887 		if (rem < ns) {
6888 			/* first half of period */
6889 			if (level == 0) {
6890 				/* output is already low, skip this period */
6891 				systim += ns;
6892 				pr_notice("igb: periodic output on %s missed falling edge\n",
6893 					  adapter->sdp_config[pin].name);
6894 			}
6895 		} else {
6896 			/* second half of period */
6897 			if (level == 1) {
6898 				/* output is already high, skip this period */
6899 				systim += ns;
6900 				pr_notice("igb: periodic output on %s missed rising edge\n",
6901 					  adapter->sdp_config[pin].name);
6902 			}
6903 		}
6904 
6905 		/* for this chip family tv_sec is the upper part of the binary value,
6906 		 * so not seconds
6907 		 */
6908 		ts.tv_nsec = (u32)systim;
6909 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6910 	} else {
6911 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
6912 				    adapter->perout[tsintr_tt].period);
6913 	}
6914 
6915 	/* u32 conversion of tv_sec is safe until y2106 */
6916 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6917 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6918 	tsauxc = rd32(E1000_TSAUXC);
6919 	tsauxc |= TSAUXC_EN_TT0;
6920 	wr32(E1000_TSAUXC, tsauxc);
6921 	adapter->perout[tsintr_tt].start = ts;
6922 
6923 	spin_unlock(&adapter->tmreg_lock);
6924 }
6925 
6926 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6927 {
6928 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6929 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6930 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6931 	struct e1000_hw *hw = &adapter->hw;
6932 	struct ptp_clock_event event;
6933 	struct timespec64 ts;
6934 	unsigned long flags;
6935 
6936 	if (pin < 0 || pin >= IGB_N_SDP)
6937 		return;
6938 
6939 	if (hw->mac.type == e1000_82580 ||
6940 	    hw->mac.type == e1000_i354 ||
6941 	    hw->mac.type == e1000_i350) {
6942 		u64 ns = rd32(auxstmpl);
6943 
6944 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6945 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
6946 		ns = timecounter_cyc2time(&adapter->tc, ns);
6947 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6948 		ts = ns_to_timespec64(ns);
6949 	} else {
6950 		ts.tv_nsec = rd32(auxstmpl);
6951 		ts.tv_sec  = rd32(auxstmph);
6952 	}
6953 
6954 	event.type = PTP_CLOCK_EXTTS;
6955 	event.index = tsintr_tt;
6956 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6957 	ptp_clock_event(adapter->ptp_clock, &event);
6958 }
6959 
6960 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6961 {
6962 	struct e1000_hw *hw = &adapter->hw;
6963 	u32 tsicr = rd32(E1000_TSICR);
6964 	struct ptp_clock_event event;
6965 
6966 	if (tsicr & TSINTR_SYS_WRAP) {
6967 		event.type = PTP_CLOCK_PPS;
6968 		if (adapter->ptp_caps.pps)
6969 			ptp_clock_event(adapter->ptp_clock, &event);
6970 	}
6971 
6972 	if (tsicr & E1000_TSICR_TXTS) {
6973 		/* retrieve hardware timestamp */
6974 		schedule_work(&adapter->ptp_tx_work);
6975 	}
6976 
6977 	if (tsicr & TSINTR_TT0)
6978 		igb_perout(adapter, 0);
6979 
6980 	if (tsicr & TSINTR_TT1)
6981 		igb_perout(adapter, 1);
6982 
6983 	if (tsicr & TSINTR_AUTT0)
6984 		igb_extts(adapter, 0);
6985 
6986 	if (tsicr & TSINTR_AUTT1)
6987 		igb_extts(adapter, 1);
6988 }
6989 
6990 static irqreturn_t igb_msix_other(int irq, void *data)
6991 {
6992 	struct igb_adapter *adapter = data;
6993 	struct e1000_hw *hw = &adapter->hw;
6994 	u32 icr = rd32(E1000_ICR);
6995 	/* reading ICR causes bit 31 of EICR to be cleared */
6996 
6997 	if (icr & E1000_ICR_DRSTA)
6998 		schedule_work(&adapter->reset_task);
6999 
7000 	if (icr & E1000_ICR_DOUTSYNC) {
7001 		/* HW is reporting DMA is out of sync */
7002 		adapter->stats.doosync++;
7003 		/* The DMA Out of Sync is also indication of a spoof event
7004 		 * in IOV mode. Check the Wrong VM Behavior register to
7005 		 * see if it is really a spoof event.
7006 		 */
7007 		igb_check_wvbr(adapter);
7008 	}
7009 
7010 	/* Check for a mailbox event */
7011 	if (icr & E1000_ICR_VMMB)
7012 		igb_msg_task(adapter);
7013 
7014 	if (icr & E1000_ICR_LSC) {
7015 		hw->mac.get_link_status = 1;
7016 		/* guard against interrupt when we're going down */
7017 		if (!test_bit(__IGB_DOWN, &adapter->state))
7018 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7019 	}
7020 
7021 	if (icr & E1000_ICR_TS)
7022 		igb_tsync_interrupt(adapter);
7023 
7024 	wr32(E1000_EIMS, adapter->eims_other);
7025 
7026 	return IRQ_HANDLED;
7027 }
7028 
7029 static void igb_write_itr(struct igb_q_vector *q_vector)
7030 {
7031 	struct igb_adapter *adapter = q_vector->adapter;
7032 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7033 
7034 	if (!q_vector->set_itr)
7035 		return;
7036 
7037 	if (!itr_val)
7038 		itr_val = 0x4;
7039 
7040 	if (adapter->hw.mac.type == e1000_82575)
7041 		itr_val |= itr_val << 16;
7042 	else
7043 		itr_val |= E1000_EITR_CNT_IGNR;
7044 
7045 	writel(itr_val, q_vector->itr_register);
7046 	q_vector->set_itr = 0;
7047 }
7048 
7049 static irqreturn_t igb_msix_ring(int irq, void *data)
7050 {
7051 	struct igb_q_vector *q_vector = data;
7052 
7053 	/* Write the ITR value calculated from the previous interrupt. */
7054 	igb_write_itr(q_vector);
7055 
7056 	napi_schedule(&q_vector->napi);
7057 
7058 	return IRQ_HANDLED;
7059 }
7060 
7061 #ifdef CONFIG_IGB_DCA
7062 static void igb_update_tx_dca(struct igb_adapter *adapter,
7063 			      struct igb_ring *tx_ring,
7064 			      int cpu)
7065 {
7066 	struct e1000_hw *hw = &adapter->hw;
7067 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7068 
7069 	if (hw->mac.type != e1000_82575)
7070 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7071 
7072 	/* We can enable relaxed ordering for reads, but not writes when
7073 	 * DCA is enabled.  This is due to a known issue in some chipsets
7074 	 * which will cause the DCA tag to be cleared.
7075 	 */
7076 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7077 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7078 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7079 
7080 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7081 }
7082 
7083 static void igb_update_rx_dca(struct igb_adapter *adapter,
7084 			      struct igb_ring *rx_ring,
7085 			      int cpu)
7086 {
7087 	struct e1000_hw *hw = &adapter->hw;
7088 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7089 
7090 	if (hw->mac.type != e1000_82575)
7091 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7092 
7093 	/* We can enable relaxed ordering for reads, but not writes when
7094 	 * DCA is enabled.  This is due to a known issue in some chipsets
7095 	 * which will cause the DCA tag to be cleared.
7096 	 */
7097 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7098 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7099 
7100 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7101 }
7102 
7103 static void igb_update_dca(struct igb_q_vector *q_vector)
7104 {
7105 	struct igb_adapter *adapter = q_vector->adapter;
7106 	int cpu = get_cpu();
7107 
7108 	if (q_vector->cpu == cpu)
7109 		goto out_no_update;
7110 
7111 	if (q_vector->tx.ring)
7112 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7113 
7114 	if (q_vector->rx.ring)
7115 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7116 
7117 	q_vector->cpu = cpu;
7118 out_no_update:
7119 	put_cpu();
7120 }
7121 
7122 static void igb_setup_dca(struct igb_adapter *adapter)
7123 {
7124 	struct e1000_hw *hw = &adapter->hw;
7125 	int i;
7126 
7127 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7128 		return;
7129 
7130 	/* Always use CB2 mode, difference is masked in the CB driver. */
7131 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7132 
7133 	for (i = 0; i < adapter->num_q_vectors; i++) {
7134 		adapter->q_vector[i]->cpu = -1;
7135 		igb_update_dca(adapter->q_vector[i]);
7136 	}
7137 }
7138 
7139 static int __igb_notify_dca(struct device *dev, void *data)
7140 {
7141 	struct net_device *netdev = dev_get_drvdata(dev);
7142 	struct igb_adapter *adapter = netdev_priv(netdev);
7143 	struct pci_dev *pdev = adapter->pdev;
7144 	struct e1000_hw *hw = &adapter->hw;
7145 	unsigned long event = *(unsigned long *)data;
7146 
7147 	switch (event) {
7148 	case DCA_PROVIDER_ADD:
7149 		/* if already enabled, don't do it again */
7150 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7151 			break;
7152 		if (dca_add_requester(dev) == 0) {
7153 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7154 			dev_info(&pdev->dev, "DCA enabled\n");
7155 			igb_setup_dca(adapter);
7156 			break;
7157 		}
7158 		fallthrough; /* since DCA is disabled. */
7159 	case DCA_PROVIDER_REMOVE:
7160 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7161 			/* without this a class_device is left
7162 			 * hanging around in the sysfs model
7163 			 */
7164 			dca_remove_requester(dev);
7165 			dev_info(&pdev->dev, "DCA disabled\n");
7166 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7167 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7168 		}
7169 		break;
7170 	}
7171 
7172 	return 0;
7173 }
7174 
7175 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7176 			  void *p)
7177 {
7178 	int ret_val;
7179 
7180 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7181 					 __igb_notify_dca);
7182 
7183 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7184 }
7185 #endif /* CONFIG_IGB_DCA */
7186 
7187 #ifdef CONFIG_PCI_IOV
7188 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7189 {
7190 	unsigned char mac_addr[ETH_ALEN];
7191 
7192 	eth_zero_addr(mac_addr);
7193 	igb_set_vf_mac(adapter, vf, mac_addr);
7194 
7195 	/* By default spoof check is enabled for all VFs */
7196 	adapter->vf_data[vf].spoofchk_enabled = true;
7197 
7198 	/* By default VFs are not trusted */
7199 	adapter->vf_data[vf].trusted = false;
7200 
7201 	return 0;
7202 }
7203 
7204 #endif
7205 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7206 {
7207 	struct e1000_hw *hw = &adapter->hw;
7208 	u32 ping;
7209 	int i;
7210 
7211 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7212 		ping = E1000_PF_CONTROL_MSG;
7213 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7214 			ping |= E1000_VT_MSGTYPE_CTS;
7215 		igb_write_mbx(hw, &ping, 1, i);
7216 	}
7217 }
7218 
7219 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7220 {
7221 	struct e1000_hw *hw = &adapter->hw;
7222 	u32 vmolr = rd32(E1000_VMOLR(vf));
7223 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7224 
7225 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7226 			    IGB_VF_FLAG_MULTI_PROMISC);
7227 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7228 
7229 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7230 		vmolr |= E1000_VMOLR_MPME;
7231 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7232 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7233 	} else {
7234 		/* if we have hashes and we are clearing a multicast promisc
7235 		 * flag we need to write the hashes to the MTA as this step
7236 		 * was previously skipped
7237 		 */
7238 		if (vf_data->num_vf_mc_hashes > 30) {
7239 			vmolr |= E1000_VMOLR_MPME;
7240 		} else if (vf_data->num_vf_mc_hashes) {
7241 			int j;
7242 
7243 			vmolr |= E1000_VMOLR_ROMPE;
7244 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7245 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7246 		}
7247 	}
7248 
7249 	wr32(E1000_VMOLR(vf), vmolr);
7250 
7251 	/* there are flags left unprocessed, likely not supported */
7252 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7253 		return -EINVAL;
7254 
7255 	return 0;
7256 }
7257 
7258 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7259 				  u32 *msgbuf, u32 vf)
7260 {
7261 	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7262 	u16 *hash_list = (u16 *)&msgbuf[1];
7263 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7264 	int i;
7265 
7266 	/* salt away the number of multicast addresses assigned
7267 	 * to this VF for later use to restore when the PF multi cast
7268 	 * list changes
7269 	 */
7270 	vf_data->num_vf_mc_hashes = n;
7271 
7272 	/* only up to 30 hash values supported */
7273 	if (n > 30)
7274 		n = 30;
7275 
7276 	/* store the hashes for later use */
7277 	for (i = 0; i < n; i++)
7278 		vf_data->vf_mc_hashes[i] = hash_list[i];
7279 
7280 	/* Flush and reset the mta with the new values */
7281 	igb_set_rx_mode(adapter->netdev);
7282 
7283 	return 0;
7284 }
7285 
7286 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7287 {
7288 	struct e1000_hw *hw = &adapter->hw;
7289 	struct vf_data_storage *vf_data;
7290 	int i, j;
7291 
7292 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7293 		u32 vmolr = rd32(E1000_VMOLR(i));
7294 
7295 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7296 
7297 		vf_data = &adapter->vf_data[i];
7298 
7299 		if ((vf_data->num_vf_mc_hashes > 30) ||
7300 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7301 			vmolr |= E1000_VMOLR_MPME;
7302 		} else if (vf_data->num_vf_mc_hashes) {
7303 			vmolr |= E1000_VMOLR_ROMPE;
7304 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7305 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7306 		}
7307 		wr32(E1000_VMOLR(i), vmolr);
7308 	}
7309 }
7310 
7311 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7312 {
7313 	struct e1000_hw *hw = &adapter->hw;
7314 	u32 pool_mask, vlvf_mask, i;
7315 
7316 	/* create mask for VF and other pools */
7317 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7318 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7319 
7320 	/* drop PF from pool bits */
7321 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7322 			     adapter->vfs_allocated_count);
7323 
7324 	/* Find the vlan filter for this id */
7325 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7326 		u32 vlvf = rd32(E1000_VLVF(i));
7327 		u32 vfta_mask, vid, vfta;
7328 
7329 		/* remove the vf from the pool */
7330 		if (!(vlvf & vlvf_mask))
7331 			continue;
7332 
7333 		/* clear out bit from VLVF */
7334 		vlvf ^= vlvf_mask;
7335 
7336 		/* if other pools are present, just remove ourselves */
7337 		if (vlvf & pool_mask)
7338 			goto update_vlvfb;
7339 
7340 		/* if PF is present, leave VFTA */
7341 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7342 			goto update_vlvf;
7343 
7344 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7345 		vfta_mask = BIT(vid % 32);
7346 
7347 		/* clear bit from VFTA */
7348 		vfta = adapter->shadow_vfta[vid / 32];
7349 		if (vfta & vfta_mask)
7350 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7351 update_vlvf:
7352 		/* clear pool selection enable */
7353 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7354 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7355 		else
7356 			vlvf = 0;
7357 update_vlvfb:
7358 		/* clear pool bits */
7359 		wr32(E1000_VLVF(i), vlvf);
7360 	}
7361 }
7362 
7363 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7364 {
7365 	u32 vlvf;
7366 	int idx;
7367 
7368 	/* short cut the special case */
7369 	if (vlan == 0)
7370 		return 0;
7371 
7372 	/* Search for the VLAN id in the VLVF entries */
7373 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7374 		vlvf = rd32(E1000_VLVF(idx));
7375 		if ((vlvf & VLAN_VID_MASK) == vlan)
7376 			break;
7377 	}
7378 
7379 	return idx;
7380 }
7381 
7382 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7383 {
7384 	struct e1000_hw *hw = &adapter->hw;
7385 	u32 bits, pf_id;
7386 	int idx;
7387 
7388 	idx = igb_find_vlvf_entry(hw, vid);
7389 	if (!idx)
7390 		return;
7391 
7392 	/* See if any other pools are set for this VLAN filter
7393 	 * entry other than the PF.
7394 	 */
7395 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7396 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7397 	bits &= rd32(E1000_VLVF(idx));
7398 
7399 	/* Disable the filter so this falls into the default pool. */
7400 	if (!bits) {
7401 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7402 			wr32(E1000_VLVF(idx), BIT(pf_id));
7403 		else
7404 			wr32(E1000_VLVF(idx), 0);
7405 	}
7406 }
7407 
7408 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7409 			   bool add, u32 vf)
7410 {
7411 	int pf_id = adapter->vfs_allocated_count;
7412 	struct e1000_hw *hw = &adapter->hw;
7413 	int err;
7414 
7415 	/* If VLAN overlaps with one the PF is currently monitoring make
7416 	 * sure that we are able to allocate a VLVF entry.  This may be
7417 	 * redundant but it guarantees PF will maintain visibility to
7418 	 * the VLAN.
7419 	 */
7420 	if (add && test_bit(vid, adapter->active_vlans)) {
7421 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7422 		if (err)
7423 			return err;
7424 	}
7425 
7426 	err = igb_vfta_set(hw, vid, vf, add, false);
7427 
7428 	if (add && !err)
7429 		return err;
7430 
7431 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7432 	 * we may need to drop the PF pool bit in order to allow us to free
7433 	 * up the VLVF resources.
7434 	 */
7435 	if (test_bit(vid, adapter->active_vlans) ||
7436 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7437 		igb_update_pf_vlvf(adapter, vid);
7438 
7439 	return err;
7440 }
7441 
7442 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7443 {
7444 	struct e1000_hw *hw = &adapter->hw;
7445 
7446 	if (vid)
7447 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7448 	else
7449 		wr32(E1000_VMVIR(vf), 0);
7450 }
7451 
7452 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7453 				u16 vlan, u8 qos)
7454 {
7455 	int err;
7456 
7457 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7458 	if (err)
7459 		return err;
7460 
7461 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7462 	igb_set_vmolr(adapter, vf, !vlan);
7463 
7464 	/* revoke access to previous VLAN */
7465 	if (vlan != adapter->vf_data[vf].pf_vlan)
7466 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7467 				false, vf);
7468 
7469 	adapter->vf_data[vf].pf_vlan = vlan;
7470 	adapter->vf_data[vf].pf_qos = qos;
7471 	igb_set_vf_vlan_strip(adapter, vf, true);
7472 	dev_info(&adapter->pdev->dev,
7473 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7474 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7475 		dev_warn(&adapter->pdev->dev,
7476 			 "The VF VLAN has been set, but the PF device is not up.\n");
7477 		dev_warn(&adapter->pdev->dev,
7478 			 "Bring the PF device up before attempting to use the VF device.\n");
7479 	}
7480 
7481 	return err;
7482 }
7483 
7484 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7485 {
7486 	/* Restore tagless access via VLAN 0 */
7487 	igb_set_vf_vlan(adapter, 0, true, vf);
7488 
7489 	igb_set_vmvir(adapter, 0, vf);
7490 	igb_set_vmolr(adapter, vf, true);
7491 
7492 	/* Remove any PF assigned VLAN */
7493 	if (adapter->vf_data[vf].pf_vlan)
7494 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7495 				false, vf);
7496 
7497 	adapter->vf_data[vf].pf_vlan = 0;
7498 	adapter->vf_data[vf].pf_qos = 0;
7499 	igb_set_vf_vlan_strip(adapter, vf, false);
7500 
7501 	return 0;
7502 }
7503 
7504 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7505 			       u16 vlan, u8 qos, __be16 vlan_proto)
7506 {
7507 	struct igb_adapter *adapter = netdev_priv(netdev);
7508 
7509 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7510 		return -EINVAL;
7511 
7512 	if (vlan_proto != htons(ETH_P_8021Q))
7513 		return -EPROTONOSUPPORT;
7514 
7515 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7516 			       igb_disable_port_vlan(adapter, vf);
7517 }
7518 
7519 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7520 {
7521 	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7522 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7523 	int ret;
7524 
7525 	if (adapter->vf_data[vf].pf_vlan)
7526 		return -1;
7527 
7528 	/* VLAN 0 is a special case, don't allow it to be removed */
7529 	if (!vid && !add)
7530 		return 0;
7531 
7532 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7533 	if (!ret)
7534 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7535 	return ret;
7536 }
7537 
7538 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7539 {
7540 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7541 
7542 	/* clear flags - except flag that indicates PF has set the MAC */
7543 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7544 	vf_data->last_nack = jiffies;
7545 
7546 	/* reset vlans for device */
7547 	igb_clear_vf_vfta(adapter, vf);
7548 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7549 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7550 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7551 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7552 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7553 
7554 	/* reset multicast table array for vf */
7555 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7556 
7557 	/* Flush and reset the mta with the new values */
7558 	igb_set_rx_mode(adapter->netdev);
7559 }
7560 
7561 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7562 {
7563 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7564 
7565 	/* clear mac address as we were hotplug removed/added */
7566 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7567 		eth_zero_addr(vf_mac);
7568 
7569 	/* process remaining reset events */
7570 	igb_vf_reset(adapter, vf);
7571 }
7572 
7573 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7574 {
7575 	struct e1000_hw *hw = &adapter->hw;
7576 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7577 	u32 reg, msgbuf[3] = {};
7578 	u8 *addr = (u8 *)(&msgbuf[1]);
7579 
7580 	/* process all the same items cleared in a function level reset */
7581 	igb_vf_reset(adapter, vf);
7582 
7583 	/* set vf mac address */
7584 	igb_set_vf_mac(adapter, vf, vf_mac);
7585 
7586 	/* enable transmit and receive for vf */
7587 	reg = rd32(E1000_VFTE);
7588 	wr32(E1000_VFTE, reg | BIT(vf));
7589 	reg = rd32(E1000_VFRE);
7590 	wr32(E1000_VFRE, reg | BIT(vf));
7591 
7592 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7593 
7594 	/* reply to reset with ack and vf mac address */
7595 	if (!is_zero_ether_addr(vf_mac)) {
7596 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7597 		memcpy(addr, vf_mac, ETH_ALEN);
7598 	} else {
7599 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7600 	}
7601 	igb_write_mbx(hw, msgbuf, 3, vf);
7602 }
7603 
7604 static void igb_flush_mac_table(struct igb_adapter *adapter)
7605 {
7606 	struct e1000_hw *hw = &adapter->hw;
7607 	int i;
7608 
7609 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7610 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7611 		eth_zero_addr(adapter->mac_table[i].addr);
7612 		adapter->mac_table[i].queue = 0;
7613 		igb_rar_set_index(adapter, i);
7614 	}
7615 }
7616 
7617 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7618 {
7619 	struct e1000_hw *hw = &adapter->hw;
7620 	/* do not count rar entries reserved for VFs MAC addresses */
7621 	int rar_entries = hw->mac.rar_entry_count -
7622 			  adapter->vfs_allocated_count;
7623 	int i, count = 0;
7624 
7625 	for (i = 0; i < rar_entries; i++) {
7626 		/* do not count default entries */
7627 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7628 			continue;
7629 
7630 		/* do not count "in use" entries for different queues */
7631 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7632 		    (adapter->mac_table[i].queue != queue))
7633 			continue;
7634 
7635 		count++;
7636 	}
7637 
7638 	return count;
7639 }
7640 
7641 /* Set default MAC address for the PF in the first RAR entry */
7642 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7643 {
7644 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7645 
7646 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7647 	mac_table->queue = adapter->vfs_allocated_count;
7648 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7649 
7650 	igb_rar_set_index(adapter, 0);
7651 }
7652 
7653 /* If the filter to be added and an already existing filter express
7654  * the same address and address type, it should be possible to only
7655  * override the other configurations, for example the queue to steer
7656  * traffic.
7657  */
7658 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7659 				      const u8 *addr, const u8 flags)
7660 {
7661 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7662 		return true;
7663 
7664 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7665 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7666 		return false;
7667 
7668 	if (!ether_addr_equal(addr, entry->addr))
7669 		return false;
7670 
7671 	return true;
7672 }
7673 
7674 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7675  * 'flags' is used to indicate what kind of match is made, match is by
7676  * default for the destination address, if matching by source address
7677  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7678  */
7679 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7680 				    const u8 *addr, const u8 queue,
7681 				    const u8 flags)
7682 {
7683 	struct e1000_hw *hw = &adapter->hw;
7684 	int rar_entries = hw->mac.rar_entry_count -
7685 			  adapter->vfs_allocated_count;
7686 	int i;
7687 
7688 	if (is_zero_ether_addr(addr))
7689 		return -EINVAL;
7690 
7691 	/* Search for the first empty entry in the MAC table.
7692 	 * Do not touch entries at the end of the table reserved for the VF MAC
7693 	 * addresses.
7694 	 */
7695 	for (i = 0; i < rar_entries; i++) {
7696 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7697 					       addr, flags))
7698 			continue;
7699 
7700 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7701 		adapter->mac_table[i].queue = queue;
7702 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7703 
7704 		igb_rar_set_index(adapter, i);
7705 		return i;
7706 	}
7707 
7708 	return -ENOSPC;
7709 }
7710 
7711 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7712 			      const u8 queue)
7713 {
7714 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7715 }
7716 
7717 /* Remove a MAC filter for 'addr' directing matching traffic to
7718  * 'queue', 'flags' is used to indicate what kind of match need to be
7719  * removed, match is by default for the destination address, if
7720  * matching by source address is to be removed the flag
7721  * IGB_MAC_STATE_SRC_ADDR can be used.
7722  */
7723 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7724 				    const u8 *addr, const u8 queue,
7725 				    const u8 flags)
7726 {
7727 	struct e1000_hw *hw = &adapter->hw;
7728 	int rar_entries = hw->mac.rar_entry_count -
7729 			  adapter->vfs_allocated_count;
7730 	int i;
7731 
7732 	if (is_zero_ether_addr(addr))
7733 		return -EINVAL;
7734 
7735 	/* Search for matching entry in the MAC table based on given address
7736 	 * and queue. Do not touch entries at the end of the table reserved
7737 	 * for the VF MAC addresses.
7738 	 */
7739 	for (i = 0; i < rar_entries; i++) {
7740 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7741 			continue;
7742 		if ((adapter->mac_table[i].state & flags) != flags)
7743 			continue;
7744 		if (adapter->mac_table[i].queue != queue)
7745 			continue;
7746 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7747 			continue;
7748 
7749 		/* When a filter for the default address is "deleted",
7750 		 * we return it to its initial configuration
7751 		 */
7752 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7753 			adapter->mac_table[i].state =
7754 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7755 			adapter->mac_table[i].queue =
7756 				adapter->vfs_allocated_count;
7757 		} else {
7758 			adapter->mac_table[i].state = 0;
7759 			adapter->mac_table[i].queue = 0;
7760 			eth_zero_addr(adapter->mac_table[i].addr);
7761 		}
7762 
7763 		igb_rar_set_index(adapter, i);
7764 		return 0;
7765 	}
7766 
7767 	return -ENOENT;
7768 }
7769 
7770 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7771 			      const u8 queue)
7772 {
7773 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7774 }
7775 
7776 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7777 				const u8 *addr, u8 queue, u8 flags)
7778 {
7779 	struct e1000_hw *hw = &adapter->hw;
7780 
7781 	/* In theory, this should be supported on 82575 as well, but
7782 	 * that part wasn't easily accessible during development.
7783 	 */
7784 	if (hw->mac.type != e1000_i210)
7785 		return -EOPNOTSUPP;
7786 
7787 	return igb_add_mac_filter_flags(adapter, addr, queue,
7788 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7789 }
7790 
7791 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7792 				const u8 *addr, u8 queue, u8 flags)
7793 {
7794 	return igb_del_mac_filter_flags(adapter, addr, queue,
7795 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7796 }
7797 
7798 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7799 {
7800 	struct igb_adapter *adapter = netdev_priv(netdev);
7801 	int ret;
7802 
7803 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7804 
7805 	return min_t(int, ret, 0);
7806 }
7807 
7808 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7809 {
7810 	struct igb_adapter *adapter = netdev_priv(netdev);
7811 
7812 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7813 
7814 	return 0;
7815 }
7816 
7817 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7818 				 const u32 info, const u8 *addr)
7819 {
7820 	struct pci_dev *pdev = adapter->pdev;
7821 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7822 	struct vf_mac_filter *entry;
7823 	bool found = false;
7824 	int ret = 0;
7825 
7826 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7827 	    !vf_data->trusted) {
7828 		dev_warn(&pdev->dev,
7829 			 "VF %d requested MAC filter but is administratively denied\n",
7830 			  vf);
7831 		return -EINVAL;
7832 	}
7833 	if (!is_valid_ether_addr(addr)) {
7834 		dev_warn(&pdev->dev,
7835 			 "VF %d attempted to set invalid MAC filter\n",
7836 			  vf);
7837 		return -EINVAL;
7838 	}
7839 
7840 	switch (info) {
7841 	case E1000_VF_MAC_FILTER_CLR:
7842 		/* remove all unicast MAC filters related to the current VF */
7843 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7844 			if (entry->vf == vf) {
7845 				entry->vf = -1;
7846 				entry->free = true;
7847 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7848 			}
7849 		}
7850 		break;
7851 	case E1000_VF_MAC_FILTER_ADD:
7852 		/* try to find empty slot in the list */
7853 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7854 			if (entry->free) {
7855 				found = true;
7856 				break;
7857 			}
7858 		}
7859 
7860 		if (found) {
7861 			entry->free = false;
7862 			entry->vf = vf;
7863 			ether_addr_copy(entry->vf_mac, addr);
7864 
7865 			ret = igb_add_mac_filter(adapter, addr, vf);
7866 			ret = min_t(int, ret, 0);
7867 		} else {
7868 			ret = -ENOSPC;
7869 		}
7870 
7871 		if (ret == -ENOSPC)
7872 			dev_warn(&pdev->dev,
7873 				 "VF %d has requested MAC filter but there is no space for it\n",
7874 				 vf);
7875 		break;
7876 	default:
7877 		ret = -EINVAL;
7878 		break;
7879 	}
7880 
7881 	return ret;
7882 }
7883 
7884 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7885 {
7886 	struct pci_dev *pdev = adapter->pdev;
7887 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7888 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7889 
7890 	/* The VF MAC Address is stored in a packed array of bytes
7891 	 * starting at the second 32 bit word of the msg array
7892 	 */
7893 	unsigned char *addr = (unsigned char *)&msg[1];
7894 	int ret = 0;
7895 
7896 	if (!info) {
7897 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7898 		    !vf_data->trusted) {
7899 			dev_warn(&pdev->dev,
7900 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7901 				 vf);
7902 			return -EINVAL;
7903 		}
7904 
7905 		if (!is_valid_ether_addr(addr)) {
7906 			dev_warn(&pdev->dev,
7907 				 "VF %d attempted to set invalid MAC\n",
7908 				 vf);
7909 			return -EINVAL;
7910 		}
7911 
7912 		ret = igb_set_vf_mac(adapter, vf, addr);
7913 	} else {
7914 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7915 	}
7916 
7917 	return ret;
7918 }
7919 
7920 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7921 {
7922 	struct e1000_hw *hw = &adapter->hw;
7923 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7924 	u32 msg = E1000_VT_MSGTYPE_NACK;
7925 
7926 	/* if device isn't clear to send it shouldn't be reading either */
7927 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7928 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7929 		igb_write_mbx(hw, &msg, 1, vf);
7930 		vf_data->last_nack = jiffies;
7931 	}
7932 }
7933 
7934 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7935 {
7936 	struct pci_dev *pdev = adapter->pdev;
7937 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7938 	struct e1000_hw *hw = &adapter->hw;
7939 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7940 	s32 retval;
7941 
7942 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7943 
7944 	if (retval) {
7945 		/* if receive failed revoke VF CTS stats and restart init */
7946 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7947 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7948 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7949 			goto unlock;
7950 		goto out;
7951 	}
7952 
7953 	/* this is a message we already processed, do nothing */
7954 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7955 		goto unlock;
7956 
7957 	/* until the vf completes a reset it should not be
7958 	 * allowed to start any configuration.
7959 	 */
7960 	if (msgbuf[0] == E1000_VF_RESET) {
7961 		/* unlocks mailbox */
7962 		igb_vf_reset_msg(adapter, vf);
7963 		return;
7964 	}
7965 
7966 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7967 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7968 			goto unlock;
7969 		retval = -1;
7970 		goto out;
7971 	}
7972 
7973 	switch ((msgbuf[0] & 0xFFFF)) {
7974 	case E1000_VF_SET_MAC_ADDR:
7975 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7976 		break;
7977 	case E1000_VF_SET_PROMISC:
7978 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7979 		break;
7980 	case E1000_VF_SET_MULTICAST:
7981 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7982 		break;
7983 	case E1000_VF_SET_LPE:
7984 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7985 		break;
7986 	case E1000_VF_SET_VLAN:
7987 		retval = -1;
7988 		if (vf_data->pf_vlan)
7989 			dev_warn(&pdev->dev,
7990 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7991 				 vf);
7992 		else
7993 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7994 		break;
7995 	default:
7996 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7997 		retval = -1;
7998 		break;
7999 	}
8000 
8001 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8002 out:
8003 	/* notify the VF of the results of what it sent us */
8004 	if (retval)
8005 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8006 	else
8007 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8008 
8009 	/* unlocks mailbox */
8010 	igb_write_mbx(hw, msgbuf, 1, vf);
8011 	return;
8012 
8013 unlock:
8014 	igb_unlock_mbx(hw, vf);
8015 }
8016 
8017 static void igb_msg_task(struct igb_adapter *adapter)
8018 {
8019 	struct e1000_hw *hw = &adapter->hw;
8020 	unsigned long flags;
8021 	u32 vf;
8022 
8023 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8024 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8025 		/* process any reset requests */
8026 		if (!igb_check_for_rst(hw, vf))
8027 			igb_vf_reset_event(adapter, vf);
8028 
8029 		/* process any messages pending */
8030 		if (!igb_check_for_msg(hw, vf))
8031 			igb_rcv_msg_from_vf(adapter, vf);
8032 
8033 		/* process any acks */
8034 		if (!igb_check_for_ack(hw, vf))
8035 			igb_rcv_ack_from_vf(adapter, vf);
8036 	}
8037 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8038 }
8039 
8040 /**
8041  *  igb_set_uta - Set unicast filter table address
8042  *  @adapter: board private structure
8043  *  @set: boolean indicating if we are setting or clearing bits
8044  *
8045  *  The unicast table address is a register array of 32-bit registers.
8046  *  The table is meant to be used in a way similar to how the MTA is used
8047  *  however due to certain limitations in the hardware it is necessary to
8048  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8049  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8050  **/
8051 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8052 {
8053 	struct e1000_hw *hw = &adapter->hw;
8054 	u32 uta = set ? ~0 : 0;
8055 	int i;
8056 
8057 	/* we only need to do this if VMDq is enabled */
8058 	if (!adapter->vfs_allocated_count)
8059 		return;
8060 
8061 	for (i = hw->mac.uta_reg_count; i--;)
8062 		array_wr32(E1000_UTA, i, uta);
8063 }
8064 
8065 /**
8066  *  igb_intr_msi - Interrupt Handler
8067  *  @irq: interrupt number
8068  *  @data: pointer to a network interface device structure
8069  **/
8070 static irqreturn_t igb_intr_msi(int irq, void *data)
8071 {
8072 	struct igb_adapter *adapter = data;
8073 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8074 	struct e1000_hw *hw = &adapter->hw;
8075 	/* read ICR disables interrupts using IAM */
8076 	u32 icr = rd32(E1000_ICR);
8077 
8078 	igb_write_itr(q_vector);
8079 
8080 	if (icr & E1000_ICR_DRSTA)
8081 		schedule_work(&adapter->reset_task);
8082 
8083 	if (icr & E1000_ICR_DOUTSYNC) {
8084 		/* HW is reporting DMA is out of sync */
8085 		adapter->stats.doosync++;
8086 	}
8087 
8088 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8089 		hw->mac.get_link_status = 1;
8090 		if (!test_bit(__IGB_DOWN, &adapter->state))
8091 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8092 	}
8093 
8094 	if (icr & E1000_ICR_TS)
8095 		igb_tsync_interrupt(adapter);
8096 
8097 	napi_schedule(&q_vector->napi);
8098 
8099 	return IRQ_HANDLED;
8100 }
8101 
8102 /**
8103  *  igb_intr - Legacy Interrupt Handler
8104  *  @irq: interrupt number
8105  *  @data: pointer to a network interface device structure
8106  **/
8107 static irqreturn_t igb_intr(int irq, void *data)
8108 {
8109 	struct igb_adapter *adapter = data;
8110 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8111 	struct e1000_hw *hw = &adapter->hw;
8112 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8113 	 * need for the IMC write
8114 	 */
8115 	u32 icr = rd32(E1000_ICR);
8116 
8117 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8118 	 * not set, then the adapter didn't send an interrupt
8119 	 */
8120 	if (!(icr & E1000_ICR_INT_ASSERTED))
8121 		return IRQ_NONE;
8122 
8123 	igb_write_itr(q_vector);
8124 
8125 	if (icr & E1000_ICR_DRSTA)
8126 		schedule_work(&adapter->reset_task);
8127 
8128 	if (icr & E1000_ICR_DOUTSYNC) {
8129 		/* HW is reporting DMA is out of sync */
8130 		adapter->stats.doosync++;
8131 	}
8132 
8133 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8134 		hw->mac.get_link_status = 1;
8135 		/* guard against interrupt when we're going down */
8136 		if (!test_bit(__IGB_DOWN, &adapter->state))
8137 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8138 	}
8139 
8140 	if (icr & E1000_ICR_TS)
8141 		igb_tsync_interrupt(adapter);
8142 
8143 	napi_schedule(&q_vector->napi);
8144 
8145 	return IRQ_HANDLED;
8146 }
8147 
8148 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8149 {
8150 	struct igb_adapter *adapter = q_vector->adapter;
8151 	struct e1000_hw *hw = &adapter->hw;
8152 
8153 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8154 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8155 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8156 			igb_set_itr(q_vector);
8157 		else
8158 			igb_update_ring_itr(q_vector);
8159 	}
8160 
8161 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8162 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8163 			wr32(E1000_EIMS, q_vector->eims_value);
8164 		else
8165 			igb_irq_enable(adapter);
8166 	}
8167 }
8168 
8169 /**
8170  *  igb_poll - NAPI Rx polling callback
8171  *  @napi: napi polling structure
8172  *  @budget: count of how many packets we should handle
8173  **/
8174 static int igb_poll(struct napi_struct *napi, int budget)
8175 {
8176 	struct igb_q_vector *q_vector = container_of(napi,
8177 						     struct igb_q_vector,
8178 						     napi);
8179 	bool clean_complete = true;
8180 	int work_done = 0;
8181 
8182 #ifdef CONFIG_IGB_DCA
8183 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8184 		igb_update_dca(q_vector);
8185 #endif
8186 	if (q_vector->tx.ring)
8187 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8188 
8189 	if (q_vector->rx.ring) {
8190 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8191 
8192 		work_done += cleaned;
8193 		if (cleaned >= budget)
8194 			clean_complete = false;
8195 	}
8196 
8197 	/* If all work not completed, return budget and keep polling */
8198 	if (!clean_complete)
8199 		return budget;
8200 
8201 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8202 	 * poll us due to busy-polling
8203 	 */
8204 	if (likely(napi_complete_done(napi, work_done)))
8205 		igb_ring_irq_enable(q_vector);
8206 
8207 	return work_done;
8208 }
8209 
8210 /**
8211  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8212  *  @q_vector: pointer to q_vector containing needed info
8213  *  @napi_budget: Used to determine if we are in netpoll
8214  *
8215  *  returns true if ring is completely cleaned
8216  **/
8217 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8218 {
8219 	struct igb_adapter *adapter = q_vector->adapter;
8220 	struct igb_ring *tx_ring = q_vector->tx.ring;
8221 	struct igb_tx_buffer *tx_buffer;
8222 	union e1000_adv_tx_desc *tx_desc;
8223 	unsigned int total_bytes = 0, total_packets = 0;
8224 	unsigned int budget = q_vector->tx.work_limit;
8225 	unsigned int i = tx_ring->next_to_clean;
8226 
8227 	if (test_bit(__IGB_DOWN, &adapter->state))
8228 		return true;
8229 
8230 	tx_buffer = &tx_ring->tx_buffer_info[i];
8231 	tx_desc = IGB_TX_DESC(tx_ring, i);
8232 	i -= tx_ring->count;
8233 
8234 	do {
8235 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8236 
8237 		/* if next_to_watch is not set then there is no work pending */
8238 		if (!eop_desc)
8239 			break;
8240 
8241 		/* prevent any other reads prior to eop_desc */
8242 		smp_rmb();
8243 
8244 		/* if DD is not set pending work has not been completed */
8245 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8246 			break;
8247 
8248 		/* clear next_to_watch to prevent false hangs */
8249 		tx_buffer->next_to_watch = NULL;
8250 
8251 		/* update the statistics for this packet */
8252 		total_bytes += tx_buffer->bytecount;
8253 		total_packets += tx_buffer->gso_segs;
8254 
8255 		/* free the skb */
8256 		if (tx_buffer->type == IGB_TYPE_SKB)
8257 			napi_consume_skb(tx_buffer->skb, napi_budget);
8258 		else
8259 			xdp_return_frame(tx_buffer->xdpf);
8260 
8261 		/* unmap skb header data */
8262 		dma_unmap_single(tx_ring->dev,
8263 				 dma_unmap_addr(tx_buffer, dma),
8264 				 dma_unmap_len(tx_buffer, len),
8265 				 DMA_TO_DEVICE);
8266 
8267 		/* clear tx_buffer data */
8268 		dma_unmap_len_set(tx_buffer, len, 0);
8269 
8270 		/* clear last DMA location and unmap remaining buffers */
8271 		while (tx_desc != eop_desc) {
8272 			tx_buffer++;
8273 			tx_desc++;
8274 			i++;
8275 			if (unlikely(!i)) {
8276 				i -= tx_ring->count;
8277 				tx_buffer = tx_ring->tx_buffer_info;
8278 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8279 			}
8280 
8281 			/* unmap any remaining paged data */
8282 			if (dma_unmap_len(tx_buffer, len)) {
8283 				dma_unmap_page(tx_ring->dev,
8284 					       dma_unmap_addr(tx_buffer, dma),
8285 					       dma_unmap_len(tx_buffer, len),
8286 					       DMA_TO_DEVICE);
8287 				dma_unmap_len_set(tx_buffer, len, 0);
8288 			}
8289 		}
8290 
8291 		/* move us one more past the eop_desc for start of next pkt */
8292 		tx_buffer++;
8293 		tx_desc++;
8294 		i++;
8295 		if (unlikely(!i)) {
8296 			i -= tx_ring->count;
8297 			tx_buffer = tx_ring->tx_buffer_info;
8298 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8299 		}
8300 
8301 		/* issue prefetch for next Tx descriptor */
8302 		prefetch(tx_desc);
8303 
8304 		/* update budget accounting */
8305 		budget--;
8306 	} while (likely(budget));
8307 
8308 	netdev_tx_completed_queue(txring_txq(tx_ring),
8309 				  total_packets, total_bytes);
8310 	i += tx_ring->count;
8311 	tx_ring->next_to_clean = i;
8312 	u64_stats_update_begin(&tx_ring->tx_syncp);
8313 	tx_ring->tx_stats.bytes += total_bytes;
8314 	tx_ring->tx_stats.packets += total_packets;
8315 	u64_stats_update_end(&tx_ring->tx_syncp);
8316 	q_vector->tx.total_bytes += total_bytes;
8317 	q_vector->tx.total_packets += total_packets;
8318 
8319 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8320 		struct e1000_hw *hw = &adapter->hw;
8321 
8322 		/* Detect a transmit hang in hardware, this serializes the
8323 		 * check with the clearing of time_stamp and movement of i
8324 		 */
8325 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8326 		if (tx_buffer->next_to_watch &&
8327 		    time_after(jiffies, tx_buffer->time_stamp +
8328 			       (adapter->tx_timeout_factor * HZ)) &&
8329 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8330 
8331 			/* detected Tx unit hang */
8332 			dev_err(tx_ring->dev,
8333 				"Detected Tx Unit Hang\n"
8334 				"  Tx Queue             <%d>\n"
8335 				"  TDH                  <%x>\n"
8336 				"  TDT                  <%x>\n"
8337 				"  next_to_use          <%x>\n"
8338 				"  next_to_clean        <%x>\n"
8339 				"buffer_info[next_to_clean]\n"
8340 				"  time_stamp           <%lx>\n"
8341 				"  next_to_watch        <%p>\n"
8342 				"  jiffies              <%lx>\n"
8343 				"  desc.status          <%x>\n",
8344 				tx_ring->queue_index,
8345 				rd32(E1000_TDH(tx_ring->reg_idx)),
8346 				readl(tx_ring->tail),
8347 				tx_ring->next_to_use,
8348 				tx_ring->next_to_clean,
8349 				tx_buffer->time_stamp,
8350 				tx_buffer->next_to_watch,
8351 				jiffies,
8352 				tx_buffer->next_to_watch->wb.status);
8353 			netif_stop_subqueue(tx_ring->netdev,
8354 					    tx_ring->queue_index);
8355 
8356 			/* we are about to reset, no point in enabling stuff */
8357 			return true;
8358 		}
8359 	}
8360 
8361 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8362 	if (unlikely(total_packets &&
8363 	    netif_carrier_ok(tx_ring->netdev) &&
8364 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8365 		/* Make sure that anybody stopping the queue after this
8366 		 * sees the new next_to_clean.
8367 		 */
8368 		smp_mb();
8369 		if (__netif_subqueue_stopped(tx_ring->netdev,
8370 					     tx_ring->queue_index) &&
8371 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8372 			netif_wake_subqueue(tx_ring->netdev,
8373 					    tx_ring->queue_index);
8374 
8375 			u64_stats_update_begin(&tx_ring->tx_syncp);
8376 			tx_ring->tx_stats.restart_queue++;
8377 			u64_stats_update_end(&tx_ring->tx_syncp);
8378 		}
8379 	}
8380 
8381 	return !!budget;
8382 }
8383 
8384 /**
8385  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8386  *  @rx_ring: rx descriptor ring to store buffers on
8387  *  @old_buff: donor buffer to have page reused
8388  *
8389  *  Synchronizes page for reuse by the adapter
8390  **/
8391 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8392 			      struct igb_rx_buffer *old_buff)
8393 {
8394 	struct igb_rx_buffer *new_buff;
8395 	u16 nta = rx_ring->next_to_alloc;
8396 
8397 	new_buff = &rx_ring->rx_buffer_info[nta];
8398 
8399 	/* update, and store next to alloc */
8400 	nta++;
8401 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8402 
8403 	/* Transfer page from old buffer to new buffer.
8404 	 * Move each member individually to avoid possible store
8405 	 * forwarding stalls.
8406 	 */
8407 	new_buff->dma		= old_buff->dma;
8408 	new_buff->page		= old_buff->page;
8409 	new_buff->page_offset	= old_buff->page_offset;
8410 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8411 }
8412 
8413 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8414 				  int rx_buf_pgcnt)
8415 {
8416 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8417 	struct page *page = rx_buffer->page;
8418 
8419 	/* avoid re-using remote and pfmemalloc pages */
8420 	if (!dev_page_is_reusable(page))
8421 		return false;
8422 
8423 #if (PAGE_SIZE < 8192)
8424 	/* if we are only owner of page we can reuse it */
8425 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8426 		return false;
8427 #else
8428 #define IGB_LAST_OFFSET \
8429 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8430 
8431 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8432 		return false;
8433 #endif
8434 
8435 	/* If we have drained the page fragment pool we need to update
8436 	 * the pagecnt_bias and page count so that we fully restock the
8437 	 * number of references the driver holds.
8438 	 */
8439 	if (unlikely(pagecnt_bias == 1)) {
8440 		page_ref_add(page, USHRT_MAX - 1);
8441 		rx_buffer->pagecnt_bias = USHRT_MAX;
8442 	}
8443 
8444 	return true;
8445 }
8446 
8447 /**
8448  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8449  *  @rx_ring: rx descriptor ring to transact packets on
8450  *  @rx_buffer: buffer containing page to add
8451  *  @skb: sk_buff to place the data into
8452  *  @size: size of buffer to be added
8453  *
8454  *  This function will add the data contained in rx_buffer->page to the skb.
8455  **/
8456 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8457 			    struct igb_rx_buffer *rx_buffer,
8458 			    struct sk_buff *skb,
8459 			    unsigned int size)
8460 {
8461 #if (PAGE_SIZE < 8192)
8462 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8463 #else
8464 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8465 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8466 				SKB_DATA_ALIGN(size);
8467 #endif
8468 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8469 			rx_buffer->page_offset, size, truesize);
8470 #if (PAGE_SIZE < 8192)
8471 	rx_buffer->page_offset ^= truesize;
8472 #else
8473 	rx_buffer->page_offset += truesize;
8474 #endif
8475 }
8476 
8477 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8478 					 struct igb_rx_buffer *rx_buffer,
8479 					 struct xdp_buff *xdp,
8480 					 ktime_t timestamp)
8481 {
8482 #if (PAGE_SIZE < 8192)
8483 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8484 #else
8485 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8486 					       xdp->data_hard_start);
8487 #endif
8488 	unsigned int size = xdp->data_end - xdp->data;
8489 	unsigned int headlen;
8490 	struct sk_buff *skb;
8491 
8492 	/* prefetch first cache line of first page */
8493 	net_prefetch(xdp->data);
8494 
8495 	/* allocate a skb to store the frags */
8496 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8497 	if (unlikely(!skb))
8498 		return NULL;
8499 
8500 	if (timestamp)
8501 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8502 
8503 	/* Determine available headroom for copy */
8504 	headlen = size;
8505 	if (headlen > IGB_RX_HDR_LEN)
8506 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8507 
8508 	/* align pull length to size of long to optimize memcpy performance */
8509 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8510 
8511 	/* update all of the pointers */
8512 	size -= headlen;
8513 	if (size) {
8514 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8515 				(xdp->data + headlen) - page_address(rx_buffer->page),
8516 				size, truesize);
8517 #if (PAGE_SIZE < 8192)
8518 		rx_buffer->page_offset ^= truesize;
8519 #else
8520 		rx_buffer->page_offset += truesize;
8521 #endif
8522 	} else {
8523 		rx_buffer->pagecnt_bias++;
8524 	}
8525 
8526 	return skb;
8527 }
8528 
8529 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8530 				     struct igb_rx_buffer *rx_buffer,
8531 				     struct xdp_buff *xdp,
8532 				     ktime_t timestamp)
8533 {
8534 #if (PAGE_SIZE < 8192)
8535 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8536 #else
8537 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8538 				SKB_DATA_ALIGN(xdp->data_end -
8539 					       xdp->data_hard_start);
8540 #endif
8541 	unsigned int metasize = xdp->data - xdp->data_meta;
8542 	struct sk_buff *skb;
8543 
8544 	/* prefetch first cache line of first page */
8545 	net_prefetch(xdp->data_meta);
8546 
8547 	/* build an skb around the page buffer */
8548 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8549 	if (unlikely(!skb))
8550 		return NULL;
8551 
8552 	/* update pointers within the skb to store the data */
8553 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8554 	__skb_put(skb, xdp->data_end - xdp->data);
8555 
8556 	if (metasize)
8557 		skb_metadata_set(skb, metasize);
8558 
8559 	if (timestamp)
8560 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8561 
8562 	/* update buffer offset */
8563 #if (PAGE_SIZE < 8192)
8564 	rx_buffer->page_offset ^= truesize;
8565 #else
8566 	rx_buffer->page_offset += truesize;
8567 #endif
8568 
8569 	return skb;
8570 }
8571 
8572 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8573 				   struct igb_ring *rx_ring,
8574 				   struct xdp_buff *xdp)
8575 {
8576 	int err, result = IGB_XDP_PASS;
8577 	struct bpf_prog *xdp_prog;
8578 	u32 act;
8579 
8580 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8581 
8582 	if (!xdp_prog)
8583 		goto xdp_out;
8584 
8585 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8586 
8587 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8588 	switch (act) {
8589 	case XDP_PASS:
8590 		break;
8591 	case XDP_TX:
8592 		result = igb_xdp_xmit_back(adapter, xdp);
8593 		if (result == IGB_XDP_CONSUMED)
8594 			goto out_failure;
8595 		break;
8596 	case XDP_REDIRECT:
8597 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8598 		if (err)
8599 			goto out_failure;
8600 		result = IGB_XDP_REDIR;
8601 		break;
8602 	default:
8603 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8604 		fallthrough;
8605 	case XDP_ABORTED:
8606 out_failure:
8607 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8608 		fallthrough;
8609 	case XDP_DROP:
8610 		result = IGB_XDP_CONSUMED;
8611 		break;
8612 	}
8613 xdp_out:
8614 	return ERR_PTR(-result);
8615 }
8616 
8617 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8618 					  unsigned int size)
8619 {
8620 	unsigned int truesize;
8621 
8622 #if (PAGE_SIZE < 8192)
8623 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8624 #else
8625 	truesize = ring_uses_build_skb(rx_ring) ?
8626 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8627 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8628 		SKB_DATA_ALIGN(size);
8629 #endif
8630 	return truesize;
8631 }
8632 
8633 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8634 			       struct igb_rx_buffer *rx_buffer,
8635 			       unsigned int size)
8636 {
8637 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8638 #if (PAGE_SIZE < 8192)
8639 	rx_buffer->page_offset ^= truesize;
8640 #else
8641 	rx_buffer->page_offset += truesize;
8642 #endif
8643 }
8644 
8645 static inline void igb_rx_checksum(struct igb_ring *ring,
8646 				   union e1000_adv_rx_desc *rx_desc,
8647 				   struct sk_buff *skb)
8648 {
8649 	skb_checksum_none_assert(skb);
8650 
8651 	/* Ignore Checksum bit is set */
8652 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8653 		return;
8654 
8655 	/* Rx checksum disabled via ethtool */
8656 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8657 		return;
8658 
8659 	/* TCP/UDP checksum error bit is set */
8660 	if (igb_test_staterr(rx_desc,
8661 			     E1000_RXDEXT_STATERR_TCPE |
8662 			     E1000_RXDEXT_STATERR_IPE)) {
8663 		/* work around errata with sctp packets where the TCPE aka
8664 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8665 		 * packets, (aka let the stack check the crc32c)
8666 		 */
8667 		if (!((skb->len == 60) &&
8668 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8669 			u64_stats_update_begin(&ring->rx_syncp);
8670 			ring->rx_stats.csum_err++;
8671 			u64_stats_update_end(&ring->rx_syncp);
8672 		}
8673 		/* let the stack verify checksum errors */
8674 		return;
8675 	}
8676 	/* It must be a TCP or UDP packet with a valid checksum */
8677 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8678 				      E1000_RXD_STAT_UDPCS))
8679 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8680 
8681 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8682 		le32_to_cpu(rx_desc->wb.upper.status_error));
8683 }
8684 
8685 static inline void igb_rx_hash(struct igb_ring *ring,
8686 			       union e1000_adv_rx_desc *rx_desc,
8687 			       struct sk_buff *skb)
8688 {
8689 	if (ring->netdev->features & NETIF_F_RXHASH)
8690 		skb_set_hash(skb,
8691 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8692 			     PKT_HASH_TYPE_L3);
8693 }
8694 
8695 /**
8696  *  igb_is_non_eop - process handling of non-EOP buffers
8697  *  @rx_ring: Rx ring being processed
8698  *  @rx_desc: Rx descriptor for current buffer
8699  *
8700  *  This function updates next to clean.  If the buffer is an EOP buffer
8701  *  this function exits returning false, otherwise it will place the
8702  *  sk_buff in the next buffer to be chained and return true indicating
8703  *  that this is in fact a non-EOP buffer.
8704  **/
8705 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8706 			   union e1000_adv_rx_desc *rx_desc)
8707 {
8708 	u32 ntc = rx_ring->next_to_clean + 1;
8709 
8710 	/* fetch, update, and store next to clean */
8711 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8712 	rx_ring->next_to_clean = ntc;
8713 
8714 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8715 
8716 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8717 		return false;
8718 
8719 	return true;
8720 }
8721 
8722 /**
8723  *  igb_cleanup_headers - Correct corrupted or empty headers
8724  *  @rx_ring: rx descriptor ring packet is being transacted on
8725  *  @rx_desc: pointer to the EOP Rx descriptor
8726  *  @skb: pointer to current skb being fixed
8727  *
8728  *  Address the case where we are pulling data in on pages only
8729  *  and as such no data is present in the skb header.
8730  *
8731  *  In addition if skb is not at least 60 bytes we need to pad it so that
8732  *  it is large enough to qualify as a valid Ethernet frame.
8733  *
8734  *  Returns true if an error was encountered and skb was freed.
8735  **/
8736 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8737 				union e1000_adv_rx_desc *rx_desc,
8738 				struct sk_buff *skb)
8739 {
8740 	/* XDP packets use error pointer so abort at this point */
8741 	if (IS_ERR(skb))
8742 		return true;
8743 
8744 	if (unlikely((igb_test_staterr(rx_desc,
8745 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8746 		struct net_device *netdev = rx_ring->netdev;
8747 		if (!(netdev->features & NETIF_F_RXALL)) {
8748 			dev_kfree_skb_any(skb);
8749 			return true;
8750 		}
8751 	}
8752 
8753 	/* if eth_skb_pad returns an error the skb was freed */
8754 	if (eth_skb_pad(skb))
8755 		return true;
8756 
8757 	return false;
8758 }
8759 
8760 /**
8761  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8762  *  @rx_ring: rx descriptor ring packet is being transacted on
8763  *  @rx_desc: pointer to the EOP Rx descriptor
8764  *  @skb: pointer to current skb being populated
8765  *
8766  *  This function checks the ring, descriptor, and packet information in
8767  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8768  *  other fields within the skb.
8769  **/
8770 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8771 				   union e1000_adv_rx_desc *rx_desc,
8772 				   struct sk_buff *skb)
8773 {
8774 	struct net_device *dev = rx_ring->netdev;
8775 
8776 	igb_rx_hash(rx_ring, rx_desc, skb);
8777 
8778 	igb_rx_checksum(rx_ring, rx_desc, skb);
8779 
8780 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8781 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8782 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8783 
8784 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8785 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8786 		u16 vid;
8787 
8788 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8789 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8790 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8791 		else
8792 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8793 
8794 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8795 	}
8796 
8797 	skb_record_rx_queue(skb, rx_ring->queue_index);
8798 
8799 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8800 }
8801 
8802 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8803 {
8804 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8805 }
8806 
8807 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8808 					       const unsigned int size, int *rx_buf_pgcnt)
8809 {
8810 	struct igb_rx_buffer *rx_buffer;
8811 
8812 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8813 	*rx_buf_pgcnt =
8814 #if (PAGE_SIZE < 8192)
8815 		page_count(rx_buffer->page);
8816 #else
8817 		0;
8818 #endif
8819 	prefetchw(rx_buffer->page);
8820 
8821 	/* we are reusing so sync this buffer for CPU use */
8822 	dma_sync_single_range_for_cpu(rx_ring->dev,
8823 				      rx_buffer->dma,
8824 				      rx_buffer->page_offset,
8825 				      size,
8826 				      DMA_FROM_DEVICE);
8827 
8828 	rx_buffer->pagecnt_bias--;
8829 
8830 	return rx_buffer;
8831 }
8832 
8833 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8834 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8835 {
8836 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8837 		/* hand second half of page back to the ring */
8838 		igb_reuse_rx_page(rx_ring, rx_buffer);
8839 	} else {
8840 		/* We are not reusing the buffer so unmap it and free
8841 		 * any references we are holding to it
8842 		 */
8843 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8844 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8845 				     IGB_RX_DMA_ATTR);
8846 		__page_frag_cache_drain(rx_buffer->page,
8847 					rx_buffer->pagecnt_bias);
8848 	}
8849 
8850 	/* clear contents of rx_buffer */
8851 	rx_buffer->page = NULL;
8852 }
8853 
8854 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8855 {
8856 	struct igb_adapter *adapter = q_vector->adapter;
8857 	struct igb_ring *rx_ring = q_vector->rx.ring;
8858 	struct sk_buff *skb = rx_ring->skb;
8859 	unsigned int total_bytes = 0, total_packets = 0;
8860 	u16 cleaned_count = igb_desc_unused(rx_ring);
8861 	unsigned int xdp_xmit = 0;
8862 	struct xdp_buff xdp;
8863 	u32 frame_sz = 0;
8864 	int rx_buf_pgcnt;
8865 
8866 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8867 #if (PAGE_SIZE < 8192)
8868 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8869 #endif
8870 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8871 
8872 	while (likely(total_packets < budget)) {
8873 		union e1000_adv_rx_desc *rx_desc;
8874 		struct igb_rx_buffer *rx_buffer;
8875 		ktime_t timestamp = 0;
8876 		int pkt_offset = 0;
8877 		unsigned int size;
8878 		void *pktbuf;
8879 
8880 		/* return some buffers to hardware, one at a time is too slow */
8881 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8882 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8883 			cleaned_count = 0;
8884 		}
8885 
8886 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8887 		size = le16_to_cpu(rx_desc->wb.upper.length);
8888 		if (!size)
8889 			break;
8890 
8891 		/* This memory barrier is needed to keep us from reading
8892 		 * any other fields out of the rx_desc until we know the
8893 		 * descriptor has been written back
8894 		 */
8895 		dma_rmb();
8896 
8897 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8898 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8899 
8900 		/* pull rx packet timestamp if available and valid */
8901 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8902 			int ts_hdr_len;
8903 
8904 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8905 							 pktbuf, &timestamp);
8906 
8907 			pkt_offset += ts_hdr_len;
8908 			size -= ts_hdr_len;
8909 		}
8910 
8911 		/* retrieve a buffer from the ring */
8912 		if (!skb) {
8913 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8914 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8915 
8916 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8917 			xdp_buff_clear_frags_flag(&xdp);
8918 #if (PAGE_SIZE > 4096)
8919 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8920 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8921 #endif
8922 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8923 		}
8924 
8925 		if (IS_ERR(skb)) {
8926 			unsigned int xdp_res = -PTR_ERR(skb);
8927 
8928 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8929 				xdp_xmit |= xdp_res;
8930 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8931 			} else {
8932 				rx_buffer->pagecnt_bias++;
8933 			}
8934 			total_packets++;
8935 			total_bytes += size;
8936 		} else if (skb)
8937 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8938 		else if (ring_uses_build_skb(rx_ring))
8939 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8940 					    timestamp);
8941 		else
8942 			skb = igb_construct_skb(rx_ring, rx_buffer,
8943 						&xdp, timestamp);
8944 
8945 		/* exit if we failed to retrieve a buffer */
8946 		if (!skb) {
8947 			rx_ring->rx_stats.alloc_failed++;
8948 			rx_buffer->pagecnt_bias++;
8949 			break;
8950 		}
8951 
8952 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8953 		cleaned_count++;
8954 
8955 		/* fetch next buffer in frame if non-eop */
8956 		if (igb_is_non_eop(rx_ring, rx_desc))
8957 			continue;
8958 
8959 		/* verify the packet layout is correct */
8960 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8961 			skb = NULL;
8962 			continue;
8963 		}
8964 
8965 		/* probably a little skewed due to removing CRC */
8966 		total_bytes += skb->len;
8967 
8968 		/* populate checksum, timestamp, VLAN, and protocol */
8969 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8970 
8971 		napi_gro_receive(&q_vector->napi, skb);
8972 
8973 		/* reset skb pointer */
8974 		skb = NULL;
8975 
8976 		/* update budget accounting */
8977 		total_packets++;
8978 	}
8979 
8980 	/* place incomplete frames back on ring for completion */
8981 	rx_ring->skb = skb;
8982 
8983 	if (xdp_xmit & IGB_XDP_REDIR)
8984 		xdp_do_flush();
8985 
8986 	if (xdp_xmit & IGB_XDP_TX) {
8987 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8988 
8989 		igb_xdp_ring_update_tail(tx_ring);
8990 	}
8991 
8992 	u64_stats_update_begin(&rx_ring->rx_syncp);
8993 	rx_ring->rx_stats.packets += total_packets;
8994 	rx_ring->rx_stats.bytes += total_bytes;
8995 	u64_stats_update_end(&rx_ring->rx_syncp);
8996 	q_vector->rx.total_packets += total_packets;
8997 	q_vector->rx.total_bytes += total_bytes;
8998 
8999 	if (cleaned_count)
9000 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9001 
9002 	return total_packets;
9003 }
9004 
9005 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9006 				  struct igb_rx_buffer *bi)
9007 {
9008 	struct page *page = bi->page;
9009 	dma_addr_t dma;
9010 
9011 	/* since we are recycling buffers we should seldom need to alloc */
9012 	if (likely(page))
9013 		return true;
9014 
9015 	/* alloc new page for storage */
9016 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9017 	if (unlikely(!page)) {
9018 		rx_ring->rx_stats.alloc_failed++;
9019 		return false;
9020 	}
9021 
9022 	/* map page for use */
9023 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9024 				 igb_rx_pg_size(rx_ring),
9025 				 DMA_FROM_DEVICE,
9026 				 IGB_RX_DMA_ATTR);
9027 
9028 	/* if mapping failed free memory back to system since
9029 	 * there isn't much point in holding memory we can't use
9030 	 */
9031 	if (dma_mapping_error(rx_ring->dev, dma)) {
9032 		__free_pages(page, igb_rx_pg_order(rx_ring));
9033 
9034 		rx_ring->rx_stats.alloc_failed++;
9035 		return false;
9036 	}
9037 
9038 	bi->dma = dma;
9039 	bi->page = page;
9040 	bi->page_offset = igb_rx_offset(rx_ring);
9041 	page_ref_add(page, USHRT_MAX - 1);
9042 	bi->pagecnt_bias = USHRT_MAX;
9043 
9044 	return true;
9045 }
9046 
9047 /**
9048  *  igb_alloc_rx_buffers - Replace used receive buffers
9049  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9050  *  @cleaned_count: count of buffers to allocate
9051  **/
9052 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9053 {
9054 	union e1000_adv_rx_desc *rx_desc;
9055 	struct igb_rx_buffer *bi;
9056 	u16 i = rx_ring->next_to_use;
9057 	u16 bufsz;
9058 
9059 	/* nothing to do */
9060 	if (!cleaned_count)
9061 		return;
9062 
9063 	rx_desc = IGB_RX_DESC(rx_ring, i);
9064 	bi = &rx_ring->rx_buffer_info[i];
9065 	i -= rx_ring->count;
9066 
9067 	bufsz = igb_rx_bufsz(rx_ring);
9068 
9069 	do {
9070 		if (!igb_alloc_mapped_page(rx_ring, bi))
9071 			break;
9072 
9073 		/* sync the buffer for use by the device */
9074 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9075 						 bi->page_offset, bufsz,
9076 						 DMA_FROM_DEVICE);
9077 
9078 		/* Refresh the desc even if buffer_addrs didn't change
9079 		 * because each write-back erases this info.
9080 		 */
9081 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9082 
9083 		rx_desc++;
9084 		bi++;
9085 		i++;
9086 		if (unlikely(!i)) {
9087 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9088 			bi = rx_ring->rx_buffer_info;
9089 			i -= rx_ring->count;
9090 		}
9091 
9092 		/* clear the length for the next_to_use descriptor */
9093 		rx_desc->wb.upper.length = 0;
9094 
9095 		cleaned_count--;
9096 	} while (cleaned_count);
9097 
9098 	i += rx_ring->count;
9099 
9100 	if (rx_ring->next_to_use != i) {
9101 		/* record the next descriptor to use */
9102 		rx_ring->next_to_use = i;
9103 
9104 		/* update next to alloc since we have filled the ring */
9105 		rx_ring->next_to_alloc = i;
9106 
9107 		/* Force memory writes to complete before letting h/w
9108 		 * know there are new descriptors to fetch.  (Only
9109 		 * applicable for weak-ordered memory model archs,
9110 		 * such as IA-64).
9111 		 */
9112 		dma_wmb();
9113 		writel(i, rx_ring->tail);
9114 	}
9115 }
9116 
9117 /**
9118  * igb_mii_ioctl -
9119  * @netdev: pointer to netdev struct
9120  * @ifr: interface structure
9121  * @cmd: ioctl command to execute
9122  **/
9123 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9124 {
9125 	struct igb_adapter *adapter = netdev_priv(netdev);
9126 	struct mii_ioctl_data *data = if_mii(ifr);
9127 
9128 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9129 		return -EOPNOTSUPP;
9130 
9131 	switch (cmd) {
9132 	case SIOCGMIIPHY:
9133 		data->phy_id = adapter->hw.phy.addr;
9134 		break;
9135 	case SIOCGMIIREG:
9136 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9137 				     &data->val_out))
9138 			return -EIO;
9139 		break;
9140 	case SIOCSMIIREG:
9141 		if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9142 				      data->val_in))
9143 			return -EIO;
9144 		break;
9145 	default:
9146 		return -EOPNOTSUPP;
9147 	}
9148 	return 0;
9149 }
9150 
9151 /**
9152  * igb_ioctl -
9153  * @netdev: pointer to netdev struct
9154  * @ifr: interface structure
9155  * @cmd: ioctl command to execute
9156  **/
9157 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9158 {
9159 	switch (cmd) {
9160 	case SIOCGMIIPHY:
9161 	case SIOCGMIIREG:
9162 	case SIOCSMIIREG:
9163 		return igb_mii_ioctl(netdev, ifr, cmd);
9164 	case SIOCGHWTSTAMP:
9165 		return igb_ptp_get_ts_config(netdev, ifr);
9166 	case SIOCSHWTSTAMP:
9167 		return igb_ptp_set_ts_config(netdev, ifr);
9168 	default:
9169 		return -EOPNOTSUPP;
9170 	}
9171 }
9172 
9173 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9174 {
9175 	struct igb_adapter *adapter = hw->back;
9176 
9177 	pci_read_config_word(adapter->pdev, reg, value);
9178 }
9179 
9180 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9181 {
9182 	struct igb_adapter *adapter = hw->back;
9183 
9184 	pci_write_config_word(adapter->pdev, reg, *value);
9185 }
9186 
9187 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9188 {
9189 	struct igb_adapter *adapter = hw->back;
9190 
9191 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9192 		return -E1000_ERR_CONFIG;
9193 
9194 	return 0;
9195 }
9196 
9197 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9198 {
9199 	struct igb_adapter *adapter = hw->back;
9200 
9201 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9202 		return -E1000_ERR_CONFIG;
9203 
9204 	return 0;
9205 }
9206 
9207 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9208 {
9209 	struct igb_adapter *adapter = netdev_priv(netdev);
9210 	struct e1000_hw *hw = &adapter->hw;
9211 	u32 ctrl, rctl;
9212 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9213 
9214 	if (enable) {
9215 		/* enable VLAN tag insert/strip */
9216 		ctrl = rd32(E1000_CTRL);
9217 		ctrl |= E1000_CTRL_VME;
9218 		wr32(E1000_CTRL, ctrl);
9219 
9220 		/* Disable CFI check */
9221 		rctl = rd32(E1000_RCTL);
9222 		rctl &= ~E1000_RCTL_CFIEN;
9223 		wr32(E1000_RCTL, rctl);
9224 	} else {
9225 		/* disable VLAN tag insert/strip */
9226 		ctrl = rd32(E1000_CTRL);
9227 		ctrl &= ~E1000_CTRL_VME;
9228 		wr32(E1000_CTRL, ctrl);
9229 	}
9230 
9231 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9232 }
9233 
9234 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9235 			       __be16 proto, u16 vid)
9236 {
9237 	struct igb_adapter *adapter = netdev_priv(netdev);
9238 	struct e1000_hw *hw = &adapter->hw;
9239 	int pf_id = adapter->vfs_allocated_count;
9240 
9241 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9242 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9243 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9244 
9245 	set_bit(vid, adapter->active_vlans);
9246 
9247 	return 0;
9248 }
9249 
9250 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9251 				__be16 proto, u16 vid)
9252 {
9253 	struct igb_adapter *adapter = netdev_priv(netdev);
9254 	int pf_id = adapter->vfs_allocated_count;
9255 	struct e1000_hw *hw = &adapter->hw;
9256 
9257 	/* remove VID from filter table */
9258 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9259 		igb_vfta_set(hw, vid, pf_id, false, true);
9260 
9261 	clear_bit(vid, adapter->active_vlans);
9262 
9263 	return 0;
9264 }
9265 
9266 static void igb_restore_vlan(struct igb_adapter *adapter)
9267 {
9268 	u16 vid = 1;
9269 
9270 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9271 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9272 
9273 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9274 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9275 }
9276 
9277 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9278 {
9279 	struct pci_dev *pdev = adapter->pdev;
9280 	struct e1000_mac_info *mac = &adapter->hw.mac;
9281 
9282 	mac->autoneg = 0;
9283 
9284 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9285 	 * for the switch() below to work
9286 	 */
9287 	if ((spd & 1) || (dplx & ~1))
9288 		goto err_inval;
9289 
9290 	/* Fiber NIC's only allow 1000 gbps Full duplex
9291 	 * and 100Mbps Full duplex for 100baseFx sfp
9292 	 */
9293 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9294 		switch (spd + dplx) {
9295 		case SPEED_10 + DUPLEX_HALF:
9296 		case SPEED_10 + DUPLEX_FULL:
9297 		case SPEED_100 + DUPLEX_HALF:
9298 			goto err_inval;
9299 		default:
9300 			break;
9301 		}
9302 	}
9303 
9304 	switch (spd + dplx) {
9305 	case SPEED_10 + DUPLEX_HALF:
9306 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9307 		break;
9308 	case SPEED_10 + DUPLEX_FULL:
9309 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9310 		break;
9311 	case SPEED_100 + DUPLEX_HALF:
9312 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9313 		break;
9314 	case SPEED_100 + DUPLEX_FULL:
9315 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9316 		break;
9317 	case SPEED_1000 + DUPLEX_FULL:
9318 		mac->autoneg = 1;
9319 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9320 		break;
9321 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9322 	default:
9323 		goto err_inval;
9324 	}
9325 
9326 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9327 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9328 
9329 	return 0;
9330 
9331 err_inval:
9332 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9333 	return -EINVAL;
9334 }
9335 
9336 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9337 			  bool runtime)
9338 {
9339 	struct net_device *netdev = pci_get_drvdata(pdev);
9340 	struct igb_adapter *adapter = netdev_priv(netdev);
9341 	struct e1000_hw *hw = &adapter->hw;
9342 	u32 ctrl, rctl, status;
9343 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9344 	bool wake;
9345 
9346 	rtnl_lock();
9347 	netif_device_detach(netdev);
9348 
9349 	if (netif_running(netdev))
9350 		__igb_close(netdev, true);
9351 
9352 	igb_ptp_suspend(adapter);
9353 
9354 	igb_clear_interrupt_scheme(adapter);
9355 	rtnl_unlock();
9356 
9357 	status = rd32(E1000_STATUS);
9358 	if (status & E1000_STATUS_LU)
9359 		wufc &= ~E1000_WUFC_LNKC;
9360 
9361 	if (wufc) {
9362 		igb_setup_rctl(adapter);
9363 		igb_set_rx_mode(netdev);
9364 
9365 		/* turn on all-multi mode if wake on multicast is enabled */
9366 		if (wufc & E1000_WUFC_MC) {
9367 			rctl = rd32(E1000_RCTL);
9368 			rctl |= E1000_RCTL_MPE;
9369 			wr32(E1000_RCTL, rctl);
9370 		}
9371 
9372 		ctrl = rd32(E1000_CTRL);
9373 		ctrl |= E1000_CTRL_ADVD3WUC;
9374 		wr32(E1000_CTRL, ctrl);
9375 
9376 		/* Allow time for pending master requests to run */
9377 		igb_disable_pcie_master(hw);
9378 
9379 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9380 		wr32(E1000_WUFC, wufc);
9381 	} else {
9382 		wr32(E1000_WUC, 0);
9383 		wr32(E1000_WUFC, 0);
9384 	}
9385 
9386 	wake = wufc || adapter->en_mng_pt;
9387 	if (!wake)
9388 		igb_power_down_link(adapter);
9389 	else
9390 		igb_power_up_link(adapter);
9391 
9392 	if (enable_wake)
9393 		*enable_wake = wake;
9394 
9395 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9396 	 * would have already happened in close and is redundant.
9397 	 */
9398 	igb_release_hw_control(adapter);
9399 
9400 	pci_disable_device(pdev);
9401 
9402 	return 0;
9403 }
9404 
9405 static void igb_deliver_wake_packet(struct net_device *netdev)
9406 {
9407 	struct igb_adapter *adapter = netdev_priv(netdev);
9408 	struct e1000_hw *hw = &adapter->hw;
9409 	struct sk_buff *skb;
9410 	u32 wupl;
9411 
9412 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9413 
9414 	/* WUPM stores only the first 128 bytes of the wake packet.
9415 	 * Read the packet only if we have the whole thing.
9416 	 */
9417 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9418 		return;
9419 
9420 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9421 	if (!skb)
9422 		return;
9423 
9424 	skb_put(skb, wupl);
9425 
9426 	/* Ensure reads are 32-bit aligned */
9427 	wupl = roundup(wupl, 4);
9428 
9429 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9430 
9431 	skb->protocol = eth_type_trans(skb, netdev);
9432 	netif_rx(skb);
9433 }
9434 
9435 static int igb_suspend(struct device *dev)
9436 {
9437 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9438 }
9439 
9440 static int __igb_resume(struct device *dev, bool rpm)
9441 {
9442 	struct pci_dev *pdev = to_pci_dev(dev);
9443 	struct net_device *netdev = pci_get_drvdata(pdev);
9444 	struct igb_adapter *adapter = netdev_priv(netdev);
9445 	struct e1000_hw *hw = &adapter->hw;
9446 	u32 err, val;
9447 
9448 	pci_set_power_state(pdev, PCI_D0);
9449 	pci_restore_state(pdev);
9450 	pci_save_state(pdev);
9451 
9452 	if (!pci_device_is_present(pdev))
9453 		return -ENODEV;
9454 	err = pci_enable_device_mem(pdev);
9455 	if (err) {
9456 		dev_err(&pdev->dev,
9457 			"igb: Cannot enable PCI device from suspend\n");
9458 		return err;
9459 	}
9460 	pci_set_master(pdev);
9461 
9462 	pci_enable_wake(pdev, PCI_D3hot, 0);
9463 	pci_enable_wake(pdev, PCI_D3cold, 0);
9464 
9465 	if (igb_init_interrupt_scheme(adapter, true)) {
9466 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9467 		return -ENOMEM;
9468 	}
9469 
9470 	igb_reset(adapter);
9471 
9472 	/* let the f/w know that the h/w is now under the control of the
9473 	 * driver.
9474 	 */
9475 	igb_get_hw_control(adapter);
9476 
9477 	val = rd32(E1000_WUS);
9478 	if (val & WAKE_PKT_WUS)
9479 		igb_deliver_wake_packet(netdev);
9480 
9481 	wr32(E1000_WUS, ~0);
9482 
9483 	if (!rpm)
9484 		rtnl_lock();
9485 	if (!err && netif_running(netdev))
9486 		err = __igb_open(netdev, true);
9487 
9488 	if (!err)
9489 		netif_device_attach(netdev);
9490 	if (!rpm)
9491 		rtnl_unlock();
9492 
9493 	return err;
9494 }
9495 
9496 static int igb_resume(struct device *dev)
9497 {
9498 	return __igb_resume(dev, false);
9499 }
9500 
9501 static int igb_runtime_idle(struct device *dev)
9502 {
9503 	struct net_device *netdev = dev_get_drvdata(dev);
9504 	struct igb_adapter *adapter = netdev_priv(netdev);
9505 
9506 	if (!igb_has_link(adapter))
9507 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9508 
9509 	return -EBUSY;
9510 }
9511 
9512 static int igb_runtime_suspend(struct device *dev)
9513 {
9514 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9515 }
9516 
9517 static int igb_runtime_resume(struct device *dev)
9518 {
9519 	return __igb_resume(dev, true);
9520 }
9521 
9522 static void igb_shutdown(struct pci_dev *pdev)
9523 {
9524 	bool wake;
9525 
9526 	__igb_shutdown(pdev, &wake, 0);
9527 
9528 	if (system_state == SYSTEM_POWER_OFF) {
9529 		pci_wake_from_d3(pdev, wake);
9530 		pci_set_power_state(pdev, PCI_D3hot);
9531 	}
9532 }
9533 
9534 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9535 {
9536 #ifdef CONFIG_PCI_IOV
9537 	int err;
9538 
9539 	if (num_vfs == 0) {
9540 		return igb_disable_sriov(dev, true);
9541 	} else {
9542 		err = igb_enable_sriov(dev, num_vfs, true);
9543 		return err ? err : num_vfs;
9544 	}
9545 #endif
9546 	return 0;
9547 }
9548 
9549 /**
9550  *  igb_io_error_detected - called when PCI error is detected
9551  *  @pdev: Pointer to PCI device
9552  *  @state: The current pci connection state
9553  *
9554  *  This function is called after a PCI bus error affecting
9555  *  this device has been detected.
9556  **/
9557 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9558 					      pci_channel_state_t state)
9559 {
9560 	struct net_device *netdev = pci_get_drvdata(pdev);
9561 	struct igb_adapter *adapter = netdev_priv(netdev);
9562 
9563 	if (state == pci_channel_io_normal) {
9564 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9565 		return PCI_ERS_RESULT_CAN_RECOVER;
9566 	}
9567 
9568 	netif_device_detach(netdev);
9569 
9570 	if (state == pci_channel_io_perm_failure)
9571 		return PCI_ERS_RESULT_DISCONNECT;
9572 
9573 	if (netif_running(netdev))
9574 		igb_down(adapter);
9575 	pci_disable_device(pdev);
9576 
9577 	/* Request a slot reset. */
9578 	return PCI_ERS_RESULT_NEED_RESET;
9579 }
9580 
9581 /**
9582  *  igb_io_slot_reset - called after the pci bus has been reset.
9583  *  @pdev: Pointer to PCI device
9584  *
9585  *  Restart the card from scratch, as if from a cold-boot. Implementation
9586  *  resembles the first-half of the __igb_resume routine.
9587  **/
9588 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9589 {
9590 	struct net_device *netdev = pci_get_drvdata(pdev);
9591 	struct igb_adapter *adapter = netdev_priv(netdev);
9592 	struct e1000_hw *hw = &adapter->hw;
9593 	pci_ers_result_t result;
9594 
9595 	if (pci_enable_device_mem(pdev)) {
9596 		dev_err(&pdev->dev,
9597 			"Cannot re-enable PCI device after reset.\n");
9598 		result = PCI_ERS_RESULT_DISCONNECT;
9599 	} else {
9600 		pci_set_master(pdev);
9601 		pci_restore_state(pdev);
9602 		pci_save_state(pdev);
9603 
9604 		pci_enable_wake(pdev, PCI_D3hot, 0);
9605 		pci_enable_wake(pdev, PCI_D3cold, 0);
9606 
9607 		/* In case of PCI error, adapter lose its HW address
9608 		 * so we should re-assign it here.
9609 		 */
9610 		hw->hw_addr = adapter->io_addr;
9611 
9612 		igb_reset(adapter);
9613 		wr32(E1000_WUS, ~0);
9614 		result = PCI_ERS_RESULT_RECOVERED;
9615 	}
9616 
9617 	return result;
9618 }
9619 
9620 /**
9621  *  igb_io_resume - called when traffic can start flowing again.
9622  *  @pdev: Pointer to PCI device
9623  *
9624  *  This callback is called when the error recovery driver tells us that
9625  *  its OK to resume normal operation. Implementation resembles the
9626  *  second-half of the __igb_resume routine.
9627  */
9628 static void igb_io_resume(struct pci_dev *pdev)
9629 {
9630 	struct net_device *netdev = pci_get_drvdata(pdev);
9631 	struct igb_adapter *adapter = netdev_priv(netdev);
9632 
9633 	if (netif_running(netdev)) {
9634 		if (igb_up(adapter)) {
9635 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9636 			return;
9637 		}
9638 	}
9639 
9640 	netif_device_attach(netdev);
9641 
9642 	/* let the f/w know that the h/w is now under the control of the
9643 	 * driver.
9644 	 */
9645 	igb_get_hw_control(adapter);
9646 }
9647 
9648 /**
9649  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9650  *  @adapter: Pointer to adapter structure
9651  *  @index: Index of the RAR entry which need to be synced with MAC table
9652  **/
9653 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9654 {
9655 	struct e1000_hw *hw = &adapter->hw;
9656 	u32 rar_low, rar_high;
9657 	u8 *addr = adapter->mac_table[index].addr;
9658 
9659 	/* HW expects these to be in network order when they are plugged
9660 	 * into the registers which are little endian.  In order to guarantee
9661 	 * that ordering we need to do an leXX_to_cpup here in order to be
9662 	 * ready for the byteswap that occurs with writel
9663 	 */
9664 	rar_low = le32_to_cpup((__le32 *)(addr));
9665 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9666 
9667 	/* Indicate to hardware the Address is Valid. */
9668 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9669 		if (is_valid_ether_addr(addr))
9670 			rar_high |= E1000_RAH_AV;
9671 
9672 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9673 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9674 
9675 		switch (hw->mac.type) {
9676 		case e1000_82575:
9677 		case e1000_i210:
9678 			if (adapter->mac_table[index].state &
9679 			    IGB_MAC_STATE_QUEUE_STEERING)
9680 				rar_high |= E1000_RAH_QSEL_ENABLE;
9681 
9682 			rar_high |= E1000_RAH_POOL_1 *
9683 				    adapter->mac_table[index].queue;
9684 			break;
9685 		default:
9686 			rar_high |= E1000_RAH_POOL_1 <<
9687 				    adapter->mac_table[index].queue;
9688 			break;
9689 		}
9690 	}
9691 
9692 	wr32(E1000_RAL(index), rar_low);
9693 	wrfl();
9694 	wr32(E1000_RAH(index), rar_high);
9695 	wrfl();
9696 }
9697 
9698 static int igb_set_vf_mac(struct igb_adapter *adapter,
9699 			  int vf, unsigned char *mac_addr)
9700 {
9701 	struct e1000_hw *hw = &adapter->hw;
9702 	/* VF MAC addresses start at end of receive addresses and moves
9703 	 * towards the first, as a result a collision should not be possible
9704 	 */
9705 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9706 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9707 
9708 	ether_addr_copy(vf_mac_addr, mac_addr);
9709 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9710 	adapter->mac_table[rar_entry].queue = vf;
9711 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9712 	igb_rar_set_index(adapter, rar_entry);
9713 
9714 	return 0;
9715 }
9716 
9717 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9718 {
9719 	struct igb_adapter *adapter = netdev_priv(netdev);
9720 
9721 	if (vf >= adapter->vfs_allocated_count)
9722 		return -EINVAL;
9723 
9724 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9725 	 * flag and allows to overwrite the MAC via VF netdev.  This
9726 	 * is necessary to allow libvirt a way to restore the original
9727 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9728 	 * down a VM.
9729 	 */
9730 	if (is_zero_ether_addr(mac)) {
9731 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9732 		dev_info(&adapter->pdev->dev,
9733 			 "remove administratively set MAC on VF %d\n",
9734 			 vf);
9735 	} else if (is_valid_ether_addr(mac)) {
9736 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9737 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9738 			 mac, vf);
9739 		dev_info(&adapter->pdev->dev,
9740 			 "Reload the VF driver to make this change effective.");
9741 		/* Generate additional warning if PF is down */
9742 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9743 			dev_warn(&adapter->pdev->dev,
9744 				 "The VF MAC address has been set, but the PF device is not up.\n");
9745 			dev_warn(&adapter->pdev->dev,
9746 				 "Bring the PF device up before attempting to use the VF device.\n");
9747 		}
9748 	} else {
9749 		return -EINVAL;
9750 	}
9751 	return igb_set_vf_mac(adapter, vf, mac);
9752 }
9753 
9754 static int igb_link_mbps(int internal_link_speed)
9755 {
9756 	switch (internal_link_speed) {
9757 	case SPEED_100:
9758 		return 100;
9759 	case SPEED_1000:
9760 		return 1000;
9761 	default:
9762 		return 0;
9763 	}
9764 }
9765 
9766 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9767 				  int link_speed)
9768 {
9769 	int rf_dec, rf_int;
9770 	u32 bcnrc_val;
9771 
9772 	if (tx_rate != 0) {
9773 		/* Calculate the rate factor values to set */
9774 		rf_int = link_speed / tx_rate;
9775 		rf_dec = (link_speed - (rf_int * tx_rate));
9776 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9777 			 tx_rate;
9778 
9779 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9780 		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9781 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9782 	} else {
9783 		bcnrc_val = 0;
9784 	}
9785 
9786 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9787 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9788 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9789 	 */
9790 	wr32(E1000_RTTBCNRM, 0x14);
9791 	wr32(E1000_RTTBCNRC, bcnrc_val);
9792 }
9793 
9794 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9795 {
9796 	int actual_link_speed, i;
9797 	bool reset_rate = false;
9798 
9799 	/* VF TX rate limit was not set or not supported */
9800 	if ((adapter->vf_rate_link_speed == 0) ||
9801 	    (adapter->hw.mac.type != e1000_82576))
9802 		return;
9803 
9804 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9805 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9806 		reset_rate = true;
9807 		adapter->vf_rate_link_speed = 0;
9808 		dev_info(&adapter->pdev->dev,
9809 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9810 	}
9811 
9812 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9813 		if (reset_rate)
9814 			adapter->vf_data[i].tx_rate = 0;
9815 
9816 		igb_set_vf_rate_limit(&adapter->hw, i,
9817 				      adapter->vf_data[i].tx_rate,
9818 				      actual_link_speed);
9819 	}
9820 }
9821 
9822 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9823 			     int min_tx_rate, int max_tx_rate)
9824 {
9825 	struct igb_adapter *adapter = netdev_priv(netdev);
9826 	struct e1000_hw *hw = &adapter->hw;
9827 	int actual_link_speed;
9828 
9829 	if (hw->mac.type != e1000_82576)
9830 		return -EOPNOTSUPP;
9831 
9832 	if (min_tx_rate)
9833 		return -EINVAL;
9834 
9835 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9836 	if ((vf >= adapter->vfs_allocated_count) ||
9837 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9838 	    (max_tx_rate < 0) ||
9839 	    (max_tx_rate > actual_link_speed))
9840 		return -EINVAL;
9841 
9842 	adapter->vf_rate_link_speed = actual_link_speed;
9843 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9844 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9845 
9846 	return 0;
9847 }
9848 
9849 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9850 				   bool setting)
9851 {
9852 	struct igb_adapter *adapter = netdev_priv(netdev);
9853 	struct e1000_hw *hw = &adapter->hw;
9854 	u32 reg_val, reg_offset;
9855 
9856 	if (!adapter->vfs_allocated_count)
9857 		return -EOPNOTSUPP;
9858 
9859 	if (vf >= adapter->vfs_allocated_count)
9860 		return -EINVAL;
9861 
9862 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9863 	reg_val = rd32(reg_offset);
9864 	if (setting)
9865 		reg_val |= (BIT(vf) |
9866 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9867 	else
9868 		reg_val &= ~(BIT(vf) |
9869 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9870 	wr32(reg_offset, reg_val);
9871 
9872 	adapter->vf_data[vf].spoofchk_enabled = setting;
9873 	return 0;
9874 }
9875 
9876 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9877 {
9878 	struct igb_adapter *adapter = netdev_priv(netdev);
9879 
9880 	if (vf >= adapter->vfs_allocated_count)
9881 		return -EINVAL;
9882 	if (adapter->vf_data[vf].trusted == setting)
9883 		return 0;
9884 
9885 	adapter->vf_data[vf].trusted = setting;
9886 
9887 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9888 		 vf, setting ? "" : "not ");
9889 	return 0;
9890 }
9891 
9892 static int igb_ndo_get_vf_config(struct net_device *netdev,
9893 				 int vf, struct ifla_vf_info *ivi)
9894 {
9895 	struct igb_adapter *adapter = netdev_priv(netdev);
9896 	if (vf >= adapter->vfs_allocated_count)
9897 		return -EINVAL;
9898 	ivi->vf = vf;
9899 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9900 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9901 	ivi->min_tx_rate = 0;
9902 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9903 	ivi->qos = adapter->vf_data[vf].pf_qos;
9904 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9905 	ivi->trusted = adapter->vf_data[vf].trusted;
9906 	return 0;
9907 }
9908 
9909 static void igb_vmm_control(struct igb_adapter *adapter)
9910 {
9911 	struct e1000_hw *hw = &adapter->hw;
9912 	u32 reg;
9913 
9914 	switch (hw->mac.type) {
9915 	case e1000_82575:
9916 	case e1000_i210:
9917 	case e1000_i211:
9918 	case e1000_i354:
9919 	default:
9920 		/* replication is not supported for 82575 */
9921 		return;
9922 	case e1000_82576:
9923 		/* notify HW that the MAC is adding vlan tags */
9924 		reg = rd32(E1000_DTXCTL);
9925 		reg |= E1000_DTXCTL_VLAN_ADDED;
9926 		wr32(E1000_DTXCTL, reg);
9927 		fallthrough;
9928 	case e1000_82580:
9929 		/* enable replication vlan tag stripping */
9930 		reg = rd32(E1000_RPLOLR);
9931 		reg |= E1000_RPLOLR_STRVLAN;
9932 		wr32(E1000_RPLOLR, reg);
9933 		fallthrough;
9934 	case e1000_i350:
9935 		/* none of the above registers are supported by i350 */
9936 		break;
9937 	}
9938 
9939 	if (adapter->vfs_allocated_count) {
9940 		igb_vmdq_set_loopback_pf(hw, true);
9941 		igb_vmdq_set_replication_pf(hw, true);
9942 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9943 					      adapter->vfs_allocated_count);
9944 	} else {
9945 		igb_vmdq_set_loopback_pf(hw, false);
9946 		igb_vmdq_set_replication_pf(hw, false);
9947 	}
9948 }
9949 
9950 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9951 {
9952 	struct e1000_hw *hw = &adapter->hw;
9953 	u32 dmac_thr;
9954 	u16 hwm;
9955 	u32 reg;
9956 
9957 	if (hw->mac.type > e1000_82580) {
9958 		if (adapter->flags & IGB_FLAG_DMAC) {
9959 			/* force threshold to 0. */
9960 			wr32(E1000_DMCTXTH, 0);
9961 
9962 			/* DMA Coalescing high water mark needs to be greater
9963 			 * than the Rx threshold. Set hwm to PBA - max frame
9964 			 * size in 16B units, capping it at PBA - 6KB.
9965 			 */
9966 			hwm = 64 * (pba - 6);
9967 			reg = rd32(E1000_FCRTC);
9968 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9969 			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
9970 			wr32(E1000_FCRTC, reg);
9971 
9972 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9973 			 * frame size, capping it at PBA - 10KB.
9974 			 */
9975 			dmac_thr = pba - 10;
9976 			reg = rd32(E1000_DMACR);
9977 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9978 			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
9979 
9980 			/* transition to L0x or L1 if available..*/
9981 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9982 
9983 			/* watchdog timer= +-1000 usec in 32usec intervals */
9984 			reg |= (1000 >> 5);
9985 
9986 			/* Disable BMC-to-OS Watchdog Enable */
9987 			if (hw->mac.type != e1000_i354)
9988 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9989 			wr32(E1000_DMACR, reg);
9990 
9991 			/* no lower threshold to disable
9992 			 * coalescing(smart fifb)-UTRESH=0
9993 			 */
9994 			wr32(E1000_DMCRTRH, 0);
9995 
9996 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9997 
9998 			wr32(E1000_DMCTLX, reg);
9999 
10000 			/* free space in tx packet buffer to wake from
10001 			 * DMA coal
10002 			 */
10003 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10004 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10005 		}
10006 
10007 		if (hw->mac.type >= e1000_i210 ||
10008 		    (adapter->flags & IGB_FLAG_DMAC)) {
10009 			reg = rd32(E1000_PCIEMISC);
10010 			reg |= E1000_PCIEMISC_LX_DECISION;
10011 			wr32(E1000_PCIEMISC, reg);
10012 		} /* endif adapter->dmac is not disabled */
10013 	} else if (hw->mac.type == e1000_82580) {
10014 		u32 reg = rd32(E1000_PCIEMISC);
10015 
10016 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10017 		wr32(E1000_DMACR, 0);
10018 	}
10019 }
10020 
10021 /**
10022  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10023  *  @hw: pointer to hardware structure
10024  *  @byte_offset: byte offset to read
10025  *  @dev_addr: device address
10026  *  @data: value read
10027  *
10028  *  Performs byte read operation over I2C interface at
10029  *  a specified device address.
10030  **/
10031 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10032 		      u8 dev_addr, u8 *data)
10033 {
10034 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10035 	struct i2c_client *this_client = adapter->i2c_client;
10036 	s32 status;
10037 	u16 swfw_mask = 0;
10038 
10039 	if (!this_client)
10040 		return E1000_ERR_I2C;
10041 
10042 	swfw_mask = E1000_SWFW_PHY0_SM;
10043 
10044 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10045 		return E1000_ERR_SWFW_SYNC;
10046 
10047 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10048 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10049 
10050 	if (status < 0)
10051 		return E1000_ERR_I2C;
10052 	else {
10053 		*data = status;
10054 		return 0;
10055 	}
10056 }
10057 
10058 /**
10059  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10060  *  @hw: pointer to hardware structure
10061  *  @byte_offset: byte offset to write
10062  *  @dev_addr: device address
10063  *  @data: value to write
10064  *
10065  *  Performs byte write operation over I2C interface at
10066  *  a specified device address.
10067  **/
10068 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10069 		       u8 dev_addr, u8 data)
10070 {
10071 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10072 	struct i2c_client *this_client = adapter->i2c_client;
10073 	s32 status;
10074 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10075 
10076 	if (!this_client)
10077 		return E1000_ERR_I2C;
10078 
10079 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10080 		return E1000_ERR_SWFW_SYNC;
10081 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10082 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10083 
10084 	if (status)
10085 		return E1000_ERR_I2C;
10086 	else
10087 		return 0;
10088 
10089 }
10090 
10091 int igb_reinit_queues(struct igb_adapter *adapter)
10092 {
10093 	struct net_device *netdev = adapter->netdev;
10094 	struct pci_dev *pdev = adapter->pdev;
10095 	int err = 0;
10096 
10097 	if (netif_running(netdev))
10098 		igb_close(netdev);
10099 
10100 	igb_reset_interrupt_capability(adapter);
10101 
10102 	if (igb_init_interrupt_scheme(adapter, true)) {
10103 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10104 		return -ENOMEM;
10105 	}
10106 
10107 	if (netif_running(netdev))
10108 		err = igb_open(netdev);
10109 
10110 	return err;
10111 }
10112 
10113 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10114 {
10115 	struct igb_nfc_filter *rule;
10116 
10117 	spin_lock(&adapter->nfc_lock);
10118 
10119 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10120 		igb_erase_filter(adapter, rule);
10121 
10122 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10123 		igb_erase_filter(adapter, rule);
10124 
10125 	spin_unlock(&adapter->nfc_lock);
10126 }
10127 
10128 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10129 {
10130 	struct igb_nfc_filter *rule;
10131 
10132 	spin_lock(&adapter->nfc_lock);
10133 
10134 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10135 		igb_add_filter(adapter, rule);
10136 
10137 	spin_unlock(&adapter->nfc_lock);
10138 }
10139 
10140 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10141 			  igb_runtime_suspend, igb_runtime_resume,
10142 			  igb_runtime_idle);
10143 
10144 static struct pci_driver igb_driver = {
10145 	.name     = igb_driver_name,
10146 	.id_table = igb_pci_tbl,
10147 	.probe    = igb_probe,
10148 	.remove   = igb_remove,
10149 	.driver.pm = pm_ptr(&igb_pm_ops),
10150 	.shutdown = igb_shutdown,
10151 	.sriov_configure = igb_pci_sriov_configure,
10152 	.err_handler = &igb_err_handler
10153 };
10154 
10155 /* igb_main.c */
10156