xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 46ae4d0a489741565520195bddebc3414781e603)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #include <linux/lockdep.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static void igb_init_queue_configuration(struct igb_adapter *adapter);
111 static int igb_sw_init(struct igb_adapter *);
112 int igb_open(struct net_device *);
113 int igb_close(struct net_device *);
114 static void igb_configure(struct igb_adapter *);
115 static void igb_configure_tx(struct igb_adapter *);
116 static void igb_configure_rx(struct igb_adapter *);
117 static void igb_clean_all_tx_rings(struct igb_adapter *);
118 static void igb_clean_all_rx_rings(struct igb_adapter *);
119 static void igb_clean_tx_ring(struct igb_ring *);
120 static void igb_clean_rx_ring(struct igb_ring *);
121 static void igb_set_rx_mode(struct net_device *);
122 static void igb_update_phy_info(struct timer_list *);
123 static void igb_watchdog(struct timer_list *);
124 static void igb_watchdog_task(struct work_struct *);
125 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
126 static void igb_get_stats64(struct net_device *dev,
127 			    struct rtnl_link_stats64 *stats);
128 static int igb_change_mtu(struct net_device *, int);
129 static int igb_set_mac(struct net_device *, void *);
130 static void igb_set_uta(struct igb_adapter *adapter, bool set);
131 static irqreturn_t igb_intr(int irq, void *);
132 static irqreturn_t igb_intr_msi(int irq, void *);
133 static irqreturn_t igb_msix_other(int irq, void *);
134 static irqreturn_t igb_msix_ring(int irq, void *);
135 #ifdef CONFIG_IGB_DCA
136 static void igb_update_dca(struct igb_q_vector *);
137 static void igb_setup_dca(struct igb_adapter *);
138 #endif /* CONFIG_IGB_DCA */
139 static int igb_poll(struct napi_struct *, int);
140 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
141 static int igb_clean_rx_irq(struct igb_q_vector *, int);
142 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
143 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
144 static void igb_reset_task(struct work_struct *);
145 static void igb_vlan_mode(struct net_device *netdev,
146 			  netdev_features_t features);
147 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
148 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
149 static void igb_restore_vlan(struct igb_adapter *);
150 static void igb_rar_set_index(struct igb_adapter *, u32);
151 static void igb_ping_all_vfs(struct igb_adapter *);
152 static void igb_msg_task(struct igb_adapter *);
153 static void igb_vmm_control(struct igb_adapter *);
154 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
155 static void igb_flush_mac_table(struct igb_adapter *);
156 static int igb_available_rars(struct igb_adapter *, u8);
157 static void igb_set_default_mac_filter(struct igb_adapter *);
158 static int igb_uc_sync(struct net_device *, const unsigned char *);
159 static int igb_uc_unsync(struct net_device *, const unsigned char *);
160 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
161 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
162 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
163 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
164 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
165 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
166 				   bool setting);
167 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
168 				bool setting);
169 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170 				 struct ifla_vf_info *ivi);
171 static void igb_check_vf_rate_limit(struct igb_adapter *);
172 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
173 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
174 
175 #ifdef CONFIG_PCI_IOV
176 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
177 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
178 #endif
179 
180 #ifdef CONFIG_IGB_DCA
181 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
182 static struct notifier_block dca_notifier = {
183 	.notifier_call	= igb_notify_dca,
184 	.next		= NULL,
185 	.priority	= 0
186 };
187 #endif
188 #ifdef CONFIG_PCI_IOV
189 static unsigned int max_vfs;
190 module_param(max_vfs, uint, 0444);
191 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
192 #endif /* CONFIG_PCI_IOV */
193 
194 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
195 		     pci_channel_state_t);
196 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
197 static void igb_io_resume(struct pci_dev *);
198 
199 static const struct pci_error_handlers igb_err_handler = {
200 	.error_detected = igb_io_error_detected,
201 	.slot_reset = igb_io_slot_reset,
202 	.resume = igb_io_resume,
203 };
204 
205 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
206 
207 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
208 MODULE_LICENSE("GPL v2");
209 
210 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
211 static int debug = -1;
212 module_param(debug, int, 0);
213 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
214 
215 struct igb_reg_info {
216 	u32 ofs;
217 	char *name;
218 };
219 
220 static const struct igb_reg_info igb_reg_info_tbl[] = {
221 
222 	/* General Registers */
223 	{E1000_CTRL, "CTRL"},
224 	{E1000_STATUS, "STATUS"},
225 	{E1000_CTRL_EXT, "CTRL_EXT"},
226 
227 	/* Interrupt Registers */
228 	{E1000_ICR, "ICR"},
229 
230 	/* RX Registers */
231 	{E1000_RCTL, "RCTL"},
232 	{E1000_RDLEN(0), "RDLEN"},
233 	{E1000_RDH(0), "RDH"},
234 	{E1000_RDT(0), "RDT"},
235 	{E1000_RXDCTL(0), "RXDCTL"},
236 	{E1000_RDBAL(0), "RDBAL"},
237 	{E1000_RDBAH(0), "RDBAH"},
238 
239 	/* TX Registers */
240 	{E1000_TCTL, "TCTL"},
241 	{E1000_TDBAL(0), "TDBAL"},
242 	{E1000_TDBAH(0), "TDBAH"},
243 	{E1000_TDLEN(0), "TDLEN"},
244 	{E1000_TDH(0), "TDH"},
245 	{E1000_TDT(0), "TDT"},
246 	{E1000_TXDCTL(0), "TXDCTL"},
247 	{E1000_TDFH, "TDFH"},
248 	{E1000_TDFT, "TDFT"},
249 	{E1000_TDFHS, "TDFHS"},
250 	{E1000_TDFPC, "TDFPC"},
251 
252 	/* List Terminator */
253 	{}
254 };
255 
256 /* igb_regdump - register printout routine */
257 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
258 {
259 	int n = 0;
260 	char rname[16];
261 	u32 regs[8];
262 
263 	switch (reginfo->ofs) {
264 	case E1000_RDLEN(0):
265 		for (n = 0; n < 4; n++)
266 			regs[n] = rd32(E1000_RDLEN(n));
267 		break;
268 	case E1000_RDH(0):
269 		for (n = 0; n < 4; n++)
270 			regs[n] = rd32(E1000_RDH(n));
271 		break;
272 	case E1000_RDT(0):
273 		for (n = 0; n < 4; n++)
274 			regs[n] = rd32(E1000_RDT(n));
275 		break;
276 	case E1000_RXDCTL(0):
277 		for (n = 0; n < 4; n++)
278 			regs[n] = rd32(E1000_RXDCTL(n));
279 		break;
280 	case E1000_RDBAL(0):
281 		for (n = 0; n < 4; n++)
282 			regs[n] = rd32(E1000_RDBAL(n));
283 		break;
284 	case E1000_RDBAH(0):
285 		for (n = 0; n < 4; n++)
286 			regs[n] = rd32(E1000_RDBAH(n));
287 		break;
288 	case E1000_TDBAL(0):
289 		for (n = 0; n < 4; n++)
290 			regs[n] = rd32(E1000_TDBAL(n));
291 		break;
292 	case E1000_TDBAH(0):
293 		for (n = 0; n < 4; n++)
294 			regs[n] = rd32(E1000_TDBAH(n));
295 		break;
296 	case E1000_TDLEN(0):
297 		for (n = 0; n < 4; n++)
298 			regs[n] = rd32(E1000_TDLEN(n));
299 		break;
300 	case E1000_TDH(0):
301 		for (n = 0; n < 4; n++)
302 			regs[n] = rd32(E1000_TDH(n));
303 		break;
304 	case E1000_TDT(0):
305 		for (n = 0; n < 4; n++)
306 			regs[n] = rd32(E1000_TDT(n));
307 		break;
308 	case E1000_TXDCTL(0):
309 		for (n = 0; n < 4; n++)
310 			regs[n] = rd32(E1000_TXDCTL(n));
311 		break;
312 	default:
313 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
314 		return;
315 	}
316 
317 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
318 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
319 		regs[2], regs[3]);
320 }
321 
322 /* igb_dump - Print registers, Tx-rings and Rx-rings */
323 static void igb_dump(struct igb_adapter *adapter)
324 {
325 	struct net_device *netdev = adapter->netdev;
326 	struct e1000_hw *hw = &adapter->hw;
327 	struct igb_reg_info *reginfo;
328 	struct igb_ring *tx_ring;
329 	union e1000_adv_tx_desc *tx_desc;
330 	struct my_u0 { __le64 a; __le64 b; } *u0;
331 	struct igb_ring *rx_ring;
332 	union e1000_adv_rx_desc *rx_desc;
333 	u32 staterr;
334 	u16 i, n;
335 
336 	if (!netif_msg_hw(adapter))
337 		return;
338 
339 	/* Print netdevice Info */
340 	if (netdev) {
341 		dev_info(&adapter->pdev->dev, "Net device Info\n");
342 		pr_info("Device Name     state            trans_start\n");
343 		pr_info("%-15s %016lX %016lX\n", netdev->name,
344 			netdev->state, dev_trans_start(netdev));
345 	}
346 
347 	/* Print Registers */
348 	dev_info(&adapter->pdev->dev, "Register Dump\n");
349 	pr_info(" Register Name   Value\n");
350 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
351 	     reginfo->name; reginfo++) {
352 		igb_regdump(hw, reginfo);
353 	}
354 
355 	/* Print TX Ring Summary */
356 	if (!netdev || !netif_running(netdev))
357 		goto exit;
358 
359 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
360 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
361 	for (n = 0; n < adapter->num_tx_queues; n++) {
362 		struct igb_tx_buffer *buffer_info;
363 		tx_ring = adapter->tx_ring[n];
364 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
365 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
366 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
367 			(u64)dma_unmap_addr(buffer_info, dma),
368 			dma_unmap_len(buffer_info, len),
369 			buffer_info->next_to_watch,
370 			(u64)buffer_info->time_stamp);
371 	}
372 
373 	/* Print TX Rings */
374 	if (!netif_msg_tx_done(adapter))
375 		goto rx_ring_summary;
376 
377 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
378 
379 	/* Transmit Descriptor Formats
380 	 *
381 	 * Advanced Transmit Descriptor
382 	 *   +--------------------------------------------------------------+
383 	 * 0 |         Buffer Address [63:0]                                |
384 	 *   +--------------------------------------------------------------+
385 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
386 	 *   +--------------------------------------------------------------+
387 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
388 	 */
389 
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		tx_ring = adapter->tx_ring[n];
392 		pr_info("------------------------------------\n");
393 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
394 		pr_info("------------------------------------\n");
395 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
396 
397 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
398 			const char *next_desc;
399 			struct igb_tx_buffer *buffer_info;
400 			tx_desc = IGB_TX_DESC(tx_ring, i);
401 			buffer_info = &tx_ring->tx_buffer_info[i];
402 			u0 = (struct my_u0 *)tx_desc;
403 			if (i == tx_ring->next_to_use &&
404 			    i == tx_ring->next_to_clean)
405 				next_desc = " NTC/U";
406 			else if (i == tx_ring->next_to_use)
407 				next_desc = " NTU";
408 			else if (i == tx_ring->next_to_clean)
409 				next_desc = " NTC";
410 			else
411 				next_desc = "";
412 
413 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
414 				i, le64_to_cpu(u0->a),
415 				le64_to_cpu(u0->b),
416 				(u64)dma_unmap_addr(buffer_info, dma),
417 				dma_unmap_len(buffer_info, len),
418 				buffer_info->next_to_watch,
419 				(u64)buffer_info->time_stamp,
420 				buffer_info->skb, next_desc);
421 
422 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
423 				print_hex_dump(KERN_INFO, "",
424 					DUMP_PREFIX_ADDRESS,
425 					16, 1, buffer_info->skb->data,
426 					dma_unmap_len(buffer_info, len),
427 					true);
428 		}
429 	}
430 
431 	/* Print RX Rings Summary */
432 rx_ring_summary:
433 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
434 	pr_info("Queue [NTU] [NTC]\n");
435 	for (n = 0; n < adapter->num_rx_queues; n++) {
436 		rx_ring = adapter->rx_ring[n];
437 		pr_info(" %5d %5X %5X\n",
438 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
439 	}
440 
441 	/* Print RX Rings */
442 	if (!netif_msg_rx_status(adapter))
443 		goto exit;
444 
445 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
446 
447 	/* Advanced Receive Descriptor (Read) Format
448 	 *    63                                           1        0
449 	 *    +-----------------------------------------------------+
450 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
451 	 *    +----------------------------------------------+------+
452 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
453 	 *    +-----------------------------------------------------+
454 	 *
455 	 *
456 	 * Advanced Receive Descriptor (Write-Back) Format
457 	 *
458 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
459 	 *   +------------------------------------------------------+
460 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
461 	 *   | Checksum   Ident  |   |           |    | Type | Type |
462 	 *   +------------------------------------------------------+
463 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
464 	 *   +------------------------------------------------------+
465 	 *   63       48 47    32 31            20 19               0
466 	 */
467 
468 	for (n = 0; n < adapter->num_rx_queues; n++) {
469 		rx_ring = adapter->rx_ring[n];
470 		pr_info("------------------------------------\n");
471 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
472 		pr_info("------------------------------------\n");
473 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
474 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
475 
476 		for (i = 0; i < rx_ring->count; i++) {
477 			const char *next_desc;
478 			struct igb_rx_buffer *buffer_info;
479 			buffer_info = &rx_ring->rx_buffer_info[i];
480 			rx_desc = IGB_RX_DESC(rx_ring, i);
481 			u0 = (struct my_u0 *)rx_desc;
482 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
483 
484 			if (i == rx_ring->next_to_use)
485 				next_desc = " NTU";
486 			else if (i == rx_ring->next_to_clean)
487 				next_desc = " NTC";
488 			else
489 				next_desc = "";
490 
491 			if (staterr & E1000_RXD_STAT_DD) {
492 				/* Descriptor Done */
493 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
494 					"RWB", i,
495 					le64_to_cpu(u0->a),
496 					le64_to_cpu(u0->b),
497 					next_desc);
498 			} else {
499 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
500 					"R  ", i,
501 					le64_to_cpu(u0->a),
502 					le64_to_cpu(u0->b),
503 					(u64)buffer_info->dma,
504 					next_desc);
505 
506 				if (netif_msg_pktdata(adapter) &&
507 				    buffer_info->dma && buffer_info->page) {
508 					print_hex_dump(KERN_INFO, "",
509 					  DUMP_PREFIX_ADDRESS,
510 					  16, 1,
511 					  page_address(buffer_info->page) +
512 						      buffer_info->page_offset,
513 					  igb_rx_bufsz(rx_ring), true);
514 				}
515 			}
516 		}
517 	}
518 
519 exit:
520 	return;
521 }
522 
523 /**
524  *  igb_get_i2c_data - Reads the I2C SDA data bit
525  *  @data: opaque pointer to adapter struct
526  *
527  *  Returns the I2C data bit value
528  **/
529 static int igb_get_i2c_data(void *data)
530 {
531 	struct igb_adapter *adapter = (struct igb_adapter *)data;
532 	struct e1000_hw *hw = &adapter->hw;
533 	s32 i2cctl = rd32(E1000_I2CPARAMS);
534 
535 	return !!(i2cctl & E1000_I2C_DATA_IN);
536 }
537 
538 /**
539  *  igb_set_i2c_data - Sets the I2C data bit
540  *  @data: pointer to hardware structure
541  *  @state: I2C data value (0 or 1) to set
542  *
543  *  Sets the I2C data bit
544  **/
545 static void igb_set_i2c_data(void *data, int state)
546 {
547 	struct igb_adapter *adapter = (struct igb_adapter *)data;
548 	struct e1000_hw *hw = &adapter->hw;
549 	s32 i2cctl = rd32(E1000_I2CPARAMS);
550 
551 	if (state) {
552 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
553 	} else {
554 		i2cctl &= ~E1000_I2C_DATA_OE_N;
555 		i2cctl &= ~E1000_I2C_DATA_OUT;
556 	}
557 
558 	wr32(E1000_I2CPARAMS, i2cctl);
559 	wrfl();
560 }
561 
562 /**
563  *  igb_set_i2c_clk - Sets the I2C SCL clock
564  *  @data: pointer to hardware structure
565  *  @state: state to set clock
566  *
567  *  Sets the I2C clock line to state
568  **/
569 static void igb_set_i2c_clk(void *data, int state)
570 {
571 	struct igb_adapter *adapter = (struct igb_adapter *)data;
572 	struct e1000_hw *hw = &adapter->hw;
573 	s32 i2cctl = rd32(E1000_I2CPARAMS);
574 
575 	if (state) {
576 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
577 	} else {
578 		i2cctl &= ~E1000_I2C_CLK_OUT;
579 		i2cctl &= ~E1000_I2C_CLK_OE_N;
580 	}
581 	wr32(E1000_I2CPARAMS, i2cctl);
582 	wrfl();
583 }
584 
585 /**
586  *  igb_get_i2c_clk - Gets the I2C SCL clock state
587  *  @data: pointer to hardware structure
588  *
589  *  Gets the I2C clock state
590  **/
591 static int igb_get_i2c_clk(void *data)
592 {
593 	struct igb_adapter *adapter = (struct igb_adapter *)data;
594 	struct e1000_hw *hw = &adapter->hw;
595 	s32 i2cctl = rd32(E1000_I2CPARAMS);
596 
597 	return !!(i2cctl & E1000_I2C_CLK_IN);
598 }
599 
600 static const struct i2c_algo_bit_data igb_i2c_algo = {
601 	.setsda		= igb_set_i2c_data,
602 	.setscl		= igb_set_i2c_clk,
603 	.getsda		= igb_get_i2c_data,
604 	.getscl		= igb_get_i2c_clk,
605 	.udelay		= 5,
606 	.timeout	= 20,
607 };
608 
609 /**
610  *  igb_get_hw_dev - return device
611  *  @hw: pointer to hardware structure
612  *
613  *  used by hardware layer to print debugging information
614  **/
615 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
616 {
617 	struct igb_adapter *adapter = hw->back;
618 	return adapter->netdev;
619 }
620 
621 static struct pci_driver igb_driver;
622 
623 /**
624  *  igb_init_module - Driver Registration Routine
625  *
626  *  igb_init_module is the first routine called when the driver is
627  *  loaded. All it does is register with the PCI subsystem.
628  **/
629 static int __init igb_init_module(void)
630 {
631 	int ret;
632 
633 	pr_info("%s\n", igb_driver_string);
634 	pr_info("%s\n", igb_copyright);
635 
636 #ifdef CONFIG_IGB_DCA
637 	dca_register_notify(&dca_notifier);
638 #endif
639 	ret = pci_register_driver(&igb_driver);
640 	return ret;
641 }
642 
643 module_init(igb_init_module);
644 
645 /**
646  *  igb_exit_module - Driver Exit Cleanup Routine
647  *
648  *  igb_exit_module is called just before the driver is removed
649  *  from memory.
650  **/
651 static void __exit igb_exit_module(void)
652 {
653 #ifdef CONFIG_IGB_DCA
654 	dca_unregister_notify(&dca_notifier);
655 #endif
656 	pci_unregister_driver(&igb_driver);
657 }
658 
659 module_exit(igb_exit_module);
660 
661 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
662 /**
663  *  igb_cache_ring_register - Descriptor ring to register mapping
664  *  @adapter: board private structure to initialize
665  *
666  *  Once we know the feature-set enabled for the device, we'll cache
667  *  the register offset the descriptor ring is assigned to.
668  **/
669 static void igb_cache_ring_register(struct igb_adapter *adapter)
670 {
671 	int i = 0, j = 0;
672 	u32 rbase_offset = adapter->vfs_allocated_count;
673 
674 	switch (adapter->hw.mac.type) {
675 	case e1000_82576:
676 		/* The queues are allocated for virtualization such that VF 0
677 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
678 		 * In order to avoid collision we start at the first free queue
679 		 * and continue consuming queues in the same sequence
680 		 */
681 		if (adapter->vfs_allocated_count) {
682 			for (; i < adapter->rss_queues; i++)
683 				adapter->rx_ring[i]->reg_idx = rbase_offset +
684 							       Q_IDX_82576(i);
685 		}
686 		fallthrough;
687 	case e1000_82575:
688 	case e1000_82580:
689 	case e1000_i350:
690 	case e1000_i354:
691 	case e1000_i210:
692 	case e1000_i211:
693 	default:
694 		for (; i < adapter->num_rx_queues; i++)
695 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
696 		for (; j < adapter->num_tx_queues; j++)
697 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
698 		break;
699 	}
700 }
701 
702 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
703 {
704 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
705 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
706 	u32 value = 0;
707 
708 	if (E1000_REMOVED(hw_addr))
709 		return ~value;
710 
711 	value = readl(&hw_addr[reg]);
712 
713 	/* reads should not return all F's */
714 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
715 		struct net_device *netdev = igb->netdev;
716 		hw->hw_addr = NULL;
717 		netdev_err(netdev, "PCIe link lost\n");
718 		WARN(pci_device_is_present(igb->pdev),
719 		     "igb: Failed to read reg 0x%x!\n", reg);
720 	}
721 
722 	return value;
723 }
724 
725 /**
726  *  igb_write_ivar - configure ivar for given MSI-X vector
727  *  @hw: pointer to the HW structure
728  *  @msix_vector: vector number we are allocating to a given ring
729  *  @index: row index of IVAR register to write within IVAR table
730  *  @offset: column offset of in IVAR, should be multiple of 8
731  *
732  *  This function is intended to handle the writing of the IVAR register
733  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
734  *  each containing an cause allocation for an Rx and Tx ring, and a
735  *  variable number of rows depending on the number of queues supported.
736  **/
737 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
738 			   int index, int offset)
739 {
740 	u32 ivar = array_rd32(E1000_IVAR0, index);
741 
742 	/* clear any bits that are currently set */
743 	ivar &= ~((u32)0xFF << offset);
744 
745 	/* write vector and valid bit */
746 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
747 
748 	array_wr32(E1000_IVAR0, index, ivar);
749 }
750 
751 #define IGB_N0_QUEUE -1
752 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
753 {
754 	struct igb_adapter *adapter = q_vector->adapter;
755 	struct e1000_hw *hw = &adapter->hw;
756 	int rx_queue = IGB_N0_QUEUE;
757 	int tx_queue = IGB_N0_QUEUE;
758 	u32 msixbm = 0;
759 
760 	if (q_vector->rx.ring)
761 		rx_queue = q_vector->rx.ring->reg_idx;
762 	if (q_vector->tx.ring)
763 		tx_queue = q_vector->tx.ring->reg_idx;
764 
765 	switch (hw->mac.type) {
766 	case e1000_82575:
767 		/* The 82575 assigns vectors using a bitmask, which matches the
768 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
769 		 * or more queues to a vector, we write the appropriate bits
770 		 * into the MSIXBM register for that vector.
771 		 */
772 		if (rx_queue > IGB_N0_QUEUE)
773 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
774 		if (tx_queue > IGB_N0_QUEUE)
775 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
776 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
777 			msixbm |= E1000_EIMS_OTHER;
778 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
779 		q_vector->eims_value = msixbm;
780 		break;
781 	case e1000_82576:
782 		/* 82576 uses a table that essentially consists of 2 columns
783 		 * with 8 rows.  The ordering is column-major so we use the
784 		 * lower 3 bits as the row index, and the 4th bit as the
785 		 * column offset.
786 		 */
787 		if (rx_queue > IGB_N0_QUEUE)
788 			igb_write_ivar(hw, msix_vector,
789 				       rx_queue & 0x7,
790 				       (rx_queue & 0x8) << 1);
791 		if (tx_queue > IGB_N0_QUEUE)
792 			igb_write_ivar(hw, msix_vector,
793 				       tx_queue & 0x7,
794 				       ((tx_queue & 0x8) << 1) + 8);
795 		q_vector->eims_value = BIT(msix_vector);
796 		break;
797 	case e1000_82580:
798 	case e1000_i350:
799 	case e1000_i354:
800 	case e1000_i210:
801 	case e1000_i211:
802 		/* On 82580 and newer adapters the scheme is similar to 82576
803 		 * however instead of ordering column-major we have things
804 		 * ordered row-major.  So we traverse the table by using
805 		 * bit 0 as the column offset, and the remaining bits as the
806 		 * row index.
807 		 */
808 		if (rx_queue > IGB_N0_QUEUE)
809 			igb_write_ivar(hw, msix_vector,
810 				       rx_queue >> 1,
811 				       (rx_queue & 0x1) << 4);
812 		if (tx_queue > IGB_N0_QUEUE)
813 			igb_write_ivar(hw, msix_vector,
814 				       tx_queue >> 1,
815 				       ((tx_queue & 0x1) << 4) + 8);
816 		q_vector->eims_value = BIT(msix_vector);
817 		break;
818 	default:
819 		BUG();
820 		break;
821 	}
822 
823 	/* add q_vector eims value to global eims_enable_mask */
824 	adapter->eims_enable_mask |= q_vector->eims_value;
825 
826 	/* configure q_vector to set itr on first interrupt */
827 	q_vector->set_itr = 1;
828 }
829 
830 /**
831  *  igb_configure_msix - Configure MSI-X hardware
832  *  @adapter: board private structure to initialize
833  *
834  *  igb_configure_msix sets up the hardware to properly
835  *  generate MSI-X interrupts.
836  **/
837 static void igb_configure_msix(struct igb_adapter *adapter)
838 {
839 	u32 tmp;
840 	int i, vector = 0;
841 	struct e1000_hw *hw = &adapter->hw;
842 
843 	adapter->eims_enable_mask = 0;
844 
845 	/* set vector for other causes, i.e. link changes */
846 	switch (hw->mac.type) {
847 	case e1000_82575:
848 		tmp = rd32(E1000_CTRL_EXT);
849 		/* enable MSI-X PBA support*/
850 		tmp |= E1000_CTRL_EXT_PBA_CLR;
851 
852 		/* Auto-Mask interrupts upon ICR read. */
853 		tmp |= E1000_CTRL_EXT_EIAME;
854 		tmp |= E1000_CTRL_EXT_IRCA;
855 
856 		wr32(E1000_CTRL_EXT, tmp);
857 
858 		/* enable msix_other interrupt */
859 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
860 		adapter->eims_other = E1000_EIMS_OTHER;
861 
862 		break;
863 
864 	case e1000_82576:
865 	case e1000_82580:
866 	case e1000_i350:
867 	case e1000_i354:
868 	case e1000_i210:
869 	case e1000_i211:
870 		/* Turn on MSI-X capability first, or our settings
871 		 * won't stick.  And it will take days to debug.
872 		 */
873 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
874 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
875 		     E1000_GPIE_NSICR);
876 
877 		/* enable msix_other interrupt */
878 		adapter->eims_other = BIT(vector);
879 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
880 
881 		wr32(E1000_IVAR_MISC, tmp);
882 		break;
883 	default:
884 		/* do nothing, since nothing else supports MSI-X */
885 		break;
886 	} /* switch (hw->mac.type) */
887 
888 	adapter->eims_enable_mask |= adapter->eims_other;
889 
890 	for (i = 0; i < adapter->num_q_vectors; i++)
891 		igb_assign_vector(adapter->q_vector[i], vector++);
892 
893 	wrfl();
894 }
895 
896 /**
897  *  igb_request_msix - Initialize MSI-X interrupts
898  *  @adapter: board private structure to initialize
899  *
900  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
901  *  kernel.
902  **/
903 static int igb_request_msix(struct igb_adapter *adapter)
904 {
905 	unsigned int num_q_vectors = adapter->num_q_vectors;
906 	struct net_device *netdev = adapter->netdev;
907 	int i, err = 0, vector = 0, free_vector = 0;
908 
909 	err = request_irq(adapter->msix_entries[vector].vector,
910 			  igb_msix_other, 0, netdev->name, adapter);
911 	if (err)
912 		goto err_out;
913 
914 	if (num_q_vectors > MAX_Q_VECTORS) {
915 		num_q_vectors = MAX_Q_VECTORS;
916 		dev_warn(&adapter->pdev->dev,
917 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
918 			 adapter->num_q_vectors, MAX_Q_VECTORS);
919 	}
920 	for (i = 0; i < num_q_vectors; i++) {
921 		struct igb_q_vector *q_vector = adapter->q_vector[i];
922 
923 		vector++;
924 
925 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
926 
927 		if (q_vector->rx.ring && q_vector->tx.ring)
928 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
929 				q_vector->rx.ring->queue_index);
930 		else if (q_vector->tx.ring)
931 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
932 				q_vector->tx.ring->queue_index);
933 		else if (q_vector->rx.ring)
934 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
935 				q_vector->rx.ring->queue_index);
936 		else
937 			sprintf(q_vector->name, "%s-unused", netdev->name);
938 
939 		err = request_irq(adapter->msix_entries[vector].vector,
940 				  igb_msix_ring, 0, q_vector->name,
941 				  q_vector);
942 		if (err)
943 			goto err_free;
944 	}
945 
946 	igb_configure_msix(adapter);
947 	return 0;
948 
949 err_free:
950 	/* free already assigned IRQs */
951 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
952 
953 	vector--;
954 	for (i = 0; i < vector; i++) {
955 		free_irq(adapter->msix_entries[free_vector++].vector,
956 			 adapter->q_vector[i]);
957 	}
958 err_out:
959 	return err;
960 }
961 
962 /**
963  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
964  *  @adapter: board private structure to initialize
965  *  @v_idx: Index of vector to be freed
966  *
967  *  This function frees the memory allocated to the q_vector.
968  **/
969 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
970 {
971 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
972 
973 	adapter->q_vector[v_idx] = NULL;
974 
975 	/* igb_get_stats64() might access the rings on this vector,
976 	 * we must wait a grace period before freeing it.
977 	 */
978 	if (q_vector)
979 		kfree_rcu(q_vector, rcu);
980 }
981 
982 /**
983  *  igb_reset_q_vector - Reset config for interrupt vector
984  *  @adapter: board private structure to initialize
985  *  @v_idx: Index of vector to be reset
986  *
987  *  If NAPI is enabled it will delete any references to the
988  *  NAPI struct. This is preparation for igb_free_q_vector.
989  **/
990 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
991 {
992 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
993 
994 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
995 	 * allocated. So, q_vector is NULL so we should stop here.
996 	 */
997 	if (!q_vector)
998 		return;
999 
1000 	if (q_vector->tx.ring)
1001 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1002 
1003 	if (q_vector->rx.ring)
1004 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1005 
1006 	netif_napi_del(&q_vector->napi);
1007 
1008 }
1009 
1010 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1011 {
1012 	int v_idx = adapter->num_q_vectors;
1013 
1014 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1015 		pci_disable_msix(adapter->pdev);
1016 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1017 		pci_disable_msi(adapter->pdev);
1018 
1019 	while (v_idx--)
1020 		igb_reset_q_vector(adapter, v_idx);
1021 }
1022 
1023 /**
1024  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1025  *  @adapter: board private structure to initialize
1026  *
1027  *  This function frees the memory allocated to the q_vectors.  In addition if
1028  *  NAPI is enabled it will delete any references to the NAPI struct prior
1029  *  to freeing the q_vector.
1030  **/
1031 static void igb_free_q_vectors(struct igb_adapter *adapter)
1032 {
1033 	int v_idx = adapter->num_q_vectors;
1034 
1035 	adapter->num_tx_queues = 0;
1036 	adapter->num_rx_queues = 0;
1037 	adapter->num_q_vectors = 0;
1038 
1039 	while (v_idx--) {
1040 		igb_reset_q_vector(adapter, v_idx);
1041 		igb_free_q_vector(adapter, v_idx);
1042 	}
1043 }
1044 
1045 /**
1046  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1050  *  MSI-X interrupts allocated.
1051  */
1052 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1053 {
1054 	igb_free_q_vectors(adapter);
1055 	igb_reset_interrupt_capability(adapter);
1056 }
1057 
1058 /**
1059  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1060  *  @adapter: board private structure to initialize
1061  *  @msix: boolean value of MSIX capability
1062  *
1063  *  Attempt to configure interrupts using the best available
1064  *  capabilities of the hardware and kernel.
1065  **/
1066 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1067 {
1068 	int err;
1069 	int numvecs, i;
1070 
1071 	if (!msix)
1072 		goto msi_only;
1073 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1074 
1075 	/* Number of supported queues. */
1076 	adapter->num_rx_queues = adapter->rss_queues;
1077 	if (adapter->vfs_allocated_count)
1078 		adapter->num_tx_queues = 1;
1079 	else
1080 		adapter->num_tx_queues = adapter->rss_queues;
1081 
1082 	/* start with one vector for every Rx queue */
1083 	numvecs = adapter->num_rx_queues;
1084 
1085 	/* if Tx handler is separate add 1 for every Tx queue */
1086 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1087 		numvecs += adapter->num_tx_queues;
1088 
1089 	/* store the number of vectors reserved for queues */
1090 	adapter->num_q_vectors = numvecs;
1091 
1092 	/* add 1 vector for link status interrupts */
1093 	numvecs++;
1094 	for (i = 0; i < numvecs; i++)
1095 		adapter->msix_entries[i].entry = i;
1096 
1097 	err = pci_enable_msix_range(adapter->pdev,
1098 				    adapter->msix_entries,
1099 				    numvecs,
1100 				    numvecs);
1101 	if (err > 0)
1102 		return;
1103 
1104 	igb_reset_interrupt_capability(adapter);
1105 
1106 	/* If we can't do MSI-X, try MSI */
1107 msi_only:
1108 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1109 #ifdef CONFIG_PCI_IOV
1110 	/* disable SR-IOV for non MSI-X configurations */
1111 	if (adapter->vf_data) {
1112 		struct e1000_hw *hw = &adapter->hw;
1113 		/* disable iov and allow time for transactions to clear */
1114 		pci_disable_sriov(adapter->pdev);
1115 		msleep(500);
1116 
1117 		kfree(adapter->vf_mac_list);
1118 		adapter->vf_mac_list = NULL;
1119 		kfree(adapter->vf_data);
1120 		adapter->vf_data = NULL;
1121 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122 		wrfl();
1123 		msleep(100);
1124 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125 	}
1126 #endif
1127 	adapter->vfs_allocated_count = 0;
1128 	adapter->rss_queues = 1;
1129 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130 	adapter->num_rx_queues = 1;
1131 	adapter->num_tx_queues = 1;
1132 	adapter->num_q_vectors = 1;
1133 	if (!pci_enable_msi(adapter->pdev))
1134 		adapter->flags |= IGB_FLAG_HAS_MSI;
1135 }
1136 
1137 static void igb_add_ring(struct igb_ring *ring,
1138 			 struct igb_ring_container *head)
1139 {
1140 	head->ring = ring;
1141 	head->count++;
1142 }
1143 
1144 /**
1145  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146  *  @adapter: board private structure to initialize
1147  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1148  *  @v_idx: index of vector in adapter struct
1149  *  @txr_count: total number of Tx rings to allocate
1150  *  @txr_idx: index of first Tx ring to allocate
1151  *  @rxr_count: total number of Rx rings to allocate
1152  *  @rxr_idx: index of first Rx ring to allocate
1153  *
1154  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155  **/
1156 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157 			      int v_count, int v_idx,
1158 			      int txr_count, int txr_idx,
1159 			      int rxr_count, int rxr_idx)
1160 {
1161 	struct igb_q_vector *q_vector;
1162 	struct igb_ring *ring;
1163 	int ring_count;
1164 	size_t size;
1165 
1166 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1167 	if (txr_count > 1 || rxr_count > 1)
1168 		return -ENOMEM;
1169 
1170 	ring_count = txr_count + rxr_count;
1171 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1172 
1173 	/* allocate q_vector and rings */
1174 	q_vector = adapter->q_vector[v_idx];
1175 	if (!q_vector) {
1176 		q_vector = kzalloc(size, GFP_KERNEL);
1177 	} else if (size > ksize(q_vector)) {
1178 		struct igb_q_vector *new_q_vector;
1179 
1180 		new_q_vector = kzalloc(size, GFP_KERNEL);
1181 		if (new_q_vector)
1182 			kfree_rcu(q_vector, rcu);
1183 		q_vector = new_q_vector;
1184 	} else {
1185 		memset(q_vector, 0, size);
1186 	}
1187 	if (!q_vector)
1188 		return -ENOMEM;
1189 
1190 	/* initialize NAPI */
1191 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1192 
1193 	/* tie q_vector and adapter together */
1194 	adapter->q_vector[v_idx] = q_vector;
1195 	q_vector->adapter = adapter;
1196 
1197 	/* initialize work limits */
1198 	q_vector->tx.work_limit = adapter->tx_work_limit;
1199 
1200 	/* initialize ITR configuration */
1201 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1202 	q_vector->itr_val = IGB_START_ITR;
1203 
1204 	/* initialize pointer to rings */
1205 	ring = q_vector->ring;
1206 
1207 	/* intialize ITR */
1208 	if (rxr_count) {
1209 		/* rx or rx/tx vector */
1210 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1211 			q_vector->itr_val = adapter->rx_itr_setting;
1212 	} else {
1213 		/* tx only vector */
1214 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1215 			q_vector->itr_val = adapter->tx_itr_setting;
1216 	}
1217 
1218 	if (txr_count) {
1219 		/* assign generic ring traits */
1220 		ring->dev = &adapter->pdev->dev;
1221 		ring->netdev = adapter->netdev;
1222 
1223 		/* configure backlink on ring */
1224 		ring->q_vector = q_vector;
1225 
1226 		/* update q_vector Tx values */
1227 		igb_add_ring(ring, &q_vector->tx);
1228 
1229 		/* For 82575, context index must be unique per ring. */
1230 		if (adapter->hw.mac.type == e1000_82575)
1231 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1232 
1233 		/* apply Tx specific ring traits */
1234 		ring->count = adapter->tx_ring_count;
1235 		ring->queue_index = txr_idx;
1236 
1237 		ring->cbs_enable = false;
1238 		ring->idleslope = 0;
1239 		ring->sendslope = 0;
1240 		ring->hicredit = 0;
1241 		ring->locredit = 0;
1242 
1243 		u64_stats_init(&ring->tx_syncp);
1244 		u64_stats_init(&ring->tx_syncp2);
1245 
1246 		/* assign ring to adapter */
1247 		adapter->tx_ring[txr_idx] = ring;
1248 
1249 		/* push pointer to next ring */
1250 		ring++;
1251 	}
1252 
1253 	if (rxr_count) {
1254 		/* assign generic ring traits */
1255 		ring->dev = &adapter->pdev->dev;
1256 		ring->netdev = adapter->netdev;
1257 
1258 		/* configure backlink on ring */
1259 		ring->q_vector = q_vector;
1260 
1261 		/* update q_vector Rx values */
1262 		igb_add_ring(ring, &q_vector->rx);
1263 
1264 		/* set flag indicating ring supports SCTP checksum offload */
1265 		if (adapter->hw.mac.type >= e1000_82576)
1266 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1267 
1268 		/* On i350, i354, i210, and i211, loopback VLAN packets
1269 		 * have the tag byte-swapped.
1270 		 */
1271 		if (adapter->hw.mac.type >= e1000_i350)
1272 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1273 
1274 		/* apply Rx specific ring traits */
1275 		ring->count = adapter->rx_ring_count;
1276 		ring->queue_index = rxr_idx;
1277 
1278 		u64_stats_init(&ring->rx_syncp);
1279 
1280 		/* assign ring to adapter */
1281 		adapter->rx_ring[rxr_idx] = ring;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 
1288 /**
1289  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1290  *  @adapter: board private structure to initialize
1291  *
1292  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1293  *  return -ENOMEM.
1294  **/
1295 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1296 {
1297 	int q_vectors = adapter->num_q_vectors;
1298 	int rxr_remaining = adapter->num_rx_queues;
1299 	int txr_remaining = adapter->num_tx_queues;
1300 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1301 	int err;
1302 
1303 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1304 		for (; rxr_remaining; v_idx++) {
1305 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1306 						 0, 0, 1, rxr_idx);
1307 
1308 			if (err)
1309 				goto err_out;
1310 
1311 			/* update counts and index */
1312 			rxr_remaining--;
1313 			rxr_idx++;
1314 		}
1315 	}
1316 
1317 	for (; v_idx < q_vectors; v_idx++) {
1318 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1319 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1320 
1321 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1322 					 tqpv, txr_idx, rqpv, rxr_idx);
1323 
1324 		if (err)
1325 			goto err_out;
1326 
1327 		/* update counts and index */
1328 		rxr_remaining -= rqpv;
1329 		txr_remaining -= tqpv;
1330 		rxr_idx++;
1331 		txr_idx++;
1332 	}
1333 
1334 	return 0;
1335 
1336 err_out:
1337 	adapter->num_tx_queues = 0;
1338 	adapter->num_rx_queues = 0;
1339 	adapter->num_q_vectors = 0;
1340 
1341 	while (v_idx--)
1342 		igb_free_q_vector(adapter, v_idx);
1343 
1344 	return -ENOMEM;
1345 }
1346 
1347 /**
1348  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1349  *  @adapter: board private structure to initialize
1350  *  @msix: boolean value of MSIX capability
1351  *
1352  *  This function initializes the interrupts and allocates all of the queues.
1353  **/
1354 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1355 {
1356 	struct pci_dev *pdev = adapter->pdev;
1357 	int err;
1358 
1359 	igb_set_interrupt_capability(adapter, msix);
1360 
1361 	err = igb_alloc_q_vectors(adapter);
1362 	if (err) {
1363 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1364 		goto err_alloc_q_vectors;
1365 	}
1366 
1367 	igb_cache_ring_register(adapter);
1368 
1369 	return 0;
1370 
1371 err_alloc_q_vectors:
1372 	igb_reset_interrupt_capability(adapter);
1373 	return err;
1374 }
1375 
1376 /**
1377  *  igb_request_irq - initialize interrupts
1378  *  @adapter: board private structure to initialize
1379  *
1380  *  Attempts to configure interrupts using the best available
1381  *  capabilities of the hardware and kernel.
1382  **/
1383 static int igb_request_irq(struct igb_adapter *adapter)
1384 {
1385 	struct net_device *netdev = adapter->netdev;
1386 	struct pci_dev *pdev = adapter->pdev;
1387 	int err = 0;
1388 
1389 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1390 		err = igb_request_msix(adapter);
1391 		if (!err)
1392 			goto request_done;
1393 		/* fall back to MSI */
1394 		igb_free_all_tx_resources(adapter);
1395 		igb_free_all_rx_resources(adapter);
1396 
1397 		igb_clear_interrupt_scheme(adapter);
1398 		err = igb_init_interrupt_scheme(adapter, false);
1399 		if (err)
1400 			goto request_done;
1401 
1402 		igb_setup_all_tx_resources(adapter);
1403 		igb_setup_all_rx_resources(adapter);
1404 		igb_configure(adapter);
1405 	}
1406 
1407 	igb_assign_vector(adapter->q_vector[0], 0);
1408 
1409 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1410 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1411 				  netdev->name, adapter);
1412 		if (!err)
1413 			goto request_done;
1414 
1415 		/* fall back to legacy interrupts */
1416 		igb_reset_interrupt_capability(adapter);
1417 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1418 	}
1419 
1420 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1421 			  netdev->name, adapter);
1422 
1423 	if (err)
1424 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1425 			err);
1426 
1427 request_done:
1428 	return err;
1429 }
1430 
1431 static void igb_free_irq(struct igb_adapter *adapter)
1432 {
1433 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1434 		int vector = 0, i;
1435 
1436 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1437 
1438 		for (i = 0; i < adapter->num_q_vectors; i++)
1439 			free_irq(adapter->msix_entries[vector++].vector,
1440 				 adapter->q_vector[i]);
1441 	} else {
1442 		free_irq(adapter->pdev->irq, adapter);
1443 	}
1444 }
1445 
1446 /**
1447  *  igb_irq_disable - Mask off interrupt generation on the NIC
1448  *  @adapter: board private structure
1449  **/
1450 static void igb_irq_disable(struct igb_adapter *adapter)
1451 {
1452 	struct e1000_hw *hw = &adapter->hw;
1453 
1454 	/* we need to be careful when disabling interrupts.  The VFs are also
1455 	 * mapped into these registers and so clearing the bits can cause
1456 	 * issues on the VF drivers so we only need to clear what we set
1457 	 */
1458 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459 		u32 regval = rd32(E1000_EIAM);
1460 
1461 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1462 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1463 		regval = rd32(E1000_EIAC);
1464 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1465 	}
1466 
1467 	wr32(E1000_IAM, 0);
1468 	wr32(E1000_IMC, ~0);
1469 	wrfl();
1470 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1471 		int i;
1472 
1473 		for (i = 0; i < adapter->num_q_vectors; i++)
1474 			synchronize_irq(adapter->msix_entries[i].vector);
1475 	} else {
1476 		synchronize_irq(adapter->pdev->irq);
1477 	}
1478 }
1479 
1480 /**
1481  *  igb_irq_enable - Enable default interrupt generation settings
1482  *  @adapter: board private structure
1483  **/
1484 static void igb_irq_enable(struct igb_adapter *adapter)
1485 {
1486 	struct e1000_hw *hw = &adapter->hw;
1487 
1488 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1490 		u32 regval = rd32(E1000_EIAC);
1491 
1492 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1493 		regval = rd32(E1000_EIAM);
1494 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1495 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1496 		if (adapter->vfs_allocated_count) {
1497 			wr32(E1000_MBVFIMR, 0xFF);
1498 			ims |= E1000_IMS_VMMB;
1499 		}
1500 		wr32(E1000_IMS, ims);
1501 	} else {
1502 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1503 				E1000_IMS_DRSTA);
1504 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1505 				E1000_IMS_DRSTA);
1506 	}
1507 }
1508 
1509 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 	u16 pf_id = adapter->vfs_allocated_count;
1513 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1514 	u16 old_vid = adapter->mng_vlan_id;
1515 
1516 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1517 		/* add VID to filter table */
1518 		igb_vfta_set(hw, vid, pf_id, true, true);
1519 		adapter->mng_vlan_id = vid;
1520 	} else {
1521 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1522 	}
1523 
1524 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1525 	    (vid != old_vid) &&
1526 	    !test_bit(old_vid, adapter->active_vlans)) {
1527 		/* remove VID from filter table */
1528 		igb_vfta_set(hw, vid, pf_id, false, true);
1529 	}
1530 }
1531 
1532 /**
1533  *  igb_release_hw_control - release control of the h/w to f/w
1534  *  @adapter: address of board private structure
1535  *
1536  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1537  *  For ASF and Pass Through versions of f/w this means that the
1538  *  driver is no longer loaded.
1539  **/
1540 static void igb_release_hw_control(struct igb_adapter *adapter)
1541 {
1542 	struct e1000_hw *hw = &adapter->hw;
1543 	u32 ctrl_ext;
1544 
1545 	/* Let firmware take over control of h/w */
1546 	ctrl_ext = rd32(E1000_CTRL_EXT);
1547 	wr32(E1000_CTRL_EXT,
1548 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1549 }
1550 
1551 /**
1552  *  igb_get_hw_control - get control of the h/w from f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that
1557  *  the driver is loaded.
1558  **/
1559 static void igb_get_hw_control(struct igb_adapter *adapter)
1560 {
1561 	struct e1000_hw *hw = &adapter->hw;
1562 	u32 ctrl_ext;
1563 
1564 	/* Let firmware know the driver has taken over */
1565 	ctrl_ext = rd32(E1000_CTRL_EXT);
1566 	wr32(E1000_CTRL_EXT,
1567 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569 
1570 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1571 {
1572 	struct net_device *netdev = adapter->netdev;
1573 	struct e1000_hw *hw = &adapter->hw;
1574 
1575 	WARN_ON(hw->mac.type != e1000_i210);
1576 
1577 	if (enable)
1578 		adapter->flags |= IGB_FLAG_FQTSS;
1579 	else
1580 		adapter->flags &= ~IGB_FLAG_FQTSS;
1581 
1582 	if (netif_running(netdev))
1583 		schedule_work(&adapter->reset_task);
1584 }
1585 
1586 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1587 {
1588 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1589 }
1590 
1591 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1592 				   enum tx_queue_prio prio)
1593 {
1594 	u32 val;
1595 
1596 	WARN_ON(hw->mac.type != e1000_i210);
1597 	WARN_ON(queue < 0 || queue > 4);
1598 
1599 	val = rd32(E1000_I210_TXDCTL(queue));
1600 
1601 	if (prio == TX_QUEUE_PRIO_HIGH)
1602 		val |= E1000_TXDCTL_PRIORITY;
1603 	else
1604 		val &= ~E1000_TXDCTL_PRIORITY;
1605 
1606 	wr32(E1000_I210_TXDCTL(queue), val);
1607 }
1608 
1609 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1610 {
1611 	u32 val;
1612 
1613 	WARN_ON(hw->mac.type != e1000_i210);
1614 	WARN_ON(queue < 0 || queue > 1);
1615 
1616 	val = rd32(E1000_I210_TQAVCC(queue));
1617 
1618 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1619 		val |= E1000_TQAVCC_QUEUEMODE;
1620 	else
1621 		val &= ~E1000_TQAVCC_QUEUEMODE;
1622 
1623 	wr32(E1000_I210_TQAVCC(queue), val);
1624 }
1625 
1626 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1627 {
1628 	int i;
1629 
1630 	for (i = 0; i < adapter->num_tx_queues; i++) {
1631 		if (adapter->tx_ring[i]->cbs_enable)
1632 			return true;
1633 	}
1634 
1635 	return false;
1636 }
1637 
1638 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1639 {
1640 	int i;
1641 
1642 	for (i = 0; i < adapter->num_tx_queues; i++) {
1643 		if (adapter->tx_ring[i]->launchtime_enable)
1644 			return true;
1645 	}
1646 
1647 	return false;
1648 }
1649 
1650 /**
1651  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1652  *  @adapter: pointer to adapter struct
1653  *  @queue: queue number
1654  *
1655  *  Configure CBS and Launchtime for a given hardware queue.
1656  *  Parameters are retrieved from the correct Tx ring, so
1657  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1658  *  for setting those correctly prior to this function being called.
1659  **/
1660 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1661 {
1662 	struct net_device *netdev = adapter->netdev;
1663 	struct e1000_hw *hw = &adapter->hw;
1664 	struct igb_ring *ring;
1665 	u32 tqavcc, tqavctrl;
1666 	u16 value;
1667 
1668 	WARN_ON(hw->mac.type != e1000_i210);
1669 	WARN_ON(queue < 0 || queue > 1);
1670 	ring = adapter->tx_ring[queue];
1671 
1672 	/* If any of the Qav features is enabled, configure queues as SR and
1673 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1674 	 * as SP.
1675 	 */
1676 	if (ring->cbs_enable || ring->launchtime_enable) {
1677 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1678 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1679 	} else {
1680 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1681 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1682 	}
1683 
1684 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1685 	if (ring->cbs_enable || queue == 0) {
1686 		/* i210 does not allow the queue 0 to be in the Strict
1687 		 * Priority mode while the Qav mode is enabled, so,
1688 		 * instead of disabling strict priority mode, we give
1689 		 * queue 0 the maximum of credits possible.
1690 		 *
1691 		 * See section 8.12.19 of the i210 datasheet, "Note:
1692 		 * Queue0 QueueMode must be set to 1b when
1693 		 * TransmitMode is set to Qav."
1694 		 */
1695 		if (queue == 0 && !ring->cbs_enable) {
1696 			/* max "linkspeed" idleslope in kbps */
1697 			ring->idleslope = 1000000;
1698 			ring->hicredit = ETH_FRAME_LEN;
1699 		}
1700 
1701 		/* Always set data transfer arbitration to credit-based
1702 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1703 		 * the queues.
1704 		 */
1705 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1706 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1707 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1708 
1709 		/* According to i210 datasheet section 7.2.7.7, we should set
1710 		 * the 'idleSlope' field from TQAVCC register following the
1711 		 * equation:
1712 		 *
1713 		 * For 100 Mbps link speed:
1714 		 *
1715 		 *     value = BW * 0x7735 * 0.2                          (E1)
1716 		 *
1717 		 * For 1000Mbps link speed:
1718 		 *
1719 		 *     value = BW * 0x7735 * 2                            (E2)
1720 		 *
1721 		 * E1 and E2 can be merged into one equation as shown below.
1722 		 * Note that 'link-speed' is in Mbps.
1723 		 *
1724 		 *     value = BW * 0x7735 * 2 * link-speed
1725 		 *                           --------------               (E3)
1726 		 *                                1000
1727 		 *
1728 		 * 'BW' is the percentage bandwidth out of full link speed
1729 		 * which can be found with the following equation. Note that
1730 		 * idleSlope here is the parameter from this function which
1731 		 * is in kbps.
1732 		 *
1733 		 *     BW =     idleSlope
1734 		 *          -----------------                             (E4)
1735 		 *          link-speed * 1000
1736 		 *
1737 		 * That said, we can come up with a generic equation to
1738 		 * calculate the value we should set it TQAVCC register by
1739 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1740 		 *
1741 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1742 		 *         -----------------            --------------    (E5)
1743 		 *         link-speed * 1000                 1000
1744 		 *
1745 		 * 'link-speed' is present in both sides of the fraction so
1746 		 * it is canceled out. The final equation is the following:
1747 		 *
1748 		 *     value = idleSlope * 61034
1749 		 *             -----------------                          (E6)
1750 		 *                  1000000
1751 		 *
1752 		 * NOTE: For i210, given the above, we can see that idleslope
1753 		 *       is represented in 16.38431 kbps units by the value at
1754 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1755 		 *       the granularity for idleslope increments.
1756 		 *       For instance, if you want to configure a 2576kbps
1757 		 *       idleslope, the value to be written on the register
1758 		 *       would have to be 157.23. If rounded down, you end
1759 		 *       up with less bandwidth available than originally
1760 		 *       required (~2572 kbps). If rounded up, you end up
1761 		 *       with a higher bandwidth (~2589 kbps). Below the
1762 		 *       approach we take is to always round up the
1763 		 *       calculated value, so the resulting bandwidth might
1764 		 *       be slightly higher for some configurations.
1765 		 */
1766 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1767 
1768 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1769 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1770 		tqavcc |= value;
1771 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1772 
1773 		wr32(E1000_I210_TQAVHC(queue),
1774 		     0x80000000 + ring->hicredit * 0x7735);
1775 	} else {
1776 
1777 		/* Set idleSlope to zero. */
1778 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1781 
1782 		/* Set hiCredit to zero. */
1783 		wr32(E1000_I210_TQAVHC(queue), 0);
1784 
1785 		/* If CBS is not enabled for any queues anymore, then return to
1786 		 * the default state of Data Transmission Arbitration on
1787 		 * TQAVCTRL.
1788 		 */
1789 		if (!is_any_cbs_enabled(adapter)) {
1790 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1791 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1792 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1793 		}
1794 	}
1795 
1796 	/* If LaunchTime is enabled, set DataTranTIM. */
1797 	if (ring->launchtime_enable) {
1798 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1799 		 * for any of the SR queues, and configure fetchtime delta.
1800 		 * XXX NOTE:
1801 		 *     - LaunchTime will be enabled for all SR queues.
1802 		 *     - A fixed offset can be added relative to the launch
1803 		 *       time of all packets if configured at reg LAUNCH_OS0.
1804 		 *       We are keeping it as 0 for now (default value).
1805 		 */
1806 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1807 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1808 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1809 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1810 	} else {
1811 		/* If Launchtime is not enabled for any SR queues anymore,
1812 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1813 		 * effectively disabling Launchtime.
1814 		 */
1815 		if (!is_any_txtime_enabled(adapter)) {
1816 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1818 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1824 	 * CBS are not configurable by software so we don't do any 'controller
1825 	 * configuration' in respect to these parameters.
1826 	 */
1827 
1828 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1829 		   ring->cbs_enable ? "enabled" : "disabled",
1830 		   ring->launchtime_enable ? "enabled" : "disabled",
1831 		   queue,
1832 		   ring->idleslope, ring->sendslope,
1833 		   ring->hicredit, ring->locredit);
1834 }
1835 
1836 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1837 				  bool enable)
1838 {
1839 	struct igb_ring *ring;
1840 
1841 	if (queue < 0 || queue > adapter->num_tx_queues)
1842 		return -EINVAL;
1843 
1844 	ring = adapter->tx_ring[queue];
1845 	ring->launchtime_enable = enable;
1846 
1847 	return 0;
1848 }
1849 
1850 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1851 			       bool enable, int idleslope, int sendslope,
1852 			       int hicredit, int locredit)
1853 {
1854 	struct igb_ring *ring;
1855 
1856 	if (queue < 0 || queue > adapter->num_tx_queues)
1857 		return -EINVAL;
1858 
1859 	ring = adapter->tx_ring[queue];
1860 
1861 	ring->cbs_enable = enable;
1862 	ring->idleslope = idleslope;
1863 	ring->sendslope = sendslope;
1864 	ring->hicredit = hicredit;
1865 	ring->locredit = locredit;
1866 
1867 	return 0;
1868 }
1869 
1870 /**
1871  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1872  *  @adapter: pointer to adapter struct
1873  *
1874  *  Configure TQAVCTRL register switching the controller's Tx mode
1875  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1876  *  a call to igb_config_tx_modes() per queue so any previously saved
1877  *  Tx parameters are applied.
1878  **/
1879 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1880 {
1881 	struct net_device *netdev = adapter->netdev;
1882 	struct e1000_hw *hw = &adapter->hw;
1883 	u32 val;
1884 
1885 	/* Only i210 controller supports changing the transmission mode. */
1886 	if (hw->mac.type != e1000_i210)
1887 		return;
1888 
1889 	if (is_fqtss_enabled(adapter)) {
1890 		int i, max_queue;
1891 
1892 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1893 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1894 		 * so SP queues wait for SR ones.
1895 		 */
1896 		val = rd32(E1000_I210_TQAVCTRL);
1897 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1898 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1899 		wr32(E1000_I210_TQAVCTRL, val);
1900 
1901 		/* Configure Tx and Rx packet buffers sizes as described in
1902 		 * i210 datasheet section 7.2.7.7.
1903 		 */
1904 		val = rd32(E1000_TXPBS);
1905 		val &= ~I210_TXPBSIZE_MASK;
1906 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1907 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1908 		wr32(E1000_TXPBS, val);
1909 
1910 		val = rd32(E1000_RXPBS);
1911 		val &= ~I210_RXPBSIZE_MASK;
1912 		val |= I210_RXPBSIZE_PB_30KB;
1913 		wr32(E1000_RXPBS, val);
1914 
1915 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1916 		 * register should not exceed the buffer size programmed in
1917 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1918 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1919 		 * 4kB / 64.
1920 		 *
1921 		 * However, when we do so, no frame from queue 2 and 3 are
1922 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1923 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1924 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1925 		 */
1926 		val = (4096 - 1) / 64;
1927 		wr32(E1000_I210_DTXMXPKTSZ, val);
1928 
1929 		/* Since FQTSS mode is enabled, apply any CBS configuration
1930 		 * previously set. If no previous CBS configuration has been
1931 		 * done, then the initial configuration is applied, which means
1932 		 * CBS is disabled.
1933 		 */
1934 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1935 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1936 
1937 		for (i = 0; i < max_queue; i++) {
1938 			igb_config_tx_modes(adapter, i);
1939 		}
1940 	} else {
1941 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1942 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1943 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1944 
1945 		val = rd32(E1000_I210_TQAVCTRL);
1946 		/* According to Section 8.12.21, the other flags we've set when
1947 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1948 		 * don't set they here.
1949 		 */
1950 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1951 		wr32(E1000_I210_TQAVCTRL, val);
1952 	}
1953 
1954 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1955 		   "enabled" : "disabled");
1956 }
1957 
1958 /**
1959  *  igb_configure - configure the hardware for RX and TX
1960  *  @adapter: private board structure
1961  **/
1962 static void igb_configure(struct igb_adapter *adapter)
1963 {
1964 	struct net_device *netdev = adapter->netdev;
1965 	int i;
1966 
1967 	igb_get_hw_control(adapter);
1968 	igb_set_rx_mode(netdev);
1969 	igb_setup_tx_mode(adapter);
1970 
1971 	igb_restore_vlan(adapter);
1972 
1973 	igb_setup_tctl(adapter);
1974 	igb_setup_mrqc(adapter);
1975 	igb_setup_rctl(adapter);
1976 
1977 	igb_nfc_filter_restore(adapter);
1978 	igb_configure_tx(adapter);
1979 	igb_configure_rx(adapter);
1980 
1981 	igb_rx_fifo_flush_82575(&adapter->hw);
1982 
1983 	/* call igb_desc_unused which always leaves
1984 	 * at least 1 descriptor unused to make sure
1985 	 * next_to_use != next_to_clean
1986 	 */
1987 	for (i = 0; i < adapter->num_rx_queues; i++) {
1988 		struct igb_ring *ring = adapter->rx_ring[i];
1989 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1990 	}
1991 }
1992 
1993 /**
1994  *  igb_power_up_link - Power up the phy/serdes link
1995  *  @adapter: address of board private structure
1996  **/
1997 void igb_power_up_link(struct igb_adapter *adapter)
1998 {
1999 	igb_reset_phy(&adapter->hw);
2000 
2001 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2002 		igb_power_up_phy_copper(&adapter->hw);
2003 	else
2004 		igb_power_up_serdes_link_82575(&adapter->hw);
2005 
2006 	igb_setup_link(&adapter->hw);
2007 }
2008 
2009 /**
2010  *  igb_power_down_link - Power down the phy/serdes link
2011  *  @adapter: address of board private structure
2012  */
2013 static void igb_power_down_link(struct igb_adapter *adapter)
2014 {
2015 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 		igb_power_down_phy_copper_82575(&adapter->hw);
2017 	else
2018 		igb_shutdown_serdes_link_82575(&adapter->hw);
2019 }
2020 
2021 /**
2022  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2023  * @adapter: address of the board private structure
2024  **/
2025 static void igb_check_swap_media(struct igb_adapter *adapter)
2026 {
2027 	struct e1000_hw *hw = &adapter->hw;
2028 	u32 ctrl_ext, connsw;
2029 	bool swap_now = false;
2030 
2031 	ctrl_ext = rd32(E1000_CTRL_EXT);
2032 	connsw = rd32(E1000_CONNSW);
2033 
2034 	/* need to live swap if current media is copper and we have fiber/serdes
2035 	 * to go to.
2036 	 */
2037 
2038 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2039 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2040 		swap_now = true;
2041 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2042 		   !(connsw & E1000_CONNSW_SERDESD)) {
2043 		/* copper signal takes time to appear */
2044 		if (adapter->copper_tries < 4) {
2045 			adapter->copper_tries++;
2046 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2047 			wr32(E1000_CONNSW, connsw);
2048 			return;
2049 		} else {
2050 			adapter->copper_tries = 0;
2051 			if ((connsw & E1000_CONNSW_PHYSD) &&
2052 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2053 				swap_now = true;
2054 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2055 				wr32(E1000_CONNSW, connsw);
2056 			}
2057 		}
2058 	}
2059 
2060 	if (!swap_now)
2061 		return;
2062 
2063 	switch (hw->phy.media_type) {
2064 	case e1000_media_type_copper:
2065 		netdev_info(adapter->netdev,
2066 			"MAS: changing media to fiber/serdes\n");
2067 		ctrl_ext |=
2068 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2069 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2070 		adapter->copper_tries = 0;
2071 		break;
2072 	case e1000_media_type_internal_serdes:
2073 	case e1000_media_type_fiber:
2074 		netdev_info(adapter->netdev,
2075 			"MAS: changing media to copper\n");
2076 		ctrl_ext &=
2077 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2078 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2079 		break;
2080 	default:
2081 		/* shouldn't get here during regular operation */
2082 		netdev_err(adapter->netdev,
2083 			"AMS: Invalid media type found, returning\n");
2084 		break;
2085 	}
2086 	wr32(E1000_CTRL_EXT, ctrl_ext);
2087 }
2088 
2089 /**
2090  *  igb_up - Open the interface and prepare it to handle traffic
2091  *  @adapter: board private structure
2092  **/
2093 int igb_up(struct igb_adapter *adapter)
2094 {
2095 	struct e1000_hw *hw = &adapter->hw;
2096 	int i;
2097 
2098 	/* hardware has been reset, we need to reload some things */
2099 	igb_configure(adapter);
2100 
2101 	clear_bit(__IGB_DOWN, &adapter->state);
2102 
2103 	for (i = 0; i < adapter->num_q_vectors; i++)
2104 		napi_enable(&(adapter->q_vector[i]->napi));
2105 
2106 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2107 		igb_configure_msix(adapter);
2108 	else
2109 		igb_assign_vector(adapter->q_vector[0], 0);
2110 
2111 	/* Clear any pending interrupts. */
2112 	rd32(E1000_TSICR);
2113 	rd32(E1000_ICR);
2114 	igb_irq_enable(adapter);
2115 
2116 	/* notify VFs that reset has been completed */
2117 	if (adapter->vfs_allocated_count) {
2118 		u32 reg_data = rd32(E1000_CTRL_EXT);
2119 
2120 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2121 		wr32(E1000_CTRL_EXT, reg_data);
2122 	}
2123 
2124 	netif_tx_start_all_queues(adapter->netdev);
2125 
2126 	/* start the watchdog. */
2127 	hw->mac.get_link_status = 1;
2128 	schedule_work(&adapter->watchdog_task);
2129 
2130 	if ((adapter->flags & IGB_FLAG_EEE) &&
2131 	    (!hw->dev_spec._82575.eee_disable))
2132 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2133 
2134 	return 0;
2135 }
2136 
2137 void igb_down(struct igb_adapter *adapter)
2138 {
2139 	struct net_device *netdev = adapter->netdev;
2140 	struct e1000_hw *hw = &adapter->hw;
2141 	u32 tctl, rctl;
2142 	int i;
2143 
2144 	/* signal that we're down so the interrupt handler does not
2145 	 * reschedule our watchdog timer
2146 	 */
2147 	set_bit(__IGB_DOWN, &adapter->state);
2148 
2149 	/* disable receives in the hardware */
2150 	rctl = rd32(E1000_RCTL);
2151 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2152 	/* flush and sleep below */
2153 
2154 	igb_nfc_filter_exit(adapter);
2155 
2156 	netif_carrier_off(netdev);
2157 	netif_tx_stop_all_queues(netdev);
2158 
2159 	/* disable transmits in the hardware */
2160 	tctl = rd32(E1000_TCTL);
2161 	tctl &= ~E1000_TCTL_EN;
2162 	wr32(E1000_TCTL, tctl);
2163 	/* flush both disables and wait for them to finish */
2164 	wrfl();
2165 	usleep_range(10000, 11000);
2166 
2167 	igb_irq_disable(adapter);
2168 
2169 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2170 
2171 	for (i = 0; i < adapter->num_q_vectors; i++) {
2172 		if (adapter->q_vector[i]) {
2173 			napi_synchronize(&adapter->q_vector[i]->napi);
2174 			napi_disable(&adapter->q_vector[i]->napi);
2175 		}
2176 	}
2177 
2178 	del_timer_sync(&adapter->watchdog_timer);
2179 	del_timer_sync(&adapter->phy_info_timer);
2180 
2181 	/* record the stats before reset*/
2182 	spin_lock(&adapter->stats64_lock);
2183 	igb_update_stats(adapter);
2184 	spin_unlock(&adapter->stats64_lock);
2185 
2186 	adapter->link_speed = 0;
2187 	adapter->link_duplex = 0;
2188 
2189 	if (!pci_channel_offline(adapter->pdev))
2190 		igb_reset(adapter);
2191 
2192 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2193 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2194 
2195 	igb_clean_all_tx_rings(adapter);
2196 	igb_clean_all_rx_rings(adapter);
2197 #ifdef CONFIG_IGB_DCA
2198 
2199 	/* since we reset the hardware DCA settings were cleared */
2200 	igb_setup_dca(adapter);
2201 #endif
2202 }
2203 
2204 void igb_reinit_locked(struct igb_adapter *adapter)
2205 {
2206 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2207 		usleep_range(1000, 2000);
2208 	igb_down(adapter);
2209 	igb_up(adapter);
2210 	clear_bit(__IGB_RESETTING, &adapter->state);
2211 }
2212 
2213 /** igb_enable_mas - Media Autosense re-enable after swap
2214  *
2215  * @adapter: adapter struct
2216  **/
2217 static void igb_enable_mas(struct igb_adapter *adapter)
2218 {
2219 	struct e1000_hw *hw = &adapter->hw;
2220 	u32 connsw = rd32(E1000_CONNSW);
2221 
2222 	/* configure for SerDes media detect */
2223 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2224 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2225 		connsw |= E1000_CONNSW_ENRGSRC;
2226 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2227 		wr32(E1000_CONNSW, connsw);
2228 		wrfl();
2229 	}
2230 }
2231 
2232 #ifdef CONFIG_IGB_HWMON
2233 /**
2234  *  igb_set_i2c_bb - Init I2C interface
2235  *  @hw: pointer to hardware structure
2236  **/
2237 static void igb_set_i2c_bb(struct e1000_hw *hw)
2238 {
2239 	u32 ctrl_ext;
2240 	s32 i2cctl;
2241 
2242 	ctrl_ext = rd32(E1000_CTRL_EXT);
2243 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2244 	wr32(E1000_CTRL_EXT, ctrl_ext);
2245 	wrfl();
2246 
2247 	i2cctl = rd32(E1000_I2CPARAMS);
2248 	i2cctl |= E1000_I2CBB_EN
2249 		| E1000_I2C_CLK_OE_N
2250 		| E1000_I2C_DATA_OE_N;
2251 	wr32(E1000_I2CPARAMS, i2cctl);
2252 	wrfl();
2253 }
2254 #endif
2255 
2256 void igb_reset(struct igb_adapter *adapter)
2257 {
2258 	struct pci_dev *pdev = adapter->pdev;
2259 	struct e1000_hw *hw = &adapter->hw;
2260 	struct e1000_mac_info *mac = &hw->mac;
2261 	struct e1000_fc_info *fc = &hw->fc;
2262 	u32 pba, hwm;
2263 
2264 	/* Repartition Pba for greater than 9k mtu
2265 	 * To take effect CTRL.RST is required.
2266 	 */
2267 	switch (mac->type) {
2268 	case e1000_i350:
2269 	case e1000_i354:
2270 	case e1000_82580:
2271 		pba = rd32(E1000_RXPBS);
2272 		pba = igb_rxpbs_adjust_82580(pba);
2273 		break;
2274 	case e1000_82576:
2275 		pba = rd32(E1000_RXPBS);
2276 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2277 		break;
2278 	case e1000_82575:
2279 	case e1000_i210:
2280 	case e1000_i211:
2281 	default:
2282 		pba = E1000_PBA_34K;
2283 		break;
2284 	}
2285 
2286 	if (mac->type == e1000_82575) {
2287 		u32 min_rx_space, min_tx_space, needed_tx_space;
2288 
2289 		/* write Rx PBA so that hardware can report correct Tx PBA */
2290 		wr32(E1000_PBA, pba);
2291 
2292 		/* To maintain wire speed transmits, the Tx FIFO should be
2293 		 * large enough to accommodate two full transmit packets,
2294 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2295 		 * the Rx FIFO should be large enough to accommodate at least
2296 		 * one full receive packet and is similarly rounded up and
2297 		 * expressed in KB.
2298 		 */
2299 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2300 
2301 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2302 		 * but don't include Ethernet FCS because hardware appends it.
2303 		 * We only need to round down to the nearest 512 byte block
2304 		 * count since the value we care about is 2 frames, not 1.
2305 		 */
2306 		min_tx_space = adapter->max_frame_size;
2307 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2308 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2309 
2310 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2311 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2312 
2313 		/* If current Tx allocation is less than the min Tx FIFO size,
2314 		 * and the min Tx FIFO size is less than the current Rx FIFO
2315 		 * allocation, take space away from current Rx allocation.
2316 		 */
2317 		if (needed_tx_space < pba) {
2318 			pba -= needed_tx_space;
2319 
2320 			/* if short on Rx space, Rx wins and must trump Tx
2321 			 * adjustment
2322 			 */
2323 			if (pba < min_rx_space)
2324 				pba = min_rx_space;
2325 		}
2326 
2327 		/* adjust PBA for jumbo frames */
2328 		wr32(E1000_PBA, pba);
2329 	}
2330 
2331 	/* flow control settings
2332 	 * The high water mark must be low enough to fit one full frame
2333 	 * after transmitting the pause frame.  As such we must have enough
2334 	 * space to allow for us to complete our current transmit and then
2335 	 * receive the frame that is in progress from the link partner.
2336 	 * Set it to:
2337 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2338 	 */
2339 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2340 
2341 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2342 	fc->low_water = fc->high_water - 16;
2343 	fc->pause_time = 0xFFFF;
2344 	fc->send_xon = 1;
2345 	fc->current_mode = fc->requested_mode;
2346 
2347 	/* disable receive for all VFs and wait one second */
2348 	if (adapter->vfs_allocated_count) {
2349 		int i;
2350 
2351 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2352 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2353 
2354 		/* ping all the active vfs to let them know we are going down */
2355 		igb_ping_all_vfs(adapter);
2356 
2357 		/* disable transmits and receives */
2358 		wr32(E1000_VFRE, 0);
2359 		wr32(E1000_VFTE, 0);
2360 	}
2361 
2362 	/* Allow time for pending master requests to run */
2363 	hw->mac.ops.reset_hw(hw);
2364 	wr32(E1000_WUC, 0);
2365 
2366 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2367 		/* need to resetup here after media swap */
2368 		adapter->ei.get_invariants(hw);
2369 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2370 	}
2371 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2372 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2373 		igb_enable_mas(adapter);
2374 	}
2375 	if (hw->mac.ops.init_hw(hw))
2376 		dev_err(&pdev->dev, "Hardware Error\n");
2377 
2378 	/* RAR registers were cleared during init_hw, clear mac table */
2379 	igb_flush_mac_table(adapter);
2380 	__dev_uc_unsync(adapter->netdev, NULL);
2381 
2382 	/* Recover default RAR entry */
2383 	igb_set_default_mac_filter(adapter);
2384 
2385 	/* Flow control settings reset on hardware reset, so guarantee flow
2386 	 * control is off when forcing speed.
2387 	 */
2388 	if (!hw->mac.autoneg)
2389 		igb_force_mac_fc(hw);
2390 
2391 	igb_init_dmac(adapter, pba);
2392 #ifdef CONFIG_IGB_HWMON
2393 	/* Re-initialize the thermal sensor on i350 devices. */
2394 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2395 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2396 			/* If present, re-initialize the external thermal sensor
2397 			 * interface.
2398 			 */
2399 			if (adapter->ets)
2400 				igb_set_i2c_bb(hw);
2401 			mac->ops.init_thermal_sensor_thresh(hw);
2402 		}
2403 	}
2404 #endif
2405 	/* Re-establish EEE setting */
2406 	if (hw->phy.media_type == e1000_media_type_copper) {
2407 		switch (mac->type) {
2408 		case e1000_i350:
2409 		case e1000_i210:
2410 		case e1000_i211:
2411 			igb_set_eee_i350(hw, true, true);
2412 			break;
2413 		case e1000_i354:
2414 			igb_set_eee_i354(hw, true, true);
2415 			break;
2416 		default:
2417 			break;
2418 		}
2419 	}
2420 	if (!netif_running(adapter->netdev))
2421 		igb_power_down_link(adapter);
2422 
2423 	igb_update_mng_vlan(adapter);
2424 
2425 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427 
2428 	/* Re-enable PTP, where applicable. */
2429 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430 		igb_ptp_reset(adapter);
2431 
2432 	igb_get_phy_info(hw);
2433 }
2434 
2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436 	netdev_features_t features)
2437 {
2438 	/* Since there is no support for separate Rx/Tx vlan accel
2439 	 * enable/disable make sure Tx flag is always in same state as Rx.
2440 	 */
2441 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2443 	else
2444 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445 
2446 	return features;
2447 }
2448 
2449 static int igb_set_features(struct net_device *netdev,
2450 	netdev_features_t features)
2451 {
2452 	netdev_features_t changed = netdev->features ^ features;
2453 	struct igb_adapter *adapter = netdev_priv(netdev);
2454 
2455 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456 		igb_vlan_mode(netdev, features);
2457 
2458 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459 		return 0;
2460 
2461 	if (!(features & NETIF_F_NTUPLE)) {
2462 		struct hlist_node *node2;
2463 		struct igb_nfc_filter *rule;
2464 
2465 		spin_lock(&adapter->nfc_lock);
2466 		hlist_for_each_entry_safe(rule, node2,
2467 					  &adapter->nfc_filter_list, nfc_node) {
2468 			igb_erase_filter(adapter, rule);
2469 			hlist_del(&rule->nfc_node);
2470 			kfree(rule);
2471 		}
2472 		spin_unlock(&adapter->nfc_lock);
2473 		adapter->nfc_filter_count = 0;
2474 	}
2475 
2476 	netdev->features = features;
2477 
2478 	if (netif_running(netdev))
2479 		igb_reinit_locked(adapter);
2480 	else
2481 		igb_reset(adapter);
2482 
2483 	return 1;
2484 }
2485 
2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487 			   struct net_device *dev,
2488 			   const unsigned char *addr, u16 vid,
2489 			   u16 flags,
2490 			   struct netlink_ext_ack *extack)
2491 {
2492 	/* guarantee we can provide a unique filter for the unicast address */
2493 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494 		struct igb_adapter *adapter = netdev_priv(dev);
2495 		int vfn = adapter->vfs_allocated_count;
2496 
2497 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2498 			return -ENOMEM;
2499 	}
2500 
2501 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2502 }
2503 
2504 #define IGB_MAX_MAC_HDR_LEN	127
2505 #define IGB_MAX_NETWORK_HDR_LEN	511
2506 
2507 static netdev_features_t
2508 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509 		   netdev_features_t features)
2510 {
2511 	unsigned int network_hdr_len, mac_hdr_len;
2512 
2513 	/* Make certain the headers can be described by a context descriptor */
2514 	mac_hdr_len = skb_network_offset(skb);
2515 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516 		return features & ~(NETIF_F_HW_CSUM |
2517 				    NETIF_F_SCTP_CRC |
2518 				    NETIF_F_GSO_UDP_L4 |
2519 				    NETIF_F_HW_VLAN_CTAG_TX |
2520 				    NETIF_F_TSO |
2521 				    NETIF_F_TSO6);
2522 
2523 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2524 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2525 		return features & ~(NETIF_F_HW_CSUM |
2526 				    NETIF_F_SCTP_CRC |
2527 				    NETIF_F_GSO_UDP_L4 |
2528 				    NETIF_F_TSO |
2529 				    NETIF_F_TSO6);
2530 
2531 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2532 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2533 	 */
2534 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2535 		features &= ~NETIF_F_TSO;
2536 
2537 	return features;
2538 }
2539 
2540 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2541 {
2542 	if (!is_fqtss_enabled(adapter)) {
2543 		enable_fqtss(adapter, true);
2544 		return;
2545 	}
2546 
2547 	igb_config_tx_modes(adapter, queue);
2548 
2549 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2550 		enable_fqtss(adapter, false);
2551 }
2552 
2553 static int igb_offload_cbs(struct igb_adapter *adapter,
2554 			   struct tc_cbs_qopt_offload *qopt)
2555 {
2556 	struct e1000_hw *hw = &adapter->hw;
2557 	int err;
2558 
2559 	/* CBS offloading is only supported by i210 controller. */
2560 	if (hw->mac.type != e1000_i210)
2561 		return -EOPNOTSUPP;
2562 
2563 	/* CBS offloading is only supported by queue 0 and queue 1. */
2564 	if (qopt->queue < 0 || qopt->queue > 1)
2565 		return -EINVAL;
2566 
2567 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2568 				  qopt->idleslope, qopt->sendslope,
2569 				  qopt->hicredit, qopt->locredit);
2570 	if (err)
2571 		return err;
2572 
2573 	igb_offload_apply(adapter, qopt->queue);
2574 
2575 	return 0;
2576 }
2577 
2578 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2579 #define VLAN_PRIO_FULL_MASK (0x07)
2580 
2581 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2582 				struct flow_cls_offload *f,
2583 				int traffic_class,
2584 				struct igb_nfc_filter *input)
2585 {
2586 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2587 	struct flow_dissector *dissector = rule->match.dissector;
2588 	struct netlink_ext_ack *extack = f->common.extack;
2589 
2590 	if (dissector->used_keys &
2591 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2592 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2593 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2594 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2595 		NL_SET_ERR_MSG_MOD(extack,
2596 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2597 		return -EOPNOTSUPP;
2598 	}
2599 
2600 	if (flow_rule_match_has_control_flags(rule, extack))
2601 		return -EOPNOTSUPP;
2602 
2603 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2604 		struct flow_match_eth_addrs match;
2605 
2606 		flow_rule_match_eth_addrs(rule, &match);
2607 		if (!is_zero_ether_addr(match.mask->dst)) {
2608 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2609 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2610 				return -EINVAL;
2611 			}
2612 
2613 			input->filter.match_flags |=
2614 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2615 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2616 		}
2617 
2618 		if (!is_zero_ether_addr(match.mask->src)) {
2619 			if (!is_broadcast_ether_addr(match.mask->src)) {
2620 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2621 				return -EINVAL;
2622 			}
2623 
2624 			input->filter.match_flags |=
2625 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2626 			ether_addr_copy(input->filter.src_addr, match.key->src);
2627 		}
2628 	}
2629 
2630 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2631 		struct flow_match_basic match;
2632 
2633 		flow_rule_match_basic(rule, &match);
2634 		if (match.mask->n_proto) {
2635 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2636 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2637 				return -EINVAL;
2638 			}
2639 
2640 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2641 			input->filter.etype = match.key->n_proto;
2642 		}
2643 	}
2644 
2645 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2646 		struct flow_match_vlan match;
2647 
2648 		flow_rule_match_vlan(rule, &match);
2649 		if (match.mask->vlan_priority) {
2650 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2651 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2652 				return -EINVAL;
2653 			}
2654 
2655 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2656 			input->filter.vlan_tci =
2657 				(__force __be16)match.key->vlan_priority;
2658 		}
2659 	}
2660 
2661 	input->action = traffic_class;
2662 	input->cookie = f->cookie;
2663 
2664 	return 0;
2665 }
2666 
2667 static int igb_configure_clsflower(struct igb_adapter *adapter,
2668 				   struct flow_cls_offload *cls_flower)
2669 {
2670 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2671 	struct igb_nfc_filter *filter, *f;
2672 	int err, tc;
2673 
2674 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2675 	if (tc < 0) {
2676 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2677 		return -EINVAL;
2678 	}
2679 
2680 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2681 	if (!filter)
2682 		return -ENOMEM;
2683 
2684 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2685 	if (err < 0)
2686 		goto err_parse;
2687 
2688 	spin_lock(&adapter->nfc_lock);
2689 
2690 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2691 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2692 			err = -EEXIST;
2693 			NL_SET_ERR_MSG_MOD(extack,
2694 					   "This filter is already set in ethtool");
2695 			goto err_locked;
2696 		}
2697 	}
2698 
2699 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2700 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701 			err = -EEXIST;
2702 			NL_SET_ERR_MSG_MOD(extack,
2703 					   "This filter is already set in cls_flower");
2704 			goto err_locked;
2705 		}
2706 	}
2707 
2708 	err = igb_add_filter(adapter, filter);
2709 	if (err < 0) {
2710 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2711 		goto err_locked;
2712 	}
2713 
2714 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2715 
2716 	spin_unlock(&adapter->nfc_lock);
2717 
2718 	return 0;
2719 
2720 err_locked:
2721 	spin_unlock(&adapter->nfc_lock);
2722 
2723 err_parse:
2724 	kfree(filter);
2725 
2726 	return err;
2727 }
2728 
2729 static int igb_delete_clsflower(struct igb_adapter *adapter,
2730 				struct flow_cls_offload *cls_flower)
2731 {
2732 	struct igb_nfc_filter *filter;
2733 	int err;
2734 
2735 	spin_lock(&adapter->nfc_lock);
2736 
2737 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2738 		if (filter->cookie == cls_flower->cookie)
2739 			break;
2740 
2741 	if (!filter) {
2742 		err = -ENOENT;
2743 		goto out;
2744 	}
2745 
2746 	err = igb_erase_filter(adapter, filter);
2747 	if (err < 0)
2748 		goto out;
2749 
2750 	hlist_del(&filter->nfc_node);
2751 	kfree(filter);
2752 
2753 out:
2754 	spin_unlock(&adapter->nfc_lock);
2755 
2756 	return err;
2757 }
2758 
2759 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2760 				   struct flow_cls_offload *cls_flower)
2761 {
2762 	switch (cls_flower->command) {
2763 	case FLOW_CLS_REPLACE:
2764 		return igb_configure_clsflower(adapter, cls_flower);
2765 	case FLOW_CLS_DESTROY:
2766 		return igb_delete_clsflower(adapter, cls_flower);
2767 	case FLOW_CLS_STATS:
2768 		return -EOPNOTSUPP;
2769 	default:
2770 		return -EOPNOTSUPP;
2771 	}
2772 }
2773 
2774 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2775 				 void *cb_priv)
2776 {
2777 	struct igb_adapter *adapter = cb_priv;
2778 
2779 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2780 		return -EOPNOTSUPP;
2781 
2782 	switch (type) {
2783 	case TC_SETUP_CLSFLOWER:
2784 		return igb_setup_tc_cls_flower(adapter, type_data);
2785 
2786 	default:
2787 		return -EOPNOTSUPP;
2788 	}
2789 }
2790 
2791 static int igb_offload_txtime(struct igb_adapter *adapter,
2792 			      struct tc_etf_qopt_offload *qopt)
2793 {
2794 	struct e1000_hw *hw = &adapter->hw;
2795 	int err;
2796 
2797 	/* Launchtime offloading is only supported by i210 controller. */
2798 	if (hw->mac.type != e1000_i210)
2799 		return -EOPNOTSUPP;
2800 
2801 	/* Launchtime offloading is only supported by queues 0 and 1. */
2802 	if (qopt->queue < 0 || qopt->queue > 1)
2803 		return -EINVAL;
2804 
2805 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2806 	if (err)
2807 		return err;
2808 
2809 	igb_offload_apply(adapter, qopt->queue);
2810 
2811 	return 0;
2812 }
2813 
2814 static int igb_tc_query_caps(struct igb_adapter *adapter,
2815 			     struct tc_query_caps_base *base)
2816 {
2817 	switch (base->type) {
2818 	case TC_SETUP_QDISC_TAPRIO: {
2819 		struct tc_taprio_caps *caps = base->caps;
2820 
2821 		caps->broken_mqprio = true;
2822 
2823 		return 0;
2824 	}
2825 	default:
2826 		return -EOPNOTSUPP;
2827 	}
2828 }
2829 
2830 static LIST_HEAD(igb_block_cb_list);
2831 
2832 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2833 			void *type_data)
2834 {
2835 	struct igb_adapter *adapter = netdev_priv(dev);
2836 
2837 	switch (type) {
2838 	case TC_QUERY_CAPS:
2839 		return igb_tc_query_caps(adapter, type_data);
2840 	case TC_SETUP_QDISC_CBS:
2841 		return igb_offload_cbs(adapter, type_data);
2842 	case TC_SETUP_BLOCK:
2843 		return flow_block_cb_setup_simple(type_data,
2844 						  &igb_block_cb_list,
2845 						  igb_setup_tc_block_cb,
2846 						  adapter, adapter, true);
2847 
2848 	case TC_SETUP_QDISC_ETF:
2849 		return igb_offload_txtime(adapter, type_data);
2850 
2851 	default:
2852 		return -EOPNOTSUPP;
2853 	}
2854 }
2855 
2856 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2857 {
2858 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2859 	struct igb_adapter *adapter = netdev_priv(dev);
2860 	struct bpf_prog *prog = bpf->prog, *old_prog;
2861 	bool running = netif_running(dev);
2862 	bool need_reset;
2863 
2864 	/* verify igb ring attributes are sufficient for XDP */
2865 	for (i = 0; i < adapter->num_rx_queues; i++) {
2866 		struct igb_ring *ring = adapter->rx_ring[i];
2867 
2868 		if (frame_size > igb_rx_bufsz(ring)) {
2869 			NL_SET_ERR_MSG_MOD(bpf->extack,
2870 					   "The RX buffer size is too small for the frame size");
2871 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2872 				    igb_rx_bufsz(ring), frame_size);
2873 			return -EINVAL;
2874 		}
2875 	}
2876 
2877 	old_prog = xchg(&adapter->xdp_prog, prog);
2878 	need_reset = (!!prog != !!old_prog);
2879 
2880 	/* device is up and bpf is added/removed, must setup the RX queues */
2881 	if (need_reset && running) {
2882 		igb_close(dev);
2883 	} else {
2884 		for (i = 0; i < adapter->num_rx_queues; i++)
2885 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2886 			    adapter->xdp_prog);
2887 	}
2888 
2889 	if (old_prog)
2890 		bpf_prog_put(old_prog);
2891 
2892 	/* bpf is just replaced, RXQ and MTU are already setup */
2893 	if (!need_reset) {
2894 		return 0;
2895 	} else {
2896 		if (prog)
2897 			xdp_features_set_redirect_target(dev, true);
2898 		else
2899 			xdp_features_clear_redirect_target(dev);
2900 	}
2901 
2902 	if (running)
2903 		igb_open(dev);
2904 
2905 	return 0;
2906 }
2907 
2908 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2909 {
2910 	switch (xdp->command) {
2911 	case XDP_SETUP_PROG:
2912 		return igb_xdp_setup(dev, xdp);
2913 	default:
2914 		return -EINVAL;
2915 	}
2916 }
2917 
2918 /* This function assumes __netif_tx_lock is held by the caller. */
2919 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2920 {
2921 	lockdep_assert_held(&txring_txq(ring)->_xmit_lock);
2922 
2923 	/* Force memory writes to complete before letting h/w know there
2924 	 * are new descriptors to fetch.
2925 	 */
2926 	wmb();
2927 	writel(ring->next_to_use, ring->tail);
2928 }
2929 
2930 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2931 {
2932 	unsigned int r_idx = smp_processor_id();
2933 
2934 	if (r_idx >= adapter->num_tx_queues)
2935 		r_idx = r_idx % adapter->num_tx_queues;
2936 
2937 	return adapter->tx_ring[r_idx];
2938 }
2939 
2940 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2941 {
2942 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2943 	int cpu = smp_processor_id();
2944 	struct igb_ring *tx_ring;
2945 	struct netdev_queue *nq;
2946 	u32 ret;
2947 
2948 	if (unlikely(!xdpf))
2949 		return IGB_XDP_CONSUMED;
2950 
2951 	/* During program transitions its possible adapter->xdp_prog is assigned
2952 	 * but ring has not been configured yet. In this case simply abort xmit.
2953 	 */
2954 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2955 	if (unlikely(!tx_ring))
2956 		return IGB_XDP_CONSUMED;
2957 
2958 	nq = txring_txq(tx_ring);
2959 	__netif_tx_lock(nq, cpu);
2960 	/* Avoid transmit queue timeout since we share it with the slow path */
2961 	txq_trans_cond_update(nq);
2962 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2963 	__netif_tx_unlock(nq);
2964 
2965 	return ret;
2966 }
2967 
2968 static int igb_xdp_xmit(struct net_device *dev, int n,
2969 			struct xdp_frame **frames, u32 flags)
2970 {
2971 	struct igb_adapter *adapter = netdev_priv(dev);
2972 	int cpu = smp_processor_id();
2973 	struct igb_ring *tx_ring;
2974 	struct netdev_queue *nq;
2975 	int nxmit = 0;
2976 	int i;
2977 
2978 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2979 		return -ENETDOWN;
2980 
2981 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2982 		return -EINVAL;
2983 
2984 	/* During program transitions its possible adapter->xdp_prog is assigned
2985 	 * but ring has not been configured yet. In this case simply abort xmit.
2986 	 */
2987 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2988 	if (unlikely(!tx_ring))
2989 		return -ENXIO;
2990 
2991 	nq = txring_txq(tx_ring);
2992 	__netif_tx_lock(nq, cpu);
2993 
2994 	/* Avoid transmit queue timeout since we share it with the slow path */
2995 	txq_trans_cond_update(nq);
2996 
2997 	for (i = 0; i < n; i++) {
2998 		struct xdp_frame *xdpf = frames[i];
2999 		int err;
3000 
3001 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3002 		if (err != IGB_XDP_TX)
3003 			break;
3004 		nxmit++;
3005 	}
3006 
3007 	if (unlikely(flags & XDP_XMIT_FLUSH))
3008 		igb_xdp_ring_update_tail(tx_ring);
3009 
3010 	__netif_tx_unlock(nq);
3011 
3012 	return nxmit;
3013 }
3014 
3015 static const struct net_device_ops igb_netdev_ops = {
3016 	.ndo_open		= igb_open,
3017 	.ndo_stop		= igb_close,
3018 	.ndo_start_xmit		= igb_xmit_frame,
3019 	.ndo_get_stats64	= igb_get_stats64,
3020 	.ndo_set_rx_mode	= igb_set_rx_mode,
3021 	.ndo_set_mac_address	= igb_set_mac,
3022 	.ndo_change_mtu		= igb_change_mtu,
3023 	.ndo_eth_ioctl		= igb_ioctl,
3024 	.ndo_tx_timeout		= igb_tx_timeout,
3025 	.ndo_validate_addr	= eth_validate_addr,
3026 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3027 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3028 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3029 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3030 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3031 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3032 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3033 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3034 	.ndo_fix_features	= igb_fix_features,
3035 	.ndo_set_features	= igb_set_features,
3036 	.ndo_fdb_add		= igb_ndo_fdb_add,
3037 	.ndo_features_check	= igb_features_check,
3038 	.ndo_setup_tc		= igb_setup_tc,
3039 	.ndo_bpf		= igb_xdp,
3040 	.ndo_xdp_xmit		= igb_xdp_xmit,
3041 };
3042 
3043 /**
3044  * igb_set_fw_version - Configure version string for ethtool
3045  * @adapter: adapter struct
3046  **/
3047 void igb_set_fw_version(struct igb_adapter *adapter)
3048 {
3049 	struct e1000_hw *hw = &adapter->hw;
3050 	struct e1000_fw_version fw;
3051 
3052 	igb_get_fw_version(hw, &fw);
3053 
3054 	switch (hw->mac.type) {
3055 	case e1000_i210:
3056 	case e1000_i211:
3057 		if (!(igb_get_flash_presence_i210(hw))) {
3058 			snprintf(adapter->fw_version,
3059 				 sizeof(adapter->fw_version),
3060 				 "%2d.%2d-%d",
3061 				 fw.invm_major, fw.invm_minor,
3062 				 fw.invm_img_type);
3063 			break;
3064 		}
3065 		fallthrough;
3066 	default:
3067 		/* if option rom is valid, display its version too */
3068 		if (fw.or_valid) {
3069 			snprintf(adapter->fw_version,
3070 				 sizeof(adapter->fw_version),
3071 				 "%d.%d, 0x%08x, %d.%d.%d",
3072 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3073 				 fw.or_major, fw.or_build, fw.or_patch);
3074 		/* no option rom */
3075 		} else if (fw.etrack_id != 0X0000) {
3076 			snprintf(adapter->fw_version,
3077 				 sizeof(adapter->fw_version),
3078 				 "%d.%d, 0x%08x",
3079 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
3080 		} else {
3081 			snprintf(adapter->fw_version,
3082 				 sizeof(adapter->fw_version),
3083 				 "%d.%d.%d",
3084 				 fw.eep_major, fw.eep_minor, fw.eep_build);
3085 		}
3086 		break;
3087 	}
3088 }
3089 
3090 /**
3091  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3092  *
3093  * @adapter: adapter struct
3094  **/
3095 static void igb_init_mas(struct igb_adapter *adapter)
3096 {
3097 	struct e1000_hw *hw = &adapter->hw;
3098 	u16 eeprom_data;
3099 
3100 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3101 	switch (hw->bus.func) {
3102 	case E1000_FUNC_0:
3103 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3104 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3105 			netdev_info(adapter->netdev,
3106 				"MAS: Enabling Media Autosense for port %d\n",
3107 				hw->bus.func);
3108 		}
3109 		break;
3110 	case E1000_FUNC_1:
3111 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3112 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3113 			netdev_info(adapter->netdev,
3114 				"MAS: Enabling Media Autosense for port %d\n",
3115 				hw->bus.func);
3116 		}
3117 		break;
3118 	case E1000_FUNC_2:
3119 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3120 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3121 			netdev_info(adapter->netdev,
3122 				"MAS: Enabling Media Autosense for port %d\n",
3123 				hw->bus.func);
3124 		}
3125 		break;
3126 	case E1000_FUNC_3:
3127 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3128 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3129 			netdev_info(adapter->netdev,
3130 				"MAS: Enabling Media Autosense for port %d\n",
3131 				hw->bus.func);
3132 		}
3133 		break;
3134 	default:
3135 		/* Shouldn't get here */
3136 		netdev_err(adapter->netdev,
3137 			"MAS: Invalid port configuration, returning\n");
3138 		break;
3139 	}
3140 }
3141 
3142 /**
3143  *  igb_init_i2c - Init I2C interface
3144  *  @adapter: pointer to adapter structure
3145  **/
3146 static s32 igb_init_i2c(struct igb_adapter *adapter)
3147 {
3148 	s32 status = 0;
3149 
3150 	/* I2C interface supported on i350 devices */
3151 	if (adapter->hw.mac.type != e1000_i350)
3152 		return 0;
3153 
3154 	/* Initialize the i2c bus which is controlled by the registers.
3155 	 * This bus will use the i2c_algo_bit structure that implements
3156 	 * the protocol through toggling of the 4 bits in the register.
3157 	 */
3158 	adapter->i2c_adap.owner = THIS_MODULE;
3159 	adapter->i2c_algo = igb_i2c_algo;
3160 	adapter->i2c_algo.data = adapter;
3161 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3162 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3163 	strscpy(adapter->i2c_adap.name, "igb BB",
3164 		sizeof(adapter->i2c_adap.name));
3165 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3166 	return status;
3167 }
3168 
3169 /**
3170  *  igb_probe - Device Initialization Routine
3171  *  @pdev: PCI device information struct
3172  *  @ent: entry in igb_pci_tbl
3173  *
3174  *  Returns 0 on success, negative on failure
3175  *
3176  *  igb_probe initializes an adapter identified by a pci_dev structure.
3177  *  The OS initialization, configuring of the adapter private structure,
3178  *  and a hardware reset occur.
3179  **/
3180 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3181 {
3182 	struct net_device *netdev;
3183 	struct igb_adapter *adapter;
3184 	struct e1000_hw *hw;
3185 	u16 eeprom_data = 0;
3186 	s32 ret_val;
3187 	static int global_quad_port_a; /* global quad port a indication */
3188 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3189 	u8 part_str[E1000_PBANUM_LENGTH];
3190 	int err;
3191 
3192 	/* Catch broken hardware that put the wrong VF device ID in
3193 	 * the PCIe SR-IOV capability.
3194 	 */
3195 	if (pdev->is_virtfn) {
3196 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3197 			pci_name(pdev), pdev->vendor, pdev->device);
3198 		return -EINVAL;
3199 	}
3200 
3201 	err = pci_enable_device_mem(pdev);
3202 	if (err)
3203 		return err;
3204 
3205 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3206 	if (err) {
3207 		dev_err(&pdev->dev,
3208 			"No usable DMA configuration, aborting\n");
3209 		goto err_dma;
3210 	}
3211 
3212 	err = pci_request_mem_regions(pdev, igb_driver_name);
3213 	if (err)
3214 		goto err_pci_reg;
3215 
3216 	pci_set_master(pdev);
3217 	pci_save_state(pdev);
3218 
3219 	err = -ENOMEM;
3220 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3221 				   IGB_MAX_TX_QUEUES);
3222 	if (!netdev)
3223 		goto err_alloc_etherdev;
3224 
3225 	SET_NETDEV_DEV(netdev, &pdev->dev);
3226 
3227 	pci_set_drvdata(pdev, netdev);
3228 	adapter = netdev_priv(netdev);
3229 	adapter->netdev = netdev;
3230 	adapter->pdev = pdev;
3231 	hw = &adapter->hw;
3232 	hw->back = adapter;
3233 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3234 
3235 	err = -EIO;
3236 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3237 	if (!adapter->io_addr)
3238 		goto err_ioremap;
3239 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3240 	hw->hw_addr = adapter->io_addr;
3241 
3242 	netdev->netdev_ops = &igb_netdev_ops;
3243 	igb_set_ethtool_ops(netdev);
3244 	netdev->watchdog_timeo = 5 * HZ;
3245 
3246 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3247 
3248 	netdev->mem_start = pci_resource_start(pdev, 0);
3249 	netdev->mem_end = pci_resource_end(pdev, 0);
3250 
3251 	/* PCI config space info */
3252 	hw->vendor_id = pdev->vendor;
3253 	hw->device_id = pdev->device;
3254 	hw->revision_id = pdev->revision;
3255 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3256 	hw->subsystem_device_id = pdev->subsystem_device;
3257 
3258 	/* Copy the default MAC, PHY and NVM function pointers */
3259 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3260 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3261 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3262 	/* Initialize skew-specific constants */
3263 	err = ei->get_invariants(hw);
3264 	if (err)
3265 		goto err_sw_init;
3266 
3267 	/* setup the private structure */
3268 	err = igb_sw_init(adapter);
3269 	if (err)
3270 		goto err_sw_init;
3271 
3272 	igb_get_bus_info_pcie(hw);
3273 
3274 	hw->phy.autoneg_wait_to_complete = false;
3275 
3276 	/* Copper options */
3277 	if (hw->phy.media_type == e1000_media_type_copper) {
3278 		hw->phy.mdix = AUTO_ALL_MODES;
3279 		hw->phy.disable_polarity_correction = false;
3280 		hw->phy.ms_type = e1000_ms_hw_default;
3281 	}
3282 
3283 	if (igb_check_reset_block(hw))
3284 		dev_info(&pdev->dev,
3285 			"PHY reset is blocked due to SOL/IDER session.\n");
3286 
3287 	/* features is initialized to 0 in allocation, it might have bits
3288 	 * set by igb_sw_init so we should use an or instead of an
3289 	 * assignment.
3290 	 */
3291 	netdev->features |= NETIF_F_SG |
3292 			    NETIF_F_TSO |
3293 			    NETIF_F_TSO6 |
3294 			    NETIF_F_RXHASH |
3295 			    NETIF_F_RXCSUM |
3296 			    NETIF_F_HW_CSUM;
3297 
3298 	if (hw->mac.type >= e1000_82576)
3299 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3300 
3301 	if (hw->mac.type >= e1000_i350)
3302 		netdev->features |= NETIF_F_HW_TC;
3303 
3304 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3305 				  NETIF_F_GSO_GRE_CSUM | \
3306 				  NETIF_F_GSO_IPXIP4 | \
3307 				  NETIF_F_GSO_IPXIP6 | \
3308 				  NETIF_F_GSO_UDP_TUNNEL | \
3309 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3310 
3311 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3312 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3313 
3314 	/* copy netdev features into list of user selectable features */
3315 	netdev->hw_features |= netdev->features |
3316 			       NETIF_F_HW_VLAN_CTAG_RX |
3317 			       NETIF_F_HW_VLAN_CTAG_TX |
3318 			       NETIF_F_RXALL;
3319 
3320 	if (hw->mac.type >= e1000_i350)
3321 		netdev->hw_features |= NETIF_F_NTUPLE;
3322 
3323 	netdev->features |= NETIF_F_HIGHDMA;
3324 
3325 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3326 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3327 	netdev->hw_enc_features |= netdev->vlan_features;
3328 
3329 	/* set this bit last since it cannot be part of vlan_features */
3330 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3331 			    NETIF_F_HW_VLAN_CTAG_RX |
3332 			    NETIF_F_HW_VLAN_CTAG_TX;
3333 
3334 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3335 
3336 	netdev->priv_flags |= IFF_UNICAST_FLT;
3337 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3338 
3339 	/* MTU range: 68 - 9216 */
3340 	netdev->min_mtu = ETH_MIN_MTU;
3341 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3342 
3343 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3344 
3345 	/* before reading the NVM, reset the controller to put the device in a
3346 	 * known good starting state
3347 	 */
3348 	hw->mac.ops.reset_hw(hw);
3349 
3350 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3351 	 * that doesn't contain a checksum
3352 	 */
3353 	switch (hw->mac.type) {
3354 	case e1000_i210:
3355 	case e1000_i211:
3356 		if (igb_get_flash_presence_i210(hw)) {
3357 			if (hw->nvm.ops.validate(hw) < 0) {
3358 				dev_err(&pdev->dev,
3359 					"The NVM Checksum Is Not Valid\n");
3360 				err = -EIO;
3361 				goto err_eeprom;
3362 			}
3363 		}
3364 		break;
3365 	default:
3366 		if (hw->nvm.ops.validate(hw) < 0) {
3367 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3368 			err = -EIO;
3369 			goto err_eeprom;
3370 		}
3371 		break;
3372 	}
3373 
3374 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3375 		/* copy the MAC address out of the NVM */
3376 		if (hw->mac.ops.read_mac_addr(hw))
3377 			dev_err(&pdev->dev, "NVM Read Error\n");
3378 	}
3379 
3380 	eth_hw_addr_set(netdev, hw->mac.addr);
3381 
3382 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3383 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3384 		err = -EIO;
3385 		goto err_eeprom;
3386 	}
3387 
3388 	igb_set_default_mac_filter(adapter);
3389 
3390 	/* get firmware version for ethtool -i */
3391 	igb_set_fw_version(adapter);
3392 
3393 	/* configure RXPBSIZE and TXPBSIZE */
3394 	if (hw->mac.type == e1000_i210) {
3395 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3396 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3397 	}
3398 
3399 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3400 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3401 
3402 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3403 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3404 
3405 	/* Initialize link properties that are user-changeable */
3406 	adapter->fc_autoneg = true;
3407 	hw->mac.autoneg = true;
3408 	hw->phy.autoneg_advertised = 0x2f;
3409 
3410 	hw->fc.requested_mode = e1000_fc_default;
3411 	hw->fc.current_mode = e1000_fc_default;
3412 
3413 	igb_validate_mdi_setting(hw);
3414 
3415 	/* By default, support wake on port A */
3416 	if (hw->bus.func == 0)
3417 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3418 
3419 	/* Check the NVM for wake support on non-port A ports */
3420 	if (hw->mac.type >= e1000_82580)
3421 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3422 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3423 				 &eeprom_data);
3424 	else if (hw->bus.func == 1)
3425 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3426 
3427 	if (eeprom_data & IGB_EEPROM_APME)
3428 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3429 
3430 	/* now that we have the eeprom settings, apply the special cases where
3431 	 * the eeprom may be wrong or the board simply won't support wake on
3432 	 * lan on a particular port
3433 	 */
3434 	switch (pdev->device) {
3435 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3436 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3437 		break;
3438 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3439 	case E1000_DEV_ID_82576_FIBER:
3440 	case E1000_DEV_ID_82576_SERDES:
3441 		/* Wake events only supported on port A for dual fiber
3442 		 * regardless of eeprom setting
3443 		 */
3444 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3445 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446 		break;
3447 	case E1000_DEV_ID_82576_QUAD_COPPER:
3448 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3449 		/* if quad port adapter, disable WoL on all but port A */
3450 		if (global_quad_port_a != 0)
3451 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3452 		else
3453 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3454 		/* Reset for multiple quad port adapters */
3455 		if (++global_quad_port_a == 4)
3456 			global_quad_port_a = 0;
3457 		break;
3458 	default:
3459 		/* If the device can't wake, don't set software support */
3460 		if (!device_can_wakeup(&adapter->pdev->dev))
3461 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3462 	}
3463 
3464 	/* initialize the wol settings based on the eeprom settings */
3465 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3466 		adapter->wol |= E1000_WUFC_MAG;
3467 
3468 	/* Some vendors want WoL disabled by default, but still supported */
3469 	if ((hw->mac.type == e1000_i350) &&
3470 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3471 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472 		adapter->wol = 0;
3473 	}
3474 
3475 	/* Some vendors want the ability to Use the EEPROM setting as
3476 	 * enable/disable only, and not for capability
3477 	 */
3478 	if (((hw->mac.type == e1000_i350) ||
3479 	     (hw->mac.type == e1000_i354)) &&
3480 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3481 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3482 		adapter->wol = 0;
3483 	}
3484 	if (hw->mac.type == e1000_i350) {
3485 		if (((pdev->subsystem_device == 0x5001) ||
3486 		     (pdev->subsystem_device == 0x5002)) &&
3487 				(hw->bus.func == 0)) {
3488 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3489 			adapter->wol = 0;
3490 		}
3491 		if (pdev->subsystem_device == 0x1F52)
3492 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 	}
3494 
3495 	device_set_wakeup_enable(&adapter->pdev->dev,
3496 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3497 
3498 	/* reset the hardware with the new settings */
3499 	igb_reset(adapter);
3500 
3501 	/* Init the I2C interface */
3502 	err = igb_init_i2c(adapter);
3503 	if (err) {
3504 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3505 		goto err_eeprom;
3506 	}
3507 
3508 	/* let the f/w know that the h/w is now under the control of the
3509 	 * driver.
3510 	 */
3511 	igb_get_hw_control(adapter);
3512 
3513 	strcpy(netdev->name, "eth%d");
3514 	err = register_netdev(netdev);
3515 	if (err)
3516 		goto err_register;
3517 
3518 	/* carrier off reporting is important to ethtool even BEFORE open */
3519 	netif_carrier_off(netdev);
3520 
3521 #ifdef CONFIG_IGB_DCA
3522 	if (dca_add_requester(&pdev->dev) == 0) {
3523 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3524 		dev_info(&pdev->dev, "DCA enabled\n");
3525 		igb_setup_dca(adapter);
3526 	}
3527 
3528 #endif
3529 #ifdef CONFIG_IGB_HWMON
3530 	/* Initialize the thermal sensor on i350 devices. */
3531 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3532 		u16 ets_word;
3533 
3534 		/* Read the NVM to determine if this i350 device supports an
3535 		 * external thermal sensor.
3536 		 */
3537 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3538 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3539 			adapter->ets = true;
3540 		else
3541 			adapter->ets = false;
3542 		/* Only enable I2C bit banging if an external thermal
3543 		 * sensor is supported.
3544 		 */
3545 		if (adapter->ets)
3546 			igb_set_i2c_bb(hw);
3547 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3548 		if (igb_sysfs_init(adapter))
3549 			dev_err(&pdev->dev,
3550 				"failed to allocate sysfs resources\n");
3551 	} else {
3552 		adapter->ets = false;
3553 	}
3554 #endif
3555 	/* Check if Media Autosense is enabled */
3556 	adapter->ei = *ei;
3557 	if (hw->dev_spec._82575.mas_capable)
3558 		igb_init_mas(adapter);
3559 
3560 	/* do hw tstamp init after resetting */
3561 	igb_ptp_init(adapter);
3562 
3563 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3564 	/* print bus type/speed/width info, not applicable to i354 */
3565 	if (hw->mac.type != e1000_i354) {
3566 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3567 			 netdev->name,
3568 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3569 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3570 			   "unknown"),
3571 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3572 			  "Width x4" :
3573 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3574 			  "Width x2" :
3575 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3576 			  "Width x1" : "unknown"), netdev->dev_addr);
3577 	}
3578 
3579 	if ((hw->mac.type == e1000_82576 &&
3580 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3581 	    (hw->mac.type >= e1000_i210 ||
3582 	     igb_get_flash_presence_i210(hw))) {
3583 		ret_val = igb_read_part_string(hw, part_str,
3584 					       E1000_PBANUM_LENGTH);
3585 	} else {
3586 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3587 	}
3588 
3589 	if (ret_val)
3590 		strcpy(part_str, "Unknown");
3591 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3592 	dev_info(&pdev->dev,
3593 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3594 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3595 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3596 		adapter->num_rx_queues, adapter->num_tx_queues);
3597 	if (hw->phy.media_type == e1000_media_type_copper) {
3598 		switch (hw->mac.type) {
3599 		case e1000_i350:
3600 		case e1000_i210:
3601 		case e1000_i211:
3602 			/* Enable EEE for internal copper PHY devices */
3603 			err = igb_set_eee_i350(hw, true, true);
3604 			if ((!err) &&
3605 			    (!hw->dev_spec._82575.eee_disable)) {
3606 				adapter->eee_advert =
3607 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3608 				adapter->flags |= IGB_FLAG_EEE;
3609 			}
3610 			break;
3611 		case e1000_i354:
3612 			if ((rd32(E1000_CTRL_EXT) &
3613 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3614 				err = igb_set_eee_i354(hw, true, true);
3615 				if ((!err) &&
3616 					(!hw->dev_spec._82575.eee_disable)) {
3617 					adapter->eee_advert =
3618 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3619 					adapter->flags |= IGB_FLAG_EEE;
3620 				}
3621 			}
3622 			break;
3623 		default:
3624 			break;
3625 		}
3626 	}
3627 
3628 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3629 
3630 	pm_runtime_put_noidle(&pdev->dev);
3631 	return 0;
3632 
3633 err_register:
3634 	igb_release_hw_control(adapter);
3635 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3636 err_eeprom:
3637 	if (!igb_check_reset_block(hw))
3638 		igb_reset_phy(hw);
3639 
3640 	if (hw->flash_address)
3641 		iounmap(hw->flash_address);
3642 err_sw_init:
3643 	kfree(adapter->mac_table);
3644 	kfree(adapter->shadow_vfta);
3645 	igb_clear_interrupt_scheme(adapter);
3646 #ifdef CONFIG_PCI_IOV
3647 	igb_disable_sriov(pdev, false);
3648 #endif
3649 	pci_iounmap(pdev, adapter->io_addr);
3650 err_ioremap:
3651 	free_netdev(netdev);
3652 err_alloc_etherdev:
3653 	pci_release_mem_regions(pdev);
3654 err_pci_reg:
3655 err_dma:
3656 	pci_disable_device(pdev);
3657 	return err;
3658 }
3659 
3660 #ifdef CONFIG_PCI_IOV
3661 static int igb_sriov_reinit(struct pci_dev *dev)
3662 {
3663 	struct net_device *netdev = pci_get_drvdata(dev);
3664 	struct igb_adapter *adapter = netdev_priv(netdev);
3665 	struct pci_dev *pdev = adapter->pdev;
3666 
3667 	rtnl_lock();
3668 
3669 	if (netif_running(netdev))
3670 		igb_close(netdev);
3671 	else
3672 		igb_reset(adapter);
3673 
3674 	igb_clear_interrupt_scheme(adapter);
3675 
3676 	igb_init_queue_configuration(adapter);
3677 
3678 	if (igb_init_interrupt_scheme(adapter, true)) {
3679 		rtnl_unlock();
3680 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3681 		return -ENOMEM;
3682 	}
3683 
3684 	if (netif_running(netdev))
3685 		igb_open(netdev);
3686 
3687 	rtnl_unlock();
3688 
3689 	return 0;
3690 }
3691 
3692 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3693 {
3694 	struct net_device *netdev = pci_get_drvdata(pdev);
3695 	struct igb_adapter *adapter = netdev_priv(netdev);
3696 	struct e1000_hw *hw = &adapter->hw;
3697 	unsigned long flags;
3698 
3699 	/* reclaim resources allocated to VFs */
3700 	if (adapter->vf_data) {
3701 		/* disable iov and allow time for transactions to clear */
3702 		if (pci_vfs_assigned(pdev)) {
3703 			dev_warn(&pdev->dev,
3704 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3705 			return -EPERM;
3706 		} else {
3707 			pci_disable_sriov(pdev);
3708 			msleep(500);
3709 		}
3710 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3711 		kfree(adapter->vf_mac_list);
3712 		adapter->vf_mac_list = NULL;
3713 		kfree(adapter->vf_data);
3714 		adapter->vf_data = NULL;
3715 		adapter->vfs_allocated_count = 0;
3716 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3717 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3718 		wrfl();
3719 		msleep(100);
3720 		dev_info(&pdev->dev, "IOV Disabled\n");
3721 
3722 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3723 		adapter->flags |= IGB_FLAG_DMAC;
3724 	}
3725 
3726 	return reinit ? igb_sriov_reinit(pdev) : 0;
3727 }
3728 
3729 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3730 {
3731 	struct net_device *netdev = pci_get_drvdata(pdev);
3732 	struct igb_adapter *adapter = netdev_priv(netdev);
3733 	int old_vfs = pci_num_vf(pdev);
3734 	struct vf_mac_filter *mac_list;
3735 	int err = 0;
3736 	int num_vf_mac_filters, i;
3737 
3738 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3739 		err = -EPERM;
3740 		goto out;
3741 	}
3742 	if (!num_vfs)
3743 		goto out;
3744 
3745 	if (old_vfs) {
3746 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3747 			 old_vfs, max_vfs);
3748 		adapter->vfs_allocated_count = old_vfs;
3749 	} else
3750 		adapter->vfs_allocated_count = num_vfs;
3751 
3752 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3753 				sizeof(struct vf_data_storage), GFP_KERNEL);
3754 
3755 	/* if allocation failed then we do not support SR-IOV */
3756 	if (!adapter->vf_data) {
3757 		adapter->vfs_allocated_count = 0;
3758 		err = -ENOMEM;
3759 		goto out;
3760 	}
3761 
3762 	/* Due to the limited number of RAR entries calculate potential
3763 	 * number of MAC filters available for the VFs. Reserve entries
3764 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3765 	 * for each VF for VF MAC.
3766 	 */
3767 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3768 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3769 			      adapter->vfs_allocated_count);
3770 
3771 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3772 				       sizeof(struct vf_mac_filter),
3773 				       GFP_KERNEL);
3774 
3775 	mac_list = adapter->vf_mac_list;
3776 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3777 
3778 	if (adapter->vf_mac_list) {
3779 		/* Initialize list of VF MAC filters */
3780 		for (i = 0; i < num_vf_mac_filters; i++) {
3781 			mac_list->vf = -1;
3782 			mac_list->free = true;
3783 			list_add(&mac_list->l, &adapter->vf_macs.l);
3784 			mac_list++;
3785 		}
3786 	} else {
3787 		/* If we could not allocate memory for the VF MAC filters
3788 		 * we can continue without this feature but warn user.
3789 		 */
3790 		dev_err(&pdev->dev,
3791 			"Unable to allocate memory for VF MAC filter list\n");
3792 	}
3793 
3794 	dev_info(&pdev->dev, "%d VFs allocated\n",
3795 		 adapter->vfs_allocated_count);
3796 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3797 		igb_vf_configure(adapter, i);
3798 
3799 	/* DMA Coalescing is not supported in IOV mode. */
3800 	adapter->flags &= ~IGB_FLAG_DMAC;
3801 
3802 	if (reinit) {
3803 		err = igb_sriov_reinit(pdev);
3804 		if (err)
3805 			goto err_out;
3806 	}
3807 
3808 	/* only call pci_enable_sriov() if no VFs are allocated already */
3809 	if (!old_vfs) {
3810 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3811 		if (err)
3812 			goto err_out;
3813 	}
3814 
3815 	goto out;
3816 
3817 err_out:
3818 	kfree(adapter->vf_mac_list);
3819 	adapter->vf_mac_list = NULL;
3820 	kfree(adapter->vf_data);
3821 	adapter->vf_data = NULL;
3822 	adapter->vfs_allocated_count = 0;
3823 out:
3824 	return err;
3825 }
3826 
3827 #endif
3828 /**
3829  *  igb_remove_i2c - Cleanup  I2C interface
3830  *  @adapter: pointer to adapter structure
3831  **/
3832 static void igb_remove_i2c(struct igb_adapter *adapter)
3833 {
3834 	/* free the adapter bus structure */
3835 	i2c_del_adapter(&adapter->i2c_adap);
3836 }
3837 
3838 /**
3839  *  igb_remove - Device Removal Routine
3840  *  @pdev: PCI device information struct
3841  *
3842  *  igb_remove is called by the PCI subsystem to alert the driver
3843  *  that it should release a PCI device.  The could be caused by a
3844  *  Hot-Plug event, or because the driver is going to be removed from
3845  *  memory.
3846  **/
3847 static void igb_remove(struct pci_dev *pdev)
3848 {
3849 	struct net_device *netdev = pci_get_drvdata(pdev);
3850 	struct igb_adapter *adapter = netdev_priv(netdev);
3851 	struct e1000_hw *hw = &adapter->hw;
3852 
3853 	pm_runtime_get_noresume(&pdev->dev);
3854 #ifdef CONFIG_IGB_HWMON
3855 	igb_sysfs_exit(adapter);
3856 #endif
3857 	igb_remove_i2c(adapter);
3858 	igb_ptp_stop(adapter);
3859 	/* The watchdog timer may be rescheduled, so explicitly
3860 	 * disable watchdog from being rescheduled.
3861 	 */
3862 	set_bit(__IGB_DOWN, &adapter->state);
3863 	del_timer_sync(&adapter->watchdog_timer);
3864 	del_timer_sync(&adapter->phy_info_timer);
3865 
3866 	cancel_work_sync(&adapter->reset_task);
3867 	cancel_work_sync(&adapter->watchdog_task);
3868 
3869 #ifdef CONFIG_IGB_DCA
3870 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3871 		dev_info(&pdev->dev, "DCA disabled\n");
3872 		dca_remove_requester(&pdev->dev);
3873 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3874 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3875 	}
3876 #endif
3877 
3878 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3879 	 * would have already happened in close and is redundant.
3880 	 */
3881 	igb_release_hw_control(adapter);
3882 
3883 #ifdef CONFIG_PCI_IOV
3884 	igb_disable_sriov(pdev, false);
3885 #endif
3886 
3887 	unregister_netdev(netdev);
3888 
3889 	igb_clear_interrupt_scheme(adapter);
3890 
3891 	pci_iounmap(pdev, adapter->io_addr);
3892 	if (hw->flash_address)
3893 		iounmap(hw->flash_address);
3894 	pci_release_mem_regions(pdev);
3895 
3896 	kfree(adapter->mac_table);
3897 	kfree(adapter->shadow_vfta);
3898 	free_netdev(netdev);
3899 
3900 	pci_disable_device(pdev);
3901 }
3902 
3903 /**
3904  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3905  *  @adapter: board private structure to initialize
3906  *
3907  *  This function initializes the vf specific data storage and then attempts to
3908  *  allocate the VFs.  The reason for ordering it this way is because it is much
3909  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3910  *  the memory for the VFs.
3911  **/
3912 static void igb_probe_vfs(struct igb_adapter *adapter)
3913 {
3914 #ifdef CONFIG_PCI_IOV
3915 	struct pci_dev *pdev = adapter->pdev;
3916 	struct e1000_hw *hw = &adapter->hw;
3917 
3918 	/* Virtualization features not supported on i210 and 82580 family. */
3919 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3920 	    (hw->mac.type == e1000_82580))
3921 		return;
3922 
3923 	/* Of the below we really only want the effect of getting
3924 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3925 	 * igb_enable_sriov() has no effect.
3926 	 */
3927 	igb_set_interrupt_capability(adapter, true);
3928 	igb_reset_interrupt_capability(adapter);
3929 
3930 	pci_sriov_set_totalvfs(pdev, 7);
3931 	igb_enable_sriov(pdev, max_vfs, false);
3932 
3933 #endif /* CONFIG_PCI_IOV */
3934 }
3935 
3936 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3937 {
3938 	struct e1000_hw *hw = &adapter->hw;
3939 	unsigned int max_rss_queues;
3940 
3941 	/* Determine the maximum number of RSS queues supported. */
3942 	switch (hw->mac.type) {
3943 	case e1000_i211:
3944 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3945 		break;
3946 	case e1000_82575:
3947 	case e1000_i210:
3948 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3949 		break;
3950 	case e1000_i350:
3951 		/* I350 cannot do RSS and SR-IOV at the same time */
3952 		if (!!adapter->vfs_allocated_count) {
3953 			max_rss_queues = 1;
3954 			break;
3955 		}
3956 		fallthrough;
3957 	case e1000_82576:
3958 		if (!!adapter->vfs_allocated_count) {
3959 			max_rss_queues = 2;
3960 			break;
3961 		}
3962 		fallthrough;
3963 	case e1000_82580:
3964 	case e1000_i354:
3965 	default:
3966 		max_rss_queues = IGB_MAX_RX_QUEUES;
3967 		break;
3968 	}
3969 
3970 	return max_rss_queues;
3971 }
3972 
3973 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3974 {
3975 	u32 max_rss_queues;
3976 
3977 	max_rss_queues = igb_get_max_rss_queues(adapter);
3978 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3979 
3980 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3981 }
3982 
3983 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3984 			      const u32 max_rss_queues)
3985 {
3986 	struct e1000_hw *hw = &adapter->hw;
3987 
3988 	/* Determine if we need to pair queues. */
3989 	switch (hw->mac.type) {
3990 	case e1000_82575:
3991 	case e1000_i211:
3992 		/* Device supports enough interrupts without queue pairing. */
3993 		break;
3994 	case e1000_82576:
3995 	case e1000_82580:
3996 	case e1000_i350:
3997 	case e1000_i354:
3998 	case e1000_i210:
3999 	default:
4000 		/* If rss_queues > half of max_rss_queues, pair the queues in
4001 		 * order to conserve interrupts due to limited supply.
4002 		 */
4003 		if (adapter->rss_queues > (max_rss_queues / 2))
4004 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4005 		else
4006 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4007 		break;
4008 	}
4009 }
4010 
4011 /**
4012  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4013  *  @adapter: board private structure to initialize
4014  *
4015  *  igb_sw_init initializes the Adapter private data structure.
4016  *  Fields are initialized based on PCI device information and
4017  *  OS network device settings (MTU size).
4018  **/
4019 static int igb_sw_init(struct igb_adapter *adapter)
4020 {
4021 	struct e1000_hw *hw = &adapter->hw;
4022 	struct net_device *netdev = adapter->netdev;
4023 	struct pci_dev *pdev = adapter->pdev;
4024 
4025 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4026 
4027 	/* set default ring sizes */
4028 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4029 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4030 
4031 	/* set default ITR values */
4032 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4033 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4034 
4035 	/* set default work limits */
4036 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4037 
4038 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4039 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4040 
4041 	spin_lock_init(&adapter->nfc_lock);
4042 	spin_lock_init(&adapter->stats64_lock);
4043 
4044 	/* init spinlock to avoid concurrency of VF resources */
4045 	spin_lock_init(&adapter->vfs_lock);
4046 #ifdef CONFIG_PCI_IOV
4047 	switch (hw->mac.type) {
4048 	case e1000_82576:
4049 	case e1000_i350:
4050 		if (max_vfs > 7) {
4051 			dev_warn(&pdev->dev,
4052 				 "Maximum of 7 VFs per PF, using max\n");
4053 			max_vfs = adapter->vfs_allocated_count = 7;
4054 		} else
4055 			adapter->vfs_allocated_count = max_vfs;
4056 		if (adapter->vfs_allocated_count)
4057 			dev_warn(&pdev->dev,
4058 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4059 		break;
4060 	default:
4061 		break;
4062 	}
4063 #endif /* CONFIG_PCI_IOV */
4064 
4065 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4066 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4067 
4068 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4069 				     sizeof(struct igb_mac_addr),
4070 				     GFP_KERNEL);
4071 	if (!adapter->mac_table)
4072 		return -ENOMEM;
4073 
4074 	igb_probe_vfs(adapter);
4075 
4076 	igb_init_queue_configuration(adapter);
4077 
4078 	/* Setup and initialize a copy of the hw vlan table array */
4079 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4080 				       GFP_KERNEL);
4081 	if (!adapter->shadow_vfta)
4082 		return -ENOMEM;
4083 
4084 	/* This call may decrease the number of queues */
4085 	if (igb_init_interrupt_scheme(adapter, true)) {
4086 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4087 		return -ENOMEM;
4088 	}
4089 
4090 	/* Explicitly disable IRQ since the NIC can be in any state. */
4091 	igb_irq_disable(adapter);
4092 
4093 	if (hw->mac.type >= e1000_i350)
4094 		adapter->flags &= ~IGB_FLAG_DMAC;
4095 
4096 	set_bit(__IGB_DOWN, &adapter->state);
4097 	return 0;
4098 }
4099 
4100 /**
4101  *  __igb_open - Called when a network interface is made active
4102  *  @netdev: network interface device structure
4103  *  @resuming: indicates whether we are in a resume call
4104  *
4105  *  Returns 0 on success, negative value on failure
4106  *
4107  *  The open entry point is called when a network interface is made
4108  *  active by the system (IFF_UP).  At this point all resources needed
4109  *  for transmit and receive operations are allocated, the interrupt
4110  *  handler is registered with the OS, the watchdog timer is started,
4111  *  and the stack is notified that the interface is ready.
4112  **/
4113 static int __igb_open(struct net_device *netdev, bool resuming)
4114 {
4115 	struct igb_adapter *adapter = netdev_priv(netdev);
4116 	struct e1000_hw *hw = &adapter->hw;
4117 	struct pci_dev *pdev = adapter->pdev;
4118 	int err;
4119 	int i;
4120 
4121 	/* disallow open during test */
4122 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4123 		WARN_ON(resuming);
4124 		return -EBUSY;
4125 	}
4126 
4127 	if (!resuming)
4128 		pm_runtime_get_sync(&pdev->dev);
4129 
4130 	netif_carrier_off(netdev);
4131 
4132 	/* allocate transmit descriptors */
4133 	err = igb_setup_all_tx_resources(adapter);
4134 	if (err)
4135 		goto err_setup_tx;
4136 
4137 	/* allocate receive descriptors */
4138 	err = igb_setup_all_rx_resources(adapter);
4139 	if (err)
4140 		goto err_setup_rx;
4141 
4142 	igb_power_up_link(adapter);
4143 
4144 	/* before we allocate an interrupt, we must be ready to handle it.
4145 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4146 	 * as soon as we call pci_request_irq, so we have to setup our
4147 	 * clean_rx handler before we do so.
4148 	 */
4149 	igb_configure(adapter);
4150 
4151 	err = igb_request_irq(adapter);
4152 	if (err)
4153 		goto err_req_irq;
4154 
4155 	/* Notify the stack of the actual queue counts. */
4156 	err = netif_set_real_num_tx_queues(adapter->netdev,
4157 					   adapter->num_tx_queues);
4158 	if (err)
4159 		goto err_set_queues;
4160 
4161 	err = netif_set_real_num_rx_queues(adapter->netdev,
4162 					   adapter->num_rx_queues);
4163 	if (err)
4164 		goto err_set_queues;
4165 
4166 	/* From here on the code is the same as igb_up() */
4167 	clear_bit(__IGB_DOWN, &adapter->state);
4168 
4169 	for (i = 0; i < adapter->num_q_vectors; i++)
4170 		napi_enable(&(adapter->q_vector[i]->napi));
4171 
4172 	/* Clear any pending interrupts. */
4173 	rd32(E1000_TSICR);
4174 	rd32(E1000_ICR);
4175 
4176 	igb_irq_enable(adapter);
4177 
4178 	/* notify VFs that reset has been completed */
4179 	if (adapter->vfs_allocated_count) {
4180 		u32 reg_data = rd32(E1000_CTRL_EXT);
4181 
4182 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4183 		wr32(E1000_CTRL_EXT, reg_data);
4184 	}
4185 
4186 	netif_tx_start_all_queues(netdev);
4187 
4188 	if (!resuming)
4189 		pm_runtime_put(&pdev->dev);
4190 
4191 	/* start the watchdog. */
4192 	hw->mac.get_link_status = 1;
4193 	schedule_work(&adapter->watchdog_task);
4194 
4195 	return 0;
4196 
4197 err_set_queues:
4198 	igb_free_irq(adapter);
4199 err_req_irq:
4200 	igb_release_hw_control(adapter);
4201 	igb_power_down_link(adapter);
4202 	igb_free_all_rx_resources(adapter);
4203 err_setup_rx:
4204 	igb_free_all_tx_resources(adapter);
4205 err_setup_tx:
4206 	igb_reset(adapter);
4207 	if (!resuming)
4208 		pm_runtime_put(&pdev->dev);
4209 
4210 	return err;
4211 }
4212 
4213 int igb_open(struct net_device *netdev)
4214 {
4215 	return __igb_open(netdev, false);
4216 }
4217 
4218 /**
4219  *  __igb_close - Disables a network interface
4220  *  @netdev: network interface device structure
4221  *  @suspending: indicates we are in a suspend call
4222  *
4223  *  Returns 0, this is not allowed to fail
4224  *
4225  *  The close entry point is called when an interface is de-activated
4226  *  by the OS.  The hardware is still under the driver's control, but
4227  *  needs to be disabled.  A global MAC reset is issued to stop the
4228  *  hardware, and all transmit and receive resources are freed.
4229  **/
4230 static int __igb_close(struct net_device *netdev, bool suspending)
4231 {
4232 	struct igb_adapter *adapter = netdev_priv(netdev);
4233 	struct pci_dev *pdev = adapter->pdev;
4234 
4235 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4236 
4237 	if (!suspending)
4238 		pm_runtime_get_sync(&pdev->dev);
4239 
4240 	igb_down(adapter);
4241 	igb_free_irq(adapter);
4242 
4243 	igb_free_all_tx_resources(adapter);
4244 	igb_free_all_rx_resources(adapter);
4245 
4246 	if (!suspending)
4247 		pm_runtime_put_sync(&pdev->dev);
4248 	return 0;
4249 }
4250 
4251 int igb_close(struct net_device *netdev)
4252 {
4253 	if (netif_device_present(netdev) || netdev->dismantle)
4254 		return __igb_close(netdev, false);
4255 	return 0;
4256 }
4257 
4258 /**
4259  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4260  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4261  *
4262  *  Return 0 on success, negative on failure
4263  **/
4264 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4265 {
4266 	struct device *dev = tx_ring->dev;
4267 	int size;
4268 
4269 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4270 
4271 	tx_ring->tx_buffer_info = vmalloc(size);
4272 	if (!tx_ring->tx_buffer_info)
4273 		goto err;
4274 
4275 	/* round up to nearest 4K */
4276 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4277 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4278 
4279 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4280 					   &tx_ring->dma, GFP_KERNEL);
4281 	if (!tx_ring->desc)
4282 		goto err;
4283 
4284 	tx_ring->next_to_use = 0;
4285 	tx_ring->next_to_clean = 0;
4286 
4287 	return 0;
4288 
4289 err:
4290 	vfree(tx_ring->tx_buffer_info);
4291 	tx_ring->tx_buffer_info = NULL;
4292 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4293 	return -ENOMEM;
4294 }
4295 
4296 /**
4297  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4298  *				 (Descriptors) for all queues
4299  *  @adapter: board private structure
4300  *
4301  *  Return 0 on success, negative on failure
4302  **/
4303 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4304 {
4305 	struct pci_dev *pdev = adapter->pdev;
4306 	int i, err = 0;
4307 
4308 	for (i = 0; i < adapter->num_tx_queues; i++) {
4309 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4310 		if (err) {
4311 			dev_err(&pdev->dev,
4312 				"Allocation for Tx Queue %u failed\n", i);
4313 			for (i--; i >= 0; i--)
4314 				igb_free_tx_resources(adapter->tx_ring[i]);
4315 			break;
4316 		}
4317 	}
4318 
4319 	return err;
4320 }
4321 
4322 /**
4323  *  igb_setup_tctl - configure the transmit control registers
4324  *  @adapter: Board private structure
4325  **/
4326 void igb_setup_tctl(struct igb_adapter *adapter)
4327 {
4328 	struct e1000_hw *hw = &adapter->hw;
4329 	u32 tctl;
4330 
4331 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4332 	wr32(E1000_TXDCTL(0), 0);
4333 
4334 	/* Program the Transmit Control Register */
4335 	tctl = rd32(E1000_TCTL);
4336 	tctl &= ~E1000_TCTL_CT;
4337 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4338 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4339 
4340 	igb_config_collision_dist(hw);
4341 
4342 	/* Enable transmits */
4343 	tctl |= E1000_TCTL_EN;
4344 
4345 	wr32(E1000_TCTL, tctl);
4346 }
4347 
4348 /**
4349  *  igb_configure_tx_ring - Configure transmit ring after Reset
4350  *  @adapter: board private structure
4351  *  @ring: tx ring to configure
4352  *
4353  *  Configure a transmit ring after a reset.
4354  **/
4355 void igb_configure_tx_ring(struct igb_adapter *adapter,
4356 			   struct igb_ring *ring)
4357 {
4358 	struct e1000_hw *hw = &adapter->hw;
4359 	u32 txdctl = 0;
4360 	u64 tdba = ring->dma;
4361 	int reg_idx = ring->reg_idx;
4362 
4363 	wr32(E1000_TDLEN(reg_idx),
4364 	     ring->count * sizeof(union e1000_adv_tx_desc));
4365 	wr32(E1000_TDBAL(reg_idx),
4366 	     tdba & 0x00000000ffffffffULL);
4367 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4368 
4369 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4370 	wr32(E1000_TDH(reg_idx), 0);
4371 	writel(0, ring->tail);
4372 
4373 	txdctl |= IGB_TX_PTHRESH;
4374 	txdctl |= IGB_TX_HTHRESH << 8;
4375 	txdctl |= IGB_TX_WTHRESH << 16;
4376 
4377 	/* reinitialize tx_buffer_info */
4378 	memset(ring->tx_buffer_info, 0,
4379 	       sizeof(struct igb_tx_buffer) * ring->count);
4380 
4381 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4382 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4383 }
4384 
4385 /**
4386  *  igb_configure_tx - Configure transmit Unit after Reset
4387  *  @adapter: board private structure
4388  *
4389  *  Configure the Tx unit of the MAC after a reset.
4390  **/
4391 static void igb_configure_tx(struct igb_adapter *adapter)
4392 {
4393 	struct e1000_hw *hw = &adapter->hw;
4394 	int i;
4395 
4396 	/* disable the queues */
4397 	for (i = 0; i < adapter->num_tx_queues; i++)
4398 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4399 
4400 	wrfl();
4401 	usleep_range(10000, 20000);
4402 
4403 	for (i = 0; i < adapter->num_tx_queues; i++)
4404 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4405 }
4406 
4407 /**
4408  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4409  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4410  *
4411  *  Returns 0 on success, negative on failure
4412  **/
4413 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4414 {
4415 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4416 	struct device *dev = rx_ring->dev;
4417 	int size, res;
4418 
4419 	/* XDP RX-queue info */
4420 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4421 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4422 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4423 			       rx_ring->queue_index, 0);
4424 	if (res < 0) {
4425 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4426 			rx_ring->queue_index);
4427 		return res;
4428 	}
4429 
4430 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4431 
4432 	rx_ring->rx_buffer_info = vmalloc(size);
4433 	if (!rx_ring->rx_buffer_info)
4434 		goto err;
4435 
4436 	/* Round up to nearest 4K */
4437 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4438 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4439 
4440 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4441 					   &rx_ring->dma, GFP_KERNEL);
4442 	if (!rx_ring->desc)
4443 		goto err;
4444 
4445 	rx_ring->next_to_alloc = 0;
4446 	rx_ring->next_to_clean = 0;
4447 	rx_ring->next_to_use = 0;
4448 
4449 	rx_ring->xdp_prog = adapter->xdp_prog;
4450 
4451 	return 0;
4452 
4453 err:
4454 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4455 	vfree(rx_ring->rx_buffer_info);
4456 	rx_ring->rx_buffer_info = NULL;
4457 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4458 	return -ENOMEM;
4459 }
4460 
4461 /**
4462  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4463  *				 (Descriptors) for all queues
4464  *  @adapter: board private structure
4465  *
4466  *  Return 0 on success, negative on failure
4467  **/
4468 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4469 {
4470 	struct pci_dev *pdev = adapter->pdev;
4471 	int i, err = 0;
4472 
4473 	for (i = 0; i < adapter->num_rx_queues; i++) {
4474 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4475 		if (err) {
4476 			dev_err(&pdev->dev,
4477 				"Allocation for Rx Queue %u failed\n", i);
4478 			for (i--; i >= 0; i--)
4479 				igb_free_rx_resources(adapter->rx_ring[i]);
4480 			break;
4481 		}
4482 	}
4483 
4484 	return err;
4485 }
4486 
4487 /**
4488  *  igb_setup_mrqc - configure the multiple receive queue control registers
4489  *  @adapter: Board private structure
4490  **/
4491 static void igb_setup_mrqc(struct igb_adapter *adapter)
4492 {
4493 	struct e1000_hw *hw = &adapter->hw;
4494 	u32 mrqc, rxcsum;
4495 	u32 j, num_rx_queues;
4496 	u32 rss_key[10];
4497 
4498 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4499 	for (j = 0; j < 10; j++)
4500 		wr32(E1000_RSSRK(j), rss_key[j]);
4501 
4502 	num_rx_queues = adapter->rss_queues;
4503 
4504 	switch (hw->mac.type) {
4505 	case e1000_82576:
4506 		/* 82576 supports 2 RSS queues for SR-IOV */
4507 		if (adapter->vfs_allocated_count)
4508 			num_rx_queues = 2;
4509 		break;
4510 	default:
4511 		break;
4512 	}
4513 
4514 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4515 		for (j = 0; j < IGB_RETA_SIZE; j++)
4516 			adapter->rss_indir_tbl[j] =
4517 			(j * num_rx_queues) / IGB_RETA_SIZE;
4518 		adapter->rss_indir_tbl_init = num_rx_queues;
4519 	}
4520 	igb_write_rss_indir_tbl(adapter);
4521 
4522 	/* Disable raw packet checksumming so that RSS hash is placed in
4523 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4524 	 * offloads as they are enabled by default
4525 	 */
4526 	rxcsum = rd32(E1000_RXCSUM);
4527 	rxcsum |= E1000_RXCSUM_PCSD;
4528 
4529 	if (adapter->hw.mac.type >= e1000_82576)
4530 		/* Enable Receive Checksum Offload for SCTP */
4531 		rxcsum |= E1000_RXCSUM_CRCOFL;
4532 
4533 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4534 	wr32(E1000_RXCSUM, rxcsum);
4535 
4536 	/* Generate RSS hash based on packet types, TCP/UDP
4537 	 * port numbers and/or IPv4/v6 src and dst addresses
4538 	 */
4539 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4540 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4541 	       E1000_MRQC_RSS_FIELD_IPV6 |
4542 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4543 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4544 
4545 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4546 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4547 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4548 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4549 
4550 	/* If VMDq is enabled then we set the appropriate mode for that, else
4551 	 * we default to RSS so that an RSS hash is calculated per packet even
4552 	 * if we are only using one queue
4553 	 */
4554 	if (adapter->vfs_allocated_count) {
4555 		if (hw->mac.type > e1000_82575) {
4556 			/* Set the default pool for the PF's first queue */
4557 			u32 vtctl = rd32(E1000_VT_CTL);
4558 
4559 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4560 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4561 			vtctl |= adapter->vfs_allocated_count <<
4562 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4563 			wr32(E1000_VT_CTL, vtctl);
4564 		}
4565 		if (adapter->rss_queues > 1)
4566 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4567 		else
4568 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4569 	} else {
4570 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4571 	}
4572 	igb_vmm_control(adapter);
4573 
4574 	wr32(E1000_MRQC, mrqc);
4575 }
4576 
4577 /**
4578  *  igb_setup_rctl - configure the receive control registers
4579  *  @adapter: Board private structure
4580  **/
4581 void igb_setup_rctl(struct igb_adapter *adapter)
4582 {
4583 	struct e1000_hw *hw = &adapter->hw;
4584 	u32 rctl;
4585 
4586 	rctl = rd32(E1000_RCTL);
4587 
4588 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4589 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4590 
4591 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4592 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4593 
4594 	/* enable stripping of CRC. It's unlikely this will break BMC
4595 	 * redirection as it did with e1000. Newer features require
4596 	 * that the HW strips the CRC.
4597 	 */
4598 	rctl |= E1000_RCTL_SECRC;
4599 
4600 	/* disable store bad packets and clear size bits. */
4601 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4602 
4603 	/* enable LPE to allow for reception of jumbo frames */
4604 	rctl |= E1000_RCTL_LPE;
4605 
4606 	/* disable queue 0 to prevent tail write w/o re-config */
4607 	wr32(E1000_RXDCTL(0), 0);
4608 
4609 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4610 	 * queue drop for all VF and PF queues to prevent head of line blocking
4611 	 * if an un-trusted VF does not provide descriptors to hardware.
4612 	 */
4613 	if (adapter->vfs_allocated_count) {
4614 		/* set all queue drop enable bits */
4615 		wr32(E1000_QDE, ALL_QUEUES);
4616 	}
4617 
4618 	/* This is useful for sniffing bad packets. */
4619 	if (adapter->netdev->features & NETIF_F_RXALL) {
4620 		/* UPE and MPE will be handled by normal PROMISC logic
4621 		 * in e1000e_set_rx_mode
4622 		 */
4623 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4624 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4625 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4626 
4627 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4628 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4629 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4630 		 * and that breaks VLANs.
4631 		 */
4632 	}
4633 
4634 	wr32(E1000_RCTL, rctl);
4635 }
4636 
4637 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4638 				   int vfn)
4639 {
4640 	struct e1000_hw *hw = &adapter->hw;
4641 	u32 vmolr;
4642 
4643 	if (size > MAX_JUMBO_FRAME_SIZE)
4644 		size = MAX_JUMBO_FRAME_SIZE;
4645 
4646 	vmolr = rd32(E1000_VMOLR(vfn));
4647 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4648 	vmolr |= size | E1000_VMOLR_LPE;
4649 	wr32(E1000_VMOLR(vfn), vmolr);
4650 
4651 	return 0;
4652 }
4653 
4654 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4655 					 int vfn, bool enable)
4656 {
4657 	struct e1000_hw *hw = &adapter->hw;
4658 	u32 val, reg;
4659 
4660 	if (hw->mac.type < e1000_82576)
4661 		return;
4662 
4663 	if (hw->mac.type == e1000_i350)
4664 		reg = E1000_DVMOLR(vfn);
4665 	else
4666 		reg = E1000_VMOLR(vfn);
4667 
4668 	val = rd32(reg);
4669 	if (enable)
4670 		val |= E1000_VMOLR_STRVLAN;
4671 	else
4672 		val &= ~(E1000_VMOLR_STRVLAN);
4673 	wr32(reg, val);
4674 }
4675 
4676 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4677 				 int vfn, bool aupe)
4678 {
4679 	struct e1000_hw *hw = &adapter->hw;
4680 	u32 vmolr;
4681 
4682 	/* This register exists only on 82576 and newer so if we are older then
4683 	 * we should exit and do nothing
4684 	 */
4685 	if (hw->mac.type < e1000_82576)
4686 		return;
4687 
4688 	vmolr = rd32(E1000_VMOLR(vfn));
4689 	if (aupe)
4690 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4691 	else
4692 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4693 
4694 	/* clear all bits that might not be set */
4695 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4696 
4697 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4698 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4699 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4700 	 * multicast packets
4701 	 */
4702 	if (vfn <= adapter->vfs_allocated_count)
4703 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4704 
4705 	wr32(E1000_VMOLR(vfn), vmolr);
4706 }
4707 
4708 /**
4709  *  igb_setup_srrctl - configure the split and replication receive control
4710  *                     registers
4711  *  @adapter: Board private structure
4712  *  @ring: receive ring to be configured
4713  **/
4714 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4715 {
4716 	struct e1000_hw *hw = &adapter->hw;
4717 	int reg_idx = ring->reg_idx;
4718 	u32 srrctl = 0;
4719 
4720 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4721 	if (ring_uses_large_buffer(ring))
4722 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4723 	else
4724 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4725 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4726 	if (hw->mac.type >= e1000_82580)
4727 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4728 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4729 	 * queues and rx flow control is disabled
4730 	 */
4731 	if (adapter->vfs_allocated_count ||
4732 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4733 	     adapter->num_rx_queues > 1))
4734 		srrctl |= E1000_SRRCTL_DROP_EN;
4735 
4736 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4737 }
4738 
4739 /**
4740  *  igb_configure_rx_ring - Configure a receive ring after Reset
4741  *  @adapter: board private structure
4742  *  @ring: receive ring to be configured
4743  *
4744  *  Configure the Rx unit of the MAC after a reset.
4745  **/
4746 void igb_configure_rx_ring(struct igb_adapter *adapter,
4747 			   struct igb_ring *ring)
4748 {
4749 	struct e1000_hw *hw = &adapter->hw;
4750 	union e1000_adv_rx_desc *rx_desc;
4751 	u64 rdba = ring->dma;
4752 	int reg_idx = ring->reg_idx;
4753 	u32 rxdctl = 0;
4754 
4755 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4756 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4757 					   MEM_TYPE_PAGE_SHARED, NULL));
4758 
4759 	/* disable the queue */
4760 	wr32(E1000_RXDCTL(reg_idx), 0);
4761 
4762 	/* Set DMA base address registers */
4763 	wr32(E1000_RDBAL(reg_idx),
4764 	     rdba & 0x00000000ffffffffULL);
4765 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4766 	wr32(E1000_RDLEN(reg_idx),
4767 	     ring->count * sizeof(union e1000_adv_rx_desc));
4768 
4769 	/* initialize head and tail */
4770 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4771 	wr32(E1000_RDH(reg_idx), 0);
4772 	writel(0, ring->tail);
4773 
4774 	/* set descriptor configuration */
4775 	igb_setup_srrctl(adapter, ring);
4776 
4777 	/* set filtering for VMDQ pools */
4778 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4779 
4780 	rxdctl |= IGB_RX_PTHRESH;
4781 	rxdctl |= IGB_RX_HTHRESH << 8;
4782 	rxdctl |= IGB_RX_WTHRESH << 16;
4783 
4784 	/* initialize rx_buffer_info */
4785 	memset(ring->rx_buffer_info, 0,
4786 	       sizeof(struct igb_rx_buffer) * ring->count);
4787 
4788 	/* initialize Rx descriptor 0 */
4789 	rx_desc = IGB_RX_DESC(ring, 0);
4790 	rx_desc->wb.upper.length = 0;
4791 
4792 	/* enable receive descriptor fetching */
4793 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4794 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4795 }
4796 
4797 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4798 				  struct igb_ring *rx_ring)
4799 {
4800 #if (PAGE_SIZE < 8192)
4801 	struct e1000_hw *hw = &adapter->hw;
4802 #endif
4803 
4804 	/* set build_skb and buffer size flags */
4805 	clear_ring_build_skb_enabled(rx_ring);
4806 	clear_ring_uses_large_buffer(rx_ring);
4807 
4808 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4809 		return;
4810 
4811 	set_ring_build_skb_enabled(rx_ring);
4812 
4813 #if (PAGE_SIZE < 8192)
4814 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4815 	    IGB_2K_TOO_SMALL_WITH_PADDING ||
4816 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4817 		set_ring_uses_large_buffer(rx_ring);
4818 #endif
4819 }
4820 
4821 /**
4822  *  igb_configure_rx - Configure receive Unit after Reset
4823  *  @adapter: board private structure
4824  *
4825  *  Configure the Rx unit of the MAC after a reset.
4826  **/
4827 static void igb_configure_rx(struct igb_adapter *adapter)
4828 {
4829 	int i;
4830 
4831 	/* set the correct pool for the PF default MAC address in entry 0 */
4832 	igb_set_default_mac_filter(adapter);
4833 
4834 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4835 	 * the Base and Length of the Rx Descriptor Ring
4836 	 */
4837 	for (i = 0; i < adapter->num_rx_queues; i++) {
4838 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4839 
4840 		igb_set_rx_buffer_len(adapter, rx_ring);
4841 		igb_configure_rx_ring(adapter, rx_ring);
4842 	}
4843 }
4844 
4845 /**
4846  *  igb_free_tx_resources - Free Tx Resources per Queue
4847  *  @tx_ring: Tx descriptor ring for a specific queue
4848  *
4849  *  Free all transmit software resources
4850  **/
4851 void igb_free_tx_resources(struct igb_ring *tx_ring)
4852 {
4853 	igb_clean_tx_ring(tx_ring);
4854 
4855 	vfree(tx_ring->tx_buffer_info);
4856 	tx_ring->tx_buffer_info = NULL;
4857 
4858 	/* if not set, then don't free */
4859 	if (!tx_ring->desc)
4860 		return;
4861 
4862 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4863 			  tx_ring->desc, tx_ring->dma);
4864 
4865 	tx_ring->desc = NULL;
4866 }
4867 
4868 /**
4869  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4870  *  @adapter: board private structure
4871  *
4872  *  Free all transmit software resources
4873  **/
4874 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4875 {
4876 	int i;
4877 
4878 	for (i = 0; i < adapter->num_tx_queues; i++)
4879 		if (adapter->tx_ring[i])
4880 			igb_free_tx_resources(adapter->tx_ring[i]);
4881 }
4882 
4883 /**
4884  *  igb_clean_tx_ring - Free Tx Buffers
4885  *  @tx_ring: ring to be cleaned
4886  **/
4887 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4888 {
4889 	u16 i = tx_ring->next_to_clean;
4890 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4891 
4892 	while (i != tx_ring->next_to_use) {
4893 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4894 
4895 		/* Free all the Tx ring sk_buffs or xdp frames */
4896 		if (tx_buffer->type == IGB_TYPE_SKB)
4897 			dev_kfree_skb_any(tx_buffer->skb);
4898 		else
4899 			xdp_return_frame(tx_buffer->xdpf);
4900 
4901 		/* unmap skb header data */
4902 		dma_unmap_single(tx_ring->dev,
4903 				 dma_unmap_addr(tx_buffer, dma),
4904 				 dma_unmap_len(tx_buffer, len),
4905 				 DMA_TO_DEVICE);
4906 
4907 		/* check for eop_desc to determine the end of the packet */
4908 		eop_desc = tx_buffer->next_to_watch;
4909 		tx_desc = IGB_TX_DESC(tx_ring, i);
4910 
4911 		/* unmap remaining buffers */
4912 		while (tx_desc != eop_desc) {
4913 			tx_buffer++;
4914 			tx_desc++;
4915 			i++;
4916 			if (unlikely(i == tx_ring->count)) {
4917 				i = 0;
4918 				tx_buffer = tx_ring->tx_buffer_info;
4919 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4920 			}
4921 
4922 			/* unmap any remaining paged data */
4923 			if (dma_unmap_len(tx_buffer, len))
4924 				dma_unmap_page(tx_ring->dev,
4925 					       dma_unmap_addr(tx_buffer, dma),
4926 					       dma_unmap_len(tx_buffer, len),
4927 					       DMA_TO_DEVICE);
4928 		}
4929 
4930 		tx_buffer->next_to_watch = NULL;
4931 
4932 		/* move us one more past the eop_desc for start of next pkt */
4933 		tx_buffer++;
4934 		i++;
4935 		if (unlikely(i == tx_ring->count)) {
4936 			i = 0;
4937 			tx_buffer = tx_ring->tx_buffer_info;
4938 		}
4939 	}
4940 
4941 	/* reset BQL for queue */
4942 	netdev_tx_reset_queue(txring_txq(tx_ring));
4943 
4944 	/* reset next_to_use and next_to_clean */
4945 	tx_ring->next_to_use = 0;
4946 	tx_ring->next_to_clean = 0;
4947 }
4948 
4949 /**
4950  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4951  *  @adapter: board private structure
4952  **/
4953 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4954 {
4955 	int i;
4956 
4957 	for (i = 0; i < adapter->num_tx_queues; i++)
4958 		if (adapter->tx_ring[i])
4959 			igb_clean_tx_ring(adapter->tx_ring[i]);
4960 }
4961 
4962 /**
4963  *  igb_free_rx_resources - Free Rx Resources
4964  *  @rx_ring: ring to clean the resources from
4965  *
4966  *  Free all receive software resources
4967  **/
4968 void igb_free_rx_resources(struct igb_ring *rx_ring)
4969 {
4970 	igb_clean_rx_ring(rx_ring);
4971 
4972 	rx_ring->xdp_prog = NULL;
4973 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4974 	vfree(rx_ring->rx_buffer_info);
4975 	rx_ring->rx_buffer_info = NULL;
4976 
4977 	/* if not set, then don't free */
4978 	if (!rx_ring->desc)
4979 		return;
4980 
4981 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4982 			  rx_ring->desc, rx_ring->dma);
4983 
4984 	rx_ring->desc = NULL;
4985 }
4986 
4987 /**
4988  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4989  *  @adapter: board private structure
4990  *
4991  *  Free all receive software resources
4992  **/
4993 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4994 {
4995 	int i;
4996 
4997 	for (i = 0; i < adapter->num_rx_queues; i++)
4998 		if (adapter->rx_ring[i])
4999 			igb_free_rx_resources(adapter->rx_ring[i]);
5000 }
5001 
5002 /**
5003  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5004  *  @rx_ring: ring to free buffers from
5005  **/
5006 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5007 {
5008 	u16 i = rx_ring->next_to_clean;
5009 
5010 	dev_kfree_skb(rx_ring->skb);
5011 	rx_ring->skb = NULL;
5012 
5013 	/* Free all the Rx ring sk_buffs */
5014 	while (i != rx_ring->next_to_alloc) {
5015 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5016 
5017 		/* Invalidate cache lines that may have been written to by
5018 		 * device so that we avoid corrupting memory.
5019 		 */
5020 		dma_sync_single_range_for_cpu(rx_ring->dev,
5021 					      buffer_info->dma,
5022 					      buffer_info->page_offset,
5023 					      igb_rx_bufsz(rx_ring),
5024 					      DMA_FROM_DEVICE);
5025 
5026 		/* free resources associated with mapping */
5027 		dma_unmap_page_attrs(rx_ring->dev,
5028 				     buffer_info->dma,
5029 				     igb_rx_pg_size(rx_ring),
5030 				     DMA_FROM_DEVICE,
5031 				     IGB_RX_DMA_ATTR);
5032 		__page_frag_cache_drain(buffer_info->page,
5033 					buffer_info->pagecnt_bias);
5034 
5035 		i++;
5036 		if (i == rx_ring->count)
5037 			i = 0;
5038 	}
5039 
5040 	rx_ring->next_to_alloc = 0;
5041 	rx_ring->next_to_clean = 0;
5042 	rx_ring->next_to_use = 0;
5043 }
5044 
5045 /**
5046  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5047  *  @adapter: board private structure
5048  **/
5049 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5050 {
5051 	int i;
5052 
5053 	for (i = 0; i < adapter->num_rx_queues; i++)
5054 		if (adapter->rx_ring[i])
5055 			igb_clean_rx_ring(adapter->rx_ring[i]);
5056 }
5057 
5058 /**
5059  *  igb_set_mac - Change the Ethernet Address of the NIC
5060  *  @netdev: network interface device structure
5061  *  @p: pointer to an address structure
5062  *
5063  *  Returns 0 on success, negative on failure
5064  **/
5065 static int igb_set_mac(struct net_device *netdev, void *p)
5066 {
5067 	struct igb_adapter *adapter = netdev_priv(netdev);
5068 	struct e1000_hw *hw = &adapter->hw;
5069 	struct sockaddr *addr = p;
5070 
5071 	if (!is_valid_ether_addr(addr->sa_data))
5072 		return -EADDRNOTAVAIL;
5073 
5074 	eth_hw_addr_set(netdev, addr->sa_data);
5075 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5076 
5077 	/* set the correct pool for the new PF MAC address in entry 0 */
5078 	igb_set_default_mac_filter(adapter);
5079 
5080 	return 0;
5081 }
5082 
5083 /**
5084  *  igb_write_mc_addr_list - write multicast addresses to MTA
5085  *  @netdev: network interface device structure
5086  *
5087  *  Writes multicast address list to the MTA hash table.
5088  *  Returns: -ENOMEM on failure
5089  *           0 on no addresses written
5090  *           X on writing X addresses to MTA
5091  **/
5092 static int igb_write_mc_addr_list(struct net_device *netdev)
5093 {
5094 	struct igb_adapter *adapter = netdev_priv(netdev);
5095 	struct e1000_hw *hw = &adapter->hw;
5096 	struct netdev_hw_addr *ha;
5097 	u8  *mta_list;
5098 	int i;
5099 
5100 	if (netdev_mc_empty(netdev)) {
5101 		/* nothing to program, so clear mc list */
5102 		igb_update_mc_addr_list(hw, NULL, 0);
5103 		igb_restore_vf_multicasts(adapter);
5104 		return 0;
5105 	}
5106 
5107 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5108 	if (!mta_list)
5109 		return -ENOMEM;
5110 
5111 	/* The shared function expects a packed array of only addresses. */
5112 	i = 0;
5113 	netdev_for_each_mc_addr(ha, netdev)
5114 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5115 
5116 	igb_update_mc_addr_list(hw, mta_list, i);
5117 	kfree(mta_list);
5118 
5119 	return netdev_mc_count(netdev);
5120 }
5121 
5122 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5123 {
5124 	struct e1000_hw *hw = &adapter->hw;
5125 	u32 i, pf_id;
5126 
5127 	switch (hw->mac.type) {
5128 	case e1000_i210:
5129 	case e1000_i211:
5130 	case e1000_i350:
5131 		/* VLAN filtering needed for VLAN prio filter */
5132 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5133 			break;
5134 		fallthrough;
5135 	case e1000_82576:
5136 	case e1000_82580:
5137 	case e1000_i354:
5138 		/* VLAN filtering needed for pool filtering */
5139 		if (adapter->vfs_allocated_count)
5140 			break;
5141 		fallthrough;
5142 	default:
5143 		return 1;
5144 	}
5145 
5146 	/* We are already in VLAN promisc, nothing to do */
5147 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5148 		return 0;
5149 
5150 	if (!adapter->vfs_allocated_count)
5151 		goto set_vfta;
5152 
5153 	/* Add PF to all active pools */
5154 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5155 
5156 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5157 		u32 vlvf = rd32(E1000_VLVF(i));
5158 
5159 		vlvf |= BIT(pf_id);
5160 		wr32(E1000_VLVF(i), vlvf);
5161 	}
5162 
5163 set_vfta:
5164 	/* Set all bits in the VLAN filter table array */
5165 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5166 		hw->mac.ops.write_vfta(hw, i, ~0U);
5167 
5168 	/* Set flag so we don't redo unnecessary work */
5169 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5170 
5171 	return 0;
5172 }
5173 
5174 #define VFTA_BLOCK_SIZE 8
5175 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5176 {
5177 	struct e1000_hw *hw = &adapter->hw;
5178 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5179 	u32 vid_start = vfta_offset * 32;
5180 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5181 	u32 i, vid, word, bits, pf_id;
5182 
5183 	/* guarantee that we don't scrub out management VLAN */
5184 	vid = adapter->mng_vlan_id;
5185 	if (vid >= vid_start && vid < vid_end)
5186 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5187 
5188 	if (!adapter->vfs_allocated_count)
5189 		goto set_vfta;
5190 
5191 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5192 
5193 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5194 		u32 vlvf = rd32(E1000_VLVF(i));
5195 
5196 		/* pull VLAN ID from VLVF */
5197 		vid = vlvf & VLAN_VID_MASK;
5198 
5199 		/* only concern ourselves with a certain range */
5200 		if (vid < vid_start || vid >= vid_end)
5201 			continue;
5202 
5203 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5204 			/* record VLAN ID in VFTA */
5205 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5206 
5207 			/* if PF is part of this then continue */
5208 			if (test_bit(vid, adapter->active_vlans))
5209 				continue;
5210 		}
5211 
5212 		/* remove PF from the pool */
5213 		bits = ~BIT(pf_id);
5214 		bits &= rd32(E1000_VLVF(i));
5215 		wr32(E1000_VLVF(i), bits);
5216 	}
5217 
5218 set_vfta:
5219 	/* extract values from active_vlans and write back to VFTA */
5220 	for (i = VFTA_BLOCK_SIZE; i--;) {
5221 		vid = (vfta_offset + i) * 32;
5222 		word = vid / BITS_PER_LONG;
5223 		bits = vid % BITS_PER_LONG;
5224 
5225 		vfta[i] |= adapter->active_vlans[word] >> bits;
5226 
5227 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5228 	}
5229 }
5230 
5231 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5232 {
5233 	u32 i;
5234 
5235 	/* We are not in VLAN promisc, nothing to do */
5236 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5237 		return;
5238 
5239 	/* Set flag so we don't redo unnecessary work */
5240 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5241 
5242 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5243 		igb_scrub_vfta(adapter, i);
5244 }
5245 
5246 /**
5247  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5248  *  @netdev: network interface device structure
5249  *
5250  *  The set_rx_mode entry point is called whenever the unicast or multicast
5251  *  address lists or the network interface flags are updated.  This routine is
5252  *  responsible for configuring the hardware for proper unicast, multicast,
5253  *  promiscuous mode, and all-multi behavior.
5254  **/
5255 static void igb_set_rx_mode(struct net_device *netdev)
5256 {
5257 	struct igb_adapter *adapter = netdev_priv(netdev);
5258 	struct e1000_hw *hw = &adapter->hw;
5259 	unsigned int vfn = adapter->vfs_allocated_count;
5260 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5261 	int count;
5262 
5263 	/* Check for Promiscuous and All Multicast modes */
5264 	if (netdev->flags & IFF_PROMISC) {
5265 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5266 		vmolr |= E1000_VMOLR_MPME;
5267 
5268 		/* enable use of UTA filter to force packets to default pool */
5269 		if (hw->mac.type == e1000_82576)
5270 			vmolr |= E1000_VMOLR_ROPE;
5271 	} else {
5272 		if (netdev->flags & IFF_ALLMULTI) {
5273 			rctl |= E1000_RCTL_MPE;
5274 			vmolr |= E1000_VMOLR_MPME;
5275 		} else {
5276 			/* Write addresses to the MTA, if the attempt fails
5277 			 * then we should just turn on promiscuous mode so
5278 			 * that we can at least receive multicast traffic
5279 			 */
5280 			count = igb_write_mc_addr_list(netdev);
5281 			if (count < 0) {
5282 				rctl |= E1000_RCTL_MPE;
5283 				vmolr |= E1000_VMOLR_MPME;
5284 			} else if (count) {
5285 				vmolr |= E1000_VMOLR_ROMPE;
5286 			}
5287 		}
5288 	}
5289 
5290 	/* Write addresses to available RAR registers, if there is not
5291 	 * sufficient space to store all the addresses then enable
5292 	 * unicast promiscuous mode
5293 	 */
5294 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5295 		rctl |= E1000_RCTL_UPE;
5296 		vmolr |= E1000_VMOLR_ROPE;
5297 	}
5298 
5299 	/* enable VLAN filtering by default */
5300 	rctl |= E1000_RCTL_VFE;
5301 
5302 	/* disable VLAN filtering for modes that require it */
5303 	if ((netdev->flags & IFF_PROMISC) ||
5304 	    (netdev->features & NETIF_F_RXALL)) {
5305 		/* if we fail to set all rules then just clear VFE */
5306 		if (igb_vlan_promisc_enable(adapter))
5307 			rctl &= ~E1000_RCTL_VFE;
5308 	} else {
5309 		igb_vlan_promisc_disable(adapter);
5310 	}
5311 
5312 	/* update state of unicast, multicast, and VLAN filtering modes */
5313 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5314 				     E1000_RCTL_VFE);
5315 	wr32(E1000_RCTL, rctl);
5316 
5317 #if (PAGE_SIZE < 8192)
5318 	if (!adapter->vfs_allocated_count) {
5319 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5320 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5321 	}
5322 #endif
5323 	wr32(E1000_RLPML, rlpml);
5324 
5325 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5326 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5327 	 * we will have issues with VLAN tag stripping not being done for frames
5328 	 * that are only arriving because we are the default pool
5329 	 */
5330 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5331 		return;
5332 
5333 	/* set UTA to appropriate mode */
5334 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5335 
5336 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5337 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5338 
5339 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5340 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5341 #if (PAGE_SIZE < 8192)
5342 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5343 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5344 	else
5345 #endif
5346 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5347 	vmolr |= E1000_VMOLR_LPE;
5348 
5349 	wr32(E1000_VMOLR(vfn), vmolr);
5350 
5351 	igb_restore_vf_multicasts(adapter);
5352 }
5353 
5354 static void igb_check_wvbr(struct igb_adapter *adapter)
5355 {
5356 	struct e1000_hw *hw = &adapter->hw;
5357 	u32 wvbr = 0;
5358 
5359 	switch (hw->mac.type) {
5360 	case e1000_82576:
5361 	case e1000_i350:
5362 		wvbr = rd32(E1000_WVBR);
5363 		if (!wvbr)
5364 			return;
5365 		break;
5366 	default:
5367 		break;
5368 	}
5369 
5370 	adapter->wvbr |= wvbr;
5371 }
5372 
5373 #define IGB_STAGGERED_QUEUE_OFFSET 8
5374 
5375 static void igb_spoof_check(struct igb_adapter *adapter)
5376 {
5377 	int j;
5378 
5379 	if (!adapter->wvbr)
5380 		return;
5381 
5382 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5383 		if (adapter->wvbr & BIT(j) ||
5384 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5385 			dev_warn(&adapter->pdev->dev,
5386 				"Spoof event(s) detected on VF %d\n", j);
5387 			adapter->wvbr &=
5388 				~(BIT(j) |
5389 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5390 		}
5391 	}
5392 }
5393 
5394 /* Need to wait a few seconds after link up to get diagnostic information from
5395  * the phy
5396  */
5397 static void igb_update_phy_info(struct timer_list *t)
5398 {
5399 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5400 	igb_get_phy_info(&adapter->hw);
5401 }
5402 
5403 /**
5404  *  igb_has_link - check shared code for link and determine up/down
5405  *  @adapter: pointer to driver private info
5406  **/
5407 bool igb_has_link(struct igb_adapter *adapter)
5408 {
5409 	struct e1000_hw *hw = &adapter->hw;
5410 	bool link_active = false;
5411 
5412 	/* get_link_status is set on LSC (link status) interrupt or
5413 	 * rx sequence error interrupt.  get_link_status will stay
5414 	 * false until the e1000_check_for_link establishes link
5415 	 * for copper adapters ONLY
5416 	 */
5417 	switch (hw->phy.media_type) {
5418 	case e1000_media_type_copper:
5419 		if (!hw->mac.get_link_status)
5420 			return true;
5421 		fallthrough;
5422 	case e1000_media_type_internal_serdes:
5423 		hw->mac.ops.check_for_link(hw);
5424 		link_active = !hw->mac.get_link_status;
5425 		break;
5426 	default:
5427 	case e1000_media_type_unknown:
5428 		break;
5429 	}
5430 
5431 	if (((hw->mac.type == e1000_i210) ||
5432 	     (hw->mac.type == e1000_i211)) &&
5433 	     (hw->phy.id == I210_I_PHY_ID)) {
5434 		if (!netif_carrier_ok(adapter->netdev)) {
5435 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5436 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5437 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5438 			adapter->link_check_timeout = jiffies;
5439 		}
5440 	}
5441 
5442 	return link_active;
5443 }
5444 
5445 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5446 {
5447 	bool ret = false;
5448 	u32 ctrl_ext, thstat;
5449 
5450 	/* check for thermal sensor event on i350 copper only */
5451 	if (hw->mac.type == e1000_i350) {
5452 		thstat = rd32(E1000_THSTAT);
5453 		ctrl_ext = rd32(E1000_CTRL_EXT);
5454 
5455 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5456 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5457 			ret = !!(thstat & event);
5458 	}
5459 
5460 	return ret;
5461 }
5462 
5463 /**
5464  *  igb_check_lvmmc - check for malformed packets received
5465  *  and indicated in LVMMC register
5466  *  @adapter: pointer to adapter
5467  **/
5468 static void igb_check_lvmmc(struct igb_adapter *adapter)
5469 {
5470 	struct e1000_hw *hw = &adapter->hw;
5471 	u32 lvmmc;
5472 
5473 	lvmmc = rd32(E1000_LVMMC);
5474 	if (lvmmc) {
5475 		if (unlikely(net_ratelimit())) {
5476 			netdev_warn(adapter->netdev,
5477 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5478 				    lvmmc);
5479 		}
5480 	}
5481 }
5482 
5483 /**
5484  *  igb_watchdog - Timer Call-back
5485  *  @t: pointer to timer_list containing our private info pointer
5486  **/
5487 static void igb_watchdog(struct timer_list *t)
5488 {
5489 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5490 	/* Do the rest outside of interrupt context */
5491 	schedule_work(&adapter->watchdog_task);
5492 }
5493 
5494 static void igb_watchdog_task(struct work_struct *work)
5495 {
5496 	struct igb_adapter *adapter = container_of(work,
5497 						   struct igb_adapter,
5498 						   watchdog_task);
5499 	struct e1000_hw *hw = &adapter->hw;
5500 	struct e1000_phy_info *phy = &hw->phy;
5501 	struct net_device *netdev = adapter->netdev;
5502 	u32 link;
5503 	int i;
5504 	u32 connsw;
5505 	u16 phy_data, retry_count = 20;
5506 
5507 	link = igb_has_link(adapter);
5508 
5509 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5510 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5511 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5512 		else
5513 			link = false;
5514 	}
5515 
5516 	/* Force link down if we have fiber to swap to */
5517 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5518 		if (hw->phy.media_type == e1000_media_type_copper) {
5519 			connsw = rd32(E1000_CONNSW);
5520 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5521 				link = 0;
5522 		}
5523 	}
5524 	if (link) {
5525 		/* Perform a reset if the media type changed. */
5526 		if (hw->dev_spec._82575.media_changed) {
5527 			hw->dev_spec._82575.media_changed = false;
5528 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5529 			igb_reset(adapter);
5530 		}
5531 		/* Cancel scheduled suspend requests. */
5532 		pm_runtime_resume(netdev->dev.parent);
5533 
5534 		if (!netif_carrier_ok(netdev)) {
5535 			u32 ctrl;
5536 
5537 			hw->mac.ops.get_speed_and_duplex(hw,
5538 							 &adapter->link_speed,
5539 							 &adapter->link_duplex);
5540 
5541 			ctrl = rd32(E1000_CTRL);
5542 			/* Links status message must follow this format */
5543 			netdev_info(netdev,
5544 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5545 			       netdev->name,
5546 			       adapter->link_speed,
5547 			       adapter->link_duplex == FULL_DUPLEX ?
5548 			       "Full" : "Half",
5549 			       (ctrl & E1000_CTRL_TFCE) &&
5550 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5551 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5552 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5553 
5554 			/* disable EEE if enabled */
5555 			if ((adapter->flags & IGB_FLAG_EEE) &&
5556 				(adapter->link_duplex == HALF_DUPLEX)) {
5557 				dev_info(&adapter->pdev->dev,
5558 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5559 				adapter->hw.dev_spec._82575.eee_disable = true;
5560 				adapter->flags &= ~IGB_FLAG_EEE;
5561 			}
5562 
5563 			/* check if SmartSpeed worked */
5564 			igb_check_downshift(hw);
5565 			if (phy->speed_downgraded)
5566 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5567 
5568 			/* check for thermal sensor event */
5569 			if (igb_thermal_sensor_event(hw,
5570 			    E1000_THSTAT_LINK_THROTTLE))
5571 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5572 
5573 			/* adjust timeout factor according to speed/duplex */
5574 			adapter->tx_timeout_factor = 1;
5575 			switch (adapter->link_speed) {
5576 			case SPEED_10:
5577 				adapter->tx_timeout_factor = 14;
5578 				break;
5579 			case SPEED_100:
5580 				/* maybe add some timeout factor ? */
5581 				break;
5582 			}
5583 
5584 			if (adapter->link_speed != SPEED_1000 ||
5585 			    !hw->phy.ops.read_reg)
5586 				goto no_wait;
5587 
5588 			/* wait for Remote receiver status OK */
5589 retry_read_status:
5590 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5591 					      &phy_data)) {
5592 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5593 				    retry_count) {
5594 					msleep(100);
5595 					retry_count--;
5596 					goto retry_read_status;
5597 				} else if (!retry_count) {
5598 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5599 				}
5600 			} else {
5601 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5602 			}
5603 no_wait:
5604 			netif_carrier_on(netdev);
5605 
5606 			igb_ping_all_vfs(adapter);
5607 			igb_check_vf_rate_limit(adapter);
5608 
5609 			/* link state has changed, schedule phy info update */
5610 			if (!test_bit(__IGB_DOWN, &adapter->state))
5611 				mod_timer(&adapter->phy_info_timer,
5612 					  round_jiffies(jiffies + 2 * HZ));
5613 		}
5614 	} else {
5615 		if (netif_carrier_ok(netdev)) {
5616 			adapter->link_speed = 0;
5617 			adapter->link_duplex = 0;
5618 
5619 			/* check for thermal sensor event */
5620 			if (igb_thermal_sensor_event(hw,
5621 			    E1000_THSTAT_PWR_DOWN)) {
5622 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5623 			}
5624 
5625 			/* Links status message must follow this format */
5626 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5627 			       netdev->name);
5628 			netif_carrier_off(netdev);
5629 
5630 			igb_ping_all_vfs(adapter);
5631 
5632 			/* link state has changed, schedule phy info update */
5633 			if (!test_bit(__IGB_DOWN, &adapter->state))
5634 				mod_timer(&adapter->phy_info_timer,
5635 					  round_jiffies(jiffies + 2 * HZ));
5636 
5637 			/* link is down, time to check for alternate media */
5638 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5639 				igb_check_swap_media(adapter);
5640 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5641 					schedule_work(&adapter->reset_task);
5642 					/* return immediately */
5643 					return;
5644 				}
5645 			}
5646 			pm_schedule_suspend(netdev->dev.parent,
5647 					    MSEC_PER_SEC * 5);
5648 
5649 		/* also check for alternate media here */
5650 		} else if (!netif_carrier_ok(netdev) &&
5651 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5652 			igb_check_swap_media(adapter);
5653 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5654 				schedule_work(&adapter->reset_task);
5655 				/* return immediately */
5656 				return;
5657 			}
5658 		}
5659 	}
5660 
5661 	spin_lock(&adapter->stats64_lock);
5662 	igb_update_stats(adapter);
5663 	spin_unlock(&adapter->stats64_lock);
5664 
5665 	for (i = 0; i < adapter->num_tx_queues; i++) {
5666 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5667 		if (!netif_carrier_ok(netdev)) {
5668 			/* We've lost link, so the controller stops DMA,
5669 			 * but we've got queued Tx work that's never going
5670 			 * to get done, so reset controller to flush Tx.
5671 			 * (Do the reset outside of interrupt context).
5672 			 */
5673 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5674 				adapter->tx_timeout_count++;
5675 				schedule_work(&adapter->reset_task);
5676 				/* return immediately since reset is imminent */
5677 				return;
5678 			}
5679 		}
5680 
5681 		/* Force detection of hung controller every watchdog period */
5682 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5683 	}
5684 
5685 	/* Cause software interrupt to ensure Rx ring is cleaned */
5686 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5687 		u32 eics = 0;
5688 
5689 		for (i = 0; i < adapter->num_q_vectors; i++)
5690 			eics |= adapter->q_vector[i]->eims_value;
5691 		wr32(E1000_EICS, eics);
5692 	} else {
5693 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5694 	}
5695 
5696 	igb_spoof_check(adapter);
5697 	igb_ptp_rx_hang(adapter);
5698 	igb_ptp_tx_hang(adapter);
5699 
5700 	/* Check LVMMC register on i350/i354 only */
5701 	if ((adapter->hw.mac.type == e1000_i350) ||
5702 	    (adapter->hw.mac.type == e1000_i354))
5703 		igb_check_lvmmc(adapter);
5704 
5705 	/* Reset the timer */
5706 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5707 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5708 			mod_timer(&adapter->watchdog_timer,
5709 				  round_jiffies(jiffies +  HZ));
5710 		else
5711 			mod_timer(&adapter->watchdog_timer,
5712 				  round_jiffies(jiffies + 2 * HZ));
5713 	}
5714 }
5715 
5716 enum latency_range {
5717 	lowest_latency = 0,
5718 	low_latency = 1,
5719 	bulk_latency = 2,
5720 	latency_invalid = 255
5721 };
5722 
5723 /**
5724  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5725  *  @q_vector: pointer to q_vector
5726  *
5727  *  Stores a new ITR value based on strictly on packet size.  This
5728  *  algorithm is less sophisticated than that used in igb_update_itr,
5729  *  due to the difficulty of synchronizing statistics across multiple
5730  *  receive rings.  The divisors and thresholds used by this function
5731  *  were determined based on theoretical maximum wire speed and testing
5732  *  data, in order to minimize response time while increasing bulk
5733  *  throughput.
5734  *  This functionality is controlled by ethtool's coalescing settings.
5735  *  NOTE:  This function is called only when operating in a multiqueue
5736  *         receive environment.
5737  **/
5738 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5739 {
5740 	int new_val = q_vector->itr_val;
5741 	int avg_wire_size = 0;
5742 	struct igb_adapter *adapter = q_vector->adapter;
5743 	unsigned int packets;
5744 
5745 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5746 	 * ints/sec - ITR timer value of 120 ticks.
5747 	 */
5748 	if (adapter->link_speed != SPEED_1000) {
5749 		new_val = IGB_4K_ITR;
5750 		goto set_itr_val;
5751 	}
5752 
5753 	packets = q_vector->rx.total_packets;
5754 	if (packets)
5755 		avg_wire_size = q_vector->rx.total_bytes / packets;
5756 
5757 	packets = q_vector->tx.total_packets;
5758 	if (packets)
5759 		avg_wire_size = max_t(u32, avg_wire_size,
5760 				      q_vector->tx.total_bytes / packets);
5761 
5762 	/* if avg_wire_size isn't set no work was done */
5763 	if (!avg_wire_size)
5764 		goto clear_counts;
5765 
5766 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5767 	avg_wire_size += 24;
5768 
5769 	/* Don't starve jumbo frames */
5770 	avg_wire_size = min(avg_wire_size, 3000);
5771 
5772 	/* Give a little boost to mid-size frames */
5773 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5774 		new_val = avg_wire_size / 3;
5775 	else
5776 		new_val = avg_wire_size / 2;
5777 
5778 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5779 	if (new_val < IGB_20K_ITR &&
5780 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5781 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5782 		new_val = IGB_20K_ITR;
5783 
5784 set_itr_val:
5785 	if (new_val != q_vector->itr_val) {
5786 		q_vector->itr_val = new_val;
5787 		q_vector->set_itr = 1;
5788 	}
5789 clear_counts:
5790 	q_vector->rx.total_bytes = 0;
5791 	q_vector->rx.total_packets = 0;
5792 	q_vector->tx.total_bytes = 0;
5793 	q_vector->tx.total_packets = 0;
5794 }
5795 
5796 /**
5797  *  igb_update_itr - update the dynamic ITR value based on statistics
5798  *  @q_vector: pointer to q_vector
5799  *  @ring_container: ring info to update the itr for
5800  *
5801  *  Stores a new ITR value based on packets and byte
5802  *  counts during the last interrupt.  The advantage of per interrupt
5803  *  computation is faster updates and more accurate ITR for the current
5804  *  traffic pattern.  Constants in this function were computed
5805  *  based on theoretical maximum wire speed and thresholds were set based
5806  *  on testing data as well as attempting to minimize response time
5807  *  while increasing bulk throughput.
5808  *  This functionality is controlled by ethtool's coalescing settings.
5809  *  NOTE:  These calculations are only valid when operating in a single-
5810  *         queue environment.
5811  **/
5812 static void igb_update_itr(struct igb_q_vector *q_vector,
5813 			   struct igb_ring_container *ring_container)
5814 {
5815 	unsigned int packets = ring_container->total_packets;
5816 	unsigned int bytes = ring_container->total_bytes;
5817 	u8 itrval = ring_container->itr;
5818 
5819 	/* no packets, exit with status unchanged */
5820 	if (packets == 0)
5821 		return;
5822 
5823 	switch (itrval) {
5824 	case lowest_latency:
5825 		/* handle TSO and jumbo frames */
5826 		if (bytes/packets > 8000)
5827 			itrval = bulk_latency;
5828 		else if ((packets < 5) && (bytes > 512))
5829 			itrval = low_latency;
5830 		break;
5831 	case low_latency:  /* 50 usec aka 20000 ints/s */
5832 		if (bytes > 10000) {
5833 			/* this if handles the TSO accounting */
5834 			if (bytes/packets > 8000)
5835 				itrval = bulk_latency;
5836 			else if ((packets < 10) || ((bytes/packets) > 1200))
5837 				itrval = bulk_latency;
5838 			else if ((packets > 35))
5839 				itrval = lowest_latency;
5840 		} else if (bytes/packets > 2000) {
5841 			itrval = bulk_latency;
5842 		} else if (packets <= 2 && bytes < 512) {
5843 			itrval = lowest_latency;
5844 		}
5845 		break;
5846 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5847 		if (bytes > 25000) {
5848 			if (packets > 35)
5849 				itrval = low_latency;
5850 		} else if (bytes < 1500) {
5851 			itrval = low_latency;
5852 		}
5853 		break;
5854 	}
5855 
5856 	/* clear work counters since we have the values we need */
5857 	ring_container->total_bytes = 0;
5858 	ring_container->total_packets = 0;
5859 
5860 	/* write updated itr to ring container */
5861 	ring_container->itr = itrval;
5862 }
5863 
5864 static void igb_set_itr(struct igb_q_vector *q_vector)
5865 {
5866 	struct igb_adapter *adapter = q_vector->adapter;
5867 	u32 new_itr = q_vector->itr_val;
5868 	u8 current_itr = 0;
5869 
5870 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5871 	if (adapter->link_speed != SPEED_1000) {
5872 		current_itr = 0;
5873 		new_itr = IGB_4K_ITR;
5874 		goto set_itr_now;
5875 	}
5876 
5877 	igb_update_itr(q_vector, &q_vector->tx);
5878 	igb_update_itr(q_vector, &q_vector->rx);
5879 
5880 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5881 
5882 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5883 	if (current_itr == lowest_latency &&
5884 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5885 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5886 		current_itr = low_latency;
5887 
5888 	switch (current_itr) {
5889 	/* counts and packets in update_itr are dependent on these numbers */
5890 	case lowest_latency:
5891 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5892 		break;
5893 	case low_latency:
5894 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5895 		break;
5896 	case bulk_latency:
5897 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5898 		break;
5899 	default:
5900 		break;
5901 	}
5902 
5903 set_itr_now:
5904 	if (new_itr != q_vector->itr_val) {
5905 		/* this attempts to bias the interrupt rate towards Bulk
5906 		 * by adding intermediate steps when interrupt rate is
5907 		 * increasing
5908 		 */
5909 		new_itr = new_itr > q_vector->itr_val ?
5910 			  max((new_itr * q_vector->itr_val) /
5911 			  (new_itr + (q_vector->itr_val >> 2)),
5912 			  new_itr) : new_itr;
5913 		/* Don't write the value here; it resets the adapter's
5914 		 * internal timer, and causes us to delay far longer than
5915 		 * we should between interrupts.  Instead, we write the ITR
5916 		 * value at the beginning of the next interrupt so the timing
5917 		 * ends up being correct.
5918 		 */
5919 		q_vector->itr_val = new_itr;
5920 		q_vector->set_itr = 1;
5921 	}
5922 }
5923 
5924 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5925 			    struct igb_tx_buffer *first,
5926 			    u32 vlan_macip_lens, u32 type_tucmd,
5927 			    u32 mss_l4len_idx)
5928 {
5929 	struct e1000_adv_tx_context_desc *context_desc;
5930 	u16 i = tx_ring->next_to_use;
5931 	struct timespec64 ts;
5932 
5933 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5934 
5935 	i++;
5936 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5937 
5938 	/* set bits to identify this as an advanced context descriptor */
5939 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5940 
5941 	/* For 82575, context index must be unique per ring. */
5942 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5943 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5944 
5945 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5946 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5947 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5948 
5949 	/* We assume there is always a valid tx time available. Invalid times
5950 	 * should have been handled by the upper layers.
5951 	 */
5952 	if (tx_ring->launchtime_enable) {
5953 		ts = ktime_to_timespec64(first->skb->tstamp);
5954 		skb_txtime_consumed(first->skb);
5955 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5956 	} else {
5957 		context_desc->seqnum_seed = 0;
5958 	}
5959 }
5960 
5961 static int igb_tso(struct igb_ring *tx_ring,
5962 		   struct igb_tx_buffer *first,
5963 		   u8 *hdr_len)
5964 {
5965 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5966 	struct sk_buff *skb = first->skb;
5967 	union {
5968 		struct iphdr *v4;
5969 		struct ipv6hdr *v6;
5970 		unsigned char *hdr;
5971 	} ip;
5972 	union {
5973 		struct tcphdr *tcp;
5974 		struct udphdr *udp;
5975 		unsigned char *hdr;
5976 	} l4;
5977 	u32 paylen, l4_offset;
5978 	int err;
5979 
5980 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5981 		return 0;
5982 
5983 	if (!skb_is_gso(skb))
5984 		return 0;
5985 
5986 	err = skb_cow_head(skb, 0);
5987 	if (err < 0)
5988 		return err;
5989 
5990 	ip.hdr = skb_network_header(skb);
5991 	l4.hdr = skb_checksum_start(skb);
5992 
5993 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5994 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5995 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5996 
5997 	/* initialize outer IP header fields */
5998 	if (ip.v4->version == 4) {
5999 		unsigned char *csum_start = skb_checksum_start(skb);
6000 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6001 
6002 		/* IP header will have to cancel out any data that
6003 		 * is not a part of the outer IP header
6004 		 */
6005 		ip.v4->check = csum_fold(csum_partial(trans_start,
6006 						      csum_start - trans_start,
6007 						      0));
6008 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6009 
6010 		ip.v4->tot_len = 0;
6011 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6012 				   IGB_TX_FLAGS_CSUM |
6013 				   IGB_TX_FLAGS_IPV4;
6014 	} else {
6015 		ip.v6->payload_len = 0;
6016 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6017 				   IGB_TX_FLAGS_CSUM;
6018 	}
6019 
6020 	/* determine offset of inner transport header */
6021 	l4_offset = l4.hdr - skb->data;
6022 
6023 	/* remove payload length from inner checksum */
6024 	paylen = skb->len - l4_offset;
6025 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6026 		/* compute length of segmentation header */
6027 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6028 		csum_replace_by_diff(&l4.tcp->check,
6029 			(__force __wsum)htonl(paylen));
6030 	} else {
6031 		/* compute length of segmentation header */
6032 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6033 		csum_replace_by_diff(&l4.udp->check,
6034 				     (__force __wsum)htonl(paylen));
6035 	}
6036 
6037 	/* update gso size and bytecount with header size */
6038 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6039 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6040 
6041 	/* MSS L4LEN IDX */
6042 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6043 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6044 
6045 	/* VLAN MACLEN IPLEN */
6046 	vlan_macip_lens = l4.hdr - ip.hdr;
6047 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6048 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6049 
6050 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6051 			type_tucmd, mss_l4len_idx);
6052 
6053 	return 1;
6054 }
6055 
6056 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6057 {
6058 	struct sk_buff *skb = first->skb;
6059 	u32 vlan_macip_lens = 0;
6060 	u32 type_tucmd = 0;
6061 
6062 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6063 csum_failed:
6064 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6065 		    !tx_ring->launchtime_enable)
6066 			return;
6067 		goto no_csum;
6068 	}
6069 
6070 	switch (skb->csum_offset) {
6071 	case offsetof(struct tcphdr, check):
6072 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6073 		fallthrough;
6074 	case offsetof(struct udphdr, check):
6075 		break;
6076 	case offsetof(struct sctphdr, checksum):
6077 		/* validate that this is actually an SCTP request */
6078 		if (skb_csum_is_sctp(skb)) {
6079 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6080 			break;
6081 		}
6082 		fallthrough;
6083 	default:
6084 		skb_checksum_help(skb);
6085 		goto csum_failed;
6086 	}
6087 
6088 	/* update TX checksum flag */
6089 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6090 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6091 			  skb_network_offset(skb);
6092 no_csum:
6093 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6094 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6095 
6096 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6097 }
6098 
6099 #define IGB_SET_FLAG(_input, _flag, _result) \
6100 	((_flag <= _result) ? \
6101 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6102 	 ((u32)(_input & _flag) / (_flag / _result)))
6103 
6104 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6105 {
6106 	/* set type for advanced descriptor with frame checksum insertion */
6107 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6108 		       E1000_ADVTXD_DCMD_DEXT |
6109 		       E1000_ADVTXD_DCMD_IFCS;
6110 
6111 	/* set HW vlan bit if vlan is present */
6112 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6113 				 (E1000_ADVTXD_DCMD_VLE));
6114 
6115 	/* set segmentation bits for TSO */
6116 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6117 				 (E1000_ADVTXD_DCMD_TSE));
6118 
6119 	/* set timestamp bit if present */
6120 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6121 				 (E1000_ADVTXD_MAC_TSTAMP));
6122 
6123 	/* insert frame checksum */
6124 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6125 
6126 	return cmd_type;
6127 }
6128 
6129 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6130 				 union e1000_adv_tx_desc *tx_desc,
6131 				 u32 tx_flags, unsigned int paylen)
6132 {
6133 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6134 
6135 	/* 82575 requires a unique index per ring */
6136 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6137 		olinfo_status |= tx_ring->reg_idx << 4;
6138 
6139 	/* insert L4 checksum */
6140 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6141 				      IGB_TX_FLAGS_CSUM,
6142 				      (E1000_TXD_POPTS_TXSM << 8));
6143 
6144 	/* insert IPv4 checksum */
6145 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6146 				      IGB_TX_FLAGS_IPV4,
6147 				      (E1000_TXD_POPTS_IXSM << 8));
6148 
6149 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6150 }
6151 
6152 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6153 {
6154 	struct net_device *netdev = tx_ring->netdev;
6155 
6156 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6157 
6158 	/* Herbert's original patch had:
6159 	 *  smp_mb__after_netif_stop_queue();
6160 	 * but since that doesn't exist yet, just open code it.
6161 	 */
6162 	smp_mb();
6163 
6164 	/* We need to check again in a case another CPU has just
6165 	 * made room available.
6166 	 */
6167 	if (igb_desc_unused(tx_ring) < size)
6168 		return -EBUSY;
6169 
6170 	/* A reprieve! */
6171 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6172 
6173 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6174 	tx_ring->tx_stats.restart_queue2++;
6175 	u64_stats_update_end(&tx_ring->tx_syncp2);
6176 
6177 	return 0;
6178 }
6179 
6180 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6181 {
6182 	if (igb_desc_unused(tx_ring) >= size)
6183 		return 0;
6184 	return __igb_maybe_stop_tx(tx_ring, size);
6185 }
6186 
6187 static int igb_tx_map(struct igb_ring *tx_ring,
6188 		      struct igb_tx_buffer *first,
6189 		      const u8 hdr_len)
6190 {
6191 	struct sk_buff *skb = first->skb;
6192 	struct igb_tx_buffer *tx_buffer;
6193 	union e1000_adv_tx_desc *tx_desc;
6194 	skb_frag_t *frag;
6195 	dma_addr_t dma;
6196 	unsigned int data_len, size;
6197 	u32 tx_flags = first->tx_flags;
6198 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6199 	u16 i = tx_ring->next_to_use;
6200 
6201 	tx_desc = IGB_TX_DESC(tx_ring, i);
6202 
6203 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6204 
6205 	size = skb_headlen(skb);
6206 	data_len = skb->data_len;
6207 
6208 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6209 
6210 	tx_buffer = first;
6211 
6212 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6213 		if (dma_mapping_error(tx_ring->dev, dma))
6214 			goto dma_error;
6215 
6216 		/* record length, and DMA address */
6217 		dma_unmap_len_set(tx_buffer, len, size);
6218 		dma_unmap_addr_set(tx_buffer, dma, dma);
6219 
6220 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6221 
6222 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6223 			tx_desc->read.cmd_type_len =
6224 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6225 
6226 			i++;
6227 			tx_desc++;
6228 			if (i == tx_ring->count) {
6229 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6230 				i = 0;
6231 			}
6232 			tx_desc->read.olinfo_status = 0;
6233 
6234 			dma += IGB_MAX_DATA_PER_TXD;
6235 			size -= IGB_MAX_DATA_PER_TXD;
6236 
6237 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6238 		}
6239 
6240 		if (likely(!data_len))
6241 			break;
6242 
6243 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6244 
6245 		i++;
6246 		tx_desc++;
6247 		if (i == tx_ring->count) {
6248 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6249 			i = 0;
6250 		}
6251 		tx_desc->read.olinfo_status = 0;
6252 
6253 		size = skb_frag_size(frag);
6254 		data_len -= size;
6255 
6256 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6257 				       size, DMA_TO_DEVICE);
6258 
6259 		tx_buffer = &tx_ring->tx_buffer_info[i];
6260 	}
6261 
6262 	/* write last descriptor with RS and EOP bits */
6263 	cmd_type |= size | IGB_TXD_DCMD;
6264 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6265 
6266 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6267 
6268 	/* set the timestamp */
6269 	first->time_stamp = jiffies;
6270 
6271 	skb_tx_timestamp(skb);
6272 
6273 	/* Force memory writes to complete before letting h/w know there
6274 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6275 	 * memory model archs, such as IA-64).
6276 	 *
6277 	 * We also need this memory barrier to make certain all of the
6278 	 * status bits have been updated before next_to_watch is written.
6279 	 */
6280 	dma_wmb();
6281 
6282 	/* set next_to_watch value indicating a packet is present */
6283 	first->next_to_watch = tx_desc;
6284 
6285 	i++;
6286 	if (i == tx_ring->count)
6287 		i = 0;
6288 
6289 	tx_ring->next_to_use = i;
6290 
6291 	/* Make sure there is space in the ring for the next send. */
6292 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6293 
6294 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6295 		writel(i, tx_ring->tail);
6296 	}
6297 	return 0;
6298 
6299 dma_error:
6300 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6301 	tx_buffer = &tx_ring->tx_buffer_info[i];
6302 
6303 	/* clear dma mappings for failed tx_buffer_info map */
6304 	while (tx_buffer != first) {
6305 		if (dma_unmap_len(tx_buffer, len))
6306 			dma_unmap_page(tx_ring->dev,
6307 				       dma_unmap_addr(tx_buffer, dma),
6308 				       dma_unmap_len(tx_buffer, len),
6309 				       DMA_TO_DEVICE);
6310 		dma_unmap_len_set(tx_buffer, len, 0);
6311 
6312 		if (i-- == 0)
6313 			i += tx_ring->count;
6314 		tx_buffer = &tx_ring->tx_buffer_info[i];
6315 	}
6316 
6317 	if (dma_unmap_len(tx_buffer, len))
6318 		dma_unmap_single(tx_ring->dev,
6319 				 dma_unmap_addr(tx_buffer, dma),
6320 				 dma_unmap_len(tx_buffer, len),
6321 				 DMA_TO_DEVICE);
6322 	dma_unmap_len_set(tx_buffer, len, 0);
6323 
6324 	dev_kfree_skb_any(tx_buffer->skb);
6325 	tx_buffer->skb = NULL;
6326 
6327 	tx_ring->next_to_use = i;
6328 
6329 	return -1;
6330 }
6331 
6332 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6333 		      struct igb_ring *tx_ring,
6334 		      struct xdp_frame *xdpf)
6335 {
6336 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6337 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6338 	u16 count, i, index = tx_ring->next_to_use;
6339 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6340 	struct igb_tx_buffer *tx_buffer = tx_head;
6341 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6342 	u32 len = xdpf->len, cmd_type, olinfo_status;
6343 	void *data = xdpf->data;
6344 
6345 	count = TXD_USE_COUNT(len);
6346 	for (i = 0; i < nr_frags; i++)
6347 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6348 
6349 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6350 		return IGB_XDP_CONSUMED;
6351 
6352 	i = 0;
6353 	/* record the location of the first descriptor for this packet */
6354 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6355 	tx_head->type = IGB_TYPE_XDP;
6356 	tx_head->gso_segs = 1;
6357 	tx_head->xdpf = xdpf;
6358 
6359 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6360 	/* 82575 requires a unique index per ring */
6361 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6362 		olinfo_status |= tx_ring->reg_idx << 4;
6363 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6364 
6365 	for (;;) {
6366 		dma_addr_t dma;
6367 
6368 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6369 		if (dma_mapping_error(tx_ring->dev, dma))
6370 			goto unmap;
6371 
6372 		/* record length, and DMA address */
6373 		dma_unmap_len_set(tx_buffer, len, len);
6374 		dma_unmap_addr_set(tx_buffer, dma, dma);
6375 
6376 		/* put descriptor type bits */
6377 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6378 			   E1000_ADVTXD_DCMD_IFCS | len;
6379 
6380 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6381 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6382 
6383 		tx_buffer->protocol = 0;
6384 
6385 		if (++index == tx_ring->count)
6386 			index = 0;
6387 
6388 		if (i == nr_frags)
6389 			break;
6390 
6391 		tx_buffer = &tx_ring->tx_buffer_info[index];
6392 		tx_desc = IGB_TX_DESC(tx_ring, index);
6393 		tx_desc->read.olinfo_status = 0;
6394 
6395 		data = skb_frag_address(&sinfo->frags[i]);
6396 		len = skb_frag_size(&sinfo->frags[i]);
6397 		i++;
6398 	}
6399 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6400 
6401 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6402 	/* set the timestamp */
6403 	tx_head->time_stamp = jiffies;
6404 
6405 	/* Avoid any potential race with xdp_xmit and cleanup */
6406 	smp_wmb();
6407 
6408 	/* set next_to_watch value indicating a packet is present */
6409 	tx_head->next_to_watch = tx_desc;
6410 	tx_ring->next_to_use = index;
6411 
6412 	/* Make sure there is space in the ring for the next send. */
6413 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6414 
6415 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6416 		writel(index, tx_ring->tail);
6417 
6418 	return IGB_XDP_TX;
6419 
6420 unmap:
6421 	for (;;) {
6422 		tx_buffer = &tx_ring->tx_buffer_info[index];
6423 		if (dma_unmap_len(tx_buffer, len))
6424 			dma_unmap_page(tx_ring->dev,
6425 				       dma_unmap_addr(tx_buffer, dma),
6426 				       dma_unmap_len(tx_buffer, len),
6427 				       DMA_TO_DEVICE);
6428 		dma_unmap_len_set(tx_buffer, len, 0);
6429 		if (tx_buffer == tx_head)
6430 			break;
6431 
6432 		if (!index)
6433 			index += tx_ring->count;
6434 		index--;
6435 	}
6436 
6437 	return IGB_XDP_CONSUMED;
6438 }
6439 
6440 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6441 				struct igb_ring *tx_ring)
6442 {
6443 	struct igb_tx_buffer *first;
6444 	int tso;
6445 	u32 tx_flags = 0;
6446 	unsigned short f;
6447 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6448 	__be16 protocol = vlan_get_protocol(skb);
6449 	u8 hdr_len = 0;
6450 
6451 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6452 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6453 	 *       + 2 desc gap to keep tail from touching head,
6454 	 *       + 1 desc for context descriptor,
6455 	 * otherwise try next time
6456 	 */
6457 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6458 		count += TXD_USE_COUNT(skb_frag_size(
6459 						&skb_shinfo(skb)->frags[f]));
6460 
6461 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6462 		/* this is a hard error */
6463 		return NETDEV_TX_BUSY;
6464 	}
6465 
6466 	/* record the location of the first descriptor for this packet */
6467 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6468 	first->type = IGB_TYPE_SKB;
6469 	first->skb = skb;
6470 	first->bytecount = skb->len;
6471 	first->gso_segs = 1;
6472 
6473 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6474 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6475 
6476 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6477 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6478 					   &adapter->state)) {
6479 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6480 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6481 
6482 			adapter->ptp_tx_skb = skb_get(skb);
6483 			adapter->ptp_tx_start = jiffies;
6484 			if (adapter->hw.mac.type == e1000_82576)
6485 				schedule_work(&adapter->ptp_tx_work);
6486 		} else {
6487 			adapter->tx_hwtstamp_skipped++;
6488 		}
6489 	}
6490 
6491 	if (skb_vlan_tag_present(skb)) {
6492 		tx_flags |= IGB_TX_FLAGS_VLAN;
6493 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6494 	}
6495 
6496 	/* record initial flags and protocol */
6497 	first->tx_flags = tx_flags;
6498 	first->protocol = protocol;
6499 
6500 	tso = igb_tso(tx_ring, first, &hdr_len);
6501 	if (tso < 0)
6502 		goto out_drop;
6503 	else if (!tso)
6504 		igb_tx_csum(tx_ring, first);
6505 
6506 	if (igb_tx_map(tx_ring, first, hdr_len))
6507 		goto cleanup_tx_tstamp;
6508 
6509 	return NETDEV_TX_OK;
6510 
6511 out_drop:
6512 	dev_kfree_skb_any(first->skb);
6513 	first->skb = NULL;
6514 cleanup_tx_tstamp:
6515 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6516 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6517 
6518 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6519 		adapter->ptp_tx_skb = NULL;
6520 		if (adapter->hw.mac.type == e1000_82576)
6521 			cancel_work_sync(&adapter->ptp_tx_work);
6522 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6523 	}
6524 
6525 	return NETDEV_TX_OK;
6526 }
6527 
6528 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6529 						    struct sk_buff *skb)
6530 {
6531 	unsigned int r_idx = skb->queue_mapping;
6532 
6533 	if (r_idx >= adapter->num_tx_queues)
6534 		r_idx = r_idx % adapter->num_tx_queues;
6535 
6536 	return adapter->tx_ring[r_idx];
6537 }
6538 
6539 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6540 				  struct net_device *netdev)
6541 {
6542 	struct igb_adapter *adapter = netdev_priv(netdev);
6543 
6544 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6545 	 * in order to meet this minimum size requirement.
6546 	 */
6547 	if (skb_put_padto(skb, 17))
6548 		return NETDEV_TX_OK;
6549 
6550 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6551 }
6552 
6553 /**
6554  *  igb_tx_timeout - Respond to a Tx Hang
6555  *  @netdev: network interface device structure
6556  *  @txqueue: number of the Tx queue that hung (unused)
6557  **/
6558 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6559 {
6560 	struct igb_adapter *adapter = netdev_priv(netdev);
6561 	struct e1000_hw *hw = &adapter->hw;
6562 
6563 	/* Do the reset outside of interrupt context */
6564 	adapter->tx_timeout_count++;
6565 
6566 	if (hw->mac.type >= e1000_82580)
6567 		hw->dev_spec._82575.global_device_reset = true;
6568 
6569 	schedule_work(&adapter->reset_task);
6570 	wr32(E1000_EICS,
6571 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6572 }
6573 
6574 static void igb_reset_task(struct work_struct *work)
6575 {
6576 	struct igb_adapter *adapter;
6577 	adapter = container_of(work, struct igb_adapter, reset_task);
6578 
6579 	rtnl_lock();
6580 	/* If we're already down or resetting, just bail */
6581 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6582 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6583 		rtnl_unlock();
6584 		return;
6585 	}
6586 
6587 	igb_dump(adapter);
6588 	netdev_err(adapter->netdev, "Reset adapter\n");
6589 	igb_reinit_locked(adapter);
6590 	rtnl_unlock();
6591 }
6592 
6593 /**
6594  *  igb_get_stats64 - Get System Network Statistics
6595  *  @netdev: network interface device structure
6596  *  @stats: rtnl_link_stats64 pointer
6597  **/
6598 static void igb_get_stats64(struct net_device *netdev,
6599 			    struct rtnl_link_stats64 *stats)
6600 {
6601 	struct igb_adapter *adapter = netdev_priv(netdev);
6602 
6603 	spin_lock(&adapter->stats64_lock);
6604 	igb_update_stats(adapter);
6605 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6606 	spin_unlock(&adapter->stats64_lock);
6607 }
6608 
6609 /**
6610  *  igb_change_mtu - Change the Maximum Transfer Unit
6611  *  @netdev: network interface device structure
6612  *  @new_mtu: new value for maximum frame size
6613  *
6614  *  Returns 0 on success, negative on failure
6615  **/
6616 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6617 {
6618 	struct igb_adapter *adapter = netdev_priv(netdev);
6619 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6620 
6621 	if (adapter->xdp_prog) {
6622 		int i;
6623 
6624 		for (i = 0; i < adapter->num_rx_queues; i++) {
6625 			struct igb_ring *ring = adapter->rx_ring[i];
6626 
6627 			if (max_frame > igb_rx_bufsz(ring)) {
6628 				netdev_warn(adapter->netdev,
6629 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6630 					    max_frame);
6631 				return -EINVAL;
6632 			}
6633 		}
6634 	}
6635 
6636 	/* adjust max frame to be at least the size of a standard frame */
6637 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6638 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6639 
6640 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6641 		usleep_range(1000, 2000);
6642 
6643 	/* igb_down has a dependency on max_frame_size */
6644 	adapter->max_frame_size = max_frame;
6645 
6646 	if (netif_running(netdev))
6647 		igb_down(adapter);
6648 
6649 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6650 		   netdev->mtu, new_mtu);
6651 	WRITE_ONCE(netdev->mtu, new_mtu);
6652 
6653 	if (netif_running(netdev))
6654 		igb_up(adapter);
6655 	else
6656 		igb_reset(adapter);
6657 
6658 	clear_bit(__IGB_RESETTING, &adapter->state);
6659 
6660 	return 0;
6661 }
6662 
6663 /**
6664  *  igb_update_stats - Update the board statistics counters
6665  *  @adapter: board private structure
6666  **/
6667 void igb_update_stats(struct igb_adapter *adapter)
6668 {
6669 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6670 	struct e1000_hw *hw = &adapter->hw;
6671 	struct pci_dev *pdev = adapter->pdev;
6672 	u32 reg, mpc;
6673 	int i;
6674 	u64 bytes, packets;
6675 	unsigned int start;
6676 	u64 _bytes, _packets;
6677 
6678 	/* Prevent stats update while adapter is being reset, or if the pci
6679 	 * connection is down.
6680 	 */
6681 	if (adapter->link_speed == 0)
6682 		return;
6683 	if (pci_channel_offline(pdev))
6684 		return;
6685 
6686 	bytes = 0;
6687 	packets = 0;
6688 
6689 	rcu_read_lock();
6690 	for (i = 0; i < adapter->num_rx_queues; i++) {
6691 		struct igb_ring *ring = adapter->rx_ring[i];
6692 		u32 rqdpc = rd32(E1000_RQDPC(i));
6693 		if (hw->mac.type >= e1000_i210)
6694 			wr32(E1000_RQDPC(i), 0);
6695 
6696 		if (rqdpc) {
6697 			ring->rx_stats.drops += rqdpc;
6698 			net_stats->rx_fifo_errors += rqdpc;
6699 		}
6700 
6701 		do {
6702 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6703 			_bytes = ring->rx_stats.bytes;
6704 			_packets = ring->rx_stats.packets;
6705 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6706 		bytes += _bytes;
6707 		packets += _packets;
6708 	}
6709 
6710 	net_stats->rx_bytes = bytes;
6711 	net_stats->rx_packets = packets;
6712 
6713 	bytes = 0;
6714 	packets = 0;
6715 	for (i = 0; i < adapter->num_tx_queues; i++) {
6716 		struct igb_ring *ring = adapter->tx_ring[i];
6717 		do {
6718 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6719 			_bytes = ring->tx_stats.bytes;
6720 			_packets = ring->tx_stats.packets;
6721 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6722 		bytes += _bytes;
6723 		packets += _packets;
6724 	}
6725 	net_stats->tx_bytes = bytes;
6726 	net_stats->tx_packets = packets;
6727 	rcu_read_unlock();
6728 
6729 	/* read stats registers */
6730 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6731 	adapter->stats.gprc += rd32(E1000_GPRC);
6732 	adapter->stats.gorc += rd32(E1000_GORCL);
6733 	rd32(E1000_GORCH); /* clear GORCL */
6734 	adapter->stats.bprc += rd32(E1000_BPRC);
6735 	adapter->stats.mprc += rd32(E1000_MPRC);
6736 	adapter->stats.roc += rd32(E1000_ROC);
6737 
6738 	adapter->stats.prc64 += rd32(E1000_PRC64);
6739 	adapter->stats.prc127 += rd32(E1000_PRC127);
6740 	adapter->stats.prc255 += rd32(E1000_PRC255);
6741 	adapter->stats.prc511 += rd32(E1000_PRC511);
6742 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6743 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6744 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6745 	adapter->stats.sec += rd32(E1000_SEC);
6746 
6747 	mpc = rd32(E1000_MPC);
6748 	adapter->stats.mpc += mpc;
6749 	net_stats->rx_fifo_errors += mpc;
6750 	adapter->stats.scc += rd32(E1000_SCC);
6751 	adapter->stats.ecol += rd32(E1000_ECOL);
6752 	adapter->stats.mcc += rd32(E1000_MCC);
6753 	adapter->stats.latecol += rd32(E1000_LATECOL);
6754 	adapter->stats.dc += rd32(E1000_DC);
6755 	adapter->stats.rlec += rd32(E1000_RLEC);
6756 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6757 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6758 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6759 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6760 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6761 	adapter->stats.gptc += rd32(E1000_GPTC);
6762 	adapter->stats.gotc += rd32(E1000_GOTCL);
6763 	rd32(E1000_GOTCH); /* clear GOTCL */
6764 	adapter->stats.rnbc += rd32(E1000_RNBC);
6765 	adapter->stats.ruc += rd32(E1000_RUC);
6766 	adapter->stats.rfc += rd32(E1000_RFC);
6767 	adapter->stats.rjc += rd32(E1000_RJC);
6768 	adapter->stats.tor += rd32(E1000_TORH);
6769 	adapter->stats.tot += rd32(E1000_TOTH);
6770 	adapter->stats.tpr += rd32(E1000_TPR);
6771 
6772 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6773 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6774 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6775 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6776 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6777 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6778 
6779 	adapter->stats.mptc += rd32(E1000_MPTC);
6780 	adapter->stats.bptc += rd32(E1000_BPTC);
6781 
6782 	adapter->stats.tpt += rd32(E1000_TPT);
6783 	adapter->stats.colc += rd32(E1000_COLC);
6784 
6785 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6786 	/* read internal phy specific stats */
6787 	reg = rd32(E1000_CTRL_EXT);
6788 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6789 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6790 
6791 		/* this stat has invalid values on i210/i211 */
6792 		if ((hw->mac.type != e1000_i210) &&
6793 		    (hw->mac.type != e1000_i211))
6794 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6795 	}
6796 
6797 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6798 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6799 
6800 	adapter->stats.iac += rd32(E1000_IAC);
6801 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6802 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6803 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6804 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6805 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6806 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6807 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6808 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6809 
6810 	/* Fill out the OS statistics structure */
6811 	net_stats->multicast = adapter->stats.mprc;
6812 	net_stats->collisions = adapter->stats.colc;
6813 
6814 	/* Rx Errors */
6815 
6816 	/* RLEC on some newer hardware can be incorrect so build
6817 	 * our own version based on RUC and ROC
6818 	 */
6819 	net_stats->rx_errors = adapter->stats.rxerrc +
6820 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6821 		adapter->stats.ruc + adapter->stats.roc +
6822 		adapter->stats.cexterr;
6823 	net_stats->rx_length_errors = adapter->stats.ruc +
6824 				      adapter->stats.roc;
6825 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6826 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6827 	net_stats->rx_missed_errors = adapter->stats.mpc;
6828 
6829 	/* Tx Errors */
6830 	net_stats->tx_errors = adapter->stats.ecol +
6831 			       adapter->stats.latecol;
6832 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6833 	net_stats->tx_window_errors = adapter->stats.latecol;
6834 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6835 
6836 	/* Tx Dropped needs to be maintained elsewhere */
6837 
6838 	/* Management Stats */
6839 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6840 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6841 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6842 
6843 	/* OS2BMC Stats */
6844 	reg = rd32(E1000_MANC);
6845 	if (reg & E1000_MANC_EN_BMC2OS) {
6846 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6847 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6848 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6849 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6850 	}
6851 }
6852 
6853 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6854 {
6855 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6856 	struct e1000_hw *hw = &adapter->hw;
6857 	struct timespec64 ts;
6858 	u32 tsauxc;
6859 
6860 	if (pin < 0 || pin >= IGB_N_SDP)
6861 		return;
6862 
6863 	spin_lock(&adapter->tmreg_lock);
6864 
6865 	if (hw->mac.type == e1000_82580 ||
6866 	    hw->mac.type == e1000_i354 ||
6867 	    hw->mac.type == e1000_i350) {
6868 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6869 		u32 systiml, systimh, level_mask, level, rem;
6870 		u64 systim, now;
6871 
6872 		/* read systim registers in sequence */
6873 		rd32(E1000_SYSTIMR);
6874 		systiml = rd32(E1000_SYSTIML);
6875 		systimh = rd32(E1000_SYSTIMH);
6876 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6877 		now = timecounter_cyc2time(&adapter->tc, systim);
6878 
6879 		if (pin < 2) {
6880 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6881 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6882 		} else {
6883 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6884 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6885 		}
6886 
6887 		div_u64_rem(now, ns, &rem);
6888 		systim = systim + (ns - rem);
6889 
6890 		/* synchronize pin level with rising/falling edges */
6891 		div_u64_rem(now, ns << 1, &rem);
6892 		if (rem < ns) {
6893 			/* first half of period */
6894 			if (level == 0) {
6895 				/* output is already low, skip this period */
6896 				systim += ns;
6897 				pr_notice("igb: periodic output on %s missed falling edge\n",
6898 					  adapter->sdp_config[pin].name);
6899 			}
6900 		} else {
6901 			/* second half of period */
6902 			if (level == 1) {
6903 				/* output is already high, skip this period */
6904 				systim += ns;
6905 				pr_notice("igb: periodic output on %s missed rising edge\n",
6906 					  adapter->sdp_config[pin].name);
6907 			}
6908 		}
6909 
6910 		/* for this chip family tv_sec is the upper part of the binary value,
6911 		 * so not seconds
6912 		 */
6913 		ts.tv_nsec = (u32)systim;
6914 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6915 	} else {
6916 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
6917 				    adapter->perout[tsintr_tt].period);
6918 	}
6919 
6920 	/* u32 conversion of tv_sec is safe until y2106 */
6921 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6922 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6923 	tsauxc = rd32(E1000_TSAUXC);
6924 	tsauxc |= TSAUXC_EN_TT0;
6925 	wr32(E1000_TSAUXC, tsauxc);
6926 	adapter->perout[tsintr_tt].start = ts;
6927 
6928 	spin_unlock(&adapter->tmreg_lock);
6929 }
6930 
6931 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6932 {
6933 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6934 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6935 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6936 	struct e1000_hw *hw = &adapter->hw;
6937 	struct ptp_clock_event event;
6938 	struct timespec64 ts;
6939 	unsigned long flags;
6940 
6941 	if (pin < 0 || pin >= IGB_N_SDP)
6942 		return;
6943 
6944 	if (hw->mac.type == e1000_82580 ||
6945 	    hw->mac.type == e1000_i354 ||
6946 	    hw->mac.type == e1000_i350) {
6947 		u64 ns = rd32(auxstmpl);
6948 
6949 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6950 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
6951 		ns = timecounter_cyc2time(&adapter->tc, ns);
6952 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6953 		ts = ns_to_timespec64(ns);
6954 	} else {
6955 		ts.tv_nsec = rd32(auxstmpl);
6956 		ts.tv_sec  = rd32(auxstmph);
6957 	}
6958 
6959 	event.type = PTP_CLOCK_EXTTS;
6960 	event.index = tsintr_tt;
6961 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6962 	ptp_clock_event(adapter->ptp_clock, &event);
6963 }
6964 
6965 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6966 {
6967 	const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
6968 			  TSINTR_TT0 | TSINTR_TT1 |
6969 			  TSINTR_AUTT0 | TSINTR_AUTT1);
6970 	struct e1000_hw *hw = &adapter->hw;
6971 	u32 tsicr = rd32(E1000_TSICR);
6972 	struct ptp_clock_event event;
6973 
6974 	if (hw->mac.type == e1000_82580) {
6975 		/* 82580 has a hardware bug that requires an explicit
6976 		 * write to clear the TimeSync interrupt cause.
6977 		 */
6978 		wr32(E1000_TSICR, tsicr & mask);
6979 	}
6980 
6981 	if (tsicr & TSINTR_SYS_WRAP) {
6982 		event.type = PTP_CLOCK_PPS;
6983 		if (adapter->ptp_caps.pps)
6984 			ptp_clock_event(adapter->ptp_clock, &event);
6985 	}
6986 
6987 	if (tsicr & E1000_TSICR_TXTS) {
6988 		/* retrieve hardware timestamp */
6989 		schedule_work(&adapter->ptp_tx_work);
6990 	}
6991 
6992 	if (tsicr & TSINTR_TT0)
6993 		igb_perout(adapter, 0);
6994 
6995 	if (tsicr & TSINTR_TT1)
6996 		igb_perout(adapter, 1);
6997 
6998 	if (tsicr & TSINTR_AUTT0)
6999 		igb_extts(adapter, 0);
7000 
7001 	if (tsicr & TSINTR_AUTT1)
7002 		igb_extts(adapter, 1);
7003 }
7004 
7005 static irqreturn_t igb_msix_other(int irq, void *data)
7006 {
7007 	struct igb_adapter *adapter = data;
7008 	struct e1000_hw *hw = &adapter->hw;
7009 	u32 icr = rd32(E1000_ICR);
7010 	/* reading ICR causes bit 31 of EICR to be cleared */
7011 
7012 	if (icr & E1000_ICR_DRSTA)
7013 		schedule_work(&adapter->reset_task);
7014 
7015 	if (icr & E1000_ICR_DOUTSYNC) {
7016 		/* HW is reporting DMA is out of sync */
7017 		adapter->stats.doosync++;
7018 		/* The DMA Out of Sync is also indication of a spoof event
7019 		 * in IOV mode. Check the Wrong VM Behavior register to
7020 		 * see if it is really a spoof event.
7021 		 */
7022 		igb_check_wvbr(adapter);
7023 	}
7024 
7025 	/* Check for a mailbox event */
7026 	if (icr & E1000_ICR_VMMB)
7027 		igb_msg_task(adapter);
7028 
7029 	if (icr & E1000_ICR_LSC) {
7030 		hw->mac.get_link_status = 1;
7031 		/* guard against interrupt when we're going down */
7032 		if (!test_bit(__IGB_DOWN, &adapter->state))
7033 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7034 	}
7035 
7036 	if (icr & E1000_ICR_TS)
7037 		igb_tsync_interrupt(adapter);
7038 
7039 	wr32(E1000_EIMS, adapter->eims_other);
7040 
7041 	return IRQ_HANDLED;
7042 }
7043 
7044 static void igb_write_itr(struct igb_q_vector *q_vector)
7045 {
7046 	struct igb_adapter *adapter = q_vector->adapter;
7047 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7048 
7049 	if (!q_vector->set_itr)
7050 		return;
7051 
7052 	if (!itr_val)
7053 		itr_val = 0x4;
7054 
7055 	if (adapter->hw.mac.type == e1000_82575)
7056 		itr_val |= itr_val << 16;
7057 	else
7058 		itr_val |= E1000_EITR_CNT_IGNR;
7059 
7060 	writel(itr_val, q_vector->itr_register);
7061 	q_vector->set_itr = 0;
7062 }
7063 
7064 static irqreturn_t igb_msix_ring(int irq, void *data)
7065 {
7066 	struct igb_q_vector *q_vector = data;
7067 
7068 	/* Write the ITR value calculated from the previous interrupt. */
7069 	igb_write_itr(q_vector);
7070 
7071 	napi_schedule(&q_vector->napi);
7072 
7073 	return IRQ_HANDLED;
7074 }
7075 
7076 #ifdef CONFIG_IGB_DCA
7077 static void igb_update_tx_dca(struct igb_adapter *adapter,
7078 			      struct igb_ring *tx_ring,
7079 			      int cpu)
7080 {
7081 	struct e1000_hw *hw = &adapter->hw;
7082 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7083 
7084 	if (hw->mac.type != e1000_82575)
7085 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7086 
7087 	/* We can enable relaxed ordering for reads, but not writes when
7088 	 * DCA is enabled.  This is due to a known issue in some chipsets
7089 	 * which will cause the DCA tag to be cleared.
7090 	 */
7091 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7092 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7093 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7094 
7095 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7096 }
7097 
7098 static void igb_update_rx_dca(struct igb_adapter *adapter,
7099 			      struct igb_ring *rx_ring,
7100 			      int cpu)
7101 {
7102 	struct e1000_hw *hw = &adapter->hw;
7103 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7104 
7105 	if (hw->mac.type != e1000_82575)
7106 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7107 
7108 	/* We can enable relaxed ordering for reads, but not writes when
7109 	 * DCA is enabled.  This is due to a known issue in some chipsets
7110 	 * which will cause the DCA tag to be cleared.
7111 	 */
7112 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7113 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7114 
7115 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7116 }
7117 
7118 static void igb_update_dca(struct igb_q_vector *q_vector)
7119 {
7120 	struct igb_adapter *adapter = q_vector->adapter;
7121 	int cpu = get_cpu();
7122 
7123 	if (q_vector->cpu == cpu)
7124 		goto out_no_update;
7125 
7126 	if (q_vector->tx.ring)
7127 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7128 
7129 	if (q_vector->rx.ring)
7130 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7131 
7132 	q_vector->cpu = cpu;
7133 out_no_update:
7134 	put_cpu();
7135 }
7136 
7137 static void igb_setup_dca(struct igb_adapter *adapter)
7138 {
7139 	struct e1000_hw *hw = &adapter->hw;
7140 	int i;
7141 
7142 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7143 		return;
7144 
7145 	/* Always use CB2 mode, difference is masked in the CB driver. */
7146 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7147 
7148 	for (i = 0; i < adapter->num_q_vectors; i++) {
7149 		adapter->q_vector[i]->cpu = -1;
7150 		igb_update_dca(adapter->q_vector[i]);
7151 	}
7152 }
7153 
7154 static int __igb_notify_dca(struct device *dev, void *data)
7155 {
7156 	struct net_device *netdev = dev_get_drvdata(dev);
7157 	struct igb_adapter *adapter = netdev_priv(netdev);
7158 	struct pci_dev *pdev = adapter->pdev;
7159 	struct e1000_hw *hw = &adapter->hw;
7160 	unsigned long event = *(unsigned long *)data;
7161 
7162 	switch (event) {
7163 	case DCA_PROVIDER_ADD:
7164 		/* if already enabled, don't do it again */
7165 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7166 			break;
7167 		if (dca_add_requester(dev) == 0) {
7168 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7169 			dev_info(&pdev->dev, "DCA enabled\n");
7170 			igb_setup_dca(adapter);
7171 			break;
7172 		}
7173 		fallthrough; /* since DCA is disabled. */
7174 	case DCA_PROVIDER_REMOVE:
7175 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7176 			/* without this a class_device is left
7177 			 * hanging around in the sysfs model
7178 			 */
7179 			dca_remove_requester(dev);
7180 			dev_info(&pdev->dev, "DCA disabled\n");
7181 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7182 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7183 		}
7184 		break;
7185 	}
7186 
7187 	return 0;
7188 }
7189 
7190 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7191 			  void *p)
7192 {
7193 	int ret_val;
7194 
7195 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7196 					 __igb_notify_dca);
7197 
7198 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7199 }
7200 #endif /* CONFIG_IGB_DCA */
7201 
7202 #ifdef CONFIG_PCI_IOV
7203 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7204 {
7205 	unsigned char mac_addr[ETH_ALEN];
7206 
7207 	eth_zero_addr(mac_addr);
7208 	igb_set_vf_mac(adapter, vf, mac_addr);
7209 
7210 	/* By default spoof check is enabled for all VFs */
7211 	adapter->vf_data[vf].spoofchk_enabled = true;
7212 
7213 	/* By default VFs are not trusted */
7214 	adapter->vf_data[vf].trusted = false;
7215 
7216 	return 0;
7217 }
7218 
7219 #endif
7220 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7221 {
7222 	struct e1000_hw *hw = &adapter->hw;
7223 	u32 ping;
7224 	int i;
7225 
7226 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7227 		ping = E1000_PF_CONTROL_MSG;
7228 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7229 			ping |= E1000_VT_MSGTYPE_CTS;
7230 		igb_write_mbx(hw, &ping, 1, i);
7231 	}
7232 }
7233 
7234 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7235 {
7236 	struct e1000_hw *hw = &adapter->hw;
7237 	u32 vmolr = rd32(E1000_VMOLR(vf));
7238 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7239 
7240 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7241 			    IGB_VF_FLAG_MULTI_PROMISC);
7242 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7243 
7244 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7245 		vmolr |= E1000_VMOLR_MPME;
7246 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7247 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7248 	} else {
7249 		/* if we have hashes and we are clearing a multicast promisc
7250 		 * flag we need to write the hashes to the MTA as this step
7251 		 * was previously skipped
7252 		 */
7253 		if (vf_data->num_vf_mc_hashes > 30) {
7254 			vmolr |= E1000_VMOLR_MPME;
7255 		} else if (vf_data->num_vf_mc_hashes) {
7256 			int j;
7257 
7258 			vmolr |= E1000_VMOLR_ROMPE;
7259 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7260 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7261 		}
7262 	}
7263 
7264 	wr32(E1000_VMOLR(vf), vmolr);
7265 
7266 	/* there are flags left unprocessed, likely not supported */
7267 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7268 		return -EINVAL;
7269 
7270 	return 0;
7271 }
7272 
7273 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7274 				  u32 *msgbuf, u32 vf)
7275 {
7276 	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7277 	u16 *hash_list = (u16 *)&msgbuf[1];
7278 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7279 	int i;
7280 
7281 	/* salt away the number of multicast addresses assigned
7282 	 * to this VF for later use to restore when the PF multi cast
7283 	 * list changes
7284 	 */
7285 	vf_data->num_vf_mc_hashes = n;
7286 
7287 	/* only up to 30 hash values supported */
7288 	if (n > 30)
7289 		n = 30;
7290 
7291 	/* store the hashes for later use */
7292 	for (i = 0; i < n; i++)
7293 		vf_data->vf_mc_hashes[i] = hash_list[i];
7294 
7295 	/* Flush and reset the mta with the new values */
7296 	igb_set_rx_mode(adapter->netdev);
7297 
7298 	return 0;
7299 }
7300 
7301 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7302 {
7303 	struct e1000_hw *hw = &adapter->hw;
7304 	struct vf_data_storage *vf_data;
7305 	int i, j;
7306 
7307 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7308 		u32 vmolr = rd32(E1000_VMOLR(i));
7309 
7310 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7311 
7312 		vf_data = &adapter->vf_data[i];
7313 
7314 		if ((vf_data->num_vf_mc_hashes > 30) ||
7315 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7316 			vmolr |= E1000_VMOLR_MPME;
7317 		} else if (vf_data->num_vf_mc_hashes) {
7318 			vmolr |= E1000_VMOLR_ROMPE;
7319 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7320 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7321 		}
7322 		wr32(E1000_VMOLR(i), vmolr);
7323 	}
7324 }
7325 
7326 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7327 {
7328 	struct e1000_hw *hw = &adapter->hw;
7329 	u32 pool_mask, vlvf_mask, i;
7330 
7331 	/* create mask for VF and other pools */
7332 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7333 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7334 
7335 	/* drop PF from pool bits */
7336 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7337 			     adapter->vfs_allocated_count);
7338 
7339 	/* Find the vlan filter for this id */
7340 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7341 		u32 vlvf = rd32(E1000_VLVF(i));
7342 		u32 vfta_mask, vid, vfta;
7343 
7344 		/* remove the vf from the pool */
7345 		if (!(vlvf & vlvf_mask))
7346 			continue;
7347 
7348 		/* clear out bit from VLVF */
7349 		vlvf ^= vlvf_mask;
7350 
7351 		/* if other pools are present, just remove ourselves */
7352 		if (vlvf & pool_mask)
7353 			goto update_vlvfb;
7354 
7355 		/* if PF is present, leave VFTA */
7356 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7357 			goto update_vlvf;
7358 
7359 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7360 		vfta_mask = BIT(vid % 32);
7361 
7362 		/* clear bit from VFTA */
7363 		vfta = adapter->shadow_vfta[vid / 32];
7364 		if (vfta & vfta_mask)
7365 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7366 update_vlvf:
7367 		/* clear pool selection enable */
7368 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7369 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7370 		else
7371 			vlvf = 0;
7372 update_vlvfb:
7373 		/* clear pool bits */
7374 		wr32(E1000_VLVF(i), vlvf);
7375 	}
7376 }
7377 
7378 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7379 {
7380 	u32 vlvf;
7381 	int idx;
7382 
7383 	/* short cut the special case */
7384 	if (vlan == 0)
7385 		return 0;
7386 
7387 	/* Search for the VLAN id in the VLVF entries */
7388 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7389 		vlvf = rd32(E1000_VLVF(idx));
7390 		if ((vlvf & VLAN_VID_MASK) == vlan)
7391 			break;
7392 	}
7393 
7394 	return idx;
7395 }
7396 
7397 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7398 {
7399 	struct e1000_hw *hw = &adapter->hw;
7400 	u32 bits, pf_id;
7401 	int idx;
7402 
7403 	idx = igb_find_vlvf_entry(hw, vid);
7404 	if (!idx)
7405 		return;
7406 
7407 	/* See if any other pools are set for this VLAN filter
7408 	 * entry other than the PF.
7409 	 */
7410 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7411 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7412 	bits &= rd32(E1000_VLVF(idx));
7413 
7414 	/* Disable the filter so this falls into the default pool. */
7415 	if (!bits) {
7416 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7417 			wr32(E1000_VLVF(idx), BIT(pf_id));
7418 		else
7419 			wr32(E1000_VLVF(idx), 0);
7420 	}
7421 }
7422 
7423 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7424 			   bool add, u32 vf)
7425 {
7426 	int pf_id = adapter->vfs_allocated_count;
7427 	struct e1000_hw *hw = &adapter->hw;
7428 	int err;
7429 
7430 	/* If VLAN overlaps with one the PF is currently monitoring make
7431 	 * sure that we are able to allocate a VLVF entry.  This may be
7432 	 * redundant but it guarantees PF will maintain visibility to
7433 	 * the VLAN.
7434 	 */
7435 	if (add && test_bit(vid, adapter->active_vlans)) {
7436 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7437 		if (err)
7438 			return err;
7439 	}
7440 
7441 	err = igb_vfta_set(hw, vid, vf, add, false);
7442 
7443 	if (add && !err)
7444 		return err;
7445 
7446 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7447 	 * we may need to drop the PF pool bit in order to allow us to free
7448 	 * up the VLVF resources.
7449 	 */
7450 	if (test_bit(vid, adapter->active_vlans) ||
7451 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7452 		igb_update_pf_vlvf(adapter, vid);
7453 
7454 	return err;
7455 }
7456 
7457 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7458 {
7459 	struct e1000_hw *hw = &adapter->hw;
7460 
7461 	if (vid)
7462 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7463 	else
7464 		wr32(E1000_VMVIR(vf), 0);
7465 }
7466 
7467 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7468 				u16 vlan, u8 qos)
7469 {
7470 	int err;
7471 
7472 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7473 	if (err)
7474 		return err;
7475 
7476 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7477 	igb_set_vmolr(adapter, vf, !vlan);
7478 
7479 	/* revoke access to previous VLAN */
7480 	if (vlan != adapter->vf_data[vf].pf_vlan)
7481 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7482 				false, vf);
7483 
7484 	adapter->vf_data[vf].pf_vlan = vlan;
7485 	adapter->vf_data[vf].pf_qos = qos;
7486 	igb_set_vf_vlan_strip(adapter, vf, true);
7487 	dev_info(&adapter->pdev->dev,
7488 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7489 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7490 		dev_warn(&adapter->pdev->dev,
7491 			 "The VF VLAN has been set, but the PF device is not up.\n");
7492 		dev_warn(&adapter->pdev->dev,
7493 			 "Bring the PF device up before attempting to use the VF device.\n");
7494 	}
7495 
7496 	return err;
7497 }
7498 
7499 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7500 {
7501 	/* Restore tagless access via VLAN 0 */
7502 	igb_set_vf_vlan(adapter, 0, true, vf);
7503 
7504 	igb_set_vmvir(adapter, 0, vf);
7505 	igb_set_vmolr(adapter, vf, true);
7506 
7507 	/* Remove any PF assigned VLAN */
7508 	if (adapter->vf_data[vf].pf_vlan)
7509 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7510 				false, vf);
7511 
7512 	adapter->vf_data[vf].pf_vlan = 0;
7513 	adapter->vf_data[vf].pf_qos = 0;
7514 	igb_set_vf_vlan_strip(adapter, vf, false);
7515 
7516 	return 0;
7517 }
7518 
7519 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7520 			       u16 vlan, u8 qos, __be16 vlan_proto)
7521 {
7522 	struct igb_adapter *adapter = netdev_priv(netdev);
7523 
7524 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7525 		return -EINVAL;
7526 
7527 	if (vlan_proto != htons(ETH_P_8021Q))
7528 		return -EPROTONOSUPPORT;
7529 
7530 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7531 			       igb_disable_port_vlan(adapter, vf);
7532 }
7533 
7534 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7535 {
7536 	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7537 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7538 	int ret;
7539 
7540 	if (adapter->vf_data[vf].pf_vlan)
7541 		return -1;
7542 
7543 	/* VLAN 0 is a special case, don't allow it to be removed */
7544 	if (!vid && !add)
7545 		return 0;
7546 
7547 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7548 	if (!ret)
7549 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7550 	return ret;
7551 }
7552 
7553 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7554 {
7555 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7556 
7557 	/* clear flags - except flag that indicates PF has set the MAC */
7558 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7559 	vf_data->last_nack = jiffies;
7560 
7561 	/* reset vlans for device */
7562 	igb_clear_vf_vfta(adapter, vf);
7563 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7564 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7565 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7566 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7567 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7568 
7569 	/* reset multicast table array for vf */
7570 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7571 
7572 	/* Flush and reset the mta with the new values */
7573 	igb_set_rx_mode(adapter->netdev);
7574 }
7575 
7576 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7577 {
7578 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7579 
7580 	/* clear mac address as we were hotplug removed/added */
7581 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7582 		eth_zero_addr(vf_mac);
7583 
7584 	/* process remaining reset events */
7585 	igb_vf_reset(adapter, vf);
7586 }
7587 
7588 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7589 {
7590 	struct e1000_hw *hw = &adapter->hw;
7591 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7592 	u32 reg, msgbuf[3] = {};
7593 	u8 *addr = (u8 *)(&msgbuf[1]);
7594 
7595 	/* process all the same items cleared in a function level reset */
7596 	igb_vf_reset(adapter, vf);
7597 
7598 	/* set vf mac address */
7599 	igb_set_vf_mac(adapter, vf, vf_mac);
7600 
7601 	/* enable transmit and receive for vf */
7602 	reg = rd32(E1000_VFTE);
7603 	wr32(E1000_VFTE, reg | BIT(vf));
7604 	reg = rd32(E1000_VFRE);
7605 	wr32(E1000_VFRE, reg | BIT(vf));
7606 
7607 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7608 
7609 	/* reply to reset with ack and vf mac address */
7610 	if (!is_zero_ether_addr(vf_mac)) {
7611 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7612 		memcpy(addr, vf_mac, ETH_ALEN);
7613 	} else {
7614 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7615 	}
7616 	igb_write_mbx(hw, msgbuf, 3, vf);
7617 }
7618 
7619 static void igb_flush_mac_table(struct igb_adapter *adapter)
7620 {
7621 	struct e1000_hw *hw = &adapter->hw;
7622 	int i;
7623 
7624 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7625 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7626 		eth_zero_addr(adapter->mac_table[i].addr);
7627 		adapter->mac_table[i].queue = 0;
7628 		igb_rar_set_index(adapter, i);
7629 	}
7630 }
7631 
7632 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7633 {
7634 	struct e1000_hw *hw = &adapter->hw;
7635 	/* do not count rar entries reserved for VFs MAC addresses */
7636 	int rar_entries = hw->mac.rar_entry_count -
7637 			  adapter->vfs_allocated_count;
7638 	int i, count = 0;
7639 
7640 	for (i = 0; i < rar_entries; i++) {
7641 		/* do not count default entries */
7642 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7643 			continue;
7644 
7645 		/* do not count "in use" entries for different queues */
7646 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7647 		    (adapter->mac_table[i].queue != queue))
7648 			continue;
7649 
7650 		count++;
7651 	}
7652 
7653 	return count;
7654 }
7655 
7656 /* Set default MAC address for the PF in the first RAR entry */
7657 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7658 {
7659 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7660 
7661 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7662 	mac_table->queue = adapter->vfs_allocated_count;
7663 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7664 
7665 	igb_rar_set_index(adapter, 0);
7666 }
7667 
7668 /* If the filter to be added and an already existing filter express
7669  * the same address and address type, it should be possible to only
7670  * override the other configurations, for example the queue to steer
7671  * traffic.
7672  */
7673 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7674 				      const u8 *addr, const u8 flags)
7675 {
7676 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7677 		return true;
7678 
7679 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7680 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7681 		return false;
7682 
7683 	if (!ether_addr_equal(addr, entry->addr))
7684 		return false;
7685 
7686 	return true;
7687 }
7688 
7689 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7690  * 'flags' is used to indicate what kind of match is made, match is by
7691  * default for the destination address, if matching by source address
7692  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7693  */
7694 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7695 				    const u8 *addr, const u8 queue,
7696 				    const u8 flags)
7697 {
7698 	struct e1000_hw *hw = &adapter->hw;
7699 	int rar_entries = hw->mac.rar_entry_count -
7700 			  adapter->vfs_allocated_count;
7701 	int i;
7702 
7703 	if (is_zero_ether_addr(addr))
7704 		return -EINVAL;
7705 
7706 	/* Search for the first empty entry in the MAC table.
7707 	 * Do not touch entries at the end of the table reserved for the VF MAC
7708 	 * addresses.
7709 	 */
7710 	for (i = 0; i < rar_entries; i++) {
7711 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7712 					       addr, flags))
7713 			continue;
7714 
7715 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7716 		adapter->mac_table[i].queue = queue;
7717 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7718 
7719 		igb_rar_set_index(adapter, i);
7720 		return i;
7721 	}
7722 
7723 	return -ENOSPC;
7724 }
7725 
7726 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7727 			      const u8 queue)
7728 {
7729 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7730 }
7731 
7732 /* Remove a MAC filter for 'addr' directing matching traffic to
7733  * 'queue', 'flags' is used to indicate what kind of match need to be
7734  * removed, match is by default for the destination address, if
7735  * matching by source address is to be removed the flag
7736  * IGB_MAC_STATE_SRC_ADDR can be used.
7737  */
7738 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7739 				    const u8 *addr, const u8 queue,
7740 				    const u8 flags)
7741 {
7742 	struct e1000_hw *hw = &adapter->hw;
7743 	int rar_entries = hw->mac.rar_entry_count -
7744 			  adapter->vfs_allocated_count;
7745 	int i;
7746 
7747 	if (is_zero_ether_addr(addr))
7748 		return -EINVAL;
7749 
7750 	/* Search for matching entry in the MAC table based on given address
7751 	 * and queue. Do not touch entries at the end of the table reserved
7752 	 * for the VF MAC addresses.
7753 	 */
7754 	for (i = 0; i < rar_entries; i++) {
7755 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7756 			continue;
7757 		if ((adapter->mac_table[i].state & flags) != flags)
7758 			continue;
7759 		if (adapter->mac_table[i].queue != queue)
7760 			continue;
7761 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7762 			continue;
7763 
7764 		/* When a filter for the default address is "deleted",
7765 		 * we return it to its initial configuration
7766 		 */
7767 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7768 			adapter->mac_table[i].state =
7769 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7770 			adapter->mac_table[i].queue =
7771 				adapter->vfs_allocated_count;
7772 		} else {
7773 			adapter->mac_table[i].state = 0;
7774 			adapter->mac_table[i].queue = 0;
7775 			eth_zero_addr(adapter->mac_table[i].addr);
7776 		}
7777 
7778 		igb_rar_set_index(adapter, i);
7779 		return 0;
7780 	}
7781 
7782 	return -ENOENT;
7783 }
7784 
7785 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7786 			      const u8 queue)
7787 {
7788 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7789 }
7790 
7791 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7792 				const u8 *addr, u8 queue, u8 flags)
7793 {
7794 	struct e1000_hw *hw = &adapter->hw;
7795 
7796 	/* In theory, this should be supported on 82575 as well, but
7797 	 * that part wasn't easily accessible during development.
7798 	 */
7799 	if (hw->mac.type != e1000_i210)
7800 		return -EOPNOTSUPP;
7801 
7802 	return igb_add_mac_filter_flags(adapter, addr, queue,
7803 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7804 }
7805 
7806 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7807 				const u8 *addr, u8 queue, u8 flags)
7808 {
7809 	return igb_del_mac_filter_flags(adapter, addr, queue,
7810 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7811 }
7812 
7813 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7814 {
7815 	struct igb_adapter *adapter = netdev_priv(netdev);
7816 	int ret;
7817 
7818 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7819 
7820 	return min_t(int, ret, 0);
7821 }
7822 
7823 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7824 {
7825 	struct igb_adapter *adapter = netdev_priv(netdev);
7826 
7827 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7828 
7829 	return 0;
7830 }
7831 
7832 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7833 				 const u32 info, const u8 *addr)
7834 {
7835 	struct pci_dev *pdev = adapter->pdev;
7836 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7837 	struct vf_mac_filter *entry;
7838 	bool found = false;
7839 	int ret = 0;
7840 
7841 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7842 	    !vf_data->trusted) {
7843 		dev_warn(&pdev->dev,
7844 			 "VF %d requested MAC filter but is administratively denied\n",
7845 			  vf);
7846 		return -EINVAL;
7847 	}
7848 	if (!is_valid_ether_addr(addr)) {
7849 		dev_warn(&pdev->dev,
7850 			 "VF %d attempted to set invalid MAC filter\n",
7851 			  vf);
7852 		return -EINVAL;
7853 	}
7854 
7855 	switch (info) {
7856 	case E1000_VF_MAC_FILTER_CLR:
7857 		/* remove all unicast MAC filters related to the current VF */
7858 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7859 			if (entry->vf == vf) {
7860 				entry->vf = -1;
7861 				entry->free = true;
7862 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7863 			}
7864 		}
7865 		break;
7866 	case E1000_VF_MAC_FILTER_ADD:
7867 		/* try to find empty slot in the list */
7868 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7869 			if (entry->free) {
7870 				found = true;
7871 				break;
7872 			}
7873 		}
7874 
7875 		if (found) {
7876 			entry->free = false;
7877 			entry->vf = vf;
7878 			ether_addr_copy(entry->vf_mac, addr);
7879 
7880 			ret = igb_add_mac_filter(adapter, addr, vf);
7881 			ret = min_t(int, ret, 0);
7882 		} else {
7883 			ret = -ENOSPC;
7884 		}
7885 
7886 		if (ret == -ENOSPC)
7887 			dev_warn(&pdev->dev,
7888 				 "VF %d has requested MAC filter but there is no space for it\n",
7889 				 vf);
7890 		break;
7891 	default:
7892 		ret = -EINVAL;
7893 		break;
7894 	}
7895 
7896 	return ret;
7897 }
7898 
7899 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7900 {
7901 	struct pci_dev *pdev = adapter->pdev;
7902 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7903 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7904 
7905 	/* The VF MAC Address is stored in a packed array of bytes
7906 	 * starting at the second 32 bit word of the msg array
7907 	 */
7908 	unsigned char *addr = (unsigned char *)&msg[1];
7909 	int ret = 0;
7910 
7911 	if (!info) {
7912 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7913 		    !vf_data->trusted) {
7914 			dev_warn(&pdev->dev,
7915 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7916 				 vf);
7917 			return -EINVAL;
7918 		}
7919 
7920 		if (!is_valid_ether_addr(addr)) {
7921 			dev_warn(&pdev->dev,
7922 				 "VF %d attempted to set invalid MAC\n",
7923 				 vf);
7924 			return -EINVAL;
7925 		}
7926 
7927 		ret = igb_set_vf_mac(adapter, vf, addr);
7928 	} else {
7929 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7930 	}
7931 
7932 	return ret;
7933 }
7934 
7935 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7936 {
7937 	struct e1000_hw *hw = &adapter->hw;
7938 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7939 	u32 msg = E1000_VT_MSGTYPE_NACK;
7940 
7941 	/* if device isn't clear to send it shouldn't be reading either */
7942 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7943 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7944 		igb_write_mbx(hw, &msg, 1, vf);
7945 		vf_data->last_nack = jiffies;
7946 	}
7947 }
7948 
7949 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7950 {
7951 	struct pci_dev *pdev = adapter->pdev;
7952 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7953 	struct e1000_hw *hw = &adapter->hw;
7954 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7955 	s32 retval;
7956 
7957 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7958 
7959 	if (retval) {
7960 		/* if receive failed revoke VF CTS stats and restart init */
7961 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7962 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7963 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7964 			goto unlock;
7965 		goto out;
7966 	}
7967 
7968 	/* this is a message we already processed, do nothing */
7969 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7970 		goto unlock;
7971 
7972 	/* until the vf completes a reset it should not be
7973 	 * allowed to start any configuration.
7974 	 */
7975 	if (msgbuf[0] == E1000_VF_RESET) {
7976 		/* unlocks mailbox */
7977 		igb_vf_reset_msg(adapter, vf);
7978 		return;
7979 	}
7980 
7981 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7982 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7983 			goto unlock;
7984 		retval = -1;
7985 		goto out;
7986 	}
7987 
7988 	switch ((msgbuf[0] & 0xFFFF)) {
7989 	case E1000_VF_SET_MAC_ADDR:
7990 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7991 		break;
7992 	case E1000_VF_SET_PROMISC:
7993 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7994 		break;
7995 	case E1000_VF_SET_MULTICAST:
7996 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7997 		break;
7998 	case E1000_VF_SET_LPE:
7999 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8000 		break;
8001 	case E1000_VF_SET_VLAN:
8002 		retval = -1;
8003 		if (vf_data->pf_vlan)
8004 			dev_warn(&pdev->dev,
8005 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8006 				 vf);
8007 		else
8008 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8009 		break;
8010 	default:
8011 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8012 		retval = -1;
8013 		break;
8014 	}
8015 
8016 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8017 out:
8018 	/* notify the VF of the results of what it sent us */
8019 	if (retval)
8020 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8021 	else
8022 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8023 
8024 	/* unlocks mailbox */
8025 	igb_write_mbx(hw, msgbuf, 1, vf);
8026 	return;
8027 
8028 unlock:
8029 	igb_unlock_mbx(hw, vf);
8030 }
8031 
8032 static void igb_msg_task(struct igb_adapter *adapter)
8033 {
8034 	struct e1000_hw *hw = &adapter->hw;
8035 	unsigned long flags;
8036 	u32 vf;
8037 
8038 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8039 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8040 		/* process any reset requests */
8041 		if (!igb_check_for_rst(hw, vf))
8042 			igb_vf_reset_event(adapter, vf);
8043 
8044 		/* process any messages pending */
8045 		if (!igb_check_for_msg(hw, vf))
8046 			igb_rcv_msg_from_vf(adapter, vf);
8047 
8048 		/* process any acks */
8049 		if (!igb_check_for_ack(hw, vf))
8050 			igb_rcv_ack_from_vf(adapter, vf);
8051 	}
8052 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8053 }
8054 
8055 /**
8056  *  igb_set_uta - Set unicast filter table address
8057  *  @adapter: board private structure
8058  *  @set: boolean indicating if we are setting or clearing bits
8059  *
8060  *  The unicast table address is a register array of 32-bit registers.
8061  *  The table is meant to be used in a way similar to how the MTA is used
8062  *  however due to certain limitations in the hardware it is necessary to
8063  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8064  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8065  **/
8066 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8067 {
8068 	struct e1000_hw *hw = &adapter->hw;
8069 	u32 uta = set ? ~0 : 0;
8070 	int i;
8071 
8072 	/* we only need to do this if VMDq is enabled */
8073 	if (!adapter->vfs_allocated_count)
8074 		return;
8075 
8076 	for (i = hw->mac.uta_reg_count; i--;)
8077 		array_wr32(E1000_UTA, i, uta);
8078 }
8079 
8080 /**
8081  *  igb_intr_msi - Interrupt Handler
8082  *  @irq: interrupt number
8083  *  @data: pointer to a network interface device structure
8084  **/
8085 static irqreturn_t igb_intr_msi(int irq, void *data)
8086 {
8087 	struct igb_adapter *adapter = data;
8088 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8089 	struct e1000_hw *hw = &adapter->hw;
8090 	/* read ICR disables interrupts using IAM */
8091 	u32 icr = rd32(E1000_ICR);
8092 
8093 	igb_write_itr(q_vector);
8094 
8095 	if (icr & E1000_ICR_DRSTA)
8096 		schedule_work(&adapter->reset_task);
8097 
8098 	if (icr & E1000_ICR_DOUTSYNC) {
8099 		/* HW is reporting DMA is out of sync */
8100 		adapter->stats.doosync++;
8101 	}
8102 
8103 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8104 		hw->mac.get_link_status = 1;
8105 		if (!test_bit(__IGB_DOWN, &adapter->state))
8106 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8107 	}
8108 
8109 	if (icr & E1000_ICR_TS)
8110 		igb_tsync_interrupt(adapter);
8111 
8112 	napi_schedule(&q_vector->napi);
8113 
8114 	return IRQ_HANDLED;
8115 }
8116 
8117 /**
8118  *  igb_intr - Legacy Interrupt Handler
8119  *  @irq: interrupt number
8120  *  @data: pointer to a network interface device structure
8121  **/
8122 static irqreturn_t igb_intr(int irq, void *data)
8123 {
8124 	struct igb_adapter *adapter = data;
8125 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8126 	struct e1000_hw *hw = &adapter->hw;
8127 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8128 	 * need for the IMC write
8129 	 */
8130 	u32 icr = rd32(E1000_ICR);
8131 
8132 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8133 	 * not set, then the adapter didn't send an interrupt
8134 	 */
8135 	if (!(icr & E1000_ICR_INT_ASSERTED))
8136 		return IRQ_NONE;
8137 
8138 	igb_write_itr(q_vector);
8139 
8140 	if (icr & E1000_ICR_DRSTA)
8141 		schedule_work(&adapter->reset_task);
8142 
8143 	if (icr & E1000_ICR_DOUTSYNC) {
8144 		/* HW is reporting DMA is out of sync */
8145 		adapter->stats.doosync++;
8146 	}
8147 
8148 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8149 		hw->mac.get_link_status = 1;
8150 		/* guard against interrupt when we're going down */
8151 		if (!test_bit(__IGB_DOWN, &adapter->state))
8152 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8153 	}
8154 
8155 	if (icr & E1000_ICR_TS)
8156 		igb_tsync_interrupt(adapter);
8157 
8158 	napi_schedule(&q_vector->napi);
8159 
8160 	return IRQ_HANDLED;
8161 }
8162 
8163 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8164 {
8165 	struct igb_adapter *adapter = q_vector->adapter;
8166 	struct e1000_hw *hw = &adapter->hw;
8167 
8168 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8169 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8170 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8171 			igb_set_itr(q_vector);
8172 		else
8173 			igb_update_ring_itr(q_vector);
8174 	}
8175 
8176 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8177 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8178 			wr32(E1000_EIMS, q_vector->eims_value);
8179 		else
8180 			igb_irq_enable(adapter);
8181 	}
8182 }
8183 
8184 /**
8185  *  igb_poll - NAPI Rx polling callback
8186  *  @napi: napi polling structure
8187  *  @budget: count of how many packets we should handle
8188  **/
8189 static int igb_poll(struct napi_struct *napi, int budget)
8190 {
8191 	struct igb_q_vector *q_vector = container_of(napi,
8192 						     struct igb_q_vector,
8193 						     napi);
8194 	bool clean_complete = true;
8195 	int work_done = 0;
8196 
8197 #ifdef CONFIG_IGB_DCA
8198 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8199 		igb_update_dca(q_vector);
8200 #endif
8201 	if (q_vector->tx.ring)
8202 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8203 
8204 	if (q_vector->rx.ring) {
8205 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8206 
8207 		work_done += cleaned;
8208 		if (cleaned >= budget)
8209 			clean_complete = false;
8210 	}
8211 
8212 	/* If all work not completed, return budget and keep polling */
8213 	if (!clean_complete)
8214 		return budget;
8215 
8216 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8217 	 * poll us due to busy-polling
8218 	 */
8219 	if (likely(napi_complete_done(napi, work_done)))
8220 		igb_ring_irq_enable(q_vector);
8221 
8222 	return work_done;
8223 }
8224 
8225 /**
8226  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8227  *  @q_vector: pointer to q_vector containing needed info
8228  *  @napi_budget: Used to determine if we are in netpoll
8229  *
8230  *  returns true if ring is completely cleaned
8231  **/
8232 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8233 {
8234 	struct igb_adapter *adapter = q_vector->adapter;
8235 	struct igb_ring *tx_ring = q_vector->tx.ring;
8236 	struct igb_tx_buffer *tx_buffer;
8237 	union e1000_adv_tx_desc *tx_desc;
8238 	unsigned int total_bytes = 0, total_packets = 0;
8239 	unsigned int budget = q_vector->tx.work_limit;
8240 	unsigned int i = tx_ring->next_to_clean;
8241 
8242 	if (test_bit(__IGB_DOWN, &adapter->state))
8243 		return true;
8244 
8245 	tx_buffer = &tx_ring->tx_buffer_info[i];
8246 	tx_desc = IGB_TX_DESC(tx_ring, i);
8247 	i -= tx_ring->count;
8248 
8249 	do {
8250 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8251 
8252 		/* if next_to_watch is not set then there is no work pending */
8253 		if (!eop_desc)
8254 			break;
8255 
8256 		/* prevent any other reads prior to eop_desc */
8257 		smp_rmb();
8258 
8259 		/* if DD is not set pending work has not been completed */
8260 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8261 			break;
8262 
8263 		/* clear next_to_watch to prevent false hangs */
8264 		tx_buffer->next_to_watch = NULL;
8265 
8266 		/* update the statistics for this packet */
8267 		total_bytes += tx_buffer->bytecount;
8268 		total_packets += tx_buffer->gso_segs;
8269 
8270 		/* free the skb */
8271 		if (tx_buffer->type == IGB_TYPE_SKB)
8272 			napi_consume_skb(tx_buffer->skb, napi_budget);
8273 		else
8274 			xdp_return_frame(tx_buffer->xdpf);
8275 
8276 		/* unmap skb header data */
8277 		dma_unmap_single(tx_ring->dev,
8278 				 dma_unmap_addr(tx_buffer, dma),
8279 				 dma_unmap_len(tx_buffer, len),
8280 				 DMA_TO_DEVICE);
8281 
8282 		/* clear tx_buffer data */
8283 		dma_unmap_len_set(tx_buffer, len, 0);
8284 
8285 		/* clear last DMA location and unmap remaining buffers */
8286 		while (tx_desc != eop_desc) {
8287 			tx_buffer++;
8288 			tx_desc++;
8289 			i++;
8290 			if (unlikely(!i)) {
8291 				i -= tx_ring->count;
8292 				tx_buffer = tx_ring->tx_buffer_info;
8293 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8294 			}
8295 
8296 			/* unmap any remaining paged data */
8297 			if (dma_unmap_len(tx_buffer, len)) {
8298 				dma_unmap_page(tx_ring->dev,
8299 					       dma_unmap_addr(tx_buffer, dma),
8300 					       dma_unmap_len(tx_buffer, len),
8301 					       DMA_TO_DEVICE);
8302 				dma_unmap_len_set(tx_buffer, len, 0);
8303 			}
8304 		}
8305 
8306 		/* move us one more past the eop_desc for start of next pkt */
8307 		tx_buffer++;
8308 		tx_desc++;
8309 		i++;
8310 		if (unlikely(!i)) {
8311 			i -= tx_ring->count;
8312 			tx_buffer = tx_ring->tx_buffer_info;
8313 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8314 		}
8315 
8316 		/* issue prefetch for next Tx descriptor */
8317 		prefetch(tx_desc);
8318 
8319 		/* update budget accounting */
8320 		budget--;
8321 	} while (likely(budget));
8322 
8323 	netdev_tx_completed_queue(txring_txq(tx_ring),
8324 				  total_packets, total_bytes);
8325 	i += tx_ring->count;
8326 	tx_ring->next_to_clean = i;
8327 	u64_stats_update_begin(&tx_ring->tx_syncp);
8328 	tx_ring->tx_stats.bytes += total_bytes;
8329 	tx_ring->tx_stats.packets += total_packets;
8330 	u64_stats_update_end(&tx_ring->tx_syncp);
8331 	q_vector->tx.total_bytes += total_bytes;
8332 	q_vector->tx.total_packets += total_packets;
8333 
8334 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8335 		struct e1000_hw *hw = &adapter->hw;
8336 
8337 		/* Detect a transmit hang in hardware, this serializes the
8338 		 * check with the clearing of time_stamp and movement of i
8339 		 */
8340 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8341 		if (tx_buffer->next_to_watch &&
8342 		    time_after(jiffies, tx_buffer->time_stamp +
8343 			       (adapter->tx_timeout_factor * HZ)) &&
8344 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8345 
8346 			/* detected Tx unit hang */
8347 			dev_err(tx_ring->dev,
8348 				"Detected Tx Unit Hang\n"
8349 				"  Tx Queue             <%d>\n"
8350 				"  TDH                  <%x>\n"
8351 				"  TDT                  <%x>\n"
8352 				"  next_to_use          <%x>\n"
8353 				"  next_to_clean        <%x>\n"
8354 				"buffer_info[next_to_clean]\n"
8355 				"  time_stamp           <%lx>\n"
8356 				"  next_to_watch        <%p>\n"
8357 				"  jiffies              <%lx>\n"
8358 				"  desc.status          <%x>\n",
8359 				tx_ring->queue_index,
8360 				rd32(E1000_TDH(tx_ring->reg_idx)),
8361 				readl(tx_ring->tail),
8362 				tx_ring->next_to_use,
8363 				tx_ring->next_to_clean,
8364 				tx_buffer->time_stamp,
8365 				tx_buffer->next_to_watch,
8366 				jiffies,
8367 				tx_buffer->next_to_watch->wb.status);
8368 			netif_stop_subqueue(tx_ring->netdev,
8369 					    tx_ring->queue_index);
8370 
8371 			/* we are about to reset, no point in enabling stuff */
8372 			return true;
8373 		}
8374 	}
8375 
8376 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8377 	if (unlikely(total_packets &&
8378 	    netif_carrier_ok(tx_ring->netdev) &&
8379 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8380 		/* Make sure that anybody stopping the queue after this
8381 		 * sees the new next_to_clean.
8382 		 */
8383 		smp_mb();
8384 		if (__netif_subqueue_stopped(tx_ring->netdev,
8385 					     tx_ring->queue_index) &&
8386 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8387 			netif_wake_subqueue(tx_ring->netdev,
8388 					    tx_ring->queue_index);
8389 
8390 			u64_stats_update_begin(&tx_ring->tx_syncp);
8391 			tx_ring->tx_stats.restart_queue++;
8392 			u64_stats_update_end(&tx_ring->tx_syncp);
8393 		}
8394 	}
8395 
8396 	return !!budget;
8397 }
8398 
8399 /**
8400  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8401  *  @rx_ring: rx descriptor ring to store buffers on
8402  *  @old_buff: donor buffer to have page reused
8403  *
8404  *  Synchronizes page for reuse by the adapter
8405  **/
8406 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8407 			      struct igb_rx_buffer *old_buff)
8408 {
8409 	struct igb_rx_buffer *new_buff;
8410 	u16 nta = rx_ring->next_to_alloc;
8411 
8412 	new_buff = &rx_ring->rx_buffer_info[nta];
8413 
8414 	/* update, and store next to alloc */
8415 	nta++;
8416 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8417 
8418 	/* Transfer page from old buffer to new buffer.
8419 	 * Move each member individually to avoid possible store
8420 	 * forwarding stalls.
8421 	 */
8422 	new_buff->dma		= old_buff->dma;
8423 	new_buff->page		= old_buff->page;
8424 	new_buff->page_offset	= old_buff->page_offset;
8425 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8426 }
8427 
8428 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8429 				  int rx_buf_pgcnt)
8430 {
8431 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8432 	struct page *page = rx_buffer->page;
8433 
8434 	/* avoid re-using remote and pfmemalloc pages */
8435 	if (!dev_page_is_reusable(page))
8436 		return false;
8437 
8438 #if (PAGE_SIZE < 8192)
8439 	/* if we are only owner of page we can reuse it */
8440 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8441 		return false;
8442 #else
8443 #define IGB_LAST_OFFSET \
8444 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8445 
8446 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8447 		return false;
8448 #endif
8449 
8450 	/* If we have drained the page fragment pool we need to update
8451 	 * the pagecnt_bias and page count so that we fully restock the
8452 	 * number of references the driver holds.
8453 	 */
8454 	if (unlikely(pagecnt_bias == 1)) {
8455 		page_ref_add(page, USHRT_MAX - 1);
8456 		rx_buffer->pagecnt_bias = USHRT_MAX;
8457 	}
8458 
8459 	return true;
8460 }
8461 
8462 /**
8463  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8464  *  @rx_ring: rx descriptor ring to transact packets on
8465  *  @rx_buffer: buffer containing page to add
8466  *  @skb: sk_buff to place the data into
8467  *  @size: size of buffer to be added
8468  *
8469  *  This function will add the data contained in rx_buffer->page to the skb.
8470  **/
8471 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8472 			    struct igb_rx_buffer *rx_buffer,
8473 			    struct sk_buff *skb,
8474 			    unsigned int size)
8475 {
8476 #if (PAGE_SIZE < 8192)
8477 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8478 #else
8479 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8480 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8481 				SKB_DATA_ALIGN(size);
8482 #endif
8483 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8484 			rx_buffer->page_offset, size, truesize);
8485 #if (PAGE_SIZE < 8192)
8486 	rx_buffer->page_offset ^= truesize;
8487 #else
8488 	rx_buffer->page_offset += truesize;
8489 #endif
8490 }
8491 
8492 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8493 					 struct igb_rx_buffer *rx_buffer,
8494 					 struct xdp_buff *xdp,
8495 					 ktime_t timestamp)
8496 {
8497 #if (PAGE_SIZE < 8192)
8498 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8499 #else
8500 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8501 					       xdp->data_hard_start);
8502 #endif
8503 	unsigned int size = xdp->data_end - xdp->data;
8504 	unsigned int headlen;
8505 	struct sk_buff *skb;
8506 
8507 	/* prefetch first cache line of first page */
8508 	net_prefetch(xdp->data);
8509 
8510 	/* allocate a skb to store the frags */
8511 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8512 	if (unlikely(!skb))
8513 		return NULL;
8514 
8515 	if (timestamp)
8516 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8517 
8518 	/* Determine available headroom for copy */
8519 	headlen = size;
8520 	if (headlen > IGB_RX_HDR_LEN)
8521 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8522 
8523 	/* align pull length to size of long to optimize memcpy performance */
8524 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8525 
8526 	/* update all of the pointers */
8527 	size -= headlen;
8528 	if (size) {
8529 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8530 				(xdp->data + headlen) - page_address(rx_buffer->page),
8531 				size, truesize);
8532 #if (PAGE_SIZE < 8192)
8533 		rx_buffer->page_offset ^= truesize;
8534 #else
8535 		rx_buffer->page_offset += truesize;
8536 #endif
8537 	} else {
8538 		rx_buffer->pagecnt_bias++;
8539 	}
8540 
8541 	return skb;
8542 }
8543 
8544 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8545 				     struct igb_rx_buffer *rx_buffer,
8546 				     struct xdp_buff *xdp,
8547 				     ktime_t timestamp)
8548 {
8549 #if (PAGE_SIZE < 8192)
8550 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8551 #else
8552 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8553 				SKB_DATA_ALIGN(xdp->data_end -
8554 					       xdp->data_hard_start);
8555 #endif
8556 	unsigned int metasize = xdp->data - xdp->data_meta;
8557 	struct sk_buff *skb;
8558 
8559 	/* prefetch first cache line of first page */
8560 	net_prefetch(xdp->data_meta);
8561 
8562 	/* build an skb around the page buffer */
8563 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8564 	if (unlikely(!skb))
8565 		return NULL;
8566 
8567 	/* update pointers within the skb to store the data */
8568 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8569 	__skb_put(skb, xdp->data_end - xdp->data);
8570 
8571 	if (metasize)
8572 		skb_metadata_set(skb, metasize);
8573 
8574 	if (timestamp)
8575 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8576 
8577 	/* update buffer offset */
8578 #if (PAGE_SIZE < 8192)
8579 	rx_buffer->page_offset ^= truesize;
8580 #else
8581 	rx_buffer->page_offset += truesize;
8582 #endif
8583 
8584 	return skb;
8585 }
8586 
8587 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8588 				   struct igb_ring *rx_ring,
8589 				   struct xdp_buff *xdp)
8590 {
8591 	int err, result = IGB_XDP_PASS;
8592 	struct bpf_prog *xdp_prog;
8593 	u32 act;
8594 
8595 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8596 
8597 	if (!xdp_prog)
8598 		goto xdp_out;
8599 
8600 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8601 
8602 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8603 	switch (act) {
8604 	case XDP_PASS:
8605 		break;
8606 	case XDP_TX:
8607 		result = igb_xdp_xmit_back(adapter, xdp);
8608 		if (result == IGB_XDP_CONSUMED)
8609 			goto out_failure;
8610 		break;
8611 	case XDP_REDIRECT:
8612 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8613 		if (err)
8614 			goto out_failure;
8615 		result = IGB_XDP_REDIR;
8616 		break;
8617 	default:
8618 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8619 		fallthrough;
8620 	case XDP_ABORTED:
8621 out_failure:
8622 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8623 		fallthrough;
8624 	case XDP_DROP:
8625 		result = IGB_XDP_CONSUMED;
8626 		break;
8627 	}
8628 xdp_out:
8629 	return ERR_PTR(-result);
8630 }
8631 
8632 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8633 					  unsigned int size)
8634 {
8635 	unsigned int truesize;
8636 
8637 #if (PAGE_SIZE < 8192)
8638 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8639 #else
8640 	truesize = ring_uses_build_skb(rx_ring) ?
8641 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8642 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8643 		SKB_DATA_ALIGN(size);
8644 #endif
8645 	return truesize;
8646 }
8647 
8648 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8649 			       struct igb_rx_buffer *rx_buffer,
8650 			       unsigned int size)
8651 {
8652 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8653 #if (PAGE_SIZE < 8192)
8654 	rx_buffer->page_offset ^= truesize;
8655 #else
8656 	rx_buffer->page_offset += truesize;
8657 #endif
8658 }
8659 
8660 static inline void igb_rx_checksum(struct igb_ring *ring,
8661 				   union e1000_adv_rx_desc *rx_desc,
8662 				   struct sk_buff *skb)
8663 {
8664 	skb_checksum_none_assert(skb);
8665 
8666 	/* Ignore Checksum bit is set */
8667 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8668 		return;
8669 
8670 	/* Rx checksum disabled via ethtool */
8671 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8672 		return;
8673 
8674 	/* TCP/UDP checksum error bit is set */
8675 	if (igb_test_staterr(rx_desc,
8676 			     E1000_RXDEXT_STATERR_TCPE |
8677 			     E1000_RXDEXT_STATERR_IPE)) {
8678 		/* work around errata with sctp packets where the TCPE aka
8679 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8680 		 * packets, (aka let the stack check the crc32c)
8681 		 */
8682 		if (!((skb->len == 60) &&
8683 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8684 			u64_stats_update_begin(&ring->rx_syncp);
8685 			ring->rx_stats.csum_err++;
8686 			u64_stats_update_end(&ring->rx_syncp);
8687 		}
8688 		/* let the stack verify checksum errors */
8689 		return;
8690 	}
8691 	/* It must be a TCP or UDP packet with a valid checksum */
8692 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8693 				      E1000_RXD_STAT_UDPCS))
8694 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8695 
8696 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8697 		le32_to_cpu(rx_desc->wb.upper.status_error));
8698 }
8699 
8700 static inline void igb_rx_hash(struct igb_ring *ring,
8701 			       union e1000_adv_rx_desc *rx_desc,
8702 			       struct sk_buff *skb)
8703 {
8704 	if (ring->netdev->features & NETIF_F_RXHASH)
8705 		skb_set_hash(skb,
8706 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8707 			     PKT_HASH_TYPE_L3);
8708 }
8709 
8710 /**
8711  *  igb_is_non_eop - process handling of non-EOP buffers
8712  *  @rx_ring: Rx ring being processed
8713  *  @rx_desc: Rx descriptor for current buffer
8714  *
8715  *  This function updates next to clean.  If the buffer is an EOP buffer
8716  *  this function exits returning false, otherwise it will place the
8717  *  sk_buff in the next buffer to be chained and return true indicating
8718  *  that this is in fact a non-EOP buffer.
8719  **/
8720 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8721 			   union e1000_adv_rx_desc *rx_desc)
8722 {
8723 	u32 ntc = rx_ring->next_to_clean + 1;
8724 
8725 	/* fetch, update, and store next to clean */
8726 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8727 	rx_ring->next_to_clean = ntc;
8728 
8729 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8730 
8731 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8732 		return false;
8733 
8734 	return true;
8735 }
8736 
8737 /**
8738  *  igb_cleanup_headers - Correct corrupted or empty headers
8739  *  @rx_ring: rx descriptor ring packet is being transacted on
8740  *  @rx_desc: pointer to the EOP Rx descriptor
8741  *  @skb: pointer to current skb being fixed
8742  *
8743  *  Address the case where we are pulling data in on pages only
8744  *  and as such no data is present in the skb header.
8745  *
8746  *  In addition if skb is not at least 60 bytes we need to pad it so that
8747  *  it is large enough to qualify as a valid Ethernet frame.
8748  *
8749  *  Returns true if an error was encountered and skb was freed.
8750  **/
8751 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8752 				union e1000_adv_rx_desc *rx_desc,
8753 				struct sk_buff *skb)
8754 {
8755 	/* XDP packets use error pointer so abort at this point */
8756 	if (IS_ERR(skb))
8757 		return true;
8758 
8759 	if (unlikely((igb_test_staterr(rx_desc,
8760 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8761 		struct net_device *netdev = rx_ring->netdev;
8762 		if (!(netdev->features & NETIF_F_RXALL)) {
8763 			dev_kfree_skb_any(skb);
8764 			return true;
8765 		}
8766 	}
8767 
8768 	/* if eth_skb_pad returns an error the skb was freed */
8769 	if (eth_skb_pad(skb))
8770 		return true;
8771 
8772 	return false;
8773 }
8774 
8775 /**
8776  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8777  *  @rx_ring: rx descriptor ring packet is being transacted on
8778  *  @rx_desc: pointer to the EOP Rx descriptor
8779  *  @skb: pointer to current skb being populated
8780  *
8781  *  This function checks the ring, descriptor, and packet information in
8782  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8783  *  other fields within the skb.
8784  **/
8785 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8786 				   union e1000_adv_rx_desc *rx_desc,
8787 				   struct sk_buff *skb)
8788 {
8789 	struct net_device *dev = rx_ring->netdev;
8790 
8791 	igb_rx_hash(rx_ring, rx_desc, skb);
8792 
8793 	igb_rx_checksum(rx_ring, rx_desc, skb);
8794 
8795 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8796 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8797 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8798 
8799 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8800 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8801 		u16 vid;
8802 
8803 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8804 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8805 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8806 		else
8807 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8808 
8809 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8810 	}
8811 
8812 	skb_record_rx_queue(skb, rx_ring->queue_index);
8813 
8814 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8815 }
8816 
8817 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8818 {
8819 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8820 }
8821 
8822 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8823 					       const unsigned int size, int *rx_buf_pgcnt)
8824 {
8825 	struct igb_rx_buffer *rx_buffer;
8826 
8827 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8828 	*rx_buf_pgcnt =
8829 #if (PAGE_SIZE < 8192)
8830 		page_count(rx_buffer->page);
8831 #else
8832 		0;
8833 #endif
8834 	prefetchw(rx_buffer->page);
8835 
8836 	/* we are reusing so sync this buffer for CPU use */
8837 	dma_sync_single_range_for_cpu(rx_ring->dev,
8838 				      rx_buffer->dma,
8839 				      rx_buffer->page_offset,
8840 				      size,
8841 				      DMA_FROM_DEVICE);
8842 
8843 	rx_buffer->pagecnt_bias--;
8844 
8845 	return rx_buffer;
8846 }
8847 
8848 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8849 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8850 {
8851 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8852 		/* hand second half of page back to the ring */
8853 		igb_reuse_rx_page(rx_ring, rx_buffer);
8854 	} else {
8855 		/* We are not reusing the buffer so unmap it and free
8856 		 * any references we are holding to it
8857 		 */
8858 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8859 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8860 				     IGB_RX_DMA_ATTR);
8861 		__page_frag_cache_drain(rx_buffer->page,
8862 					rx_buffer->pagecnt_bias);
8863 	}
8864 
8865 	/* clear contents of rx_buffer */
8866 	rx_buffer->page = NULL;
8867 }
8868 
8869 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8870 {
8871 	unsigned int total_bytes = 0, total_packets = 0;
8872 	struct igb_adapter *adapter = q_vector->adapter;
8873 	struct igb_ring *rx_ring = q_vector->rx.ring;
8874 	u16 cleaned_count = igb_desc_unused(rx_ring);
8875 	struct sk_buff *skb = rx_ring->skb;
8876 	int cpu = smp_processor_id();
8877 	unsigned int xdp_xmit = 0;
8878 	struct netdev_queue *nq;
8879 	struct xdp_buff xdp;
8880 	u32 frame_sz = 0;
8881 	int rx_buf_pgcnt;
8882 
8883 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8884 #if (PAGE_SIZE < 8192)
8885 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8886 #endif
8887 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8888 
8889 	while (likely(total_packets < budget)) {
8890 		union e1000_adv_rx_desc *rx_desc;
8891 		struct igb_rx_buffer *rx_buffer;
8892 		ktime_t timestamp = 0;
8893 		int pkt_offset = 0;
8894 		unsigned int size;
8895 		void *pktbuf;
8896 
8897 		/* return some buffers to hardware, one at a time is too slow */
8898 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8899 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8900 			cleaned_count = 0;
8901 		}
8902 
8903 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8904 		size = le16_to_cpu(rx_desc->wb.upper.length);
8905 		if (!size)
8906 			break;
8907 
8908 		/* This memory barrier is needed to keep us from reading
8909 		 * any other fields out of the rx_desc until we know the
8910 		 * descriptor has been written back
8911 		 */
8912 		dma_rmb();
8913 
8914 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8915 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8916 
8917 		/* pull rx packet timestamp if available and valid */
8918 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8919 			int ts_hdr_len;
8920 
8921 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8922 							 pktbuf, &timestamp);
8923 
8924 			pkt_offset += ts_hdr_len;
8925 			size -= ts_hdr_len;
8926 		}
8927 
8928 		/* retrieve a buffer from the ring */
8929 		if (!skb) {
8930 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8931 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8932 
8933 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8934 			xdp_buff_clear_frags_flag(&xdp);
8935 #if (PAGE_SIZE > 4096)
8936 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8937 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8938 #endif
8939 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8940 		}
8941 
8942 		if (IS_ERR(skb)) {
8943 			unsigned int xdp_res = -PTR_ERR(skb);
8944 
8945 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8946 				xdp_xmit |= xdp_res;
8947 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8948 			} else {
8949 				rx_buffer->pagecnt_bias++;
8950 			}
8951 			total_packets++;
8952 			total_bytes += size;
8953 		} else if (skb)
8954 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8955 		else if (ring_uses_build_skb(rx_ring))
8956 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8957 					    timestamp);
8958 		else
8959 			skb = igb_construct_skb(rx_ring, rx_buffer,
8960 						&xdp, timestamp);
8961 
8962 		/* exit if we failed to retrieve a buffer */
8963 		if (!skb) {
8964 			rx_ring->rx_stats.alloc_failed++;
8965 			rx_buffer->pagecnt_bias++;
8966 			break;
8967 		}
8968 
8969 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8970 		cleaned_count++;
8971 
8972 		/* fetch next buffer in frame if non-eop */
8973 		if (igb_is_non_eop(rx_ring, rx_desc))
8974 			continue;
8975 
8976 		/* verify the packet layout is correct */
8977 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8978 			skb = NULL;
8979 			continue;
8980 		}
8981 
8982 		/* probably a little skewed due to removing CRC */
8983 		total_bytes += skb->len;
8984 
8985 		/* populate checksum, timestamp, VLAN, and protocol */
8986 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8987 
8988 		napi_gro_receive(&q_vector->napi, skb);
8989 
8990 		/* reset skb pointer */
8991 		skb = NULL;
8992 
8993 		/* update budget accounting */
8994 		total_packets++;
8995 	}
8996 
8997 	/* place incomplete frames back on ring for completion */
8998 	rx_ring->skb = skb;
8999 
9000 	if (xdp_xmit & IGB_XDP_REDIR)
9001 		xdp_do_flush();
9002 
9003 	if (xdp_xmit & IGB_XDP_TX) {
9004 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9005 
9006 		nq = txring_txq(tx_ring);
9007 		__netif_tx_lock(nq, cpu);
9008 		igb_xdp_ring_update_tail(tx_ring);
9009 		__netif_tx_unlock(nq);
9010 	}
9011 
9012 	u64_stats_update_begin(&rx_ring->rx_syncp);
9013 	rx_ring->rx_stats.packets += total_packets;
9014 	rx_ring->rx_stats.bytes += total_bytes;
9015 	u64_stats_update_end(&rx_ring->rx_syncp);
9016 	q_vector->rx.total_packets += total_packets;
9017 	q_vector->rx.total_bytes += total_bytes;
9018 
9019 	if (cleaned_count)
9020 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9021 
9022 	return total_packets;
9023 }
9024 
9025 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9026 				  struct igb_rx_buffer *bi)
9027 {
9028 	struct page *page = bi->page;
9029 	dma_addr_t dma;
9030 
9031 	/* since we are recycling buffers we should seldom need to alloc */
9032 	if (likely(page))
9033 		return true;
9034 
9035 	/* alloc new page for storage */
9036 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9037 	if (unlikely(!page)) {
9038 		rx_ring->rx_stats.alloc_failed++;
9039 		return false;
9040 	}
9041 
9042 	/* map page for use */
9043 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9044 				 igb_rx_pg_size(rx_ring),
9045 				 DMA_FROM_DEVICE,
9046 				 IGB_RX_DMA_ATTR);
9047 
9048 	/* if mapping failed free memory back to system since
9049 	 * there isn't much point in holding memory we can't use
9050 	 */
9051 	if (dma_mapping_error(rx_ring->dev, dma)) {
9052 		__free_pages(page, igb_rx_pg_order(rx_ring));
9053 
9054 		rx_ring->rx_stats.alloc_failed++;
9055 		return false;
9056 	}
9057 
9058 	bi->dma = dma;
9059 	bi->page = page;
9060 	bi->page_offset = igb_rx_offset(rx_ring);
9061 	page_ref_add(page, USHRT_MAX - 1);
9062 	bi->pagecnt_bias = USHRT_MAX;
9063 
9064 	return true;
9065 }
9066 
9067 /**
9068  *  igb_alloc_rx_buffers - Replace used receive buffers
9069  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9070  *  @cleaned_count: count of buffers to allocate
9071  **/
9072 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9073 {
9074 	union e1000_adv_rx_desc *rx_desc;
9075 	struct igb_rx_buffer *bi;
9076 	u16 i = rx_ring->next_to_use;
9077 	u16 bufsz;
9078 
9079 	/* nothing to do */
9080 	if (!cleaned_count)
9081 		return;
9082 
9083 	rx_desc = IGB_RX_DESC(rx_ring, i);
9084 	bi = &rx_ring->rx_buffer_info[i];
9085 	i -= rx_ring->count;
9086 
9087 	bufsz = igb_rx_bufsz(rx_ring);
9088 
9089 	do {
9090 		if (!igb_alloc_mapped_page(rx_ring, bi))
9091 			break;
9092 
9093 		/* sync the buffer for use by the device */
9094 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9095 						 bi->page_offset, bufsz,
9096 						 DMA_FROM_DEVICE);
9097 
9098 		/* Refresh the desc even if buffer_addrs didn't change
9099 		 * because each write-back erases this info.
9100 		 */
9101 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9102 
9103 		rx_desc++;
9104 		bi++;
9105 		i++;
9106 		if (unlikely(!i)) {
9107 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9108 			bi = rx_ring->rx_buffer_info;
9109 			i -= rx_ring->count;
9110 		}
9111 
9112 		/* clear the length for the next_to_use descriptor */
9113 		rx_desc->wb.upper.length = 0;
9114 
9115 		cleaned_count--;
9116 	} while (cleaned_count);
9117 
9118 	i += rx_ring->count;
9119 
9120 	if (rx_ring->next_to_use != i) {
9121 		/* record the next descriptor to use */
9122 		rx_ring->next_to_use = i;
9123 
9124 		/* update next to alloc since we have filled the ring */
9125 		rx_ring->next_to_alloc = i;
9126 
9127 		/* Force memory writes to complete before letting h/w
9128 		 * know there are new descriptors to fetch.  (Only
9129 		 * applicable for weak-ordered memory model archs,
9130 		 * such as IA-64).
9131 		 */
9132 		dma_wmb();
9133 		writel(i, rx_ring->tail);
9134 	}
9135 }
9136 
9137 /**
9138  * igb_mii_ioctl -
9139  * @netdev: pointer to netdev struct
9140  * @ifr: interface structure
9141  * @cmd: ioctl command to execute
9142  **/
9143 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9144 {
9145 	struct igb_adapter *adapter = netdev_priv(netdev);
9146 	struct mii_ioctl_data *data = if_mii(ifr);
9147 
9148 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9149 		return -EOPNOTSUPP;
9150 
9151 	switch (cmd) {
9152 	case SIOCGMIIPHY:
9153 		data->phy_id = adapter->hw.phy.addr;
9154 		break;
9155 	case SIOCGMIIREG:
9156 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9157 				     &data->val_out))
9158 			return -EIO;
9159 		break;
9160 	case SIOCSMIIREG:
9161 		if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9162 				      data->val_in))
9163 			return -EIO;
9164 		break;
9165 	default:
9166 		return -EOPNOTSUPP;
9167 	}
9168 	return 0;
9169 }
9170 
9171 /**
9172  * igb_ioctl -
9173  * @netdev: pointer to netdev struct
9174  * @ifr: interface structure
9175  * @cmd: ioctl command to execute
9176  **/
9177 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9178 {
9179 	switch (cmd) {
9180 	case SIOCGMIIPHY:
9181 	case SIOCGMIIREG:
9182 	case SIOCSMIIREG:
9183 		return igb_mii_ioctl(netdev, ifr, cmd);
9184 	case SIOCGHWTSTAMP:
9185 		return igb_ptp_get_ts_config(netdev, ifr);
9186 	case SIOCSHWTSTAMP:
9187 		return igb_ptp_set_ts_config(netdev, ifr);
9188 	default:
9189 		return -EOPNOTSUPP;
9190 	}
9191 }
9192 
9193 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9194 {
9195 	struct igb_adapter *adapter = hw->back;
9196 
9197 	pci_read_config_word(adapter->pdev, reg, value);
9198 }
9199 
9200 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9201 {
9202 	struct igb_adapter *adapter = hw->back;
9203 
9204 	pci_write_config_word(adapter->pdev, reg, *value);
9205 }
9206 
9207 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9208 {
9209 	struct igb_adapter *adapter = hw->back;
9210 
9211 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9212 		return -E1000_ERR_CONFIG;
9213 
9214 	return 0;
9215 }
9216 
9217 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9218 {
9219 	struct igb_adapter *adapter = hw->back;
9220 
9221 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9222 		return -E1000_ERR_CONFIG;
9223 
9224 	return 0;
9225 }
9226 
9227 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9228 {
9229 	struct igb_adapter *adapter = netdev_priv(netdev);
9230 	struct e1000_hw *hw = &adapter->hw;
9231 	u32 ctrl, rctl;
9232 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9233 
9234 	if (enable) {
9235 		/* enable VLAN tag insert/strip */
9236 		ctrl = rd32(E1000_CTRL);
9237 		ctrl |= E1000_CTRL_VME;
9238 		wr32(E1000_CTRL, ctrl);
9239 
9240 		/* Disable CFI check */
9241 		rctl = rd32(E1000_RCTL);
9242 		rctl &= ~E1000_RCTL_CFIEN;
9243 		wr32(E1000_RCTL, rctl);
9244 	} else {
9245 		/* disable VLAN tag insert/strip */
9246 		ctrl = rd32(E1000_CTRL);
9247 		ctrl &= ~E1000_CTRL_VME;
9248 		wr32(E1000_CTRL, ctrl);
9249 	}
9250 
9251 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9252 }
9253 
9254 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9255 			       __be16 proto, u16 vid)
9256 {
9257 	struct igb_adapter *adapter = netdev_priv(netdev);
9258 	struct e1000_hw *hw = &adapter->hw;
9259 	int pf_id = adapter->vfs_allocated_count;
9260 
9261 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9262 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9263 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9264 
9265 	set_bit(vid, adapter->active_vlans);
9266 
9267 	return 0;
9268 }
9269 
9270 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9271 				__be16 proto, u16 vid)
9272 {
9273 	struct igb_adapter *adapter = netdev_priv(netdev);
9274 	int pf_id = adapter->vfs_allocated_count;
9275 	struct e1000_hw *hw = &adapter->hw;
9276 
9277 	/* remove VID from filter table */
9278 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9279 		igb_vfta_set(hw, vid, pf_id, false, true);
9280 
9281 	clear_bit(vid, adapter->active_vlans);
9282 
9283 	return 0;
9284 }
9285 
9286 static void igb_restore_vlan(struct igb_adapter *adapter)
9287 {
9288 	u16 vid = 1;
9289 
9290 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9291 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9292 
9293 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9294 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9295 }
9296 
9297 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9298 {
9299 	struct pci_dev *pdev = adapter->pdev;
9300 	struct e1000_mac_info *mac = &adapter->hw.mac;
9301 
9302 	mac->autoneg = 0;
9303 
9304 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9305 	 * for the switch() below to work
9306 	 */
9307 	if ((spd & 1) || (dplx & ~1))
9308 		goto err_inval;
9309 
9310 	/* Fiber NIC's only allow 1000 gbps Full duplex
9311 	 * and 100Mbps Full duplex for 100baseFx sfp
9312 	 */
9313 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9314 		switch (spd + dplx) {
9315 		case SPEED_10 + DUPLEX_HALF:
9316 		case SPEED_10 + DUPLEX_FULL:
9317 		case SPEED_100 + DUPLEX_HALF:
9318 			goto err_inval;
9319 		default:
9320 			break;
9321 		}
9322 	}
9323 
9324 	switch (spd + dplx) {
9325 	case SPEED_10 + DUPLEX_HALF:
9326 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9327 		break;
9328 	case SPEED_10 + DUPLEX_FULL:
9329 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9330 		break;
9331 	case SPEED_100 + DUPLEX_HALF:
9332 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9333 		break;
9334 	case SPEED_100 + DUPLEX_FULL:
9335 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9336 		break;
9337 	case SPEED_1000 + DUPLEX_FULL:
9338 		mac->autoneg = 1;
9339 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9340 		break;
9341 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9342 	default:
9343 		goto err_inval;
9344 	}
9345 
9346 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9347 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9348 
9349 	return 0;
9350 
9351 err_inval:
9352 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9353 	return -EINVAL;
9354 }
9355 
9356 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9357 			  bool runtime)
9358 {
9359 	struct net_device *netdev = pci_get_drvdata(pdev);
9360 	struct igb_adapter *adapter = netdev_priv(netdev);
9361 	struct e1000_hw *hw = &adapter->hw;
9362 	u32 ctrl, rctl, status;
9363 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9364 	bool wake;
9365 
9366 	rtnl_lock();
9367 	netif_device_detach(netdev);
9368 
9369 	if (netif_running(netdev))
9370 		__igb_close(netdev, true);
9371 
9372 	igb_ptp_suspend(adapter);
9373 
9374 	igb_clear_interrupt_scheme(adapter);
9375 	rtnl_unlock();
9376 
9377 	status = rd32(E1000_STATUS);
9378 	if (status & E1000_STATUS_LU)
9379 		wufc &= ~E1000_WUFC_LNKC;
9380 
9381 	if (wufc) {
9382 		igb_setup_rctl(adapter);
9383 		igb_set_rx_mode(netdev);
9384 
9385 		/* turn on all-multi mode if wake on multicast is enabled */
9386 		if (wufc & E1000_WUFC_MC) {
9387 			rctl = rd32(E1000_RCTL);
9388 			rctl |= E1000_RCTL_MPE;
9389 			wr32(E1000_RCTL, rctl);
9390 		}
9391 
9392 		ctrl = rd32(E1000_CTRL);
9393 		ctrl |= E1000_CTRL_ADVD3WUC;
9394 		wr32(E1000_CTRL, ctrl);
9395 
9396 		/* Allow time for pending master requests to run */
9397 		igb_disable_pcie_master(hw);
9398 
9399 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9400 		wr32(E1000_WUFC, wufc);
9401 	} else {
9402 		wr32(E1000_WUC, 0);
9403 		wr32(E1000_WUFC, 0);
9404 	}
9405 
9406 	wake = wufc || adapter->en_mng_pt;
9407 	if (!wake)
9408 		igb_power_down_link(adapter);
9409 	else
9410 		igb_power_up_link(adapter);
9411 
9412 	if (enable_wake)
9413 		*enable_wake = wake;
9414 
9415 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9416 	 * would have already happened in close and is redundant.
9417 	 */
9418 	igb_release_hw_control(adapter);
9419 
9420 	pci_disable_device(pdev);
9421 
9422 	return 0;
9423 }
9424 
9425 static void igb_deliver_wake_packet(struct net_device *netdev)
9426 {
9427 	struct igb_adapter *adapter = netdev_priv(netdev);
9428 	struct e1000_hw *hw = &adapter->hw;
9429 	struct sk_buff *skb;
9430 	u32 wupl;
9431 
9432 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9433 
9434 	/* WUPM stores only the first 128 bytes of the wake packet.
9435 	 * Read the packet only if we have the whole thing.
9436 	 */
9437 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9438 		return;
9439 
9440 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9441 	if (!skb)
9442 		return;
9443 
9444 	skb_put(skb, wupl);
9445 
9446 	/* Ensure reads are 32-bit aligned */
9447 	wupl = roundup(wupl, 4);
9448 
9449 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9450 
9451 	skb->protocol = eth_type_trans(skb, netdev);
9452 	netif_rx(skb);
9453 }
9454 
9455 static int igb_suspend(struct device *dev)
9456 {
9457 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9458 }
9459 
9460 static int __igb_resume(struct device *dev, bool rpm)
9461 {
9462 	struct pci_dev *pdev = to_pci_dev(dev);
9463 	struct net_device *netdev = pci_get_drvdata(pdev);
9464 	struct igb_adapter *adapter = netdev_priv(netdev);
9465 	struct e1000_hw *hw = &adapter->hw;
9466 	u32 err, val;
9467 
9468 	pci_set_power_state(pdev, PCI_D0);
9469 	pci_restore_state(pdev);
9470 	pci_save_state(pdev);
9471 
9472 	if (!pci_device_is_present(pdev))
9473 		return -ENODEV;
9474 	err = pci_enable_device_mem(pdev);
9475 	if (err) {
9476 		dev_err(&pdev->dev,
9477 			"igb: Cannot enable PCI device from suspend\n");
9478 		return err;
9479 	}
9480 	pci_set_master(pdev);
9481 
9482 	pci_enable_wake(pdev, PCI_D3hot, 0);
9483 	pci_enable_wake(pdev, PCI_D3cold, 0);
9484 
9485 	if (igb_init_interrupt_scheme(adapter, true)) {
9486 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9487 		return -ENOMEM;
9488 	}
9489 
9490 	igb_reset(adapter);
9491 
9492 	/* let the f/w know that the h/w is now under the control of the
9493 	 * driver.
9494 	 */
9495 	igb_get_hw_control(adapter);
9496 
9497 	val = rd32(E1000_WUS);
9498 	if (val & WAKE_PKT_WUS)
9499 		igb_deliver_wake_packet(netdev);
9500 
9501 	wr32(E1000_WUS, ~0);
9502 
9503 	if (!rpm)
9504 		rtnl_lock();
9505 	if (!err && netif_running(netdev))
9506 		err = __igb_open(netdev, true);
9507 
9508 	if (!err)
9509 		netif_device_attach(netdev);
9510 	if (!rpm)
9511 		rtnl_unlock();
9512 
9513 	return err;
9514 }
9515 
9516 static int igb_resume(struct device *dev)
9517 {
9518 	return __igb_resume(dev, false);
9519 }
9520 
9521 static int igb_runtime_idle(struct device *dev)
9522 {
9523 	struct net_device *netdev = dev_get_drvdata(dev);
9524 	struct igb_adapter *adapter = netdev_priv(netdev);
9525 
9526 	if (!igb_has_link(adapter))
9527 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9528 
9529 	return -EBUSY;
9530 }
9531 
9532 static int igb_runtime_suspend(struct device *dev)
9533 {
9534 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9535 }
9536 
9537 static int igb_runtime_resume(struct device *dev)
9538 {
9539 	return __igb_resume(dev, true);
9540 }
9541 
9542 static void igb_shutdown(struct pci_dev *pdev)
9543 {
9544 	bool wake;
9545 
9546 	__igb_shutdown(pdev, &wake, 0);
9547 
9548 	if (system_state == SYSTEM_POWER_OFF) {
9549 		pci_wake_from_d3(pdev, wake);
9550 		pci_set_power_state(pdev, PCI_D3hot);
9551 	}
9552 }
9553 
9554 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9555 {
9556 #ifdef CONFIG_PCI_IOV
9557 	int err;
9558 
9559 	if (num_vfs == 0) {
9560 		return igb_disable_sriov(dev, true);
9561 	} else {
9562 		err = igb_enable_sriov(dev, num_vfs, true);
9563 		return err ? err : num_vfs;
9564 	}
9565 #endif
9566 	return 0;
9567 }
9568 
9569 /**
9570  *  igb_io_error_detected - called when PCI error is detected
9571  *  @pdev: Pointer to PCI device
9572  *  @state: The current pci connection state
9573  *
9574  *  This function is called after a PCI bus error affecting
9575  *  this device has been detected.
9576  **/
9577 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9578 					      pci_channel_state_t state)
9579 {
9580 	struct net_device *netdev = pci_get_drvdata(pdev);
9581 	struct igb_adapter *adapter = netdev_priv(netdev);
9582 
9583 	if (state == pci_channel_io_normal) {
9584 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9585 		return PCI_ERS_RESULT_CAN_RECOVER;
9586 	}
9587 
9588 	netif_device_detach(netdev);
9589 
9590 	if (state == pci_channel_io_perm_failure)
9591 		return PCI_ERS_RESULT_DISCONNECT;
9592 
9593 	if (netif_running(netdev))
9594 		igb_down(adapter);
9595 	pci_disable_device(pdev);
9596 
9597 	/* Request a slot reset. */
9598 	return PCI_ERS_RESULT_NEED_RESET;
9599 }
9600 
9601 /**
9602  *  igb_io_slot_reset - called after the pci bus has been reset.
9603  *  @pdev: Pointer to PCI device
9604  *
9605  *  Restart the card from scratch, as if from a cold-boot. Implementation
9606  *  resembles the first-half of the __igb_resume routine.
9607  **/
9608 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9609 {
9610 	struct net_device *netdev = pci_get_drvdata(pdev);
9611 	struct igb_adapter *adapter = netdev_priv(netdev);
9612 	struct e1000_hw *hw = &adapter->hw;
9613 	pci_ers_result_t result;
9614 
9615 	if (pci_enable_device_mem(pdev)) {
9616 		dev_err(&pdev->dev,
9617 			"Cannot re-enable PCI device after reset.\n");
9618 		result = PCI_ERS_RESULT_DISCONNECT;
9619 	} else {
9620 		pci_set_master(pdev);
9621 		pci_restore_state(pdev);
9622 		pci_save_state(pdev);
9623 
9624 		pci_enable_wake(pdev, PCI_D3hot, 0);
9625 		pci_enable_wake(pdev, PCI_D3cold, 0);
9626 
9627 		/* In case of PCI error, adapter lose its HW address
9628 		 * so we should re-assign it here.
9629 		 */
9630 		hw->hw_addr = adapter->io_addr;
9631 
9632 		igb_reset(adapter);
9633 		wr32(E1000_WUS, ~0);
9634 		result = PCI_ERS_RESULT_RECOVERED;
9635 	}
9636 
9637 	return result;
9638 }
9639 
9640 /**
9641  *  igb_io_resume - called when traffic can start flowing again.
9642  *  @pdev: Pointer to PCI device
9643  *
9644  *  This callback is called when the error recovery driver tells us that
9645  *  its OK to resume normal operation. Implementation resembles the
9646  *  second-half of the __igb_resume routine.
9647  */
9648 static void igb_io_resume(struct pci_dev *pdev)
9649 {
9650 	struct net_device *netdev = pci_get_drvdata(pdev);
9651 	struct igb_adapter *adapter = netdev_priv(netdev);
9652 
9653 	if (netif_running(netdev)) {
9654 		if (igb_up(adapter)) {
9655 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9656 			return;
9657 		}
9658 	}
9659 
9660 	netif_device_attach(netdev);
9661 
9662 	/* let the f/w know that the h/w is now under the control of the
9663 	 * driver.
9664 	 */
9665 	igb_get_hw_control(adapter);
9666 }
9667 
9668 /**
9669  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9670  *  @adapter: Pointer to adapter structure
9671  *  @index: Index of the RAR entry which need to be synced with MAC table
9672  **/
9673 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9674 {
9675 	struct e1000_hw *hw = &adapter->hw;
9676 	u32 rar_low, rar_high;
9677 	u8 *addr = adapter->mac_table[index].addr;
9678 
9679 	/* HW expects these to be in network order when they are plugged
9680 	 * into the registers which are little endian.  In order to guarantee
9681 	 * that ordering we need to do an leXX_to_cpup here in order to be
9682 	 * ready for the byteswap that occurs with writel
9683 	 */
9684 	rar_low = le32_to_cpup((__le32 *)(addr));
9685 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9686 
9687 	/* Indicate to hardware the Address is Valid. */
9688 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9689 		if (is_valid_ether_addr(addr))
9690 			rar_high |= E1000_RAH_AV;
9691 
9692 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9693 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9694 
9695 		switch (hw->mac.type) {
9696 		case e1000_82575:
9697 		case e1000_i210:
9698 			if (adapter->mac_table[index].state &
9699 			    IGB_MAC_STATE_QUEUE_STEERING)
9700 				rar_high |= E1000_RAH_QSEL_ENABLE;
9701 
9702 			rar_high |= E1000_RAH_POOL_1 *
9703 				    adapter->mac_table[index].queue;
9704 			break;
9705 		default:
9706 			rar_high |= E1000_RAH_POOL_1 <<
9707 				    adapter->mac_table[index].queue;
9708 			break;
9709 		}
9710 	}
9711 
9712 	wr32(E1000_RAL(index), rar_low);
9713 	wrfl();
9714 	wr32(E1000_RAH(index), rar_high);
9715 	wrfl();
9716 }
9717 
9718 static int igb_set_vf_mac(struct igb_adapter *adapter,
9719 			  int vf, unsigned char *mac_addr)
9720 {
9721 	struct e1000_hw *hw = &adapter->hw;
9722 	/* VF MAC addresses start at end of receive addresses and moves
9723 	 * towards the first, as a result a collision should not be possible
9724 	 */
9725 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9726 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9727 
9728 	ether_addr_copy(vf_mac_addr, mac_addr);
9729 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9730 	adapter->mac_table[rar_entry].queue = vf;
9731 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9732 	igb_rar_set_index(adapter, rar_entry);
9733 
9734 	return 0;
9735 }
9736 
9737 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9738 {
9739 	struct igb_adapter *adapter = netdev_priv(netdev);
9740 
9741 	if (vf >= adapter->vfs_allocated_count)
9742 		return -EINVAL;
9743 
9744 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9745 	 * flag and allows to overwrite the MAC via VF netdev.  This
9746 	 * is necessary to allow libvirt a way to restore the original
9747 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9748 	 * down a VM.
9749 	 */
9750 	if (is_zero_ether_addr(mac)) {
9751 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9752 		dev_info(&adapter->pdev->dev,
9753 			 "remove administratively set MAC on VF %d\n",
9754 			 vf);
9755 	} else if (is_valid_ether_addr(mac)) {
9756 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9757 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9758 			 mac, vf);
9759 		dev_info(&adapter->pdev->dev,
9760 			 "Reload the VF driver to make this change effective.");
9761 		/* Generate additional warning if PF is down */
9762 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9763 			dev_warn(&adapter->pdev->dev,
9764 				 "The VF MAC address has been set, but the PF device is not up.\n");
9765 			dev_warn(&adapter->pdev->dev,
9766 				 "Bring the PF device up before attempting to use the VF device.\n");
9767 		}
9768 	} else {
9769 		return -EINVAL;
9770 	}
9771 	return igb_set_vf_mac(adapter, vf, mac);
9772 }
9773 
9774 static int igb_link_mbps(int internal_link_speed)
9775 {
9776 	switch (internal_link_speed) {
9777 	case SPEED_100:
9778 		return 100;
9779 	case SPEED_1000:
9780 		return 1000;
9781 	default:
9782 		return 0;
9783 	}
9784 }
9785 
9786 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9787 				  int link_speed)
9788 {
9789 	int rf_dec, rf_int;
9790 	u32 bcnrc_val;
9791 
9792 	if (tx_rate != 0) {
9793 		/* Calculate the rate factor values to set */
9794 		rf_int = link_speed / tx_rate;
9795 		rf_dec = (link_speed - (rf_int * tx_rate));
9796 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9797 			 tx_rate;
9798 
9799 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9800 		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9801 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9802 	} else {
9803 		bcnrc_val = 0;
9804 	}
9805 
9806 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9807 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9808 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9809 	 */
9810 	wr32(E1000_RTTBCNRM, 0x14);
9811 	wr32(E1000_RTTBCNRC, bcnrc_val);
9812 }
9813 
9814 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9815 {
9816 	int actual_link_speed, i;
9817 	bool reset_rate = false;
9818 
9819 	/* VF TX rate limit was not set or not supported */
9820 	if ((adapter->vf_rate_link_speed == 0) ||
9821 	    (adapter->hw.mac.type != e1000_82576))
9822 		return;
9823 
9824 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9825 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9826 		reset_rate = true;
9827 		adapter->vf_rate_link_speed = 0;
9828 		dev_info(&adapter->pdev->dev,
9829 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9830 	}
9831 
9832 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9833 		if (reset_rate)
9834 			adapter->vf_data[i].tx_rate = 0;
9835 
9836 		igb_set_vf_rate_limit(&adapter->hw, i,
9837 				      adapter->vf_data[i].tx_rate,
9838 				      actual_link_speed);
9839 	}
9840 }
9841 
9842 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9843 			     int min_tx_rate, int max_tx_rate)
9844 {
9845 	struct igb_adapter *adapter = netdev_priv(netdev);
9846 	struct e1000_hw *hw = &adapter->hw;
9847 	int actual_link_speed;
9848 
9849 	if (hw->mac.type != e1000_82576)
9850 		return -EOPNOTSUPP;
9851 
9852 	if (min_tx_rate)
9853 		return -EINVAL;
9854 
9855 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9856 	if ((vf >= adapter->vfs_allocated_count) ||
9857 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9858 	    (max_tx_rate < 0) ||
9859 	    (max_tx_rate > actual_link_speed))
9860 		return -EINVAL;
9861 
9862 	adapter->vf_rate_link_speed = actual_link_speed;
9863 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9864 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9865 
9866 	return 0;
9867 }
9868 
9869 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9870 				   bool setting)
9871 {
9872 	struct igb_adapter *adapter = netdev_priv(netdev);
9873 	struct e1000_hw *hw = &adapter->hw;
9874 	u32 reg_val, reg_offset;
9875 
9876 	if (!adapter->vfs_allocated_count)
9877 		return -EOPNOTSUPP;
9878 
9879 	if (vf >= adapter->vfs_allocated_count)
9880 		return -EINVAL;
9881 
9882 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9883 	reg_val = rd32(reg_offset);
9884 	if (setting)
9885 		reg_val |= (BIT(vf) |
9886 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9887 	else
9888 		reg_val &= ~(BIT(vf) |
9889 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9890 	wr32(reg_offset, reg_val);
9891 
9892 	adapter->vf_data[vf].spoofchk_enabled = setting;
9893 	return 0;
9894 }
9895 
9896 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9897 {
9898 	struct igb_adapter *adapter = netdev_priv(netdev);
9899 
9900 	if (vf >= adapter->vfs_allocated_count)
9901 		return -EINVAL;
9902 	if (adapter->vf_data[vf].trusted == setting)
9903 		return 0;
9904 
9905 	adapter->vf_data[vf].trusted = setting;
9906 
9907 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9908 		 vf, setting ? "" : "not ");
9909 	return 0;
9910 }
9911 
9912 static int igb_ndo_get_vf_config(struct net_device *netdev,
9913 				 int vf, struct ifla_vf_info *ivi)
9914 {
9915 	struct igb_adapter *adapter = netdev_priv(netdev);
9916 	if (vf >= adapter->vfs_allocated_count)
9917 		return -EINVAL;
9918 	ivi->vf = vf;
9919 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9920 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9921 	ivi->min_tx_rate = 0;
9922 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9923 	ivi->qos = adapter->vf_data[vf].pf_qos;
9924 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9925 	ivi->trusted = adapter->vf_data[vf].trusted;
9926 	return 0;
9927 }
9928 
9929 static void igb_vmm_control(struct igb_adapter *adapter)
9930 {
9931 	struct e1000_hw *hw = &adapter->hw;
9932 	u32 reg;
9933 
9934 	switch (hw->mac.type) {
9935 	case e1000_82575:
9936 	case e1000_i210:
9937 	case e1000_i211:
9938 	case e1000_i354:
9939 	default:
9940 		/* replication is not supported for 82575 */
9941 		return;
9942 	case e1000_82576:
9943 		/* notify HW that the MAC is adding vlan tags */
9944 		reg = rd32(E1000_DTXCTL);
9945 		reg |= E1000_DTXCTL_VLAN_ADDED;
9946 		wr32(E1000_DTXCTL, reg);
9947 		fallthrough;
9948 	case e1000_82580:
9949 		/* enable replication vlan tag stripping */
9950 		reg = rd32(E1000_RPLOLR);
9951 		reg |= E1000_RPLOLR_STRVLAN;
9952 		wr32(E1000_RPLOLR, reg);
9953 		fallthrough;
9954 	case e1000_i350:
9955 		/* none of the above registers are supported by i350 */
9956 		break;
9957 	}
9958 
9959 	if (adapter->vfs_allocated_count) {
9960 		igb_vmdq_set_loopback_pf(hw, true);
9961 		igb_vmdq_set_replication_pf(hw, true);
9962 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9963 					      adapter->vfs_allocated_count);
9964 	} else {
9965 		igb_vmdq_set_loopback_pf(hw, false);
9966 		igb_vmdq_set_replication_pf(hw, false);
9967 	}
9968 }
9969 
9970 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9971 {
9972 	struct e1000_hw *hw = &adapter->hw;
9973 	u32 dmac_thr;
9974 	u16 hwm;
9975 	u32 reg;
9976 
9977 	if (hw->mac.type > e1000_82580) {
9978 		if (adapter->flags & IGB_FLAG_DMAC) {
9979 			/* force threshold to 0. */
9980 			wr32(E1000_DMCTXTH, 0);
9981 
9982 			/* DMA Coalescing high water mark needs to be greater
9983 			 * than the Rx threshold. Set hwm to PBA - max frame
9984 			 * size in 16B units, capping it at PBA - 6KB.
9985 			 */
9986 			hwm = 64 * (pba - 6);
9987 			reg = rd32(E1000_FCRTC);
9988 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9989 			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
9990 			wr32(E1000_FCRTC, reg);
9991 
9992 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9993 			 * frame size, capping it at PBA - 10KB.
9994 			 */
9995 			dmac_thr = pba - 10;
9996 			reg = rd32(E1000_DMACR);
9997 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9998 			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
9999 
10000 			/* transition to L0x or L1 if available..*/
10001 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10002 
10003 			/* watchdog timer= +-1000 usec in 32usec intervals */
10004 			reg |= (1000 >> 5);
10005 
10006 			/* Disable BMC-to-OS Watchdog Enable */
10007 			if (hw->mac.type != e1000_i354)
10008 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10009 			wr32(E1000_DMACR, reg);
10010 
10011 			/* no lower threshold to disable
10012 			 * coalescing(smart fifb)-UTRESH=0
10013 			 */
10014 			wr32(E1000_DMCRTRH, 0);
10015 
10016 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10017 
10018 			wr32(E1000_DMCTLX, reg);
10019 
10020 			/* free space in tx packet buffer to wake from
10021 			 * DMA coal
10022 			 */
10023 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10024 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10025 		}
10026 
10027 		if (hw->mac.type >= e1000_i210 ||
10028 		    (adapter->flags & IGB_FLAG_DMAC)) {
10029 			reg = rd32(E1000_PCIEMISC);
10030 			reg |= E1000_PCIEMISC_LX_DECISION;
10031 			wr32(E1000_PCIEMISC, reg);
10032 		} /* endif adapter->dmac is not disabled */
10033 	} else if (hw->mac.type == e1000_82580) {
10034 		u32 reg = rd32(E1000_PCIEMISC);
10035 
10036 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10037 		wr32(E1000_DMACR, 0);
10038 	}
10039 }
10040 
10041 /**
10042  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10043  *  @hw: pointer to hardware structure
10044  *  @byte_offset: byte offset to read
10045  *  @dev_addr: device address
10046  *  @data: value read
10047  *
10048  *  Performs byte read operation over I2C interface at
10049  *  a specified device address.
10050  **/
10051 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10052 		      u8 dev_addr, u8 *data)
10053 {
10054 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10055 	struct i2c_client *this_client = adapter->i2c_client;
10056 	s32 status;
10057 	u16 swfw_mask = 0;
10058 
10059 	if (!this_client)
10060 		return E1000_ERR_I2C;
10061 
10062 	swfw_mask = E1000_SWFW_PHY0_SM;
10063 
10064 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10065 		return E1000_ERR_SWFW_SYNC;
10066 
10067 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10068 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10069 
10070 	if (status < 0)
10071 		return E1000_ERR_I2C;
10072 	else {
10073 		*data = status;
10074 		return 0;
10075 	}
10076 }
10077 
10078 /**
10079  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10080  *  @hw: pointer to hardware structure
10081  *  @byte_offset: byte offset to write
10082  *  @dev_addr: device address
10083  *  @data: value to write
10084  *
10085  *  Performs byte write operation over I2C interface at
10086  *  a specified device address.
10087  **/
10088 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10089 		       u8 dev_addr, u8 data)
10090 {
10091 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10092 	struct i2c_client *this_client = adapter->i2c_client;
10093 	s32 status;
10094 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10095 
10096 	if (!this_client)
10097 		return E1000_ERR_I2C;
10098 
10099 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10100 		return E1000_ERR_SWFW_SYNC;
10101 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10102 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10103 
10104 	if (status)
10105 		return E1000_ERR_I2C;
10106 	else
10107 		return 0;
10108 
10109 }
10110 
10111 int igb_reinit_queues(struct igb_adapter *adapter)
10112 {
10113 	struct net_device *netdev = adapter->netdev;
10114 	struct pci_dev *pdev = adapter->pdev;
10115 	int err = 0;
10116 
10117 	if (netif_running(netdev))
10118 		igb_close(netdev);
10119 
10120 	igb_reset_interrupt_capability(adapter);
10121 
10122 	if (igb_init_interrupt_scheme(adapter, true)) {
10123 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10124 		return -ENOMEM;
10125 	}
10126 
10127 	if (netif_running(netdev))
10128 		err = igb_open(netdev);
10129 
10130 	return err;
10131 }
10132 
10133 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10134 {
10135 	struct igb_nfc_filter *rule;
10136 
10137 	spin_lock(&adapter->nfc_lock);
10138 
10139 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10140 		igb_erase_filter(adapter, rule);
10141 
10142 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10143 		igb_erase_filter(adapter, rule);
10144 
10145 	spin_unlock(&adapter->nfc_lock);
10146 }
10147 
10148 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10149 {
10150 	struct igb_nfc_filter *rule;
10151 
10152 	spin_lock(&adapter->nfc_lock);
10153 
10154 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10155 		igb_add_filter(adapter, rule);
10156 
10157 	spin_unlock(&adapter->nfc_lock);
10158 }
10159 
10160 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10161 			  igb_runtime_suspend, igb_runtime_resume,
10162 			  igb_runtime_idle);
10163 
10164 static struct pci_driver igb_driver = {
10165 	.name     = igb_driver_name,
10166 	.id_table = igb_pci_tbl,
10167 	.probe    = igb_probe,
10168 	.remove   = igb_remove,
10169 	.driver.pm = pm_ptr(&igb_pm_ops),
10170 	.shutdown = igb_shutdown,
10171 	.sriov_configure = igb_pci_sriov_configure,
10172 	.err_handler = &igb_err_handler
10173 };
10174 
10175 /* igb_main.c */
10176