xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_TDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { u64 a; u64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state)
581 		i2cctl |= E1000_I2C_DATA_OUT;
582 	else
583 		i2cctl &= ~E1000_I2C_DATA_OUT;
584 
585 	i2cctl &= ~E1000_I2C_DATA_OE_N;
586 	i2cctl |= E1000_I2C_CLK_OE_N;
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 
590 }
591 
592 /**
593  *  igb_set_i2c_clk - Sets the I2C SCL clock
594  *  @data: pointer to hardware structure
595  *  @state: state to set clock
596  *
597  *  Sets the I2C clock line to state
598  **/
599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 	struct igb_adapter *adapter = (struct igb_adapter *)data;
602 	struct e1000_hw *hw = &adapter->hw;
603 	s32 i2cctl = rd32(E1000_I2CPARAMS);
604 
605 	if (state) {
606 		i2cctl |= E1000_I2C_CLK_OUT;
607 		i2cctl &= ~E1000_I2C_CLK_OE_N;
608 	} else {
609 		i2cctl &= ~E1000_I2C_CLK_OUT;
610 		i2cctl &= ~E1000_I2C_CLK_OE_N;
611 	}
612 	wr32(E1000_I2CPARAMS, i2cctl);
613 	wrfl();
614 }
615 
616 /**
617  *  igb_get_i2c_clk - Gets the I2C SCL clock state
618  *  @data: pointer to hardware structure
619  *
620  *  Gets the I2C clock state
621  **/
622 static int igb_get_i2c_clk(void *data)
623 {
624 	struct igb_adapter *adapter = (struct igb_adapter *)data;
625 	struct e1000_hw *hw = &adapter->hw;
626 	s32 i2cctl = rd32(E1000_I2CPARAMS);
627 
628 	return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630 
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 	.setsda		= igb_set_i2c_data,
633 	.setscl		= igb_set_i2c_clk,
634 	.getsda		= igb_get_i2c_data,
635 	.getscl		= igb_get_i2c_clk,
636 	.udelay		= 5,
637 	.timeout	= 20,
638 };
639 
640 /**
641  *  igb_get_hw_dev - return device
642  *  @hw: pointer to hardware structure
643  *
644  *  used by hardware layer to print debugging information
645  **/
646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 	struct igb_adapter *adapter = hw->back;
649 	return adapter->netdev;
650 }
651 
652 /**
653  *  igb_init_module - Driver Registration Routine
654  *
655  *  igb_init_module is the first routine called when the driver is
656  *  loaded. All it does is register with the PCI subsystem.
657  **/
658 static int __init igb_init_module(void)
659 {
660 	int ret;
661 
662 	pr_info("%s\n", igb_driver_string);
663 	pr_info("%s\n", igb_copyright);
664 
665 #ifdef CONFIG_IGB_DCA
666 	dca_register_notify(&dca_notifier);
667 #endif
668 	ret = pci_register_driver(&igb_driver);
669 	return ret;
670 }
671 
672 module_init(igb_init_module);
673 
674 /**
675  *  igb_exit_module - Driver Exit Cleanup Routine
676  *
677  *  igb_exit_module is called just before the driver is removed
678  *  from memory.
679  **/
680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 	dca_unregister_notify(&dca_notifier);
684 #endif
685 	pci_unregister_driver(&igb_driver);
686 }
687 
688 module_exit(igb_exit_module);
689 
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692  *  igb_cache_ring_register - Descriptor ring to register mapping
693  *  @adapter: board private structure to initialize
694  *
695  *  Once we know the feature-set enabled for the device, we'll cache
696  *  the register offset the descriptor ring is assigned to.
697  **/
698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 	int i = 0, j = 0;
701 	u32 rbase_offset = adapter->vfs_allocated_count;
702 
703 	switch (adapter->hw.mac.type) {
704 	case e1000_82576:
705 		/* The queues are allocated for virtualization such that VF 0
706 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 		 * In order to avoid collision we start at the first free queue
708 		 * and continue consuming queues in the same sequence
709 		 */
710 		if (adapter->vfs_allocated_count) {
711 			for (; i < adapter->rss_queues; i++)
712 				adapter->rx_ring[i]->reg_idx = rbase_offset +
713 							       Q_IDX_82576(i);
714 		}
715 		fallthrough;
716 	case e1000_82575:
717 	case e1000_82580:
718 	case e1000_i350:
719 	case e1000_i354:
720 	case e1000_i210:
721 	case e1000_i211:
722 	default:
723 		for (; i < adapter->num_rx_queues; i++)
724 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 		for (; j < adapter->num_tx_queues; j++)
726 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 		break;
728 	}
729 }
730 
731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 	u32 value = 0;
736 
737 	if (E1000_REMOVED(hw_addr))
738 		return ~value;
739 
740 	value = readl(&hw_addr[reg]);
741 
742 	/* reads should not return all F's */
743 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 		struct net_device *netdev = igb->netdev;
745 		hw->hw_addr = NULL;
746 		netdev_err(netdev, "PCIe link lost\n");
747 		WARN(pci_device_is_present(igb->pdev),
748 		     "igb: Failed to read reg 0x%x!\n", reg);
749 	}
750 
751 	return value;
752 }
753 
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 			   int index, int offset)
768 {
769 	u32 ivar = array_rd32(E1000_IVAR0, index);
770 
771 	/* clear any bits that are currently set */
772 	ivar &= ~((u32)0xFF << offset);
773 
774 	/* write vector and valid bit */
775 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776 
777 	array_wr32(E1000_IVAR0, index, ivar);
778 }
779 
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 	struct igb_adapter *adapter = q_vector->adapter;
784 	struct e1000_hw *hw = &adapter->hw;
785 	int rx_queue = IGB_N0_QUEUE;
786 	int tx_queue = IGB_N0_QUEUE;
787 	u32 msixbm = 0;
788 
789 	if (q_vector->rx.ring)
790 		rx_queue = q_vector->rx.ring->reg_idx;
791 	if (q_vector->tx.ring)
792 		tx_queue = q_vector->tx.ring->reg_idx;
793 
794 	switch (hw->mac.type) {
795 	case e1000_82575:
796 		/* The 82575 assigns vectors using a bitmask, which matches the
797 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798 		 * or more queues to a vector, we write the appropriate bits
799 		 * into the MSIXBM register for that vector.
800 		 */
801 		if (rx_queue > IGB_N0_QUEUE)
802 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 		if (tx_queue > IGB_N0_QUEUE)
804 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 			msixbm |= E1000_EIMS_OTHER;
807 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 		q_vector->eims_value = msixbm;
809 		break;
810 	case e1000_82576:
811 		/* 82576 uses a table that essentially consists of 2 columns
812 		 * with 8 rows.  The ordering is column-major so we use the
813 		 * lower 3 bits as the row index, and the 4th bit as the
814 		 * column offset.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       rx_queue & 0x7,
819 				       (rx_queue & 0x8) << 1);
820 		if (tx_queue > IGB_N0_QUEUE)
821 			igb_write_ivar(hw, msix_vector,
822 				       tx_queue & 0x7,
823 				       ((tx_queue & 0x8) << 1) + 8);
824 		q_vector->eims_value = BIT(msix_vector);
825 		break;
826 	case e1000_82580:
827 	case e1000_i350:
828 	case e1000_i354:
829 	case e1000_i210:
830 	case e1000_i211:
831 		/* On 82580 and newer adapters the scheme is similar to 82576
832 		 * however instead of ordering column-major we have things
833 		 * ordered row-major.  So we traverse the table by using
834 		 * bit 0 as the column offset, and the remaining bits as the
835 		 * row index.
836 		 */
837 		if (rx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       rx_queue >> 1,
840 				       (rx_queue & 0x1) << 4);
841 		if (tx_queue > IGB_N0_QUEUE)
842 			igb_write_ivar(hw, msix_vector,
843 				       tx_queue >> 1,
844 				       ((tx_queue & 0x1) << 4) + 8);
845 		q_vector->eims_value = BIT(msix_vector);
846 		break;
847 	default:
848 		BUG();
849 		break;
850 	}
851 
852 	/* add q_vector eims value to global eims_enable_mask */
853 	adapter->eims_enable_mask |= q_vector->eims_value;
854 
855 	/* configure q_vector to set itr on first interrupt */
856 	q_vector->set_itr = 1;
857 }
858 
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 	u32 tmp;
869 	int i, vector = 0;
870 	struct e1000_hw *hw = &adapter->hw;
871 
872 	adapter->eims_enable_mask = 0;
873 
874 	/* set vector for other causes, i.e. link changes */
875 	switch (hw->mac.type) {
876 	case e1000_82575:
877 		tmp = rd32(E1000_CTRL_EXT);
878 		/* enable MSI-X PBA support*/
879 		tmp |= E1000_CTRL_EXT_PBA_CLR;
880 
881 		/* Auto-Mask interrupts upon ICR read. */
882 		tmp |= E1000_CTRL_EXT_EIAME;
883 		tmp |= E1000_CTRL_EXT_IRCA;
884 
885 		wr32(E1000_CTRL_EXT, tmp);
886 
887 		/* enable msix_other interrupt */
888 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 		adapter->eims_other = E1000_EIMS_OTHER;
890 
891 		break;
892 
893 	case e1000_82576:
894 	case e1000_82580:
895 	case e1000_i350:
896 	case e1000_i354:
897 	case e1000_i210:
898 	case e1000_i211:
899 		/* Turn on MSI-X capability first, or our settings
900 		 * won't stick.  And it will take days to debug.
901 		 */
902 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 		     E1000_GPIE_NSICR);
905 
906 		/* enable msix_other interrupt */
907 		adapter->eims_other = BIT(vector);
908 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909 
910 		wr32(E1000_IVAR_MISC, tmp);
911 		break;
912 	default:
913 		/* do nothing, since nothing else supports MSI-X */
914 		break;
915 	} /* switch (hw->mac.type) */
916 
917 	adapter->eims_enable_mask |= adapter->eims_other;
918 
919 	for (i = 0; i < adapter->num_q_vectors; i++)
920 		igb_assign_vector(adapter->q_vector[i], vector++);
921 
922 	wrfl();
923 }
924 
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 	struct net_device *netdev = adapter->netdev;
935 	int i, err = 0, vector = 0, free_vector = 0;
936 
937 	err = request_irq(adapter->msix_entries[vector].vector,
938 			  igb_msix_other, 0, netdev->name, adapter);
939 	if (err)
940 		goto err_out;
941 
942 	for (i = 0; i < adapter->num_q_vectors; i++) {
943 		struct igb_q_vector *q_vector = adapter->q_vector[i];
944 
945 		vector++;
946 
947 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
948 
949 		if (q_vector->rx.ring && q_vector->tx.ring)
950 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951 				q_vector->rx.ring->queue_index);
952 		else if (q_vector->tx.ring)
953 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954 				q_vector->tx.ring->queue_index);
955 		else if (q_vector->rx.ring)
956 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957 				q_vector->rx.ring->queue_index);
958 		else
959 			sprintf(q_vector->name, "%s-unused", netdev->name);
960 
961 		err = request_irq(adapter->msix_entries[vector].vector,
962 				  igb_msix_ring, 0, q_vector->name,
963 				  q_vector);
964 		if (err)
965 			goto err_free;
966 	}
967 
968 	igb_configure_msix(adapter);
969 	return 0;
970 
971 err_free:
972 	/* free already assigned IRQs */
973 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974 
975 	vector--;
976 	for (i = 0; i < vector; i++) {
977 		free_irq(adapter->msix_entries[free_vector++].vector,
978 			 adapter->q_vector[i]);
979 	}
980 err_out:
981 	return err;
982 }
983 
984 /**
985  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
986  *  @adapter: board private structure to initialize
987  *  @v_idx: Index of vector to be freed
988  *
989  *  This function frees the memory allocated to the q_vector.
990  **/
991 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
992 {
993 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994 
995 	adapter->q_vector[v_idx] = NULL;
996 
997 	/* igb_get_stats64() might access the rings on this vector,
998 	 * we must wait a grace period before freeing it.
999 	 */
1000 	if (q_vector)
1001 		kfree_rcu(q_vector, rcu);
1002 }
1003 
1004 /**
1005  *  igb_reset_q_vector - Reset config for interrupt vector
1006  *  @adapter: board private structure to initialize
1007  *  @v_idx: Index of vector to be reset
1008  *
1009  *  If NAPI is enabled it will delete any references to the
1010  *  NAPI struct. This is preparation for igb_free_q_vector.
1011  **/
1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013 {
1014 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015 
1016 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1017 	 * allocated. So, q_vector is NULL so we should stop here.
1018 	 */
1019 	if (!q_vector)
1020 		return;
1021 
1022 	if (q_vector->tx.ring)
1023 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1024 
1025 	if (q_vector->rx.ring)
1026 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1027 
1028 	netif_napi_del(&q_vector->napi);
1029 
1030 }
1031 
1032 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1033 {
1034 	int v_idx = adapter->num_q_vectors;
1035 
1036 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1037 		pci_disable_msix(adapter->pdev);
1038 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1039 		pci_disable_msi(adapter->pdev);
1040 
1041 	while (v_idx--)
1042 		igb_reset_q_vector(adapter, v_idx);
1043 }
1044 
1045 /**
1046  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function frees the memory allocated to the q_vectors.  In addition if
1050  *  NAPI is enabled it will delete any references to the NAPI struct prior
1051  *  to freeing the q_vector.
1052  **/
1053 static void igb_free_q_vectors(struct igb_adapter *adapter)
1054 {
1055 	int v_idx = adapter->num_q_vectors;
1056 
1057 	adapter->num_tx_queues = 0;
1058 	adapter->num_rx_queues = 0;
1059 	adapter->num_q_vectors = 0;
1060 
1061 	while (v_idx--) {
1062 		igb_reset_q_vector(adapter, v_idx);
1063 		igb_free_q_vector(adapter, v_idx);
1064 	}
1065 }
1066 
1067 /**
1068  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069  *  @adapter: board private structure to initialize
1070  *
1071  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1072  *  MSI-X interrupts allocated.
1073  */
1074 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1075 {
1076 	igb_free_q_vectors(adapter);
1077 	igb_reset_interrupt_capability(adapter);
1078 }
1079 
1080 /**
1081  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1082  *  @adapter: board private structure to initialize
1083  *  @msix: boolean value of MSIX capability
1084  *
1085  *  Attempt to configure interrupts using the best available
1086  *  capabilities of the hardware and kernel.
1087  **/
1088 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1089 {
1090 	int err;
1091 	int numvecs, i;
1092 
1093 	if (!msix)
1094 		goto msi_only;
1095 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1096 
1097 	/* Number of supported queues. */
1098 	adapter->num_rx_queues = adapter->rss_queues;
1099 	if (adapter->vfs_allocated_count)
1100 		adapter->num_tx_queues = 1;
1101 	else
1102 		adapter->num_tx_queues = adapter->rss_queues;
1103 
1104 	/* start with one vector for every Rx queue */
1105 	numvecs = adapter->num_rx_queues;
1106 
1107 	/* if Tx handler is separate add 1 for every Tx queue */
1108 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1109 		numvecs += adapter->num_tx_queues;
1110 
1111 	/* store the number of vectors reserved for queues */
1112 	adapter->num_q_vectors = numvecs;
1113 
1114 	/* add 1 vector for link status interrupts */
1115 	numvecs++;
1116 	for (i = 0; i < numvecs; i++)
1117 		adapter->msix_entries[i].entry = i;
1118 
1119 	err = pci_enable_msix_range(adapter->pdev,
1120 				    adapter->msix_entries,
1121 				    numvecs,
1122 				    numvecs);
1123 	if (err > 0)
1124 		return;
1125 
1126 	igb_reset_interrupt_capability(adapter);
1127 
1128 	/* If we can't do MSI-X, try MSI */
1129 msi_only:
1130 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1131 #ifdef CONFIG_PCI_IOV
1132 	/* disable SR-IOV for non MSI-X configurations */
1133 	if (adapter->vf_data) {
1134 		struct e1000_hw *hw = &adapter->hw;
1135 		/* disable iov and allow time for transactions to clear */
1136 		pci_disable_sriov(adapter->pdev);
1137 		msleep(500);
1138 
1139 		kfree(adapter->vf_mac_list);
1140 		adapter->vf_mac_list = NULL;
1141 		kfree(adapter->vf_data);
1142 		adapter->vf_data = NULL;
1143 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1144 		wrfl();
1145 		msleep(100);
1146 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1147 	}
1148 #endif
1149 	adapter->vfs_allocated_count = 0;
1150 	adapter->rss_queues = 1;
1151 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1152 	adapter->num_rx_queues = 1;
1153 	adapter->num_tx_queues = 1;
1154 	adapter->num_q_vectors = 1;
1155 	if (!pci_enable_msi(adapter->pdev))
1156 		adapter->flags |= IGB_FLAG_HAS_MSI;
1157 }
1158 
1159 static void igb_add_ring(struct igb_ring *ring,
1160 			 struct igb_ring_container *head)
1161 {
1162 	head->ring = ring;
1163 	head->count++;
1164 }
1165 
1166 /**
1167  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168  *  @adapter: board private structure to initialize
1169  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1170  *  @v_idx: index of vector in adapter struct
1171  *  @txr_count: total number of Tx rings to allocate
1172  *  @txr_idx: index of first Tx ring to allocate
1173  *  @rxr_count: total number of Rx rings to allocate
1174  *  @rxr_idx: index of first Rx ring to allocate
1175  *
1176  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1177  **/
1178 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1179 			      int v_count, int v_idx,
1180 			      int txr_count, int txr_idx,
1181 			      int rxr_count, int rxr_idx)
1182 {
1183 	struct igb_q_vector *q_vector;
1184 	struct igb_ring *ring;
1185 	int ring_count;
1186 	size_t size;
1187 
1188 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189 	if (txr_count > 1 || rxr_count > 1)
1190 		return -ENOMEM;
1191 
1192 	ring_count = txr_count + rxr_count;
1193 	size = struct_size(q_vector, ring, ring_count);
1194 
1195 	/* allocate q_vector and rings */
1196 	q_vector = adapter->q_vector[v_idx];
1197 	if (!q_vector) {
1198 		q_vector = kzalloc(size, GFP_KERNEL);
1199 	} else if (size > ksize(q_vector)) {
1200 		kfree_rcu(q_vector, rcu);
1201 		q_vector = kzalloc(size, GFP_KERNEL);
1202 	} else {
1203 		memset(q_vector, 0, size);
1204 	}
1205 	if (!q_vector)
1206 		return -ENOMEM;
1207 
1208 	/* initialize NAPI */
1209 	netif_napi_add(adapter->netdev, &q_vector->napi,
1210 		       igb_poll, 64);
1211 
1212 	/* tie q_vector and adapter together */
1213 	adapter->q_vector[v_idx] = q_vector;
1214 	q_vector->adapter = adapter;
1215 
1216 	/* initialize work limits */
1217 	q_vector->tx.work_limit = adapter->tx_work_limit;
1218 
1219 	/* initialize ITR configuration */
1220 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1221 	q_vector->itr_val = IGB_START_ITR;
1222 
1223 	/* initialize pointer to rings */
1224 	ring = q_vector->ring;
1225 
1226 	/* intialize ITR */
1227 	if (rxr_count) {
1228 		/* rx or rx/tx vector */
1229 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1230 			q_vector->itr_val = adapter->rx_itr_setting;
1231 	} else {
1232 		/* tx only vector */
1233 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1234 			q_vector->itr_val = adapter->tx_itr_setting;
1235 	}
1236 
1237 	if (txr_count) {
1238 		/* assign generic ring traits */
1239 		ring->dev = &adapter->pdev->dev;
1240 		ring->netdev = adapter->netdev;
1241 
1242 		/* configure backlink on ring */
1243 		ring->q_vector = q_vector;
1244 
1245 		/* update q_vector Tx values */
1246 		igb_add_ring(ring, &q_vector->tx);
1247 
1248 		/* For 82575, context index must be unique per ring. */
1249 		if (adapter->hw.mac.type == e1000_82575)
1250 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1251 
1252 		/* apply Tx specific ring traits */
1253 		ring->count = adapter->tx_ring_count;
1254 		ring->queue_index = txr_idx;
1255 
1256 		ring->cbs_enable = false;
1257 		ring->idleslope = 0;
1258 		ring->sendslope = 0;
1259 		ring->hicredit = 0;
1260 		ring->locredit = 0;
1261 
1262 		u64_stats_init(&ring->tx_syncp);
1263 		u64_stats_init(&ring->tx_syncp2);
1264 
1265 		/* assign ring to adapter */
1266 		adapter->tx_ring[txr_idx] = ring;
1267 
1268 		/* push pointer to next ring */
1269 		ring++;
1270 	}
1271 
1272 	if (rxr_count) {
1273 		/* assign generic ring traits */
1274 		ring->dev = &adapter->pdev->dev;
1275 		ring->netdev = adapter->netdev;
1276 
1277 		/* configure backlink on ring */
1278 		ring->q_vector = q_vector;
1279 
1280 		/* update q_vector Rx values */
1281 		igb_add_ring(ring, &q_vector->rx);
1282 
1283 		/* set flag indicating ring supports SCTP checksum offload */
1284 		if (adapter->hw.mac.type >= e1000_82576)
1285 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286 
1287 		/* On i350, i354, i210, and i211, loopback VLAN packets
1288 		 * have the tag byte-swapped.
1289 		 */
1290 		if (adapter->hw.mac.type >= e1000_i350)
1291 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292 
1293 		/* apply Rx specific ring traits */
1294 		ring->count = adapter->rx_ring_count;
1295 		ring->queue_index = rxr_idx;
1296 
1297 		u64_stats_init(&ring->rx_syncp);
1298 
1299 		/* assign ring to adapter */
1300 		adapter->rx_ring[rxr_idx] = ring;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 
1307 /**
1308  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309  *  @adapter: board private structure to initialize
1310  *
1311  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312  *  return -ENOMEM.
1313  **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316 	int q_vectors = adapter->num_q_vectors;
1317 	int rxr_remaining = adapter->num_rx_queues;
1318 	int txr_remaining = adapter->num_tx_queues;
1319 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 	int err;
1321 
1322 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 		for (; rxr_remaining; v_idx++) {
1324 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 						 0, 0, 1, rxr_idx);
1326 
1327 			if (err)
1328 				goto err_out;
1329 
1330 			/* update counts and index */
1331 			rxr_remaining--;
1332 			rxr_idx++;
1333 		}
1334 	}
1335 
1336 	for (; v_idx < q_vectors; v_idx++) {
1337 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339 
1340 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 					 tqpv, txr_idx, rqpv, rxr_idx);
1342 
1343 		if (err)
1344 			goto err_out;
1345 
1346 		/* update counts and index */
1347 		rxr_remaining -= rqpv;
1348 		txr_remaining -= tqpv;
1349 		rxr_idx++;
1350 		txr_idx++;
1351 	}
1352 
1353 	return 0;
1354 
1355 err_out:
1356 	adapter->num_tx_queues = 0;
1357 	adapter->num_rx_queues = 0;
1358 	adapter->num_q_vectors = 0;
1359 
1360 	while (v_idx--)
1361 		igb_free_q_vector(adapter, v_idx);
1362 
1363 	return -ENOMEM;
1364 }
1365 
1366 /**
1367  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368  *  @adapter: board private structure to initialize
1369  *  @msix: boolean value of MSIX capability
1370  *
1371  *  This function initializes the interrupts and allocates all of the queues.
1372  **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375 	struct pci_dev *pdev = adapter->pdev;
1376 	int err;
1377 
1378 	igb_set_interrupt_capability(adapter, msix);
1379 
1380 	err = igb_alloc_q_vectors(adapter);
1381 	if (err) {
1382 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 		goto err_alloc_q_vectors;
1384 	}
1385 
1386 	igb_cache_ring_register(adapter);
1387 
1388 	return 0;
1389 
1390 err_alloc_q_vectors:
1391 	igb_reset_interrupt_capability(adapter);
1392 	return err;
1393 }
1394 
1395 /**
1396  *  igb_request_irq - initialize interrupts
1397  *  @adapter: board private structure to initialize
1398  *
1399  *  Attempts to configure interrupts using the best available
1400  *  capabilities of the hardware and kernel.
1401  **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404 	struct net_device *netdev = adapter->netdev;
1405 	struct pci_dev *pdev = adapter->pdev;
1406 	int err = 0;
1407 
1408 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 		err = igb_request_msix(adapter);
1410 		if (!err)
1411 			goto request_done;
1412 		/* fall back to MSI */
1413 		igb_free_all_tx_resources(adapter);
1414 		igb_free_all_rx_resources(adapter);
1415 
1416 		igb_clear_interrupt_scheme(adapter);
1417 		err = igb_init_interrupt_scheme(adapter, false);
1418 		if (err)
1419 			goto request_done;
1420 
1421 		igb_setup_all_tx_resources(adapter);
1422 		igb_setup_all_rx_resources(adapter);
1423 		igb_configure(adapter);
1424 	}
1425 
1426 	igb_assign_vector(adapter->q_vector[0], 0);
1427 
1428 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 				  netdev->name, adapter);
1431 		if (!err)
1432 			goto request_done;
1433 
1434 		/* fall back to legacy interrupts */
1435 		igb_reset_interrupt_capability(adapter);
1436 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 	}
1438 
1439 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 			  netdev->name, adapter);
1441 
1442 	if (err)
1443 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 			err);
1445 
1446 request_done:
1447 	return err;
1448 }
1449 
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 		int vector = 0, i;
1454 
1455 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1456 
1457 		for (i = 0; i < adapter->num_q_vectors; i++)
1458 			free_irq(adapter->msix_entries[vector++].vector,
1459 				 adapter->q_vector[i]);
1460 	} else {
1461 		free_irq(adapter->pdev->irq, adapter);
1462 	}
1463 }
1464 
1465 /**
1466  *  igb_irq_disable - Mask off interrupt generation on the NIC
1467  *  @adapter: board private structure
1468  **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 
1473 	/* we need to be careful when disabling interrupts.  The VFs are also
1474 	 * mapped into these registers and so clearing the bits can cause
1475 	 * issues on the VF drivers so we only need to clear what we set
1476 	 */
1477 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 		u32 regval = rd32(E1000_EIAM);
1479 
1480 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 		regval = rd32(E1000_EIAC);
1483 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 	}
1485 
1486 	wr32(E1000_IAM, 0);
1487 	wr32(E1000_IMC, ~0);
1488 	wrfl();
1489 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 		int i;
1491 
1492 		for (i = 0; i < adapter->num_q_vectors; i++)
1493 			synchronize_irq(adapter->msix_entries[i].vector);
1494 	} else {
1495 		synchronize_irq(adapter->pdev->irq);
1496 	}
1497 }
1498 
1499 /**
1500  *  igb_irq_enable - Enable default interrupt generation settings
1501  *  @adapter: board private structure
1502  **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505 	struct e1000_hw *hw = &adapter->hw;
1506 
1507 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 		u32 regval = rd32(E1000_EIAC);
1510 
1511 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 		regval = rd32(E1000_EIAM);
1513 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 		if (adapter->vfs_allocated_count) {
1516 			wr32(E1000_MBVFIMR, 0xFF);
1517 			ims |= E1000_IMS_VMMB;
1518 		}
1519 		wr32(E1000_IMS, ims);
1520 	} else {
1521 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 				E1000_IMS_DRSTA);
1523 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 				E1000_IMS_DRSTA);
1525 	}
1526 }
1527 
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530 	struct e1000_hw *hw = &adapter->hw;
1531 	u16 pf_id = adapter->vfs_allocated_count;
1532 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 	u16 old_vid = adapter->mng_vlan_id;
1534 
1535 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 		/* add VID to filter table */
1537 		igb_vfta_set(hw, vid, pf_id, true, true);
1538 		adapter->mng_vlan_id = vid;
1539 	} else {
1540 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 	}
1542 
1543 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 	    (vid != old_vid) &&
1545 	    !test_bit(old_vid, adapter->active_vlans)) {
1546 		/* remove VID from filter table */
1547 		igb_vfta_set(hw, vid, pf_id, false, true);
1548 	}
1549 }
1550 
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561 	struct e1000_hw *hw = &adapter->hw;
1562 	u32 ctrl_ext;
1563 
1564 	/* Let firmware take over control of h/w */
1565 	ctrl_ext = rd32(E1000_CTRL_EXT);
1566 	wr32(E1000_CTRL_EXT,
1567 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569 
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580 	struct e1000_hw *hw = &adapter->hw;
1581 	u32 ctrl_ext;
1582 
1583 	/* Let firmware know the driver has taken over */
1584 	ctrl_ext = rd32(E1000_CTRL_EXT);
1585 	wr32(E1000_CTRL_EXT,
1586 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588 
1589 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1590 {
1591 	struct net_device *netdev = adapter->netdev;
1592 	struct e1000_hw *hw = &adapter->hw;
1593 
1594 	WARN_ON(hw->mac.type != e1000_i210);
1595 
1596 	if (enable)
1597 		adapter->flags |= IGB_FLAG_FQTSS;
1598 	else
1599 		adapter->flags &= ~IGB_FLAG_FQTSS;
1600 
1601 	if (netif_running(netdev))
1602 		schedule_work(&adapter->reset_task);
1603 }
1604 
1605 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1606 {
1607 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1608 }
1609 
1610 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1611 				   enum tx_queue_prio prio)
1612 {
1613 	u32 val;
1614 
1615 	WARN_ON(hw->mac.type != e1000_i210);
1616 	WARN_ON(queue < 0 || queue > 4);
1617 
1618 	val = rd32(E1000_I210_TXDCTL(queue));
1619 
1620 	if (prio == TX_QUEUE_PRIO_HIGH)
1621 		val |= E1000_TXDCTL_PRIORITY;
1622 	else
1623 		val &= ~E1000_TXDCTL_PRIORITY;
1624 
1625 	wr32(E1000_I210_TXDCTL(queue), val);
1626 }
1627 
1628 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1629 {
1630 	u32 val;
1631 
1632 	WARN_ON(hw->mac.type != e1000_i210);
1633 	WARN_ON(queue < 0 || queue > 1);
1634 
1635 	val = rd32(E1000_I210_TQAVCC(queue));
1636 
1637 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1638 		val |= E1000_TQAVCC_QUEUEMODE;
1639 	else
1640 		val &= ~E1000_TQAVCC_QUEUEMODE;
1641 
1642 	wr32(E1000_I210_TQAVCC(queue), val);
1643 }
1644 
1645 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1646 {
1647 	int i;
1648 
1649 	for (i = 0; i < adapter->num_tx_queues; i++) {
1650 		if (adapter->tx_ring[i]->cbs_enable)
1651 			return true;
1652 	}
1653 
1654 	return false;
1655 }
1656 
1657 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1658 {
1659 	int i;
1660 
1661 	for (i = 0; i < adapter->num_tx_queues; i++) {
1662 		if (adapter->tx_ring[i]->launchtime_enable)
1663 			return true;
1664 	}
1665 
1666 	return false;
1667 }
1668 
1669 /**
1670  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671  *  @adapter: pointer to adapter struct
1672  *  @queue: queue number
1673  *
1674  *  Configure CBS and Launchtime for a given hardware queue.
1675  *  Parameters are retrieved from the correct Tx ring, so
1676  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1677  *  for setting those correctly prior to this function being called.
1678  **/
1679 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1680 {
1681 	struct igb_ring *ring = adapter->tx_ring[queue];
1682 	struct net_device *netdev = adapter->netdev;
1683 	struct e1000_hw *hw = &adapter->hw;
1684 	u32 tqavcc, tqavctrl;
1685 	u16 value;
1686 
1687 	WARN_ON(hw->mac.type != e1000_i210);
1688 	WARN_ON(queue < 0 || queue > 1);
1689 
1690 	/* If any of the Qav features is enabled, configure queues as SR and
1691 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1692 	 * as SP.
1693 	 */
1694 	if (ring->cbs_enable || ring->launchtime_enable) {
1695 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1696 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1697 	} else {
1698 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1699 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1700 	}
1701 
1702 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1703 	if (ring->cbs_enable || queue == 0) {
1704 		/* i210 does not allow the queue 0 to be in the Strict
1705 		 * Priority mode while the Qav mode is enabled, so,
1706 		 * instead of disabling strict priority mode, we give
1707 		 * queue 0 the maximum of credits possible.
1708 		 *
1709 		 * See section 8.12.19 of the i210 datasheet, "Note:
1710 		 * Queue0 QueueMode must be set to 1b when
1711 		 * TransmitMode is set to Qav."
1712 		 */
1713 		if (queue == 0 && !ring->cbs_enable) {
1714 			/* max "linkspeed" idleslope in kbps */
1715 			ring->idleslope = 1000000;
1716 			ring->hicredit = ETH_FRAME_LEN;
1717 		}
1718 
1719 		/* Always set data transfer arbitration to credit-based
1720 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1721 		 * the queues.
1722 		 */
1723 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1724 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1725 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1726 
1727 		/* According to i210 datasheet section 7.2.7.7, we should set
1728 		 * the 'idleSlope' field from TQAVCC register following the
1729 		 * equation:
1730 		 *
1731 		 * For 100 Mbps link speed:
1732 		 *
1733 		 *     value = BW * 0x7735 * 0.2                          (E1)
1734 		 *
1735 		 * For 1000Mbps link speed:
1736 		 *
1737 		 *     value = BW * 0x7735 * 2                            (E2)
1738 		 *
1739 		 * E1 and E2 can be merged into one equation as shown below.
1740 		 * Note that 'link-speed' is in Mbps.
1741 		 *
1742 		 *     value = BW * 0x7735 * 2 * link-speed
1743 		 *                           --------------               (E3)
1744 		 *                                1000
1745 		 *
1746 		 * 'BW' is the percentage bandwidth out of full link speed
1747 		 * which can be found with the following equation. Note that
1748 		 * idleSlope here is the parameter from this function which
1749 		 * is in kbps.
1750 		 *
1751 		 *     BW =     idleSlope
1752 		 *          -----------------                             (E4)
1753 		 *          link-speed * 1000
1754 		 *
1755 		 * That said, we can come up with a generic equation to
1756 		 * calculate the value we should set it TQAVCC register by
1757 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1758 		 *
1759 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1760 		 *         -----------------            --------------    (E5)
1761 		 *         link-speed * 1000                 1000
1762 		 *
1763 		 * 'link-speed' is present in both sides of the fraction so
1764 		 * it is canceled out. The final equation is the following:
1765 		 *
1766 		 *     value = idleSlope * 61034
1767 		 *             -----------------                          (E6)
1768 		 *                  1000000
1769 		 *
1770 		 * NOTE: For i210, given the above, we can see that idleslope
1771 		 *       is represented in 16.38431 kbps units by the value at
1772 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1773 		 *       the granularity for idleslope increments.
1774 		 *       For instance, if you want to configure a 2576kbps
1775 		 *       idleslope, the value to be written on the register
1776 		 *       would have to be 157.23. If rounded down, you end
1777 		 *       up with less bandwidth available than originally
1778 		 *       required (~2572 kbps). If rounded up, you end up
1779 		 *       with a higher bandwidth (~2589 kbps). Below the
1780 		 *       approach we take is to always round up the
1781 		 *       calculated value, so the resulting bandwidth might
1782 		 *       be slightly higher for some configurations.
1783 		 */
1784 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1785 
1786 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1787 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1788 		tqavcc |= value;
1789 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790 
1791 		wr32(E1000_I210_TQAVHC(queue),
1792 		     0x80000000 + ring->hicredit * 0x7735);
1793 	} else {
1794 
1795 		/* Set idleSlope to zero. */
1796 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1797 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		/* Set hiCredit to zero. */
1801 		wr32(E1000_I210_TQAVHC(queue), 0);
1802 
1803 		/* If CBS is not enabled for any queues anymore, then return to
1804 		 * the default state of Data Transmission Arbitration on
1805 		 * TQAVCTRL.
1806 		 */
1807 		if (!is_any_cbs_enabled(adapter)) {
1808 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1809 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1810 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1811 		}
1812 	}
1813 
1814 	/* If LaunchTime is enabled, set DataTranTIM. */
1815 	if (ring->launchtime_enable) {
1816 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817 		 * for any of the SR queues, and configure fetchtime delta.
1818 		 * XXX NOTE:
1819 		 *     - LaunchTime will be enabled for all SR queues.
1820 		 *     - A fixed offset can be added relative to the launch
1821 		 *       time of all packets if configured at reg LAUNCH_OS0.
1822 		 *       We are keeping it as 0 for now (default value).
1823 		 */
1824 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1825 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1826 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1827 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1828 	} else {
1829 		/* If Launchtime is not enabled for any SR queues anymore,
1830 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831 		 * effectively disabling Launchtime.
1832 		 */
1833 		if (!is_any_txtime_enabled(adapter)) {
1834 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1835 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1836 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1837 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838 		}
1839 	}
1840 
1841 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1842 	 * CBS are not configurable by software so we don't do any 'controller
1843 	 * configuration' in respect to these parameters.
1844 	 */
1845 
1846 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847 		   ring->cbs_enable ? "enabled" : "disabled",
1848 		   ring->launchtime_enable ? "enabled" : "disabled",
1849 		   queue,
1850 		   ring->idleslope, ring->sendslope,
1851 		   ring->hicredit, ring->locredit);
1852 }
1853 
1854 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1855 				  bool enable)
1856 {
1857 	struct igb_ring *ring;
1858 
1859 	if (queue < 0 || queue > adapter->num_tx_queues)
1860 		return -EINVAL;
1861 
1862 	ring = adapter->tx_ring[queue];
1863 	ring->launchtime_enable = enable;
1864 
1865 	return 0;
1866 }
1867 
1868 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1869 			       bool enable, int idleslope, int sendslope,
1870 			       int hicredit, int locredit)
1871 {
1872 	struct igb_ring *ring;
1873 
1874 	if (queue < 0 || queue > adapter->num_tx_queues)
1875 		return -EINVAL;
1876 
1877 	ring = adapter->tx_ring[queue];
1878 
1879 	ring->cbs_enable = enable;
1880 	ring->idleslope = idleslope;
1881 	ring->sendslope = sendslope;
1882 	ring->hicredit = hicredit;
1883 	ring->locredit = locredit;
1884 
1885 	return 0;
1886 }
1887 
1888 /**
1889  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890  *  @adapter: pointer to adapter struct
1891  *
1892  *  Configure TQAVCTRL register switching the controller's Tx mode
1893  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1894  *  a call to igb_config_tx_modes() per queue so any previously saved
1895  *  Tx parameters are applied.
1896  **/
1897 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1898 {
1899 	struct net_device *netdev = adapter->netdev;
1900 	struct e1000_hw *hw = &adapter->hw;
1901 	u32 val;
1902 
1903 	/* Only i210 controller supports changing the transmission mode. */
1904 	if (hw->mac.type != e1000_i210)
1905 		return;
1906 
1907 	if (is_fqtss_enabled(adapter)) {
1908 		int i, max_queue;
1909 
1910 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912 		 * so SP queues wait for SR ones.
1913 		 */
1914 		val = rd32(E1000_I210_TQAVCTRL);
1915 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1916 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1917 		wr32(E1000_I210_TQAVCTRL, val);
1918 
1919 		/* Configure Tx and Rx packet buffers sizes as described in
1920 		 * i210 datasheet section 7.2.7.7.
1921 		 */
1922 		val = rd32(E1000_TXPBS);
1923 		val &= ~I210_TXPBSIZE_MASK;
1924 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1925 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1926 		wr32(E1000_TXPBS, val);
1927 
1928 		val = rd32(E1000_RXPBS);
1929 		val &= ~I210_RXPBSIZE_MASK;
1930 		val |= I210_RXPBSIZE_PB_30KB;
1931 		wr32(E1000_RXPBS, val);
1932 
1933 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934 		 * register should not exceed the buffer size programmed in
1935 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1937 		 * 4kB / 64.
1938 		 *
1939 		 * However, when we do so, no frame from queue 2 and 3 are
1940 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1941 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1942 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1943 		 */
1944 		val = (4096 - 1) / 64;
1945 		wr32(E1000_I210_DTXMXPKTSZ, val);
1946 
1947 		/* Since FQTSS mode is enabled, apply any CBS configuration
1948 		 * previously set. If no previous CBS configuration has been
1949 		 * done, then the initial configuration is applied, which means
1950 		 * CBS is disabled.
1951 		 */
1952 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1953 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1954 
1955 		for (i = 0; i < max_queue; i++) {
1956 			igb_config_tx_modes(adapter, i);
1957 		}
1958 	} else {
1959 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1960 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1961 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1962 
1963 		val = rd32(E1000_I210_TQAVCTRL);
1964 		/* According to Section 8.12.21, the other flags we've set when
1965 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1966 		 * don't set they here.
1967 		 */
1968 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1969 		wr32(E1000_I210_TQAVCTRL, val);
1970 	}
1971 
1972 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1973 		   "enabled" : "disabled");
1974 }
1975 
1976 /**
1977  *  igb_configure - configure the hardware for RX and TX
1978  *  @adapter: private board structure
1979  **/
1980 static void igb_configure(struct igb_adapter *adapter)
1981 {
1982 	struct net_device *netdev = adapter->netdev;
1983 	int i;
1984 
1985 	igb_get_hw_control(adapter);
1986 	igb_set_rx_mode(netdev);
1987 	igb_setup_tx_mode(adapter);
1988 
1989 	igb_restore_vlan(adapter);
1990 
1991 	igb_setup_tctl(adapter);
1992 	igb_setup_mrqc(adapter);
1993 	igb_setup_rctl(adapter);
1994 
1995 	igb_nfc_filter_restore(adapter);
1996 	igb_configure_tx(adapter);
1997 	igb_configure_rx(adapter);
1998 
1999 	igb_rx_fifo_flush_82575(&adapter->hw);
2000 
2001 	/* call igb_desc_unused which always leaves
2002 	 * at least 1 descriptor unused to make sure
2003 	 * next_to_use != next_to_clean
2004 	 */
2005 	for (i = 0; i < adapter->num_rx_queues; i++) {
2006 		struct igb_ring *ring = adapter->rx_ring[i];
2007 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2008 	}
2009 }
2010 
2011 /**
2012  *  igb_power_up_link - Power up the phy/serdes link
2013  *  @adapter: address of board private structure
2014  **/
2015 void igb_power_up_link(struct igb_adapter *adapter)
2016 {
2017 	igb_reset_phy(&adapter->hw);
2018 
2019 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020 		igb_power_up_phy_copper(&adapter->hw);
2021 	else
2022 		igb_power_up_serdes_link_82575(&adapter->hw);
2023 
2024 	igb_setup_link(&adapter->hw);
2025 }
2026 
2027 /**
2028  *  igb_power_down_link - Power down the phy/serdes link
2029  *  @adapter: address of board private structure
2030  */
2031 static void igb_power_down_link(struct igb_adapter *adapter)
2032 {
2033 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034 		igb_power_down_phy_copper_82575(&adapter->hw);
2035 	else
2036 		igb_shutdown_serdes_link_82575(&adapter->hw);
2037 }
2038 
2039 /**
2040  * Detect and switch function for Media Auto Sense
2041  * @adapter: address of the board private structure
2042  **/
2043 static void igb_check_swap_media(struct igb_adapter *adapter)
2044 {
2045 	struct e1000_hw *hw = &adapter->hw;
2046 	u32 ctrl_ext, connsw;
2047 	bool swap_now = false;
2048 
2049 	ctrl_ext = rd32(E1000_CTRL_EXT);
2050 	connsw = rd32(E1000_CONNSW);
2051 
2052 	/* need to live swap if current media is copper and we have fiber/serdes
2053 	 * to go to.
2054 	 */
2055 
2056 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2057 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2058 		swap_now = true;
2059 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2060 		   !(connsw & E1000_CONNSW_SERDESD)) {
2061 		/* copper signal takes time to appear */
2062 		if (adapter->copper_tries < 4) {
2063 			adapter->copper_tries++;
2064 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2065 			wr32(E1000_CONNSW, connsw);
2066 			return;
2067 		} else {
2068 			adapter->copper_tries = 0;
2069 			if ((connsw & E1000_CONNSW_PHYSD) &&
2070 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2071 				swap_now = true;
2072 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2073 				wr32(E1000_CONNSW, connsw);
2074 			}
2075 		}
2076 	}
2077 
2078 	if (!swap_now)
2079 		return;
2080 
2081 	switch (hw->phy.media_type) {
2082 	case e1000_media_type_copper:
2083 		netdev_info(adapter->netdev,
2084 			"MAS: changing media to fiber/serdes\n");
2085 		ctrl_ext |=
2086 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2087 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2088 		adapter->copper_tries = 0;
2089 		break;
2090 	case e1000_media_type_internal_serdes:
2091 	case e1000_media_type_fiber:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to copper\n");
2094 		ctrl_ext &=
2095 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		break;
2098 	default:
2099 		/* shouldn't get here during regular operation */
2100 		netdev_err(adapter->netdev,
2101 			"AMS: Invalid media type found, returning\n");
2102 		break;
2103 	}
2104 	wr32(E1000_CTRL_EXT, ctrl_ext);
2105 }
2106 
2107 /**
2108  *  igb_up - Open the interface and prepare it to handle traffic
2109  *  @adapter: board private structure
2110  **/
2111 int igb_up(struct igb_adapter *adapter)
2112 {
2113 	struct e1000_hw *hw = &adapter->hw;
2114 	int i;
2115 
2116 	/* hardware has been reset, we need to reload some things */
2117 	igb_configure(adapter);
2118 
2119 	clear_bit(__IGB_DOWN, &adapter->state);
2120 
2121 	for (i = 0; i < adapter->num_q_vectors; i++)
2122 		napi_enable(&(adapter->q_vector[i]->napi));
2123 
2124 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2125 		igb_configure_msix(adapter);
2126 	else
2127 		igb_assign_vector(adapter->q_vector[0], 0);
2128 
2129 	/* Clear any pending interrupts. */
2130 	rd32(E1000_TSICR);
2131 	rd32(E1000_ICR);
2132 	igb_irq_enable(adapter);
2133 
2134 	/* notify VFs that reset has been completed */
2135 	if (adapter->vfs_allocated_count) {
2136 		u32 reg_data = rd32(E1000_CTRL_EXT);
2137 
2138 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2139 		wr32(E1000_CTRL_EXT, reg_data);
2140 	}
2141 
2142 	netif_tx_start_all_queues(adapter->netdev);
2143 
2144 	/* start the watchdog. */
2145 	hw->mac.get_link_status = 1;
2146 	schedule_work(&adapter->watchdog_task);
2147 
2148 	if ((adapter->flags & IGB_FLAG_EEE) &&
2149 	    (!hw->dev_spec._82575.eee_disable))
2150 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2151 
2152 	return 0;
2153 }
2154 
2155 void igb_down(struct igb_adapter *adapter)
2156 {
2157 	struct net_device *netdev = adapter->netdev;
2158 	struct e1000_hw *hw = &adapter->hw;
2159 	u32 tctl, rctl;
2160 	int i;
2161 
2162 	/* signal that we're down so the interrupt handler does not
2163 	 * reschedule our watchdog timer
2164 	 */
2165 	set_bit(__IGB_DOWN, &adapter->state);
2166 
2167 	/* disable receives in the hardware */
2168 	rctl = rd32(E1000_RCTL);
2169 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170 	/* flush and sleep below */
2171 
2172 	igb_nfc_filter_exit(adapter);
2173 
2174 	netif_carrier_off(netdev);
2175 	netif_tx_stop_all_queues(netdev);
2176 
2177 	/* disable transmits in the hardware */
2178 	tctl = rd32(E1000_TCTL);
2179 	tctl &= ~E1000_TCTL_EN;
2180 	wr32(E1000_TCTL, tctl);
2181 	/* flush both disables and wait for them to finish */
2182 	wrfl();
2183 	usleep_range(10000, 11000);
2184 
2185 	igb_irq_disable(adapter);
2186 
2187 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2188 
2189 	for (i = 0; i < adapter->num_q_vectors; i++) {
2190 		if (adapter->q_vector[i]) {
2191 			napi_synchronize(&adapter->q_vector[i]->napi);
2192 			napi_disable(&adapter->q_vector[i]->napi);
2193 		}
2194 	}
2195 
2196 	del_timer_sync(&adapter->watchdog_timer);
2197 	del_timer_sync(&adapter->phy_info_timer);
2198 
2199 	/* record the stats before reset*/
2200 	spin_lock(&adapter->stats64_lock);
2201 	igb_update_stats(adapter);
2202 	spin_unlock(&adapter->stats64_lock);
2203 
2204 	adapter->link_speed = 0;
2205 	adapter->link_duplex = 0;
2206 
2207 	if (!pci_channel_offline(adapter->pdev))
2208 		igb_reset(adapter);
2209 
2210 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2211 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2212 
2213 	igb_clean_all_tx_rings(adapter);
2214 	igb_clean_all_rx_rings(adapter);
2215 #ifdef CONFIG_IGB_DCA
2216 
2217 	/* since we reset the hardware DCA settings were cleared */
2218 	igb_setup_dca(adapter);
2219 #endif
2220 }
2221 
2222 void igb_reinit_locked(struct igb_adapter *adapter)
2223 {
2224 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225 		usleep_range(1000, 2000);
2226 	igb_down(adapter);
2227 	igb_up(adapter);
2228 	clear_bit(__IGB_RESETTING, &adapter->state);
2229 }
2230 
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2232  *
2233  * @adapter: adapter struct
2234  **/
2235 static void igb_enable_mas(struct igb_adapter *adapter)
2236 {
2237 	struct e1000_hw *hw = &adapter->hw;
2238 	u32 connsw = rd32(E1000_CONNSW);
2239 
2240 	/* configure for SerDes media detect */
2241 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2242 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2243 		connsw |= E1000_CONNSW_ENRGSRC;
2244 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245 		wr32(E1000_CONNSW, connsw);
2246 		wrfl();
2247 	}
2248 }
2249 
2250 void igb_reset(struct igb_adapter *adapter)
2251 {
2252 	struct pci_dev *pdev = adapter->pdev;
2253 	struct e1000_hw *hw = &adapter->hw;
2254 	struct e1000_mac_info *mac = &hw->mac;
2255 	struct e1000_fc_info *fc = &hw->fc;
2256 	u32 pba, hwm;
2257 
2258 	/* Repartition Pba for greater than 9k mtu
2259 	 * To take effect CTRL.RST is required.
2260 	 */
2261 	switch (mac->type) {
2262 	case e1000_i350:
2263 	case e1000_i354:
2264 	case e1000_82580:
2265 		pba = rd32(E1000_RXPBS);
2266 		pba = igb_rxpbs_adjust_82580(pba);
2267 		break;
2268 	case e1000_82576:
2269 		pba = rd32(E1000_RXPBS);
2270 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2271 		break;
2272 	case e1000_82575:
2273 	case e1000_i210:
2274 	case e1000_i211:
2275 	default:
2276 		pba = E1000_PBA_34K;
2277 		break;
2278 	}
2279 
2280 	if (mac->type == e1000_82575) {
2281 		u32 min_rx_space, min_tx_space, needed_tx_space;
2282 
2283 		/* write Rx PBA so that hardware can report correct Tx PBA */
2284 		wr32(E1000_PBA, pba);
2285 
2286 		/* To maintain wire speed transmits, the Tx FIFO should be
2287 		 * large enough to accommodate two full transmit packets,
2288 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2289 		 * the Rx FIFO should be large enough to accommodate at least
2290 		 * one full receive packet and is similarly rounded up and
2291 		 * expressed in KB.
2292 		 */
2293 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294 
2295 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2296 		 * but don't include Ethernet FCS because hardware appends it.
2297 		 * We only need to round down to the nearest 512 byte block
2298 		 * count since the value we care about is 2 frames, not 1.
2299 		 */
2300 		min_tx_space = adapter->max_frame_size;
2301 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303 
2304 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2305 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306 
2307 		/* If current Tx allocation is less than the min Tx FIFO size,
2308 		 * and the min Tx FIFO size is less than the current Rx FIFO
2309 		 * allocation, take space away from current Rx allocation.
2310 		 */
2311 		if (needed_tx_space < pba) {
2312 			pba -= needed_tx_space;
2313 
2314 			/* if short on Rx space, Rx wins and must trump Tx
2315 			 * adjustment
2316 			 */
2317 			if (pba < min_rx_space)
2318 				pba = min_rx_space;
2319 		}
2320 
2321 		/* adjust PBA for jumbo frames */
2322 		wr32(E1000_PBA, pba);
2323 	}
2324 
2325 	/* flow control settings
2326 	 * The high water mark must be low enough to fit one full frame
2327 	 * after transmitting the pause frame.  As such we must have enough
2328 	 * space to allow for us to complete our current transmit and then
2329 	 * receive the frame that is in progress from the link partner.
2330 	 * Set it to:
2331 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332 	 */
2333 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334 
2335 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2336 	fc->low_water = fc->high_water - 16;
2337 	fc->pause_time = 0xFFFF;
2338 	fc->send_xon = 1;
2339 	fc->current_mode = fc->requested_mode;
2340 
2341 	/* disable receive for all VFs and wait one second */
2342 	if (adapter->vfs_allocated_count) {
2343 		int i;
2344 
2345 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347 
2348 		/* ping all the active vfs to let them know we are going down */
2349 		igb_ping_all_vfs(adapter);
2350 
2351 		/* disable transmits and receives */
2352 		wr32(E1000_VFRE, 0);
2353 		wr32(E1000_VFTE, 0);
2354 	}
2355 
2356 	/* Allow time for pending master requests to run */
2357 	hw->mac.ops.reset_hw(hw);
2358 	wr32(E1000_WUC, 0);
2359 
2360 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361 		/* need to resetup here after media swap */
2362 		adapter->ei.get_invariants(hw);
2363 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364 	}
2365 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367 		igb_enable_mas(adapter);
2368 	}
2369 	if (hw->mac.ops.init_hw(hw))
2370 		dev_err(&pdev->dev, "Hardware Error\n");
2371 
2372 	/* RAR registers were cleared during init_hw, clear mac table */
2373 	igb_flush_mac_table(adapter);
2374 	__dev_uc_unsync(adapter->netdev, NULL);
2375 
2376 	/* Recover default RAR entry */
2377 	igb_set_default_mac_filter(adapter);
2378 
2379 	/* Flow control settings reset on hardware reset, so guarantee flow
2380 	 * control is off when forcing speed.
2381 	 */
2382 	if (!hw->mac.autoneg)
2383 		igb_force_mac_fc(hw);
2384 
2385 	igb_init_dmac(adapter, pba);
2386 #ifdef CONFIG_IGB_HWMON
2387 	/* Re-initialize the thermal sensor on i350 devices. */
2388 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390 			/* If present, re-initialize the external thermal sensor
2391 			 * interface.
2392 			 */
2393 			if (adapter->ets)
2394 				mac->ops.init_thermal_sensor_thresh(hw);
2395 		}
2396 	}
2397 #endif
2398 	/* Re-establish EEE setting */
2399 	if (hw->phy.media_type == e1000_media_type_copper) {
2400 		switch (mac->type) {
2401 		case e1000_i350:
2402 		case e1000_i210:
2403 		case e1000_i211:
2404 			igb_set_eee_i350(hw, true, true);
2405 			break;
2406 		case e1000_i354:
2407 			igb_set_eee_i354(hw, true, true);
2408 			break;
2409 		default:
2410 			break;
2411 		}
2412 	}
2413 	if (!netif_running(adapter->netdev))
2414 		igb_power_down_link(adapter);
2415 
2416 	igb_update_mng_vlan(adapter);
2417 
2418 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420 
2421 	/* Re-enable PTP, where applicable. */
2422 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423 		igb_ptp_reset(adapter);
2424 
2425 	igb_get_phy_info(hw);
2426 }
2427 
2428 static netdev_features_t igb_fix_features(struct net_device *netdev,
2429 	netdev_features_t features)
2430 {
2431 	/* Since there is no support for separate Rx/Tx vlan accel
2432 	 * enable/disable make sure Tx flag is always in same state as Rx.
2433 	 */
2434 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2436 	else
2437 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438 
2439 	return features;
2440 }
2441 
2442 static int igb_set_features(struct net_device *netdev,
2443 	netdev_features_t features)
2444 {
2445 	netdev_features_t changed = netdev->features ^ features;
2446 	struct igb_adapter *adapter = netdev_priv(netdev);
2447 
2448 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449 		igb_vlan_mode(netdev, features);
2450 
2451 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452 		return 0;
2453 
2454 	if (!(features & NETIF_F_NTUPLE)) {
2455 		struct hlist_node *node2;
2456 		struct igb_nfc_filter *rule;
2457 
2458 		spin_lock(&adapter->nfc_lock);
2459 		hlist_for_each_entry_safe(rule, node2,
2460 					  &adapter->nfc_filter_list, nfc_node) {
2461 			igb_erase_filter(adapter, rule);
2462 			hlist_del(&rule->nfc_node);
2463 			kfree(rule);
2464 		}
2465 		spin_unlock(&adapter->nfc_lock);
2466 		adapter->nfc_filter_count = 0;
2467 	}
2468 
2469 	netdev->features = features;
2470 
2471 	if (netif_running(netdev))
2472 		igb_reinit_locked(adapter);
2473 	else
2474 		igb_reset(adapter);
2475 
2476 	return 1;
2477 }
2478 
2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480 			   struct net_device *dev,
2481 			   const unsigned char *addr, u16 vid,
2482 			   u16 flags,
2483 			   struct netlink_ext_ack *extack)
2484 {
2485 	/* guarantee we can provide a unique filter for the unicast address */
2486 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487 		struct igb_adapter *adapter = netdev_priv(dev);
2488 		int vfn = adapter->vfs_allocated_count;
2489 
2490 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491 			return -ENOMEM;
2492 	}
2493 
2494 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495 }
2496 
2497 #define IGB_MAX_MAC_HDR_LEN	127
2498 #define IGB_MAX_NETWORK_HDR_LEN	511
2499 
2500 static netdev_features_t
2501 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502 		   netdev_features_t features)
2503 {
2504 	unsigned int network_hdr_len, mac_hdr_len;
2505 
2506 	/* Make certain the headers can be described by a context descriptor */
2507 	mac_hdr_len = skb_network_header(skb) - skb->data;
2508 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509 		return features & ~(NETIF_F_HW_CSUM |
2510 				    NETIF_F_SCTP_CRC |
2511 				    NETIF_F_GSO_UDP_L4 |
2512 				    NETIF_F_HW_VLAN_CTAG_TX |
2513 				    NETIF_F_TSO |
2514 				    NETIF_F_TSO6);
2515 
2516 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518 		return features & ~(NETIF_F_HW_CSUM |
2519 				    NETIF_F_SCTP_CRC |
2520 				    NETIF_F_GSO_UDP_L4 |
2521 				    NETIF_F_TSO |
2522 				    NETIF_F_TSO6);
2523 
2524 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2525 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526 	 */
2527 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528 		features &= ~NETIF_F_TSO;
2529 
2530 	return features;
2531 }
2532 
2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534 {
2535 	if (!is_fqtss_enabled(adapter)) {
2536 		enable_fqtss(adapter, true);
2537 		return;
2538 	}
2539 
2540 	igb_config_tx_modes(adapter, queue);
2541 
2542 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543 		enable_fqtss(adapter, false);
2544 }
2545 
2546 static int igb_offload_cbs(struct igb_adapter *adapter,
2547 			   struct tc_cbs_qopt_offload *qopt)
2548 {
2549 	struct e1000_hw *hw = &adapter->hw;
2550 	int err;
2551 
2552 	/* CBS offloading is only supported by i210 controller. */
2553 	if (hw->mac.type != e1000_i210)
2554 		return -EOPNOTSUPP;
2555 
2556 	/* CBS offloading is only supported by queue 0 and queue 1. */
2557 	if (qopt->queue < 0 || qopt->queue > 1)
2558 		return -EINVAL;
2559 
2560 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561 				  qopt->idleslope, qopt->sendslope,
2562 				  qopt->hicredit, qopt->locredit);
2563 	if (err)
2564 		return err;
2565 
2566 	igb_offload_apply(adapter, qopt->queue);
2567 
2568 	return 0;
2569 }
2570 
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2573 
2574 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575 				struct flow_cls_offload *f,
2576 				int traffic_class,
2577 				struct igb_nfc_filter *input)
2578 {
2579 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580 	struct flow_dissector *dissector = rule->match.dissector;
2581 	struct netlink_ext_ack *extack = f->common.extack;
2582 
2583 	if (dissector->used_keys &
2584 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588 		NL_SET_ERR_MSG_MOD(extack,
2589 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590 		return -EOPNOTSUPP;
2591 	}
2592 
2593 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594 		struct flow_match_eth_addrs match;
2595 
2596 		flow_rule_match_eth_addrs(rule, &match);
2597 		if (!is_zero_ether_addr(match.mask->dst)) {
2598 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2599 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600 				return -EINVAL;
2601 			}
2602 
2603 			input->filter.match_flags |=
2604 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2605 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606 		}
2607 
2608 		if (!is_zero_ether_addr(match.mask->src)) {
2609 			if (!is_broadcast_ether_addr(match.mask->src)) {
2610 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611 				return -EINVAL;
2612 			}
2613 
2614 			input->filter.match_flags |=
2615 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616 			ether_addr_copy(input->filter.src_addr, match.key->src);
2617 		}
2618 	}
2619 
2620 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621 		struct flow_match_basic match;
2622 
2623 		flow_rule_match_basic(rule, &match);
2624 		if (match.mask->n_proto) {
2625 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627 				return -EINVAL;
2628 			}
2629 
2630 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631 			input->filter.etype = match.key->n_proto;
2632 		}
2633 	}
2634 
2635 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636 		struct flow_match_vlan match;
2637 
2638 		flow_rule_match_vlan(rule, &match);
2639 		if (match.mask->vlan_priority) {
2640 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642 				return -EINVAL;
2643 			}
2644 
2645 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646 			input->filter.vlan_tci = match.key->vlan_priority;
2647 		}
2648 	}
2649 
2650 	input->action = traffic_class;
2651 	input->cookie = f->cookie;
2652 
2653 	return 0;
2654 }
2655 
2656 static int igb_configure_clsflower(struct igb_adapter *adapter,
2657 				   struct flow_cls_offload *cls_flower)
2658 {
2659 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2660 	struct igb_nfc_filter *filter, *f;
2661 	int err, tc;
2662 
2663 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664 	if (tc < 0) {
2665 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666 		return -EINVAL;
2667 	}
2668 
2669 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670 	if (!filter)
2671 		return -ENOMEM;
2672 
2673 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674 	if (err < 0)
2675 		goto err_parse;
2676 
2677 	spin_lock(&adapter->nfc_lock);
2678 
2679 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681 			err = -EEXIST;
2682 			NL_SET_ERR_MSG_MOD(extack,
2683 					   "This filter is already set in ethtool");
2684 			goto err_locked;
2685 		}
2686 	}
2687 
2688 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690 			err = -EEXIST;
2691 			NL_SET_ERR_MSG_MOD(extack,
2692 					   "This filter is already set in cls_flower");
2693 			goto err_locked;
2694 		}
2695 	}
2696 
2697 	err = igb_add_filter(adapter, filter);
2698 	if (err < 0) {
2699 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700 		goto err_locked;
2701 	}
2702 
2703 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704 
2705 	spin_unlock(&adapter->nfc_lock);
2706 
2707 	return 0;
2708 
2709 err_locked:
2710 	spin_unlock(&adapter->nfc_lock);
2711 
2712 err_parse:
2713 	kfree(filter);
2714 
2715 	return err;
2716 }
2717 
2718 static int igb_delete_clsflower(struct igb_adapter *adapter,
2719 				struct flow_cls_offload *cls_flower)
2720 {
2721 	struct igb_nfc_filter *filter;
2722 	int err;
2723 
2724 	spin_lock(&adapter->nfc_lock);
2725 
2726 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727 		if (filter->cookie == cls_flower->cookie)
2728 			break;
2729 
2730 	if (!filter) {
2731 		err = -ENOENT;
2732 		goto out;
2733 	}
2734 
2735 	err = igb_erase_filter(adapter, filter);
2736 	if (err < 0)
2737 		goto out;
2738 
2739 	hlist_del(&filter->nfc_node);
2740 	kfree(filter);
2741 
2742 out:
2743 	spin_unlock(&adapter->nfc_lock);
2744 
2745 	return err;
2746 }
2747 
2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749 				   struct flow_cls_offload *cls_flower)
2750 {
2751 	switch (cls_flower->command) {
2752 	case FLOW_CLS_REPLACE:
2753 		return igb_configure_clsflower(adapter, cls_flower);
2754 	case FLOW_CLS_DESTROY:
2755 		return igb_delete_clsflower(adapter, cls_flower);
2756 	case FLOW_CLS_STATS:
2757 		return -EOPNOTSUPP;
2758 	default:
2759 		return -EOPNOTSUPP;
2760 	}
2761 }
2762 
2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764 				 void *cb_priv)
2765 {
2766 	struct igb_adapter *adapter = cb_priv;
2767 
2768 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769 		return -EOPNOTSUPP;
2770 
2771 	switch (type) {
2772 	case TC_SETUP_CLSFLOWER:
2773 		return igb_setup_tc_cls_flower(adapter, type_data);
2774 
2775 	default:
2776 		return -EOPNOTSUPP;
2777 	}
2778 }
2779 
2780 static int igb_offload_txtime(struct igb_adapter *adapter,
2781 			      struct tc_etf_qopt_offload *qopt)
2782 {
2783 	struct e1000_hw *hw = &adapter->hw;
2784 	int err;
2785 
2786 	/* Launchtime offloading is only supported by i210 controller. */
2787 	if (hw->mac.type != e1000_i210)
2788 		return -EOPNOTSUPP;
2789 
2790 	/* Launchtime offloading is only supported by queues 0 and 1. */
2791 	if (qopt->queue < 0 || qopt->queue > 1)
2792 		return -EINVAL;
2793 
2794 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795 	if (err)
2796 		return err;
2797 
2798 	igb_offload_apply(adapter, qopt->queue);
2799 
2800 	return 0;
2801 }
2802 
2803 static LIST_HEAD(igb_block_cb_list);
2804 
2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806 			void *type_data)
2807 {
2808 	struct igb_adapter *adapter = netdev_priv(dev);
2809 
2810 	switch (type) {
2811 	case TC_SETUP_QDISC_CBS:
2812 		return igb_offload_cbs(adapter, type_data);
2813 	case TC_SETUP_BLOCK:
2814 		return flow_block_cb_setup_simple(type_data,
2815 						  &igb_block_cb_list,
2816 						  igb_setup_tc_block_cb,
2817 						  adapter, adapter, true);
2818 
2819 	case TC_SETUP_QDISC_ETF:
2820 		return igb_offload_txtime(adapter, type_data);
2821 
2822 	default:
2823 		return -EOPNOTSUPP;
2824 	}
2825 }
2826 
2827 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2828 {
2829 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2830 	struct igb_adapter *adapter = netdev_priv(dev);
2831 	struct bpf_prog *prog = bpf->prog, *old_prog;
2832 	bool running = netif_running(dev);
2833 	bool need_reset;
2834 
2835 	/* verify igb ring attributes are sufficient for XDP */
2836 	for (i = 0; i < adapter->num_rx_queues; i++) {
2837 		struct igb_ring *ring = adapter->rx_ring[i];
2838 
2839 		if (frame_size > igb_rx_bufsz(ring)) {
2840 			NL_SET_ERR_MSG_MOD(bpf->extack,
2841 					   "The RX buffer size is too small for the frame size");
2842 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2843 				    igb_rx_bufsz(ring), frame_size);
2844 			return -EINVAL;
2845 		}
2846 	}
2847 
2848 	old_prog = xchg(&adapter->xdp_prog, prog);
2849 	need_reset = (!!prog != !!old_prog);
2850 
2851 	/* device is up and bpf is added/removed, must setup the RX queues */
2852 	if (need_reset && running) {
2853 		igb_close(dev);
2854 	} else {
2855 		for (i = 0; i < adapter->num_rx_queues; i++)
2856 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2857 			    adapter->xdp_prog);
2858 	}
2859 
2860 	if (old_prog)
2861 		bpf_prog_put(old_prog);
2862 
2863 	/* bpf is just replaced, RXQ and MTU are already setup */
2864 	if (!need_reset)
2865 		return 0;
2866 
2867 	if (running)
2868 		igb_open(dev);
2869 
2870 	return 0;
2871 }
2872 
2873 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2874 {
2875 	switch (xdp->command) {
2876 	case XDP_SETUP_PROG:
2877 		return igb_xdp_setup(dev, xdp);
2878 	default:
2879 		return -EINVAL;
2880 	}
2881 }
2882 
2883 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2884 {
2885 	/* Force memory writes to complete before letting h/w know there
2886 	 * are new descriptors to fetch.
2887 	 */
2888 	wmb();
2889 	writel(ring->next_to_use, ring->tail);
2890 }
2891 
2892 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2893 {
2894 	unsigned int r_idx = smp_processor_id();
2895 
2896 	if (r_idx >= adapter->num_tx_queues)
2897 		r_idx = r_idx % adapter->num_tx_queues;
2898 
2899 	return adapter->tx_ring[r_idx];
2900 }
2901 
2902 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2903 {
2904 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2905 	int cpu = smp_processor_id();
2906 	struct igb_ring *tx_ring;
2907 	struct netdev_queue *nq;
2908 	u32 ret;
2909 
2910 	if (unlikely(!xdpf))
2911 		return IGB_XDP_CONSUMED;
2912 
2913 	/* During program transitions its possible adapter->xdp_prog is assigned
2914 	 * but ring has not been configured yet. In this case simply abort xmit.
2915 	 */
2916 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2917 	if (unlikely(!tx_ring))
2918 		return IGB_XDP_CONSUMED;
2919 
2920 	nq = txring_txq(tx_ring);
2921 	__netif_tx_lock(nq, cpu);
2922 	/* Avoid transmit queue timeout since we share it with the slow path */
2923 	nq->trans_start = jiffies;
2924 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2925 	__netif_tx_unlock(nq);
2926 
2927 	return ret;
2928 }
2929 
2930 static int igb_xdp_xmit(struct net_device *dev, int n,
2931 			struct xdp_frame **frames, u32 flags)
2932 {
2933 	struct igb_adapter *adapter = netdev_priv(dev);
2934 	int cpu = smp_processor_id();
2935 	struct igb_ring *tx_ring;
2936 	struct netdev_queue *nq;
2937 	int drops = 0;
2938 	int i;
2939 
2940 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2941 		return -ENETDOWN;
2942 
2943 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2944 		return -EINVAL;
2945 
2946 	/* During program transitions its possible adapter->xdp_prog is assigned
2947 	 * but ring has not been configured yet. In this case simply abort xmit.
2948 	 */
2949 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2950 	if (unlikely(!tx_ring))
2951 		return -ENXIO;
2952 
2953 	nq = txring_txq(tx_ring);
2954 	__netif_tx_lock(nq, cpu);
2955 
2956 	/* Avoid transmit queue timeout since we share it with the slow path */
2957 	nq->trans_start = jiffies;
2958 
2959 	for (i = 0; i < n; i++) {
2960 		struct xdp_frame *xdpf = frames[i];
2961 		int err;
2962 
2963 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2964 		if (err != IGB_XDP_TX) {
2965 			xdp_return_frame_rx_napi(xdpf);
2966 			drops++;
2967 		}
2968 	}
2969 
2970 	__netif_tx_unlock(nq);
2971 
2972 	if (unlikely(flags & XDP_XMIT_FLUSH))
2973 		igb_xdp_ring_update_tail(tx_ring);
2974 
2975 	return n - drops;
2976 }
2977 
2978 static const struct net_device_ops igb_netdev_ops = {
2979 	.ndo_open		= igb_open,
2980 	.ndo_stop		= igb_close,
2981 	.ndo_start_xmit		= igb_xmit_frame,
2982 	.ndo_get_stats64	= igb_get_stats64,
2983 	.ndo_set_rx_mode	= igb_set_rx_mode,
2984 	.ndo_set_mac_address	= igb_set_mac,
2985 	.ndo_change_mtu		= igb_change_mtu,
2986 	.ndo_do_ioctl		= igb_ioctl,
2987 	.ndo_tx_timeout		= igb_tx_timeout,
2988 	.ndo_validate_addr	= eth_validate_addr,
2989 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2990 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2991 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2992 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2993 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2994 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2995 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2996 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2997 	.ndo_fix_features	= igb_fix_features,
2998 	.ndo_set_features	= igb_set_features,
2999 	.ndo_fdb_add		= igb_ndo_fdb_add,
3000 	.ndo_features_check	= igb_features_check,
3001 	.ndo_setup_tc		= igb_setup_tc,
3002 	.ndo_bpf		= igb_xdp,
3003 	.ndo_xdp_xmit		= igb_xdp_xmit,
3004 };
3005 
3006 /**
3007  * igb_set_fw_version - Configure version string for ethtool
3008  * @adapter: adapter struct
3009  **/
3010 void igb_set_fw_version(struct igb_adapter *adapter)
3011 {
3012 	struct e1000_hw *hw = &adapter->hw;
3013 	struct e1000_fw_version fw;
3014 
3015 	igb_get_fw_version(hw, &fw);
3016 
3017 	switch (hw->mac.type) {
3018 	case e1000_i210:
3019 	case e1000_i211:
3020 		if (!(igb_get_flash_presence_i210(hw))) {
3021 			snprintf(adapter->fw_version,
3022 				 sizeof(adapter->fw_version),
3023 				 "%2d.%2d-%d",
3024 				 fw.invm_major, fw.invm_minor,
3025 				 fw.invm_img_type);
3026 			break;
3027 		}
3028 		fallthrough;
3029 	default:
3030 		/* if option is rom valid, display its version too */
3031 		if (fw.or_valid) {
3032 			snprintf(adapter->fw_version,
3033 				 sizeof(adapter->fw_version),
3034 				 "%d.%d, 0x%08x, %d.%d.%d",
3035 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3036 				 fw.or_major, fw.or_build, fw.or_patch);
3037 		/* no option rom */
3038 		} else if (fw.etrack_id != 0X0000) {
3039 			snprintf(adapter->fw_version,
3040 			    sizeof(adapter->fw_version),
3041 			    "%d.%d, 0x%08x",
3042 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3043 		} else {
3044 		snprintf(adapter->fw_version,
3045 		    sizeof(adapter->fw_version),
3046 		    "%d.%d.%d",
3047 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3048 		}
3049 		break;
3050 	}
3051 }
3052 
3053 /**
3054  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3055  *
3056  * @adapter: adapter struct
3057  **/
3058 static void igb_init_mas(struct igb_adapter *adapter)
3059 {
3060 	struct e1000_hw *hw = &adapter->hw;
3061 	u16 eeprom_data;
3062 
3063 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3064 	switch (hw->bus.func) {
3065 	case E1000_FUNC_0:
3066 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3067 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3068 			netdev_info(adapter->netdev,
3069 				"MAS: Enabling Media Autosense for port %d\n",
3070 				hw->bus.func);
3071 		}
3072 		break;
3073 	case E1000_FUNC_1:
3074 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3075 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3076 			netdev_info(adapter->netdev,
3077 				"MAS: Enabling Media Autosense for port %d\n",
3078 				hw->bus.func);
3079 		}
3080 		break;
3081 	case E1000_FUNC_2:
3082 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3083 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3084 			netdev_info(adapter->netdev,
3085 				"MAS: Enabling Media Autosense for port %d\n",
3086 				hw->bus.func);
3087 		}
3088 		break;
3089 	case E1000_FUNC_3:
3090 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3091 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3092 			netdev_info(adapter->netdev,
3093 				"MAS: Enabling Media Autosense for port %d\n",
3094 				hw->bus.func);
3095 		}
3096 		break;
3097 	default:
3098 		/* Shouldn't get here */
3099 		netdev_err(adapter->netdev,
3100 			"MAS: Invalid port configuration, returning\n");
3101 		break;
3102 	}
3103 }
3104 
3105 /**
3106  *  igb_init_i2c - Init I2C interface
3107  *  @adapter: pointer to adapter structure
3108  **/
3109 static s32 igb_init_i2c(struct igb_adapter *adapter)
3110 {
3111 	s32 status = 0;
3112 
3113 	/* I2C interface supported on i350 devices */
3114 	if (adapter->hw.mac.type != e1000_i350)
3115 		return 0;
3116 
3117 	/* Initialize the i2c bus which is controlled by the registers.
3118 	 * This bus will use the i2c_algo_bit structue that implements
3119 	 * the protocol through toggling of the 4 bits in the register.
3120 	 */
3121 	adapter->i2c_adap.owner = THIS_MODULE;
3122 	adapter->i2c_algo = igb_i2c_algo;
3123 	adapter->i2c_algo.data = adapter;
3124 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3125 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3126 	strlcpy(adapter->i2c_adap.name, "igb BB",
3127 		sizeof(adapter->i2c_adap.name));
3128 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3129 	return status;
3130 }
3131 
3132 /**
3133  *  igb_probe - Device Initialization Routine
3134  *  @pdev: PCI device information struct
3135  *  @ent: entry in igb_pci_tbl
3136  *
3137  *  Returns 0 on success, negative on failure
3138  *
3139  *  igb_probe initializes an adapter identified by a pci_dev structure.
3140  *  The OS initialization, configuring of the adapter private structure,
3141  *  and a hardware reset occur.
3142  **/
3143 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3144 {
3145 	struct net_device *netdev;
3146 	struct igb_adapter *adapter;
3147 	struct e1000_hw *hw;
3148 	u16 eeprom_data = 0;
3149 	s32 ret_val;
3150 	static int global_quad_port_a; /* global quad port a indication */
3151 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3152 	int err, pci_using_dac;
3153 	u8 part_str[E1000_PBANUM_LENGTH];
3154 
3155 	/* Catch broken hardware that put the wrong VF device ID in
3156 	 * the PCIe SR-IOV capability.
3157 	 */
3158 	if (pdev->is_virtfn) {
3159 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3160 			pci_name(pdev), pdev->vendor, pdev->device);
3161 		return -EINVAL;
3162 	}
3163 
3164 	err = pci_enable_device_mem(pdev);
3165 	if (err)
3166 		return err;
3167 
3168 	pci_using_dac = 0;
3169 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3170 	if (!err) {
3171 		pci_using_dac = 1;
3172 	} else {
3173 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3174 		if (err) {
3175 			dev_err(&pdev->dev,
3176 				"No usable DMA configuration, aborting\n");
3177 			goto err_dma;
3178 		}
3179 	}
3180 
3181 	err = pci_request_mem_regions(pdev, igb_driver_name);
3182 	if (err)
3183 		goto err_pci_reg;
3184 
3185 	pci_enable_pcie_error_reporting(pdev);
3186 
3187 	pci_set_master(pdev);
3188 	pci_save_state(pdev);
3189 
3190 	err = -ENOMEM;
3191 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3192 				   IGB_MAX_TX_QUEUES);
3193 	if (!netdev)
3194 		goto err_alloc_etherdev;
3195 
3196 	SET_NETDEV_DEV(netdev, &pdev->dev);
3197 
3198 	pci_set_drvdata(pdev, netdev);
3199 	adapter = netdev_priv(netdev);
3200 	adapter->netdev = netdev;
3201 	adapter->pdev = pdev;
3202 	hw = &adapter->hw;
3203 	hw->back = adapter;
3204 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3205 
3206 	err = -EIO;
3207 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3208 	if (!adapter->io_addr)
3209 		goto err_ioremap;
3210 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3211 	hw->hw_addr = adapter->io_addr;
3212 
3213 	netdev->netdev_ops = &igb_netdev_ops;
3214 	igb_set_ethtool_ops(netdev);
3215 	netdev->watchdog_timeo = 5 * HZ;
3216 
3217 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3218 
3219 	netdev->mem_start = pci_resource_start(pdev, 0);
3220 	netdev->mem_end = pci_resource_end(pdev, 0);
3221 
3222 	/* PCI config space info */
3223 	hw->vendor_id = pdev->vendor;
3224 	hw->device_id = pdev->device;
3225 	hw->revision_id = pdev->revision;
3226 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3227 	hw->subsystem_device_id = pdev->subsystem_device;
3228 
3229 	/* Copy the default MAC, PHY and NVM function pointers */
3230 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3231 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3232 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3233 	/* Initialize skew-specific constants */
3234 	err = ei->get_invariants(hw);
3235 	if (err)
3236 		goto err_sw_init;
3237 
3238 	/* setup the private structure */
3239 	err = igb_sw_init(adapter);
3240 	if (err)
3241 		goto err_sw_init;
3242 
3243 	igb_get_bus_info_pcie(hw);
3244 
3245 	hw->phy.autoneg_wait_to_complete = false;
3246 
3247 	/* Copper options */
3248 	if (hw->phy.media_type == e1000_media_type_copper) {
3249 		hw->phy.mdix = AUTO_ALL_MODES;
3250 		hw->phy.disable_polarity_correction = false;
3251 		hw->phy.ms_type = e1000_ms_hw_default;
3252 	}
3253 
3254 	if (igb_check_reset_block(hw))
3255 		dev_info(&pdev->dev,
3256 			"PHY reset is blocked due to SOL/IDER session.\n");
3257 
3258 	/* features is initialized to 0 in allocation, it might have bits
3259 	 * set by igb_sw_init so we should use an or instead of an
3260 	 * assignment.
3261 	 */
3262 	netdev->features |= NETIF_F_SG |
3263 			    NETIF_F_TSO |
3264 			    NETIF_F_TSO6 |
3265 			    NETIF_F_RXHASH |
3266 			    NETIF_F_RXCSUM |
3267 			    NETIF_F_HW_CSUM;
3268 
3269 	if (hw->mac.type >= e1000_82576)
3270 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3271 
3272 	if (hw->mac.type >= e1000_i350)
3273 		netdev->features |= NETIF_F_HW_TC;
3274 
3275 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3276 				  NETIF_F_GSO_GRE_CSUM | \
3277 				  NETIF_F_GSO_IPXIP4 | \
3278 				  NETIF_F_GSO_IPXIP6 | \
3279 				  NETIF_F_GSO_UDP_TUNNEL | \
3280 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3281 
3282 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3283 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3284 
3285 	/* copy netdev features into list of user selectable features */
3286 	netdev->hw_features |= netdev->features |
3287 			       NETIF_F_HW_VLAN_CTAG_RX |
3288 			       NETIF_F_HW_VLAN_CTAG_TX |
3289 			       NETIF_F_RXALL;
3290 
3291 	if (hw->mac.type >= e1000_i350)
3292 		netdev->hw_features |= NETIF_F_NTUPLE;
3293 
3294 	if (pci_using_dac)
3295 		netdev->features |= NETIF_F_HIGHDMA;
3296 
3297 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3298 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3299 	netdev->hw_enc_features |= netdev->vlan_features;
3300 
3301 	/* set this bit last since it cannot be part of vlan_features */
3302 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3303 			    NETIF_F_HW_VLAN_CTAG_RX |
3304 			    NETIF_F_HW_VLAN_CTAG_TX;
3305 
3306 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3307 
3308 	netdev->priv_flags |= IFF_UNICAST_FLT;
3309 
3310 	/* MTU range: 68 - 9216 */
3311 	netdev->min_mtu = ETH_MIN_MTU;
3312 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3313 
3314 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3315 
3316 	/* before reading the NVM, reset the controller to put the device in a
3317 	 * known good starting state
3318 	 */
3319 	hw->mac.ops.reset_hw(hw);
3320 
3321 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3322 	 * that doesn't contain a checksum
3323 	 */
3324 	switch (hw->mac.type) {
3325 	case e1000_i210:
3326 	case e1000_i211:
3327 		if (igb_get_flash_presence_i210(hw)) {
3328 			if (hw->nvm.ops.validate(hw) < 0) {
3329 				dev_err(&pdev->dev,
3330 					"The NVM Checksum Is Not Valid\n");
3331 				err = -EIO;
3332 				goto err_eeprom;
3333 			}
3334 		}
3335 		break;
3336 	default:
3337 		if (hw->nvm.ops.validate(hw) < 0) {
3338 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3339 			err = -EIO;
3340 			goto err_eeprom;
3341 		}
3342 		break;
3343 	}
3344 
3345 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3346 		/* copy the MAC address out of the NVM */
3347 		if (hw->mac.ops.read_mac_addr(hw))
3348 			dev_err(&pdev->dev, "NVM Read Error\n");
3349 	}
3350 
3351 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3352 
3353 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3354 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3355 		err = -EIO;
3356 		goto err_eeprom;
3357 	}
3358 
3359 	igb_set_default_mac_filter(adapter);
3360 
3361 	/* get firmware version for ethtool -i */
3362 	igb_set_fw_version(adapter);
3363 
3364 	/* configure RXPBSIZE and TXPBSIZE */
3365 	if (hw->mac.type == e1000_i210) {
3366 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3367 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3368 	}
3369 
3370 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3371 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3372 
3373 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3374 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3375 
3376 	/* Initialize link properties that are user-changeable */
3377 	adapter->fc_autoneg = true;
3378 	hw->mac.autoneg = true;
3379 	hw->phy.autoneg_advertised = 0x2f;
3380 
3381 	hw->fc.requested_mode = e1000_fc_default;
3382 	hw->fc.current_mode = e1000_fc_default;
3383 
3384 	igb_validate_mdi_setting(hw);
3385 
3386 	/* By default, support wake on port A */
3387 	if (hw->bus.func == 0)
3388 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3389 
3390 	/* Check the NVM for wake support on non-port A ports */
3391 	if (hw->mac.type >= e1000_82580)
3392 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3393 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3394 				 &eeprom_data);
3395 	else if (hw->bus.func == 1)
3396 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3397 
3398 	if (eeprom_data & IGB_EEPROM_APME)
3399 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3400 
3401 	/* now that we have the eeprom settings, apply the special cases where
3402 	 * the eeprom may be wrong or the board simply won't support wake on
3403 	 * lan on a particular port
3404 	 */
3405 	switch (pdev->device) {
3406 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3407 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3408 		break;
3409 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3410 	case E1000_DEV_ID_82576_FIBER:
3411 	case E1000_DEV_ID_82576_SERDES:
3412 		/* Wake events only supported on port A for dual fiber
3413 		 * regardless of eeprom setting
3414 		 */
3415 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3416 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3417 		break;
3418 	case E1000_DEV_ID_82576_QUAD_COPPER:
3419 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3420 		/* if quad port adapter, disable WoL on all but port A */
3421 		if (global_quad_port_a != 0)
3422 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3423 		else
3424 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3425 		/* Reset for multiple quad port adapters */
3426 		if (++global_quad_port_a == 4)
3427 			global_quad_port_a = 0;
3428 		break;
3429 	default:
3430 		/* If the device can't wake, don't set software support */
3431 		if (!device_can_wakeup(&adapter->pdev->dev))
3432 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3433 	}
3434 
3435 	/* initialize the wol settings based on the eeprom settings */
3436 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3437 		adapter->wol |= E1000_WUFC_MAG;
3438 
3439 	/* Some vendors want WoL disabled by default, but still supported */
3440 	if ((hw->mac.type == e1000_i350) &&
3441 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3442 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3443 		adapter->wol = 0;
3444 	}
3445 
3446 	/* Some vendors want the ability to Use the EEPROM setting as
3447 	 * enable/disable only, and not for capability
3448 	 */
3449 	if (((hw->mac.type == e1000_i350) ||
3450 	     (hw->mac.type == e1000_i354)) &&
3451 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3452 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3453 		adapter->wol = 0;
3454 	}
3455 	if (hw->mac.type == e1000_i350) {
3456 		if (((pdev->subsystem_device == 0x5001) ||
3457 		     (pdev->subsystem_device == 0x5002)) &&
3458 				(hw->bus.func == 0)) {
3459 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3460 			adapter->wol = 0;
3461 		}
3462 		if (pdev->subsystem_device == 0x1F52)
3463 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3464 	}
3465 
3466 	device_set_wakeup_enable(&adapter->pdev->dev,
3467 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3468 
3469 	/* reset the hardware with the new settings */
3470 	igb_reset(adapter);
3471 
3472 	/* Init the I2C interface */
3473 	err = igb_init_i2c(adapter);
3474 	if (err) {
3475 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3476 		goto err_eeprom;
3477 	}
3478 
3479 	/* let the f/w know that the h/w is now under the control of the
3480 	 * driver.
3481 	 */
3482 	igb_get_hw_control(adapter);
3483 
3484 	strcpy(netdev->name, "eth%d");
3485 	err = register_netdev(netdev);
3486 	if (err)
3487 		goto err_register;
3488 
3489 	/* carrier off reporting is important to ethtool even BEFORE open */
3490 	netif_carrier_off(netdev);
3491 
3492 #ifdef CONFIG_IGB_DCA
3493 	if (dca_add_requester(&pdev->dev) == 0) {
3494 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3495 		dev_info(&pdev->dev, "DCA enabled\n");
3496 		igb_setup_dca(adapter);
3497 	}
3498 
3499 #endif
3500 #ifdef CONFIG_IGB_HWMON
3501 	/* Initialize the thermal sensor on i350 devices. */
3502 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3503 		u16 ets_word;
3504 
3505 		/* Read the NVM to determine if this i350 device supports an
3506 		 * external thermal sensor.
3507 		 */
3508 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3509 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3510 			adapter->ets = true;
3511 		else
3512 			adapter->ets = false;
3513 		if (igb_sysfs_init(adapter))
3514 			dev_err(&pdev->dev,
3515 				"failed to allocate sysfs resources\n");
3516 	} else {
3517 		adapter->ets = false;
3518 	}
3519 #endif
3520 	/* Check if Media Autosense is enabled */
3521 	adapter->ei = *ei;
3522 	if (hw->dev_spec._82575.mas_capable)
3523 		igb_init_mas(adapter);
3524 
3525 	/* do hw tstamp init after resetting */
3526 	igb_ptp_init(adapter);
3527 
3528 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3529 	/* print bus type/speed/width info, not applicable to i354 */
3530 	if (hw->mac.type != e1000_i354) {
3531 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3532 			 netdev->name,
3533 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3534 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3535 			   "unknown"),
3536 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3537 			  "Width x4" :
3538 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3539 			  "Width x2" :
3540 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3541 			  "Width x1" : "unknown"), netdev->dev_addr);
3542 	}
3543 
3544 	if ((hw->mac.type == e1000_82576 &&
3545 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3546 	    (hw->mac.type >= e1000_i210 ||
3547 	     igb_get_flash_presence_i210(hw))) {
3548 		ret_val = igb_read_part_string(hw, part_str,
3549 					       E1000_PBANUM_LENGTH);
3550 	} else {
3551 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3552 	}
3553 
3554 	if (ret_val)
3555 		strcpy(part_str, "Unknown");
3556 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3557 	dev_info(&pdev->dev,
3558 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3559 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3560 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3561 		adapter->num_rx_queues, adapter->num_tx_queues);
3562 	if (hw->phy.media_type == e1000_media_type_copper) {
3563 		switch (hw->mac.type) {
3564 		case e1000_i350:
3565 		case e1000_i210:
3566 		case e1000_i211:
3567 			/* Enable EEE for internal copper PHY devices */
3568 			err = igb_set_eee_i350(hw, true, true);
3569 			if ((!err) &&
3570 			    (!hw->dev_spec._82575.eee_disable)) {
3571 				adapter->eee_advert =
3572 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3573 				adapter->flags |= IGB_FLAG_EEE;
3574 			}
3575 			break;
3576 		case e1000_i354:
3577 			if ((rd32(E1000_CTRL_EXT) &
3578 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3579 				err = igb_set_eee_i354(hw, true, true);
3580 				if ((!err) &&
3581 					(!hw->dev_spec._82575.eee_disable)) {
3582 					adapter->eee_advert =
3583 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3584 					adapter->flags |= IGB_FLAG_EEE;
3585 				}
3586 			}
3587 			break;
3588 		default:
3589 			break;
3590 		}
3591 	}
3592 
3593 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3594 
3595 	pm_runtime_put_noidle(&pdev->dev);
3596 	return 0;
3597 
3598 err_register:
3599 	igb_release_hw_control(adapter);
3600 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3601 err_eeprom:
3602 	if (!igb_check_reset_block(hw))
3603 		igb_reset_phy(hw);
3604 
3605 	if (hw->flash_address)
3606 		iounmap(hw->flash_address);
3607 err_sw_init:
3608 	kfree(adapter->mac_table);
3609 	kfree(adapter->shadow_vfta);
3610 	igb_clear_interrupt_scheme(adapter);
3611 #ifdef CONFIG_PCI_IOV
3612 	igb_disable_sriov(pdev);
3613 #endif
3614 	pci_iounmap(pdev, adapter->io_addr);
3615 err_ioremap:
3616 	free_netdev(netdev);
3617 err_alloc_etherdev:
3618 	pci_release_mem_regions(pdev);
3619 err_pci_reg:
3620 err_dma:
3621 	pci_disable_device(pdev);
3622 	return err;
3623 }
3624 
3625 #ifdef CONFIG_PCI_IOV
3626 static int igb_disable_sriov(struct pci_dev *pdev)
3627 {
3628 	struct net_device *netdev = pci_get_drvdata(pdev);
3629 	struct igb_adapter *adapter = netdev_priv(netdev);
3630 	struct e1000_hw *hw = &adapter->hw;
3631 
3632 	/* reclaim resources allocated to VFs */
3633 	if (adapter->vf_data) {
3634 		/* disable iov and allow time for transactions to clear */
3635 		if (pci_vfs_assigned(pdev)) {
3636 			dev_warn(&pdev->dev,
3637 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3638 			return -EPERM;
3639 		} else {
3640 			pci_disable_sriov(pdev);
3641 			msleep(500);
3642 		}
3643 
3644 		kfree(adapter->vf_mac_list);
3645 		adapter->vf_mac_list = NULL;
3646 		kfree(adapter->vf_data);
3647 		adapter->vf_data = NULL;
3648 		adapter->vfs_allocated_count = 0;
3649 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3650 		wrfl();
3651 		msleep(100);
3652 		dev_info(&pdev->dev, "IOV Disabled\n");
3653 
3654 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3655 		adapter->flags |= IGB_FLAG_DMAC;
3656 	}
3657 
3658 	return 0;
3659 }
3660 
3661 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3662 {
3663 	struct net_device *netdev = pci_get_drvdata(pdev);
3664 	struct igb_adapter *adapter = netdev_priv(netdev);
3665 	int old_vfs = pci_num_vf(pdev);
3666 	struct vf_mac_filter *mac_list;
3667 	int err = 0;
3668 	int num_vf_mac_filters, i;
3669 
3670 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3671 		err = -EPERM;
3672 		goto out;
3673 	}
3674 	if (!num_vfs)
3675 		goto out;
3676 
3677 	if (old_vfs) {
3678 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3679 			 old_vfs, max_vfs);
3680 		adapter->vfs_allocated_count = old_vfs;
3681 	} else
3682 		adapter->vfs_allocated_count = num_vfs;
3683 
3684 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3685 				sizeof(struct vf_data_storage), GFP_KERNEL);
3686 
3687 	/* if allocation failed then we do not support SR-IOV */
3688 	if (!adapter->vf_data) {
3689 		adapter->vfs_allocated_count = 0;
3690 		err = -ENOMEM;
3691 		goto out;
3692 	}
3693 
3694 	/* Due to the limited number of RAR entries calculate potential
3695 	 * number of MAC filters available for the VFs. Reserve entries
3696 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3697 	 * for each VF for VF MAC.
3698 	 */
3699 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3700 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3701 			      adapter->vfs_allocated_count);
3702 
3703 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3704 				       sizeof(struct vf_mac_filter),
3705 				       GFP_KERNEL);
3706 
3707 	mac_list = adapter->vf_mac_list;
3708 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3709 
3710 	if (adapter->vf_mac_list) {
3711 		/* Initialize list of VF MAC filters */
3712 		for (i = 0; i < num_vf_mac_filters; i++) {
3713 			mac_list->vf = -1;
3714 			mac_list->free = true;
3715 			list_add(&mac_list->l, &adapter->vf_macs.l);
3716 			mac_list++;
3717 		}
3718 	} else {
3719 		/* If we could not allocate memory for the VF MAC filters
3720 		 * we can continue without this feature but warn user.
3721 		 */
3722 		dev_err(&pdev->dev,
3723 			"Unable to allocate memory for VF MAC filter list\n");
3724 	}
3725 
3726 	/* only call pci_enable_sriov() if no VFs are allocated already */
3727 	if (!old_vfs) {
3728 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3729 		if (err)
3730 			goto err_out;
3731 	}
3732 	dev_info(&pdev->dev, "%d VFs allocated\n",
3733 		 adapter->vfs_allocated_count);
3734 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3735 		igb_vf_configure(adapter, i);
3736 
3737 	/* DMA Coalescing is not supported in IOV mode. */
3738 	adapter->flags &= ~IGB_FLAG_DMAC;
3739 	goto out;
3740 
3741 err_out:
3742 	kfree(adapter->vf_mac_list);
3743 	adapter->vf_mac_list = NULL;
3744 	kfree(adapter->vf_data);
3745 	adapter->vf_data = NULL;
3746 	adapter->vfs_allocated_count = 0;
3747 out:
3748 	return err;
3749 }
3750 
3751 #endif
3752 /**
3753  *  igb_remove_i2c - Cleanup  I2C interface
3754  *  @adapter: pointer to adapter structure
3755  **/
3756 static void igb_remove_i2c(struct igb_adapter *adapter)
3757 {
3758 	/* free the adapter bus structure */
3759 	i2c_del_adapter(&adapter->i2c_adap);
3760 }
3761 
3762 /**
3763  *  igb_remove - Device Removal Routine
3764  *  @pdev: PCI device information struct
3765  *
3766  *  igb_remove is called by the PCI subsystem to alert the driver
3767  *  that it should release a PCI device.  The could be caused by a
3768  *  Hot-Plug event, or because the driver is going to be removed from
3769  *  memory.
3770  **/
3771 static void igb_remove(struct pci_dev *pdev)
3772 {
3773 	struct net_device *netdev = pci_get_drvdata(pdev);
3774 	struct igb_adapter *adapter = netdev_priv(netdev);
3775 	struct e1000_hw *hw = &adapter->hw;
3776 
3777 	pm_runtime_get_noresume(&pdev->dev);
3778 #ifdef CONFIG_IGB_HWMON
3779 	igb_sysfs_exit(adapter);
3780 #endif
3781 	igb_remove_i2c(adapter);
3782 	igb_ptp_stop(adapter);
3783 	/* The watchdog timer may be rescheduled, so explicitly
3784 	 * disable watchdog from being rescheduled.
3785 	 */
3786 	set_bit(__IGB_DOWN, &adapter->state);
3787 	del_timer_sync(&adapter->watchdog_timer);
3788 	del_timer_sync(&adapter->phy_info_timer);
3789 
3790 	cancel_work_sync(&adapter->reset_task);
3791 	cancel_work_sync(&adapter->watchdog_task);
3792 
3793 #ifdef CONFIG_IGB_DCA
3794 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3795 		dev_info(&pdev->dev, "DCA disabled\n");
3796 		dca_remove_requester(&pdev->dev);
3797 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3798 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3799 	}
3800 #endif
3801 
3802 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3803 	 * would have already happened in close and is redundant.
3804 	 */
3805 	igb_release_hw_control(adapter);
3806 
3807 #ifdef CONFIG_PCI_IOV
3808 	igb_disable_sriov(pdev);
3809 #endif
3810 
3811 	unregister_netdev(netdev);
3812 
3813 	igb_clear_interrupt_scheme(adapter);
3814 
3815 	pci_iounmap(pdev, adapter->io_addr);
3816 	if (hw->flash_address)
3817 		iounmap(hw->flash_address);
3818 	pci_release_mem_regions(pdev);
3819 
3820 	kfree(adapter->mac_table);
3821 	kfree(adapter->shadow_vfta);
3822 	free_netdev(netdev);
3823 
3824 	pci_disable_pcie_error_reporting(pdev);
3825 
3826 	pci_disable_device(pdev);
3827 }
3828 
3829 /**
3830  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3831  *  @adapter: board private structure to initialize
3832  *
3833  *  This function initializes the vf specific data storage and then attempts to
3834  *  allocate the VFs.  The reason for ordering it this way is because it is much
3835  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3836  *  the memory for the VFs.
3837  **/
3838 static void igb_probe_vfs(struct igb_adapter *adapter)
3839 {
3840 #ifdef CONFIG_PCI_IOV
3841 	struct pci_dev *pdev = adapter->pdev;
3842 	struct e1000_hw *hw = &adapter->hw;
3843 
3844 	/* Virtualization features not supported on i210 family. */
3845 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3846 		return;
3847 
3848 	/* Of the below we really only want the effect of getting
3849 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3850 	 * igb_enable_sriov() has no effect.
3851 	 */
3852 	igb_set_interrupt_capability(adapter, true);
3853 	igb_reset_interrupt_capability(adapter);
3854 
3855 	pci_sriov_set_totalvfs(pdev, 7);
3856 	igb_enable_sriov(pdev, max_vfs);
3857 
3858 #endif /* CONFIG_PCI_IOV */
3859 }
3860 
3861 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3862 {
3863 	struct e1000_hw *hw = &adapter->hw;
3864 	unsigned int max_rss_queues;
3865 
3866 	/* Determine the maximum number of RSS queues supported. */
3867 	switch (hw->mac.type) {
3868 	case e1000_i211:
3869 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3870 		break;
3871 	case e1000_82575:
3872 	case e1000_i210:
3873 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3874 		break;
3875 	case e1000_i350:
3876 		/* I350 cannot do RSS and SR-IOV at the same time */
3877 		if (!!adapter->vfs_allocated_count) {
3878 			max_rss_queues = 1;
3879 			break;
3880 		}
3881 		fallthrough;
3882 	case e1000_82576:
3883 		if (!!adapter->vfs_allocated_count) {
3884 			max_rss_queues = 2;
3885 			break;
3886 		}
3887 		fallthrough;
3888 	case e1000_82580:
3889 	case e1000_i354:
3890 	default:
3891 		max_rss_queues = IGB_MAX_RX_QUEUES;
3892 		break;
3893 	}
3894 
3895 	return max_rss_queues;
3896 }
3897 
3898 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3899 {
3900 	u32 max_rss_queues;
3901 
3902 	max_rss_queues = igb_get_max_rss_queues(adapter);
3903 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3904 
3905 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3906 }
3907 
3908 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3909 			      const u32 max_rss_queues)
3910 {
3911 	struct e1000_hw *hw = &adapter->hw;
3912 
3913 	/* Determine if we need to pair queues. */
3914 	switch (hw->mac.type) {
3915 	case e1000_82575:
3916 	case e1000_i211:
3917 		/* Device supports enough interrupts without queue pairing. */
3918 		break;
3919 	case e1000_82576:
3920 	case e1000_82580:
3921 	case e1000_i350:
3922 	case e1000_i354:
3923 	case e1000_i210:
3924 	default:
3925 		/* If rss_queues > half of max_rss_queues, pair the queues in
3926 		 * order to conserve interrupts due to limited supply.
3927 		 */
3928 		if (adapter->rss_queues > (max_rss_queues / 2))
3929 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3930 		else
3931 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3932 		break;
3933 	}
3934 }
3935 
3936 /**
3937  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3938  *  @adapter: board private structure to initialize
3939  *
3940  *  igb_sw_init initializes the Adapter private data structure.
3941  *  Fields are initialized based on PCI device information and
3942  *  OS network device settings (MTU size).
3943  **/
3944 static int igb_sw_init(struct igb_adapter *adapter)
3945 {
3946 	struct e1000_hw *hw = &adapter->hw;
3947 	struct net_device *netdev = adapter->netdev;
3948 	struct pci_dev *pdev = adapter->pdev;
3949 
3950 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3951 
3952 	/* set default ring sizes */
3953 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3954 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3955 
3956 	/* set default ITR values */
3957 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3958 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3959 
3960 	/* set default work limits */
3961 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3962 
3963 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3964 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3965 
3966 	spin_lock_init(&adapter->nfc_lock);
3967 	spin_lock_init(&adapter->stats64_lock);
3968 #ifdef CONFIG_PCI_IOV
3969 	switch (hw->mac.type) {
3970 	case e1000_82576:
3971 	case e1000_i350:
3972 		if (max_vfs > 7) {
3973 			dev_warn(&pdev->dev,
3974 				 "Maximum of 7 VFs per PF, using max\n");
3975 			max_vfs = adapter->vfs_allocated_count = 7;
3976 		} else
3977 			adapter->vfs_allocated_count = max_vfs;
3978 		if (adapter->vfs_allocated_count)
3979 			dev_warn(&pdev->dev,
3980 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3981 		break;
3982 	default:
3983 		break;
3984 	}
3985 #endif /* CONFIG_PCI_IOV */
3986 
3987 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3988 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3989 
3990 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3991 				     sizeof(struct igb_mac_addr),
3992 				     GFP_KERNEL);
3993 	if (!adapter->mac_table)
3994 		return -ENOMEM;
3995 
3996 	igb_probe_vfs(adapter);
3997 
3998 	igb_init_queue_configuration(adapter);
3999 
4000 	/* Setup and initialize a copy of the hw vlan table array */
4001 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4002 				       GFP_KERNEL);
4003 	if (!adapter->shadow_vfta)
4004 		return -ENOMEM;
4005 
4006 	/* This call may decrease the number of queues */
4007 	if (igb_init_interrupt_scheme(adapter, true)) {
4008 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4009 		return -ENOMEM;
4010 	}
4011 
4012 	/* Explicitly disable IRQ since the NIC can be in any state. */
4013 	igb_irq_disable(adapter);
4014 
4015 	if (hw->mac.type >= e1000_i350)
4016 		adapter->flags &= ~IGB_FLAG_DMAC;
4017 
4018 	set_bit(__IGB_DOWN, &adapter->state);
4019 	return 0;
4020 }
4021 
4022 /**
4023  *  igb_open - Called when a network interface is made active
4024  *  @netdev: network interface device structure
4025  *  @resuming: indicates whether we are in a resume call
4026  *
4027  *  Returns 0 on success, negative value on failure
4028  *
4029  *  The open entry point is called when a network interface is made
4030  *  active by the system (IFF_UP).  At this point all resources needed
4031  *  for transmit and receive operations are allocated, the interrupt
4032  *  handler is registered with the OS, the watchdog timer is started,
4033  *  and the stack is notified that the interface is ready.
4034  **/
4035 static int __igb_open(struct net_device *netdev, bool resuming)
4036 {
4037 	struct igb_adapter *adapter = netdev_priv(netdev);
4038 	struct e1000_hw *hw = &adapter->hw;
4039 	struct pci_dev *pdev = adapter->pdev;
4040 	int err;
4041 	int i;
4042 
4043 	/* disallow open during test */
4044 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4045 		WARN_ON(resuming);
4046 		return -EBUSY;
4047 	}
4048 
4049 	if (!resuming)
4050 		pm_runtime_get_sync(&pdev->dev);
4051 
4052 	netif_carrier_off(netdev);
4053 
4054 	/* allocate transmit descriptors */
4055 	err = igb_setup_all_tx_resources(adapter);
4056 	if (err)
4057 		goto err_setup_tx;
4058 
4059 	/* allocate receive descriptors */
4060 	err = igb_setup_all_rx_resources(adapter);
4061 	if (err)
4062 		goto err_setup_rx;
4063 
4064 	igb_power_up_link(adapter);
4065 
4066 	/* before we allocate an interrupt, we must be ready to handle it.
4067 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4068 	 * as soon as we call pci_request_irq, so we have to setup our
4069 	 * clean_rx handler before we do so.
4070 	 */
4071 	igb_configure(adapter);
4072 
4073 	err = igb_request_irq(adapter);
4074 	if (err)
4075 		goto err_req_irq;
4076 
4077 	/* Notify the stack of the actual queue counts. */
4078 	err = netif_set_real_num_tx_queues(adapter->netdev,
4079 					   adapter->num_tx_queues);
4080 	if (err)
4081 		goto err_set_queues;
4082 
4083 	err = netif_set_real_num_rx_queues(adapter->netdev,
4084 					   adapter->num_rx_queues);
4085 	if (err)
4086 		goto err_set_queues;
4087 
4088 	/* From here on the code is the same as igb_up() */
4089 	clear_bit(__IGB_DOWN, &adapter->state);
4090 
4091 	for (i = 0; i < adapter->num_q_vectors; i++)
4092 		napi_enable(&(adapter->q_vector[i]->napi));
4093 
4094 	/* Clear any pending interrupts. */
4095 	rd32(E1000_TSICR);
4096 	rd32(E1000_ICR);
4097 
4098 	igb_irq_enable(adapter);
4099 
4100 	/* notify VFs that reset has been completed */
4101 	if (adapter->vfs_allocated_count) {
4102 		u32 reg_data = rd32(E1000_CTRL_EXT);
4103 
4104 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4105 		wr32(E1000_CTRL_EXT, reg_data);
4106 	}
4107 
4108 	netif_tx_start_all_queues(netdev);
4109 
4110 	if (!resuming)
4111 		pm_runtime_put(&pdev->dev);
4112 
4113 	/* start the watchdog. */
4114 	hw->mac.get_link_status = 1;
4115 	schedule_work(&adapter->watchdog_task);
4116 
4117 	return 0;
4118 
4119 err_set_queues:
4120 	igb_free_irq(adapter);
4121 err_req_irq:
4122 	igb_release_hw_control(adapter);
4123 	igb_power_down_link(adapter);
4124 	igb_free_all_rx_resources(adapter);
4125 err_setup_rx:
4126 	igb_free_all_tx_resources(adapter);
4127 err_setup_tx:
4128 	igb_reset(adapter);
4129 	if (!resuming)
4130 		pm_runtime_put(&pdev->dev);
4131 
4132 	return err;
4133 }
4134 
4135 int igb_open(struct net_device *netdev)
4136 {
4137 	return __igb_open(netdev, false);
4138 }
4139 
4140 /**
4141  *  igb_close - Disables a network interface
4142  *  @netdev: network interface device structure
4143  *  @suspending: indicates we are in a suspend call
4144  *
4145  *  Returns 0, this is not allowed to fail
4146  *
4147  *  The close entry point is called when an interface is de-activated
4148  *  by the OS.  The hardware is still under the driver's control, but
4149  *  needs to be disabled.  A global MAC reset is issued to stop the
4150  *  hardware, and all transmit and receive resources are freed.
4151  **/
4152 static int __igb_close(struct net_device *netdev, bool suspending)
4153 {
4154 	struct igb_adapter *adapter = netdev_priv(netdev);
4155 	struct pci_dev *pdev = adapter->pdev;
4156 
4157 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4158 
4159 	if (!suspending)
4160 		pm_runtime_get_sync(&pdev->dev);
4161 
4162 	igb_down(adapter);
4163 	igb_free_irq(adapter);
4164 
4165 	igb_free_all_tx_resources(adapter);
4166 	igb_free_all_rx_resources(adapter);
4167 
4168 	if (!suspending)
4169 		pm_runtime_put_sync(&pdev->dev);
4170 	return 0;
4171 }
4172 
4173 int igb_close(struct net_device *netdev)
4174 {
4175 	if (netif_device_present(netdev) || netdev->dismantle)
4176 		return __igb_close(netdev, false);
4177 	return 0;
4178 }
4179 
4180 /**
4181  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4182  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4183  *
4184  *  Return 0 on success, negative on failure
4185  **/
4186 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4187 {
4188 	struct device *dev = tx_ring->dev;
4189 	int size;
4190 
4191 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4192 
4193 	tx_ring->tx_buffer_info = vmalloc(size);
4194 	if (!tx_ring->tx_buffer_info)
4195 		goto err;
4196 
4197 	/* round up to nearest 4K */
4198 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4199 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4200 
4201 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4202 					   &tx_ring->dma, GFP_KERNEL);
4203 	if (!tx_ring->desc)
4204 		goto err;
4205 
4206 	tx_ring->next_to_use = 0;
4207 	tx_ring->next_to_clean = 0;
4208 
4209 	return 0;
4210 
4211 err:
4212 	vfree(tx_ring->tx_buffer_info);
4213 	tx_ring->tx_buffer_info = NULL;
4214 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4215 	return -ENOMEM;
4216 }
4217 
4218 /**
4219  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4220  *				 (Descriptors) for all queues
4221  *  @adapter: board private structure
4222  *
4223  *  Return 0 on success, negative on failure
4224  **/
4225 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4226 {
4227 	struct pci_dev *pdev = adapter->pdev;
4228 	int i, err = 0;
4229 
4230 	for (i = 0; i < adapter->num_tx_queues; i++) {
4231 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4232 		if (err) {
4233 			dev_err(&pdev->dev,
4234 				"Allocation for Tx Queue %u failed\n", i);
4235 			for (i--; i >= 0; i--)
4236 				igb_free_tx_resources(adapter->tx_ring[i]);
4237 			break;
4238 		}
4239 	}
4240 
4241 	return err;
4242 }
4243 
4244 /**
4245  *  igb_setup_tctl - configure the transmit control registers
4246  *  @adapter: Board private structure
4247  **/
4248 void igb_setup_tctl(struct igb_adapter *adapter)
4249 {
4250 	struct e1000_hw *hw = &adapter->hw;
4251 	u32 tctl;
4252 
4253 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4254 	wr32(E1000_TXDCTL(0), 0);
4255 
4256 	/* Program the Transmit Control Register */
4257 	tctl = rd32(E1000_TCTL);
4258 	tctl &= ~E1000_TCTL_CT;
4259 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4260 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4261 
4262 	igb_config_collision_dist(hw);
4263 
4264 	/* Enable transmits */
4265 	tctl |= E1000_TCTL_EN;
4266 
4267 	wr32(E1000_TCTL, tctl);
4268 }
4269 
4270 /**
4271  *  igb_configure_tx_ring - Configure transmit ring after Reset
4272  *  @adapter: board private structure
4273  *  @ring: tx ring to configure
4274  *
4275  *  Configure a transmit ring after a reset.
4276  **/
4277 void igb_configure_tx_ring(struct igb_adapter *adapter,
4278 			   struct igb_ring *ring)
4279 {
4280 	struct e1000_hw *hw = &adapter->hw;
4281 	u32 txdctl = 0;
4282 	u64 tdba = ring->dma;
4283 	int reg_idx = ring->reg_idx;
4284 
4285 	wr32(E1000_TDLEN(reg_idx),
4286 	     ring->count * sizeof(union e1000_adv_tx_desc));
4287 	wr32(E1000_TDBAL(reg_idx),
4288 	     tdba & 0x00000000ffffffffULL);
4289 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4290 
4291 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4292 	wr32(E1000_TDH(reg_idx), 0);
4293 	writel(0, ring->tail);
4294 
4295 	txdctl |= IGB_TX_PTHRESH;
4296 	txdctl |= IGB_TX_HTHRESH << 8;
4297 	txdctl |= IGB_TX_WTHRESH << 16;
4298 
4299 	/* reinitialize tx_buffer_info */
4300 	memset(ring->tx_buffer_info, 0,
4301 	       sizeof(struct igb_tx_buffer) * ring->count);
4302 
4303 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4304 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4305 }
4306 
4307 /**
4308  *  igb_configure_tx - Configure transmit Unit after Reset
4309  *  @adapter: board private structure
4310  *
4311  *  Configure the Tx unit of the MAC after a reset.
4312  **/
4313 static void igb_configure_tx(struct igb_adapter *adapter)
4314 {
4315 	struct e1000_hw *hw = &adapter->hw;
4316 	int i;
4317 
4318 	/* disable the queues */
4319 	for (i = 0; i < adapter->num_tx_queues; i++)
4320 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4321 
4322 	wrfl();
4323 	usleep_range(10000, 20000);
4324 
4325 	for (i = 0; i < adapter->num_tx_queues; i++)
4326 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4327 }
4328 
4329 /**
4330  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4331  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4332  *
4333  *  Returns 0 on success, negative on failure
4334  **/
4335 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4336 {
4337 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4338 	struct device *dev = rx_ring->dev;
4339 	int size;
4340 
4341 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4342 
4343 	rx_ring->rx_buffer_info = vmalloc(size);
4344 	if (!rx_ring->rx_buffer_info)
4345 		goto err;
4346 
4347 	/* Round up to nearest 4K */
4348 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4349 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4350 
4351 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4352 					   &rx_ring->dma, GFP_KERNEL);
4353 	if (!rx_ring->desc)
4354 		goto err;
4355 
4356 	rx_ring->next_to_alloc = 0;
4357 	rx_ring->next_to_clean = 0;
4358 	rx_ring->next_to_use = 0;
4359 
4360 	rx_ring->xdp_prog = adapter->xdp_prog;
4361 
4362 	/* XDP RX-queue info */
4363 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4364 			     rx_ring->queue_index, 0) < 0)
4365 		goto err;
4366 
4367 	return 0;
4368 
4369 err:
4370 	vfree(rx_ring->rx_buffer_info);
4371 	rx_ring->rx_buffer_info = NULL;
4372 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4373 	return -ENOMEM;
4374 }
4375 
4376 /**
4377  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4378  *				 (Descriptors) for all queues
4379  *  @adapter: board private structure
4380  *
4381  *  Return 0 on success, negative on failure
4382  **/
4383 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4384 {
4385 	struct pci_dev *pdev = adapter->pdev;
4386 	int i, err = 0;
4387 
4388 	for (i = 0; i < adapter->num_rx_queues; i++) {
4389 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4390 		if (err) {
4391 			dev_err(&pdev->dev,
4392 				"Allocation for Rx Queue %u failed\n", i);
4393 			for (i--; i >= 0; i--)
4394 				igb_free_rx_resources(adapter->rx_ring[i]);
4395 			break;
4396 		}
4397 	}
4398 
4399 	return err;
4400 }
4401 
4402 /**
4403  *  igb_setup_mrqc - configure the multiple receive queue control registers
4404  *  @adapter: Board private structure
4405  **/
4406 static void igb_setup_mrqc(struct igb_adapter *adapter)
4407 {
4408 	struct e1000_hw *hw = &adapter->hw;
4409 	u32 mrqc, rxcsum;
4410 	u32 j, num_rx_queues;
4411 	u32 rss_key[10];
4412 
4413 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4414 	for (j = 0; j < 10; j++)
4415 		wr32(E1000_RSSRK(j), rss_key[j]);
4416 
4417 	num_rx_queues = adapter->rss_queues;
4418 
4419 	switch (hw->mac.type) {
4420 	case e1000_82576:
4421 		/* 82576 supports 2 RSS queues for SR-IOV */
4422 		if (adapter->vfs_allocated_count)
4423 			num_rx_queues = 2;
4424 		break;
4425 	default:
4426 		break;
4427 	}
4428 
4429 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4430 		for (j = 0; j < IGB_RETA_SIZE; j++)
4431 			adapter->rss_indir_tbl[j] =
4432 			(j * num_rx_queues) / IGB_RETA_SIZE;
4433 		adapter->rss_indir_tbl_init = num_rx_queues;
4434 	}
4435 	igb_write_rss_indir_tbl(adapter);
4436 
4437 	/* Disable raw packet checksumming so that RSS hash is placed in
4438 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4439 	 * offloads as they are enabled by default
4440 	 */
4441 	rxcsum = rd32(E1000_RXCSUM);
4442 	rxcsum |= E1000_RXCSUM_PCSD;
4443 
4444 	if (adapter->hw.mac.type >= e1000_82576)
4445 		/* Enable Receive Checksum Offload for SCTP */
4446 		rxcsum |= E1000_RXCSUM_CRCOFL;
4447 
4448 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4449 	wr32(E1000_RXCSUM, rxcsum);
4450 
4451 	/* Generate RSS hash based on packet types, TCP/UDP
4452 	 * port numbers and/or IPv4/v6 src and dst addresses
4453 	 */
4454 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4455 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4456 	       E1000_MRQC_RSS_FIELD_IPV6 |
4457 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4458 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4459 
4460 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4461 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4462 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4463 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4464 
4465 	/* If VMDq is enabled then we set the appropriate mode for that, else
4466 	 * we default to RSS so that an RSS hash is calculated per packet even
4467 	 * if we are only using one queue
4468 	 */
4469 	if (adapter->vfs_allocated_count) {
4470 		if (hw->mac.type > e1000_82575) {
4471 			/* Set the default pool for the PF's first queue */
4472 			u32 vtctl = rd32(E1000_VT_CTL);
4473 
4474 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4475 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4476 			vtctl |= adapter->vfs_allocated_count <<
4477 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4478 			wr32(E1000_VT_CTL, vtctl);
4479 		}
4480 		if (adapter->rss_queues > 1)
4481 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4482 		else
4483 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4484 	} else {
4485 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4486 	}
4487 	igb_vmm_control(adapter);
4488 
4489 	wr32(E1000_MRQC, mrqc);
4490 }
4491 
4492 /**
4493  *  igb_setup_rctl - configure the receive control registers
4494  *  @adapter: Board private structure
4495  **/
4496 void igb_setup_rctl(struct igb_adapter *adapter)
4497 {
4498 	struct e1000_hw *hw = &adapter->hw;
4499 	u32 rctl;
4500 
4501 	rctl = rd32(E1000_RCTL);
4502 
4503 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4504 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4505 
4506 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4507 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4508 
4509 	/* enable stripping of CRC. It's unlikely this will break BMC
4510 	 * redirection as it did with e1000. Newer features require
4511 	 * that the HW strips the CRC.
4512 	 */
4513 	rctl |= E1000_RCTL_SECRC;
4514 
4515 	/* disable store bad packets and clear size bits. */
4516 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4517 
4518 	/* enable LPE to allow for reception of jumbo frames */
4519 	rctl |= E1000_RCTL_LPE;
4520 
4521 	/* disable queue 0 to prevent tail write w/o re-config */
4522 	wr32(E1000_RXDCTL(0), 0);
4523 
4524 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4525 	 * queue drop for all VF and PF queues to prevent head of line blocking
4526 	 * if an un-trusted VF does not provide descriptors to hardware.
4527 	 */
4528 	if (adapter->vfs_allocated_count) {
4529 		/* set all queue drop enable bits */
4530 		wr32(E1000_QDE, ALL_QUEUES);
4531 	}
4532 
4533 	/* This is useful for sniffing bad packets. */
4534 	if (adapter->netdev->features & NETIF_F_RXALL) {
4535 		/* UPE and MPE will be handled by normal PROMISC logic
4536 		 * in e1000e_set_rx_mode
4537 		 */
4538 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4539 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4540 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4541 
4542 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4543 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4544 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4545 		 * and that breaks VLANs.
4546 		 */
4547 	}
4548 
4549 	wr32(E1000_RCTL, rctl);
4550 }
4551 
4552 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4553 				   int vfn)
4554 {
4555 	struct e1000_hw *hw = &adapter->hw;
4556 	u32 vmolr;
4557 
4558 	if (size > MAX_JUMBO_FRAME_SIZE)
4559 		size = MAX_JUMBO_FRAME_SIZE;
4560 
4561 	vmolr = rd32(E1000_VMOLR(vfn));
4562 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4563 	vmolr |= size | E1000_VMOLR_LPE;
4564 	wr32(E1000_VMOLR(vfn), vmolr);
4565 
4566 	return 0;
4567 }
4568 
4569 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4570 					 int vfn, bool enable)
4571 {
4572 	struct e1000_hw *hw = &adapter->hw;
4573 	u32 val, reg;
4574 
4575 	if (hw->mac.type < e1000_82576)
4576 		return;
4577 
4578 	if (hw->mac.type == e1000_i350)
4579 		reg = E1000_DVMOLR(vfn);
4580 	else
4581 		reg = E1000_VMOLR(vfn);
4582 
4583 	val = rd32(reg);
4584 	if (enable)
4585 		val |= E1000_VMOLR_STRVLAN;
4586 	else
4587 		val &= ~(E1000_VMOLR_STRVLAN);
4588 	wr32(reg, val);
4589 }
4590 
4591 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4592 				 int vfn, bool aupe)
4593 {
4594 	struct e1000_hw *hw = &adapter->hw;
4595 	u32 vmolr;
4596 
4597 	/* This register exists only on 82576 and newer so if we are older then
4598 	 * we should exit and do nothing
4599 	 */
4600 	if (hw->mac.type < e1000_82576)
4601 		return;
4602 
4603 	vmolr = rd32(E1000_VMOLR(vfn));
4604 	if (aupe)
4605 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4606 	else
4607 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4608 
4609 	/* clear all bits that might not be set */
4610 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4611 
4612 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4613 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4614 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4615 	 * multicast packets
4616 	 */
4617 	if (vfn <= adapter->vfs_allocated_count)
4618 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4619 
4620 	wr32(E1000_VMOLR(vfn), vmolr);
4621 }
4622 
4623 /**
4624  *  igb_setup_srrctl - configure the split and replication receive control
4625  *                     registers
4626  *  @adapter: Board private structure
4627  *  @ring: receive ring to be configured
4628  **/
4629 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4630 {
4631 	struct e1000_hw *hw = &adapter->hw;
4632 	int reg_idx = ring->reg_idx;
4633 	u32 srrctl = 0;
4634 
4635 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4636 	if (ring_uses_large_buffer(ring))
4637 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4638 	else
4639 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4640 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4641 	if (hw->mac.type >= e1000_82580)
4642 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4643 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4644 	 * queues and rx flow control is disabled
4645 	 */
4646 	if (adapter->vfs_allocated_count ||
4647 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4648 	     adapter->num_rx_queues > 1))
4649 		srrctl |= E1000_SRRCTL_DROP_EN;
4650 
4651 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4652 }
4653 
4654 /**
4655  *  igb_configure_rx_ring - Configure a receive ring after Reset
4656  *  @adapter: board private structure
4657  *  @ring: receive ring to be configured
4658  *
4659  *  Configure the Rx unit of the MAC after a reset.
4660  **/
4661 void igb_configure_rx_ring(struct igb_adapter *adapter,
4662 			   struct igb_ring *ring)
4663 {
4664 	struct e1000_hw *hw = &adapter->hw;
4665 	union e1000_adv_rx_desc *rx_desc;
4666 	u64 rdba = ring->dma;
4667 	int reg_idx = ring->reg_idx;
4668 	u32 rxdctl = 0;
4669 
4670 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4671 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4672 					   MEM_TYPE_PAGE_SHARED, NULL));
4673 
4674 	/* disable the queue */
4675 	wr32(E1000_RXDCTL(reg_idx), 0);
4676 
4677 	/* Set DMA base address registers */
4678 	wr32(E1000_RDBAL(reg_idx),
4679 	     rdba & 0x00000000ffffffffULL);
4680 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4681 	wr32(E1000_RDLEN(reg_idx),
4682 	     ring->count * sizeof(union e1000_adv_rx_desc));
4683 
4684 	/* initialize head and tail */
4685 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4686 	wr32(E1000_RDH(reg_idx), 0);
4687 	writel(0, ring->tail);
4688 
4689 	/* set descriptor configuration */
4690 	igb_setup_srrctl(adapter, ring);
4691 
4692 	/* set filtering for VMDQ pools */
4693 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4694 
4695 	rxdctl |= IGB_RX_PTHRESH;
4696 	rxdctl |= IGB_RX_HTHRESH << 8;
4697 	rxdctl |= IGB_RX_WTHRESH << 16;
4698 
4699 	/* initialize rx_buffer_info */
4700 	memset(ring->rx_buffer_info, 0,
4701 	       sizeof(struct igb_rx_buffer) * ring->count);
4702 
4703 	/* initialize Rx descriptor 0 */
4704 	rx_desc = IGB_RX_DESC(ring, 0);
4705 	rx_desc->wb.upper.length = 0;
4706 
4707 	/* enable receive descriptor fetching */
4708 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4709 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4710 }
4711 
4712 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4713 				  struct igb_ring *rx_ring)
4714 {
4715 	/* set build_skb and buffer size flags */
4716 	clear_ring_build_skb_enabled(rx_ring);
4717 	clear_ring_uses_large_buffer(rx_ring);
4718 
4719 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4720 		return;
4721 
4722 	set_ring_build_skb_enabled(rx_ring);
4723 
4724 #if (PAGE_SIZE < 8192)
4725 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4726 		return;
4727 
4728 	set_ring_uses_large_buffer(rx_ring);
4729 #endif
4730 }
4731 
4732 /**
4733  *  igb_configure_rx - Configure receive Unit after Reset
4734  *  @adapter: board private structure
4735  *
4736  *  Configure the Rx unit of the MAC after a reset.
4737  **/
4738 static void igb_configure_rx(struct igb_adapter *adapter)
4739 {
4740 	int i;
4741 
4742 	/* set the correct pool for the PF default MAC address in entry 0 */
4743 	igb_set_default_mac_filter(adapter);
4744 
4745 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4746 	 * the Base and Length of the Rx Descriptor Ring
4747 	 */
4748 	for (i = 0; i < adapter->num_rx_queues; i++) {
4749 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4750 
4751 		igb_set_rx_buffer_len(adapter, rx_ring);
4752 		igb_configure_rx_ring(adapter, rx_ring);
4753 	}
4754 }
4755 
4756 /**
4757  *  igb_free_tx_resources - Free Tx Resources per Queue
4758  *  @tx_ring: Tx descriptor ring for a specific queue
4759  *
4760  *  Free all transmit software resources
4761  **/
4762 void igb_free_tx_resources(struct igb_ring *tx_ring)
4763 {
4764 	igb_clean_tx_ring(tx_ring);
4765 
4766 	vfree(tx_ring->tx_buffer_info);
4767 	tx_ring->tx_buffer_info = NULL;
4768 
4769 	/* if not set, then don't free */
4770 	if (!tx_ring->desc)
4771 		return;
4772 
4773 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4774 			  tx_ring->desc, tx_ring->dma);
4775 
4776 	tx_ring->desc = NULL;
4777 }
4778 
4779 /**
4780  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4781  *  @adapter: board private structure
4782  *
4783  *  Free all transmit software resources
4784  **/
4785 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4786 {
4787 	int i;
4788 
4789 	for (i = 0; i < adapter->num_tx_queues; i++)
4790 		if (adapter->tx_ring[i])
4791 			igb_free_tx_resources(adapter->tx_ring[i]);
4792 }
4793 
4794 /**
4795  *  igb_clean_tx_ring - Free Tx Buffers
4796  *  @tx_ring: ring to be cleaned
4797  **/
4798 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4799 {
4800 	u16 i = tx_ring->next_to_clean;
4801 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4802 
4803 	while (i != tx_ring->next_to_use) {
4804 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4805 
4806 		/* Free all the Tx ring sk_buffs */
4807 		dev_kfree_skb_any(tx_buffer->skb);
4808 
4809 		/* unmap skb header data */
4810 		dma_unmap_single(tx_ring->dev,
4811 				 dma_unmap_addr(tx_buffer, dma),
4812 				 dma_unmap_len(tx_buffer, len),
4813 				 DMA_TO_DEVICE);
4814 
4815 		/* check for eop_desc to determine the end of the packet */
4816 		eop_desc = tx_buffer->next_to_watch;
4817 		tx_desc = IGB_TX_DESC(tx_ring, i);
4818 
4819 		/* unmap remaining buffers */
4820 		while (tx_desc != eop_desc) {
4821 			tx_buffer++;
4822 			tx_desc++;
4823 			i++;
4824 			if (unlikely(i == tx_ring->count)) {
4825 				i = 0;
4826 				tx_buffer = tx_ring->tx_buffer_info;
4827 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4828 			}
4829 
4830 			/* unmap any remaining paged data */
4831 			if (dma_unmap_len(tx_buffer, len))
4832 				dma_unmap_page(tx_ring->dev,
4833 					       dma_unmap_addr(tx_buffer, dma),
4834 					       dma_unmap_len(tx_buffer, len),
4835 					       DMA_TO_DEVICE);
4836 		}
4837 
4838 		/* move us one more past the eop_desc for start of next pkt */
4839 		tx_buffer++;
4840 		i++;
4841 		if (unlikely(i == tx_ring->count)) {
4842 			i = 0;
4843 			tx_buffer = tx_ring->tx_buffer_info;
4844 		}
4845 	}
4846 
4847 	/* reset BQL for queue */
4848 	netdev_tx_reset_queue(txring_txq(tx_ring));
4849 
4850 	/* reset next_to_use and next_to_clean */
4851 	tx_ring->next_to_use = 0;
4852 	tx_ring->next_to_clean = 0;
4853 }
4854 
4855 /**
4856  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4857  *  @adapter: board private structure
4858  **/
4859 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4860 {
4861 	int i;
4862 
4863 	for (i = 0; i < adapter->num_tx_queues; i++)
4864 		if (adapter->tx_ring[i])
4865 			igb_clean_tx_ring(adapter->tx_ring[i]);
4866 }
4867 
4868 /**
4869  *  igb_free_rx_resources - Free Rx Resources
4870  *  @rx_ring: ring to clean the resources from
4871  *
4872  *  Free all receive software resources
4873  **/
4874 void igb_free_rx_resources(struct igb_ring *rx_ring)
4875 {
4876 	igb_clean_rx_ring(rx_ring);
4877 
4878 	rx_ring->xdp_prog = NULL;
4879 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4880 	vfree(rx_ring->rx_buffer_info);
4881 	rx_ring->rx_buffer_info = NULL;
4882 
4883 	/* if not set, then don't free */
4884 	if (!rx_ring->desc)
4885 		return;
4886 
4887 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4888 			  rx_ring->desc, rx_ring->dma);
4889 
4890 	rx_ring->desc = NULL;
4891 }
4892 
4893 /**
4894  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4895  *  @adapter: board private structure
4896  *
4897  *  Free all receive software resources
4898  **/
4899 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4900 {
4901 	int i;
4902 
4903 	for (i = 0; i < adapter->num_rx_queues; i++)
4904 		if (adapter->rx_ring[i])
4905 			igb_free_rx_resources(adapter->rx_ring[i]);
4906 }
4907 
4908 /**
4909  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4910  *  @rx_ring: ring to free buffers from
4911  **/
4912 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4913 {
4914 	u16 i = rx_ring->next_to_clean;
4915 
4916 	dev_kfree_skb(rx_ring->skb);
4917 	rx_ring->skb = NULL;
4918 
4919 	/* Free all the Rx ring sk_buffs */
4920 	while (i != rx_ring->next_to_alloc) {
4921 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4922 
4923 		/* Invalidate cache lines that may have been written to by
4924 		 * device so that we avoid corrupting memory.
4925 		 */
4926 		dma_sync_single_range_for_cpu(rx_ring->dev,
4927 					      buffer_info->dma,
4928 					      buffer_info->page_offset,
4929 					      igb_rx_bufsz(rx_ring),
4930 					      DMA_FROM_DEVICE);
4931 
4932 		/* free resources associated with mapping */
4933 		dma_unmap_page_attrs(rx_ring->dev,
4934 				     buffer_info->dma,
4935 				     igb_rx_pg_size(rx_ring),
4936 				     DMA_FROM_DEVICE,
4937 				     IGB_RX_DMA_ATTR);
4938 		__page_frag_cache_drain(buffer_info->page,
4939 					buffer_info->pagecnt_bias);
4940 
4941 		i++;
4942 		if (i == rx_ring->count)
4943 			i = 0;
4944 	}
4945 
4946 	rx_ring->next_to_alloc = 0;
4947 	rx_ring->next_to_clean = 0;
4948 	rx_ring->next_to_use = 0;
4949 }
4950 
4951 /**
4952  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4953  *  @adapter: board private structure
4954  **/
4955 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4956 {
4957 	int i;
4958 
4959 	for (i = 0; i < adapter->num_rx_queues; i++)
4960 		if (adapter->rx_ring[i])
4961 			igb_clean_rx_ring(adapter->rx_ring[i]);
4962 }
4963 
4964 /**
4965  *  igb_set_mac - Change the Ethernet Address of the NIC
4966  *  @netdev: network interface device structure
4967  *  @p: pointer to an address structure
4968  *
4969  *  Returns 0 on success, negative on failure
4970  **/
4971 static int igb_set_mac(struct net_device *netdev, void *p)
4972 {
4973 	struct igb_adapter *adapter = netdev_priv(netdev);
4974 	struct e1000_hw *hw = &adapter->hw;
4975 	struct sockaddr *addr = p;
4976 
4977 	if (!is_valid_ether_addr(addr->sa_data))
4978 		return -EADDRNOTAVAIL;
4979 
4980 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4981 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4982 
4983 	/* set the correct pool for the new PF MAC address in entry 0 */
4984 	igb_set_default_mac_filter(adapter);
4985 
4986 	return 0;
4987 }
4988 
4989 /**
4990  *  igb_write_mc_addr_list - write multicast addresses to MTA
4991  *  @netdev: network interface device structure
4992  *
4993  *  Writes multicast address list to the MTA hash table.
4994  *  Returns: -ENOMEM on failure
4995  *           0 on no addresses written
4996  *           X on writing X addresses to MTA
4997  **/
4998 static int igb_write_mc_addr_list(struct net_device *netdev)
4999 {
5000 	struct igb_adapter *adapter = netdev_priv(netdev);
5001 	struct e1000_hw *hw = &adapter->hw;
5002 	struct netdev_hw_addr *ha;
5003 	u8  *mta_list;
5004 	int i;
5005 
5006 	if (netdev_mc_empty(netdev)) {
5007 		/* nothing to program, so clear mc list */
5008 		igb_update_mc_addr_list(hw, NULL, 0);
5009 		igb_restore_vf_multicasts(adapter);
5010 		return 0;
5011 	}
5012 
5013 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5014 	if (!mta_list)
5015 		return -ENOMEM;
5016 
5017 	/* The shared function expects a packed array of only addresses. */
5018 	i = 0;
5019 	netdev_for_each_mc_addr(ha, netdev)
5020 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5021 
5022 	igb_update_mc_addr_list(hw, mta_list, i);
5023 	kfree(mta_list);
5024 
5025 	return netdev_mc_count(netdev);
5026 }
5027 
5028 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5029 {
5030 	struct e1000_hw *hw = &adapter->hw;
5031 	u32 i, pf_id;
5032 
5033 	switch (hw->mac.type) {
5034 	case e1000_i210:
5035 	case e1000_i211:
5036 	case e1000_i350:
5037 		/* VLAN filtering needed for VLAN prio filter */
5038 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5039 			break;
5040 		fallthrough;
5041 	case e1000_82576:
5042 	case e1000_82580:
5043 	case e1000_i354:
5044 		/* VLAN filtering needed for pool filtering */
5045 		if (adapter->vfs_allocated_count)
5046 			break;
5047 		fallthrough;
5048 	default:
5049 		return 1;
5050 	}
5051 
5052 	/* We are already in VLAN promisc, nothing to do */
5053 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5054 		return 0;
5055 
5056 	if (!adapter->vfs_allocated_count)
5057 		goto set_vfta;
5058 
5059 	/* Add PF to all active pools */
5060 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5061 
5062 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5063 		u32 vlvf = rd32(E1000_VLVF(i));
5064 
5065 		vlvf |= BIT(pf_id);
5066 		wr32(E1000_VLVF(i), vlvf);
5067 	}
5068 
5069 set_vfta:
5070 	/* Set all bits in the VLAN filter table array */
5071 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5072 		hw->mac.ops.write_vfta(hw, i, ~0U);
5073 
5074 	/* Set flag so we don't redo unnecessary work */
5075 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5076 
5077 	return 0;
5078 }
5079 
5080 #define VFTA_BLOCK_SIZE 8
5081 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5082 {
5083 	struct e1000_hw *hw = &adapter->hw;
5084 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5085 	u32 vid_start = vfta_offset * 32;
5086 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5087 	u32 i, vid, word, bits, pf_id;
5088 
5089 	/* guarantee that we don't scrub out management VLAN */
5090 	vid = adapter->mng_vlan_id;
5091 	if (vid >= vid_start && vid < vid_end)
5092 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5093 
5094 	if (!adapter->vfs_allocated_count)
5095 		goto set_vfta;
5096 
5097 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5098 
5099 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5100 		u32 vlvf = rd32(E1000_VLVF(i));
5101 
5102 		/* pull VLAN ID from VLVF */
5103 		vid = vlvf & VLAN_VID_MASK;
5104 
5105 		/* only concern ourselves with a certain range */
5106 		if (vid < vid_start || vid >= vid_end)
5107 			continue;
5108 
5109 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5110 			/* record VLAN ID in VFTA */
5111 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5112 
5113 			/* if PF is part of this then continue */
5114 			if (test_bit(vid, adapter->active_vlans))
5115 				continue;
5116 		}
5117 
5118 		/* remove PF from the pool */
5119 		bits = ~BIT(pf_id);
5120 		bits &= rd32(E1000_VLVF(i));
5121 		wr32(E1000_VLVF(i), bits);
5122 	}
5123 
5124 set_vfta:
5125 	/* extract values from active_vlans and write back to VFTA */
5126 	for (i = VFTA_BLOCK_SIZE; i--;) {
5127 		vid = (vfta_offset + i) * 32;
5128 		word = vid / BITS_PER_LONG;
5129 		bits = vid % BITS_PER_LONG;
5130 
5131 		vfta[i] |= adapter->active_vlans[word] >> bits;
5132 
5133 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5134 	}
5135 }
5136 
5137 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5138 {
5139 	u32 i;
5140 
5141 	/* We are not in VLAN promisc, nothing to do */
5142 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5143 		return;
5144 
5145 	/* Set flag so we don't redo unnecessary work */
5146 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5147 
5148 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5149 		igb_scrub_vfta(adapter, i);
5150 }
5151 
5152 /**
5153  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5154  *  @netdev: network interface device structure
5155  *
5156  *  The set_rx_mode entry point is called whenever the unicast or multicast
5157  *  address lists or the network interface flags are updated.  This routine is
5158  *  responsible for configuring the hardware for proper unicast, multicast,
5159  *  promiscuous mode, and all-multi behavior.
5160  **/
5161 static void igb_set_rx_mode(struct net_device *netdev)
5162 {
5163 	struct igb_adapter *adapter = netdev_priv(netdev);
5164 	struct e1000_hw *hw = &adapter->hw;
5165 	unsigned int vfn = adapter->vfs_allocated_count;
5166 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5167 	int count;
5168 
5169 	/* Check for Promiscuous and All Multicast modes */
5170 	if (netdev->flags & IFF_PROMISC) {
5171 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5172 		vmolr |= E1000_VMOLR_MPME;
5173 
5174 		/* enable use of UTA filter to force packets to default pool */
5175 		if (hw->mac.type == e1000_82576)
5176 			vmolr |= E1000_VMOLR_ROPE;
5177 	} else {
5178 		if (netdev->flags & IFF_ALLMULTI) {
5179 			rctl |= E1000_RCTL_MPE;
5180 			vmolr |= E1000_VMOLR_MPME;
5181 		} else {
5182 			/* Write addresses to the MTA, if the attempt fails
5183 			 * then we should just turn on promiscuous mode so
5184 			 * that we can at least receive multicast traffic
5185 			 */
5186 			count = igb_write_mc_addr_list(netdev);
5187 			if (count < 0) {
5188 				rctl |= E1000_RCTL_MPE;
5189 				vmolr |= E1000_VMOLR_MPME;
5190 			} else if (count) {
5191 				vmolr |= E1000_VMOLR_ROMPE;
5192 			}
5193 		}
5194 	}
5195 
5196 	/* Write addresses to available RAR registers, if there is not
5197 	 * sufficient space to store all the addresses then enable
5198 	 * unicast promiscuous mode
5199 	 */
5200 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5201 		rctl |= E1000_RCTL_UPE;
5202 		vmolr |= E1000_VMOLR_ROPE;
5203 	}
5204 
5205 	/* enable VLAN filtering by default */
5206 	rctl |= E1000_RCTL_VFE;
5207 
5208 	/* disable VLAN filtering for modes that require it */
5209 	if ((netdev->flags & IFF_PROMISC) ||
5210 	    (netdev->features & NETIF_F_RXALL)) {
5211 		/* if we fail to set all rules then just clear VFE */
5212 		if (igb_vlan_promisc_enable(adapter))
5213 			rctl &= ~E1000_RCTL_VFE;
5214 	} else {
5215 		igb_vlan_promisc_disable(adapter);
5216 	}
5217 
5218 	/* update state of unicast, multicast, and VLAN filtering modes */
5219 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5220 				     E1000_RCTL_VFE);
5221 	wr32(E1000_RCTL, rctl);
5222 
5223 #if (PAGE_SIZE < 8192)
5224 	if (!adapter->vfs_allocated_count) {
5225 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5226 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5227 	}
5228 #endif
5229 	wr32(E1000_RLPML, rlpml);
5230 
5231 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5232 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5233 	 * we will have issues with VLAN tag stripping not being done for frames
5234 	 * that are only arriving because we are the default pool
5235 	 */
5236 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5237 		return;
5238 
5239 	/* set UTA to appropriate mode */
5240 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5241 
5242 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5243 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5244 
5245 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5246 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5247 #if (PAGE_SIZE < 8192)
5248 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5249 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5250 	else
5251 #endif
5252 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5253 	vmolr |= E1000_VMOLR_LPE;
5254 
5255 	wr32(E1000_VMOLR(vfn), vmolr);
5256 
5257 	igb_restore_vf_multicasts(adapter);
5258 }
5259 
5260 static void igb_check_wvbr(struct igb_adapter *adapter)
5261 {
5262 	struct e1000_hw *hw = &adapter->hw;
5263 	u32 wvbr = 0;
5264 
5265 	switch (hw->mac.type) {
5266 	case e1000_82576:
5267 	case e1000_i350:
5268 		wvbr = rd32(E1000_WVBR);
5269 		if (!wvbr)
5270 			return;
5271 		break;
5272 	default:
5273 		break;
5274 	}
5275 
5276 	adapter->wvbr |= wvbr;
5277 }
5278 
5279 #define IGB_STAGGERED_QUEUE_OFFSET 8
5280 
5281 static void igb_spoof_check(struct igb_adapter *adapter)
5282 {
5283 	int j;
5284 
5285 	if (!adapter->wvbr)
5286 		return;
5287 
5288 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5289 		if (adapter->wvbr & BIT(j) ||
5290 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5291 			dev_warn(&adapter->pdev->dev,
5292 				"Spoof event(s) detected on VF %d\n", j);
5293 			adapter->wvbr &=
5294 				~(BIT(j) |
5295 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5296 		}
5297 	}
5298 }
5299 
5300 /* Need to wait a few seconds after link up to get diagnostic information from
5301  * the phy
5302  */
5303 static void igb_update_phy_info(struct timer_list *t)
5304 {
5305 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5306 	igb_get_phy_info(&adapter->hw);
5307 }
5308 
5309 /**
5310  *  igb_has_link - check shared code for link and determine up/down
5311  *  @adapter: pointer to driver private info
5312  **/
5313 bool igb_has_link(struct igb_adapter *adapter)
5314 {
5315 	struct e1000_hw *hw = &adapter->hw;
5316 	bool link_active = false;
5317 
5318 	/* get_link_status is set on LSC (link status) interrupt or
5319 	 * rx sequence error interrupt.  get_link_status will stay
5320 	 * false until the e1000_check_for_link establishes link
5321 	 * for copper adapters ONLY
5322 	 */
5323 	switch (hw->phy.media_type) {
5324 	case e1000_media_type_copper:
5325 		if (!hw->mac.get_link_status)
5326 			return true;
5327 		fallthrough;
5328 	case e1000_media_type_internal_serdes:
5329 		hw->mac.ops.check_for_link(hw);
5330 		link_active = !hw->mac.get_link_status;
5331 		break;
5332 	default:
5333 	case e1000_media_type_unknown:
5334 		break;
5335 	}
5336 
5337 	if (((hw->mac.type == e1000_i210) ||
5338 	     (hw->mac.type == e1000_i211)) &&
5339 	     (hw->phy.id == I210_I_PHY_ID)) {
5340 		if (!netif_carrier_ok(adapter->netdev)) {
5341 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5342 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5343 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5344 			adapter->link_check_timeout = jiffies;
5345 		}
5346 	}
5347 
5348 	return link_active;
5349 }
5350 
5351 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5352 {
5353 	bool ret = false;
5354 	u32 ctrl_ext, thstat;
5355 
5356 	/* check for thermal sensor event on i350 copper only */
5357 	if (hw->mac.type == e1000_i350) {
5358 		thstat = rd32(E1000_THSTAT);
5359 		ctrl_ext = rd32(E1000_CTRL_EXT);
5360 
5361 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5362 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5363 			ret = !!(thstat & event);
5364 	}
5365 
5366 	return ret;
5367 }
5368 
5369 /**
5370  *  igb_check_lvmmc - check for malformed packets received
5371  *  and indicated in LVMMC register
5372  *  @adapter: pointer to adapter
5373  **/
5374 static void igb_check_lvmmc(struct igb_adapter *adapter)
5375 {
5376 	struct e1000_hw *hw = &adapter->hw;
5377 	u32 lvmmc;
5378 
5379 	lvmmc = rd32(E1000_LVMMC);
5380 	if (lvmmc) {
5381 		if (unlikely(net_ratelimit())) {
5382 			netdev_warn(adapter->netdev,
5383 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5384 				    lvmmc);
5385 		}
5386 	}
5387 }
5388 
5389 /**
5390  *  igb_watchdog - Timer Call-back
5391  *  @t: pointer to timer_list containing our private info pointer
5392  **/
5393 static void igb_watchdog(struct timer_list *t)
5394 {
5395 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5396 	/* Do the rest outside of interrupt context */
5397 	schedule_work(&adapter->watchdog_task);
5398 }
5399 
5400 static void igb_watchdog_task(struct work_struct *work)
5401 {
5402 	struct igb_adapter *adapter = container_of(work,
5403 						   struct igb_adapter,
5404 						   watchdog_task);
5405 	struct e1000_hw *hw = &adapter->hw;
5406 	struct e1000_phy_info *phy = &hw->phy;
5407 	struct net_device *netdev = adapter->netdev;
5408 	u32 link;
5409 	int i;
5410 	u32 connsw;
5411 	u16 phy_data, retry_count = 20;
5412 
5413 	link = igb_has_link(adapter);
5414 
5415 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5416 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5417 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5418 		else
5419 			link = false;
5420 	}
5421 
5422 	/* Force link down if we have fiber to swap to */
5423 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5424 		if (hw->phy.media_type == e1000_media_type_copper) {
5425 			connsw = rd32(E1000_CONNSW);
5426 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5427 				link = 0;
5428 		}
5429 	}
5430 	if (link) {
5431 		/* Perform a reset if the media type changed. */
5432 		if (hw->dev_spec._82575.media_changed) {
5433 			hw->dev_spec._82575.media_changed = false;
5434 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5435 			igb_reset(adapter);
5436 		}
5437 		/* Cancel scheduled suspend requests. */
5438 		pm_runtime_resume(netdev->dev.parent);
5439 
5440 		if (!netif_carrier_ok(netdev)) {
5441 			u32 ctrl;
5442 
5443 			hw->mac.ops.get_speed_and_duplex(hw,
5444 							 &adapter->link_speed,
5445 							 &adapter->link_duplex);
5446 
5447 			ctrl = rd32(E1000_CTRL);
5448 			/* Links status message must follow this format */
5449 			netdev_info(netdev,
5450 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5451 			       netdev->name,
5452 			       adapter->link_speed,
5453 			       adapter->link_duplex == FULL_DUPLEX ?
5454 			       "Full" : "Half",
5455 			       (ctrl & E1000_CTRL_TFCE) &&
5456 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5457 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5458 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5459 
5460 			/* disable EEE if enabled */
5461 			if ((adapter->flags & IGB_FLAG_EEE) &&
5462 				(adapter->link_duplex == HALF_DUPLEX)) {
5463 				dev_info(&adapter->pdev->dev,
5464 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5465 				adapter->hw.dev_spec._82575.eee_disable = true;
5466 				adapter->flags &= ~IGB_FLAG_EEE;
5467 			}
5468 
5469 			/* check if SmartSpeed worked */
5470 			igb_check_downshift(hw);
5471 			if (phy->speed_downgraded)
5472 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5473 
5474 			/* check for thermal sensor event */
5475 			if (igb_thermal_sensor_event(hw,
5476 			    E1000_THSTAT_LINK_THROTTLE))
5477 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5478 
5479 			/* adjust timeout factor according to speed/duplex */
5480 			adapter->tx_timeout_factor = 1;
5481 			switch (adapter->link_speed) {
5482 			case SPEED_10:
5483 				adapter->tx_timeout_factor = 14;
5484 				break;
5485 			case SPEED_100:
5486 				/* maybe add some timeout factor ? */
5487 				break;
5488 			}
5489 
5490 			if (adapter->link_speed != SPEED_1000)
5491 				goto no_wait;
5492 
5493 			/* wait for Remote receiver status OK */
5494 retry_read_status:
5495 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5496 					      &phy_data)) {
5497 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5498 				    retry_count) {
5499 					msleep(100);
5500 					retry_count--;
5501 					goto retry_read_status;
5502 				} else if (!retry_count) {
5503 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5504 				}
5505 			} else {
5506 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5507 			}
5508 no_wait:
5509 			netif_carrier_on(netdev);
5510 
5511 			igb_ping_all_vfs(adapter);
5512 			igb_check_vf_rate_limit(adapter);
5513 
5514 			/* link state has changed, schedule phy info update */
5515 			if (!test_bit(__IGB_DOWN, &adapter->state))
5516 				mod_timer(&adapter->phy_info_timer,
5517 					  round_jiffies(jiffies + 2 * HZ));
5518 		}
5519 	} else {
5520 		if (netif_carrier_ok(netdev)) {
5521 			adapter->link_speed = 0;
5522 			adapter->link_duplex = 0;
5523 
5524 			/* check for thermal sensor event */
5525 			if (igb_thermal_sensor_event(hw,
5526 			    E1000_THSTAT_PWR_DOWN)) {
5527 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5528 			}
5529 
5530 			/* Links status message must follow this format */
5531 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5532 			       netdev->name);
5533 			netif_carrier_off(netdev);
5534 
5535 			igb_ping_all_vfs(adapter);
5536 
5537 			/* link state has changed, schedule phy info update */
5538 			if (!test_bit(__IGB_DOWN, &adapter->state))
5539 				mod_timer(&adapter->phy_info_timer,
5540 					  round_jiffies(jiffies + 2 * HZ));
5541 
5542 			/* link is down, time to check for alternate media */
5543 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5544 				igb_check_swap_media(adapter);
5545 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5546 					schedule_work(&adapter->reset_task);
5547 					/* return immediately */
5548 					return;
5549 				}
5550 			}
5551 			pm_schedule_suspend(netdev->dev.parent,
5552 					    MSEC_PER_SEC * 5);
5553 
5554 		/* also check for alternate media here */
5555 		} else if (!netif_carrier_ok(netdev) &&
5556 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5557 			igb_check_swap_media(adapter);
5558 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5559 				schedule_work(&adapter->reset_task);
5560 				/* return immediately */
5561 				return;
5562 			}
5563 		}
5564 	}
5565 
5566 	spin_lock(&adapter->stats64_lock);
5567 	igb_update_stats(adapter);
5568 	spin_unlock(&adapter->stats64_lock);
5569 
5570 	for (i = 0; i < adapter->num_tx_queues; i++) {
5571 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5572 		if (!netif_carrier_ok(netdev)) {
5573 			/* We've lost link, so the controller stops DMA,
5574 			 * but we've got queued Tx work that's never going
5575 			 * to get done, so reset controller to flush Tx.
5576 			 * (Do the reset outside of interrupt context).
5577 			 */
5578 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5579 				adapter->tx_timeout_count++;
5580 				schedule_work(&adapter->reset_task);
5581 				/* return immediately since reset is imminent */
5582 				return;
5583 			}
5584 		}
5585 
5586 		/* Force detection of hung controller every watchdog period */
5587 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5588 	}
5589 
5590 	/* Cause software interrupt to ensure Rx ring is cleaned */
5591 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5592 		u32 eics = 0;
5593 
5594 		for (i = 0; i < adapter->num_q_vectors; i++)
5595 			eics |= adapter->q_vector[i]->eims_value;
5596 		wr32(E1000_EICS, eics);
5597 	} else {
5598 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5599 	}
5600 
5601 	igb_spoof_check(adapter);
5602 	igb_ptp_rx_hang(adapter);
5603 	igb_ptp_tx_hang(adapter);
5604 
5605 	/* Check LVMMC register on i350/i354 only */
5606 	if ((adapter->hw.mac.type == e1000_i350) ||
5607 	    (adapter->hw.mac.type == e1000_i354))
5608 		igb_check_lvmmc(adapter);
5609 
5610 	/* Reset the timer */
5611 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5612 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5613 			mod_timer(&adapter->watchdog_timer,
5614 				  round_jiffies(jiffies +  HZ));
5615 		else
5616 			mod_timer(&adapter->watchdog_timer,
5617 				  round_jiffies(jiffies + 2 * HZ));
5618 	}
5619 }
5620 
5621 enum latency_range {
5622 	lowest_latency = 0,
5623 	low_latency = 1,
5624 	bulk_latency = 2,
5625 	latency_invalid = 255
5626 };
5627 
5628 /**
5629  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5630  *  @q_vector: pointer to q_vector
5631  *
5632  *  Stores a new ITR value based on strictly on packet size.  This
5633  *  algorithm is less sophisticated than that used in igb_update_itr,
5634  *  due to the difficulty of synchronizing statistics across multiple
5635  *  receive rings.  The divisors and thresholds used by this function
5636  *  were determined based on theoretical maximum wire speed and testing
5637  *  data, in order to minimize response time while increasing bulk
5638  *  throughput.
5639  *  This functionality is controlled by ethtool's coalescing settings.
5640  *  NOTE:  This function is called only when operating in a multiqueue
5641  *         receive environment.
5642  **/
5643 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5644 {
5645 	int new_val = q_vector->itr_val;
5646 	int avg_wire_size = 0;
5647 	struct igb_adapter *adapter = q_vector->adapter;
5648 	unsigned int packets;
5649 
5650 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5651 	 * ints/sec - ITR timer value of 120 ticks.
5652 	 */
5653 	if (adapter->link_speed != SPEED_1000) {
5654 		new_val = IGB_4K_ITR;
5655 		goto set_itr_val;
5656 	}
5657 
5658 	packets = q_vector->rx.total_packets;
5659 	if (packets)
5660 		avg_wire_size = q_vector->rx.total_bytes / packets;
5661 
5662 	packets = q_vector->tx.total_packets;
5663 	if (packets)
5664 		avg_wire_size = max_t(u32, avg_wire_size,
5665 				      q_vector->tx.total_bytes / packets);
5666 
5667 	/* if avg_wire_size isn't set no work was done */
5668 	if (!avg_wire_size)
5669 		goto clear_counts;
5670 
5671 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5672 	avg_wire_size += 24;
5673 
5674 	/* Don't starve jumbo frames */
5675 	avg_wire_size = min(avg_wire_size, 3000);
5676 
5677 	/* Give a little boost to mid-size frames */
5678 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5679 		new_val = avg_wire_size / 3;
5680 	else
5681 		new_val = avg_wire_size / 2;
5682 
5683 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5684 	if (new_val < IGB_20K_ITR &&
5685 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5686 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5687 		new_val = IGB_20K_ITR;
5688 
5689 set_itr_val:
5690 	if (new_val != q_vector->itr_val) {
5691 		q_vector->itr_val = new_val;
5692 		q_vector->set_itr = 1;
5693 	}
5694 clear_counts:
5695 	q_vector->rx.total_bytes = 0;
5696 	q_vector->rx.total_packets = 0;
5697 	q_vector->tx.total_bytes = 0;
5698 	q_vector->tx.total_packets = 0;
5699 }
5700 
5701 /**
5702  *  igb_update_itr - update the dynamic ITR value based on statistics
5703  *  @q_vector: pointer to q_vector
5704  *  @ring_container: ring info to update the itr for
5705  *
5706  *  Stores a new ITR value based on packets and byte
5707  *  counts during the last interrupt.  The advantage of per interrupt
5708  *  computation is faster updates and more accurate ITR for the current
5709  *  traffic pattern.  Constants in this function were computed
5710  *  based on theoretical maximum wire speed and thresholds were set based
5711  *  on testing data as well as attempting to minimize response time
5712  *  while increasing bulk throughput.
5713  *  This functionality is controlled by ethtool's coalescing settings.
5714  *  NOTE:  These calculations are only valid when operating in a single-
5715  *         queue environment.
5716  **/
5717 static void igb_update_itr(struct igb_q_vector *q_vector,
5718 			   struct igb_ring_container *ring_container)
5719 {
5720 	unsigned int packets = ring_container->total_packets;
5721 	unsigned int bytes = ring_container->total_bytes;
5722 	u8 itrval = ring_container->itr;
5723 
5724 	/* no packets, exit with status unchanged */
5725 	if (packets == 0)
5726 		return;
5727 
5728 	switch (itrval) {
5729 	case lowest_latency:
5730 		/* handle TSO and jumbo frames */
5731 		if (bytes/packets > 8000)
5732 			itrval = bulk_latency;
5733 		else if ((packets < 5) && (bytes > 512))
5734 			itrval = low_latency;
5735 		break;
5736 	case low_latency:  /* 50 usec aka 20000 ints/s */
5737 		if (bytes > 10000) {
5738 			/* this if handles the TSO accounting */
5739 			if (bytes/packets > 8000)
5740 				itrval = bulk_latency;
5741 			else if ((packets < 10) || ((bytes/packets) > 1200))
5742 				itrval = bulk_latency;
5743 			else if ((packets > 35))
5744 				itrval = lowest_latency;
5745 		} else if (bytes/packets > 2000) {
5746 			itrval = bulk_latency;
5747 		} else if (packets <= 2 && bytes < 512) {
5748 			itrval = lowest_latency;
5749 		}
5750 		break;
5751 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5752 		if (bytes > 25000) {
5753 			if (packets > 35)
5754 				itrval = low_latency;
5755 		} else if (bytes < 1500) {
5756 			itrval = low_latency;
5757 		}
5758 		break;
5759 	}
5760 
5761 	/* clear work counters since we have the values we need */
5762 	ring_container->total_bytes = 0;
5763 	ring_container->total_packets = 0;
5764 
5765 	/* write updated itr to ring container */
5766 	ring_container->itr = itrval;
5767 }
5768 
5769 static void igb_set_itr(struct igb_q_vector *q_vector)
5770 {
5771 	struct igb_adapter *adapter = q_vector->adapter;
5772 	u32 new_itr = q_vector->itr_val;
5773 	u8 current_itr = 0;
5774 
5775 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5776 	if (adapter->link_speed != SPEED_1000) {
5777 		current_itr = 0;
5778 		new_itr = IGB_4K_ITR;
5779 		goto set_itr_now;
5780 	}
5781 
5782 	igb_update_itr(q_vector, &q_vector->tx);
5783 	igb_update_itr(q_vector, &q_vector->rx);
5784 
5785 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5786 
5787 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5788 	if (current_itr == lowest_latency &&
5789 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5790 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5791 		current_itr = low_latency;
5792 
5793 	switch (current_itr) {
5794 	/* counts and packets in update_itr are dependent on these numbers */
5795 	case lowest_latency:
5796 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5797 		break;
5798 	case low_latency:
5799 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5800 		break;
5801 	case bulk_latency:
5802 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5803 		break;
5804 	default:
5805 		break;
5806 	}
5807 
5808 set_itr_now:
5809 	if (new_itr != q_vector->itr_val) {
5810 		/* this attempts to bias the interrupt rate towards Bulk
5811 		 * by adding intermediate steps when interrupt rate is
5812 		 * increasing
5813 		 */
5814 		new_itr = new_itr > q_vector->itr_val ?
5815 			  max((new_itr * q_vector->itr_val) /
5816 			  (new_itr + (q_vector->itr_val >> 2)),
5817 			  new_itr) : new_itr;
5818 		/* Don't write the value here; it resets the adapter's
5819 		 * internal timer, and causes us to delay far longer than
5820 		 * we should between interrupts.  Instead, we write the ITR
5821 		 * value at the beginning of the next interrupt so the timing
5822 		 * ends up being correct.
5823 		 */
5824 		q_vector->itr_val = new_itr;
5825 		q_vector->set_itr = 1;
5826 	}
5827 }
5828 
5829 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5830 			    struct igb_tx_buffer *first,
5831 			    u32 vlan_macip_lens, u32 type_tucmd,
5832 			    u32 mss_l4len_idx)
5833 {
5834 	struct e1000_adv_tx_context_desc *context_desc;
5835 	u16 i = tx_ring->next_to_use;
5836 	struct timespec64 ts;
5837 
5838 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5839 
5840 	i++;
5841 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5842 
5843 	/* set bits to identify this as an advanced context descriptor */
5844 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5845 
5846 	/* For 82575, context index must be unique per ring. */
5847 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5848 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5849 
5850 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5851 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5852 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5853 
5854 	/* We assume there is always a valid tx time available. Invalid times
5855 	 * should have been handled by the upper layers.
5856 	 */
5857 	if (tx_ring->launchtime_enable) {
5858 		ts = ktime_to_timespec64(first->skb->tstamp);
5859 		first->skb->tstamp = ktime_set(0, 0);
5860 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5861 	} else {
5862 		context_desc->seqnum_seed = 0;
5863 	}
5864 }
5865 
5866 static int igb_tso(struct igb_ring *tx_ring,
5867 		   struct igb_tx_buffer *first,
5868 		   u8 *hdr_len)
5869 {
5870 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5871 	struct sk_buff *skb = first->skb;
5872 	union {
5873 		struct iphdr *v4;
5874 		struct ipv6hdr *v6;
5875 		unsigned char *hdr;
5876 	} ip;
5877 	union {
5878 		struct tcphdr *tcp;
5879 		struct udphdr *udp;
5880 		unsigned char *hdr;
5881 	} l4;
5882 	u32 paylen, l4_offset;
5883 	int err;
5884 
5885 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5886 		return 0;
5887 
5888 	if (!skb_is_gso(skb))
5889 		return 0;
5890 
5891 	err = skb_cow_head(skb, 0);
5892 	if (err < 0)
5893 		return err;
5894 
5895 	ip.hdr = skb_network_header(skb);
5896 	l4.hdr = skb_checksum_start(skb);
5897 
5898 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5899 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5900 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5901 
5902 	/* initialize outer IP header fields */
5903 	if (ip.v4->version == 4) {
5904 		unsigned char *csum_start = skb_checksum_start(skb);
5905 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5906 
5907 		/* IP header will have to cancel out any data that
5908 		 * is not a part of the outer IP header
5909 		 */
5910 		ip.v4->check = csum_fold(csum_partial(trans_start,
5911 						      csum_start - trans_start,
5912 						      0));
5913 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5914 
5915 		ip.v4->tot_len = 0;
5916 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5917 				   IGB_TX_FLAGS_CSUM |
5918 				   IGB_TX_FLAGS_IPV4;
5919 	} else {
5920 		ip.v6->payload_len = 0;
5921 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5922 				   IGB_TX_FLAGS_CSUM;
5923 	}
5924 
5925 	/* determine offset of inner transport header */
5926 	l4_offset = l4.hdr - skb->data;
5927 
5928 	/* remove payload length from inner checksum */
5929 	paylen = skb->len - l4_offset;
5930 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5931 		/* compute length of segmentation header */
5932 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5933 		csum_replace_by_diff(&l4.tcp->check,
5934 			(__force __wsum)htonl(paylen));
5935 	} else {
5936 		/* compute length of segmentation header */
5937 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5938 		csum_replace_by_diff(&l4.udp->check,
5939 				     (__force __wsum)htonl(paylen));
5940 	}
5941 
5942 	/* update gso size and bytecount with header size */
5943 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5944 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5945 
5946 	/* MSS L4LEN IDX */
5947 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5948 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5949 
5950 	/* VLAN MACLEN IPLEN */
5951 	vlan_macip_lens = l4.hdr - ip.hdr;
5952 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5953 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5954 
5955 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5956 			type_tucmd, mss_l4len_idx);
5957 
5958 	return 1;
5959 }
5960 
5961 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5962 {
5963 	struct sk_buff *skb = first->skb;
5964 	u32 vlan_macip_lens = 0;
5965 	u32 type_tucmd = 0;
5966 
5967 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5968 csum_failed:
5969 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5970 		    !tx_ring->launchtime_enable)
5971 			return;
5972 		goto no_csum;
5973 	}
5974 
5975 	switch (skb->csum_offset) {
5976 	case offsetof(struct tcphdr, check):
5977 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5978 		fallthrough;
5979 	case offsetof(struct udphdr, check):
5980 		break;
5981 	case offsetof(struct sctphdr, checksum):
5982 		/* validate that this is actually an SCTP request */
5983 		if (skb_csum_is_sctp(skb)) {
5984 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5985 			break;
5986 		}
5987 		fallthrough;
5988 	default:
5989 		skb_checksum_help(skb);
5990 		goto csum_failed;
5991 	}
5992 
5993 	/* update TX checksum flag */
5994 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5995 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5996 			  skb_network_offset(skb);
5997 no_csum:
5998 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5999 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6000 
6001 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6002 }
6003 
6004 #define IGB_SET_FLAG(_input, _flag, _result) \
6005 	((_flag <= _result) ? \
6006 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6007 	 ((u32)(_input & _flag) / (_flag / _result)))
6008 
6009 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6010 {
6011 	/* set type for advanced descriptor with frame checksum insertion */
6012 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6013 		       E1000_ADVTXD_DCMD_DEXT |
6014 		       E1000_ADVTXD_DCMD_IFCS;
6015 
6016 	/* set HW vlan bit if vlan is present */
6017 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6018 				 (E1000_ADVTXD_DCMD_VLE));
6019 
6020 	/* set segmentation bits for TSO */
6021 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6022 				 (E1000_ADVTXD_DCMD_TSE));
6023 
6024 	/* set timestamp bit if present */
6025 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6026 				 (E1000_ADVTXD_MAC_TSTAMP));
6027 
6028 	/* insert frame checksum */
6029 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6030 
6031 	return cmd_type;
6032 }
6033 
6034 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6035 				 union e1000_adv_tx_desc *tx_desc,
6036 				 u32 tx_flags, unsigned int paylen)
6037 {
6038 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6039 
6040 	/* 82575 requires a unique index per ring */
6041 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6042 		olinfo_status |= tx_ring->reg_idx << 4;
6043 
6044 	/* insert L4 checksum */
6045 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6046 				      IGB_TX_FLAGS_CSUM,
6047 				      (E1000_TXD_POPTS_TXSM << 8));
6048 
6049 	/* insert IPv4 checksum */
6050 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6051 				      IGB_TX_FLAGS_IPV4,
6052 				      (E1000_TXD_POPTS_IXSM << 8));
6053 
6054 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6055 }
6056 
6057 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6058 {
6059 	struct net_device *netdev = tx_ring->netdev;
6060 
6061 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6062 
6063 	/* Herbert's original patch had:
6064 	 *  smp_mb__after_netif_stop_queue();
6065 	 * but since that doesn't exist yet, just open code it.
6066 	 */
6067 	smp_mb();
6068 
6069 	/* We need to check again in a case another CPU has just
6070 	 * made room available.
6071 	 */
6072 	if (igb_desc_unused(tx_ring) < size)
6073 		return -EBUSY;
6074 
6075 	/* A reprieve! */
6076 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6077 
6078 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6079 	tx_ring->tx_stats.restart_queue2++;
6080 	u64_stats_update_end(&tx_ring->tx_syncp2);
6081 
6082 	return 0;
6083 }
6084 
6085 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6086 {
6087 	if (igb_desc_unused(tx_ring) >= size)
6088 		return 0;
6089 	return __igb_maybe_stop_tx(tx_ring, size);
6090 }
6091 
6092 static int igb_tx_map(struct igb_ring *tx_ring,
6093 		      struct igb_tx_buffer *first,
6094 		      const u8 hdr_len)
6095 {
6096 	struct sk_buff *skb = first->skb;
6097 	struct igb_tx_buffer *tx_buffer;
6098 	union e1000_adv_tx_desc *tx_desc;
6099 	skb_frag_t *frag;
6100 	dma_addr_t dma;
6101 	unsigned int data_len, size;
6102 	u32 tx_flags = first->tx_flags;
6103 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6104 	u16 i = tx_ring->next_to_use;
6105 
6106 	tx_desc = IGB_TX_DESC(tx_ring, i);
6107 
6108 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6109 
6110 	size = skb_headlen(skb);
6111 	data_len = skb->data_len;
6112 
6113 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6114 
6115 	tx_buffer = first;
6116 
6117 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6118 		if (dma_mapping_error(tx_ring->dev, dma))
6119 			goto dma_error;
6120 
6121 		/* record length, and DMA address */
6122 		dma_unmap_len_set(tx_buffer, len, size);
6123 		dma_unmap_addr_set(tx_buffer, dma, dma);
6124 
6125 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6126 
6127 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6128 			tx_desc->read.cmd_type_len =
6129 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6130 
6131 			i++;
6132 			tx_desc++;
6133 			if (i == tx_ring->count) {
6134 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6135 				i = 0;
6136 			}
6137 			tx_desc->read.olinfo_status = 0;
6138 
6139 			dma += IGB_MAX_DATA_PER_TXD;
6140 			size -= IGB_MAX_DATA_PER_TXD;
6141 
6142 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6143 		}
6144 
6145 		if (likely(!data_len))
6146 			break;
6147 
6148 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6149 
6150 		i++;
6151 		tx_desc++;
6152 		if (i == tx_ring->count) {
6153 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6154 			i = 0;
6155 		}
6156 		tx_desc->read.olinfo_status = 0;
6157 
6158 		size = skb_frag_size(frag);
6159 		data_len -= size;
6160 
6161 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6162 				       size, DMA_TO_DEVICE);
6163 
6164 		tx_buffer = &tx_ring->tx_buffer_info[i];
6165 	}
6166 
6167 	/* write last descriptor with RS and EOP bits */
6168 	cmd_type |= size | IGB_TXD_DCMD;
6169 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6170 
6171 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6172 
6173 	/* set the timestamp */
6174 	first->time_stamp = jiffies;
6175 
6176 	skb_tx_timestamp(skb);
6177 
6178 	/* Force memory writes to complete before letting h/w know there
6179 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6180 	 * memory model archs, such as IA-64).
6181 	 *
6182 	 * We also need this memory barrier to make certain all of the
6183 	 * status bits have been updated before next_to_watch is written.
6184 	 */
6185 	dma_wmb();
6186 
6187 	/* set next_to_watch value indicating a packet is present */
6188 	first->next_to_watch = tx_desc;
6189 
6190 	i++;
6191 	if (i == tx_ring->count)
6192 		i = 0;
6193 
6194 	tx_ring->next_to_use = i;
6195 
6196 	/* Make sure there is space in the ring for the next send. */
6197 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6198 
6199 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6200 		writel(i, tx_ring->tail);
6201 	}
6202 	return 0;
6203 
6204 dma_error:
6205 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6206 	tx_buffer = &tx_ring->tx_buffer_info[i];
6207 
6208 	/* clear dma mappings for failed tx_buffer_info map */
6209 	while (tx_buffer != first) {
6210 		if (dma_unmap_len(tx_buffer, len))
6211 			dma_unmap_page(tx_ring->dev,
6212 				       dma_unmap_addr(tx_buffer, dma),
6213 				       dma_unmap_len(tx_buffer, len),
6214 				       DMA_TO_DEVICE);
6215 		dma_unmap_len_set(tx_buffer, len, 0);
6216 
6217 		if (i-- == 0)
6218 			i += tx_ring->count;
6219 		tx_buffer = &tx_ring->tx_buffer_info[i];
6220 	}
6221 
6222 	if (dma_unmap_len(tx_buffer, len))
6223 		dma_unmap_single(tx_ring->dev,
6224 				 dma_unmap_addr(tx_buffer, dma),
6225 				 dma_unmap_len(tx_buffer, len),
6226 				 DMA_TO_DEVICE);
6227 	dma_unmap_len_set(tx_buffer, len, 0);
6228 
6229 	dev_kfree_skb_any(tx_buffer->skb);
6230 	tx_buffer->skb = NULL;
6231 
6232 	tx_ring->next_to_use = i;
6233 
6234 	return -1;
6235 }
6236 
6237 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6238 		      struct igb_ring *tx_ring,
6239 		      struct xdp_frame *xdpf)
6240 {
6241 	union e1000_adv_tx_desc *tx_desc;
6242 	u32 len, cmd_type, olinfo_status;
6243 	struct igb_tx_buffer *tx_buffer;
6244 	dma_addr_t dma;
6245 	u16 i;
6246 
6247 	len = xdpf->len;
6248 
6249 	if (unlikely(!igb_desc_unused(tx_ring)))
6250 		return IGB_XDP_CONSUMED;
6251 
6252 	dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6253 	if (dma_mapping_error(tx_ring->dev, dma))
6254 		return IGB_XDP_CONSUMED;
6255 
6256 	/* record the location of the first descriptor for this packet */
6257 	tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6258 	tx_buffer->bytecount = len;
6259 	tx_buffer->gso_segs = 1;
6260 	tx_buffer->protocol = 0;
6261 
6262 	i = tx_ring->next_to_use;
6263 	tx_desc = IGB_TX_DESC(tx_ring, i);
6264 
6265 	dma_unmap_len_set(tx_buffer, len, len);
6266 	dma_unmap_addr_set(tx_buffer, dma, dma);
6267 	tx_buffer->type = IGB_TYPE_XDP;
6268 	tx_buffer->xdpf = xdpf;
6269 
6270 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
6271 
6272 	/* put descriptor type bits */
6273 	cmd_type = E1000_ADVTXD_DTYP_DATA |
6274 		   E1000_ADVTXD_DCMD_DEXT |
6275 		   E1000_ADVTXD_DCMD_IFCS;
6276 	cmd_type |= len | IGB_TXD_DCMD;
6277 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6278 
6279 	olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT);
6280 	/* 82575 requires a unique index per ring */
6281 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6282 		olinfo_status |= tx_ring->reg_idx << 4;
6283 
6284 	tx_desc->read.olinfo_status = olinfo_status;
6285 
6286 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6287 
6288 	/* set the timestamp */
6289 	tx_buffer->time_stamp = jiffies;
6290 
6291 	/* Avoid any potential race with xdp_xmit and cleanup */
6292 	smp_wmb();
6293 
6294 	/* set next_to_watch value indicating a packet is present */
6295 	i++;
6296 	if (i == tx_ring->count)
6297 		i = 0;
6298 
6299 	tx_buffer->next_to_watch = tx_desc;
6300 	tx_ring->next_to_use = i;
6301 
6302 	/* Make sure there is space in the ring for the next send. */
6303 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6304 
6305 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6306 		writel(i, tx_ring->tail);
6307 
6308 	return IGB_XDP_TX;
6309 }
6310 
6311 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6312 				struct igb_ring *tx_ring)
6313 {
6314 	struct igb_tx_buffer *first;
6315 	int tso;
6316 	u32 tx_flags = 0;
6317 	unsigned short f;
6318 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6319 	__be16 protocol = vlan_get_protocol(skb);
6320 	u8 hdr_len = 0;
6321 
6322 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6323 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6324 	 *       + 2 desc gap to keep tail from touching head,
6325 	 *       + 1 desc for context descriptor,
6326 	 * otherwise try next time
6327 	 */
6328 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6329 		count += TXD_USE_COUNT(skb_frag_size(
6330 						&skb_shinfo(skb)->frags[f]));
6331 
6332 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6333 		/* this is a hard error */
6334 		return NETDEV_TX_BUSY;
6335 	}
6336 
6337 	/* record the location of the first descriptor for this packet */
6338 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6339 	first->type = IGB_TYPE_SKB;
6340 	first->skb = skb;
6341 	first->bytecount = skb->len;
6342 	first->gso_segs = 1;
6343 
6344 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6345 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6346 
6347 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6348 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6349 					   &adapter->state)) {
6350 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6351 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6352 
6353 			adapter->ptp_tx_skb = skb_get(skb);
6354 			adapter->ptp_tx_start = jiffies;
6355 			if (adapter->hw.mac.type == e1000_82576)
6356 				schedule_work(&adapter->ptp_tx_work);
6357 		} else {
6358 			adapter->tx_hwtstamp_skipped++;
6359 		}
6360 	}
6361 
6362 	if (skb_vlan_tag_present(skb)) {
6363 		tx_flags |= IGB_TX_FLAGS_VLAN;
6364 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6365 	}
6366 
6367 	/* record initial flags and protocol */
6368 	first->tx_flags = tx_flags;
6369 	first->protocol = protocol;
6370 
6371 	tso = igb_tso(tx_ring, first, &hdr_len);
6372 	if (tso < 0)
6373 		goto out_drop;
6374 	else if (!tso)
6375 		igb_tx_csum(tx_ring, first);
6376 
6377 	if (igb_tx_map(tx_ring, first, hdr_len))
6378 		goto cleanup_tx_tstamp;
6379 
6380 	return NETDEV_TX_OK;
6381 
6382 out_drop:
6383 	dev_kfree_skb_any(first->skb);
6384 	first->skb = NULL;
6385 cleanup_tx_tstamp:
6386 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6387 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6388 
6389 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6390 		adapter->ptp_tx_skb = NULL;
6391 		if (adapter->hw.mac.type == e1000_82576)
6392 			cancel_work_sync(&adapter->ptp_tx_work);
6393 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6394 	}
6395 
6396 	return NETDEV_TX_OK;
6397 }
6398 
6399 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6400 						    struct sk_buff *skb)
6401 {
6402 	unsigned int r_idx = skb->queue_mapping;
6403 
6404 	if (r_idx >= adapter->num_tx_queues)
6405 		r_idx = r_idx % adapter->num_tx_queues;
6406 
6407 	return adapter->tx_ring[r_idx];
6408 }
6409 
6410 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6411 				  struct net_device *netdev)
6412 {
6413 	struct igb_adapter *adapter = netdev_priv(netdev);
6414 
6415 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6416 	 * in order to meet this minimum size requirement.
6417 	 */
6418 	if (skb_put_padto(skb, 17))
6419 		return NETDEV_TX_OK;
6420 
6421 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6422 }
6423 
6424 /**
6425  *  igb_tx_timeout - Respond to a Tx Hang
6426  *  @netdev: network interface device structure
6427  *  @txqueue: number of the Tx queue that hung (unused)
6428  **/
6429 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6430 {
6431 	struct igb_adapter *adapter = netdev_priv(netdev);
6432 	struct e1000_hw *hw = &adapter->hw;
6433 
6434 	/* Do the reset outside of interrupt context */
6435 	adapter->tx_timeout_count++;
6436 
6437 	if (hw->mac.type >= e1000_82580)
6438 		hw->dev_spec._82575.global_device_reset = true;
6439 
6440 	schedule_work(&adapter->reset_task);
6441 	wr32(E1000_EICS,
6442 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6443 }
6444 
6445 static void igb_reset_task(struct work_struct *work)
6446 {
6447 	struct igb_adapter *adapter;
6448 	adapter = container_of(work, struct igb_adapter, reset_task);
6449 
6450 	rtnl_lock();
6451 	/* If we're already down or resetting, just bail */
6452 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6453 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6454 		rtnl_unlock();
6455 		return;
6456 	}
6457 
6458 	igb_dump(adapter);
6459 	netdev_err(adapter->netdev, "Reset adapter\n");
6460 	igb_reinit_locked(adapter);
6461 	rtnl_unlock();
6462 }
6463 
6464 /**
6465  *  igb_get_stats64 - Get System Network Statistics
6466  *  @netdev: network interface device structure
6467  *  @stats: rtnl_link_stats64 pointer
6468  **/
6469 static void igb_get_stats64(struct net_device *netdev,
6470 			    struct rtnl_link_stats64 *stats)
6471 {
6472 	struct igb_adapter *adapter = netdev_priv(netdev);
6473 
6474 	spin_lock(&adapter->stats64_lock);
6475 	igb_update_stats(adapter);
6476 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6477 	spin_unlock(&adapter->stats64_lock);
6478 }
6479 
6480 /**
6481  *  igb_change_mtu - Change the Maximum Transfer Unit
6482  *  @netdev: network interface device structure
6483  *  @new_mtu: new value for maximum frame size
6484  *
6485  *  Returns 0 on success, negative on failure
6486  **/
6487 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6488 {
6489 	struct igb_adapter *adapter = netdev_priv(netdev);
6490 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6491 
6492 	if (adapter->xdp_prog) {
6493 		int i;
6494 
6495 		for (i = 0; i < adapter->num_rx_queues; i++) {
6496 			struct igb_ring *ring = adapter->rx_ring[i];
6497 
6498 			if (max_frame > igb_rx_bufsz(ring)) {
6499 				netdev_warn(adapter->netdev,
6500 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6501 					    max_frame);
6502 				return -EINVAL;
6503 			}
6504 		}
6505 	}
6506 
6507 	/* adjust max frame to be at least the size of a standard frame */
6508 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6509 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6510 
6511 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6512 		usleep_range(1000, 2000);
6513 
6514 	/* igb_down has a dependency on max_frame_size */
6515 	adapter->max_frame_size = max_frame;
6516 
6517 	if (netif_running(netdev))
6518 		igb_down(adapter);
6519 
6520 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6521 		   netdev->mtu, new_mtu);
6522 	netdev->mtu = new_mtu;
6523 
6524 	if (netif_running(netdev))
6525 		igb_up(adapter);
6526 	else
6527 		igb_reset(adapter);
6528 
6529 	clear_bit(__IGB_RESETTING, &adapter->state);
6530 
6531 	return 0;
6532 }
6533 
6534 /**
6535  *  igb_update_stats - Update the board statistics counters
6536  *  @adapter: board private structure
6537  **/
6538 void igb_update_stats(struct igb_adapter *adapter)
6539 {
6540 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6541 	struct e1000_hw *hw = &adapter->hw;
6542 	struct pci_dev *pdev = adapter->pdev;
6543 	u32 reg, mpc;
6544 	int i;
6545 	u64 bytes, packets;
6546 	unsigned int start;
6547 	u64 _bytes, _packets;
6548 
6549 	/* Prevent stats update while adapter is being reset, or if the pci
6550 	 * connection is down.
6551 	 */
6552 	if (adapter->link_speed == 0)
6553 		return;
6554 	if (pci_channel_offline(pdev))
6555 		return;
6556 
6557 	bytes = 0;
6558 	packets = 0;
6559 
6560 	rcu_read_lock();
6561 	for (i = 0; i < adapter->num_rx_queues; i++) {
6562 		struct igb_ring *ring = adapter->rx_ring[i];
6563 		u32 rqdpc = rd32(E1000_RQDPC(i));
6564 		if (hw->mac.type >= e1000_i210)
6565 			wr32(E1000_RQDPC(i), 0);
6566 
6567 		if (rqdpc) {
6568 			ring->rx_stats.drops += rqdpc;
6569 			net_stats->rx_fifo_errors += rqdpc;
6570 		}
6571 
6572 		do {
6573 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6574 			_bytes = ring->rx_stats.bytes;
6575 			_packets = ring->rx_stats.packets;
6576 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6577 		bytes += _bytes;
6578 		packets += _packets;
6579 	}
6580 
6581 	net_stats->rx_bytes = bytes;
6582 	net_stats->rx_packets = packets;
6583 
6584 	bytes = 0;
6585 	packets = 0;
6586 	for (i = 0; i < adapter->num_tx_queues; i++) {
6587 		struct igb_ring *ring = adapter->tx_ring[i];
6588 		do {
6589 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6590 			_bytes = ring->tx_stats.bytes;
6591 			_packets = ring->tx_stats.packets;
6592 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6593 		bytes += _bytes;
6594 		packets += _packets;
6595 	}
6596 	net_stats->tx_bytes = bytes;
6597 	net_stats->tx_packets = packets;
6598 	rcu_read_unlock();
6599 
6600 	/* read stats registers */
6601 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6602 	adapter->stats.gprc += rd32(E1000_GPRC);
6603 	adapter->stats.gorc += rd32(E1000_GORCL);
6604 	rd32(E1000_GORCH); /* clear GORCL */
6605 	adapter->stats.bprc += rd32(E1000_BPRC);
6606 	adapter->stats.mprc += rd32(E1000_MPRC);
6607 	adapter->stats.roc += rd32(E1000_ROC);
6608 
6609 	adapter->stats.prc64 += rd32(E1000_PRC64);
6610 	adapter->stats.prc127 += rd32(E1000_PRC127);
6611 	adapter->stats.prc255 += rd32(E1000_PRC255);
6612 	adapter->stats.prc511 += rd32(E1000_PRC511);
6613 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6614 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6615 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6616 	adapter->stats.sec += rd32(E1000_SEC);
6617 
6618 	mpc = rd32(E1000_MPC);
6619 	adapter->stats.mpc += mpc;
6620 	net_stats->rx_fifo_errors += mpc;
6621 	adapter->stats.scc += rd32(E1000_SCC);
6622 	adapter->stats.ecol += rd32(E1000_ECOL);
6623 	adapter->stats.mcc += rd32(E1000_MCC);
6624 	adapter->stats.latecol += rd32(E1000_LATECOL);
6625 	adapter->stats.dc += rd32(E1000_DC);
6626 	adapter->stats.rlec += rd32(E1000_RLEC);
6627 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6628 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6629 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6630 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6631 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6632 	adapter->stats.gptc += rd32(E1000_GPTC);
6633 	adapter->stats.gotc += rd32(E1000_GOTCL);
6634 	rd32(E1000_GOTCH); /* clear GOTCL */
6635 	adapter->stats.rnbc += rd32(E1000_RNBC);
6636 	adapter->stats.ruc += rd32(E1000_RUC);
6637 	adapter->stats.rfc += rd32(E1000_RFC);
6638 	adapter->stats.rjc += rd32(E1000_RJC);
6639 	adapter->stats.tor += rd32(E1000_TORH);
6640 	adapter->stats.tot += rd32(E1000_TOTH);
6641 	adapter->stats.tpr += rd32(E1000_TPR);
6642 
6643 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6644 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6645 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6646 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6647 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6648 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6649 
6650 	adapter->stats.mptc += rd32(E1000_MPTC);
6651 	adapter->stats.bptc += rd32(E1000_BPTC);
6652 
6653 	adapter->stats.tpt += rd32(E1000_TPT);
6654 	adapter->stats.colc += rd32(E1000_COLC);
6655 
6656 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6657 	/* read internal phy specific stats */
6658 	reg = rd32(E1000_CTRL_EXT);
6659 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6660 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6661 
6662 		/* this stat has invalid values on i210/i211 */
6663 		if ((hw->mac.type != e1000_i210) &&
6664 		    (hw->mac.type != e1000_i211))
6665 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6666 	}
6667 
6668 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6669 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6670 
6671 	adapter->stats.iac += rd32(E1000_IAC);
6672 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6673 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6674 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6675 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6676 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6677 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6678 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6679 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6680 
6681 	/* Fill out the OS statistics structure */
6682 	net_stats->multicast = adapter->stats.mprc;
6683 	net_stats->collisions = adapter->stats.colc;
6684 
6685 	/* Rx Errors */
6686 
6687 	/* RLEC on some newer hardware can be incorrect so build
6688 	 * our own version based on RUC and ROC
6689 	 */
6690 	net_stats->rx_errors = adapter->stats.rxerrc +
6691 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6692 		adapter->stats.ruc + adapter->stats.roc +
6693 		adapter->stats.cexterr;
6694 	net_stats->rx_length_errors = adapter->stats.ruc +
6695 				      adapter->stats.roc;
6696 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6697 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6698 	net_stats->rx_missed_errors = adapter->stats.mpc;
6699 
6700 	/* Tx Errors */
6701 	net_stats->tx_errors = adapter->stats.ecol +
6702 			       adapter->stats.latecol;
6703 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6704 	net_stats->tx_window_errors = adapter->stats.latecol;
6705 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6706 
6707 	/* Tx Dropped needs to be maintained elsewhere */
6708 
6709 	/* Management Stats */
6710 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6711 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6712 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6713 
6714 	/* OS2BMC Stats */
6715 	reg = rd32(E1000_MANC);
6716 	if (reg & E1000_MANC_EN_BMC2OS) {
6717 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6718 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6719 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6720 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6721 	}
6722 }
6723 
6724 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6725 {
6726 	struct e1000_hw *hw = &adapter->hw;
6727 	struct ptp_clock_event event;
6728 	struct timespec64 ts;
6729 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6730 
6731 	if (tsicr & TSINTR_SYS_WRAP) {
6732 		event.type = PTP_CLOCK_PPS;
6733 		if (adapter->ptp_caps.pps)
6734 			ptp_clock_event(adapter->ptp_clock, &event);
6735 		ack |= TSINTR_SYS_WRAP;
6736 	}
6737 
6738 	if (tsicr & E1000_TSICR_TXTS) {
6739 		/* retrieve hardware timestamp */
6740 		schedule_work(&adapter->ptp_tx_work);
6741 		ack |= E1000_TSICR_TXTS;
6742 	}
6743 
6744 	if (tsicr & TSINTR_TT0) {
6745 		spin_lock(&adapter->tmreg_lock);
6746 		ts = timespec64_add(adapter->perout[0].start,
6747 				    adapter->perout[0].period);
6748 		/* u32 conversion of tv_sec is safe until y2106 */
6749 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6750 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6751 		tsauxc = rd32(E1000_TSAUXC);
6752 		tsauxc |= TSAUXC_EN_TT0;
6753 		wr32(E1000_TSAUXC, tsauxc);
6754 		adapter->perout[0].start = ts;
6755 		spin_unlock(&adapter->tmreg_lock);
6756 		ack |= TSINTR_TT0;
6757 	}
6758 
6759 	if (tsicr & TSINTR_TT1) {
6760 		spin_lock(&adapter->tmreg_lock);
6761 		ts = timespec64_add(adapter->perout[1].start,
6762 				    adapter->perout[1].period);
6763 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6764 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6765 		tsauxc = rd32(E1000_TSAUXC);
6766 		tsauxc |= TSAUXC_EN_TT1;
6767 		wr32(E1000_TSAUXC, tsauxc);
6768 		adapter->perout[1].start = ts;
6769 		spin_unlock(&adapter->tmreg_lock);
6770 		ack |= TSINTR_TT1;
6771 	}
6772 
6773 	if (tsicr & TSINTR_AUTT0) {
6774 		nsec = rd32(E1000_AUXSTMPL0);
6775 		sec  = rd32(E1000_AUXSTMPH0);
6776 		event.type = PTP_CLOCK_EXTTS;
6777 		event.index = 0;
6778 		event.timestamp = sec * 1000000000ULL + nsec;
6779 		ptp_clock_event(adapter->ptp_clock, &event);
6780 		ack |= TSINTR_AUTT0;
6781 	}
6782 
6783 	if (tsicr & TSINTR_AUTT1) {
6784 		nsec = rd32(E1000_AUXSTMPL1);
6785 		sec  = rd32(E1000_AUXSTMPH1);
6786 		event.type = PTP_CLOCK_EXTTS;
6787 		event.index = 1;
6788 		event.timestamp = sec * 1000000000ULL + nsec;
6789 		ptp_clock_event(adapter->ptp_clock, &event);
6790 		ack |= TSINTR_AUTT1;
6791 	}
6792 
6793 	/* acknowledge the interrupts */
6794 	wr32(E1000_TSICR, ack);
6795 }
6796 
6797 static irqreturn_t igb_msix_other(int irq, void *data)
6798 {
6799 	struct igb_adapter *adapter = data;
6800 	struct e1000_hw *hw = &adapter->hw;
6801 	u32 icr = rd32(E1000_ICR);
6802 	/* reading ICR causes bit 31 of EICR to be cleared */
6803 
6804 	if (icr & E1000_ICR_DRSTA)
6805 		schedule_work(&adapter->reset_task);
6806 
6807 	if (icr & E1000_ICR_DOUTSYNC) {
6808 		/* HW is reporting DMA is out of sync */
6809 		adapter->stats.doosync++;
6810 		/* The DMA Out of Sync is also indication of a spoof event
6811 		 * in IOV mode. Check the Wrong VM Behavior register to
6812 		 * see if it is really a spoof event.
6813 		 */
6814 		igb_check_wvbr(adapter);
6815 	}
6816 
6817 	/* Check for a mailbox event */
6818 	if (icr & E1000_ICR_VMMB)
6819 		igb_msg_task(adapter);
6820 
6821 	if (icr & E1000_ICR_LSC) {
6822 		hw->mac.get_link_status = 1;
6823 		/* guard against interrupt when we're going down */
6824 		if (!test_bit(__IGB_DOWN, &adapter->state))
6825 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6826 	}
6827 
6828 	if (icr & E1000_ICR_TS)
6829 		igb_tsync_interrupt(adapter);
6830 
6831 	wr32(E1000_EIMS, adapter->eims_other);
6832 
6833 	return IRQ_HANDLED;
6834 }
6835 
6836 static void igb_write_itr(struct igb_q_vector *q_vector)
6837 {
6838 	struct igb_adapter *adapter = q_vector->adapter;
6839 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6840 
6841 	if (!q_vector->set_itr)
6842 		return;
6843 
6844 	if (!itr_val)
6845 		itr_val = 0x4;
6846 
6847 	if (adapter->hw.mac.type == e1000_82575)
6848 		itr_val |= itr_val << 16;
6849 	else
6850 		itr_val |= E1000_EITR_CNT_IGNR;
6851 
6852 	writel(itr_val, q_vector->itr_register);
6853 	q_vector->set_itr = 0;
6854 }
6855 
6856 static irqreturn_t igb_msix_ring(int irq, void *data)
6857 {
6858 	struct igb_q_vector *q_vector = data;
6859 
6860 	/* Write the ITR value calculated from the previous interrupt. */
6861 	igb_write_itr(q_vector);
6862 
6863 	napi_schedule(&q_vector->napi);
6864 
6865 	return IRQ_HANDLED;
6866 }
6867 
6868 #ifdef CONFIG_IGB_DCA
6869 static void igb_update_tx_dca(struct igb_adapter *adapter,
6870 			      struct igb_ring *tx_ring,
6871 			      int cpu)
6872 {
6873 	struct e1000_hw *hw = &adapter->hw;
6874 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6875 
6876 	if (hw->mac.type != e1000_82575)
6877 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6878 
6879 	/* We can enable relaxed ordering for reads, but not writes when
6880 	 * DCA is enabled.  This is due to a known issue in some chipsets
6881 	 * which will cause the DCA tag to be cleared.
6882 	 */
6883 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6884 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6885 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6886 
6887 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6888 }
6889 
6890 static void igb_update_rx_dca(struct igb_adapter *adapter,
6891 			      struct igb_ring *rx_ring,
6892 			      int cpu)
6893 {
6894 	struct e1000_hw *hw = &adapter->hw;
6895 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6896 
6897 	if (hw->mac.type != e1000_82575)
6898 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6899 
6900 	/* We can enable relaxed ordering for reads, but not writes when
6901 	 * DCA is enabled.  This is due to a known issue in some chipsets
6902 	 * which will cause the DCA tag to be cleared.
6903 	 */
6904 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6905 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6906 
6907 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6908 }
6909 
6910 static void igb_update_dca(struct igb_q_vector *q_vector)
6911 {
6912 	struct igb_adapter *adapter = q_vector->adapter;
6913 	int cpu = get_cpu();
6914 
6915 	if (q_vector->cpu == cpu)
6916 		goto out_no_update;
6917 
6918 	if (q_vector->tx.ring)
6919 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6920 
6921 	if (q_vector->rx.ring)
6922 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6923 
6924 	q_vector->cpu = cpu;
6925 out_no_update:
6926 	put_cpu();
6927 }
6928 
6929 static void igb_setup_dca(struct igb_adapter *adapter)
6930 {
6931 	struct e1000_hw *hw = &adapter->hw;
6932 	int i;
6933 
6934 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6935 		return;
6936 
6937 	/* Always use CB2 mode, difference is masked in the CB driver. */
6938 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6939 
6940 	for (i = 0; i < adapter->num_q_vectors; i++) {
6941 		adapter->q_vector[i]->cpu = -1;
6942 		igb_update_dca(adapter->q_vector[i]);
6943 	}
6944 }
6945 
6946 static int __igb_notify_dca(struct device *dev, void *data)
6947 {
6948 	struct net_device *netdev = dev_get_drvdata(dev);
6949 	struct igb_adapter *adapter = netdev_priv(netdev);
6950 	struct pci_dev *pdev = adapter->pdev;
6951 	struct e1000_hw *hw = &adapter->hw;
6952 	unsigned long event = *(unsigned long *)data;
6953 
6954 	switch (event) {
6955 	case DCA_PROVIDER_ADD:
6956 		/* if already enabled, don't do it again */
6957 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6958 			break;
6959 		if (dca_add_requester(dev) == 0) {
6960 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6961 			dev_info(&pdev->dev, "DCA enabled\n");
6962 			igb_setup_dca(adapter);
6963 			break;
6964 		}
6965 		fallthrough; /* since DCA is disabled. */
6966 	case DCA_PROVIDER_REMOVE:
6967 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6968 			/* without this a class_device is left
6969 			 * hanging around in the sysfs model
6970 			 */
6971 			dca_remove_requester(dev);
6972 			dev_info(&pdev->dev, "DCA disabled\n");
6973 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6974 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6975 		}
6976 		break;
6977 	}
6978 
6979 	return 0;
6980 }
6981 
6982 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6983 			  void *p)
6984 {
6985 	int ret_val;
6986 
6987 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6988 					 __igb_notify_dca);
6989 
6990 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6991 }
6992 #endif /* CONFIG_IGB_DCA */
6993 
6994 #ifdef CONFIG_PCI_IOV
6995 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6996 {
6997 	unsigned char mac_addr[ETH_ALEN];
6998 
6999 	eth_zero_addr(mac_addr);
7000 	igb_set_vf_mac(adapter, vf, mac_addr);
7001 
7002 	/* By default spoof check is enabled for all VFs */
7003 	adapter->vf_data[vf].spoofchk_enabled = true;
7004 
7005 	/* By default VFs are not trusted */
7006 	adapter->vf_data[vf].trusted = false;
7007 
7008 	return 0;
7009 }
7010 
7011 #endif
7012 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7013 {
7014 	struct e1000_hw *hw = &adapter->hw;
7015 	u32 ping;
7016 	int i;
7017 
7018 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7019 		ping = E1000_PF_CONTROL_MSG;
7020 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7021 			ping |= E1000_VT_MSGTYPE_CTS;
7022 		igb_write_mbx(hw, &ping, 1, i);
7023 	}
7024 }
7025 
7026 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7027 {
7028 	struct e1000_hw *hw = &adapter->hw;
7029 	u32 vmolr = rd32(E1000_VMOLR(vf));
7030 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7031 
7032 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7033 			    IGB_VF_FLAG_MULTI_PROMISC);
7034 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7035 
7036 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7037 		vmolr |= E1000_VMOLR_MPME;
7038 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7039 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7040 	} else {
7041 		/* if we have hashes and we are clearing a multicast promisc
7042 		 * flag we need to write the hashes to the MTA as this step
7043 		 * was previously skipped
7044 		 */
7045 		if (vf_data->num_vf_mc_hashes > 30) {
7046 			vmolr |= E1000_VMOLR_MPME;
7047 		} else if (vf_data->num_vf_mc_hashes) {
7048 			int j;
7049 
7050 			vmolr |= E1000_VMOLR_ROMPE;
7051 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7052 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7053 		}
7054 	}
7055 
7056 	wr32(E1000_VMOLR(vf), vmolr);
7057 
7058 	/* there are flags left unprocessed, likely not supported */
7059 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7060 		return -EINVAL;
7061 
7062 	return 0;
7063 }
7064 
7065 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7066 				  u32 *msgbuf, u32 vf)
7067 {
7068 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7069 	u16 *hash_list = (u16 *)&msgbuf[1];
7070 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7071 	int i;
7072 
7073 	/* salt away the number of multicast addresses assigned
7074 	 * to this VF for later use to restore when the PF multi cast
7075 	 * list changes
7076 	 */
7077 	vf_data->num_vf_mc_hashes = n;
7078 
7079 	/* only up to 30 hash values supported */
7080 	if (n > 30)
7081 		n = 30;
7082 
7083 	/* store the hashes for later use */
7084 	for (i = 0; i < n; i++)
7085 		vf_data->vf_mc_hashes[i] = hash_list[i];
7086 
7087 	/* Flush and reset the mta with the new values */
7088 	igb_set_rx_mode(adapter->netdev);
7089 
7090 	return 0;
7091 }
7092 
7093 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7094 {
7095 	struct e1000_hw *hw = &adapter->hw;
7096 	struct vf_data_storage *vf_data;
7097 	int i, j;
7098 
7099 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7100 		u32 vmolr = rd32(E1000_VMOLR(i));
7101 
7102 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7103 
7104 		vf_data = &adapter->vf_data[i];
7105 
7106 		if ((vf_data->num_vf_mc_hashes > 30) ||
7107 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7108 			vmolr |= E1000_VMOLR_MPME;
7109 		} else if (vf_data->num_vf_mc_hashes) {
7110 			vmolr |= E1000_VMOLR_ROMPE;
7111 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7112 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7113 		}
7114 		wr32(E1000_VMOLR(i), vmolr);
7115 	}
7116 }
7117 
7118 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7119 {
7120 	struct e1000_hw *hw = &adapter->hw;
7121 	u32 pool_mask, vlvf_mask, i;
7122 
7123 	/* create mask for VF and other pools */
7124 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7125 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7126 
7127 	/* drop PF from pool bits */
7128 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7129 			     adapter->vfs_allocated_count);
7130 
7131 	/* Find the vlan filter for this id */
7132 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7133 		u32 vlvf = rd32(E1000_VLVF(i));
7134 		u32 vfta_mask, vid, vfta;
7135 
7136 		/* remove the vf from the pool */
7137 		if (!(vlvf & vlvf_mask))
7138 			continue;
7139 
7140 		/* clear out bit from VLVF */
7141 		vlvf ^= vlvf_mask;
7142 
7143 		/* if other pools are present, just remove ourselves */
7144 		if (vlvf & pool_mask)
7145 			goto update_vlvfb;
7146 
7147 		/* if PF is present, leave VFTA */
7148 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7149 			goto update_vlvf;
7150 
7151 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7152 		vfta_mask = BIT(vid % 32);
7153 
7154 		/* clear bit from VFTA */
7155 		vfta = adapter->shadow_vfta[vid / 32];
7156 		if (vfta & vfta_mask)
7157 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7158 update_vlvf:
7159 		/* clear pool selection enable */
7160 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7161 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7162 		else
7163 			vlvf = 0;
7164 update_vlvfb:
7165 		/* clear pool bits */
7166 		wr32(E1000_VLVF(i), vlvf);
7167 	}
7168 }
7169 
7170 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7171 {
7172 	u32 vlvf;
7173 	int idx;
7174 
7175 	/* short cut the special case */
7176 	if (vlan == 0)
7177 		return 0;
7178 
7179 	/* Search for the VLAN id in the VLVF entries */
7180 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7181 		vlvf = rd32(E1000_VLVF(idx));
7182 		if ((vlvf & VLAN_VID_MASK) == vlan)
7183 			break;
7184 	}
7185 
7186 	return idx;
7187 }
7188 
7189 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7190 {
7191 	struct e1000_hw *hw = &adapter->hw;
7192 	u32 bits, pf_id;
7193 	int idx;
7194 
7195 	idx = igb_find_vlvf_entry(hw, vid);
7196 	if (!idx)
7197 		return;
7198 
7199 	/* See if any other pools are set for this VLAN filter
7200 	 * entry other than the PF.
7201 	 */
7202 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7203 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7204 	bits &= rd32(E1000_VLVF(idx));
7205 
7206 	/* Disable the filter so this falls into the default pool. */
7207 	if (!bits) {
7208 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7209 			wr32(E1000_VLVF(idx), BIT(pf_id));
7210 		else
7211 			wr32(E1000_VLVF(idx), 0);
7212 	}
7213 }
7214 
7215 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7216 			   bool add, u32 vf)
7217 {
7218 	int pf_id = adapter->vfs_allocated_count;
7219 	struct e1000_hw *hw = &adapter->hw;
7220 	int err;
7221 
7222 	/* If VLAN overlaps with one the PF is currently monitoring make
7223 	 * sure that we are able to allocate a VLVF entry.  This may be
7224 	 * redundant but it guarantees PF will maintain visibility to
7225 	 * the VLAN.
7226 	 */
7227 	if (add && test_bit(vid, adapter->active_vlans)) {
7228 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7229 		if (err)
7230 			return err;
7231 	}
7232 
7233 	err = igb_vfta_set(hw, vid, vf, add, false);
7234 
7235 	if (add && !err)
7236 		return err;
7237 
7238 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7239 	 * we may need to drop the PF pool bit in order to allow us to free
7240 	 * up the VLVF resources.
7241 	 */
7242 	if (test_bit(vid, adapter->active_vlans) ||
7243 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7244 		igb_update_pf_vlvf(adapter, vid);
7245 
7246 	return err;
7247 }
7248 
7249 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7250 {
7251 	struct e1000_hw *hw = &adapter->hw;
7252 
7253 	if (vid)
7254 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7255 	else
7256 		wr32(E1000_VMVIR(vf), 0);
7257 }
7258 
7259 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7260 				u16 vlan, u8 qos)
7261 {
7262 	int err;
7263 
7264 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7265 	if (err)
7266 		return err;
7267 
7268 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7269 	igb_set_vmolr(adapter, vf, !vlan);
7270 
7271 	/* revoke access to previous VLAN */
7272 	if (vlan != adapter->vf_data[vf].pf_vlan)
7273 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7274 				false, vf);
7275 
7276 	adapter->vf_data[vf].pf_vlan = vlan;
7277 	adapter->vf_data[vf].pf_qos = qos;
7278 	igb_set_vf_vlan_strip(adapter, vf, true);
7279 	dev_info(&adapter->pdev->dev,
7280 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7281 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7282 		dev_warn(&adapter->pdev->dev,
7283 			 "The VF VLAN has been set, but the PF device is not up.\n");
7284 		dev_warn(&adapter->pdev->dev,
7285 			 "Bring the PF device up before attempting to use the VF device.\n");
7286 	}
7287 
7288 	return err;
7289 }
7290 
7291 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7292 {
7293 	/* Restore tagless access via VLAN 0 */
7294 	igb_set_vf_vlan(adapter, 0, true, vf);
7295 
7296 	igb_set_vmvir(adapter, 0, vf);
7297 	igb_set_vmolr(adapter, vf, true);
7298 
7299 	/* Remove any PF assigned VLAN */
7300 	if (adapter->vf_data[vf].pf_vlan)
7301 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7302 				false, vf);
7303 
7304 	adapter->vf_data[vf].pf_vlan = 0;
7305 	adapter->vf_data[vf].pf_qos = 0;
7306 	igb_set_vf_vlan_strip(adapter, vf, false);
7307 
7308 	return 0;
7309 }
7310 
7311 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7312 			       u16 vlan, u8 qos, __be16 vlan_proto)
7313 {
7314 	struct igb_adapter *adapter = netdev_priv(netdev);
7315 
7316 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7317 		return -EINVAL;
7318 
7319 	if (vlan_proto != htons(ETH_P_8021Q))
7320 		return -EPROTONOSUPPORT;
7321 
7322 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7323 			       igb_disable_port_vlan(adapter, vf);
7324 }
7325 
7326 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7327 {
7328 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7329 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7330 	int ret;
7331 
7332 	if (adapter->vf_data[vf].pf_vlan)
7333 		return -1;
7334 
7335 	/* VLAN 0 is a special case, don't allow it to be removed */
7336 	if (!vid && !add)
7337 		return 0;
7338 
7339 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7340 	if (!ret)
7341 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7342 	return ret;
7343 }
7344 
7345 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7346 {
7347 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7348 
7349 	/* clear flags - except flag that indicates PF has set the MAC */
7350 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7351 	vf_data->last_nack = jiffies;
7352 
7353 	/* reset vlans for device */
7354 	igb_clear_vf_vfta(adapter, vf);
7355 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7356 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7357 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7358 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7359 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7360 
7361 	/* reset multicast table array for vf */
7362 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7363 
7364 	/* Flush and reset the mta with the new values */
7365 	igb_set_rx_mode(adapter->netdev);
7366 }
7367 
7368 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7369 {
7370 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7371 
7372 	/* clear mac address as we were hotplug removed/added */
7373 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7374 		eth_zero_addr(vf_mac);
7375 
7376 	/* process remaining reset events */
7377 	igb_vf_reset(adapter, vf);
7378 }
7379 
7380 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7381 {
7382 	struct e1000_hw *hw = &adapter->hw;
7383 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7384 	u32 reg, msgbuf[3];
7385 	u8 *addr = (u8 *)(&msgbuf[1]);
7386 
7387 	/* process all the same items cleared in a function level reset */
7388 	igb_vf_reset(adapter, vf);
7389 
7390 	/* set vf mac address */
7391 	igb_set_vf_mac(adapter, vf, vf_mac);
7392 
7393 	/* enable transmit and receive for vf */
7394 	reg = rd32(E1000_VFTE);
7395 	wr32(E1000_VFTE, reg | BIT(vf));
7396 	reg = rd32(E1000_VFRE);
7397 	wr32(E1000_VFRE, reg | BIT(vf));
7398 
7399 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7400 
7401 	/* reply to reset with ack and vf mac address */
7402 	if (!is_zero_ether_addr(vf_mac)) {
7403 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7404 		memcpy(addr, vf_mac, ETH_ALEN);
7405 	} else {
7406 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7407 	}
7408 	igb_write_mbx(hw, msgbuf, 3, vf);
7409 }
7410 
7411 static void igb_flush_mac_table(struct igb_adapter *adapter)
7412 {
7413 	struct e1000_hw *hw = &adapter->hw;
7414 	int i;
7415 
7416 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7417 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7418 		eth_zero_addr(adapter->mac_table[i].addr);
7419 		adapter->mac_table[i].queue = 0;
7420 		igb_rar_set_index(adapter, i);
7421 	}
7422 }
7423 
7424 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7425 {
7426 	struct e1000_hw *hw = &adapter->hw;
7427 	/* do not count rar entries reserved for VFs MAC addresses */
7428 	int rar_entries = hw->mac.rar_entry_count -
7429 			  adapter->vfs_allocated_count;
7430 	int i, count = 0;
7431 
7432 	for (i = 0; i < rar_entries; i++) {
7433 		/* do not count default entries */
7434 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7435 			continue;
7436 
7437 		/* do not count "in use" entries for different queues */
7438 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7439 		    (adapter->mac_table[i].queue != queue))
7440 			continue;
7441 
7442 		count++;
7443 	}
7444 
7445 	return count;
7446 }
7447 
7448 /* Set default MAC address for the PF in the first RAR entry */
7449 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7450 {
7451 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7452 
7453 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7454 	mac_table->queue = adapter->vfs_allocated_count;
7455 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7456 
7457 	igb_rar_set_index(adapter, 0);
7458 }
7459 
7460 /* If the filter to be added and an already existing filter express
7461  * the same address and address type, it should be possible to only
7462  * override the other configurations, for example the queue to steer
7463  * traffic.
7464  */
7465 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7466 				      const u8 *addr, const u8 flags)
7467 {
7468 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7469 		return true;
7470 
7471 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7472 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7473 		return false;
7474 
7475 	if (!ether_addr_equal(addr, entry->addr))
7476 		return false;
7477 
7478 	return true;
7479 }
7480 
7481 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7482  * 'flags' is used to indicate what kind of match is made, match is by
7483  * default for the destination address, if matching by source address
7484  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7485  */
7486 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7487 				    const u8 *addr, const u8 queue,
7488 				    const u8 flags)
7489 {
7490 	struct e1000_hw *hw = &adapter->hw;
7491 	int rar_entries = hw->mac.rar_entry_count -
7492 			  adapter->vfs_allocated_count;
7493 	int i;
7494 
7495 	if (is_zero_ether_addr(addr))
7496 		return -EINVAL;
7497 
7498 	/* Search for the first empty entry in the MAC table.
7499 	 * Do not touch entries at the end of the table reserved for the VF MAC
7500 	 * addresses.
7501 	 */
7502 	for (i = 0; i < rar_entries; i++) {
7503 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7504 					       addr, flags))
7505 			continue;
7506 
7507 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7508 		adapter->mac_table[i].queue = queue;
7509 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7510 
7511 		igb_rar_set_index(adapter, i);
7512 		return i;
7513 	}
7514 
7515 	return -ENOSPC;
7516 }
7517 
7518 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7519 			      const u8 queue)
7520 {
7521 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7522 }
7523 
7524 /* Remove a MAC filter for 'addr' directing matching traffic to
7525  * 'queue', 'flags' is used to indicate what kind of match need to be
7526  * removed, match is by default for the destination address, if
7527  * matching by source address is to be removed the flag
7528  * IGB_MAC_STATE_SRC_ADDR can be used.
7529  */
7530 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7531 				    const u8 *addr, const u8 queue,
7532 				    const u8 flags)
7533 {
7534 	struct e1000_hw *hw = &adapter->hw;
7535 	int rar_entries = hw->mac.rar_entry_count -
7536 			  adapter->vfs_allocated_count;
7537 	int i;
7538 
7539 	if (is_zero_ether_addr(addr))
7540 		return -EINVAL;
7541 
7542 	/* Search for matching entry in the MAC table based on given address
7543 	 * and queue. Do not touch entries at the end of the table reserved
7544 	 * for the VF MAC addresses.
7545 	 */
7546 	for (i = 0; i < rar_entries; i++) {
7547 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7548 			continue;
7549 		if ((adapter->mac_table[i].state & flags) != flags)
7550 			continue;
7551 		if (adapter->mac_table[i].queue != queue)
7552 			continue;
7553 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7554 			continue;
7555 
7556 		/* When a filter for the default address is "deleted",
7557 		 * we return it to its initial configuration
7558 		 */
7559 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7560 			adapter->mac_table[i].state =
7561 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7562 			adapter->mac_table[i].queue =
7563 				adapter->vfs_allocated_count;
7564 		} else {
7565 			adapter->mac_table[i].state = 0;
7566 			adapter->mac_table[i].queue = 0;
7567 			eth_zero_addr(adapter->mac_table[i].addr);
7568 		}
7569 
7570 		igb_rar_set_index(adapter, i);
7571 		return 0;
7572 	}
7573 
7574 	return -ENOENT;
7575 }
7576 
7577 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7578 			      const u8 queue)
7579 {
7580 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7581 }
7582 
7583 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7584 				const u8 *addr, u8 queue, u8 flags)
7585 {
7586 	struct e1000_hw *hw = &adapter->hw;
7587 
7588 	/* In theory, this should be supported on 82575 as well, but
7589 	 * that part wasn't easily accessible during development.
7590 	 */
7591 	if (hw->mac.type != e1000_i210)
7592 		return -EOPNOTSUPP;
7593 
7594 	return igb_add_mac_filter_flags(adapter, addr, queue,
7595 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7596 }
7597 
7598 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7599 				const u8 *addr, u8 queue, u8 flags)
7600 {
7601 	return igb_del_mac_filter_flags(adapter, addr, queue,
7602 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7603 }
7604 
7605 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7606 {
7607 	struct igb_adapter *adapter = netdev_priv(netdev);
7608 	int ret;
7609 
7610 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7611 
7612 	return min_t(int, ret, 0);
7613 }
7614 
7615 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7616 {
7617 	struct igb_adapter *adapter = netdev_priv(netdev);
7618 
7619 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7620 
7621 	return 0;
7622 }
7623 
7624 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7625 				 const u32 info, const u8 *addr)
7626 {
7627 	struct pci_dev *pdev = adapter->pdev;
7628 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7629 	struct list_head *pos;
7630 	struct vf_mac_filter *entry = NULL;
7631 	int ret = 0;
7632 
7633 	switch (info) {
7634 	case E1000_VF_MAC_FILTER_CLR:
7635 		/* remove all unicast MAC filters related to the current VF */
7636 		list_for_each(pos, &adapter->vf_macs.l) {
7637 			entry = list_entry(pos, struct vf_mac_filter, l);
7638 			if (entry->vf == vf) {
7639 				entry->vf = -1;
7640 				entry->free = true;
7641 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7642 			}
7643 		}
7644 		break;
7645 	case E1000_VF_MAC_FILTER_ADD:
7646 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7647 		    !vf_data->trusted) {
7648 			dev_warn(&pdev->dev,
7649 				 "VF %d requested MAC filter but is administratively denied\n",
7650 				 vf);
7651 			return -EINVAL;
7652 		}
7653 		if (!is_valid_ether_addr(addr)) {
7654 			dev_warn(&pdev->dev,
7655 				 "VF %d attempted to set invalid MAC filter\n",
7656 				 vf);
7657 			return -EINVAL;
7658 		}
7659 
7660 		/* try to find empty slot in the list */
7661 		list_for_each(pos, &adapter->vf_macs.l) {
7662 			entry = list_entry(pos, struct vf_mac_filter, l);
7663 			if (entry->free)
7664 				break;
7665 		}
7666 
7667 		if (entry && entry->free) {
7668 			entry->free = false;
7669 			entry->vf = vf;
7670 			ether_addr_copy(entry->vf_mac, addr);
7671 
7672 			ret = igb_add_mac_filter(adapter, addr, vf);
7673 			ret = min_t(int, ret, 0);
7674 		} else {
7675 			ret = -ENOSPC;
7676 		}
7677 
7678 		if (ret == -ENOSPC)
7679 			dev_warn(&pdev->dev,
7680 				 "VF %d has requested MAC filter but there is no space for it\n",
7681 				 vf);
7682 		break;
7683 	default:
7684 		ret = -EINVAL;
7685 		break;
7686 	}
7687 
7688 	return ret;
7689 }
7690 
7691 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7692 {
7693 	struct pci_dev *pdev = adapter->pdev;
7694 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7695 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7696 
7697 	/* The VF MAC Address is stored in a packed array of bytes
7698 	 * starting at the second 32 bit word of the msg array
7699 	 */
7700 	unsigned char *addr = (unsigned char *)&msg[1];
7701 	int ret = 0;
7702 
7703 	if (!info) {
7704 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7705 		    !vf_data->trusted) {
7706 			dev_warn(&pdev->dev,
7707 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7708 				 vf);
7709 			return -EINVAL;
7710 		}
7711 
7712 		if (!is_valid_ether_addr(addr)) {
7713 			dev_warn(&pdev->dev,
7714 				 "VF %d attempted to set invalid MAC\n",
7715 				 vf);
7716 			return -EINVAL;
7717 		}
7718 
7719 		ret = igb_set_vf_mac(adapter, vf, addr);
7720 	} else {
7721 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7722 	}
7723 
7724 	return ret;
7725 }
7726 
7727 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7728 {
7729 	struct e1000_hw *hw = &adapter->hw;
7730 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7731 	u32 msg = E1000_VT_MSGTYPE_NACK;
7732 
7733 	/* if device isn't clear to send it shouldn't be reading either */
7734 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7735 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7736 		igb_write_mbx(hw, &msg, 1, vf);
7737 		vf_data->last_nack = jiffies;
7738 	}
7739 }
7740 
7741 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7742 {
7743 	struct pci_dev *pdev = adapter->pdev;
7744 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7745 	struct e1000_hw *hw = &adapter->hw;
7746 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7747 	s32 retval;
7748 
7749 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7750 
7751 	if (retval) {
7752 		/* if receive failed revoke VF CTS stats and restart init */
7753 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7754 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7755 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7756 			goto unlock;
7757 		goto out;
7758 	}
7759 
7760 	/* this is a message we already processed, do nothing */
7761 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7762 		goto unlock;
7763 
7764 	/* until the vf completes a reset it should not be
7765 	 * allowed to start any configuration.
7766 	 */
7767 	if (msgbuf[0] == E1000_VF_RESET) {
7768 		/* unlocks mailbox */
7769 		igb_vf_reset_msg(adapter, vf);
7770 		return;
7771 	}
7772 
7773 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7774 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7775 			goto unlock;
7776 		retval = -1;
7777 		goto out;
7778 	}
7779 
7780 	switch ((msgbuf[0] & 0xFFFF)) {
7781 	case E1000_VF_SET_MAC_ADDR:
7782 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7783 		break;
7784 	case E1000_VF_SET_PROMISC:
7785 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7786 		break;
7787 	case E1000_VF_SET_MULTICAST:
7788 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7789 		break;
7790 	case E1000_VF_SET_LPE:
7791 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7792 		break;
7793 	case E1000_VF_SET_VLAN:
7794 		retval = -1;
7795 		if (vf_data->pf_vlan)
7796 			dev_warn(&pdev->dev,
7797 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7798 				 vf);
7799 		else
7800 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7801 		break;
7802 	default:
7803 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7804 		retval = -1;
7805 		break;
7806 	}
7807 
7808 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7809 out:
7810 	/* notify the VF of the results of what it sent us */
7811 	if (retval)
7812 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7813 	else
7814 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7815 
7816 	/* unlocks mailbox */
7817 	igb_write_mbx(hw, msgbuf, 1, vf);
7818 	return;
7819 
7820 unlock:
7821 	igb_unlock_mbx(hw, vf);
7822 }
7823 
7824 static void igb_msg_task(struct igb_adapter *adapter)
7825 {
7826 	struct e1000_hw *hw = &adapter->hw;
7827 	u32 vf;
7828 
7829 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7830 		/* process any reset requests */
7831 		if (!igb_check_for_rst(hw, vf))
7832 			igb_vf_reset_event(adapter, vf);
7833 
7834 		/* process any messages pending */
7835 		if (!igb_check_for_msg(hw, vf))
7836 			igb_rcv_msg_from_vf(adapter, vf);
7837 
7838 		/* process any acks */
7839 		if (!igb_check_for_ack(hw, vf))
7840 			igb_rcv_ack_from_vf(adapter, vf);
7841 	}
7842 }
7843 
7844 /**
7845  *  igb_set_uta - Set unicast filter table address
7846  *  @adapter: board private structure
7847  *  @set: boolean indicating if we are setting or clearing bits
7848  *
7849  *  The unicast table address is a register array of 32-bit registers.
7850  *  The table is meant to be used in a way similar to how the MTA is used
7851  *  however due to certain limitations in the hardware it is necessary to
7852  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7853  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7854  **/
7855 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7856 {
7857 	struct e1000_hw *hw = &adapter->hw;
7858 	u32 uta = set ? ~0 : 0;
7859 	int i;
7860 
7861 	/* we only need to do this if VMDq is enabled */
7862 	if (!adapter->vfs_allocated_count)
7863 		return;
7864 
7865 	for (i = hw->mac.uta_reg_count; i--;)
7866 		array_wr32(E1000_UTA, i, uta);
7867 }
7868 
7869 /**
7870  *  igb_intr_msi - Interrupt Handler
7871  *  @irq: interrupt number
7872  *  @data: pointer to a network interface device structure
7873  **/
7874 static irqreturn_t igb_intr_msi(int irq, void *data)
7875 {
7876 	struct igb_adapter *adapter = data;
7877 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7878 	struct e1000_hw *hw = &adapter->hw;
7879 	/* read ICR disables interrupts using IAM */
7880 	u32 icr = rd32(E1000_ICR);
7881 
7882 	igb_write_itr(q_vector);
7883 
7884 	if (icr & E1000_ICR_DRSTA)
7885 		schedule_work(&adapter->reset_task);
7886 
7887 	if (icr & E1000_ICR_DOUTSYNC) {
7888 		/* HW is reporting DMA is out of sync */
7889 		adapter->stats.doosync++;
7890 	}
7891 
7892 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7893 		hw->mac.get_link_status = 1;
7894 		if (!test_bit(__IGB_DOWN, &adapter->state))
7895 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7896 	}
7897 
7898 	if (icr & E1000_ICR_TS)
7899 		igb_tsync_interrupt(adapter);
7900 
7901 	napi_schedule(&q_vector->napi);
7902 
7903 	return IRQ_HANDLED;
7904 }
7905 
7906 /**
7907  *  igb_intr - Legacy Interrupt Handler
7908  *  @irq: interrupt number
7909  *  @data: pointer to a network interface device structure
7910  **/
7911 static irqreturn_t igb_intr(int irq, void *data)
7912 {
7913 	struct igb_adapter *adapter = data;
7914 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7915 	struct e1000_hw *hw = &adapter->hw;
7916 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7917 	 * need for the IMC write
7918 	 */
7919 	u32 icr = rd32(E1000_ICR);
7920 
7921 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7922 	 * not set, then the adapter didn't send an interrupt
7923 	 */
7924 	if (!(icr & E1000_ICR_INT_ASSERTED))
7925 		return IRQ_NONE;
7926 
7927 	igb_write_itr(q_vector);
7928 
7929 	if (icr & E1000_ICR_DRSTA)
7930 		schedule_work(&adapter->reset_task);
7931 
7932 	if (icr & E1000_ICR_DOUTSYNC) {
7933 		/* HW is reporting DMA is out of sync */
7934 		adapter->stats.doosync++;
7935 	}
7936 
7937 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7938 		hw->mac.get_link_status = 1;
7939 		/* guard against interrupt when we're going down */
7940 		if (!test_bit(__IGB_DOWN, &adapter->state))
7941 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7942 	}
7943 
7944 	if (icr & E1000_ICR_TS)
7945 		igb_tsync_interrupt(adapter);
7946 
7947 	napi_schedule(&q_vector->napi);
7948 
7949 	return IRQ_HANDLED;
7950 }
7951 
7952 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7953 {
7954 	struct igb_adapter *adapter = q_vector->adapter;
7955 	struct e1000_hw *hw = &adapter->hw;
7956 
7957 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7958 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7959 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7960 			igb_set_itr(q_vector);
7961 		else
7962 			igb_update_ring_itr(q_vector);
7963 	}
7964 
7965 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7966 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7967 			wr32(E1000_EIMS, q_vector->eims_value);
7968 		else
7969 			igb_irq_enable(adapter);
7970 	}
7971 }
7972 
7973 /**
7974  *  igb_poll - NAPI Rx polling callback
7975  *  @napi: napi polling structure
7976  *  @budget: count of how many packets we should handle
7977  **/
7978 static int igb_poll(struct napi_struct *napi, int budget)
7979 {
7980 	struct igb_q_vector *q_vector = container_of(napi,
7981 						     struct igb_q_vector,
7982 						     napi);
7983 	bool clean_complete = true;
7984 	int work_done = 0;
7985 
7986 #ifdef CONFIG_IGB_DCA
7987 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7988 		igb_update_dca(q_vector);
7989 #endif
7990 	if (q_vector->tx.ring)
7991 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7992 
7993 	if (q_vector->rx.ring) {
7994 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7995 
7996 		work_done += cleaned;
7997 		if (cleaned >= budget)
7998 			clean_complete = false;
7999 	}
8000 
8001 	/* If all work not completed, return budget and keep polling */
8002 	if (!clean_complete)
8003 		return budget;
8004 
8005 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8006 	 * poll us due to busy-polling
8007 	 */
8008 	if (likely(napi_complete_done(napi, work_done)))
8009 		igb_ring_irq_enable(q_vector);
8010 
8011 	return min(work_done, budget - 1);
8012 }
8013 
8014 /**
8015  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8016  *  @q_vector: pointer to q_vector containing needed info
8017  *  @napi_budget: Used to determine if we are in netpoll
8018  *
8019  *  returns true if ring is completely cleaned
8020  **/
8021 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8022 {
8023 	struct igb_adapter *adapter = q_vector->adapter;
8024 	struct igb_ring *tx_ring = q_vector->tx.ring;
8025 	struct igb_tx_buffer *tx_buffer;
8026 	union e1000_adv_tx_desc *tx_desc;
8027 	unsigned int total_bytes = 0, total_packets = 0;
8028 	unsigned int budget = q_vector->tx.work_limit;
8029 	unsigned int i = tx_ring->next_to_clean;
8030 
8031 	if (test_bit(__IGB_DOWN, &adapter->state))
8032 		return true;
8033 
8034 	tx_buffer = &tx_ring->tx_buffer_info[i];
8035 	tx_desc = IGB_TX_DESC(tx_ring, i);
8036 	i -= tx_ring->count;
8037 
8038 	do {
8039 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8040 
8041 		/* if next_to_watch is not set then there is no work pending */
8042 		if (!eop_desc)
8043 			break;
8044 
8045 		/* prevent any other reads prior to eop_desc */
8046 		smp_rmb();
8047 
8048 		/* if DD is not set pending work has not been completed */
8049 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8050 			break;
8051 
8052 		/* clear next_to_watch to prevent false hangs */
8053 		tx_buffer->next_to_watch = NULL;
8054 
8055 		/* update the statistics for this packet */
8056 		total_bytes += tx_buffer->bytecount;
8057 		total_packets += tx_buffer->gso_segs;
8058 
8059 		/* free the skb */
8060 		if (tx_buffer->type == IGB_TYPE_SKB)
8061 			napi_consume_skb(tx_buffer->skb, napi_budget);
8062 		else
8063 			xdp_return_frame(tx_buffer->xdpf);
8064 
8065 		/* unmap skb header data */
8066 		dma_unmap_single(tx_ring->dev,
8067 				 dma_unmap_addr(tx_buffer, dma),
8068 				 dma_unmap_len(tx_buffer, len),
8069 				 DMA_TO_DEVICE);
8070 
8071 		/* clear tx_buffer data */
8072 		dma_unmap_len_set(tx_buffer, len, 0);
8073 
8074 		/* clear last DMA location and unmap remaining buffers */
8075 		while (tx_desc != eop_desc) {
8076 			tx_buffer++;
8077 			tx_desc++;
8078 			i++;
8079 			if (unlikely(!i)) {
8080 				i -= tx_ring->count;
8081 				tx_buffer = tx_ring->tx_buffer_info;
8082 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8083 			}
8084 
8085 			/* unmap any remaining paged data */
8086 			if (dma_unmap_len(tx_buffer, len)) {
8087 				dma_unmap_page(tx_ring->dev,
8088 					       dma_unmap_addr(tx_buffer, dma),
8089 					       dma_unmap_len(tx_buffer, len),
8090 					       DMA_TO_DEVICE);
8091 				dma_unmap_len_set(tx_buffer, len, 0);
8092 			}
8093 		}
8094 
8095 		/* move us one more past the eop_desc for start of next pkt */
8096 		tx_buffer++;
8097 		tx_desc++;
8098 		i++;
8099 		if (unlikely(!i)) {
8100 			i -= tx_ring->count;
8101 			tx_buffer = tx_ring->tx_buffer_info;
8102 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8103 		}
8104 
8105 		/* issue prefetch for next Tx descriptor */
8106 		prefetch(tx_desc);
8107 
8108 		/* update budget accounting */
8109 		budget--;
8110 	} while (likely(budget));
8111 
8112 	netdev_tx_completed_queue(txring_txq(tx_ring),
8113 				  total_packets, total_bytes);
8114 	i += tx_ring->count;
8115 	tx_ring->next_to_clean = i;
8116 	u64_stats_update_begin(&tx_ring->tx_syncp);
8117 	tx_ring->tx_stats.bytes += total_bytes;
8118 	tx_ring->tx_stats.packets += total_packets;
8119 	u64_stats_update_end(&tx_ring->tx_syncp);
8120 	q_vector->tx.total_bytes += total_bytes;
8121 	q_vector->tx.total_packets += total_packets;
8122 
8123 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8124 		struct e1000_hw *hw = &adapter->hw;
8125 
8126 		/* Detect a transmit hang in hardware, this serializes the
8127 		 * check with the clearing of time_stamp and movement of i
8128 		 */
8129 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8130 		if (tx_buffer->next_to_watch &&
8131 		    time_after(jiffies, tx_buffer->time_stamp +
8132 			       (adapter->tx_timeout_factor * HZ)) &&
8133 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8134 
8135 			/* detected Tx unit hang */
8136 			dev_err(tx_ring->dev,
8137 				"Detected Tx Unit Hang\n"
8138 				"  Tx Queue             <%d>\n"
8139 				"  TDH                  <%x>\n"
8140 				"  TDT                  <%x>\n"
8141 				"  next_to_use          <%x>\n"
8142 				"  next_to_clean        <%x>\n"
8143 				"buffer_info[next_to_clean]\n"
8144 				"  time_stamp           <%lx>\n"
8145 				"  next_to_watch        <%p>\n"
8146 				"  jiffies              <%lx>\n"
8147 				"  desc.status          <%x>\n",
8148 				tx_ring->queue_index,
8149 				rd32(E1000_TDH(tx_ring->reg_idx)),
8150 				readl(tx_ring->tail),
8151 				tx_ring->next_to_use,
8152 				tx_ring->next_to_clean,
8153 				tx_buffer->time_stamp,
8154 				tx_buffer->next_to_watch,
8155 				jiffies,
8156 				tx_buffer->next_to_watch->wb.status);
8157 			netif_stop_subqueue(tx_ring->netdev,
8158 					    tx_ring->queue_index);
8159 
8160 			/* we are about to reset, no point in enabling stuff */
8161 			return true;
8162 		}
8163 	}
8164 
8165 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8166 	if (unlikely(total_packets &&
8167 	    netif_carrier_ok(tx_ring->netdev) &&
8168 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8169 		/* Make sure that anybody stopping the queue after this
8170 		 * sees the new next_to_clean.
8171 		 */
8172 		smp_mb();
8173 		if (__netif_subqueue_stopped(tx_ring->netdev,
8174 					     tx_ring->queue_index) &&
8175 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8176 			netif_wake_subqueue(tx_ring->netdev,
8177 					    tx_ring->queue_index);
8178 
8179 			u64_stats_update_begin(&tx_ring->tx_syncp);
8180 			tx_ring->tx_stats.restart_queue++;
8181 			u64_stats_update_end(&tx_ring->tx_syncp);
8182 		}
8183 	}
8184 
8185 	return !!budget;
8186 }
8187 
8188 /**
8189  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8190  *  @rx_ring: rx descriptor ring to store buffers on
8191  *  @old_buff: donor buffer to have page reused
8192  *
8193  *  Synchronizes page for reuse by the adapter
8194  **/
8195 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8196 			      struct igb_rx_buffer *old_buff)
8197 {
8198 	struct igb_rx_buffer *new_buff;
8199 	u16 nta = rx_ring->next_to_alloc;
8200 
8201 	new_buff = &rx_ring->rx_buffer_info[nta];
8202 
8203 	/* update, and store next to alloc */
8204 	nta++;
8205 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8206 
8207 	/* Transfer page from old buffer to new buffer.
8208 	 * Move each member individually to avoid possible store
8209 	 * forwarding stalls.
8210 	 */
8211 	new_buff->dma		= old_buff->dma;
8212 	new_buff->page		= old_buff->page;
8213 	new_buff->page_offset	= old_buff->page_offset;
8214 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8215 }
8216 
8217 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
8218 {
8219 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8220 	struct page *page = rx_buffer->page;
8221 
8222 	/* avoid re-using remote and pfmemalloc pages */
8223 	if (!dev_page_is_reusable(page))
8224 		return false;
8225 
8226 #if (PAGE_SIZE < 8192)
8227 	/* if we are only owner of page we can reuse it */
8228 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
8229 		return false;
8230 #else
8231 #define IGB_LAST_OFFSET \
8232 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8233 
8234 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8235 		return false;
8236 #endif
8237 
8238 	/* If we have drained the page fragment pool we need to update
8239 	 * the pagecnt_bias and page count so that we fully restock the
8240 	 * number of references the driver holds.
8241 	 */
8242 	if (unlikely(pagecnt_bias == 1)) {
8243 		page_ref_add(page, USHRT_MAX - 1);
8244 		rx_buffer->pagecnt_bias = USHRT_MAX;
8245 	}
8246 
8247 	return true;
8248 }
8249 
8250 /**
8251  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8252  *  @rx_ring: rx descriptor ring to transact packets on
8253  *  @rx_buffer: buffer containing page to add
8254  *  @skb: sk_buff to place the data into
8255  *  @size: size of buffer to be added
8256  *
8257  *  This function will add the data contained in rx_buffer->page to the skb.
8258  **/
8259 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8260 			    struct igb_rx_buffer *rx_buffer,
8261 			    struct sk_buff *skb,
8262 			    unsigned int size)
8263 {
8264 #if (PAGE_SIZE < 8192)
8265 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8266 #else
8267 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8268 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8269 				SKB_DATA_ALIGN(size);
8270 #endif
8271 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8272 			rx_buffer->page_offset, size, truesize);
8273 #if (PAGE_SIZE < 8192)
8274 	rx_buffer->page_offset ^= truesize;
8275 #else
8276 	rx_buffer->page_offset += truesize;
8277 #endif
8278 }
8279 
8280 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8281 					 struct igb_rx_buffer *rx_buffer,
8282 					 struct xdp_buff *xdp,
8283 					 union e1000_adv_rx_desc *rx_desc)
8284 {
8285 #if (PAGE_SIZE < 8192)
8286 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8287 #else
8288 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8289 					       xdp->data_hard_start);
8290 #endif
8291 	unsigned int size = xdp->data_end - xdp->data;
8292 	unsigned int headlen;
8293 	struct sk_buff *skb;
8294 
8295 	/* prefetch first cache line of first page */
8296 	net_prefetch(xdp->data);
8297 
8298 	/* allocate a skb to store the frags */
8299 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8300 	if (unlikely(!skb))
8301 		return NULL;
8302 
8303 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8304 		igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb);
8305 		xdp->data += IGB_TS_HDR_LEN;
8306 		size -= IGB_TS_HDR_LEN;
8307 	}
8308 
8309 	/* Determine available headroom for copy */
8310 	headlen = size;
8311 	if (headlen > IGB_RX_HDR_LEN)
8312 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8313 
8314 	/* align pull length to size of long to optimize memcpy performance */
8315 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8316 
8317 	/* update all of the pointers */
8318 	size -= headlen;
8319 	if (size) {
8320 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8321 				(xdp->data + headlen) - page_address(rx_buffer->page),
8322 				size, truesize);
8323 #if (PAGE_SIZE < 8192)
8324 		rx_buffer->page_offset ^= truesize;
8325 #else
8326 		rx_buffer->page_offset += truesize;
8327 #endif
8328 	} else {
8329 		rx_buffer->pagecnt_bias++;
8330 	}
8331 
8332 	return skb;
8333 }
8334 
8335 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8336 				     struct igb_rx_buffer *rx_buffer,
8337 				     struct xdp_buff *xdp,
8338 				     union e1000_adv_rx_desc *rx_desc)
8339 {
8340 #if (PAGE_SIZE < 8192)
8341 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8342 #else
8343 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8344 				SKB_DATA_ALIGN(xdp->data_end -
8345 					       xdp->data_hard_start);
8346 #endif
8347 	unsigned int metasize = xdp->data - xdp->data_meta;
8348 	struct sk_buff *skb;
8349 
8350 	/* prefetch first cache line of first page */
8351 	net_prefetch(xdp->data_meta);
8352 
8353 	/* build an skb around the page buffer */
8354 	skb = build_skb(xdp->data_hard_start, truesize);
8355 	if (unlikely(!skb))
8356 		return NULL;
8357 
8358 	/* update pointers within the skb to store the data */
8359 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8360 	__skb_put(skb, xdp->data_end - xdp->data);
8361 
8362 	if (metasize)
8363 		skb_metadata_set(skb, metasize);
8364 
8365 	/* pull timestamp out of packet data */
8366 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8367 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8368 		__skb_pull(skb, IGB_TS_HDR_LEN);
8369 	}
8370 
8371 	/* update buffer offset */
8372 #if (PAGE_SIZE < 8192)
8373 	rx_buffer->page_offset ^= truesize;
8374 #else
8375 	rx_buffer->page_offset += truesize;
8376 #endif
8377 
8378 	return skb;
8379 }
8380 
8381 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8382 				   struct igb_ring *rx_ring,
8383 				   struct xdp_buff *xdp)
8384 {
8385 	int err, result = IGB_XDP_PASS;
8386 	struct bpf_prog *xdp_prog;
8387 	u32 act;
8388 
8389 	rcu_read_lock();
8390 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8391 
8392 	if (!xdp_prog)
8393 		goto xdp_out;
8394 
8395 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8396 
8397 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8398 	switch (act) {
8399 	case XDP_PASS:
8400 		break;
8401 	case XDP_TX:
8402 		result = igb_xdp_xmit_back(adapter, xdp);
8403 		break;
8404 	case XDP_REDIRECT:
8405 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8406 		if (!err)
8407 			result = IGB_XDP_REDIR;
8408 		else
8409 			result = IGB_XDP_CONSUMED;
8410 		break;
8411 	default:
8412 		bpf_warn_invalid_xdp_action(act);
8413 		fallthrough;
8414 	case XDP_ABORTED:
8415 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8416 		fallthrough;
8417 	case XDP_DROP:
8418 		result = IGB_XDP_CONSUMED;
8419 		break;
8420 	}
8421 xdp_out:
8422 	rcu_read_unlock();
8423 	return ERR_PTR(-result);
8424 }
8425 
8426 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8427 					  unsigned int size)
8428 {
8429 	unsigned int truesize;
8430 
8431 #if (PAGE_SIZE < 8192)
8432 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8433 #else
8434 	truesize = ring_uses_build_skb(rx_ring) ?
8435 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8436 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8437 		SKB_DATA_ALIGN(size);
8438 #endif
8439 	return truesize;
8440 }
8441 
8442 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8443 			       struct igb_rx_buffer *rx_buffer,
8444 			       unsigned int size)
8445 {
8446 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8447 #if (PAGE_SIZE < 8192)
8448 	rx_buffer->page_offset ^= truesize;
8449 #else
8450 	rx_buffer->page_offset += truesize;
8451 #endif
8452 }
8453 
8454 static inline void igb_rx_checksum(struct igb_ring *ring,
8455 				   union e1000_adv_rx_desc *rx_desc,
8456 				   struct sk_buff *skb)
8457 {
8458 	skb_checksum_none_assert(skb);
8459 
8460 	/* Ignore Checksum bit is set */
8461 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8462 		return;
8463 
8464 	/* Rx checksum disabled via ethtool */
8465 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8466 		return;
8467 
8468 	/* TCP/UDP checksum error bit is set */
8469 	if (igb_test_staterr(rx_desc,
8470 			     E1000_RXDEXT_STATERR_TCPE |
8471 			     E1000_RXDEXT_STATERR_IPE)) {
8472 		/* work around errata with sctp packets where the TCPE aka
8473 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8474 		 * packets, (aka let the stack check the crc32c)
8475 		 */
8476 		if (!((skb->len == 60) &&
8477 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8478 			u64_stats_update_begin(&ring->rx_syncp);
8479 			ring->rx_stats.csum_err++;
8480 			u64_stats_update_end(&ring->rx_syncp);
8481 		}
8482 		/* let the stack verify checksum errors */
8483 		return;
8484 	}
8485 	/* It must be a TCP or UDP packet with a valid checksum */
8486 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8487 				      E1000_RXD_STAT_UDPCS))
8488 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8489 
8490 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8491 		le32_to_cpu(rx_desc->wb.upper.status_error));
8492 }
8493 
8494 static inline void igb_rx_hash(struct igb_ring *ring,
8495 			       union e1000_adv_rx_desc *rx_desc,
8496 			       struct sk_buff *skb)
8497 {
8498 	if (ring->netdev->features & NETIF_F_RXHASH)
8499 		skb_set_hash(skb,
8500 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8501 			     PKT_HASH_TYPE_L3);
8502 }
8503 
8504 /**
8505  *  igb_is_non_eop - process handling of non-EOP buffers
8506  *  @rx_ring: Rx ring being processed
8507  *  @rx_desc: Rx descriptor for current buffer
8508  *
8509  *  This function updates next to clean.  If the buffer is an EOP buffer
8510  *  this function exits returning false, otherwise it will place the
8511  *  sk_buff in the next buffer to be chained and return true indicating
8512  *  that this is in fact a non-EOP buffer.
8513  **/
8514 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8515 			   union e1000_adv_rx_desc *rx_desc)
8516 {
8517 	u32 ntc = rx_ring->next_to_clean + 1;
8518 
8519 	/* fetch, update, and store next to clean */
8520 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8521 	rx_ring->next_to_clean = ntc;
8522 
8523 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8524 
8525 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8526 		return false;
8527 
8528 	return true;
8529 }
8530 
8531 /**
8532  *  igb_cleanup_headers - Correct corrupted or empty headers
8533  *  @rx_ring: rx descriptor ring packet is being transacted on
8534  *  @rx_desc: pointer to the EOP Rx descriptor
8535  *  @skb: pointer to current skb being fixed
8536  *
8537  *  Address the case where we are pulling data in on pages only
8538  *  and as such no data is present in the skb header.
8539  *
8540  *  In addition if skb is not at least 60 bytes we need to pad it so that
8541  *  it is large enough to qualify as a valid Ethernet frame.
8542  *
8543  *  Returns true if an error was encountered and skb was freed.
8544  **/
8545 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8546 				union e1000_adv_rx_desc *rx_desc,
8547 				struct sk_buff *skb)
8548 {
8549 	/* XDP packets use error pointer so abort at this point */
8550 	if (IS_ERR(skb))
8551 		return true;
8552 
8553 	if (unlikely((igb_test_staterr(rx_desc,
8554 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8555 		struct net_device *netdev = rx_ring->netdev;
8556 		if (!(netdev->features & NETIF_F_RXALL)) {
8557 			dev_kfree_skb_any(skb);
8558 			return true;
8559 		}
8560 	}
8561 
8562 	/* if eth_skb_pad returns an error the skb was freed */
8563 	if (eth_skb_pad(skb))
8564 		return true;
8565 
8566 	return false;
8567 }
8568 
8569 /**
8570  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8571  *  @rx_ring: rx descriptor ring packet is being transacted on
8572  *  @rx_desc: pointer to the EOP Rx descriptor
8573  *  @skb: pointer to current skb being populated
8574  *
8575  *  This function checks the ring, descriptor, and packet information in
8576  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8577  *  other fields within the skb.
8578  **/
8579 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8580 				   union e1000_adv_rx_desc *rx_desc,
8581 				   struct sk_buff *skb)
8582 {
8583 	struct net_device *dev = rx_ring->netdev;
8584 
8585 	igb_rx_hash(rx_ring, rx_desc, skb);
8586 
8587 	igb_rx_checksum(rx_ring, rx_desc, skb);
8588 
8589 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8590 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8591 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8592 
8593 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8594 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8595 		u16 vid;
8596 
8597 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8598 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8599 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8600 		else
8601 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8602 
8603 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8604 	}
8605 
8606 	skb_record_rx_queue(skb, rx_ring->queue_index);
8607 
8608 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8609 }
8610 
8611 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8612 {
8613 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8614 }
8615 
8616 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8617 					       const unsigned int size)
8618 {
8619 	struct igb_rx_buffer *rx_buffer;
8620 
8621 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8622 	prefetchw(rx_buffer->page);
8623 
8624 	/* we are reusing so sync this buffer for CPU use */
8625 	dma_sync_single_range_for_cpu(rx_ring->dev,
8626 				      rx_buffer->dma,
8627 				      rx_buffer->page_offset,
8628 				      size,
8629 				      DMA_FROM_DEVICE);
8630 
8631 	rx_buffer->pagecnt_bias--;
8632 
8633 	return rx_buffer;
8634 }
8635 
8636 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8637 			      struct igb_rx_buffer *rx_buffer)
8638 {
8639 	if (igb_can_reuse_rx_page(rx_buffer)) {
8640 		/* hand second half of page back to the ring */
8641 		igb_reuse_rx_page(rx_ring, rx_buffer);
8642 	} else {
8643 		/* We are not reusing the buffer so unmap it and free
8644 		 * any references we are holding to it
8645 		 */
8646 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8647 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8648 				     IGB_RX_DMA_ATTR);
8649 		__page_frag_cache_drain(rx_buffer->page,
8650 					rx_buffer->pagecnt_bias);
8651 	}
8652 
8653 	/* clear contents of rx_buffer */
8654 	rx_buffer->page = NULL;
8655 }
8656 
8657 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8658 {
8659 	struct igb_adapter *adapter = q_vector->adapter;
8660 	struct igb_ring *rx_ring = q_vector->rx.ring;
8661 	struct sk_buff *skb = rx_ring->skb;
8662 	unsigned int total_bytes = 0, total_packets = 0;
8663 	u16 cleaned_count = igb_desc_unused(rx_ring);
8664 	unsigned int xdp_xmit = 0;
8665 	struct xdp_buff xdp;
8666 	u32 frame_sz = 0;
8667 
8668 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8669 #if (PAGE_SIZE < 8192)
8670 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8671 #endif
8672 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8673 
8674 	while (likely(total_packets < budget)) {
8675 		union e1000_adv_rx_desc *rx_desc;
8676 		struct igb_rx_buffer *rx_buffer;
8677 		unsigned int size;
8678 
8679 		/* return some buffers to hardware, one at a time is too slow */
8680 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8681 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8682 			cleaned_count = 0;
8683 		}
8684 
8685 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8686 		size = le16_to_cpu(rx_desc->wb.upper.length);
8687 		if (!size)
8688 			break;
8689 
8690 		/* This memory barrier is needed to keep us from reading
8691 		 * any other fields out of the rx_desc until we know the
8692 		 * descriptor has been written back
8693 		 */
8694 		dma_rmb();
8695 
8696 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8697 
8698 		/* retrieve a buffer from the ring */
8699 		if (!skb) {
8700 			unsigned int offset = igb_rx_offset(rx_ring);
8701 			unsigned char *hard_start;
8702 
8703 			hard_start = page_address(rx_buffer->page) +
8704 				     rx_buffer->page_offset - offset;
8705 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8706 #if (PAGE_SIZE > 4096)
8707 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8708 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8709 #endif
8710 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8711 		}
8712 
8713 		if (IS_ERR(skb)) {
8714 			unsigned int xdp_res = -PTR_ERR(skb);
8715 
8716 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8717 				xdp_xmit |= xdp_res;
8718 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8719 			} else {
8720 				rx_buffer->pagecnt_bias++;
8721 			}
8722 			total_packets++;
8723 			total_bytes += size;
8724 		} else if (skb)
8725 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8726 		else if (ring_uses_build_skb(rx_ring))
8727 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8728 		else
8729 			skb = igb_construct_skb(rx_ring, rx_buffer,
8730 						&xdp, rx_desc);
8731 
8732 		/* exit if we failed to retrieve a buffer */
8733 		if (!skb) {
8734 			rx_ring->rx_stats.alloc_failed++;
8735 			rx_buffer->pagecnt_bias++;
8736 			break;
8737 		}
8738 
8739 		igb_put_rx_buffer(rx_ring, rx_buffer);
8740 		cleaned_count++;
8741 
8742 		/* fetch next buffer in frame if non-eop */
8743 		if (igb_is_non_eop(rx_ring, rx_desc))
8744 			continue;
8745 
8746 		/* verify the packet layout is correct */
8747 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8748 			skb = NULL;
8749 			continue;
8750 		}
8751 
8752 		/* probably a little skewed due to removing CRC */
8753 		total_bytes += skb->len;
8754 
8755 		/* populate checksum, timestamp, VLAN, and protocol */
8756 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8757 
8758 		napi_gro_receive(&q_vector->napi, skb);
8759 
8760 		/* reset skb pointer */
8761 		skb = NULL;
8762 
8763 		/* update budget accounting */
8764 		total_packets++;
8765 	}
8766 
8767 	/* place incomplete frames back on ring for completion */
8768 	rx_ring->skb = skb;
8769 
8770 	if (xdp_xmit & IGB_XDP_REDIR)
8771 		xdp_do_flush();
8772 
8773 	if (xdp_xmit & IGB_XDP_TX) {
8774 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8775 
8776 		igb_xdp_ring_update_tail(tx_ring);
8777 	}
8778 
8779 	u64_stats_update_begin(&rx_ring->rx_syncp);
8780 	rx_ring->rx_stats.packets += total_packets;
8781 	rx_ring->rx_stats.bytes += total_bytes;
8782 	u64_stats_update_end(&rx_ring->rx_syncp);
8783 	q_vector->rx.total_packets += total_packets;
8784 	q_vector->rx.total_bytes += total_bytes;
8785 
8786 	if (cleaned_count)
8787 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8788 
8789 	return total_packets;
8790 }
8791 
8792 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8793 				  struct igb_rx_buffer *bi)
8794 {
8795 	struct page *page = bi->page;
8796 	dma_addr_t dma;
8797 
8798 	/* since we are recycling buffers we should seldom need to alloc */
8799 	if (likely(page))
8800 		return true;
8801 
8802 	/* alloc new page for storage */
8803 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8804 	if (unlikely(!page)) {
8805 		rx_ring->rx_stats.alloc_failed++;
8806 		return false;
8807 	}
8808 
8809 	/* map page for use */
8810 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8811 				 igb_rx_pg_size(rx_ring),
8812 				 DMA_FROM_DEVICE,
8813 				 IGB_RX_DMA_ATTR);
8814 
8815 	/* if mapping failed free memory back to system since
8816 	 * there isn't much point in holding memory we can't use
8817 	 */
8818 	if (dma_mapping_error(rx_ring->dev, dma)) {
8819 		__free_pages(page, igb_rx_pg_order(rx_ring));
8820 
8821 		rx_ring->rx_stats.alloc_failed++;
8822 		return false;
8823 	}
8824 
8825 	bi->dma = dma;
8826 	bi->page = page;
8827 	bi->page_offset = igb_rx_offset(rx_ring);
8828 	page_ref_add(page, USHRT_MAX - 1);
8829 	bi->pagecnt_bias = USHRT_MAX;
8830 
8831 	return true;
8832 }
8833 
8834 /**
8835  *  igb_alloc_rx_buffers - Replace used receive buffers
8836  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8837  *  @cleaned_count: count of buffers to allocate
8838  **/
8839 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8840 {
8841 	union e1000_adv_rx_desc *rx_desc;
8842 	struct igb_rx_buffer *bi;
8843 	u16 i = rx_ring->next_to_use;
8844 	u16 bufsz;
8845 
8846 	/* nothing to do */
8847 	if (!cleaned_count)
8848 		return;
8849 
8850 	rx_desc = IGB_RX_DESC(rx_ring, i);
8851 	bi = &rx_ring->rx_buffer_info[i];
8852 	i -= rx_ring->count;
8853 
8854 	bufsz = igb_rx_bufsz(rx_ring);
8855 
8856 	do {
8857 		if (!igb_alloc_mapped_page(rx_ring, bi))
8858 			break;
8859 
8860 		/* sync the buffer for use by the device */
8861 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8862 						 bi->page_offset, bufsz,
8863 						 DMA_FROM_DEVICE);
8864 
8865 		/* Refresh the desc even if buffer_addrs didn't change
8866 		 * because each write-back erases this info.
8867 		 */
8868 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8869 
8870 		rx_desc++;
8871 		bi++;
8872 		i++;
8873 		if (unlikely(!i)) {
8874 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8875 			bi = rx_ring->rx_buffer_info;
8876 			i -= rx_ring->count;
8877 		}
8878 
8879 		/* clear the length for the next_to_use descriptor */
8880 		rx_desc->wb.upper.length = 0;
8881 
8882 		cleaned_count--;
8883 	} while (cleaned_count);
8884 
8885 	i += rx_ring->count;
8886 
8887 	if (rx_ring->next_to_use != i) {
8888 		/* record the next descriptor to use */
8889 		rx_ring->next_to_use = i;
8890 
8891 		/* update next to alloc since we have filled the ring */
8892 		rx_ring->next_to_alloc = i;
8893 
8894 		/* Force memory writes to complete before letting h/w
8895 		 * know there are new descriptors to fetch.  (Only
8896 		 * applicable for weak-ordered memory model archs,
8897 		 * such as IA-64).
8898 		 */
8899 		dma_wmb();
8900 		writel(i, rx_ring->tail);
8901 	}
8902 }
8903 
8904 /**
8905  * igb_mii_ioctl -
8906  * @netdev: pointer to netdev struct
8907  * @ifr: interface structure
8908  * @cmd: ioctl command to execute
8909  **/
8910 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8911 {
8912 	struct igb_adapter *adapter = netdev_priv(netdev);
8913 	struct mii_ioctl_data *data = if_mii(ifr);
8914 
8915 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8916 		return -EOPNOTSUPP;
8917 
8918 	switch (cmd) {
8919 	case SIOCGMIIPHY:
8920 		data->phy_id = adapter->hw.phy.addr;
8921 		break;
8922 	case SIOCGMIIREG:
8923 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8924 				     &data->val_out))
8925 			return -EIO;
8926 		break;
8927 	case SIOCSMIIREG:
8928 	default:
8929 		return -EOPNOTSUPP;
8930 	}
8931 	return 0;
8932 }
8933 
8934 /**
8935  * igb_ioctl -
8936  * @netdev: pointer to netdev struct
8937  * @ifr: interface structure
8938  * @cmd: ioctl command to execute
8939  **/
8940 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8941 {
8942 	switch (cmd) {
8943 	case SIOCGMIIPHY:
8944 	case SIOCGMIIREG:
8945 	case SIOCSMIIREG:
8946 		return igb_mii_ioctl(netdev, ifr, cmd);
8947 	case SIOCGHWTSTAMP:
8948 		return igb_ptp_get_ts_config(netdev, ifr);
8949 	case SIOCSHWTSTAMP:
8950 		return igb_ptp_set_ts_config(netdev, ifr);
8951 	default:
8952 		return -EOPNOTSUPP;
8953 	}
8954 }
8955 
8956 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8957 {
8958 	struct igb_adapter *adapter = hw->back;
8959 
8960 	pci_read_config_word(adapter->pdev, reg, value);
8961 }
8962 
8963 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8964 {
8965 	struct igb_adapter *adapter = hw->back;
8966 
8967 	pci_write_config_word(adapter->pdev, reg, *value);
8968 }
8969 
8970 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8971 {
8972 	struct igb_adapter *adapter = hw->back;
8973 
8974 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8975 		return -E1000_ERR_CONFIG;
8976 
8977 	return 0;
8978 }
8979 
8980 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8981 {
8982 	struct igb_adapter *adapter = hw->back;
8983 
8984 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8985 		return -E1000_ERR_CONFIG;
8986 
8987 	return 0;
8988 }
8989 
8990 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8991 {
8992 	struct igb_adapter *adapter = netdev_priv(netdev);
8993 	struct e1000_hw *hw = &adapter->hw;
8994 	u32 ctrl, rctl;
8995 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8996 
8997 	if (enable) {
8998 		/* enable VLAN tag insert/strip */
8999 		ctrl = rd32(E1000_CTRL);
9000 		ctrl |= E1000_CTRL_VME;
9001 		wr32(E1000_CTRL, ctrl);
9002 
9003 		/* Disable CFI check */
9004 		rctl = rd32(E1000_RCTL);
9005 		rctl &= ~E1000_RCTL_CFIEN;
9006 		wr32(E1000_RCTL, rctl);
9007 	} else {
9008 		/* disable VLAN tag insert/strip */
9009 		ctrl = rd32(E1000_CTRL);
9010 		ctrl &= ~E1000_CTRL_VME;
9011 		wr32(E1000_CTRL, ctrl);
9012 	}
9013 
9014 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9015 }
9016 
9017 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9018 			       __be16 proto, u16 vid)
9019 {
9020 	struct igb_adapter *adapter = netdev_priv(netdev);
9021 	struct e1000_hw *hw = &adapter->hw;
9022 	int pf_id = adapter->vfs_allocated_count;
9023 
9024 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9025 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9026 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9027 
9028 	set_bit(vid, adapter->active_vlans);
9029 
9030 	return 0;
9031 }
9032 
9033 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9034 				__be16 proto, u16 vid)
9035 {
9036 	struct igb_adapter *adapter = netdev_priv(netdev);
9037 	int pf_id = adapter->vfs_allocated_count;
9038 	struct e1000_hw *hw = &adapter->hw;
9039 
9040 	/* remove VID from filter table */
9041 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9042 		igb_vfta_set(hw, vid, pf_id, false, true);
9043 
9044 	clear_bit(vid, adapter->active_vlans);
9045 
9046 	return 0;
9047 }
9048 
9049 static void igb_restore_vlan(struct igb_adapter *adapter)
9050 {
9051 	u16 vid = 1;
9052 
9053 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9054 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9055 
9056 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9057 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9058 }
9059 
9060 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9061 {
9062 	struct pci_dev *pdev = adapter->pdev;
9063 	struct e1000_mac_info *mac = &adapter->hw.mac;
9064 
9065 	mac->autoneg = 0;
9066 
9067 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9068 	 * for the switch() below to work
9069 	 */
9070 	if ((spd & 1) || (dplx & ~1))
9071 		goto err_inval;
9072 
9073 	/* Fiber NIC's only allow 1000 gbps Full duplex
9074 	 * and 100Mbps Full duplex for 100baseFx sfp
9075 	 */
9076 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9077 		switch (spd + dplx) {
9078 		case SPEED_10 + DUPLEX_HALF:
9079 		case SPEED_10 + DUPLEX_FULL:
9080 		case SPEED_100 + DUPLEX_HALF:
9081 			goto err_inval;
9082 		default:
9083 			break;
9084 		}
9085 	}
9086 
9087 	switch (spd + dplx) {
9088 	case SPEED_10 + DUPLEX_HALF:
9089 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9090 		break;
9091 	case SPEED_10 + DUPLEX_FULL:
9092 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9093 		break;
9094 	case SPEED_100 + DUPLEX_HALF:
9095 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9096 		break;
9097 	case SPEED_100 + DUPLEX_FULL:
9098 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9099 		break;
9100 	case SPEED_1000 + DUPLEX_FULL:
9101 		mac->autoneg = 1;
9102 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9103 		break;
9104 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9105 	default:
9106 		goto err_inval;
9107 	}
9108 
9109 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9110 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9111 
9112 	return 0;
9113 
9114 err_inval:
9115 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9116 	return -EINVAL;
9117 }
9118 
9119 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9120 			  bool runtime)
9121 {
9122 	struct net_device *netdev = pci_get_drvdata(pdev);
9123 	struct igb_adapter *adapter = netdev_priv(netdev);
9124 	struct e1000_hw *hw = &adapter->hw;
9125 	u32 ctrl, rctl, status;
9126 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9127 	bool wake;
9128 
9129 	rtnl_lock();
9130 	netif_device_detach(netdev);
9131 
9132 	if (netif_running(netdev))
9133 		__igb_close(netdev, true);
9134 
9135 	igb_ptp_suspend(adapter);
9136 
9137 	igb_clear_interrupt_scheme(adapter);
9138 	rtnl_unlock();
9139 
9140 	status = rd32(E1000_STATUS);
9141 	if (status & E1000_STATUS_LU)
9142 		wufc &= ~E1000_WUFC_LNKC;
9143 
9144 	if (wufc) {
9145 		igb_setup_rctl(adapter);
9146 		igb_set_rx_mode(netdev);
9147 
9148 		/* turn on all-multi mode if wake on multicast is enabled */
9149 		if (wufc & E1000_WUFC_MC) {
9150 			rctl = rd32(E1000_RCTL);
9151 			rctl |= E1000_RCTL_MPE;
9152 			wr32(E1000_RCTL, rctl);
9153 		}
9154 
9155 		ctrl = rd32(E1000_CTRL);
9156 		ctrl |= E1000_CTRL_ADVD3WUC;
9157 		wr32(E1000_CTRL, ctrl);
9158 
9159 		/* Allow time for pending master requests to run */
9160 		igb_disable_pcie_master(hw);
9161 
9162 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9163 		wr32(E1000_WUFC, wufc);
9164 	} else {
9165 		wr32(E1000_WUC, 0);
9166 		wr32(E1000_WUFC, 0);
9167 	}
9168 
9169 	wake = wufc || adapter->en_mng_pt;
9170 	if (!wake)
9171 		igb_power_down_link(adapter);
9172 	else
9173 		igb_power_up_link(adapter);
9174 
9175 	if (enable_wake)
9176 		*enable_wake = wake;
9177 
9178 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9179 	 * would have already happened in close and is redundant.
9180 	 */
9181 	igb_release_hw_control(adapter);
9182 
9183 	pci_disable_device(pdev);
9184 
9185 	return 0;
9186 }
9187 
9188 static void igb_deliver_wake_packet(struct net_device *netdev)
9189 {
9190 	struct igb_adapter *adapter = netdev_priv(netdev);
9191 	struct e1000_hw *hw = &adapter->hw;
9192 	struct sk_buff *skb;
9193 	u32 wupl;
9194 
9195 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9196 
9197 	/* WUPM stores only the first 128 bytes of the wake packet.
9198 	 * Read the packet only if we have the whole thing.
9199 	 */
9200 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9201 		return;
9202 
9203 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9204 	if (!skb)
9205 		return;
9206 
9207 	skb_put(skb, wupl);
9208 
9209 	/* Ensure reads are 32-bit aligned */
9210 	wupl = roundup(wupl, 4);
9211 
9212 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9213 
9214 	skb->protocol = eth_type_trans(skb, netdev);
9215 	netif_rx(skb);
9216 }
9217 
9218 static int __maybe_unused igb_suspend(struct device *dev)
9219 {
9220 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9221 }
9222 
9223 static int __maybe_unused igb_resume(struct device *dev)
9224 {
9225 	struct pci_dev *pdev = to_pci_dev(dev);
9226 	struct net_device *netdev = pci_get_drvdata(pdev);
9227 	struct igb_adapter *adapter = netdev_priv(netdev);
9228 	struct e1000_hw *hw = &adapter->hw;
9229 	u32 err, val;
9230 
9231 	pci_set_power_state(pdev, PCI_D0);
9232 	pci_restore_state(pdev);
9233 	pci_save_state(pdev);
9234 
9235 	if (!pci_device_is_present(pdev))
9236 		return -ENODEV;
9237 	err = pci_enable_device_mem(pdev);
9238 	if (err) {
9239 		dev_err(&pdev->dev,
9240 			"igb: Cannot enable PCI device from suspend\n");
9241 		return err;
9242 	}
9243 	pci_set_master(pdev);
9244 
9245 	pci_enable_wake(pdev, PCI_D3hot, 0);
9246 	pci_enable_wake(pdev, PCI_D3cold, 0);
9247 
9248 	if (igb_init_interrupt_scheme(adapter, true)) {
9249 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9250 		return -ENOMEM;
9251 	}
9252 
9253 	igb_reset(adapter);
9254 
9255 	/* let the f/w know that the h/w is now under the control of the
9256 	 * driver.
9257 	 */
9258 	igb_get_hw_control(adapter);
9259 
9260 	val = rd32(E1000_WUS);
9261 	if (val & WAKE_PKT_WUS)
9262 		igb_deliver_wake_packet(netdev);
9263 
9264 	wr32(E1000_WUS, ~0);
9265 
9266 	rtnl_lock();
9267 	if (!err && netif_running(netdev))
9268 		err = __igb_open(netdev, true);
9269 
9270 	if (!err)
9271 		netif_device_attach(netdev);
9272 	rtnl_unlock();
9273 
9274 	return err;
9275 }
9276 
9277 static int __maybe_unused igb_runtime_idle(struct device *dev)
9278 {
9279 	struct net_device *netdev = dev_get_drvdata(dev);
9280 	struct igb_adapter *adapter = netdev_priv(netdev);
9281 
9282 	if (!igb_has_link(adapter))
9283 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9284 
9285 	return -EBUSY;
9286 }
9287 
9288 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9289 {
9290 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9291 }
9292 
9293 static int __maybe_unused igb_runtime_resume(struct device *dev)
9294 {
9295 	return igb_resume(dev);
9296 }
9297 
9298 static void igb_shutdown(struct pci_dev *pdev)
9299 {
9300 	bool wake;
9301 
9302 	__igb_shutdown(pdev, &wake, 0);
9303 
9304 	if (system_state == SYSTEM_POWER_OFF) {
9305 		pci_wake_from_d3(pdev, wake);
9306 		pci_set_power_state(pdev, PCI_D3hot);
9307 	}
9308 }
9309 
9310 #ifdef CONFIG_PCI_IOV
9311 static int igb_sriov_reinit(struct pci_dev *dev)
9312 {
9313 	struct net_device *netdev = pci_get_drvdata(dev);
9314 	struct igb_adapter *adapter = netdev_priv(netdev);
9315 	struct pci_dev *pdev = adapter->pdev;
9316 
9317 	rtnl_lock();
9318 
9319 	if (netif_running(netdev))
9320 		igb_close(netdev);
9321 	else
9322 		igb_reset(adapter);
9323 
9324 	igb_clear_interrupt_scheme(adapter);
9325 
9326 	igb_init_queue_configuration(adapter);
9327 
9328 	if (igb_init_interrupt_scheme(adapter, true)) {
9329 		rtnl_unlock();
9330 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9331 		return -ENOMEM;
9332 	}
9333 
9334 	if (netif_running(netdev))
9335 		igb_open(netdev);
9336 
9337 	rtnl_unlock();
9338 
9339 	return 0;
9340 }
9341 
9342 static int igb_pci_disable_sriov(struct pci_dev *dev)
9343 {
9344 	int err = igb_disable_sriov(dev);
9345 
9346 	if (!err)
9347 		err = igb_sriov_reinit(dev);
9348 
9349 	return err;
9350 }
9351 
9352 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9353 {
9354 	int err = igb_enable_sriov(dev, num_vfs);
9355 
9356 	if (err)
9357 		goto out;
9358 
9359 	err = igb_sriov_reinit(dev);
9360 	if (!err)
9361 		return num_vfs;
9362 
9363 out:
9364 	return err;
9365 }
9366 
9367 #endif
9368 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9369 {
9370 #ifdef CONFIG_PCI_IOV
9371 	if (num_vfs == 0)
9372 		return igb_pci_disable_sriov(dev);
9373 	else
9374 		return igb_pci_enable_sriov(dev, num_vfs);
9375 #endif
9376 	return 0;
9377 }
9378 
9379 /**
9380  *  igb_io_error_detected - called when PCI error is detected
9381  *  @pdev: Pointer to PCI device
9382  *  @state: The current pci connection state
9383  *
9384  *  This function is called after a PCI bus error affecting
9385  *  this device has been detected.
9386  **/
9387 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9388 					      pci_channel_state_t state)
9389 {
9390 	struct net_device *netdev = pci_get_drvdata(pdev);
9391 	struct igb_adapter *adapter = netdev_priv(netdev);
9392 
9393 	netif_device_detach(netdev);
9394 
9395 	if (state == pci_channel_io_perm_failure)
9396 		return PCI_ERS_RESULT_DISCONNECT;
9397 
9398 	if (netif_running(netdev))
9399 		igb_down(adapter);
9400 	pci_disable_device(pdev);
9401 
9402 	/* Request a slot slot reset. */
9403 	return PCI_ERS_RESULT_NEED_RESET;
9404 }
9405 
9406 /**
9407  *  igb_io_slot_reset - called after the pci bus has been reset.
9408  *  @pdev: Pointer to PCI device
9409  *
9410  *  Restart the card from scratch, as if from a cold-boot. Implementation
9411  *  resembles the first-half of the igb_resume routine.
9412  **/
9413 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9414 {
9415 	struct net_device *netdev = pci_get_drvdata(pdev);
9416 	struct igb_adapter *adapter = netdev_priv(netdev);
9417 	struct e1000_hw *hw = &adapter->hw;
9418 	pci_ers_result_t result;
9419 
9420 	if (pci_enable_device_mem(pdev)) {
9421 		dev_err(&pdev->dev,
9422 			"Cannot re-enable PCI device after reset.\n");
9423 		result = PCI_ERS_RESULT_DISCONNECT;
9424 	} else {
9425 		pci_set_master(pdev);
9426 		pci_restore_state(pdev);
9427 		pci_save_state(pdev);
9428 
9429 		pci_enable_wake(pdev, PCI_D3hot, 0);
9430 		pci_enable_wake(pdev, PCI_D3cold, 0);
9431 
9432 		/* In case of PCI error, adapter lose its HW address
9433 		 * so we should re-assign it here.
9434 		 */
9435 		hw->hw_addr = adapter->io_addr;
9436 
9437 		igb_reset(adapter);
9438 		wr32(E1000_WUS, ~0);
9439 		result = PCI_ERS_RESULT_RECOVERED;
9440 	}
9441 
9442 	return result;
9443 }
9444 
9445 /**
9446  *  igb_io_resume - called when traffic can start flowing again.
9447  *  @pdev: Pointer to PCI device
9448  *
9449  *  This callback is called when the error recovery driver tells us that
9450  *  its OK to resume normal operation. Implementation resembles the
9451  *  second-half of the igb_resume routine.
9452  */
9453 static void igb_io_resume(struct pci_dev *pdev)
9454 {
9455 	struct net_device *netdev = pci_get_drvdata(pdev);
9456 	struct igb_adapter *adapter = netdev_priv(netdev);
9457 
9458 	if (netif_running(netdev)) {
9459 		if (igb_up(adapter)) {
9460 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9461 			return;
9462 		}
9463 	}
9464 
9465 	netif_device_attach(netdev);
9466 
9467 	/* let the f/w know that the h/w is now under the control of the
9468 	 * driver.
9469 	 */
9470 	igb_get_hw_control(adapter);
9471 }
9472 
9473 /**
9474  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9475  *  @adapter: Pointer to adapter structure
9476  *  @index: Index of the RAR entry which need to be synced with MAC table
9477  **/
9478 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9479 {
9480 	struct e1000_hw *hw = &adapter->hw;
9481 	u32 rar_low, rar_high;
9482 	u8 *addr = adapter->mac_table[index].addr;
9483 
9484 	/* HW expects these to be in network order when they are plugged
9485 	 * into the registers which are little endian.  In order to guarantee
9486 	 * that ordering we need to do an leXX_to_cpup here in order to be
9487 	 * ready for the byteswap that occurs with writel
9488 	 */
9489 	rar_low = le32_to_cpup((__le32 *)(addr));
9490 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9491 
9492 	/* Indicate to hardware the Address is Valid. */
9493 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9494 		if (is_valid_ether_addr(addr))
9495 			rar_high |= E1000_RAH_AV;
9496 
9497 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9498 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9499 
9500 		switch (hw->mac.type) {
9501 		case e1000_82575:
9502 		case e1000_i210:
9503 			if (adapter->mac_table[index].state &
9504 			    IGB_MAC_STATE_QUEUE_STEERING)
9505 				rar_high |= E1000_RAH_QSEL_ENABLE;
9506 
9507 			rar_high |= E1000_RAH_POOL_1 *
9508 				    adapter->mac_table[index].queue;
9509 			break;
9510 		default:
9511 			rar_high |= E1000_RAH_POOL_1 <<
9512 				    adapter->mac_table[index].queue;
9513 			break;
9514 		}
9515 	}
9516 
9517 	wr32(E1000_RAL(index), rar_low);
9518 	wrfl();
9519 	wr32(E1000_RAH(index), rar_high);
9520 	wrfl();
9521 }
9522 
9523 static int igb_set_vf_mac(struct igb_adapter *adapter,
9524 			  int vf, unsigned char *mac_addr)
9525 {
9526 	struct e1000_hw *hw = &adapter->hw;
9527 	/* VF MAC addresses start at end of receive addresses and moves
9528 	 * towards the first, as a result a collision should not be possible
9529 	 */
9530 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9531 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9532 
9533 	ether_addr_copy(vf_mac_addr, mac_addr);
9534 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9535 	adapter->mac_table[rar_entry].queue = vf;
9536 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9537 	igb_rar_set_index(adapter, rar_entry);
9538 
9539 	return 0;
9540 }
9541 
9542 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9543 {
9544 	struct igb_adapter *adapter = netdev_priv(netdev);
9545 
9546 	if (vf >= adapter->vfs_allocated_count)
9547 		return -EINVAL;
9548 
9549 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9550 	 * flag and allows to overwrite the MAC via VF netdev.  This
9551 	 * is necessary to allow libvirt a way to restore the original
9552 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9553 	 * down a VM.
9554 	 */
9555 	if (is_zero_ether_addr(mac)) {
9556 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9557 		dev_info(&adapter->pdev->dev,
9558 			 "remove administratively set MAC on VF %d\n",
9559 			 vf);
9560 	} else if (is_valid_ether_addr(mac)) {
9561 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9562 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9563 			 mac, vf);
9564 		dev_info(&adapter->pdev->dev,
9565 			 "Reload the VF driver to make this change effective.");
9566 		/* Generate additional warning if PF is down */
9567 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9568 			dev_warn(&adapter->pdev->dev,
9569 				 "The VF MAC address has been set, but the PF device is not up.\n");
9570 			dev_warn(&adapter->pdev->dev,
9571 				 "Bring the PF device up before attempting to use the VF device.\n");
9572 		}
9573 	} else {
9574 		return -EINVAL;
9575 	}
9576 	return igb_set_vf_mac(adapter, vf, mac);
9577 }
9578 
9579 static int igb_link_mbps(int internal_link_speed)
9580 {
9581 	switch (internal_link_speed) {
9582 	case SPEED_100:
9583 		return 100;
9584 	case SPEED_1000:
9585 		return 1000;
9586 	default:
9587 		return 0;
9588 	}
9589 }
9590 
9591 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9592 				  int link_speed)
9593 {
9594 	int rf_dec, rf_int;
9595 	u32 bcnrc_val;
9596 
9597 	if (tx_rate != 0) {
9598 		/* Calculate the rate factor values to set */
9599 		rf_int = link_speed / tx_rate;
9600 		rf_dec = (link_speed - (rf_int * tx_rate));
9601 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9602 			 tx_rate;
9603 
9604 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9605 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9606 			      E1000_RTTBCNRC_RF_INT_MASK);
9607 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9608 	} else {
9609 		bcnrc_val = 0;
9610 	}
9611 
9612 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9613 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9614 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9615 	 */
9616 	wr32(E1000_RTTBCNRM, 0x14);
9617 	wr32(E1000_RTTBCNRC, bcnrc_val);
9618 }
9619 
9620 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9621 {
9622 	int actual_link_speed, i;
9623 	bool reset_rate = false;
9624 
9625 	/* VF TX rate limit was not set or not supported */
9626 	if ((adapter->vf_rate_link_speed == 0) ||
9627 	    (adapter->hw.mac.type != e1000_82576))
9628 		return;
9629 
9630 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9631 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9632 		reset_rate = true;
9633 		adapter->vf_rate_link_speed = 0;
9634 		dev_info(&adapter->pdev->dev,
9635 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9636 	}
9637 
9638 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9639 		if (reset_rate)
9640 			adapter->vf_data[i].tx_rate = 0;
9641 
9642 		igb_set_vf_rate_limit(&adapter->hw, i,
9643 				      adapter->vf_data[i].tx_rate,
9644 				      actual_link_speed);
9645 	}
9646 }
9647 
9648 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9649 			     int min_tx_rate, int max_tx_rate)
9650 {
9651 	struct igb_adapter *adapter = netdev_priv(netdev);
9652 	struct e1000_hw *hw = &adapter->hw;
9653 	int actual_link_speed;
9654 
9655 	if (hw->mac.type != e1000_82576)
9656 		return -EOPNOTSUPP;
9657 
9658 	if (min_tx_rate)
9659 		return -EINVAL;
9660 
9661 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9662 	if ((vf >= adapter->vfs_allocated_count) ||
9663 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9664 	    (max_tx_rate < 0) ||
9665 	    (max_tx_rate > actual_link_speed))
9666 		return -EINVAL;
9667 
9668 	adapter->vf_rate_link_speed = actual_link_speed;
9669 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9670 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9671 
9672 	return 0;
9673 }
9674 
9675 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9676 				   bool setting)
9677 {
9678 	struct igb_adapter *adapter = netdev_priv(netdev);
9679 	struct e1000_hw *hw = &adapter->hw;
9680 	u32 reg_val, reg_offset;
9681 
9682 	if (!adapter->vfs_allocated_count)
9683 		return -EOPNOTSUPP;
9684 
9685 	if (vf >= adapter->vfs_allocated_count)
9686 		return -EINVAL;
9687 
9688 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9689 	reg_val = rd32(reg_offset);
9690 	if (setting)
9691 		reg_val |= (BIT(vf) |
9692 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9693 	else
9694 		reg_val &= ~(BIT(vf) |
9695 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9696 	wr32(reg_offset, reg_val);
9697 
9698 	adapter->vf_data[vf].spoofchk_enabled = setting;
9699 	return 0;
9700 }
9701 
9702 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9703 {
9704 	struct igb_adapter *adapter = netdev_priv(netdev);
9705 
9706 	if (vf >= adapter->vfs_allocated_count)
9707 		return -EINVAL;
9708 	if (adapter->vf_data[vf].trusted == setting)
9709 		return 0;
9710 
9711 	adapter->vf_data[vf].trusted = setting;
9712 
9713 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9714 		 vf, setting ? "" : "not ");
9715 	return 0;
9716 }
9717 
9718 static int igb_ndo_get_vf_config(struct net_device *netdev,
9719 				 int vf, struct ifla_vf_info *ivi)
9720 {
9721 	struct igb_adapter *adapter = netdev_priv(netdev);
9722 	if (vf >= adapter->vfs_allocated_count)
9723 		return -EINVAL;
9724 	ivi->vf = vf;
9725 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9726 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9727 	ivi->min_tx_rate = 0;
9728 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9729 	ivi->qos = adapter->vf_data[vf].pf_qos;
9730 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9731 	ivi->trusted = adapter->vf_data[vf].trusted;
9732 	return 0;
9733 }
9734 
9735 static void igb_vmm_control(struct igb_adapter *adapter)
9736 {
9737 	struct e1000_hw *hw = &adapter->hw;
9738 	u32 reg;
9739 
9740 	switch (hw->mac.type) {
9741 	case e1000_82575:
9742 	case e1000_i210:
9743 	case e1000_i211:
9744 	case e1000_i354:
9745 	default:
9746 		/* replication is not supported for 82575 */
9747 		return;
9748 	case e1000_82576:
9749 		/* notify HW that the MAC is adding vlan tags */
9750 		reg = rd32(E1000_DTXCTL);
9751 		reg |= E1000_DTXCTL_VLAN_ADDED;
9752 		wr32(E1000_DTXCTL, reg);
9753 		fallthrough;
9754 	case e1000_82580:
9755 		/* enable replication vlan tag stripping */
9756 		reg = rd32(E1000_RPLOLR);
9757 		reg |= E1000_RPLOLR_STRVLAN;
9758 		wr32(E1000_RPLOLR, reg);
9759 		fallthrough;
9760 	case e1000_i350:
9761 		/* none of the above registers are supported by i350 */
9762 		break;
9763 	}
9764 
9765 	if (adapter->vfs_allocated_count) {
9766 		igb_vmdq_set_loopback_pf(hw, true);
9767 		igb_vmdq_set_replication_pf(hw, true);
9768 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9769 					      adapter->vfs_allocated_count);
9770 	} else {
9771 		igb_vmdq_set_loopback_pf(hw, false);
9772 		igb_vmdq_set_replication_pf(hw, false);
9773 	}
9774 }
9775 
9776 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9777 {
9778 	struct e1000_hw *hw = &adapter->hw;
9779 	u32 dmac_thr;
9780 	u16 hwm;
9781 
9782 	if (hw->mac.type > e1000_82580) {
9783 		if (adapter->flags & IGB_FLAG_DMAC) {
9784 			u32 reg;
9785 
9786 			/* force threshold to 0. */
9787 			wr32(E1000_DMCTXTH, 0);
9788 
9789 			/* DMA Coalescing high water mark needs to be greater
9790 			 * than the Rx threshold. Set hwm to PBA - max frame
9791 			 * size in 16B units, capping it at PBA - 6KB.
9792 			 */
9793 			hwm = 64 * (pba - 6);
9794 			reg = rd32(E1000_FCRTC);
9795 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9796 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9797 				& E1000_FCRTC_RTH_COAL_MASK);
9798 			wr32(E1000_FCRTC, reg);
9799 
9800 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9801 			 * frame size, capping it at PBA - 10KB.
9802 			 */
9803 			dmac_thr = pba - 10;
9804 			reg = rd32(E1000_DMACR);
9805 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9806 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9807 				& E1000_DMACR_DMACTHR_MASK);
9808 
9809 			/* transition to L0x or L1 if available..*/
9810 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9811 
9812 			/* watchdog timer= +-1000 usec in 32usec intervals */
9813 			reg |= (1000 >> 5);
9814 
9815 			/* Disable BMC-to-OS Watchdog Enable */
9816 			if (hw->mac.type != e1000_i354)
9817 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9818 
9819 			wr32(E1000_DMACR, reg);
9820 
9821 			/* no lower threshold to disable
9822 			 * coalescing(smart fifb)-UTRESH=0
9823 			 */
9824 			wr32(E1000_DMCRTRH, 0);
9825 
9826 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9827 
9828 			wr32(E1000_DMCTLX, reg);
9829 
9830 			/* free space in tx packet buffer to wake from
9831 			 * DMA coal
9832 			 */
9833 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9834 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9835 
9836 			/* make low power state decision controlled
9837 			 * by DMA coal
9838 			 */
9839 			reg = rd32(E1000_PCIEMISC);
9840 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9841 			wr32(E1000_PCIEMISC, reg);
9842 		} /* endif adapter->dmac is not disabled */
9843 	} else if (hw->mac.type == e1000_82580) {
9844 		u32 reg = rd32(E1000_PCIEMISC);
9845 
9846 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9847 		wr32(E1000_DMACR, 0);
9848 	}
9849 }
9850 
9851 /**
9852  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9853  *  @hw: pointer to hardware structure
9854  *  @byte_offset: byte offset to read
9855  *  @dev_addr: device address
9856  *  @data: value read
9857  *
9858  *  Performs byte read operation over I2C interface at
9859  *  a specified device address.
9860  **/
9861 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9862 		      u8 dev_addr, u8 *data)
9863 {
9864 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9865 	struct i2c_client *this_client = adapter->i2c_client;
9866 	s32 status;
9867 	u16 swfw_mask = 0;
9868 
9869 	if (!this_client)
9870 		return E1000_ERR_I2C;
9871 
9872 	swfw_mask = E1000_SWFW_PHY0_SM;
9873 
9874 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9875 		return E1000_ERR_SWFW_SYNC;
9876 
9877 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9878 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9879 
9880 	if (status < 0)
9881 		return E1000_ERR_I2C;
9882 	else {
9883 		*data = status;
9884 		return 0;
9885 	}
9886 }
9887 
9888 /**
9889  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9890  *  @hw: pointer to hardware structure
9891  *  @byte_offset: byte offset to write
9892  *  @dev_addr: device address
9893  *  @data: value to write
9894  *
9895  *  Performs byte write operation over I2C interface at
9896  *  a specified device address.
9897  **/
9898 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9899 		       u8 dev_addr, u8 data)
9900 {
9901 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9902 	struct i2c_client *this_client = adapter->i2c_client;
9903 	s32 status;
9904 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9905 
9906 	if (!this_client)
9907 		return E1000_ERR_I2C;
9908 
9909 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9910 		return E1000_ERR_SWFW_SYNC;
9911 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9912 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9913 
9914 	if (status)
9915 		return E1000_ERR_I2C;
9916 	else
9917 		return 0;
9918 
9919 }
9920 
9921 int igb_reinit_queues(struct igb_adapter *adapter)
9922 {
9923 	struct net_device *netdev = adapter->netdev;
9924 	struct pci_dev *pdev = adapter->pdev;
9925 	int err = 0;
9926 
9927 	if (netif_running(netdev))
9928 		igb_close(netdev);
9929 
9930 	igb_reset_interrupt_capability(adapter);
9931 
9932 	if (igb_init_interrupt_scheme(adapter, true)) {
9933 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9934 		return -ENOMEM;
9935 	}
9936 
9937 	if (netif_running(netdev))
9938 		err = igb_open(netdev);
9939 
9940 	return err;
9941 }
9942 
9943 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9944 {
9945 	struct igb_nfc_filter *rule;
9946 
9947 	spin_lock(&adapter->nfc_lock);
9948 
9949 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9950 		igb_erase_filter(adapter, rule);
9951 
9952 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9953 		igb_erase_filter(adapter, rule);
9954 
9955 	spin_unlock(&adapter->nfc_lock);
9956 }
9957 
9958 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9959 {
9960 	struct igb_nfc_filter *rule;
9961 
9962 	spin_lock(&adapter->nfc_lock);
9963 
9964 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9965 		igb_add_filter(adapter, rule);
9966 
9967 	spin_unlock(&adapter->nfc_lock);
9968 }
9969 /* igb_main.c */
9970