xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 470ac62dfa5732c149adce2cbce84ac678de701f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_TDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { __le64 a; __le64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state) {
581 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 	} else {
583 		i2cctl &= ~E1000_I2C_DATA_OE_N;
584 		i2cctl &= ~E1000_I2C_DATA_OUT;
585 	}
586 
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 }
590 
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state) {
605 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 	} else {
607 		i2cctl &= ~E1000_I2C_CLK_OUT;
608 		i2cctl &= ~E1000_I2C_CLK_OE_N;
609 	}
610 	wr32(E1000_I2CPARAMS, i2cctl);
611 	wrfl();
612 }
613 
614 /**
615  *  igb_get_i2c_clk - Gets the I2C SCL clock state
616  *  @data: pointer to hardware structure
617  *
618  *  Gets the I2C clock state
619  **/
620 static int igb_get_i2c_clk(void *data)
621 {
622 	struct igb_adapter *adapter = (struct igb_adapter *)data;
623 	struct e1000_hw *hw = &adapter->hw;
624 	s32 i2cctl = rd32(E1000_I2CPARAMS);
625 
626 	return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628 
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 	.setsda		= igb_set_i2c_data,
631 	.setscl		= igb_set_i2c_clk,
632 	.getsda		= igb_get_i2c_data,
633 	.getscl		= igb_get_i2c_clk,
634 	.udelay		= 5,
635 	.timeout	= 20,
636 };
637 
638 /**
639  *  igb_get_hw_dev - return device
640  *  @hw: pointer to hardware structure
641  *
642  *  used by hardware layer to print debugging information
643  **/
644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 	struct igb_adapter *adapter = hw->back;
647 	return adapter->netdev;
648 }
649 
650 /**
651  *  igb_init_module - Driver Registration Routine
652  *
653  *  igb_init_module is the first routine called when the driver is
654  *  loaded. All it does is register with the PCI subsystem.
655  **/
656 static int __init igb_init_module(void)
657 {
658 	int ret;
659 
660 	pr_info("%s\n", igb_driver_string);
661 	pr_info("%s\n", igb_copyright);
662 
663 #ifdef CONFIG_IGB_DCA
664 	dca_register_notify(&dca_notifier);
665 #endif
666 	ret = pci_register_driver(&igb_driver);
667 	return ret;
668 }
669 
670 module_init(igb_init_module);
671 
672 /**
673  *  igb_exit_module - Driver Exit Cleanup Routine
674  *
675  *  igb_exit_module is called just before the driver is removed
676  *  from memory.
677  **/
678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 	dca_unregister_notify(&dca_notifier);
682 #endif
683 	pci_unregister_driver(&igb_driver);
684 }
685 
686 module_exit(igb_exit_module);
687 
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690  *  igb_cache_ring_register - Descriptor ring to register mapping
691  *  @adapter: board private structure to initialize
692  *
693  *  Once we know the feature-set enabled for the device, we'll cache
694  *  the register offset the descriptor ring is assigned to.
695  **/
696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 	int i = 0, j = 0;
699 	u32 rbase_offset = adapter->vfs_allocated_count;
700 
701 	switch (adapter->hw.mac.type) {
702 	case e1000_82576:
703 		/* The queues are allocated for virtualization such that VF 0
704 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 		 * In order to avoid collision we start at the first free queue
706 		 * and continue consuming queues in the same sequence
707 		 */
708 		if (adapter->vfs_allocated_count) {
709 			for (; i < adapter->rss_queues; i++)
710 				adapter->rx_ring[i]->reg_idx = rbase_offset +
711 							       Q_IDX_82576(i);
712 		}
713 		fallthrough;
714 	case e1000_82575:
715 	case e1000_82580:
716 	case e1000_i350:
717 	case e1000_i354:
718 	case e1000_i210:
719 	case e1000_i211:
720 	default:
721 		for (; i < adapter->num_rx_queues; i++)
722 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 		for (; j < adapter->num_tx_queues; j++)
724 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 		break;
726 	}
727 }
728 
729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 	u32 value = 0;
734 
735 	if (E1000_REMOVED(hw_addr))
736 		return ~value;
737 
738 	value = readl(&hw_addr[reg]);
739 
740 	/* reads should not return all F's */
741 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 		struct net_device *netdev = igb->netdev;
743 		hw->hw_addr = NULL;
744 		netdev_err(netdev, "PCIe link lost\n");
745 		WARN(pci_device_is_present(igb->pdev),
746 		     "igb: Failed to read reg 0x%x!\n", reg);
747 	}
748 
749 	return value;
750 }
751 
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 			   int index, int offset)
766 {
767 	u32 ivar = array_rd32(E1000_IVAR0, index);
768 
769 	/* clear any bits that are currently set */
770 	ivar &= ~((u32)0xFF << offset);
771 
772 	/* write vector and valid bit */
773 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774 
775 	array_wr32(E1000_IVAR0, index, ivar);
776 }
777 
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 	struct igb_adapter *adapter = q_vector->adapter;
782 	struct e1000_hw *hw = &adapter->hw;
783 	int rx_queue = IGB_N0_QUEUE;
784 	int tx_queue = IGB_N0_QUEUE;
785 	u32 msixbm = 0;
786 
787 	if (q_vector->rx.ring)
788 		rx_queue = q_vector->rx.ring->reg_idx;
789 	if (q_vector->tx.ring)
790 		tx_queue = q_vector->tx.ring->reg_idx;
791 
792 	switch (hw->mac.type) {
793 	case e1000_82575:
794 		/* The 82575 assigns vectors using a bitmask, which matches the
795 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796 		 * or more queues to a vector, we write the appropriate bits
797 		 * into the MSIXBM register for that vector.
798 		 */
799 		if (rx_queue > IGB_N0_QUEUE)
800 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 		if (tx_queue > IGB_N0_QUEUE)
802 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 			msixbm |= E1000_EIMS_OTHER;
805 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 		q_vector->eims_value = msixbm;
807 		break;
808 	case e1000_82576:
809 		/* 82576 uses a table that essentially consists of 2 columns
810 		 * with 8 rows.  The ordering is column-major so we use the
811 		 * lower 3 bits as the row index, and the 4th bit as the
812 		 * column offset.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue & 0x7,
817 				       (rx_queue & 0x8) << 1);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue & 0x7,
821 				       ((tx_queue & 0x8) << 1) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	case e1000_82580:
825 	case e1000_i350:
826 	case e1000_i354:
827 	case e1000_i210:
828 	case e1000_i211:
829 		/* On 82580 and newer adapters the scheme is similar to 82576
830 		 * however instead of ordering column-major we have things
831 		 * ordered row-major.  So we traverse the table by using
832 		 * bit 0 as the column offset, and the remaining bits as the
833 		 * row index.
834 		 */
835 		if (rx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       rx_queue >> 1,
838 				       (rx_queue & 0x1) << 4);
839 		if (tx_queue > IGB_N0_QUEUE)
840 			igb_write_ivar(hw, msix_vector,
841 				       tx_queue >> 1,
842 				       ((tx_queue & 0x1) << 4) + 8);
843 		q_vector->eims_value = BIT(msix_vector);
844 		break;
845 	default:
846 		BUG();
847 		break;
848 	}
849 
850 	/* add q_vector eims value to global eims_enable_mask */
851 	adapter->eims_enable_mask |= q_vector->eims_value;
852 
853 	/* configure q_vector to set itr on first interrupt */
854 	q_vector->set_itr = 1;
855 }
856 
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 	u32 tmp;
867 	int i, vector = 0;
868 	struct e1000_hw *hw = &adapter->hw;
869 
870 	adapter->eims_enable_mask = 0;
871 
872 	/* set vector for other causes, i.e. link changes */
873 	switch (hw->mac.type) {
874 	case e1000_82575:
875 		tmp = rd32(E1000_CTRL_EXT);
876 		/* enable MSI-X PBA support*/
877 		tmp |= E1000_CTRL_EXT_PBA_CLR;
878 
879 		/* Auto-Mask interrupts upon ICR read. */
880 		tmp |= E1000_CTRL_EXT_EIAME;
881 		tmp |= E1000_CTRL_EXT_IRCA;
882 
883 		wr32(E1000_CTRL_EXT, tmp);
884 
885 		/* enable msix_other interrupt */
886 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 		adapter->eims_other = E1000_EIMS_OTHER;
888 
889 		break;
890 
891 	case e1000_82576:
892 	case e1000_82580:
893 	case e1000_i350:
894 	case e1000_i354:
895 	case e1000_i210:
896 	case e1000_i211:
897 		/* Turn on MSI-X capability first, or our settings
898 		 * won't stick.  And it will take days to debug.
899 		 */
900 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 		     E1000_GPIE_NSICR);
903 
904 		/* enable msix_other interrupt */
905 		adapter->eims_other = BIT(vector);
906 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907 
908 		wr32(E1000_IVAR_MISC, tmp);
909 		break;
910 	default:
911 		/* do nothing, since nothing else supports MSI-X */
912 		break;
913 	} /* switch (hw->mac.type) */
914 
915 	adapter->eims_enable_mask |= adapter->eims_other;
916 
917 	for (i = 0; i < adapter->num_q_vectors; i++)
918 		igb_assign_vector(adapter->q_vector[i], vector++);
919 
920 	wrfl();
921 }
922 
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 	unsigned int num_q_vectors = adapter->num_q_vectors;
933 	struct net_device *netdev = adapter->netdev;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	if (num_q_vectors > MAX_Q_VECTORS) {
942 		num_q_vectors = MAX_Q_VECTORS;
943 		dev_warn(&adapter->pdev->dev,
944 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 			 adapter->num_q_vectors, MAX_Q_VECTORS);
946 	}
947 	for (i = 0; i < num_q_vectors; i++) {
948 		struct igb_q_vector *q_vector = adapter->q_vector[i];
949 
950 		vector++;
951 
952 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953 
954 		if (q_vector->rx.ring && q_vector->tx.ring)
955 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else if (q_vector->tx.ring)
958 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 				q_vector->tx.ring->queue_index);
960 		else if (q_vector->rx.ring)
961 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 				q_vector->rx.ring->queue_index);
963 		else
964 			sprintf(q_vector->name, "%s-unused", netdev->name);
965 
966 		err = request_irq(adapter->msix_entries[vector].vector,
967 				  igb_msix_ring, 0, q_vector->name,
968 				  q_vector);
969 		if (err)
970 			goto err_free;
971 	}
972 
973 	igb_configure_msix(adapter);
974 	return 0;
975 
976 err_free:
977 	/* free already assigned IRQs */
978 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979 
980 	vector--;
981 	for (i = 0; i < vector; i++) {
982 		free_irq(adapter->msix_entries[free_vector++].vector,
983 			 adapter->q_vector[i]);
984 	}
985 err_out:
986 	return err;
987 }
988 
989 /**
990  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
991  *  @adapter: board private structure to initialize
992  *  @v_idx: Index of vector to be freed
993  *
994  *  This function frees the memory allocated to the q_vector.
995  **/
996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999 
1000 	adapter->q_vector[v_idx] = NULL;
1001 
1002 	/* igb_get_stats64() might access the rings on this vector,
1003 	 * we must wait a grace period before freeing it.
1004 	 */
1005 	if (q_vector)
1006 		kfree_rcu(q_vector, rcu);
1007 }
1008 
1009 /**
1010  *  igb_reset_q_vector - Reset config for interrupt vector
1011  *  @adapter: board private structure to initialize
1012  *  @v_idx: Index of vector to be reset
1013  *
1014  *  If NAPI is enabled it will delete any references to the
1015  *  NAPI struct. This is preparation for igb_free_q_vector.
1016  **/
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020 
1021 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 	 * allocated. So, q_vector is NULL so we should stop here.
1023 	 */
1024 	if (!q_vector)
1025 		return;
1026 
1027 	if (q_vector->tx.ring)
1028 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029 
1030 	if (q_vector->rx.ring)
1031 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032 
1033 	netif_napi_del(&q_vector->napi);
1034 
1035 }
1036 
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 	int v_idx = adapter->num_q_vectors;
1040 
1041 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 		pci_disable_msix(adapter->pdev);
1043 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 		pci_disable_msi(adapter->pdev);
1045 
1046 	while (v_idx--)
1047 		igb_reset_q_vector(adapter, v_idx);
1048 }
1049 
1050 /**
1051  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1052  *  @adapter: board private structure to initialize
1053  *
1054  *  This function frees the memory allocated to the q_vectors.  In addition if
1055  *  NAPI is enabled it will delete any references to the NAPI struct prior
1056  *  to freeing the q_vector.
1057  **/
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 	int v_idx = adapter->num_q_vectors;
1061 
1062 	adapter->num_tx_queues = 0;
1063 	adapter->num_rx_queues = 0;
1064 	adapter->num_q_vectors = 0;
1065 
1066 	while (v_idx--) {
1067 		igb_reset_q_vector(adapter, v_idx);
1068 		igb_free_q_vector(adapter, v_idx);
1069 	}
1070 }
1071 
1072 /**
1073  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074  *  @adapter: board private structure to initialize
1075  *
1076  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1077  *  MSI-X interrupts allocated.
1078  */
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 	igb_free_q_vectors(adapter);
1082 	igb_reset_interrupt_capability(adapter);
1083 }
1084 
1085 /**
1086  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1087  *  @adapter: board private structure to initialize
1088  *  @msix: boolean value of MSIX capability
1089  *
1090  *  Attempt to configure interrupts using the best available
1091  *  capabilities of the hardware and kernel.
1092  **/
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 	int err;
1096 	int numvecs, i;
1097 
1098 	if (!msix)
1099 		goto msi_only;
1100 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1101 
1102 	/* Number of supported queues. */
1103 	adapter->num_rx_queues = adapter->rss_queues;
1104 	if (adapter->vfs_allocated_count)
1105 		adapter->num_tx_queues = 1;
1106 	else
1107 		adapter->num_tx_queues = adapter->rss_queues;
1108 
1109 	/* start with one vector for every Rx queue */
1110 	numvecs = adapter->num_rx_queues;
1111 
1112 	/* if Tx handler is separate add 1 for every Tx queue */
1113 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 		numvecs += adapter->num_tx_queues;
1115 
1116 	/* store the number of vectors reserved for queues */
1117 	adapter->num_q_vectors = numvecs;
1118 
1119 	/* add 1 vector for link status interrupts */
1120 	numvecs++;
1121 	for (i = 0; i < numvecs; i++)
1122 		adapter->msix_entries[i].entry = i;
1123 
1124 	err = pci_enable_msix_range(adapter->pdev,
1125 				    adapter->msix_entries,
1126 				    numvecs,
1127 				    numvecs);
1128 	if (err > 0)
1129 		return;
1130 
1131 	igb_reset_interrupt_capability(adapter);
1132 
1133 	/* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 	/* disable SR-IOV for non MSI-X configurations */
1138 	if (adapter->vf_data) {
1139 		struct e1000_hw *hw = &adapter->hw;
1140 		/* disable iov and allow time for transactions to clear */
1141 		pci_disable_sriov(adapter->pdev);
1142 		msleep(500);
1143 
1144 		kfree(adapter->vf_mac_list);
1145 		adapter->vf_mac_list = NULL;
1146 		kfree(adapter->vf_data);
1147 		adapter->vf_data = NULL;
1148 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 		wrfl();
1150 		msleep(100);
1151 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 	}
1153 #endif
1154 	adapter->vfs_allocated_count = 0;
1155 	adapter->rss_queues = 1;
1156 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 	adapter->num_rx_queues = 1;
1158 	adapter->num_tx_queues = 1;
1159 	adapter->num_q_vectors = 1;
1160 	if (!pci_enable_msi(adapter->pdev))
1161 		adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163 
1164 static void igb_add_ring(struct igb_ring *ring,
1165 			 struct igb_ring_container *head)
1166 {
1167 	head->ring = ring;
1168 	head->count++;
1169 }
1170 
1171 /**
1172  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173  *  @adapter: board private structure to initialize
1174  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1175  *  @v_idx: index of vector in adapter struct
1176  *  @txr_count: total number of Tx rings to allocate
1177  *  @txr_idx: index of first Tx ring to allocate
1178  *  @rxr_count: total number of Rx rings to allocate
1179  *  @rxr_idx: index of first Rx ring to allocate
1180  *
1181  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1182  **/
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 			      int v_count, int v_idx,
1185 			      int txr_count, int txr_idx,
1186 			      int rxr_count, int rxr_idx)
1187 {
1188 	struct igb_q_vector *q_vector;
1189 	struct igb_ring *ring;
1190 	int ring_count;
1191 	size_t size;
1192 
1193 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 	if (txr_count > 1 || rxr_count > 1)
1195 		return -ENOMEM;
1196 
1197 	ring_count = txr_count + rxr_count;
1198 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1199 
1200 	/* allocate q_vector and rings */
1201 	q_vector = adapter->q_vector[v_idx];
1202 	if (!q_vector) {
1203 		q_vector = kzalloc(size, GFP_KERNEL);
1204 	} else if (size > ksize(q_vector)) {
1205 		struct igb_q_vector *new_q_vector;
1206 
1207 		new_q_vector = kzalloc(size, GFP_KERNEL);
1208 		if (new_q_vector)
1209 			kfree_rcu(q_vector, rcu);
1210 		q_vector = new_q_vector;
1211 	} else {
1212 		memset(q_vector, 0, size);
1213 	}
1214 	if (!q_vector)
1215 		return -ENOMEM;
1216 
1217 	/* initialize NAPI */
1218 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1219 
1220 	/* tie q_vector and adapter together */
1221 	adapter->q_vector[v_idx] = q_vector;
1222 	q_vector->adapter = adapter;
1223 
1224 	/* initialize work limits */
1225 	q_vector->tx.work_limit = adapter->tx_work_limit;
1226 
1227 	/* initialize ITR configuration */
1228 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 	q_vector->itr_val = IGB_START_ITR;
1230 
1231 	/* initialize pointer to rings */
1232 	ring = q_vector->ring;
1233 
1234 	/* intialize ITR */
1235 	if (rxr_count) {
1236 		/* rx or rx/tx vector */
1237 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 			q_vector->itr_val = adapter->rx_itr_setting;
1239 	} else {
1240 		/* tx only vector */
1241 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->tx_itr_setting;
1243 	}
1244 
1245 	if (txr_count) {
1246 		/* assign generic ring traits */
1247 		ring->dev = &adapter->pdev->dev;
1248 		ring->netdev = adapter->netdev;
1249 
1250 		/* configure backlink on ring */
1251 		ring->q_vector = q_vector;
1252 
1253 		/* update q_vector Tx values */
1254 		igb_add_ring(ring, &q_vector->tx);
1255 
1256 		/* For 82575, context index must be unique per ring. */
1257 		if (adapter->hw.mac.type == e1000_82575)
1258 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 
1260 		/* apply Tx specific ring traits */
1261 		ring->count = adapter->tx_ring_count;
1262 		ring->queue_index = txr_idx;
1263 
1264 		ring->cbs_enable = false;
1265 		ring->idleslope = 0;
1266 		ring->sendslope = 0;
1267 		ring->hicredit = 0;
1268 		ring->locredit = 0;
1269 
1270 		u64_stats_init(&ring->tx_syncp);
1271 		u64_stats_init(&ring->tx_syncp2);
1272 
1273 		/* assign ring to adapter */
1274 		adapter->tx_ring[txr_idx] = ring;
1275 
1276 		/* push pointer to next ring */
1277 		ring++;
1278 	}
1279 
1280 	if (rxr_count) {
1281 		/* assign generic ring traits */
1282 		ring->dev = &adapter->pdev->dev;
1283 		ring->netdev = adapter->netdev;
1284 
1285 		/* configure backlink on ring */
1286 		ring->q_vector = q_vector;
1287 
1288 		/* update q_vector Rx values */
1289 		igb_add_ring(ring, &q_vector->rx);
1290 
1291 		/* set flag indicating ring supports SCTP checksum offload */
1292 		if (adapter->hw.mac.type >= e1000_82576)
1293 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 
1295 		/* On i350, i354, i210, and i211, loopback VLAN packets
1296 		 * have the tag byte-swapped.
1297 		 */
1298 		if (adapter->hw.mac.type >= e1000_i350)
1299 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300 
1301 		/* apply Rx specific ring traits */
1302 		ring->count = adapter->rx_ring_count;
1303 		ring->queue_index = rxr_idx;
1304 
1305 		u64_stats_init(&ring->rx_syncp);
1306 
1307 		/* assign ring to adapter */
1308 		adapter->rx_ring[rxr_idx] = ring;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 
1315 /**
1316  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317  *  @adapter: board private structure to initialize
1318  *
1319  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1320  *  return -ENOMEM.
1321  **/
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324 	int q_vectors = adapter->num_q_vectors;
1325 	int rxr_remaining = adapter->num_rx_queues;
1326 	int txr_remaining = adapter->num_tx_queues;
1327 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 	int err;
1329 
1330 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 		for (; rxr_remaining; v_idx++) {
1332 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 						 0, 0, 1, rxr_idx);
1334 
1335 			if (err)
1336 				goto err_out;
1337 
1338 			/* update counts and index */
1339 			rxr_remaining--;
1340 			rxr_idx++;
1341 		}
1342 	}
1343 
1344 	for (; v_idx < q_vectors; v_idx++) {
1345 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347 
1348 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 					 tqpv, txr_idx, rqpv, rxr_idx);
1350 
1351 		if (err)
1352 			goto err_out;
1353 
1354 		/* update counts and index */
1355 		rxr_remaining -= rqpv;
1356 		txr_remaining -= tqpv;
1357 		rxr_idx++;
1358 		txr_idx++;
1359 	}
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	adapter->num_tx_queues = 0;
1365 	adapter->num_rx_queues = 0;
1366 	adapter->num_q_vectors = 0;
1367 
1368 	while (v_idx--)
1369 		igb_free_q_vector(adapter, v_idx);
1370 
1371 	return -ENOMEM;
1372 }
1373 
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	int err;
1385 
1386 	igb_set_interrupt_capability(adapter, msix);
1387 
1388 	err = igb_alloc_q_vectors(adapter);
1389 	if (err) {
1390 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 		goto err_alloc_q_vectors;
1392 	}
1393 
1394 	igb_cache_ring_register(adapter);
1395 
1396 	return 0;
1397 
1398 err_alloc_q_vectors:
1399 	igb_reset_interrupt_capability(adapter);
1400 	return err;
1401 }
1402 
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 	struct net_device *netdev = adapter->netdev;
1413 	struct pci_dev *pdev = adapter->pdev;
1414 	int err = 0;
1415 
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		err = igb_request_msix(adapter);
1418 		if (!err)
1419 			goto request_done;
1420 		/* fall back to MSI */
1421 		igb_free_all_tx_resources(adapter);
1422 		igb_free_all_rx_resources(adapter);
1423 
1424 		igb_clear_interrupt_scheme(adapter);
1425 		err = igb_init_interrupt_scheme(adapter, false);
1426 		if (err)
1427 			goto request_done;
1428 
1429 		igb_setup_all_tx_resources(adapter);
1430 		igb_setup_all_rx_resources(adapter);
1431 		igb_configure(adapter);
1432 	}
1433 
1434 	igb_assign_vector(adapter->q_vector[0], 0);
1435 
1436 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 				  netdev->name, adapter);
1439 		if (!err)
1440 			goto request_done;
1441 
1442 		/* fall back to legacy interrupts */
1443 		igb_reset_interrupt_capability(adapter);
1444 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 	}
1446 
1447 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 			  netdev->name, adapter);
1449 
1450 	if (err)
1451 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 			err);
1453 
1454 request_done:
1455 	return err;
1456 }
1457 
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 		int vector = 0, i;
1462 
1463 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 
1465 		for (i = 0; i < adapter->num_q_vectors; i++)
1466 			free_irq(adapter->msix_entries[vector++].vector,
1467 				 adapter->q_vector[i]);
1468 	} else {
1469 		free_irq(adapter->pdev->irq, adapter);
1470 	}
1471 }
1472 
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 
1481 	/* we need to be careful when disabling interrupts.  The VFs are also
1482 	 * mapped into these registers and so clearing the bits can cause
1483 	 * issues on the VF drivers so we only need to clear what we set
1484 	 */
1485 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 		u32 regval = rd32(E1000_EIAM);
1487 
1488 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 		regval = rd32(E1000_EIAC);
1491 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 	}
1493 
1494 	wr32(E1000_IAM, 0);
1495 	wr32(E1000_IMC, ~0);
1496 	wrfl();
1497 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 		int i;
1499 
1500 		for (i = 0; i < adapter->num_q_vectors; i++)
1501 			synchronize_irq(adapter->msix_entries[i].vector);
1502 	} else {
1503 		synchronize_irq(adapter->pdev->irq);
1504 	}
1505 }
1506 
1507 /**
1508  *  igb_irq_enable - Enable default interrupt generation settings
1509  *  @adapter: board private structure
1510  **/
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513 	struct e1000_hw *hw = &adapter->hw;
1514 
1515 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 		u32 regval = rd32(E1000_EIAC);
1518 
1519 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 		regval = rd32(E1000_EIAM);
1521 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 		if (adapter->vfs_allocated_count) {
1524 			wr32(E1000_MBVFIMR, 0xFF);
1525 			ims |= E1000_IMS_VMMB;
1526 		}
1527 		wr32(E1000_IMS, ims);
1528 	} else {
1529 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 				E1000_IMS_DRSTA);
1533 	}
1534 }
1535 
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	u16 pf_id = adapter->vfs_allocated_count;
1540 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 	u16 old_vid = adapter->mng_vlan_id;
1542 
1543 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 		/* add VID to filter table */
1545 		igb_vfta_set(hw, vid, pf_id, true, true);
1546 		adapter->mng_vlan_id = vid;
1547 	} else {
1548 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 	}
1550 
1551 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 	    (vid != old_vid) &&
1553 	    !test_bit(old_vid, adapter->active_vlans)) {
1554 		/* remove VID from filter table */
1555 		igb_vfta_set(hw, vid, pf_id, false, true);
1556 	}
1557 }
1558 
1559 /**
1560  *  igb_release_hw_control - release control of the h/w to f/w
1561  *  @adapter: address of board private structure
1562  *
1563  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564  *  For ASF and Pass Through versions of f/w this means that the
1565  *  driver is no longer loaded.
1566  **/
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569 	struct e1000_hw *hw = &adapter->hw;
1570 	u32 ctrl_ext;
1571 
1572 	/* Let firmware take over control of h/w */
1573 	ctrl_ext = rd32(E1000_CTRL_EXT);
1574 	wr32(E1000_CTRL_EXT,
1575 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577 
1578 /**
1579  *  igb_get_hw_control - get control of the h/w from f/w
1580  *  @adapter: address of board private structure
1581  *
1582  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583  *  For ASF and Pass Through versions of f/w this means that
1584  *  the driver is loaded.
1585  **/
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588 	struct e1000_hw *hw = &adapter->hw;
1589 	u32 ctrl_ext;
1590 
1591 	/* Let firmware know the driver has taken over */
1592 	ctrl_ext = rd32(E1000_CTRL_EXT);
1593 	wr32(E1000_CTRL_EXT,
1594 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596 
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599 	struct net_device *netdev = adapter->netdev;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 
1602 	WARN_ON(hw->mac.type != e1000_i210);
1603 
1604 	if (enable)
1605 		adapter->flags |= IGB_FLAG_FQTSS;
1606 	else
1607 		adapter->flags &= ~IGB_FLAG_FQTSS;
1608 
1609 	if (netif_running(netdev))
1610 		schedule_work(&adapter->reset_task);
1611 }
1612 
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617 
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 				   enum tx_queue_prio prio)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 4);
1625 
1626 	val = rd32(E1000_I210_TXDCTL(queue));
1627 
1628 	if (prio == TX_QUEUE_PRIO_HIGH)
1629 		val |= E1000_TXDCTL_PRIORITY;
1630 	else
1631 		val &= ~E1000_TXDCTL_PRIORITY;
1632 
1633 	wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635 
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638 	u32 val;
1639 
1640 	WARN_ON(hw->mac.type != e1000_i210);
1641 	WARN_ON(queue < 0 || queue > 1);
1642 
1643 	val = rd32(E1000_I210_TQAVCC(queue));
1644 
1645 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 		val |= E1000_TQAVCC_QUEUEMODE;
1647 	else
1648 		val &= ~E1000_TQAVCC_QUEUEMODE;
1649 
1650 	wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652 
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; i < adapter->num_tx_queues; i++) {
1658 		if (adapter->tx_ring[i]->cbs_enable)
1659 			return true;
1660 	}
1661 
1662 	return false;
1663 }
1664 
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < adapter->num_tx_queues; i++) {
1670 		if (adapter->tx_ring[i]->launchtime_enable)
1671 			return true;
1672 	}
1673 
1674 	return false;
1675 }
1676 
1677 /**
1678  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679  *  @adapter: pointer to adapter struct
1680  *  @queue: queue number
1681  *
1682  *  Configure CBS and Launchtime for a given hardware queue.
1683  *  Parameters are retrieved from the correct Tx ring, so
1684  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1685  *  for setting those correctly prior to this function being called.
1686  **/
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	struct igb_ring *ring;
1692 	u32 tqavcc, tqavctrl;
1693 	u16 value;
1694 
1695 	WARN_ON(hw->mac.type != e1000_i210);
1696 	WARN_ON(queue < 0 || queue > 1);
1697 	ring = adapter->tx_ring[queue];
1698 
1699 	/* If any of the Qav features is enabled, configure queues as SR and
1700 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 	 * as SP.
1702 	 */
1703 	if (ring->cbs_enable || ring->launchtime_enable) {
1704 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 	} else {
1707 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 	}
1710 
1711 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712 	if (ring->cbs_enable || queue == 0) {
1713 		/* i210 does not allow the queue 0 to be in the Strict
1714 		 * Priority mode while the Qav mode is enabled, so,
1715 		 * instead of disabling strict priority mode, we give
1716 		 * queue 0 the maximum of credits possible.
1717 		 *
1718 		 * See section 8.12.19 of the i210 datasheet, "Note:
1719 		 * Queue0 QueueMode must be set to 1b when
1720 		 * TransmitMode is set to Qav."
1721 		 */
1722 		if (queue == 0 && !ring->cbs_enable) {
1723 			/* max "linkspeed" idleslope in kbps */
1724 			ring->idleslope = 1000000;
1725 			ring->hicredit = ETH_FRAME_LEN;
1726 		}
1727 
1728 		/* Always set data transfer arbitration to credit-based
1729 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 		 * the queues.
1731 		 */
1732 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735 
1736 		/* According to i210 datasheet section 7.2.7.7, we should set
1737 		 * the 'idleSlope' field from TQAVCC register following the
1738 		 * equation:
1739 		 *
1740 		 * For 100 Mbps link speed:
1741 		 *
1742 		 *     value = BW * 0x7735 * 0.2                          (E1)
1743 		 *
1744 		 * For 1000Mbps link speed:
1745 		 *
1746 		 *     value = BW * 0x7735 * 2                            (E2)
1747 		 *
1748 		 * E1 and E2 can be merged into one equation as shown below.
1749 		 * Note that 'link-speed' is in Mbps.
1750 		 *
1751 		 *     value = BW * 0x7735 * 2 * link-speed
1752 		 *                           --------------               (E3)
1753 		 *                                1000
1754 		 *
1755 		 * 'BW' is the percentage bandwidth out of full link speed
1756 		 * which can be found with the following equation. Note that
1757 		 * idleSlope here is the parameter from this function which
1758 		 * is in kbps.
1759 		 *
1760 		 *     BW =     idleSlope
1761 		 *          -----------------                             (E4)
1762 		 *          link-speed * 1000
1763 		 *
1764 		 * That said, we can come up with a generic equation to
1765 		 * calculate the value we should set it TQAVCC register by
1766 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 		 *
1768 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769 		 *         -----------------            --------------    (E5)
1770 		 *         link-speed * 1000                 1000
1771 		 *
1772 		 * 'link-speed' is present in both sides of the fraction so
1773 		 * it is canceled out. The final equation is the following:
1774 		 *
1775 		 *     value = idleSlope * 61034
1776 		 *             -----------------                          (E6)
1777 		 *                  1000000
1778 		 *
1779 		 * NOTE: For i210, given the above, we can see that idleslope
1780 		 *       is represented in 16.38431 kbps units by the value at
1781 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782 		 *       the granularity for idleslope increments.
1783 		 *       For instance, if you want to configure a 2576kbps
1784 		 *       idleslope, the value to be written on the register
1785 		 *       would have to be 157.23. If rounded down, you end
1786 		 *       up with less bandwidth available than originally
1787 		 *       required (~2572 kbps). If rounded up, you end up
1788 		 *       with a higher bandwidth (~2589 kbps). Below the
1789 		 *       approach we take is to always round up the
1790 		 *       calculated value, so the resulting bandwidth might
1791 		 *       be slightly higher for some configurations.
1792 		 */
1793 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794 
1795 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 		tqavcc |= value;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		wr32(E1000_I210_TQAVHC(queue),
1801 		     0x80000000 + ring->hicredit * 0x7735);
1802 	} else {
1803 
1804 		/* Set idleSlope to zero. */
1805 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808 
1809 		/* Set hiCredit to zero. */
1810 		wr32(E1000_I210_TQAVHC(queue), 0);
1811 
1812 		/* If CBS is not enabled for any queues anymore, then return to
1813 		 * the default state of Data Transmission Arbitration on
1814 		 * TQAVCTRL.
1815 		 */
1816 		if (!is_any_cbs_enabled(adapter)) {
1817 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* If LaunchTime is enabled, set DataTranTIM. */
1824 	if (ring->launchtime_enable) {
1825 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 		 * for any of the SR queues, and configure fetchtime delta.
1827 		 * XXX NOTE:
1828 		 *     - LaunchTime will be enabled for all SR queues.
1829 		 *     - A fixed offset can be added relative to the launch
1830 		 *       time of all packets if configured at reg LAUNCH_OS0.
1831 		 *       We are keeping it as 0 for now (default value).
1832 		 */
1833 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 	} else {
1838 		/* If Launchtime is not enabled for any SR queues anymore,
1839 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 		 * effectively disabling Launchtime.
1841 		 */
1842 		if (!is_any_txtime_enabled(adapter)) {
1843 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 		}
1848 	}
1849 
1850 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 	 * CBS are not configurable by software so we don't do any 'controller
1852 	 * configuration' in respect to these parameters.
1853 	 */
1854 
1855 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 		   ring->cbs_enable ? "enabled" : "disabled",
1857 		   ring->launchtime_enable ? "enabled" : "disabled",
1858 		   queue,
1859 		   ring->idleslope, ring->sendslope,
1860 		   ring->hicredit, ring->locredit);
1861 }
1862 
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 				  bool enable)
1865 {
1866 	struct igb_ring *ring;
1867 
1868 	if (queue < 0 || queue > adapter->num_tx_queues)
1869 		return -EINVAL;
1870 
1871 	ring = adapter->tx_ring[queue];
1872 	ring->launchtime_enable = enable;
1873 
1874 	return 0;
1875 }
1876 
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 			       bool enable, int idleslope, int sendslope,
1879 			       int hicredit, int locredit)
1880 {
1881 	struct igb_ring *ring;
1882 
1883 	if (queue < 0 || queue > adapter->num_tx_queues)
1884 		return -EINVAL;
1885 
1886 	ring = adapter->tx_ring[queue];
1887 
1888 	ring->cbs_enable = enable;
1889 	ring->idleslope = idleslope;
1890 	ring->sendslope = sendslope;
1891 	ring->hicredit = hicredit;
1892 	ring->locredit = locredit;
1893 
1894 	return 0;
1895 }
1896 
1897 /**
1898  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899  *  @adapter: pointer to adapter struct
1900  *
1901  *  Configure TQAVCTRL register switching the controller's Tx mode
1902  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903  *  a call to igb_config_tx_modes() per queue so any previously saved
1904  *  Tx parameters are applied.
1905  **/
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 	struct net_device *netdev = adapter->netdev;
1909 	struct e1000_hw *hw = &adapter->hw;
1910 	u32 val;
1911 
1912 	/* Only i210 controller supports changing the transmission mode. */
1913 	if (hw->mac.type != e1000_i210)
1914 		return;
1915 
1916 	if (is_fqtss_enabled(adapter)) {
1917 		int i, max_queue;
1918 
1919 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 		 * so SP queues wait for SR ones.
1922 		 */
1923 		val = rd32(E1000_I210_TQAVCTRL);
1924 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 		wr32(E1000_I210_TQAVCTRL, val);
1927 
1928 		/* Configure Tx and Rx packet buffers sizes as described in
1929 		 * i210 datasheet section 7.2.7.7.
1930 		 */
1931 		val = rd32(E1000_TXPBS);
1932 		val &= ~I210_TXPBSIZE_MASK;
1933 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 		wr32(E1000_TXPBS, val);
1936 
1937 		val = rd32(E1000_RXPBS);
1938 		val &= ~I210_RXPBSIZE_MASK;
1939 		val |= I210_RXPBSIZE_PB_30KB;
1940 		wr32(E1000_RXPBS, val);
1941 
1942 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 		 * register should not exceed the buffer size programmed in
1944 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 		 * 4kB / 64.
1947 		 *
1948 		 * However, when we do so, no frame from queue 2 and 3 are
1949 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 		 */
1953 		val = (4096 - 1) / 64;
1954 		wr32(E1000_I210_DTXMXPKTSZ, val);
1955 
1956 		/* Since FQTSS mode is enabled, apply any CBS configuration
1957 		 * previously set. If no previous CBS configuration has been
1958 		 * done, then the initial configuration is applied, which means
1959 		 * CBS is disabled.
1960 		 */
1961 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963 
1964 		for (i = 0; i < max_queue; i++) {
1965 			igb_config_tx_modes(adapter, i);
1966 		}
1967 	} else {
1968 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971 
1972 		val = rd32(E1000_I210_TQAVCTRL);
1973 		/* According to Section 8.12.21, the other flags we've set when
1974 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 		 * don't set they here.
1976 		 */
1977 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 		wr32(E1000_I210_TQAVCTRL, val);
1979 	}
1980 
1981 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 		   "enabled" : "disabled");
1983 }
1984 
1985 /**
1986  *  igb_configure - configure the hardware for RX and TX
1987  *  @adapter: private board structure
1988  **/
1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 	struct net_device *netdev = adapter->netdev;
1992 	int i;
1993 
1994 	igb_get_hw_control(adapter);
1995 	igb_set_rx_mode(netdev);
1996 	igb_setup_tx_mode(adapter);
1997 
1998 	igb_restore_vlan(adapter);
1999 
2000 	igb_setup_tctl(adapter);
2001 	igb_setup_mrqc(adapter);
2002 	igb_setup_rctl(adapter);
2003 
2004 	igb_nfc_filter_restore(adapter);
2005 	igb_configure_tx(adapter);
2006 	igb_configure_rx(adapter);
2007 
2008 	igb_rx_fifo_flush_82575(&adapter->hw);
2009 
2010 	/* call igb_desc_unused which always leaves
2011 	 * at least 1 descriptor unused to make sure
2012 	 * next_to_use != next_to_clean
2013 	 */
2014 	for (i = 0; i < adapter->num_rx_queues; i++) {
2015 		struct igb_ring *ring = adapter->rx_ring[i];
2016 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 	}
2018 }
2019 
2020 /**
2021  *  igb_power_up_link - Power up the phy/serdes link
2022  *  @adapter: address of board private structure
2023  **/
2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 	igb_reset_phy(&adapter->hw);
2027 
2028 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 		igb_power_up_phy_copper(&adapter->hw);
2030 	else
2031 		igb_power_up_serdes_link_82575(&adapter->hw);
2032 
2033 	igb_setup_link(&adapter->hw);
2034 }
2035 
2036 /**
2037  *  igb_power_down_link - Power down the phy/serdes link
2038  *  @adapter: address of board private structure
2039  */
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 		igb_power_down_phy_copper_82575(&adapter->hw);
2044 	else
2045 		igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047 
2048 /**
2049  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2050  * @adapter: address of the board private structure
2051  **/
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 	struct e1000_hw *hw = &adapter->hw;
2055 	u32 ctrl_ext, connsw;
2056 	bool swap_now = false;
2057 
2058 	ctrl_ext = rd32(E1000_CTRL_EXT);
2059 	connsw = rd32(E1000_CONNSW);
2060 
2061 	/* need to live swap if current media is copper and we have fiber/serdes
2062 	 * to go to.
2063 	 */
2064 
2065 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 		swap_now = true;
2068 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 		   !(connsw & E1000_CONNSW_SERDESD)) {
2070 		/* copper signal takes time to appear */
2071 		if (adapter->copper_tries < 4) {
2072 			adapter->copper_tries++;
2073 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 			wr32(E1000_CONNSW, connsw);
2075 			return;
2076 		} else {
2077 			adapter->copper_tries = 0;
2078 			if ((connsw & E1000_CONNSW_PHYSD) &&
2079 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 				swap_now = true;
2081 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 				wr32(E1000_CONNSW, connsw);
2083 			}
2084 		}
2085 	}
2086 
2087 	if (!swap_now)
2088 		return;
2089 
2090 	switch (hw->phy.media_type) {
2091 	case e1000_media_type_copper:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to fiber/serdes\n");
2094 		ctrl_ext |=
2095 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		adapter->copper_tries = 0;
2098 		break;
2099 	case e1000_media_type_internal_serdes:
2100 	case e1000_media_type_fiber:
2101 		netdev_info(adapter->netdev,
2102 			"MAS: changing media to copper\n");
2103 		ctrl_ext &=
2104 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 		break;
2107 	default:
2108 		/* shouldn't get here during regular operation */
2109 		netdev_err(adapter->netdev,
2110 			"AMS: Invalid media type found, returning\n");
2111 		break;
2112 	}
2113 	wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115 
2116 /**
2117  *  igb_up - Open the interface and prepare it to handle traffic
2118  *  @adapter: board private structure
2119  **/
2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 	struct e1000_hw *hw = &adapter->hw;
2123 	int i;
2124 
2125 	/* hardware has been reset, we need to reload some things */
2126 	igb_configure(adapter);
2127 
2128 	clear_bit(__IGB_DOWN, &adapter->state);
2129 
2130 	for (i = 0; i < adapter->num_q_vectors; i++)
2131 		napi_enable(&(adapter->q_vector[i]->napi));
2132 
2133 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 		igb_configure_msix(adapter);
2135 	else
2136 		igb_assign_vector(adapter->q_vector[0], 0);
2137 
2138 	/* Clear any pending interrupts. */
2139 	rd32(E1000_TSICR);
2140 	rd32(E1000_ICR);
2141 	igb_irq_enable(adapter);
2142 
2143 	/* notify VFs that reset has been completed */
2144 	if (adapter->vfs_allocated_count) {
2145 		u32 reg_data = rd32(E1000_CTRL_EXT);
2146 
2147 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 		wr32(E1000_CTRL_EXT, reg_data);
2149 	}
2150 
2151 	netif_tx_start_all_queues(adapter->netdev);
2152 
2153 	/* start the watchdog. */
2154 	hw->mac.get_link_status = 1;
2155 	schedule_work(&adapter->watchdog_task);
2156 
2157 	if ((adapter->flags & IGB_FLAG_EEE) &&
2158 	    (!hw->dev_spec._82575.eee_disable))
2159 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160 
2161 	return 0;
2162 }
2163 
2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 	struct net_device *netdev = adapter->netdev;
2167 	struct e1000_hw *hw = &adapter->hw;
2168 	u32 tctl, rctl;
2169 	int i;
2170 
2171 	/* signal that we're down so the interrupt handler does not
2172 	 * reschedule our watchdog timer
2173 	 */
2174 	set_bit(__IGB_DOWN, &adapter->state);
2175 
2176 	/* disable receives in the hardware */
2177 	rctl = rd32(E1000_RCTL);
2178 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 	/* flush and sleep below */
2180 
2181 	igb_nfc_filter_exit(adapter);
2182 
2183 	netif_carrier_off(netdev);
2184 	netif_tx_stop_all_queues(netdev);
2185 
2186 	/* disable transmits in the hardware */
2187 	tctl = rd32(E1000_TCTL);
2188 	tctl &= ~E1000_TCTL_EN;
2189 	wr32(E1000_TCTL, tctl);
2190 	/* flush both disables and wait for them to finish */
2191 	wrfl();
2192 	usleep_range(10000, 11000);
2193 
2194 	igb_irq_disable(adapter);
2195 
2196 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197 
2198 	for (i = 0; i < adapter->num_q_vectors; i++) {
2199 		if (adapter->q_vector[i]) {
2200 			napi_synchronize(&adapter->q_vector[i]->napi);
2201 			napi_disable(&adapter->q_vector[i]->napi);
2202 		}
2203 	}
2204 
2205 	del_timer_sync(&adapter->watchdog_timer);
2206 	del_timer_sync(&adapter->phy_info_timer);
2207 
2208 	/* record the stats before reset*/
2209 	spin_lock(&adapter->stats64_lock);
2210 	igb_update_stats(adapter);
2211 	spin_unlock(&adapter->stats64_lock);
2212 
2213 	adapter->link_speed = 0;
2214 	adapter->link_duplex = 0;
2215 
2216 	if (!pci_channel_offline(adapter->pdev))
2217 		igb_reset(adapter);
2218 
2219 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221 
2222 	igb_clean_all_tx_rings(adapter);
2223 	igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225 
2226 	/* since we reset the hardware DCA settings were cleared */
2227 	igb_setup_dca(adapter);
2228 #endif
2229 }
2230 
2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 		usleep_range(1000, 2000);
2235 	igb_down(adapter);
2236 	igb_up(adapter);
2237 	clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239 
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241  *
2242  * @adapter: adapter struct
2243  **/
2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 	u32 connsw = rd32(E1000_CONNSW);
2248 
2249 	/* configure for SerDes media detect */
2250 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2252 		connsw |= E1000_CONNSW_ENRGSRC;
2253 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 		wr32(E1000_CONNSW, connsw);
2255 		wrfl();
2256 	}
2257 }
2258 
2259 void igb_reset(struct igb_adapter *adapter)
2260 {
2261 	struct pci_dev *pdev = adapter->pdev;
2262 	struct e1000_hw *hw = &adapter->hw;
2263 	struct e1000_mac_info *mac = &hw->mac;
2264 	struct e1000_fc_info *fc = &hw->fc;
2265 	u32 pba, hwm;
2266 
2267 	/* Repartition Pba for greater than 9k mtu
2268 	 * To take effect CTRL.RST is required.
2269 	 */
2270 	switch (mac->type) {
2271 	case e1000_i350:
2272 	case e1000_i354:
2273 	case e1000_82580:
2274 		pba = rd32(E1000_RXPBS);
2275 		pba = igb_rxpbs_adjust_82580(pba);
2276 		break;
2277 	case e1000_82576:
2278 		pba = rd32(E1000_RXPBS);
2279 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2280 		break;
2281 	case e1000_82575:
2282 	case e1000_i210:
2283 	case e1000_i211:
2284 	default:
2285 		pba = E1000_PBA_34K;
2286 		break;
2287 	}
2288 
2289 	if (mac->type == e1000_82575) {
2290 		u32 min_rx_space, min_tx_space, needed_tx_space;
2291 
2292 		/* write Rx PBA so that hardware can report correct Tx PBA */
2293 		wr32(E1000_PBA, pba);
2294 
2295 		/* To maintain wire speed transmits, the Tx FIFO should be
2296 		 * large enough to accommodate two full transmit packets,
2297 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2298 		 * the Rx FIFO should be large enough to accommodate at least
2299 		 * one full receive packet and is similarly rounded up and
2300 		 * expressed in KB.
2301 		 */
2302 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2303 
2304 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2305 		 * but don't include Ethernet FCS because hardware appends it.
2306 		 * We only need to round down to the nearest 512 byte block
2307 		 * count since the value we care about is 2 frames, not 1.
2308 		 */
2309 		min_tx_space = adapter->max_frame_size;
2310 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2312 
2313 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2314 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2315 
2316 		/* If current Tx allocation is less than the min Tx FIFO size,
2317 		 * and the min Tx FIFO size is less than the current Rx FIFO
2318 		 * allocation, take space away from current Rx allocation.
2319 		 */
2320 		if (needed_tx_space < pba) {
2321 			pba -= needed_tx_space;
2322 
2323 			/* if short on Rx space, Rx wins and must trump Tx
2324 			 * adjustment
2325 			 */
2326 			if (pba < min_rx_space)
2327 				pba = min_rx_space;
2328 		}
2329 
2330 		/* adjust PBA for jumbo frames */
2331 		wr32(E1000_PBA, pba);
2332 	}
2333 
2334 	/* flow control settings
2335 	 * The high water mark must be low enough to fit one full frame
2336 	 * after transmitting the pause frame.  As such we must have enough
2337 	 * space to allow for us to complete our current transmit and then
2338 	 * receive the frame that is in progress from the link partner.
2339 	 * Set it to:
2340 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2341 	 */
2342 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2343 
2344 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2345 	fc->low_water = fc->high_water - 16;
2346 	fc->pause_time = 0xFFFF;
2347 	fc->send_xon = 1;
2348 	fc->current_mode = fc->requested_mode;
2349 
2350 	/* disable receive for all VFs and wait one second */
2351 	if (adapter->vfs_allocated_count) {
2352 		int i;
2353 
2354 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2356 
2357 		/* ping all the active vfs to let them know we are going down */
2358 		igb_ping_all_vfs(adapter);
2359 
2360 		/* disable transmits and receives */
2361 		wr32(E1000_VFRE, 0);
2362 		wr32(E1000_VFTE, 0);
2363 	}
2364 
2365 	/* Allow time for pending master requests to run */
2366 	hw->mac.ops.reset_hw(hw);
2367 	wr32(E1000_WUC, 0);
2368 
2369 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370 		/* need to resetup here after media swap */
2371 		adapter->ei.get_invariants(hw);
2372 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2373 	}
2374 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2375 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376 		igb_enable_mas(adapter);
2377 	}
2378 	if (hw->mac.ops.init_hw(hw))
2379 		dev_err(&pdev->dev, "Hardware Error\n");
2380 
2381 	/* RAR registers were cleared during init_hw, clear mac table */
2382 	igb_flush_mac_table(adapter);
2383 	__dev_uc_unsync(adapter->netdev, NULL);
2384 
2385 	/* Recover default RAR entry */
2386 	igb_set_default_mac_filter(adapter);
2387 
2388 	/* Flow control settings reset on hardware reset, so guarantee flow
2389 	 * control is off when forcing speed.
2390 	 */
2391 	if (!hw->mac.autoneg)
2392 		igb_force_mac_fc(hw);
2393 
2394 	igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396 	/* Re-initialize the thermal sensor on i350 devices. */
2397 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399 			/* If present, re-initialize the external thermal sensor
2400 			 * interface.
2401 			 */
2402 			if (adapter->ets)
2403 				mac->ops.init_thermal_sensor_thresh(hw);
2404 		}
2405 	}
2406 #endif
2407 	/* Re-establish EEE setting */
2408 	if (hw->phy.media_type == e1000_media_type_copper) {
2409 		switch (mac->type) {
2410 		case e1000_i350:
2411 		case e1000_i210:
2412 		case e1000_i211:
2413 			igb_set_eee_i350(hw, true, true);
2414 			break;
2415 		case e1000_i354:
2416 			igb_set_eee_i354(hw, true, true);
2417 			break;
2418 		default:
2419 			break;
2420 		}
2421 	}
2422 	if (!netif_running(adapter->netdev))
2423 		igb_power_down_link(adapter);
2424 
2425 	igb_update_mng_vlan(adapter);
2426 
2427 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2429 
2430 	/* Re-enable PTP, where applicable. */
2431 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432 		igb_ptp_reset(adapter);
2433 
2434 	igb_get_phy_info(hw);
2435 }
2436 
2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438 	netdev_features_t features)
2439 {
2440 	/* Since there is no support for separate Rx/Tx vlan accel
2441 	 * enable/disable make sure Tx flag is always in same state as Rx.
2442 	 */
2443 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2445 	else
2446 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2447 
2448 	return features;
2449 }
2450 
2451 static int igb_set_features(struct net_device *netdev,
2452 	netdev_features_t features)
2453 {
2454 	netdev_features_t changed = netdev->features ^ features;
2455 	struct igb_adapter *adapter = netdev_priv(netdev);
2456 
2457 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458 		igb_vlan_mode(netdev, features);
2459 
2460 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461 		return 0;
2462 
2463 	if (!(features & NETIF_F_NTUPLE)) {
2464 		struct hlist_node *node2;
2465 		struct igb_nfc_filter *rule;
2466 
2467 		spin_lock(&adapter->nfc_lock);
2468 		hlist_for_each_entry_safe(rule, node2,
2469 					  &adapter->nfc_filter_list, nfc_node) {
2470 			igb_erase_filter(adapter, rule);
2471 			hlist_del(&rule->nfc_node);
2472 			kfree(rule);
2473 		}
2474 		spin_unlock(&adapter->nfc_lock);
2475 		adapter->nfc_filter_count = 0;
2476 	}
2477 
2478 	netdev->features = features;
2479 
2480 	if (netif_running(netdev))
2481 		igb_reinit_locked(adapter);
2482 	else
2483 		igb_reset(adapter);
2484 
2485 	return 1;
2486 }
2487 
2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489 			   struct net_device *dev,
2490 			   const unsigned char *addr, u16 vid,
2491 			   u16 flags,
2492 			   struct netlink_ext_ack *extack)
2493 {
2494 	/* guarantee we can provide a unique filter for the unicast address */
2495 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2496 		struct igb_adapter *adapter = netdev_priv(dev);
2497 		int vfn = adapter->vfs_allocated_count;
2498 
2499 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2500 			return -ENOMEM;
2501 	}
2502 
2503 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2504 }
2505 
2506 #define IGB_MAX_MAC_HDR_LEN	127
2507 #define IGB_MAX_NETWORK_HDR_LEN	511
2508 
2509 static netdev_features_t
2510 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2511 		   netdev_features_t features)
2512 {
2513 	unsigned int network_hdr_len, mac_hdr_len;
2514 
2515 	/* Make certain the headers can be described by a context descriptor */
2516 	mac_hdr_len = skb_network_header(skb) - skb->data;
2517 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2518 		return features & ~(NETIF_F_HW_CSUM |
2519 				    NETIF_F_SCTP_CRC |
2520 				    NETIF_F_GSO_UDP_L4 |
2521 				    NETIF_F_HW_VLAN_CTAG_TX |
2522 				    NETIF_F_TSO |
2523 				    NETIF_F_TSO6);
2524 
2525 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2527 		return features & ~(NETIF_F_HW_CSUM |
2528 				    NETIF_F_SCTP_CRC |
2529 				    NETIF_F_GSO_UDP_L4 |
2530 				    NETIF_F_TSO |
2531 				    NETIF_F_TSO6);
2532 
2533 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2534 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2535 	 */
2536 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2537 		features &= ~NETIF_F_TSO;
2538 
2539 	return features;
2540 }
2541 
2542 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2543 {
2544 	if (!is_fqtss_enabled(adapter)) {
2545 		enable_fqtss(adapter, true);
2546 		return;
2547 	}
2548 
2549 	igb_config_tx_modes(adapter, queue);
2550 
2551 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2552 		enable_fqtss(adapter, false);
2553 }
2554 
2555 static int igb_offload_cbs(struct igb_adapter *adapter,
2556 			   struct tc_cbs_qopt_offload *qopt)
2557 {
2558 	struct e1000_hw *hw = &adapter->hw;
2559 	int err;
2560 
2561 	/* CBS offloading is only supported by i210 controller. */
2562 	if (hw->mac.type != e1000_i210)
2563 		return -EOPNOTSUPP;
2564 
2565 	/* CBS offloading is only supported by queue 0 and queue 1. */
2566 	if (qopt->queue < 0 || qopt->queue > 1)
2567 		return -EINVAL;
2568 
2569 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2570 				  qopt->idleslope, qopt->sendslope,
2571 				  qopt->hicredit, qopt->locredit);
2572 	if (err)
2573 		return err;
2574 
2575 	igb_offload_apply(adapter, qopt->queue);
2576 
2577 	return 0;
2578 }
2579 
2580 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2581 #define VLAN_PRIO_FULL_MASK (0x07)
2582 
2583 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2584 				struct flow_cls_offload *f,
2585 				int traffic_class,
2586 				struct igb_nfc_filter *input)
2587 {
2588 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2589 	struct flow_dissector *dissector = rule->match.dissector;
2590 	struct netlink_ext_ack *extack = f->common.extack;
2591 
2592 	if (dissector->used_keys &
2593 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2594 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2595 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2596 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2597 		NL_SET_ERR_MSG_MOD(extack,
2598 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2599 		return -EOPNOTSUPP;
2600 	}
2601 
2602 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2603 		struct flow_match_eth_addrs match;
2604 
2605 		flow_rule_match_eth_addrs(rule, &match);
2606 		if (!is_zero_ether_addr(match.mask->dst)) {
2607 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2608 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2609 				return -EINVAL;
2610 			}
2611 
2612 			input->filter.match_flags |=
2613 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2615 		}
2616 
2617 		if (!is_zero_ether_addr(match.mask->src)) {
2618 			if (!is_broadcast_ether_addr(match.mask->src)) {
2619 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2620 				return -EINVAL;
2621 			}
2622 
2623 			input->filter.match_flags |=
2624 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 			ether_addr_copy(input->filter.src_addr, match.key->src);
2626 		}
2627 	}
2628 
2629 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2630 		struct flow_match_basic match;
2631 
2632 		flow_rule_match_basic(rule, &match);
2633 		if (match.mask->n_proto) {
2634 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2635 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2636 				return -EINVAL;
2637 			}
2638 
2639 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2640 			input->filter.etype = match.key->n_proto;
2641 		}
2642 	}
2643 
2644 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2645 		struct flow_match_vlan match;
2646 
2647 		flow_rule_match_vlan(rule, &match);
2648 		if (match.mask->vlan_priority) {
2649 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2650 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2651 				return -EINVAL;
2652 			}
2653 
2654 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2655 			input->filter.vlan_tci =
2656 				(__force __be16)match.key->vlan_priority;
2657 		}
2658 	}
2659 
2660 	input->action = traffic_class;
2661 	input->cookie = f->cookie;
2662 
2663 	return 0;
2664 }
2665 
2666 static int igb_configure_clsflower(struct igb_adapter *adapter,
2667 				   struct flow_cls_offload *cls_flower)
2668 {
2669 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2670 	struct igb_nfc_filter *filter, *f;
2671 	int err, tc;
2672 
2673 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2674 	if (tc < 0) {
2675 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2676 		return -EINVAL;
2677 	}
2678 
2679 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2680 	if (!filter)
2681 		return -ENOMEM;
2682 
2683 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2684 	if (err < 0)
2685 		goto err_parse;
2686 
2687 	spin_lock(&adapter->nfc_lock);
2688 
2689 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2690 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2691 			err = -EEXIST;
2692 			NL_SET_ERR_MSG_MOD(extack,
2693 					   "This filter is already set in ethtool");
2694 			goto err_locked;
2695 		}
2696 	}
2697 
2698 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2699 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2700 			err = -EEXIST;
2701 			NL_SET_ERR_MSG_MOD(extack,
2702 					   "This filter is already set in cls_flower");
2703 			goto err_locked;
2704 		}
2705 	}
2706 
2707 	err = igb_add_filter(adapter, filter);
2708 	if (err < 0) {
2709 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2710 		goto err_locked;
2711 	}
2712 
2713 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2714 
2715 	spin_unlock(&adapter->nfc_lock);
2716 
2717 	return 0;
2718 
2719 err_locked:
2720 	spin_unlock(&adapter->nfc_lock);
2721 
2722 err_parse:
2723 	kfree(filter);
2724 
2725 	return err;
2726 }
2727 
2728 static int igb_delete_clsflower(struct igb_adapter *adapter,
2729 				struct flow_cls_offload *cls_flower)
2730 {
2731 	struct igb_nfc_filter *filter;
2732 	int err;
2733 
2734 	spin_lock(&adapter->nfc_lock);
2735 
2736 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2737 		if (filter->cookie == cls_flower->cookie)
2738 			break;
2739 
2740 	if (!filter) {
2741 		err = -ENOENT;
2742 		goto out;
2743 	}
2744 
2745 	err = igb_erase_filter(adapter, filter);
2746 	if (err < 0)
2747 		goto out;
2748 
2749 	hlist_del(&filter->nfc_node);
2750 	kfree(filter);
2751 
2752 out:
2753 	spin_unlock(&adapter->nfc_lock);
2754 
2755 	return err;
2756 }
2757 
2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2759 				   struct flow_cls_offload *cls_flower)
2760 {
2761 	switch (cls_flower->command) {
2762 	case FLOW_CLS_REPLACE:
2763 		return igb_configure_clsflower(adapter, cls_flower);
2764 	case FLOW_CLS_DESTROY:
2765 		return igb_delete_clsflower(adapter, cls_flower);
2766 	case FLOW_CLS_STATS:
2767 		return -EOPNOTSUPP;
2768 	default:
2769 		return -EOPNOTSUPP;
2770 	}
2771 }
2772 
2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2774 				 void *cb_priv)
2775 {
2776 	struct igb_adapter *adapter = cb_priv;
2777 
2778 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2779 		return -EOPNOTSUPP;
2780 
2781 	switch (type) {
2782 	case TC_SETUP_CLSFLOWER:
2783 		return igb_setup_tc_cls_flower(adapter, type_data);
2784 
2785 	default:
2786 		return -EOPNOTSUPP;
2787 	}
2788 }
2789 
2790 static int igb_offload_txtime(struct igb_adapter *adapter,
2791 			      struct tc_etf_qopt_offload *qopt)
2792 {
2793 	struct e1000_hw *hw = &adapter->hw;
2794 	int err;
2795 
2796 	/* Launchtime offloading is only supported by i210 controller. */
2797 	if (hw->mac.type != e1000_i210)
2798 		return -EOPNOTSUPP;
2799 
2800 	/* Launchtime offloading is only supported by queues 0 and 1. */
2801 	if (qopt->queue < 0 || qopt->queue > 1)
2802 		return -EINVAL;
2803 
2804 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2805 	if (err)
2806 		return err;
2807 
2808 	igb_offload_apply(adapter, qopt->queue);
2809 
2810 	return 0;
2811 }
2812 
2813 static int igb_tc_query_caps(struct igb_adapter *adapter,
2814 			     struct tc_query_caps_base *base)
2815 {
2816 	switch (base->type) {
2817 	case TC_SETUP_QDISC_TAPRIO: {
2818 		struct tc_taprio_caps *caps = base->caps;
2819 
2820 		caps->broken_mqprio = true;
2821 
2822 		return 0;
2823 	}
2824 	default:
2825 		return -EOPNOTSUPP;
2826 	}
2827 }
2828 
2829 static LIST_HEAD(igb_block_cb_list);
2830 
2831 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2832 			void *type_data)
2833 {
2834 	struct igb_adapter *adapter = netdev_priv(dev);
2835 
2836 	switch (type) {
2837 	case TC_QUERY_CAPS:
2838 		return igb_tc_query_caps(adapter, type_data);
2839 	case TC_SETUP_QDISC_CBS:
2840 		return igb_offload_cbs(adapter, type_data);
2841 	case TC_SETUP_BLOCK:
2842 		return flow_block_cb_setup_simple(type_data,
2843 						  &igb_block_cb_list,
2844 						  igb_setup_tc_block_cb,
2845 						  adapter, adapter, true);
2846 
2847 	case TC_SETUP_QDISC_ETF:
2848 		return igb_offload_txtime(adapter, type_data);
2849 
2850 	default:
2851 		return -EOPNOTSUPP;
2852 	}
2853 }
2854 
2855 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2856 {
2857 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2858 	struct igb_adapter *adapter = netdev_priv(dev);
2859 	struct bpf_prog *prog = bpf->prog, *old_prog;
2860 	bool running = netif_running(dev);
2861 	bool need_reset;
2862 
2863 	/* verify igb ring attributes are sufficient for XDP */
2864 	for (i = 0; i < adapter->num_rx_queues; i++) {
2865 		struct igb_ring *ring = adapter->rx_ring[i];
2866 
2867 		if (frame_size > igb_rx_bufsz(ring)) {
2868 			NL_SET_ERR_MSG_MOD(bpf->extack,
2869 					   "The RX buffer size is too small for the frame size");
2870 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2871 				    igb_rx_bufsz(ring), frame_size);
2872 			return -EINVAL;
2873 		}
2874 	}
2875 
2876 	old_prog = xchg(&adapter->xdp_prog, prog);
2877 	need_reset = (!!prog != !!old_prog);
2878 
2879 	/* device is up and bpf is added/removed, must setup the RX queues */
2880 	if (need_reset && running) {
2881 		igb_close(dev);
2882 	} else {
2883 		for (i = 0; i < adapter->num_rx_queues; i++)
2884 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2885 			    adapter->xdp_prog);
2886 	}
2887 
2888 	if (old_prog)
2889 		bpf_prog_put(old_prog);
2890 
2891 	/* bpf is just replaced, RXQ and MTU are already setup */
2892 	if (!need_reset) {
2893 		return 0;
2894 	} else {
2895 		if (prog)
2896 			xdp_features_set_redirect_target(dev, true);
2897 		else
2898 			xdp_features_clear_redirect_target(dev);
2899 	}
2900 
2901 	if (running)
2902 		igb_open(dev);
2903 
2904 	return 0;
2905 }
2906 
2907 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2908 {
2909 	switch (xdp->command) {
2910 	case XDP_SETUP_PROG:
2911 		return igb_xdp_setup(dev, xdp);
2912 	default:
2913 		return -EINVAL;
2914 	}
2915 }
2916 
2917 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2918 {
2919 	/* Force memory writes to complete before letting h/w know there
2920 	 * are new descriptors to fetch.
2921 	 */
2922 	wmb();
2923 	writel(ring->next_to_use, ring->tail);
2924 }
2925 
2926 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2927 {
2928 	unsigned int r_idx = smp_processor_id();
2929 
2930 	if (r_idx >= adapter->num_tx_queues)
2931 		r_idx = r_idx % adapter->num_tx_queues;
2932 
2933 	return adapter->tx_ring[r_idx];
2934 }
2935 
2936 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2937 {
2938 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2939 	int cpu = smp_processor_id();
2940 	struct igb_ring *tx_ring;
2941 	struct netdev_queue *nq;
2942 	u32 ret;
2943 
2944 	if (unlikely(!xdpf))
2945 		return IGB_XDP_CONSUMED;
2946 
2947 	/* During program transitions its possible adapter->xdp_prog is assigned
2948 	 * but ring has not been configured yet. In this case simply abort xmit.
2949 	 */
2950 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2951 	if (unlikely(!tx_ring))
2952 		return IGB_XDP_CONSUMED;
2953 
2954 	nq = txring_txq(tx_ring);
2955 	__netif_tx_lock(nq, cpu);
2956 	/* Avoid transmit queue timeout since we share it with the slow path */
2957 	txq_trans_cond_update(nq);
2958 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2959 	__netif_tx_unlock(nq);
2960 
2961 	return ret;
2962 }
2963 
2964 static int igb_xdp_xmit(struct net_device *dev, int n,
2965 			struct xdp_frame **frames, u32 flags)
2966 {
2967 	struct igb_adapter *adapter = netdev_priv(dev);
2968 	int cpu = smp_processor_id();
2969 	struct igb_ring *tx_ring;
2970 	struct netdev_queue *nq;
2971 	int nxmit = 0;
2972 	int i;
2973 
2974 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2975 		return -ENETDOWN;
2976 
2977 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2978 		return -EINVAL;
2979 
2980 	/* During program transitions its possible adapter->xdp_prog is assigned
2981 	 * but ring has not been configured yet. In this case simply abort xmit.
2982 	 */
2983 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2984 	if (unlikely(!tx_ring))
2985 		return -ENXIO;
2986 
2987 	nq = txring_txq(tx_ring);
2988 	__netif_tx_lock(nq, cpu);
2989 
2990 	/* Avoid transmit queue timeout since we share it with the slow path */
2991 	txq_trans_cond_update(nq);
2992 
2993 	for (i = 0; i < n; i++) {
2994 		struct xdp_frame *xdpf = frames[i];
2995 		int err;
2996 
2997 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2998 		if (err != IGB_XDP_TX)
2999 			break;
3000 		nxmit++;
3001 	}
3002 
3003 	__netif_tx_unlock(nq);
3004 
3005 	if (unlikely(flags & XDP_XMIT_FLUSH))
3006 		igb_xdp_ring_update_tail(tx_ring);
3007 
3008 	return nxmit;
3009 }
3010 
3011 static const struct net_device_ops igb_netdev_ops = {
3012 	.ndo_open		= igb_open,
3013 	.ndo_stop		= igb_close,
3014 	.ndo_start_xmit		= igb_xmit_frame,
3015 	.ndo_get_stats64	= igb_get_stats64,
3016 	.ndo_set_rx_mode	= igb_set_rx_mode,
3017 	.ndo_set_mac_address	= igb_set_mac,
3018 	.ndo_change_mtu		= igb_change_mtu,
3019 	.ndo_eth_ioctl		= igb_ioctl,
3020 	.ndo_tx_timeout		= igb_tx_timeout,
3021 	.ndo_validate_addr	= eth_validate_addr,
3022 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3023 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3024 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3025 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3026 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3027 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3028 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3029 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3030 	.ndo_fix_features	= igb_fix_features,
3031 	.ndo_set_features	= igb_set_features,
3032 	.ndo_fdb_add		= igb_ndo_fdb_add,
3033 	.ndo_features_check	= igb_features_check,
3034 	.ndo_setup_tc		= igb_setup_tc,
3035 	.ndo_bpf		= igb_xdp,
3036 	.ndo_xdp_xmit		= igb_xdp_xmit,
3037 };
3038 
3039 /**
3040  * igb_set_fw_version - Configure version string for ethtool
3041  * @adapter: adapter struct
3042  **/
3043 void igb_set_fw_version(struct igb_adapter *adapter)
3044 {
3045 	struct e1000_hw *hw = &adapter->hw;
3046 	struct e1000_fw_version fw;
3047 
3048 	igb_get_fw_version(hw, &fw);
3049 
3050 	switch (hw->mac.type) {
3051 	case e1000_i210:
3052 	case e1000_i211:
3053 		if (!(igb_get_flash_presence_i210(hw))) {
3054 			snprintf(adapter->fw_version,
3055 				 sizeof(adapter->fw_version),
3056 				 "%2d.%2d-%d",
3057 				 fw.invm_major, fw.invm_minor,
3058 				 fw.invm_img_type);
3059 			break;
3060 		}
3061 		fallthrough;
3062 	default:
3063 		/* if option is rom valid, display its version too */
3064 		if (fw.or_valid) {
3065 			snprintf(adapter->fw_version,
3066 				 sizeof(adapter->fw_version),
3067 				 "%d.%d, 0x%08x, %d.%d.%d",
3068 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3069 				 fw.or_major, fw.or_build, fw.or_patch);
3070 		/* no option rom */
3071 		} else if (fw.etrack_id != 0X0000) {
3072 			snprintf(adapter->fw_version,
3073 			    sizeof(adapter->fw_version),
3074 			    "%d.%d, 0x%08x",
3075 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3076 		} else {
3077 		snprintf(adapter->fw_version,
3078 		    sizeof(adapter->fw_version),
3079 		    "%d.%d.%d",
3080 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3081 		}
3082 		break;
3083 	}
3084 }
3085 
3086 /**
3087  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3088  *
3089  * @adapter: adapter struct
3090  **/
3091 static void igb_init_mas(struct igb_adapter *adapter)
3092 {
3093 	struct e1000_hw *hw = &adapter->hw;
3094 	u16 eeprom_data;
3095 
3096 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3097 	switch (hw->bus.func) {
3098 	case E1000_FUNC_0:
3099 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3100 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3101 			netdev_info(adapter->netdev,
3102 				"MAS: Enabling Media Autosense for port %d\n",
3103 				hw->bus.func);
3104 		}
3105 		break;
3106 	case E1000_FUNC_1:
3107 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3108 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3109 			netdev_info(adapter->netdev,
3110 				"MAS: Enabling Media Autosense for port %d\n",
3111 				hw->bus.func);
3112 		}
3113 		break;
3114 	case E1000_FUNC_2:
3115 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3116 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3117 			netdev_info(adapter->netdev,
3118 				"MAS: Enabling Media Autosense for port %d\n",
3119 				hw->bus.func);
3120 		}
3121 		break;
3122 	case E1000_FUNC_3:
3123 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3124 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3125 			netdev_info(adapter->netdev,
3126 				"MAS: Enabling Media Autosense for port %d\n",
3127 				hw->bus.func);
3128 		}
3129 		break;
3130 	default:
3131 		/* Shouldn't get here */
3132 		netdev_err(adapter->netdev,
3133 			"MAS: Invalid port configuration, returning\n");
3134 		break;
3135 	}
3136 }
3137 
3138 /**
3139  *  igb_init_i2c - Init I2C interface
3140  *  @adapter: pointer to adapter structure
3141  **/
3142 static s32 igb_init_i2c(struct igb_adapter *adapter)
3143 {
3144 	struct e1000_hw *hw = &adapter->hw;
3145 	s32 status = 0;
3146 	s32 i2cctl;
3147 
3148 	/* I2C interface supported on i350 devices */
3149 	if (adapter->hw.mac.type != e1000_i350)
3150 		return 0;
3151 
3152 	i2cctl = rd32(E1000_I2CPARAMS);
3153 	i2cctl |= E1000_I2CBB_EN
3154 		| E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3155 		| E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3156 	wr32(E1000_I2CPARAMS, i2cctl);
3157 	wrfl();
3158 
3159 	/* Initialize the i2c bus which is controlled by the registers.
3160 	 * This bus will use the i2c_algo_bit structure that implements
3161 	 * the protocol through toggling of the 4 bits in the register.
3162 	 */
3163 	adapter->i2c_adap.owner = THIS_MODULE;
3164 	adapter->i2c_algo = igb_i2c_algo;
3165 	adapter->i2c_algo.data = adapter;
3166 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3167 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3168 	strscpy(adapter->i2c_adap.name, "igb BB",
3169 		sizeof(adapter->i2c_adap.name));
3170 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3171 	return status;
3172 }
3173 
3174 /**
3175  *  igb_probe - Device Initialization Routine
3176  *  @pdev: PCI device information struct
3177  *  @ent: entry in igb_pci_tbl
3178  *
3179  *  Returns 0 on success, negative on failure
3180  *
3181  *  igb_probe initializes an adapter identified by a pci_dev structure.
3182  *  The OS initialization, configuring of the adapter private structure,
3183  *  and a hardware reset occur.
3184  **/
3185 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3186 {
3187 	struct net_device *netdev;
3188 	struct igb_adapter *adapter;
3189 	struct e1000_hw *hw;
3190 	u16 eeprom_data = 0;
3191 	s32 ret_val;
3192 	static int global_quad_port_a; /* global quad port a indication */
3193 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3194 	u8 part_str[E1000_PBANUM_LENGTH];
3195 	int err;
3196 
3197 	/* Catch broken hardware that put the wrong VF device ID in
3198 	 * the PCIe SR-IOV capability.
3199 	 */
3200 	if (pdev->is_virtfn) {
3201 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3202 			pci_name(pdev), pdev->vendor, pdev->device);
3203 		return -EINVAL;
3204 	}
3205 
3206 	err = pci_enable_device_mem(pdev);
3207 	if (err)
3208 		return err;
3209 
3210 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3211 	if (err) {
3212 		dev_err(&pdev->dev,
3213 			"No usable DMA configuration, aborting\n");
3214 		goto err_dma;
3215 	}
3216 
3217 	err = pci_request_mem_regions(pdev, igb_driver_name);
3218 	if (err)
3219 		goto err_pci_reg;
3220 
3221 	pci_set_master(pdev);
3222 	pci_save_state(pdev);
3223 
3224 	err = -ENOMEM;
3225 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3226 				   IGB_MAX_TX_QUEUES);
3227 	if (!netdev)
3228 		goto err_alloc_etherdev;
3229 
3230 	SET_NETDEV_DEV(netdev, &pdev->dev);
3231 
3232 	pci_set_drvdata(pdev, netdev);
3233 	adapter = netdev_priv(netdev);
3234 	adapter->netdev = netdev;
3235 	adapter->pdev = pdev;
3236 	hw = &adapter->hw;
3237 	hw->back = adapter;
3238 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3239 
3240 	err = -EIO;
3241 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3242 	if (!adapter->io_addr)
3243 		goto err_ioremap;
3244 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3245 	hw->hw_addr = adapter->io_addr;
3246 
3247 	netdev->netdev_ops = &igb_netdev_ops;
3248 	igb_set_ethtool_ops(netdev);
3249 	netdev->watchdog_timeo = 5 * HZ;
3250 
3251 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3252 
3253 	netdev->mem_start = pci_resource_start(pdev, 0);
3254 	netdev->mem_end = pci_resource_end(pdev, 0);
3255 
3256 	/* PCI config space info */
3257 	hw->vendor_id = pdev->vendor;
3258 	hw->device_id = pdev->device;
3259 	hw->revision_id = pdev->revision;
3260 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3261 	hw->subsystem_device_id = pdev->subsystem_device;
3262 
3263 	/* Copy the default MAC, PHY and NVM function pointers */
3264 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3265 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3266 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3267 	/* Initialize skew-specific constants */
3268 	err = ei->get_invariants(hw);
3269 	if (err)
3270 		goto err_sw_init;
3271 
3272 	/* setup the private structure */
3273 	err = igb_sw_init(adapter);
3274 	if (err)
3275 		goto err_sw_init;
3276 
3277 	igb_get_bus_info_pcie(hw);
3278 
3279 	hw->phy.autoneg_wait_to_complete = false;
3280 
3281 	/* Copper options */
3282 	if (hw->phy.media_type == e1000_media_type_copper) {
3283 		hw->phy.mdix = AUTO_ALL_MODES;
3284 		hw->phy.disable_polarity_correction = false;
3285 		hw->phy.ms_type = e1000_ms_hw_default;
3286 	}
3287 
3288 	if (igb_check_reset_block(hw))
3289 		dev_info(&pdev->dev,
3290 			"PHY reset is blocked due to SOL/IDER session.\n");
3291 
3292 	/* features is initialized to 0 in allocation, it might have bits
3293 	 * set by igb_sw_init so we should use an or instead of an
3294 	 * assignment.
3295 	 */
3296 	netdev->features |= NETIF_F_SG |
3297 			    NETIF_F_TSO |
3298 			    NETIF_F_TSO6 |
3299 			    NETIF_F_RXHASH |
3300 			    NETIF_F_RXCSUM |
3301 			    NETIF_F_HW_CSUM;
3302 
3303 	if (hw->mac.type >= e1000_82576)
3304 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3305 
3306 	if (hw->mac.type >= e1000_i350)
3307 		netdev->features |= NETIF_F_HW_TC;
3308 
3309 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3310 				  NETIF_F_GSO_GRE_CSUM | \
3311 				  NETIF_F_GSO_IPXIP4 | \
3312 				  NETIF_F_GSO_IPXIP6 | \
3313 				  NETIF_F_GSO_UDP_TUNNEL | \
3314 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3315 
3316 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3317 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3318 
3319 	/* copy netdev features into list of user selectable features */
3320 	netdev->hw_features |= netdev->features |
3321 			       NETIF_F_HW_VLAN_CTAG_RX |
3322 			       NETIF_F_HW_VLAN_CTAG_TX |
3323 			       NETIF_F_RXALL;
3324 
3325 	if (hw->mac.type >= e1000_i350)
3326 		netdev->hw_features |= NETIF_F_NTUPLE;
3327 
3328 	netdev->features |= NETIF_F_HIGHDMA;
3329 
3330 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3331 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3332 	netdev->hw_enc_features |= netdev->vlan_features;
3333 
3334 	/* set this bit last since it cannot be part of vlan_features */
3335 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3336 			    NETIF_F_HW_VLAN_CTAG_RX |
3337 			    NETIF_F_HW_VLAN_CTAG_TX;
3338 
3339 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3340 
3341 	netdev->priv_flags |= IFF_UNICAST_FLT;
3342 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3343 
3344 	/* MTU range: 68 - 9216 */
3345 	netdev->min_mtu = ETH_MIN_MTU;
3346 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3347 
3348 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3349 
3350 	/* before reading the NVM, reset the controller to put the device in a
3351 	 * known good starting state
3352 	 */
3353 	hw->mac.ops.reset_hw(hw);
3354 
3355 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3356 	 * that doesn't contain a checksum
3357 	 */
3358 	switch (hw->mac.type) {
3359 	case e1000_i210:
3360 	case e1000_i211:
3361 		if (igb_get_flash_presence_i210(hw)) {
3362 			if (hw->nvm.ops.validate(hw) < 0) {
3363 				dev_err(&pdev->dev,
3364 					"The NVM Checksum Is Not Valid\n");
3365 				err = -EIO;
3366 				goto err_eeprom;
3367 			}
3368 		}
3369 		break;
3370 	default:
3371 		if (hw->nvm.ops.validate(hw) < 0) {
3372 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3373 			err = -EIO;
3374 			goto err_eeprom;
3375 		}
3376 		break;
3377 	}
3378 
3379 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3380 		/* copy the MAC address out of the NVM */
3381 		if (hw->mac.ops.read_mac_addr(hw))
3382 			dev_err(&pdev->dev, "NVM Read Error\n");
3383 	}
3384 
3385 	eth_hw_addr_set(netdev, hw->mac.addr);
3386 
3387 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3388 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3389 		err = -EIO;
3390 		goto err_eeprom;
3391 	}
3392 
3393 	igb_set_default_mac_filter(adapter);
3394 
3395 	/* get firmware version for ethtool -i */
3396 	igb_set_fw_version(adapter);
3397 
3398 	/* configure RXPBSIZE and TXPBSIZE */
3399 	if (hw->mac.type == e1000_i210) {
3400 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3401 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3402 	}
3403 
3404 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3405 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3406 
3407 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3408 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3409 
3410 	/* Initialize link properties that are user-changeable */
3411 	adapter->fc_autoneg = true;
3412 	hw->mac.autoneg = true;
3413 	hw->phy.autoneg_advertised = 0x2f;
3414 
3415 	hw->fc.requested_mode = e1000_fc_default;
3416 	hw->fc.current_mode = e1000_fc_default;
3417 
3418 	igb_validate_mdi_setting(hw);
3419 
3420 	/* By default, support wake on port A */
3421 	if (hw->bus.func == 0)
3422 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3423 
3424 	/* Check the NVM for wake support on non-port A ports */
3425 	if (hw->mac.type >= e1000_82580)
3426 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3427 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3428 				 &eeprom_data);
3429 	else if (hw->bus.func == 1)
3430 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3431 
3432 	if (eeprom_data & IGB_EEPROM_APME)
3433 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3434 
3435 	/* now that we have the eeprom settings, apply the special cases where
3436 	 * the eeprom may be wrong or the board simply won't support wake on
3437 	 * lan on a particular port
3438 	 */
3439 	switch (pdev->device) {
3440 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3441 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3442 		break;
3443 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3444 	case E1000_DEV_ID_82576_FIBER:
3445 	case E1000_DEV_ID_82576_SERDES:
3446 		/* Wake events only supported on port A for dual fiber
3447 		 * regardless of eeprom setting
3448 		 */
3449 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3450 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3451 		break;
3452 	case E1000_DEV_ID_82576_QUAD_COPPER:
3453 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3454 		/* if quad port adapter, disable WoL on all but port A */
3455 		if (global_quad_port_a != 0)
3456 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3457 		else
3458 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3459 		/* Reset for multiple quad port adapters */
3460 		if (++global_quad_port_a == 4)
3461 			global_quad_port_a = 0;
3462 		break;
3463 	default:
3464 		/* If the device can't wake, don't set software support */
3465 		if (!device_can_wakeup(&adapter->pdev->dev))
3466 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3467 	}
3468 
3469 	/* initialize the wol settings based on the eeprom settings */
3470 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3471 		adapter->wol |= E1000_WUFC_MAG;
3472 
3473 	/* Some vendors want WoL disabled by default, but still supported */
3474 	if ((hw->mac.type == e1000_i350) &&
3475 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3476 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3477 		adapter->wol = 0;
3478 	}
3479 
3480 	/* Some vendors want the ability to Use the EEPROM setting as
3481 	 * enable/disable only, and not for capability
3482 	 */
3483 	if (((hw->mac.type == e1000_i350) ||
3484 	     (hw->mac.type == e1000_i354)) &&
3485 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3486 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3487 		adapter->wol = 0;
3488 	}
3489 	if (hw->mac.type == e1000_i350) {
3490 		if (((pdev->subsystem_device == 0x5001) ||
3491 		     (pdev->subsystem_device == 0x5002)) &&
3492 				(hw->bus.func == 0)) {
3493 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3494 			adapter->wol = 0;
3495 		}
3496 		if (pdev->subsystem_device == 0x1F52)
3497 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3498 	}
3499 
3500 	device_set_wakeup_enable(&adapter->pdev->dev,
3501 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3502 
3503 	/* reset the hardware with the new settings */
3504 	igb_reset(adapter);
3505 
3506 	/* Init the I2C interface */
3507 	err = igb_init_i2c(adapter);
3508 	if (err) {
3509 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3510 		goto err_eeprom;
3511 	}
3512 
3513 	/* let the f/w know that the h/w is now under the control of the
3514 	 * driver.
3515 	 */
3516 	igb_get_hw_control(adapter);
3517 
3518 	strcpy(netdev->name, "eth%d");
3519 	err = register_netdev(netdev);
3520 	if (err)
3521 		goto err_register;
3522 
3523 	/* carrier off reporting is important to ethtool even BEFORE open */
3524 	netif_carrier_off(netdev);
3525 
3526 #ifdef CONFIG_IGB_DCA
3527 	if (dca_add_requester(&pdev->dev) == 0) {
3528 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3529 		dev_info(&pdev->dev, "DCA enabled\n");
3530 		igb_setup_dca(adapter);
3531 	}
3532 
3533 #endif
3534 #ifdef CONFIG_IGB_HWMON
3535 	/* Initialize the thermal sensor on i350 devices. */
3536 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3537 		u16 ets_word;
3538 
3539 		/* Read the NVM to determine if this i350 device supports an
3540 		 * external thermal sensor.
3541 		 */
3542 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3543 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3544 			adapter->ets = true;
3545 		else
3546 			adapter->ets = false;
3547 		if (igb_sysfs_init(adapter))
3548 			dev_err(&pdev->dev,
3549 				"failed to allocate sysfs resources\n");
3550 	} else {
3551 		adapter->ets = false;
3552 	}
3553 #endif
3554 	/* Check if Media Autosense is enabled */
3555 	adapter->ei = *ei;
3556 	if (hw->dev_spec._82575.mas_capable)
3557 		igb_init_mas(adapter);
3558 
3559 	/* do hw tstamp init after resetting */
3560 	igb_ptp_init(adapter);
3561 
3562 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3563 	/* print bus type/speed/width info, not applicable to i354 */
3564 	if (hw->mac.type != e1000_i354) {
3565 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3566 			 netdev->name,
3567 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3568 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3569 			   "unknown"),
3570 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3571 			  "Width x4" :
3572 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3573 			  "Width x2" :
3574 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3575 			  "Width x1" : "unknown"), netdev->dev_addr);
3576 	}
3577 
3578 	if ((hw->mac.type == e1000_82576 &&
3579 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3580 	    (hw->mac.type >= e1000_i210 ||
3581 	     igb_get_flash_presence_i210(hw))) {
3582 		ret_val = igb_read_part_string(hw, part_str,
3583 					       E1000_PBANUM_LENGTH);
3584 	} else {
3585 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3586 	}
3587 
3588 	if (ret_val)
3589 		strcpy(part_str, "Unknown");
3590 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3591 	dev_info(&pdev->dev,
3592 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3593 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3594 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3595 		adapter->num_rx_queues, adapter->num_tx_queues);
3596 	if (hw->phy.media_type == e1000_media_type_copper) {
3597 		switch (hw->mac.type) {
3598 		case e1000_i350:
3599 		case e1000_i210:
3600 		case e1000_i211:
3601 			/* Enable EEE for internal copper PHY devices */
3602 			err = igb_set_eee_i350(hw, true, true);
3603 			if ((!err) &&
3604 			    (!hw->dev_spec._82575.eee_disable)) {
3605 				adapter->eee_advert =
3606 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3607 				adapter->flags |= IGB_FLAG_EEE;
3608 			}
3609 			break;
3610 		case e1000_i354:
3611 			if ((rd32(E1000_CTRL_EXT) &
3612 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3613 				err = igb_set_eee_i354(hw, true, true);
3614 				if ((!err) &&
3615 					(!hw->dev_spec._82575.eee_disable)) {
3616 					adapter->eee_advert =
3617 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3618 					adapter->flags |= IGB_FLAG_EEE;
3619 				}
3620 			}
3621 			break;
3622 		default:
3623 			break;
3624 		}
3625 	}
3626 
3627 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3628 
3629 	pm_runtime_put_noidle(&pdev->dev);
3630 	return 0;
3631 
3632 err_register:
3633 	igb_release_hw_control(adapter);
3634 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3635 err_eeprom:
3636 	if (!igb_check_reset_block(hw))
3637 		igb_reset_phy(hw);
3638 
3639 	if (hw->flash_address)
3640 		iounmap(hw->flash_address);
3641 err_sw_init:
3642 	kfree(adapter->mac_table);
3643 	kfree(adapter->shadow_vfta);
3644 	igb_clear_interrupt_scheme(adapter);
3645 #ifdef CONFIG_PCI_IOV
3646 	igb_disable_sriov(pdev);
3647 #endif
3648 	pci_iounmap(pdev, adapter->io_addr);
3649 err_ioremap:
3650 	free_netdev(netdev);
3651 err_alloc_etherdev:
3652 	pci_release_mem_regions(pdev);
3653 err_pci_reg:
3654 err_dma:
3655 	pci_disable_device(pdev);
3656 	return err;
3657 }
3658 
3659 #ifdef CONFIG_PCI_IOV
3660 static int igb_disable_sriov(struct pci_dev *pdev)
3661 {
3662 	struct net_device *netdev = pci_get_drvdata(pdev);
3663 	struct igb_adapter *adapter = netdev_priv(netdev);
3664 	struct e1000_hw *hw = &adapter->hw;
3665 	unsigned long flags;
3666 
3667 	/* reclaim resources allocated to VFs */
3668 	if (adapter->vf_data) {
3669 		/* disable iov and allow time for transactions to clear */
3670 		if (pci_vfs_assigned(pdev)) {
3671 			dev_warn(&pdev->dev,
3672 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3673 			return -EPERM;
3674 		} else {
3675 			pci_disable_sriov(pdev);
3676 			msleep(500);
3677 		}
3678 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3679 		kfree(adapter->vf_mac_list);
3680 		adapter->vf_mac_list = NULL;
3681 		kfree(adapter->vf_data);
3682 		adapter->vf_data = NULL;
3683 		adapter->vfs_allocated_count = 0;
3684 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3685 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3686 		wrfl();
3687 		msleep(100);
3688 		dev_info(&pdev->dev, "IOV Disabled\n");
3689 
3690 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3691 		adapter->flags |= IGB_FLAG_DMAC;
3692 	}
3693 
3694 	return 0;
3695 }
3696 
3697 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3698 {
3699 	struct net_device *netdev = pci_get_drvdata(pdev);
3700 	struct igb_adapter *adapter = netdev_priv(netdev);
3701 	int old_vfs = pci_num_vf(pdev);
3702 	struct vf_mac_filter *mac_list;
3703 	int err = 0;
3704 	int num_vf_mac_filters, i;
3705 
3706 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3707 		err = -EPERM;
3708 		goto out;
3709 	}
3710 	if (!num_vfs)
3711 		goto out;
3712 
3713 	if (old_vfs) {
3714 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3715 			 old_vfs, max_vfs);
3716 		adapter->vfs_allocated_count = old_vfs;
3717 	} else
3718 		adapter->vfs_allocated_count = num_vfs;
3719 
3720 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3721 				sizeof(struct vf_data_storage), GFP_KERNEL);
3722 
3723 	/* if allocation failed then we do not support SR-IOV */
3724 	if (!adapter->vf_data) {
3725 		adapter->vfs_allocated_count = 0;
3726 		err = -ENOMEM;
3727 		goto out;
3728 	}
3729 
3730 	/* Due to the limited number of RAR entries calculate potential
3731 	 * number of MAC filters available for the VFs. Reserve entries
3732 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3733 	 * for each VF for VF MAC.
3734 	 */
3735 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3736 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3737 			      adapter->vfs_allocated_count);
3738 
3739 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3740 				       sizeof(struct vf_mac_filter),
3741 				       GFP_KERNEL);
3742 
3743 	mac_list = adapter->vf_mac_list;
3744 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3745 
3746 	if (adapter->vf_mac_list) {
3747 		/* Initialize list of VF MAC filters */
3748 		for (i = 0; i < num_vf_mac_filters; i++) {
3749 			mac_list->vf = -1;
3750 			mac_list->free = true;
3751 			list_add(&mac_list->l, &adapter->vf_macs.l);
3752 			mac_list++;
3753 		}
3754 	} else {
3755 		/* If we could not allocate memory for the VF MAC filters
3756 		 * we can continue without this feature but warn user.
3757 		 */
3758 		dev_err(&pdev->dev,
3759 			"Unable to allocate memory for VF MAC filter list\n");
3760 	}
3761 
3762 	/* only call pci_enable_sriov() if no VFs are allocated already */
3763 	if (!old_vfs) {
3764 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3765 		if (err)
3766 			goto err_out;
3767 	}
3768 	dev_info(&pdev->dev, "%d VFs allocated\n",
3769 		 adapter->vfs_allocated_count);
3770 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3771 		igb_vf_configure(adapter, i);
3772 
3773 	/* DMA Coalescing is not supported in IOV mode. */
3774 	adapter->flags &= ~IGB_FLAG_DMAC;
3775 	goto out;
3776 
3777 err_out:
3778 	kfree(adapter->vf_mac_list);
3779 	adapter->vf_mac_list = NULL;
3780 	kfree(adapter->vf_data);
3781 	adapter->vf_data = NULL;
3782 	adapter->vfs_allocated_count = 0;
3783 out:
3784 	return err;
3785 }
3786 
3787 #endif
3788 /**
3789  *  igb_remove_i2c - Cleanup  I2C interface
3790  *  @adapter: pointer to adapter structure
3791  **/
3792 static void igb_remove_i2c(struct igb_adapter *adapter)
3793 {
3794 	/* free the adapter bus structure */
3795 	i2c_del_adapter(&adapter->i2c_adap);
3796 }
3797 
3798 /**
3799  *  igb_remove - Device Removal Routine
3800  *  @pdev: PCI device information struct
3801  *
3802  *  igb_remove is called by the PCI subsystem to alert the driver
3803  *  that it should release a PCI device.  The could be caused by a
3804  *  Hot-Plug event, or because the driver is going to be removed from
3805  *  memory.
3806  **/
3807 static void igb_remove(struct pci_dev *pdev)
3808 {
3809 	struct net_device *netdev = pci_get_drvdata(pdev);
3810 	struct igb_adapter *adapter = netdev_priv(netdev);
3811 	struct e1000_hw *hw = &adapter->hw;
3812 
3813 	pm_runtime_get_noresume(&pdev->dev);
3814 #ifdef CONFIG_IGB_HWMON
3815 	igb_sysfs_exit(adapter);
3816 #endif
3817 	igb_remove_i2c(adapter);
3818 	igb_ptp_stop(adapter);
3819 	/* The watchdog timer may be rescheduled, so explicitly
3820 	 * disable watchdog from being rescheduled.
3821 	 */
3822 	set_bit(__IGB_DOWN, &adapter->state);
3823 	del_timer_sync(&adapter->watchdog_timer);
3824 	del_timer_sync(&adapter->phy_info_timer);
3825 
3826 	cancel_work_sync(&adapter->reset_task);
3827 	cancel_work_sync(&adapter->watchdog_task);
3828 
3829 #ifdef CONFIG_IGB_DCA
3830 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3831 		dev_info(&pdev->dev, "DCA disabled\n");
3832 		dca_remove_requester(&pdev->dev);
3833 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3834 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3835 	}
3836 #endif
3837 
3838 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3839 	 * would have already happened in close and is redundant.
3840 	 */
3841 	igb_release_hw_control(adapter);
3842 
3843 #ifdef CONFIG_PCI_IOV
3844 	rtnl_lock();
3845 	igb_disable_sriov(pdev);
3846 	rtnl_unlock();
3847 #endif
3848 
3849 	unregister_netdev(netdev);
3850 
3851 	igb_clear_interrupt_scheme(adapter);
3852 
3853 	pci_iounmap(pdev, adapter->io_addr);
3854 	if (hw->flash_address)
3855 		iounmap(hw->flash_address);
3856 	pci_release_mem_regions(pdev);
3857 
3858 	kfree(adapter->mac_table);
3859 	kfree(adapter->shadow_vfta);
3860 	free_netdev(netdev);
3861 
3862 	pci_disable_device(pdev);
3863 }
3864 
3865 /**
3866  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3867  *  @adapter: board private structure to initialize
3868  *
3869  *  This function initializes the vf specific data storage and then attempts to
3870  *  allocate the VFs.  The reason for ordering it this way is because it is much
3871  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3872  *  the memory for the VFs.
3873  **/
3874 static void igb_probe_vfs(struct igb_adapter *adapter)
3875 {
3876 #ifdef CONFIG_PCI_IOV
3877 	struct pci_dev *pdev = adapter->pdev;
3878 	struct e1000_hw *hw = &adapter->hw;
3879 
3880 	/* Virtualization features not supported on i210 family. */
3881 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3882 		return;
3883 
3884 	/* Of the below we really only want the effect of getting
3885 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3886 	 * igb_enable_sriov() has no effect.
3887 	 */
3888 	igb_set_interrupt_capability(adapter, true);
3889 	igb_reset_interrupt_capability(adapter);
3890 
3891 	pci_sriov_set_totalvfs(pdev, 7);
3892 	igb_enable_sriov(pdev, max_vfs);
3893 
3894 #endif /* CONFIG_PCI_IOV */
3895 }
3896 
3897 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3898 {
3899 	struct e1000_hw *hw = &adapter->hw;
3900 	unsigned int max_rss_queues;
3901 
3902 	/* Determine the maximum number of RSS queues supported. */
3903 	switch (hw->mac.type) {
3904 	case e1000_i211:
3905 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3906 		break;
3907 	case e1000_82575:
3908 	case e1000_i210:
3909 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3910 		break;
3911 	case e1000_i350:
3912 		/* I350 cannot do RSS and SR-IOV at the same time */
3913 		if (!!adapter->vfs_allocated_count) {
3914 			max_rss_queues = 1;
3915 			break;
3916 		}
3917 		fallthrough;
3918 	case e1000_82576:
3919 		if (!!adapter->vfs_allocated_count) {
3920 			max_rss_queues = 2;
3921 			break;
3922 		}
3923 		fallthrough;
3924 	case e1000_82580:
3925 	case e1000_i354:
3926 	default:
3927 		max_rss_queues = IGB_MAX_RX_QUEUES;
3928 		break;
3929 	}
3930 
3931 	return max_rss_queues;
3932 }
3933 
3934 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3935 {
3936 	u32 max_rss_queues;
3937 
3938 	max_rss_queues = igb_get_max_rss_queues(adapter);
3939 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3940 
3941 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3942 }
3943 
3944 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3945 			      const u32 max_rss_queues)
3946 {
3947 	struct e1000_hw *hw = &adapter->hw;
3948 
3949 	/* Determine if we need to pair queues. */
3950 	switch (hw->mac.type) {
3951 	case e1000_82575:
3952 	case e1000_i211:
3953 		/* Device supports enough interrupts without queue pairing. */
3954 		break;
3955 	case e1000_82576:
3956 	case e1000_82580:
3957 	case e1000_i350:
3958 	case e1000_i354:
3959 	case e1000_i210:
3960 	default:
3961 		/* If rss_queues > half of max_rss_queues, pair the queues in
3962 		 * order to conserve interrupts due to limited supply.
3963 		 */
3964 		if (adapter->rss_queues > (max_rss_queues / 2))
3965 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3966 		else
3967 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3968 		break;
3969 	}
3970 }
3971 
3972 /**
3973  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3974  *  @adapter: board private structure to initialize
3975  *
3976  *  igb_sw_init initializes the Adapter private data structure.
3977  *  Fields are initialized based on PCI device information and
3978  *  OS network device settings (MTU size).
3979  **/
3980 static int igb_sw_init(struct igb_adapter *adapter)
3981 {
3982 	struct e1000_hw *hw = &adapter->hw;
3983 	struct net_device *netdev = adapter->netdev;
3984 	struct pci_dev *pdev = adapter->pdev;
3985 
3986 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3987 
3988 	/* set default ring sizes */
3989 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3990 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3991 
3992 	/* set default ITR values */
3993 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3994 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3995 
3996 	/* set default work limits */
3997 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3998 
3999 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4000 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4001 
4002 	spin_lock_init(&adapter->nfc_lock);
4003 	spin_lock_init(&adapter->stats64_lock);
4004 
4005 	/* init spinlock to avoid concurrency of VF resources */
4006 	spin_lock_init(&adapter->vfs_lock);
4007 #ifdef CONFIG_PCI_IOV
4008 	switch (hw->mac.type) {
4009 	case e1000_82576:
4010 	case e1000_i350:
4011 		if (max_vfs > 7) {
4012 			dev_warn(&pdev->dev,
4013 				 "Maximum of 7 VFs per PF, using max\n");
4014 			max_vfs = adapter->vfs_allocated_count = 7;
4015 		} else
4016 			adapter->vfs_allocated_count = max_vfs;
4017 		if (adapter->vfs_allocated_count)
4018 			dev_warn(&pdev->dev,
4019 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4020 		break;
4021 	default:
4022 		break;
4023 	}
4024 #endif /* CONFIG_PCI_IOV */
4025 
4026 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4027 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4028 
4029 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4030 				     sizeof(struct igb_mac_addr),
4031 				     GFP_KERNEL);
4032 	if (!adapter->mac_table)
4033 		return -ENOMEM;
4034 
4035 	igb_probe_vfs(adapter);
4036 
4037 	igb_init_queue_configuration(adapter);
4038 
4039 	/* Setup and initialize a copy of the hw vlan table array */
4040 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4041 				       GFP_KERNEL);
4042 	if (!adapter->shadow_vfta)
4043 		return -ENOMEM;
4044 
4045 	/* This call may decrease the number of queues */
4046 	if (igb_init_interrupt_scheme(adapter, true)) {
4047 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4048 		return -ENOMEM;
4049 	}
4050 
4051 	/* Explicitly disable IRQ since the NIC can be in any state. */
4052 	igb_irq_disable(adapter);
4053 
4054 	if (hw->mac.type >= e1000_i350)
4055 		adapter->flags &= ~IGB_FLAG_DMAC;
4056 
4057 	set_bit(__IGB_DOWN, &adapter->state);
4058 	return 0;
4059 }
4060 
4061 /**
4062  *  __igb_open - Called when a network interface is made active
4063  *  @netdev: network interface device structure
4064  *  @resuming: indicates whether we are in a resume call
4065  *
4066  *  Returns 0 on success, negative value on failure
4067  *
4068  *  The open entry point is called when a network interface is made
4069  *  active by the system (IFF_UP).  At this point all resources needed
4070  *  for transmit and receive operations are allocated, the interrupt
4071  *  handler is registered with the OS, the watchdog timer is started,
4072  *  and the stack is notified that the interface is ready.
4073  **/
4074 static int __igb_open(struct net_device *netdev, bool resuming)
4075 {
4076 	struct igb_adapter *adapter = netdev_priv(netdev);
4077 	struct e1000_hw *hw = &adapter->hw;
4078 	struct pci_dev *pdev = adapter->pdev;
4079 	int err;
4080 	int i;
4081 
4082 	/* disallow open during test */
4083 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4084 		WARN_ON(resuming);
4085 		return -EBUSY;
4086 	}
4087 
4088 	if (!resuming)
4089 		pm_runtime_get_sync(&pdev->dev);
4090 
4091 	netif_carrier_off(netdev);
4092 
4093 	/* allocate transmit descriptors */
4094 	err = igb_setup_all_tx_resources(adapter);
4095 	if (err)
4096 		goto err_setup_tx;
4097 
4098 	/* allocate receive descriptors */
4099 	err = igb_setup_all_rx_resources(adapter);
4100 	if (err)
4101 		goto err_setup_rx;
4102 
4103 	igb_power_up_link(adapter);
4104 
4105 	/* before we allocate an interrupt, we must be ready to handle it.
4106 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4107 	 * as soon as we call pci_request_irq, so we have to setup our
4108 	 * clean_rx handler before we do so.
4109 	 */
4110 	igb_configure(adapter);
4111 
4112 	err = igb_request_irq(adapter);
4113 	if (err)
4114 		goto err_req_irq;
4115 
4116 	/* Notify the stack of the actual queue counts. */
4117 	err = netif_set_real_num_tx_queues(adapter->netdev,
4118 					   adapter->num_tx_queues);
4119 	if (err)
4120 		goto err_set_queues;
4121 
4122 	err = netif_set_real_num_rx_queues(adapter->netdev,
4123 					   adapter->num_rx_queues);
4124 	if (err)
4125 		goto err_set_queues;
4126 
4127 	/* From here on the code is the same as igb_up() */
4128 	clear_bit(__IGB_DOWN, &adapter->state);
4129 
4130 	for (i = 0; i < adapter->num_q_vectors; i++)
4131 		napi_enable(&(adapter->q_vector[i]->napi));
4132 
4133 	/* Clear any pending interrupts. */
4134 	rd32(E1000_TSICR);
4135 	rd32(E1000_ICR);
4136 
4137 	igb_irq_enable(adapter);
4138 
4139 	/* notify VFs that reset has been completed */
4140 	if (adapter->vfs_allocated_count) {
4141 		u32 reg_data = rd32(E1000_CTRL_EXT);
4142 
4143 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4144 		wr32(E1000_CTRL_EXT, reg_data);
4145 	}
4146 
4147 	netif_tx_start_all_queues(netdev);
4148 
4149 	if (!resuming)
4150 		pm_runtime_put(&pdev->dev);
4151 
4152 	/* start the watchdog. */
4153 	hw->mac.get_link_status = 1;
4154 	schedule_work(&adapter->watchdog_task);
4155 
4156 	return 0;
4157 
4158 err_set_queues:
4159 	igb_free_irq(adapter);
4160 err_req_irq:
4161 	igb_release_hw_control(adapter);
4162 	igb_power_down_link(adapter);
4163 	igb_free_all_rx_resources(adapter);
4164 err_setup_rx:
4165 	igb_free_all_tx_resources(adapter);
4166 err_setup_tx:
4167 	igb_reset(adapter);
4168 	if (!resuming)
4169 		pm_runtime_put(&pdev->dev);
4170 
4171 	return err;
4172 }
4173 
4174 int igb_open(struct net_device *netdev)
4175 {
4176 	return __igb_open(netdev, false);
4177 }
4178 
4179 /**
4180  *  __igb_close - Disables a network interface
4181  *  @netdev: network interface device structure
4182  *  @suspending: indicates we are in a suspend call
4183  *
4184  *  Returns 0, this is not allowed to fail
4185  *
4186  *  The close entry point is called when an interface is de-activated
4187  *  by the OS.  The hardware is still under the driver's control, but
4188  *  needs to be disabled.  A global MAC reset is issued to stop the
4189  *  hardware, and all transmit and receive resources are freed.
4190  **/
4191 static int __igb_close(struct net_device *netdev, bool suspending)
4192 {
4193 	struct igb_adapter *adapter = netdev_priv(netdev);
4194 	struct pci_dev *pdev = adapter->pdev;
4195 
4196 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4197 
4198 	if (!suspending)
4199 		pm_runtime_get_sync(&pdev->dev);
4200 
4201 	igb_down(adapter);
4202 	igb_free_irq(adapter);
4203 
4204 	igb_free_all_tx_resources(adapter);
4205 	igb_free_all_rx_resources(adapter);
4206 
4207 	if (!suspending)
4208 		pm_runtime_put_sync(&pdev->dev);
4209 	return 0;
4210 }
4211 
4212 int igb_close(struct net_device *netdev)
4213 {
4214 	if (netif_device_present(netdev) || netdev->dismantle)
4215 		return __igb_close(netdev, false);
4216 	return 0;
4217 }
4218 
4219 /**
4220  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4221  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4222  *
4223  *  Return 0 on success, negative on failure
4224  **/
4225 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4226 {
4227 	struct device *dev = tx_ring->dev;
4228 	int size;
4229 
4230 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4231 
4232 	tx_ring->tx_buffer_info = vmalloc(size);
4233 	if (!tx_ring->tx_buffer_info)
4234 		goto err;
4235 
4236 	/* round up to nearest 4K */
4237 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4238 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4239 
4240 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4241 					   &tx_ring->dma, GFP_KERNEL);
4242 	if (!tx_ring->desc)
4243 		goto err;
4244 
4245 	tx_ring->next_to_use = 0;
4246 	tx_ring->next_to_clean = 0;
4247 
4248 	return 0;
4249 
4250 err:
4251 	vfree(tx_ring->tx_buffer_info);
4252 	tx_ring->tx_buffer_info = NULL;
4253 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4254 	return -ENOMEM;
4255 }
4256 
4257 /**
4258  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4259  *				 (Descriptors) for all queues
4260  *  @adapter: board private structure
4261  *
4262  *  Return 0 on success, negative on failure
4263  **/
4264 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4265 {
4266 	struct pci_dev *pdev = adapter->pdev;
4267 	int i, err = 0;
4268 
4269 	for (i = 0; i < adapter->num_tx_queues; i++) {
4270 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4271 		if (err) {
4272 			dev_err(&pdev->dev,
4273 				"Allocation for Tx Queue %u failed\n", i);
4274 			for (i--; i >= 0; i--)
4275 				igb_free_tx_resources(adapter->tx_ring[i]);
4276 			break;
4277 		}
4278 	}
4279 
4280 	return err;
4281 }
4282 
4283 /**
4284  *  igb_setup_tctl - configure the transmit control registers
4285  *  @adapter: Board private structure
4286  **/
4287 void igb_setup_tctl(struct igb_adapter *adapter)
4288 {
4289 	struct e1000_hw *hw = &adapter->hw;
4290 	u32 tctl;
4291 
4292 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4293 	wr32(E1000_TXDCTL(0), 0);
4294 
4295 	/* Program the Transmit Control Register */
4296 	tctl = rd32(E1000_TCTL);
4297 	tctl &= ~E1000_TCTL_CT;
4298 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4299 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4300 
4301 	igb_config_collision_dist(hw);
4302 
4303 	/* Enable transmits */
4304 	tctl |= E1000_TCTL_EN;
4305 
4306 	wr32(E1000_TCTL, tctl);
4307 }
4308 
4309 /**
4310  *  igb_configure_tx_ring - Configure transmit ring after Reset
4311  *  @adapter: board private structure
4312  *  @ring: tx ring to configure
4313  *
4314  *  Configure a transmit ring after a reset.
4315  **/
4316 void igb_configure_tx_ring(struct igb_adapter *adapter,
4317 			   struct igb_ring *ring)
4318 {
4319 	struct e1000_hw *hw = &adapter->hw;
4320 	u32 txdctl = 0;
4321 	u64 tdba = ring->dma;
4322 	int reg_idx = ring->reg_idx;
4323 
4324 	wr32(E1000_TDLEN(reg_idx),
4325 	     ring->count * sizeof(union e1000_adv_tx_desc));
4326 	wr32(E1000_TDBAL(reg_idx),
4327 	     tdba & 0x00000000ffffffffULL);
4328 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4329 
4330 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4331 	wr32(E1000_TDH(reg_idx), 0);
4332 	writel(0, ring->tail);
4333 
4334 	txdctl |= IGB_TX_PTHRESH;
4335 	txdctl |= IGB_TX_HTHRESH << 8;
4336 	txdctl |= IGB_TX_WTHRESH << 16;
4337 
4338 	/* reinitialize tx_buffer_info */
4339 	memset(ring->tx_buffer_info, 0,
4340 	       sizeof(struct igb_tx_buffer) * ring->count);
4341 
4342 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4343 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4344 }
4345 
4346 /**
4347  *  igb_configure_tx - Configure transmit Unit after Reset
4348  *  @adapter: board private structure
4349  *
4350  *  Configure the Tx unit of the MAC after a reset.
4351  **/
4352 static void igb_configure_tx(struct igb_adapter *adapter)
4353 {
4354 	struct e1000_hw *hw = &adapter->hw;
4355 	int i;
4356 
4357 	/* disable the queues */
4358 	for (i = 0; i < adapter->num_tx_queues; i++)
4359 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4360 
4361 	wrfl();
4362 	usleep_range(10000, 20000);
4363 
4364 	for (i = 0; i < adapter->num_tx_queues; i++)
4365 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4366 }
4367 
4368 /**
4369  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4370  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4371  *
4372  *  Returns 0 on success, negative on failure
4373  **/
4374 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4375 {
4376 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4377 	struct device *dev = rx_ring->dev;
4378 	int size, res;
4379 
4380 	/* XDP RX-queue info */
4381 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4382 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4383 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4384 			       rx_ring->queue_index, 0);
4385 	if (res < 0) {
4386 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4387 			rx_ring->queue_index);
4388 		return res;
4389 	}
4390 
4391 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4392 
4393 	rx_ring->rx_buffer_info = vmalloc(size);
4394 	if (!rx_ring->rx_buffer_info)
4395 		goto err;
4396 
4397 	/* Round up to nearest 4K */
4398 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4399 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4400 
4401 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4402 					   &rx_ring->dma, GFP_KERNEL);
4403 	if (!rx_ring->desc)
4404 		goto err;
4405 
4406 	rx_ring->next_to_alloc = 0;
4407 	rx_ring->next_to_clean = 0;
4408 	rx_ring->next_to_use = 0;
4409 
4410 	rx_ring->xdp_prog = adapter->xdp_prog;
4411 
4412 	return 0;
4413 
4414 err:
4415 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4416 	vfree(rx_ring->rx_buffer_info);
4417 	rx_ring->rx_buffer_info = NULL;
4418 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4419 	return -ENOMEM;
4420 }
4421 
4422 /**
4423  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4424  *				 (Descriptors) for all queues
4425  *  @adapter: board private structure
4426  *
4427  *  Return 0 on success, negative on failure
4428  **/
4429 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4430 {
4431 	struct pci_dev *pdev = adapter->pdev;
4432 	int i, err = 0;
4433 
4434 	for (i = 0; i < adapter->num_rx_queues; i++) {
4435 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4436 		if (err) {
4437 			dev_err(&pdev->dev,
4438 				"Allocation for Rx Queue %u failed\n", i);
4439 			for (i--; i >= 0; i--)
4440 				igb_free_rx_resources(adapter->rx_ring[i]);
4441 			break;
4442 		}
4443 	}
4444 
4445 	return err;
4446 }
4447 
4448 /**
4449  *  igb_setup_mrqc - configure the multiple receive queue control registers
4450  *  @adapter: Board private structure
4451  **/
4452 static void igb_setup_mrqc(struct igb_adapter *adapter)
4453 {
4454 	struct e1000_hw *hw = &adapter->hw;
4455 	u32 mrqc, rxcsum;
4456 	u32 j, num_rx_queues;
4457 	u32 rss_key[10];
4458 
4459 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4460 	for (j = 0; j < 10; j++)
4461 		wr32(E1000_RSSRK(j), rss_key[j]);
4462 
4463 	num_rx_queues = adapter->rss_queues;
4464 
4465 	switch (hw->mac.type) {
4466 	case e1000_82576:
4467 		/* 82576 supports 2 RSS queues for SR-IOV */
4468 		if (adapter->vfs_allocated_count)
4469 			num_rx_queues = 2;
4470 		break;
4471 	default:
4472 		break;
4473 	}
4474 
4475 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4476 		for (j = 0; j < IGB_RETA_SIZE; j++)
4477 			adapter->rss_indir_tbl[j] =
4478 			(j * num_rx_queues) / IGB_RETA_SIZE;
4479 		adapter->rss_indir_tbl_init = num_rx_queues;
4480 	}
4481 	igb_write_rss_indir_tbl(adapter);
4482 
4483 	/* Disable raw packet checksumming so that RSS hash is placed in
4484 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4485 	 * offloads as they are enabled by default
4486 	 */
4487 	rxcsum = rd32(E1000_RXCSUM);
4488 	rxcsum |= E1000_RXCSUM_PCSD;
4489 
4490 	if (adapter->hw.mac.type >= e1000_82576)
4491 		/* Enable Receive Checksum Offload for SCTP */
4492 		rxcsum |= E1000_RXCSUM_CRCOFL;
4493 
4494 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4495 	wr32(E1000_RXCSUM, rxcsum);
4496 
4497 	/* Generate RSS hash based on packet types, TCP/UDP
4498 	 * port numbers and/or IPv4/v6 src and dst addresses
4499 	 */
4500 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4501 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4502 	       E1000_MRQC_RSS_FIELD_IPV6 |
4503 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4504 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4505 
4506 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4507 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4508 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4509 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4510 
4511 	/* If VMDq is enabled then we set the appropriate mode for that, else
4512 	 * we default to RSS so that an RSS hash is calculated per packet even
4513 	 * if we are only using one queue
4514 	 */
4515 	if (adapter->vfs_allocated_count) {
4516 		if (hw->mac.type > e1000_82575) {
4517 			/* Set the default pool for the PF's first queue */
4518 			u32 vtctl = rd32(E1000_VT_CTL);
4519 
4520 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4521 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4522 			vtctl |= adapter->vfs_allocated_count <<
4523 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4524 			wr32(E1000_VT_CTL, vtctl);
4525 		}
4526 		if (adapter->rss_queues > 1)
4527 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4528 		else
4529 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4530 	} else {
4531 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4532 	}
4533 	igb_vmm_control(adapter);
4534 
4535 	wr32(E1000_MRQC, mrqc);
4536 }
4537 
4538 /**
4539  *  igb_setup_rctl - configure the receive control registers
4540  *  @adapter: Board private structure
4541  **/
4542 void igb_setup_rctl(struct igb_adapter *adapter)
4543 {
4544 	struct e1000_hw *hw = &adapter->hw;
4545 	u32 rctl;
4546 
4547 	rctl = rd32(E1000_RCTL);
4548 
4549 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4550 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4551 
4552 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4553 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4554 
4555 	/* enable stripping of CRC. It's unlikely this will break BMC
4556 	 * redirection as it did with e1000. Newer features require
4557 	 * that the HW strips the CRC.
4558 	 */
4559 	rctl |= E1000_RCTL_SECRC;
4560 
4561 	/* disable store bad packets and clear size bits. */
4562 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4563 
4564 	/* enable LPE to allow for reception of jumbo frames */
4565 	rctl |= E1000_RCTL_LPE;
4566 
4567 	/* disable queue 0 to prevent tail write w/o re-config */
4568 	wr32(E1000_RXDCTL(0), 0);
4569 
4570 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4571 	 * queue drop for all VF and PF queues to prevent head of line blocking
4572 	 * if an un-trusted VF does not provide descriptors to hardware.
4573 	 */
4574 	if (adapter->vfs_allocated_count) {
4575 		/* set all queue drop enable bits */
4576 		wr32(E1000_QDE, ALL_QUEUES);
4577 	}
4578 
4579 	/* This is useful for sniffing bad packets. */
4580 	if (adapter->netdev->features & NETIF_F_RXALL) {
4581 		/* UPE and MPE will be handled by normal PROMISC logic
4582 		 * in e1000e_set_rx_mode
4583 		 */
4584 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4585 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4586 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4587 
4588 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4589 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4590 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4591 		 * and that breaks VLANs.
4592 		 */
4593 	}
4594 
4595 	wr32(E1000_RCTL, rctl);
4596 }
4597 
4598 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4599 				   int vfn)
4600 {
4601 	struct e1000_hw *hw = &adapter->hw;
4602 	u32 vmolr;
4603 
4604 	if (size > MAX_JUMBO_FRAME_SIZE)
4605 		size = MAX_JUMBO_FRAME_SIZE;
4606 
4607 	vmolr = rd32(E1000_VMOLR(vfn));
4608 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4609 	vmolr |= size | E1000_VMOLR_LPE;
4610 	wr32(E1000_VMOLR(vfn), vmolr);
4611 
4612 	return 0;
4613 }
4614 
4615 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4616 					 int vfn, bool enable)
4617 {
4618 	struct e1000_hw *hw = &adapter->hw;
4619 	u32 val, reg;
4620 
4621 	if (hw->mac.type < e1000_82576)
4622 		return;
4623 
4624 	if (hw->mac.type == e1000_i350)
4625 		reg = E1000_DVMOLR(vfn);
4626 	else
4627 		reg = E1000_VMOLR(vfn);
4628 
4629 	val = rd32(reg);
4630 	if (enable)
4631 		val |= E1000_VMOLR_STRVLAN;
4632 	else
4633 		val &= ~(E1000_VMOLR_STRVLAN);
4634 	wr32(reg, val);
4635 }
4636 
4637 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4638 				 int vfn, bool aupe)
4639 {
4640 	struct e1000_hw *hw = &adapter->hw;
4641 	u32 vmolr;
4642 
4643 	/* This register exists only on 82576 and newer so if we are older then
4644 	 * we should exit and do nothing
4645 	 */
4646 	if (hw->mac.type < e1000_82576)
4647 		return;
4648 
4649 	vmolr = rd32(E1000_VMOLR(vfn));
4650 	if (aupe)
4651 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4652 	else
4653 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4654 
4655 	/* clear all bits that might not be set */
4656 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4657 
4658 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4659 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4660 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4661 	 * multicast packets
4662 	 */
4663 	if (vfn <= adapter->vfs_allocated_count)
4664 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4665 
4666 	wr32(E1000_VMOLR(vfn), vmolr);
4667 }
4668 
4669 /**
4670  *  igb_setup_srrctl - configure the split and replication receive control
4671  *                     registers
4672  *  @adapter: Board private structure
4673  *  @ring: receive ring to be configured
4674  **/
4675 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4676 {
4677 	struct e1000_hw *hw = &adapter->hw;
4678 	int reg_idx = ring->reg_idx;
4679 	u32 srrctl = 0;
4680 
4681 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4682 	if (ring_uses_large_buffer(ring))
4683 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4684 	else
4685 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4686 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4687 	if (hw->mac.type >= e1000_82580)
4688 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4689 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4690 	 * queues and rx flow control is disabled
4691 	 */
4692 	if (adapter->vfs_allocated_count ||
4693 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4694 	     adapter->num_rx_queues > 1))
4695 		srrctl |= E1000_SRRCTL_DROP_EN;
4696 
4697 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4698 }
4699 
4700 /**
4701  *  igb_configure_rx_ring - Configure a receive ring after Reset
4702  *  @adapter: board private structure
4703  *  @ring: receive ring to be configured
4704  *
4705  *  Configure the Rx unit of the MAC after a reset.
4706  **/
4707 void igb_configure_rx_ring(struct igb_adapter *adapter,
4708 			   struct igb_ring *ring)
4709 {
4710 	struct e1000_hw *hw = &adapter->hw;
4711 	union e1000_adv_rx_desc *rx_desc;
4712 	u64 rdba = ring->dma;
4713 	int reg_idx = ring->reg_idx;
4714 	u32 rxdctl = 0;
4715 
4716 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4717 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4718 					   MEM_TYPE_PAGE_SHARED, NULL));
4719 
4720 	/* disable the queue */
4721 	wr32(E1000_RXDCTL(reg_idx), 0);
4722 
4723 	/* Set DMA base address registers */
4724 	wr32(E1000_RDBAL(reg_idx),
4725 	     rdba & 0x00000000ffffffffULL);
4726 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4727 	wr32(E1000_RDLEN(reg_idx),
4728 	     ring->count * sizeof(union e1000_adv_rx_desc));
4729 
4730 	/* initialize head and tail */
4731 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4732 	wr32(E1000_RDH(reg_idx), 0);
4733 	writel(0, ring->tail);
4734 
4735 	/* set descriptor configuration */
4736 	igb_setup_srrctl(adapter, ring);
4737 
4738 	/* set filtering for VMDQ pools */
4739 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4740 
4741 	rxdctl |= IGB_RX_PTHRESH;
4742 	rxdctl |= IGB_RX_HTHRESH << 8;
4743 	rxdctl |= IGB_RX_WTHRESH << 16;
4744 
4745 	/* initialize rx_buffer_info */
4746 	memset(ring->rx_buffer_info, 0,
4747 	       sizeof(struct igb_rx_buffer) * ring->count);
4748 
4749 	/* initialize Rx descriptor 0 */
4750 	rx_desc = IGB_RX_DESC(ring, 0);
4751 	rx_desc->wb.upper.length = 0;
4752 
4753 	/* enable receive descriptor fetching */
4754 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4755 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4756 }
4757 
4758 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4759 				  struct igb_ring *rx_ring)
4760 {
4761 	/* set build_skb and buffer size flags */
4762 	clear_ring_build_skb_enabled(rx_ring);
4763 	clear_ring_uses_large_buffer(rx_ring);
4764 
4765 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4766 		return;
4767 
4768 	set_ring_build_skb_enabled(rx_ring);
4769 
4770 #if (PAGE_SIZE < 8192)
4771 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4772 		return;
4773 
4774 	set_ring_uses_large_buffer(rx_ring);
4775 #endif
4776 }
4777 
4778 /**
4779  *  igb_configure_rx - Configure receive Unit after Reset
4780  *  @adapter: board private structure
4781  *
4782  *  Configure the Rx unit of the MAC after a reset.
4783  **/
4784 static void igb_configure_rx(struct igb_adapter *adapter)
4785 {
4786 	int i;
4787 
4788 	/* set the correct pool for the PF default MAC address in entry 0 */
4789 	igb_set_default_mac_filter(adapter);
4790 
4791 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4792 	 * the Base and Length of the Rx Descriptor Ring
4793 	 */
4794 	for (i = 0; i < adapter->num_rx_queues; i++) {
4795 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4796 
4797 		igb_set_rx_buffer_len(adapter, rx_ring);
4798 		igb_configure_rx_ring(adapter, rx_ring);
4799 	}
4800 }
4801 
4802 /**
4803  *  igb_free_tx_resources - Free Tx Resources per Queue
4804  *  @tx_ring: Tx descriptor ring for a specific queue
4805  *
4806  *  Free all transmit software resources
4807  **/
4808 void igb_free_tx_resources(struct igb_ring *tx_ring)
4809 {
4810 	igb_clean_tx_ring(tx_ring);
4811 
4812 	vfree(tx_ring->tx_buffer_info);
4813 	tx_ring->tx_buffer_info = NULL;
4814 
4815 	/* if not set, then don't free */
4816 	if (!tx_ring->desc)
4817 		return;
4818 
4819 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4820 			  tx_ring->desc, tx_ring->dma);
4821 
4822 	tx_ring->desc = NULL;
4823 }
4824 
4825 /**
4826  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4827  *  @adapter: board private structure
4828  *
4829  *  Free all transmit software resources
4830  **/
4831 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4832 {
4833 	int i;
4834 
4835 	for (i = 0; i < adapter->num_tx_queues; i++)
4836 		if (adapter->tx_ring[i])
4837 			igb_free_tx_resources(adapter->tx_ring[i]);
4838 }
4839 
4840 /**
4841  *  igb_clean_tx_ring - Free Tx Buffers
4842  *  @tx_ring: ring to be cleaned
4843  **/
4844 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4845 {
4846 	u16 i = tx_ring->next_to_clean;
4847 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4848 
4849 	while (i != tx_ring->next_to_use) {
4850 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4851 
4852 		/* Free all the Tx ring sk_buffs or xdp frames */
4853 		if (tx_buffer->type == IGB_TYPE_SKB)
4854 			dev_kfree_skb_any(tx_buffer->skb);
4855 		else
4856 			xdp_return_frame(tx_buffer->xdpf);
4857 
4858 		/* unmap skb header data */
4859 		dma_unmap_single(tx_ring->dev,
4860 				 dma_unmap_addr(tx_buffer, dma),
4861 				 dma_unmap_len(tx_buffer, len),
4862 				 DMA_TO_DEVICE);
4863 
4864 		/* check for eop_desc to determine the end of the packet */
4865 		eop_desc = tx_buffer->next_to_watch;
4866 		tx_desc = IGB_TX_DESC(tx_ring, i);
4867 
4868 		/* unmap remaining buffers */
4869 		while (tx_desc != eop_desc) {
4870 			tx_buffer++;
4871 			tx_desc++;
4872 			i++;
4873 			if (unlikely(i == tx_ring->count)) {
4874 				i = 0;
4875 				tx_buffer = tx_ring->tx_buffer_info;
4876 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4877 			}
4878 
4879 			/* unmap any remaining paged data */
4880 			if (dma_unmap_len(tx_buffer, len))
4881 				dma_unmap_page(tx_ring->dev,
4882 					       dma_unmap_addr(tx_buffer, dma),
4883 					       dma_unmap_len(tx_buffer, len),
4884 					       DMA_TO_DEVICE);
4885 		}
4886 
4887 		tx_buffer->next_to_watch = NULL;
4888 
4889 		/* move us one more past the eop_desc for start of next pkt */
4890 		tx_buffer++;
4891 		i++;
4892 		if (unlikely(i == tx_ring->count)) {
4893 			i = 0;
4894 			tx_buffer = tx_ring->tx_buffer_info;
4895 		}
4896 	}
4897 
4898 	/* reset BQL for queue */
4899 	netdev_tx_reset_queue(txring_txq(tx_ring));
4900 
4901 	/* reset next_to_use and next_to_clean */
4902 	tx_ring->next_to_use = 0;
4903 	tx_ring->next_to_clean = 0;
4904 }
4905 
4906 /**
4907  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4908  *  @adapter: board private structure
4909  **/
4910 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4911 {
4912 	int i;
4913 
4914 	for (i = 0; i < adapter->num_tx_queues; i++)
4915 		if (adapter->tx_ring[i])
4916 			igb_clean_tx_ring(adapter->tx_ring[i]);
4917 }
4918 
4919 /**
4920  *  igb_free_rx_resources - Free Rx Resources
4921  *  @rx_ring: ring to clean the resources from
4922  *
4923  *  Free all receive software resources
4924  **/
4925 void igb_free_rx_resources(struct igb_ring *rx_ring)
4926 {
4927 	igb_clean_rx_ring(rx_ring);
4928 
4929 	rx_ring->xdp_prog = NULL;
4930 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4931 	vfree(rx_ring->rx_buffer_info);
4932 	rx_ring->rx_buffer_info = NULL;
4933 
4934 	/* if not set, then don't free */
4935 	if (!rx_ring->desc)
4936 		return;
4937 
4938 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4939 			  rx_ring->desc, rx_ring->dma);
4940 
4941 	rx_ring->desc = NULL;
4942 }
4943 
4944 /**
4945  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4946  *  @adapter: board private structure
4947  *
4948  *  Free all receive software resources
4949  **/
4950 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4951 {
4952 	int i;
4953 
4954 	for (i = 0; i < adapter->num_rx_queues; i++)
4955 		if (adapter->rx_ring[i])
4956 			igb_free_rx_resources(adapter->rx_ring[i]);
4957 }
4958 
4959 /**
4960  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4961  *  @rx_ring: ring to free buffers from
4962  **/
4963 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4964 {
4965 	u16 i = rx_ring->next_to_clean;
4966 
4967 	dev_kfree_skb(rx_ring->skb);
4968 	rx_ring->skb = NULL;
4969 
4970 	/* Free all the Rx ring sk_buffs */
4971 	while (i != rx_ring->next_to_alloc) {
4972 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4973 
4974 		/* Invalidate cache lines that may have been written to by
4975 		 * device so that we avoid corrupting memory.
4976 		 */
4977 		dma_sync_single_range_for_cpu(rx_ring->dev,
4978 					      buffer_info->dma,
4979 					      buffer_info->page_offset,
4980 					      igb_rx_bufsz(rx_ring),
4981 					      DMA_FROM_DEVICE);
4982 
4983 		/* free resources associated with mapping */
4984 		dma_unmap_page_attrs(rx_ring->dev,
4985 				     buffer_info->dma,
4986 				     igb_rx_pg_size(rx_ring),
4987 				     DMA_FROM_DEVICE,
4988 				     IGB_RX_DMA_ATTR);
4989 		__page_frag_cache_drain(buffer_info->page,
4990 					buffer_info->pagecnt_bias);
4991 
4992 		i++;
4993 		if (i == rx_ring->count)
4994 			i = 0;
4995 	}
4996 
4997 	rx_ring->next_to_alloc = 0;
4998 	rx_ring->next_to_clean = 0;
4999 	rx_ring->next_to_use = 0;
5000 }
5001 
5002 /**
5003  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5004  *  @adapter: board private structure
5005  **/
5006 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5007 {
5008 	int i;
5009 
5010 	for (i = 0; i < adapter->num_rx_queues; i++)
5011 		if (adapter->rx_ring[i])
5012 			igb_clean_rx_ring(adapter->rx_ring[i]);
5013 }
5014 
5015 /**
5016  *  igb_set_mac - Change the Ethernet Address of the NIC
5017  *  @netdev: network interface device structure
5018  *  @p: pointer to an address structure
5019  *
5020  *  Returns 0 on success, negative on failure
5021  **/
5022 static int igb_set_mac(struct net_device *netdev, void *p)
5023 {
5024 	struct igb_adapter *adapter = netdev_priv(netdev);
5025 	struct e1000_hw *hw = &adapter->hw;
5026 	struct sockaddr *addr = p;
5027 
5028 	if (!is_valid_ether_addr(addr->sa_data))
5029 		return -EADDRNOTAVAIL;
5030 
5031 	eth_hw_addr_set(netdev, addr->sa_data);
5032 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5033 
5034 	/* set the correct pool for the new PF MAC address in entry 0 */
5035 	igb_set_default_mac_filter(adapter);
5036 
5037 	return 0;
5038 }
5039 
5040 /**
5041  *  igb_write_mc_addr_list - write multicast addresses to MTA
5042  *  @netdev: network interface device structure
5043  *
5044  *  Writes multicast address list to the MTA hash table.
5045  *  Returns: -ENOMEM on failure
5046  *           0 on no addresses written
5047  *           X on writing X addresses to MTA
5048  **/
5049 static int igb_write_mc_addr_list(struct net_device *netdev)
5050 {
5051 	struct igb_adapter *adapter = netdev_priv(netdev);
5052 	struct e1000_hw *hw = &adapter->hw;
5053 	struct netdev_hw_addr *ha;
5054 	u8  *mta_list;
5055 	int i;
5056 
5057 	if (netdev_mc_empty(netdev)) {
5058 		/* nothing to program, so clear mc list */
5059 		igb_update_mc_addr_list(hw, NULL, 0);
5060 		igb_restore_vf_multicasts(adapter);
5061 		return 0;
5062 	}
5063 
5064 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5065 	if (!mta_list)
5066 		return -ENOMEM;
5067 
5068 	/* The shared function expects a packed array of only addresses. */
5069 	i = 0;
5070 	netdev_for_each_mc_addr(ha, netdev)
5071 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5072 
5073 	igb_update_mc_addr_list(hw, mta_list, i);
5074 	kfree(mta_list);
5075 
5076 	return netdev_mc_count(netdev);
5077 }
5078 
5079 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5080 {
5081 	struct e1000_hw *hw = &adapter->hw;
5082 	u32 i, pf_id;
5083 
5084 	switch (hw->mac.type) {
5085 	case e1000_i210:
5086 	case e1000_i211:
5087 	case e1000_i350:
5088 		/* VLAN filtering needed for VLAN prio filter */
5089 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5090 			break;
5091 		fallthrough;
5092 	case e1000_82576:
5093 	case e1000_82580:
5094 	case e1000_i354:
5095 		/* VLAN filtering needed for pool filtering */
5096 		if (adapter->vfs_allocated_count)
5097 			break;
5098 		fallthrough;
5099 	default:
5100 		return 1;
5101 	}
5102 
5103 	/* We are already in VLAN promisc, nothing to do */
5104 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5105 		return 0;
5106 
5107 	if (!adapter->vfs_allocated_count)
5108 		goto set_vfta;
5109 
5110 	/* Add PF to all active pools */
5111 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5112 
5113 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5114 		u32 vlvf = rd32(E1000_VLVF(i));
5115 
5116 		vlvf |= BIT(pf_id);
5117 		wr32(E1000_VLVF(i), vlvf);
5118 	}
5119 
5120 set_vfta:
5121 	/* Set all bits in the VLAN filter table array */
5122 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5123 		hw->mac.ops.write_vfta(hw, i, ~0U);
5124 
5125 	/* Set flag so we don't redo unnecessary work */
5126 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5127 
5128 	return 0;
5129 }
5130 
5131 #define VFTA_BLOCK_SIZE 8
5132 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5133 {
5134 	struct e1000_hw *hw = &adapter->hw;
5135 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5136 	u32 vid_start = vfta_offset * 32;
5137 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5138 	u32 i, vid, word, bits, pf_id;
5139 
5140 	/* guarantee that we don't scrub out management VLAN */
5141 	vid = adapter->mng_vlan_id;
5142 	if (vid >= vid_start && vid < vid_end)
5143 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5144 
5145 	if (!adapter->vfs_allocated_count)
5146 		goto set_vfta;
5147 
5148 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5149 
5150 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5151 		u32 vlvf = rd32(E1000_VLVF(i));
5152 
5153 		/* pull VLAN ID from VLVF */
5154 		vid = vlvf & VLAN_VID_MASK;
5155 
5156 		/* only concern ourselves with a certain range */
5157 		if (vid < vid_start || vid >= vid_end)
5158 			continue;
5159 
5160 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5161 			/* record VLAN ID in VFTA */
5162 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5163 
5164 			/* if PF is part of this then continue */
5165 			if (test_bit(vid, adapter->active_vlans))
5166 				continue;
5167 		}
5168 
5169 		/* remove PF from the pool */
5170 		bits = ~BIT(pf_id);
5171 		bits &= rd32(E1000_VLVF(i));
5172 		wr32(E1000_VLVF(i), bits);
5173 	}
5174 
5175 set_vfta:
5176 	/* extract values from active_vlans and write back to VFTA */
5177 	for (i = VFTA_BLOCK_SIZE; i--;) {
5178 		vid = (vfta_offset + i) * 32;
5179 		word = vid / BITS_PER_LONG;
5180 		bits = vid % BITS_PER_LONG;
5181 
5182 		vfta[i] |= adapter->active_vlans[word] >> bits;
5183 
5184 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5185 	}
5186 }
5187 
5188 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5189 {
5190 	u32 i;
5191 
5192 	/* We are not in VLAN promisc, nothing to do */
5193 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5194 		return;
5195 
5196 	/* Set flag so we don't redo unnecessary work */
5197 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5198 
5199 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5200 		igb_scrub_vfta(adapter, i);
5201 }
5202 
5203 /**
5204  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5205  *  @netdev: network interface device structure
5206  *
5207  *  The set_rx_mode entry point is called whenever the unicast or multicast
5208  *  address lists or the network interface flags are updated.  This routine is
5209  *  responsible for configuring the hardware for proper unicast, multicast,
5210  *  promiscuous mode, and all-multi behavior.
5211  **/
5212 static void igb_set_rx_mode(struct net_device *netdev)
5213 {
5214 	struct igb_adapter *adapter = netdev_priv(netdev);
5215 	struct e1000_hw *hw = &adapter->hw;
5216 	unsigned int vfn = adapter->vfs_allocated_count;
5217 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5218 	int count;
5219 
5220 	/* Check for Promiscuous and All Multicast modes */
5221 	if (netdev->flags & IFF_PROMISC) {
5222 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5223 		vmolr |= E1000_VMOLR_MPME;
5224 
5225 		/* enable use of UTA filter to force packets to default pool */
5226 		if (hw->mac.type == e1000_82576)
5227 			vmolr |= E1000_VMOLR_ROPE;
5228 	} else {
5229 		if (netdev->flags & IFF_ALLMULTI) {
5230 			rctl |= E1000_RCTL_MPE;
5231 			vmolr |= E1000_VMOLR_MPME;
5232 		} else {
5233 			/* Write addresses to the MTA, if the attempt fails
5234 			 * then we should just turn on promiscuous mode so
5235 			 * that we can at least receive multicast traffic
5236 			 */
5237 			count = igb_write_mc_addr_list(netdev);
5238 			if (count < 0) {
5239 				rctl |= E1000_RCTL_MPE;
5240 				vmolr |= E1000_VMOLR_MPME;
5241 			} else if (count) {
5242 				vmolr |= E1000_VMOLR_ROMPE;
5243 			}
5244 		}
5245 	}
5246 
5247 	/* Write addresses to available RAR registers, if there is not
5248 	 * sufficient space to store all the addresses then enable
5249 	 * unicast promiscuous mode
5250 	 */
5251 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5252 		rctl |= E1000_RCTL_UPE;
5253 		vmolr |= E1000_VMOLR_ROPE;
5254 	}
5255 
5256 	/* enable VLAN filtering by default */
5257 	rctl |= E1000_RCTL_VFE;
5258 
5259 	/* disable VLAN filtering for modes that require it */
5260 	if ((netdev->flags & IFF_PROMISC) ||
5261 	    (netdev->features & NETIF_F_RXALL)) {
5262 		/* if we fail to set all rules then just clear VFE */
5263 		if (igb_vlan_promisc_enable(adapter))
5264 			rctl &= ~E1000_RCTL_VFE;
5265 	} else {
5266 		igb_vlan_promisc_disable(adapter);
5267 	}
5268 
5269 	/* update state of unicast, multicast, and VLAN filtering modes */
5270 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5271 				     E1000_RCTL_VFE);
5272 	wr32(E1000_RCTL, rctl);
5273 
5274 #if (PAGE_SIZE < 8192)
5275 	if (!adapter->vfs_allocated_count) {
5276 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5277 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5278 	}
5279 #endif
5280 	wr32(E1000_RLPML, rlpml);
5281 
5282 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5283 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5284 	 * we will have issues with VLAN tag stripping not being done for frames
5285 	 * that are only arriving because we are the default pool
5286 	 */
5287 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5288 		return;
5289 
5290 	/* set UTA to appropriate mode */
5291 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5292 
5293 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5294 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5295 
5296 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5297 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5298 #if (PAGE_SIZE < 8192)
5299 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5300 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5301 	else
5302 #endif
5303 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5304 	vmolr |= E1000_VMOLR_LPE;
5305 
5306 	wr32(E1000_VMOLR(vfn), vmolr);
5307 
5308 	igb_restore_vf_multicasts(adapter);
5309 }
5310 
5311 static void igb_check_wvbr(struct igb_adapter *adapter)
5312 {
5313 	struct e1000_hw *hw = &adapter->hw;
5314 	u32 wvbr = 0;
5315 
5316 	switch (hw->mac.type) {
5317 	case e1000_82576:
5318 	case e1000_i350:
5319 		wvbr = rd32(E1000_WVBR);
5320 		if (!wvbr)
5321 			return;
5322 		break;
5323 	default:
5324 		break;
5325 	}
5326 
5327 	adapter->wvbr |= wvbr;
5328 }
5329 
5330 #define IGB_STAGGERED_QUEUE_OFFSET 8
5331 
5332 static void igb_spoof_check(struct igb_adapter *adapter)
5333 {
5334 	int j;
5335 
5336 	if (!adapter->wvbr)
5337 		return;
5338 
5339 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5340 		if (adapter->wvbr & BIT(j) ||
5341 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5342 			dev_warn(&adapter->pdev->dev,
5343 				"Spoof event(s) detected on VF %d\n", j);
5344 			adapter->wvbr &=
5345 				~(BIT(j) |
5346 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5347 		}
5348 	}
5349 }
5350 
5351 /* Need to wait a few seconds after link up to get diagnostic information from
5352  * the phy
5353  */
5354 static void igb_update_phy_info(struct timer_list *t)
5355 {
5356 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5357 	igb_get_phy_info(&adapter->hw);
5358 }
5359 
5360 /**
5361  *  igb_has_link - check shared code for link and determine up/down
5362  *  @adapter: pointer to driver private info
5363  **/
5364 bool igb_has_link(struct igb_adapter *adapter)
5365 {
5366 	struct e1000_hw *hw = &adapter->hw;
5367 	bool link_active = false;
5368 
5369 	/* get_link_status is set on LSC (link status) interrupt or
5370 	 * rx sequence error interrupt.  get_link_status will stay
5371 	 * false until the e1000_check_for_link establishes link
5372 	 * for copper adapters ONLY
5373 	 */
5374 	switch (hw->phy.media_type) {
5375 	case e1000_media_type_copper:
5376 		if (!hw->mac.get_link_status)
5377 			return true;
5378 		fallthrough;
5379 	case e1000_media_type_internal_serdes:
5380 		hw->mac.ops.check_for_link(hw);
5381 		link_active = !hw->mac.get_link_status;
5382 		break;
5383 	default:
5384 	case e1000_media_type_unknown:
5385 		break;
5386 	}
5387 
5388 	if (((hw->mac.type == e1000_i210) ||
5389 	     (hw->mac.type == e1000_i211)) &&
5390 	     (hw->phy.id == I210_I_PHY_ID)) {
5391 		if (!netif_carrier_ok(adapter->netdev)) {
5392 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5393 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5394 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5395 			adapter->link_check_timeout = jiffies;
5396 		}
5397 	}
5398 
5399 	return link_active;
5400 }
5401 
5402 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5403 {
5404 	bool ret = false;
5405 	u32 ctrl_ext, thstat;
5406 
5407 	/* check for thermal sensor event on i350 copper only */
5408 	if (hw->mac.type == e1000_i350) {
5409 		thstat = rd32(E1000_THSTAT);
5410 		ctrl_ext = rd32(E1000_CTRL_EXT);
5411 
5412 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5413 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5414 			ret = !!(thstat & event);
5415 	}
5416 
5417 	return ret;
5418 }
5419 
5420 /**
5421  *  igb_check_lvmmc - check for malformed packets received
5422  *  and indicated in LVMMC register
5423  *  @adapter: pointer to adapter
5424  **/
5425 static void igb_check_lvmmc(struct igb_adapter *adapter)
5426 {
5427 	struct e1000_hw *hw = &adapter->hw;
5428 	u32 lvmmc;
5429 
5430 	lvmmc = rd32(E1000_LVMMC);
5431 	if (lvmmc) {
5432 		if (unlikely(net_ratelimit())) {
5433 			netdev_warn(adapter->netdev,
5434 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5435 				    lvmmc);
5436 		}
5437 	}
5438 }
5439 
5440 /**
5441  *  igb_watchdog - Timer Call-back
5442  *  @t: pointer to timer_list containing our private info pointer
5443  **/
5444 static void igb_watchdog(struct timer_list *t)
5445 {
5446 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5447 	/* Do the rest outside of interrupt context */
5448 	schedule_work(&adapter->watchdog_task);
5449 }
5450 
5451 static void igb_watchdog_task(struct work_struct *work)
5452 {
5453 	struct igb_adapter *adapter = container_of(work,
5454 						   struct igb_adapter,
5455 						   watchdog_task);
5456 	struct e1000_hw *hw = &adapter->hw;
5457 	struct e1000_phy_info *phy = &hw->phy;
5458 	struct net_device *netdev = adapter->netdev;
5459 	u32 link;
5460 	int i;
5461 	u32 connsw;
5462 	u16 phy_data, retry_count = 20;
5463 
5464 	link = igb_has_link(adapter);
5465 
5466 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5467 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5468 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5469 		else
5470 			link = false;
5471 	}
5472 
5473 	/* Force link down if we have fiber to swap to */
5474 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5475 		if (hw->phy.media_type == e1000_media_type_copper) {
5476 			connsw = rd32(E1000_CONNSW);
5477 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5478 				link = 0;
5479 		}
5480 	}
5481 	if (link) {
5482 		/* Perform a reset if the media type changed. */
5483 		if (hw->dev_spec._82575.media_changed) {
5484 			hw->dev_spec._82575.media_changed = false;
5485 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5486 			igb_reset(adapter);
5487 		}
5488 		/* Cancel scheduled suspend requests. */
5489 		pm_runtime_resume(netdev->dev.parent);
5490 
5491 		if (!netif_carrier_ok(netdev)) {
5492 			u32 ctrl;
5493 
5494 			hw->mac.ops.get_speed_and_duplex(hw,
5495 							 &adapter->link_speed,
5496 							 &adapter->link_duplex);
5497 
5498 			ctrl = rd32(E1000_CTRL);
5499 			/* Links status message must follow this format */
5500 			netdev_info(netdev,
5501 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5502 			       netdev->name,
5503 			       adapter->link_speed,
5504 			       adapter->link_duplex == FULL_DUPLEX ?
5505 			       "Full" : "Half",
5506 			       (ctrl & E1000_CTRL_TFCE) &&
5507 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5508 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5509 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5510 
5511 			/* disable EEE if enabled */
5512 			if ((adapter->flags & IGB_FLAG_EEE) &&
5513 				(adapter->link_duplex == HALF_DUPLEX)) {
5514 				dev_info(&adapter->pdev->dev,
5515 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5516 				adapter->hw.dev_spec._82575.eee_disable = true;
5517 				adapter->flags &= ~IGB_FLAG_EEE;
5518 			}
5519 
5520 			/* check if SmartSpeed worked */
5521 			igb_check_downshift(hw);
5522 			if (phy->speed_downgraded)
5523 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5524 
5525 			/* check for thermal sensor event */
5526 			if (igb_thermal_sensor_event(hw,
5527 			    E1000_THSTAT_LINK_THROTTLE))
5528 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5529 
5530 			/* adjust timeout factor according to speed/duplex */
5531 			adapter->tx_timeout_factor = 1;
5532 			switch (adapter->link_speed) {
5533 			case SPEED_10:
5534 				adapter->tx_timeout_factor = 14;
5535 				break;
5536 			case SPEED_100:
5537 				/* maybe add some timeout factor ? */
5538 				break;
5539 			}
5540 
5541 			if (adapter->link_speed != SPEED_1000 ||
5542 			    !hw->phy.ops.read_reg)
5543 				goto no_wait;
5544 
5545 			/* wait for Remote receiver status OK */
5546 retry_read_status:
5547 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5548 					      &phy_data)) {
5549 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5550 				    retry_count) {
5551 					msleep(100);
5552 					retry_count--;
5553 					goto retry_read_status;
5554 				} else if (!retry_count) {
5555 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5556 				}
5557 			} else {
5558 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5559 			}
5560 no_wait:
5561 			netif_carrier_on(netdev);
5562 
5563 			igb_ping_all_vfs(adapter);
5564 			igb_check_vf_rate_limit(adapter);
5565 
5566 			/* link state has changed, schedule phy info update */
5567 			if (!test_bit(__IGB_DOWN, &adapter->state))
5568 				mod_timer(&adapter->phy_info_timer,
5569 					  round_jiffies(jiffies + 2 * HZ));
5570 		}
5571 	} else {
5572 		if (netif_carrier_ok(netdev)) {
5573 			adapter->link_speed = 0;
5574 			adapter->link_duplex = 0;
5575 
5576 			/* check for thermal sensor event */
5577 			if (igb_thermal_sensor_event(hw,
5578 			    E1000_THSTAT_PWR_DOWN)) {
5579 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5580 			}
5581 
5582 			/* Links status message must follow this format */
5583 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5584 			       netdev->name);
5585 			netif_carrier_off(netdev);
5586 
5587 			igb_ping_all_vfs(adapter);
5588 
5589 			/* link state has changed, schedule phy info update */
5590 			if (!test_bit(__IGB_DOWN, &adapter->state))
5591 				mod_timer(&adapter->phy_info_timer,
5592 					  round_jiffies(jiffies + 2 * HZ));
5593 
5594 			/* link is down, time to check for alternate media */
5595 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5596 				igb_check_swap_media(adapter);
5597 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5598 					schedule_work(&adapter->reset_task);
5599 					/* return immediately */
5600 					return;
5601 				}
5602 			}
5603 			pm_schedule_suspend(netdev->dev.parent,
5604 					    MSEC_PER_SEC * 5);
5605 
5606 		/* also check for alternate media here */
5607 		} else if (!netif_carrier_ok(netdev) &&
5608 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5609 			igb_check_swap_media(adapter);
5610 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5611 				schedule_work(&adapter->reset_task);
5612 				/* return immediately */
5613 				return;
5614 			}
5615 		}
5616 	}
5617 
5618 	spin_lock(&adapter->stats64_lock);
5619 	igb_update_stats(adapter);
5620 	spin_unlock(&adapter->stats64_lock);
5621 
5622 	for (i = 0; i < adapter->num_tx_queues; i++) {
5623 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5624 		if (!netif_carrier_ok(netdev)) {
5625 			/* We've lost link, so the controller stops DMA,
5626 			 * but we've got queued Tx work that's never going
5627 			 * to get done, so reset controller to flush Tx.
5628 			 * (Do the reset outside of interrupt context).
5629 			 */
5630 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5631 				adapter->tx_timeout_count++;
5632 				schedule_work(&adapter->reset_task);
5633 				/* return immediately since reset is imminent */
5634 				return;
5635 			}
5636 		}
5637 
5638 		/* Force detection of hung controller every watchdog period */
5639 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5640 	}
5641 
5642 	/* Cause software interrupt to ensure Rx ring is cleaned */
5643 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5644 		u32 eics = 0;
5645 
5646 		for (i = 0; i < adapter->num_q_vectors; i++)
5647 			eics |= adapter->q_vector[i]->eims_value;
5648 		wr32(E1000_EICS, eics);
5649 	} else {
5650 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5651 	}
5652 
5653 	igb_spoof_check(adapter);
5654 	igb_ptp_rx_hang(adapter);
5655 	igb_ptp_tx_hang(adapter);
5656 
5657 	/* Check LVMMC register on i350/i354 only */
5658 	if ((adapter->hw.mac.type == e1000_i350) ||
5659 	    (adapter->hw.mac.type == e1000_i354))
5660 		igb_check_lvmmc(adapter);
5661 
5662 	/* Reset the timer */
5663 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5664 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5665 			mod_timer(&adapter->watchdog_timer,
5666 				  round_jiffies(jiffies +  HZ));
5667 		else
5668 			mod_timer(&adapter->watchdog_timer,
5669 				  round_jiffies(jiffies + 2 * HZ));
5670 	}
5671 }
5672 
5673 enum latency_range {
5674 	lowest_latency = 0,
5675 	low_latency = 1,
5676 	bulk_latency = 2,
5677 	latency_invalid = 255
5678 };
5679 
5680 /**
5681  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5682  *  @q_vector: pointer to q_vector
5683  *
5684  *  Stores a new ITR value based on strictly on packet size.  This
5685  *  algorithm is less sophisticated than that used in igb_update_itr,
5686  *  due to the difficulty of synchronizing statistics across multiple
5687  *  receive rings.  The divisors and thresholds used by this function
5688  *  were determined based on theoretical maximum wire speed and testing
5689  *  data, in order to minimize response time while increasing bulk
5690  *  throughput.
5691  *  This functionality is controlled by ethtool's coalescing settings.
5692  *  NOTE:  This function is called only when operating in a multiqueue
5693  *         receive environment.
5694  **/
5695 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5696 {
5697 	int new_val = q_vector->itr_val;
5698 	int avg_wire_size = 0;
5699 	struct igb_adapter *adapter = q_vector->adapter;
5700 	unsigned int packets;
5701 
5702 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5703 	 * ints/sec - ITR timer value of 120 ticks.
5704 	 */
5705 	if (adapter->link_speed != SPEED_1000) {
5706 		new_val = IGB_4K_ITR;
5707 		goto set_itr_val;
5708 	}
5709 
5710 	packets = q_vector->rx.total_packets;
5711 	if (packets)
5712 		avg_wire_size = q_vector->rx.total_bytes / packets;
5713 
5714 	packets = q_vector->tx.total_packets;
5715 	if (packets)
5716 		avg_wire_size = max_t(u32, avg_wire_size,
5717 				      q_vector->tx.total_bytes / packets);
5718 
5719 	/* if avg_wire_size isn't set no work was done */
5720 	if (!avg_wire_size)
5721 		goto clear_counts;
5722 
5723 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5724 	avg_wire_size += 24;
5725 
5726 	/* Don't starve jumbo frames */
5727 	avg_wire_size = min(avg_wire_size, 3000);
5728 
5729 	/* Give a little boost to mid-size frames */
5730 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5731 		new_val = avg_wire_size / 3;
5732 	else
5733 		new_val = avg_wire_size / 2;
5734 
5735 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5736 	if (new_val < IGB_20K_ITR &&
5737 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5738 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5739 		new_val = IGB_20K_ITR;
5740 
5741 set_itr_val:
5742 	if (new_val != q_vector->itr_val) {
5743 		q_vector->itr_val = new_val;
5744 		q_vector->set_itr = 1;
5745 	}
5746 clear_counts:
5747 	q_vector->rx.total_bytes = 0;
5748 	q_vector->rx.total_packets = 0;
5749 	q_vector->tx.total_bytes = 0;
5750 	q_vector->tx.total_packets = 0;
5751 }
5752 
5753 /**
5754  *  igb_update_itr - update the dynamic ITR value based on statistics
5755  *  @q_vector: pointer to q_vector
5756  *  @ring_container: ring info to update the itr for
5757  *
5758  *  Stores a new ITR value based on packets and byte
5759  *  counts during the last interrupt.  The advantage of per interrupt
5760  *  computation is faster updates and more accurate ITR for the current
5761  *  traffic pattern.  Constants in this function were computed
5762  *  based on theoretical maximum wire speed and thresholds were set based
5763  *  on testing data as well as attempting to minimize response time
5764  *  while increasing bulk throughput.
5765  *  This functionality is controlled by ethtool's coalescing settings.
5766  *  NOTE:  These calculations are only valid when operating in a single-
5767  *         queue environment.
5768  **/
5769 static void igb_update_itr(struct igb_q_vector *q_vector,
5770 			   struct igb_ring_container *ring_container)
5771 {
5772 	unsigned int packets = ring_container->total_packets;
5773 	unsigned int bytes = ring_container->total_bytes;
5774 	u8 itrval = ring_container->itr;
5775 
5776 	/* no packets, exit with status unchanged */
5777 	if (packets == 0)
5778 		return;
5779 
5780 	switch (itrval) {
5781 	case lowest_latency:
5782 		/* handle TSO and jumbo frames */
5783 		if (bytes/packets > 8000)
5784 			itrval = bulk_latency;
5785 		else if ((packets < 5) && (bytes > 512))
5786 			itrval = low_latency;
5787 		break;
5788 	case low_latency:  /* 50 usec aka 20000 ints/s */
5789 		if (bytes > 10000) {
5790 			/* this if handles the TSO accounting */
5791 			if (bytes/packets > 8000)
5792 				itrval = bulk_latency;
5793 			else if ((packets < 10) || ((bytes/packets) > 1200))
5794 				itrval = bulk_latency;
5795 			else if ((packets > 35))
5796 				itrval = lowest_latency;
5797 		} else if (bytes/packets > 2000) {
5798 			itrval = bulk_latency;
5799 		} else if (packets <= 2 && bytes < 512) {
5800 			itrval = lowest_latency;
5801 		}
5802 		break;
5803 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5804 		if (bytes > 25000) {
5805 			if (packets > 35)
5806 				itrval = low_latency;
5807 		} else if (bytes < 1500) {
5808 			itrval = low_latency;
5809 		}
5810 		break;
5811 	}
5812 
5813 	/* clear work counters since we have the values we need */
5814 	ring_container->total_bytes = 0;
5815 	ring_container->total_packets = 0;
5816 
5817 	/* write updated itr to ring container */
5818 	ring_container->itr = itrval;
5819 }
5820 
5821 static void igb_set_itr(struct igb_q_vector *q_vector)
5822 {
5823 	struct igb_adapter *adapter = q_vector->adapter;
5824 	u32 new_itr = q_vector->itr_val;
5825 	u8 current_itr = 0;
5826 
5827 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5828 	if (adapter->link_speed != SPEED_1000) {
5829 		current_itr = 0;
5830 		new_itr = IGB_4K_ITR;
5831 		goto set_itr_now;
5832 	}
5833 
5834 	igb_update_itr(q_vector, &q_vector->tx);
5835 	igb_update_itr(q_vector, &q_vector->rx);
5836 
5837 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5838 
5839 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5840 	if (current_itr == lowest_latency &&
5841 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5842 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5843 		current_itr = low_latency;
5844 
5845 	switch (current_itr) {
5846 	/* counts and packets in update_itr are dependent on these numbers */
5847 	case lowest_latency:
5848 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5849 		break;
5850 	case low_latency:
5851 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5852 		break;
5853 	case bulk_latency:
5854 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5855 		break;
5856 	default:
5857 		break;
5858 	}
5859 
5860 set_itr_now:
5861 	if (new_itr != q_vector->itr_val) {
5862 		/* this attempts to bias the interrupt rate towards Bulk
5863 		 * by adding intermediate steps when interrupt rate is
5864 		 * increasing
5865 		 */
5866 		new_itr = new_itr > q_vector->itr_val ?
5867 			  max((new_itr * q_vector->itr_val) /
5868 			  (new_itr + (q_vector->itr_val >> 2)),
5869 			  new_itr) : new_itr;
5870 		/* Don't write the value here; it resets the adapter's
5871 		 * internal timer, and causes us to delay far longer than
5872 		 * we should between interrupts.  Instead, we write the ITR
5873 		 * value at the beginning of the next interrupt so the timing
5874 		 * ends up being correct.
5875 		 */
5876 		q_vector->itr_val = new_itr;
5877 		q_vector->set_itr = 1;
5878 	}
5879 }
5880 
5881 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5882 			    struct igb_tx_buffer *first,
5883 			    u32 vlan_macip_lens, u32 type_tucmd,
5884 			    u32 mss_l4len_idx)
5885 {
5886 	struct e1000_adv_tx_context_desc *context_desc;
5887 	u16 i = tx_ring->next_to_use;
5888 	struct timespec64 ts;
5889 
5890 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5891 
5892 	i++;
5893 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5894 
5895 	/* set bits to identify this as an advanced context descriptor */
5896 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5897 
5898 	/* For 82575, context index must be unique per ring. */
5899 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5900 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5901 
5902 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5903 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5904 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5905 
5906 	/* We assume there is always a valid tx time available. Invalid times
5907 	 * should have been handled by the upper layers.
5908 	 */
5909 	if (tx_ring->launchtime_enable) {
5910 		ts = ktime_to_timespec64(first->skb->tstamp);
5911 		skb_txtime_consumed(first->skb);
5912 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5913 	} else {
5914 		context_desc->seqnum_seed = 0;
5915 	}
5916 }
5917 
5918 static int igb_tso(struct igb_ring *tx_ring,
5919 		   struct igb_tx_buffer *first,
5920 		   u8 *hdr_len)
5921 {
5922 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5923 	struct sk_buff *skb = first->skb;
5924 	union {
5925 		struct iphdr *v4;
5926 		struct ipv6hdr *v6;
5927 		unsigned char *hdr;
5928 	} ip;
5929 	union {
5930 		struct tcphdr *tcp;
5931 		struct udphdr *udp;
5932 		unsigned char *hdr;
5933 	} l4;
5934 	u32 paylen, l4_offset;
5935 	int err;
5936 
5937 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5938 		return 0;
5939 
5940 	if (!skb_is_gso(skb))
5941 		return 0;
5942 
5943 	err = skb_cow_head(skb, 0);
5944 	if (err < 0)
5945 		return err;
5946 
5947 	ip.hdr = skb_network_header(skb);
5948 	l4.hdr = skb_checksum_start(skb);
5949 
5950 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5951 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5952 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5953 
5954 	/* initialize outer IP header fields */
5955 	if (ip.v4->version == 4) {
5956 		unsigned char *csum_start = skb_checksum_start(skb);
5957 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5958 
5959 		/* IP header will have to cancel out any data that
5960 		 * is not a part of the outer IP header
5961 		 */
5962 		ip.v4->check = csum_fold(csum_partial(trans_start,
5963 						      csum_start - trans_start,
5964 						      0));
5965 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5966 
5967 		ip.v4->tot_len = 0;
5968 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5969 				   IGB_TX_FLAGS_CSUM |
5970 				   IGB_TX_FLAGS_IPV4;
5971 	} else {
5972 		ip.v6->payload_len = 0;
5973 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5974 				   IGB_TX_FLAGS_CSUM;
5975 	}
5976 
5977 	/* determine offset of inner transport header */
5978 	l4_offset = l4.hdr - skb->data;
5979 
5980 	/* remove payload length from inner checksum */
5981 	paylen = skb->len - l4_offset;
5982 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5983 		/* compute length of segmentation header */
5984 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5985 		csum_replace_by_diff(&l4.tcp->check,
5986 			(__force __wsum)htonl(paylen));
5987 	} else {
5988 		/* compute length of segmentation header */
5989 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5990 		csum_replace_by_diff(&l4.udp->check,
5991 				     (__force __wsum)htonl(paylen));
5992 	}
5993 
5994 	/* update gso size and bytecount with header size */
5995 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5996 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5997 
5998 	/* MSS L4LEN IDX */
5999 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6000 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6001 
6002 	/* VLAN MACLEN IPLEN */
6003 	vlan_macip_lens = l4.hdr - ip.hdr;
6004 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6005 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6006 
6007 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6008 			type_tucmd, mss_l4len_idx);
6009 
6010 	return 1;
6011 }
6012 
6013 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6014 {
6015 	struct sk_buff *skb = first->skb;
6016 	u32 vlan_macip_lens = 0;
6017 	u32 type_tucmd = 0;
6018 
6019 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6020 csum_failed:
6021 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6022 		    !tx_ring->launchtime_enable)
6023 			return;
6024 		goto no_csum;
6025 	}
6026 
6027 	switch (skb->csum_offset) {
6028 	case offsetof(struct tcphdr, check):
6029 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6030 		fallthrough;
6031 	case offsetof(struct udphdr, check):
6032 		break;
6033 	case offsetof(struct sctphdr, checksum):
6034 		/* validate that this is actually an SCTP request */
6035 		if (skb_csum_is_sctp(skb)) {
6036 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6037 			break;
6038 		}
6039 		fallthrough;
6040 	default:
6041 		skb_checksum_help(skb);
6042 		goto csum_failed;
6043 	}
6044 
6045 	/* update TX checksum flag */
6046 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6047 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6048 			  skb_network_offset(skb);
6049 no_csum:
6050 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6051 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6052 
6053 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6054 }
6055 
6056 #define IGB_SET_FLAG(_input, _flag, _result) \
6057 	((_flag <= _result) ? \
6058 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6059 	 ((u32)(_input & _flag) / (_flag / _result)))
6060 
6061 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6062 {
6063 	/* set type for advanced descriptor with frame checksum insertion */
6064 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6065 		       E1000_ADVTXD_DCMD_DEXT |
6066 		       E1000_ADVTXD_DCMD_IFCS;
6067 
6068 	/* set HW vlan bit if vlan is present */
6069 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6070 				 (E1000_ADVTXD_DCMD_VLE));
6071 
6072 	/* set segmentation bits for TSO */
6073 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6074 				 (E1000_ADVTXD_DCMD_TSE));
6075 
6076 	/* set timestamp bit if present */
6077 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6078 				 (E1000_ADVTXD_MAC_TSTAMP));
6079 
6080 	/* insert frame checksum */
6081 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6082 
6083 	return cmd_type;
6084 }
6085 
6086 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6087 				 union e1000_adv_tx_desc *tx_desc,
6088 				 u32 tx_flags, unsigned int paylen)
6089 {
6090 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6091 
6092 	/* 82575 requires a unique index per ring */
6093 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6094 		olinfo_status |= tx_ring->reg_idx << 4;
6095 
6096 	/* insert L4 checksum */
6097 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6098 				      IGB_TX_FLAGS_CSUM,
6099 				      (E1000_TXD_POPTS_TXSM << 8));
6100 
6101 	/* insert IPv4 checksum */
6102 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6103 				      IGB_TX_FLAGS_IPV4,
6104 				      (E1000_TXD_POPTS_IXSM << 8));
6105 
6106 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6107 }
6108 
6109 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6110 {
6111 	struct net_device *netdev = tx_ring->netdev;
6112 
6113 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6114 
6115 	/* Herbert's original patch had:
6116 	 *  smp_mb__after_netif_stop_queue();
6117 	 * but since that doesn't exist yet, just open code it.
6118 	 */
6119 	smp_mb();
6120 
6121 	/* We need to check again in a case another CPU has just
6122 	 * made room available.
6123 	 */
6124 	if (igb_desc_unused(tx_ring) < size)
6125 		return -EBUSY;
6126 
6127 	/* A reprieve! */
6128 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6129 
6130 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6131 	tx_ring->tx_stats.restart_queue2++;
6132 	u64_stats_update_end(&tx_ring->tx_syncp2);
6133 
6134 	return 0;
6135 }
6136 
6137 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6138 {
6139 	if (igb_desc_unused(tx_ring) >= size)
6140 		return 0;
6141 	return __igb_maybe_stop_tx(tx_ring, size);
6142 }
6143 
6144 static int igb_tx_map(struct igb_ring *tx_ring,
6145 		      struct igb_tx_buffer *first,
6146 		      const u8 hdr_len)
6147 {
6148 	struct sk_buff *skb = first->skb;
6149 	struct igb_tx_buffer *tx_buffer;
6150 	union e1000_adv_tx_desc *tx_desc;
6151 	skb_frag_t *frag;
6152 	dma_addr_t dma;
6153 	unsigned int data_len, size;
6154 	u32 tx_flags = first->tx_flags;
6155 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6156 	u16 i = tx_ring->next_to_use;
6157 
6158 	tx_desc = IGB_TX_DESC(tx_ring, i);
6159 
6160 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6161 
6162 	size = skb_headlen(skb);
6163 	data_len = skb->data_len;
6164 
6165 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6166 
6167 	tx_buffer = first;
6168 
6169 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6170 		if (dma_mapping_error(tx_ring->dev, dma))
6171 			goto dma_error;
6172 
6173 		/* record length, and DMA address */
6174 		dma_unmap_len_set(tx_buffer, len, size);
6175 		dma_unmap_addr_set(tx_buffer, dma, dma);
6176 
6177 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6178 
6179 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6180 			tx_desc->read.cmd_type_len =
6181 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6182 
6183 			i++;
6184 			tx_desc++;
6185 			if (i == tx_ring->count) {
6186 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6187 				i = 0;
6188 			}
6189 			tx_desc->read.olinfo_status = 0;
6190 
6191 			dma += IGB_MAX_DATA_PER_TXD;
6192 			size -= IGB_MAX_DATA_PER_TXD;
6193 
6194 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6195 		}
6196 
6197 		if (likely(!data_len))
6198 			break;
6199 
6200 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6201 
6202 		i++;
6203 		tx_desc++;
6204 		if (i == tx_ring->count) {
6205 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6206 			i = 0;
6207 		}
6208 		tx_desc->read.olinfo_status = 0;
6209 
6210 		size = skb_frag_size(frag);
6211 		data_len -= size;
6212 
6213 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6214 				       size, DMA_TO_DEVICE);
6215 
6216 		tx_buffer = &tx_ring->tx_buffer_info[i];
6217 	}
6218 
6219 	/* write last descriptor with RS and EOP bits */
6220 	cmd_type |= size | IGB_TXD_DCMD;
6221 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6222 
6223 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6224 
6225 	/* set the timestamp */
6226 	first->time_stamp = jiffies;
6227 
6228 	skb_tx_timestamp(skb);
6229 
6230 	/* Force memory writes to complete before letting h/w know there
6231 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6232 	 * memory model archs, such as IA-64).
6233 	 *
6234 	 * We also need this memory barrier to make certain all of the
6235 	 * status bits have been updated before next_to_watch is written.
6236 	 */
6237 	dma_wmb();
6238 
6239 	/* set next_to_watch value indicating a packet is present */
6240 	first->next_to_watch = tx_desc;
6241 
6242 	i++;
6243 	if (i == tx_ring->count)
6244 		i = 0;
6245 
6246 	tx_ring->next_to_use = i;
6247 
6248 	/* Make sure there is space in the ring for the next send. */
6249 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6250 
6251 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6252 		writel(i, tx_ring->tail);
6253 	}
6254 	return 0;
6255 
6256 dma_error:
6257 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6258 	tx_buffer = &tx_ring->tx_buffer_info[i];
6259 
6260 	/* clear dma mappings for failed tx_buffer_info map */
6261 	while (tx_buffer != first) {
6262 		if (dma_unmap_len(tx_buffer, len))
6263 			dma_unmap_page(tx_ring->dev,
6264 				       dma_unmap_addr(tx_buffer, dma),
6265 				       dma_unmap_len(tx_buffer, len),
6266 				       DMA_TO_DEVICE);
6267 		dma_unmap_len_set(tx_buffer, len, 0);
6268 
6269 		if (i-- == 0)
6270 			i += tx_ring->count;
6271 		tx_buffer = &tx_ring->tx_buffer_info[i];
6272 	}
6273 
6274 	if (dma_unmap_len(tx_buffer, len))
6275 		dma_unmap_single(tx_ring->dev,
6276 				 dma_unmap_addr(tx_buffer, dma),
6277 				 dma_unmap_len(tx_buffer, len),
6278 				 DMA_TO_DEVICE);
6279 	dma_unmap_len_set(tx_buffer, len, 0);
6280 
6281 	dev_kfree_skb_any(tx_buffer->skb);
6282 	tx_buffer->skb = NULL;
6283 
6284 	tx_ring->next_to_use = i;
6285 
6286 	return -1;
6287 }
6288 
6289 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6290 		      struct igb_ring *tx_ring,
6291 		      struct xdp_frame *xdpf)
6292 {
6293 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6294 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6295 	u16 count, i, index = tx_ring->next_to_use;
6296 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6297 	struct igb_tx_buffer *tx_buffer = tx_head;
6298 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6299 	u32 len = xdpf->len, cmd_type, olinfo_status;
6300 	void *data = xdpf->data;
6301 
6302 	count = TXD_USE_COUNT(len);
6303 	for (i = 0; i < nr_frags; i++)
6304 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6305 
6306 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6307 		return IGB_XDP_CONSUMED;
6308 
6309 	i = 0;
6310 	/* record the location of the first descriptor for this packet */
6311 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6312 	tx_head->type = IGB_TYPE_XDP;
6313 	tx_head->gso_segs = 1;
6314 	tx_head->xdpf = xdpf;
6315 
6316 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6317 	/* 82575 requires a unique index per ring */
6318 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6319 		olinfo_status |= tx_ring->reg_idx << 4;
6320 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6321 
6322 	for (;;) {
6323 		dma_addr_t dma;
6324 
6325 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6326 		if (dma_mapping_error(tx_ring->dev, dma))
6327 			goto unmap;
6328 
6329 		/* record length, and DMA address */
6330 		dma_unmap_len_set(tx_buffer, len, len);
6331 		dma_unmap_addr_set(tx_buffer, dma, dma);
6332 
6333 		/* put descriptor type bits */
6334 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6335 			   E1000_ADVTXD_DCMD_IFCS | len;
6336 
6337 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6338 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6339 
6340 		tx_buffer->protocol = 0;
6341 
6342 		if (++index == tx_ring->count)
6343 			index = 0;
6344 
6345 		if (i == nr_frags)
6346 			break;
6347 
6348 		tx_buffer = &tx_ring->tx_buffer_info[index];
6349 		tx_desc = IGB_TX_DESC(tx_ring, index);
6350 		tx_desc->read.olinfo_status = 0;
6351 
6352 		data = skb_frag_address(&sinfo->frags[i]);
6353 		len = skb_frag_size(&sinfo->frags[i]);
6354 		i++;
6355 	}
6356 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6357 
6358 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6359 	/* set the timestamp */
6360 	tx_head->time_stamp = jiffies;
6361 
6362 	/* Avoid any potential race with xdp_xmit and cleanup */
6363 	smp_wmb();
6364 
6365 	/* set next_to_watch value indicating a packet is present */
6366 	tx_head->next_to_watch = tx_desc;
6367 	tx_ring->next_to_use = index;
6368 
6369 	/* Make sure there is space in the ring for the next send. */
6370 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6371 
6372 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6373 		writel(index, tx_ring->tail);
6374 
6375 	return IGB_XDP_TX;
6376 
6377 unmap:
6378 	for (;;) {
6379 		tx_buffer = &tx_ring->tx_buffer_info[index];
6380 		if (dma_unmap_len(tx_buffer, len))
6381 			dma_unmap_page(tx_ring->dev,
6382 				       dma_unmap_addr(tx_buffer, dma),
6383 				       dma_unmap_len(tx_buffer, len),
6384 				       DMA_TO_DEVICE);
6385 		dma_unmap_len_set(tx_buffer, len, 0);
6386 		if (tx_buffer == tx_head)
6387 			break;
6388 
6389 		if (!index)
6390 			index += tx_ring->count;
6391 		index--;
6392 	}
6393 
6394 	return IGB_XDP_CONSUMED;
6395 }
6396 
6397 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6398 				struct igb_ring *tx_ring)
6399 {
6400 	struct igb_tx_buffer *first;
6401 	int tso;
6402 	u32 tx_flags = 0;
6403 	unsigned short f;
6404 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6405 	__be16 protocol = vlan_get_protocol(skb);
6406 	u8 hdr_len = 0;
6407 
6408 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6409 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6410 	 *       + 2 desc gap to keep tail from touching head,
6411 	 *       + 1 desc for context descriptor,
6412 	 * otherwise try next time
6413 	 */
6414 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6415 		count += TXD_USE_COUNT(skb_frag_size(
6416 						&skb_shinfo(skb)->frags[f]));
6417 
6418 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6419 		/* this is a hard error */
6420 		return NETDEV_TX_BUSY;
6421 	}
6422 
6423 	/* record the location of the first descriptor for this packet */
6424 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6425 	first->type = IGB_TYPE_SKB;
6426 	first->skb = skb;
6427 	first->bytecount = skb->len;
6428 	first->gso_segs = 1;
6429 
6430 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6431 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6432 
6433 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6434 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6435 					   &adapter->state)) {
6436 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6437 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6438 
6439 			adapter->ptp_tx_skb = skb_get(skb);
6440 			adapter->ptp_tx_start = jiffies;
6441 			if (adapter->hw.mac.type == e1000_82576)
6442 				schedule_work(&adapter->ptp_tx_work);
6443 		} else {
6444 			adapter->tx_hwtstamp_skipped++;
6445 		}
6446 	}
6447 
6448 	if (skb_vlan_tag_present(skb)) {
6449 		tx_flags |= IGB_TX_FLAGS_VLAN;
6450 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6451 	}
6452 
6453 	/* record initial flags and protocol */
6454 	first->tx_flags = tx_flags;
6455 	first->protocol = protocol;
6456 
6457 	tso = igb_tso(tx_ring, first, &hdr_len);
6458 	if (tso < 0)
6459 		goto out_drop;
6460 	else if (!tso)
6461 		igb_tx_csum(tx_ring, first);
6462 
6463 	if (igb_tx_map(tx_ring, first, hdr_len))
6464 		goto cleanup_tx_tstamp;
6465 
6466 	return NETDEV_TX_OK;
6467 
6468 out_drop:
6469 	dev_kfree_skb_any(first->skb);
6470 	first->skb = NULL;
6471 cleanup_tx_tstamp:
6472 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6473 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6474 
6475 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6476 		adapter->ptp_tx_skb = NULL;
6477 		if (adapter->hw.mac.type == e1000_82576)
6478 			cancel_work_sync(&adapter->ptp_tx_work);
6479 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6480 	}
6481 
6482 	return NETDEV_TX_OK;
6483 }
6484 
6485 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6486 						    struct sk_buff *skb)
6487 {
6488 	unsigned int r_idx = skb->queue_mapping;
6489 
6490 	if (r_idx >= adapter->num_tx_queues)
6491 		r_idx = r_idx % adapter->num_tx_queues;
6492 
6493 	return adapter->tx_ring[r_idx];
6494 }
6495 
6496 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6497 				  struct net_device *netdev)
6498 {
6499 	struct igb_adapter *adapter = netdev_priv(netdev);
6500 
6501 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6502 	 * in order to meet this minimum size requirement.
6503 	 */
6504 	if (skb_put_padto(skb, 17))
6505 		return NETDEV_TX_OK;
6506 
6507 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6508 }
6509 
6510 /**
6511  *  igb_tx_timeout - Respond to a Tx Hang
6512  *  @netdev: network interface device structure
6513  *  @txqueue: number of the Tx queue that hung (unused)
6514  **/
6515 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6516 {
6517 	struct igb_adapter *adapter = netdev_priv(netdev);
6518 	struct e1000_hw *hw = &adapter->hw;
6519 
6520 	/* Do the reset outside of interrupt context */
6521 	adapter->tx_timeout_count++;
6522 
6523 	if (hw->mac.type >= e1000_82580)
6524 		hw->dev_spec._82575.global_device_reset = true;
6525 
6526 	schedule_work(&adapter->reset_task);
6527 	wr32(E1000_EICS,
6528 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6529 }
6530 
6531 static void igb_reset_task(struct work_struct *work)
6532 {
6533 	struct igb_adapter *adapter;
6534 	adapter = container_of(work, struct igb_adapter, reset_task);
6535 
6536 	rtnl_lock();
6537 	/* If we're already down or resetting, just bail */
6538 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6539 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6540 		rtnl_unlock();
6541 		return;
6542 	}
6543 
6544 	igb_dump(adapter);
6545 	netdev_err(adapter->netdev, "Reset adapter\n");
6546 	igb_reinit_locked(adapter);
6547 	rtnl_unlock();
6548 }
6549 
6550 /**
6551  *  igb_get_stats64 - Get System Network Statistics
6552  *  @netdev: network interface device structure
6553  *  @stats: rtnl_link_stats64 pointer
6554  **/
6555 static void igb_get_stats64(struct net_device *netdev,
6556 			    struct rtnl_link_stats64 *stats)
6557 {
6558 	struct igb_adapter *adapter = netdev_priv(netdev);
6559 
6560 	spin_lock(&adapter->stats64_lock);
6561 	igb_update_stats(adapter);
6562 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6563 	spin_unlock(&adapter->stats64_lock);
6564 }
6565 
6566 /**
6567  *  igb_change_mtu - Change the Maximum Transfer Unit
6568  *  @netdev: network interface device structure
6569  *  @new_mtu: new value for maximum frame size
6570  *
6571  *  Returns 0 on success, negative on failure
6572  **/
6573 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6574 {
6575 	struct igb_adapter *adapter = netdev_priv(netdev);
6576 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6577 
6578 	if (adapter->xdp_prog) {
6579 		int i;
6580 
6581 		for (i = 0; i < adapter->num_rx_queues; i++) {
6582 			struct igb_ring *ring = adapter->rx_ring[i];
6583 
6584 			if (max_frame > igb_rx_bufsz(ring)) {
6585 				netdev_warn(adapter->netdev,
6586 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6587 					    max_frame);
6588 				return -EINVAL;
6589 			}
6590 		}
6591 	}
6592 
6593 	/* adjust max frame to be at least the size of a standard frame */
6594 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6595 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6596 
6597 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6598 		usleep_range(1000, 2000);
6599 
6600 	/* igb_down has a dependency on max_frame_size */
6601 	adapter->max_frame_size = max_frame;
6602 
6603 	if (netif_running(netdev))
6604 		igb_down(adapter);
6605 
6606 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6607 		   netdev->mtu, new_mtu);
6608 	netdev->mtu = new_mtu;
6609 
6610 	if (netif_running(netdev))
6611 		igb_up(adapter);
6612 	else
6613 		igb_reset(adapter);
6614 
6615 	clear_bit(__IGB_RESETTING, &adapter->state);
6616 
6617 	return 0;
6618 }
6619 
6620 /**
6621  *  igb_update_stats - Update the board statistics counters
6622  *  @adapter: board private structure
6623  **/
6624 void igb_update_stats(struct igb_adapter *adapter)
6625 {
6626 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6627 	struct e1000_hw *hw = &adapter->hw;
6628 	struct pci_dev *pdev = adapter->pdev;
6629 	u32 reg, mpc;
6630 	int i;
6631 	u64 bytes, packets;
6632 	unsigned int start;
6633 	u64 _bytes, _packets;
6634 
6635 	/* Prevent stats update while adapter is being reset, or if the pci
6636 	 * connection is down.
6637 	 */
6638 	if (adapter->link_speed == 0)
6639 		return;
6640 	if (pci_channel_offline(pdev))
6641 		return;
6642 
6643 	bytes = 0;
6644 	packets = 0;
6645 
6646 	rcu_read_lock();
6647 	for (i = 0; i < adapter->num_rx_queues; i++) {
6648 		struct igb_ring *ring = adapter->rx_ring[i];
6649 		u32 rqdpc = rd32(E1000_RQDPC(i));
6650 		if (hw->mac.type >= e1000_i210)
6651 			wr32(E1000_RQDPC(i), 0);
6652 
6653 		if (rqdpc) {
6654 			ring->rx_stats.drops += rqdpc;
6655 			net_stats->rx_fifo_errors += rqdpc;
6656 		}
6657 
6658 		do {
6659 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6660 			_bytes = ring->rx_stats.bytes;
6661 			_packets = ring->rx_stats.packets;
6662 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6663 		bytes += _bytes;
6664 		packets += _packets;
6665 	}
6666 
6667 	net_stats->rx_bytes = bytes;
6668 	net_stats->rx_packets = packets;
6669 
6670 	bytes = 0;
6671 	packets = 0;
6672 	for (i = 0; i < adapter->num_tx_queues; i++) {
6673 		struct igb_ring *ring = adapter->tx_ring[i];
6674 		do {
6675 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6676 			_bytes = ring->tx_stats.bytes;
6677 			_packets = ring->tx_stats.packets;
6678 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6679 		bytes += _bytes;
6680 		packets += _packets;
6681 	}
6682 	net_stats->tx_bytes = bytes;
6683 	net_stats->tx_packets = packets;
6684 	rcu_read_unlock();
6685 
6686 	/* read stats registers */
6687 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6688 	adapter->stats.gprc += rd32(E1000_GPRC);
6689 	adapter->stats.gorc += rd32(E1000_GORCL);
6690 	rd32(E1000_GORCH); /* clear GORCL */
6691 	adapter->stats.bprc += rd32(E1000_BPRC);
6692 	adapter->stats.mprc += rd32(E1000_MPRC);
6693 	adapter->stats.roc += rd32(E1000_ROC);
6694 
6695 	adapter->stats.prc64 += rd32(E1000_PRC64);
6696 	adapter->stats.prc127 += rd32(E1000_PRC127);
6697 	adapter->stats.prc255 += rd32(E1000_PRC255);
6698 	adapter->stats.prc511 += rd32(E1000_PRC511);
6699 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6700 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6701 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6702 	adapter->stats.sec += rd32(E1000_SEC);
6703 
6704 	mpc = rd32(E1000_MPC);
6705 	adapter->stats.mpc += mpc;
6706 	net_stats->rx_fifo_errors += mpc;
6707 	adapter->stats.scc += rd32(E1000_SCC);
6708 	adapter->stats.ecol += rd32(E1000_ECOL);
6709 	adapter->stats.mcc += rd32(E1000_MCC);
6710 	adapter->stats.latecol += rd32(E1000_LATECOL);
6711 	adapter->stats.dc += rd32(E1000_DC);
6712 	adapter->stats.rlec += rd32(E1000_RLEC);
6713 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6714 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6715 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6716 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6717 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6718 	adapter->stats.gptc += rd32(E1000_GPTC);
6719 	adapter->stats.gotc += rd32(E1000_GOTCL);
6720 	rd32(E1000_GOTCH); /* clear GOTCL */
6721 	adapter->stats.rnbc += rd32(E1000_RNBC);
6722 	adapter->stats.ruc += rd32(E1000_RUC);
6723 	adapter->stats.rfc += rd32(E1000_RFC);
6724 	adapter->stats.rjc += rd32(E1000_RJC);
6725 	adapter->stats.tor += rd32(E1000_TORH);
6726 	adapter->stats.tot += rd32(E1000_TOTH);
6727 	adapter->stats.tpr += rd32(E1000_TPR);
6728 
6729 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6730 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6731 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6732 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6733 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6734 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6735 
6736 	adapter->stats.mptc += rd32(E1000_MPTC);
6737 	adapter->stats.bptc += rd32(E1000_BPTC);
6738 
6739 	adapter->stats.tpt += rd32(E1000_TPT);
6740 	adapter->stats.colc += rd32(E1000_COLC);
6741 
6742 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6743 	/* read internal phy specific stats */
6744 	reg = rd32(E1000_CTRL_EXT);
6745 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6746 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6747 
6748 		/* this stat has invalid values on i210/i211 */
6749 		if ((hw->mac.type != e1000_i210) &&
6750 		    (hw->mac.type != e1000_i211))
6751 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6752 	}
6753 
6754 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6755 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6756 
6757 	adapter->stats.iac += rd32(E1000_IAC);
6758 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6759 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6760 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6761 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6762 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6763 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6764 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6765 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6766 
6767 	/* Fill out the OS statistics structure */
6768 	net_stats->multicast = adapter->stats.mprc;
6769 	net_stats->collisions = adapter->stats.colc;
6770 
6771 	/* Rx Errors */
6772 
6773 	/* RLEC on some newer hardware can be incorrect so build
6774 	 * our own version based on RUC and ROC
6775 	 */
6776 	net_stats->rx_errors = adapter->stats.rxerrc +
6777 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6778 		adapter->stats.ruc + adapter->stats.roc +
6779 		adapter->stats.cexterr;
6780 	net_stats->rx_length_errors = adapter->stats.ruc +
6781 				      adapter->stats.roc;
6782 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6783 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6784 	net_stats->rx_missed_errors = adapter->stats.mpc;
6785 
6786 	/* Tx Errors */
6787 	net_stats->tx_errors = adapter->stats.ecol +
6788 			       adapter->stats.latecol;
6789 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6790 	net_stats->tx_window_errors = adapter->stats.latecol;
6791 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6792 
6793 	/* Tx Dropped needs to be maintained elsewhere */
6794 
6795 	/* Management Stats */
6796 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6797 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6798 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6799 
6800 	/* OS2BMC Stats */
6801 	reg = rd32(E1000_MANC);
6802 	if (reg & E1000_MANC_EN_BMC2OS) {
6803 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6804 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6805 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6806 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6807 	}
6808 }
6809 
6810 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6811 {
6812 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6813 	struct e1000_hw *hw = &adapter->hw;
6814 	struct timespec64 ts;
6815 	u32 tsauxc;
6816 
6817 	if (pin < 0 || pin >= IGB_N_PEROUT)
6818 		return;
6819 
6820 	spin_lock(&adapter->tmreg_lock);
6821 
6822 	if (hw->mac.type == e1000_82580 ||
6823 	    hw->mac.type == e1000_i354 ||
6824 	    hw->mac.type == e1000_i350) {
6825 		s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6826 		u32 systiml, systimh, level_mask, level, rem;
6827 		u64 systim, now;
6828 
6829 		/* read systim registers in sequence */
6830 		rd32(E1000_SYSTIMR);
6831 		systiml = rd32(E1000_SYSTIML);
6832 		systimh = rd32(E1000_SYSTIMH);
6833 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6834 		now = timecounter_cyc2time(&adapter->tc, systim);
6835 
6836 		if (pin < 2) {
6837 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6838 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6839 		} else {
6840 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6841 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6842 		}
6843 
6844 		div_u64_rem(now, ns, &rem);
6845 		systim = systim + (ns - rem);
6846 
6847 		/* synchronize pin level with rising/falling edges */
6848 		div_u64_rem(now, ns << 1, &rem);
6849 		if (rem < ns) {
6850 			/* first half of period */
6851 			if (level == 0) {
6852 				/* output is already low, skip this period */
6853 				systim += ns;
6854 				pr_notice("igb: periodic output on %s missed falling edge\n",
6855 					  adapter->sdp_config[pin].name);
6856 			}
6857 		} else {
6858 			/* second half of period */
6859 			if (level == 1) {
6860 				/* output is already high, skip this period */
6861 				systim += ns;
6862 				pr_notice("igb: periodic output on %s missed rising edge\n",
6863 					  adapter->sdp_config[pin].name);
6864 			}
6865 		}
6866 
6867 		/* for this chip family tv_sec is the upper part of the binary value,
6868 		 * so not seconds
6869 		 */
6870 		ts.tv_nsec = (u32)systim;
6871 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6872 	} else {
6873 		ts = timespec64_add(adapter->perout[pin].start,
6874 				    adapter->perout[pin].period);
6875 	}
6876 
6877 	/* u32 conversion of tv_sec is safe until y2106 */
6878 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6879 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6880 	tsauxc = rd32(E1000_TSAUXC);
6881 	tsauxc |= TSAUXC_EN_TT0;
6882 	wr32(E1000_TSAUXC, tsauxc);
6883 	adapter->perout[pin].start = ts;
6884 
6885 	spin_unlock(&adapter->tmreg_lock);
6886 }
6887 
6888 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6889 {
6890 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6891 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6892 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6893 	struct e1000_hw *hw = &adapter->hw;
6894 	struct ptp_clock_event event;
6895 	struct timespec64 ts;
6896 
6897 	if (pin < 0 || pin >= IGB_N_EXTTS)
6898 		return;
6899 
6900 	if (hw->mac.type == e1000_82580 ||
6901 	    hw->mac.type == e1000_i354 ||
6902 	    hw->mac.type == e1000_i350) {
6903 		s64 ns = rd32(auxstmpl);
6904 
6905 		ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6906 		ts = ns_to_timespec64(ns);
6907 	} else {
6908 		ts.tv_nsec = rd32(auxstmpl);
6909 		ts.tv_sec  = rd32(auxstmph);
6910 	}
6911 
6912 	event.type = PTP_CLOCK_EXTTS;
6913 	event.index = tsintr_tt;
6914 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6915 	ptp_clock_event(adapter->ptp_clock, &event);
6916 }
6917 
6918 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6919 {
6920 	struct e1000_hw *hw = &adapter->hw;
6921 	u32 ack = 0, tsicr = rd32(E1000_TSICR);
6922 	struct ptp_clock_event event;
6923 
6924 	if (tsicr & TSINTR_SYS_WRAP) {
6925 		event.type = PTP_CLOCK_PPS;
6926 		if (adapter->ptp_caps.pps)
6927 			ptp_clock_event(adapter->ptp_clock, &event);
6928 		ack |= TSINTR_SYS_WRAP;
6929 	}
6930 
6931 	if (tsicr & E1000_TSICR_TXTS) {
6932 		/* retrieve hardware timestamp */
6933 		schedule_work(&adapter->ptp_tx_work);
6934 		ack |= E1000_TSICR_TXTS;
6935 	}
6936 
6937 	if (tsicr & TSINTR_TT0) {
6938 		igb_perout(adapter, 0);
6939 		ack |= TSINTR_TT0;
6940 	}
6941 
6942 	if (tsicr & TSINTR_TT1) {
6943 		igb_perout(adapter, 1);
6944 		ack |= TSINTR_TT1;
6945 	}
6946 
6947 	if (tsicr & TSINTR_AUTT0) {
6948 		igb_extts(adapter, 0);
6949 		ack |= TSINTR_AUTT0;
6950 	}
6951 
6952 	if (tsicr & TSINTR_AUTT1) {
6953 		igb_extts(adapter, 1);
6954 		ack |= TSINTR_AUTT1;
6955 	}
6956 
6957 	/* acknowledge the interrupts */
6958 	wr32(E1000_TSICR, ack);
6959 }
6960 
6961 static irqreturn_t igb_msix_other(int irq, void *data)
6962 {
6963 	struct igb_adapter *adapter = data;
6964 	struct e1000_hw *hw = &adapter->hw;
6965 	u32 icr = rd32(E1000_ICR);
6966 	/* reading ICR causes bit 31 of EICR to be cleared */
6967 
6968 	if (icr & E1000_ICR_DRSTA)
6969 		schedule_work(&adapter->reset_task);
6970 
6971 	if (icr & E1000_ICR_DOUTSYNC) {
6972 		/* HW is reporting DMA is out of sync */
6973 		adapter->stats.doosync++;
6974 		/* The DMA Out of Sync is also indication of a spoof event
6975 		 * in IOV mode. Check the Wrong VM Behavior register to
6976 		 * see if it is really a spoof event.
6977 		 */
6978 		igb_check_wvbr(adapter);
6979 	}
6980 
6981 	/* Check for a mailbox event */
6982 	if (icr & E1000_ICR_VMMB)
6983 		igb_msg_task(adapter);
6984 
6985 	if (icr & E1000_ICR_LSC) {
6986 		hw->mac.get_link_status = 1;
6987 		/* guard against interrupt when we're going down */
6988 		if (!test_bit(__IGB_DOWN, &adapter->state))
6989 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6990 	}
6991 
6992 	if (icr & E1000_ICR_TS)
6993 		igb_tsync_interrupt(adapter);
6994 
6995 	wr32(E1000_EIMS, adapter->eims_other);
6996 
6997 	return IRQ_HANDLED;
6998 }
6999 
7000 static void igb_write_itr(struct igb_q_vector *q_vector)
7001 {
7002 	struct igb_adapter *adapter = q_vector->adapter;
7003 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7004 
7005 	if (!q_vector->set_itr)
7006 		return;
7007 
7008 	if (!itr_val)
7009 		itr_val = 0x4;
7010 
7011 	if (adapter->hw.mac.type == e1000_82575)
7012 		itr_val |= itr_val << 16;
7013 	else
7014 		itr_val |= E1000_EITR_CNT_IGNR;
7015 
7016 	writel(itr_val, q_vector->itr_register);
7017 	q_vector->set_itr = 0;
7018 }
7019 
7020 static irqreturn_t igb_msix_ring(int irq, void *data)
7021 {
7022 	struct igb_q_vector *q_vector = data;
7023 
7024 	/* Write the ITR value calculated from the previous interrupt. */
7025 	igb_write_itr(q_vector);
7026 
7027 	napi_schedule(&q_vector->napi);
7028 
7029 	return IRQ_HANDLED;
7030 }
7031 
7032 #ifdef CONFIG_IGB_DCA
7033 static void igb_update_tx_dca(struct igb_adapter *adapter,
7034 			      struct igb_ring *tx_ring,
7035 			      int cpu)
7036 {
7037 	struct e1000_hw *hw = &adapter->hw;
7038 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7039 
7040 	if (hw->mac.type != e1000_82575)
7041 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7042 
7043 	/* We can enable relaxed ordering for reads, but not writes when
7044 	 * DCA is enabled.  This is due to a known issue in some chipsets
7045 	 * which will cause the DCA tag to be cleared.
7046 	 */
7047 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7048 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7049 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7050 
7051 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7052 }
7053 
7054 static void igb_update_rx_dca(struct igb_adapter *adapter,
7055 			      struct igb_ring *rx_ring,
7056 			      int cpu)
7057 {
7058 	struct e1000_hw *hw = &adapter->hw;
7059 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7060 
7061 	if (hw->mac.type != e1000_82575)
7062 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7063 
7064 	/* We can enable relaxed ordering for reads, but not writes when
7065 	 * DCA is enabled.  This is due to a known issue in some chipsets
7066 	 * which will cause the DCA tag to be cleared.
7067 	 */
7068 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7069 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7070 
7071 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7072 }
7073 
7074 static void igb_update_dca(struct igb_q_vector *q_vector)
7075 {
7076 	struct igb_adapter *adapter = q_vector->adapter;
7077 	int cpu = get_cpu();
7078 
7079 	if (q_vector->cpu == cpu)
7080 		goto out_no_update;
7081 
7082 	if (q_vector->tx.ring)
7083 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7084 
7085 	if (q_vector->rx.ring)
7086 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7087 
7088 	q_vector->cpu = cpu;
7089 out_no_update:
7090 	put_cpu();
7091 }
7092 
7093 static void igb_setup_dca(struct igb_adapter *adapter)
7094 {
7095 	struct e1000_hw *hw = &adapter->hw;
7096 	int i;
7097 
7098 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7099 		return;
7100 
7101 	/* Always use CB2 mode, difference is masked in the CB driver. */
7102 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7103 
7104 	for (i = 0; i < adapter->num_q_vectors; i++) {
7105 		adapter->q_vector[i]->cpu = -1;
7106 		igb_update_dca(adapter->q_vector[i]);
7107 	}
7108 }
7109 
7110 static int __igb_notify_dca(struct device *dev, void *data)
7111 {
7112 	struct net_device *netdev = dev_get_drvdata(dev);
7113 	struct igb_adapter *adapter = netdev_priv(netdev);
7114 	struct pci_dev *pdev = adapter->pdev;
7115 	struct e1000_hw *hw = &adapter->hw;
7116 	unsigned long event = *(unsigned long *)data;
7117 
7118 	switch (event) {
7119 	case DCA_PROVIDER_ADD:
7120 		/* if already enabled, don't do it again */
7121 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7122 			break;
7123 		if (dca_add_requester(dev) == 0) {
7124 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7125 			dev_info(&pdev->dev, "DCA enabled\n");
7126 			igb_setup_dca(adapter);
7127 			break;
7128 		}
7129 		fallthrough; /* since DCA is disabled. */
7130 	case DCA_PROVIDER_REMOVE:
7131 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7132 			/* without this a class_device is left
7133 			 * hanging around in the sysfs model
7134 			 */
7135 			dca_remove_requester(dev);
7136 			dev_info(&pdev->dev, "DCA disabled\n");
7137 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7138 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7139 		}
7140 		break;
7141 	}
7142 
7143 	return 0;
7144 }
7145 
7146 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7147 			  void *p)
7148 {
7149 	int ret_val;
7150 
7151 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7152 					 __igb_notify_dca);
7153 
7154 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7155 }
7156 #endif /* CONFIG_IGB_DCA */
7157 
7158 #ifdef CONFIG_PCI_IOV
7159 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7160 {
7161 	unsigned char mac_addr[ETH_ALEN];
7162 
7163 	eth_zero_addr(mac_addr);
7164 	igb_set_vf_mac(adapter, vf, mac_addr);
7165 
7166 	/* By default spoof check is enabled for all VFs */
7167 	adapter->vf_data[vf].spoofchk_enabled = true;
7168 
7169 	/* By default VFs are not trusted */
7170 	adapter->vf_data[vf].trusted = false;
7171 
7172 	return 0;
7173 }
7174 
7175 #endif
7176 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7177 {
7178 	struct e1000_hw *hw = &adapter->hw;
7179 	u32 ping;
7180 	int i;
7181 
7182 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7183 		ping = E1000_PF_CONTROL_MSG;
7184 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7185 			ping |= E1000_VT_MSGTYPE_CTS;
7186 		igb_write_mbx(hw, &ping, 1, i);
7187 	}
7188 }
7189 
7190 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7191 {
7192 	struct e1000_hw *hw = &adapter->hw;
7193 	u32 vmolr = rd32(E1000_VMOLR(vf));
7194 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7195 
7196 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7197 			    IGB_VF_FLAG_MULTI_PROMISC);
7198 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7199 
7200 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7201 		vmolr |= E1000_VMOLR_MPME;
7202 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7203 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7204 	} else {
7205 		/* if we have hashes and we are clearing a multicast promisc
7206 		 * flag we need to write the hashes to the MTA as this step
7207 		 * was previously skipped
7208 		 */
7209 		if (vf_data->num_vf_mc_hashes > 30) {
7210 			vmolr |= E1000_VMOLR_MPME;
7211 		} else if (vf_data->num_vf_mc_hashes) {
7212 			int j;
7213 
7214 			vmolr |= E1000_VMOLR_ROMPE;
7215 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7216 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7217 		}
7218 	}
7219 
7220 	wr32(E1000_VMOLR(vf), vmolr);
7221 
7222 	/* there are flags left unprocessed, likely not supported */
7223 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7224 		return -EINVAL;
7225 
7226 	return 0;
7227 }
7228 
7229 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7230 				  u32 *msgbuf, u32 vf)
7231 {
7232 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7233 	u16 *hash_list = (u16 *)&msgbuf[1];
7234 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7235 	int i;
7236 
7237 	/* salt away the number of multicast addresses assigned
7238 	 * to this VF for later use to restore when the PF multi cast
7239 	 * list changes
7240 	 */
7241 	vf_data->num_vf_mc_hashes = n;
7242 
7243 	/* only up to 30 hash values supported */
7244 	if (n > 30)
7245 		n = 30;
7246 
7247 	/* store the hashes for later use */
7248 	for (i = 0; i < n; i++)
7249 		vf_data->vf_mc_hashes[i] = hash_list[i];
7250 
7251 	/* Flush and reset the mta with the new values */
7252 	igb_set_rx_mode(adapter->netdev);
7253 
7254 	return 0;
7255 }
7256 
7257 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7258 {
7259 	struct e1000_hw *hw = &adapter->hw;
7260 	struct vf_data_storage *vf_data;
7261 	int i, j;
7262 
7263 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7264 		u32 vmolr = rd32(E1000_VMOLR(i));
7265 
7266 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7267 
7268 		vf_data = &adapter->vf_data[i];
7269 
7270 		if ((vf_data->num_vf_mc_hashes > 30) ||
7271 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7272 			vmolr |= E1000_VMOLR_MPME;
7273 		} else if (vf_data->num_vf_mc_hashes) {
7274 			vmolr |= E1000_VMOLR_ROMPE;
7275 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7276 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7277 		}
7278 		wr32(E1000_VMOLR(i), vmolr);
7279 	}
7280 }
7281 
7282 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7283 {
7284 	struct e1000_hw *hw = &adapter->hw;
7285 	u32 pool_mask, vlvf_mask, i;
7286 
7287 	/* create mask for VF and other pools */
7288 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7289 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7290 
7291 	/* drop PF from pool bits */
7292 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7293 			     adapter->vfs_allocated_count);
7294 
7295 	/* Find the vlan filter for this id */
7296 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7297 		u32 vlvf = rd32(E1000_VLVF(i));
7298 		u32 vfta_mask, vid, vfta;
7299 
7300 		/* remove the vf from the pool */
7301 		if (!(vlvf & vlvf_mask))
7302 			continue;
7303 
7304 		/* clear out bit from VLVF */
7305 		vlvf ^= vlvf_mask;
7306 
7307 		/* if other pools are present, just remove ourselves */
7308 		if (vlvf & pool_mask)
7309 			goto update_vlvfb;
7310 
7311 		/* if PF is present, leave VFTA */
7312 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7313 			goto update_vlvf;
7314 
7315 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7316 		vfta_mask = BIT(vid % 32);
7317 
7318 		/* clear bit from VFTA */
7319 		vfta = adapter->shadow_vfta[vid / 32];
7320 		if (vfta & vfta_mask)
7321 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7322 update_vlvf:
7323 		/* clear pool selection enable */
7324 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7325 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7326 		else
7327 			vlvf = 0;
7328 update_vlvfb:
7329 		/* clear pool bits */
7330 		wr32(E1000_VLVF(i), vlvf);
7331 	}
7332 }
7333 
7334 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7335 {
7336 	u32 vlvf;
7337 	int idx;
7338 
7339 	/* short cut the special case */
7340 	if (vlan == 0)
7341 		return 0;
7342 
7343 	/* Search for the VLAN id in the VLVF entries */
7344 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7345 		vlvf = rd32(E1000_VLVF(idx));
7346 		if ((vlvf & VLAN_VID_MASK) == vlan)
7347 			break;
7348 	}
7349 
7350 	return idx;
7351 }
7352 
7353 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7354 {
7355 	struct e1000_hw *hw = &adapter->hw;
7356 	u32 bits, pf_id;
7357 	int idx;
7358 
7359 	idx = igb_find_vlvf_entry(hw, vid);
7360 	if (!idx)
7361 		return;
7362 
7363 	/* See if any other pools are set for this VLAN filter
7364 	 * entry other than the PF.
7365 	 */
7366 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7367 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7368 	bits &= rd32(E1000_VLVF(idx));
7369 
7370 	/* Disable the filter so this falls into the default pool. */
7371 	if (!bits) {
7372 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7373 			wr32(E1000_VLVF(idx), BIT(pf_id));
7374 		else
7375 			wr32(E1000_VLVF(idx), 0);
7376 	}
7377 }
7378 
7379 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7380 			   bool add, u32 vf)
7381 {
7382 	int pf_id = adapter->vfs_allocated_count;
7383 	struct e1000_hw *hw = &adapter->hw;
7384 	int err;
7385 
7386 	/* If VLAN overlaps with one the PF is currently monitoring make
7387 	 * sure that we are able to allocate a VLVF entry.  This may be
7388 	 * redundant but it guarantees PF will maintain visibility to
7389 	 * the VLAN.
7390 	 */
7391 	if (add && test_bit(vid, adapter->active_vlans)) {
7392 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7393 		if (err)
7394 			return err;
7395 	}
7396 
7397 	err = igb_vfta_set(hw, vid, vf, add, false);
7398 
7399 	if (add && !err)
7400 		return err;
7401 
7402 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7403 	 * we may need to drop the PF pool bit in order to allow us to free
7404 	 * up the VLVF resources.
7405 	 */
7406 	if (test_bit(vid, adapter->active_vlans) ||
7407 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7408 		igb_update_pf_vlvf(adapter, vid);
7409 
7410 	return err;
7411 }
7412 
7413 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7414 {
7415 	struct e1000_hw *hw = &adapter->hw;
7416 
7417 	if (vid)
7418 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7419 	else
7420 		wr32(E1000_VMVIR(vf), 0);
7421 }
7422 
7423 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7424 				u16 vlan, u8 qos)
7425 {
7426 	int err;
7427 
7428 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7429 	if (err)
7430 		return err;
7431 
7432 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7433 	igb_set_vmolr(adapter, vf, !vlan);
7434 
7435 	/* revoke access to previous VLAN */
7436 	if (vlan != adapter->vf_data[vf].pf_vlan)
7437 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7438 				false, vf);
7439 
7440 	adapter->vf_data[vf].pf_vlan = vlan;
7441 	adapter->vf_data[vf].pf_qos = qos;
7442 	igb_set_vf_vlan_strip(adapter, vf, true);
7443 	dev_info(&adapter->pdev->dev,
7444 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7445 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7446 		dev_warn(&adapter->pdev->dev,
7447 			 "The VF VLAN has been set, but the PF device is not up.\n");
7448 		dev_warn(&adapter->pdev->dev,
7449 			 "Bring the PF device up before attempting to use the VF device.\n");
7450 	}
7451 
7452 	return err;
7453 }
7454 
7455 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7456 {
7457 	/* Restore tagless access via VLAN 0 */
7458 	igb_set_vf_vlan(adapter, 0, true, vf);
7459 
7460 	igb_set_vmvir(adapter, 0, vf);
7461 	igb_set_vmolr(adapter, vf, true);
7462 
7463 	/* Remove any PF assigned VLAN */
7464 	if (adapter->vf_data[vf].pf_vlan)
7465 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7466 				false, vf);
7467 
7468 	adapter->vf_data[vf].pf_vlan = 0;
7469 	adapter->vf_data[vf].pf_qos = 0;
7470 	igb_set_vf_vlan_strip(adapter, vf, false);
7471 
7472 	return 0;
7473 }
7474 
7475 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7476 			       u16 vlan, u8 qos, __be16 vlan_proto)
7477 {
7478 	struct igb_adapter *adapter = netdev_priv(netdev);
7479 
7480 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7481 		return -EINVAL;
7482 
7483 	if (vlan_proto != htons(ETH_P_8021Q))
7484 		return -EPROTONOSUPPORT;
7485 
7486 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7487 			       igb_disable_port_vlan(adapter, vf);
7488 }
7489 
7490 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7491 {
7492 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7493 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7494 	int ret;
7495 
7496 	if (adapter->vf_data[vf].pf_vlan)
7497 		return -1;
7498 
7499 	/* VLAN 0 is a special case, don't allow it to be removed */
7500 	if (!vid && !add)
7501 		return 0;
7502 
7503 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7504 	if (!ret)
7505 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7506 	return ret;
7507 }
7508 
7509 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7510 {
7511 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7512 
7513 	/* clear flags - except flag that indicates PF has set the MAC */
7514 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7515 	vf_data->last_nack = jiffies;
7516 
7517 	/* reset vlans for device */
7518 	igb_clear_vf_vfta(adapter, vf);
7519 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7520 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7521 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7522 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7523 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7524 
7525 	/* reset multicast table array for vf */
7526 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7527 
7528 	/* Flush and reset the mta with the new values */
7529 	igb_set_rx_mode(adapter->netdev);
7530 }
7531 
7532 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7533 {
7534 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7535 
7536 	/* clear mac address as we were hotplug removed/added */
7537 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7538 		eth_zero_addr(vf_mac);
7539 
7540 	/* process remaining reset events */
7541 	igb_vf_reset(adapter, vf);
7542 }
7543 
7544 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7545 {
7546 	struct e1000_hw *hw = &adapter->hw;
7547 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7548 	u32 reg, msgbuf[3] = {};
7549 	u8 *addr = (u8 *)(&msgbuf[1]);
7550 
7551 	/* process all the same items cleared in a function level reset */
7552 	igb_vf_reset(adapter, vf);
7553 
7554 	/* set vf mac address */
7555 	igb_set_vf_mac(adapter, vf, vf_mac);
7556 
7557 	/* enable transmit and receive for vf */
7558 	reg = rd32(E1000_VFTE);
7559 	wr32(E1000_VFTE, reg | BIT(vf));
7560 	reg = rd32(E1000_VFRE);
7561 	wr32(E1000_VFRE, reg | BIT(vf));
7562 
7563 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7564 
7565 	/* reply to reset with ack and vf mac address */
7566 	if (!is_zero_ether_addr(vf_mac)) {
7567 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7568 		memcpy(addr, vf_mac, ETH_ALEN);
7569 	} else {
7570 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7571 	}
7572 	igb_write_mbx(hw, msgbuf, 3, vf);
7573 }
7574 
7575 static void igb_flush_mac_table(struct igb_adapter *adapter)
7576 {
7577 	struct e1000_hw *hw = &adapter->hw;
7578 	int i;
7579 
7580 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7581 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7582 		eth_zero_addr(adapter->mac_table[i].addr);
7583 		adapter->mac_table[i].queue = 0;
7584 		igb_rar_set_index(adapter, i);
7585 	}
7586 }
7587 
7588 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7589 {
7590 	struct e1000_hw *hw = &adapter->hw;
7591 	/* do not count rar entries reserved for VFs MAC addresses */
7592 	int rar_entries = hw->mac.rar_entry_count -
7593 			  adapter->vfs_allocated_count;
7594 	int i, count = 0;
7595 
7596 	for (i = 0; i < rar_entries; i++) {
7597 		/* do not count default entries */
7598 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7599 			continue;
7600 
7601 		/* do not count "in use" entries for different queues */
7602 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7603 		    (adapter->mac_table[i].queue != queue))
7604 			continue;
7605 
7606 		count++;
7607 	}
7608 
7609 	return count;
7610 }
7611 
7612 /* Set default MAC address for the PF in the first RAR entry */
7613 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7614 {
7615 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7616 
7617 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7618 	mac_table->queue = adapter->vfs_allocated_count;
7619 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7620 
7621 	igb_rar_set_index(adapter, 0);
7622 }
7623 
7624 /* If the filter to be added and an already existing filter express
7625  * the same address and address type, it should be possible to only
7626  * override the other configurations, for example the queue to steer
7627  * traffic.
7628  */
7629 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7630 				      const u8 *addr, const u8 flags)
7631 {
7632 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7633 		return true;
7634 
7635 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7636 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7637 		return false;
7638 
7639 	if (!ether_addr_equal(addr, entry->addr))
7640 		return false;
7641 
7642 	return true;
7643 }
7644 
7645 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7646  * 'flags' is used to indicate what kind of match is made, match is by
7647  * default for the destination address, if matching by source address
7648  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7649  */
7650 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7651 				    const u8 *addr, const u8 queue,
7652 				    const u8 flags)
7653 {
7654 	struct e1000_hw *hw = &adapter->hw;
7655 	int rar_entries = hw->mac.rar_entry_count -
7656 			  adapter->vfs_allocated_count;
7657 	int i;
7658 
7659 	if (is_zero_ether_addr(addr))
7660 		return -EINVAL;
7661 
7662 	/* Search for the first empty entry in the MAC table.
7663 	 * Do not touch entries at the end of the table reserved for the VF MAC
7664 	 * addresses.
7665 	 */
7666 	for (i = 0; i < rar_entries; i++) {
7667 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7668 					       addr, flags))
7669 			continue;
7670 
7671 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7672 		adapter->mac_table[i].queue = queue;
7673 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7674 
7675 		igb_rar_set_index(adapter, i);
7676 		return i;
7677 	}
7678 
7679 	return -ENOSPC;
7680 }
7681 
7682 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7683 			      const u8 queue)
7684 {
7685 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7686 }
7687 
7688 /* Remove a MAC filter for 'addr' directing matching traffic to
7689  * 'queue', 'flags' is used to indicate what kind of match need to be
7690  * removed, match is by default for the destination address, if
7691  * matching by source address is to be removed the flag
7692  * IGB_MAC_STATE_SRC_ADDR can be used.
7693  */
7694 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7695 				    const u8 *addr, const u8 queue,
7696 				    const u8 flags)
7697 {
7698 	struct e1000_hw *hw = &adapter->hw;
7699 	int rar_entries = hw->mac.rar_entry_count -
7700 			  adapter->vfs_allocated_count;
7701 	int i;
7702 
7703 	if (is_zero_ether_addr(addr))
7704 		return -EINVAL;
7705 
7706 	/* Search for matching entry in the MAC table based on given address
7707 	 * and queue. Do not touch entries at the end of the table reserved
7708 	 * for the VF MAC addresses.
7709 	 */
7710 	for (i = 0; i < rar_entries; i++) {
7711 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7712 			continue;
7713 		if ((adapter->mac_table[i].state & flags) != flags)
7714 			continue;
7715 		if (adapter->mac_table[i].queue != queue)
7716 			continue;
7717 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7718 			continue;
7719 
7720 		/* When a filter for the default address is "deleted",
7721 		 * we return it to its initial configuration
7722 		 */
7723 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7724 			adapter->mac_table[i].state =
7725 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7726 			adapter->mac_table[i].queue =
7727 				adapter->vfs_allocated_count;
7728 		} else {
7729 			adapter->mac_table[i].state = 0;
7730 			adapter->mac_table[i].queue = 0;
7731 			eth_zero_addr(adapter->mac_table[i].addr);
7732 		}
7733 
7734 		igb_rar_set_index(adapter, i);
7735 		return 0;
7736 	}
7737 
7738 	return -ENOENT;
7739 }
7740 
7741 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7742 			      const u8 queue)
7743 {
7744 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7745 }
7746 
7747 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7748 				const u8 *addr, u8 queue, u8 flags)
7749 {
7750 	struct e1000_hw *hw = &adapter->hw;
7751 
7752 	/* In theory, this should be supported on 82575 as well, but
7753 	 * that part wasn't easily accessible during development.
7754 	 */
7755 	if (hw->mac.type != e1000_i210)
7756 		return -EOPNOTSUPP;
7757 
7758 	return igb_add_mac_filter_flags(adapter, addr, queue,
7759 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7760 }
7761 
7762 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7763 				const u8 *addr, u8 queue, u8 flags)
7764 {
7765 	return igb_del_mac_filter_flags(adapter, addr, queue,
7766 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7767 }
7768 
7769 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7770 {
7771 	struct igb_adapter *adapter = netdev_priv(netdev);
7772 	int ret;
7773 
7774 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7775 
7776 	return min_t(int, ret, 0);
7777 }
7778 
7779 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7780 {
7781 	struct igb_adapter *adapter = netdev_priv(netdev);
7782 
7783 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7784 
7785 	return 0;
7786 }
7787 
7788 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7789 				 const u32 info, const u8 *addr)
7790 {
7791 	struct pci_dev *pdev = adapter->pdev;
7792 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7793 	struct list_head *pos;
7794 	struct vf_mac_filter *entry = NULL;
7795 	int ret = 0;
7796 
7797 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7798 	    !vf_data->trusted) {
7799 		dev_warn(&pdev->dev,
7800 			 "VF %d requested MAC filter but is administratively denied\n",
7801 			  vf);
7802 		return -EINVAL;
7803 	}
7804 	if (!is_valid_ether_addr(addr)) {
7805 		dev_warn(&pdev->dev,
7806 			 "VF %d attempted to set invalid MAC filter\n",
7807 			  vf);
7808 		return -EINVAL;
7809 	}
7810 
7811 	switch (info) {
7812 	case E1000_VF_MAC_FILTER_CLR:
7813 		/* remove all unicast MAC filters related to the current VF */
7814 		list_for_each(pos, &adapter->vf_macs.l) {
7815 			entry = list_entry(pos, struct vf_mac_filter, l);
7816 			if (entry->vf == vf) {
7817 				entry->vf = -1;
7818 				entry->free = true;
7819 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7820 			}
7821 		}
7822 		break;
7823 	case E1000_VF_MAC_FILTER_ADD:
7824 		/* try to find empty slot in the list */
7825 		list_for_each(pos, &adapter->vf_macs.l) {
7826 			entry = list_entry(pos, struct vf_mac_filter, l);
7827 			if (entry->free)
7828 				break;
7829 		}
7830 
7831 		if (entry && entry->free) {
7832 			entry->free = false;
7833 			entry->vf = vf;
7834 			ether_addr_copy(entry->vf_mac, addr);
7835 
7836 			ret = igb_add_mac_filter(adapter, addr, vf);
7837 			ret = min_t(int, ret, 0);
7838 		} else {
7839 			ret = -ENOSPC;
7840 		}
7841 
7842 		if (ret == -ENOSPC)
7843 			dev_warn(&pdev->dev,
7844 				 "VF %d has requested MAC filter but there is no space for it\n",
7845 				 vf);
7846 		break;
7847 	default:
7848 		ret = -EINVAL;
7849 		break;
7850 	}
7851 
7852 	return ret;
7853 }
7854 
7855 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7856 {
7857 	struct pci_dev *pdev = adapter->pdev;
7858 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7859 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7860 
7861 	/* The VF MAC Address is stored in a packed array of bytes
7862 	 * starting at the second 32 bit word of the msg array
7863 	 */
7864 	unsigned char *addr = (unsigned char *)&msg[1];
7865 	int ret = 0;
7866 
7867 	if (!info) {
7868 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7869 		    !vf_data->trusted) {
7870 			dev_warn(&pdev->dev,
7871 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7872 				 vf);
7873 			return -EINVAL;
7874 		}
7875 
7876 		if (!is_valid_ether_addr(addr)) {
7877 			dev_warn(&pdev->dev,
7878 				 "VF %d attempted to set invalid MAC\n",
7879 				 vf);
7880 			return -EINVAL;
7881 		}
7882 
7883 		ret = igb_set_vf_mac(adapter, vf, addr);
7884 	} else {
7885 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7886 	}
7887 
7888 	return ret;
7889 }
7890 
7891 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7892 {
7893 	struct e1000_hw *hw = &adapter->hw;
7894 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7895 	u32 msg = E1000_VT_MSGTYPE_NACK;
7896 
7897 	/* if device isn't clear to send it shouldn't be reading either */
7898 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7899 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7900 		igb_write_mbx(hw, &msg, 1, vf);
7901 		vf_data->last_nack = jiffies;
7902 	}
7903 }
7904 
7905 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7906 {
7907 	struct pci_dev *pdev = adapter->pdev;
7908 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7909 	struct e1000_hw *hw = &adapter->hw;
7910 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7911 	s32 retval;
7912 
7913 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7914 
7915 	if (retval) {
7916 		/* if receive failed revoke VF CTS stats and restart init */
7917 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7918 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7919 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7920 			goto unlock;
7921 		goto out;
7922 	}
7923 
7924 	/* this is a message we already processed, do nothing */
7925 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7926 		goto unlock;
7927 
7928 	/* until the vf completes a reset it should not be
7929 	 * allowed to start any configuration.
7930 	 */
7931 	if (msgbuf[0] == E1000_VF_RESET) {
7932 		/* unlocks mailbox */
7933 		igb_vf_reset_msg(adapter, vf);
7934 		return;
7935 	}
7936 
7937 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7938 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7939 			goto unlock;
7940 		retval = -1;
7941 		goto out;
7942 	}
7943 
7944 	switch ((msgbuf[0] & 0xFFFF)) {
7945 	case E1000_VF_SET_MAC_ADDR:
7946 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7947 		break;
7948 	case E1000_VF_SET_PROMISC:
7949 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7950 		break;
7951 	case E1000_VF_SET_MULTICAST:
7952 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7953 		break;
7954 	case E1000_VF_SET_LPE:
7955 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7956 		break;
7957 	case E1000_VF_SET_VLAN:
7958 		retval = -1;
7959 		if (vf_data->pf_vlan)
7960 			dev_warn(&pdev->dev,
7961 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7962 				 vf);
7963 		else
7964 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7965 		break;
7966 	default:
7967 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7968 		retval = -1;
7969 		break;
7970 	}
7971 
7972 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7973 out:
7974 	/* notify the VF of the results of what it sent us */
7975 	if (retval)
7976 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7977 	else
7978 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7979 
7980 	/* unlocks mailbox */
7981 	igb_write_mbx(hw, msgbuf, 1, vf);
7982 	return;
7983 
7984 unlock:
7985 	igb_unlock_mbx(hw, vf);
7986 }
7987 
7988 static void igb_msg_task(struct igb_adapter *adapter)
7989 {
7990 	struct e1000_hw *hw = &adapter->hw;
7991 	unsigned long flags;
7992 	u32 vf;
7993 
7994 	spin_lock_irqsave(&adapter->vfs_lock, flags);
7995 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7996 		/* process any reset requests */
7997 		if (!igb_check_for_rst(hw, vf))
7998 			igb_vf_reset_event(adapter, vf);
7999 
8000 		/* process any messages pending */
8001 		if (!igb_check_for_msg(hw, vf))
8002 			igb_rcv_msg_from_vf(adapter, vf);
8003 
8004 		/* process any acks */
8005 		if (!igb_check_for_ack(hw, vf))
8006 			igb_rcv_ack_from_vf(adapter, vf);
8007 	}
8008 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8009 }
8010 
8011 /**
8012  *  igb_set_uta - Set unicast filter table address
8013  *  @adapter: board private structure
8014  *  @set: boolean indicating if we are setting or clearing bits
8015  *
8016  *  The unicast table address is a register array of 32-bit registers.
8017  *  The table is meant to be used in a way similar to how the MTA is used
8018  *  however due to certain limitations in the hardware it is necessary to
8019  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8020  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8021  **/
8022 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8023 {
8024 	struct e1000_hw *hw = &adapter->hw;
8025 	u32 uta = set ? ~0 : 0;
8026 	int i;
8027 
8028 	/* we only need to do this if VMDq is enabled */
8029 	if (!adapter->vfs_allocated_count)
8030 		return;
8031 
8032 	for (i = hw->mac.uta_reg_count; i--;)
8033 		array_wr32(E1000_UTA, i, uta);
8034 }
8035 
8036 /**
8037  *  igb_intr_msi - Interrupt Handler
8038  *  @irq: interrupt number
8039  *  @data: pointer to a network interface device structure
8040  **/
8041 static irqreturn_t igb_intr_msi(int irq, void *data)
8042 {
8043 	struct igb_adapter *adapter = data;
8044 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8045 	struct e1000_hw *hw = &adapter->hw;
8046 	/* read ICR disables interrupts using IAM */
8047 	u32 icr = rd32(E1000_ICR);
8048 
8049 	igb_write_itr(q_vector);
8050 
8051 	if (icr & E1000_ICR_DRSTA)
8052 		schedule_work(&adapter->reset_task);
8053 
8054 	if (icr & E1000_ICR_DOUTSYNC) {
8055 		/* HW is reporting DMA is out of sync */
8056 		adapter->stats.doosync++;
8057 	}
8058 
8059 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8060 		hw->mac.get_link_status = 1;
8061 		if (!test_bit(__IGB_DOWN, &adapter->state))
8062 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8063 	}
8064 
8065 	if (icr & E1000_ICR_TS)
8066 		igb_tsync_interrupt(adapter);
8067 
8068 	napi_schedule(&q_vector->napi);
8069 
8070 	return IRQ_HANDLED;
8071 }
8072 
8073 /**
8074  *  igb_intr - Legacy Interrupt Handler
8075  *  @irq: interrupt number
8076  *  @data: pointer to a network interface device structure
8077  **/
8078 static irqreturn_t igb_intr(int irq, void *data)
8079 {
8080 	struct igb_adapter *adapter = data;
8081 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8082 	struct e1000_hw *hw = &adapter->hw;
8083 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8084 	 * need for the IMC write
8085 	 */
8086 	u32 icr = rd32(E1000_ICR);
8087 
8088 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8089 	 * not set, then the adapter didn't send an interrupt
8090 	 */
8091 	if (!(icr & E1000_ICR_INT_ASSERTED))
8092 		return IRQ_NONE;
8093 
8094 	igb_write_itr(q_vector);
8095 
8096 	if (icr & E1000_ICR_DRSTA)
8097 		schedule_work(&adapter->reset_task);
8098 
8099 	if (icr & E1000_ICR_DOUTSYNC) {
8100 		/* HW is reporting DMA is out of sync */
8101 		adapter->stats.doosync++;
8102 	}
8103 
8104 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8105 		hw->mac.get_link_status = 1;
8106 		/* guard against interrupt when we're going down */
8107 		if (!test_bit(__IGB_DOWN, &adapter->state))
8108 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8109 	}
8110 
8111 	if (icr & E1000_ICR_TS)
8112 		igb_tsync_interrupt(adapter);
8113 
8114 	napi_schedule(&q_vector->napi);
8115 
8116 	return IRQ_HANDLED;
8117 }
8118 
8119 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8120 {
8121 	struct igb_adapter *adapter = q_vector->adapter;
8122 	struct e1000_hw *hw = &adapter->hw;
8123 
8124 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8125 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8126 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8127 			igb_set_itr(q_vector);
8128 		else
8129 			igb_update_ring_itr(q_vector);
8130 	}
8131 
8132 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8133 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8134 			wr32(E1000_EIMS, q_vector->eims_value);
8135 		else
8136 			igb_irq_enable(adapter);
8137 	}
8138 }
8139 
8140 /**
8141  *  igb_poll - NAPI Rx polling callback
8142  *  @napi: napi polling structure
8143  *  @budget: count of how many packets we should handle
8144  **/
8145 static int igb_poll(struct napi_struct *napi, int budget)
8146 {
8147 	struct igb_q_vector *q_vector = container_of(napi,
8148 						     struct igb_q_vector,
8149 						     napi);
8150 	bool clean_complete = true;
8151 	int work_done = 0;
8152 
8153 #ifdef CONFIG_IGB_DCA
8154 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8155 		igb_update_dca(q_vector);
8156 #endif
8157 	if (q_vector->tx.ring)
8158 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8159 
8160 	if (q_vector->rx.ring) {
8161 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8162 
8163 		work_done += cleaned;
8164 		if (cleaned >= budget)
8165 			clean_complete = false;
8166 	}
8167 
8168 	/* If all work not completed, return budget and keep polling */
8169 	if (!clean_complete)
8170 		return budget;
8171 
8172 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8173 	 * poll us due to busy-polling
8174 	 */
8175 	if (likely(napi_complete_done(napi, work_done)))
8176 		igb_ring_irq_enable(q_vector);
8177 
8178 	return work_done;
8179 }
8180 
8181 /**
8182  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8183  *  @q_vector: pointer to q_vector containing needed info
8184  *  @napi_budget: Used to determine if we are in netpoll
8185  *
8186  *  returns true if ring is completely cleaned
8187  **/
8188 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8189 {
8190 	struct igb_adapter *adapter = q_vector->adapter;
8191 	struct igb_ring *tx_ring = q_vector->tx.ring;
8192 	struct igb_tx_buffer *tx_buffer;
8193 	union e1000_adv_tx_desc *tx_desc;
8194 	unsigned int total_bytes = 0, total_packets = 0;
8195 	unsigned int budget = q_vector->tx.work_limit;
8196 	unsigned int i = tx_ring->next_to_clean;
8197 
8198 	if (test_bit(__IGB_DOWN, &adapter->state))
8199 		return true;
8200 
8201 	tx_buffer = &tx_ring->tx_buffer_info[i];
8202 	tx_desc = IGB_TX_DESC(tx_ring, i);
8203 	i -= tx_ring->count;
8204 
8205 	do {
8206 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8207 
8208 		/* if next_to_watch is not set then there is no work pending */
8209 		if (!eop_desc)
8210 			break;
8211 
8212 		/* prevent any other reads prior to eop_desc */
8213 		smp_rmb();
8214 
8215 		/* if DD is not set pending work has not been completed */
8216 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8217 			break;
8218 
8219 		/* clear next_to_watch to prevent false hangs */
8220 		tx_buffer->next_to_watch = NULL;
8221 
8222 		/* update the statistics for this packet */
8223 		total_bytes += tx_buffer->bytecount;
8224 		total_packets += tx_buffer->gso_segs;
8225 
8226 		/* free the skb */
8227 		if (tx_buffer->type == IGB_TYPE_SKB)
8228 			napi_consume_skb(tx_buffer->skb, napi_budget);
8229 		else
8230 			xdp_return_frame(tx_buffer->xdpf);
8231 
8232 		/* unmap skb header data */
8233 		dma_unmap_single(tx_ring->dev,
8234 				 dma_unmap_addr(tx_buffer, dma),
8235 				 dma_unmap_len(tx_buffer, len),
8236 				 DMA_TO_DEVICE);
8237 
8238 		/* clear tx_buffer data */
8239 		dma_unmap_len_set(tx_buffer, len, 0);
8240 
8241 		/* clear last DMA location and unmap remaining buffers */
8242 		while (tx_desc != eop_desc) {
8243 			tx_buffer++;
8244 			tx_desc++;
8245 			i++;
8246 			if (unlikely(!i)) {
8247 				i -= tx_ring->count;
8248 				tx_buffer = tx_ring->tx_buffer_info;
8249 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8250 			}
8251 
8252 			/* unmap any remaining paged data */
8253 			if (dma_unmap_len(tx_buffer, len)) {
8254 				dma_unmap_page(tx_ring->dev,
8255 					       dma_unmap_addr(tx_buffer, dma),
8256 					       dma_unmap_len(tx_buffer, len),
8257 					       DMA_TO_DEVICE);
8258 				dma_unmap_len_set(tx_buffer, len, 0);
8259 			}
8260 		}
8261 
8262 		/* move us one more past the eop_desc for start of next pkt */
8263 		tx_buffer++;
8264 		tx_desc++;
8265 		i++;
8266 		if (unlikely(!i)) {
8267 			i -= tx_ring->count;
8268 			tx_buffer = tx_ring->tx_buffer_info;
8269 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8270 		}
8271 
8272 		/* issue prefetch for next Tx descriptor */
8273 		prefetch(tx_desc);
8274 
8275 		/* update budget accounting */
8276 		budget--;
8277 	} while (likely(budget));
8278 
8279 	netdev_tx_completed_queue(txring_txq(tx_ring),
8280 				  total_packets, total_bytes);
8281 	i += tx_ring->count;
8282 	tx_ring->next_to_clean = i;
8283 	u64_stats_update_begin(&tx_ring->tx_syncp);
8284 	tx_ring->tx_stats.bytes += total_bytes;
8285 	tx_ring->tx_stats.packets += total_packets;
8286 	u64_stats_update_end(&tx_ring->tx_syncp);
8287 	q_vector->tx.total_bytes += total_bytes;
8288 	q_vector->tx.total_packets += total_packets;
8289 
8290 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8291 		struct e1000_hw *hw = &adapter->hw;
8292 
8293 		/* Detect a transmit hang in hardware, this serializes the
8294 		 * check with the clearing of time_stamp and movement of i
8295 		 */
8296 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8297 		if (tx_buffer->next_to_watch &&
8298 		    time_after(jiffies, tx_buffer->time_stamp +
8299 			       (adapter->tx_timeout_factor * HZ)) &&
8300 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8301 
8302 			/* detected Tx unit hang */
8303 			dev_err(tx_ring->dev,
8304 				"Detected Tx Unit Hang\n"
8305 				"  Tx Queue             <%d>\n"
8306 				"  TDH                  <%x>\n"
8307 				"  TDT                  <%x>\n"
8308 				"  next_to_use          <%x>\n"
8309 				"  next_to_clean        <%x>\n"
8310 				"buffer_info[next_to_clean]\n"
8311 				"  time_stamp           <%lx>\n"
8312 				"  next_to_watch        <%p>\n"
8313 				"  jiffies              <%lx>\n"
8314 				"  desc.status          <%x>\n",
8315 				tx_ring->queue_index,
8316 				rd32(E1000_TDH(tx_ring->reg_idx)),
8317 				readl(tx_ring->tail),
8318 				tx_ring->next_to_use,
8319 				tx_ring->next_to_clean,
8320 				tx_buffer->time_stamp,
8321 				tx_buffer->next_to_watch,
8322 				jiffies,
8323 				tx_buffer->next_to_watch->wb.status);
8324 			netif_stop_subqueue(tx_ring->netdev,
8325 					    tx_ring->queue_index);
8326 
8327 			/* we are about to reset, no point in enabling stuff */
8328 			return true;
8329 		}
8330 	}
8331 
8332 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8333 	if (unlikely(total_packets &&
8334 	    netif_carrier_ok(tx_ring->netdev) &&
8335 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8336 		/* Make sure that anybody stopping the queue after this
8337 		 * sees the new next_to_clean.
8338 		 */
8339 		smp_mb();
8340 		if (__netif_subqueue_stopped(tx_ring->netdev,
8341 					     tx_ring->queue_index) &&
8342 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8343 			netif_wake_subqueue(tx_ring->netdev,
8344 					    tx_ring->queue_index);
8345 
8346 			u64_stats_update_begin(&tx_ring->tx_syncp);
8347 			tx_ring->tx_stats.restart_queue++;
8348 			u64_stats_update_end(&tx_ring->tx_syncp);
8349 		}
8350 	}
8351 
8352 	return !!budget;
8353 }
8354 
8355 /**
8356  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8357  *  @rx_ring: rx descriptor ring to store buffers on
8358  *  @old_buff: donor buffer to have page reused
8359  *
8360  *  Synchronizes page for reuse by the adapter
8361  **/
8362 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8363 			      struct igb_rx_buffer *old_buff)
8364 {
8365 	struct igb_rx_buffer *new_buff;
8366 	u16 nta = rx_ring->next_to_alloc;
8367 
8368 	new_buff = &rx_ring->rx_buffer_info[nta];
8369 
8370 	/* update, and store next to alloc */
8371 	nta++;
8372 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8373 
8374 	/* Transfer page from old buffer to new buffer.
8375 	 * Move each member individually to avoid possible store
8376 	 * forwarding stalls.
8377 	 */
8378 	new_buff->dma		= old_buff->dma;
8379 	new_buff->page		= old_buff->page;
8380 	new_buff->page_offset	= old_buff->page_offset;
8381 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8382 }
8383 
8384 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8385 				  int rx_buf_pgcnt)
8386 {
8387 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8388 	struct page *page = rx_buffer->page;
8389 
8390 	/* avoid re-using remote and pfmemalloc pages */
8391 	if (!dev_page_is_reusable(page))
8392 		return false;
8393 
8394 #if (PAGE_SIZE < 8192)
8395 	/* if we are only owner of page we can reuse it */
8396 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8397 		return false;
8398 #else
8399 #define IGB_LAST_OFFSET \
8400 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8401 
8402 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8403 		return false;
8404 #endif
8405 
8406 	/* If we have drained the page fragment pool we need to update
8407 	 * the pagecnt_bias and page count so that we fully restock the
8408 	 * number of references the driver holds.
8409 	 */
8410 	if (unlikely(pagecnt_bias == 1)) {
8411 		page_ref_add(page, USHRT_MAX - 1);
8412 		rx_buffer->pagecnt_bias = USHRT_MAX;
8413 	}
8414 
8415 	return true;
8416 }
8417 
8418 /**
8419  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8420  *  @rx_ring: rx descriptor ring to transact packets on
8421  *  @rx_buffer: buffer containing page to add
8422  *  @skb: sk_buff to place the data into
8423  *  @size: size of buffer to be added
8424  *
8425  *  This function will add the data contained in rx_buffer->page to the skb.
8426  **/
8427 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8428 			    struct igb_rx_buffer *rx_buffer,
8429 			    struct sk_buff *skb,
8430 			    unsigned int size)
8431 {
8432 #if (PAGE_SIZE < 8192)
8433 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8434 #else
8435 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8436 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8437 				SKB_DATA_ALIGN(size);
8438 #endif
8439 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8440 			rx_buffer->page_offset, size, truesize);
8441 #if (PAGE_SIZE < 8192)
8442 	rx_buffer->page_offset ^= truesize;
8443 #else
8444 	rx_buffer->page_offset += truesize;
8445 #endif
8446 }
8447 
8448 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8449 					 struct igb_rx_buffer *rx_buffer,
8450 					 struct xdp_buff *xdp,
8451 					 ktime_t timestamp)
8452 {
8453 #if (PAGE_SIZE < 8192)
8454 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8455 #else
8456 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8457 					       xdp->data_hard_start);
8458 #endif
8459 	unsigned int size = xdp->data_end - xdp->data;
8460 	unsigned int headlen;
8461 	struct sk_buff *skb;
8462 
8463 	/* prefetch first cache line of first page */
8464 	net_prefetch(xdp->data);
8465 
8466 	/* allocate a skb to store the frags */
8467 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8468 	if (unlikely(!skb))
8469 		return NULL;
8470 
8471 	if (timestamp)
8472 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8473 
8474 	/* Determine available headroom for copy */
8475 	headlen = size;
8476 	if (headlen > IGB_RX_HDR_LEN)
8477 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8478 
8479 	/* align pull length to size of long to optimize memcpy performance */
8480 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8481 
8482 	/* update all of the pointers */
8483 	size -= headlen;
8484 	if (size) {
8485 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8486 				(xdp->data + headlen) - page_address(rx_buffer->page),
8487 				size, truesize);
8488 #if (PAGE_SIZE < 8192)
8489 		rx_buffer->page_offset ^= truesize;
8490 #else
8491 		rx_buffer->page_offset += truesize;
8492 #endif
8493 	} else {
8494 		rx_buffer->pagecnt_bias++;
8495 	}
8496 
8497 	return skb;
8498 }
8499 
8500 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8501 				     struct igb_rx_buffer *rx_buffer,
8502 				     struct xdp_buff *xdp,
8503 				     ktime_t timestamp)
8504 {
8505 #if (PAGE_SIZE < 8192)
8506 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8507 #else
8508 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8509 				SKB_DATA_ALIGN(xdp->data_end -
8510 					       xdp->data_hard_start);
8511 #endif
8512 	unsigned int metasize = xdp->data - xdp->data_meta;
8513 	struct sk_buff *skb;
8514 
8515 	/* prefetch first cache line of first page */
8516 	net_prefetch(xdp->data_meta);
8517 
8518 	/* build an skb around the page buffer */
8519 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8520 	if (unlikely(!skb))
8521 		return NULL;
8522 
8523 	/* update pointers within the skb to store the data */
8524 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8525 	__skb_put(skb, xdp->data_end - xdp->data);
8526 
8527 	if (metasize)
8528 		skb_metadata_set(skb, metasize);
8529 
8530 	if (timestamp)
8531 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8532 
8533 	/* update buffer offset */
8534 #if (PAGE_SIZE < 8192)
8535 	rx_buffer->page_offset ^= truesize;
8536 #else
8537 	rx_buffer->page_offset += truesize;
8538 #endif
8539 
8540 	return skb;
8541 }
8542 
8543 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8544 				   struct igb_ring *rx_ring,
8545 				   struct xdp_buff *xdp)
8546 {
8547 	int err, result = IGB_XDP_PASS;
8548 	struct bpf_prog *xdp_prog;
8549 	u32 act;
8550 
8551 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8552 
8553 	if (!xdp_prog)
8554 		goto xdp_out;
8555 
8556 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8557 
8558 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8559 	switch (act) {
8560 	case XDP_PASS:
8561 		break;
8562 	case XDP_TX:
8563 		result = igb_xdp_xmit_back(adapter, xdp);
8564 		if (result == IGB_XDP_CONSUMED)
8565 			goto out_failure;
8566 		break;
8567 	case XDP_REDIRECT:
8568 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8569 		if (err)
8570 			goto out_failure;
8571 		result = IGB_XDP_REDIR;
8572 		break;
8573 	default:
8574 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8575 		fallthrough;
8576 	case XDP_ABORTED:
8577 out_failure:
8578 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8579 		fallthrough;
8580 	case XDP_DROP:
8581 		result = IGB_XDP_CONSUMED;
8582 		break;
8583 	}
8584 xdp_out:
8585 	return ERR_PTR(-result);
8586 }
8587 
8588 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8589 					  unsigned int size)
8590 {
8591 	unsigned int truesize;
8592 
8593 #if (PAGE_SIZE < 8192)
8594 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8595 #else
8596 	truesize = ring_uses_build_skb(rx_ring) ?
8597 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8598 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8599 		SKB_DATA_ALIGN(size);
8600 #endif
8601 	return truesize;
8602 }
8603 
8604 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8605 			       struct igb_rx_buffer *rx_buffer,
8606 			       unsigned int size)
8607 {
8608 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8609 #if (PAGE_SIZE < 8192)
8610 	rx_buffer->page_offset ^= truesize;
8611 #else
8612 	rx_buffer->page_offset += truesize;
8613 #endif
8614 }
8615 
8616 static inline void igb_rx_checksum(struct igb_ring *ring,
8617 				   union e1000_adv_rx_desc *rx_desc,
8618 				   struct sk_buff *skb)
8619 {
8620 	skb_checksum_none_assert(skb);
8621 
8622 	/* Ignore Checksum bit is set */
8623 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8624 		return;
8625 
8626 	/* Rx checksum disabled via ethtool */
8627 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8628 		return;
8629 
8630 	/* TCP/UDP checksum error bit is set */
8631 	if (igb_test_staterr(rx_desc,
8632 			     E1000_RXDEXT_STATERR_TCPE |
8633 			     E1000_RXDEXT_STATERR_IPE)) {
8634 		/* work around errata with sctp packets where the TCPE aka
8635 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8636 		 * packets, (aka let the stack check the crc32c)
8637 		 */
8638 		if (!((skb->len == 60) &&
8639 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8640 			u64_stats_update_begin(&ring->rx_syncp);
8641 			ring->rx_stats.csum_err++;
8642 			u64_stats_update_end(&ring->rx_syncp);
8643 		}
8644 		/* let the stack verify checksum errors */
8645 		return;
8646 	}
8647 	/* It must be a TCP or UDP packet with a valid checksum */
8648 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8649 				      E1000_RXD_STAT_UDPCS))
8650 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8651 
8652 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8653 		le32_to_cpu(rx_desc->wb.upper.status_error));
8654 }
8655 
8656 static inline void igb_rx_hash(struct igb_ring *ring,
8657 			       union e1000_adv_rx_desc *rx_desc,
8658 			       struct sk_buff *skb)
8659 {
8660 	if (ring->netdev->features & NETIF_F_RXHASH)
8661 		skb_set_hash(skb,
8662 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8663 			     PKT_HASH_TYPE_L3);
8664 }
8665 
8666 /**
8667  *  igb_is_non_eop - process handling of non-EOP buffers
8668  *  @rx_ring: Rx ring being processed
8669  *  @rx_desc: Rx descriptor for current buffer
8670  *
8671  *  This function updates next to clean.  If the buffer is an EOP buffer
8672  *  this function exits returning false, otherwise it will place the
8673  *  sk_buff in the next buffer to be chained and return true indicating
8674  *  that this is in fact a non-EOP buffer.
8675  **/
8676 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8677 			   union e1000_adv_rx_desc *rx_desc)
8678 {
8679 	u32 ntc = rx_ring->next_to_clean + 1;
8680 
8681 	/* fetch, update, and store next to clean */
8682 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8683 	rx_ring->next_to_clean = ntc;
8684 
8685 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8686 
8687 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8688 		return false;
8689 
8690 	return true;
8691 }
8692 
8693 /**
8694  *  igb_cleanup_headers - Correct corrupted or empty headers
8695  *  @rx_ring: rx descriptor ring packet is being transacted on
8696  *  @rx_desc: pointer to the EOP Rx descriptor
8697  *  @skb: pointer to current skb being fixed
8698  *
8699  *  Address the case where we are pulling data in on pages only
8700  *  and as such no data is present in the skb header.
8701  *
8702  *  In addition if skb is not at least 60 bytes we need to pad it so that
8703  *  it is large enough to qualify as a valid Ethernet frame.
8704  *
8705  *  Returns true if an error was encountered and skb was freed.
8706  **/
8707 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8708 				union e1000_adv_rx_desc *rx_desc,
8709 				struct sk_buff *skb)
8710 {
8711 	/* XDP packets use error pointer so abort at this point */
8712 	if (IS_ERR(skb))
8713 		return true;
8714 
8715 	if (unlikely((igb_test_staterr(rx_desc,
8716 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8717 		struct net_device *netdev = rx_ring->netdev;
8718 		if (!(netdev->features & NETIF_F_RXALL)) {
8719 			dev_kfree_skb_any(skb);
8720 			return true;
8721 		}
8722 	}
8723 
8724 	/* if eth_skb_pad returns an error the skb was freed */
8725 	if (eth_skb_pad(skb))
8726 		return true;
8727 
8728 	return false;
8729 }
8730 
8731 /**
8732  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8733  *  @rx_ring: rx descriptor ring packet is being transacted on
8734  *  @rx_desc: pointer to the EOP Rx descriptor
8735  *  @skb: pointer to current skb being populated
8736  *
8737  *  This function checks the ring, descriptor, and packet information in
8738  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8739  *  other fields within the skb.
8740  **/
8741 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8742 				   union e1000_adv_rx_desc *rx_desc,
8743 				   struct sk_buff *skb)
8744 {
8745 	struct net_device *dev = rx_ring->netdev;
8746 
8747 	igb_rx_hash(rx_ring, rx_desc, skb);
8748 
8749 	igb_rx_checksum(rx_ring, rx_desc, skb);
8750 
8751 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8752 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8753 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8754 
8755 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8756 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8757 		u16 vid;
8758 
8759 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8760 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8761 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8762 		else
8763 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8764 
8765 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8766 	}
8767 
8768 	skb_record_rx_queue(skb, rx_ring->queue_index);
8769 
8770 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8771 }
8772 
8773 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8774 {
8775 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8776 }
8777 
8778 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8779 					       const unsigned int size, int *rx_buf_pgcnt)
8780 {
8781 	struct igb_rx_buffer *rx_buffer;
8782 
8783 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8784 	*rx_buf_pgcnt =
8785 #if (PAGE_SIZE < 8192)
8786 		page_count(rx_buffer->page);
8787 #else
8788 		0;
8789 #endif
8790 	prefetchw(rx_buffer->page);
8791 
8792 	/* we are reusing so sync this buffer for CPU use */
8793 	dma_sync_single_range_for_cpu(rx_ring->dev,
8794 				      rx_buffer->dma,
8795 				      rx_buffer->page_offset,
8796 				      size,
8797 				      DMA_FROM_DEVICE);
8798 
8799 	rx_buffer->pagecnt_bias--;
8800 
8801 	return rx_buffer;
8802 }
8803 
8804 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8805 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8806 {
8807 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8808 		/* hand second half of page back to the ring */
8809 		igb_reuse_rx_page(rx_ring, rx_buffer);
8810 	} else {
8811 		/* We are not reusing the buffer so unmap it and free
8812 		 * any references we are holding to it
8813 		 */
8814 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8815 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8816 				     IGB_RX_DMA_ATTR);
8817 		__page_frag_cache_drain(rx_buffer->page,
8818 					rx_buffer->pagecnt_bias);
8819 	}
8820 
8821 	/* clear contents of rx_buffer */
8822 	rx_buffer->page = NULL;
8823 }
8824 
8825 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8826 {
8827 	struct igb_adapter *adapter = q_vector->adapter;
8828 	struct igb_ring *rx_ring = q_vector->rx.ring;
8829 	struct sk_buff *skb = rx_ring->skb;
8830 	unsigned int total_bytes = 0, total_packets = 0;
8831 	u16 cleaned_count = igb_desc_unused(rx_ring);
8832 	unsigned int xdp_xmit = 0;
8833 	struct xdp_buff xdp;
8834 	u32 frame_sz = 0;
8835 	int rx_buf_pgcnt;
8836 
8837 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8838 #if (PAGE_SIZE < 8192)
8839 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8840 #endif
8841 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8842 
8843 	while (likely(total_packets < budget)) {
8844 		union e1000_adv_rx_desc *rx_desc;
8845 		struct igb_rx_buffer *rx_buffer;
8846 		ktime_t timestamp = 0;
8847 		int pkt_offset = 0;
8848 		unsigned int size;
8849 		void *pktbuf;
8850 
8851 		/* return some buffers to hardware, one at a time is too slow */
8852 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8853 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8854 			cleaned_count = 0;
8855 		}
8856 
8857 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8858 		size = le16_to_cpu(rx_desc->wb.upper.length);
8859 		if (!size)
8860 			break;
8861 
8862 		/* This memory barrier is needed to keep us from reading
8863 		 * any other fields out of the rx_desc until we know the
8864 		 * descriptor has been written back
8865 		 */
8866 		dma_rmb();
8867 
8868 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8869 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8870 
8871 		/* pull rx packet timestamp if available and valid */
8872 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8873 			int ts_hdr_len;
8874 
8875 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8876 							 pktbuf, &timestamp);
8877 
8878 			pkt_offset += ts_hdr_len;
8879 			size -= ts_hdr_len;
8880 		}
8881 
8882 		/* retrieve a buffer from the ring */
8883 		if (!skb) {
8884 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8885 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8886 
8887 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8888 			xdp_buff_clear_frags_flag(&xdp);
8889 #if (PAGE_SIZE > 4096)
8890 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8891 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8892 #endif
8893 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8894 		}
8895 
8896 		if (IS_ERR(skb)) {
8897 			unsigned int xdp_res = -PTR_ERR(skb);
8898 
8899 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8900 				xdp_xmit |= xdp_res;
8901 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8902 			} else {
8903 				rx_buffer->pagecnt_bias++;
8904 			}
8905 			total_packets++;
8906 			total_bytes += size;
8907 		} else if (skb)
8908 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8909 		else if (ring_uses_build_skb(rx_ring))
8910 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8911 					    timestamp);
8912 		else
8913 			skb = igb_construct_skb(rx_ring, rx_buffer,
8914 						&xdp, timestamp);
8915 
8916 		/* exit if we failed to retrieve a buffer */
8917 		if (!skb) {
8918 			rx_ring->rx_stats.alloc_failed++;
8919 			rx_buffer->pagecnt_bias++;
8920 			break;
8921 		}
8922 
8923 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8924 		cleaned_count++;
8925 
8926 		/* fetch next buffer in frame if non-eop */
8927 		if (igb_is_non_eop(rx_ring, rx_desc))
8928 			continue;
8929 
8930 		/* verify the packet layout is correct */
8931 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8932 			skb = NULL;
8933 			continue;
8934 		}
8935 
8936 		/* probably a little skewed due to removing CRC */
8937 		total_bytes += skb->len;
8938 
8939 		/* populate checksum, timestamp, VLAN, and protocol */
8940 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8941 
8942 		napi_gro_receive(&q_vector->napi, skb);
8943 
8944 		/* reset skb pointer */
8945 		skb = NULL;
8946 
8947 		/* update budget accounting */
8948 		total_packets++;
8949 	}
8950 
8951 	/* place incomplete frames back on ring for completion */
8952 	rx_ring->skb = skb;
8953 
8954 	if (xdp_xmit & IGB_XDP_REDIR)
8955 		xdp_do_flush();
8956 
8957 	if (xdp_xmit & IGB_XDP_TX) {
8958 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8959 
8960 		igb_xdp_ring_update_tail(tx_ring);
8961 	}
8962 
8963 	u64_stats_update_begin(&rx_ring->rx_syncp);
8964 	rx_ring->rx_stats.packets += total_packets;
8965 	rx_ring->rx_stats.bytes += total_bytes;
8966 	u64_stats_update_end(&rx_ring->rx_syncp);
8967 	q_vector->rx.total_packets += total_packets;
8968 	q_vector->rx.total_bytes += total_bytes;
8969 
8970 	if (cleaned_count)
8971 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8972 
8973 	return total_packets;
8974 }
8975 
8976 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8977 				  struct igb_rx_buffer *bi)
8978 {
8979 	struct page *page = bi->page;
8980 	dma_addr_t dma;
8981 
8982 	/* since we are recycling buffers we should seldom need to alloc */
8983 	if (likely(page))
8984 		return true;
8985 
8986 	/* alloc new page for storage */
8987 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8988 	if (unlikely(!page)) {
8989 		rx_ring->rx_stats.alloc_failed++;
8990 		return false;
8991 	}
8992 
8993 	/* map page for use */
8994 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8995 				 igb_rx_pg_size(rx_ring),
8996 				 DMA_FROM_DEVICE,
8997 				 IGB_RX_DMA_ATTR);
8998 
8999 	/* if mapping failed free memory back to system since
9000 	 * there isn't much point in holding memory we can't use
9001 	 */
9002 	if (dma_mapping_error(rx_ring->dev, dma)) {
9003 		__free_pages(page, igb_rx_pg_order(rx_ring));
9004 
9005 		rx_ring->rx_stats.alloc_failed++;
9006 		return false;
9007 	}
9008 
9009 	bi->dma = dma;
9010 	bi->page = page;
9011 	bi->page_offset = igb_rx_offset(rx_ring);
9012 	page_ref_add(page, USHRT_MAX - 1);
9013 	bi->pagecnt_bias = USHRT_MAX;
9014 
9015 	return true;
9016 }
9017 
9018 /**
9019  *  igb_alloc_rx_buffers - Replace used receive buffers
9020  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9021  *  @cleaned_count: count of buffers to allocate
9022  **/
9023 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9024 {
9025 	union e1000_adv_rx_desc *rx_desc;
9026 	struct igb_rx_buffer *bi;
9027 	u16 i = rx_ring->next_to_use;
9028 	u16 bufsz;
9029 
9030 	/* nothing to do */
9031 	if (!cleaned_count)
9032 		return;
9033 
9034 	rx_desc = IGB_RX_DESC(rx_ring, i);
9035 	bi = &rx_ring->rx_buffer_info[i];
9036 	i -= rx_ring->count;
9037 
9038 	bufsz = igb_rx_bufsz(rx_ring);
9039 
9040 	do {
9041 		if (!igb_alloc_mapped_page(rx_ring, bi))
9042 			break;
9043 
9044 		/* sync the buffer for use by the device */
9045 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9046 						 bi->page_offset, bufsz,
9047 						 DMA_FROM_DEVICE);
9048 
9049 		/* Refresh the desc even if buffer_addrs didn't change
9050 		 * because each write-back erases this info.
9051 		 */
9052 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9053 
9054 		rx_desc++;
9055 		bi++;
9056 		i++;
9057 		if (unlikely(!i)) {
9058 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9059 			bi = rx_ring->rx_buffer_info;
9060 			i -= rx_ring->count;
9061 		}
9062 
9063 		/* clear the length for the next_to_use descriptor */
9064 		rx_desc->wb.upper.length = 0;
9065 
9066 		cleaned_count--;
9067 	} while (cleaned_count);
9068 
9069 	i += rx_ring->count;
9070 
9071 	if (rx_ring->next_to_use != i) {
9072 		/* record the next descriptor to use */
9073 		rx_ring->next_to_use = i;
9074 
9075 		/* update next to alloc since we have filled the ring */
9076 		rx_ring->next_to_alloc = i;
9077 
9078 		/* Force memory writes to complete before letting h/w
9079 		 * know there are new descriptors to fetch.  (Only
9080 		 * applicable for weak-ordered memory model archs,
9081 		 * such as IA-64).
9082 		 */
9083 		dma_wmb();
9084 		writel(i, rx_ring->tail);
9085 	}
9086 }
9087 
9088 /**
9089  * igb_mii_ioctl -
9090  * @netdev: pointer to netdev struct
9091  * @ifr: interface structure
9092  * @cmd: ioctl command to execute
9093  **/
9094 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9095 {
9096 	struct igb_adapter *adapter = netdev_priv(netdev);
9097 	struct mii_ioctl_data *data = if_mii(ifr);
9098 
9099 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9100 		return -EOPNOTSUPP;
9101 
9102 	switch (cmd) {
9103 	case SIOCGMIIPHY:
9104 		data->phy_id = adapter->hw.phy.addr;
9105 		break;
9106 	case SIOCGMIIREG:
9107 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9108 				     &data->val_out))
9109 			return -EIO;
9110 		break;
9111 	case SIOCSMIIREG:
9112 	default:
9113 		return -EOPNOTSUPP;
9114 	}
9115 	return 0;
9116 }
9117 
9118 /**
9119  * igb_ioctl -
9120  * @netdev: pointer to netdev struct
9121  * @ifr: interface structure
9122  * @cmd: ioctl command to execute
9123  **/
9124 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9125 {
9126 	switch (cmd) {
9127 	case SIOCGMIIPHY:
9128 	case SIOCGMIIREG:
9129 	case SIOCSMIIREG:
9130 		return igb_mii_ioctl(netdev, ifr, cmd);
9131 	case SIOCGHWTSTAMP:
9132 		return igb_ptp_get_ts_config(netdev, ifr);
9133 	case SIOCSHWTSTAMP:
9134 		return igb_ptp_set_ts_config(netdev, ifr);
9135 	default:
9136 		return -EOPNOTSUPP;
9137 	}
9138 }
9139 
9140 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9141 {
9142 	struct igb_adapter *adapter = hw->back;
9143 
9144 	pci_read_config_word(adapter->pdev, reg, value);
9145 }
9146 
9147 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9148 {
9149 	struct igb_adapter *adapter = hw->back;
9150 
9151 	pci_write_config_word(adapter->pdev, reg, *value);
9152 }
9153 
9154 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9155 {
9156 	struct igb_adapter *adapter = hw->back;
9157 
9158 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9159 		return -E1000_ERR_CONFIG;
9160 
9161 	return 0;
9162 }
9163 
9164 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9165 {
9166 	struct igb_adapter *adapter = hw->back;
9167 
9168 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9169 		return -E1000_ERR_CONFIG;
9170 
9171 	return 0;
9172 }
9173 
9174 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9175 {
9176 	struct igb_adapter *adapter = netdev_priv(netdev);
9177 	struct e1000_hw *hw = &adapter->hw;
9178 	u32 ctrl, rctl;
9179 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9180 
9181 	if (enable) {
9182 		/* enable VLAN tag insert/strip */
9183 		ctrl = rd32(E1000_CTRL);
9184 		ctrl |= E1000_CTRL_VME;
9185 		wr32(E1000_CTRL, ctrl);
9186 
9187 		/* Disable CFI check */
9188 		rctl = rd32(E1000_RCTL);
9189 		rctl &= ~E1000_RCTL_CFIEN;
9190 		wr32(E1000_RCTL, rctl);
9191 	} else {
9192 		/* disable VLAN tag insert/strip */
9193 		ctrl = rd32(E1000_CTRL);
9194 		ctrl &= ~E1000_CTRL_VME;
9195 		wr32(E1000_CTRL, ctrl);
9196 	}
9197 
9198 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9199 }
9200 
9201 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9202 			       __be16 proto, u16 vid)
9203 {
9204 	struct igb_adapter *adapter = netdev_priv(netdev);
9205 	struct e1000_hw *hw = &adapter->hw;
9206 	int pf_id = adapter->vfs_allocated_count;
9207 
9208 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9209 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9210 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9211 
9212 	set_bit(vid, adapter->active_vlans);
9213 
9214 	return 0;
9215 }
9216 
9217 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9218 				__be16 proto, u16 vid)
9219 {
9220 	struct igb_adapter *adapter = netdev_priv(netdev);
9221 	int pf_id = adapter->vfs_allocated_count;
9222 	struct e1000_hw *hw = &adapter->hw;
9223 
9224 	/* remove VID from filter table */
9225 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9226 		igb_vfta_set(hw, vid, pf_id, false, true);
9227 
9228 	clear_bit(vid, adapter->active_vlans);
9229 
9230 	return 0;
9231 }
9232 
9233 static void igb_restore_vlan(struct igb_adapter *adapter)
9234 {
9235 	u16 vid = 1;
9236 
9237 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9238 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9239 
9240 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9241 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9242 }
9243 
9244 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9245 {
9246 	struct pci_dev *pdev = adapter->pdev;
9247 	struct e1000_mac_info *mac = &adapter->hw.mac;
9248 
9249 	mac->autoneg = 0;
9250 
9251 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9252 	 * for the switch() below to work
9253 	 */
9254 	if ((spd & 1) || (dplx & ~1))
9255 		goto err_inval;
9256 
9257 	/* Fiber NIC's only allow 1000 gbps Full duplex
9258 	 * and 100Mbps Full duplex for 100baseFx sfp
9259 	 */
9260 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9261 		switch (spd + dplx) {
9262 		case SPEED_10 + DUPLEX_HALF:
9263 		case SPEED_10 + DUPLEX_FULL:
9264 		case SPEED_100 + DUPLEX_HALF:
9265 			goto err_inval;
9266 		default:
9267 			break;
9268 		}
9269 	}
9270 
9271 	switch (spd + dplx) {
9272 	case SPEED_10 + DUPLEX_HALF:
9273 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9274 		break;
9275 	case SPEED_10 + DUPLEX_FULL:
9276 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9277 		break;
9278 	case SPEED_100 + DUPLEX_HALF:
9279 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9280 		break;
9281 	case SPEED_100 + DUPLEX_FULL:
9282 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9283 		break;
9284 	case SPEED_1000 + DUPLEX_FULL:
9285 		mac->autoneg = 1;
9286 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9287 		break;
9288 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9289 	default:
9290 		goto err_inval;
9291 	}
9292 
9293 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9294 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9295 
9296 	return 0;
9297 
9298 err_inval:
9299 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9300 	return -EINVAL;
9301 }
9302 
9303 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9304 			  bool runtime)
9305 {
9306 	struct net_device *netdev = pci_get_drvdata(pdev);
9307 	struct igb_adapter *adapter = netdev_priv(netdev);
9308 	struct e1000_hw *hw = &adapter->hw;
9309 	u32 ctrl, rctl, status;
9310 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9311 	bool wake;
9312 
9313 	rtnl_lock();
9314 	netif_device_detach(netdev);
9315 
9316 	if (netif_running(netdev))
9317 		__igb_close(netdev, true);
9318 
9319 	igb_ptp_suspend(adapter);
9320 
9321 	igb_clear_interrupt_scheme(adapter);
9322 	rtnl_unlock();
9323 
9324 	status = rd32(E1000_STATUS);
9325 	if (status & E1000_STATUS_LU)
9326 		wufc &= ~E1000_WUFC_LNKC;
9327 
9328 	if (wufc) {
9329 		igb_setup_rctl(adapter);
9330 		igb_set_rx_mode(netdev);
9331 
9332 		/* turn on all-multi mode if wake on multicast is enabled */
9333 		if (wufc & E1000_WUFC_MC) {
9334 			rctl = rd32(E1000_RCTL);
9335 			rctl |= E1000_RCTL_MPE;
9336 			wr32(E1000_RCTL, rctl);
9337 		}
9338 
9339 		ctrl = rd32(E1000_CTRL);
9340 		ctrl |= E1000_CTRL_ADVD3WUC;
9341 		wr32(E1000_CTRL, ctrl);
9342 
9343 		/* Allow time for pending master requests to run */
9344 		igb_disable_pcie_master(hw);
9345 
9346 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9347 		wr32(E1000_WUFC, wufc);
9348 	} else {
9349 		wr32(E1000_WUC, 0);
9350 		wr32(E1000_WUFC, 0);
9351 	}
9352 
9353 	wake = wufc || adapter->en_mng_pt;
9354 	if (!wake)
9355 		igb_power_down_link(adapter);
9356 	else
9357 		igb_power_up_link(adapter);
9358 
9359 	if (enable_wake)
9360 		*enable_wake = wake;
9361 
9362 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9363 	 * would have already happened in close and is redundant.
9364 	 */
9365 	igb_release_hw_control(adapter);
9366 
9367 	pci_disable_device(pdev);
9368 
9369 	return 0;
9370 }
9371 
9372 static void igb_deliver_wake_packet(struct net_device *netdev)
9373 {
9374 	struct igb_adapter *adapter = netdev_priv(netdev);
9375 	struct e1000_hw *hw = &adapter->hw;
9376 	struct sk_buff *skb;
9377 	u32 wupl;
9378 
9379 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9380 
9381 	/* WUPM stores only the first 128 bytes of the wake packet.
9382 	 * Read the packet only if we have the whole thing.
9383 	 */
9384 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9385 		return;
9386 
9387 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9388 	if (!skb)
9389 		return;
9390 
9391 	skb_put(skb, wupl);
9392 
9393 	/* Ensure reads are 32-bit aligned */
9394 	wupl = roundup(wupl, 4);
9395 
9396 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9397 
9398 	skb->protocol = eth_type_trans(skb, netdev);
9399 	netif_rx(skb);
9400 }
9401 
9402 static int __maybe_unused igb_suspend(struct device *dev)
9403 {
9404 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9405 }
9406 
9407 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9408 {
9409 	struct pci_dev *pdev = to_pci_dev(dev);
9410 	struct net_device *netdev = pci_get_drvdata(pdev);
9411 	struct igb_adapter *adapter = netdev_priv(netdev);
9412 	struct e1000_hw *hw = &adapter->hw;
9413 	u32 err, val;
9414 
9415 	pci_set_power_state(pdev, PCI_D0);
9416 	pci_restore_state(pdev);
9417 	pci_save_state(pdev);
9418 
9419 	if (!pci_device_is_present(pdev))
9420 		return -ENODEV;
9421 	err = pci_enable_device_mem(pdev);
9422 	if (err) {
9423 		dev_err(&pdev->dev,
9424 			"igb: Cannot enable PCI device from suspend\n");
9425 		return err;
9426 	}
9427 	pci_set_master(pdev);
9428 
9429 	pci_enable_wake(pdev, PCI_D3hot, 0);
9430 	pci_enable_wake(pdev, PCI_D3cold, 0);
9431 
9432 	if (igb_init_interrupt_scheme(adapter, true)) {
9433 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9434 		return -ENOMEM;
9435 	}
9436 
9437 	igb_reset(adapter);
9438 
9439 	/* let the f/w know that the h/w is now under the control of the
9440 	 * driver.
9441 	 */
9442 	igb_get_hw_control(adapter);
9443 
9444 	val = rd32(E1000_WUS);
9445 	if (val & WAKE_PKT_WUS)
9446 		igb_deliver_wake_packet(netdev);
9447 
9448 	wr32(E1000_WUS, ~0);
9449 
9450 	if (!rpm)
9451 		rtnl_lock();
9452 	if (!err && netif_running(netdev))
9453 		err = __igb_open(netdev, true);
9454 
9455 	if (!err)
9456 		netif_device_attach(netdev);
9457 	if (!rpm)
9458 		rtnl_unlock();
9459 
9460 	return err;
9461 }
9462 
9463 static int __maybe_unused igb_resume(struct device *dev)
9464 {
9465 	return __igb_resume(dev, false);
9466 }
9467 
9468 static int __maybe_unused igb_runtime_idle(struct device *dev)
9469 {
9470 	struct net_device *netdev = dev_get_drvdata(dev);
9471 	struct igb_adapter *adapter = netdev_priv(netdev);
9472 
9473 	if (!igb_has_link(adapter))
9474 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9475 
9476 	return -EBUSY;
9477 }
9478 
9479 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9480 {
9481 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9482 }
9483 
9484 static int __maybe_unused igb_runtime_resume(struct device *dev)
9485 {
9486 	return __igb_resume(dev, true);
9487 }
9488 
9489 static void igb_shutdown(struct pci_dev *pdev)
9490 {
9491 	bool wake;
9492 
9493 	__igb_shutdown(pdev, &wake, 0);
9494 
9495 	if (system_state == SYSTEM_POWER_OFF) {
9496 		pci_wake_from_d3(pdev, wake);
9497 		pci_set_power_state(pdev, PCI_D3hot);
9498 	}
9499 }
9500 
9501 #ifdef CONFIG_PCI_IOV
9502 static int igb_sriov_reinit(struct pci_dev *dev)
9503 {
9504 	struct net_device *netdev = pci_get_drvdata(dev);
9505 	struct igb_adapter *adapter = netdev_priv(netdev);
9506 	struct pci_dev *pdev = adapter->pdev;
9507 
9508 	rtnl_lock();
9509 
9510 	if (netif_running(netdev))
9511 		igb_close(netdev);
9512 	else
9513 		igb_reset(adapter);
9514 
9515 	igb_clear_interrupt_scheme(adapter);
9516 
9517 	igb_init_queue_configuration(adapter);
9518 
9519 	if (igb_init_interrupt_scheme(adapter, true)) {
9520 		rtnl_unlock();
9521 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9522 		return -ENOMEM;
9523 	}
9524 
9525 	if (netif_running(netdev))
9526 		igb_open(netdev);
9527 
9528 	rtnl_unlock();
9529 
9530 	return 0;
9531 }
9532 
9533 static int igb_pci_disable_sriov(struct pci_dev *dev)
9534 {
9535 	int err = igb_disable_sriov(dev);
9536 
9537 	if (!err)
9538 		err = igb_sriov_reinit(dev);
9539 
9540 	return err;
9541 }
9542 
9543 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9544 {
9545 	int err = igb_enable_sriov(dev, num_vfs);
9546 
9547 	if (err)
9548 		goto out;
9549 
9550 	err = igb_sriov_reinit(dev);
9551 	if (!err)
9552 		return num_vfs;
9553 
9554 out:
9555 	return err;
9556 }
9557 
9558 #endif
9559 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9560 {
9561 #ifdef CONFIG_PCI_IOV
9562 	if (num_vfs == 0)
9563 		return igb_pci_disable_sriov(dev);
9564 	else
9565 		return igb_pci_enable_sriov(dev, num_vfs);
9566 #endif
9567 	return 0;
9568 }
9569 
9570 /**
9571  *  igb_io_error_detected - called when PCI error is detected
9572  *  @pdev: Pointer to PCI device
9573  *  @state: The current pci connection state
9574  *
9575  *  This function is called after a PCI bus error affecting
9576  *  this device has been detected.
9577  **/
9578 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9579 					      pci_channel_state_t state)
9580 {
9581 	struct net_device *netdev = pci_get_drvdata(pdev);
9582 	struct igb_adapter *adapter = netdev_priv(netdev);
9583 
9584 	netif_device_detach(netdev);
9585 
9586 	if (state == pci_channel_io_perm_failure)
9587 		return PCI_ERS_RESULT_DISCONNECT;
9588 
9589 	if (netif_running(netdev))
9590 		igb_down(adapter);
9591 	pci_disable_device(pdev);
9592 
9593 	/* Request a slot reset. */
9594 	return PCI_ERS_RESULT_NEED_RESET;
9595 }
9596 
9597 /**
9598  *  igb_io_slot_reset - called after the pci bus has been reset.
9599  *  @pdev: Pointer to PCI device
9600  *
9601  *  Restart the card from scratch, as if from a cold-boot. Implementation
9602  *  resembles the first-half of the __igb_resume routine.
9603  **/
9604 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9605 {
9606 	struct net_device *netdev = pci_get_drvdata(pdev);
9607 	struct igb_adapter *adapter = netdev_priv(netdev);
9608 	struct e1000_hw *hw = &adapter->hw;
9609 	pci_ers_result_t result;
9610 
9611 	if (pci_enable_device_mem(pdev)) {
9612 		dev_err(&pdev->dev,
9613 			"Cannot re-enable PCI device after reset.\n");
9614 		result = PCI_ERS_RESULT_DISCONNECT;
9615 	} else {
9616 		pci_set_master(pdev);
9617 		pci_restore_state(pdev);
9618 		pci_save_state(pdev);
9619 
9620 		pci_enable_wake(pdev, PCI_D3hot, 0);
9621 		pci_enable_wake(pdev, PCI_D3cold, 0);
9622 
9623 		/* In case of PCI error, adapter lose its HW address
9624 		 * so we should re-assign it here.
9625 		 */
9626 		hw->hw_addr = adapter->io_addr;
9627 
9628 		igb_reset(adapter);
9629 		wr32(E1000_WUS, ~0);
9630 		result = PCI_ERS_RESULT_RECOVERED;
9631 	}
9632 
9633 	return result;
9634 }
9635 
9636 /**
9637  *  igb_io_resume - called when traffic can start flowing again.
9638  *  @pdev: Pointer to PCI device
9639  *
9640  *  This callback is called when the error recovery driver tells us that
9641  *  its OK to resume normal operation. Implementation resembles the
9642  *  second-half of the __igb_resume routine.
9643  */
9644 static void igb_io_resume(struct pci_dev *pdev)
9645 {
9646 	struct net_device *netdev = pci_get_drvdata(pdev);
9647 	struct igb_adapter *adapter = netdev_priv(netdev);
9648 
9649 	if (netif_running(netdev)) {
9650 		if (igb_up(adapter)) {
9651 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9652 			return;
9653 		}
9654 	}
9655 
9656 	netif_device_attach(netdev);
9657 
9658 	/* let the f/w know that the h/w is now under the control of the
9659 	 * driver.
9660 	 */
9661 	igb_get_hw_control(adapter);
9662 }
9663 
9664 /**
9665  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9666  *  @adapter: Pointer to adapter structure
9667  *  @index: Index of the RAR entry which need to be synced with MAC table
9668  **/
9669 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9670 {
9671 	struct e1000_hw *hw = &adapter->hw;
9672 	u32 rar_low, rar_high;
9673 	u8 *addr = adapter->mac_table[index].addr;
9674 
9675 	/* HW expects these to be in network order when they are plugged
9676 	 * into the registers which are little endian.  In order to guarantee
9677 	 * that ordering we need to do an leXX_to_cpup here in order to be
9678 	 * ready for the byteswap that occurs with writel
9679 	 */
9680 	rar_low = le32_to_cpup((__le32 *)(addr));
9681 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9682 
9683 	/* Indicate to hardware the Address is Valid. */
9684 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9685 		if (is_valid_ether_addr(addr))
9686 			rar_high |= E1000_RAH_AV;
9687 
9688 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9689 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9690 
9691 		switch (hw->mac.type) {
9692 		case e1000_82575:
9693 		case e1000_i210:
9694 			if (adapter->mac_table[index].state &
9695 			    IGB_MAC_STATE_QUEUE_STEERING)
9696 				rar_high |= E1000_RAH_QSEL_ENABLE;
9697 
9698 			rar_high |= E1000_RAH_POOL_1 *
9699 				    adapter->mac_table[index].queue;
9700 			break;
9701 		default:
9702 			rar_high |= E1000_RAH_POOL_1 <<
9703 				    adapter->mac_table[index].queue;
9704 			break;
9705 		}
9706 	}
9707 
9708 	wr32(E1000_RAL(index), rar_low);
9709 	wrfl();
9710 	wr32(E1000_RAH(index), rar_high);
9711 	wrfl();
9712 }
9713 
9714 static int igb_set_vf_mac(struct igb_adapter *adapter,
9715 			  int vf, unsigned char *mac_addr)
9716 {
9717 	struct e1000_hw *hw = &adapter->hw;
9718 	/* VF MAC addresses start at end of receive addresses and moves
9719 	 * towards the first, as a result a collision should not be possible
9720 	 */
9721 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9722 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9723 
9724 	ether_addr_copy(vf_mac_addr, mac_addr);
9725 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9726 	adapter->mac_table[rar_entry].queue = vf;
9727 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9728 	igb_rar_set_index(adapter, rar_entry);
9729 
9730 	return 0;
9731 }
9732 
9733 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9734 {
9735 	struct igb_adapter *adapter = netdev_priv(netdev);
9736 
9737 	if (vf >= adapter->vfs_allocated_count)
9738 		return -EINVAL;
9739 
9740 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9741 	 * flag and allows to overwrite the MAC via VF netdev.  This
9742 	 * is necessary to allow libvirt a way to restore the original
9743 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9744 	 * down a VM.
9745 	 */
9746 	if (is_zero_ether_addr(mac)) {
9747 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9748 		dev_info(&adapter->pdev->dev,
9749 			 "remove administratively set MAC on VF %d\n",
9750 			 vf);
9751 	} else if (is_valid_ether_addr(mac)) {
9752 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9753 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9754 			 mac, vf);
9755 		dev_info(&adapter->pdev->dev,
9756 			 "Reload the VF driver to make this change effective.");
9757 		/* Generate additional warning if PF is down */
9758 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9759 			dev_warn(&adapter->pdev->dev,
9760 				 "The VF MAC address has been set, but the PF device is not up.\n");
9761 			dev_warn(&adapter->pdev->dev,
9762 				 "Bring the PF device up before attempting to use the VF device.\n");
9763 		}
9764 	} else {
9765 		return -EINVAL;
9766 	}
9767 	return igb_set_vf_mac(adapter, vf, mac);
9768 }
9769 
9770 static int igb_link_mbps(int internal_link_speed)
9771 {
9772 	switch (internal_link_speed) {
9773 	case SPEED_100:
9774 		return 100;
9775 	case SPEED_1000:
9776 		return 1000;
9777 	default:
9778 		return 0;
9779 	}
9780 }
9781 
9782 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9783 				  int link_speed)
9784 {
9785 	int rf_dec, rf_int;
9786 	u32 bcnrc_val;
9787 
9788 	if (tx_rate != 0) {
9789 		/* Calculate the rate factor values to set */
9790 		rf_int = link_speed / tx_rate;
9791 		rf_dec = (link_speed - (rf_int * tx_rate));
9792 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9793 			 tx_rate;
9794 
9795 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9796 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9797 			      E1000_RTTBCNRC_RF_INT_MASK);
9798 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9799 	} else {
9800 		bcnrc_val = 0;
9801 	}
9802 
9803 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9804 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9805 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9806 	 */
9807 	wr32(E1000_RTTBCNRM, 0x14);
9808 	wr32(E1000_RTTBCNRC, bcnrc_val);
9809 }
9810 
9811 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9812 {
9813 	int actual_link_speed, i;
9814 	bool reset_rate = false;
9815 
9816 	/* VF TX rate limit was not set or not supported */
9817 	if ((adapter->vf_rate_link_speed == 0) ||
9818 	    (adapter->hw.mac.type != e1000_82576))
9819 		return;
9820 
9821 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9822 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9823 		reset_rate = true;
9824 		adapter->vf_rate_link_speed = 0;
9825 		dev_info(&adapter->pdev->dev,
9826 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9827 	}
9828 
9829 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9830 		if (reset_rate)
9831 			adapter->vf_data[i].tx_rate = 0;
9832 
9833 		igb_set_vf_rate_limit(&adapter->hw, i,
9834 				      adapter->vf_data[i].tx_rate,
9835 				      actual_link_speed);
9836 	}
9837 }
9838 
9839 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9840 			     int min_tx_rate, int max_tx_rate)
9841 {
9842 	struct igb_adapter *adapter = netdev_priv(netdev);
9843 	struct e1000_hw *hw = &adapter->hw;
9844 	int actual_link_speed;
9845 
9846 	if (hw->mac.type != e1000_82576)
9847 		return -EOPNOTSUPP;
9848 
9849 	if (min_tx_rate)
9850 		return -EINVAL;
9851 
9852 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9853 	if ((vf >= adapter->vfs_allocated_count) ||
9854 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9855 	    (max_tx_rate < 0) ||
9856 	    (max_tx_rate > actual_link_speed))
9857 		return -EINVAL;
9858 
9859 	adapter->vf_rate_link_speed = actual_link_speed;
9860 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9861 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9862 
9863 	return 0;
9864 }
9865 
9866 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9867 				   bool setting)
9868 {
9869 	struct igb_adapter *adapter = netdev_priv(netdev);
9870 	struct e1000_hw *hw = &adapter->hw;
9871 	u32 reg_val, reg_offset;
9872 
9873 	if (!adapter->vfs_allocated_count)
9874 		return -EOPNOTSUPP;
9875 
9876 	if (vf >= adapter->vfs_allocated_count)
9877 		return -EINVAL;
9878 
9879 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9880 	reg_val = rd32(reg_offset);
9881 	if (setting)
9882 		reg_val |= (BIT(vf) |
9883 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9884 	else
9885 		reg_val &= ~(BIT(vf) |
9886 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9887 	wr32(reg_offset, reg_val);
9888 
9889 	adapter->vf_data[vf].spoofchk_enabled = setting;
9890 	return 0;
9891 }
9892 
9893 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9894 {
9895 	struct igb_adapter *adapter = netdev_priv(netdev);
9896 
9897 	if (vf >= adapter->vfs_allocated_count)
9898 		return -EINVAL;
9899 	if (adapter->vf_data[vf].trusted == setting)
9900 		return 0;
9901 
9902 	adapter->vf_data[vf].trusted = setting;
9903 
9904 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9905 		 vf, setting ? "" : "not ");
9906 	return 0;
9907 }
9908 
9909 static int igb_ndo_get_vf_config(struct net_device *netdev,
9910 				 int vf, struct ifla_vf_info *ivi)
9911 {
9912 	struct igb_adapter *adapter = netdev_priv(netdev);
9913 	if (vf >= adapter->vfs_allocated_count)
9914 		return -EINVAL;
9915 	ivi->vf = vf;
9916 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9917 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9918 	ivi->min_tx_rate = 0;
9919 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9920 	ivi->qos = adapter->vf_data[vf].pf_qos;
9921 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9922 	ivi->trusted = adapter->vf_data[vf].trusted;
9923 	return 0;
9924 }
9925 
9926 static void igb_vmm_control(struct igb_adapter *adapter)
9927 {
9928 	struct e1000_hw *hw = &adapter->hw;
9929 	u32 reg;
9930 
9931 	switch (hw->mac.type) {
9932 	case e1000_82575:
9933 	case e1000_i210:
9934 	case e1000_i211:
9935 	case e1000_i354:
9936 	default:
9937 		/* replication is not supported for 82575 */
9938 		return;
9939 	case e1000_82576:
9940 		/* notify HW that the MAC is adding vlan tags */
9941 		reg = rd32(E1000_DTXCTL);
9942 		reg |= E1000_DTXCTL_VLAN_ADDED;
9943 		wr32(E1000_DTXCTL, reg);
9944 		fallthrough;
9945 	case e1000_82580:
9946 		/* enable replication vlan tag stripping */
9947 		reg = rd32(E1000_RPLOLR);
9948 		reg |= E1000_RPLOLR_STRVLAN;
9949 		wr32(E1000_RPLOLR, reg);
9950 		fallthrough;
9951 	case e1000_i350:
9952 		/* none of the above registers are supported by i350 */
9953 		break;
9954 	}
9955 
9956 	if (adapter->vfs_allocated_count) {
9957 		igb_vmdq_set_loopback_pf(hw, true);
9958 		igb_vmdq_set_replication_pf(hw, true);
9959 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9960 					      adapter->vfs_allocated_count);
9961 	} else {
9962 		igb_vmdq_set_loopback_pf(hw, false);
9963 		igb_vmdq_set_replication_pf(hw, false);
9964 	}
9965 }
9966 
9967 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9968 {
9969 	struct e1000_hw *hw = &adapter->hw;
9970 	u32 dmac_thr;
9971 	u16 hwm;
9972 	u32 reg;
9973 
9974 	if (hw->mac.type > e1000_82580) {
9975 		if (adapter->flags & IGB_FLAG_DMAC) {
9976 			/* force threshold to 0. */
9977 			wr32(E1000_DMCTXTH, 0);
9978 
9979 			/* DMA Coalescing high water mark needs to be greater
9980 			 * than the Rx threshold. Set hwm to PBA - max frame
9981 			 * size in 16B units, capping it at PBA - 6KB.
9982 			 */
9983 			hwm = 64 * (pba - 6);
9984 			reg = rd32(E1000_FCRTC);
9985 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9986 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9987 				& E1000_FCRTC_RTH_COAL_MASK);
9988 			wr32(E1000_FCRTC, reg);
9989 
9990 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9991 			 * frame size, capping it at PBA - 10KB.
9992 			 */
9993 			dmac_thr = pba - 10;
9994 			reg = rd32(E1000_DMACR);
9995 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9996 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9997 				& E1000_DMACR_DMACTHR_MASK);
9998 
9999 			/* transition to L0x or L1 if available..*/
10000 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10001 
10002 			/* watchdog timer= +-1000 usec in 32usec intervals */
10003 			reg |= (1000 >> 5);
10004 
10005 			/* Disable BMC-to-OS Watchdog Enable */
10006 			if (hw->mac.type != e1000_i354)
10007 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10008 			wr32(E1000_DMACR, reg);
10009 
10010 			/* no lower threshold to disable
10011 			 * coalescing(smart fifb)-UTRESH=0
10012 			 */
10013 			wr32(E1000_DMCRTRH, 0);
10014 
10015 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10016 
10017 			wr32(E1000_DMCTLX, reg);
10018 
10019 			/* free space in tx packet buffer to wake from
10020 			 * DMA coal
10021 			 */
10022 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10023 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10024 		}
10025 
10026 		if (hw->mac.type >= e1000_i210 ||
10027 		    (adapter->flags & IGB_FLAG_DMAC)) {
10028 			reg = rd32(E1000_PCIEMISC);
10029 			reg |= E1000_PCIEMISC_LX_DECISION;
10030 			wr32(E1000_PCIEMISC, reg);
10031 		} /* endif adapter->dmac is not disabled */
10032 	} else if (hw->mac.type == e1000_82580) {
10033 		u32 reg = rd32(E1000_PCIEMISC);
10034 
10035 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10036 		wr32(E1000_DMACR, 0);
10037 	}
10038 }
10039 
10040 /**
10041  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10042  *  @hw: pointer to hardware structure
10043  *  @byte_offset: byte offset to read
10044  *  @dev_addr: device address
10045  *  @data: value read
10046  *
10047  *  Performs byte read operation over I2C interface at
10048  *  a specified device address.
10049  **/
10050 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10051 		      u8 dev_addr, u8 *data)
10052 {
10053 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10054 	struct i2c_client *this_client = adapter->i2c_client;
10055 	s32 status;
10056 	u16 swfw_mask = 0;
10057 
10058 	if (!this_client)
10059 		return E1000_ERR_I2C;
10060 
10061 	swfw_mask = E1000_SWFW_PHY0_SM;
10062 
10063 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10064 		return E1000_ERR_SWFW_SYNC;
10065 
10066 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10067 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10068 
10069 	if (status < 0)
10070 		return E1000_ERR_I2C;
10071 	else {
10072 		*data = status;
10073 		return 0;
10074 	}
10075 }
10076 
10077 /**
10078  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10079  *  @hw: pointer to hardware structure
10080  *  @byte_offset: byte offset to write
10081  *  @dev_addr: device address
10082  *  @data: value to write
10083  *
10084  *  Performs byte write operation over I2C interface at
10085  *  a specified device address.
10086  **/
10087 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10088 		       u8 dev_addr, u8 data)
10089 {
10090 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10091 	struct i2c_client *this_client = adapter->i2c_client;
10092 	s32 status;
10093 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10094 
10095 	if (!this_client)
10096 		return E1000_ERR_I2C;
10097 
10098 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10099 		return E1000_ERR_SWFW_SYNC;
10100 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10101 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10102 
10103 	if (status)
10104 		return E1000_ERR_I2C;
10105 	else
10106 		return 0;
10107 
10108 }
10109 
10110 int igb_reinit_queues(struct igb_adapter *adapter)
10111 {
10112 	struct net_device *netdev = adapter->netdev;
10113 	struct pci_dev *pdev = adapter->pdev;
10114 	int err = 0;
10115 
10116 	if (netif_running(netdev))
10117 		igb_close(netdev);
10118 
10119 	igb_reset_interrupt_capability(adapter);
10120 
10121 	if (igb_init_interrupt_scheme(adapter, true)) {
10122 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10123 		return -ENOMEM;
10124 	}
10125 
10126 	if (netif_running(netdev))
10127 		err = igb_open(netdev);
10128 
10129 	return err;
10130 }
10131 
10132 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10133 {
10134 	struct igb_nfc_filter *rule;
10135 
10136 	spin_lock(&adapter->nfc_lock);
10137 
10138 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10139 		igb_erase_filter(adapter, rule);
10140 
10141 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10142 		igb_erase_filter(adapter, rule);
10143 
10144 	spin_unlock(&adapter->nfc_lock);
10145 }
10146 
10147 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10148 {
10149 	struct igb_nfc_filter *rule;
10150 
10151 	spin_lock(&adapter->nfc_lock);
10152 
10153 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10154 		igb_add_filter(adapter, rule);
10155 
10156 	spin_unlock(&adapter->nfc_lock);
10157 }
10158 /* igb_main.c */
10159