xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 436396f26d502ada54281958db0a9f6fc12ff256)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_TDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { __le64 a; __le64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state) {
581 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 	} else {
583 		i2cctl &= ~E1000_I2C_DATA_OE_N;
584 		i2cctl &= ~E1000_I2C_DATA_OUT;
585 	}
586 
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 }
590 
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state) {
605 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 	} else {
607 		i2cctl &= ~E1000_I2C_CLK_OUT;
608 		i2cctl &= ~E1000_I2C_CLK_OE_N;
609 	}
610 	wr32(E1000_I2CPARAMS, i2cctl);
611 	wrfl();
612 }
613 
614 /**
615  *  igb_get_i2c_clk - Gets the I2C SCL clock state
616  *  @data: pointer to hardware structure
617  *
618  *  Gets the I2C clock state
619  **/
620 static int igb_get_i2c_clk(void *data)
621 {
622 	struct igb_adapter *adapter = (struct igb_adapter *)data;
623 	struct e1000_hw *hw = &adapter->hw;
624 	s32 i2cctl = rd32(E1000_I2CPARAMS);
625 
626 	return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628 
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 	.setsda		= igb_set_i2c_data,
631 	.setscl		= igb_set_i2c_clk,
632 	.getsda		= igb_get_i2c_data,
633 	.getscl		= igb_get_i2c_clk,
634 	.udelay		= 5,
635 	.timeout	= 20,
636 };
637 
638 /**
639  *  igb_get_hw_dev - return device
640  *  @hw: pointer to hardware structure
641  *
642  *  used by hardware layer to print debugging information
643  **/
644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 	struct igb_adapter *adapter = hw->back;
647 	return adapter->netdev;
648 }
649 
650 /**
651  *  igb_init_module - Driver Registration Routine
652  *
653  *  igb_init_module is the first routine called when the driver is
654  *  loaded. All it does is register with the PCI subsystem.
655  **/
656 static int __init igb_init_module(void)
657 {
658 	int ret;
659 
660 	pr_info("%s\n", igb_driver_string);
661 	pr_info("%s\n", igb_copyright);
662 
663 #ifdef CONFIG_IGB_DCA
664 	dca_register_notify(&dca_notifier);
665 #endif
666 	ret = pci_register_driver(&igb_driver);
667 	return ret;
668 }
669 
670 module_init(igb_init_module);
671 
672 /**
673  *  igb_exit_module - Driver Exit Cleanup Routine
674  *
675  *  igb_exit_module is called just before the driver is removed
676  *  from memory.
677  **/
678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 	dca_unregister_notify(&dca_notifier);
682 #endif
683 	pci_unregister_driver(&igb_driver);
684 }
685 
686 module_exit(igb_exit_module);
687 
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690  *  igb_cache_ring_register - Descriptor ring to register mapping
691  *  @adapter: board private structure to initialize
692  *
693  *  Once we know the feature-set enabled for the device, we'll cache
694  *  the register offset the descriptor ring is assigned to.
695  **/
696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 	int i = 0, j = 0;
699 	u32 rbase_offset = adapter->vfs_allocated_count;
700 
701 	switch (adapter->hw.mac.type) {
702 	case e1000_82576:
703 		/* The queues are allocated for virtualization such that VF 0
704 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 		 * In order to avoid collision we start at the first free queue
706 		 * and continue consuming queues in the same sequence
707 		 */
708 		if (adapter->vfs_allocated_count) {
709 			for (; i < adapter->rss_queues; i++)
710 				adapter->rx_ring[i]->reg_idx = rbase_offset +
711 							       Q_IDX_82576(i);
712 		}
713 		fallthrough;
714 	case e1000_82575:
715 	case e1000_82580:
716 	case e1000_i350:
717 	case e1000_i354:
718 	case e1000_i210:
719 	case e1000_i211:
720 	default:
721 		for (; i < adapter->num_rx_queues; i++)
722 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 		for (; j < adapter->num_tx_queues; j++)
724 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 		break;
726 	}
727 }
728 
729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 	u32 value = 0;
734 
735 	if (E1000_REMOVED(hw_addr))
736 		return ~value;
737 
738 	value = readl(&hw_addr[reg]);
739 
740 	/* reads should not return all F's */
741 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 		struct net_device *netdev = igb->netdev;
743 		hw->hw_addr = NULL;
744 		netdev_err(netdev, "PCIe link lost\n");
745 		WARN(pci_device_is_present(igb->pdev),
746 		     "igb: Failed to read reg 0x%x!\n", reg);
747 	}
748 
749 	return value;
750 }
751 
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 			   int index, int offset)
766 {
767 	u32 ivar = array_rd32(E1000_IVAR0, index);
768 
769 	/* clear any bits that are currently set */
770 	ivar &= ~((u32)0xFF << offset);
771 
772 	/* write vector and valid bit */
773 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774 
775 	array_wr32(E1000_IVAR0, index, ivar);
776 }
777 
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 	struct igb_adapter *adapter = q_vector->adapter;
782 	struct e1000_hw *hw = &adapter->hw;
783 	int rx_queue = IGB_N0_QUEUE;
784 	int tx_queue = IGB_N0_QUEUE;
785 	u32 msixbm = 0;
786 
787 	if (q_vector->rx.ring)
788 		rx_queue = q_vector->rx.ring->reg_idx;
789 	if (q_vector->tx.ring)
790 		tx_queue = q_vector->tx.ring->reg_idx;
791 
792 	switch (hw->mac.type) {
793 	case e1000_82575:
794 		/* The 82575 assigns vectors using a bitmask, which matches the
795 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796 		 * or more queues to a vector, we write the appropriate bits
797 		 * into the MSIXBM register for that vector.
798 		 */
799 		if (rx_queue > IGB_N0_QUEUE)
800 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 		if (tx_queue > IGB_N0_QUEUE)
802 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 			msixbm |= E1000_EIMS_OTHER;
805 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 		q_vector->eims_value = msixbm;
807 		break;
808 	case e1000_82576:
809 		/* 82576 uses a table that essentially consists of 2 columns
810 		 * with 8 rows.  The ordering is column-major so we use the
811 		 * lower 3 bits as the row index, and the 4th bit as the
812 		 * column offset.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue & 0x7,
817 				       (rx_queue & 0x8) << 1);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue & 0x7,
821 				       ((tx_queue & 0x8) << 1) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	case e1000_82580:
825 	case e1000_i350:
826 	case e1000_i354:
827 	case e1000_i210:
828 	case e1000_i211:
829 		/* On 82580 and newer adapters the scheme is similar to 82576
830 		 * however instead of ordering column-major we have things
831 		 * ordered row-major.  So we traverse the table by using
832 		 * bit 0 as the column offset, and the remaining bits as the
833 		 * row index.
834 		 */
835 		if (rx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       rx_queue >> 1,
838 				       (rx_queue & 0x1) << 4);
839 		if (tx_queue > IGB_N0_QUEUE)
840 			igb_write_ivar(hw, msix_vector,
841 				       tx_queue >> 1,
842 				       ((tx_queue & 0x1) << 4) + 8);
843 		q_vector->eims_value = BIT(msix_vector);
844 		break;
845 	default:
846 		BUG();
847 		break;
848 	}
849 
850 	/* add q_vector eims value to global eims_enable_mask */
851 	adapter->eims_enable_mask |= q_vector->eims_value;
852 
853 	/* configure q_vector to set itr on first interrupt */
854 	q_vector->set_itr = 1;
855 }
856 
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 	u32 tmp;
867 	int i, vector = 0;
868 	struct e1000_hw *hw = &adapter->hw;
869 
870 	adapter->eims_enable_mask = 0;
871 
872 	/* set vector for other causes, i.e. link changes */
873 	switch (hw->mac.type) {
874 	case e1000_82575:
875 		tmp = rd32(E1000_CTRL_EXT);
876 		/* enable MSI-X PBA support*/
877 		tmp |= E1000_CTRL_EXT_PBA_CLR;
878 
879 		/* Auto-Mask interrupts upon ICR read. */
880 		tmp |= E1000_CTRL_EXT_EIAME;
881 		tmp |= E1000_CTRL_EXT_IRCA;
882 
883 		wr32(E1000_CTRL_EXT, tmp);
884 
885 		/* enable msix_other interrupt */
886 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 		adapter->eims_other = E1000_EIMS_OTHER;
888 
889 		break;
890 
891 	case e1000_82576:
892 	case e1000_82580:
893 	case e1000_i350:
894 	case e1000_i354:
895 	case e1000_i210:
896 	case e1000_i211:
897 		/* Turn on MSI-X capability first, or our settings
898 		 * won't stick.  And it will take days to debug.
899 		 */
900 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 		     E1000_GPIE_NSICR);
903 
904 		/* enable msix_other interrupt */
905 		adapter->eims_other = BIT(vector);
906 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907 
908 		wr32(E1000_IVAR_MISC, tmp);
909 		break;
910 	default:
911 		/* do nothing, since nothing else supports MSI-X */
912 		break;
913 	} /* switch (hw->mac.type) */
914 
915 	adapter->eims_enable_mask |= adapter->eims_other;
916 
917 	for (i = 0; i < adapter->num_q_vectors; i++)
918 		igb_assign_vector(adapter->q_vector[i], vector++);
919 
920 	wrfl();
921 }
922 
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 	unsigned int num_q_vectors = adapter->num_q_vectors;
933 	struct net_device *netdev = adapter->netdev;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	if (num_q_vectors > MAX_Q_VECTORS) {
942 		num_q_vectors = MAX_Q_VECTORS;
943 		dev_warn(&adapter->pdev->dev,
944 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 			 adapter->num_q_vectors, MAX_Q_VECTORS);
946 	}
947 	for (i = 0; i < num_q_vectors; i++) {
948 		struct igb_q_vector *q_vector = adapter->q_vector[i];
949 
950 		vector++;
951 
952 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953 
954 		if (q_vector->rx.ring && q_vector->tx.ring)
955 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else if (q_vector->tx.ring)
958 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 				q_vector->tx.ring->queue_index);
960 		else if (q_vector->rx.ring)
961 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 				q_vector->rx.ring->queue_index);
963 		else
964 			sprintf(q_vector->name, "%s-unused", netdev->name);
965 
966 		err = request_irq(adapter->msix_entries[vector].vector,
967 				  igb_msix_ring, 0, q_vector->name,
968 				  q_vector);
969 		if (err)
970 			goto err_free;
971 	}
972 
973 	igb_configure_msix(adapter);
974 	return 0;
975 
976 err_free:
977 	/* free already assigned IRQs */
978 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979 
980 	vector--;
981 	for (i = 0; i < vector; i++) {
982 		free_irq(adapter->msix_entries[free_vector++].vector,
983 			 adapter->q_vector[i]);
984 	}
985 err_out:
986 	return err;
987 }
988 
989 /**
990  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
991  *  @adapter: board private structure to initialize
992  *  @v_idx: Index of vector to be freed
993  *
994  *  This function frees the memory allocated to the q_vector.
995  **/
996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999 
1000 	adapter->q_vector[v_idx] = NULL;
1001 
1002 	/* igb_get_stats64() might access the rings on this vector,
1003 	 * we must wait a grace period before freeing it.
1004 	 */
1005 	if (q_vector)
1006 		kfree_rcu(q_vector, rcu);
1007 }
1008 
1009 /**
1010  *  igb_reset_q_vector - Reset config for interrupt vector
1011  *  @adapter: board private structure to initialize
1012  *  @v_idx: Index of vector to be reset
1013  *
1014  *  If NAPI is enabled it will delete any references to the
1015  *  NAPI struct. This is preparation for igb_free_q_vector.
1016  **/
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020 
1021 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 	 * allocated. So, q_vector is NULL so we should stop here.
1023 	 */
1024 	if (!q_vector)
1025 		return;
1026 
1027 	if (q_vector->tx.ring)
1028 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029 
1030 	if (q_vector->rx.ring)
1031 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032 
1033 	netif_napi_del(&q_vector->napi);
1034 
1035 }
1036 
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 	int v_idx = adapter->num_q_vectors;
1040 
1041 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 		pci_disable_msix(adapter->pdev);
1043 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 		pci_disable_msi(adapter->pdev);
1045 
1046 	while (v_idx--)
1047 		igb_reset_q_vector(adapter, v_idx);
1048 }
1049 
1050 /**
1051  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1052  *  @adapter: board private structure to initialize
1053  *
1054  *  This function frees the memory allocated to the q_vectors.  In addition if
1055  *  NAPI is enabled it will delete any references to the NAPI struct prior
1056  *  to freeing the q_vector.
1057  **/
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 	int v_idx = adapter->num_q_vectors;
1061 
1062 	adapter->num_tx_queues = 0;
1063 	adapter->num_rx_queues = 0;
1064 	adapter->num_q_vectors = 0;
1065 
1066 	while (v_idx--) {
1067 		igb_reset_q_vector(adapter, v_idx);
1068 		igb_free_q_vector(adapter, v_idx);
1069 	}
1070 }
1071 
1072 /**
1073  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074  *  @adapter: board private structure to initialize
1075  *
1076  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1077  *  MSI-X interrupts allocated.
1078  */
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 	igb_free_q_vectors(adapter);
1082 	igb_reset_interrupt_capability(adapter);
1083 }
1084 
1085 /**
1086  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1087  *  @adapter: board private structure to initialize
1088  *  @msix: boolean value of MSIX capability
1089  *
1090  *  Attempt to configure interrupts using the best available
1091  *  capabilities of the hardware and kernel.
1092  **/
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 	int err;
1096 	int numvecs, i;
1097 
1098 	if (!msix)
1099 		goto msi_only;
1100 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1101 
1102 	/* Number of supported queues. */
1103 	adapter->num_rx_queues = adapter->rss_queues;
1104 	if (adapter->vfs_allocated_count)
1105 		adapter->num_tx_queues = 1;
1106 	else
1107 		adapter->num_tx_queues = adapter->rss_queues;
1108 
1109 	/* start with one vector for every Rx queue */
1110 	numvecs = adapter->num_rx_queues;
1111 
1112 	/* if Tx handler is separate add 1 for every Tx queue */
1113 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 		numvecs += adapter->num_tx_queues;
1115 
1116 	/* store the number of vectors reserved for queues */
1117 	adapter->num_q_vectors = numvecs;
1118 
1119 	/* add 1 vector for link status interrupts */
1120 	numvecs++;
1121 	for (i = 0; i < numvecs; i++)
1122 		adapter->msix_entries[i].entry = i;
1123 
1124 	err = pci_enable_msix_range(adapter->pdev,
1125 				    adapter->msix_entries,
1126 				    numvecs,
1127 				    numvecs);
1128 	if (err > 0)
1129 		return;
1130 
1131 	igb_reset_interrupt_capability(adapter);
1132 
1133 	/* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 	/* disable SR-IOV for non MSI-X configurations */
1138 	if (adapter->vf_data) {
1139 		struct e1000_hw *hw = &adapter->hw;
1140 		/* disable iov and allow time for transactions to clear */
1141 		pci_disable_sriov(adapter->pdev);
1142 		msleep(500);
1143 
1144 		kfree(adapter->vf_mac_list);
1145 		adapter->vf_mac_list = NULL;
1146 		kfree(adapter->vf_data);
1147 		adapter->vf_data = NULL;
1148 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 		wrfl();
1150 		msleep(100);
1151 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 	}
1153 #endif
1154 	adapter->vfs_allocated_count = 0;
1155 	adapter->rss_queues = 1;
1156 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 	adapter->num_rx_queues = 1;
1158 	adapter->num_tx_queues = 1;
1159 	adapter->num_q_vectors = 1;
1160 	if (!pci_enable_msi(adapter->pdev))
1161 		adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163 
1164 static void igb_add_ring(struct igb_ring *ring,
1165 			 struct igb_ring_container *head)
1166 {
1167 	head->ring = ring;
1168 	head->count++;
1169 }
1170 
1171 /**
1172  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173  *  @adapter: board private structure to initialize
1174  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1175  *  @v_idx: index of vector in adapter struct
1176  *  @txr_count: total number of Tx rings to allocate
1177  *  @txr_idx: index of first Tx ring to allocate
1178  *  @rxr_count: total number of Rx rings to allocate
1179  *  @rxr_idx: index of first Rx ring to allocate
1180  *
1181  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1182  **/
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 			      int v_count, int v_idx,
1185 			      int txr_count, int txr_idx,
1186 			      int rxr_count, int rxr_idx)
1187 {
1188 	struct igb_q_vector *q_vector;
1189 	struct igb_ring *ring;
1190 	int ring_count;
1191 	size_t size;
1192 
1193 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 	if (txr_count > 1 || rxr_count > 1)
1195 		return -ENOMEM;
1196 
1197 	ring_count = txr_count + rxr_count;
1198 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1199 
1200 	/* allocate q_vector and rings */
1201 	q_vector = adapter->q_vector[v_idx];
1202 	if (!q_vector) {
1203 		q_vector = kzalloc(size, GFP_KERNEL);
1204 	} else if (size > ksize(q_vector)) {
1205 		struct igb_q_vector *new_q_vector;
1206 
1207 		new_q_vector = kzalloc(size, GFP_KERNEL);
1208 		if (new_q_vector)
1209 			kfree_rcu(q_vector, rcu);
1210 		q_vector = new_q_vector;
1211 	} else {
1212 		memset(q_vector, 0, size);
1213 	}
1214 	if (!q_vector)
1215 		return -ENOMEM;
1216 
1217 	/* initialize NAPI */
1218 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1219 
1220 	/* tie q_vector and adapter together */
1221 	adapter->q_vector[v_idx] = q_vector;
1222 	q_vector->adapter = adapter;
1223 
1224 	/* initialize work limits */
1225 	q_vector->tx.work_limit = adapter->tx_work_limit;
1226 
1227 	/* initialize ITR configuration */
1228 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 	q_vector->itr_val = IGB_START_ITR;
1230 
1231 	/* initialize pointer to rings */
1232 	ring = q_vector->ring;
1233 
1234 	/* intialize ITR */
1235 	if (rxr_count) {
1236 		/* rx or rx/tx vector */
1237 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 			q_vector->itr_val = adapter->rx_itr_setting;
1239 	} else {
1240 		/* tx only vector */
1241 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->tx_itr_setting;
1243 	}
1244 
1245 	if (txr_count) {
1246 		/* assign generic ring traits */
1247 		ring->dev = &adapter->pdev->dev;
1248 		ring->netdev = adapter->netdev;
1249 
1250 		/* configure backlink on ring */
1251 		ring->q_vector = q_vector;
1252 
1253 		/* update q_vector Tx values */
1254 		igb_add_ring(ring, &q_vector->tx);
1255 
1256 		/* For 82575, context index must be unique per ring. */
1257 		if (adapter->hw.mac.type == e1000_82575)
1258 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 
1260 		/* apply Tx specific ring traits */
1261 		ring->count = adapter->tx_ring_count;
1262 		ring->queue_index = txr_idx;
1263 
1264 		ring->cbs_enable = false;
1265 		ring->idleslope = 0;
1266 		ring->sendslope = 0;
1267 		ring->hicredit = 0;
1268 		ring->locredit = 0;
1269 
1270 		u64_stats_init(&ring->tx_syncp);
1271 		u64_stats_init(&ring->tx_syncp2);
1272 
1273 		/* assign ring to adapter */
1274 		adapter->tx_ring[txr_idx] = ring;
1275 
1276 		/* push pointer to next ring */
1277 		ring++;
1278 	}
1279 
1280 	if (rxr_count) {
1281 		/* assign generic ring traits */
1282 		ring->dev = &adapter->pdev->dev;
1283 		ring->netdev = adapter->netdev;
1284 
1285 		/* configure backlink on ring */
1286 		ring->q_vector = q_vector;
1287 
1288 		/* update q_vector Rx values */
1289 		igb_add_ring(ring, &q_vector->rx);
1290 
1291 		/* set flag indicating ring supports SCTP checksum offload */
1292 		if (adapter->hw.mac.type >= e1000_82576)
1293 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 
1295 		/* On i350, i354, i210, and i211, loopback VLAN packets
1296 		 * have the tag byte-swapped.
1297 		 */
1298 		if (adapter->hw.mac.type >= e1000_i350)
1299 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300 
1301 		/* apply Rx specific ring traits */
1302 		ring->count = adapter->rx_ring_count;
1303 		ring->queue_index = rxr_idx;
1304 
1305 		u64_stats_init(&ring->rx_syncp);
1306 
1307 		/* assign ring to adapter */
1308 		adapter->rx_ring[rxr_idx] = ring;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 
1315 /**
1316  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317  *  @adapter: board private structure to initialize
1318  *
1319  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1320  *  return -ENOMEM.
1321  **/
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324 	int q_vectors = adapter->num_q_vectors;
1325 	int rxr_remaining = adapter->num_rx_queues;
1326 	int txr_remaining = adapter->num_tx_queues;
1327 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 	int err;
1329 
1330 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 		for (; rxr_remaining; v_idx++) {
1332 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 						 0, 0, 1, rxr_idx);
1334 
1335 			if (err)
1336 				goto err_out;
1337 
1338 			/* update counts and index */
1339 			rxr_remaining--;
1340 			rxr_idx++;
1341 		}
1342 	}
1343 
1344 	for (; v_idx < q_vectors; v_idx++) {
1345 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347 
1348 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 					 tqpv, txr_idx, rqpv, rxr_idx);
1350 
1351 		if (err)
1352 			goto err_out;
1353 
1354 		/* update counts and index */
1355 		rxr_remaining -= rqpv;
1356 		txr_remaining -= tqpv;
1357 		rxr_idx++;
1358 		txr_idx++;
1359 	}
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	adapter->num_tx_queues = 0;
1365 	adapter->num_rx_queues = 0;
1366 	adapter->num_q_vectors = 0;
1367 
1368 	while (v_idx--)
1369 		igb_free_q_vector(adapter, v_idx);
1370 
1371 	return -ENOMEM;
1372 }
1373 
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	int err;
1385 
1386 	igb_set_interrupt_capability(adapter, msix);
1387 
1388 	err = igb_alloc_q_vectors(adapter);
1389 	if (err) {
1390 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 		goto err_alloc_q_vectors;
1392 	}
1393 
1394 	igb_cache_ring_register(adapter);
1395 
1396 	return 0;
1397 
1398 err_alloc_q_vectors:
1399 	igb_reset_interrupt_capability(adapter);
1400 	return err;
1401 }
1402 
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 	struct net_device *netdev = adapter->netdev;
1413 	struct pci_dev *pdev = adapter->pdev;
1414 	int err = 0;
1415 
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		err = igb_request_msix(adapter);
1418 		if (!err)
1419 			goto request_done;
1420 		/* fall back to MSI */
1421 		igb_free_all_tx_resources(adapter);
1422 		igb_free_all_rx_resources(adapter);
1423 
1424 		igb_clear_interrupt_scheme(adapter);
1425 		err = igb_init_interrupt_scheme(adapter, false);
1426 		if (err)
1427 			goto request_done;
1428 
1429 		igb_setup_all_tx_resources(adapter);
1430 		igb_setup_all_rx_resources(adapter);
1431 		igb_configure(adapter);
1432 	}
1433 
1434 	igb_assign_vector(adapter->q_vector[0], 0);
1435 
1436 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 				  netdev->name, adapter);
1439 		if (!err)
1440 			goto request_done;
1441 
1442 		/* fall back to legacy interrupts */
1443 		igb_reset_interrupt_capability(adapter);
1444 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 	}
1446 
1447 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 			  netdev->name, adapter);
1449 
1450 	if (err)
1451 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 			err);
1453 
1454 request_done:
1455 	return err;
1456 }
1457 
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 		int vector = 0, i;
1462 
1463 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 
1465 		for (i = 0; i < adapter->num_q_vectors; i++)
1466 			free_irq(adapter->msix_entries[vector++].vector,
1467 				 adapter->q_vector[i]);
1468 	} else {
1469 		free_irq(adapter->pdev->irq, adapter);
1470 	}
1471 }
1472 
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 
1481 	/* we need to be careful when disabling interrupts.  The VFs are also
1482 	 * mapped into these registers and so clearing the bits can cause
1483 	 * issues on the VF drivers so we only need to clear what we set
1484 	 */
1485 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 		u32 regval = rd32(E1000_EIAM);
1487 
1488 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 		regval = rd32(E1000_EIAC);
1491 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 	}
1493 
1494 	wr32(E1000_IAM, 0);
1495 	wr32(E1000_IMC, ~0);
1496 	wrfl();
1497 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 		int i;
1499 
1500 		for (i = 0; i < adapter->num_q_vectors; i++)
1501 			synchronize_irq(adapter->msix_entries[i].vector);
1502 	} else {
1503 		synchronize_irq(adapter->pdev->irq);
1504 	}
1505 }
1506 
1507 /**
1508  *  igb_irq_enable - Enable default interrupt generation settings
1509  *  @adapter: board private structure
1510  **/
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513 	struct e1000_hw *hw = &adapter->hw;
1514 
1515 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 		u32 regval = rd32(E1000_EIAC);
1518 
1519 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 		regval = rd32(E1000_EIAM);
1521 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 		if (adapter->vfs_allocated_count) {
1524 			wr32(E1000_MBVFIMR, 0xFF);
1525 			ims |= E1000_IMS_VMMB;
1526 		}
1527 		wr32(E1000_IMS, ims);
1528 	} else {
1529 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 				E1000_IMS_DRSTA);
1533 	}
1534 }
1535 
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	u16 pf_id = adapter->vfs_allocated_count;
1540 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 	u16 old_vid = adapter->mng_vlan_id;
1542 
1543 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 		/* add VID to filter table */
1545 		igb_vfta_set(hw, vid, pf_id, true, true);
1546 		adapter->mng_vlan_id = vid;
1547 	} else {
1548 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 	}
1550 
1551 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 	    (vid != old_vid) &&
1553 	    !test_bit(old_vid, adapter->active_vlans)) {
1554 		/* remove VID from filter table */
1555 		igb_vfta_set(hw, vid, pf_id, false, true);
1556 	}
1557 }
1558 
1559 /**
1560  *  igb_release_hw_control - release control of the h/w to f/w
1561  *  @adapter: address of board private structure
1562  *
1563  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564  *  For ASF and Pass Through versions of f/w this means that the
1565  *  driver is no longer loaded.
1566  **/
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569 	struct e1000_hw *hw = &adapter->hw;
1570 	u32 ctrl_ext;
1571 
1572 	/* Let firmware take over control of h/w */
1573 	ctrl_ext = rd32(E1000_CTRL_EXT);
1574 	wr32(E1000_CTRL_EXT,
1575 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577 
1578 /**
1579  *  igb_get_hw_control - get control of the h/w from f/w
1580  *  @adapter: address of board private structure
1581  *
1582  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583  *  For ASF and Pass Through versions of f/w this means that
1584  *  the driver is loaded.
1585  **/
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588 	struct e1000_hw *hw = &adapter->hw;
1589 	u32 ctrl_ext;
1590 
1591 	/* Let firmware know the driver has taken over */
1592 	ctrl_ext = rd32(E1000_CTRL_EXT);
1593 	wr32(E1000_CTRL_EXT,
1594 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596 
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599 	struct net_device *netdev = adapter->netdev;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 
1602 	WARN_ON(hw->mac.type != e1000_i210);
1603 
1604 	if (enable)
1605 		adapter->flags |= IGB_FLAG_FQTSS;
1606 	else
1607 		adapter->flags &= ~IGB_FLAG_FQTSS;
1608 
1609 	if (netif_running(netdev))
1610 		schedule_work(&adapter->reset_task);
1611 }
1612 
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617 
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 				   enum tx_queue_prio prio)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 4);
1625 
1626 	val = rd32(E1000_I210_TXDCTL(queue));
1627 
1628 	if (prio == TX_QUEUE_PRIO_HIGH)
1629 		val |= E1000_TXDCTL_PRIORITY;
1630 	else
1631 		val &= ~E1000_TXDCTL_PRIORITY;
1632 
1633 	wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635 
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638 	u32 val;
1639 
1640 	WARN_ON(hw->mac.type != e1000_i210);
1641 	WARN_ON(queue < 0 || queue > 1);
1642 
1643 	val = rd32(E1000_I210_TQAVCC(queue));
1644 
1645 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 		val |= E1000_TQAVCC_QUEUEMODE;
1647 	else
1648 		val &= ~E1000_TQAVCC_QUEUEMODE;
1649 
1650 	wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652 
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; i < adapter->num_tx_queues; i++) {
1658 		if (adapter->tx_ring[i]->cbs_enable)
1659 			return true;
1660 	}
1661 
1662 	return false;
1663 }
1664 
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < adapter->num_tx_queues; i++) {
1670 		if (adapter->tx_ring[i]->launchtime_enable)
1671 			return true;
1672 	}
1673 
1674 	return false;
1675 }
1676 
1677 /**
1678  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679  *  @adapter: pointer to adapter struct
1680  *  @queue: queue number
1681  *
1682  *  Configure CBS and Launchtime for a given hardware queue.
1683  *  Parameters are retrieved from the correct Tx ring, so
1684  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1685  *  for setting those correctly prior to this function being called.
1686  **/
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	struct igb_ring *ring;
1692 	u32 tqavcc, tqavctrl;
1693 	u16 value;
1694 
1695 	WARN_ON(hw->mac.type != e1000_i210);
1696 	WARN_ON(queue < 0 || queue > 1);
1697 	ring = adapter->tx_ring[queue];
1698 
1699 	/* If any of the Qav features is enabled, configure queues as SR and
1700 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 	 * as SP.
1702 	 */
1703 	if (ring->cbs_enable || ring->launchtime_enable) {
1704 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 	} else {
1707 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 	}
1710 
1711 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712 	if (ring->cbs_enable || queue == 0) {
1713 		/* i210 does not allow the queue 0 to be in the Strict
1714 		 * Priority mode while the Qav mode is enabled, so,
1715 		 * instead of disabling strict priority mode, we give
1716 		 * queue 0 the maximum of credits possible.
1717 		 *
1718 		 * See section 8.12.19 of the i210 datasheet, "Note:
1719 		 * Queue0 QueueMode must be set to 1b when
1720 		 * TransmitMode is set to Qav."
1721 		 */
1722 		if (queue == 0 && !ring->cbs_enable) {
1723 			/* max "linkspeed" idleslope in kbps */
1724 			ring->idleslope = 1000000;
1725 			ring->hicredit = ETH_FRAME_LEN;
1726 		}
1727 
1728 		/* Always set data transfer arbitration to credit-based
1729 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 		 * the queues.
1731 		 */
1732 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735 
1736 		/* According to i210 datasheet section 7.2.7.7, we should set
1737 		 * the 'idleSlope' field from TQAVCC register following the
1738 		 * equation:
1739 		 *
1740 		 * For 100 Mbps link speed:
1741 		 *
1742 		 *     value = BW * 0x7735 * 0.2                          (E1)
1743 		 *
1744 		 * For 1000Mbps link speed:
1745 		 *
1746 		 *     value = BW * 0x7735 * 2                            (E2)
1747 		 *
1748 		 * E1 and E2 can be merged into one equation as shown below.
1749 		 * Note that 'link-speed' is in Mbps.
1750 		 *
1751 		 *     value = BW * 0x7735 * 2 * link-speed
1752 		 *                           --------------               (E3)
1753 		 *                                1000
1754 		 *
1755 		 * 'BW' is the percentage bandwidth out of full link speed
1756 		 * which can be found with the following equation. Note that
1757 		 * idleSlope here is the parameter from this function which
1758 		 * is in kbps.
1759 		 *
1760 		 *     BW =     idleSlope
1761 		 *          -----------------                             (E4)
1762 		 *          link-speed * 1000
1763 		 *
1764 		 * That said, we can come up with a generic equation to
1765 		 * calculate the value we should set it TQAVCC register by
1766 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 		 *
1768 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769 		 *         -----------------            --------------    (E5)
1770 		 *         link-speed * 1000                 1000
1771 		 *
1772 		 * 'link-speed' is present in both sides of the fraction so
1773 		 * it is canceled out. The final equation is the following:
1774 		 *
1775 		 *     value = idleSlope * 61034
1776 		 *             -----------------                          (E6)
1777 		 *                  1000000
1778 		 *
1779 		 * NOTE: For i210, given the above, we can see that idleslope
1780 		 *       is represented in 16.38431 kbps units by the value at
1781 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782 		 *       the granularity for idleslope increments.
1783 		 *       For instance, if you want to configure a 2576kbps
1784 		 *       idleslope, the value to be written on the register
1785 		 *       would have to be 157.23. If rounded down, you end
1786 		 *       up with less bandwidth available than originally
1787 		 *       required (~2572 kbps). If rounded up, you end up
1788 		 *       with a higher bandwidth (~2589 kbps). Below the
1789 		 *       approach we take is to always round up the
1790 		 *       calculated value, so the resulting bandwidth might
1791 		 *       be slightly higher for some configurations.
1792 		 */
1793 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794 
1795 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 		tqavcc |= value;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		wr32(E1000_I210_TQAVHC(queue),
1801 		     0x80000000 + ring->hicredit * 0x7735);
1802 	} else {
1803 
1804 		/* Set idleSlope to zero. */
1805 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808 
1809 		/* Set hiCredit to zero. */
1810 		wr32(E1000_I210_TQAVHC(queue), 0);
1811 
1812 		/* If CBS is not enabled for any queues anymore, then return to
1813 		 * the default state of Data Transmission Arbitration on
1814 		 * TQAVCTRL.
1815 		 */
1816 		if (!is_any_cbs_enabled(adapter)) {
1817 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* If LaunchTime is enabled, set DataTranTIM. */
1824 	if (ring->launchtime_enable) {
1825 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 		 * for any of the SR queues, and configure fetchtime delta.
1827 		 * XXX NOTE:
1828 		 *     - LaunchTime will be enabled for all SR queues.
1829 		 *     - A fixed offset can be added relative to the launch
1830 		 *       time of all packets if configured at reg LAUNCH_OS0.
1831 		 *       We are keeping it as 0 for now (default value).
1832 		 */
1833 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 	} else {
1838 		/* If Launchtime is not enabled for any SR queues anymore,
1839 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 		 * effectively disabling Launchtime.
1841 		 */
1842 		if (!is_any_txtime_enabled(adapter)) {
1843 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 		}
1848 	}
1849 
1850 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 	 * CBS are not configurable by software so we don't do any 'controller
1852 	 * configuration' in respect to these parameters.
1853 	 */
1854 
1855 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 		   ring->cbs_enable ? "enabled" : "disabled",
1857 		   ring->launchtime_enable ? "enabled" : "disabled",
1858 		   queue,
1859 		   ring->idleslope, ring->sendslope,
1860 		   ring->hicredit, ring->locredit);
1861 }
1862 
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 				  bool enable)
1865 {
1866 	struct igb_ring *ring;
1867 
1868 	if (queue < 0 || queue > adapter->num_tx_queues)
1869 		return -EINVAL;
1870 
1871 	ring = adapter->tx_ring[queue];
1872 	ring->launchtime_enable = enable;
1873 
1874 	return 0;
1875 }
1876 
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 			       bool enable, int idleslope, int sendslope,
1879 			       int hicredit, int locredit)
1880 {
1881 	struct igb_ring *ring;
1882 
1883 	if (queue < 0 || queue > adapter->num_tx_queues)
1884 		return -EINVAL;
1885 
1886 	ring = adapter->tx_ring[queue];
1887 
1888 	ring->cbs_enable = enable;
1889 	ring->idleslope = idleslope;
1890 	ring->sendslope = sendslope;
1891 	ring->hicredit = hicredit;
1892 	ring->locredit = locredit;
1893 
1894 	return 0;
1895 }
1896 
1897 /**
1898  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899  *  @adapter: pointer to adapter struct
1900  *
1901  *  Configure TQAVCTRL register switching the controller's Tx mode
1902  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903  *  a call to igb_config_tx_modes() per queue so any previously saved
1904  *  Tx parameters are applied.
1905  **/
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 	struct net_device *netdev = adapter->netdev;
1909 	struct e1000_hw *hw = &adapter->hw;
1910 	u32 val;
1911 
1912 	/* Only i210 controller supports changing the transmission mode. */
1913 	if (hw->mac.type != e1000_i210)
1914 		return;
1915 
1916 	if (is_fqtss_enabled(adapter)) {
1917 		int i, max_queue;
1918 
1919 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 		 * so SP queues wait for SR ones.
1922 		 */
1923 		val = rd32(E1000_I210_TQAVCTRL);
1924 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 		wr32(E1000_I210_TQAVCTRL, val);
1927 
1928 		/* Configure Tx and Rx packet buffers sizes as described in
1929 		 * i210 datasheet section 7.2.7.7.
1930 		 */
1931 		val = rd32(E1000_TXPBS);
1932 		val &= ~I210_TXPBSIZE_MASK;
1933 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 		wr32(E1000_TXPBS, val);
1936 
1937 		val = rd32(E1000_RXPBS);
1938 		val &= ~I210_RXPBSIZE_MASK;
1939 		val |= I210_RXPBSIZE_PB_30KB;
1940 		wr32(E1000_RXPBS, val);
1941 
1942 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 		 * register should not exceed the buffer size programmed in
1944 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 		 * 4kB / 64.
1947 		 *
1948 		 * However, when we do so, no frame from queue 2 and 3 are
1949 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 		 */
1953 		val = (4096 - 1) / 64;
1954 		wr32(E1000_I210_DTXMXPKTSZ, val);
1955 
1956 		/* Since FQTSS mode is enabled, apply any CBS configuration
1957 		 * previously set. If no previous CBS configuration has been
1958 		 * done, then the initial configuration is applied, which means
1959 		 * CBS is disabled.
1960 		 */
1961 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963 
1964 		for (i = 0; i < max_queue; i++) {
1965 			igb_config_tx_modes(adapter, i);
1966 		}
1967 	} else {
1968 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971 
1972 		val = rd32(E1000_I210_TQAVCTRL);
1973 		/* According to Section 8.12.21, the other flags we've set when
1974 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 		 * don't set they here.
1976 		 */
1977 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 		wr32(E1000_I210_TQAVCTRL, val);
1979 	}
1980 
1981 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 		   "enabled" : "disabled");
1983 }
1984 
1985 /**
1986  *  igb_configure - configure the hardware for RX and TX
1987  *  @adapter: private board structure
1988  **/
1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 	struct net_device *netdev = adapter->netdev;
1992 	int i;
1993 
1994 	igb_get_hw_control(adapter);
1995 	igb_set_rx_mode(netdev);
1996 	igb_setup_tx_mode(adapter);
1997 
1998 	igb_restore_vlan(adapter);
1999 
2000 	igb_setup_tctl(adapter);
2001 	igb_setup_mrqc(adapter);
2002 	igb_setup_rctl(adapter);
2003 
2004 	igb_nfc_filter_restore(adapter);
2005 	igb_configure_tx(adapter);
2006 	igb_configure_rx(adapter);
2007 
2008 	igb_rx_fifo_flush_82575(&adapter->hw);
2009 
2010 	/* call igb_desc_unused which always leaves
2011 	 * at least 1 descriptor unused to make sure
2012 	 * next_to_use != next_to_clean
2013 	 */
2014 	for (i = 0; i < adapter->num_rx_queues; i++) {
2015 		struct igb_ring *ring = adapter->rx_ring[i];
2016 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 	}
2018 }
2019 
2020 /**
2021  *  igb_power_up_link - Power up the phy/serdes link
2022  *  @adapter: address of board private structure
2023  **/
2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 	igb_reset_phy(&adapter->hw);
2027 
2028 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 		igb_power_up_phy_copper(&adapter->hw);
2030 	else
2031 		igb_power_up_serdes_link_82575(&adapter->hw);
2032 
2033 	igb_setup_link(&adapter->hw);
2034 }
2035 
2036 /**
2037  *  igb_power_down_link - Power down the phy/serdes link
2038  *  @adapter: address of board private structure
2039  */
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 		igb_power_down_phy_copper_82575(&adapter->hw);
2044 	else
2045 		igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047 
2048 /**
2049  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2050  * @adapter: address of the board private structure
2051  **/
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 	struct e1000_hw *hw = &adapter->hw;
2055 	u32 ctrl_ext, connsw;
2056 	bool swap_now = false;
2057 
2058 	ctrl_ext = rd32(E1000_CTRL_EXT);
2059 	connsw = rd32(E1000_CONNSW);
2060 
2061 	/* need to live swap if current media is copper and we have fiber/serdes
2062 	 * to go to.
2063 	 */
2064 
2065 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 		swap_now = true;
2068 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 		   !(connsw & E1000_CONNSW_SERDESD)) {
2070 		/* copper signal takes time to appear */
2071 		if (adapter->copper_tries < 4) {
2072 			adapter->copper_tries++;
2073 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 			wr32(E1000_CONNSW, connsw);
2075 			return;
2076 		} else {
2077 			adapter->copper_tries = 0;
2078 			if ((connsw & E1000_CONNSW_PHYSD) &&
2079 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 				swap_now = true;
2081 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 				wr32(E1000_CONNSW, connsw);
2083 			}
2084 		}
2085 	}
2086 
2087 	if (!swap_now)
2088 		return;
2089 
2090 	switch (hw->phy.media_type) {
2091 	case e1000_media_type_copper:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to fiber/serdes\n");
2094 		ctrl_ext |=
2095 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		adapter->copper_tries = 0;
2098 		break;
2099 	case e1000_media_type_internal_serdes:
2100 	case e1000_media_type_fiber:
2101 		netdev_info(adapter->netdev,
2102 			"MAS: changing media to copper\n");
2103 		ctrl_ext &=
2104 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 		break;
2107 	default:
2108 		/* shouldn't get here during regular operation */
2109 		netdev_err(adapter->netdev,
2110 			"AMS: Invalid media type found, returning\n");
2111 		break;
2112 	}
2113 	wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115 
2116 /**
2117  *  igb_up - Open the interface and prepare it to handle traffic
2118  *  @adapter: board private structure
2119  **/
2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 	struct e1000_hw *hw = &adapter->hw;
2123 	int i;
2124 
2125 	/* hardware has been reset, we need to reload some things */
2126 	igb_configure(adapter);
2127 
2128 	clear_bit(__IGB_DOWN, &adapter->state);
2129 
2130 	for (i = 0; i < adapter->num_q_vectors; i++)
2131 		napi_enable(&(adapter->q_vector[i]->napi));
2132 
2133 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 		igb_configure_msix(adapter);
2135 	else
2136 		igb_assign_vector(adapter->q_vector[0], 0);
2137 
2138 	/* Clear any pending interrupts. */
2139 	rd32(E1000_TSICR);
2140 	rd32(E1000_ICR);
2141 	igb_irq_enable(adapter);
2142 
2143 	/* notify VFs that reset has been completed */
2144 	if (adapter->vfs_allocated_count) {
2145 		u32 reg_data = rd32(E1000_CTRL_EXT);
2146 
2147 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 		wr32(E1000_CTRL_EXT, reg_data);
2149 	}
2150 
2151 	netif_tx_start_all_queues(adapter->netdev);
2152 
2153 	/* start the watchdog. */
2154 	hw->mac.get_link_status = 1;
2155 	schedule_work(&adapter->watchdog_task);
2156 
2157 	if ((adapter->flags & IGB_FLAG_EEE) &&
2158 	    (!hw->dev_spec._82575.eee_disable))
2159 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160 
2161 	return 0;
2162 }
2163 
2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 	struct net_device *netdev = adapter->netdev;
2167 	struct e1000_hw *hw = &adapter->hw;
2168 	u32 tctl, rctl;
2169 	int i;
2170 
2171 	/* signal that we're down so the interrupt handler does not
2172 	 * reschedule our watchdog timer
2173 	 */
2174 	set_bit(__IGB_DOWN, &adapter->state);
2175 
2176 	/* disable receives in the hardware */
2177 	rctl = rd32(E1000_RCTL);
2178 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 	/* flush and sleep below */
2180 
2181 	igb_nfc_filter_exit(adapter);
2182 
2183 	netif_carrier_off(netdev);
2184 	netif_tx_stop_all_queues(netdev);
2185 
2186 	/* disable transmits in the hardware */
2187 	tctl = rd32(E1000_TCTL);
2188 	tctl &= ~E1000_TCTL_EN;
2189 	wr32(E1000_TCTL, tctl);
2190 	/* flush both disables and wait for them to finish */
2191 	wrfl();
2192 	usleep_range(10000, 11000);
2193 
2194 	igb_irq_disable(adapter);
2195 
2196 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197 
2198 	for (i = 0; i < adapter->num_q_vectors; i++) {
2199 		if (adapter->q_vector[i]) {
2200 			napi_synchronize(&adapter->q_vector[i]->napi);
2201 			napi_disable(&adapter->q_vector[i]->napi);
2202 		}
2203 	}
2204 
2205 	del_timer_sync(&adapter->watchdog_timer);
2206 	del_timer_sync(&adapter->phy_info_timer);
2207 
2208 	/* record the stats before reset*/
2209 	spin_lock(&adapter->stats64_lock);
2210 	igb_update_stats(adapter);
2211 	spin_unlock(&adapter->stats64_lock);
2212 
2213 	adapter->link_speed = 0;
2214 	adapter->link_duplex = 0;
2215 
2216 	if (!pci_channel_offline(adapter->pdev))
2217 		igb_reset(adapter);
2218 
2219 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221 
2222 	igb_clean_all_tx_rings(adapter);
2223 	igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225 
2226 	/* since we reset the hardware DCA settings were cleared */
2227 	igb_setup_dca(adapter);
2228 #endif
2229 }
2230 
2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 		usleep_range(1000, 2000);
2235 	igb_down(adapter);
2236 	igb_up(adapter);
2237 	clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239 
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241  *
2242  * @adapter: adapter struct
2243  **/
2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 	u32 connsw = rd32(E1000_CONNSW);
2248 
2249 	/* configure for SerDes media detect */
2250 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2252 		connsw |= E1000_CONNSW_ENRGSRC;
2253 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 		wr32(E1000_CONNSW, connsw);
2255 		wrfl();
2256 	}
2257 }
2258 
2259 void igb_reset(struct igb_adapter *adapter)
2260 {
2261 	struct pci_dev *pdev = adapter->pdev;
2262 	struct e1000_hw *hw = &adapter->hw;
2263 	struct e1000_mac_info *mac = &hw->mac;
2264 	struct e1000_fc_info *fc = &hw->fc;
2265 	u32 pba, hwm;
2266 
2267 	/* Repartition Pba for greater than 9k mtu
2268 	 * To take effect CTRL.RST is required.
2269 	 */
2270 	switch (mac->type) {
2271 	case e1000_i350:
2272 	case e1000_i354:
2273 	case e1000_82580:
2274 		pba = rd32(E1000_RXPBS);
2275 		pba = igb_rxpbs_adjust_82580(pba);
2276 		break;
2277 	case e1000_82576:
2278 		pba = rd32(E1000_RXPBS);
2279 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2280 		break;
2281 	case e1000_82575:
2282 	case e1000_i210:
2283 	case e1000_i211:
2284 	default:
2285 		pba = E1000_PBA_34K;
2286 		break;
2287 	}
2288 
2289 	if (mac->type == e1000_82575) {
2290 		u32 min_rx_space, min_tx_space, needed_tx_space;
2291 
2292 		/* write Rx PBA so that hardware can report correct Tx PBA */
2293 		wr32(E1000_PBA, pba);
2294 
2295 		/* To maintain wire speed transmits, the Tx FIFO should be
2296 		 * large enough to accommodate two full transmit packets,
2297 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2298 		 * the Rx FIFO should be large enough to accommodate at least
2299 		 * one full receive packet and is similarly rounded up and
2300 		 * expressed in KB.
2301 		 */
2302 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2303 
2304 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2305 		 * but don't include Ethernet FCS because hardware appends it.
2306 		 * We only need to round down to the nearest 512 byte block
2307 		 * count since the value we care about is 2 frames, not 1.
2308 		 */
2309 		min_tx_space = adapter->max_frame_size;
2310 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2312 
2313 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2314 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2315 
2316 		/* If current Tx allocation is less than the min Tx FIFO size,
2317 		 * and the min Tx FIFO size is less than the current Rx FIFO
2318 		 * allocation, take space away from current Rx allocation.
2319 		 */
2320 		if (needed_tx_space < pba) {
2321 			pba -= needed_tx_space;
2322 
2323 			/* if short on Rx space, Rx wins and must trump Tx
2324 			 * adjustment
2325 			 */
2326 			if (pba < min_rx_space)
2327 				pba = min_rx_space;
2328 		}
2329 
2330 		/* adjust PBA for jumbo frames */
2331 		wr32(E1000_PBA, pba);
2332 	}
2333 
2334 	/* flow control settings
2335 	 * The high water mark must be low enough to fit one full frame
2336 	 * after transmitting the pause frame.  As such we must have enough
2337 	 * space to allow for us to complete our current transmit and then
2338 	 * receive the frame that is in progress from the link partner.
2339 	 * Set it to:
2340 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2341 	 */
2342 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2343 
2344 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2345 	fc->low_water = fc->high_water - 16;
2346 	fc->pause_time = 0xFFFF;
2347 	fc->send_xon = 1;
2348 	fc->current_mode = fc->requested_mode;
2349 
2350 	/* disable receive for all VFs and wait one second */
2351 	if (adapter->vfs_allocated_count) {
2352 		int i;
2353 
2354 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2356 
2357 		/* ping all the active vfs to let them know we are going down */
2358 		igb_ping_all_vfs(adapter);
2359 
2360 		/* disable transmits and receives */
2361 		wr32(E1000_VFRE, 0);
2362 		wr32(E1000_VFTE, 0);
2363 	}
2364 
2365 	/* Allow time for pending master requests to run */
2366 	hw->mac.ops.reset_hw(hw);
2367 	wr32(E1000_WUC, 0);
2368 
2369 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370 		/* need to resetup here after media swap */
2371 		adapter->ei.get_invariants(hw);
2372 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2373 	}
2374 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2375 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376 		igb_enable_mas(adapter);
2377 	}
2378 	if (hw->mac.ops.init_hw(hw))
2379 		dev_err(&pdev->dev, "Hardware Error\n");
2380 
2381 	/* RAR registers were cleared during init_hw, clear mac table */
2382 	igb_flush_mac_table(adapter);
2383 	__dev_uc_unsync(adapter->netdev, NULL);
2384 
2385 	/* Recover default RAR entry */
2386 	igb_set_default_mac_filter(adapter);
2387 
2388 	/* Flow control settings reset on hardware reset, so guarantee flow
2389 	 * control is off when forcing speed.
2390 	 */
2391 	if (!hw->mac.autoneg)
2392 		igb_force_mac_fc(hw);
2393 
2394 	igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396 	/* Re-initialize the thermal sensor on i350 devices. */
2397 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399 			/* If present, re-initialize the external thermal sensor
2400 			 * interface.
2401 			 */
2402 			if (adapter->ets)
2403 				mac->ops.init_thermal_sensor_thresh(hw);
2404 		}
2405 	}
2406 #endif
2407 	/* Re-establish EEE setting */
2408 	if (hw->phy.media_type == e1000_media_type_copper) {
2409 		switch (mac->type) {
2410 		case e1000_i350:
2411 		case e1000_i210:
2412 		case e1000_i211:
2413 			igb_set_eee_i350(hw, true, true);
2414 			break;
2415 		case e1000_i354:
2416 			igb_set_eee_i354(hw, true, true);
2417 			break;
2418 		default:
2419 			break;
2420 		}
2421 	}
2422 	if (!netif_running(adapter->netdev))
2423 		igb_power_down_link(adapter);
2424 
2425 	igb_update_mng_vlan(adapter);
2426 
2427 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2429 
2430 	/* Re-enable PTP, where applicable. */
2431 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432 		igb_ptp_reset(adapter);
2433 
2434 	igb_get_phy_info(hw);
2435 }
2436 
2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438 	netdev_features_t features)
2439 {
2440 	/* Since there is no support for separate Rx/Tx vlan accel
2441 	 * enable/disable make sure Tx flag is always in same state as Rx.
2442 	 */
2443 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2445 	else
2446 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2447 
2448 	return features;
2449 }
2450 
2451 static int igb_set_features(struct net_device *netdev,
2452 	netdev_features_t features)
2453 {
2454 	netdev_features_t changed = netdev->features ^ features;
2455 	struct igb_adapter *adapter = netdev_priv(netdev);
2456 
2457 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458 		igb_vlan_mode(netdev, features);
2459 
2460 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461 		return 0;
2462 
2463 	if (!(features & NETIF_F_NTUPLE)) {
2464 		struct hlist_node *node2;
2465 		struct igb_nfc_filter *rule;
2466 
2467 		spin_lock(&adapter->nfc_lock);
2468 		hlist_for_each_entry_safe(rule, node2,
2469 					  &adapter->nfc_filter_list, nfc_node) {
2470 			igb_erase_filter(adapter, rule);
2471 			hlist_del(&rule->nfc_node);
2472 			kfree(rule);
2473 		}
2474 		spin_unlock(&adapter->nfc_lock);
2475 		adapter->nfc_filter_count = 0;
2476 	}
2477 
2478 	netdev->features = features;
2479 
2480 	if (netif_running(netdev))
2481 		igb_reinit_locked(adapter);
2482 	else
2483 		igb_reset(adapter);
2484 
2485 	return 1;
2486 }
2487 
2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489 			   struct net_device *dev,
2490 			   const unsigned char *addr, u16 vid,
2491 			   u16 flags,
2492 			   struct netlink_ext_ack *extack)
2493 {
2494 	/* guarantee we can provide a unique filter for the unicast address */
2495 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2496 		struct igb_adapter *adapter = netdev_priv(dev);
2497 		int vfn = adapter->vfs_allocated_count;
2498 
2499 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2500 			return -ENOMEM;
2501 	}
2502 
2503 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2504 }
2505 
2506 #define IGB_MAX_MAC_HDR_LEN	127
2507 #define IGB_MAX_NETWORK_HDR_LEN	511
2508 
2509 static netdev_features_t
2510 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2511 		   netdev_features_t features)
2512 {
2513 	unsigned int network_hdr_len, mac_hdr_len;
2514 
2515 	/* Make certain the headers can be described by a context descriptor */
2516 	mac_hdr_len = skb_network_header(skb) - skb->data;
2517 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2518 		return features & ~(NETIF_F_HW_CSUM |
2519 				    NETIF_F_SCTP_CRC |
2520 				    NETIF_F_GSO_UDP_L4 |
2521 				    NETIF_F_HW_VLAN_CTAG_TX |
2522 				    NETIF_F_TSO |
2523 				    NETIF_F_TSO6);
2524 
2525 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2527 		return features & ~(NETIF_F_HW_CSUM |
2528 				    NETIF_F_SCTP_CRC |
2529 				    NETIF_F_GSO_UDP_L4 |
2530 				    NETIF_F_TSO |
2531 				    NETIF_F_TSO6);
2532 
2533 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2534 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2535 	 */
2536 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2537 		features &= ~NETIF_F_TSO;
2538 
2539 	return features;
2540 }
2541 
2542 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2543 {
2544 	if (!is_fqtss_enabled(adapter)) {
2545 		enable_fqtss(adapter, true);
2546 		return;
2547 	}
2548 
2549 	igb_config_tx_modes(adapter, queue);
2550 
2551 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2552 		enable_fqtss(adapter, false);
2553 }
2554 
2555 static int igb_offload_cbs(struct igb_adapter *adapter,
2556 			   struct tc_cbs_qopt_offload *qopt)
2557 {
2558 	struct e1000_hw *hw = &adapter->hw;
2559 	int err;
2560 
2561 	/* CBS offloading is only supported by i210 controller. */
2562 	if (hw->mac.type != e1000_i210)
2563 		return -EOPNOTSUPP;
2564 
2565 	/* CBS offloading is only supported by queue 0 and queue 1. */
2566 	if (qopt->queue < 0 || qopt->queue > 1)
2567 		return -EINVAL;
2568 
2569 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2570 				  qopt->idleslope, qopt->sendslope,
2571 				  qopt->hicredit, qopt->locredit);
2572 	if (err)
2573 		return err;
2574 
2575 	igb_offload_apply(adapter, qopt->queue);
2576 
2577 	return 0;
2578 }
2579 
2580 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2581 #define VLAN_PRIO_FULL_MASK (0x07)
2582 
2583 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2584 				struct flow_cls_offload *f,
2585 				int traffic_class,
2586 				struct igb_nfc_filter *input)
2587 {
2588 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2589 	struct flow_dissector *dissector = rule->match.dissector;
2590 	struct netlink_ext_ack *extack = f->common.extack;
2591 
2592 	if (dissector->used_keys &
2593 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2594 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2595 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2596 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2597 		NL_SET_ERR_MSG_MOD(extack,
2598 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2599 		return -EOPNOTSUPP;
2600 	}
2601 
2602 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2603 		struct flow_match_eth_addrs match;
2604 
2605 		flow_rule_match_eth_addrs(rule, &match);
2606 		if (!is_zero_ether_addr(match.mask->dst)) {
2607 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2608 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2609 				return -EINVAL;
2610 			}
2611 
2612 			input->filter.match_flags |=
2613 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2615 		}
2616 
2617 		if (!is_zero_ether_addr(match.mask->src)) {
2618 			if (!is_broadcast_ether_addr(match.mask->src)) {
2619 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2620 				return -EINVAL;
2621 			}
2622 
2623 			input->filter.match_flags |=
2624 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 			ether_addr_copy(input->filter.src_addr, match.key->src);
2626 		}
2627 	}
2628 
2629 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2630 		struct flow_match_basic match;
2631 
2632 		flow_rule_match_basic(rule, &match);
2633 		if (match.mask->n_proto) {
2634 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2635 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2636 				return -EINVAL;
2637 			}
2638 
2639 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2640 			input->filter.etype = match.key->n_proto;
2641 		}
2642 	}
2643 
2644 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2645 		struct flow_match_vlan match;
2646 
2647 		flow_rule_match_vlan(rule, &match);
2648 		if (match.mask->vlan_priority) {
2649 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2650 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2651 				return -EINVAL;
2652 			}
2653 
2654 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2655 			input->filter.vlan_tci =
2656 				(__force __be16)match.key->vlan_priority;
2657 		}
2658 	}
2659 
2660 	input->action = traffic_class;
2661 	input->cookie = f->cookie;
2662 
2663 	return 0;
2664 }
2665 
2666 static int igb_configure_clsflower(struct igb_adapter *adapter,
2667 				   struct flow_cls_offload *cls_flower)
2668 {
2669 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2670 	struct igb_nfc_filter *filter, *f;
2671 	int err, tc;
2672 
2673 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2674 	if (tc < 0) {
2675 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2676 		return -EINVAL;
2677 	}
2678 
2679 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2680 	if (!filter)
2681 		return -ENOMEM;
2682 
2683 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2684 	if (err < 0)
2685 		goto err_parse;
2686 
2687 	spin_lock(&adapter->nfc_lock);
2688 
2689 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2690 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2691 			err = -EEXIST;
2692 			NL_SET_ERR_MSG_MOD(extack,
2693 					   "This filter is already set in ethtool");
2694 			goto err_locked;
2695 		}
2696 	}
2697 
2698 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2699 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2700 			err = -EEXIST;
2701 			NL_SET_ERR_MSG_MOD(extack,
2702 					   "This filter is already set in cls_flower");
2703 			goto err_locked;
2704 		}
2705 	}
2706 
2707 	err = igb_add_filter(adapter, filter);
2708 	if (err < 0) {
2709 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2710 		goto err_locked;
2711 	}
2712 
2713 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2714 
2715 	spin_unlock(&adapter->nfc_lock);
2716 
2717 	return 0;
2718 
2719 err_locked:
2720 	spin_unlock(&adapter->nfc_lock);
2721 
2722 err_parse:
2723 	kfree(filter);
2724 
2725 	return err;
2726 }
2727 
2728 static int igb_delete_clsflower(struct igb_adapter *adapter,
2729 				struct flow_cls_offload *cls_flower)
2730 {
2731 	struct igb_nfc_filter *filter;
2732 	int err;
2733 
2734 	spin_lock(&adapter->nfc_lock);
2735 
2736 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2737 		if (filter->cookie == cls_flower->cookie)
2738 			break;
2739 
2740 	if (!filter) {
2741 		err = -ENOENT;
2742 		goto out;
2743 	}
2744 
2745 	err = igb_erase_filter(adapter, filter);
2746 	if (err < 0)
2747 		goto out;
2748 
2749 	hlist_del(&filter->nfc_node);
2750 	kfree(filter);
2751 
2752 out:
2753 	spin_unlock(&adapter->nfc_lock);
2754 
2755 	return err;
2756 }
2757 
2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2759 				   struct flow_cls_offload *cls_flower)
2760 {
2761 	switch (cls_flower->command) {
2762 	case FLOW_CLS_REPLACE:
2763 		return igb_configure_clsflower(adapter, cls_flower);
2764 	case FLOW_CLS_DESTROY:
2765 		return igb_delete_clsflower(adapter, cls_flower);
2766 	case FLOW_CLS_STATS:
2767 		return -EOPNOTSUPP;
2768 	default:
2769 		return -EOPNOTSUPP;
2770 	}
2771 }
2772 
2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2774 				 void *cb_priv)
2775 {
2776 	struct igb_adapter *adapter = cb_priv;
2777 
2778 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2779 		return -EOPNOTSUPP;
2780 
2781 	switch (type) {
2782 	case TC_SETUP_CLSFLOWER:
2783 		return igb_setup_tc_cls_flower(adapter, type_data);
2784 
2785 	default:
2786 		return -EOPNOTSUPP;
2787 	}
2788 }
2789 
2790 static int igb_offload_txtime(struct igb_adapter *adapter,
2791 			      struct tc_etf_qopt_offload *qopt)
2792 {
2793 	struct e1000_hw *hw = &adapter->hw;
2794 	int err;
2795 
2796 	/* Launchtime offloading is only supported by i210 controller. */
2797 	if (hw->mac.type != e1000_i210)
2798 		return -EOPNOTSUPP;
2799 
2800 	/* Launchtime offloading is only supported by queues 0 and 1. */
2801 	if (qopt->queue < 0 || qopt->queue > 1)
2802 		return -EINVAL;
2803 
2804 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2805 	if (err)
2806 		return err;
2807 
2808 	igb_offload_apply(adapter, qopt->queue);
2809 
2810 	return 0;
2811 }
2812 
2813 static int igb_tc_query_caps(struct igb_adapter *adapter,
2814 			     struct tc_query_caps_base *base)
2815 {
2816 	switch (base->type) {
2817 	case TC_SETUP_QDISC_TAPRIO: {
2818 		struct tc_taprio_caps *caps = base->caps;
2819 
2820 		caps->broken_mqprio = true;
2821 
2822 		return 0;
2823 	}
2824 	default:
2825 		return -EOPNOTSUPP;
2826 	}
2827 }
2828 
2829 static LIST_HEAD(igb_block_cb_list);
2830 
2831 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2832 			void *type_data)
2833 {
2834 	struct igb_adapter *adapter = netdev_priv(dev);
2835 
2836 	switch (type) {
2837 	case TC_QUERY_CAPS:
2838 		return igb_tc_query_caps(adapter, type_data);
2839 	case TC_SETUP_QDISC_CBS:
2840 		return igb_offload_cbs(adapter, type_data);
2841 	case TC_SETUP_BLOCK:
2842 		return flow_block_cb_setup_simple(type_data,
2843 						  &igb_block_cb_list,
2844 						  igb_setup_tc_block_cb,
2845 						  adapter, adapter, true);
2846 
2847 	case TC_SETUP_QDISC_ETF:
2848 		return igb_offload_txtime(adapter, type_data);
2849 
2850 	default:
2851 		return -EOPNOTSUPP;
2852 	}
2853 }
2854 
2855 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2856 {
2857 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2858 	struct igb_adapter *adapter = netdev_priv(dev);
2859 	struct bpf_prog *prog = bpf->prog, *old_prog;
2860 	bool running = netif_running(dev);
2861 	bool need_reset;
2862 
2863 	/* verify igb ring attributes are sufficient for XDP */
2864 	for (i = 0; i < adapter->num_rx_queues; i++) {
2865 		struct igb_ring *ring = adapter->rx_ring[i];
2866 
2867 		if (frame_size > igb_rx_bufsz(ring)) {
2868 			NL_SET_ERR_MSG_MOD(bpf->extack,
2869 					   "The RX buffer size is too small for the frame size");
2870 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2871 				    igb_rx_bufsz(ring), frame_size);
2872 			return -EINVAL;
2873 		}
2874 	}
2875 
2876 	old_prog = xchg(&adapter->xdp_prog, prog);
2877 	need_reset = (!!prog != !!old_prog);
2878 
2879 	/* device is up and bpf is added/removed, must setup the RX queues */
2880 	if (need_reset && running) {
2881 		igb_close(dev);
2882 	} else {
2883 		for (i = 0; i < adapter->num_rx_queues; i++)
2884 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2885 			    adapter->xdp_prog);
2886 	}
2887 
2888 	if (old_prog)
2889 		bpf_prog_put(old_prog);
2890 
2891 	/* bpf is just replaced, RXQ and MTU are already setup */
2892 	if (!need_reset)
2893 		return 0;
2894 
2895 	if (running)
2896 		igb_open(dev);
2897 
2898 	return 0;
2899 }
2900 
2901 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2902 {
2903 	switch (xdp->command) {
2904 	case XDP_SETUP_PROG:
2905 		return igb_xdp_setup(dev, xdp);
2906 	default:
2907 		return -EINVAL;
2908 	}
2909 }
2910 
2911 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2912 {
2913 	/* Force memory writes to complete before letting h/w know there
2914 	 * are new descriptors to fetch.
2915 	 */
2916 	wmb();
2917 	writel(ring->next_to_use, ring->tail);
2918 }
2919 
2920 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2921 {
2922 	unsigned int r_idx = smp_processor_id();
2923 
2924 	if (r_idx >= adapter->num_tx_queues)
2925 		r_idx = r_idx % adapter->num_tx_queues;
2926 
2927 	return adapter->tx_ring[r_idx];
2928 }
2929 
2930 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2931 {
2932 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2933 	int cpu = smp_processor_id();
2934 	struct igb_ring *tx_ring;
2935 	struct netdev_queue *nq;
2936 	u32 ret;
2937 
2938 	if (unlikely(!xdpf))
2939 		return IGB_XDP_CONSUMED;
2940 
2941 	/* During program transitions its possible adapter->xdp_prog is assigned
2942 	 * but ring has not been configured yet. In this case simply abort xmit.
2943 	 */
2944 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2945 	if (unlikely(!tx_ring))
2946 		return IGB_XDP_CONSUMED;
2947 
2948 	nq = txring_txq(tx_ring);
2949 	__netif_tx_lock(nq, cpu);
2950 	/* Avoid transmit queue timeout since we share it with the slow path */
2951 	txq_trans_cond_update(nq);
2952 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2953 	__netif_tx_unlock(nq);
2954 
2955 	return ret;
2956 }
2957 
2958 static int igb_xdp_xmit(struct net_device *dev, int n,
2959 			struct xdp_frame **frames, u32 flags)
2960 {
2961 	struct igb_adapter *adapter = netdev_priv(dev);
2962 	int cpu = smp_processor_id();
2963 	struct igb_ring *tx_ring;
2964 	struct netdev_queue *nq;
2965 	int nxmit = 0;
2966 	int i;
2967 
2968 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2969 		return -ENETDOWN;
2970 
2971 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2972 		return -EINVAL;
2973 
2974 	/* During program transitions its possible adapter->xdp_prog is assigned
2975 	 * but ring has not been configured yet. In this case simply abort xmit.
2976 	 */
2977 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2978 	if (unlikely(!tx_ring))
2979 		return -ENXIO;
2980 
2981 	nq = txring_txq(tx_ring);
2982 	__netif_tx_lock(nq, cpu);
2983 
2984 	/* Avoid transmit queue timeout since we share it with the slow path */
2985 	txq_trans_cond_update(nq);
2986 
2987 	for (i = 0; i < n; i++) {
2988 		struct xdp_frame *xdpf = frames[i];
2989 		int err;
2990 
2991 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2992 		if (err != IGB_XDP_TX)
2993 			break;
2994 		nxmit++;
2995 	}
2996 
2997 	__netif_tx_unlock(nq);
2998 
2999 	if (unlikely(flags & XDP_XMIT_FLUSH))
3000 		igb_xdp_ring_update_tail(tx_ring);
3001 
3002 	return nxmit;
3003 }
3004 
3005 static const struct net_device_ops igb_netdev_ops = {
3006 	.ndo_open		= igb_open,
3007 	.ndo_stop		= igb_close,
3008 	.ndo_start_xmit		= igb_xmit_frame,
3009 	.ndo_get_stats64	= igb_get_stats64,
3010 	.ndo_set_rx_mode	= igb_set_rx_mode,
3011 	.ndo_set_mac_address	= igb_set_mac,
3012 	.ndo_change_mtu		= igb_change_mtu,
3013 	.ndo_eth_ioctl		= igb_ioctl,
3014 	.ndo_tx_timeout		= igb_tx_timeout,
3015 	.ndo_validate_addr	= eth_validate_addr,
3016 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3017 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3018 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3019 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3020 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3021 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3022 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3023 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3024 	.ndo_fix_features	= igb_fix_features,
3025 	.ndo_set_features	= igb_set_features,
3026 	.ndo_fdb_add		= igb_ndo_fdb_add,
3027 	.ndo_features_check	= igb_features_check,
3028 	.ndo_setup_tc		= igb_setup_tc,
3029 	.ndo_bpf		= igb_xdp,
3030 	.ndo_xdp_xmit		= igb_xdp_xmit,
3031 };
3032 
3033 /**
3034  * igb_set_fw_version - Configure version string for ethtool
3035  * @adapter: adapter struct
3036  **/
3037 void igb_set_fw_version(struct igb_adapter *adapter)
3038 {
3039 	struct e1000_hw *hw = &adapter->hw;
3040 	struct e1000_fw_version fw;
3041 
3042 	igb_get_fw_version(hw, &fw);
3043 
3044 	switch (hw->mac.type) {
3045 	case e1000_i210:
3046 	case e1000_i211:
3047 		if (!(igb_get_flash_presence_i210(hw))) {
3048 			snprintf(adapter->fw_version,
3049 				 sizeof(adapter->fw_version),
3050 				 "%2d.%2d-%d",
3051 				 fw.invm_major, fw.invm_minor,
3052 				 fw.invm_img_type);
3053 			break;
3054 		}
3055 		fallthrough;
3056 	default:
3057 		/* if option is rom valid, display its version too */
3058 		if (fw.or_valid) {
3059 			snprintf(adapter->fw_version,
3060 				 sizeof(adapter->fw_version),
3061 				 "%d.%d, 0x%08x, %d.%d.%d",
3062 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3063 				 fw.or_major, fw.or_build, fw.or_patch);
3064 		/* no option rom */
3065 		} else if (fw.etrack_id != 0X0000) {
3066 			snprintf(adapter->fw_version,
3067 			    sizeof(adapter->fw_version),
3068 			    "%d.%d, 0x%08x",
3069 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3070 		} else {
3071 		snprintf(adapter->fw_version,
3072 		    sizeof(adapter->fw_version),
3073 		    "%d.%d.%d",
3074 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3075 		}
3076 		break;
3077 	}
3078 }
3079 
3080 /**
3081  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3082  *
3083  * @adapter: adapter struct
3084  **/
3085 static void igb_init_mas(struct igb_adapter *adapter)
3086 {
3087 	struct e1000_hw *hw = &adapter->hw;
3088 	u16 eeprom_data;
3089 
3090 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3091 	switch (hw->bus.func) {
3092 	case E1000_FUNC_0:
3093 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3094 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3095 			netdev_info(adapter->netdev,
3096 				"MAS: Enabling Media Autosense for port %d\n",
3097 				hw->bus.func);
3098 		}
3099 		break;
3100 	case E1000_FUNC_1:
3101 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3102 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3103 			netdev_info(adapter->netdev,
3104 				"MAS: Enabling Media Autosense for port %d\n",
3105 				hw->bus.func);
3106 		}
3107 		break;
3108 	case E1000_FUNC_2:
3109 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3110 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3111 			netdev_info(adapter->netdev,
3112 				"MAS: Enabling Media Autosense for port %d\n",
3113 				hw->bus.func);
3114 		}
3115 		break;
3116 	case E1000_FUNC_3:
3117 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3118 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3119 			netdev_info(adapter->netdev,
3120 				"MAS: Enabling Media Autosense for port %d\n",
3121 				hw->bus.func);
3122 		}
3123 		break;
3124 	default:
3125 		/* Shouldn't get here */
3126 		netdev_err(adapter->netdev,
3127 			"MAS: Invalid port configuration, returning\n");
3128 		break;
3129 	}
3130 }
3131 
3132 /**
3133  *  igb_init_i2c - Init I2C interface
3134  *  @adapter: pointer to adapter structure
3135  **/
3136 static s32 igb_init_i2c(struct igb_adapter *adapter)
3137 {
3138 	struct e1000_hw *hw = &adapter->hw;
3139 	s32 status = 0;
3140 	s32 i2cctl;
3141 
3142 	/* I2C interface supported on i350 devices */
3143 	if (adapter->hw.mac.type != e1000_i350)
3144 		return 0;
3145 
3146 	i2cctl = rd32(E1000_I2CPARAMS);
3147 	i2cctl |= E1000_I2CBB_EN
3148 		| E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3149 		| E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3150 	wr32(E1000_I2CPARAMS, i2cctl);
3151 	wrfl();
3152 
3153 	/* Initialize the i2c bus which is controlled by the registers.
3154 	 * This bus will use the i2c_algo_bit structure that implements
3155 	 * the protocol through toggling of the 4 bits in the register.
3156 	 */
3157 	adapter->i2c_adap.owner = THIS_MODULE;
3158 	adapter->i2c_algo = igb_i2c_algo;
3159 	adapter->i2c_algo.data = adapter;
3160 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3161 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3162 	strscpy(adapter->i2c_adap.name, "igb BB",
3163 		sizeof(adapter->i2c_adap.name));
3164 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3165 	return status;
3166 }
3167 
3168 /**
3169  *  igb_probe - Device Initialization Routine
3170  *  @pdev: PCI device information struct
3171  *  @ent: entry in igb_pci_tbl
3172  *
3173  *  Returns 0 on success, negative on failure
3174  *
3175  *  igb_probe initializes an adapter identified by a pci_dev structure.
3176  *  The OS initialization, configuring of the adapter private structure,
3177  *  and a hardware reset occur.
3178  **/
3179 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3180 {
3181 	struct net_device *netdev;
3182 	struct igb_adapter *adapter;
3183 	struct e1000_hw *hw;
3184 	u16 eeprom_data = 0;
3185 	s32 ret_val;
3186 	static int global_quad_port_a; /* global quad port a indication */
3187 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3188 	u8 part_str[E1000_PBANUM_LENGTH];
3189 	int err;
3190 
3191 	/* Catch broken hardware that put the wrong VF device ID in
3192 	 * the PCIe SR-IOV capability.
3193 	 */
3194 	if (pdev->is_virtfn) {
3195 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3196 			pci_name(pdev), pdev->vendor, pdev->device);
3197 		return -EINVAL;
3198 	}
3199 
3200 	err = pci_enable_device_mem(pdev);
3201 	if (err)
3202 		return err;
3203 
3204 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3205 	if (err) {
3206 		dev_err(&pdev->dev,
3207 			"No usable DMA configuration, aborting\n");
3208 		goto err_dma;
3209 	}
3210 
3211 	err = pci_request_mem_regions(pdev, igb_driver_name);
3212 	if (err)
3213 		goto err_pci_reg;
3214 
3215 	pci_set_master(pdev);
3216 	pci_save_state(pdev);
3217 
3218 	err = -ENOMEM;
3219 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3220 				   IGB_MAX_TX_QUEUES);
3221 	if (!netdev)
3222 		goto err_alloc_etherdev;
3223 
3224 	SET_NETDEV_DEV(netdev, &pdev->dev);
3225 
3226 	pci_set_drvdata(pdev, netdev);
3227 	adapter = netdev_priv(netdev);
3228 	adapter->netdev = netdev;
3229 	adapter->pdev = pdev;
3230 	hw = &adapter->hw;
3231 	hw->back = adapter;
3232 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3233 
3234 	err = -EIO;
3235 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3236 	if (!adapter->io_addr)
3237 		goto err_ioremap;
3238 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3239 	hw->hw_addr = adapter->io_addr;
3240 
3241 	netdev->netdev_ops = &igb_netdev_ops;
3242 	igb_set_ethtool_ops(netdev);
3243 	netdev->watchdog_timeo = 5 * HZ;
3244 
3245 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3246 
3247 	netdev->mem_start = pci_resource_start(pdev, 0);
3248 	netdev->mem_end = pci_resource_end(pdev, 0);
3249 
3250 	/* PCI config space info */
3251 	hw->vendor_id = pdev->vendor;
3252 	hw->device_id = pdev->device;
3253 	hw->revision_id = pdev->revision;
3254 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3255 	hw->subsystem_device_id = pdev->subsystem_device;
3256 
3257 	/* Copy the default MAC, PHY and NVM function pointers */
3258 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3259 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3260 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3261 	/* Initialize skew-specific constants */
3262 	err = ei->get_invariants(hw);
3263 	if (err)
3264 		goto err_sw_init;
3265 
3266 	/* setup the private structure */
3267 	err = igb_sw_init(adapter);
3268 	if (err)
3269 		goto err_sw_init;
3270 
3271 	igb_get_bus_info_pcie(hw);
3272 
3273 	hw->phy.autoneg_wait_to_complete = false;
3274 
3275 	/* Copper options */
3276 	if (hw->phy.media_type == e1000_media_type_copper) {
3277 		hw->phy.mdix = AUTO_ALL_MODES;
3278 		hw->phy.disable_polarity_correction = false;
3279 		hw->phy.ms_type = e1000_ms_hw_default;
3280 	}
3281 
3282 	if (igb_check_reset_block(hw))
3283 		dev_info(&pdev->dev,
3284 			"PHY reset is blocked due to SOL/IDER session.\n");
3285 
3286 	/* features is initialized to 0 in allocation, it might have bits
3287 	 * set by igb_sw_init so we should use an or instead of an
3288 	 * assignment.
3289 	 */
3290 	netdev->features |= NETIF_F_SG |
3291 			    NETIF_F_TSO |
3292 			    NETIF_F_TSO6 |
3293 			    NETIF_F_RXHASH |
3294 			    NETIF_F_RXCSUM |
3295 			    NETIF_F_HW_CSUM;
3296 
3297 	if (hw->mac.type >= e1000_82576)
3298 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3299 
3300 	if (hw->mac.type >= e1000_i350)
3301 		netdev->features |= NETIF_F_HW_TC;
3302 
3303 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3304 				  NETIF_F_GSO_GRE_CSUM | \
3305 				  NETIF_F_GSO_IPXIP4 | \
3306 				  NETIF_F_GSO_IPXIP6 | \
3307 				  NETIF_F_GSO_UDP_TUNNEL | \
3308 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3309 
3310 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3311 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3312 
3313 	/* copy netdev features into list of user selectable features */
3314 	netdev->hw_features |= netdev->features |
3315 			       NETIF_F_HW_VLAN_CTAG_RX |
3316 			       NETIF_F_HW_VLAN_CTAG_TX |
3317 			       NETIF_F_RXALL;
3318 
3319 	if (hw->mac.type >= e1000_i350)
3320 		netdev->hw_features |= NETIF_F_NTUPLE;
3321 
3322 	netdev->features |= NETIF_F_HIGHDMA;
3323 
3324 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3325 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3326 	netdev->hw_enc_features |= netdev->vlan_features;
3327 
3328 	/* set this bit last since it cannot be part of vlan_features */
3329 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3330 			    NETIF_F_HW_VLAN_CTAG_RX |
3331 			    NETIF_F_HW_VLAN_CTAG_TX;
3332 
3333 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3334 
3335 	netdev->priv_flags |= IFF_UNICAST_FLT;
3336 
3337 	/* MTU range: 68 - 9216 */
3338 	netdev->min_mtu = ETH_MIN_MTU;
3339 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3340 
3341 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3342 
3343 	/* before reading the NVM, reset the controller to put the device in a
3344 	 * known good starting state
3345 	 */
3346 	hw->mac.ops.reset_hw(hw);
3347 
3348 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3349 	 * that doesn't contain a checksum
3350 	 */
3351 	switch (hw->mac.type) {
3352 	case e1000_i210:
3353 	case e1000_i211:
3354 		if (igb_get_flash_presence_i210(hw)) {
3355 			if (hw->nvm.ops.validate(hw) < 0) {
3356 				dev_err(&pdev->dev,
3357 					"The NVM Checksum Is Not Valid\n");
3358 				err = -EIO;
3359 				goto err_eeprom;
3360 			}
3361 		}
3362 		break;
3363 	default:
3364 		if (hw->nvm.ops.validate(hw) < 0) {
3365 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3366 			err = -EIO;
3367 			goto err_eeprom;
3368 		}
3369 		break;
3370 	}
3371 
3372 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3373 		/* copy the MAC address out of the NVM */
3374 		if (hw->mac.ops.read_mac_addr(hw))
3375 			dev_err(&pdev->dev, "NVM Read Error\n");
3376 	}
3377 
3378 	eth_hw_addr_set(netdev, hw->mac.addr);
3379 
3380 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3381 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3382 		err = -EIO;
3383 		goto err_eeprom;
3384 	}
3385 
3386 	igb_set_default_mac_filter(adapter);
3387 
3388 	/* get firmware version for ethtool -i */
3389 	igb_set_fw_version(adapter);
3390 
3391 	/* configure RXPBSIZE and TXPBSIZE */
3392 	if (hw->mac.type == e1000_i210) {
3393 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3394 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3395 	}
3396 
3397 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3398 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3399 
3400 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3401 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3402 
3403 	/* Initialize link properties that are user-changeable */
3404 	adapter->fc_autoneg = true;
3405 	hw->mac.autoneg = true;
3406 	hw->phy.autoneg_advertised = 0x2f;
3407 
3408 	hw->fc.requested_mode = e1000_fc_default;
3409 	hw->fc.current_mode = e1000_fc_default;
3410 
3411 	igb_validate_mdi_setting(hw);
3412 
3413 	/* By default, support wake on port A */
3414 	if (hw->bus.func == 0)
3415 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3416 
3417 	/* Check the NVM for wake support on non-port A ports */
3418 	if (hw->mac.type >= e1000_82580)
3419 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3420 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3421 				 &eeprom_data);
3422 	else if (hw->bus.func == 1)
3423 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3424 
3425 	if (eeprom_data & IGB_EEPROM_APME)
3426 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3427 
3428 	/* now that we have the eeprom settings, apply the special cases where
3429 	 * the eeprom may be wrong or the board simply won't support wake on
3430 	 * lan on a particular port
3431 	 */
3432 	switch (pdev->device) {
3433 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3434 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3435 		break;
3436 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3437 	case E1000_DEV_ID_82576_FIBER:
3438 	case E1000_DEV_ID_82576_SERDES:
3439 		/* Wake events only supported on port A for dual fiber
3440 		 * regardless of eeprom setting
3441 		 */
3442 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3443 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3444 		break;
3445 	case E1000_DEV_ID_82576_QUAD_COPPER:
3446 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3447 		/* if quad port adapter, disable WoL on all but port A */
3448 		if (global_quad_port_a != 0)
3449 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3450 		else
3451 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3452 		/* Reset for multiple quad port adapters */
3453 		if (++global_quad_port_a == 4)
3454 			global_quad_port_a = 0;
3455 		break;
3456 	default:
3457 		/* If the device can't wake, don't set software support */
3458 		if (!device_can_wakeup(&adapter->pdev->dev))
3459 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3460 	}
3461 
3462 	/* initialize the wol settings based on the eeprom settings */
3463 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3464 		adapter->wol |= E1000_WUFC_MAG;
3465 
3466 	/* Some vendors want WoL disabled by default, but still supported */
3467 	if ((hw->mac.type == e1000_i350) &&
3468 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3469 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3470 		adapter->wol = 0;
3471 	}
3472 
3473 	/* Some vendors want the ability to Use the EEPROM setting as
3474 	 * enable/disable only, and not for capability
3475 	 */
3476 	if (((hw->mac.type == e1000_i350) ||
3477 	     (hw->mac.type == e1000_i354)) &&
3478 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3479 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3480 		adapter->wol = 0;
3481 	}
3482 	if (hw->mac.type == e1000_i350) {
3483 		if (((pdev->subsystem_device == 0x5001) ||
3484 		     (pdev->subsystem_device == 0x5002)) &&
3485 				(hw->bus.func == 0)) {
3486 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3487 			adapter->wol = 0;
3488 		}
3489 		if (pdev->subsystem_device == 0x1F52)
3490 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3491 	}
3492 
3493 	device_set_wakeup_enable(&adapter->pdev->dev,
3494 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3495 
3496 	/* reset the hardware with the new settings */
3497 	igb_reset(adapter);
3498 
3499 	/* Init the I2C interface */
3500 	err = igb_init_i2c(adapter);
3501 	if (err) {
3502 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3503 		goto err_eeprom;
3504 	}
3505 
3506 	/* let the f/w know that the h/w is now under the control of the
3507 	 * driver.
3508 	 */
3509 	igb_get_hw_control(adapter);
3510 
3511 	strcpy(netdev->name, "eth%d");
3512 	err = register_netdev(netdev);
3513 	if (err)
3514 		goto err_register;
3515 
3516 	/* carrier off reporting is important to ethtool even BEFORE open */
3517 	netif_carrier_off(netdev);
3518 
3519 #ifdef CONFIG_IGB_DCA
3520 	if (dca_add_requester(&pdev->dev) == 0) {
3521 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3522 		dev_info(&pdev->dev, "DCA enabled\n");
3523 		igb_setup_dca(adapter);
3524 	}
3525 
3526 #endif
3527 #ifdef CONFIG_IGB_HWMON
3528 	/* Initialize the thermal sensor on i350 devices. */
3529 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3530 		u16 ets_word;
3531 
3532 		/* Read the NVM to determine if this i350 device supports an
3533 		 * external thermal sensor.
3534 		 */
3535 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3536 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3537 			adapter->ets = true;
3538 		else
3539 			adapter->ets = false;
3540 		if (igb_sysfs_init(adapter))
3541 			dev_err(&pdev->dev,
3542 				"failed to allocate sysfs resources\n");
3543 	} else {
3544 		adapter->ets = false;
3545 	}
3546 #endif
3547 	/* Check if Media Autosense is enabled */
3548 	adapter->ei = *ei;
3549 	if (hw->dev_spec._82575.mas_capable)
3550 		igb_init_mas(adapter);
3551 
3552 	/* do hw tstamp init after resetting */
3553 	igb_ptp_init(adapter);
3554 
3555 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3556 	/* print bus type/speed/width info, not applicable to i354 */
3557 	if (hw->mac.type != e1000_i354) {
3558 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3559 			 netdev->name,
3560 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3561 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3562 			   "unknown"),
3563 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3564 			  "Width x4" :
3565 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3566 			  "Width x2" :
3567 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3568 			  "Width x1" : "unknown"), netdev->dev_addr);
3569 	}
3570 
3571 	if ((hw->mac.type == e1000_82576 &&
3572 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3573 	    (hw->mac.type >= e1000_i210 ||
3574 	     igb_get_flash_presence_i210(hw))) {
3575 		ret_val = igb_read_part_string(hw, part_str,
3576 					       E1000_PBANUM_LENGTH);
3577 	} else {
3578 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3579 	}
3580 
3581 	if (ret_val)
3582 		strcpy(part_str, "Unknown");
3583 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3584 	dev_info(&pdev->dev,
3585 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3586 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3587 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3588 		adapter->num_rx_queues, adapter->num_tx_queues);
3589 	if (hw->phy.media_type == e1000_media_type_copper) {
3590 		switch (hw->mac.type) {
3591 		case e1000_i350:
3592 		case e1000_i210:
3593 		case e1000_i211:
3594 			/* Enable EEE for internal copper PHY devices */
3595 			err = igb_set_eee_i350(hw, true, true);
3596 			if ((!err) &&
3597 			    (!hw->dev_spec._82575.eee_disable)) {
3598 				adapter->eee_advert =
3599 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3600 				adapter->flags |= IGB_FLAG_EEE;
3601 			}
3602 			break;
3603 		case e1000_i354:
3604 			if ((rd32(E1000_CTRL_EXT) &
3605 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3606 				err = igb_set_eee_i354(hw, true, true);
3607 				if ((!err) &&
3608 					(!hw->dev_spec._82575.eee_disable)) {
3609 					adapter->eee_advert =
3610 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3611 					adapter->flags |= IGB_FLAG_EEE;
3612 				}
3613 			}
3614 			break;
3615 		default:
3616 			break;
3617 		}
3618 	}
3619 
3620 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3621 
3622 	pm_runtime_put_noidle(&pdev->dev);
3623 	return 0;
3624 
3625 err_register:
3626 	igb_release_hw_control(adapter);
3627 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3628 err_eeprom:
3629 	if (!igb_check_reset_block(hw))
3630 		igb_reset_phy(hw);
3631 
3632 	if (hw->flash_address)
3633 		iounmap(hw->flash_address);
3634 err_sw_init:
3635 	kfree(adapter->mac_table);
3636 	kfree(adapter->shadow_vfta);
3637 	igb_clear_interrupt_scheme(adapter);
3638 #ifdef CONFIG_PCI_IOV
3639 	igb_disable_sriov(pdev);
3640 #endif
3641 	pci_iounmap(pdev, adapter->io_addr);
3642 err_ioremap:
3643 	free_netdev(netdev);
3644 err_alloc_etherdev:
3645 	pci_release_mem_regions(pdev);
3646 err_pci_reg:
3647 err_dma:
3648 	pci_disable_device(pdev);
3649 	return err;
3650 }
3651 
3652 #ifdef CONFIG_PCI_IOV
3653 static int igb_disable_sriov(struct pci_dev *pdev)
3654 {
3655 	struct net_device *netdev = pci_get_drvdata(pdev);
3656 	struct igb_adapter *adapter = netdev_priv(netdev);
3657 	struct e1000_hw *hw = &adapter->hw;
3658 	unsigned long flags;
3659 
3660 	/* reclaim resources allocated to VFs */
3661 	if (adapter->vf_data) {
3662 		/* disable iov and allow time for transactions to clear */
3663 		if (pci_vfs_assigned(pdev)) {
3664 			dev_warn(&pdev->dev,
3665 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3666 			return -EPERM;
3667 		} else {
3668 			pci_disable_sriov(pdev);
3669 			msleep(500);
3670 		}
3671 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3672 		kfree(adapter->vf_mac_list);
3673 		adapter->vf_mac_list = NULL;
3674 		kfree(adapter->vf_data);
3675 		adapter->vf_data = NULL;
3676 		adapter->vfs_allocated_count = 0;
3677 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3678 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3679 		wrfl();
3680 		msleep(100);
3681 		dev_info(&pdev->dev, "IOV Disabled\n");
3682 
3683 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3684 		adapter->flags |= IGB_FLAG_DMAC;
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3691 {
3692 	struct net_device *netdev = pci_get_drvdata(pdev);
3693 	struct igb_adapter *adapter = netdev_priv(netdev);
3694 	int old_vfs = pci_num_vf(pdev);
3695 	struct vf_mac_filter *mac_list;
3696 	int err = 0;
3697 	int num_vf_mac_filters, i;
3698 
3699 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3700 		err = -EPERM;
3701 		goto out;
3702 	}
3703 	if (!num_vfs)
3704 		goto out;
3705 
3706 	if (old_vfs) {
3707 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3708 			 old_vfs, max_vfs);
3709 		adapter->vfs_allocated_count = old_vfs;
3710 	} else
3711 		adapter->vfs_allocated_count = num_vfs;
3712 
3713 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3714 				sizeof(struct vf_data_storage), GFP_KERNEL);
3715 
3716 	/* if allocation failed then we do not support SR-IOV */
3717 	if (!adapter->vf_data) {
3718 		adapter->vfs_allocated_count = 0;
3719 		err = -ENOMEM;
3720 		goto out;
3721 	}
3722 
3723 	/* Due to the limited number of RAR entries calculate potential
3724 	 * number of MAC filters available for the VFs. Reserve entries
3725 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3726 	 * for each VF for VF MAC.
3727 	 */
3728 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3729 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3730 			      adapter->vfs_allocated_count);
3731 
3732 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3733 				       sizeof(struct vf_mac_filter),
3734 				       GFP_KERNEL);
3735 
3736 	mac_list = adapter->vf_mac_list;
3737 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3738 
3739 	if (adapter->vf_mac_list) {
3740 		/* Initialize list of VF MAC filters */
3741 		for (i = 0; i < num_vf_mac_filters; i++) {
3742 			mac_list->vf = -1;
3743 			mac_list->free = true;
3744 			list_add(&mac_list->l, &adapter->vf_macs.l);
3745 			mac_list++;
3746 		}
3747 	} else {
3748 		/* If we could not allocate memory for the VF MAC filters
3749 		 * we can continue without this feature but warn user.
3750 		 */
3751 		dev_err(&pdev->dev,
3752 			"Unable to allocate memory for VF MAC filter list\n");
3753 	}
3754 
3755 	/* only call pci_enable_sriov() if no VFs are allocated already */
3756 	if (!old_vfs) {
3757 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3758 		if (err)
3759 			goto err_out;
3760 	}
3761 	dev_info(&pdev->dev, "%d VFs allocated\n",
3762 		 adapter->vfs_allocated_count);
3763 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3764 		igb_vf_configure(adapter, i);
3765 
3766 	/* DMA Coalescing is not supported in IOV mode. */
3767 	adapter->flags &= ~IGB_FLAG_DMAC;
3768 	goto out;
3769 
3770 err_out:
3771 	kfree(adapter->vf_mac_list);
3772 	adapter->vf_mac_list = NULL;
3773 	kfree(adapter->vf_data);
3774 	adapter->vf_data = NULL;
3775 	adapter->vfs_allocated_count = 0;
3776 out:
3777 	return err;
3778 }
3779 
3780 #endif
3781 /**
3782  *  igb_remove_i2c - Cleanup  I2C interface
3783  *  @adapter: pointer to adapter structure
3784  **/
3785 static void igb_remove_i2c(struct igb_adapter *adapter)
3786 {
3787 	/* free the adapter bus structure */
3788 	i2c_del_adapter(&adapter->i2c_adap);
3789 }
3790 
3791 /**
3792  *  igb_remove - Device Removal Routine
3793  *  @pdev: PCI device information struct
3794  *
3795  *  igb_remove is called by the PCI subsystem to alert the driver
3796  *  that it should release a PCI device.  The could be caused by a
3797  *  Hot-Plug event, or because the driver is going to be removed from
3798  *  memory.
3799  **/
3800 static void igb_remove(struct pci_dev *pdev)
3801 {
3802 	struct net_device *netdev = pci_get_drvdata(pdev);
3803 	struct igb_adapter *adapter = netdev_priv(netdev);
3804 	struct e1000_hw *hw = &adapter->hw;
3805 
3806 	pm_runtime_get_noresume(&pdev->dev);
3807 #ifdef CONFIG_IGB_HWMON
3808 	igb_sysfs_exit(adapter);
3809 #endif
3810 	igb_remove_i2c(adapter);
3811 	igb_ptp_stop(adapter);
3812 	/* The watchdog timer may be rescheduled, so explicitly
3813 	 * disable watchdog from being rescheduled.
3814 	 */
3815 	set_bit(__IGB_DOWN, &adapter->state);
3816 	del_timer_sync(&adapter->watchdog_timer);
3817 	del_timer_sync(&adapter->phy_info_timer);
3818 
3819 	cancel_work_sync(&adapter->reset_task);
3820 	cancel_work_sync(&adapter->watchdog_task);
3821 
3822 #ifdef CONFIG_IGB_DCA
3823 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3824 		dev_info(&pdev->dev, "DCA disabled\n");
3825 		dca_remove_requester(&pdev->dev);
3826 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3827 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3828 	}
3829 #endif
3830 
3831 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3832 	 * would have already happened in close and is redundant.
3833 	 */
3834 	igb_release_hw_control(adapter);
3835 
3836 #ifdef CONFIG_PCI_IOV
3837 	rtnl_lock();
3838 	igb_disable_sriov(pdev);
3839 	rtnl_unlock();
3840 #endif
3841 
3842 	unregister_netdev(netdev);
3843 
3844 	igb_clear_interrupt_scheme(adapter);
3845 
3846 	pci_iounmap(pdev, adapter->io_addr);
3847 	if (hw->flash_address)
3848 		iounmap(hw->flash_address);
3849 	pci_release_mem_regions(pdev);
3850 
3851 	kfree(adapter->mac_table);
3852 	kfree(adapter->shadow_vfta);
3853 	free_netdev(netdev);
3854 
3855 	pci_disable_device(pdev);
3856 }
3857 
3858 /**
3859  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3860  *  @adapter: board private structure to initialize
3861  *
3862  *  This function initializes the vf specific data storage and then attempts to
3863  *  allocate the VFs.  The reason for ordering it this way is because it is much
3864  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3865  *  the memory for the VFs.
3866  **/
3867 static void igb_probe_vfs(struct igb_adapter *adapter)
3868 {
3869 #ifdef CONFIG_PCI_IOV
3870 	struct pci_dev *pdev = adapter->pdev;
3871 	struct e1000_hw *hw = &adapter->hw;
3872 
3873 	/* Virtualization features not supported on i210 family. */
3874 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3875 		return;
3876 
3877 	/* Of the below we really only want the effect of getting
3878 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3879 	 * igb_enable_sriov() has no effect.
3880 	 */
3881 	igb_set_interrupt_capability(adapter, true);
3882 	igb_reset_interrupt_capability(adapter);
3883 
3884 	pci_sriov_set_totalvfs(pdev, 7);
3885 	igb_enable_sriov(pdev, max_vfs);
3886 
3887 #endif /* CONFIG_PCI_IOV */
3888 }
3889 
3890 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3891 {
3892 	struct e1000_hw *hw = &adapter->hw;
3893 	unsigned int max_rss_queues;
3894 
3895 	/* Determine the maximum number of RSS queues supported. */
3896 	switch (hw->mac.type) {
3897 	case e1000_i211:
3898 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3899 		break;
3900 	case e1000_82575:
3901 	case e1000_i210:
3902 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3903 		break;
3904 	case e1000_i350:
3905 		/* I350 cannot do RSS and SR-IOV at the same time */
3906 		if (!!adapter->vfs_allocated_count) {
3907 			max_rss_queues = 1;
3908 			break;
3909 		}
3910 		fallthrough;
3911 	case e1000_82576:
3912 		if (!!adapter->vfs_allocated_count) {
3913 			max_rss_queues = 2;
3914 			break;
3915 		}
3916 		fallthrough;
3917 	case e1000_82580:
3918 	case e1000_i354:
3919 	default:
3920 		max_rss_queues = IGB_MAX_RX_QUEUES;
3921 		break;
3922 	}
3923 
3924 	return max_rss_queues;
3925 }
3926 
3927 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3928 {
3929 	u32 max_rss_queues;
3930 
3931 	max_rss_queues = igb_get_max_rss_queues(adapter);
3932 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3933 
3934 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3935 }
3936 
3937 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3938 			      const u32 max_rss_queues)
3939 {
3940 	struct e1000_hw *hw = &adapter->hw;
3941 
3942 	/* Determine if we need to pair queues. */
3943 	switch (hw->mac.type) {
3944 	case e1000_82575:
3945 	case e1000_i211:
3946 		/* Device supports enough interrupts without queue pairing. */
3947 		break;
3948 	case e1000_82576:
3949 	case e1000_82580:
3950 	case e1000_i350:
3951 	case e1000_i354:
3952 	case e1000_i210:
3953 	default:
3954 		/* If rss_queues > half of max_rss_queues, pair the queues in
3955 		 * order to conserve interrupts due to limited supply.
3956 		 */
3957 		if (adapter->rss_queues > (max_rss_queues / 2))
3958 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3959 		else
3960 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3961 		break;
3962 	}
3963 }
3964 
3965 /**
3966  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3967  *  @adapter: board private structure to initialize
3968  *
3969  *  igb_sw_init initializes the Adapter private data structure.
3970  *  Fields are initialized based on PCI device information and
3971  *  OS network device settings (MTU size).
3972  **/
3973 static int igb_sw_init(struct igb_adapter *adapter)
3974 {
3975 	struct e1000_hw *hw = &adapter->hw;
3976 	struct net_device *netdev = adapter->netdev;
3977 	struct pci_dev *pdev = adapter->pdev;
3978 
3979 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3980 
3981 	/* set default ring sizes */
3982 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3983 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3984 
3985 	/* set default ITR values */
3986 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3987 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3988 
3989 	/* set default work limits */
3990 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3991 
3992 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3993 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3994 
3995 	spin_lock_init(&adapter->nfc_lock);
3996 	spin_lock_init(&adapter->stats64_lock);
3997 
3998 	/* init spinlock to avoid concurrency of VF resources */
3999 	spin_lock_init(&adapter->vfs_lock);
4000 #ifdef CONFIG_PCI_IOV
4001 	switch (hw->mac.type) {
4002 	case e1000_82576:
4003 	case e1000_i350:
4004 		if (max_vfs > 7) {
4005 			dev_warn(&pdev->dev,
4006 				 "Maximum of 7 VFs per PF, using max\n");
4007 			max_vfs = adapter->vfs_allocated_count = 7;
4008 		} else
4009 			adapter->vfs_allocated_count = max_vfs;
4010 		if (adapter->vfs_allocated_count)
4011 			dev_warn(&pdev->dev,
4012 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4013 		break;
4014 	default:
4015 		break;
4016 	}
4017 #endif /* CONFIG_PCI_IOV */
4018 
4019 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4020 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4021 
4022 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4023 				     sizeof(struct igb_mac_addr),
4024 				     GFP_KERNEL);
4025 	if (!adapter->mac_table)
4026 		return -ENOMEM;
4027 
4028 	igb_probe_vfs(adapter);
4029 
4030 	igb_init_queue_configuration(adapter);
4031 
4032 	/* Setup and initialize a copy of the hw vlan table array */
4033 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4034 				       GFP_KERNEL);
4035 	if (!adapter->shadow_vfta)
4036 		return -ENOMEM;
4037 
4038 	/* This call may decrease the number of queues */
4039 	if (igb_init_interrupt_scheme(adapter, true)) {
4040 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4041 		return -ENOMEM;
4042 	}
4043 
4044 	/* Explicitly disable IRQ since the NIC can be in any state. */
4045 	igb_irq_disable(adapter);
4046 
4047 	if (hw->mac.type >= e1000_i350)
4048 		adapter->flags &= ~IGB_FLAG_DMAC;
4049 
4050 	set_bit(__IGB_DOWN, &adapter->state);
4051 	return 0;
4052 }
4053 
4054 /**
4055  *  __igb_open - Called when a network interface is made active
4056  *  @netdev: network interface device structure
4057  *  @resuming: indicates whether we are in a resume call
4058  *
4059  *  Returns 0 on success, negative value on failure
4060  *
4061  *  The open entry point is called when a network interface is made
4062  *  active by the system (IFF_UP).  At this point all resources needed
4063  *  for transmit and receive operations are allocated, the interrupt
4064  *  handler is registered with the OS, the watchdog timer is started,
4065  *  and the stack is notified that the interface is ready.
4066  **/
4067 static int __igb_open(struct net_device *netdev, bool resuming)
4068 {
4069 	struct igb_adapter *adapter = netdev_priv(netdev);
4070 	struct e1000_hw *hw = &adapter->hw;
4071 	struct pci_dev *pdev = adapter->pdev;
4072 	int err;
4073 	int i;
4074 
4075 	/* disallow open during test */
4076 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4077 		WARN_ON(resuming);
4078 		return -EBUSY;
4079 	}
4080 
4081 	if (!resuming)
4082 		pm_runtime_get_sync(&pdev->dev);
4083 
4084 	netif_carrier_off(netdev);
4085 
4086 	/* allocate transmit descriptors */
4087 	err = igb_setup_all_tx_resources(adapter);
4088 	if (err)
4089 		goto err_setup_tx;
4090 
4091 	/* allocate receive descriptors */
4092 	err = igb_setup_all_rx_resources(adapter);
4093 	if (err)
4094 		goto err_setup_rx;
4095 
4096 	igb_power_up_link(adapter);
4097 
4098 	/* before we allocate an interrupt, we must be ready to handle it.
4099 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4100 	 * as soon as we call pci_request_irq, so we have to setup our
4101 	 * clean_rx handler before we do so.
4102 	 */
4103 	igb_configure(adapter);
4104 
4105 	err = igb_request_irq(adapter);
4106 	if (err)
4107 		goto err_req_irq;
4108 
4109 	/* Notify the stack of the actual queue counts. */
4110 	err = netif_set_real_num_tx_queues(adapter->netdev,
4111 					   adapter->num_tx_queues);
4112 	if (err)
4113 		goto err_set_queues;
4114 
4115 	err = netif_set_real_num_rx_queues(adapter->netdev,
4116 					   adapter->num_rx_queues);
4117 	if (err)
4118 		goto err_set_queues;
4119 
4120 	/* From here on the code is the same as igb_up() */
4121 	clear_bit(__IGB_DOWN, &adapter->state);
4122 
4123 	for (i = 0; i < adapter->num_q_vectors; i++)
4124 		napi_enable(&(adapter->q_vector[i]->napi));
4125 
4126 	/* Clear any pending interrupts. */
4127 	rd32(E1000_TSICR);
4128 	rd32(E1000_ICR);
4129 
4130 	igb_irq_enable(adapter);
4131 
4132 	/* notify VFs that reset has been completed */
4133 	if (adapter->vfs_allocated_count) {
4134 		u32 reg_data = rd32(E1000_CTRL_EXT);
4135 
4136 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4137 		wr32(E1000_CTRL_EXT, reg_data);
4138 	}
4139 
4140 	netif_tx_start_all_queues(netdev);
4141 
4142 	if (!resuming)
4143 		pm_runtime_put(&pdev->dev);
4144 
4145 	/* start the watchdog. */
4146 	hw->mac.get_link_status = 1;
4147 	schedule_work(&adapter->watchdog_task);
4148 
4149 	return 0;
4150 
4151 err_set_queues:
4152 	igb_free_irq(adapter);
4153 err_req_irq:
4154 	igb_release_hw_control(adapter);
4155 	igb_power_down_link(adapter);
4156 	igb_free_all_rx_resources(adapter);
4157 err_setup_rx:
4158 	igb_free_all_tx_resources(adapter);
4159 err_setup_tx:
4160 	igb_reset(adapter);
4161 	if (!resuming)
4162 		pm_runtime_put(&pdev->dev);
4163 
4164 	return err;
4165 }
4166 
4167 int igb_open(struct net_device *netdev)
4168 {
4169 	return __igb_open(netdev, false);
4170 }
4171 
4172 /**
4173  *  __igb_close - Disables a network interface
4174  *  @netdev: network interface device structure
4175  *  @suspending: indicates we are in a suspend call
4176  *
4177  *  Returns 0, this is not allowed to fail
4178  *
4179  *  The close entry point is called when an interface is de-activated
4180  *  by the OS.  The hardware is still under the driver's control, but
4181  *  needs to be disabled.  A global MAC reset is issued to stop the
4182  *  hardware, and all transmit and receive resources are freed.
4183  **/
4184 static int __igb_close(struct net_device *netdev, bool suspending)
4185 {
4186 	struct igb_adapter *adapter = netdev_priv(netdev);
4187 	struct pci_dev *pdev = adapter->pdev;
4188 
4189 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4190 
4191 	if (!suspending)
4192 		pm_runtime_get_sync(&pdev->dev);
4193 
4194 	igb_down(adapter);
4195 	igb_free_irq(adapter);
4196 
4197 	igb_free_all_tx_resources(adapter);
4198 	igb_free_all_rx_resources(adapter);
4199 
4200 	if (!suspending)
4201 		pm_runtime_put_sync(&pdev->dev);
4202 	return 0;
4203 }
4204 
4205 int igb_close(struct net_device *netdev)
4206 {
4207 	if (netif_device_present(netdev) || netdev->dismantle)
4208 		return __igb_close(netdev, false);
4209 	return 0;
4210 }
4211 
4212 /**
4213  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4214  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4215  *
4216  *  Return 0 on success, negative on failure
4217  **/
4218 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4219 {
4220 	struct device *dev = tx_ring->dev;
4221 	int size;
4222 
4223 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4224 
4225 	tx_ring->tx_buffer_info = vmalloc(size);
4226 	if (!tx_ring->tx_buffer_info)
4227 		goto err;
4228 
4229 	/* round up to nearest 4K */
4230 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4231 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4232 
4233 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4234 					   &tx_ring->dma, GFP_KERNEL);
4235 	if (!tx_ring->desc)
4236 		goto err;
4237 
4238 	tx_ring->next_to_use = 0;
4239 	tx_ring->next_to_clean = 0;
4240 
4241 	return 0;
4242 
4243 err:
4244 	vfree(tx_ring->tx_buffer_info);
4245 	tx_ring->tx_buffer_info = NULL;
4246 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4247 	return -ENOMEM;
4248 }
4249 
4250 /**
4251  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4252  *				 (Descriptors) for all queues
4253  *  @adapter: board private structure
4254  *
4255  *  Return 0 on success, negative on failure
4256  **/
4257 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4258 {
4259 	struct pci_dev *pdev = adapter->pdev;
4260 	int i, err = 0;
4261 
4262 	for (i = 0; i < adapter->num_tx_queues; i++) {
4263 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4264 		if (err) {
4265 			dev_err(&pdev->dev,
4266 				"Allocation for Tx Queue %u failed\n", i);
4267 			for (i--; i >= 0; i--)
4268 				igb_free_tx_resources(adapter->tx_ring[i]);
4269 			break;
4270 		}
4271 	}
4272 
4273 	return err;
4274 }
4275 
4276 /**
4277  *  igb_setup_tctl - configure the transmit control registers
4278  *  @adapter: Board private structure
4279  **/
4280 void igb_setup_tctl(struct igb_adapter *adapter)
4281 {
4282 	struct e1000_hw *hw = &adapter->hw;
4283 	u32 tctl;
4284 
4285 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4286 	wr32(E1000_TXDCTL(0), 0);
4287 
4288 	/* Program the Transmit Control Register */
4289 	tctl = rd32(E1000_TCTL);
4290 	tctl &= ~E1000_TCTL_CT;
4291 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4292 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4293 
4294 	igb_config_collision_dist(hw);
4295 
4296 	/* Enable transmits */
4297 	tctl |= E1000_TCTL_EN;
4298 
4299 	wr32(E1000_TCTL, tctl);
4300 }
4301 
4302 /**
4303  *  igb_configure_tx_ring - Configure transmit ring after Reset
4304  *  @adapter: board private structure
4305  *  @ring: tx ring to configure
4306  *
4307  *  Configure a transmit ring after a reset.
4308  **/
4309 void igb_configure_tx_ring(struct igb_adapter *adapter,
4310 			   struct igb_ring *ring)
4311 {
4312 	struct e1000_hw *hw = &adapter->hw;
4313 	u32 txdctl = 0;
4314 	u64 tdba = ring->dma;
4315 	int reg_idx = ring->reg_idx;
4316 
4317 	wr32(E1000_TDLEN(reg_idx),
4318 	     ring->count * sizeof(union e1000_adv_tx_desc));
4319 	wr32(E1000_TDBAL(reg_idx),
4320 	     tdba & 0x00000000ffffffffULL);
4321 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4322 
4323 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4324 	wr32(E1000_TDH(reg_idx), 0);
4325 	writel(0, ring->tail);
4326 
4327 	txdctl |= IGB_TX_PTHRESH;
4328 	txdctl |= IGB_TX_HTHRESH << 8;
4329 	txdctl |= IGB_TX_WTHRESH << 16;
4330 
4331 	/* reinitialize tx_buffer_info */
4332 	memset(ring->tx_buffer_info, 0,
4333 	       sizeof(struct igb_tx_buffer) * ring->count);
4334 
4335 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4336 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4337 }
4338 
4339 /**
4340  *  igb_configure_tx - Configure transmit Unit after Reset
4341  *  @adapter: board private structure
4342  *
4343  *  Configure the Tx unit of the MAC after a reset.
4344  **/
4345 static void igb_configure_tx(struct igb_adapter *adapter)
4346 {
4347 	struct e1000_hw *hw = &adapter->hw;
4348 	int i;
4349 
4350 	/* disable the queues */
4351 	for (i = 0; i < adapter->num_tx_queues; i++)
4352 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4353 
4354 	wrfl();
4355 	usleep_range(10000, 20000);
4356 
4357 	for (i = 0; i < adapter->num_tx_queues; i++)
4358 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4359 }
4360 
4361 /**
4362  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4363  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4364  *
4365  *  Returns 0 on success, negative on failure
4366  **/
4367 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4368 {
4369 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4370 	struct device *dev = rx_ring->dev;
4371 	int size, res;
4372 
4373 	/* XDP RX-queue info */
4374 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4375 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4376 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4377 			       rx_ring->queue_index, 0);
4378 	if (res < 0) {
4379 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4380 			rx_ring->queue_index);
4381 		return res;
4382 	}
4383 
4384 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4385 
4386 	rx_ring->rx_buffer_info = vmalloc(size);
4387 	if (!rx_ring->rx_buffer_info)
4388 		goto err;
4389 
4390 	/* Round up to nearest 4K */
4391 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4392 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4393 
4394 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4395 					   &rx_ring->dma, GFP_KERNEL);
4396 	if (!rx_ring->desc)
4397 		goto err;
4398 
4399 	rx_ring->next_to_alloc = 0;
4400 	rx_ring->next_to_clean = 0;
4401 	rx_ring->next_to_use = 0;
4402 
4403 	rx_ring->xdp_prog = adapter->xdp_prog;
4404 
4405 	return 0;
4406 
4407 err:
4408 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4409 	vfree(rx_ring->rx_buffer_info);
4410 	rx_ring->rx_buffer_info = NULL;
4411 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4412 	return -ENOMEM;
4413 }
4414 
4415 /**
4416  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4417  *				 (Descriptors) for all queues
4418  *  @adapter: board private structure
4419  *
4420  *  Return 0 on success, negative on failure
4421  **/
4422 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4423 {
4424 	struct pci_dev *pdev = adapter->pdev;
4425 	int i, err = 0;
4426 
4427 	for (i = 0; i < adapter->num_rx_queues; i++) {
4428 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4429 		if (err) {
4430 			dev_err(&pdev->dev,
4431 				"Allocation for Rx Queue %u failed\n", i);
4432 			for (i--; i >= 0; i--)
4433 				igb_free_rx_resources(adapter->rx_ring[i]);
4434 			break;
4435 		}
4436 	}
4437 
4438 	return err;
4439 }
4440 
4441 /**
4442  *  igb_setup_mrqc - configure the multiple receive queue control registers
4443  *  @adapter: Board private structure
4444  **/
4445 static void igb_setup_mrqc(struct igb_adapter *adapter)
4446 {
4447 	struct e1000_hw *hw = &adapter->hw;
4448 	u32 mrqc, rxcsum;
4449 	u32 j, num_rx_queues;
4450 	u32 rss_key[10];
4451 
4452 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4453 	for (j = 0; j < 10; j++)
4454 		wr32(E1000_RSSRK(j), rss_key[j]);
4455 
4456 	num_rx_queues = adapter->rss_queues;
4457 
4458 	switch (hw->mac.type) {
4459 	case e1000_82576:
4460 		/* 82576 supports 2 RSS queues for SR-IOV */
4461 		if (adapter->vfs_allocated_count)
4462 			num_rx_queues = 2;
4463 		break;
4464 	default:
4465 		break;
4466 	}
4467 
4468 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4469 		for (j = 0; j < IGB_RETA_SIZE; j++)
4470 			adapter->rss_indir_tbl[j] =
4471 			(j * num_rx_queues) / IGB_RETA_SIZE;
4472 		adapter->rss_indir_tbl_init = num_rx_queues;
4473 	}
4474 	igb_write_rss_indir_tbl(adapter);
4475 
4476 	/* Disable raw packet checksumming so that RSS hash is placed in
4477 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4478 	 * offloads as they are enabled by default
4479 	 */
4480 	rxcsum = rd32(E1000_RXCSUM);
4481 	rxcsum |= E1000_RXCSUM_PCSD;
4482 
4483 	if (adapter->hw.mac.type >= e1000_82576)
4484 		/* Enable Receive Checksum Offload for SCTP */
4485 		rxcsum |= E1000_RXCSUM_CRCOFL;
4486 
4487 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4488 	wr32(E1000_RXCSUM, rxcsum);
4489 
4490 	/* Generate RSS hash based on packet types, TCP/UDP
4491 	 * port numbers and/or IPv4/v6 src and dst addresses
4492 	 */
4493 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4494 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4495 	       E1000_MRQC_RSS_FIELD_IPV6 |
4496 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4497 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4498 
4499 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4500 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4501 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4502 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4503 
4504 	/* If VMDq is enabled then we set the appropriate mode for that, else
4505 	 * we default to RSS so that an RSS hash is calculated per packet even
4506 	 * if we are only using one queue
4507 	 */
4508 	if (adapter->vfs_allocated_count) {
4509 		if (hw->mac.type > e1000_82575) {
4510 			/* Set the default pool for the PF's first queue */
4511 			u32 vtctl = rd32(E1000_VT_CTL);
4512 
4513 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4514 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4515 			vtctl |= adapter->vfs_allocated_count <<
4516 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4517 			wr32(E1000_VT_CTL, vtctl);
4518 		}
4519 		if (adapter->rss_queues > 1)
4520 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4521 		else
4522 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4523 	} else {
4524 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4525 	}
4526 	igb_vmm_control(adapter);
4527 
4528 	wr32(E1000_MRQC, mrqc);
4529 }
4530 
4531 /**
4532  *  igb_setup_rctl - configure the receive control registers
4533  *  @adapter: Board private structure
4534  **/
4535 void igb_setup_rctl(struct igb_adapter *adapter)
4536 {
4537 	struct e1000_hw *hw = &adapter->hw;
4538 	u32 rctl;
4539 
4540 	rctl = rd32(E1000_RCTL);
4541 
4542 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4543 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4544 
4545 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4546 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4547 
4548 	/* enable stripping of CRC. It's unlikely this will break BMC
4549 	 * redirection as it did with e1000. Newer features require
4550 	 * that the HW strips the CRC.
4551 	 */
4552 	rctl |= E1000_RCTL_SECRC;
4553 
4554 	/* disable store bad packets and clear size bits. */
4555 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4556 
4557 	/* enable LPE to allow for reception of jumbo frames */
4558 	rctl |= E1000_RCTL_LPE;
4559 
4560 	/* disable queue 0 to prevent tail write w/o re-config */
4561 	wr32(E1000_RXDCTL(0), 0);
4562 
4563 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4564 	 * queue drop for all VF and PF queues to prevent head of line blocking
4565 	 * if an un-trusted VF does not provide descriptors to hardware.
4566 	 */
4567 	if (adapter->vfs_allocated_count) {
4568 		/* set all queue drop enable bits */
4569 		wr32(E1000_QDE, ALL_QUEUES);
4570 	}
4571 
4572 	/* This is useful for sniffing bad packets. */
4573 	if (adapter->netdev->features & NETIF_F_RXALL) {
4574 		/* UPE and MPE will be handled by normal PROMISC logic
4575 		 * in e1000e_set_rx_mode
4576 		 */
4577 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4578 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4579 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4580 
4581 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4582 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4583 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4584 		 * and that breaks VLANs.
4585 		 */
4586 	}
4587 
4588 	wr32(E1000_RCTL, rctl);
4589 }
4590 
4591 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4592 				   int vfn)
4593 {
4594 	struct e1000_hw *hw = &adapter->hw;
4595 	u32 vmolr;
4596 
4597 	if (size > MAX_JUMBO_FRAME_SIZE)
4598 		size = MAX_JUMBO_FRAME_SIZE;
4599 
4600 	vmolr = rd32(E1000_VMOLR(vfn));
4601 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4602 	vmolr |= size | E1000_VMOLR_LPE;
4603 	wr32(E1000_VMOLR(vfn), vmolr);
4604 
4605 	return 0;
4606 }
4607 
4608 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4609 					 int vfn, bool enable)
4610 {
4611 	struct e1000_hw *hw = &adapter->hw;
4612 	u32 val, reg;
4613 
4614 	if (hw->mac.type < e1000_82576)
4615 		return;
4616 
4617 	if (hw->mac.type == e1000_i350)
4618 		reg = E1000_DVMOLR(vfn);
4619 	else
4620 		reg = E1000_VMOLR(vfn);
4621 
4622 	val = rd32(reg);
4623 	if (enable)
4624 		val |= E1000_VMOLR_STRVLAN;
4625 	else
4626 		val &= ~(E1000_VMOLR_STRVLAN);
4627 	wr32(reg, val);
4628 }
4629 
4630 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4631 				 int vfn, bool aupe)
4632 {
4633 	struct e1000_hw *hw = &adapter->hw;
4634 	u32 vmolr;
4635 
4636 	/* This register exists only on 82576 and newer so if we are older then
4637 	 * we should exit and do nothing
4638 	 */
4639 	if (hw->mac.type < e1000_82576)
4640 		return;
4641 
4642 	vmolr = rd32(E1000_VMOLR(vfn));
4643 	if (aupe)
4644 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4645 	else
4646 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4647 
4648 	/* clear all bits that might not be set */
4649 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4650 
4651 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4652 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4653 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4654 	 * multicast packets
4655 	 */
4656 	if (vfn <= adapter->vfs_allocated_count)
4657 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4658 
4659 	wr32(E1000_VMOLR(vfn), vmolr);
4660 }
4661 
4662 /**
4663  *  igb_setup_srrctl - configure the split and replication receive control
4664  *                     registers
4665  *  @adapter: Board private structure
4666  *  @ring: receive ring to be configured
4667  **/
4668 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4669 {
4670 	struct e1000_hw *hw = &adapter->hw;
4671 	int reg_idx = ring->reg_idx;
4672 	u32 srrctl = 0;
4673 
4674 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4675 	if (ring_uses_large_buffer(ring))
4676 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4677 	else
4678 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4679 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4680 	if (hw->mac.type >= e1000_82580)
4681 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4682 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4683 	 * queues and rx flow control is disabled
4684 	 */
4685 	if (adapter->vfs_allocated_count ||
4686 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4687 	     adapter->num_rx_queues > 1))
4688 		srrctl |= E1000_SRRCTL_DROP_EN;
4689 
4690 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4691 }
4692 
4693 /**
4694  *  igb_configure_rx_ring - Configure a receive ring after Reset
4695  *  @adapter: board private structure
4696  *  @ring: receive ring to be configured
4697  *
4698  *  Configure the Rx unit of the MAC after a reset.
4699  **/
4700 void igb_configure_rx_ring(struct igb_adapter *adapter,
4701 			   struct igb_ring *ring)
4702 {
4703 	struct e1000_hw *hw = &adapter->hw;
4704 	union e1000_adv_rx_desc *rx_desc;
4705 	u64 rdba = ring->dma;
4706 	int reg_idx = ring->reg_idx;
4707 	u32 rxdctl = 0;
4708 
4709 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4710 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4711 					   MEM_TYPE_PAGE_SHARED, NULL));
4712 
4713 	/* disable the queue */
4714 	wr32(E1000_RXDCTL(reg_idx), 0);
4715 
4716 	/* Set DMA base address registers */
4717 	wr32(E1000_RDBAL(reg_idx),
4718 	     rdba & 0x00000000ffffffffULL);
4719 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4720 	wr32(E1000_RDLEN(reg_idx),
4721 	     ring->count * sizeof(union e1000_adv_rx_desc));
4722 
4723 	/* initialize head and tail */
4724 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4725 	wr32(E1000_RDH(reg_idx), 0);
4726 	writel(0, ring->tail);
4727 
4728 	/* set descriptor configuration */
4729 	igb_setup_srrctl(adapter, ring);
4730 
4731 	/* set filtering for VMDQ pools */
4732 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4733 
4734 	rxdctl |= IGB_RX_PTHRESH;
4735 	rxdctl |= IGB_RX_HTHRESH << 8;
4736 	rxdctl |= IGB_RX_WTHRESH << 16;
4737 
4738 	/* initialize rx_buffer_info */
4739 	memset(ring->rx_buffer_info, 0,
4740 	       sizeof(struct igb_rx_buffer) * ring->count);
4741 
4742 	/* initialize Rx descriptor 0 */
4743 	rx_desc = IGB_RX_DESC(ring, 0);
4744 	rx_desc->wb.upper.length = 0;
4745 
4746 	/* enable receive descriptor fetching */
4747 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4748 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4749 }
4750 
4751 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4752 				  struct igb_ring *rx_ring)
4753 {
4754 	/* set build_skb and buffer size flags */
4755 	clear_ring_build_skb_enabled(rx_ring);
4756 	clear_ring_uses_large_buffer(rx_ring);
4757 
4758 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4759 		return;
4760 
4761 	set_ring_build_skb_enabled(rx_ring);
4762 
4763 #if (PAGE_SIZE < 8192)
4764 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4765 		return;
4766 
4767 	set_ring_uses_large_buffer(rx_ring);
4768 #endif
4769 }
4770 
4771 /**
4772  *  igb_configure_rx - Configure receive Unit after Reset
4773  *  @adapter: board private structure
4774  *
4775  *  Configure the Rx unit of the MAC after a reset.
4776  **/
4777 static void igb_configure_rx(struct igb_adapter *adapter)
4778 {
4779 	int i;
4780 
4781 	/* set the correct pool for the PF default MAC address in entry 0 */
4782 	igb_set_default_mac_filter(adapter);
4783 
4784 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4785 	 * the Base and Length of the Rx Descriptor Ring
4786 	 */
4787 	for (i = 0; i < adapter->num_rx_queues; i++) {
4788 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4789 
4790 		igb_set_rx_buffer_len(adapter, rx_ring);
4791 		igb_configure_rx_ring(adapter, rx_ring);
4792 	}
4793 }
4794 
4795 /**
4796  *  igb_free_tx_resources - Free Tx Resources per Queue
4797  *  @tx_ring: Tx descriptor ring for a specific queue
4798  *
4799  *  Free all transmit software resources
4800  **/
4801 void igb_free_tx_resources(struct igb_ring *tx_ring)
4802 {
4803 	igb_clean_tx_ring(tx_ring);
4804 
4805 	vfree(tx_ring->tx_buffer_info);
4806 	tx_ring->tx_buffer_info = NULL;
4807 
4808 	/* if not set, then don't free */
4809 	if (!tx_ring->desc)
4810 		return;
4811 
4812 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4813 			  tx_ring->desc, tx_ring->dma);
4814 
4815 	tx_ring->desc = NULL;
4816 }
4817 
4818 /**
4819  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4820  *  @adapter: board private structure
4821  *
4822  *  Free all transmit software resources
4823  **/
4824 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4825 {
4826 	int i;
4827 
4828 	for (i = 0; i < adapter->num_tx_queues; i++)
4829 		if (adapter->tx_ring[i])
4830 			igb_free_tx_resources(adapter->tx_ring[i]);
4831 }
4832 
4833 /**
4834  *  igb_clean_tx_ring - Free Tx Buffers
4835  *  @tx_ring: ring to be cleaned
4836  **/
4837 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4838 {
4839 	u16 i = tx_ring->next_to_clean;
4840 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4841 
4842 	while (i != tx_ring->next_to_use) {
4843 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4844 
4845 		/* Free all the Tx ring sk_buffs or xdp frames */
4846 		if (tx_buffer->type == IGB_TYPE_SKB)
4847 			dev_kfree_skb_any(tx_buffer->skb);
4848 		else
4849 			xdp_return_frame(tx_buffer->xdpf);
4850 
4851 		/* unmap skb header data */
4852 		dma_unmap_single(tx_ring->dev,
4853 				 dma_unmap_addr(tx_buffer, dma),
4854 				 dma_unmap_len(tx_buffer, len),
4855 				 DMA_TO_DEVICE);
4856 
4857 		/* check for eop_desc to determine the end of the packet */
4858 		eop_desc = tx_buffer->next_to_watch;
4859 		tx_desc = IGB_TX_DESC(tx_ring, i);
4860 
4861 		/* unmap remaining buffers */
4862 		while (tx_desc != eop_desc) {
4863 			tx_buffer++;
4864 			tx_desc++;
4865 			i++;
4866 			if (unlikely(i == tx_ring->count)) {
4867 				i = 0;
4868 				tx_buffer = tx_ring->tx_buffer_info;
4869 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4870 			}
4871 
4872 			/* unmap any remaining paged data */
4873 			if (dma_unmap_len(tx_buffer, len))
4874 				dma_unmap_page(tx_ring->dev,
4875 					       dma_unmap_addr(tx_buffer, dma),
4876 					       dma_unmap_len(tx_buffer, len),
4877 					       DMA_TO_DEVICE);
4878 		}
4879 
4880 		tx_buffer->next_to_watch = NULL;
4881 
4882 		/* move us one more past the eop_desc for start of next pkt */
4883 		tx_buffer++;
4884 		i++;
4885 		if (unlikely(i == tx_ring->count)) {
4886 			i = 0;
4887 			tx_buffer = tx_ring->tx_buffer_info;
4888 		}
4889 	}
4890 
4891 	/* reset BQL for queue */
4892 	netdev_tx_reset_queue(txring_txq(tx_ring));
4893 
4894 	/* reset next_to_use and next_to_clean */
4895 	tx_ring->next_to_use = 0;
4896 	tx_ring->next_to_clean = 0;
4897 }
4898 
4899 /**
4900  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4901  *  @adapter: board private structure
4902  **/
4903 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4904 {
4905 	int i;
4906 
4907 	for (i = 0; i < adapter->num_tx_queues; i++)
4908 		if (adapter->tx_ring[i])
4909 			igb_clean_tx_ring(adapter->tx_ring[i]);
4910 }
4911 
4912 /**
4913  *  igb_free_rx_resources - Free Rx Resources
4914  *  @rx_ring: ring to clean the resources from
4915  *
4916  *  Free all receive software resources
4917  **/
4918 void igb_free_rx_resources(struct igb_ring *rx_ring)
4919 {
4920 	igb_clean_rx_ring(rx_ring);
4921 
4922 	rx_ring->xdp_prog = NULL;
4923 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4924 	vfree(rx_ring->rx_buffer_info);
4925 	rx_ring->rx_buffer_info = NULL;
4926 
4927 	/* if not set, then don't free */
4928 	if (!rx_ring->desc)
4929 		return;
4930 
4931 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4932 			  rx_ring->desc, rx_ring->dma);
4933 
4934 	rx_ring->desc = NULL;
4935 }
4936 
4937 /**
4938  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4939  *  @adapter: board private structure
4940  *
4941  *  Free all receive software resources
4942  **/
4943 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4944 {
4945 	int i;
4946 
4947 	for (i = 0; i < adapter->num_rx_queues; i++)
4948 		if (adapter->rx_ring[i])
4949 			igb_free_rx_resources(adapter->rx_ring[i]);
4950 }
4951 
4952 /**
4953  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4954  *  @rx_ring: ring to free buffers from
4955  **/
4956 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4957 {
4958 	u16 i = rx_ring->next_to_clean;
4959 
4960 	dev_kfree_skb(rx_ring->skb);
4961 	rx_ring->skb = NULL;
4962 
4963 	/* Free all the Rx ring sk_buffs */
4964 	while (i != rx_ring->next_to_alloc) {
4965 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4966 
4967 		/* Invalidate cache lines that may have been written to by
4968 		 * device so that we avoid corrupting memory.
4969 		 */
4970 		dma_sync_single_range_for_cpu(rx_ring->dev,
4971 					      buffer_info->dma,
4972 					      buffer_info->page_offset,
4973 					      igb_rx_bufsz(rx_ring),
4974 					      DMA_FROM_DEVICE);
4975 
4976 		/* free resources associated with mapping */
4977 		dma_unmap_page_attrs(rx_ring->dev,
4978 				     buffer_info->dma,
4979 				     igb_rx_pg_size(rx_ring),
4980 				     DMA_FROM_DEVICE,
4981 				     IGB_RX_DMA_ATTR);
4982 		__page_frag_cache_drain(buffer_info->page,
4983 					buffer_info->pagecnt_bias);
4984 
4985 		i++;
4986 		if (i == rx_ring->count)
4987 			i = 0;
4988 	}
4989 
4990 	rx_ring->next_to_alloc = 0;
4991 	rx_ring->next_to_clean = 0;
4992 	rx_ring->next_to_use = 0;
4993 }
4994 
4995 /**
4996  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4997  *  @adapter: board private structure
4998  **/
4999 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5000 {
5001 	int i;
5002 
5003 	for (i = 0; i < adapter->num_rx_queues; i++)
5004 		if (adapter->rx_ring[i])
5005 			igb_clean_rx_ring(adapter->rx_ring[i]);
5006 }
5007 
5008 /**
5009  *  igb_set_mac - Change the Ethernet Address of the NIC
5010  *  @netdev: network interface device structure
5011  *  @p: pointer to an address structure
5012  *
5013  *  Returns 0 on success, negative on failure
5014  **/
5015 static int igb_set_mac(struct net_device *netdev, void *p)
5016 {
5017 	struct igb_adapter *adapter = netdev_priv(netdev);
5018 	struct e1000_hw *hw = &adapter->hw;
5019 	struct sockaddr *addr = p;
5020 
5021 	if (!is_valid_ether_addr(addr->sa_data))
5022 		return -EADDRNOTAVAIL;
5023 
5024 	eth_hw_addr_set(netdev, addr->sa_data);
5025 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5026 
5027 	/* set the correct pool for the new PF MAC address in entry 0 */
5028 	igb_set_default_mac_filter(adapter);
5029 
5030 	return 0;
5031 }
5032 
5033 /**
5034  *  igb_write_mc_addr_list - write multicast addresses to MTA
5035  *  @netdev: network interface device structure
5036  *
5037  *  Writes multicast address list to the MTA hash table.
5038  *  Returns: -ENOMEM on failure
5039  *           0 on no addresses written
5040  *           X on writing X addresses to MTA
5041  **/
5042 static int igb_write_mc_addr_list(struct net_device *netdev)
5043 {
5044 	struct igb_adapter *adapter = netdev_priv(netdev);
5045 	struct e1000_hw *hw = &adapter->hw;
5046 	struct netdev_hw_addr *ha;
5047 	u8  *mta_list;
5048 	int i;
5049 
5050 	if (netdev_mc_empty(netdev)) {
5051 		/* nothing to program, so clear mc list */
5052 		igb_update_mc_addr_list(hw, NULL, 0);
5053 		igb_restore_vf_multicasts(adapter);
5054 		return 0;
5055 	}
5056 
5057 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5058 	if (!mta_list)
5059 		return -ENOMEM;
5060 
5061 	/* The shared function expects a packed array of only addresses. */
5062 	i = 0;
5063 	netdev_for_each_mc_addr(ha, netdev)
5064 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5065 
5066 	igb_update_mc_addr_list(hw, mta_list, i);
5067 	kfree(mta_list);
5068 
5069 	return netdev_mc_count(netdev);
5070 }
5071 
5072 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5073 {
5074 	struct e1000_hw *hw = &adapter->hw;
5075 	u32 i, pf_id;
5076 
5077 	switch (hw->mac.type) {
5078 	case e1000_i210:
5079 	case e1000_i211:
5080 	case e1000_i350:
5081 		/* VLAN filtering needed for VLAN prio filter */
5082 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5083 			break;
5084 		fallthrough;
5085 	case e1000_82576:
5086 	case e1000_82580:
5087 	case e1000_i354:
5088 		/* VLAN filtering needed for pool filtering */
5089 		if (adapter->vfs_allocated_count)
5090 			break;
5091 		fallthrough;
5092 	default:
5093 		return 1;
5094 	}
5095 
5096 	/* We are already in VLAN promisc, nothing to do */
5097 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5098 		return 0;
5099 
5100 	if (!adapter->vfs_allocated_count)
5101 		goto set_vfta;
5102 
5103 	/* Add PF to all active pools */
5104 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5105 
5106 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5107 		u32 vlvf = rd32(E1000_VLVF(i));
5108 
5109 		vlvf |= BIT(pf_id);
5110 		wr32(E1000_VLVF(i), vlvf);
5111 	}
5112 
5113 set_vfta:
5114 	/* Set all bits in the VLAN filter table array */
5115 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5116 		hw->mac.ops.write_vfta(hw, i, ~0U);
5117 
5118 	/* Set flag so we don't redo unnecessary work */
5119 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5120 
5121 	return 0;
5122 }
5123 
5124 #define VFTA_BLOCK_SIZE 8
5125 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5126 {
5127 	struct e1000_hw *hw = &adapter->hw;
5128 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5129 	u32 vid_start = vfta_offset * 32;
5130 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5131 	u32 i, vid, word, bits, pf_id;
5132 
5133 	/* guarantee that we don't scrub out management VLAN */
5134 	vid = adapter->mng_vlan_id;
5135 	if (vid >= vid_start && vid < vid_end)
5136 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5137 
5138 	if (!adapter->vfs_allocated_count)
5139 		goto set_vfta;
5140 
5141 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5142 
5143 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5144 		u32 vlvf = rd32(E1000_VLVF(i));
5145 
5146 		/* pull VLAN ID from VLVF */
5147 		vid = vlvf & VLAN_VID_MASK;
5148 
5149 		/* only concern ourselves with a certain range */
5150 		if (vid < vid_start || vid >= vid_end)
5151 			continue;
5152 
5153 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5154 			/* record VLAN ID in VFTA */
5155 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5156 
5157 			/* if PF is part of this then continue */
5158 			if (test_bit(vid, adapter->active_vlans))
5159 				continue;
5160 		}
5161 
5162 		/* remove PF from the pool */
5163 		bits = ~BIT(pf_id);
5164 		bits &= rd32(E1000_VLVF(i));
5165 		wr32(E1000_VLVF(i), bits);
5166 	}
5167 
5168 set_vfta:
5169 	/* extract values from active_vlans and write back to VFTA */
5170 	for (i = VFTA_BLOCK_SIZE; i--;) {
5171 		vid = (vfta_offset + i) * 32;
5172 		word = vid / BITS_PER_LONG;
5173 		bits = vid % BITS_PER_LONG;
5174 
5175 		vfta[i] |= adapter->active_vlans[word] >> bits;
5176 
5177 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5178 	}
5179 }
5180 
5181 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5182 {
5183 	u32 i;
5184 
5185 	/* We are not in VLAN promisc, nothing to do */
5186 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5187 		return;
5188 
5189 	/* Set flag so we don't redo unnecessary work */
5190 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5191 
5192 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5193 		igb_scrub_vfta(adapter, i);
5194 }
5195 
5196 /**
5197  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5198  *  @netdev: network interface device structure
5199  *
5200  *  The set_rx_mode entry point is called whenever the unicast or multicast
5201  *  address lists or the network interface flags are updated.  This routine is
5202  *  responsible for configuring the hardware for proper unicast, multicast,
5203  *  promiscuous mode, and all-multi behavior.
5204  **/
5205 static void igb_set_rx_mode(struct net_device *netdev)
5206 {
5207 	struct igb_adapter *adapter = netdev_priv(netdev);
5208 	struct e1000_hw *hw = &adapter->hw;
5209 	unsigned int vfn = adapter->vfs_allocated_count;
5210 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5211 	int count;
5212 
5213 	/* Check for Promiscuous and All Multicast modes */
5214 	if (netdev->flags & IFF_PROMISC) {
5215 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5216 		vmolr |= E1000_VMOLR_MPME;
5217 
5218 		/* enable use of UTA filter to force packets to default pool */
5219 		if (hw->mac.type == e1000_82576)
5220 			vmolr |= E1000_VMOLR_ROPE;
5221 	} else {
5222 		if (netdev->flags & IFF_ALLMULTI) {
5223 			rctl |= E1000_RCTL_MPE;
5224 			vmolr |= E1000_VMOLR_MPME;
5225 		} else {
5226 			/* Write addresses to the MTA, if the attempt fails
5227 			 * then we should just turn on promiscuous mode so
5228 			 * that we can at least receive multicast traffic
5229 			 */
5230 			count = igb_write_mc_addr_list(netdev);
5231 			if (count < 0) {
5232 				rctl |= E1000_RCTL_MPE;
5233 				vmolr |= E1000_VMOLR_MPME;
5234 			} else if (count) {
5235 				vmolr |= E1000_VMOLR_ROMPE;
5236 			}
5237 		}
5238 	}
5239 
5240 	/* Write addresses to available RAR registers, if there is not
5241 	 * sufficient space to store all the addresses then enable
5242 	 * unicast promiscuous mode
5243 	 */
5244 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5245 		rctl |= E1000_RCTL_UPE;
5246 		vmolr |= E1000_VMOLR_ROPE;
5247 	}
5248 
5249 	/* enable VLAN filtering by default */
5250 	rctl |= E1000_RCTL_VFE;
5251 
5252 	/* disable VLAN filtering for modes that require it */
5253 	if ((netdev->flags & IFF_PROMISC) ||
5254 	    (netdev->features & NETIF_F_RXALL)) {
5255 		/* if we fail to set all rules then just clear VFE */
5256 		if (igb_vlan_promisc_enable(adapter))
5257 			rctl &= ~E1000_RCTL_VFE;
5258 	} else {
5259 		igb_vlan_promisc_disable(adapter);
5260 	}
5261 
5262 	/* update state of unicast, multicast, and VLAN filtering modes */
5263 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5264 				     E1000_RCTL_VFE);
5265 	wr32(E1000_RCTL, rctl);
5266 
5267 #if (PAGE_SIZE < 8192)
5268 	if (!adapter->vfs_allocated_count) {
5269 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5270 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5271 	}
5272 #endif
5273 	wr32(E1000_RLPML, rlpml);
5274 
5275 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5276 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5277 	 * we will have issues with VLAN tag stripping not being done for frames
5278 	 * that are only arriving because we are the default pool
5279 	 */
5280 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5281 		return;
5282 
5283 	/* set UTA to appropriate mode */
5284 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5285 
5286 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5287 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5288 
5289 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5290 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5291 #if (PAGE_SIZE < 8192)
5292 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5293 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5294 	else
5295 #endif
5296 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5297 	vmolr |= E1000_VMOLR_LPE;
5298 
5299 	wr32(E1000_VMOLR(vfn), vmolr);
5300 
5301 	igb_restore_vf_multicasts(adapter);
5302 }
5303 
5304 static void igb_check_wvbr(struct igb_adapter *adapter)
5305 {
5306 	struct e1000_hw *hw = &adapter->hw;
5307 	u32 wvbr = 0;
5308 
5309 	switch (hw->mac.type) {
5310 	case e1000_82576:
5311 	case e1000_i350:
5312 		wvbr = rd32(E1000_WVBR);
5313 		if (!wvbr)
5314 			return;
5315 		break;
5316 	default:
5317 		break;
5318 	}
5319 
5320 	adapter->wvbr |= wvbr;
5321 }
5322 
5323 #define IGB_STAGGERED_QUEUE_OFFSET 8
5324 
5325 static void igb_spoof_check(struct igb_adapter *adapter)
5326 {
5327 	int j;
5328 
5329 	if (!adapter->wvbr)
5330 		return;
5331 
5332 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5333 		if (adapter->wvbr & BIT(j) ||
5334 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5335 			dev_warn(&adapter->pdev->dev,
5336 				"Spoof event(s) detected on VF %d\n", j);
5337 			adapter->wvbr &=
5338 				~(BIT(j) |
5339 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5340 		}
5341 	}
5342 }
5343 
5344 /* Need to wait a few seconds after link up to get diagnostic information from
5345  * the phy
5346  */
5347 static void igb_update_phy_info(struct timer_list *t)
5348 {
5349 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5350 	igb_get_phy_info(&adapter->hw);
5351 }
5352 
5353 /**
5354  *  igb_has_link - check shared code for link and determine up/down
5355  *  @adapter: pointer to driver private info
5356  **/
5357 bool igb_has_link(struct igb_adapter *adapter)
5358 {
5359 	struct e1000_hw *hw = &adapter->hw;
5360 	bool link_active = false;
5361 
5362 	/* get_link_status is set on LSC (link status) interrupt or
5363 	 * rx sequence error interrupt.  get_link_status will stay
5364 	 * false until the e1000_check_for_link establishes link
5365 	 * for copper adapters ONLY
5366 	 */
5367 	switch (hw->phy.media_type) {
5368 	case e1000_media_type_copper:
5369 		if (!hw->mac.get_link_status)
5370 			return true;
5371 		fallthrough;
5372 	case e1000_media_type_internal_serdes:
5373 		hw->mac.ops.check_for_link(hw);
5374 		link_active = !hw->mac.get_link_status;
5375 		break;
5376 	default:
5377 	case e1000_media_type_unknown:
5378 		break;
5379 	}
5380 
5381 	if (((hw->mac.type == e1000_i210) ||
5382 	     (hw->mac.type == e1000_i211)) &&
5383 	     (hw->phy.id == I210_I_PHY_ID)) {
5384 		if (!netif_carrier_ok(adapter->netdev)) {
5385 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5386 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5387 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5388 			adapter->link_check_timeout = jiffies;
5389 		}
5390 	}
5391 
5392 	return link_active;
5393 }
5394 
5395 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5396 {
5397 	bool ret = false;
5398 	u32 ctrl_ext, thstat;
5399 
5400 	/* check for thermal sensor event on i350 copper only */
5401 	if (hw->mac.type == e1000_i350) {
5402 		thstat = rd32(E1000_THSTAT);
5403 		ctrl_ext = rd32(E1000_CTRL_EXT);
5404 
5405 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5406 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5407 			ret = !!(thstat & event);
5408 	}
5409 
5410 	return ret;
5411 }
5412 
5413 /**
5414  *  igb_check_lvmmc - check for malformed packets received
5415  *  and indicated in LVMMC register
5416  *  @adapter: pointer to adapter
5417  **/
5418 static void igb_check_lvmmc(struct igb_adapter *adapter)
5419 {
5420 	struct e1000_hw *hw = &adapter->hw;
5421 	u32 lvmmc;
5422 
5423 	lvmmc = rd32(E1000_LVMMC);
5424 	if (lvmmc) {
5425 		if (unlikely(net_ratelimit())) {
5426 			netdev_warn(adapter->netdev,
5427 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5428 				    lvmmc);
5429 		}
5430 	}
5431 }
5432 
5433 /**
5434  *  igb_watchdog - Timer Call-back
5435  *  @t: pointer to timer_list containing our private info pointer
5436  **/
5437 static void igb_watchdog(struct timer_list *t)
5438 {
5439 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5440 	/* Do the rest outside of interrupt context */
5441 	schedule_work(&adapter->watchdog_task);
5442 }
5443 
5444 static void igb_watchdog_task(struct work_struct *work)
5445 {
5446 	struct igb_adapter *adapter = container_of(work,
5447 						   struct igb_adapter,
5448 						   watchdog_task);
5449 	struct e1000_hw *hw = &adapter->hw;
5450 	struct e1000_phy_info *phy = &hw->phy;
5451 	struct net_device *netdev = adapter->netdev;
5452 	u32 link;
5453 	int i;
5454 	u32 connsw;
5455 	u16 phy_data, retry_count = 20;
5456 
5457 	link = igb_has_link(adapter);
5458 
5459 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5460 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5461 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5462 		else
5463 			link = false;
5464 	}
5465 
5466 	/* Force link down if we have fiber to swap to */
5467 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5468 		if (hw->phy.media_type == e1000_media_type_copper) {
5469 			connsw = rd32(E1000_CONNSW);
5470 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5471 				link = 0;
5472 		}
5473 	}
5474 	if (link) {
5475 		/* Perform a reset if the media type changed. */
5476 		if (hw->dev_spec._82575.media_changed) {
5477 			hw->dev_spec._82575.media_changed = false;
5478 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5479 			igb_reset(adapter);
5480 		}
5481 		/* Cancel scheduled suspend requests. */
5482 		pm_runtime_resume(netdev->dev.parent);
5483 
5484 		if (!netif_carrier_ok(netdev)) {
5485 			u32 ctrl;
5486 
5487 			hw->mac.ops.get_speed_and_duplex(hw,
5488 							 &adapter->link_speed,
5489 							 &adapter->link_duplex);
5490 
5491 			ctrl = rd32(E1000_CTRL);
5492 			/* Links status message must follow this format */
5493 			netdev_info(netdev,
5494 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5495 			       netdev->name,
5496 			       adapter->link_speed,
5497 			       adapter->link_duplex == FULL_DUPLEX ?
5498 			       "Full" : "Half",
5499 			       (ctrl & E1000_CTRL_TFCE) &&
5500 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5501 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5502 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5503 
5504 			/* disable EEE if enabled */
5505 			if ((adapter->flags & IGB_FLAG_EEE) &&
5506 				(adapter->link_duplex == HALF_DUPLEX)) {
5507 				dev_info(&adapter->pdev->dev,
5508 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5509 				adapter->hw.dev_spec._82575.eee_disable = true;
5510 				adapter->flags &= ~IGB_FLAG_EEE;
5511 			}
5512 
5513 			/* check if SmartSpeed worked */
5514 			igb_check_downshift(hw);
5515 			if (phy->speed_downgraded)
5516 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5517 
5518 			/* check for thermal sensor event */
5519 			if (igb_thermal_sensor_event(hw,
5520 			    E1000_THSTAT_LINK_THROTTLE))
5521 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5522 
5523 			/* adjust timeout factor according to speed/duplex */
5524 			adapter->tx_timeout_factor = 1;
5525 			switch (adapter->link_speed) {
5526 			case SPEED_10:
5527 				adapter->tx_timeout_factor = 14;
5528 				break;
5529 			case SPEED_100:
5530 				/* maybe add some timeout factor ? */
5531 				break;
5532 			}
5533 
5534 			if (adapter->link_speed != SPEED_1000 ||
5535 			    !hw->phy.ops.read_reg)
5536 				goto no_wait;
5537 
5538 			/* wait for Remote receiver status OK */
5539 retry_read_status:
5540 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5541 					      &phy_data)) {
5542 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5543 				    retry_count) {
5544 					msleep(100);
5545 					retry_count--;
5546 					goto retry_read_status;
5547 				} else if (!retry_count) {
5548 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5549 				}
5550 			} else {
5551 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5552 			}
5553 no_wait:
5554 			netif_carrier_on(netdev);
5555 
5556 			igb_ping_all_vfs(adapter);
5557 			igb_check_vf_rate_limit(adapter);
5558 
5559 			/* link state has changed, schedule phy info update */
5560 			if (!test_bit(__IGB_DOWN, &adapter->state))
5561 				mod_timer(&adapter->phy_info_timer,
5562 					  round_jiffies(jiffies + 2 * HZ));
5563 		}
5564 	} else {
5565 		if (netif_carrier_ok(netdev)) {
5566 			adapter->link_speed = 0;
5567 			adapter->link_duplex = 0;
5568 
5569 			/* check for thermal sensor event */
5570 			if (igb_thermal_sensor_event(hw,
5571 			    E1000_THSTAT_PWR_DOWN)) {
5572 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5573 			}
5574 
5575 			/* Links status message must follow this format */
5576 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5577 			       netdev->name);
5578 			netif_carrier_off(netdev);
5579 
5580 			igb_ping_all_vfs(adapter);
5581 
5582 			/* link state has changed, schedule phy info update */
5583 			if (!test_bit(__IGB_DOWN, &adapter->state))
5584 				mod_timer(&adapter->phy_info_timer,
5585 					  round_jiffies(jiffies + 2 * HZ));
5586 
5587 			/* link is down, time to check for alternate media */
5588 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5589 				igb_check_swap_media(adapter);
5590 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5591 					schedule_work(&adapter->reset_task);
5592 					/* return immediately */
5593 					return;
5594 				}
5595 			}
5596 			pm_schedule_suspend(netdev->dev.parent,
5597 					    MSEC_PER_SEC * 5);
5598 
5599 		/* also check for alternate media here */
5600 		} else if (!netif_carrier_ok(netdev) &&
5601 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5602 			igb_check_swap_media(adapter);
5603 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5604 				schedule_work(&adapter->reset_task);
5605 				/* return immediately */
5606 				return;
5607 			}
5608 		}
5609 	}
5610 
5611 	spin_lock(&adapter->stats64_lock);
5612 	igb_update_stats(adapter);
5613 	spin_unlock(&adapter->stats64_lock);
5614 
5615 	for (i = 0; i < adapter->num_tx_queues; i++) {
5616 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5617 		if (!netif_carrier_ok(netdev)) {
5618 			/* We've lost link, so the controller stops DMA,
5619 			 * but we've got queued Tx work that's never going
5620 			 * to get done, so reset controller to flush Tx.
5621 			 * (Do the reset outside of interrupt context).
5622 			 */
5623 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5624 				adapter->tx_timeout_count++;
5625 				schedule_work(&adapter->reset_task);
5626 				/* return immediately since reset is imminent */
5627 				return;
5628 			}
5629 		}
5630 
5631 		/* Force detection of hung controller every watchdog period */
5632 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5633 	}
5634 
5635 	/* Cause software interrupt to ensure Rx ring is cleaned */
5636 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5637 		u32 eics = 0;
5638 
5639 		for (i = 0; i < adapter->num_q_vectors; i++)
5640 			eics |= adapter->q_vector[i]->eims_value;
5641 		wr32(E1000_EICS, eics);
5642 	} else {
5643 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5644 	}
5645 
5646 	igb_spoof_check(adapter);
5647 	igb_ptp_rx_hang(adapter);
5648 	igb_ptp_tx_hang(adapter);
5649 
5650 	/* Check LVMMC register on i350/i354 only */
5651 	if ((adapter->hw.mac.type == e1000_i350) ||
5652 	    (adapter->hw.mac.type == e1000_i354))
5653 		igb_check_lvmmc(adapter);
5654 
5655 	/* Reset the timer */
5656 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5657 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5658 			mod_timer(&adapter->watchdog_timer,
5659 				  round_jiffies(jiffies +  HZ));
5660 		else
5661 			mod_timer(&adapter->watchdog_timer,
5662 				  round_jiffies(jiffies + 2 * HZ));
5663 	}
5664 }
5665 
5666 enum latency_range {
5667 	lowest_latency = 0,
5668 	low_latency = 1,
5669 	bulk_latency = 2,
5670 	latency_invalid = 255
5671 };
5672 
5673 /**
5674  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5675  *  @q_vector: pointer to q_vector
5676  *
5677  *  Stores a new ITR value based on strictly on packet size.  This
5678  *  algorithm is less sophisticated than that used in igb_update_itr,
5679  *  due to the difficulty of synchronizing statistics across multiple
5680  *  receive rings.  The divisors and thresholds used by this function
5681  *  were determined based on theoretical maximum wire speed and testing
5682  *  data, in order to minimize response time while increasing bulk
5683  *  throughput.
5684  *  This functionality is controlled by ethtool's coalescing settings.
5685  *  NOTE:  This function is called only when operating in a multiqueue
5686  *         receive environment.
5687  **/
5688 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5689 {
5690 	int new_val = q_vector->itr_val;
5691 	int avg_wire_size = 0;
5692 	struct igb_adapter *adapter = q_vector->adapter;
5693 	unsigned int packets;
5694 
5695 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5696 	 * ints/sec - ITR timer value of 120 ticks.
5697 	 */
5698 	if (adapter->link_speed != SPEED_1000) {
5699 		new_val = IGB_4K_ITR;
5700 		goto set_itr_val;
5701 	}
5702 
5703 	packets = q_vector->rx.total_packets;
5704 	if (packets)
5705 		avg_wire_size = q_vector->rx.total_bytes / packets;
5706 
5707 	packets = q_vector->tx.total_packets;
5708 	if (packets)
5709 		avg_wire_size = max_t(u32, avg_wire_size,
5710 				      q_vector->tx.total_bytes / packets);
5711 
5712 	/* if avg_wire_size isn't set no work was done */
5713 	if (!avg_wire_size)
5714 		goto clear_counts;
5715 
5716 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5717 	avg_wire_size += 24;
5718 
5719 	/* Don't starve jumbo frames */
5720 	avg_wire_size = min(avg_wire_size, 3000);
5721 
5722 	/* Give a little boost to mid-size frames */
5723 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5724 		new_val = avg_wire_size / 3;
5725 	else
5726 		new_val = avg_wire_size / 2;
5727 
5728 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5729 	if (new_val < IGB_20K_ITR &&
5730 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5731 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5732 		new_val = IGB_20K_ITR;
5733 
5734 set_itr_val:
5735 	if (new_val != q_vector->itr_val) {
5736 		q_vector->itr_val = new_val;
5737 		q_vector->set_itr = 1;
5738 	}
5739 clear_counts:
5740 	q_vector->rx.total_bytes = 0;
5741 	q_vector->rx.total_packets = 0;
5742 	q_vector->tx.total_bytes = 0;
5743 	q_vector->tx.total_packets = 0;
5744 }
5745 
5746 /**
5747  *  igb_update_itr - update the dynamic ITR value based on statistics
5748  *  @q_vector: pointer to q_vector
5749  *  @ring_container: ring info to update the itr for
5750  *
5751  *  Stores a new ITR value based on packets and byte
5752  *  counts during the last interrupt.  The advantage of per interrupt
5753  *  computation is faster updates and more accurate ITR for the current
5754  *  traffic pattern.  Constants in this function were computed
5755  *  based on theoretical maximum wire speed and thresholds were set based
5756  *  on testing data as well as attempting to minimize response time
5757  *  while increasing bulk throughput.
5758  *  This functionality is controlled by ethtool's coalescing settings.
5759  *  NOTE:  These calculations are only valid when operating in a single-
5760  *         queue environment.
5761  **/
5762 static void igb_update_itr(struct igb_q_vector *q_vector,
5763 			   struct igb_ring_container *ring_container)
5764 {
5765 	unsigned int packets = ring_container->total_packets;
5766 	unsigned int bytes = ring_container->total_bytes;
5767 	u8 itrval = ring_container->itr;
5768 
5769 	/* no packets, exit with status unchanged */
5770 	if (packets == 0)
5771 		return;
5772 
5773 	switch (itrval) {
5774 	case lowest_latency:
5775 		/* handle TSO and jumbo frames */
5776 		if (bytes/packets > 8000)
5777 			itrval = bulk_latency;
5778 		else if ((packets < 5) && (bytes > 512))
5779 			itrval = low_latency;
5780 		break;
5781 	case low_latency:  /* 50 usec aka 20000 ints/s */
5782 		if (bytes > 10000) {
5783 			/* this if handles the TSO accounting */
5784 			if (bytes/packets > 8000)
5785 				itrval = bulk_latency;
5786 			else if ((packets < 10) || ((bytes/packets) > 1200))
5787 				itrval = bulk_latency;
5788 			else if ((packets > 35))
5789 				itrval = lowest_latency;
5790 		} else if (bytes/packets > 2000) {
5791 			itrval = bulk_latency;
5792 		} else if (packets <= 2 && bytes < 512) {
5793 			itrval = lowest_latency;
5794 		}
5795 		break;
5796 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5797 		if (bytes > 25000) {
5798 			if (packets > 35)
5799 				itrval = low_latency;
5800 		} else if (bytes < 1500) {
5801 			itrval = low_latency;
5802 		}
5803 		break;
5804 	}
5805 
5806 	/* clear work counters since we have the values we need */
5807 	ring_container->total_bytes = 0;
5808 	ring_container->total_packets = 0;
5809 
5810 	/* write updated itr to ring container */
5811 	ring_container->itr = itrval;
5812 }
5813 
5814 static void igb_set_itr(struct igb_q_vector *q_vector)
5815 {
5816 	struct igb_adapter *adapter = q_vector->adapter;
5817 	u32 new_itr = q_vector->itr_val;
5818 	u8 current_itr = 0;
5819 
5820 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5821 	if (adapter->link_speed != SPEED_1000) {
5822 		current_itr = 0;
5823 		new_itr = IGB_4K_ITR;
5824 		goto set_itr_now;
5825 	}
5826 
5827 	igb_update_itr(q_vector, &q_vector->tx);
5828 	igb_update_itr(q_vector, &q_vector->rx);
5829 
5830 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5831 
5832 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5833 	if (current_itr == lowest_latency &&
5834 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5835 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5836 		current_itr = low_latency;
5837 
5838 	switch (current_itr) {
5839 	/* counts and packets in update_itr are dependent on these numbers */
5840 	case lowest_latency:
5841 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5842 		break;
5843 	case low_latency:
5844 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5845 		break;
5846 	case bulk_latency:
5847 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5848 		break;
5849 	default:
5850 		break;
5851 	}
5852 
5853 set_itr_now:
5854 	if (new_itr != q_vector->itr_val) {
5855 		/* this attempts to bias the interrupt rate towards Bulk
5856 		 * by adding intermediate steps when interrupt rate is
5857 		 * increasing
5858 		 */
5859 		new_itr = new_itr > q_vector->itr_val ?
5860 			  max((new_itr * q_vector->itr_val) /
5861 			  (new_itr + (q_vector->itr_val >> 2)),
5862 			  new_itr) : new_itr;
5863 		/* Don't write the value here; it resets the adapter's
5864 		 * internal timer, and causes us to delay far longer than
5865 		 * we should between interrupts.  Instead, we write the ITR
5866 		 * value at the beginning of the next interrupt so the timing
5867 		 * ends up being correct.
5868 		 */
5869 		q_vector->itr_val = new_itr;
5870 		q_vector->set_itr = 1;
5871 	}
5872 }
5873 
5874 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5875 			    struct igb_tx_buffer *first,
5876 			    u32 vlan_macip_lens, u32 type_tucmd,
5877 			    u32 mss_l4len_idx)
5878 {
5879 	struct e1000_adv_tx_context_desc *context_desc;
5880 	u16 i = tx_ring->next_to_use;
5881 	struct timespec64 ts;
5882 
5883 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5884 
5885 	i++;
5886 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5887 
5888 	/* set bits to identify this as an advanced context descriptor */
5889 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5890 
5891 	/* For 82575, context index must be unique per ring. */
5892 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5893 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5894 
5895 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5896 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5897 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5898 
5899 	/* We assume there is always a valid tx time available. Invalid times
5900 	 * should have been handled by the upper layers.
5901 	 */
5902 	if (tx_ring->launchtime_enable) {
5903 		ts = ktime_to_timespec64(first->skb->tstamp);
5904 		skb_txtime_consumed(first->skb);
5905 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5906 	} else {
5907 		context_desc->seqnum_seed = 0;
5908 	}
5909 }
5910 
5911 static int igb_tso(struct igb_ring *tx_ring,
5912 		   struct igb_tx_buffer *first,
5913 		   u8 *hdr_len)
5914 {
5915 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5916 	struct sk_buff *skb = first->skb;
5917 	union {
5918 		struct iphdr *v4;
5919 		struct ipv6hdr *v6;
5920 		unsigned char *hdr;
5921 	} ip;
5922 	union {
5923 		struct tcphdr *tcp;
5924 		struct udphdr *udp;
5925 		unsigned char *hdr;
5926 	} l4;
5927 	u32 paylen, l4_offset;
5928 	int err;
5929 
5930 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5931 		return 0;
5932 
5933 	if (!skb_is_gso(skb))
5934 		return 0;
5935 
5936 	err = skb_cow_head(skb, 0);
5937 	if (err < 0)
5938 		return err;
5939 
5940 	ip.hdr = skb_network_header(skb);
5941 	l4.hdr = skb_checksum_start(skb);
5942 
5943 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5944 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5945 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5946 
5947 	/* initialize outer IP header fields */
5948 	if (ip.v4->version == 4) {
5949 		unsigned char *csum_start = skb_checksum_start(skb);
5950 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5951 
5952 		/* IP header will have to cancel out any data that
5953 		 * is not a part of the outer IP header
5954 		 */
5955 		ip.v4->check = csum_fold(csum_partial(trans_start,
5956 						      csum_start - trans_start,
5957 						      0));
5958 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5959 
5960 		ip.v4->tot_len = 0;
5961 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5962 				   IGB_TX_FLAGS_CSUM |
5963 				   IGB_TX_FLAGS_IPV4;
5964 	} else {
5965 		ip.v6->payload_len = 0;
5966 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5967 				   IGB_TX_FLAGS_CSUM;
5968 	}
5969 
5970 	/* determine offset of inner transport header */
5971 	l4_offset = l4.hdr - skb->data;
5972 
5973 	/* remove payload length from inner checksum */
5974 	paylen = skb->len - l4_offset;
5975 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5976 		/* compute length of segmentation header */
5977 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5978 		csum_replace_by_diff(&l4.tcp->check,
5979 			(__force __wsum)htonl(paylen));
5980 	} else {
5981 		/* compute length of segmentation header */
5982 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5983 		csum_replace_by_diff(&l4.udp->check,
5984 				     (__force __wsum)htonl(paylen));
5985 	}
5986 
5987 	/* update gso size and bytecount with header size */
5988 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5989 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5990 
5991 	/* MSS L4LEN IDX */
5992 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5993 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5994 
5995 	/* VLAN MACLEN IPLEN */
5996 	vlan_macip_lens = l4.hdr - ip.hdr;
5997 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5998 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5999 
6000 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6001 			type_tucmd, mss_l4len_idx);
6002 
6003 	return 1;
6004 }
6005 
6006 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6007 {
6008 	struct sk_buff *skb = first->skb;
6009 	u32 vlan_macip_lens = 0;
6010 	u32 type_tucmd = 0;
6011 
6012 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6013 csum_failed:
6014 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6015 		    !tx_ring->launchtime_enable)
6016 			return;
6017 		goto no_csum;
6018 	}
6019 
6020 	switch (skb->csum_offset) {
6021 	case offsetof(struct tcphdr, check):
6022 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6023 		fallthrough;
6024 	case offsetof(struct udphdr, check):
6025 		break;
6026 	case offsetof(struct sctphdr, checksum):
6027 		/* validate that this is actually an SCTP request */
6028 		if (skb_csum_is_sctp(skb)) {
6029 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6030 			break;
6031 		}
6032 		fallthrough;
6033 	default:
6034 		skb_checksum_help(skb);
6035 		goto csum_failed;
6036 	}
6037 
6038 	/* update TX checksum flag */
6039 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6040 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6041 			  skb_network_offset(skb);
6042 no_csum:
6043 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6044 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6045 
6046 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6047 }
6048 
6049 #define IGB_SET_FLAG(_input, _flag, _result) \
6050 	((_flag <= _result) ? \
6051 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6052 	 ((u32)(_input & _flag) / (_flag / _result)))
6053 
6054 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6055 {
6056 	/* set type for advanced descriptor with frame checksum insertion */
6057 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6058 		       E1000_ADVTXD_DCMD_DEXT |
6059 		       E1000_ADVTXD_DCMD_IFCS;
6060 
6061 	/* set HW vlan bit if vlan is present */
6062 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6063 				 (E1000_ADVTXD_DCMD_VLE));
6064 
6065 	/* set segmentation bits for TSO */
6066 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6067 				 (E1000_ADVTXD_DCMD_TSE));
6068 
6069 	/* set timestamp bit if present */
6070 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6071 				 (E1000_ADVTXD_MAC_TSTAMP));
6072 
6073 	/* insert frame checksum */
6074 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6075 
6076 	return cmd_type;
6077 }
6078 
6079 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6080 				 union e1000_adv_tx_desc *tx_desc,
6081 				 u32 tx_flags, unsigned int paylen)
6082 {
6083 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6084 
6085 	/* 82575 requires a unique index per ring */
6086 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6087 		olinfo_status |= tx_ring->reg_idx << 4;
6088 
6089 	/* insert L4 checksum */
6090 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6091 				      IGB_TX_FLAGS_CSUM,
6092 				      (E1000_TXD_POPTS_TXSM << 8));
6093 
6094 	/* insert IPv4 checksum */
6095 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6096 				      IGB_TX_FLAGS_IPV4,
6097 				      (E1000_TXD_POPTS_IXSM << 8));
6098 
6099 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6100 }
6101 
6102 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6103 {
6104 	struct net_device *netdev = tx_ring->netdev;
6105 
6106 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6107 
6108 	/* Herbert's original patch had:
6109 	 *  smp_mb__after_netif_stop_queue();
6110 	 * but since that doesn't exist yet, just open code it.
6111 	 */
6112 	smp_mb();
6113 
6114 	/* We need to check again in a case another CPU has just
6115 	 * made room available.
6116 	 */
6117 	if (igb_desc_unused(tx_ring) < size)
6118 		return -EBUSY;
6119 
6120 	/* A reprieve! */
6121 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6122 
6123 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6124 	tx_ring->tx_stats.restart_queue2++;
6125 	u64_stats_update_end(&tx_ring->tx_syncp2);
6126 
6127 	return 0;
6128 }
6129 
6130 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6131 {
6132 	if (igb_desc_unused(tx_ring) >= size)
6133 		return 0;
6134 	return __igb_maybe_stop_tx(tx_ring, size);
6135 }
6136 
6137 static int igb_tx_map(struct igb_ring *tx_ring,
6138 		      struct igb_tx_buffer *first,
6139 		      const u8 hdr_len)
6140 {
6141 	struct sk_buff *skb = first->skb;
6142 	struct igb_tx_buffer *tx_buffer;
6143 	union e1000_adv_tx_desc *tx_desc;
6144 	skb_frag_t *frag;
6145 	dma_addr_t dma;
6146 	unsigned int data_len, size;
6147 	u32 tx_flags = first->tx_flags;
6148 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6149 	u16 i = tx_ring->next_to_use;
6150 
6151 	tx_desc = IGB_TX_DESC(tx_ring, i);
6152 
6153 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6154 
6155 	size = skb_headlen(skb);
6156 	data_len = skb->data_len;
6157 
6158 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6159 
6160 	tx_buffer = first;
6161 
6162 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6163 		if (dma_mapping_error(tx_ring->dev, dma))
6164 			goto dma_error;
6165 
6166 		/* record length, and DMA address */
6167 		dma_unmap_len_set(tx_buffer, len, size);
6168 		dma_unmap_addr_set(tx_buffer, dma, dma);
6169 
6170 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6171 
6172 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6173 			tx_desc->read.cmd_type_len =
6174 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6175 
6176 			i++;
6177 			tx_desc++;
6178 			if (i == tx_ring->count) {
6179 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6180 				i = 0;
6181 			}
6182 			tx_desc->read.olinfo_status = 0;
6183 
6184 			dma += IGB_MAX_DATA_PER_TXD;
6185 			size -= IGB_MAX_DATA_PER_TXD;
6186 
6187 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6188 		}
6189 
6190 		if (likely(!data_len))
6191 			break;
6192 
6193 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6194 
6195 		i++;
6196 		tx_desc++;
6197 		if (i == tx_ring->count) {
6198 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6199 			i = 0;
6200 		}
6201 		tx_desc->read.olinfo_status = 0;
6202 
6203 		size = skb_frag_size(frag);
6204 		data_len -= size;
6205 
6206 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6207 				       size, DMA_TO_DEVICE);
6208 
6209 		tx_buffer = &tx_ring->tx_buffer_info[i];
6210 	}
6211 
6212 	/* write last descriptor with RS and EOP bits */
6213 	cmd_type |= size | IGB_TXD_DCMD;
6214 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6215 
6216 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6217 
6218 	/* set the timestamp */
6219 	first->time_stamp = jiffies;
6220 
6221 	skb_tx_timestamp(skb);
6222 
6223 	/* Force memory writes to complete before letting h/w know there
6224 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6225 	 * memory model archs, such as IA-64).
6226 	 *
6227 	 * We also need this memory barrier to make certain all of the
6228 	 * status bits have been updated before next_to_watch is written.
6229 	 */
6230 	dma_wmb();
6231 
6232 	/* set next_to_watch value indicating a packet is present */
6233 	first->next_to_watch = tx_desc;
6234 
6235 	i++;
6236 	if (i == tx_ring->count)
6237 		i = 0;
6238 
6239 	tx_ring->next_to_use = i;
6240 
6241 	/* Make sure there is space in the ring for the next send. */
6242 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6243 
6244 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6245 		writel(i, tx_ring->tail);
6246 	}
6247 	return 0;
6248 
6249 dma_error:
6250 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6251 	tx_buffer = &tx_ring->tx_buffer_info[i];
6252 
6253 	/* clear dma mappings for failed tx_buffer_info map */
6254 	while (tx_buffer != first) {
6255 		if (dma_unmap_len(tx_buffer, len))
6256 			dma_unmap_page(tx_ring->dev,
6257 				       dma_unmap_addr(tx_buffer, dma),
6258 				       dma_unmap_len(tx_buffer, len),
6259 				       DMA_TO_DEVICE);
6260 		dma_unmap_len_set(tx_buffer, len, 0);
6261 
6262 		if (i-- == 0)
6263 			i += tx_ring->count;
6264 		tx_buffer = &tx_ring->tx_buffer_info[i];
6265 	}
6266 
6267 	if (dma_unmap_len(tx_buffer, len))
6268 		dma_unmap_single(tx_ring->dev,
6269 				 dma_unmap_addr(tx_buffer, dma),
6270 				 dma_unmap_len(tx_buffer, len),
6271 				 DMA_TO_DEVICE);
6272 	dma_unmap_len_set(tx_buffer, len, 0);
6273 
6274 	dev_kfree_skb_any(tx_buffer->skb);
6275 	tx_buffer->skb = NULL;
6276 
6277 	tx_ring->next_to_use = i;
6278 
6279 	return -1;
6280 }
6281 
6282 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6283 		      struct igb_ring *tx_ring,
6284 		      struct xdp_frame *xdpf)
6285 {
6286 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6287 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6288 	u16 count, i, index = tx_ring->next_to_use;
6289 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6290 	struct igb_tx_buffer *tx_buffer = tx_head;
6291 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6292 	u32 len = xdpf->len, cmd_type, olinfo_status;
6293 	void *data = xdpf->data;
6294 
6295 	count = TXD_USE_COUNT(len);
6296 	for (i = 0; i < nr_frags; i++)
6297 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6298 
6299 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6300 		return IGB_XDP_CONSUMED;
6301 
6302 	i = 0;
6303 	/* record the location of the first descriptor for this packet */
6304 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6305 	tx_head->type = IGB_TYPE_XDP;
6306 	tx_head->gso_segs = 1;
6307 	tx_head->xdpf = xdpf;
6308 
6309 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6310 	/* 82575 requires a unique index per ring */
6311 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6312 		olinfo_status |= tx_ring->reg_idx << 4;
6313 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6314 
6315 	for (;;) {
6316 		dma_addr_t dma;
6317 
6318 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6319 		if (dma_mapping_error(tx_ring->dev, dma))
6320 			goto unmap;
6321 
6322 		/* record length, and DMA address */
6323 		dma_unmap_len_set(tx_buffer, len, len);
6324 		dma_unmap_addr_set(tx_buffer, dma, dma);
6325 
6326 		/* put descriptor type bits */
6327 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6328 			   E1000_ADVTXD_DCMD_IFCS | len;
6329 
6330 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6331 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6332 
6333 		tx_buffer->protocol = 0;
6334 
6335 		if (++index == tx_ring->count)
6336 			index = 0;
6337 
6338 		if (i == nr_frags)
6339 			break;
6340 
6341 		tx_buffer = &tx_ring->tx_buffer_info[index];
6342 		tx_desc = IGB_TX_DESC(tx_ring, index);
6343 		tx_desc->read.olinfo_status = 0;
6344 
6345 		data = skb_frag_address(&sinfo->frags[i]);
6346 		len = skb_frag_size(&sinfo->frags[i]);
6347 		i++;
6348 	}
6349 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6350 
6351 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6352 	/* set the timestamp */
6353 	tx_head->time_stamp = jiffies;
6354 
6355 	/* Avoid any potential race with xdp_xmit and cleanup */
6356 	smp_wmb();
6357 
6358 	/* set next_to_watch value indicating a packet is present */
6359 	tx_head->next_to_watch = tx_desc;
6360 	tx_ring->next_to_use = index;
6361 
6362 	/* Make sure there is space in the ring for the next send. */
6363 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6364 
6365 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6366 		writel(index, tx_ring->tail);
6367 
6368 	return IGB_XDP_TX;
6369 
6370 unmap:
6371 	for (;;) {
6372 		tx_buffer = &tx_ring->tx_buffer_info[index];
6373 		if (dma_unmap_len(tx_buffer, len))
6374 			dma_unmap_page(tx_ring->dev,
6375 				       dma_unmap_addr(tx_buffer, dma),
6376 				       dma_unmap_len(tx_buffer, len),
6377 				       DMA_TO_DEVICE);
6378 		dma_unmap_len_set(tx_buffer, len, 0);
6379 		if (tx_buffer == tx_head)
6380 			break;
6381 
6382 		if (!index)
6383 			index += tx_ring->count;
6384 		index--;
6385 	}
6386 
6387 	return IGB_XDP_CONSUMED;
6388 }
6389 
6390 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6391 				struct igb_ring *tx_ring)
6392 {
6393 	struct igb_tx_buffer *first;
6394 	int tso;
6395 	u32 tx_flags = 0;
6396 	unsigned short f;
6397 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6398 	__be16 protocol = vlan_get_protocol(skb);
6399 	u8 hdr_len = 0;
6400 
6401 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6402 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6403 	 *       + 2 desc gap to keep tail from touching head,
6404 	 *       + 1 desc for context descriptor,
6405 	 * otherwise try next time
6406 	 */
6407 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6408 		count += TXD_USE_COUNT(skb_frag_size(
6409 						&skb_shinfo(skb)->frags[f]));
6410 
6411 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6412 		/* this is a hard error */
6413 		return NETDEV_TX_BUSY;
6414 	}
6415 
6416 	/* record the location of the first descriptor for this packet */
6417 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6418 	first->type = IGB_TYPE_SKB;
6419 	first->skb = skb;
6420 	first->bytecount = skb->len;
6421 	first->gso_segs = 1;
6422 
6423 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6424 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6425 
6426 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6427 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6428 					   &adapter->state)) {
6429 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6430 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6431 
6432 			adapter->ptp_tx_skb = skb_get(skb);
6433 			adapter->ptp_tx_start = jiffies;
6434 			if (adapter->hw.mac.type == e1000_82576)
6435 				schedule_work(&adapter->ptp_tx_work);
6436 		} else {
6437 			adapter->tx_hwtstamp_skipped++;
6438 		}
6439 	}
6440 
6441 	if (skb_vlan_tag_present(skb)) {
6442 		tx_flags |= IGB_TX_FLAGS_VLAN;
6443 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6444 	}
6445 
6446 	/* record initial flags and protocol */
6447 	first->tx_flags = tx_flags;
6448 	first->protocol = protocol;
6449 
6450 	tso = igb_tso(tx_ring, first, &hdr_len);
6451 	if (tso < 0)
6452 		goto out_drop;
6453 	else if (!tso)
6454 		igb_tx_csum(tx_ring, first);
6455 
6456 	if (igb_tx_map(tx_ring, first, hdr_len))
6457 		goto cleanup_tx_tstamp;
6458 
6459 	return NETDEV_TX_OK;
6460 
6461 out_drop:
6462 	dev_kfree_skb_any(first->skb);
6463 	first->skb = NULL;
6464 cleanup_tx_tstamp:
6465 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6466 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6467 
6468 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6469 		adapter->ptp_tx_skb = NULL;
6470 		if (adapter->hw.mac.type == e1000_82576)
6471 			cancel_work_sync(&adapter->ptp_tx_work);
6472 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6473 	}
6474 
6475 	return NETDEV_TX_OK;
6476 }
6477 
6478 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6479 						    struct sk_buff *skb)
6480 {
6481 	unsigned int r_idx = skb->queue_mapping;
6482 
6483 	if (r_idx >= adapter->num_tx_queues)
6484 		r_idx = r_idx % adapter->num_tx_queues;
6485 
6486 	return adapter->tx_ring[r_idx];
6487 }
6488 
6489 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6490 				  struct net_device *netdev)
6491 {
6492 	struct igb_adapter *adapter = netdev_priv(netdev);
6493 
6494 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6495 	 * in order to meet this minimum size requirement.
6496 	 */
6497 	if (skb_put_padto(skb, 17))
6498 		return NETDEV_TX_OK;
6499 
6500 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6501 }
6502 
6503 /**
6504  *  igb_tx_timeout - Respond to a Tx Hang
6505  *  @netdev: network interface device structure
6506  *  @txqueue: number of the Tx queue that hung (unused)
6507  **/
6508 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6509 {
6510 	struct igb_adapter *adapter = netdev_priv(netdev);
6511 	struct e1000_hw *hw = &adapter->hw;
6512 
6513 	/* Do the reset outside of interrupt context */
6514 	adapter->tx_timeout_count++;
6515 
6516 	if (hw->mac.type >= e1000_82580)
6517 		hw->dev_spec._82575.global_device_reset = true;
6518 
6519 	schedule_work(&adapter->reset_task);
6520 	wr32(E1000_EICS,
6521 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6522 }
6523 
6524 static void igb_reset_task(struct work_struct *work)
6525 {
6526 	struct igb_adapter *adapter;
6527 	adapter = container_of(work, struct igb_adapter, reset_task);
6528 
6529 	rtnl_lock();
6530 	/* If we're already down or resetting, just bail */
6531 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6532 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6533 		rtnl_unlock();
6534 		return;
6535 	}
6536 
6537 	igb_dump(adapter);
6538 	netdev_err(adapter->netdev, "Reset adapter\n");
6539 	igb_reinit_locked(adapter);
6540 	rtnl_unlock();
6541 }
6542 
6543 /**
6544  *  igb_get_stats64 - Get System Network Statistics
6545  *  @netdev: network interface device structure
6546  *  @stats: rtnl_link_stats64 pointer
6547  **/
6548 static void igb_get_stats64(struct net_device *netdev,
6549 			    struct rtnl_link_stats64 *stats)
6550 {
6551 	struct igb_adapter *adapter = netdev_priv(netdev);
6552 
6553 	spin_lock(&adapter->stats64_lock);
6554 	igb_update_stats(adapter);
6555 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6556 	spin_unlock(&adapter->stats64_lock);
6557 }
6558 
6559 /**
6560  *  igb_change_mtu - Change the Maximum Transfer Unit
6561  *  @netdev: network interface device structure
6562  *  @new_mtu: new value for maximum frame size
6563  *
6564  *  Returns 0 on success, negative on failure
6565  **/
6566 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6567 {
6568 	struct igb_adapter *adapter = netdev_priv(netdev);
6569 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6570 
6571 	if (adapter->xdp_prog) {
6572 		int i;
6573 
6574 		for (i = 0; i < adapter->num_rx_queues; i++) {
6575 			struct igb_ring *ring = adapter->rx_ring[i];
6576 
6577 			if (max_frame > igb_rx_bufsz(ring)) {
6578 				netdev_warn(adapter->netdev,
6579 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6580 					    max_frame);
6581 				return -EINVAL;
6582 			}
6583 		}
6584 	}
6585 
6586 	/* adjust max frame to be at least the size of a standard frame */
6587 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6588 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6589 
6590 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6591 		usleep_range(1000, 2000);
6592 
6593 	/* igb_down has a dependency on max_frame_size */
6594 	adapter->max_frame_size = max_frame;
6595 
6596 	if (netif_running(netdev))
6597 		igb_down(adapter);
6598 
6599 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6600 		   netdev->mtu, new_mtu);
6601 	netdev->mtu = new_mtu;
6602 
6603 	if (netif_running(netdev))
6604 		igb_up(adapter);
6605 	else
6606 		igb_reset(adapter);
6607 
6608 	clear_bit(__IGB_RESETTING, &adapter->state);
6609 
6610 	return 0;
6611 }
6612 
6613 /**
6614  *  igb_update_stats - Update the board statistics counters
6615  *  @adapter: board private structure
6616  **/
6617 void igb_update_stats(struct igb_adapter *adapter)
6618 {
6619 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6620 	struct e1000_hw *hw = &adapter->hw;
6621 	struct pci_dev *pdev = adapter->pdev;
6622 	u32 reg, mpc;
6623 	int i;
6624 	u64 bytes, packets;
6625 	unsigned int start;
6626 	u64 _bytes, _packets;
6627 
6628 	/* Prevent stats update while adapter is being reset, or if the pci
6629 	 * connection is down.
6630 	 */
6631 	if (adapter->link_speed == 0)
6632 		return;
6633 	if (pci_channel_offline(pdev))
6634 		return;
6635 
6636 	bytes = 0;
6637 	packets = 0;
6638 
6639 	rcu_read_lock();
6640 	for (i = 0; i < adapter->num_rx_queues; i++) {
6641 		struct igb_ring *ring = adapter->rx_ring[i];
6642 		u32 rqdpc = rd32(E1000_RQDPC(i));
6643 		if (hw->mac.type >= e1000_i210)
6644 			wr32(E1000_RQDPC(i), 0);
6645 
6646 		if (rqdpc) {
6647 			ring->rx_stats.drops += rqdpc;
6648 			net_stats->rx_fifo_errors += rqdpc;
6649 		}
6650 
6651 		do {
6652 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6653 			_bytes = ring->rx_stats.bytes;
6654 			_packets = ring->rx_stats.packets;
6655 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6656 		bytes += _bytes;
6657 		packets += _packets;
6658 	}
6659 
6660 	net_stats->rx_bytes = bytes;
6661 	net_stats->rx_packets = packets;
6662 
6663 	bytes = 0;
6664 	packets = 0;
6665 	for (i = 0; i < adapter->num_tx_queues; i++) {
6666 		struct igb_ring *ring = adapter->tx_ring[i];
6667 		do {
6668 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6669 			_bytes = ring->tx_stats.bytes;
6670 			_packets = ring->tx_stats.packets;
6671 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6672 		bytes += _bytes;
6673 		packets += _packets;
6674 	}
6675 	net_stats->tx_bytes = bytes;
6676 	net_stats->tx_packets = packets;
6677 	rcu_read_unlock();
6678 
6679 	/* read stats registers */
6680 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6681 	adapter->stats.gprc += rd32(E1000_GPRC);
6682 	adapter->stats.gorc += rd32(E1000_GORCL);
6683 	rd32(E1000_GORCH); /* clear GORCL */
6684 	adapter->stats.bprc += rd32(E1000_BPRC);
6685 	adapter->stats.mprc += rd32(E1000_MPRC);
6686 	adapter->stats.roc += rd32(E1000_ROC);
6687 
6688 	adapter->stats.prc64 += rd32(E1000_PRC64);
6689 	adapter->stats.prc127 += rd32(E1000_PRC127);
6690 	adapter->stats.prc255 += rd32(E1000_PRC255);
6691 	adapter->stats.prc511 += rd32(E1000_PRC511);
6692 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6693 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6694 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6695 	adapter->stats.sec += rd32(E1000_SEC);
6696 
6697 	mpc = rd32(E1000_MPC);
6698 	adapter->stats.mpc += mpc;
6699 	net_stats->rx_fifo_errors += mpc;
6700 	adapter->stats.scc += rd32(E1000_SCC);
6701 	adapter->stats.ecol += rd32(E1000_ECOL);
6702 	adapter->stats.mcc += rd32(E1000_MCC);
6703 	adapter->stats.latecol += rd32(E1000_LATECOL);
6704 	adapter->stats.dc += rd32(E1000_DC);
6705 	adapter->stats.rlec += rd32(E1000_RLEC);
6706 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6707 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6708 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6709 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6710 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6711 	adapter->stats.gptc += rd32(E1000_GPTC);
6712 	adapter->stats.gotc += rd32(E1000_GOTCL);
6713 	rd32(E1000_GOTCH); /* clear GOTCL */
6714 	adapter->stats.rnbc += rd32(E1000_RNBC);
6715 	adapter->stats.ruc += rd32(E1000_RUC);
6716 	adapter->stats.rfc += rd32(E1000_RFC);
6717 	adapter->stats.rjc += rd32(E1000_RJC);
6718 	adapter->stats.tor += rd32(E1000_TORH);
6719 	adapter->stats.tot += rd32(E1000_TOTH);
6720 	adapter->stats.tpr += rd32(E1000_TPR);
6721 
6722 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6723 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6724 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6725 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6726 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6727 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6728 
6729 	adapter->stats.mptc += rd32(E1000_MPTC);
6730 	adapter->stats.bptc += rd32(E1000_BPTC);
6731 
6732 	adapter->stats.tpt += rd32(E1000_TPT);
6733 	adapter->stats.colc += rd32(E1000_COLC);
6734 
6735 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6736 	/* read internal phy specific stats */
6737 	reg = rd32(E1000_CTRL_EXT);
6738 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6739 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6740 
6741 		/* this stat has invalid values on i210/i211 */
6742 		if ((hw->mac.type != e1000_i210) &&
6743 		    (hw->mac.type != e1000_i211))
6744 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6745 	}
6746 
6747 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6748 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6749 
6750 	adapter->stats.iac += rd32(E1000_IAC);
6751 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6752 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6753 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6754 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6755 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6756 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6757 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6758 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6759 
6760 	/* Fill out the OS statistics structure */
6761 	net_stats->multicast = adapter->stats.mprc;
6762 	net_stats->collisions = adapter->stats.colc;
6763 
6764 	/* Rx Errors */
6765 
6766 	/* RLEC on some newer hardware can be incorrect so build
6767 	 * our own version based on RUC and ROC
6768 	 */
6769 	net_stats->rx_errors = adapter->stats.rxerrc +
6770 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6771 		adapter->stats.ruc + adapter->stats.roc +
6772 		adapter->stats.cexterr;
6773 	net_stats->rx_length_errors = adapter->stats.ruc +
6774 				      adapter->stats.roc;
6775 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6776 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6777 	net_stats->rx_missed_errors = adapter->stats.mpc;
6778 
6779 	/* Tx Errors */
6780 	net_stats->tx_errors = adapter->stats.ecol +
6781 			       adapter->stats.latecol;
6782 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6783 	net_stats->tx_window_errors = adapter->stats.latecol;
6784 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6785 
6786 	/* Tx Dropped needs to be maintained elsewhere */
6787 
6788 	/* Management Stats */
6789 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6790 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6791 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6792 
6793 	/* OS2BMC Stats */
6794 	reg = rd32(E1000_MANC);
6795 	if (reg & E1000_MANC_EN_BMC2OS) {
6796 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6797 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6798 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6799 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6800 	}
6801 }
6802 
6803 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6804 {
6805 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6806 	struct e1000_hw *hw = &adapter->hw;
6807 	struct timespec64 ts;
6808 	u32 tsauxc;
6809 
6810 	if (pin < 0 || pin >= IGB_N_PEROUT)
6811 		return;
6812 
6813 	spin_lock(&adapter->tmreg_lock);
6814 
6815 	if (hw->mac.type == e1000_82580 ||
6816 	    hw->mac.type == e1000_i354 ||
6817 	    hw->mac.type == e1000_i350) {
6818 		s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6819 		u32 systiml, systimh, level_mask, level, rem;
6820 		u64 systim, now;
6821 
6822 		/* read systim registers in sequence */
6823 		rd32(E1000_SYSTIMR);
6824 		systiml = rd32(E1000_SYSTIML);
6825 		systimh = rd32(E1000_SYSTIMH);
6826 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6827 		now = timecounter_cyc2time(&adapter->tc, systim);
6828 
6829 		if (pin < 2) {
6830 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6831 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6832 		} else {
6833 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6834 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6835 		}
6836 
6837 		div_u64_rem(now, ns, &rem);
6838 		systim = systim + (ns - rem);
6839 
6840 		/* synchronize pin level with rising/falling edges */
6841 		div_u64_rem(now, ns << 1, &rem);
6842 		if (rem < ns) {
6843 			/* first half of period */
6844 			if (level == 0) {
6845 				/* output is already low, skip this period */
6846 				systim += ns;
6847 				pr_notice("igb: periodic output on %s missed falling edge\n",
6848 					  adapter->sdp_config[pin].name);
6849 			}
6850 		} else {
6851 			/* second half of period */
6852 			if (level == 1) {
6853 				/* output is already high, skip this period */
6854 				systim += ns;
6855 				pr_notice("igb: periodic output on %s missed rising edge\n",
6856 					  adapter->sdp_config[pin].name);
6857 			}
6858 		}
6859 
6860 		/* for this chip family tv_sec is the upper part of the binary value,
6861 		 * so not seconds
6862 		 */
6863 		ts.tv_nsec = (u32)systim;
6864 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6865 	} else {
6866 		ts = timespec64_add(adapter->perout[pin].start,
6867 				    adapter->perout[pin].period);
6868 	}
6869 
6870 	/* u32 conversion of tv_sec is safe until y2106 */
6871 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6872 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6873 	tsauxc = rd32(E1000_TSAUXC);
6874 	tsauxc |= TSAUXC_EN_TT0;
6875 	wr32(E1000_TSAUXC, tsauxc);
6876 	adapter->perout[pin].start = ts;
6877 
6878 	spin_unlock(&adapter->tmreg_lock);
6879 }
6880 
6881 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6882 {
6883 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6884 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6885 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6886 	struct e1000_hw *hw = &adapter->hw;
6887 	struct ptp_clock_event event;
6888 	struct timespec64 ts;
6889 
6890 	if (pin < 0 || pin >= IGB_N_EXTTS)
6891 		return;
6892 
6893 	if (hw->mac.type == e1000_82580 ||
6894 	    hw->mac.type == e1000_i354 ||
6895 	    hw->mac.type == e1000_i350) {
6896 		s64 ns = rd32(auxstmpl);
6897 
6898 		ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6899 		ts = ns_to_timespec64(ns);
6900 	} else {
6901 		ts.tv_nsec = rd32(auxstmpl);
6902 		ts.tv_sec  = rd32(auxstmph);
6903 	}
6904 
6905 	event.type = PTP_CLOCK_EXTTS;
6906 	event.index = tsintr_tt;
6907 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6908 	ptp_clock_event(adapter->ptp_clock, &event);
6909 }
6910 
6911 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6912 {
6913 	struct e1000_hw *hw = &adapter->hw;
6914 	u32 ack = 0, tsicr = rd32(E1000_TSICR);
6915 	struct ptp_clock_event event;
6916 
6917 	if (tsicr & TSINTR_SYS_WRAP) {
6918 		event.type = PTP_CLOCK_PPS;
6919 		if (adapter->ptp_caps.pps)
6920 			ptp_clock_event(adapter->ptp_clock, &event);
6921 		ack |= TSINTR_SYS_WRAP;
6922 	}
6923 
6924 	if (tsicr & E1000_TSICR_TXTS) {
6925 		/* retrieve hardware timestamp */
6926 		schedule_work(&adapter->ptp_tx_work);
6927 		ack |= E1000_TSICR_TXTS;
6928 	}
6929 
6930 	if (tsicr & TSINTR_TT0) {
6931 		igb_perout(adapter, 0);
6932 		ack |= TSINTR_TT0;
6933 	}
6934 
6935 	if (tsicr & TSINTR_TT1) {
6936 		igb_perout(adapter, 1);
6937 		ack |= TSINTR_TT1;
6938 	}
6939 
6940 	if (tsicr & TSINTR_AUTT0) {
6941 		igb_extts(adapter, 0);
6942 		ack |= TSINTR_AUTT0;
6943 	}
6944 
6945 	if (tsicr & TSINTR_AUTT1) {
6946 		igb_extts(adapter, 1);
6947 		ack |= TSINTR_AUTT1;
6948 	}
6949 
6950 	/* acknowledge the interrupts */
6951 	wr32(E1000_TSICR, ack);
6952 }
6953 
6954 static irqreturn_t igb_msix_other(int irq, void *data)
6955 {
6956 	struct igb_adapter *adapter = data;
6957 	struct e1000_hw *hw = &adapter->hw;
6958 	u32 icr = rd32(E1000_ICR);
6959 	/* reading ICR causes bit 31 of EICR to be cleared */
6960 
6961 	if (icr & E1000_ICR_DRSTA)
6962 		schedule_work(&adapter->reset_task);
6963 
6964 	if (icr & E1000_ICR_DOUTSYNC) {
6965 		/* HW is reporting DMA is out of sync */
6966 		adapter->stats.doosync++;
6967 		/* The DMA Out of Sync is also indication of a spoof event
6968 		 * in IOV mode. Check the Wrong VM Behavior register to
6969 		 * see if it is really a spoof event.
6970 		 */
6971 		igb_check_wvbr(adapter);
6972 	}
6973 
6974 	/* Check for a mailbox event */
6975 	if (icr & E1000_ICR_VMMB)
6976 		igb_msg_task(adapter);
6977 
6978 	if (icr & E1000_ICR_LSC) {
6979 		hw->mac.get_link_status = 1;
6980 		/* guard against interrupt when we're going down */
6981 		if (!test_bit(__IGB_DOWN, &adapter->state))
6982 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6983 	}
6984 
6985 	if (icr & E1000_ICR_TS)
6986 		igb_tsync_interrupt(adapter);
6987 
6988 	wr32(E1000_EIMS, adapter->eims_other);
6989 
6990 	return IRQ_HANDLED;
6991 }
6992 
6993 static void igb_write_itr(struct igb_q_vector *q_vector)
6994 {
6995 	struct igb_adapter *adapter = q_vector->adapter;
6996 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6997 
6998 	if (!q_vector->set_itr)
6999 		return;
7000 
7001 	if (!itr_val)
7002 		itr_val = 0x4;
7003 
7004 	if (adapter->hw.mac.type == e1000_82575)
7005 		itr_val |= itr_val << 16;
7006 	else
7007 		itr_val |= E1000_EITR_CNT_IGNR;
7008 
7009 	writel(itr_val, q_vector->itr_register);
7010 	q_vector->set_itr = 0;
7011 }
7012 
7013 static irqreturn_t igb_msix_ring(int irq, void *data)
7014 {
7015 	struct igb_q_vector *q_vector = data;
7016 
7017 	/* Write the ITR value calculated from the previous interrupt. */
7018 	igb_write_itr(q_vector);
7019 
7020 	napi_schedule(&q_vector->napi);
7021 
7022 	return IRQ_HANDLED;
7023 }
7024 
7025 #ifdef CONFIG_IGB_DCA
7026 static void igb_update_tx_dca(struct igb_adapter *adapter,
7027 			      struct igb_ring *tx_ring,
7028 			      int cpu)
7029 {
7030 	struct e1000_hw *hw = &adapter->hw;
7031 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7032 
7033 	if (hw->mac.type != e1000_82575)
7034 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7035 
7036 	/* We can enable relaxed ordering for reads, but not writes when
7037 	 * DCA is enabled.  This is due to a known issue in some chipsets
7038 	 * which will cause the DCA tag to be cleared.
7039 	 */
7040 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7041 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7042 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7043 
7044 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7045 }
7046 
7047 static void igb_update_rx_dca(struct igb_adapter *adapter,
7048 			      struct igb_ring *rx_ring,
7049 			      int cpu)
7050 {
7051 	struct e1000_hw *hw = &adapter->hw;
7052 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7053 
7054 	if (hw->mac.type != e1000_82575)
7055 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7056 
7057 	/* We can enable relaxed ordering for reads, but not writes when
7058 	 * DCA is enabled.  This is due to a known issue in some chipsets
7059 	 * which will cause the DCA tag to be cleared.
7060 	 */
7061 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7062 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7063 
7064 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7065 }
7066 
7067 static void igb_update_dca(struct igb_q_vector *q_vector)
7068 {
7069 	struct igb_adapter *adapter = q_vector->adapter;
7070 	int cpu = get_cpu();
7071 
7072 	if (q_vector->cpu == cpu)
7073 		goto out_no_update;
7074 
7075 	if (q_vector->tx.ring)
7076 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7077 
7078 	if (q_vector->rx.ring)
7079 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7080 
7081 	q_vector->cpu = cpu;
7082 out_no_update:
7083 	put_cpu();
7084 }
7085 
7086 static void igb_setup_dca(struct igb_adapter *adapter)
7087 {
7088 	struct e1000_hw *hw = &adapter->hw;
7089 	int i;
7090 
7091 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7092 		return;
7093 
7094 	/* Always use CB2 mode, difference is masked in the CB driver. */
7095 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7096 
7097 	for (i = 0; i < adapter->num_q_vectors; i++) {
7098 		adapter->q_vector[i]->cpu = -1;
7099 		igb_update_dca(adapter->q_vector[i]);
7100 	}
7101 }
7102 
7103 static int __igb_notify_dca(struct device *dev, void *data)
7104 {
7105 	struct net_device *netdev = dev_get_drvdata(dev);
7106 	struct igb_adapter *adapter = netdev_priv(netdev);
7107 	struct pci_dev *pdev = adapter->pdev;
7108 	struct e1000_hw *hw = &adapter->hw;
7109 	unsigned long event = *(unsigned long *)data;
7110 
7111 	switch (event) {
7112 	case DCA_PROVIDER_ADD:
7113 		/* if already enabled, don't do it again */
7114 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7115 			break;
7116 		if (dca_add_requester(dev) == 0) {
7117 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7118 			dev_info(&pdev->dev, "DCA enabled\n");
7119 			igb_setup_dca(adapter);
7120 			break;
7121 		}
7122 		fallthrough; /* since DCA is disabled. */
7123 	case DCA_PROVIDER_REMOVE:
7124 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7125 			/* without this a class_device is left
7126 			 * hanging around in the sysfs model
7127 			 */
7128 			dca_remove_requester(dev);
7129 			dev_info(&pdev->dev, "DCA disabled\n");
7130 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7131 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7132 		}
7133 		break;
7134 	}
7135 
7136 	return 0;
7137 }
7138 
7139 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7140 			  void *p)
7141 {
7142 	int ret_val;
7143 
7144 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7145 					 __igb_notify_dca);
7146 
7147 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7148 }
7149 #endif /* CONFIG_IGB_DCA */
7150 
7151 #ifdef CONFIG_PCI_IOV
7152 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7153 {
7154 	unsigned char mac_addr[ETH_ALEN];
7155 
7156 	eth_zero_addr(mac_addr);
7157 	igb_set_vf_mac(adapter, vf, mac_addr);
7158 
7159 	/* By default spoof check is enabled for all VFs */
7160 	adapter->vf_data[vf].spoofchk_enabled = true;
7161 
7162 	/* By default VFs are not trusted */
7163 	adapter->vf_data[vf].trusted = false;
7164 
7165 	return 0;
7166 }
7167 
7168 #endif
7169 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7170 {
7171 	struct e1000_hw *hw = &adapter->hw;
7172 	u32 ping;
7173 	int i;
7174 
7175 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7176 		ping = E1000_PF_CONTROL_MSG;
7177 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7178 			ping |= E1000_VT_MSGTYPE_CTS;
7179 		igb_write_mbx(hw, &ping, 1, i);
7180 	}
7181 }
7182 
7183 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7184 {
7185 	struct e1000_hw *hw = &adapter->hw;
7186 	u32 vmolr = rd32(E1000_VMOLR(vf));
7187 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7188 
7189 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7190 			    IGB_VF_FLAG_MULTI_PROMISC);
7191 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7192 
7193 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7194 		vmolr |= E1000_VMOLR_MPME;
7195 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7196 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7197 	} else {
7198 		/* if we have hashes and we are clearing a multicast promisc
7199 		 * flag we need to write the hashes to the MTA as this step
7200 		 * was previously skipped
7201 		 */
7202 		if (vf_data->num_vf_mc_hashes > 30) {
7203 			vmolr |= E1000_VMOLR_MPME;
7204 		} else if (vf_data->num_vf_mc_hashes) {
7205 			int j;
7206 
7207 			vmolr |= E1000_VMOLR_ROMPE;
7208 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7209 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7210 		}
7211 	}
7212 
7213 	wr32(E1000_VMOLR(vf), vmolr);
7214 
7215 	/* there are flags left unprocessed, likely not supported */
7216 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7217 		return -EINVAL;
7218 
7219 	return 0;
7220 }
7221 
7222 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7223 				  u32 *msgbuf, u32 vf)
7224 {
7225 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7226 	u16 *hash_list = (u16 *)&msgbuf[1];
7227 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7228 	int i;
7229 
7230 	/* salt away the number of multicast addresses assigned
7231 	 * to this VF for later use to restore when the PF multi cast
7232 	 * list changes
7233 	 */
7234 	vf_data->num_vf_mc_hashes = n;
7235 
7236 	/* only up to 30 hash values supported */
7237 	if (n > 30)
7238 		n = 30;
7239 
7240 	/* store the hashes for later use */
7241 	for (i = 0; i < n; i++)
7242 		vf_data->vf_mc_hashes[i] = hash_list[i];
7243 
7244 	/* Flush and reset the mta with the new values */
7245 	igb_set_rx_mode(adapter->netdev);
7246 
7247 	return 0;
7248 }
7249 
7250 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7251 {
7252 	struct e1000_hw *hw = &adapter->hw;
7253 	struct vf_data_storage *vf_data;
7254 	int i, j;
7255 
7256 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7257 		u32 vmolr = rd32(E1000_VMOLR(i));
7258 
7259 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7260 
7261 		vf_data = &adapter->vf_data[i];
7262 
7263 		if ((vf_data->num_vf_mc_hashes > 30) ||
7264 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7265 			vmolr |= E1000_VMOLR_MPME;
7266 		} else if (vf_data->num_vf_mc_hashes) {
7267 			vmolr |= E1000_VMOLR_ROMPE;
7268 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7269 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7270 		}
7271 		wr32(E1000_VMOLR(i), vmolr);
7272 	}
7273 }
7274 
7275 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7276 {
7277 	struct e1000_hw *hw = &adapter->hw;
7278 	u32 pool_mask, vlvf_mask, i;
7279 
7280 	/* create mask for VF and other pools */
7281 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7282 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7283 
7284 	/* drop PF from pool bits */
7285 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7286 			     adapter->vfs_allocated_count);
7287 
7288 	/* Find the vlan filter for this id */
7289 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7290 		u32 vlvf = rd32(E1000_VLVF(i));
7291 		u32 vfta_mask, vid, vfta;
7292 
7293 		/* remove the vf from the pool */
7294 		if (!(vlvf & vlvf_mask))
7295 			continue;
7296 
7297 		/* clear out bit from VLVF */
7298 		vlvf ^= vlvf_mask;
7299 
7300 		/* if other pools are present, just remove ourselves */
7301 		if (vlvf & pool_mask)
7302 			goto update_vlvfb;
7303 
7304 		/* if PF is present, leave VFTA */
7305 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7306 			goto update_vlvf;
7307 
7308 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7309 		vfta_mask = BIT(vid % 32);
7310 
7311 		/* clear bit from VFTA */
7312 		vfta = adapter->shadow_vfta[vid / 32];
7313 		if (vfta & vfta_mask)
7314 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7315 update_vlvf:
7316 		/* clear pool selection enable */
7317 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7318 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7319 		else
7320 			vlvf = 0;
7321 update_vlvfb:
7322 		/* clear pool bits */
7323 		wr32(E1000_VLVF(i), vlvf);
7324 	}
7325 }
7326 
7327 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7328 {
7329 	u32 vlvf;
7330 	int idx;
7331 
7332 	/* short cut the special case */
7333 	if (vlan == 0)
7334 		return 0;
7335 
7336 	/* Search for the VLAN id in the VLVF entries */
7337 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7338 		vlvf = rd32(E1000_VLVF(idx));
7339 		if ((vlvf & VLAN_VID_MASK) == vlan)
7340 			break;
7341 	}
7342 
7343 	return idx;
7344 }
7345 
7346 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7347 {
7348 	struct e1000_hw *hw = &adapter->hw;
7349 	u32 bits, pf_id;
7350 	int idx;
7351 
7352 	idx = igb_find_vlvf_entry(hw, vid);
7353 	if (!idx)
7354 		return;
7355 
7356 	/* See if any other pools are set for this VLAN filter
7357 	 * entry other than the PF.
7358 	 */
7359 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7360 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7361 	bits &= rd32(E1000_VLVF(idx));
7362 
7363 	/* Disable the filter so this falls into the default pool. */
7364 	if (!bits) {
7365 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7366 			wr32(E1000_VLVF(idx), BIT(pf_id));
7367 		else
7368 			wr32(E1000_VLVF(idx), 0);
7369 	}
7370 }
7371 
7372 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7373 			   bool add, u32 vf)
7374 {
7375 	int pf_id = adapter->vfs_allocated_count;
7376 	struct e1000_hw *hw = &adapter->hw;
7377 	int err;
7378 
7379 	/* If VLAN overlaps with one the PF is currently monitoring make
7380 	 * sure that we are able to allocate a VLVF entry.  This may be
7381 	 * redundant but it guarantees PF will maintain visibility to
7382 	 * the VLAN.
7383 	 */
7384 	if (add && test_bit(vid, adapter->active_vlans)) {
7385 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7386 		if (err)
7387 			return err;
7388 	}
7389 
7390 	err = igb_vfta_set(hw, vid, vf, add, false);
7391 
7392 	if (add && !err)
7393 		return err;
7394 
7395 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7396 	 * we may need to drop the PF pool bit in order to allow us to free
7397 	 * up the VLVF resources.
7398 	 */
7399 	if (test_bit(vid, adapter->active_vlans) ||
7400 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7401 		igb_update_pf_vlvf(adapter, vid);
7402 
7403 	return err;
7404 }
7405 
7406 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7407 {
7408 	struct e1000_hw *hw = &adapter->hw;
7409 
7410 	if (vid)
7411 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7412 	else
7413 		wr32(E1000_VMVIR(vf), 0);
7414 }
7415 
7416 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7417 				u16 vlan, u8 qos)
7418 {
7419 	int err;
7420 
7421 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7422 	if (err)
7423 		return err;
7424 
7425 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7426 	igb_set_vmolr(adapter, vf, !vlan);
7427 
7428 	/* revoke access to previous VLAN */
7429 	if (vlan != adapter->vf_data[vf].pf_vlan)
7430 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7431 				false, vf);
7432 
7433 	adapter->vf_data[vf].pf_vlan = vlan;
7434 	adapter->vf_data[vf].pf_qos = qos;
7435 	igb_set_vf_vlan_strip(adapter, vf, true);
7436 	dev_info(&adapter->pdev->dev,
7437 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7438 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7439 		dev_warn(&adapter->pdev->dev,
7440 			 "The VF VLAN has been set, but the PF device is not up.\n");
7441 		dev_warn(&adapter->pdev->dev,
7442 			 "Bring the PF device up before attempting to use the VF device.\n");
7443 	}
7444 
7445 	return err;
7446 }
7447 
7448 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7449 {
7450 	/* Restore tagless access via VLAN 0 */
7451 	igb_set_vf_vlan(adapter, 0, true, vf);
7452 
7453 	igb_set_vmvir(adapter, 0, vf);
7454 	igb_set_vmolr(adapter, vf, true);
7455 
7456 	/* Remove any PF assigned VLAN */
7457 	if (adapter->vf_data[vf].pf_vlan)
7458 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7459 				false, vf);
7460 
7461 	adapter->vf_data[vf].pf_vlan = 0;
7462 	adapter->vf_data[vf].pf_qos = 0;
7463 	igb_set_vf_vlan_strip(adapter, vf, false);
7464 
7465 	return 0;
7466 }
7467 
7468 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7469 			       u16 vlan, u8 qos, __be16 vlan_proto)
7470 {
7471 	struct igb_adapter *adapter = netdev_priv(netdev);
7472 
7473 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7474 		return -EINVAL;
7475 
7476 	if (vlan_proto != htons(ETH_P_8021Q))
7477 		return -EPROTONOSUPPORT;
7478 
7479 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7480 			       igb_disable_port_vlan(adapter, vf);
7481 }
7482 
7483 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7484 {
7485 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7486 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7487 	int ret;
7488 
7489 	if (adapter->vf_data[vf].pf_vlan)
7490 		return -1;
7491 
7492 	/* VLAN 0 is a special case, don't allow it to be removed */
7493 	if (!vid && !add)
7494 		return 0;
7495 
7496 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7497 	if (!ret)
7498 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7499 	return ret;
7500 }
7501 
7502 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7503 {
7504 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7505 
7506 	/* clear flags - except flag that indicates PF has set the MAC */
7507 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7508 	vf_data->last_nack = jiffies;
7509 
7510 	/* reset vlans for device */
7511 	igb_clear_vf_vfta(adapter, vf);
7512 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7513 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7514 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7515 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7516 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7517 
7518 	/* reset multicast table array for vf */
7519 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7520 
7521 	/* Flush and reset the mta with the new values */
7522 	igb_set_rx_mode(adapter->netdev);
7523 }
7524 
7525 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7526 {
7527 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7528 
7529 	/* clear mac address as we were hotplug removed/added */
7530 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7531 		eth_zero_addr(vf_mac);
7532 
7533 	/* process remaining reset events */
7534 	igb_vf_reset(adapter, vf);
7535 }
7536 
7537 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7538 {
7539 	struct e1000_hw *hw = &adapter->hw;
7540 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7541 	u32 reg, msgbuf[3] = {};
7542 	u8 *addr = (u8 *)(&msgbuf[1]);
7543 
7544 	/* process all the same items cleared in a function level reset */
7545 	igb_vf_reset(adapter, vf);
7546 
7547 	/* set vf mac address */
7548 	igb_set_vf_mac(adapter, vf, vf_mac);
7549 
7550 	/* enable transmit and receive for vf */
7551 	reg = rd32(E1000_VFTE);
7552 	wr32(E1000_VFTE, reg | BIT(vf));
7553 	reg = rd32(E1000_VFRE);
7554 	wr32(E1000_VFRE, reg | BIT(vf));
7555 
7556 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7557 
7558 	/* reply to reset with ack and vf mac address */
7559 	if (!is_zero_ether_addr(vf_mac)) {
7560 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7561 		memcpy(addr, vf_mac, ETH_ALEN);
7562 	} else {
7563 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7564 	}
7565 	igb_write_mbx(hw, msgbuf, 3, vf);
7566 }
7567 
7568 static void igb_flush_mac_table(struct igb_adapter *adapter)
7569 {
7570 	struct e1000_hw *hw = &adapter->hw;
7571 	int i;
7572 
7573 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7574 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7575 		eth_zero_addr(adapter->mac_table[i].addr);
7576 		adapter->mac_table[i].queue = 0;
7577 		igb_rar_set_index(adapter, i);
7578 	}
7579 }
7580 
7581 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7582 {
7583 	struct e1000_hw *hw = &adapter->hw;
7584 	/* do not count rar entries reserved for VFs MAC addresses */
7585 	int rar_entries = hw->mac.rar_entry_count -
7586 			  adapter->vfs_allocated_count;
7587 	int i, count = 0;
7588 
7589 	for (i = 0; i < rar_entries; i++) {
7590 		/* do not count default entries */
7591 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7592 			continue;
7593 
7594 		/* do not count "in use" entries for different queues */
7595 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7596 		    (adapter->mac_table[i].queue != queue))
7597 			continue;
7598 
7599 		count++;
7600 	}
7601 
7602 	return count;
7603 }
7604 
7605 /* Set default MAC address for the PF in the first RAR entry */
7606 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7607 {
7608 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7609 
7610 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7611 	mac_table->queue = adapter->vfs_allocated_count;
7612 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7613 
7614 	igb_rar_set_index(adapter, 0);
7615 }
7616 
7617 /* If the filter to be added and an already existing filter express
7618  * the same address and address type, it should be possible to only
7619  * override the other configurations, for example the queue to steer
7620  * traffic.
7621  */
7622 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7623 				      const u8 *addr, const u8 flags)
7624 {
7625 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7626 		return true;
7627 
7628 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7629 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7630 		return false;
7631 
7632 	if (!ether_addr_equal(addr, entry->addr))
7633 		return false;
7634 
7635 	return true;
7636 }
7637 
7638 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7639  * 'flags' is used to indicate what kind of match is made, match is by
7640  * default for the destination address, if matching by source address
7641  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7642  */
7643 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7644 				    const u8 *addr, const u8 queue,
7645 				    const u8 flags)
7646 {
7647 	struct e1000_hw *hw = &adapter->hw;
7648 	int rar_entries = hw->mac.rar_entry_count -
7649 			  adapter->vfs_allocated_count;
7650 	int i;
7651 
7652 	if (is_zero_ether_addr(addr))
7653 		return -EINVAL;
7654 
7655 	/* Search for the first empty entry in the MAC table.
7656 	 * Do not touch entries at the end of the table reserved for the VF MAC
7657 	 * addresses.
7658 	 */
7659 	for (i = 0; i < rar_entries; i++) {
7660 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7661 					       addr, flags))
7662 			continue;
7663 
7664 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7665 		adapter->mac_table[i].queue = queue;
7666 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7667 
7668 		igb_rar_set_index(adapter, i);
7669 		return i;
7670 	}
7671 
7672 	return -ENOSPC;
7673 }
7674 
7675 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7676 			      const u8 queue)
7677 {
7678 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7679 }
7680 
7681 /* Remove a MAC filter for 'addr' directing matching traffic to
7682  * 'queue', 'flags' is used to indicate what kind of match need to be
7683  * removed, match is by default for the destination address, if
7684  * matching by source address is to be removed the flag
7685  * IGB_MAC_STATE_SRC_ADDR can be used.
7686  */
7687 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7688 				    const u8 *addr, const u8 queue,
7689 				    const u8 flags)
7690 {
7691 	struct e1000_hw *hw = &adapter->hw;
7692 	int rar_entries = hw->mac.rar_entry_count -
7693 			  adapter->vfs_allocated_count;
7694 	int i;
7695 
7696 	if (is_zero_ether_addr(addr))
7697 		return -EINVAL;
7698 
7699 	/* Search for matching entry in the MAC table based on given address
7700 	 * and queue. Do not touch entries at the end of the table reserved
7701 	 * for the VF MAC addresses.
7702 	 */
7703 	for (i = 0; i < rar_entries; i++) {
7704 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7705 			continue;
7706 		if ((adapter->mac_table[i].state & flags) != flags)
7707 			continue;
7708 		if (adapter->mac_table[i].queue != queue)
7709 			continue;
7710 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7711 			continue;
7712 
7713 		/* When a filter for the default address is "deleted",
7714 		 * we return it to its initial configuration
7715 		 */
7716 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7717 			adapter->mac_table[i].state =
7718 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7719 			adapter->mac_table[i].queue =
7720 				adapter->vfs_allocated_count;
7721 		} else {
7722 			adapter->mac_table[i].state = 0;
7723 			adapter->mac_table[i].queue = 0;
7724 			eth_zero_addr(adapter->mac_table[i].addr);
7725 		}
7726 
7727 		igb_rar_set_index(adapter, i);
7728 		return 0;
7729 	}
7730 
7731 	return -ENOENT;
7732 }
7733 
7734 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7735 			      const u8 queue)
7736 {
7737 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7738 }
7739 
7740 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7741 				const u8 *addr, u8 queue, u8 flags)
7742 {
7743 	struct e1000_hw *hw = &adapter->hw;
7744 
7745 	/* In theory, this should be supported on 82575 as well, but
7746 	 * that part wasn't easily accessible during development.
7747 	 */
7748 	if (hw->mac.type != e1000_i210)
7749 		return -EOPNOTSUPP;
7750 
7751 	return igb_add_mac_filter_flags(adapter, addr, queue,
7752 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7753 }
7754 
7755 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7756 				const u8 *addr, u8 queue, u8 flags)
7757 {
7758 	return igb_del_mac_filter_flags(adapter, addr, queue,
7759 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7760 }
7761 
7762 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7763 {
7764 	struct igb_adapter *adapter = netdev_priv(netdev);
7765 	int ret;
7766 
7767 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7768 
7769 	return min_t(int, ret, 0);
7770 }
7771 
7772 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7773 {
7774 	struct igb_adapter *adapter = netdev_priv(netdev);
7775 
7776 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7777 
7778 	return 0;
7779 }
7780 
7781 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7782 				 const u32 info, const u8 *addr)
7783 {
7784 	struct pci_dev *pdev = adapter->pdev;
7785 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7786 	struct list_head *pos;
7787 	struct vf_mac_filter *entry = NULL;
7788 	int ret = 0;
7789 
7790 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7791 	    !vf_data->trusted) {
7792 		dev_warn(&pdev->dev,
7793 			 "VF %d requested MAC filter but is administratively denied\n",
7794 			  vf);
7795 		return -EINVAL;
7796 	}
7797 	if (!is_valid_ether_addr(addr)) {
7798 		dev_warn(&pdev->dev,
7799 			 "VF %d attempted to set invalid MAC filter\n",
7800 			  vf);
7801 		return -EINVAL;
7802 	}
7803 
7804 	switch (info) {
7805 	case E1000_VF_MAC_FILTER_CLR:
7806 		/* remove all unicast MAC filters related to the current VF */
7807 		list_for_each(pos, &adapter->vf_macs.l) {
7808 			entry = list_entry(pos, struct vf_mac_filter, l);
7809 			if (entry->vf == vf) {
7810 				entry->vf = -1;
7811 				entry->free = true;
7812 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7813 			}
7814 		}
7815 		break;
7816 	case E1000_VF_MAC_FILTER_ADD:
7817 		/* try to find empty slot in the list */
7818 		list_for_each(pos, &adapter->vf_macs.l) {
7819 			entry = list_entry(pos, struct vf_mac_filter, l);
7820 			if (entry->free)
7821 				break;
7822 		}
7823 
7824 		if (entry && entry->free) {
7825 			entry->free = false;
7826 			entry->vf = vf;
7827 			ether_addr_copy(entry->vf_mac, addr);
7828 
7829 			ret = igb_add_mac_filter(adapter, addr, vf);
7830 			ret = min_t(int, ret, 0);
7831 		} else {
7832 			ret = -ENOSPC;
7833 		}
7834 
7835 		if (ret == -ENOSPC)
7836 			dev_warn(&pdev->dev,
7837 				 "VF %d has requested MAC filter but there is no space for it\n",
7838 				 vf);
7839 		break;
7840 	default:
7841 		ret = -EINVAL;
7842 		break;
7843 	}
7844 
7845 	return ret;
7846 }
7847 
7848 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7849 {
7850 	struct pci_dev *pdev = adapter->pdev;
7851 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7852 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7853 
7854 	/* The VF MAC Address is stored in a packed array of bytes
7855 	 * starting at the second 32 bit word of the msg array
7856 	 */
7857 	unsigned char *addr = (unsigned char *)&msg[1];
7858 	int ret = 0;
7859 
7860 	if (!info) {
7861 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7862 		    !vf_data->trusted) {
7863 			dev_warn(&pdev->dev,
7864 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7865 				 vf);
7866 			return -EINVAL;
7867 		}
7868 
7869 		if (!is_valid_ether_addr(addr)) {
7870 			dev_warn(&pdev->dev,
7871 				 "VF %d attempted to set invalid MAC\n",
7872 				 vf);
7873 			return -EINVAL;
7874 		}
7875 
7876 		ret = igb_set_vf_mac(adapter, vf, addr);
7877 	} else {
7878 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7879 	}
7880 
7881 	return ret;
7882 }
7883 
7884 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7885 {
7886 	struct e1000_hw *hw = &adapter->hw;
7887 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7888 	u32 msg = E1000_VT_MSGTYPE_NACK;
7889 
7890 	/* if device isn't clear to send it shouldn't be reading either */
7891 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7892 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7893 		igb_write_mbx(hw, &msg, 1, vf);
7894 		vf_data->last_nack = jiffies;
7895 	}
7896 }
7897 
7898 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7899 {
7900 	struct pci_dev *pdev = adapter->pdev;
7901 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7902 	struct e1000_hw *hw = &adapter->hw;
7903 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7904 	s32 retval;
7905 
7906 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7907 
7908 	if (retval) {
7909 		/* if receive failed revoke VF CTS stats and restart init */
7910 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7911 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7912 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7913 			goto unlock;
7914 		goto out;
7915 	}
7916 
7917 	/* this is a message we already processed, do nothing */
7918 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7919 		goto unlock;
7920 
7921 	/* until the vf completes a reset it should not be
7922 	 * allowed to start any configuration.
7923 	 */
7924 	if (msgbuf[0] == E1000_VF_RESET) {
7925 		/* unlocks mailbox */
7926 		igb_vf_reset_msg(adapter, vf);
7927 		return;
7928 	}
7929 
7930 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7931 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7932 			goto unlock;
7933 		retval = -1;
7934 		goto out;
7935 	}
7936 
7937 	switch ((msgbuf[0] & 0xFFFF)) {
7938 	case E1000_VF_SET_MAC_ADDR:
7939 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7940 		break;
7941 	case E1000_VF_SET_PROMISC:
7942 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7943 		break;
7944 	case E1000_VF_SET_MULTICAST:
7945 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7946 		break;
7947 	case E1000_VF_SET_LPE:
7948 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7949 		break;
7950 	case E1000_VF_SET_VLAN:
7951 		retval = -1;
7952 		if (vf_data->pf_vlan)
7953 			dev_warn(&pdev->dev,
7954 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7955 				 vf);
7956 		else
7957 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7958 		break;
7959 	default:
7960 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7961 		retval = -1;
7962 		break;
7963 	}
7964 
7965 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7966 out:
7967 	/* notify the VF of the results of what it sent us */
7968 	if (retval)
7969 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7970 	else
7971 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7972 
7973 	/* unlocks mailbox */
7974 	igb_write_mbx(hw, msgbuf, 1, vf);
7975 	return;
7976 
7977 unlock:
7978 	igb_unlock_mbx(hw, vf);
7979 }
7980 
7981 static void igb_msg_task(struct igb_adapter *adapter)
7982 {
7983 	struct e1000_hw *hw = &adapter->hw;
7984 	unsigned long flags;
7985 	u32 vf;
7986 
7987 	spin_lock_irqsave(&adapter->vfs_lock, flags);
7988 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7989 		/* process any reset requests */
7990 		if (!igb_check_for_rst(hw, vf))
7991 			igb_vf_reset_event(adapter, vf);
7992 
7993 		/* process any messages pending */
7994 		if (!igb_check_for_msg(hw, vf))
7995 			igb_rcv_msg_from_vf(adapter, vf);
7996 
7997 		/* process any acks */
7998 		if (!igb_check_for_ack(hw, vf))
7999 			igb_rcv_ack_from_vf(adapter, vf);
8000 	}
8001 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8002 }
8003 
8004 /**
8005  *  igb_set_uta - Set unicast filter table address
8006  *  @adapter: board private structure
8007  *  @set: boolean indicating if we are setting or clearing bits
8008  *
8009  *  The unicast table address is a register array of 32-bit registers.
8010  *  The table is meant to be used in a way similar to how the MTA is used
8011  *  however due to certain limitations in the hardware it is necessary to
8012  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8013  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8014  **/
8015 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8016 {
8017 	struct e1000_hw *hw = &adapter->hw;
8018 	u32 uta = set ? ~0 : 0;
8019 	int i;
8020 
8021 	/* we only need to do this if VMDq is enabled */
8022 	if (!adapter->vfs_allocated_count)
8023 		return;
8024 
8025 	for (i = hw->mac.uta_reg_count; i--;)
8026 		array_wr32(E1000_UTA, i, uta);
8027 }
8028 
8029 /**
8030  *  igb_intr_msi - Interrupt Handler
8031  *  @irq: interrupt number
8032  *  @data: pointer to a network interface device structure
8033  **/
8034 static irqreturn_t igb_intr_msi(int irq, void *data)
8035 {
8036 	struct igb_adapter *adapter = data;
8037 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8038 	struct e1000_hw *hw = &adapter->hw;
8039 	/* read ICR disables interrupts using IAM */
8040 	u32 icr = rd32(E1000_ICR);
8041 
8042 	igb_write_itr(q_vector);
8043 
8044 	if (icr & E1000_ICR_DRSTA)
8045 		schedule_work(&adapter->reset_task);
8046 
8047 	if (icr & E1000_ICR_DOUTSYNC) {
8048 		/* HW is reporting DMA is out of sync */
8049 		adapter->stats.doosync++;
8050 	}
8051 
8052 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8053 		hw->mac.get_link_status = 1;
8054 		if (!test_bit(__IGB_DOWN, &adapter->state))
8055 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8056 	}
8057 
8058 	if (icr & E1000_ICR_TS)
8059 		igb_tsync_interrupt(adapter);
8060 
8061 	napi_schedule(&q_vector->napi);
8062 
8063 	return IRQ_HANDLED;
8064 }
8065 
8066 /**
8067  *  igb_intr - Legacy Interrupt Handler
8068  *  @irq: interrupt number
8069  *  @data: pointer to a network interface device structure
8070  **/
8071 static irqreturn_t igb_intr(int irq, void *data)
8072 {
8073 	struct igb_adapter *adapter = data;
8074 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8075 	struct e1000_hw *hw = &adapter->hw;
8076 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8077 	 * need for the IMC write
8078 	 */
8079 	u32 icr = rd32(E1000_ICR);
8080 
8081 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8082 	 * not set, then the adapter didn't send an interrupt
8083 	 */
8084 	if (!(icr & E1000_ICR_INT_ASSERTED))
8085 		return IRQ_NONE;
8086 
8087 	igb_write_itr(q_vector);
8088 
8089 	if (icr & E1000_ICR_DRSTA)
8090 		schedule_work(&adapter->reset_task);
8091 
8092 	if (icr & E1000_ICR_DOUTSYNC) {
8093 		/* HW is reporting DMA is out of sync */
8094 		adapter->stats.doosync++;
8095 	}
8096 
8097 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8098 		hw->mac.get_link_status = 1;
8099 		/* guard against interrupt when we're going down */
8100 		if (!test_bit(__IGB_DOWN, &adapter->state))
8101 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8102 	}
8103 
8104 	if (icr & E1000_ICR_TS)
8105 		igb_tsync_interrupt(adapter);
8106 
8107 	napi_schedule(&q_vector->napi);
8108 
8109 	return IRQ_HANDLED;
8110 }
8111 
8112 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8113 {
8114 	struct igb_adapter *adapter = q_vector->adapter;
8115 	struct e1000_hw *hw = &adapter->hw;
8116 
8117 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8118 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8119 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8120 			igb_set_itr(q_vector);
8121 		else
8122 			igb_update_ring_itr(q_vector);
8123 	}
8124 
8125 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8126 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8127 			wr32(E1000_EIMS, q_vector->eims_value);
8128 		else
8129 			igb_irq_enable(adapter);
8130 	}
8131 }
8132 
8133 /**
8134  *  igb_poll - NAPI Rx polling callback
8135  *  @napi: napi polling structure
8136  *  @budget: count of how many packets we should handle
8137  **/
8138 static int igb_poll(struct napi_struct *napi, int budget)
8139 {
8140 	struct igb_q_vector *q_vector = container_of(napi,
8141 						     struct igb_q_vector,
8142 						     napi);
8143 	bool clean_complete = true;
8144 	int work_done = 0;
8145 
8146 #ifdef CONFIG_IGB_DCA
8147 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8148 		igb_update_dca(q_vector);
8149 #endif
8150 	if (q_vector->tx.ring)
8151 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8152 
8153 	if (q_vector->rx.ring) {
8154 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8155 
8156 		work_done += cleaned;
8157 		if (cleaned >= budget)
8158 			clean_complete = false;
8159 	}
8160 
8161 	/* If all work not completed, return budget and keep polling */
8162 	if (!clean_complete)
8163 		return budget;
8164 
8165 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8166 	 * poll us due to busy-polling
8167 	 */
8168 	if (likely(napi_complete_done(napi, work_done)))
8169 		igb_ring_irq_enable(q_vector);
8170 
8171 	return work_done;
8172 }
8173 
8174 /**
8175  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8176  *  @q_vector: pointer to q_vector containing needed info
8177  *  @napi_budget: Used to determine if we are in netpoll
8178  *
8179  *  returns true if ring is completely cleaned
8180  **/
8181 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8182 {
8183 	struct igb_adapter *adapter = q_vector->adapter;
8184 	struct igb_ring *tx_ring = q_vector->tx.ring;
8185 	struct igb_tx_buffer *tx_buffer;
8186 	union e1000_adv_tx_desc *tx_desc;
8187 	unsigned int total_bytes = 0, total_packets = 0;
8188 	unsigned int budget = q_vector->tx.work_limit;
8189 	unsigned int i = tx_ring->next_to_clean;
8190 
8191 	if (test_bit(__IGB_DOWN, &adapter->state))
8192 		return true;
8193 
8194 	tx_buffer = &tx_ring->tx_buffer_info[i];
8195 	tx_desc = IGB_TX_DESC(tx_ring, i);
8196 	i -= tx_ring->count;
8197 
8198 	do {
8199 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8200 
8201 		/* if next_to_watch is not set then there is no work pending */
8202 		if (!eop_desc)
8203 			break;
8204 
8205 		/* prevent any other reads prior to eop_desc */
8206 		smp_rmb();
8207 
8208 		/* if DD is not set pending work has not been completed */
8209 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8210 			break;
8211 
8212 		/* clear next_to_watch to prevent false hangs */
8213 		tx_buffer->next_to_watch = NULL;
8214 
8215 		/* update the statistics for this packet */
8216 		total_bytes += tx_buffer->bytecount;
8217 		total_packets += tx_buffer->gso_segs;
8218 
8219 		/* free the skb */
8220 		if (tx_buffer->type == IGB_TYPE_SKB)
8221 			napi_consume_skb(tx_buffer->skb, napi_budget);
8222 		else
8223 			xdp_return_frame(tx_buffer->xdpf);
8224 
8225 		/* unmap skb header data */
8226 		dma_unmap_single(tx_ring->dev,
8227 				 dma_unmap_addr(tx_buffer, dma),
8228 				 dma_unmap_len(tx_buffer, len),
8229 				 DMA_TO_DEVICE);
8230 
8231 		/* clear tx_buffer data */
8232 		dma_unmap_len_set(tx_buffer, len, 0);
8233 
8234 		/* clear last DMA location and unmap remaining buffers */
8235 		while (tx_desc != eop_desc) {
8236 			tx_buffer++;
8237 			tx_desc++;
8238 			i++;
8239 			if (unlikely(!i)) {
8240 				i -= tx_ring->count;
8241 				tx_buffer = tx_ring->tx_buffer_info;
8242 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8243 			}
8244 
8245 			/* unmap any remaining paged data */
8246 			if (dma_unmap_len(tx_buffer, len)) {
8247 				dma_unmap_page(tx_ring->dev,
8248 					       dma_unmap_addr(tx_buffer, dma),
8249 					       dma_unmap_len(tx_buffer, len),
8250 					       DMA_TO_DEVICE);
8251 				dma_unmap_len_set(tx_buffer, len, 0);
8252 			}
8253 		}
8254 
8255 		/* move us one more past the eop_desc for start of next pkt */
8256 		tx_buffer++;
8257 		tx_desc++;
8258 		i++;
8259 		if (unlikely(!i)) {
8260 			i -= tx_ring->count;
8261 			tx_buffer = tx_ring->tx_buffer_info;
8262 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8263 		}
8264 
8265 		/* issue prefetch for next Tx descriptor */
8266 		prefetch(tx_desc);
8267 
8268 		/* update budget accounting */
8269 		budget--;
8270 	} while (likely(budget));
8271 
8272 	netdev_tx_completed_queue(txring_txq(tx_ring),
8273 				  total_packets, total_bytes);
8274 	i += tx_ring->count;
8275 	tx_ring->next_to_clean = i;
8276 	u64_stats_update_begin(&tx_ring->tx_syncp);
8277 	tx_ring->tx_stats.bytes += total_bytes;
8278 	tx_ring->tx_stats.packets += total_packets;
8279 	u64_stats_update_end(&tx_ring->tx_syncp);
8280 	q_vector->tx.total_bytes += total_bytes;
8281 	q_vector->tx.total_packets += total_packets;
8282 
8283 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8284 		struct e1000_hw *hw = &adapter->hw;
8285 
8286 		/* Detect a transmit hang in hardware, this serializes the
8287 		 * check with the clearing of time_stamp and movement of i
8288 		 */
8289 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8290 		if (tx_buffer->next_to_watch &&
8291 		    time_after(jiffies, tx_buffer->time_stamp +
8292 			       (adapter->tx_timeout_factor * HZ)) &&
8293 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8294 
8295 			/* detected Tx unit hang */
8296 			dev_err(tx_ring->dev,
8297 				"Detected Tx Unit Hang\n"
8298 				"  Tx Queue             <%d>\n"
8299 				"  TDH                  <%x>\n"
8300 				"  TDT                  <%x>\n"
8301 				"  next_to_use          <%x>\n"
8302 				"  next_to_clean        <%x>\n"
8303 				"buffer_info[next_to_clean]\n"
8304 				"  time_stamp           <%lx>\n"
8305 				"  next_to_watch        <%p>\n"
8306 				"  jiffies              <%lx>\n"
8307 				"  desc.status          <%x>\n",
8308 				tx_ring->queue_index,
8309 				rd32(E1000_TDH(tx_ring->reg_idx)),
8310 				readl(tx_ring->tail),
8311 				tx_ring->next_to_use,
8312 				tx_ring->next_to_clean,
8313 				tx_buffer->time_stamp,
8314 				tx_buffer->next_to_watch,
8315 				jiffies,
8316 				tx_buffer->next_to_watch->wb.status);
8317 			netif_stop_subqueue(tx_ring->netdev,
8318 					    tx_ring->queue_index);
8319 
8320 			/* we are about to reset, no point in enabling stuff */
8321 			return true;
8322 		}
8323 	}
8324 
8325 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8326 	if (unlikely(total_packets &&
8327 	    netif_carrier_ok(tx_ring->netdev) &&
8328 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8329 		/* Make sure that anybody stopping the queue after this
8330 		 * sees the new next_to_clean.
8331 		 */
8332 		smp_mb();
8333 		if (__netif_subqueue_stopped(tx_ring->netdev,
8334 					     tx_ring->queue_index) &&
8335 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8336 			netif_wake_subqueue(tx_ring->netdev,
8337 					    tx_ring->queue_index);
8338 
8339 			u64_stats_update_begin(&tx_ring->tx_syncp);
8340 			tx_ring->tx_stats.restart_queue++;
8341 			u64_stats_update_end(&tx_ring->tx_syncp);
8342 		}
8343 	}
8344 
8345 	return !!budget;
8346 }
8347 
8348 /**
8349  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8350  *  @rx_ring: rx descriptor ring to store buffers on
8351  *  @old_buff: donor buffer to have page reused
8352  *
8353  *  Synchronizes page for reuse by the adapter
8354  **/
8355 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8356 			      struct igb_rx_buffer *old_buff)
8357 {
8358 	struct igb_rx_buffer *new_buff;
8359 	u16 nta = rx_ring->next_to_alloc;
8360 
8361 	new_buff = &rx_ring->rx_buffer_info[nta];
8362 
8363 	/* update, and store next to alloc */
8364 	nta++;
8365 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8366 
8367 	/* Transfer page from old buffer to new buffer.
8368 	 * Move each member individually to avoid possible store
8369 	 * forwarding stalls.
8370 	 */
8371 	new_buff->dma		= old_buff->dma;
8372 	new_buff->page		= old_buff->page;
8373 	new_buff->page_offset	= old_buff->page_offset;
8374 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8375 }
8376 
8377 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8378 				  int rx_buf_pgcnt)
8379 {
8380 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8381 	struct page *page = rx_buffer->page;
8382 
8383 	/* avoid re-using remote and pfmemalloc pages */
8384 	if (!dev_page_is_reusable(page))
8385 		return false;
8386 
8387 #if (PAGE_SIZE < 8192)
8388 	/* if we are only owner of page we can reuse it */
8389 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8390 		return false;
8391 #else
8392 #define IGB_LAST_OFFSET \
8393 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8394 
8395 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8396 		return false;
8397 #endif
8398 
8399 	/* If we have drained the page fragment pool we need to update
8400 	 * the pagecnt_bias and page count so that we fully restock the
8401 	 * number of references the driver holds.
8402 	 */
8403 	if (unlikely(pagecnt_bias == 1)) {
8404 		page_ref_add(page, USHRT_MAX - 1);
8405 		rx_buffer->pagecnt_bias = USHRT_MAX;
8406 	}
8407 
8408 	return true;
8409 }
8410 
8411 /**
8412  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8413  *  @rx_ring: rx descriptor ring to transact packets on
8414  *  @rx_buffer: buffer containing page to add
8415  *  @skb: sk_buff to place the data into
8416  *  @size: size of buffer to be added
8417  *
8418  *  This function will add the data contained in rx_buffer->page to the skb.
8419  **/
8420 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8421 			    struct igb_rx_buffer *rx_buffer,
8422 			    struct sk_buff *skb,
8423 			    unsigned int size)
8424 {
8425 #if (PAGE_SIZE < 8192)
8426 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8427 #else
8428 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8429 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8430 				SKB_DATA_ALIGN(size);
8431 #endif
8432 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8433 			rx_buffer->page_offset, size, truesize);
8434 #if (PAGE_SIZE < 8192)
8435 	rx_buffer->page_offset ^= truesize;
8436 #else
8437 	rx_buffer->page_offset += truesize;
8438 #endif
8439 }
8440 
8441 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8442 					 struct igb_rx_buffer *rx_buffer,
8443 					 struct xdp_buff *xdp,
8444 					 ktime_t timestamp)
8445 {
8446 #if (PAGE_SIZE < 8192)
8447 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8448 #else
8449 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8450 					       xdp->data_hard_start);
8451 #endif
8452 	unsigned int size = xdp->data_end - xdp->data;
8453 	unsigned int headlen;
8454 	struct sk_buff *skb;
8455 
8456 	/* prefetch first cache line of first page */
8457 	net_prefetch(xdp->data);
8458 
8459 	/* allocate a skb to store the frags */
8460 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8461 	if (unlikely(!skb))
8462 		return NULL;
8463 
8464 	if (timestamp)
8465 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8466 
8467 	/* Determine available headroom for copy */
8468 	headlen = size;
8469 	if (headlen > IGB_RX_HDR_LEN)
8470 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8471 
8472 	/* align pull length to size of long to optimize memcpy performance */
8473 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8474 
8475 	/* update all of the pointers */
8476 	size -= headlen;
8477 	if (size) {
8478 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8479 				(xdp->data + headlen) - page_address(rx_buffer->page),
8480 				size, truesize);
8481 #if (PAGE_SIZE < 8192)
8482 		rx_buffer->page_offset ^= truesize;
8483 #else
8484 		rx_buffer->page_offset += truesize;
8485 #endif
8486 	} else {
8487 		rx_buffer->pagecnt_bias++;
8488 	}
8489 
8490 	return skb;
8491 }
8492 
8493 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8494 				     struct igb_rx_buffer *rx_buffer,
8495 				     struct xdp_buff *xdp,
8496 				     ktime_t timestamp)
8497 {
8498 #if (PAGE_SIZE < 8192)
8499 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8500 #else
8501 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8502 				SKB_DATA_ALIGN(xdp->data_end -
8503 					       xdp->data_hard_start);
8504 #endif
8505 	unsigned int metasize = xdp->data - xdp->data_meta;
8506 	struct sk_buff *skb;
8507 
8508 	/* prefetch first cache line of first page */
8509 	net_prefetch(xdp->data_meta);
8510 
8511 	/* build an skb around the page buffer */
8512 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8513 	if (unlikely(!skb))
8514 		return NULL;
8515 
8516 	/* update pointers within the skb to store the data */
8517 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8518 	__skb_put(skb, xdp->data_end - xdp->data);
8519 
8520 	if (metasize)
8521 		skb_metadata_set(skb, metasize);
8522 
8523 	if (timestamp)
8524 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8525 
8526 	/* update buffer offset */
8527 #if (PAGE_SIZE < 8192)
8528 	rx_buffer->page_offset ^= truesize;
8529 #else
8530 	rx_buffer->page_offset += truesize;
8531 #endif
8532 
8533 	return skb;
8534 }
8535 
8536 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8537 				   struct igb_ring *rx_ring,
8538 				   struct xdp_buff *xdp)
8539 {
8540 	int err, result = IGB_XDP_PASS;
8541 	struct bpf_prog *xdp_prog;
8542 	u32 act;
8543 
8544 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8545 
8546 	if (!xdp_prog)
8547 		goto xdp_out;
8548 
8549 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8550 
8551 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8552 	switch (act) {
8553 	case XDP_PASS:
8554 		break;
8555 	case XDP_TX:
8556 		result = igb_xdp_xmit_back(adapter, xdp);
8557 		if (result == IGB_XDP_CONSUMED)
8558 			goto out_failure;
8559 		break;
8560 	case XDP_REDIRECT:
8561 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8562 		if (err)
8563 			goto out_failure;
8564 		result = IGB_XDP_REDIR;
8565 		break;
8566 	default:
8567 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8568 		fallthrough;
8569 	case XDP_ABORTED:
8570 out_failure:
8571 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8572 		fallthrough;
8573 	case XDP_DROP:
8574 		result = IGB_XDP_CONSUMED;
8575 		break;
8576 	}
8577 xdp_out:
8578 	return ERR_PTR(-result);
8579 }
8580 
8581 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8582 					  unsigned int size)
8583 {
8584 	unsigned int truesize;
8585 
8586 #if (PAGE_SIZE < 8192)
8587 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8588 #else
8589 	truesize = ring_uses_build_skb(rx_ring) ?
8590 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8591 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8592 		SKB_DATA_ALIGN(size);
8593 #endif
8594 	return truesize;
8595 }
8596 
8597 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8598 			       struct igb_rx_buffer *rx_buffer,
8599 			       unsigned int size)
8600 {
8601 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8602 #if (PAGE_SIZE < 8192)
8603 	rx_buffer->page_offset ^= truesize;
8604 #else
8605 	rx_buffer->page_offset += truesize;
8606 #endif
8607 }
8608 
8609 static inline void igb_rx_checksum(struct igb_ring *ring,
8610 				   union e1000_adv_rx_desc *rx_desc,
8611 				   struct sk_buff *skb)
8612 {
8613 	skb_checksum_none_assert(skb);
8614 
8615 	/* Ignore Checksum bit is set */
8616 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8617 		return;
8618 
8619 	/* Rx checksum disabled via ethtool */
8620 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8621 		return;
8622 
8623 	/* TCP/UDP checksum error bit is set */
8624 	if (igb_test_staterr(rx_desc,
8625 			     E1000_RXDEXT_STATERR_TCPE |
8626 			     E1000_RXDEXT_STATERR_IPE)) {
8627 		/* work around errata with sctp packets where the TCPE aka
8628 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8629 		 * packets, (aka let the stack check the crc32c)
8630 		 */
8631 		if (!((skb->len == 60) &&
8632 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8633 			u64_stats_update_begin(&ring->rx_syncp);
8634 			ring->rx_stats.csum_err++;
8635 			u64_stats_update_end(&ring->rx_syncp);
8636 		}
8637 		/* let the stack verify checksum errors */
8638 		return;
8639 	}
8640 	/* It must be a TCP or UDP packet with a valid checksum */
8641 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8642 				      E1000_RXD_STAT_UDPCS))
8643 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8644 
8645 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8646 		le32_to_cpu(rx_desc->wb.upper.status_error));
8647 }
8648 
8649 static inline void igb_rx_hash(struct igb_ring *ring,
8650 			       union e1000_adv_rx_desc *rx_desc,
8651 			       struct sk_buff *skb)
8652 {
8653 	if (ring->netdev->features & NETIF_F_RXHASH)
8654 		skb_set_hash(skb,
8655 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8656 			     PKT_HASH_TYPE_L3);
8657 }
8658 
8659 /**
8660  *  igb_is_non_eop - process handling of non-EOP buffers
8661  *  @rx_ring: Rx ring being processed
8662  *  @rx_desc: Rx descriptor for current buffer
8663  *
8664  *  This function updates next to clean.  If the buffer is an EOP buffer
8665  *  this function exits returning false, otherwise it will place the
8666  *  sk_buff in the next buffer to be chained and return true indicating
8667  *  that this is in fact a non-EOP buffer.
8668  **/
8669 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8670 			   union e1000_adv_rx_desc *rx_desc)
8671 {
8672 	u32 ntc = rx_ring->next_to_clean + 1;
8673 
8674 	/* fetch, update, and store next to clean */
8675 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8676 	rx_ring->next_to_clean = ntc;
8677 
8678 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8679 
8680 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8681 		return false;
8682 
8683 	return true;
8684 }
8685 
8686 /**
8687  *  igb_cleanup_headers - Correct corrupted or empty headers
8688  *  @rx_ring: rx descriptor ring packet is being transacted on
8689  *  @rx_desc: pointer to the EOP Rx descriptor
8690  *  @skb: pointer to current skb being fixed
8691  *
8692  *  Address the case where we are pulling data in on pages only
8693  *  and as such no data is present in the skb header.
8694  *
8695  *  In addition if skb is not at least 60 bytes we need to pad it so that
8696  *  it is large enough to qualify as a valid Ethernet frame.
8697  *
8698  *  Returns true if an error was encountered and skb was freed.
8699  **/
8700 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8701 				union e1000_adv_rx_desc *rx_desc,
8702 				struct sk_buff *skb)
8703 {
8704 	/* XDP packets use error pointer so abort at this point */
8705 	if (IS_ERR(skb))
8706 		return true;
8707 
8708 	if (unlikely((igb_test_staterr(rx_desc,
8709 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8710 		struct net_device *netdev = rx_ring->netdev;
8711 		if (!(netdev->features & NETIF_F_RXALL)) {
8712 			dev_kfree_skb_any(skb);
8713 			return true;
8714 		}
8715 	}
8716 
8717 	/* if eth_skb_pad returns an error the skb was freed */
8718 	if (eth_skb_pad(skb))
8719 		return true;
8720 
8721 	return false;
8722 }
8723 
8724 /**
8725  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8726  *  @rx_ring: rx descriptor ring packet is being transacted on
8727  *  @rx_desc: pointer to the EOP Rx descriptor
8728  *  @skb: pointer to current skb being populated
8729  *
8730  *  This function checks the ring, descriptor, and packet information in
8731  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8732  *  other fields within the skb.
8733  **/
8734 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8735 				   union e1000_adv_rx_desc *rx_desc,
8736 				   struct sk_buff *skb)
8737 {
8738 	struct net_device *dev = rx_ring->netdev;
8739 
8740 	igb_rx_hash(rx_ring, rx_desc, skb);
8741 
8742 	igb_rx_checksum(rx_ring, rx_desc, skb);
8743 
8744 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8745 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8746 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8747 
8748 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8749 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8750 		u16 vid;
8751 
8752 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8753 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8754 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8755 		else
8756 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8757 
8758 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8759 	}
8760 
8761 	skb_record_rx_queue(skb, rx_ring->queue_index);
8762 
8763 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8764 }
8765 
8766 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8767 {
8768 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8769 }
8770 
8771 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8772 					       const unsigned int size, int *rx_buf_pgcnt)
8773 {
8774 	struct igb_rx_buffer *rx_buffer;
8775 
8776 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8777 	*rx_buf_pgcnt =
8778 #if (PAGE_SIZE < 8192)
8779 		page_count(rx_buffer->page);
8780 #else
8781 		0;
8782 #endif
8783 	prefetchw(rx_buffer->page);
8784 
8785 	/* we are reusing so sync this buffer for CPU use */
8786 	dma_sync_single_range_for_cpu(rx_ring->dev,
8787 				      rx_buffer->dma,
8788 				      rx_buffer->page_offset,
8789 				      size,
8790 				      DMA_FROM_DEVICE);
8791 
8792 	rx_buffer->pagecnt_bias--;
8793 
8794 	return rx_buffer;
8795 }
8796 
8797 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8798 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8799 {
8800 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8801 		/* hand second half of page back to the ring */
8802 		igb_reuse_rx_page(rx_ring, rx_buffer);
8803 	} else {
8804 		/* We are not reusing the buffer so unmap it and free
8805 		 * any references we are holding to it
8806 		 */
8807 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8808 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8809 				     IGB_RX_DMA_ATTR);
8810 		__page_frag_cache_drain(rx_buffer->page,
8811 					rx_buffer->pagecnt_bias);
8812 	}
8813 
8814 	/* clear contents of rx_buffer */
8815 	rx_buffer->page = NULL;
8816 }
8817 
8818 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8819 {
8820 	struct igb_adapter *adapter = q_vector->adapter;
8821 	struct igb_ring *rx_ring = q_vector->rx.ring;
8822 	struct sk_buff *skb = rx_ring->skb;
8823 	unsigned int total_bytes = 0, total_packets = 0;
8824 	u16 cleaned_count = igb_desc_unused(rx_ring);
8825 	unsigned int xdp_xmit = 0;
8826 	struct xdp_buff xdp;
8827 	u32 frame_sz = 0;
8828 	int rx_buf_pgcnt;
8829 
8830 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8831 #if (PAGE_SIZE < 8192)
8832 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8833 #endif
8834 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8835 
8836 	while (likely(total_packets < budget)) {
8837 		union e1000_adv_rx_desc *rx_desc;
8838 		struct igb_rx_buffer *rx_buffer;
8839 		ktime_t timestamp = 0;
8840 		int pkt_offset = 0;
8841 		unsigned int size;
8842 		void *pktbuf;
8843 
8844 		/* return some buffers to hardware, one at a time is too slow */
8845 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8846 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8847 			cleaned_count = 0;
8848 		}
8849 
8850 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8851 		size = le16_to_cpu(rx_desc->wb.upper.length);
8852 		if (!size)
8853 			break;
8854 
8855 		/* This memory barrier is needed to keep us from reading
8856 		 * any other fields out of the rx_desc until we know the
8857 		 * descriptor has been written back
8858 		 */
8859 		dma_rmb();
8860 
8861 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8862 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8863 
8864 		/* pull rx packet timestamp if available and valid */
8865 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8866 			int ts_hdr_len;
8867 
8868 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8869 							 pktbuf, &timestamp);
8870 
8871 			pkt_offset += ts_hdr_len;
8872 			size -= ts_hdr_len;
8873 		}
8874 
8875 		/* retrieve a buffer from the ring */
8876 		if (!skb) {
8877 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8878 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8879 
8880 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8881 			xdp_buff_clear_frags_flag(&xdp);
8882 #if (PAGE_SIZE > 4096)
8883 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8884 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8885 #endif
8886 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8887 		}
8888 
8889 		if (IS_ERR(skb)) {
8890 			unsigned int xdp_res = -PTR_ERR(skb);
8891 
8892 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8893 				xdp_xmit |= xdp_res;
8894 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8895 			} else {
8896 				rx_buffer->pagecnt_bias++;
8897 			}
8898 			total_packets++;
8899 			total_bytes += size;
8900 		} else if (skb)
8901 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8902 		else if (ring_uses_build_skb(rx_ring))
8903 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8904 					    timestamp);
8905 		else
8906 			skb = igb_construct_skb(rx_ring, rx_buffer,
8907 						&xdp, timestamp);
8908 
8909 		/* exit if we failed to retrieve a buffer */
8910 		if (!skb) {
8911 			rx_ring->rx_stats.alloc_failed++;
8912 			rx_buffer->pagecnt_bias++;
8913 			break;
8914 		}
8915 
8916 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8917 		cleaned_count++;
8918 
8919 		/* fetch next buffer in frame if non-eop */
8920 		if (igb_is_non_eop(rx_ring, rx_desc))
8921 			continue;
8922 
8923 		/* verify the packet layout is correct */
8924 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8925 			skb = NULL;
8926 			continue;
8927 		}
8928 
8929 		/* probably a little skewed due to removing CRC */
8930 		total_bytes += skb->len;
8931 
8932 		/* populate checksum, timestamp, VLAN, and protocol */
8933 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8934 
8935 		napi_gro_receive(&q_vector->napi, skb);
8936 
8937 		/* reset skb pointer */
8938 		skb = NULL;
8939 
8940 		/* update budget accounting */
8941 		total_packets++;
8942 	}
8943 
8944 	/* place incomplete frames back on ring for completion */
8945 	rx_ring->skb = skb;
8946 
8947 	if (xdp_xmit & IGB_XDP_REDIR)
8948 		xdp_do_flush();
8949 
8950 	if (xdp_xmit & IGB_XDP_TX) {
8951 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8952 
8953 		igb_xdp_ring_update_tail(tx_ring);
8954 	}
8955 
8956 	u64_stats_update_begin(&rx_ring->rx_syncp);
8957 	rx_ring->rx_stats.packets += total_packets;
8958 	rx_ring->rx_stats.bytes += total_bytes;
8959 	u64_stats_update_end(&rx_ring->rx_syncp);
8960 	q_vector->rx.total_packets += total_packets;
8961 	q_vector->rx.total_bytes += total_bytes;
8962 
8963 	if (cleaned_count)
8964 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8965 
8966 	return total_packets;
8967 }
8968 
8969 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8970 				  struct igb_rx_buffer *bi)
8971 {
8972 	struct page *page = bi->page;
8973 	dma_addr_t dma;
8974 
8975 	/* since we are recycling buffers we should seldom need to alloc */
8976 	if (likely(page))
8977 		return true;
8978 
8979 	/* alloc new page for storage */
8980 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8981 	if (unlikely(!page)) {
8982 		rx_ring->rx_stats.alloc_failed++;
8983 		return false;
8984 	}
8985 
8986 	/* map page for use */
8987 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8988 				 igb_rx_pg_size(rx_ring),
8989 				 DMA_FROM_DEVICE,
8990 				 IGB_RX_DMA_ATTR);
8991 
8992 	/* if mapping failed free memory back to system since
8993 	 * there isn't much point in holding memory we can't use
8994 	 */
8995 	if (dma_mapping_error(rx_ring->dev, dma)) {
8996 		__free_pages(page, igb_rx_pg_order(rx_ring));
8997 
8998 		rx_ring->rx_stats.alloc_failed++;
8999 		return false;
9000 	}
9001 
9002 	bi->dma = dma;
9003 	bi->page = page;
9004 	bi->page_offset = igb_rx_offset(rx_ring);
9005 	page_ref_add(page, USHRT_MAX - 1);
9006 	bi->pagecnt_bias = USHRT_MAX;
9007 
9008 	return true;
9009 }
9010 
9011 /**
9012  *  igb_alloc_rx_buffers - Replace used receive buffers
9013  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9014  *  @cleaned_count: count of buffers to allocate
9015  **/
9016 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9017 {
9018 	union e1000_adv_rx_desc *rx_desc;
9019 	struct igb_rx_buffer *bi;
9020 	u16 i = rx_ring->next_to_use;
9021 	u16 bufsz;
9022 
9023 	/* nothing to do */
9024 	if (!cleaned_count)
9025 		return;
9026 
9027 	rx_desc = IGB_RX_DESC(rx_ring, i);
9028 	bi = &rx_ring->rx_buffer_info[i];
9029 	i -= rx_ring->count;
9030 
9031 	bufsz = igb_rx_bufsz(rx_ring);
9032 
9033 	do {
9034 		if (!igb_alloc_mapped_page(rx_ring, bi))
9035 			break;
9036 
9037 		/* sync the buffer for use by the device */
9038 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9039 						 bi->page_offset, bufsz,
9040 						 DMA_FROM_DEVICE);
9041 
9042 		/* Refresh the desc even if buffer_addrs didn't change
9043 		 * because each write-back erases this info.
9044 		 */
9045 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9046 
9047 		rx_desc++;
9048 		bi++;
9049 		i++;
9050 		if (unlikely(!i)) {
9051 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9052 			bi = rx_ring->rx_buffer_info;
9053 			i -= rx_ring->count;
9054 		}
9055 
9056 		/* clear the length for the next_to_use descriptor */
9057 		rx_desc->wb.upper.length = 0;
9058 
9059 		cleaned_count--;
9060 	} while (cleaned_count);
9061 
9062 	i += rx_ring->count;
9063 
9064 	if (rx_ring->next_to_use != i) {
9065 		/* record the next descriptor to use */
9066 		rx_ring->next_to_use = i;
9067 
9068 		/* update next to alloc since we have filled the ring */
9069 		rx_ring->next_to_alloc = i;
9070 
9071 		/* Force memory writes to complete before letting h/w
9072 		 * know there are new descriptors to fetch.  (Only
9073 		 * applicable for weak-ordered memory model archs,
9074 		 * such as IA-64).
9075 		 */
9076 		dma_wmb();
9077 		writel(i, rx_ring->tail);
9078 	}
9079 }
9080 
9081 /**
9082  * igb_mii_ioctl -
9083  * @netdev: pointer to netdev struct
9084  * @ifr: interface structure
9085  * @cmd: ioctl command to execute
9086  **/
9087 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9088 {
9089 	struct igb_adapter *adapter = netdev_priv(netdev);
9090 	struct mii_ioctl_data *data = if_mii(ifr);
9091 
9092 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9093 		return -EOPNOTSUPP;
9094 
9095 	switch (cmd) {
9096 	case SIOCGMIIPHY:
9097 		data->phy_id = adapter->hw.phy.addr;
9098 		break;
9099 	case SIOCGMIIREG:
9100 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9101 				     &data->val_out))
9102 			return -EIO;
9103 		break;
9104 	case SIOCSMIIREG:
9105 	default:
9106 		return -EOPNOTSUPP;
9107 	}
9108 	return 0;
9109 }
9110 
9111 /**
9112  * igb_ioctl -
9113  * @netdev: pointer to netdev struct
9114  * @ifr: interface structure
9115  * @cmd: ioctl command to execute
9116  **/
9117 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9118 {
9119 	switch (cmd) {
9120 	case SIOCGMIIPHY:
9121 	case SIOCGMIIREG:
9122 	case SIOCSMIIREG:
9123 		return igb_mii_ioctl(netdev, ifr, cmd);
9124 	case SIOCGHWTSTAMP:
9125 		return igb_ptp_get_ts_config(netdev, ifr);
9126 	case SIOCSHWTSTAMP:
9127 		return igb_ptp_set_ts_config(netdev, ifr);
9128 	default:
9129 		return -EOPNOTSUPP;
9130 	}
9131 }
9132 
9133 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9134 {
9135 	struct igb_adapter *adapter = hw->back;
9136 
9137 	pci_read_config_word(adapter->pdev, reg, value);
9138 }
9139 
9140 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9141 {
9142 	struct igb_adapter *adapter = hw->back;
9143 
9144 	pci_write_config_word(adapter->pdev, reg, *value);
9145 }
9146 
9147 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9148 {
9149 	struct igb_adapter *adapter = hw->back;
9150 
9151 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9152 		return -E1000_ERR_CONFIG;
9153 
9154 	return 0;
9155 }
9156 
9157 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9158 {
9159 	struct igb_adapter *adapter = hw->back;
9160 
9161 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9162 		return -E1000_ERR_CONFIG;
9163 
9164 	return 0;
9165 }
9166 
9167 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9168 {
9169 	struct igb_adapter *adapter = netdev_priv(netdev);
9170 	struct e1000_hw *hw = &adapter->hw;
9171 	u32 ctrl, rctl;
9172 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9173 
9174 	if (enable) {
9175 		/* enable VLAN tag insert/strip */
9176 		ctrl = rd32(E1000_CTRL);
9177 		ctrl |= E1000_CTRL_VME;
9178 		wr32(E1000_CTRL, ctrl);
9179 
9180 		/* Disable CFI check */
9181 		rctl = rd32(E1000_RCTL);
9182 		rctl &= ~E1000_RCTL_CFIEN;
9183 		wr32(E1000_RCTL, rctl);
9184 	} else {
9185 		/* disable VLAN tag insert/strip */
9186 		ctrl = rd32(E1000_CTRL);
9187 		ctrl &= ~E1000_CTRL_VME;
9188 		wr32(E1000_CTRL, ctrl);
9189 	}
9190 
9191 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9192 }
9193 
9194 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9195 			       __be16 proto, u16 vid)
9196 {
9197 	struct igb_adapter *adapter = netdev_priv(netdev);
9198 	struct e1000_hw *hw = &adapter->hw;
9199 	int pf_id = adapter->vfs_allocated_count;
9200 
9201 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9202 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9203 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9204 
9205 	set_bit(vid, adapter->active_vlans);
9206 
9207 	return 0;
9208 }
9209 
9210 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9211 				__be16 proto, u16 vid)
9212 {
9213 	struct igb_adapter *adapter = netdev_priv(netdev);
9214 	int pf_id = adapter->vfs_allocated_count;
9215 	struct e1000_hw *hw = &adapter->hw;
9216 
9217 	/* remove VID from filter table */
9218 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9219 		igb_vfta_set(hw, vid, pf_id, false, true);
9220 
9221 	clear_bit(vid, adapter->active_vlans);
9222 
9223 	return 0;
9224 }
9225 
9226 static void igb_restore_vlan(struct igb_adapter *adapter)
9227 {
9228 	u16 vid = 1;
9229 
9230 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9231 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9232 
9233 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9234 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9235 }
9236 
9237 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9238 {
9239 	struct pci_dev *pdev = adapter->pdev;
9240 	struct e1000_mac_info *mac = &adapter->hw.mac;
9241 
9242 	mac->autoneg = 0;
9243 
9244 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9245 	 * for the switch() below to work
9246 	 */
9247 	if ((spd & 1) || (dplx & ~1))
9248 		goto err_inval;
9249 
9250 	/* Fiber NIC's only allow 1000 gbps Full duplex
9251 	 * and 100Mbps Full duplex for 100baseFx sfp
9252 	 */
9253 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9254 		switch (spd + dplx) {
9255 		case SPEED_10 + DUPLEX_HALF:
9256 		case SPEED_10 + DUPLEX_FULL:
9257 		case SPEED_100 + DUPLEX_HALF:
9258 			goto err_inval;
9259 		default:
9260 			break;
9261 		}
9262 	}
9263 
9264 	switch (spd + dplx) {
9265 	case SPEED_10 + DUPLEX_HALF:
9266 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9267 		break;
9268 	case SPEED_10 + DUPLEX_FULL:
9269 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9270 		break;
9271 	case SPEED_100 + DUPLEX_HALF:
9272 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9273 		break;
9274 	case SPEED_100 + DUPLEX_FULL:
9275 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9276 		break;
9277 	case SPEED_1000 + DUPLEX_FULL:
9278 		mac->autoneg = 1;
9279 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9280 		break;
9281 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9282 	default:
9283 		goto err_inval;
9284 	}
9285 
9286 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9287 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9288 
9289 	return 0;
9290 
9291 err_inval:
9292 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9293 	return -EINVAL;
9294 }
9295 
9296 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9297 			  bool runtime)
9298 {
9299 	struct net_device *netdev = pci_get_drvdata(pdev);
9300 	struct igb_adapter *adapter = netdev_priv(netdev);
9301 	struct e1000_hw *hw = &adapter->hw;
9302 	u32 ctrl, rctl, status;
9303 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9304 	bool wake;
9305 
9306 	rtnl_lock();
9307 	netif_device_detach(netdev);
9308 
9309 	if (netif_running(netdev))
9310 		__igb_close(netdev, true);
9311 
9312 	igb_ptp_suspend(adapter);
9313 
9314 	igb_clear_interrupt_scheme(adapter);
9315 	rtnl_unlock();
9316 
9317 	status = rd32(E1000_STATUS);
9318 	if (status & E1000_STATUS_LU)
9319 		wufc &= ~E1000_WUFC_LNKC;
9320 
9321 	if (wufc) {
9322 		igb_setup_rctl(adapter);
9323 		igb_set_rx_mode(netdev);
9324 
9325 		/* turn on all-multi mode if wake on multicast is enabled */
9326 		if (wufc & E1000_WUFC_MC) {
9327 			rctl = rd32(E1000_RCTL);
9328 			rctl |= E1000_RCTL_MPE;
9329 			wr32(E1000_RCTL, rctl);
9330 		}
9331 
9332 		ctrl = rd32(E1000_CTRL);
9333 		ctrl |= E1000_CTRL_ADVD3WUC;
9334 		wr32(E1000_CTRL, ctrl);
9335 
9336 		/* Allow time for pending master requests to run */
9337 		igb_disable_pcie_master(hw);
9338 
9339 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9340 		wr32(E1000_WUFC, wufc);
9341 	} else {
9342 		wr32(E1000_WUC, 0);
9343 		wr32(E1000_WUFC, 0);
9344 	}
9345 
9346 	wake = wufc || adapter->en_mng_pt;
9347 	if (!wake)
9348 		igb_power_down_link(adapter);
9349 	else
9350 		igb_power_up_link(adapter);
9351 
9352 	if (enable_wake)
9353 		*enable_wake = wake;
9354 
9355 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9356 	 * would have already happened in close and is redundant.
9357 	 */
9358 	igb_release_hw_control(adapter);
9359 
9360 	pci_disable_device(pdev);
9361 
9362 	return 0;
9363 }
9364 
9365 static void igb_deliver_wake_packet(struct net_device *netdev)
9366 {
9367 	struct igb_adapter *adapter = netdev_priv(netdev);
9368 	struct e1000_hw *hw = &adapter->hw;
9369 	struct sk_buff *skb;
9370 	u32 wupl;
9371 
9372 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9373 
9374 	/* WUPM stores only the first 128 bytes of the wake packet.
9375 	 * Read the packet only if we have the whole thing.
9376 	 */
9377 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9378 		return;
9379 
9380 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9381 	if (!skb)
9382 		return;
9383 
9384 	skb_put(skb, wupl);
9385 
9386 	/* Ensure reads are 32-bit aligned */
9387 	wupl = roundup(wupl, 4);
9388 
9389 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9390 
9391 	skb->protocol = eth_type_trans(skb, netdev);
9392 	netif_rx(skb);
9393 }
9394 
9395 static int __maybe_unused igb_suspend(struct device *dev)
9396 {
9397 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9398 }
9399 
9400 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9401 {
9402 	struct pci_dev *pdev = to_pci_dev(dev);
9403 	struct net_device *netdev = pci_get_drvdata(pdev);
9404 	struct igb_adapter *adapter = netdev_priv(netdev);
9405 	struct e1000_hw *hw = &adapter->hw;
9406 	u32 err, val;
9407 
9408 	pci_set_power_state(pdev, PCI_D0);
9409 	pci_restore_state(pdev);
9410 	pci_save_state(pdev);
9411 
9412 	if (!pci_device_is_present(pdev))
9413 		return -ENODEV;
9414 	err = pci_enable_device_mem(pdev);
9415 	if (err) {
9416 		dev_err(&pdev->dev,
9417 			"igb: Cannot enable PCI device from suspend\n");
9418 		return err;
9419 	}
9420 	pci_set_master(pdev);
9421 
9422 	pci_enable_wake(pdev, PCI_D3hot, 0);
9423 	pci_enable_wake(pdev, PCI_D3cold, 0);
9424 
9425 	if (igb_init_interrupt_scheme(adapter, true)) {
9426 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9427 		return -ENOMEM;
9428 	}
9429 
9430 	igb_reset(adapter);
9431 
9432 	/* let the f/w know that the h/w is now under the control of the
9433 	 * driver.
9434 	 */
9435 	igb_get_hw_control(adapter);
9436 
9437 	val = rd32(E1000_WUS);
9438 	if (val & WAKE_PKT_WUS)
9439 		igb_deliver_wake_packet(netdev);
9440 
9441 	wr32(E1000_WUS, ~0);
9442 
9443 	if (!rpm)
9444 		rtnl_lock();
9445 	if (!err && netif_running(netdev))
9446 		err = __igb_open(netdev, true);
9447 
9448 	if (!err)
9449 		netif_device_attach(netdev);
9450 	if (!rpm)
9451 		rtnl_unlock();
9452 
9453 	return err;
9454 }
9455 
9456 static int __maybe_unused igb_resume(struct device *dev)
9457 {
9458 	return __igb_resume(dev, false);
9459 }
9460 
9461 static int __maybe_unused igb_runtime_idle(struct device *dev)
9462 {
9463 	struct net_device *netdev = dev_get_drvdata(dev);
9464 	struct igb_adapter *adapter = netdev_priv(netdev);
9465 
9466 	if (!igb_has_link(adapter))
9467 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9468 
9469 	return -EBUSY;
9470 }
9471 
9472 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9473 {
9474 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9475 }
9476 
9477 static int __maybe_unused igb_runtime_resume(struct device *dev)
9478 {
9479 	return __igb_resume(dev, true);
9480 }
9481 
9482 static void igb_shutdown(struct pci_dev *pdev)
9483 {
9484 	bool wake;
9485 
9486 	__igb_shutdown(pdev, &wake, 0);
9487 
9488 	if (system_state == SYSTEM_POWER_OFF) {
9489 		pci_wake_from_d3(pdev, wake);
9490 		pci_set_power_state(pdev, PCI_D3hot);
9491 	}
9492 }
9493 
9494 #ifdef CONFIG_PCI_IOV
9495 static int igb_sriov_reinit(struct pci_dev *dev)
9496 {
9497 	struct net_device *netdev = pci_get_drvdata(dev);
9498 	struct igb_adapter *adapter = netdev_priv(netdev);
9499 	struct pci_dev *pdev = adapter->pdev;
9500 
9501 	rtnl_lock();
9502 
9503 	if (netif_running(netdev))
9504 		igb_close(netdev);
9505 	else
9506 		igb_reset(adapter);
9507 
9508 	igb_clear_interrupt_scheme(adapter);
9509 
9510 	igb_init_queue_configuration(adapter);
9511 
9512 	if (igb_init_interrupt_scheme(adapter, true)) {
9513 		rtnl_unlock();
9514 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9515 		return -ENOMEM;
9516 	}
9517 
9518 	if (netif_running(netdev))
9519 		igb_open(netdev);
9520 
9521 	rtnl_unlock();
9522 
9523 	return 0;
9524 }
9525 
9526 static int igb_pci_disable_sriov(struct pci_dev *dev)
9527 {
9528 	int err = igb_disable_sriov(dev);
9529 
9530 	if (!err)
9531 		err = igb_sriov_reinit(dev);
9532 
9533 	return err;
9534 }
9535 
9536 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9537 {
9538 	int err = igb_enable_sriov(dev, num_vfs);
9539 
9540 	if (err)
9541 		goto out;
9542 
9543 	err = igb_sriov_reinit(dev);
9544 	if (!err)
9545 		return num_vfs;
9546 
9547 out:
9548 	return err;
9549 }
9550 
9551 #endif
9552 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9553 {
9554 #ifdef CONFIG_PCI_IOV
9555 	if (num_vfs == 0)
9556 		return igb_pci_disable_sriov(dev);
9557 	else
9558 		return igb_pci_enable_sriov(dev, num_vfs);
9559 #endif
9560 	return 0;
9561 }
9562 
9563 /**
9564  *  igb_io_error_detected - called when PCI error is detected
9565  *  @pdev: Pointer to PCI device
9566  *  @state: The current pci connection state
9567  *
9568  *  This function is called after a PCI bus error affecting
9569  *  this device has been detected.
9570  **/
9571 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9572 					      pci_channel_state_t state)
9573 {
9574 	struct net_device *netdev = pci_get_drvdata(pdev);
9575 	struct igb_adapter *adapter = netdev_priv(netdev);
9576 
9577 	netif_device_detach(netdev);
9578 
9579 	if (state == pci_channel_io_perm_failure)
9580 		return PCI_ERS_RESULT_DISCONNECT;
9581 
9582 	if (netif_running(netdev))
9583 		igb_down(adapter);
9584 	pci_disable_device(pdev);
9585 
9586 	/* Request a slot reset. */
9587 	return PCI_ERS_RESULT_NEED_RESET;
9588 }
9589 
9590 /**
9591  *  igb_io_slot_reset - called after the pci bus has been reset.
9592  *  @pdev: Pointer to PCI device
9593  *
9594  *  Restart the card from scratch, as if from a cold-boot. Implementation
9595  *  resembles the first-half of the __igb_resume routine.
9596  **/
9597 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9598 {
9599 	struct net_device *netdev = pci_get_drvdata(pdev);
9600 	struct igb_adapter *adapter = netdev_priv(netdev);
9601 	struct e1000_hw *hw = &adapter->hw;
9602 	pci_ers_result_t result;
9603 
9604 	if (pci_enable_device_mem(pdev)) {
9605 		dev_err(&pdev->dev,
9606 			"Cannot re-enable PCI device after reset.\n");
9607 		result = PCI_ERS_RESULT_DISCONNECT;
9608 	} else {
9609 		pci_set_master(pdev);
9610 		pci_restore_state(pdev);
9611 		pci_save_state(pdev);
9612 
9613 		pci_enable_wake(pdev, PCI_D3hot, 0);
9614 		pci_enable_wake(pdev, PCI_D3cold, 0);
9615 
9616 		/* In case of PCI error, adapter lose its HW address
9617 		 * so we should re-assign it here.
9618 		 */
9619 		hw->hw_addr = adapter->io_addr;
9620 
9621 		igb_reset(adapter);
9622 		wr32(E1000_WUS, ~0);
9623 		result = PCI_ERS_RESULT_RECOVERED;
9624 	}
9625 
9626 	return result;
9627 }
9628 
9629 /**
9630  *  igb_io_resume - called when traffic can start flowing again.
9631  *  @pdev: Pointer to PCI device
9632  *
9633  *  This callback is called when the error recovery driver tells us that
9634  *  its OK to resume normal operation. Implementation resembles the
9635  *  second-half of the __igb_resume routine.
9636  */
9637 static void igb_io_resume(struct pci_dev *pdev)
9638 {
9639 	struct net_device *netdev = pci_get_drvdata(pdev);
9640 	struct igb_adapter *adapter = netdev_priv(netdev);
9641 
9642 	if (netif_running(netdev)) {
9643 		if (igb_up(adapter)) {
9644 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9645 			return;
9646 		}
9647 	}
9648 
9649 	netif_device_attach(netdev);
9650 
9651 	/* let the f/w know that the h/w is now under the control of the
9652 	 * driver.
9653 	 */
9654 	igb_get_hw_control(adapter);
9655 }
9656 
9657 /**
9658  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9659  *  @adapter: Pointer to adapter structure
9660  *  @index: Index of the RAR entry which need to be synced with MAC table
9661  **/
9662 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9663 {
9664 	struct e1000_hw *hw = &adapter->hw;
9665 	u32 rar_low, rar_high;
9666 	u8 *addr = adapter->mac_table[index].addr;
9667 
9668 	/* HW expects these to be in network order when they are plugged
9669 	 * into the registers which are little endian.  In order to guarantee
9670 	 * that ordering we need to do an leXX_to_cpup here in order to be
9671 	 * ready for the byteswap that occurs with writel
9672 	 */
9673 	rar_low = le32_to_cpup((__le32 *)(addr));
9674 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9675 
9676 	/* Indicate to hardware the Address is Valid. */
9677 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9678 		if (is_valid_ether_addr(addr))
9679 			rar_high |= E1000_RAH_AV;
9680 
9681 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9682 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9683 
9684 		switch (hw->mac.type) {
9685 		case e1000_82575:
9686 		case e1000_i210:
9687 			if (adapter->mac_table[index].state &
9688 			    IGB_MAC_STATE_QUEUE_STEERING)
9689 				rar_high |= E1000_RAH_QSEL_ENABLE;
9690 
9691 			rar_high |= E1000_RAH_POOL_1 *
9692 				    adapter->mac_table[index].queue;
9693 			break;
9694 		default:
9695 			rar_high |= E1000_RAH_POOL_1 <<
9696 				    adapter->mac_table[index].queue;
9697 			break;
9698 		}
9699 	}
9700 
9701 	wr32(E1000_RAL(index), rar_low);
9702 	wrfl();
9703 	wr32(E1000_RAH(index), rar_high);
9704 	wrfl();
9705 }
9706 
9707 static int igb_set_vf_mac(struct igb_adapter *adapter,
9708 			  int vf, unsigned char *mac_addr)
9709 {
9710 	struct e1000_hw *hw = &adapter->hw;
9711 	/* VF MAC addresses start at end of receive addresses and moves
9712 	 * towards the first, as a result a collision should not be possible
9713 	 */
9714 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9715 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9716 
9717 	ether_addr_copy(vf_mac_addr, mac_addr);
9718 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9719 	adapter->mac_table[rar_entry].queue = vf;
9720 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9721 	igb_rar_set_index(adapter, rar_entry);
9722 
9723 	return 0;
9724 }
9725 
9726 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9727 {
9728 	struct igb_adapter *adapter = netdev_priv(netdev);
9729 
9730 	if (vf >= adapter->vfs_allocated_count)
9731 		return -EINVAL;
9732 
9733 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9734 	 * flag and allows to overwrite the MAC via VF netdev.  This
9735 	 * is necessary to allow libvirt a way to restore the original
9736 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9737 	 * down a VM.
9738 	 */
9739 	if (is_zero_ether_addr(mac)) {
9740 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9741 		dev_info(&adapter->pdev->dev,
9742 			 "remove administratively set MAC on VF %d\n",
9743 			 vf);
9744 	} else if (is_valid_ether_addr(mac)) {
9745 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9746 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9747 			 mac, vf);
9748 		dev_info(&adapter->pdev->dev,
9749 			 "Reload the VF driver to make this change effective.");
9750 		/* Generate additional warning if PF is down */
9751 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9752 			dev_warn(&adapter->pdev->dev,
9753 				 "The VF MAC address has been set, but the PF device is not up.\n");
9754 			dev_warn(&adapter->pdev->dev,
9755 				 "Bring the PF device up before attempting to use the VF device.\n");
9756 		}
9757 	} else {
9758 		return -EINVAL;
9759 	}
9760 	return igb_set_vf_mac(adapter, vf, mac);
9761 }
9762 
9763 static int igb_link_mbps(int internal_link_speed)
9764 {
9765 	switch (internal_link_speed) {
9766 	case SPEED_100:
9767 		return 100;
9768 	case SPEED_1000:
9769 		return 1000;
9770 	default:
9771 		return 0;
9772 	}
9773 }
9774 
9775 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9776 				  int link_speed)
9777 {
9778 	int rf_dec, rf_int;
9779 	u32 bcnrc_val;
9780 
9781 	if (tx_rate != 0) {
9782 		/* Calculate the rate factor values to set */
9783 		rf_int = link_speed / tx_rate;
9784 		rf_dec = (link_speed - (rf_int * tx_rate));
9785 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9786 			 tx_rate;
9787 
9788 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9789 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9790 			      E1000_RTTBCNRC_RF_INT_MASK);
9791 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9792 	} else {
9793 		bcnrc_val = 0;
9794 	}
9795 
9796 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9797 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9798 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9799 	 */
9800 	wr32(E1000_RTTBCNRM, 0x14);
9801 	wr32(E1000_RTTBCNRC, bcnrc_val);
9802 }
9803 
9804 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9805 {
9806 	int actual_link_speed, i;
9807 	bool reset_rate = false;
9808 
9809 	/* VF TX rate limit was not set or not supported */
9810 	if ((adapter->vf_rate_link_speed == 0) ||
9811 	    (adapter->hw.mac.type != e1000_82576))
9812 		return;
9813 
9814 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9815 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9816 		reset_rate = true;
9817 		adapter->vf_rate_link_speed = 0;
9818 		dev_info(&adapter->pdev->dev,
9819 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9820 	}
9821 
9822 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9823 		if (reset_rate)
9824 			adapter->vf_data[i].tx_rate = 0;
9825 
9826 		igb_set_vf_rate_limit(&adapter->hw, i,
9827 				      adapter->vf_data[i].tx_rate,
9828 				      actual_link_speed);
9829 	}
9830 }
9831 
9832 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9833 			     int min_tx_rate, int max_tx_rate)
9834 {
9835 	struct igb_adapter *adapter = netdev_priv(netdev);
9836 	struct e1000_hw *hw = &adapter->hw;
9837 	int actual_link_speed;
9838 
9839 	if (hw->mac.type != e1000_82576)
9840 		return -EOPNOTSUPP;
9841 
9842 	if (min_tx_rate)
9843 		return -EINVAL;
9844 
9845 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9846 	if ((vf >= adapter->vfs_allocated_count) ||
9847 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9848 	    (max_tx_rate < 0) ||
9849 	    (max_tx_rate > actual_link_speed))
9850 		return -EINVAL;
9851 
9852 	adapter->vf_rate_link_speed = actual_link_speed;
9853 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9854 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9855 
9856 	return 0;
9857 }
9858 
9859 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9860 				   bool setting)
9861 {
9862 	struct igb_adapter *adapter = netdev_priv(netdev);
9863 	struct e1000_hw *hw = &adapter->hw;
9864 	u32 reg_val, reg_offset;
9865 
9866 	if (!adapter->vfs_allocated_count)
9867 		return -EOPNOTSUPP;
9868 
9869 	if (vf >= adapter->vfs_allocated_count)
9870 		return -EINVAL;
9871 
9872 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9873 	reg_val = rd32(reg_offset);
9874 	if (setting)
9875 		reg_val |= (BIT(vf) |
9876 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9877 	else
9878 		reg_val &= ~(BIT(vf) |
9879 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9880 	wr32(reg_offset, reg_val);
9881 
9882 	adapter->vf_data[vf].spoofchk_enabled = setting;
9883 	return 0;
9884 }
9885 
9886 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9887 {
9888 	struct igb_adapter *adapter = netdev_priv(netdev);
9889 
9890 	if (vf >= adapter->vfs_allocated_count)
9891 		return -EINVAL;
9892 	if (adapter->vf_data[vf].trusted == setting)
9893 		return 0;
9894 
9895 	adapter->vf_data[vf].trusted = setting;
9896 
9897 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9898 		 vf, setting ? "" : "not ");
9899 	return 0;
9900 }
9901 
9902 static int igb_ndo_get_vf_config(struct net_device *netdev,
9903 				 int vf, struct ifla_vf_info *ivi)
9904 {
9905 	struct igb_adapter *adapter = netdev_priv(netdev);
9906 	if (vf >= adapter->vfs_allocated_count)
9907 		return -EINVAL;
9908 	ivi->vf = vf;
9909 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9910 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9911 	ivi->min_tx_rate = 0;
9912 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9913 	ivi->qos = adapter->vf_data[vf].pf_qos;
9914 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9915 	ivi->trusted = adapter->vf_data[vf].trusted;
9916 	return 0;
9917 }
9918 
9919 static void igb_vmm_control(struct igb_adapter *adapter)
9920 {
9921 	struct e1000_hw *hw = &adapter->hw;
9922 	u32 reg;
9923 
9924 	switch (hw->mac.type) {
9925 	case e1000_82575:
9926 	case e1000_i210:
9927 	case e1000_i211:
9928 	case e1000_i354:
9929 	default:
9930 		/* replication is not supported for 82575 */
9931 		return;
9932 	case e1000_82576:
9933 		/* notify HW that the MAC is adding vlan tags */
9934 		reg = rd32(E1000_DTXCTL);
9935 		reg |= E1000_DTXCTL_VLAN_ADDED;
9936 		wr32(E1000_DTXCTL, reg);
9937 		fallthrough;
9938 	case e1000_82580:
9939 		/* enable replication vlan tag stripping */
9940 		reg = rd32(E1000_RPLOLR);
9941 		reg |= E1000_RPLOLR_STRVLAN;
9942 		wr32(E1000_RPLOLR, reg);
9943 		fallthrough;
9944 	case e1000_i350:
9945 		/* none of the above registers are supported by i350 */
9946 		break;
9947 	}
9948 
9949 	if (adapter->vfs_allocated_count) {
9950 		igb_vmdq_set_loopback_pf(hw, true);
9951 		igb_vmdq_set_replication_pf(hw, true);
9952 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9953 					      adapter->vfs_allocated_count);
9954 	} else {
9955 		igb_vmdq_set_loopback_pf(hw, false);
9956 		igb_vmdq_set_replication_pf(hw, false);
9957 	}
9958 }
9959 
9960 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9961 {
9962 	struct e1000_hw *hw = &adapter->hw;
9963 	u32 dmac_thr;
9964 	u16 hwm;
9965 	u32 reg;
9966 
9967 	if (hw->mac.type > e1000_82580) {
9968 		if (adapter->flags & IGB_FLAG_DMAC) {
9969 			/* force threshold to 0. */
9970 			wr32(E1000_DMCTXTH, 0);
9971 
9972 			/* DMA Coalescing high water mark needs to be greater
9973 			 * than the Rx threshold. Set hwm to PBA - max frame
9974 			 * size in 16B units, capping it at PBA - 6KB.
9975 			 */
9976 			hwm = 64 * (pba - 6);
9977 			reg = rd32(E1000_FCRTC);
9978 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9979 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9980 				& E1000_FCRTC_RTH_COAL_MASK);
9981 			wr32(E1000_FCRTC, reg);
9982 
9983 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9984 			 * frame size, capping it at PBA - 10KB.
9985 			 */
9986 			dmac_thr = pba - 10;
9987 			reg = rd32(E1000_DMACR);
9988 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9989 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9990 				& E1000_DMACR_DMACTHR_MASK);
9991 
9992 			/* transition to L0x or L1 if available..*/
9993 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9994 
9995 			/* watchdog timer= +-1000 usec in 32usec intervals */
9996 			reg |= (1000 >> 5);
9997 
9998 			/* Disable BMC-to-OS Watchdog Enable */
9999 			if (hw->mac.type != e1000_i354)
10000 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10001 			wr32(E1000_DMACR, reg);
10002 
10003 			/* no lower threshold to disable
10004 			 * coalescing(smart fifb)-UTRESH=0
10005 			 */
10006 			wr32(E1000_DMCRTRH, 0);
10007 
10008 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10009 
10010 			wr32(E1000_DMCTLX, reg);
10011 
10012 			/* free space in tx packet buffer to wake from
10013 			 * DMA coal
10014 			 */
10015 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10016 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10017 		}
10018 
10019 		if (hw->mac.type >= e1000_i210 ||
10020 		    (adapter->flags & IGB_FLAG_DMAC)) {
10021 			reg = rd32(E1000_PCIEMISC);
10022 			reg |= E1000_PCIEMISC_LX_DECISION;
10023 			wr32(E1000_PCIEMISC, reg);
10024 		} /* endif adapter->dmac is not disabled */
10025 	} else if (hw->mac.type == e1000_82580) {
10026 		u32 reg = rd32(E1000_PCIEMISC);
10027 
10028 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10029 		wr32(E1000_DMACR, 0);
10030 	}
10031 }
10032 
10033 /**
10034  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10035  *  @hw: pointer to hardware structure
10036  *  @byte_offset: byte offset to read
10037  *  @dev_addr: device address
10038  *  @data: value read
10039  *
10040  *  Performs byte read operation over I2C interface at
10041  *  a specified device address.
10042  **/
10043 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10044 		      u8 dev_addr, u8 *data)
10045 {
10046 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10047 	struct i2c_client *this_client = adapter->i2c_client;
10048 	s32 status;
10049 	u16 swfw_mask = 0;
10050 
10051 	if (!this_client)
10052 		return E1000_ERR_I2C;
10053 
10054 	swfw_mask = E1000_SWFW_PHY0_SM;
10055 
10056 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10057 		return E1000_ERR_SWFW_SYNC;
10058 
10059 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10060 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10061 
10062 	if (status < 0)
10063 		return E1000_ERR_I2C;
10064 	else {
10065 		*data = status;
10066 		return 0;
10067 	}
10068 }
10069 
10070 /**
10071  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10072  *  @hw: pointer to hardware structure
10073  *  @byte_offset: byte offset to write
10074  *  @dev_addr: device address
10075  *  @data: value to write
10076  *
10077  *  Performs byte write operation over I2C interface at
10078  *  a specified device address.
10079  **/
10080 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10081 		       u8 dev_addr, u8 data)
10082 {
10083 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10084 	struct i2c_client *this_client = adapter->i2c_client;
10085 	s32 status;
10086 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10087 
10088 	if (!this_client)
10089 		return E1000_ERR_I2C;
10090 
10091 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10092 		return E1000_ERR_SWFW_SYNC;
10093 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10094 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10095 
10096 	if (status)
10097 		return E1000_ERR_I2C;
10098 	else
10099 		return 0;
10100 
10101 }
10102 
10103 int igb_reinit_queues(struct igb_adapter *adapter)
10104 {
10105 	struct net_device *netdev = adapter->netdev;
10106 	struct pci_dev *pdev = adapter->pdev;
10107 	int err = 0;
10108 
10109 	if (netif_running(netdev))
10110 		igb_close(netdev);
10111 
10112 	igb_reset_interrupt_capability(adapter);
10113 
10114 	if (igb_init_interrupt_scheme(adapter, true)) {
10115 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10116 		return -ENOMEM;
10117 	}
10118 
10119 	if (netif_running(netdev))
10120 		err = igb_open(netdev);
10121 
10122 	return err;
10123 }
10124 
10125 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10126 {
10127 	struct igb_nfc_filter *rule;
10128 
10129 	spin_lock(&adapter->nfc_lock);
10130 
10131 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10132 		igb_erase_filter(adapter, rule);
10133 
10134 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10135 		igb_erase_filter(adapter, rule);
10136 
10137 	spin_unlock(&adapter->nfc_lock);
10138 }
10139 
10140 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10141 {
10142 	struct igb_nfc_filter *rule;
10143 
10144 	spin_lock(&adapter->nfc_lock);
10145 
10146 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10147 		igb_add_filter(adapter, rule);
10148 
10149 	spin_unlock(&adapter->nfc_lock);
10150 }
10151 /* igb_main.c */
10152