xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 3186a8e55ae3428ec1e06af09075e20885376e4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41 
42 enum queue_mode {
43 	QUEUE_MODE_STRICT_PRIORITY,
44 	QUEUE_MODE_STREAM_RESERVATION,
45 };
46 
47 enum tx_queue_prio {
48 	TX_QUEUE_PRIO_HIGH,
49 	TX_QUEUE_PRIO_LOW,
50 };
51 
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 				"Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 				"Copyright (c) 2007-2014 Intel Corporation.";
57 
58 static const struct e1000_info *igb_info_tbl[] = {
59 	[board_82575] = &e1000_82575_info,
60 };
61 
62 static const struct pci_device_id igb_pci_tbl[] = {
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 	/* required last entry */
99 	{0, }
100 };
101 
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103 
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 			    struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 			  netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163 				   bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165 				bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 				 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171 
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176 
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 	.notifier_call	= igb_notify_dca,
181 	.next		= NULL,
182 	.priority	= 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190 
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 		     pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195 
196 static const struct pci_error_handlers igb_err_handler = {
197 	.error_detected = igb_io_error_detected,
198 	.slot_reset = igb_io_slot_reset,
199 	.resume = igb_io_resume,
200 };
201 
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203 
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206 
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 
212 struct igb_reg_info {
213 	u32 ofs;
214 	char *name;
215 };
216 
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218 
219 	/* General Registers */
220 	{E1000_CTRL, "CTRL"},
221 	{E1000_STATUS, "STATUS"},
222 	{E1000_CTRL_EXT, "CTRL_EXT"},
223 
224 	/* Interrupt Registers */
225 	{E1000_ICR, "ICR"},
226 
227 	/* RX Registers */
228 	{E1000_RCTL, "RCTL"},
229 	{E1000_RDLEN(0), "RDLEN"},
230 	{E1000_RDH(0), "RDH"},
231 	{E1000_RDT(0), "RDT"},
232 	{E1000_RXDCTL(0), "RXDCTL"},
233 	{E1000_RDBAL(0), "RDBAL"},
234 	{E1000_RDBAH(0), "RDBAH"},
235 
236 	/* TX Registers */
237 	{E1000_TCTL, "TCTL"},
238 	{E1000_TDBAL(0), "TDBAL"},
239 	{E1000_TDBAH(0), "TDBAH"},
240 	{E1000_TDLEN(0), "TDLEN"},
241 	{E1000_TDH(0), "TDH"},
242 	{E1000_TDT(0), "TDT"},
243 	{E1000_TXDCTL(0), "TXDCTL"},
244 	{E1000_TDFH, "TDFH"},
245 	{E1000_TDFT, "TDFT"},
246 	{E1000_TDFHS, "TDFHS"},
247 	{E1000_TDFPC, "TDFPC"},
248 
249 	/* List Terminator */
250 	{}
251 };
252 
253 /* igb_regdump - register printout routine */
254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256 	int n = 0;
257 	char rname[16];
258 	u32 regs[8];
259 
260 	switch (reginfo->ofs) {
261 	case E1000_RDLEN(0):
262 		for (n = 0; n < 4; n++)
263 			regs[n] = rd32(E1000_RDLEN(n));
264 		break;
265 	case E1000_RDH(0):
266 		for (n = 0; n < 4; n++)
267 			regs[n] = rd32(E1000_RDH(n));
268 		break;
269 	case E1000_RDT(0):
270 		for (n = 0; n < 4; n++)
271 			regs[n] = rd32(E1000_RDT(n));
272 		break;
273 	case E1000_RXDCTL(0):
274 		for (n = 0; n < 4; n++)
275 			regs[n] = rd32(E1000_RXDCTL(n));
276 		break;
277 	case E1000_RDBAL(0):
278 		for (n = 0; n < 4; n++)
279 			regs[n] = rd32(E1000_RDBAL(n));
280 		break;
281 	case E1000_RDBAH(0):
282 		for (n = 0; n < 4; n++)
283 			regs[n] = rd32(E1000_RDBAH(n));
284 		break;
285 	case E1000_TDBAL(0):
286 		for (n = 0; n < 4; n++)
287 			regs[n] = rd32(E1000_TDBAL(n));
288 		break;
289 	case E1000_TDBAH(0):
290 		for (n = 0; n < 4; n++)
291 			regs[n] = rd32(E1000_TDBAH(n));
292 		break;
293 	case E1000_TDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_TDLEN(n));
296 		break;
297 	case E1000_TDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_TDH(n));
300 		break;
301 	case E1000_TDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_TDT(n));
304 		break;
305 	case E1000_TXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_TXDCTL(n));
308 		break;
309 	default:
310 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311 		return;
312 	}
313 
314 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316 		regs[2], regs[3]);
317 }
318 
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
320 static void igb_dump(struct igb_adapter *adapter)
321 {
322 	struct net_device *netdev = adapter->netdev;
323 	struct e1000_hw *hw = &adapter->hw;
324 	struct igb_reg_info *reginfo;
325 	struct igb_ring *tx_ring;
326 	union e1000_adv_tx_desc *tx_desc;
327 	struct my_u0 { __le64 a; __le64 b; } *u0;
328 	struct igb_ring *rx_ring;
329 	union e1000_adv_rx_desc *rx_desc;
330 	u32 staterr;
331 	u16 i, n;
332 
333 	if (!netif_msg_hw(adapter))
334 		return;
335 
336 	/* Print netdevice Info */
337 	if (netdev) {
338 		dev_info(&adapter->pdev->dev, "Net device Info\n");
339 		pr_info("Device Name     state            trans_start\n");
340 		pr_info("%-15s %016lX %016lX\n", netdev->name,
341 			netdev->state, dev_trans_start(netdev));
342 	}
343 
344 	/* Print Registers */
345 	dev_info(&adapter->pdev->dev, "Register Dump\n");
346 	pr_info(" Register Name   Value\n");
347 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 	     reginfo->name; reginfo++) {
349 		igb_regdump(hw, reginfo);
350 	}
351 
352 	/* Print TX Ring Summary */
353 	if (!netdev || !netif_running(netdev))
354 		goto exit;
355 
356 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
358 	for (n = 0; n < adapter->num_tx_queues; n++) {
359 		struct igb_tx_buffer *buffer_info;
360 		tx_ring = adapter->tx_ring[n];
361 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 			(u64)dma_unmap_addr(buffer_info, dma),
365 			dma_unmap_len(buffer_info, len),
366 			buffer_info->next_to_watch,
367 			(u64)buffer_info->time_stamp);
368 	}
369 
370 	/* Print TX Rings */
371 	if (!netif_msg_tx_done(adapter))
372 		goto rx_ring_summary;
373 
374 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375 
376 	/* Transmit Descriptor Formats
377 	 *
378 	 * Advanced Transmit Descriptor
379 	 *   +--------------------------------------------------------------+
380 	 * 0 |         Buffer Address [63:0]                                |
381 	 *   +--------------------------------------------------------------+
382 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
383 	 *   +--------------------------------------------------------------+
384 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
385 	 */
386 
387 	for (n = 0; n < adapter->num_tx_queues; n++) {
388 		tx_ring = adapter->tx_ring[n];
389 		pr_info("------------------------------------\n");
390 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 		pr_info("------------------------------------\n");
392 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
393 
394 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 			const char *next_desc;
396 			struct igb_tx_buffer *buffer_info;
397 			tx_desc = IGB_TX_DESC(tx_ring, i);
398 			buffer_info = &tx_ring->tx_buffer_info[i];
399 			u0 = (struct my_u0 *)tx_desc;
400 			if (i == tx_ring->next_to_use &&
401 			    i == tx_ring->next_to_clean)
402 				next_desc = " NTC/U";
403 			else if (i == tx_ring->next_to_use)
404 				next_desc = " NTU";
405 			else if (i == tx_ring->next_to_clean)
406 				next_desc = " NTC";
407 			else
408 				next_desc = "";
409 
410 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
411 				i, le64_to_cpu(u0->a),
412 				le64_to_cpu(u0->b),
413 				(u64)dma_unmap_addr(buffer_info, dma),
414 				dma_unmap_len(buffer_info, len),
415 				buffer_info->next_to_watch,
416 				(u64)buffer_info->time_stamp,
417 				buffer_info->skb, next_desc);
418 
419 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 				print_hex_dump(KERN_INFO, "",
421 					DUMP_PREFIX_ADDRESS,
422 					16, 1, buffer_info->skb->data,
423 					dma_unmap_len(buffer_info, len),
424 					true);
425 		}
426 	}
427 
428 	/* Print RX Rings Summary */
429 rx_ring_summary:
430 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 	pr_info("Queue [NTU] [NTC]\n");
432 	for (n = 0; n < adapter->num_rx_queues; n++) {
433 		rx_ring = adapter->rx_ring[n];
434 		pr_info(" %5d %5X %5X\n",
435 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
436 	}
437 
438 	/* Print RX Rings */
439 	if (!netif_msg_rx_status(adapter))
440 		goto exit;
441 
442 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443 
444 	/* Advanced Receive Descriptor (Read) Format
445 	 *    63                                           1        0
446 	 *    +-----------------------------------------------------+
447 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
448 	 *    +----------------------------------------------+------+
449 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
450 	 *    +-----------------------------------------------------+
451 	 *
452 	 *
453 	 * Advanced Receive Descriptor (Write-Back) Format
454 	 *
455 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
456 	 *   +------------------------------------------------------+
457 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
458 	 *   | Checksum   Ident  |   |           |    | Type | Type |
459 	 *   +------------------------------------------------------+
460 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 	 *   +------------------------------------------------------+
462 	 *   63       48 47    32 31            20 19               0
463 	 */
464 
465 	for (n = 0; n < adapter->num_rx_queues; n++) {
466 		rx_ring = adapter->rx_ring[n];
467 		pr_info("------------------------------------\n");
468 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 		pr_info("------------------------------------\n");
470 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
471 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472 
473 		for (i = 0; i < rx_ring->count; i++) {
474 			const char *next_desc;
475 			dma_addr_t dma = (dma_addr_t)0;
476 			struct igb_rx_buffer *buffer_info = NULL;
477 			rx_desc = IGB_RX_DESC(rx_ring, i);
478 			u0 = (struct my_u0 *)rx_desc;
479 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480 
481 			if (!rx_ring->xsk_pool) {
482 				buffer_info = &rx_ring->rx_buffer_info[i];
483 				dma = buffer_info->dma;
484 			}
485 
486 			if (i == rx_ring->next_to_use)
487 				next_desc = " NTU";
488 			else if (i == rx_ring->next_to_clean)
489 				next_desc = " NTC";
490 			else
491 				next_desc = "";
492 
493 			if (staterr & E1000_RXD_STAT_DD) {
494 				/* Descriptor Done */
495 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
496 					"RWB", i,
497 					le64_to_cpu(u0->a),
498 					le64_to_cpu(u0->b),
499 					next_desc);
500 			} else {
501 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
502 					"R  ", i,
503 					le64_to_cpu(u0->a),
504 					le64_to_cpu(u0->b),
505 					(u64)dma,
506 					next_desc);
507 
508 				if (netif_msg_pktdata(adapter) &&
509 				    buffer_info && dma && buffer_info->page) {
510 					print_hex_dump(KERN_INFO, "",
511 					  DUMP_PREFIX_ADDRESS,
512 					  16, 1,
513 					  page_address(buffer_info->page) +
514 						      buffer_info->page_offset,
515 					  igb_rx_bufsz(rx_ring), true);
516 				}
517 			}
518 		}
519 	}
520 
521 exit:
522 	return;
523 }
524 
525 /**
526  *  igb_get_i2c_data - Reads the I2C SDA data bit
527  *  @data: opaque pointer to adapter struct
528  *
529  *  Returns the I2C data bit value
530  **/
531 static int igb_get_i2c_data(void *data)
532 {
533 	struct igb_adapter *adapter = (struct igb_adapter *)data;
534 	struct e1000_hw *hw = &adapter->hw;
535 	s32 i2cctl = rd32(E1000_I2CPARAMS);
536 
537 	return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539 
540 /**
541  *  igb_set_i2c_data - Sets the I2C data bit
542  *  @data: pointer to hardware structure
543  *  @state: I2C data value (0 or 1) to set
544  *
545  *  Sets the I2C data bit
546  **/
547 static void igb_set_i2c_data(void *data, int state)
548 {
549 	struct igb_adapter *adapter = (struct igb_adapter *)data;
550 	struct e1000_hw *hw = &adapter->hw;
551 	s32 i2cctl = rd32(E1000_I2CPARAMS);
552 
553 	if (state) {
554 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555 	} else {
556 		i2cctl &= ~E1000_I2C_DATA_OE_N;
557 		i2cctl &= ~E1000_I2C_DATA_OUT;
558 	}
559 
560 	wr32(E1000_I2CPARAMS, i2cctl);
561 	wrfl();
562 }
563 
564 /**
565  *  igb_set_i2c_clk - Sets the I2C SCL clock
566  *  @data: pointer to hardware structure
567  *  @state: state to set clock
568  *
569  *  Sets the I2C clock line to state
570  **/
571 static void igb_set_i2c_clk(void *data, int state)
572 {
573 	struct igb_adapter *adapter = (struct igb_adapter *)data;
574 	struct e1000_hw *hw = &adapter->hw;
575 	s32 i2cctl = rd32(E1000_I2CPARAMS);
576 
577 	if (state) {
578 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579 	} else {
580 		i2cctl &= ~E1000_I2C_CLK_OUT;
581 		i2cctl &= ~E1000_I2C_CLK_OE_N;
582 	}
583 	wr32(E1000_I2CPARAMS, i2cctl);
584 	wrfl();
585 }
586 
587 /**
588  *  igb_get_i2c_clk - Gets the I2C SCL clock state
589  *  @data: pointer to hardware structure
590  *
591  *  Gets the I2C clock state
592  **/
593 static int igb_get_i2c_clk(void *data)
594 {
595 	struct igb_adapter *adapter = (struct igb_adapter *)data;
596 	struct e1000_hw *hw = &adapter->hw;
597 	s32 i2cctl = rd32(E1000_I2CPARAMS);
598 
599 	return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601 
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 	.setsda		= igb_set_i2c_data,
604 	.setscl		= igb_set_i2c_clk,
605 	.getsda		= igb_get_i2c_data,
606 	.getscl		= igb_get_i2c_clk,
607 	.udelay		= 5,
608 	.timeout	= 20,
609 };
610 
611 /**
612  *  igb_get_hw_dev - return device
613  *  @hw: pointer to hardware structure
614  *
615  *  used by hardware layer to print debugging information
616  **/
617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619 	struct igb_adapter *adapter = hw->back;
620 	return adapter->netdev;
621 }
622 
623 static struct pci_driver igb_driver;
624 
625 /**
626  *  igb_init_module - Driver Registration Routine
627  *
628  *  igb_init_module is the first routine called when the driver is
629  *  loaded. All it does is register with the PCI subsystem.
630  **/
631 static int __init igb_init_module(void)
632 {
633 	int ret;
634 
635 	pr_info("%s\n", igb_driver_string);
636 	pr_info("%s\n", igb_copyright);
637 
638 #ifdef CONFIG_IGB_DCA
639 	dca_register_notify(&dca_notifier);
640 #endif
641 	ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643 	if (ret)
644 		dca_unregister_notify(&dca_notifier);
645 #endif
646 	return ret;
647 }
648 
649 module_init(igb_init_module);
650 
651 /**
652  *  igb_exit_module - Driver Exit Cleanup Routine
653  *
654  *  igb_exit_module is called just before the driver is removed
655  *  from memory.
656  **/
657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660 	dca_unregister_notify(&dca_notifier);
661 #endif
662 	pci_unregister_driver(&igb_driver);
663 }
664 
665 module_exit(igb_exit_module);
666 
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669  *  igb_cache_ring_register - Descriptor ring to register mapping
670  *  @adapter: board private structure to initialize
671  *
672  *  Once we know the feature-set enabled for the device, we'll cache
673  *  the register offset the descriptor ring is assigned to.
674  **/
675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677 	int i = 0, j = 0;
678 	u32 rbase_offset = adapter->vfs_allocated_count;
679 
680 	switch (adapter->hw.mac.type) {
681 	case e1000_82576:
682 		/* The queues are allocated for virtualization such that VF 0
683 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 		 * In order to avoid collision we start at the first free queue
685 		 * and continue consuming queues in the same sequence
686 		 */
687 		if (adapter->vfs_allocated_count) {
688 			for (; i < adapter->rss_queues; i++)
689 				adapter->rx_ring[i]->reg_idx = rbase_offset +
690 							       Q_IDX_82576(i);
691 		}
692 		fallthrough;
693 	case e1000_82575:
694 	case e1000_82580:
695 	case e1000_i350:
696 	case e1000_i354:
697 	case e1000_i210:
698 	case e1000_i211:
699 	default:
700 		for (; i < adapter->num_rx_queues; i++)
701 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 		for (; j < adapter->num_tx_queues; j++)
703 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704 		break;
705 	}
706 }
707 
708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712 	u32 value = 0;
713 
714 	if (E1000_REMOVED(hw_addr))
715 		return ~value;
716 
717 	value = readl(&hw_addr[reg]);
718 
719 	/* reads should not return all F's */
720 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 		struct net_device *netdev = igb->netdev;
722 		hw->hw_addr = NULL;
723 		netdev_err(netdev, "PCIe link lost\n");
724 		WARN(pci_device_is_present(igb->pdev),
725 		     "igb: Failed to read reg 0x%x!\n", reg);
726 	}
727 
728 	return value;
729 }
730 
731 /**
732  *  igb_write_ivar - configure ivar for given MSI-X vector
733  *  @hw: pointer to the HW structure
734  *  @msix_vector: vector number we are allocating to a given ring
735  *  @index: row index of IVAR register to write within IVAR table
736  *  @offset: column offset of in IVAR, should be multiple of 8
737  *
738  *  This function is intended to handle the writing of the IVAR register
739  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
740  *  each containing an cause allocation for an Rx and Tx ring, and a
741  *  variable number of rows depending on the number of queues supported.
742  **/
743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 			   int index, int offset)
745 {
746 	u32 ivar = array_rd32(E1000_IVAR0, index);
747 
748 	/* clear any bits that are currently set */
749 	ivar &= ~((u32)0xFF << offset);
750 
751 	/* write vector and valid bit */
752 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753 
754 	array_wr32(E1000_IVAR0, index, ivar);
755 }
756 
757 #define IGB_N0_QUEUE -1
758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760 	struct igb_adapter *adapter = q_vector->adapter;
761 	struct e1000_hw *hw = &adapter->hw;
762 	int rx_queue = IGB_N0_QUEUE;
763 	int tx_queue = IGB_N0_QUEUE;
764 	u32 msixbm = 0;
765 
766 	if (q_vector->rx.ring)
767 		rx_queue = q_vector->rx.ring->reg_idx;
768 	if (q_vector->tx.ring)
769 		tx_queue = q_vector->tx.ring->reg_idx;
770 
771 	switch (hw->mac.type) {
772 	case e1000_82575:
773 		/* The 82575 assigns vectors using a bitmask, which matches the
774 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
775 		 * or more queues to a vector, we write the appropriate bits
776 		 * into the MSIXBM register for that vector.
777 		 */
778 		if (rx_queue > IGB_N0_QUEUE)
779 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 		if (tx_queue > IGB_N0_QUEUE)
781 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 			msixbm |= E1000_EIMS_OTHER;
784 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 		q_vector->eims_value = msixbm;
786 		break;
787 	case e1000_82576:
788 		/* 82576 uses a table that essentially consists of 2 columns
789 		 * with 8 rows.  The ordering is column-major so we use the
790 		 * lower 3 bits as the row index, and the 4th bit as the
791 		 * column offset.
792 		 */
793 		if (rx_queue > IGB_N0_QUEUE)
794 			igb_write_ivar(hw, msix_vector,
795 				       rx_queue & 0x7,
796 				       (rx_queue & 0x8) << 1);
797 		if (tx_queue > IGB_N0_QUEUE)
798 			igb_write_ivar(hw, msix_vector,
799 				       tx_queue & 0x7,
800 				       ((tx_queue & 0x8) << 1) + 8);
801 		q_vector->eims_value = BIT(msix_vector);
802 		break;
803 	case e1000_82580:
804 	case e1000_i350:
805 	case e1000_i354:
806 	case e1000_i210:
807 	case e1000_i211:
808 		/* On 82580 and newer adapters the scheme is similar to 82576
809 		 * however instead of ordering column-major we have things
810 		 * ordered row-major.  So we traverse the table by using
811 		 * bit 0 as the column offset, and the remaining bits as the
812 		 * row index.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue >> 1,
817 				       (rx_queue & 0x1) << 4);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue >> 1,
821 				       ((tx_queue & 0x1) << 4) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	default:
825 		BUG();
826 		break;
827 	}
828 
829 	/* add q_vector eims value to global eims_enable_mask */
830 	adapter->eims_enable_mask |= q_vector->eims_value;
831 
832 	/* configure q_vector to set itr on first interrupt */
833 	q_vector->set_itr = 1;
834 }
835 
836 /**
837  *  igb_configure_msix - Configure MSI-X hardware
838  *  @adapter: board private structure to initialize
839  *
840  *  igb_configure_msix sets up the hardware to properly
841  *  generate MSI-X interrupts.
842  **/
843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845 	u32 tmp;
846 	int i, vector = 0;
847 	struct e1000_hw *hw = &adapter->hw;
848 
849 	adapter->eims_enable_mask = 0;
850 
851 	/* set vector for other causes, i.e. link changes */
852 	switch (hw->mac.type) {
853 	case e1000_82575:
854 		tmp = rd32(E1000_CTRL_EXT);
855 		/* enable MSI-X PBA support*/
856 		tmp |= E1000_CTRL_EXT_PBA_CLR;
857 
858 		/* Auto-Mask interrupts upon ICR read. */
859 		tmp |= E1000_CTRL_EXT_EIAME;
860 		tmp |= E1000_CTRL_EXT_IRCA;
861 
862 		wr32(E1000_CTRL_EXT, tmp);
863 
864 		/* enable msix_other interrupt */
865 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 		adapter->eims_other = E1000_EIMS_OTHER;
867 
868 		break;
869 
870 	case e1000_82576:
871 	case e1000_82580:
872 	case e1000_i350:
873 	case e1000_i354:
874 	case e1000_i210:
875 	case e1000_i211:
876 		/* Turn on MSI-X capability first, or our settings
877 		 * won't stick.  And it will take days to debug.
878 		 */
879 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 		     E1000_GPIE_NSICR);
882 
883 		/* enable msix_other interrupt */
884 		adapter->eims_other = BIT(vector);
885 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
886 
887 		wr32(E1000_IVAR_MISC, tmp);
888 		break;
889 	default:
890 		/* do nothing, since nothing else supports MSI-X */
891 		break;
892 	} /* switch (hw->mac.type) */
893 
894 	adapter->eims_enable_mask |= adapter->eims_other;
895 
896 	for (i = 0; i < adapter->num_q_vectors; i++)
897 		igb_assign_vector(adapter->q_vector[i], vector++);
898 
899 	wrfl();
900 }
901 
902 /**
903  *  igb_request_msix - Initialize MSI-X interrupts
904  *  @adapter: board private structure to initialize
905  *
906  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
907  *  kernel.
908  **/
909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911 	unsigned int num_q_vectors = adapter->num_q_vectors;
912 	struct net_device *netdev = adapter->netdev;
913 	int i, err = 0, vector = 0, free_vector = 0;
914 
915 	err = request_irq(adapter->msix_entries[vector].vector,
916 			  igb_msix_other, 0, netdev->name, adapter);
917 	if (err)
918 		goto err_out;
919 
920 	if (num_q_vectors > MAX_Q_VECTORS) {
921 		num_q_vectors = MAX_Q_VECTORS;
922 		dev_warn(&adapter->pdev->dev,
923 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 			 adapter->num_q_vectors, MAX_Q_VECTORS);
925 	}
926 	for (i = 0; i < num_q_vectors; i++) {
927 		struct igb_q_vector *q_vector = adapter->q_vector[i];
928 
929 		vector++;
930 
931 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932 
933 		if (q_vector->rx.ring && q_vector->tx.ring)
934 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 				q_vector->rx.ring->queue_index);
936 		else if (q_vector->tx.ring)
937 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 				q_vector->tx.ring->queue_index);
939 		else if (q_vector->rx.ring)
940 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 				q_vector->rx.ring->queue_index);
942 		else
943 			sprintf(q_vector->name, "%s-unused", netdev->name);
944 
945 		err = request_irq(adapter->msix_entries[vector].vector,
946 				  igb_msix_ring, 0, q_vector->name,
947 				  q_vector);
948 		if (err)
949 			goto err_free;
950 
951 		netif_napi_set_irq(&q_vector->napi,
952 				   adapter->msix_entries[vector].vector);
953 	}
954 
955 	igb_configure_msix(adapter);
956 	return 0;
957 
958 err_free:
959 	/* free already assigned IRQs */
960 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
961 
962 	vector--;
963 	for (i = 0; i < vector; i++) {
964 		free_irq(adapter->msix_entries[free_vector++].vector,
965 			 adapter->q_vector[i]);
966 	}
967 err_out:
968 	return err;
969 }
970 
971 /**
972  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
973  *  @adapter: board private structure to initialize
974  *  @v_idx: Index of vector to be freed
975  *
976  *  This function frees the memory allocated to the q_vector.
977  **/
978 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
979 {
980 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
981 
982 	adapter->q_vector[v_idx] = NULL;
983 
984 	/* igb_get_stats64() might access the rings on this vector,
985 	 * we must wait a grace period before freeing it.
986 	 */
987 	if (q_vector)
988 		kfree_rcu(q_vector, rcu);
989 }
990 
991 /**
992  *  igb_reset_q_vector - Reset config for interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be reset
995  *
996  *  If NAPI is enabled it will delete any references to the
997  *  NAPI struct. This is preparation for igb_free_q_vector.
998  **/
999 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002 
1003 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1004 	 * allocated. So, q_vector is NULL so we should stop here.
1005 	 */
1006 	if (!q_vector)
1007 		return;
1008 
1009 	if (q_vector->tx.ring)
1010 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011 
1012 	if (q_vector->rx.ring)
1013 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1014 
1015 	netif_napi_del(&q_vector->napi);
1016 
1017 }
1018 
1019 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1020 {
1021 	int v_idx = adapter->num_q_vectors;
1022 
1023 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1024 		pci_disable_msix(adapter->pdev);
1025 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1026 		pci_disable_msi(adapter->pdev);
1027 
1028 	while (v_idx--)
1029 		igb_reset_q_vector(adapter, v_idx);
1030 }
1031 
1032 /**
1033  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1034  *  @adapter: board private structure to initialize
1035  *
1036  *  This function frees the memory allocated to the q_vectors.  In addition if
1037  *  NAPI is enabled it will delete any references to the NAPI struct prior
1038  *  to freeing the q_vector.
1039  **/
1040 static void igb_free_q_vectors(struct igb_adapter *adapter)
1041 {
1042 	int v_idx = adapter->num_q_vectors;
1043 
1044 	adapter->num_tx_queues = 0;
1045 	adapter->num_rx_queues = 0;
1046 	adapter->num_q_vectors = 0;
1047 
1048 	while (v_idx--) {
1049 		igb_reset_q_vector(adapter, v_idx);
1050 		igb_free_q_vector(adapter, v_idx);
1051 	}
1052 }
1053 
1054 /**
1055  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1056  *  @adapter: board private structure to initialize
1057  *
1058  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1059  *  MSI-X interrupts allocated.
1060  */
1061 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1062 {
1063 	igb_free_q_vectors(adapter);
1064 	igb_reset_interrupt_capability(adapter);
1065 }
1066 
1067 /**
1068  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1069  *  @adapter: board private structure to initialize
1070  *  @msix: boolean value of MSIX capability
1071  *
1072  *  Attempt to configure interrupts using the best available
1073  *  capabilities of the hardware and kernel.
1074  **/
1075 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1076 {
1077 	int err;
1078 	int numvecs, i;
1079 
1080 	if (!msix)
1081 		goto msi_only;
1082 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1083 
1084 	/* Number of supported queues. */
1085 	adapter->num_rx_queues = adapter->rss_queues;
1086 	if (adapter->vfs_allocated_count)
1087 		adapter->num_tx_queues = 1;
1088 	else
1089 		adapter->num_tx_queues = adapter->rss_queues;
1090 
1091 	/* start with one vector for every Rx queue */
1092 	numvecs = adapter->num_rx_queues;
1093 
1094 	/* if Tx handler is separate add 1 for every Tx queue */
1095 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1096 		numvecs += adapter->num_tx_queues;
1097 
1098 	/* store the number of vectors reserved for queues */
1099 	adapter->num_q_vectors = numvecs;
1100 
1101 	/* add 1 vector for link status interrupts */
1102 	numvecs++;
1103 	for (i = 0; i < numvecs; i++)
1104 		adapter->msix_entries[i].entry = i;
1105 
1106 	err = pci_enable_msix_range(adapter->pdev,
1107 				    adapter->msix_entries,
1108 				    numvecs,
1109 				    numvecs);
1110 	if (err > 0)
1111 		return;
1112 
1113 	igb_reset_interrupt_capability(adapter);
1114 
1115 	/* If we can't do MSI-X, try MSI */
1116 msi_only:
1117 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1118 #ifdef CONFIG_PCI_IOV
1119 	/* disable SR-IOV for non MSI-X configurations */
1120 	if (adapter->vf_data) {
1121 		struct e1000_hw *hw = &adapter->hw;
1122 		/* disable iov and allow time for transactions to clear */
1123 		pci_disable_sriov(adapter->pdev);
1124 		msleep(500);
1125 
1126 		kfree(adapter->vf_mac_list);
1127 		adapter->vf_mac_list = NULL;
1128 		kfree(adapter->vf_data);
1129 		adapter->vf_data = NULL;
1130 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1131 		wrfl();
1132 		msleep(100);
1133 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1134 	}
1135 #endif
1136 	adapter->vfs_allocated_count = 0;
1137 	adapter->rss_queues = 1;
1138 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1139 	adapter->num_rx_queues = 1;
1140 	adapter->num_tx_queues = 1;
1141 	adapter->num_q_vectors = 1;
1142 	if (!pci_enable_msi(adapter->pdev))
1143 		adapter->flags |= IGB_FLAG_HAS_MSI;
1144 }
1145 
1146 static void igb_add_ring(struct igb_ring *ring,
1147 			 struct igb_ring_container *head)
1148 {
1149 	head->ring = ring;
1150 	head->count++;
1151 }
1152 
1153 /**
1154  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1155  *  @adapter: board private structure to initialize
1156  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1157  *  @v_idx: index of vector in adapter struct
1158  *  @txr_count: total number of Tx rings to allocate
1159  *  @txr_idx: index of first Tx ring to allocate
1160  *  @rxr_count: total number of Rx rings to allocate
1161  *  @rxr_idx: index of first Rx ring to allocate
1162  *
1163  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1164  **/
1165 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1166 			      int v_count, int v_idx,
1167 			      int txr_count, int txr_idx,
1168 			      int rxr_count, int rxr_idx)
1169 {
1170 	struct igb_q_vector *q_vector;
1171 	struct igb_ring *ring;
1172 	int ring_count;
1173 	size_t size;
1174 
1175 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1176 	if (txr_count > 1 || rxr_count > 1)
1177 		return -ENOMEM;
1178 
1179 	ring_count = txr_count + rxr_count;
1180 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1181 
1182 	/* allocate q_vector and rings */
1183 	q_vector = adapter->q_vector[v_idx];
1184 	if (!q_vector) {
1185 		q_vector = kzalloc(size, GFP_KERNEL);
1186 	} else if (size > ksize(q_vector)) {
1187 		struct igb_q_vector *new_q_vector;
1188 
1189 		new_q_vector = kzalloc(size, GFP_KERNEL);
1190 		if (new_q_vector)
1191 			kfree_rcu(q_vector, rcu);
1192 		q_vector = new_q_vector;
1193 	} else {
1194 		memset(q_vector, 0, size);
1195 	}
1196 	if (!q_vector)
1197 		return -ENOMEM;
1198 
1199 	/* initialize NAPI */
1200 	netif_napi_add_config(adapter->netdev, &q_vector->napi, igb_poll,
1201 			      v_idx);
1202 
1203 	/* tie q_vector and adapter together */
1204 	adapter->q_vector[v_idx] = q_vector;
1205 	q_vector->adapter = adapter;
1206 
1207 	/* initialize work limits */
1208 	q_vector->tx.work_limit = adapter->tx_work_limit;
1209 
1210 	/* initialize ITR configuration */
1211 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1212 	q_vector->itr_val = IGB_START_ITR;
1213 
1214 	/* initialize pointer to rings */
1215 	ring = q_vector->ring;
1216 
1217 	/* initialize ITR */
1218 	if (rxr_count) {
1219 		/* rx or rx/tx vector */
1220 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1221 			q_vector->itr_val = adapter->rx_itr_setting;
1222 	} else {
1223 		/* tx only vector */
1224 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1225 			q_vector->itr_val = adapter->tx_itr_setting;
1226 	}
1227 
1228 	if (txr_count) {
1229 		/* assign generic ring traits */
1230 		ring->dev = &adapter->pdev->dev;
1231 		ring->netdev = adapter->netdev;
1232 
1233 		/* configure backlink on ring */
1234 		ring->q_vector = q_vector;
1235 
1236 		/* update q_vector Tx values */
1237 		igb_add_ring(ring, &q_vector->tx);
1238 
1239 		/* For 82575, context index must be unique per ring. */
1240 		if (adapter->hw.mac.type == e1000_82575)
1241 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1242 
1243 		/* apply Tx specific ring traits */
1244 		ring->count = adapter->tx_ring_count;
1245 		ring->queue_index = txr_idx;
1246 
1247 		ring->cbs_enable = false;
1248 		ring->idleslope = 0;
1249 		ring->sendslope = 0;
1250 		ring->hicredit = 0;
1251 		ring->locredit = 0;
1252 
1253 		u64_stats_init(&ring->tx_syncp);
1254 		u64_stats_init(&ring->tx_syncp2);
1255 
1256 		/* assign ring to adapter */
1257 		adapter->tx_ring[txr_idx] = ring;
1258 
1259 		/* push pointer to next ring */
1260 		ring++;
1261 	}
1262 
1263 	if (rxr_count) {
1264 		/* assign generic ring traits */
1265 		ring->dev = &adapter->pdev->dev;
1266 		ring->netdev = adapter->netdev;
1267 
1268 		/* configure backlink on ring */
1269 		ring->q_vector = q_vector;
1270 
1271 		/* update q_vector Rx values */
1272 		igb_add_ring(ring, &q_vector->rx);
1273 
1274 		/* set flag indicating ring supports SCTP checksum offload */
1275 		if (adapter->hw.mac.type >= e1000_82576)
1276 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1277 
1278 		/* On i350, i354, i210, and i211, loopback VLAN packets
1279 		 * have the tag byte-swapped.
1280 		 */
1281 		if (adapter->hw.mac.type >= e1000_i350)
1282 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1283 
1284 		/* apply Rx specific ring traits */
1285 		ring->count = adapter->rx_ring_count;
1286 		ring->queue_index = rxr_idx;
1287 
1288 		u64_stats_init(&ring->rx_syncp);
1289 
1290 		/* assign ring to adapter */
1291 		adapter->rx_ring[rxr_idx] = ring;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 
1298 /**
1299  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1300  *  @adapter: board private structure to initialize
1301  *
1302  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1303  *  return -ENOMEM.
1304  **/
1305 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1306 {
1307 	int q_vectors = adapter->num_q_vectors;
1308 	int rxr_remaining = adapter->num_rx_queues;
1309 	int txr_remaining = adapter->num_tx_queues;
1310 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1311 	int err;
1312 
1313 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1314 		for (; rxr_remaining; v_idx++) {
1315 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1316 						 0, 0, 1, rxr_idx);
1317 
1318 			if (err)
1319 				goto err_out;
1320 
1321 			/* update counts and index */
1322 			rxr_remaining--;
1323 			rxr_idx++;
1324 		}
1325 	}
1326 
1327 	for (; v_idx < q_vectors; v_idx++) {
1328 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1329 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1330 
1331 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 					 tqpv, txr_idx, rqpv, rxr_idx);
1333 
1334 		if (err)
1335 			goto err_out;
1336 
1337 		/* update counts and index */
1338 		rxr_remaining -= rqpv;
1339 		txr_remaining -= tqpv;
1340 		rxr_idx++;
1341 		txr_idx++;
1342 	}
1343 
1344 	return 0;
1345 
1346 err_out:
1347 	adapter->num_tx_queues = 0;
1348 	adapter->num_rx_queues = 0;
1349 	adapter->num_q_vectors = 0;
1350 
1351 	while (v_idx--)
1352 		igb_free_q_vector(adapter, v_idx);
1353 
1354 	return -ENOMEM;
1355 }
1356 
1357 /**
1358  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1359  *  @adapter: board private structure to initialize
1360  *  @msix: boolean value of MSIX capability
1361  *
1362  *  This function initializes the interrupts and allocates all of the queues.
1363  **/
1364 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1365 {
1366 	struct pci_dev *pdev = adapter->pdev;
1367 	int err;
1368 
1369 	igb_set_interrupt_capability(adapter, msix);
1370 
1371 	err = igb_alloc_q_vectors(adapter);
1372 	if (err) {
1373 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1374 		goto err_alloc_q_vectors;
1375 	}
1376 
1377 	igb_cache_ring_register(adapter);
1378 
1379 	return 0;
1380 
1381 err_alloc_q_vectors:
1382 	igb_reset_interrupt_capability(adapter);
1383 	return err;
1384 }
1385 
1386 /**
1387  *  igb_request_irq - initialize interrupts
1388  *  @adapter: board private structure to initialize
1389  *
1390  *  Attempts to configure interrupts using the best available
1391  *  capabilities of the hardware and kernel.
1392  **/
1393 static int igb_request_irq(struct igb_adapter *adapter)
1394 {
1395 	struct net_device *netdev = adapter->netdev;
1396 	struct pci_dev *pdev = adapter->pdev;
1397 	int err = 0;
1398 
1399 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1400 		err = igb_request_msix(adapter);
1401 		if (!err)
1402 			goto request_done;
1403 		/* fall back to MSI */
1404 		igb_free_all_tx_resources(adapter);
1405 		igb_free_all_rx_resources(adapter);
1406 
1407 		igb_clear_interrupt_scheme(adapter);
1408 		err = igb_init_interrupt_scheme(adapter, false);
1409 		if (err)
1410 			goto request_done;
1411 
1412 		igb_setup_all_tx_resources(adapter);
1413 		igb_setup_all_rx_resources(adapter);
1414 		igb_configure(adapter);
1415 	}
1416 
1417 	igb_assign_vector(adapter->q_vector[0], 0);
1418 
1419 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1420 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1421 				  netdev->name, adapter);
1422 		if (!err)
1423 			goto request_done;
1424 
1425 		/* fall back to legacy interrupts */
1426 		igb_reset_interrupt_capability(adapter);
1427 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1428 	}
1429 
1430 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1431 			  netdev->name, adapter);
1432 
1433 	if (err)
1434 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1435 			err);
1436 
1437 request_done:
1438 	return err;
1439 }
1440 
1441 static void igb_free_irq(struct igb_adapter *adapter)
1442 {
1443 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1444 		int vector = 0, i;
1445 
1446 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1447 
1448 		for (i = 0; i < adapter->num_q_vectors; i++)
1449 			free_irq(adapter->msix_entries[vector++].vector,
1450 				 adapter->q_vector[i]);
1451 	} else {
1452 		free_irq(adapter->pdev->irq, adapter);
1453 	}
1454 }
1455 
1456 /**
1457  *  igb_irq_disable - Mask off interrupt generation on the NIC
1458  *  @adapter: board private structure
1459  **/
1460 static void igb_irq_disable(struct igb_adapter *adapter)
1461 {
1462 	struct e1000_hw *hw = &adapter->hw;
1463 
1464 	/* we need to be careful when disabling interrupts.  The VFs are also
1465 	 * mapped into these registers and so clearing the bits can cause
1466 	 * issues on the VF drivers so we only need to clear what we set
1467 	 */
1468 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1469 		u32 regval = rd32(E1000_EIAM);
1470 
1471 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1472 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1473 		regval = rd32(E1000_EIAC);
1474 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1475 	}
1476 
1477 	wr32(E1000_IAM, 0);
1478 	wr32(E1000_IMC, ~0);
1479 	wrfl();
1480 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1481 		int i;
1482 
1483 		for (i = 0; i < adapter->num_q_vectors; i++)
1484 			synchronize_irq(adapter->msix_entries[i].vector);
1485 	} else {
1486 		synchronize_irq(adapter->pdev->irq);
1487 	}
1488 }
1489 
1490 /**
1491  *  igb_irq_enable - Enable default interrupt generation settings
1492  *  @adapter: board private structure
1493  **/
1494 static void igb_irq_enable(struct igb_adapter *adapter)
1495 {
1496 	struct e1000_hw *hw = &adapter->hw;
1497 
1498 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1500 		u32 regval = rd32(E1000_EIAC);
1501 
1502 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1503 		regval = rd32(E1000_EIAM);
1504 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1505 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1506 		if (adapter->vfs_allocated_count) {
1507 			wr32(E1000_MBVFIMR, 0xFF);
1508 			ims |= E1000_IMS_VMMB;
1509 		}
1510 		wr32(E1000_IMS, ims);
1511 	} else {
1512 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1513 				E1000_IMS_DRSTA);
1514 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1515 				E1000_IMS_DRSTA);
1516 	}
1517 }
1518 
1519 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1520 {
1521 	struct e1000_hw *hw = &adapter->hw;
1522 	u16 pf_id = adapter->vfs_allocated_count;
1523 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1524 	u16 old_vid = adapter->mng_vlan_id;
1525 
1526 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1527 		/* add VID to filter table */
1528 		igb_vfta_set(hw, vid, pf_id, true, true);
1529 		adapter->mng_vlan_id = vid;
1530 	} else {
1531 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1532 	}
1533 
1534 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1535 	    (vid != old_vid) &&
1536 	    !test_bit(old_vid, adapter->active_vlans)) {
1537 		/* remove VID from filter table */
1538 		igb_vfta_set(hw, vid, pf_id, false, true);
1539 	}
1540 }
1541 
1542 /**
1543  *  igb_release_hw_control - release control of the h/w to f/w
1544  *  @adapter: address of board private structure
1545  *
1546  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1547  *  For ASF and Pass Through versions of f/w this means that the
1548  *  driver is no longer loaded.
1549  **/
1550 static void igb_release_hw_control(struct igb_adapter *adapter)
1551 {
1552 	struct e1000_hw *hw = &adapter->hw;
1553 	u32 ctrl_ext;
1554 
1555 	/* Let firmware take over control of h/w */
1556 	ctrl_ext = rd32(E1000_CTRL_EXT);
1557 	wr32(E1000_CTRL_EXT,
1558 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1559 }
1560 
1561 /**
1562  *  igb_get_hw_control - get control of the h/w from f/w
1563  *  @adapter: address of board private structure
1564  *
1565  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1566  *  For ASF and Pass Through versions of f/w this means that
1567  *  the driver is loaded.
1568  **/
1569 static void igb_get_hw_control(struct igb_adapter *adapter)
1570 {
1571 	struct e1000_hw *hw = &adapter->hw;
1572 	u32 ctrl_ext;
1573 
1574 	/* Let firmware know the driver has taken over */
1575 	ctrl_ext = rd32(E1000_CTRL_EXT);
1576 	wr32(E1000_CTRL_EXT,
1577 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1578 }
1579 
1580 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1581 {
1582 	struct net_device *netdev = adapter->netdev;
1583 	struct e1000_hw *hw = &adapter->hw;
1584 
1585 	WARN_ON(hw->mac.type != e1000_i210);
1586 
1587 	if (enable)
1588 		adapter->flags |= IGB_FLAG_FQTSS;
1589 	else
1590 		adapter->flags &= ~IGB_FLAG_FQTSS;
1591 
1592 	if (netif_running(netdev))
1593 		schedule_work(&adapter->reset_task);
1594 }
1595 
1596 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1597 {
1598 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1599 }
1600 
1601 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1602 				   enum tx_queue_prio prio)
1603 {
1604 	u32 val;
1605 
1606 	WARN_ON(hw->mac.type != e1000_i210);
1607 	WARN_ON(queue < 0 || queue > 4);
1608 
1609 	val = rd32(E1000_I210_TXDCTL(queue));
1610 
1611 	if (prio == TX_QUEUE_PRIO_HIGH)
1612 		val |= E1000_TXDCTL_PRIORITY;
1613 	else
1614 		val &= ~E1000_TXDCTL_PRIORITY;
1615 
1616 	wr32(E1000_I210_TXDCTL(queue), val);
1617 }
1618 
1619 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 1);
1625 
1626 	val = rd32(E1000_I210_TQAVCC(queue));
1627 
1628 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1629 		val |= E1000_TQAVCC_QUEUEMODE;
1630 	else
1631 		val &= ~E1000_TQAVCC_QUEUEMODE;
1632 
1633 	wr32(E1000_I210_TQAVCC(queue), val);
1634 }
1635 
1636 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1637 {
1638 	int i;
1639 
1640 	for (i = 0; i < adapter->num_tx_queues; i++) {
1641 		if (adapter->tx_ring[i]->cbs_enable)
1642 			return true;
1643 	}
1644 
1645 	return false;
1646 }
1647 
1648 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < adapter->num_tx_queues; i++) {
1653 		if (adapter->tx_ring[i]->launchtime_enable)
1654 			return true;
1655 	}
1656 
1657 	return false;
1658 }
1659 
1660 /**
1661  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1662  *  @adapter: pointer to adapter struct
1663  *  @queue: queue number
1664  *
1665  *  Configure CBS and Launchtime for a given hardware queue.
1666  *  Parameters are retrieved from the correct Tx ring, so
1667  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1668  *  for setting those correctly prior to this function being called.
1669  **/
1670 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1671 {
1672 	struct net_device *netdev = adapter->netdev;
1673 	struct e1000_hw *hw = &adapter->hw;
1674 	struct igb_ring *ring;
1675 	u32 tqavcc, tqavctrl;
1676 	u16 value;
1677 
1678 	WARN_ON(hw->mac.type != e1000_i210);
1679 	WARN_ON(queue < 0 || queue > 1);
1680 	ring = adapter->tx_ring[queue];
1681 
1682 	/* If any of the Qav features is enabled, configure queues as SR and
1683 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1684 	 * as SP.
1685 	 */
1686 	if (ring->cbs_enable || ring->launchtime_enable) {
1687 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1688 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1689 	} else {
1690 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1691 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1692 	}
1693 
1694 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1695 	if (ring->cbs_enable || queue == 0) {
1696 		/* i210 does not allow the queue 0 to be in the Strict
1697 		 * Priority mode while the Qav mode is enabled, so,
1698 		 * instead of disabling strict priority mode, we give
1699 		 * queue 0 the maximum of credits possible.
1700 		 *
1701 		 * See section 8.12.19 of the i210 datasheet, "Note:
1702 		 * Queue0 QueueMode must be set to 1b when
1703 		 * TransmitMode is set to Qav."
1704 		 */
1705 		if (queue == 0 && !ring->cbs_enable) {
1706 			/* max "linkspeed" idleslope in kbps */
1707 			ring->idleslope = 1000000;
1708 			ring->hicredit = ETH_FRAME_LEN;
1709 		}
1710 
1711 		/* Always set data transfer arbitration to credit-based
1712 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1713 		 * the queues.
1714 		 */
1715 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1716 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1717 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1718 
1719 		/* According to i210 datasheet section 7.2.7.7, we should set
1720 		 * the 'idleSlope' field from TQAVCC register following the
1721 		 * equation:
1722 		 *
1723 		 * For 100 Mbps link speed:
1724 		 *
1725 		 *     value = BW * 0x7735 * 0.2                          (E1)
1726 		 *
1727 		 * For 1000Mbps link speed:
1728 		 *
1729 		 *     value = BW * 0x7735 * 2                            (E2)
1730 		 *
1731 		 * E1 and E2 can be merged into one equation as shown below.
1732 		 * Note that 'link-speed' is in Mbps.
1733 		 *
1734 		 *     value = BW * 0x7735 * 2 * link-speed
1735 		 *                           --------------               (E3)
1736 		 *                                1000
1737 		 *
1738 		 * 'BW' is the percentage bandwidth out of full link speed
1739 		 * which can be found with the following equation. Note that
1740 		 * idleSlope here is the parameter from this function which
1741 		 * is in kbps.
1742 		 *
1743 		 *     BW =     idleSlope
1744 		 *          -----------------                             (E4)
1745 		 *          link-speed * 1000
1746 		 *
1747 		 * That said, we can come up with a generic equation to
1748 		 * calculate the value we should set it TQAVCC register by
1749 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1750 		 *
1751 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1752 		 *         -----------------            --------------    (E5)
1753 		 *         link-speed * 1000                 1000
1754 		 *
1755 		 * 'link-speed' is present in both sides of the fraction so
1756 		 * it is canceled out. The final equation is the following:
1757 		 *
1758 		 *     value = idleSlope * 61034
1759 		 *             -----------------                          (E6)
1760 		 *                  1000000
1761 		 *
1762 		 * NOTE: For i210, given the above, we can see that idleslope
1763 		 *       is represented in 16.38431 kbps units by the value at
1764 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1765 		 *       the granularity for idleslope increments.
1766 		 *       For instance, if you want to configure a 2576kbps
1767 		 *       idleslope, the value to be written on the register
1768 		 *       would have to be 157.23. If rounded down, you end
1769 		 *       up with less bandwidth available than originally
1770 		 *       required (~2572 kbps). If rounded up, you end up
1771 		 *       with a higher bandwidth (~2589 kbps). Below the
1772 		 *       approach we take is to always round up the
1773 		 *       calculated value, so the resulting bandwidth might
1774 		 *       be slightly higher for some configurations.
1775 		 */
1776 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1777 
1778 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 		tqavcc |= value;
1781 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1782 
1783 		wr32(E1000_I210_TQAVHC(queue),
1784 		     0x80000000 + ring->hicredit * 0x7735);
1785 	} else {
1786 
1787 		/* Set idleSlope to zero. */
1788 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1789 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1790 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1791 
1792 		/* Set hiCredit to zero. */
1793 		wr32(E1000_I210_TQAVHC(queue), 0);
1794 
1795 		/* If CBS is not enabled for any queues anymore, then return to
1796 		 * the default state of Data Transmission Arbitration on
1797 		 * TQAVCTRL.
1798 		 */
1799 		if (!is_any_cbs_enabled(adapter)) {
1800 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1801 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1802 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1803 		}
1804 	}
1805 
1806 	/* If LaunchTime is enabled, set DataTranTIM. */
1807 	if (ring->launchtime_enable) {
1808 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1809 		 * for any of the SR queues, and configure fetchtime delta.
1810 		 * XXX NOTE:
1811 		 *     - LaunchTime will be enabled for all SR queues.
1812 		 *     - A fixed offset can be added relative to the launch
1813 		 *       time of all packets if configured at reg LAUNCH_OS0.
1814 		 *       We are keeping it as 0 for now (default value).
1815 		 */
1816 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1818 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 	} else {
1821 		/* If Launchtime is not enabled for any SR queues anymore,
1822 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1823 		 * effectively disabling Launchtime.
1824 		 */
1825 		if (!is_any_txtime_enabled(adapter)) {
1826 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1827 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1828 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1829 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1830 		}
1831 	}
1832 
1833 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1834 	 * CBS are not configurable by software so we don't do any 'controller
1835 	 * configuration' in respect to these parameters.
1836 	 */
1837 
1838 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1839 		   ring->cbs_enable ? "enabled" : "disabled",
1840 		   ring->launchtime_enable ? "enabled" : "disabled",
1841 		   queue,
1842 		   ring->idleslope, ring->sendslope,
1843 		   ring->hicredit, ring->locredit);
1844 }
1845 
1846 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1847 				  bool enable)
1848 {
1849 	struct igb_ring *ring;
1850 
1851 	if (queue < 0 || queue > adapter->num_tx_queues)
1852 		return -EINVAL;
1853 
1854 	ring = adapter->tx_ring[queue];
1855 	ring->launchtime_enable = enable;
1856 
1857 	return 0;
1858 }
1859 
1860 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1861 			       bool enable, int idleslope, int sendslope,
1862 			       int hicredit, int locredit)
1863 {
1864 	struct igb_ring *ring;
1865 
1866 	if (queue < 0 || queue > adapter->num_tx_queues)
1867 		return -EINVAL;
1868 
1869 	ring = adapter->tx_ring[queue];
1870 
1871 	ring->cbs_enable = enable;
1872 	ring->idleslope = idleslope;
1873 	ring->sendslope = sendslope;
1874 	ring->hicredit = hicredit;
1875 	ring->locredit = locredit;
1876 
1877 	return 0;
1878 }
1879 
1880 /**
1881  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1882  *  @adapter: pointer to adapter struct
1883  *
1884  *  Configure TQAVCTRL register switching the controller's Tx mode
1885  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1886  *  a call to igb_config_tx_modes() per queue so any previously saved
1887  *  Tx parameters are applied.
1888  **/
1889 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1890 {
1891 	struct net_device *netdev = adapter->netdev;
1892 	struct e1000_hw *hw = &adapter->hw;
1893 	u32 val;
1894 
1895 	/* Only i210 controller supports changing the transmission mode. */
1896 	if (hw->mac.type != e1000_i210)
1897 		return;
1898 
1899 	if (is_fqtss_enabled(adapter)) {
1900 		int i, max_queue;
1901 
1902 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1903 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1904 		 * so SP queues wait for SR ones.
1905 		 */
1906 		val = rd32(E1000_I210_TQAVCTRL);
1907 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1908 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1909 		wr32(E1000_I210_TQAVCTRL, val);
1910 
1911 		/* Configure Tx and Rx packet buffers sizes as described in
1912 		 * i210 datasheet section 7.2.7.7.
1913 		 */
1914 		val = rd32(E1000_TXPBS);
1915 		val &= ~I210_TXPBSIZE_MASK;
1916 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1917 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1918 		wr32(E1000_TXPBS, val);
1919 
1920 		val = rd32(E1000_RXPBS);
1921 		val &= ~I210_RXPBSIZE_MASK;
1922 		val |= I210_RXPBSIZE_PB_30KB;
1923 		wr32(E1000_RXPBS, val);
1924 
1925 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1926 		 * register should not exceed the buffer size programmed in
1927 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1928 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1929 		 * 4kB / 64.
1930 		 *
1931 		 * However, when we do so, no frame from queue 2 and 3 are
1932 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1933 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1934 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1935 		 */
1936 		val = (4096 - 1) / 64;
1937 		wr32(E1000_I210_DTXMXPKTSZ, val);
1938 
1939 		/* Since FQTSS mode is enabled, apply any CBS configuration
1940 		 * previously set. If no previous CBS configuration has been
1941 		 * done, then the initial configuration is applied, which means
1942 		 * CBS is disabled.
1943 		 */
1944 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1945 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1946 
1947 		for (i = 0; i < max_queue; i++) {
1948 			igb_config_tx_modes(adapter, i);
1949 		}
1950 	} else {
1951 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1952 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1953 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1954 
1955 		val = rd32(E1000_I210_TQAVCTRL);
1956 		/* According to Section 8.12.21, the other flags we've set when
1957 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1958 		 * don't set they here.
1959 		 */
1960 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1961 		wr32(E1000_I210_TQAVCTRL, val);
1962 	}
1963 
1964 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1965 		   "enabled" : "disabled");
1966 }
1967 
1968 /**
1969  *  igb_configure - configure the hardware for RX and TX
1970  *  @adapter: private board structure
1971  **/
1972 static void igb_configure(struct igb_adapter *adapter)
1973 {
1974 	struct net_device *netdev = adapter->netdev;
1975 	int i;
1976 
1977 	igb_get_hw_control(adapter);
1978 	igb_set_rx_mode(netdev);
1979 	igb_setup_tx_mode(adapter);
1980 
1981 	igb_restore_vlan(adapter);
1982 
1983 	igb_setup_tctl(adapter);
1984 	igb_setup_mrqc(adapter);
1985 	igb_setup_rctl(adapter);
1986 
1987 	igb_nfc_filter_restore(adapter);
1988 	igb_configure_tx(adapter);
1989 	igb_configure_rx(adapter);
1990 
1991 	igb_rx_fifo_flush_82575(&adapter->hw);
1992 
1993 	/* call igb_desc_unused which always leaves
1994 	 * at least 1 descriptor unused to make sure
1995 	 * next_to_use != next_to_clean
1996 	 */
1997 	for (i = 0; i < adapter->num_rx_queues; i++) {
1998 		struct igb_ring *ring = adapter->rx_ring[i];
1999 		if (ring->xsk_pool)
2000 			igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
2001 						igb_desc_unused(ring));
2002 		else
2003 			igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2004 	}
2005 }
2006 
2007 /**
2008  *  igb_power_up_link - Power up the phy/serdes link
2009  *  @adapter: address of board private structure
2010  **/
2011 void igb_power_up_link(struct igb_adapter *adapter)
2012 {
2013 	igb_reset_phy(&adapter->hw);
2014 
2015 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 		igb_power_up_phy_copper(&adapter->hw);
2017 	else
2018 		igb_power_up_serdes_link_82575(&adapter->hw);
2019 
2020 	igb_setup_link(&adapter->hw);
2021 }
2022 
2023 /**
2024  *  igb_power_down_link - Power down the phy/serdes link
2025  *  @adapter: address of board private structure
2026  */
2027 static void igb_power_down_link(struct igb_adapter *adapter)
2028 {
2029 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2030 		igb_power_down_phy_copper_82575(&adapter->hw);
2031 	else
2032 		igb_shutdown_serdes_link_82575(&adapter->hw);
2033 }
2034 
2035 /**
2036  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2037  * @adapter: address of the board private structure
2038  **/
2039 static void igb_check_swap_media(struct igb_adapter *adapter)
2040 {
2041 	struct e1000_hw *hw = &adapter->hw;
2042 	u32 ctrl_ext, connsw;
2043 	bool swap_now = false;
2044 
2045 	ctrl_ext = rd32(E1000_CTRL_EXT);
2046 	connsw = rd32(E1000_CONNSW);
2047 
2048 	/* need to live swap if current media is copper and we have fiber/serdes
2049 	 * to go to.
2050 	 */
2051 
2052 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2053 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2054 		swap_now = true;
2055 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2056 		   !(connsw & E1000_CONNSW_SERDESD)) {
2057 		/* copper signal takes time to appear */
2058 		if (adapter->copper_tries < 4) {
2059 			adapter->copper_tries++;
2060 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2061 			wr32(E1000_CONNSW, connsw);
2062 			return;
2063 		} else {
2064 			adapter->copper_tries = 0;
2065 			if ((connsw & E1000_CONNSW_PHYSD) &&
2066 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2067 				swap_now = true;
2068 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2069 				wr32(E1000_CONNSW, connsw);
2070 			}
2071 		}
2072 	}
2073 
2074 	if (!swap_now)
2075 		return;
2076 
2077 	switch (hw->phy.media_type) {
2078 	case e1000_media_type_copper:
2079 		netdev_info(adapter->netdev,
2080 			"MAS: changing media to fiber/serdes\n");
2081 		ctrl_ext |=
2082 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2083 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2084 		adapter->copper_tries = 0;
2085 		break;
2086 	case e1000_media_type_internal_serdes:
2087 	case e1000_media_type_fiber:
2088 		netdev_info(adapter->netdev,
2089 			"MAS: changing media to copper\n");
2090 		ctrl_ext &=
2091 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2092 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2093 		break;
2094 	default:
2095 		/* shouldn't get here during regular operation */
2096 		netdev_err(adapter->netdev,
2097 			"AMS: Invalid media type found, returning\n");
2098 		break;
2099 	}
2100 	wr32(E1000_CTRL_EXT, ctrl_ext);
2101 }
2102 
2103 void igb_set_queue_napi(struct igb_adapter *adapter, int vector,
2104 			struct napi_struct *napi)
2105 {
2106 	struct igb_q_vector *q_vector = adapter->q_vector[vector];
2107 
2108 	if (q_vector->rx.ring)
2109 		netif_queue_set_napi(adapter->netdev,
2110 				     q_vector->rx.ring->queue_index,
2111 				     NETDEV_QUEUE_TYPE_RX, napi);
2112 
2113 	if (q_vector->tx.ring)
2114 		netif_queue_set_napi(adapter->netdev,
2115 				     q_vector->tx.ring->queue_index,
2116 				     NETDEV_QUEUE_TYPE_TX, napi);
2117 }
2118 
2119 /**
2120  *  igb_up - Open the interface and prepare it to handle traffic
2121  *  @adapter: board private structure
2122  **/
2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125 	struct e1000_hw *hw = &adapter->hw;
2126 	struct napi_struct *napi;
2127 	int i;
2128 
2129 	/* hardware has been reset, we need to reload some things */
2130 	igb_configure(adapter);
2131 
2132 	clear_bit(__IGB_DOWN, &adapter->state);
2133 
2134 	for (i = 0; i < adapter->num_q_vectors; i++) {
2135 		napi = &adapter->q_vector[i]->napi;
2136 		napi_enable(napi);
2137 		igb_set_queue_napi(adapter, i, napi);
2138 	}
2139 
2140 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2141 		igb_configure_msix(adapter);
2142 	else
2143 		igb_assign_vector(adapter->q_vector[0], 0);
2144 
2145 	/* Clear any pending interrupts. */
2146 	rd32(E1000_TSICR);
2147 	rd32(E1000_ICR);
2148 	igb_irq_enable(adapter);
2149 
2150 	/* notify VFs that reset has been completed */
2151 	if (adapter->vfs_allocated_count) {
2152 		u32 reg_data = rd32(E1000_CTRL_EXT);
2153 
2154 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2155 		wr32(E1000_CTRL_EXT, reg_data);
2156 	}
2157 
2158 	netif_tx_start_all_queues(adapter->netdev);
2159 
2160 	/* start the watchdog. */
2161 	hw->mac.get_link_status = 1;
2162 	schedule_work(&adapter->watchdog_task);
2163 
2164 	if ((adapter->flags & IGB_FLAG_EEE) &&
2165 	    (!hw->dev_spec._82575.eee_disable))
2166 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2167 
2168 	return 0;
2169 }
2170 
2171 void igb_down(struct igb_adapter *adapter)
2172 {
2173 	struct net_device *netdev = adapter->netdev;
2174 	struct e1000_hw *hw = &adapter->hw;
2175 	u32 tctl, rctl;
2176 	int i;
2177 
2178 	/* signal that we're down so the interrupt handler does not
2179 	 * reschedule our watchdog timer
2180 	 */
2181 	set_bit(__IGB_DOWN, &adapter->state);
2182 
2183 	/* disable receives in the hardware */
2184 	rctl = rd32(E1000_RCTL);
2185 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2186 	/* flush and sleep below */
2187 
2188 	igb_nfc_filter_exit(adapter);
2189 
2190 	netif_carrier_off(netdev);
2191 	netif_tx_stop_all_queues(netdev);
2192 
2193 	/* disable transmits in the hardware */
2194 	tctl = rd32(E1000_TCTL);
2195 	tctl &= ~E1000_TCTL_EN;
2196 	wr32(E1000_TCTL, tctl);
2197 	/* flush both disables and wait for them to finish */
2198 	wrfl();
2199 	usleep_range(10000, 11000);
2200 
2201 	igb_irq_disable(adapter);
2202 
2203 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2204 
2205 	for (i = 0; i < adapter->num_q_vectors; i++) {
2206 		if (adapter->q_vector[i]) {
2207 			napi_synchronize(&adapter->q_vector[i]->napi);
2208 			igb_set_queue_napi(adapter, i, NULL);
2209 			napi_disable(&adapter->q_vector[i]->napi);
2210 		}
2211 	}
2212 
2213 	timer_delete_sync(&adapter->watchdog_timer);
2214 	timer_delete_sync(&adapter->phy_info_timer);
2215 
2216 	/* record the stats before reset*/
2217 	spin_lock(&adapter->stats64_lock);
2218 	igb_update_stats(adapter);
2219 	spin_unlock(&adapter->stats64_lock);
2220 
2221 	adapter->link_speed = 0;
2222 	adapter->link_duplex = 0;
2223 
2224 	if (!pci_channel_offline(adapter->pdev))
2225 		igb_reset(adapter);
2226 
2227 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2228 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2229 
2230 	igb_clean_all_tx_rings(adapter);
2231 	igb_clean_all_rx_rings(adapter);
2232 #ifdef CONFIG_IGB_DCA
2233 
2234 	/* since we reset the hardware DCA settings were cleared */
2235 	igb_setup_dca(adapter);
2236 #endif
2237 }
2238 
2239 void igb_reinit_locked(struct igb_adapter *adapter)
2240 {
2241 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2242 		usleep_range(1000, 2000);
2243 	igb_down(adapter);
2244 	igb_up(adapter);
2245 	clear_bit(__IGB_RESETTING, &adapter->state);
2246 }
2247 
2248 /** igb_enable_mas - Media Autosense re-enable after swap
2249  *
2250  * @adapter: adapter struct
2251  **/
2252 static void igb_enable_mas(struct igb_adapter *adapter)
2253 {
2254 	struct e1000_hw *hw = &adapter->hw;
2255 	u32 connsw = rd32(E1000_CONNSW);
2256 
2257 	/* configure for SerDes media detect */
2258 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2259 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2260 		connsw |= E1000_CONNSW_ENRGSRC;
2261 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2262 		wr32(E1000_CONNSW, connsw);
2263 		wrfl();
2264 	}
2265 }
2266 
2267 #ifdef CONFIG_IGB_HWMON
2268 /**
2269  *  igb_set_i2c_bb - Init I2C interface
2270  *  @hw: pointer to hardware structure
2271  **/
2272 static void igb_set_i2c_bb(struct e1000_hw *hw)
2273 {
2274 	u32 ctrl_ext;
2275 	s32 i2cctl;
2276 
2277 	ctrl_ext = rd32(E1000_CTRL_EXT);
2278 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2279 	wr32(E1000_CTRL_EXT, ctrl_ext);
2280 	wrfl();
2281 
2282 	i2cctl = rd32(E1000_I2CPARAMS);
2283 	i2cctl |= E1000_I2CBB_EN
2284 		| E1000_I2C_CLK_OE_N
2285 		| E1000_I2C_DATA_OE_N;
2286 	wr32(E1000_I2CPARAMS, i2cctl);
2287 	wrfl();
2288 }
2289 #endif
2290 
2291 void igb_reset(struct igb_adapter *adapter)
2292 {
2293 	struct pci_dev *pdev = adapter->pdev;
2294 	struct e1000_hw *hw = &adapter->hw;
2295 	struct e1000_mac_info *mac = &hw->mac;
2296 	struct e1000_fc_info *fc = &hw->fc;
2297 	u32 pba, hwm;
2298 
2299 	/* Repartition Pba for greater than 9k mtu
2300 	 * To take effect CTRL.RST is required.
2301 	 */
2302 	switch (mac->type) {
2303 	case e1000_i350:
2304 	case e1000_i354:
2305 	case e1000_82580:
2306 		pba = rd32(E1000_RXPBS);
2307 		pba = igb_rxpbs_adjust_82580(pba);
2308 		break;
2309 	case e1000_82576:
2310 		pba = rd32(E1000_RXPBS);
2311 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2312 		break;
2313 	case e1000_82575:
2314 	case e1000_i210:
2315 	case e1000_i211:
2316 	default:
2317 		pba = E1000_PBA_34K;
2318 		break;
2319 	}
2320 
2321 	if (mac->type == e1000_82575) {
2322 		u32 min_rx_space, min_tx_space, needed_tx_space;
2323 
2324 		/* write Rx PBA so that hardware can report correct Tx PBA */
2325 		wr32(E1000_PBA, pba);
2326 
2327 		/* To maintain wire speed transmits, the Tx FIFO should be
2328 		 * large enough to accommodate two full transmit packets,
2329 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2330 		 * the Rx FIFO should be large enough to accommodate at least
2331 		 * one full receive packet and is similarly rounded up and
2332 		 * expressed in KB.
2333 		 */
2334 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2335 
2336 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2337 		 * but don't include Ethernet FCS because hardware appends it.
2338 		 * We only need to round down to the nearest 512 byte block
2339 		 * count since the value we care about is 2 frames, not 1.
2340 		 */
2341 		min_tx_space = adapter->max_frame_size;
2342 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2343 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2344 
2345 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2346 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2347 
2348 		/* If current Tx allocation is less than the min Tx FIFO size,
2349 		 * and the min Tx FIFO size is less than the current Rx FIFO
2350 		 * allocation, take space away from current Rx allocation.
2351 		 */
2352 		if (needed_tx_space < pba) {
2353 			pba -= needed_tx_space;
2354 
2355 			/* if short on Rx space, Rx wins and must trump Tx
2356 			 * adjustment
2357 			 */
2358 			if (pba < min_rx_space)
2359 				pba = min_rx_space;
2360 		}
2361 
2362 		/* adjust PBA for jumbo frames */
2363 		wr32(E1000_PBA, pba);
2364 	}
2365 
2366 	/* flow control settings
2367 	 * The high water mark must be low enough to fit one full frame
2368 	 * after transmitting the pause frame.  As such we must have enough
2369 	 * space to allow for us to complete our current transmit and then
2370 	 * receive the frame that is in progress from the link partner.
2371 	 * Set it to:
2372 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2373 	 */
2374 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2375 
2376 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2377 	fc->low_water = fc->high_water - 16;
2378 	fc->pause_time = 0xFFFF;
2379 	fc->send_xon = 1;
2380 	fc->current_mode = fc->requested_mode;
2381 
2382 	/* disable receive for all VFs and wait one second */
2383 	if (adapter->vfs_allocated_count) {
2384 		int i;
2385 
2386 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2387 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2388 
2389 		/* ping all the active vfs to let them know we are going down */
2390 		igb_ping_all_vfs(adapter);
2391 
2392 		/* disable transmits and receives */
2393 		wr32(E1000_VFRE, 0);
2394 		wr32(E1000_VFTE, 0);
2395 	}
2396 
2397 	/* Allow time for pending master requests to run */
2398 	hw->mac.ops.reset_hw(hw);
2399 	wr32(E1000_WUC, 0);
2400 
2401 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2402 		/* need to resetup here after media swap */
2403 		adapter->ei.get_invariants(hw);
2404 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2405 	}
2406 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2407 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2408 		igb_enable_mas(adapter);
2409 	}
2410 	if (hw->mac.ops.init_hw(hw))
2411 		dev_err(&pdev->dev, "Hardware Error\n");
2412 
2413 	/* RAR registers were cleared during init_hw, clear mac table */
2414 	igb_flush_mac_table(adapter);
2415 	__dev_uc_unsync(adapter->netdev, NULL);
2416 
2417 	/* Recover default RAR entry */
2418 	igb_set_default_mac_filter(adapter);
2419 
2420 	/* Flow control settings reset on hardware reset, so guarantee flow
2421 	 * control is off when forcing speed.
2422 	 */
2423 	if (!hw->mac.autoneg)
2424 		igb_force_mac_fc(hw);
2425 
2426 	igb_init_dmac(adapter, pba);
2427 #ifdef CONFIG_IGB_HWMON
2428 	/* Re-initialize the thermal sensor on i350 devices. */
2429 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2430 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2431 			/* If present, re-initialize the external thermal sensor
2432 			 * interface.
2433 			 */
2434 			if (adapter->ets)
2435 				igb_set_i2c_bb(hw);
2436 			mac->ops.init_thermal_sensor_thresh(hw);
2437 		}
2438 	}
2439 #endif
2440 	/* Re-establish EEE setting */
2441 	if (hw->phy.media_type == e1000_media_type_copper) {
2442 		switch (mac->type) {
2443 		case e1000_i350:
2444 		case e1000_i210:
2445 		case e1000_i211:
2446 			igb_set_eee_i350(hw, true, true);
2447 			break;
2448 		case e1000_i354:
2449 			igb_set_eee_i354(hw, true, true);
2450 			break;
2451 		default:
2452 			break;
2453 		}
2454 	}
2455 	if (!netif_running(adapter->netdev))
2456 		igb_power_down_link(adapter);
2457 
2458 	igb_update_mng_vlan(adapter);
2459 
2460 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2461 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2462 
2463 	/* Re-enable PTP, where applicable. */
2464 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2465 		igb_ptp_reset(adapter);
2466 
2467 	igb_get_phy_info(hw);
2468 }
2469 
2470 static netdev_features_t igb_fix_features(struct net_device *netdev,
2471 	netdev_features_t features)
2472 {
2473 	/* Since there is no support for separate Rx/Tx vlan accel
2474 	 * enable/disable make sure Tx flag is always in same state as Rx.
2475 	 */
2476 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2477 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2478 	else
2479 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2480 
2481 	return features;
2482 }
2483 
2484 static int igb_set_features(struct net_device *netdev,
2485 	netdev_features_t features)
2486 {
2487 	netdev_features_t changed = netdev->features ^ features;
2488 	struct igb_adapter *adapter = netdev_priv(netdev);
2489 
2490 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2491 		igb_vlan_mode(netdev, features);
2492 
2493 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2494 		return 0;
2495 
2496 	if (!(features & NETIF_F_NTUPLE)) {
2497 		struct hlist_node *node2;
2498 		struct igb_nfc_filter *rule;
2499 
2500 		spin_lock(&adapter->nfc_lock);
2501 		hlist_for_each_entry_safe(rule, node2,
2502 					  &adapter->nfc_filter_list, nfc_node) {
2503 			igb_erase_filter(adapter, rule);
2504 			hlist_del(&rule->nfc_node);
2505 			kfree(rule);
2506 		}
2507 		spin_unlock(&adapter->nfc_lock);
2508 		adapter->nfc_filter_count = 0;
2509 	}
2510 
2511 	netdev->features = features;
2512 
2513 	if (netif_running(netdev))
2514 		igb_reinit_locked(adapter);
2515 	else
2516 		igb_reset(adapter);
2517 
2518 	return 1;
2519 }
2520 
2521 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2522 			   struct net_device *dev,
2523 			   const unsigned char *addr, u16 vid,
2524 			   u16 flags, bool *notified,
2525 			   struct netlink_ext_ack *extack)
2526 {
2527 	/* guarantee we can provide a unique filter for the unicast address */
2528 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2529 		struct igb_adapter *adapter = netdev_priv(dev);
2530 		int vfn = adapter->vfs_allocated_count;
2531 
2532 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2533 			return -ENOMEM;
2534 	}
2535 
2536 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2537 }
2538 
2539 #define IGB_MAX_MAC_HDR_LEN	127
2540 #define IGB_MAX_NETWORK_HDR_LEN	511
2541 
2542 static netdev_features_t
2543 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2544 		   netdev_features_t features)
2545 {
2546 	unsigned int network_hdr_len, mac_hdr_len;
2547 
2548 	/* Make certain the headers can be described by a context descriptor */
2549 	mac_hdr_len = skb_network_offset(skb);
2550 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2551 		return features & ~(NETIF_F_HW_CSUM |
2552 				    NETIF_F_SCTP_CRC |
2553 				    NETIF_F_GSO_UDP_L4 |
2554 				    NETIF_F_HW_VLAN_CTAG_TX |
2555 				    NETIF_F_TSO |
2556 				    NETIF_F_TSO6);
2557 
2558 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2559 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2560 		return features & ~(NETIF_F_HW_CSUM |
2561 				    NETIF_F_SCTP_CRC |
2562 				    NETIF_F_GSO_UDP_L4 |
2563 				    NETIF_F_TSO |
2564 				    NETIF_F_TSO6);
2565 
2566 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2567 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2568 	 */
2569 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2570 		features &= ~NETIF_F_TSO;
2571 
2572 	return features;
2573 }
2574 
2575 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2576 {
2577 	if (!is_fqtss_enabled(adapter)) {
2578 		enable_fqtss(adapter, true);
2579 		return;
2580 	}
2581 
2582 	igb_config_tx_modes(adapter, queue);
2583 
2584 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2585 		enable_fqtss(adapter, false);
2586 }
2587 
2588 static int igb_offload_cbs(struct igb_adapter *adapter,
2589 			   struct tc_cbs_qopt_offload *qopt)
2590 {
2591 	struct e1000_hw *hw = &adapter->hw;
2592 	int err;
2593 
2594 	/* CBS offloading is only supported by i210 controller. */
2595 	if (hw->mac.type != e1000_i210)
2596 		return -EOPNOTSUPP;
2597 
2598 	/* CBS offloading is only supported by queue 0 and queue 1. */
2599 	if (qopt->queue < 0 || qopt->queue > 1)
2600 		return -EINVAL;
2601 
2602 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2603 				  qopt->idleslope, qopt->sendslope,
2604 				  qopt->hicredit, qopt->locredit);
2605 	if (err)
2606 		return err;
2607 
2608 	igb_offload_apply(adapter, qopt->queue);
2609 
2610 	return 0;
2611 }
2612 
2613 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2614 #define VLAN_PRIO_FULL_MASK (0x07)
2615 
2616 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2617 				struct flow_cls_offload *f,
2618 				int traffic_class,
2619 				struct igb_nfc_filter *input)
2620 {
2621 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2622 	struct flow_dissector *dissector = rule->match.dissector;
2623 	struct netlink_ext_ack *extack = f->common.extack;
2624 
2625 	if (dissector->used_keys &
2626 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2627 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2628 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2629 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2630 		NL_SET_ERR_MSG_MOD(extack,
2631 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2632 		return -EOPNOTSUPP;
2633 	}
2634 
2635 	if (flow_rule_match_has_control_flags(rule, extack))
2636 		return -EOPNOTSUPP;
2637 
2638 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2639 		struct flow_match_eth_addrs match;
2640 
2641 		flow_rule_match_eth_addrs(rule, &match);
2642 		if (!is_zero_ether_addr(match.mask->dst)) {
2643 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2644 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2645 				return -EINVAL;
2646 			}
2647 
2648 			input->filter.match_flags |=
2649 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2650 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2651 		}
2652 
2653 		if (!is_zero_ether_addr(match.mask->src)) {
2654 			if (!is_broadcast_ether_addr(match.mask->src)) {
2655 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2656 				return -EINVAL;
2657 			}
2658 
2659 			input->filter.match_flags |=
2660 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2661 			ether_addr_copy(input->filter.src_addr, match.key->src);
2662 		}
2663 	}
2664 
2665 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2666 		struct flow_match_basic match;
2667 
2668 		flow_rule_match_basic(rule, &match);
2669 		if (match.mask->n_proto) {
2670 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2671 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2672 				return -EINVAL;
2673 			}
2674 
2675 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2676 			input->filter.etype = match.key->n_proto;
2677 		}
2678 	}
2679 
2680 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2681 		struct flow_match_vlan match;
2682 
2683 		flow_rule_match_vlan(rule, &match);
2684 		if (match.mask->vlan_priority) {
2685 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2686 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2687 				return -EINVAL;
2688 			}
2689 
2690 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2691 			input->filter.vlan_tci =
2692 				(__force __be16)match.key->vlan_priority;
2693 		}
2694 	}
2695 
2696 	input->action = traffic_class;
2697 	input->cookie = f->cookie;
2698 
2699 	return 0;
2700 }
2701 
2702 static int igb_configure_clsflower(struct igb_adapter *adapter,
2703 				   struct flow_cls_offload *cls_flower)
2704 {
2705 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2706 	struct igb_nfc_filter *filter, *f;
2707 	int err, tc;
2708 
2709 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2710 	if (tc < 0) {
2711 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2712 		return -EINVAL;
2713 	}
2714 
2715 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2716 	if (!filter)
2717 		return -ENOMEM;
2718 
2719 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2720 	if (err < 0)
2721 		goto err_parse;
2722 
2723 	spin_lock(&adapter->nfc_lock);
2724 
2725 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2726 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2727 			err = -EEXIST;
2728 			NL_SET_ERR_MSG_MOD(extack,
2729 					   "This filter is already set in ethtool");
2730 			goto err_locked;
2731 		}
2732 	}
2733 
2734 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2735 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2736 			err = -EEXIST;
2737 			NL_SET_ERR_MSG_MOD(extack,
2738 					   "This filter is already set in cls_flower");
2739 			goto err_locked;
2740 		}
2741 	}
2742 
2743 	err = igb_add_filter(adapter, filter);
2744 	if (err < 0) {
2745 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2746 		goto err_locked;
2747 	}
2748 
2749 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2750 
2751 	spin_unlock(&adapter->nfc_lock);
2752 
2753 	return 0;
2754 
2755 err_locked:
2756 	spin_unlock(&adapter->nfc_lock);
2757 
2758 err_parse:
2759 	kfree(filter);
2760 
2761 	return err;
2762 }
2763 
2764 static int igb_delete_clsflower(struct igb_adapter *adapter,
2765 				struct flow_cls_offload *cls_flower)
2766 {
2767 	struct igb_nfc_filter *filter;
2768 	int err;
2769 
2770 	spin_lock(&adapter->nfc_lock);
2771 
2772 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2773 		if (filter->cookie == cls_flower->cookie)
2774 			break;
2775 
2776 	if (!filter) {
2777 		err = -ENOENT;
2778 		goto out;
2779 	}
2780 
2781 	err = igb_erase_filter(adapter, filter);
2782 	if (err < 0)
2783 		goto out;
2784 
2785 	hlist_del(&filter->nfc_node);
2786 	kfree(filter);
2787 
2788 out:
2789 	spin_unlock(&adapter->nfc_lock);
2790 
2791 	return err;
2792 }
2793 
2794 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2795 				   struct flow_cls_offload *cls_flower)
2796 {
2797 	switch (cls_flower->command) {
2798 	case FLOW_CLS_REPLACE:
2799 		return igb_configure_clsflower(adapter, cls_flower);
2800 	case FLOW_CLS_DESTROY:
2801 		return igb_delete_clsflower(adapter, cls_flower);
2802 	case FLOW_CLS_STATS:
2803 		return -EOPNOTSUPP;
2804 	default:
2805 		return -EOPNOTSUPP;
2806 	}
2807 }
2808 
2809 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2810 				 void *cb_priv)
2811 {
2812 	struct igb_adapter *adapter = cb_priv;
2813 
2814 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2815 		return -EOPNOTSUPP;
2816 
2817 	switch (type) {
2818 	case TC_SETUP_CLSFLOWER:
2819 		return igb_setup_tc_cls_flower(adapter, type_data);
2820 
2821 	default:
2822 		return -EOPNOTSUPP;
2823 	}
2824 }
2825 
2826 static int igb_offload_txtime(struct igb_adapter *adapter,
2827 			      struct tc_etf_qopt_offload *qopt)
2828 {
2829 	struct e1000_hw *hw = &adapter->hw;
2830 	int err;
2831 
2832 	/* Launchtime offloading is only supported by i210 controller. */
2833 	if (hw->mac.type != e1000_i210)
2834 		return -EOPNOTSUPP;
2835 
2836 	/* Launchtime offloading is only supported by queues 0 and 1. */
2837 	if (qopt->queue < 0 || qopt->queue > 1)
2838 		return -EINVAL;
2839 
2840 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2841 	if (err)
2842 		return err;
2843 
2844 	igb_offload_apply(adapter, qopt->queue);
2845 
2846 	return 0;
2847 }
2848 
2849 static int igb_tc_query_caps(struct igb_adapter *adapter,
2850 			     struct tc_query_caps_base *base)
2851 {
2852 	switch (base->type) {
2853 	case TC_SETUP_QDISC_TAPRIO: {
2854 		struct tc_taprio_caps *caps = base->caps;
2855 
2856 		caps->broken_mqprio = true;
2857 
2858 		return 0;
2859 	}
2860 	default:
2861 		return -EOPNOTSUPP;
2862 	}
2863 }
2864 
2865 static LIST_HEAD(igb_block_cb_list);
2866 
2867 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2868 			void *type_data)
2869 {
2870 	struct igb_adapter *adapter = netdev_priv(dev);
2871 
2872 	switch (type) {
2873 	case TC_QUERY_CAPS:
2874 		return igb_tc_query_caps(adapter, type_data);
2875 	case TC_SETUP_QDISC_CBS:
2876 		return igb_offload_cbs(adapter, type_data);
2877 	case TC_SETUP_BLOCK:
2878 		return flow_block_cb_setup_simple(type_data,
2879 						  &igb_block_cb_list,
2880 						  igb_setup_tc_block_cb,
2881 						  adapter, adapter, true);
2882 
2883 	case TC_SETUP_QDISC_ETF:
2884 		return igb_offload_txtime(adapter, type_data);
2885 
2886 	default:
2887 		return -EOPNOTSUPP;
2888 	}
2889 }
2890 
2891 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2892 {
2893 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2894 	struct igb_adapter *adapter = netdev_priv(dev);
2895 	struct bpf_prog *prog = bpf->prog, *old_prog;
2896 	bool running = netif_running(dev);
2897 	bool need_reset;
2898 
2899 	/* verify igb ring attributes are sufficient for XDP */
2900 	for (i = 0; i < adapter->num_rx_queues; i++) {
2901 		struct igb_ring *ring = adapter->rx_ring[i];
2902 
2903 		if (frame_size > igb_rx_bufsz(ring)) {
2904 			NL_SET_ERR_MSG_MOD(bpf->extack,
2905 					   "The RX buffer size is too small for the frame size");
2906 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2907 				    igb_rx_bufsz(ring), frame_size);
2908 			return -EINVAL;
2909 		}
2910 	}
2911 
2912 	old_prog = xchg(&adapter->xdp_prog, prog);
2913 	need_reset = (!!prog != !!old_prog);
2914 
2915 	/* device is up and bpf is added/removed, must setup the RX queues */
2916 	if (need_reset && running) {
2917 		igb_close(dev);
2918 	} else {
2919 		for (i = 0; i < adapter->num_rx_queues; i++)
2920 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2921 			    adapter->xdp_prog);
2922 	}
2923 
2924 	if (old_prog)
2925 		bpf_prog_put(old_prog);
2926 
2927 	/* bpf is just replaced, RXQ and MTU are already setup */
2928 	if (!need_reset) {
2929 		return 0;
2930 	} else {
2931 		if (prog)
2932 			xdp_features_set_redirect_target(dev, true);
2933 		else
2934 			xdp_features_clear_redirect_target(dev);
2935 	}
2936 
2937 	if (running)
2938 		igb_open(dev);
2939 
2940 	return 0;
2941 }
2942 
2943 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2944 {
2945 	struct igb_adapter *adapter = netdev_priv(dev);
2946 
2947 	switch (xdp->command) {
2948 	case XDP_SETUP_PROG:
2949 		return igb_xdp_setup(dev, xdp);
2950 	case XDP_SETUP_XSK_POOL:
2951 		return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2952 					  xdp->xsk.queue_id);
2953 	default:
2954 		return -EINVAL;
2955 	}
2956 }
2957 
2958 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2959 {
2960 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2961 	int cpu = smp_processor_id();
2962 	struct igb_ring *tx_ring;
2963 	struct netdev_queue *nq;
2964 	u32 ret;
2965 
2966 	if (unlikely(!xdpf))
2967 		return IGB_XDP_CONSUMED;
2968 
2969 	/* During program transitions its possible adapter->xdp_prog is assigned
2970 	 * but ring has not been configured yet. In this case simply abort xmit.
2971 	 */
2972 	tx_ring = igb_xdp_is_enabled(adapter) ?
2973 		igb_xdp_tx_queue_mapping(adapter) : NULL;
2974 	if (unlikely(!tx_ring))
2975 		return IGB_XDP_CONSUMED;
2976 
2977 	nq = txring_txq(tx_ring);
2978 	__netif_tx_lock(nq, cpu);
2979 	/* Avoid transmit queue timeout since we share it with the slow path */
2980 	txq_trans_cond_update(nq);
2981 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2982 	__netif_tx_unlock(nq);
2983 
2984 	return ret;
2985 }
2986 
2987 static int igb_xdp_xmit(struct net_device *dev, int n,
2988 			struct xdp_frame **frames, u32 flags)
2989 {
2990 	struct igb_adapter *adapter = netdev_priv(dev);
2991 	int cpu = smp_processor_id();
2992 	struct igb_ring *tx_ring;
2993 	struct netdev_queue *nq;
2994 	int nxmit = 0;
2995 	int i;
2996 
2997 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2998 		return -ENETDOWN;
2999 
3000 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3001 		return -EINVAL;
3002 
3003 	/* During program transitions its possible adapter->xdp_prog is assigned
3004 	 * but ring has not been configured yet. In this case simply abort xmit.
3005 	 */
3006 	tx_ring = igb_xdp_is_enabled(adapter) ?
3007 		igb_xdp_tx_queue_mapping(adapter) : NULL;
3008 	if (unlikely(!tx_ring))
3009 		return -ENXIO;
3010 
3011 	if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
3012 		return -ENXIO;
3013 
3014 	nq = txring_txq(tx_ring);
3015 	__netif_tx_lock(nq, cpu);
3016 
3017 	/* Avoid transmit queue timeout since we share it with the slow path */
3018 	txq_trans_cond_update(nq);
3019 
3020 	for (i = 0; i < n; i++) {
3021 		struct xdp_frame *xdpf = frames[i];
3022 		int err;
3023 
3024 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3025 		if (err != IGB_XDP_TX)
3026 			break;
3027 		nxmit++;
3028 	}
3029 
3030 	if (unlikely(flags & XDP_XMIT_FLUSH))
3031 		igb_xdp_ring_update_tail(tx_ring);
3032 
3033 	__netif_tx_unlock(nq);
3034 
3035 	return nxmit;
3036 }
3037 
3038 static const struct net_device_ops igb_netdev_ops = {
3039 	.ndo_open		= igb_open,
3040 	.ndo_stop		= igb_close,
3041 	.ndo_start_xmit		= igb_xmit_frame,
3042 	.ndo_get_stats64	= igb_get_stats64,
3043 	.ndo_set_rx_mode	= igb_set_rx_mode,
3044 	.ndo_set_mac_address	= igb_set_mac,
3045 	.ndo_change_mtu		= igb_change_mtu,
3046 	.ndo_eth_ioctl		= igb_ioctl,
3047 	.ndo_tx_timeout		= igb_tx_timeout,
3048 	.ndo_validate_addr	= eth_validate_addr,
3049 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3050 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3051 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3052 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3053 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3054 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3055 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3056 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3057 	.ndo_fix_features	= igb_fix_features,
3058 	.ndo_set_features	= igb_set_features,
3059 	.ndo_fdb_add		= igb_ndo_fdb_add,
3060 	.ndo_features_check	= igb_features_check,
3061 	.ndo_setup_tc		= igb_setup_tc,
3062 	.ndo_bpf		= igb_xdp,
3063 	.ndo_xdp_xmit		= igb_xdp_xmit,
3064 	.ndo_xsk_wakeup         = igb_xsk_wakeup,
3065 };
3066 
3067 /**
3068  * igb_set_fw_version - Configure version string for ethtool
3069  * @adapter: adapter struct
3070  **/
3071 void igb_set_fw_version(struct igb_adapter *adapter)
3072 {
3073 	struct e1000_hw *hw = &adapter->hw;
3074 	struct e1000_fw_version fw;
3075 
3076 	igb_get_fw_version(hw, &fw);
3077 
3078 	switch (hw->mac.type) {
3079 	case e1000_i210:
3080 	case e1000_i211:
3081 		if (!(igb_get_flash_presence_i210(hw))) {
3082 			snprintf(adapter->fw_version,
3083 				 sizeof(adapter->fw_version),
3084 				 "%2d.%2d-%d",
3085 				 fw.invm_major, fw.invm_minor,
3086 				 fw.invm_img_type);
3087 			break;
3088 		}
3089 		fallthrough;
3090 	default:
3091 		/* if option rom is valid, display its version too */
3092 		if (fw.or_valid) {
3093 			snprintf(adapter->fw_version,
3094 				 sizeof(adapter->fw_version),
3095 				 "%d.%d, 0x%08x, %d.%d.%d",
3096 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3097 				 fw.or_major, fw.or_build, fw.or_patch);
3098 		/* no option rom */
3099 		} else if (fw.etrack_id != 0X0000) {
3100 			snprintf(adapter->fw_version,
3101 				 sizeof(adapter->fw_version),
3102 				 "%d.%d, 0x%08x",
3103 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
3104 		} else {
3105 			snprintf(adapter->fw_version,
3106 				 sizeof(adapter->fw_version),
3107 				 "%d.%d.%d",
3108 				 fw.eep_major, fw.eep_minor, fw.eep_build);
3109 		}
3110 		break;
3111 	}
3112 }
3113 
3114 /**
3115  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3116  *
3117  * @adapter: adapter struct
3118  **/
3119 static void igb_init_mas(struct igb_adapter *adapter)
3120 {
3121 	struct e1000_hw *hw = &adapter->hw;
3122 	u16 eeprom_data;
3123 
3124 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3125 	switch (hw->bus.func) {
3126 	case E1000_FUNC_0:
3127 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3128 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3129 			netdev_info(adapter->netdev,
3130 				"MAS: Enabling Media Autosense for port %d\n",
3131 				hw->bus.func);
3132 		}
3133 		break;
3134 	case E1000_FUNC_1:
3135 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3136 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3137 			netdev_info(adapter->netdev,
3138 				"MAS: Enabling Media Autosense for port %d\n",
3139 				hw->bus.func);
3140 		}
3141 		break;
3142 	case E1000_FUNC_2:
3143 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3144 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3145 			netdev_info(adapter->netdev,
3146 				"MAS: Enabling Media Autosense for port %d\n",
3147 				hw->bus.func);
3148 		}
3149 		break;
3150 	case E1000_FUNC_3:
3151 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3152 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3153 			netdev_info(adapter->netdev,
3154 				"MAS: Enabling Media Autosense for port %d\n",
3155 				hw->bus.func);
3156 		}
3157 		break;
3158 	default:
3159 		/* Shouldn't get here */
3160 		netdev_err(adapter->netdev,
3161 			"MAS: Invalid port configuration, returning\n");
3162 		break;
3163 	}
3164 }
3165 
3166 /**
3167  *  igb_init_i2c - Init I2C interface
3168  *  @adapter: pointer to adapter structure
3169  **/
3170 static s32 igb_init_i2c(struct igb_adapter *adapter)
3171 {
3172 	s32 status = 0;
3173 
3174 	/* I2C interface supported on i350 devices */
3175 	if (adapter->hw.mac.type != e1000_i350)
3176 		return 0;
3177 
3178 	/* Initialize the i2c bus which is controlled by the registers.
3179 	 * This bus will use the i2c_algo_bit structure that implements
3180 	 * the protocol through toggling of the 4 bits in the register.
3181 	 */
3182 	adapter->i2c_adap.owner = THIS_MODULE;
3183 	adapter->i2c_algo = igb_i2c_algo;
3184 	adapter->i2c_algo.data = adapter;
3185 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3186 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3187 	strscpy(adapter->i2c_adap.name, "igb BB",
3188 		sizeof(adapter->i2c_adap.name));
3189 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3190 	return status;
3191 }
3192 
3193 /**
3194  *  igb_probe - Device Initialization Routine
3195  *  @pdev: PCI device information struct
3196  *  @ent: entry in igb_pci_tbl
3197  *
3198  *  Returns 0 on success, negative on failure
3199  *
3200  *  igb_probe initializes an adapter identified by a pci_dev structure.
3201  *  The OS initialization, configuring of the adapter private structure,
3202  *  and a hardware reset occur.
3203  **/
3204 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3205 {
3206 	struct net_device *netdev;
3207 	struct igb_adapter *adapter;
3208 	struct e1000_hw *hw;
3209 	u16 eeprom_data = 0;
3210 	s32 ret_val;
3211 	static int global_quad_port_a; /* global quad port a indication */
3212 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3213 	u8 part_str[E1000_PBANUM_LENGTH];
3214 	int err;
3215 
3216 	/* Catch broken hardware that put the wrong VF device ID in
3217 	 * the PCIe SR-IOV capability.
3218 	 */
3219 	if (pdev->is_virtfn) {
3220 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3221 			pci_name(pdev), pdev->vendor, pdev->device);
3222 		return -EINVAL;
3223 	}
3224 
3225 	err = pci_enable_device_mem(pdev);
3226 	if (err)
3227 		return err;
3228 
3229 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3230 	if (err) {
3231 		dev_err(&pdev->dev,
3232 			"No usable DMA configuration, aborting\n");
3233 		goto err_dma;
3234 	}
3235 
3236 	err = pci_request_mem_regions(pdev, igb_driver_name);
3237 	if (err)
3238 		goto err_pci_reg;
3239 
3240 	pci_set_master(pdev);
3241 	pci_save_state(pdev);
3242 
3243 	err = -ENOMEM;
3244 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3245 				   IGB_MAX_TX_QUEUES);
3246 	if (!netdev)
3247 		goto err_alloc_etherdev;
3248 
3249 	SET_NETDEV_DEV(netdev, &pdev->dev);
3250 
3251 	pci_set_drvdata(pdev, netdev);
3252 	adapter = netdev_priv(netdev);
3253 	adapter->netdev = netdev;
3254 	adapter->pdev = pdev;
3255 	hw = &adapter->hw;
3256 	hw->back = adapter;
3257 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3258 
3259 	err = -EIO;
3260 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3261 	if (!adapter->io_addr)
3262 		goto err_ioremap;
3263 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3264 	hw->hw_addr = adapter->io_addr;
3265 
3266 	netdev->netdev_ops = &igb_netdev_ops;
3267 	igb_set_ethtool_ops(netdev);
3268 	netdev->watchdog_timeo = 5 * HZ;
3269 
3270 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3271 
3272 	netdev->mem_start = pci_resource_start(pdev, 0);
3273 	netdev->mem_end = pci_resource_end(pdev, 0);
3274 
3275 	/* PCI config space info */
3276 	hw->vendor_id = pdev->vendor;
3277 	hw->device_id = pdev->device;
3278 	hw->revision_id = pdev->revision;
3279 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3280 	hw->subsystem_device_id = pdev->subsystem_device;
3281 
3282 	/* Copy the default MAC, PHY and NVM function pointers */
3283 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3284 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3285 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3286 	/* Initialize skew-specific constants */
3287 	err = ei->get_invariants(hw);
3288 	if (err)
3289 		goto err_sw_init;
3290 
3291 	/* setup the private structure */
3292 	err = igb_sw_init(adapter);
3293 	if (err)
3294 		goto err_sw_init;
3295 
3296 	igb_get_bus_info_pcie(hw);
3297 
3298 	hw->phy.autoneg_wait_to_complete = false;
3299 
3300 	/* Copper options */
3301 	if (hw->phy.media_type == e1000_media_type_copper) {
3302 		hw->phy.mdix = AUTO_ALL_MODES;
3303 		hw->phy.disable_polarity_correction = false;
3304 		hw->phy.ms_type = e1000_ms_hw_default;
3305 	}
3306 
3307 	if (igb_check_reset_block(hw))
3308 		dev_info(&pdev->dev,
3309 			"PHY reset is blocked due to SOL/IDER session.\n");
3310 
3311 	/* features is initialized to 0 in allocation, it might have bits
3312 	 * set by igb_sw_init so we should use an or instead of an
3313 	 * assignment.
3314 	 */
3315 	netdev->features |= NETIF_F_SG |
3316 			    NETIF_F_TSO |
3317 			    NETIF_F_TSO6 |
3318 			    NETIF_F_RXHASH |
3319 			    NETIF_F_RXCSUM |
3320 			    NETIF_F_HW_CSUM;
3321 
3322 	if (hw->mac.type >= e1000_82576)
3323 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3324 
3325 	if (hw->mac.type >= e1000_i350)
3326 		netdev->features |= NETIF_F_HW_TC;
3327 
3328 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3329 				  NETIF_F_GSO_GRE_CSUM | \
3330 				  NETIF_F_GSO_IPXIP4 | \
3331 				  NETIF_F_GSO_IPXIP6 | \
3332 				  NETIF_F_GSO_UDP_TUNNEL | \
3333 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3334 
3335 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3336 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3337 
3338 	/* copy netdev features into list of user selectable features */
3339 	netdev->hw_features |= netdev->features |
3340 			       NETIF_F_HW_VLAN_CTAG_RX |
3341 			       NETIF_F_HW_VLAN_CTAG_TX |
3342 			       NETIF_F_RXALL;
3343 
3344 	if (hw->mac.type >= e1000_i350)
3345 		netdev->hw_features |= NETIF_F_NTUPLE;
3346 
3347 	netdev->features |= NETIF_F_HIGHDMA;
3348 
3349 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3350 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3351 	netdev->hw_enc_features |= netdev->vlan_features;
3352 
3353 	/* set this bit last since it cannot be part of vlan_features */
3354 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3355 			    NETIF_F_HW_VLAN_CTAG_RX |
3356 			    NETIF_F_HW_VLAN_CTAG_TX;
3357 
3358 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3359 
3360 	netdev->priv_flags |= IFF_UNICAST_FLT;
3361 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3362 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
3363 
3364 	/* MTU range: 68 - 9216 */
3365 	netdev->min_mtu = ETH_MIN_MTU;
3366 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3367 
3368 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3369 
3370 	/* before reading the NVM, reset the controller to put the device in a
3371 	 * known good starting state
3372 	 */
3373 	hw->mac.ops.reset_hw(hw);
3374 
3375 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3376 	 * that doesn't contain a checksum
3377 	 */
3378 	switch (hw->mac.type) {
3379 	case e1000_i210:
3380 	case e1000_i211:
3381 		if (igb_get_flash_presence_i210(hw)) {
3382 			if (hw->nvm.ops.validate(hw) < 0) {
3383 				dev_err(&pdev->dev,
3384 					"The NVM Checksum Is Not Valid\n");
3385 				err = -EIO;
3386 				goto err_eeprom;
3387 			}
3388 		}
3389 		break;
3390 	default:
3391 		if (hw->nvm.ops.validate(hw) < 0) {
3392 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3393 			err = -EIO;
3394 			goto err_eeprom;
3395 		}
3396 		break;
3397 	}
3398 
3399 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3400 		/* copy the MAC address out of the NVM */
3401 		if (hw->mac.ops.read_mac_addr(hw))
3402 			dev_err(&pdev->dev, "NVM Read Error\n");
3403 	}
3404 
3405 	eth_hw_addr_set(netdev, hw->mac.addr);
3406 
3407 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3408 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3409 		err = -EIO;
3410 		goto err_eeprom;
3411 	}
3412 
3413 	igb_set_default_mac_filter(adapter);
3414 
3415 	/* get firmware version for ethtool -i */
3416 	igb_set_fw_version(adapter);
3417 
3418 	/* configure RXPBSIZE and TXPBSIZE */
3419 	if (hw->mac.type == e1000_i210) {
3420 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3421 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3422 	}
3423 
3424 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3425 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3426 
3427 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3428 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3429 
3430 	/* Initialize link properties that are user-changeable */
3431 	adapter->fc_autoneg = true;
3432 	hw->mac.autoneg = true;
3433 	hw->phy.autoneg_advertised = 0x2f;
3434 
3435 	hw->fc.requested_mode = e1000_fc_default;
3436 	hw->fc.current_mode = e1000_fc_default;
3437 
3438 	igb_validate_mdi_setting(hw);
3439 
3440 	/* By default, support wake on port A */
3441 	if (hw->bus.func == 0)
3442 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3443 
3444 	/* Check the NVM for wake support on non-port A ports */
3445 	if (hw->mac.type >= e1000_82580)
3446 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3447 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3448 				 &eeprom_data);
3449 	else if (hw->bus.func == 1)
3450 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3451 
3452 	if (eeprom_data & IGB_EEPROM_APME)
3453 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3454 
3455 	/* now that we have the eeprom settings, apply the special cases where
3456 	 * the eeprom may be wrong or the board simply won't support wake on
3457 	 * lan on a particular port
3458 	 */
3459 	switch (pdev->device) {
3460 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3461 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3462 		break;
3463 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3464 	case E1000_DEV_ID_82576_FIBER:
3465 	case E1000_DEV_ID_82576_SERDES:
3466 		/* Wake events only supported on port A for dual fiber
3467 		 * regardless of eeprom setting
3468 		 */
3469 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3470 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3471 		break;
3472 	case E1000_DEV_ID_82576_QUAD_COPPER:
3473 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3474 		/* if quad port adapter, disable WoL on all but port A */
3475 		if (global_quad_port_a != 0)
3476 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3477 		else
3478 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3479 		/* Reset for multiple quad port adapters */
3480 		if (++global_quad_port_a == 4)
3481 			global_quad_port_a = 0;
3482 		break;
3483 	default:
3484 		/* If the device can't wake, don't set software support */
3485 		if (!device_can_wakeup(&adapter->pdev->dev))
3486 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3487 	}
3488 
3489 	/* initialize the wol settings based on the eeprom settings */
3490 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3491 		adapter->wol |= E1000_WUFC_MAG;
3492 
3493 	/* Some vendors want WoL disabled by default, but still supported */
3494 	if ((hw->mac.type == e1000_i350) &&
3495 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3496 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3497 		adapter->wol = 0;
3498 	}
3499 
3500 	/* Some vendors want the ability to Use the EEPROM setting as
3501 	 * enable/disable only, and not for capability
3502 	 */
3503 	if (((hw->mac.type == e1000_i350) ||
3504 	     (hw->mac.type == e1000_i354)) &&
3505 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3506 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3507 		adapter->wol = 0;
3508 	}
3509 	if (hw->mac.type == e1000_i350) {
3510 		if (((pdev->subsystem_device == 0x5001) ||
3511 		     (pdev->subsystem_device == 0x5002)) &&
3512 				(hw->bus.func == 0)) {
3513 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3514 			adapter->wol = 0;
3515 		}
3516 		if (pdev->subsystem_device == 0x1F52)
3517 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3518 	}
3519 
3520 	device_set_wakeup_enable(&adapter->pdev->dev,
3521 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3522 
3523 	/* reset the hardware with the new settings */
3524 	igb_reset(adapter);
3525 
3526 	/* Init the I2C interface */
3527 	err = igb_init_i2c(adapter);
3528 	if (err) {
3529 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3530 		goto err_eeprom;
3531 	}
3532 
3533 	/* let the f/w know that the h/w is now under the control of the
3534 	 * driver.
3535 	 */
3536 	igb_get_hw_control(adapter);
3537 
3538 	strcpy(netdev->name, "eth%d");
3539 	err = register_netdev(netdev);
3540 	if (err)
3541 		goto err_register;
3542 
3543 	/* carrier off reporting is important to ethtool even BEFORE open */
3544 	netif_carrier_off(netdev);
3545 
3546 #ifdef CONFIG_IGB_DCA
3547 	if (dca_add_requester(&pdev->dev) == 0) {
3548 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3549 		dev_info(&pdev->dev, "DCA enabled\n");
3550 		igb_setup_dca(adapter);
3551 	}
3552 
3553 #endif
3554 #ifdef CONFIG_IGB_HWMON
3555 	/* Initialize the thermal sensor on i350 devices. */
3556 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3557 		u16 ets_word;
3558 
3559 		/* Read the NVM to determine if this i350 device supports an
3560 		 * external thermal sensor.
3561 		 */
3562 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3563 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3564 			adapter->ets = true;
3565 		else
3566 			adapter->ets = false;
3567 		/* Only enable I2C bit banging if an external thermal
3568 		 * sensor is supported.
3569 		 */
3570 		if (adapter->ets)
3571 			igb_set_i2c_bb(hw);
3572 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3573 		if (igb_sysfs_init(adapter))
3574 			dev_err(&pdev->dev,
3575 				"failed to allocate sysfs resources\n");
3576 	} else {
3577 		adapter->ets = false;
3578 	}
3579 #endif
3580 	/* Check if Media Autosense is enabled */
3581 	adapter->ei = *ei;
3582 	if (hw->dev_spec._82575.mas_capable)
3583 		igb_init_mas(adapter);
3584 
3585 	/* do hw tstamp init after resetting */
3586 	igb_ptp_init(adapter);
3587 
3588 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3589 	/* print bus type/speed/width info, not applicable to i354 */
3590 	if (hw->mac.type != e1000_i354) {
3591 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3592 			 netdev->name,
3593 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3594 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3595 			   "unknown"),
3596 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3597 			  "Width x4" :
3598 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3599 			  "Width x2" :
3600 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3601 			  "Width x1" : "unknown"), netdev->dev_addr);
3602 	}
3603 
3604 	if ((hw->mac.type == e1000_82576 &&
3605 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3606 	    (hw->mac.type >= e1000_i210 ||
3607 	     igb_get_flash_presence_i210(hw))) {
3608 		ret_val = igb_read_part_string(hw, part_str,
3609 					       E1000_PBANUM_LENGTH);
3610 	} else {
3611 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3612 	}
3613 
3614 	if (ret_val)
3615 		strcpy(part_str, "Unknown");
3616 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3617 	dev_info(&pdev->dev,
3618 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3619 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3620 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3621 		adapter->num_rx_queues, adapter->num_tx_queues);
3622 	if (hw->phy.media_type == e1000_media_type_copper) {
3623 		switch (hw->mac.type) {
3624 		case e1000_i350:
3625 		case e1000_i210:
3626 		case e1000_i211:
3627 			/* Enable EEE for internal copper PHY devices */
3628 			err = igb_set_eee_i350(hw, true, true);
3629 			if ((!err) &&
3630 			    (!hw->dev_spec._82575.eee_disable)) {
3631 				adapter->eee_advert =
3632 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3633 				adapter->flags |= IGB_FLAG_EEE;
3634 			}
3635 			break;
3636 		case e1000_i354:
3637 			if ((rd32(E1000_CTRL_EXT) &
3638 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3639 				err = igb_set_eee_i354(hw, true, true);
3640 				if ((!err) &&
3641 					(!hw->dev_spec._82575.eee_disable)) {
3642 					adapter->eee_advert =
3643 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3644 					adapter->flags |= IGB_FLAG_EEE;
3645 				}
3646 			}
3647 			break;
3648 		default:
3649 			break;
3650 		}
3651 	}
3652 
3653 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3654 
3655 	pm_runtime_put_noidle(&pdev->dev);
3656 	return 0;
3657 
3658 err_register:
3659 	igb_release_hw_control(adapter);
3660 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3661 err_eeprom:
3662 	if (!igb_check_reset_block(hw))
3663 		igb_reset_phy(hw);
3664 
3665 	if (hw->flash_address)
3666 		iounmap(hw->flash_address);
3667 err_sw_init:
3668 	kfree(adapter->mac_table);
3669 	kfree(adapter->shadow_vfta);
3670 	igb_clear_interrupt_scheme(adapter);
3671 #ifdef CONFIG_PCI_IOV
3672 	igb_disable_sriov(pdev, false);
3673 #endif
3674 	pci_iounmap(pdev, adapter->io_addr);
3675 err_ioremap:
3676 	free_netdev(netdev);
3677 err_alloc_etherdev:
3678 	pci_release_mem_regions(pdev);
3679 err_pci_reg:
3680 err_dma:
3681 	pci_disable_device(pdev);
3682 	return err;
3683 }
3684 
3685 #ifdef CONFIG_PCI_IOV
3686 static int igb_sriov_reinit(struct pci_dev *dev)
3687 {
3688 	struct net_device *netdev = pci_get_drvdata(dev);
3689 	struct igb_adapter *adapter = netdev_priv(netdev);
3690 	struct pci_dev *pdev = adapter->pdev;
3691 
3692 	rtnl_lock();
3693 
3694 	if (netif_running(netdev))
3695 		igb_close(netdev);
3696 	else
3697 		igb_reset(adapter);
3698 
3699 	igb_clear_interrupt_scheme(adapter);
3700 
3701 	igb_init_queue_configuration(adapter);
3702 
3703 	if (igb_init_interrupt_scheme(adapter, true)) {
3704 		rtnl_unlock();
3705 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3706 		return -ENOMEM;
3707 	}
3708 
3709 	if (netif_running(netdev))
3710 		igb_open(netdev);
3711 
3712 	rtnl_unlock();
3713 
3714 	return 0;
3715 }
3716 
3717 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3718 {
3719 	struct net_device *netdev = pci_get_drvdata(pdev);
3720 	struct igb_adapter *adapter = netdev_priv(netdev);
3721 	struct e1000_hw *hw = &adapter->hw;
3722 	unsigned long flags;
3723 
3724 	/* reclaim resources allocated to VFs */
3725 	if (adapter->vf_data) {
3726 		/* disable iov and allow time for transactions to clear */
3727 		if (pci_vfs_assigned(pdev)) {
3728 			dev_warn(&pdev->dev,
3729 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3730 			return -EPERM;
3731 		} else {
3732 			pci_disable_sriov(pdev);
3733 			msleep(500);
3734 		}
3735 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3736 		kfree(adapter->vf_mac_list);
3737 		adapter->vf_mac_list = NULL;
3738 		kfree(adapter->vf_data);
3739 		adapter->vf_data = NULL;
3740 		adapter->vfs_allocated_count = 0;
3741 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3742 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3743 		wrfl();
3744 		msleep(100);
3745 		dev_info(&pdev->dev, "IOV Disabled\n");
3746 
3747 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3748 		adapter->flags |= IGB_FLAG_DMAC;
3749 	}
3750 
3751 	return reinit ? igb_sriov_reinit(pdev) : 0;
3752 }
3753 
3754 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3755 {
3756 	struct net_device *netdev = pci_get_drvdata(pdev);
3757 	struct igb_adapter *adapter = netdev_priv(netdev);
3758 	int old_vfs = pci_num_vf(pdev);
3759 	struct vf_mac_filter *mac_list;
3760 	int err = 0;
3761 	int num_vf_mac_filters, i;
3762 
3763 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3764 		err = -EPERM;
3765 		goto out;
3766 	}
3767 	if (!num_vfs)
3768 		goto out;
3769 
3770 	if (old_vfs) {
3771 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3772 			 old_vfs, max_vfs);
3773 		adapter->vfs_allocated_count = old_vfs;
3774 	} else
3775 		adapter->vfs_allocated_count = num_vfs;
3776 
3777 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3778 				sizeof(struct vf_data_storage), GFP_KERNEL);
3779 
3780 	/* if allocation failed then we do not support SR-IOV */
3781 	if (!adapter->vf_data) {
3782 		adapter->vfs_allocated_count = 0;
3783 		err = -ENOMEM;
3784 		goto out;
3785 	}
3786 
3787 	/* Due to the limited number of RAR entries calculate potential
3788 	 * number of MAC filters available for the VFs. Reserve entries
3789 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3790 	 * for each VF for VF MAC.
3791 	 */
3792 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3793 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3794 			      adapter->vfs_allocated_count);
3795 
3796 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3797 				       sizeof(struct vf_mac_filter),
3798 				       GFP_KERNEL);
3799 
3800 	mac_list = adapter->vf_mac_list;
3801 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3802 
3803 	if (adapter->vf_mac_list) {
3804 		/* Initialize list of VF MAC filters */
3805 		for (i = 0; i < num_vf_mac_filters; i++) {
3806 			mac_list->vf = -1;
3807 			mac_list->free = true;
3808 			list_add(&mac_list->l, &adapter->vf_macs.l);
3809 			mac_list++;
3810 		}
3811 	} else {
3812 		/* If we could not allocate memory for the VF MAC filters
3813 		 * we can continue without this feature but warn user.
3814 		 */
3815 		dev_err(&pdev->dev,
3816 			"Unable to allocate memory for VF MAC filter list\n");
3817 	}
3818 
3819 	dev_info(&pdev->dev, "%d VFs allocated\n",
3820 		 adapter->vfs_allocated_count);
3821 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3822 		igb_vf_configure(adapter, i);
3823 
3824 	/* DMA Coalescing is not supported in IOV mode. */
3825 	adapter->flags &= ~IGB_FLAG_DMAC;
3826 
3827 	if (reinit) {
3828 		err = igb_sriov_reinit(pdev);
3829 		if (err)
3830 			goto err_out;
3831 	}
3832 
3833 	/* only call pci_enable_sriov() if no VFs are allocated already */
3834 	if (!old_vfs) {
3835 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3836 		if (err)
3837 			goto err_out;
3838 	}
3839 
3840 	goto out;
3841 
3842 err_out:
3843 	kfree(adapter->vf_mac_list);
3844 	adapter->vf_mac_list = NULL;
3845 	kfree(adapter->vf_data);
3846 	adapter->vf_data = NULL;
3847 	adapter->vfs_allocated_count = 0;
3848 out:
3849 	return err;
3850 }
3851 
3852 #endif
3853 /**
3854  *  igb_remove_i2c - Cleanup  I2C interface
3855  *  @adapter: pointer to adapter structure
3856  **/
3857 static void igb_remove_i2c(struct igb_adapter *adapter)
3858 {
3859 	/* free the adapter bus structure */
3860 	i2c_del_adapter(&adapter->i2c_adap);
3861 }
3862 
3863 /**
3864  *  igb_remove - Device Removal Routine
3865  *  @pdev: PCI device information struct
3866  *
3867  *  igb_remove is called by the PCI subsystem to alert the driver
3868  *  that it should release a PCI device.  The could be caused by a
3869  *  Hot-Plug event, or because the driver is going to be removed from
3870  *  memory.
3871  **/
3872 static void igb_remove(struct pci_dev *pdev)
3873 {
3874 	struct net_device *netdev = pci_get_drvdata(pdev);
3875 	struct igb_adapter *adapter = netdev_priv(netdev);
3876 	struct e1000_hw *hw = &adapter->hw;
3877 
3878 	pm_runtime_get_noresume(&pdev->dev);
3879 #ifdef CONFIG_IGB_HWMON
3880 	igb_sysfs_exit(adapter);
3881 #endif
3882 	igb_remove_i2c(adapter);
3883 	igb_ptp_stop(adapter);
3884 	/* The watchdog timer may be rescheduled, so explicitly
3885 	 * disable watchdog from being rescheduled.
3886 	 */
3887 	set_bit(__IGB_DOWN, &adapter->state);
3888 	timer_delete_sync(&adapter->watchdog_timer);
3889 	timer_delete_sync(&adapter->phy_info_timer);
3890 
3891 	cancel_work_sync(&adapter->reset_task);
3892 	cancel_work_sync(&adapter->watchdog_task);
3893 
3894 #ifdef CONFIG_IGB_DCA
3895 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3896 		dev_info(&pdev->dev, "DCA disabled\n");
3897 		dca_remove_requester(&pdev->dev);
3898 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3899 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3900 	}
3901 #endif
3902 
3903 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3904 	 * would have already happened in close and is redundant.
3905 	 */
3906 	igb_release_hw_control(adapter);
3907 
3908 #ifdef CONFIG_PCI_IOV
3909 	igb_disable_sriov(pdev, false);
3910 #endif
3911 
3912 	unregister_netdev(netdev);
3913 
3914 	igb_clear_interrupt_scheme(adapter);
3915 
3916 	pci_iounmap(pdev, adapter->io_addr);
3917 	if (hw->flash_address)
3918 		iounmap(hw->flash_address);
3919 	pci_release_mem_regions(pdev);
3920 
3921 	kfree(adapter->mac_table);
3922 	kfree(adapter->shadow_vfta);
3923 	free_netdev(netdev);
3924 
3925 	pci_disable_device(pdev);
3926 }
3927 
3928 /**
3929  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3930  *  @adapter: board private structure to initialize
3931  *
3932  *  This function initializes the vf specific data storage and then attempts to
3933  *  allocate the VFs.  The reason for ordering it this way is because it is much
3934  *  more expensive time wise to disable SR-IOV than it is to allocate and free
3935  *  the memory for the VFs.
3936  **/
3937 static void igb_probe_vfs(struct igb_adapter *adapter)
3938 {
3939 #ifdef CONFIG_PCI_IOV
3940 	struct pci_dev *pdev = adapter->pdev;
3941 	struct e1000_hw *hw = &adapter->hw;
3942 
3943 	/* Virtualization features not supported on i210 and 82580 family. */
3944 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3945 	    (hw->mac.type == e1000_82580))
3946 		return;
3947 
3948 	/* Of the below we really only want the effect of getting
3949 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3950 	 * igb_enable_sriov() has no effect.
3951 	 */
3952 	igb_set_interrupt_capability(adapter, true);
3953 	igb_reset_interrupt_capability(adapter);
3954 
3955 	pci_sriov_set_totalvfs(pdev, 7);
3956 	igb_enable_sriov(pdev, max_vfs, false);
3957 
3958 #endif /* CONFIG_PCI_IOV */
3959 }
3960 
3961 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3962 {
3963 	struct e1000_hw *hw = &adapter->hw;
3964 	unsigned int max_rss_queues;
3965 
3966 	/* Determine the maximum number of RSS queues supported. */
3967 	switch (hw->mac.type) {
3968 	case e1000_i211:
3969 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3970 		break;
3971 	case e1000_82575:
3972 	case e1000_i210:
3973 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3974 		break;
3975 	case e1000_i350:
3976 		/* I350 cannot do RSS and SR-IOV at the same time */
3977 		if (!!adapter->vfs_allocated_count) {
3978 			max_rss_queues = 1;
3979 			break;
3980 		}
3981 		fallthrough;
3982 	case e1000_82576:
3983 		if (!!adapter->vfs_allocated_count) {
3984 			max_rss_queues = 2;
3985 			break;
3986 		}
3987 		fallthrough;
3988 	case e1000_82580:
3989 	case e1000_i354:
3990 	default:
3991 		max_rss_queues = IGB_MAX_RX_QUEUES;
3992 		break;
3993 	}
3994 
3995 	return max_rss_queues;
3996 }
3997 
3998 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3999 {
4000 	u32 max_rss_queues;
4001 
4002 	max_rss_queues = igb_get_max_rss_queues(adapter);
4003 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4004 
4005 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
4006 }
4007 
4008 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4009 			      const u32 max_rss_queues)
4010 {
4011 	struct e1000_hw *hw = &adapter->hw;
4012 
4013 	/* Determine if we need to pair queues. */
4014 	switch (hw->mac.type) {
4015 	case e1000_82575:
4016 	case e1000_i211:
4017 		/* Device supports enough interrupts without queue pairing. */
4018 		break;
4019 	case e1000_82576:
4020 	case e1000_82580:
4021 	case e1000_i350:
4022 	case e1000_i354:
4023 	case e1000_i210:
4024 	default:
4025 		/* If rss_queues > half of max_rss_queues, pair the queues in
4026 		 * order to conserve interrupts due to limited supply.
4027 		 */
4028 		if (adapter->rss_queues > (max_rss_queues / 2))
4029 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4030 		else
4031 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4032 		break;
4033 	}
4034 }
4035 
4036 /**
4037  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4038  *  @adapter: board private structure to initialize
4039  *
4040  *  igb_sw_init initializes the Adapter private data structure.
4041  *  Fields are initialized based on PCI device information and
4042  *  OS network device settings (MTU size).
4043  **/
4044 static int igb_sw_init(struct igb_adapter *adapter)
4045 {
4046 	struct e1000_hw *hw = &adapter->hw;
4047 	struct net_device *netdev = adapter->netdev;
4048 	struct pci_dev *pdev = adapter->pdev;
4049 
4050 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4051 
4052 	/* set default ring sizes */
4053 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4054 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4055 
4056 	/* set default ITR values */
4057 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4058 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4059 
4060 	/* set default work limits */
4061 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4062 
4063 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4064 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4065 
4066 	spin_lock_init(&adapter->nfc_lock);
4067 	spin_lock_init(&adapter->stats64_lock);
4068 
4069 	/* init spinlock to avoid concurrency of VF resources */
4070 	spin_lock_init(&adapter->vfs_lock);
4071 #ifdef CONFIG_PCI_IOV
4072 	switch (hw->mac.type) {
4073 	case e1000_82576:
4074 	case e1000_i350:
4075 		if (max_vfs > 7) {
4076 			dev_warn(&pdev->dev,
4077 				 "Maximum of 7 VFs per PF, using max\n");
4078 			max_vfs = adapter->vfs_allocated_count = 7;
4079 		} else
4080 			adapter->vfs_allocated_count = max_vfs;
4081 		if (adapter->vfs_allocated_count)
4082 			dev_warn(&pdev->dev,
4083 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4084 		break;
4085 	default:
4086 		break;
4087 	}
4088 #endif /* CONFIG_PCI_IOV */
4089 
4090 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4091 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4092 
4093 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4094 				     sizeof(struct igb_mac_addr),
4095 				     GFP_KERNEL);
4096 	if (!adapter->mac_table)
4097 		return -ENOMEM;
4098 
4099 	igb_probe_vfs(adapter);
4100 
4101 	igb_init_queue_configuration(adapter);
4102 
4103 	/* Setup and initialize a copy of the hw vlan table array */
4104 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4105 				       GFP_KERNEL);
4106 	if (!adapter->shadow_vfta)
4107 		return -ENOMEM;
4108 
4109 	/* This call may decrease the number of queues */
4110 	if (igb_init_interrupt_scheme(adapter, true)) {
4111 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4112 		return -ENOMEM;
4113 	}
4114 
4115 	/* Explicitly disable IRQ since the NIC can be in any state. */
4116 	igb_irq_disable(adapter);
4117 
4118 	if (hw->mac.type >= e1000_i350)
4119 		adapter->flags &= ~IGB_FLAG_DMAC;
4120 
4121 	set_bit(__IGB_DOWN, &adapter->state);
4122 	return 0;
4123 }
4124 
4125 /**
4126  *  __igb_open - Called when a network interface is made active
4127  *  @netdev: network interface device structure
4128  *  @resuming: indicates whether we are in a resume call
4129  *
4130  *  Returns 0 on success, negative value on failure
4131  *
4132  *  The open entry point is called when a network interface is made
4133  *  active by the system (IFF_UP).  At this point all resources needed
4134  *  for transmit and receive operations are allocated, the interrupt
4135  *  handler is registered with the OS, the watchdog timer is started,
4136  *  and the stack is notified that the interface is ready.
4137  **/
4138 static int __igb_open(struct net_device *netdev, bool resuming)
4139 {
4140 	struct igb_adapter *adapter = netdev_priv(netdev);
4141 	struct pci_dev *pdev = adapter->pdev;
4142 	struct e1000_hw *hw = &adapter->hw;
4143 	struct napi_struct *napi;
4144 	int err;
4145 	int i;
4146 
4147 	/* disallow open during test */
4148 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4149 		WARN_ON(resuming);
4150 		return -EBUSY;
4151 	}
4152 
4153 	if (!resuming)
4154 		pm_runtime_get_sync(&pdev->dev);
4155 
4156 	netif_carrier_off(netdev);
4157 
4158 	/* allocate transmit descriptors */
4159 	err = igb_setup_all_tx_resources(adapter);
4160 	if (err)
4161 		goto err_setup_tx;
4162 
4163 	/* allocate receive descriptors */
4164 	err = igb_setup_all_rx_resources(adapter);
4165 	if (err)
4166 		goto err_setup_rx;
4167 
4168 	igb_power_up_link(adapter);
4169 
4170 	/* before we allocate an interrupt, we must be ready to handle it.
4171 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4172 	 * as soon as we call pci_request_irq, so we have to setup our
4173 	 * clean_rx handler before we do so.
4174 	 */
4175 	igb_configure(adapter);
4176 
4177 	err = igb_request_irq(adapter);
4178 	if (err)
4179 		goto err_req_irq;
4180 
4181 	/* Notify the stack of the actual queue counts. */
4182 	err = netif_set_real_num_tx_queues(adapter->netdev,
4183 					   adapter->num_tx_queues);
4184 	if (err)
4185 		goto err_set_queues;
4186 
4187 	err = netif_set_real_num_rx_queues(adapter->netdev,
4188 					   adapter->num_rx_queues);
4189 	if (err)
4190 		goto err_set_queues;
4191 
4192 	/* From here on the code is the same as igb_up() */
4193 	clear_bit(__IGB_DOWN, &adapter->state);
4194 
4195 	for (i = 0; i < adapter->num_q_vectors; i++) {
4196 		napi = &adapter->q_vector[i]->napi;
4197 		napi_enable(napi);
4198 		igb_set_queue_napi(adapter, i, napi);
4199 	}
4200 
4201 	/* Clear any pending interrupts. */
4202 	rd32(E1000_TSICR);
4203 	rd32(E1000_ICR);
4204 
4205 	igb_irq_enable(adapter);
4206 
4207 	/* notify VFs that reset has been completed */
4208 	if (adapter->vfs_allocated_count) {
4209 		u32 reg_data = rd32(E1000_CTRL_EXT);
4210 
4211 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4212 		wr32(E1000_CTRL_EXT, reg_data);
4213 	}
4214 
4215 	netif_tx_start_all_queues(netdev);
4216 
4217 	if (!resuming)
4218 		pm_runtime_put(&pdev->dev);
4219 
4220 	/* start the watchdog. */
4221 	hw->mac.get_link_status = 1;
4222 	schedule_work(&adapter->watchdog_task);
4223 
4224 	return 0;
4225 
4226 err_set_queues:
4227 	igb_free_irq(adapter);
4228 err_req_irq:
4229 	igb_release_hw_control(adapter);
4230 	igb_power_down_link(adapter);
4231 	igb_free_all_rx_resources(adapter);
4232 err_setup_rx:
4233 	igb_free_all_tx_resources(adapter);
4234 err_setup_tx:
4235 	igb_reset(adapter);
4236 	if (!resuming)
4237 		pm_runtime_put(&pdev->dev);
4238 
4239 	return err;
4240 }
4241 
4242 int igb_open(struct net_device *netdev)
4243 {
4244 	return __igb_open(netdev, false);
4245 }
4246 
4247 /**
4248  *  __igb_close - Disables a network interface
4249  *  @netdev: network interface device structure
4250  *  @suspending: indicates we are in a suspend call
4251  *
4252  *  Returns 0, this is not allowed to fail
4253  *
4254  *  The close entry point is called when an interface is de-activated
4255  *  by the OS.  The hardware is still under the driver's control, but
4256  *  needs to be disabled.  A global MAC reset is issued to stop the
4257  *  hardware, and all transmit and receive resources are freed.
4258  **/
4259 static int __igb_close(struct net_device *netdev, bool suspending)
4260 {
4261 	struct igb_adapter *adapter = netdev_priv(netdev);
4262 	struct pci_dev *pdev = adapter->pdev;
4263 
4264 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4265 
4266 	if (!suspending)
4267 		pm_runtime_get_sync(&pdev->dev);
4268 
4269 	igb_down(adapter);
4270 	igb_free_irq(adapter);
4271 
4272 	igb_free_all_tx_resources(adapter);
4273 	igb_free_all_rx_resources(adapter);
4274 
4275 	if (!suspending)
4276 		pm_runtime_put_sync(&pdev->dev);
4277 	return 0;
4278 }
4279 
4280 int igb_close(struct net_device *netdev)
4281 {
4282 	if (netif_device_present(netdev) || netdev->dismantle)
4283 		return __igb_close(netdev, false);
4284 	return 0;
4285 }
4286 
4287 /**
4288  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4289  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4290  *
4291  *  Return 0 on success, negative on failure
4292  **/
4293 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4294 {
4295 	struct device *dev = tx_ring->dev;
4296 	int size;
4297 
4298 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4299 
4300 	tx_ring->tx_buffer_info = vmalloc(size);
4301 	if (!tx_ring->tx_buffer_info)
4302 		goto err;
4303 
4304 	/* round up to nearest 4K */
4305 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4306 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4307 
4308 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4309 					   &tx_ring->dma, GFP_KERNEL);
4310 	if (!tx_ring->desc)
4311 		goto err;
4312 
4313 	tx_ring->next_to_use = 0;
4314 	tx_ring->next_to_clean = 0;
4315 
4316 	return 0;
4317 
4318 err:
4319 	vfree(tx_ring->tx_buffer_info);
4320 	tx_ring->tx_buffer_info = NULL;
4321 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4322 	return -ENOMEM;
4323 }
4324 
4325 /**
4326  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4327  *				 (Descriptors) for all queues
4328  *  @adapter: board private structure
4329  *
4330  *  Return 0 on success, negative on failure
4331  **/
4332 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4333 {
4334 	struct pci_dev *pdev = adapter->pdev;
4335 	int i, err = 0;
4336 
4337 	for (i = 0; i < adapter->num_tx_queues; i++) {
4338 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4339 		if (err) {
4340 			dev_err(&pdev->dev,
4341 				"Allocation for Tx Queue %u failed\n", i);
4342 			for (i--; i >= 0; i--)
4343 				igb_free_tx_resources(adapter->tx_ring[i]);
4344 			break;
4345 		}
4346 	}
4347 
4348 	return err;
4349 }
4350 
4351 /**
4352  *  igb_setup_tctl - configure the transmit control registers
4353  *  @adapter: Board private structure
4354  **/
4355 void igb_setup_tctl(struct igb_adapter *adapter)
4356 {
4357 	struct e1000_hw *hw = &adapter->hw;
4358 	u32 tctl;
4359 
4360 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4361 	wr32(E1000_TXDCTL(0), 0);
4362 
4363 	/* Program the Transmit Control Register */
4364 	tctl = rd32(E1000_TCTL);
4365 	tctl &= ~E1000_TCTL_CT;
4366 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4367 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4368 
4369 	igb_config_collision_dist(hw);
4370 
4371 	/* Enable transmits */
4372 	tctl |= E1000_TCTL_EN;
4373 
4374 	wr32(E1000_TCTL, tctl);
4375 }
4376 
4377 /**
4378  *  igb_configure_tx_ring - Configure transmit ring after Reset
4379  *  @adapter: board private structure
4380  *  @ring: tx ring to configure
4381  *
4382  *  Configure a transmit ring after a reset.
4383  **/
4384 void igb_configure_tx_ring(struct igb_adapter *adapter,
4385 			   struct igb_ring *ring)
4386 {
4387 	struct e1000_hw *hw = &adapter->hw;
4388 	u32 txdctl = 0;
4389 	u64 tdba = ring->dma;
4390 	int reg_idx = ring->reg_idx;
4391 
4392 	WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4393 
4394 	wr32(E1000_TDLEN(reg_idx),
4395 	     ring->count * sizeof(union e1000_adv_tx_desc));
4396 	wr32(E1000_TDBAL(reg_idx),
4397 	     tdba & 0x00000000ffffffffULL);
4398 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4399 
4400 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4401 	wr32(E1000_TDH(reg_idx), 0);
4402 	writel(0, ring->tail);
4403 
4404 	txdctl |= IGB_TX_PTHRESH;
4405 	txdctl |= IGB_TX_HTHRESH << 8;
4406 	txdctl |= IGB_TX_WTHRESH << 16;
4407 
4408 	/* reinitialize tx_buffer_info */
4409 	memset(ring->tx_buffer_info, 0,
4410 	       sizeof(struct igb_tx_buffer) * ring->count);
4411 
4412 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4413 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4414 }
4415 
4416 /**
4417  *  igb_configure_tx - Configure transmit Unit after Reset
4418  *  @adapter: board private structure
4419  *
4420  *  Configure the Tx unit of the MAC after a reset.
4421  **/
4422 static void igb_configure_tx(struct igb_adapter *adapter)
4423 {
4424 	struct e1000_hw *hw = &adapter->hw;
4425 	int i;
4426 
4427 	/* disable the queues */
4428 	for (i = 0; i < adapter->num_tx_queues; i++)
4429 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4430 
4431 	wrfl();
4432 	usleep_range(10000, 20000);
4433 
4434 	for (i = 0; i < adapter->num_tx_queues; i++)
4435 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4436 }
4437 
4438 /**
4439  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4440  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4441  *
4442  *  Returns 0 on success, negative on failure
4443  **/
4444 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4445 {
4446 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4447 	struct device *dev = rx_ring->dev;
4448 	int size, res;
4449 
4450 	/* XDP RX-queue info */
4451 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4452 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4453 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4454 			       rx_ring->queue_index,
4455 			       rx_ring->q_vector->napi.napi_id);
4456 	if (res < 0) {
4457 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4458 			rx_ring->queue_index);
4459 		return res;
4460 	}
4461 
4462 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4463 
4464 	rx_ring->rx_buffer_info = vmalloc(size);
4465 	if (!rx_ring->rx_buffer_info)
4466 		goto err;
4467 
4468 	/* Round up to nearest 4K */
4469 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4470 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4471 
4472 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4473 					   &rx_ring->dma, GFP_KERNEL);
4474 	if (!rx_ring->desc)
4475 		goto err;
4476 
4477 	rx_ring->next_to_alloc = 0;
4478 	rx_ring->next_to_clean = 0;
4479 	rx_ring->next_to_use = 0;
4480 
4481 	rx_ring->xdp_prog = adapter->xdp_prog;
4482 
4483 	return 0;
4484 
4485 err:
4486 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4487 	vfree(rx_ring->rx_buffer_info);
4488 	rx_ring->rx_buffer_info = NULL;
4489 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4490 	return -ENOMEM;
4491 }
4492 
4493 /**
4494  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4495  *				 (Descriptors) for all queues
4496  *  @adapter: board private structure
4497  *
4498  *  Return 0 on success, negative on failure
4499  **/
4500 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4501 {
4502 	struct pci_dev *pdev = adapter->pdev;
4503 	int i, err = 0;
4504 
4505 	for (i = 0; i < adapter->num_rx_queues; i++) {
4506 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4507 		if (err) {
4508 			dev_err(&pdev->dev,
4509 				"Allocation for Rx Queue %u failed\n", i);
4510 			for (i--; i >= 0; i--)
4511 				igb_free_rx_resources(adapter->rx_ring[i]);
4512 			break;
4513 		}
4514 	}
4515 
4516 	return err;
4517 }
4518 
4519 /**
4520  *  igb_setup_mrqc - configure the multiple receive queue control registers
4521  *  @adapter: Board private structure
4522  **/
4523 static void igb_setup_mrqc(struct igb_adapter *adapter)
4524 {
4525 	struct e1000_hw *hw = &adapter->hw;
4526 	u32 mrqc, rxcsum;
4527 	u32 j, num_rx_queues;
4528 	u32 rss_key[10];
4529 
4530 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4531 	for (j = 0; j < 10; j++)
4532 		wr32(E1000_RSSRK(j), rss_key[j]);
4533 
4534 	num_rx_queues = adapter->rss_queues;
4535 
4536 	switch (hw->mac.type) {
4537 	case e1000_82576:
4538 		/* 82576 supports 2 RSS queues for SR-IOV */
4539 		if (adapter->vfs_allocated_count)
4540 			num_rx_queues = 2;
4541 		break;
4542 	default:
4543 		break;
4544 	}
4545 
4546 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4547 		for (j = 0; j < IGB_RETA_SIZE; j++)
4548 			adapter->rss_indir_tbl[j] =
4549 			(j * num_rx_queues) / IGB_RETA_SIZE;
4550 		adapter->rss_indir_tbl_init = num_rx_queues;
4551 	}
4552 	igb_write_rss_indir_tbl(adapter);
4553 
4554 	/* Disable raw packet checksumming so that RSS hash is placed in
4555 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4556 	 * offloads as they are enabled by default
4557 	 */
4558 	rxcsum = rd32(E1000_RXCSUM);
4559 	rxcsum |= E1000_RXCSUM_PCSD;
4560 
4561 	if (adapter->hw.mac.type >= e1000_82576)
4562 		/* Enable Receive Checksum Offload for SCTP */
4563 		rxcsum |= E1000_RXCSUM_CRCOFL;
4564 
4565 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4566 	wr32(E1000_RXCSUM, rxcsum);
4567 
4568 	/* Generate RSS hash based on packet types, TCP/UDP
4569 	 * port numbers and/or IPv4/v6 src and dst addresses
4570 	 */
4571 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4572 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4573 	       E1000_MRQC_RSS_FIELD_IPV6 |
4574 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4575 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4576 
4577 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4578 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4579 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4580 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4581 
4582 	/* If VMDq is enabled then we set the appropriate mode for that, else
4583 	 * we default to RSS so that an RSS hash is calculated per packet even
4584 	 * if we are only using one queue
4585 	 */
4586 	if (adapter->vfs_allocated_count) {
4587 		if (hw->mac.type > e1000_82575) {
4588 			/* Set the default pool for the PF's first queue */
4589 			u32 vtctl = rd32(E1000_VT_CTL);
4590 
4591 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4592 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4593 			vtctl |= adapter->vfs_allocated_count <<
4594 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4595 			wr32(E1000_VT_CTL, vtctl);
4596 		}
4597 		if (adapter->rss_queues > 1)
4598 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4599 		else
4600 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4601 	} else {
4602 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4603 	}
4604 	igb_vmm_control(adapter);
4605 
4606 	wr32(E1000_MRQC, mrqc);
4607 }
4608 
4609 /**
4610  *  igb_setup_rctl - configure the receive control registers
4611  *  @adapter: Board private structure
4612  **/
4613 void igb_setup_rctl(struct igb_adapter *adapter)
4614 {
4615 	struct e1000_hw *hw = &adapter->hw;
4616 	u32 rctl;
4617 
4618 	rctl = rd32(E1000_RCTL);
4619 
4620 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4621 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4622 
4623 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4624 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4625 
4626 	/* enable stripping of CRC. It's unlikely this will break BMC
4627 	 * redirection as it did with e1000. Newer features require
4628 	 * that the HW strips the CRC.
4629 	 */
4630 	rctl |= E1000_RCTL_SECRC;
4631 
4632 	/* disable store bad packets and clear size bits. */
4633 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4634 
4635 	/* enable LPE to allow for reception of jumbo frames */
4636 	rctl |= E1000_RCTL_LPE;
4637 
4638 	/* disable queue 0 to prevent tail write w/o re-config */
4639 	wr32(E1000_RXDCTL(0), 0);
4640 
4641 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4642 	 * queue drop for all VF and PF queues to prevent head of line blocking
4643 	 * if an un-trusted VF does not provide descriptors to hardware.
4644 	 */
4645 	if (adapter->vfs_allocated_count) {
4646 		/* set all queue drop enable bits */
4647 		wr32(E1000_QDE, ALL_QUEUES);
4648 	}
4649 
4650 	/* This is useful for sniffing bad packets. */
4651 	if (adapter->netdev->features & NETIF_F_RXALL) {
4652 		/* UPE and MPE will be handled by normal PROMISC logic
4653 		 * in e1000e_set_rx_mode
4654 		 */
4655 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4656 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4657 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4658 
4659 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4660 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4661 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4662 		 * and that breaks VLANs.
4663 		 */
4664 	}
4665 
4666 	wr32(E1000_RCTL, rctl);
4667 }
4668 
4669 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4670 				   int vfn)
4671 {
4672 	struct e1000_hw *hw = &adapter->hw;
4673 	u32 vmolr;
4674 
4675 	if (size > MAX_JUMBO_FRAME_SIZE)
4676 		size = MAX_JUMBO_FRAME_SIZE;
4677 
4678 	vmolr = rd32(E1000_VMOLR(vfn));
4679 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4680 	vmolr |= size | E1000_VMOLR_LPE;
4681 	wr32(E1000_VMOLR(vfn), vmolr);
4682 
4683 	return 0;
4684 }
4685 
4686 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4687 					 int vfn, bool enable)
4688 {
4689 	struct e1000_hw *hw = &adapter->hw;
4690 	u32 val, reg;
4691 
4692 	if (hw->mac.type < e1000_82576)
4693 		return;
4694 
4695 	if (hw->mac.type == e1000_i350)
4696 		reg = E1000_DVMOLR(vfn);
4697 	else
4698 		reg = E1000_VMOLR(vfn);
4699 
4700 	val = rd32(reg);
4701 	if (enable)
4702 		val |= E1000_VMOLR_STRVLAN;
4703 	else
4704 		val &= ~(E1000_VMOLR_STRVLAN);
4705 	wr32(reg, val);
4706 }
4707 
4708 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4709 				 int vfn, bool aupe)
4710 {
4711 	struct e1000_hw *hw = &adapter->hw;
4712 	u32 vmolr;
4713 
4714 	/* This register exists only on 82576 and newer so if we are older then
4715 	 * we should exit and do nothing
4716 	 */
4717 	if (hw->mac.type < e1000_82576)
4718 		return;
4719 
4720 	vmolr = rd32(E1000_VMOLR(vfn));
4721 	if (aupe)
4722 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4723 	else
4724 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4725 
4726 	/* clear all bits that might not be set */
4727 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4728 
4729 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4730 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4731 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4732 	 * multicast packets
4733 	 */
4734 	if (vfn <= adapter->vfs_allocated_count)
4735 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4736 
4737 	wr32(E1000_VMOLR(vfn), vmolr);
4738 }
4739 
4740 /**
4741  *  igb_setup_srrctl - configure the split and replication receive control
4742  *                     registers
4743  *  @adapter: Board private structure
4744  *  @ring: receive ring to be configured
4745  **/
4746 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4747 {
4748 	struct e1000_hw *hw = &adapter->hw;
4749 	int reg_idx = ring->reg_idx;
4750 	u32 srrctl = 0;
4751 	u32 buf_size;
4752 
4753 	if (ring->xsk_pool)
4754 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4755 	else if (ring_uses_large_buffer(ring))
4756 		buf_size = IGB_RXBUFFER_3072;
4757 	else
4758 		buf_size = IGB_RXBUFFER_2048;
4759 
4760 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4761 	srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4762 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4763 	if (hw->mac.type >= e1000_82580)
4764 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4765 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4766 	 * queues and rx flow control is disabled
4767 	 */
4768 	if (adapter->vfs_allocated_count ||
4769 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4770 	     adapter->num_rx_queues > 1))
4771 		srrctl |= E1000_SRRCTL_DROP_EN;
4772 
4773 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4774 }
4775 
4776 /**
4777  *  igb_configure_rx_ring - Configure a receive ring after Reset
4778  *  @adapter: board private structure
4779  *  @ring: receive ring to be configured
4780  *
4781  *  Configure the Rx unit of the MAC after a reset.
4782  **/
4783 void igb_configure_rx_ring(struct igb_adapter *adapter,
4784 			   struct igb_ring *ring)
4785 {
4786 	struct e1000_hw *hw = &adapter->hw;
4787 	union e1000_adv_rx_desc *rx_desc;
4788 	u64 rdba = ring->dma;
4789 	int reg_idx = ring->reg_idx;
4790 	u32 rxdctl = 0;
4791 
4792 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4793 	WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4794 	if (ring->xsk_pool) {
4795 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4796 						   MEM_TYPE_XSK_BUFF_POOL,
4797 						   NULL));
4798 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4799 	} else {
4800 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4801 						   MEM_TYPE_PAGE_SHARED,
4802 						   NULL));
4803 	}
4804 
4805 	/* disable the queue */
4806 	wr32(E1000_RXDCTL(reg_idx), 0);
4807 
4808 	/* Set DMA base address registers */
4809 	wr32(E1000_RDBAL(reg_idx),
4810 	     rdba & 0x00000000ffffffffULL);
4811 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4812 	wr32(E1000_RDLEN(reg_idx),
4813 	     ring->count * sizeof(union e1000_adv_rx_desc));
4814 
4815 	/* initialize head and tail */
4816 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4817 	wr32(E1000_RDH(reg_idx), 0);
4818 	writel(0, ring->tail);
4819 
4820 	/* set descriptor configuration */
4821 	igb_setup_srrctl(adapter, ring);
4822 
4823 	/* set filtering for VMDQ pools */
4824 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4825 
4826 	rxdctl |= IGB_RX_PTHRESH;
4827 	rxdctl |= IGB_RX_HTHRESH << 8;
4828 	rxdctl |= IGB_RX_WTHRESH << 16;
4829 
4830 	if (ring->xsk_pool)
4831 		memset(ring->rx_buffer_info_zc, 0,
4832 		       sizeof(*ring->rx_buffer_info_zc) * ring->count);
4833 	else
4834 		memset(ring->rx_buffer_info, 0,
4835 		       sizeof(*ring->rx_buffer_info) * ring->count);
4836 
4837 	/* initialize Rx descriptor 0 */
4838 	rx_desc = IGB_RX_DESC(ring, 0);
4839 	rx_desc->wb.upper.length = 0;
4840 
4841 	/* enable receive descriptor fetching */
4842 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4843 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4844 }
4845 
4846 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4847 				  struct igb_ring *rx_ring)
4848 {
4849 #if (PAGE_SIZE < 8192)
4850 	struct e1000_hw *hw = &adapter->hw;
4851 #endif
4852 
4853 	/* set build_skb and buffer size flags */
4854 	clear_ring_build_skb_enabled(rx_ring);
4855 	clear_ring_uses_large_buffer(rx_ring);
4856 
4857 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4858 		return;
4859 
4860 	set_ring_build_skb_enabled(rx_ring);
4861 
4862 #if (PAGE_SIZE < 8192)
4863 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4864 	    IGB_2K_TOO_SMALL_WITH_PADDING ||
4865 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4866 		set_ring_uses_large_buffer(rx_ring);
4867 #endif
4868 }
4869 
4870 /**
4871  *  igb_configure_rx - Configure receive Unit after Reset
4872  *  @adapter: board private structure
4873  *
4874  *  Configure the Rx unit of the MAC after a reset.
4875  **/
4876 static void igb_configure_rx(struct igb_adapter *adapter)
4877 {
4878 	int i;
4879 
4880 	/* set the correct pool for the PF default MAC address in entry 0 */
4881 	igb_set_default_mac_filter(adapter);
4882 
4883 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4884 	 * the Base and Length of the Rx Descriptor Ring
4885 	 */
4886 	for (i = 0; i < adapter->num_rx_queues; i++) {
4887 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4888 
4889 		igb_set_rx_buffer_len(adapter, rx_ring);
4890 		igb_configure_rx_ring(adapter, rx_ring);
4891 	}
4892 }
4893 
4894 /**
4895  *  igb_free_tx_resources - Free Tx Resources per Queue
4896  *  @tx_ring: Tx descriptor ring for a specific queue
4897  *
4898  *  Free all transmit software resources
4899  **/
4900 void igb_free_tx_resources(struct igb_ring *tx_ring)
4901 {
4902 	igb_clean_tx_ring(tx_ring);
4903 
4904 	vfree(tx_ring->tx_buffer_info);
4905 	tx_ring->tx_buffer_info = NULL;
4906 
4907 	/* if not set, then don't free */
4908 	if (!tx_ring->desc)
4909 		return;
4910 
4911 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4912 			  tx_ring->desc, tx_ring->dma);
4913 
4914 	tx_ring->desc = NULL;
4915 }
4916 
4917 /**
4918  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4919  *  @adapter: board private structure
4920  *
4921  *  Free all transmit software resources
4922  **/
4923 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4924 {
4925 	int i;
4926 
4927 	for (i = 0; i < adapter->num_tx_queues; i++)
4928 		if (adapter->tx_ring[i])
4929 			igb_free_tx_resources(adapter->tx_ring[i]);
4930 }
4931 
4932 /**
4933  *  igb_clean_tx_ring - Free Tx Buffers
4934  *  @tx_ring: ring to be cleaned
4935  **/
4936 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4937 {
4938 	u16 i = tx_ring->next_to_clean;
4939 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4940 	u32 xsk_frames = 0;
4941 
4942 	while (i != tx_ring->next_to_use) {
4943 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4944 
4945 		/* Free all the Tx ring sk_buffs or xdp frames */
4946 		if (tx_buffer->type == IGB_TYPE_SKB) {
4947 			dev_kfree_skb_any(tx_buffer->skb);
4948 		} else if (tx_buffer->type == IGB_TYPE_XDP) {
4949 			xdp_return_frame(tx_buffer->xdpf);
4950 		} else if (tx_buffer->type == IGB_TYPE_XSK) {
4951 			xsk_frames++;
4952 			goto skip_for_xsk;
4953 		}
4954 
4955 		/* unmap skb header data */
4956 		dma_unmap_single(tx_ring->dev,
4957 				 dma_unmap_addr(tx_buffer, dma),
4958 				 dma_unmap_len(tx_buffer, len),
4959 				 DMA_TO_DEVICE);
4960 
4961 		/* check for eop_desc to determine the end of the packet */
4962 		eop_desc = tx_buffer->next_to_watch;
4963 		tx_desc = IGB_TX_DESC(tx_ring, i);
4964 
4965 		/* unmap remaining buffers */
4966 		while (tx_desc != eop_desc) {
4967 			tx_buffer++;
4968 			tx_desc++;
4969 			i++;
4970 			if (unlikely(i == tx_ring->count)) {
4971 				i = 0;
4972 				tx_buffer = tx_ring->tx_buffer_info;
4973 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4974 			}
4975 
4976 			/* unmap any remaining paged data */
4977 			if (dma_unmap_len(tx_buffer, len))
4978 				dma_unmap_page(tx_ring->dev,
4979 					       dma_unmap_addr(tx_buffer, dma),
4980 					       dma_unmap_len(tx_buffer, len),
4981 					       DMA_TO_DEVICE);
4982 		}
4983 
4984 skip_for_xsk:
4985 		tx_buffer->next_to_watch = NULL;
4986 
4987 		/* move us one more past the eop_desc for start of next pkt */
4988 		tx_buffer++;
4989 		i++;
4990 		if (unlikely(i == tx_ring->count)) {
4991 			i = 0;
4992 			tx_buffer = tx_ring->tx_buffer_info;
4993 		}
4994 	}
4995 
4996 	/* reset BQL for queue */
4997 	netdev_tx_reset_queue(txring_txq(tx_ring));
4998 
4999 	if (tx_ring->xsk_pool && xsk_frames)
5000 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
5001 
5002 	/* reset next_to_use and next_to_clean */
5003 	tx_ring->next_to_use = 0;
5004 	tx_ring->next_to_clean = 0;
5005 }
5006 
5007 /**
5008  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
5009  *  @adapter: board private structure
5010  **/
5011 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
5012 {
5013 	int i;
5014 
5015 	for (i = 0; i < adapter->num_tx_queues; i++)
5016 		if (adapter->tx_ring[i])
5017 			igb_clean_tx_ring(adapter->tx_ring[i]);
5018 }
5019 
5020 /**
5021  *  igb_free_rx_resources - Free Rx Resources
5022  *  @rx_ring: ring to clean the resources from
5023  *
5024  *  Free all receive software resources
5025  **/
5026 void igb_free_rx_resources(struct igb_ring *rx_ring)
5027 {
5028 	igb_clean_rx_ring(rx_ring);
5029 
5030 	rx_ring->xdp_prog = NULL;
5031 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5032 	if (rx_ring->xsk_pool) {
5033 		vfree(rx_ring->rx_buffer_info_zc);
5034 		rx_ring->rx_buffer_info_zc = NULL;
5035 	} else {
5036 		vfree(rx_ring->rx_buffer_info);
5037 		rx_ring->rx_buffer_info = NULL;
5038 	}
5039 
5040 	/* if not set, then don't free */
5041 	if (!rx_ring->desc)
5042 		return;
5043 
5044 	dma_free_coherent(rx_ring->dev, rx_ring->size,
5045 			  rx_ring->desc, rx_ring->dma);
5046 
5047 	rx_ring->desc = NULL;
5048 }
5049 
5050 /**
5051  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
5052  *  @adapter: board private structure
5053  *
5054  *  Free all receive software resources
5055  **/
5056 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5057 {
5058 	int i;
5059 
5060 	for (i = 0; i < adapter->num_rx_queues; i++)
5061 		if (adapter->rx_ring[i])
5062 			igb_free_rx_resources(adapter->rx_ring[i]);
5063 }
5064 
5065 /**
5066  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5067  *  @rx_ring: ring to free buffers from
5068  **/
5069 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5070 {
5071 	u16 i = rx_ring->next_to_clean;
5072 
5073 	dev_kfree_skb(rx_ring->skb);
5074 	rx_ring->skb = NULL;
5075 
5076 	if (rx_ring->xsk_pool) {
5077 		igb_clean_rx_ring_zc(rx_ring);
5078 		goto skip_for_xsk;
5079 	}
5080 
5081 	/* Free all the Rx ring sk_buffs */
5082 	while (i != rx_ring->next_to_alloc) {
5083 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5084 
5085 		/* Invalidate cache lines that may have been written to by
5086 		 * device so that we avoid corrupting memory.
5087 		 */
5088 		dma_sync_single_range_for_cpu(rx_ring->dev,
5089 					      buffer_info->dma,
5090 					      buffer_info->page_offset,
5091 					      igb_rx_bufsz(rx_ring),
5092 					      DMA_FROM_DEVICE);
5093 
5094 		/* free resources associated with mapping */
5095 		dma_unmap_page_attrs(rx_ring->dev,
5096 				     buffer_info->dma,
5097 				     igb_rx_pg_size(rx_ring),
5098 				     DMA_FROM_DEVICE,
5099 				     IGB_RX_DMA_ATTR);
5100 		__page_frag_cache_drain(buffer_info->page,
5101 					buffer_info->pagecnt_bias);
5102 
5103 		i++;
5104 		if (i == rx_ring->count)
5105 			i = 0;
5106 	}
5107 
5108 skip_for_xsk:
5109 	rx_ring->next_to_alloc = 0;
5110 	rx_ring->next_to_clean = 0;
5111 	rx_ring->next_to_use = 0;
5112 }
5113 
5114 /**
5115  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5116  *  @adapter: board private structure
5117  **/
5118 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5119 {
5120 	int i;
5121 
5122 	for (i = 0; i < adapter->num_rx_queues; i++)
5123 		if (adapter->rx_ring[i])
5124 			igb_clean_rx_ring(adapter->rx_ring[i]);
5125 }
5126 
5127 /**
5128  *  igb_set_mac - Change the Ethernet Address of the NIC
5129  *  @netdev: network interface device structure
5130  *  @p: pointer to an address structure
5131  *
5132  *  Returns 0 on success, negative on failure
5133  **/
5134 static int igb_set_mac(struct net_device *netdev, void *p)
5135 {
5136 	struct igb_adapter *adapter = netdev_priv(netdev);
5137 	struct e1000_hw *hw = &adapter->hw;
5138 	struct sockaddr *addr = p;
5139 
5140 	if (!is_valid_ether_addr(addr->sa_data))
5141 		return -EADDRNOTAVAIL;
5142 
5143 	eth_hw_addr_set(netdev, addr->sa_data);
5144 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5145 
5146 	/* set the correct pool for the new PF MAC address in entry 0 */
5147 	igb_set_default_mac_filter(adapter);
5148 
5149 	return 0;
5150 }
5151 
5152 /**
5153  *  igb_write_mc_addr_list - write multicast addresses to MTA
5154  *  @netdev: network interface device structure
5155  *
5156  *  Writes multicast address list to the MTA hash table.
5157  *  Returns: -ENOMEM on failure
5158  *           0 on no addresses written
5159  *           X on writing X addresses to MTA
5160  **/
5161 static int igb_write_mc_addr_list(struct net_device *netdev)
5162 {
5163 	struct igb_adapter *adapter = netdev_priv(netdev);
5164 	struct e1000_hw *hw = &adapter->hw;
5165 	struct netdev_hw_addr *ha;
5166 	u8  *mta_list;
5167 	int i;
5168 
5169 	if (netdev_mc_empty(netdev)) {
5170 		/* nothing to program, so clear mc list */
5171 		igb_update_mc_addr_list(hw, NULL, 0);
5172 		igb_restore_vf_multicasts(adapter);
5173 		return 0;
5174 	}
5175 
5176 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5177 	if (!mta_list)
5178 		return -ENOMEM;
5179 
5180 	/* The shared function expects a packed array of only addresses. */
5181 	i = 0;
5182 	netdev_for_each_mc_addr(ha, netdev)
5183 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5184 
5185 	igb_update_mc_addr_list(hw, mta_list, i);
5186 	kfree(mta_list);
5187 
5188 	return netdev_mc_count(netdev);
5189 }
5190 
5191 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5192 {
5193 	struct e1000_hw *hw = &adapter->hw;
5194 	u32 i, pf_id;
5195 
5196 	switch (hw->mac.type) {
5197 	case e1000_i210:
5198 	case e1000_i211:
5199 	case e1000_i350:
5200 		/* VLAN filtering needed for VLAN prio filter */
5201 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5202 			break;
5203 		fallthrough;
5204 	case e1000_82576:
5205 	case e1000_82580:
5206 	case e1000_i354:
5207 		/* VLAN filtering needed for pool filtering */
5208 		if (adapter->vfs_allocated_count)
5209 			break;
5210 		fallthrough;
5211 	default:
5212 		return 1;
5213 	}
5214 
5215 	/* We are already in VLAN promisc, nothing to do */
5216 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5217 		return 0;
5218 
5219 	if (!adapter->vfs_allocated_count)
5220 		goto set_vfta;
5221 
5222 	/* Add PF to all active pools */
5223 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5224 
5225 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5226 		u32 vlvf = rd32(E1000_VLVF(i));
5227 
5228 		vlvf |= BIT(pf_id);
5229 		wr32(E1000_VLVF(i), vlvf);
5230 	}
5231 
5232 set_vfta:
5233 	/* Set all bits in the VLAN filter table array */
5234 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5235 		hw->mac.ops.write_vfta(hw, i, ~0U);
5236 
5237 	/* Set flag so we don't redo unnecessary work */
5238 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5239 
5240 	return 0;
5241 }
5242 
5243 #define VFTA_BLOCK_SIZE 8
5244 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5245 {
5246 	struct e1000_hw *hw = &adapter->hw;
5247 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5248 	u32 vid_start = vfta_offset * 32;
5249 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5250 	u32 i, vid, word, bits, pf_id;
5251 
5252 	/* guarantee that we don't scrub out management VLAN */
5253 	vid = adapter->mng_vlan_id;
5254 	if (vid >= vid_start && vid < vid_end)
5255 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5256 
5257 	if (!adapter->vfs_allocated_count)
5258 		goto set_vfta;
5259 
5260 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5261 
5262 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5263 		u32 vlvf = rd32(E1000_VLVF(i));
5264 
5265 		/* pull VLAN ID from VLVF */
5266 		vid = vlvf & VLAN_VID_MASK;
5267 
5268 		/* only concern ourselves with a certain range */
5269 		if (vid < vid_start || vid >= vid_end)
5270 			continue;
5271 
5272 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5273 			/* record VLAN ID in VFTA */
5274 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5275 
5276 			/* if PF is part of this then continue */
5277 			if (test_bit(vid, adapter->active_vlans))
5278 				continue;
5279 		}
5280 
5281 		/* remove PF from the pool */
5282 		bits = ~BIT(pf_id);
5283 		bits &= rd32(E1000_VLVF(i));
5284 		wr32(E1000_VLVF(i), bits);
5285 	}
5286 
5287 set_vfta:
5288 	/* extract values from active_vlans and write back to VFTA */
5289 	for (i = VFTA_BLOCK_SIZE; i--;) {
5290 		vid = (vfta_offset + i) * 32;
5291 		word = vid / BITS_PER_LONG;
5292 		bits = vid % BITS_PER_LONG;
5293 
5294 		vfta[i] |= adapter->active_vlans[word] >> bits;
5295 
5296 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5297 	}
5298 }
5299 
5300 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5301 {
5302 	u32 i;
5303 
5304 	/* We are not in VLAN promisc, nothing to do */
5305 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5306 		return;
5307 
5308 	/* Set flag so we don't redo unnecessary work */
5309 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5310 
5311 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5312 		igb_scrub_vfta(adapter, i);
5313 }
5314 
5315 /**
5316  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5317  *  @netdev: network interface device structure
5318  *
5319  *  The set_rx_mode entry point is called whenever the unicast or multicast
5320  *  address lists or the network interface flags are updated.  This routine is
5321  *  responsible for configuring the hardware for proper unicast, multicast,
5322  *  promiscuous mode, and all-multi behavior.
5323  **/
5324 static void igb_set_rx_mode(struct net_device *netdev)
5325 {
5326 	struct igb_adapter *adapter = netdev_priv(netdev);
5327 	struct e1000_hw *hw = &adapter->hw;
5328 	unsigned int vfn = adapter->vfs_allocated_count;
5329 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5330 	int count;
5331 
5332 	/* Check for Promiscuous and All Multicast modes */
5333 	if (netdev->flags & IFF_PROMISC) {
5334 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5335 		vmolr |= E1000_VMOLR_MPME;
5336 
5337 		/* enable use of UTA filter to force packets to default pool */
5338 		if (hw->mac.type == e1000_82576)
5339 			vmolr |= E1000_VMOLR_ROPE;
5340 	} else {
5341 		if (netdev->flags & IFF_ALLMULTI) {
5342 			rctl |= E1000_RCTL_MPE;
5343 			vmolr |= E1000_VMOLR_MPME;
5344 		} else {
5345 			/* Write addresses to the MTA, if the attempt fails
5346 			 * then we should just turn on promiscuous mode so
5347 			 * that we can at least receive multicast traffic
5348 			 */
5349 			count = igb_write_mc_addr_list(netdev);
5350 			if (count < 0) {
5351 				rctl |= E1000_RCTL_MPE;
5352 				vmolr |= E1000_VMOLR_MPME;
5353 			} else if (count) {
5354 				vmolr |= E1000_VMOLR_ROMPE;
5355 			}
5356 		}
5357 	}
5358 
5359 	/* Write addresses to available RAR registers, if there is not
5360 	 * sufficient space to store all the addresses then enable
5361 	 * unicast promiscuous mode
5362 	 */
5363 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5364 		rctl |= E1000_RCTL_UPE;
5365 		vmolr |= E1000_VMOLR_ROPE;
5366 	}
5367 
5368 	/* enable VLAN filtering by default */
5369 	rctl |= E1000_RCTL_VFE;
5370 
5371 	/* disable VLAN filtering for modes that require it */
5372 	if ((netdev->flags & IFF_PROMISC) ||
5373 	    (netdev->features & NETIF_F_RXALL)) {
5374 		/* if we fail to set all rules then just clear VFE */
5375 		if (igb_vlan_promisc_enable(adapter))
5376 			rctl &= ~E1000_RCTL_VFE;
5377 	} else {
5378 		igb_vlan_promisc_disable(adapter);
5379 	}
5380 
5381 	/* update state of unicast, multicast, and VLAN filtering modes */
5382 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5383 				     E1000_RCTL_VFE);
5384 	wr32(E1000_RCTL, rctl);
5385 
5386 #if (PAGE_SIZE < 8192)
5387 	if (!adapter->vfs_allocated_count) {
5388 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5389 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5390 	}
5391 #endif
5392 	wr32(E1000_RLPML, rlpml);
5393 
5394 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5395 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5396 	 * we will have issues with VLAN tag stripping not being done for frames
5397 	 * that are only arriving because we are the default pool
5398 	 */
5399 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5400 		return;
5401 
5402 	/* set UTA to appropriate mode */
5403 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5404 
5405 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5406 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5407 
5408 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5409 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5410 #if (PAGE_SIZE < 8192)
5411 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5412 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5413 	else
5414 #endif
5415 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5416 	vmolr |= E1000_VMOLR_LPE;
5417 
5418 	wr32(E1000_VMOLR(vfn), vmolr);
5419 
5420 	igb_restore_vf_multicasts(adapter);
5421 }
5422 
5423 static void igb_check_wvbr(struct igb_adapter *adapter)
5424 {
5425 	struct e1000_hw *hw = &adapter->hw;
5426 	u32 wvbr = 0;
5427 
5428 	switch (hw->mac.type) {
5429 	case e1000_82576:
5430 	case e1000_i350:
5431 		wvbr = rd32(E1000_WVBR);
5432 		if (!wvbr)
5433 			return;
5434 		break;
5435 	default:
5436 		break;
5437 	}
5438 
5439 	adapter->wvbr |= wvbr;
5440 }
5441 
5442 #define IGB_STAGGERED_QUEUE_OFFSET 8
5443 
5444 static void igb_spoof_check(struct igb_adapter *adapter)
5445 {
5446 	int j;
5447 
5448 	if (!adapter->wvbr)
5449 		return;
5450 
5451 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5452 		if (adapter->wvbr & BIT(j) ||
5453 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5454 			dev_warn(&adapter->pdev->dev,
5455 				"Spoof event(s) detected on VF %d\n", j);
5456 			adapter->wvbr &=
5457 				~(BIT(j) |
5458 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5459 		}
5460 	}
5461 }
5462 
5463 /* Need to wait a few seconds after link up to get diagnostic information from
5464  * the phy
5465  */
5466 static void igb_update_phy_info(struct timer_list *t)
5467 {
5468 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5469 	igb_get_phy_info(&adapter->hw);
5470 }
5471 
5472 /**
5473  *  igb_has_link - check shared code for link and determine up/down
5474  *  @adapter: pointer to driver private info
5475  **/
5476 bool igb_has_link(struct igb_adapter *adapter)
5477 {
5478 	struct e1000_hw *hw = &adapter->hw;
5479 	bool link_active = false;
5480 
5481 	/* get_link_status is set on LSC (link status) interrupt or
5482 	 * rx sequence error interrupt.  get_link_status will stay
5483 	 * false until the e1000_check_for_link establishes link
5484 	 * for copper adapters ONLY
5485 	 */
5486 	switch (hw->phy.media_type) {
5487 	case e1000_media_type_copper:
5488 		if (!hw->mac.get_link_status)
5489 			return true;
5490 		fallthrough;
5491 	case e1000_media_type_internal_serdes:
5492 		hw->mac.ops.check_for_link(hw);
5493 		link_active = !hw->mac.get_link_status;
5494 		break;
5495 	default:
5496 	case e1000_media_type_unknown:
5497 		break;
5498 	}
5499 
5500 	if (((hw->mac.type == e1000_i210) ||
5501 	     (hw->mac.type == e1000_i211)) &&
5502 	     (hw->phy.id == I210_I_PHY_ID)) {
5503 		if (!netif_carrier_ok(adapter->netdev)) {
5504 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5505 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5506 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5507 			adapter->link_check_timeout = jiffies;
5508 		}
5509 	}
5510 
5511 	return link_active;
5512 }
5513 
5514 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5515 {
5516 	bool ret = false;
5517 	u32 ctrl_ext, thstat;
5518 
5519 	/* check for thermal sensor event on i350 copper only */
5520 	if (hw->mac.type == e1000_i350) {
5521 		thstat = rd32(E1000_THSTAT);
5522 		ctrl_ext = rd32(E1000_CTRL_EXT);
5523 
5524 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5525 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5526 			ret = !!(thstat & event);
5527 	}
5528 
5529 	return ret;
5530 }
5531 
5532 /**
5533  *  igb_check_lvmmc - check for malformed packets received
5534  *  and indicated in LVMMC register
5535  *  @adapter: pointer to adapter
5536  **/
5537 static void igb_check_lvmmc(struct igb_adapter *adapter)
5538 {
5539 	struct e1000_hw *hw = &adapter->hw;
5540 	u32 lvmmc;
5541 
5542 	lvmmc = rd32(E1000_LVMMC);
5543 	if (lvmmc) {
5544 		if (unlikely(net_ratelimit())) {
5545 			netdev_warn(adapter->netdev,
5546 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5547 				    lvmmc);
5548 		}
5549 	}
5550 }
5551 
5552 /**
5553  *  igb_watchdog - Timer Call-back
5554  *  @t: pointer to timer_list containing our private info pointer
5555  **/
5556 static void igb_watchdog(struct timer_list *t)
5557 {
5558 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5559 	/* Do the rest outside of interrupt context */
5560 	schedule_work(&adapter->watchdog_task);
5561 }
5562 
5563 static void igb_watchdog_task(struct work_struct *work)
5564 {
5565 	struct igb_adapter *adapter = container_of(work,
5566 						   struct igb_adapter,
5567 						   watchdog_task);
5568 	struct e1000_hw *hw = &adapter->hw;
5569 	struct e1000_phy_info *phy = &hw->phy;
5570 	struct net_device *netdev = adapter->netdev;
5571 	u32 link;
5572 	int i;
5573 	u32 connsw;
5574 	u16 phy_data, retry_count = 20;
5575 
5576 	link = igb_has_link(adapter);
5577 
5578 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5579 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5580 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5581 		else
5582 			link = false;
5583 	}
5584 
5585 	/* Force link down if we have fiber to swap to */
5586 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5587 		if (hw->phy.media_type == e1000_media_type_copper) {
5588 			connsw = rd32(E1000_CONNSW);
5589 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5590 				link = 0;
5591 		}
5592 	}
5593 	if (link) {
5594 		/* Perform a reset if the media type changed. */
5595 		if (hw->dev_spec._82575.media_changed) {
5596 			hw->dev_spec._82575.media_changed = false;
5597 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5598 			igb_reset(adapter);
5599 		}
5600 		/* Cancel scheduled suspend requests. */
5601 		pm_runtime_resume(netdev->dev.parent);
5602 
5603 		if (!netif_carrier_ok(netdev)) {
5604 			u32 ctrl;
5605 
5606 			hw->mac.ops.get_speed_and_duplex(hw,
5607 							 &adapter->link_speed,
5608 							 &adapter->link_duplex);
5609 
5610 			ctrl = rd32(E1000_CTRL);
5611 			/* Links status message must follow this format */
5612 			netdev_info(netdev,
5613 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5614 			       netdev->name,
5615 			       adapter->link_speed,
5616 			       adapter->link_duplex == FULL_DUPLEX ?
5617 			       "Full" : "Half",
5618 			       (ctrl & E1000_CTRL_TFCE) &&
5619 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5620 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5621 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5622 
5623 			/* disable EEE if enabled */
5624 			if ((adapter->flags & IGB_FLAG_EEE) &&
5625 				(adapter->link_duplex == HALF_DUPLEX)) {
5626 				dev_info(&adapter->pdev->dev,
5627 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5628 				adapter->hw.dev_spec._82575.eee_disable = true;
5629 				adapter->flags &= ~IGB_FLAG_EEE;
5630 			}
5631 
5632 			/* check if SmartSpeed worked */
5633 			igb_check_downshift(hw);
5634 			if (phy->speed_downgraded)
5635 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5636 
5637 			/* check for thermal sensor event */
5638 			if (igb_thermal_sensor_event(hw,
5639 			    E1000_THSTAT_LINK_THROTTLE))
5640 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5641 
5642 			/* adjust timeout factor according to speed/duplex */
5643 			adapter->tx_timeout_factor = 1;
5644 			switch (adapter->link_speed) {
5645 			case SPEED_10:
5646 				adapter->tx_timeout_factor = 14;
5647 				break;
5648 			case SPEED_100:
5649 				/* maybe add some timeout factor ? */
5650 				break;
5651 			}
5652 
5653 			if (adapter->link_speed != SPEED_1000 ||
5654 			    !hw->phy.ops.read_reg)
5655 				goto no_wait;
5656 
5657 			/* wait for Remote receiver status OK */
5658 retry_read_status:
5659 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5660 					      &phy_data)) {
5661 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5662 				    retry_count) {
5663 					msleep(100);
5664 					retry_count--;
5665 					goto retry_read_status;
5666 				} else if (!retry_count) {
5667 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5668 				}
5669 			} else {
5670 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5671 			}
5672 no_wait:
5673 			netif_carrier_on(netdev);
5674 
5675 			igb_ping_all_vfs(adapter);
5676 			igb_check_vf_rate_limit(adapter);
5677 
5678 			/* link state has changed, schedule phy info update */
5679 			if (!test_bit(__IGB_DOWN, &adapter->state))
5680 				mod_timer(&adapter->phy_info_timer,
5681 					  round_jiffies(jiffies + 2 * HZ));
5682 		}
5683 	} else {
5684 		if (netif_carrier_ok(netdev)) {
5685 			adapter->link_speed = 0;
5686 			adapter->link_duplex = 0;
5687 
5688 			/* check for thermal sensor event */
5689 			if (igb_thermal_sensor_event(hw,
5690 			    E1000_THSTAT_PWR_DOWN)) {
5691 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5692 			}
5693 
5694 			/* Links status message must follow this format */
5695 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5696 			       netdev->name);
5697 			netif_carrier_off(netdev);
5698 
5699 			igb_ping_all_vfs(adapter);
5700 
5701 			/* link state has changed, schedule phy info update */
5702 			if (!test_bit(__IGB_DOWN, &adapter->state))
5703 				mod_timer(&adapter->phy_info_timer,
5704 					  round_jiffies(jiffies + 2 * HZ));
5705 
5706 			/* link is down, time to check for alternate media */
5707 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5708 				igb_check_swap_media(adapter);
5709 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5710 					schedule_work(&adapter->reset_task);
5711 					/* return immediately */
5712 					return;
5713 				}
5714 			}
5715 			pm_schedule_suspend(netdev->dev.parent,
5716 					    MSEC_PER_SEC * 5);
5717 
5718 		/* also check for alternate media here */
5719 		} else if (!netif_carrier_ok(netdev) &&
5720 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5721 			igb_check_swap_media(adapter);
5722 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5723 				schedule_work(&adapter->reset_task);
5724 				/* return immediately */
5725 				return;
5726 			}
5727 		}
5728 	}
5729 
5730 	spin_lock(&adapter->stats64_lock);
5731 	igb_update_stats(adapter);
5732 	spin_unlock(&adapter->stats64_lock);
5733 
5734 	for (i = 0; i < adapter->num_tx_queues; i++) {
5735 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5736 		if (!netif_carrier_ok(netdev)) {
5737 			/* We've lost link, so the controller stops DMA,
5738 			 * but we've got queued Tx work that's never going
5739 			 * to get done, so reset controller to flush Tx.
5740 			 * (Do the reset outside of interrupt context).
5741 			 */
5742 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5743 				adapter->tx_timeout_count++;
5744 				schedule_work(&adapter->reset_task);
5745 				/* return immediately since reset is imminent */
5746 				return;
5747 			}
5748 		}
5749 
5750 		/* Force detection of hung controller every watchdog period */
5751 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5752 	}
5753 
5754 	/* Cause software interrupt to ensure Rx ring is cleaned */
5755 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5756 		u32 eics = 0;
5757 
5758 		for (i = 0; i < adapter->num_q_vectors; i++) {
5759 			struct igb_q_vector *q_vector = adapter->q_vector[i];
5760 			struct igb_ring *rx_ring;
5761 
5762 			if (!q_vector->rx.ring)
5763 				continue;
5764 
5765 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5766 
5767 			if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5768 				eics |= q_vector->eims_value;
5769 				clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5770 			}
5771 		}
5772 		if (eics)
5773 			wr32(E1000_EICS, eics);
5774 	} else {
5775 		struct igb_ring *rx_ring = adapter->rx_ring[0];
5776 
5777 		if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5778 			clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5779 			wr32(E1000_ICS, E1000_ICS_RXDMT0);
5780 		}
5781 	}
5782 
5783 	igb_spoof_check(adapter);
5784 	igb_ptp_rx_hang(adapter);
5785 	igb_ptp_tx_hang(adapter);
5786 
5787 	/* Check LVMMC register on i350/i354 only */
5788 	if ((adapter->hw.mac.type == e1000_i350) ||
5789 	    (adapter->hw.mac.type == e1000_i354))
5790 		igb_check_lvmmc(adapter);
5791 
5792 	/* Reset the timer */
5793 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5794 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5795 			mod_timer(&adapter->watchdog_timer,
5796 				  round_jiffies(jiffies +  HZ));
5797 		else
5798 			mod_timer(&adapter->watchdog_timer,
5799 				  round_jiffies(jiffies + 2 * HZ));
5800 	}
5801 }
5802 
5803 enum latency_range {
5804 	lowest_latency = 0,
5805 	low_latency = 1,
5806 	bulk_latency = 2,
5807 	latency_invalid = 255
5808 };
5809 
5810 /**
5811  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5812  *  @q_vector: pointer to q_vector
5813  *
5814  *  Stores a new ITR value based on strictly on packet size.  This
5815  *  algorithm is less sophisticated than that used in igb_update_itr,
5816  *  due to the difficulty of synchronizing statistics across multiple
5817  *  receive rings.  The divisors and thresholds used by this function
5818  *  were determined based on theoretical maximum wire speed and testing
5819  *  data, in order to minimize response time while increasing bulk
5820  *  throughput.
5821  *  This functionality is controlled by ethtool's coalescing settings.
5822  *  NOTE:  This function is called only when operating in a multiqueue
5823  *         receive environment.
5824  **/
5825 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5826 {
5827 	int new_val = q_vector->itr_val;
5828 	int avg_wire_size = 0;
5829 	struct igb_adapter *adapter = q_vector->adapter;
5830 	unsigned int packets;
5831 
5832 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5833 	 * ints/sec - ITR timer value of 120 ticks.
5834 	 */
5835 	if (adapter->link_speed != SPEED_1000) {
5836 		new_val = IGB_4K_ITR;
5837 		goto set_itr_val;
5838 	}
5839 
5840 	packets = q_vector->rx.total_packets;
5841 	if (packets)
5842 		avg_wire_size = q_vector->rx.total_bytes / packets;
5843 
5844 	packets = q_vector->tx.total_packets;
5845 	if (packets)
5846 		avg_wire_size = max_t(u32, avg_wire_size,
5847 				      q_vector->tx.total_bytes / packets);
5848 
5849 	/* if avg_wire_size isn't set no work was done */
5850 	if (!avg_wire_size)
5851 		goto clear_counts;
5852 
5853 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5854 	avg_wire_size += 24;
5855 
5856 	/* Don't starve jumbo frames */
5857 	avg_wire_size = min(avg_wire_size, 3000);
5858 
5859 	/* Give a little boost to mid-size frames */
5860 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5861 		new_val = avg_wire_size / 3;
5862 	else
5863 		new_val = avg_wire_size / 2;
5864 
5865 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5866 	if (new_val < IGB_20K_ITR &&
5867 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5868 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5869 		new_val = IGB_20K_ITR;
5870 
5871 set_itr_val:
5872 	if (new_val != q_vector->itr_val) {
5873 		q_vector->itr_val = new_val;
5874 		q_vector->set_itr = 1;
5875 	}
5876 clear_counts:
5877 	q_vector->rx.total_bytes = 0;
5878 	q_vector->rx.total_packets = 0;
5879 	q_vector->tx.total_bytes = 0;
5880 	q_vector->tx.total_packets = 0;
5881 }
5882 
5883 /**
5884  *  igb_update_itr - update the dynamic ITR value based on statistics
5885  *  @q_vector: pointer to q_vector
5886  *  @ring_container: ring info to update the itr for
5887  *
5888  *  Stores a new ITR value based on packets and byte
5889  *  counts during the last interrupt.  The advantage of per interrupt
5890  *  computation is faster updates and more accurate ITR for the current
5891  *  traffic pattern.  Constants in this function were computed
5892  *  based on theoretical maximum wire speed and thresholds were set based
5893  *  on testing data as well as attempting to minimize response time
5894  *  while increasing bulk throughput.
5895  *  This functionality is controlled by ethtool's coalescing settings.
5896  *  NOTE:  These calculations are only valid when operating in a single-
5897  *         queue environment.
5898  **/
5899 static void igb_update_itr(struct igb_q_vector *q_vector,
5900 			   struct igb_ring_container *ring_container)
5901 {
5902 	unsigned int packets = ring_container->total_packets;
5903 	unsigned int bytes = ring_container->total_bytes;
5904 	u8 itrval = ring_container->itr;
5905 
5906 	/* no packets, exit with status unchanged */
5907 	if (packets == 0)
5908 		return;
5909 
5910 	switch (itrval) {
5911 	case lowest_latency:
5912 		/* handle TSO and jumbo frames */
5913 		if (bytes/packets > 8000)
5914 			itrval = bulk_latency;
5915 		else if ((packets < 5) && (bytes > 512))
5916 			itrval = low_latency;
5917 		break;
5918 	case low_latency:  /* 50 usec aka 20000 ints/s */
5919 		if (bytes > 10000) {
5920 			/* this if handles the TSO accounting */
5921 			if (bytes/packets > 8000)
5922 				itrval = bulk_latency;
5923 			else if ((packets < 10) || ((bytes/packets) > 1200))
5924 				itrval = bulk_latency;
5925 			else if ((packets > 35))
5926 				itrval = lowest_latency;
5927 		} else if (bytes/packets > 2000) {
5928 			itrval = bulk_latency;
5929 		} else if (packets <= 2 && bytes < 512) {
5930 			itrval = lowest_latency;
5931 		}
5932 		break;
5933 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5934 		if (bytes > 25000) {
5935 			if (packets > 35)
5936 				itrval = low_latency;
5937 		} else if (bytes < 1500) {
5938 			itrval = low_latency;
5939 		}
5940 		break;
5941 	}
5942 
5943 	/* clear work counters since we have the values we need */
5944 	ring_container->total_bytes = 0;
5945 	ring_container->total_packets = 0;
5946 
5947 	/* write updated itr to ring container */
5948 	ring_container->itr = itrval;
5949 }
5950 
5951 static void igb_set_itr(struct igb_q_vector *q_vector)
5952 {
5953 	struct igb_adapter *adapter = q_vector->adapter;
5954 	u32 new_itr = q_vector->itr_val;
5955 	u8 current_itr = 0;
5956 
5957 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5958 	if (adapter->link_speed != SPEED_1000) {
5959 		current_itr = 0;
5960 		new_itr = IGB_4K_ITR;
5961 		goto set_itr_now;
5962 	}
5963 
5964 	igb_update_itr(q_vector, &q_vector->tx);
5965 	igb_update_itr(q_vector, &q_vector->rx);
5966 
5967 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5968 
5969 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5970 	if (current_itr == lowest_latency &&
5971 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5972 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5973 		current_itr = low_latency;
5974 
5975 	switch (current_itr) {
5976 	/* counts and packets in update_itr are dependent on these numbers */
5977 	case lowest_latency:
5978 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5979 		break;
5980 	case low_latency:
5981 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5982 		break;
5983 	case bulk_latency:
5984 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5985 		break;
5986 	default:
5987 		break;
5988 	}
5989 
5990 set_itr_now:
5991 	if (new_itr != q_vector->itr_val) {
5992 		/* this attempts to bias the interrupt rate towards Bulk
5993 		 * by adding intermediate steps when interrupt rate is
5994 		 * increasing
5995 		 */
5996 		new_itr = new_itr > q_vector->itr_val ?
5997 			  max((new_itr * q_vector->itr_val) /
5998 			  (new_itr + (q_vector->itr_val >> 2)),
5999 			  new_itr) : new_itr;
6000 		/* Don't write the value here; it resets the adapter's
6001 		 * internal timer, and causes us to delay far longer than
6002 		 * we should between interrupts.  Instead, we write the ITR
6003 		 * value at the beginning of the next interrupt so the timing
6004 		 * ends up being correct.
6005 		 */
6006 		q_vector->itr_val = new_itr;
6007 		q_vector->set_itr = 1;
6008 	}
6009 }
6010 
6011 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
6012 			    struct igb_tx_buffer *first,
6013 			    u32 vlan_macip_lens, u32 type_tucmd,
6014 			    u32 mss_l4len_idx)
6015 {
6016 	struct e1000_adv_tx_context_desc *context_desc;
6017 	u16 i = tx_ring->next_to_use;
6018 	struct timespec64 ts;
6019 
6020 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
6021 
6022 	i++;
6023 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
6024 
6025 	/* set bits to identify this as an advanced context descriptor */
6026 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
6027 
6028 	/* For 82575, context index must be unique per ring. */
6029 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6030 		mss_l4len_idx |= tx_ring->reg_idx << 4;
6031 
6032 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
6033 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
6034 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
6035 
6036 	/* We assume there is always a valid tx time available. Invalid times
6037 	 * should have been handled by the upper layers.
6038 	 */
6039 	if (tx_ring->launchtime_enable) {
6040 		ts = ktime_to_timespec64(first->skb->tstamp);
6041 		skb_txtime_consumed(first->skb);
6042 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
6043 	} else {
6044 		context_desc->seqnum_seed = 0;
6045 	}
6046 }
6047 
6048 static int igb_tso(struct igb_ring *tx_ring,
6049 		   struct igb_tx_buffer *first,
6050 		   u8 *hdr_len)
6051 {
6052 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6053 	struct sk_buff *skb = first->skb;
6054 	union {
6055 		struct iphdr *v4;
6056 		struct ipv6hdr *v6;
6057 		unsigned char *hdr;
6058 	} ip;
6059 	union {
6060 		struct tcphdr *tcp;
6061 		struct udphdr *udp;
6062 		unsigned char *hdr;
6063 	} l4;
6064 	u32 paylen, l4_offset;
6065 	int err;
6066 
6067 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6068 		return 0;
6069 
6070 	if (!skb_is_gso(skb))
6071 		return 0;
6072 
6073 	err = skb_cow_head(skb, 0);
6074 	if (err < 0)
6075 		return err;
6076 
6077 	ip.hdr = skb_network_header(skb);
6078 	l4.hdr = skb_checksum_start(skb);
6079 
6080 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6081 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6082 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6083 
6084 	/* initialize outer IP header fields */
6085 	if (ip.v4->version == 4) {
6086 		unsigned char *csum_start = skb_checksum_start(skb);
6087 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6088 
6089 		/* IP header will have to cancel out any data that
6090 		 * is not a part of the outer IP header
6091 		 */
6092 		ip.v4->check = csum_fold(csum_partial(trans_start,
6093 						      csum_start - trans_start,
6094 						      0));
6095 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6096 
6097 		ip.v4->tot_len = 0;
6098 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6099 				   IGB_TX_FLAGS_CSUM |
6100 				   IGB_TX_FLAGS_IPV4;
6101 	} else {
6102 		ip.v6->payload_len = 0;
6103 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6104 				   IGB_TX_FLAGS_CSUM;
6105 	}
6106 
6107 	/* determine offset of inner transport header */
6108 	l4_offset = l4.hdr - skb->data;
6109 
6110 	/* remove payload length from inner checksum */
6111 	paylen = skb->len - l4_offset;
6112 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6113 		/* compute length of segmentation header */
6114 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6115 		csum_replace_by_diff(&l4.tcp->check,
6116 			(__force __wsum)htonl(paylen));
6117 	} else {
6118 		/* compute length of segmentation header */
6119 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6120 		csum_replace_by_diff(&l4.udp->check,
6121 				     (__force __wsum)htonl(paylen));
6122 	}
6123 
6124 	/* update gso size and bytecount with header size */
6125 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6126 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6127 
6128 	/* MSS L4LEN IDX */
6129 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6130 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6131 
6132 	/* VLAN MACLEN IPLEN */
6133 	vlan_macip_lens = l4.hdr - ip.hdr;
6134 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6135 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6136 
6137 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6138 			type_tucmd, mss_l4len_idx);
6139 
6140 	return 1;
6141 }
6142 
6143 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6144 {
6145 	struct sk_buff *skb = first->skb;
6146 	u32 vlan_macip_lens = 0;
6147 	u32 type_tucmd = 0;
6148 
6149 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6150 csum_failed:
6151 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6152 		    !tx_ring->launchtime_enable)
6153 			return;
6154 		goto no_csum;
6155 	}
6156 
6157 	switch (skb->csum_offset) {
6158 	case offsetof(struct tcphdr, check):
6159 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6160 		fallthrough;
6161 	case offsetof(struct udphdr, check):
6162 		break;
6163 	case offsetof(struct sctphdr, checksum):
6164 		/* validate that this is actually an SCTP request */
6165 		if (skb_csum_is_sctp(skb)) {
6166 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6167 			break;
6168 		}
6169 		fallthrough;
6170 	default:
6171 		skb_checksum_help(skb);
6172 		goto csum_failed;
6173 	}
6174 
6175 	/* update TX checksum flag */
6176 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6177 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6178 			  skb_network_offset(skb);
6179 no_csum:
6180 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6181 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6182 
6183 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6184 }
6185 
6186 #define IGB_SET_FLAG(_input, _flag, _result) \
6187 	((_flag <= _result) ? \
6188 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6189 	 ((u32)(_input & _flag) / (_flag / _result)))
6190 
6191 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6192 {
6193 	/* set type for advanced descriptor with frame checksum insertion */
6194 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6195 		       E1000_ADVTXD_DCMD_DEXT |
6196 		       E1000_ADVTXD_DCMD_IFCS;
6197 
6198 	/* set HW vlan bit if vlan is present */
6199 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6200 				 (E1000_ADVTXD_DCMD_VLE));
6201 
6202 	/* set segmentation bits for TSO */
6203 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6204 				 (E1000_ADVTXD_DCMD_TSE));
6205 
6206 	/* set timestamp bit if present */
6207 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6208 				 (E1000_ADVTXD_MAC_TSTAMP));
6209 
6210 	/* insert frame checksum */
6211 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6212 
6213 	return cmd_type;
6214 }
6215 
6216 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6217 				 union e1000_adv_tx_desc *tx_desc,
6218 				 u32 tx_flags, unsigned int paylen)
6219 {
6220 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6221 
6222 	/* 82575 requires a unique index per ring */
6223 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6224 		olinfo_status |= tx_ring->reg_idx << 4;
6225 
6226 	/* insert L4 checksum */
6227 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6228 				      IGB_TX_FLAGS_CSUM,
6229 				      (E1000_TXD_POPTS_TXSM << 8));
6230 
6231 	/* insert IPv4 checksum */
6232 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6233 				      IGB_TX_FLAGS_IPV4,
6234 				      (E1000_TXD_POPTS_IXSM << 8));
6235 
6236 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6237 }
6238 
6239 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6240 {
6241 	struct net_device *netdev = tx_ring->netdev;
6242 
6243 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6244 
6245 	/* Herbert's original patch had:
6246 	 *  smp_mb__after_netif_stop_queue();
6247 	 * but since that doesn't exist yet, just open code it.
6248 	 */
6249 	smp_mb();
6250 
6251 	/* We need to check again in a case another CPU has just
6252 	 * made room available.
6253 	 */
6254 	if (igb_desc_unused(tx_ring) < size)
6255 		return -EBUSY;
6256 
6257 	/* A reprieve! */
6258 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6259 
6260 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6261 	tx_ring->tx_stats.restart_queue2++;
6262 	u64_stats_update_end(&tx_ring->tx_syncp2);
6263 
6264 	return 0;
6265 }
6266 
6267 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6268 {
6269 	if (igb_desc_unused(tx_ring) >= size)
6270 		return 0;
6271 	return __igb_maybe_stop_tx(tx_ring, size);
6272 }
6273 
6274 static int igb_tx_map(struct igb_ring *tx_ring,
6275 		      struct igb_tx_buffer *first,
6276 		      const u8 hdr_len)
6277 {
6278 	struct sk_buff *skb = first->skb;
6279 	struct igb_tx_buffer *tx_buffer;
6280 	union e1000_adv_tx_desc *tx_desc;
6281 	skb_frag_t *frag;
6282 	dma_addr_t dma;
6283 	unsigned int data_len, size;
6284 	u32 tx_flags = first->tx_flags;
6285 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6286 	u16 i = tx_ring->next_to_use;
6287 
6288 	tx_desc = IGB_TX_DESC(tx_ring, i);
6289 
6290 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6291 
6292 	size = skb_headlen(skb);
6293 	data_len = skb->data_len;
6294 
6295 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6296 
6297 	tx_buffer = first;
6298 
6299 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6300 		if (dma_mapping_error(tx_ring->dev, dma))
6301 			goto dma_error;
6302 
6303 		/* record length, and DMA address */
6304 		dma_unmap_len_set(tx_buffer, len, size);
6305 		dma_unmap_addr_set(tx_buffer, dma, dma);
6306 
6307 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6308 
6309 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6310 			tx_desc->read.cmd_type_len =
6311 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6312 
6313 			i++;
6314 			tx_desc++;
6315 			if (i == tx_ring->count) {
6316 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6317 				i = 0;
6318 			}
6319 			tx_desc->read.olinfo_status = 0;
6320 
6321 			dma += IGB_MAX_DATA_PER_TXD;
6322 			size -= IGB_MAX_DATA_PER_TXD;
6323 
6324 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6325 		}
6326 
6327 		if (likely(!data_len))
6328 			break;
6329 
6330 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6331 
6332 		i++;
6333 		tx_desc++;
6334 		if (i == tx_ring->count) {
6335 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6336 			i = 0;
6337 		}
6338 		tx_desc->read.olinfo_status = 0;
6339 
6340 		size = skb_frag_size(frag);
6341 		data_len -= size;
6342 
6343 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6344 				       size, DMA_TO_DEVICE);
6345 
6346 		tx_buffer = &tx_ring->tx_buffer_info[i];
6347 	}
6348 
6349 	/* write last descriptor with RS and EOP bits */
6350 	cmd_type |= size | IGB_TXD_DCMD;
6351 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6352 
6353 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6354 
6355 	/* set the timestamp */
6356 	first->time_stamp = jiffies;
6357 
6358 	skb_tx_timestamp(skb);
6359 
6360 	/* Force memory writes to complete before letting h/w know there
6361 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6362 	 * memory model archs, such as IA-64).
6363 	 *
6364 	 * We also need this memory barrier to make certain all of the
6365 	 * status bits have been updated before next_to_watch is written.
6366 	 */
6367 	dma_wmb();
6368 
6369 	/* set next_to_watch value indicating a packet is present */
6370 	first->next_to_watch = tx_desc;
6371 
6372 	i++;
6373 	if (i == tx_ring->count)
6374 		i = 0;
6375 
6376 	tx_ring->next_to_use = i;
6377 
6378 	/* Make sure there is space in the ring for the next send. */
6379 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6380 
6381 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6382 		writel(i, tx_ring->tail);
6383 	}
6384 	return 0;
6385 
6386 dma_error:
6387 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6388 	tx_buffer = &tx_ring->tx_buffer_info[i];
6389 
6390 	/* clear dma mappings for failed tx_buffer_info map */
6391 	while (tx_buffer != first) {
6392 		if (dma_unmap_len(tx_buffer, len))
6393 			dma_unmap_page(tx_ring->dev,
6394 				       dma_unmap_addr(tx_buffer, dma),
6395 				       dma_unmap_len(tx_buffer, len),
6396 				       DMA_TO_DEVICE);
6397 		dma_unmap_len_set(tx_buffer, len, 0);
6398 
6399 		if (i-- == 0)
6400 			i += tx_ring->count;
6401 		tx_buffer = &tx_ring->tx_buffer_info[i];
6402 	}
6403 
6404 	if (dma_unmap_len(tx_buffer, len))
6405 		dma_unmap_single(tx_ring->dev,
6406 				 dma_unmap_addr(tx_buffer, dma),
6407 				 dma_unmap_len(tx_buffer, len),
6408 				 DMA_TO_DEVICE);
6409 	dma_unmap_len_set(tx_buffer, len, 0);
6410 
6411 	dev_kfree_skb_any(tx_buffer->skb);
6412 	tx_buffer->skb = NULL;
6413 
6414 	tx_ring->next_to_use = i;
6415 
6416 	return -1;
6417 }
6418 
6419 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6420 		      struct igb_ring *tx_ring,
6421 		      struct xdp_frame *xdpf)
6422 {
6423 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6424 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6425 	u16 count, i, index = tx_ring->next_to_use;
6426 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6427 	struct igb_tx_buffer *tx_buffer = tx_head;
6428 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6429 	u32 len = xdpf->len, cmd_type, olinfo_status;
6430 	void *data = xdpf->data;
6431 
6432 	count = TXD_USE_COUNT(len);
6433 	for (i = 0; i < nr_frags; i++)
6434 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6435 
6436 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6437 		return IGB_XDP_CONSUMED;
6438 
6439 	i = 0;
6440 	/* record the location of the first descriptor for this packet */
6441 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6442 	tx_head->type = IGB_TYPE_XDP;
6443 	tx_head->gso_segs = 1;
6444 	tx_head->xdpf = xdpf;
6445 
6446 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6447 	/* 82575 requires a unique index per ring */
6448 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6449 		olinfo_status |= tx_ring->reg_idx << 4;
6450 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6451 
6452 	for (;;) {
6453 		dma_addr_t dma;
6454 
6455 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6456 		if (dma_mapping_error(tx_ring->dev, dma))
6457 			goto unmap;
6458 
6459 		/* record length, and DMA address */
6460 		dma_unmap_len_set(tx_buffer, len, len);
6461 		dma_unmap_addr_set(tx_buffer, dma, dma);
6462 
6463 		/* put descriptor type bits */
6464 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6465 			   E1000_ADVTXD_DCMD_IFCS | len;
6466 
6467 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6468 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6469 
6470 		tx_buffer->protocol = 0;
6471 
6472 		if (++index == tx_ring->count)
6473 			index = 0;
6474 
6475 		if (i == nr_frags)
6476 			break;
6477 
6478 		tx_buffer = &tx_ring->tx_buffer_info[index];
6479 		tx_desc = IGB_TX_DESC(tx_ring, index);
6480 		tx_desc->read.olinfo_status = 0;
6481 
6482 		data = skb_frag_address(&sinfo->frags[i]);
6483 		len = skb_frag_size(&sinfo->frags[i]);
6484 		i++;
6485 	}
6486 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6487 
6488 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6489 	/* set the timestamp */
6490 	tx_head->time_stamp = jiffies;
6491 
6492 	/* Avoid any potential race with xdp_xmit and cleanup */
6493 	smp_wmb();
6494 
6495 	/* set next_to_watch value indicating a packet is present */
6496 	tx_head->next_to_watch = tx_desc;
6497 	tx_ring->next_to_use = index;
6498 
6499 	/* Make sure there is space in the ring for the next send. */
6500 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6501 
6502 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6503 		writel(index, tx_ring->tail);
6504 
6505 	return IGB_XDP_TX;
6506 
6507 unmap:
6508 	for (;;) {
6509 		tx_buffer = &tx_ring->tx_buffer_info[index];
6510 		if (dma_unmap_len(tx_buffer, len))
6511 			dma_unmap_page(tx_ring->dev,
6512 				       dma_unmap_addr(tx_buffer, dma),
6513 				       dma_unmap_len(tx_buffer, len),
6514 				       DMA_TO_DEVICE);
6515 		dma_unmap_len_set(tx_buffer, len, 0);
6516 		if (tx_buffer == tx_head)
6517 			break;
6518 
6519 		if (!index)
6520 			index += tx_ring->count;
6521 		index--;
6522 	}
6523 
6524 	return IGB_XDP_CONSUMED;
6525 }
6526 
6527 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6528 				struct igb_ring *tx_ring)
6529 {
6530 	struct igb_tx_buffer *first;
6531 	int tso;
6532 	u32 tx_flags = 0;
6533 	unsigned short f;
6534 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6535 	__be16 protocol = vlan_get_protocol(skb);
6536 	u8 hdr_len = 0;
6537 
6538 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6539 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6540 	 *       + 2 desc gap to keep tail from touching head,
6541 	 *       + 1 desc for context descriptor,
6542 	 * otherwise try next time
6543 	 */
6544 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6545 		count += TXD_USE_COUNT(skb_frag_size(
6546 						&skb_shinfo(skb)->frags[f]));
6547 
6548 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6549 		/* this is a hard error */
6550 		return NETDEV_TX_BUSY;
6551 	}
6552 
6553 	if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6554 		return NETDEV_TX_BUSY;
6555 
6556 	/* record the location of the first descriptor for this packet */
6557 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6558 	first->type = IGB_TYPE_SKB;
6559 	first->skb = skb;
6560 	first->bytecount = skb->len;
6561 	first->gso_segs = 1;
6562 
6563 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6564 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6565 
6566 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6567 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6568 					   &adapter->state)) {
6569 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6570 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6571 
6572 			adapter->ptp_tx_skb = skb_get(skb);
6573 			adapter->ptp_tx_start = jiffies;
6574 			if (adapter->hw.mac.type == e1000_82576)
6575 				schedule_work(&adapter->ptp_tx_work);
6576 		} else {
6577 			adapter->tx_hwtstamp_skipped++;
6578 		}
6579 	}
6580 
6581 	if (skb_vlan_tag_present(skb)) {
6582 		tx_flags |= IGB_TX_FLAGS_VLAN;
6583 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6584 	}
6585 
6586 	/* record initial flags and protocol */
6587 	first->tx_flags = tx_flags;
6588 	first->protocol = protocol;
6589 
6590 	tso = igb_tso(tx_ring, first, &hdr_len);
6591 	if (tso < 0)
6592 		goto out_drop;
6593 	else if (!tso)
6594 		igb_tx_csum(tx_ring, first);
6595 
6596 	if (igb_tx_map(tx_ring, first, hdr_len))
6597 		goto cleanup_tx_tstamp;
6598 
6599 	return NETDEV_TX_OK;
6600 
6601 out_drop:
6602 	dev_kfree_skb_any(first->skb);
6603 	first->skb = NULL;
6604 cleanup_tx_tstamp:
6605 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6606 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6607 
6608 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6609 		adapter->ptp_tx_skb = NULL;
6610 		if (adapter->hw.mac.type == e1000_82576)
6611 			cancel_work_sync(&adapter->ptp_tx_work);
6612 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6613 	}
6614 
6615 	return NETDEV_TX_OK;
6616 }
6617 
6618 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6619 						    struct sk_buff *skb)
6620 {
6621 	unsigned int r_idx = skb->queue_mapping;
6622 
6623 	if (r_idx >= adapter->num_tx_queues)
6624 		r_idx = r_idx % adapter->num_tx_queues;
6625 
6626 	return adapter->tx_ring[r_idx];
6627 }
6628 
6629 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6630 				  struct net_device *netdev)
6631 {
6632 	struct igb_adapter *adapter = netdev_priv(netdev);
6633 
6634 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6635 	 * in order to meet this minimum size requirement.
6636 	 */
6637 	if (skb_put_padto(skb, 17))
6638 		return NETDEV_TX_OK;
6639 
6640 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6641 }
6642 
6643 /**
6644  *  igb_tx_timeout - Respond to a Tx Hang
6645  *  @netdev: network interface device structure
6646  *  @txqueue: number of the Tx queue that hung (unused)
6647  **/
6648 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6649 {
6650 	struct igb_adapter *adapter = netdev_priv(netdev);
6651 	struct e1000_hw *hw = &adapter->hw;
6652 
6653 	/* Do the reset outside of interrupt context */
6654 	adapter->tx_timeout_count++;
6655 
6656 	if (hw->mac.type >= e1000_82580)
6657 		hw->dev_spec._82575.global_device_reset = true;
6658 
6659 	schedule_work(&adapter->reset_task);
6660 	wr32(E1000_EICS,
6661 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6662 }
6663 
6664 static void igb_reset_task(struct work_struct *work)
6665 {
6666 	struct igb_adapter *adapter;
6667 	adapter = container_of(work, struct igb_adapter, reset_task);
6668 
6669 	rtnl_lock();
6670 	/* If we're already down or resetting, just bail */
6671 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6672 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6673 		rtnl_unlock();
6674 		return;
6675 	}
6676 
6677 	igb_dump(adapter);
6678 	netdev_err(adapter->netdev, "Reset adapter\n");
6679 	igb_reinit_locked(adapter);
6680 	rtnl_unlock();
6681 }
6682 
6683 /**
6684  *  igb_get_stats64 - Get System Network Statistics
6685  *  @netdev: network interface device structure
6686  *  @stats: rtnl_link_stats64 pointer
6687  **/
6688 static void igb_get_stats64(struct net_device *netdev,
6689 			    struct rtnl_link_stats64 *stats)
6690 {
6691 	struct igb_adapter *adapter = netdev_priv(netdev);
6692 
6693 	spin_lock(&adapter->stats64_lock);
6694 	igb_update_stats(adapter);
6695 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6696 	spin_unlock(&adapter->stats64_lock);
6697 }
6698 
6699 /**
6700  *  igb_change_mtu - Change the Maximum Transfer Unit
6701  *  @netdev: network interface device structure
6702  *  @new_mtu: new value for maximum frame size
6703  *
6704  *  Returns 0 on success, negative on failure
6705  **/
6706 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6707 {
6708 	struct igb_adapter *adapter = netdev_priv(netdev);
6709 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6710 
6711 	if (igb_xdp_is_enabled(adapter)) {
6712 		int i;
6713 
6714 		for (i = 0; i < adapter->num_rx_queues; i++) {
6715 			struct igb_ring *ring = adapter->rx_ring[i];
6716 
6717 			if (max_frame > igb_rx_bufsz(ring)) {
6718 				netdev_warn(adapter->netdev,
6719 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6720 					    max_frame);
6721 				return -EINVAL;
6722 			}
6723 		}
6724 	}
6725 
6726 	/* adjust max frame to be at least the size of a standard frame */
6727 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6728 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6729 
6730 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6731 		usleep_range(1000, 2000);
6732 
6733 	/* igb_down has a dependency on max_frame_size */
6734 	adapter->max_frame_size = max_frame;
6735 
6736 	if (netif_running(netdev))
6737 		igb_down(adapter);
6738 
6739 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6740 		   netdev->mtu, new_mtu);
6741 	WRITE_ONCE(netdev->mtu, new_mtu);
6742 
6743 	if (netif_running(netdev))
6744 		igb_up(adapter);
6745 	else
6746 		igb_reset(adapter);
6747 
6748 	clear_bit(__IGB_RESETTING, &adapter->state);
6749 
6750 	return 0;
6751 }
6752 
6753 /**
6754  *  igb_update_stats - Update the board statistics counters
6755  *  @adapter: board private structure
6756  **/
6757 void igb_update_stats(struct igb_adapter *adapter)
6758 {
6759 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6760 	struct e1000_hw *hw = &adapter->hw;
6761 	struct pci_dev *pdev = adapter->pdev;
6762 	u32 reg, mpc;
6763 	int i;
6764 	u64 bytes, packets;
6765 	unsigned int start;
6766 	u64 _bytes, _packets;
6767 
6768 	/* Prevent stats update while adapter is being reset, or if the pci
6769 	 * connection is down.
6770 	 */
6771 	if (adapter->link_speed == 0)
6772 		return;
6773 	if (pci_channel_offline(pdev))
6774 		return;
6775 
6776 	bytes = 0;
6777 	packets = 0;
6778 
6779 	rcu_read_lock();
6780 	for (i = 0; i < adapter->num_rx_queues; i++) {
6781 		struct igb_ring *ring = adapter->rx_ring[i];
6782 		u32 rqdpc = rd32(E1000_RQDPC(i));
6783 		if (hw->mac.type >= e1000_i210)
6784 			wr32(E1000_RQDPC(i), 0);
6785 
6786 		if (rqdpc) {
6787 			ring->rx_stats.drops += rqdpc;
6788 			net_stats->rx_fifo_errors += rqdpc;
6789 		}
6790 
6791 		do {
6792 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6793 			_bytes = ring->rx_stats.bytes;
6794 			_packets = ring->rx_stats.packets;
6795 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6796 		bytes += _bytes;
6797 		packets += _packets;
6798 	}
6799 
6800 	net_stats->rx_bytes = bytes;
6801 	net_stats->rx_packets = packets;
6802 
6803 	bytes = 0;
6804 	packets = 0;
6805 	for (i = 0; i < adapter->num_tx_queues; i++) {
6806 		struct igb_ring *ring = adapter->tx_ring[i];
6807 		do {
6808 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6809 			_bytes = ring->tx_stats.bytes;
6810 			_packets = ring->tx_stats.packets;
6811 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6812 		bytes += _bytes;
6813 		packets += _packets;
6814 	}
6815 	net_stats->tx_bytes = bytes;
6816 	net_stats->tx_packets = packets;
6817 	rcu_read_unlock();
6818 
6819 	/* read stats registers */
6820 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6821 	adapter->stats.gprc += rd32(E1000_GPRC);
6822 	adapter->stats.gorc += rd32(E1000_GORCL);
6823 	rd32(E1000_GORCH); /* clear GORCL */
6824 	adapter->stats.bprc += rd32(E1000_BPRC);
6825 	adapter->stats.mprc += rd32(E1000_MPRC);
6826 	adapter->stats.roc += rd32(E1000_ROC);
6827 
6828 	adapter->stats.prc64 += rd32(E1000_PRC64);
6829 	adapter->stats.prc127 += rd32(E1000_PRC127);
6830 	adapter->stats.prc255 += rd32(E1000_PRC255);
6831 	adapter->stats.prc511 += rd32(E1000_PRC511);
6832 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6833 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6834 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6835 	adapter->stats.sec += rd32(E1000_SEC);
6836 
6837 	mpc = rd32(E1000_MPC);
6838 	adapter->stats.mpc += mpc;
6839 	net_stats->rx_fifo_errors += mpc;
6840 	adapter->stats.scc += rd32(E1000_SCC);
6841 	adapter->stats.ecol += rd32(E1000_ECOL);
6842 	adapter->stats.mcc += rd32(E1000_MCC);
6843 	adapter->stats.latecol += rd32(E1000_LATECOL);
6844 	adapter->stats.dc += rd32(E1000_DC);
6845 	adapter->stats.rlec += rd32(E1000_RLEC);
6846 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6847 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6848 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6849 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6850 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6851 	adapter->stats.gptc += rd32(E1000_GPTC);
6852 	adapter->stats.gotc += rd32(E1000_GOTCL);
6853 	rd32(E1000_GOTCH); /* clear GOTCL */
6854 	adapter->stats.rnbc += rd32(E1000_RNBC);
6855 	adapter->stats.ruc += rd32(E1000_RUC);
6856 	adapter->stats.rfc += rd32(E1000_RFC);
6857 	adapter->stats.rjc += rd32(E1000_RJC);
6858 	adapter->stats.tor += rd32(E1000_TORH);
6859 	adapter->stats.tot += rd32(E1000_TOTH);
6860 	adapter->stats.tpr += rd32(E1000_TPR);
6861 
6862 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6863 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6864 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6865 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6866 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6867 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6868 
6869 	adapter->stats.mptc += rd32(E1000_MPTC);
6870 	adapter->stats.bptc += rd32(E1000_BPTC);
6871 
6872 	adapter->stats.tpt += rd32(E1000_TPT);
6873 	adapter->stats.colc += rd32(E1000_COLC);
6874 
6875 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6876 	/* read internal phy specific stats */
6877 	reg = rd32(E1000_CTRL_EXT);
6878 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6879 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6880 
6881 		/* this stat has invalid values on i210/i211 */
6882 		if ((hw->mac.type != e1000_i210) &&
6883 		    (hw->mac.type != e1000_i211))
6884 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6885 	}
6886 
6887 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6888 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6889 
6890 	adapter->stats.iac += rd32(E1000_IAC);
6891 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6892 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6893 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6894 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6895 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6896 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6897 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6898 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6899 
6900 	/* Fill out the OS statistics structure */
6901 	net_stats->multicast = adapter->stats.mprc;
6902 	net_stats->collisions = adapter->stats.colc;
6903 
6904 	/* Rx Errors */
6905 
6906 	/* RLEC on some newer hardware can be incorrect so build
6907 	 * our own version based on RUC and ROC
6908 	 */
6909 	net_stats->rx_errors = adapter->stats.rxerrc +
6910 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6911 		adapter->stats.ruc + adapter->stats.roc +
6912 		adapter->stats.cexterr;
6913 	net_stats->rx_length_errors = adapter->stats.ruc +
6914 				      adapter->stats.roc;
6915 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6916 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6917 	net_stats->rx_missed_errors = adapter->stats.mpc;
6918 
6919 	/* Tx Errors */
6920 	net_stats->tx_errors = adapter->stats.ecol +
6921 			       adapter->stats.latecol;
6922 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6923 	net_stats->tx_window_errors = adapter->stats.latecol;
6924 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6925 
6926 	/* Tx Dropped needs to be maintained elsewhere */
6927 
6928 	/* Management Stats */
6929 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6930 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6931 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6932 
6933 	/* OS2BMC Stats */
6934 	reg = rd32(E1000_MANC);
6935 	if (reg & E1000_MANC_EN_BMC2OS) {
6936 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6937 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6938 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6939 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6940 	}
6941 }
6942 
6943 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6944 {
6945 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6946 	struct e1000_hw *hw = &adapter->hw;
6947 	struct timespec64 ts;
6948 	u32 tsauxc;
6949 
6950 	if (pin < 0 || pin >= IGB_N_SDP)
6951 		return;
6952 
6953 	spin_lock(&adapter->tmreg_lock);
6954 
6955 	if (hw->mac.type == e1000_82580 ||
6956 	    hw->mac.type == e1000_i354 ||
6957 	    hw->mac.type == e1000_i350) {
6958 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6959 		u32 systiml, systimh, level_mask, level, rem;
6960 		u64 systim, now;
6961 
6962 		/* read systim registers in sequence */
6963 		rd32(E1000_SYSTIMR);
6964 		systiml = rd32(E1000_SYSTIML);
6965 		systimh = rd32(E1000_SYSTIMH);
6966 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6967 		now = timecounter_cyc2time(&adapter->tc, systim);
6968 
6969 		if (pin < 2) {
6970 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6971 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6972 		} else {
6973 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6974 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6975 		}
6976 
6977 		div_u64_rem(now, ns, &rem);
6978 		systim = systim + (ns - rem);
6979 
6980 		/* synchronize pin level with rising/falling edges */
6981 		div_u64_rem(now, ns << 1, &rem);
6982 		if (rem < ns) {
6983 			/* first half of period */
6984 			if (level == 0) {
6985 				/* output is already low, skip this period */
6986 				systim += ns;
6987 				pr_notice("igb: periodic output on %s missed falling edge\n",
6988 					  adapter->sdp_config[pin].name);
6989 			}
6990 		} else {
6991 			/* second half of period */
6992 			if (level == 1) {
6993 				/* output is already high, skip this period */
6994 				systim += ns;
6995 				pr_notice("igb: periodic output on %s missed rising edge\n",
6996 					  adapter->sdp_config[pin].name);
6997 			}
6998 		}
6999 
7000 		/* for this chip family tv_sec is the upper part of the binary value,
7001 		 * so not seconds
7002 		 */
7003 		ts.tv_nsec = (u32)systim;
7004 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
7005 	} else {
7006 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
7007 				    adapter->perout[tsintr_tt].period);
7008 	}
7009 
7010 	/* u32 conversion of tv_sec is safe until y2106 */
7011 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
7012 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
7013 	tsauxc = rd32(E1000_TSAUXC);
7014 	tsauxc |= TSAUXC_EN_TT0;
7015 	wr32(E1000_TSAUXC, tsauxc);
7016 	adapter->perout[tsintr_tt].start = ts;
7017 
7018 	spin_unlock(&adapter->tmreg_lock);
7019 }
7020 
7021 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
7022 {
7023 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
7024 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
7025 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
7026 	struct e1000_hw *hw = &adapter->hw;
7027 	struct ptp_clock_event event;
7028 	struct timespec64 ts;
7029 	unsigned long flags;
7030 
7031 	if (pin < 0 || pin >= IGB_N_SDP)
7032 		return;
7033 
7034 	if (hw->mac.type == e1000_82580 ||
7035 	    hw->mac.type == e1000_i354 ||
7036 	    hw->mac.type == e1000_i350) {
7037 		u64 ns = rd32(auxstmpl);
7038 
7039 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
7040 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
7041 		ns = timecounter_cyc2time(&adapter->tc, ns);
7042 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
7043 		ts = ns_to_timespec64(ns);
7044 	} else {
7045 		ts.tv_nsec = rd32(auxstmpl);
7046 		ts.tv_sec  = rd32(auxstmph);
7047 	}
7048 
7049 	event.type = PTP_CLOCK_EXTTS;
7050 	event.index = tsintr_tt;
7051 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7052 	ptp_clock_event(adapter->ptp_clock, &event);
7053 }
7054 
7055 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7056 {
7057 	const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7058 			  TSINTR_TT0 | TSINTR_TT1 |
7059 			  TSINTR_AUTT0 | TSINTR_AUTT1);
7060 	struct e1000_hw *hw = &adapter->hw;
7061 	u32 tsicr = rd32(E1000_TSICR);
7062 	struct ptp_clock_event event;
7063 
7064 	if (hw->mac.type == e1000_82580) {
7065 		/* 82580 has a hardware bug that requires an explicit
7066 		 * write to clear the TimeSync interrupt cause.
7067 		 */
7068 		wr32(E1000_TSICR, tsicr & mask);
7069 	}
7070 
7071 	if (tsicr & TSINTR_SYS_WRAP) {
7072 		event.type = PTP_CLOCK_PPS;
7073 		if (adapter->ptp_caps.pps)
7074 			ptp_clock_event(adapter->ptp_clock, &event);
7075 	}
7076 
7077 	if (tsicr & E1000_TSICR_TXTS) {
7078 		/* retrieve hardware timestamp */
7079 		schedule_work(&adapter->ptp_tx_work);
7080 	}
7081 
7082 	if (tsicr & TSINTR_TT0)
7083 		igb_perout(adapter, 0);
7084 
7085 	if (tsicr & TSINTR_TT1)
7086 		igb_perout(adapter, 1);
7087 
7088 	if (tsicr & TSINTR_AUTT0)
7089 		igb_extts(adapter, 0);
7090 
7091 	if (tsicr & TSINTR_AUTT1)
7092 		igb_extts(adapter, 1);
7093 }
7094 
7095 static irqreturn_t igb_msix_other(int irq, void *data)
7096 {
7097 	struct igb_adapter *adapter = data;
7098 	struct e1000_hw *hw = &adapter->hw;
7099 	u32 icr = rd32(E1000_ICR);
7100 	/* reading ICR causes bit 31 of EICR to be cleared */
7101 
7102 	if (icr & E1000_ICR_DRSTA)
7103 		schedule_work(&adapter->reset_task);
7104 
7105 	if (icr & E1000_ICR_DOUTSYNC) {
7106 		/* HW is reporting DMA is out of sync */
7107 		adapter->stats.doosync++;
7108 		/* The DMA Out of Sync is also indication of a spoof event
7109 		 * in IOV mode. Check the Wrong VM Behavior register to
7110 		 * see if it is really a spoof event.
7111 		 */
7112 		igb_check_wvbr(adapter);
7113 	}
7114 
7115 	/* Check for a mailbox event */
7116 	if (icr & E1000_ICR_VMMB)
7117 		igb_msg_task(adapter);
7118 
7119 	if (icr & E1000_ICR_LSC) {
7120 		hw->mac.get_link_status = 1;
7121 		/* guard against interrupt when we're going down */
7122 		if (!test_bit(__IGB_DOWN, &adapter->state))
7123 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7124 	}
7125 
7126 	if (icr & E1000_ICR_TS)
7127 		igb_tsync_interrupt(adapter);
7128 
7129 	wr32(E1000_EIMS, adapter->eims_other);
7130 
7131 	return IRQ_HANDLED;
7132 }
7133 
7134 static void igb_write_itr(struct igb_q_vector *q_vector)
7135 {
7136 	struct igb_adapter *adapter = q_vector->adapter;
7137 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7138 
7139 	if (!q_vector->set_itr)
7140 		return;
7141 
7142 	if (!itr_val)
7143 		itr_val = 0x4;
7144 
7145 	if (adapter->hw.mac.type == e1000_82575)
7146 		itr_val |= itr_val << 16;
7147 	else
7148 		itr_val |= E1000_EITR_CNT_IGNR;
7149 
7150 	writel(itr_val, q_vector->itr_register);
7151 	q_vector->set_itr = 0;
7152 }
7153 
7154 static irqreturn_t igb_msix_ring(int irq, void *data)
7155 {
7156 	struct igb_q_vector *q_vector = data;
7157 
7158 	/* Write the ITR value calculated from the previous interrupt. */
7159 	igb_write_itr(q_vector);
7160 
7161 	napi_schedule(&q_vector->napi);
7162 
7163 	return IRQ_HANDLED;
7164 }
7165 
7166 #ifdef CONFIG_IGB_DCA
7167 static void igb_update_tx_dca(struct igb_adapter *adapter,
7168 			      struct igb_ring *tx_ring,
7169 			      int cpu)
7170 {
7171 	struct e1000_hw *hw = &adapter->hw;
7172 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7173 
7174 	if (hw->mac.type != e1000_82575)
7175 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7176 
7177 	/* We can enable relaxed ordering for reads, but not writes when
7178 	 * DCA is enabled.  This is due to a known issue in some chipsets
7179 	 * which will cause the DCA tag to be cleared.
7180 	 */
7181 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7182 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7183 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7184 
7185 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7186 }
7187 
7188 static void igb_update_rx_dca(struct igb_adapter *adapter,
7189 			      struct igb_ring *rx_ring,
7190 			      int cpu)
7191 {
7192 	struct e1000_hw *hw = &adapter->hw;
7193 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7194 
7195 	if (hw->mac.type != e1000_82575)
7196 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7197 
7198 	/* We can enable relaxed ordering for reads, but not writes when
7199 	 * DCA is enabled.  This is due to a known issue in some chipsets
7200 	 * which will cause the DCA tag to be cleared.
7201 	 */
7202 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7203 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7204 
7205 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7206 }
7207 
7208 static void igb_update_dca(struct igb_q_vector *q_vector)
7209 {
7210 	struct igb_adapter *adapter = q_vector->adapter;
7211 	int cpu = get_cpu();
7212 
7213 	if (q_vector->cpu == cpu)
7214 		goto out_no_update;
7215 
7216 	if (q_vector->tx.ring)
7217 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7218 
7219 	if (q_vector->rx.ring)
7220 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7221 
7222 	q_vector->cpu = cpu;
7223 out_no_update:
7224 	put_cpu();
7225 }
7226 
7227 static void igb_setup_dca(struct igb_adapter *adapter)
7228 {
7229 	struct e1000_hw *hw = &adapter->hw;
7230 	int i;
7231 
7232 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7233 		return;
7234 
7235 	/* Always use CB2 mode, difference is masked in the CB driver. */
7236 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7237 
7238 	for (i = 0; i < adapter->num_q_vectors; i++) {
7239 		adapter->q_vector[i]->cpu = -1;
7240 		igb_update_dca(adapter->q_vector[i]);
7241 	}
7242 }
7243 
7244 static int __igb_notify_dca(struct device *dev, void *data)
7245 {
7246 	struct net_device *netdev = dev_get_drvdata(dev);
7247 	struct igb_adapter *adapter = netdev_priv(netdev);
7248 	struct pci_dev *pdev = adapter->pdev;
7249 	struct e1000_hw *hw = &adapter->hw;
7250 	unsigned long event = *(unsigned long *)data;
7251 
7252 	switch (event) {
7253 	case DCA_PROVIDER_ADD:
7254 		/* if already enabled, don't do it again */
7255 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7256 			break;
7257 		if (dca_add_requester(dev) == 0) {
7258 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7259 			dev_info(&pdev->dev, "DCA enabled\n");
7260 			igb_setup_dca(adapter);
7261 			break;
7262 		}
7263 		fallthrough; /* since DCA is disabled. */
7264 	case DCA_PROVIDER_REMOVE:
7265 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7266 			/* without this a class_device is left
7267 			 * hanging around in the sysfs model
7268 			 */
7269 			dca_remove_requester(dev);
7270 			dev_info(&pdev->dev, "DCA disabled\n");
7271 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7272 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7273 		}
7274 		break;
7275 	}
7276 
7277 	return 0;
7278 }
7279 
7280 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7281 			  void *p)
7282 {
7283 	int ret_val;
7284 
7285 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7286 					 __igb_notify_dca);
7287 
7288 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7289 }
7290 #endif /* CONFIG_IGB_DCA */
7291 
7292 #ifdef CONFIG_PCI_IOV
7293 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7294 {
7295 	unsigned char mac_addr[ETH_ALEN];
7296 
7297 	eth_zero_addr(mac_addr);
7298 	igb_set_vf_mac(adapter, vf, mac_addr);
7299 
7300 	/* By default spoof check is enabled for all VFs */
7301 	adapter->vf_data[vf].spoofchk_enabled = true;
7302 
7303 	/* By default VFs are not trusted */
7304 	adapter->vf_data[vf].trusted = false;
7305 
7306 	return 0;
7307 }
7308 
7309 #endif
7310 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7311 {
7312 	struct e1000_hw *hw = &adapter->hw;
7313 	u32 ping;
7314 	int i;
7315 
7316 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7317 		ping = E1000_PF_CONTROL_MSG;
7318 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7319 			ping |= E1000_VT_MSGTYPE_CTS;
7320 		igb_write_mbx(hw, &ping, 1, i);
7321 	}
7322 }
7323 
7324 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7325 {
7326 	struct e1000_hw *hw = &adapter->hw;
7327 	u32 vmolr = rd32(E1000_VMOLR(vf));
7328 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7329 
7330 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7331 			    IGB_VF_FLAG_MULTI_PROMISC);
7332 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7333 
7334 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7335 		vmolr |= E1000_VMOLR_MPME;
7336 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7337 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7338 	} else {
7339 		/* if we have hashes and we are clearing a multicast promisc
7340 		 * flag we need to write the hashes to the MTA as this step
7341 		 * was previously skipped
7342 		 */
7343 		if (vf_data->num_vf_mc_hashes > 30) {
7344 			vmolr |= E1000_VMOLR_MPME;
7345 		} else if (vf_data->num_vf_mc_hashes) {
7346 			int j;
7347 
7348 			vmolr |= E1000_VMOLR_ROMPE;
7349 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7350 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7351 		}
7352 	}
7353 
7354 	wr32(E1000_VMOLR(vf), vmolr);
7355 
7356 	/* there are flags left unprocessed, likely not supported */
7357 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7358 		return -EINVAL;
7359 
7360 	return 0;
7361 }
7362 
7363 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7364 				  u32 *msgbuf, u32 vf)
7365 {
7366 	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7367 	u16 *hash_list = (u16 *)&msgbuf[1];
7368 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7369 	int i;
7370 
7371 	/* salt away the number of multicast addresses assigned
7372 	 * to this VF for later use to restore when the PF multi cast
7373 	 * list changes
7374 	 */
7375 	vf_data->num_vf_mc_hashes = n;
7376 
7377 	/* only up to 30 hash values supported */
7378 	if (n > 30)
7379 		n = 30;
7380 
7381 	/* store the hashes for later use */
7382 	for (i = 0; i < n; i++)
7383 		vf_data->vf_mc_hashes[i] = hash_list[i];
7384 
7385 	/* Flush and reset the mta with the new values */
7386 	igb_set_rx_mode(adapter->netdev);
7387 
7388 	return 0;
7389 }
7390 
7391 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7392 {
7393 	struct e1000_hw *hw = &adapter->hw;
7394 	struct vf_data_storage *vf_data;
7395 	int i, j;
7396 
7397 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7398 		u32 vmolr = rd32(E1000_VMOLR(i));
7399 
7400 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7401 
7402 		vf_data = &adapter->vf_data[i];
7403 
7404 		if ((vf_data->num_vf_mc_hashes > 30) ||
7405 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7406 			vmolr |= E1000_VMOLR_MPME;
7407 		} else if (vf_data->num_vf_mc_hashes) {
7408 			vmolr |= E1000_VMOLR_ROMPE;
7409 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7410 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7411 		}
7412 		wr32(E1000_VMOLR(i), vmolr);
7413 	}
7414 }
7415 
7416 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7417 {
7418 	struct e1000_hw *hw = &adapter->hw;
7419 	u32 pool_mask, vlvf_mask, i;
7420 
7421 	/* create mask for VF and other pools */
7422 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7423 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7424 
7425 	/* drop PF from pool bits */
7426 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7427 			     adapter->vfs_allocated_count);
7428 
7429 	/* Find the vlan filter for this id */
7430 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7431 		u32 vlvf = rd32(E1000_VLVF(i));
7432 		u32 vfta_mask, vid, vfta;
7433 
7434 		/* remove the vf from the pool */
7435 		if (!(vlvf & vlvf_mask))
7436 			continue;
7437 
7438 		/* clear out bit from VLVF */
7439 		vlvf ^= vlvf_mask;
7440 
7441 		/* if other pools are present, just remove ourselves */
7442 		if (vlvf & pool_mask)
7443 			goto update_vlvfb;
7444 
7445 		/* if PF is present, leave VFTA */
7446 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7447 			goto update_vlvf;
7448 
7449 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7450 		vfta_mask = BIT(vid % 32);
7451 
7452 		/* clear bit from VFTA */
7453 		vfta = adapter->shadow_vfta[vid / 32];
7454 		if (vfta & vfta_mask)
7455 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7456 update_vlvf:
7457 		/* clear pool selection enable */
7458 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7459 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7460 		else
7461 			vlvf = 0;
7462 update_vlvfb:
7463 		/* clear pool bits */
7464 		wr32(E1000_VLVF(i), vlvf);
7465 	}
7466 }
7467 
7468 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7469 {
7470 	u32 vlvf;
7471 	int idx;
7472 
7473 	/* short cut the special case */
7474 	if (vlan == 0)
7475 		return 0;
7476 
7477 	/* Search for the VLAN id in the VLVF entries */
7478 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7479 		vlvf = rd32(E1000_VLVF(idx));
7480 		if ((vlvf & VLAN_VID_MASK) == vlan)
7481 			break;
7482 	}
7483 
7484 	return idx;
7485 }
7486 
7487 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7488 {
7489 	struct e1000_hw *hw = &adapter->hw;
7490 	u32 bits, pf_id;
7491 	int idx;
7492 
7493 	idx = igb_find_vlvf_entry(hw, vid);
7494 	if (!idx)
7495 		return;
7496 
7497 	/* See if any other pools are set for this VLAN filter
7498 	 * entry other than the PF.
7499 	 */
7500 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7501 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7502 	bits &= rd32(E1000_VLVF(idx));
7503 
7504 	/* Disable the filter so this falls into the default pool. */
7505 	if (!bits) {
7506 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7507 			wr32(E1000_VLVF(idx), BIT(pf_id));
7508 		else
7509 			wr32(E1000_VLVF(idx), 0);
7510 	}
7511 }
7512 
7513 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7514 			   bool add, u32 vf)
7515 {
7516 	int pf_id = adapter->vfs_allocated_count;
7517 	struct e1000_hw *hw = &adapter->hw;
7518 	int err;
7519 
7520 	/* If VLAN overlaps with one the PF is currently monitoring make
7521 	 * sure that we are able to allocate a VLVF entry.  This may be
7522 	 * redundant but it guarantees PF will maintain visibility to
7523 	 * the VLAN.
7524 	 */
7525 	if (add && test_bit(vid, adapter->active_vlans)) {
7526 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7527 		if (err)
7528 			return err;
7529 	}
7530 
7531 	err = igb_vfta_set(hw, vid, vf, add, false);
7532 
7533 	if (add && !err)
7534 		return err;
7535 
7536 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7537 	 * we may need to drop the PF pool bit in order to allow us to free
7538 	 * up the VLVF resources.
7539 	 */
7540 	if (test_bit(vid, adapter->active_vlans) ||
7541 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7542 		igb_update_pf_vlvf(adapter, vid);
7543 
7544 	return err;
7545 }
7546 
7547 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7548 {
7549 	struct e1000_hw *hw = &adapter->hw;
7550 
7551 	if (vid)
7552 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7553 	else
7554 		wr32(E1000_VMVIR(vf), 0);
7555 }
7556 
7557 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7558 				u16 vlan, u8 qos)
7559 {
7560 	int err;
7561 
7562 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7563 	if (err)
7564 		return err;
7565 
7566 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7567 	igb_set_vmolr(adapter, vf, !vlan);
7568 
7569 	/* revoke access to previous VLAN */
7570 	if (vlan != adapter->vf_data[vf].pf_vlan)
7571 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7572 				false, vf);
7573 
7574 	adapter->vf_data[vf].pf_vlan = vlan;
7575 	adapter->vf_data[vf].pf_qos = qos;
7576 	igb_set_vf_vlan_strip(adapter, vf, true);
7577 	dev_info(&adapter->pdev->dev,
7578 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7579 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7580 		dev_warn(&adapter->pdev->dev,
7581 			 "The VF VLAN has been set, but the PF device is not up.\n");
7582 		dev_warn(&adapter->pdev->dev,
7583 			 "Bring the PF device up before attempting to use the VF device.\n");
7584 	}
7585 
7586 	return err;
7587 }
7588 
7589 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7590 {
7591 	/* Restore tagless access via VLAN 0 */
7592 	igb_set_vf_vlan(adapter, 0, true, vf);
7593 
7594 	igb_set_vmvir(adapter, 0, vf);
7595 	igb_set_vmolr(adapter, vf, true);
7596 
7597 	/* Remove any PF assigned VLAN */
7598 	if (adapter->vf_data[vf].pf_vlan)
7599 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7600 				false, vf);
7601 
7602 	adapter->vf_data[vf].pf_vlan = 0;
7603 	adapter->vf_data[vf].pf_qos = 0;
7604 	igb_set_vf_vlan_strip(adapter, vf, false);
7605 
7606 	return 0;
7607 }
7608 
7609 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7610 			       u16 vlan, u8 qos, __be16 vlan_proto)
7611 {
7612 	struct igb_adapter *adapter = netdev_priv(netdev);
7613 
7614 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7615 		return -EINVAL;
7616 
7617 	if (vlan_proto != htons(ETH_P_8021Q))
7618 		return -EPROTONOSUPPORT;
7619 
7620 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7621 			       igb_disable_port_vlan(adapter, vf);
7622 }
7623 
7624 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7625 {
7626 	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7627 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7628 	int ret;
7629 
7630 	if (adapter->vf_data[vf].pf_vlan)
7631 		return -1;
7632 
7633 	/* VLAN 0 is a special case, don't allow it to be removed */
7634 	if (!vid && !add)
7635 		return 0;
7636 
7637 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7638 	if (!ret)
7639 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7640 	return ret;
7641 }
7642 
7643 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7644 {
7645 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7646 
7647 	/* clear flags - except flag that indicates PF has set the MAC */
7648 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7649 	vf_data->last_nack = jiffies;
7650 
7651 	/* reset vlans for device */
7652 	igb_clear_vf_vfta(adapter, vf);
7653 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7654 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7655 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7656 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7657 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7658 
7659 	/* reset multicast table array for vf */
7660 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7661 
7662 	/* Flush and reset the mta with the new values */
7663 	igb_set_rx_mode(adapter->netdev);
7664 }
7665 
7666 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7667 {
7668 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7669 
7670 	/* clear mac address as we were hotplug removed/added */
7671 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7672 		eth_zero_addr(vf_mac);
7673 
7674 	/* process remaining reset events */
7675 	igb_vf_reset(adapter, vf);
7676 }
7677 
7678 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7679 {
7680 	struct e1000_hw *hw = &adapter->hw;
7681 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7682 	u32 reg, msgbuf[3] = {};
7683 	u8 *addr = (u8 *)(&msgbuf[1]);
7684 
7685 	/* process all the same items cleared in a function level reset */
7686 	igb_vf_reset(adapter, vf);
7687 
7688 	/* set vf mac address */
7689 	igb_set_vf_mac(adapter, vf, vf_mac);
7690 
7691 	/* enable transmit and receive for vf */
7692 	reg = rd32(E1000_VFTE);
7693 	wr32(E1000_VFTE, reg | BIT(vf));
7694 	reg = rd32(E1000_VFRE);
7695 	wr32(E1000_VFRE, reg | BIT(vf));
7696 
7697 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7698 
7699 	/* reply to reset with ack and vf mac address */
7700 	if (!is_zero_ether_addr(vf_mac)) {
7701 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7702 		memcpy(addr, vf_mac, ETH_ALEN);
7703 	} else {
7704 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7705 	}
7706 	igb_write_mbx(hw, msgbuf, 3, vf);
7707 }
7708 
7709 static void igb_flush_mac_table(struct igb_adapter *adapter)
7710 {
7711 	struct e1000_hw *hw = &adapter->hw;
7712 	int i;
7713 
7714 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7715 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7716 		eth_zero_addr(adapter->mac_table[i].addr);
7717 		adapter->mac_table[i].queue = 0;
7718 		igb_rar_set_index(adapter, i);
7719 	}
7720 }
7721 
7722 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7723 {
7724 	struct e1000_hw *hw = &adapter->hw;
7725 	/* do not count rar entries reserved for VFs MAC addresses */
7726 	int rar_entries = hw->mac.rar_entry_count -
7727 			  adapter->vfs_allocated_count;
7728 	int i, count = 0;
7729 
7730 	for (i = 0; i < rar_entries; i++) {
7731 		/* do not count default entries */
7732 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7733 			continue;
7734 
7735 		/* do not count "in use" entries for different queues */
7736 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7737 		    (adapter->mac_table[i].queue != queue))
7738 			continue;
7739 
7740 		count++;
7741 	}
7742 
7743 	return count;
7744 }
7745 
7746 /* Set default MAC address for the PF in the first RAR entry */
7747 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7748 {
7749 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7750 
7751 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7752 	mac_table->queue = adapter->vfs_allocated_count;
7753 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7754 
7755 	igb_rar_set_index(adapter, 0);
7756 }
7757 
7758 /* If the filter to be added and an already existing filter express
7759  * the same address and address type, it should be possible to only
7760  * override the other configurations, for example the queue to steer
7761  * traffic.
7762  */
7763 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7764 				      const u8 *addr, const u8 flags)
7765 {
7766 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7767 		return true;
7768 
7769 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7770 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7771 		return false;
7772 
7773 	if (!ether_addr_equal(addr, entry->addr))
7774 		return false;
7775 
7776 	return true;
7777 }
7778 
7779 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7780  * 'flags' is used to indicate what kind of match is made, match is by
7781  * default for the destination address, if matching by source address
7782  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7783  */
7784 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7785 				    const u8 *addr, const u8 queue,
7786 				    const u8 flags)
7787 {
7788 	struct e1000_hw *hw = &adapter->hw;
7789 	int rar_entries = hw->mac.rar_entry_count -
7790 			  adapter->vfs_allocated_count;
7791 	int i;
7792 
7793 	if (is_zero_ether_addr(addr))
7794 		return -EINVAL;
7795 
7796 	/* Search for the first empty entry in the MAC table.
7797 	 * Do not touch entries at the end of the table reserved for the VF MAC
7798 	 * addresses.
7799 	 */
7800 	for (i = 0; i < rar_entries; i++) {
7801 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7802 					       addr, flags))
7803 			continue;
7804 
7805 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7806 		adapter->mac_table[i].queue = queue;
7807 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7808 
7809 		igb_rar_set_index(adapter, i);
7810 		return i;
7811 	}
7812 
7813 	return -ENOSPC;
7814 }
7815 
7816 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7817 			      const u8 queue)
7818 {
7819 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7820 }
7821 
7822 /* Remove a MAC filter for 'addr' directing matching traffic to
7823  * 'queue', 'flags' is used to indicate what kind of match need to be
7824  * removed, match is by default for the destination address, if
7825  * matching by source address is to be removed the flag
7826  * IGB_MAC_STATE_SRC_ADDR can be used.
7827  */
7828 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7829 				    const u8 *addr, const u8 queue,
7830 				    const u8 flags)
7831 {
7832 	struct e1000_hw *hw = &adapter->hw;
7833 	int rar_entries = hw->mac.rar_entry_count -
7834 			  adapter->vfs_allocated_count;
7835 	int i;
7836 
7837 	if (is_zero_ether_addr(addr))
7838 		return -EINVAL;
7839 
7840 	/* Search for matching entry in the MAC table based on given address
7841 	 * and queue. Do not touch entries at the end of the table reserved
7842 	 * for the VF MAC addresses.
7843 	 */
7844 	for (i = 0; i < rar_entries; i++) {
7845 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7846 			continue;
7847 		if ((adapter->mac_table[i].state & flags) != flags)
7848 			continue;
7849 		if (adapter->mac_table[i].queue != queue)
7850 			continue;
7851 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7852 			continue;
7853 
7854 		/* When a filter for the default address is "deleted",
7855 		 * we return it to its initial configuration
7856 		 */
7857 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7858 			adapter->mac_table[i].state =
7859 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7860 			adapter->mac_table[i].queue =
7861 				adapter->vfs_allocated_count;
7862 		} else {
7863 			adapter->mac_table[i].state = 0;
7864 			adapter->mac_table[i].queue = 0;
7865 			eth_zero_addr(adapter->mac_table[i].addr);
7866 		}
7867 
7868 		igb_rar_set_index(adapter, i);
7869 		return 0;
7870 	}
7871 
7872 	return -ENOENT;
7873 }
7874 
7875 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7876 			      const u8 queue)
7877 {
7878 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7879 }
7880 
7881 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7882 				const u8 *addr, u8 queue, u8 flags)
7883 {
7884 	struct e1000_hw *hw = &adapter->hw;
7885 
7886 	/* In theory, this should be supported on 82575 as well, but
7887 	 * that part wasn't easily accessible during development.
7888 	 */
7889 	if (hw->mac.type != e1000_i210)
7890 		return -EOPNOTSUPP;
7891 
7892 	return igb_add_mac_filter_flags(adapter, addr, queue,
7893 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7894 }
7895 
7896 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7897 				const u8 *addr, u8 queue, u8 flags)
7898 {
7899 	return igb_del_mac_filter_flags(adapter, addr, queue,
7900 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7901 }
7902 
7903 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7904 {
7905 	struct igb_adapter *adapter = netdev_priv(netdev);
7906 	int ret;
7907 
7908 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7909 
7910 	return min_t(int, ret, 0);
7911 }
7912 
7913 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7914 {
7915 	struct igb_adapter *adapter = netdev_priv(netdev);
7916 
7917 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7918 
7919 	return 0;
7920 }
7921 
7922 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7923 				 const u32 info, const u8 *addr)
7924 {
7925 	struct pci_dev *pdev = adapter->pdev;
7926 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7927 	struct vf_mac_filter *entry;
7928 	bool found = false;
7929 	int ret = 0;
7930 
7931 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7932 	    !vf_data->trusted) {
7933 		dev_warn(&pdev->dev,
7934 			 "VF %d requested MAC filter but is administratively denied\n",
7935 			  vf);
7936 		return -EINVAL;
7937 	}
7938 	if (!is_valid_ether_addr(addr)) {
7939 		dev_warn(&pdev->dev,
7940 			 "VF %d attempted to set invalid MAC filter\n",
7941 			  vf);
7942 		return -EINVAL;
7943 	}
7944 
7945 	switch (info) {
7946 	case E1000_VF_MAC_FILTER_CLR:
7947 		/* remove all unicast MAC filters related to the current VF */
7948 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7949 			if (entry->vf == vf) {
7950 				entry->vf = -1;
7951 				entry->free = true;
7952 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7953 			}
7954 		}
7955 		break;
7956 	case E1000_VF_MAC_FILTER_ADD:
7957 		/* try to find empty slot in the list */
7958 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7959 			if (entry->free) {
7960 				found = true;
7961 				break;
7962 			}
7963 		}
7964 
7965 		if (found) {
7966 			entry->free = false;
7967 			entry->vf = vf;
7968 			ether_addr_copy(entry->vf_mac, addr);
7969 
7970 			ret = igb_add_mac_filter(adapter, addr, vf);
7971 			ret = min_t(int, ret, 0);
7972 		} else {
7973 			ret = -ENOSPC;
7974 		}
7975 
7976 		if (ret == -ENOSPC)
7977 			dev_warn(&pdev->dev,
7978 				 "VF %d has requested MAC filter but there is no space for it\n",
7979 				 vf);
7980 		break;
7981 	default:
7982 		ret = -EINVAL;
7983 		break;
7984 	}
7985 
7986 	return ret;
7987 }
7988 
7989 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7990 {
7991 	struct pci_dev *pdev = adapter->pdev;
7992 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7993 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7994 
7995 	/* The VF MAC Address is stored in a packed array of bytes
7996 	 * starting at the second 32 bit word of the msg array
7997 	 */
7998 	unsigned char *addr = (unsigned char *)&msg[1];
7999 	int ret = 0;
8000 
8001 	if (!info) {
8002 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
8003 		    !vf_data->trusted) {
8004 			dev_warn(&pdev->dev,
8005 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
8006 				 vf);
8007 			return -EINVAL;
8008 		}
8009 
8010 		if (!is_valid_ether_addr(addr)) {
8011 			dev_warn(&pdev->dev,
8012 				 "VF %d attempted to set invalid MAC\n",
8013 				 vf);
8014 			return -EINVAL;
8015 		}
8016 
8017 		ret = igb_set_vf_mac(adapter, vf, addr);
8018 	} else {
8019 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
8020 	}
8021 
8022 	return ret;
8023 }
8024 
8025 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
8026 {
8027 	struct e1000_hw *hw = &adapter->hw;
8028 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8029 	u32 msg = E1000_VT_MSGTYPE_NACK;
8030 
8031 	/* if device isn't clear to send it shouldn't be reading either */
8032 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
8033 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
8034 		igb_write_mbx(hw, &msg, 1, vf);
8035 		vf_data->last_nack = jiffies;
8036 	}
8037 }
8038 
8039 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
8040 {
8041 	struct pci_dev *pdev = adapter->pdev;
8042 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
8043 	struct e1000_hw *hw = &adapter->hw;
8044 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8045 	s32 retval;
8046 
8047 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8048 
8049 	if (retval) {
8050 		/* if receive failed revoke VF CTS stats and restart init */
8051 		dev_err(&pdev->dev, "Error receiving message from VF\n");
8052 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
8053 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8054 			goto unlock;
8055 		goto out;
8056 	}
8057 
8058 	/* this is a message we already processed, do nothing */
8059 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8060 		goto unlock;
8061 
8062 	/* until the vf completes a reset it should not be
8063 	 * allowed to start any configuration.
8064 	 */
8065 	if (msgbuf[0] == E1000_VF_RESET) {
8066 		/* unlocks mailbox */
8067 		igb_vf_reset_msg(adapter, vf);
8068 		return;
8069 	}
8070 
8071 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8072 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8073 			goto unlock;
8074 		retval = -1;
8075 		goto out;
8076 	}
8077 
8078 	switch ((msgbuf[0] & 0xFFFF)) {
8079 	case E1000_VF_SET_MAC_ADDR:
8080 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8081 		break;
8082 	case E1000_VF_SET_PROMISC:
8083 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8084 		break;
8085 	case E1000_VF_SET_MULTICAST:
8086 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8087 		break;
8088 	case E1000_VF_SET_LPE:
8089 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8090 		break;
8091 	case E1000_VF_SET_VLAN:
8092 		retval = -1;
8093 		if (vf_data->pf_vlan)
8094 			dev_warn(&pdev->dev,
8095 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8096 				 vf);
8097 		else
8098 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8099 		break;
8100 	default:
8101 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8102 		retval = -1;
8103 		break;
8104 	}
8105 
8106 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8107 out:
8108 	/* notify the VF of the results of what it sent us */
8109 	if (retval)
8110 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8111 	else
8112 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8113 
8114 	/* unlocks mailbox */
8115 	igb_write_mbx(hw, msgbuf, 1, vf);
8116 	return;
8117 
8118 unlock:
8119 	igb_unlock_mbx(hw, vf);
8120 }
8121 
8122 static void igb_msg_task(struct igb_adapter *adapter)
8123 {
8124 	struct e1000_hw *hw = &adapter->hw;
8125 	unsigned long flags;
8126 	u32 vf;
8127 
8128 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8129 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8130 		/* process any reset requests */
8131 		if (!igb_check_for_rst(hw, vf))
8132 			igb_vf_reset_event(adapter, vf);
8133 
8134 		/* process any messages pending */
8135 		if (!igb_check_for_msg(hw, vf))
8136 			igb_rcv_msg_from_vf(adapter, vf);
8137 
8138 		/* process any acks */
8139 		if (!igb_check_for_ack(hw, vf))
8140 			igb_rcv_ack_from_vf(adapter, vf);
8141 	}
8142 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8143 }
8144 
8145 /**
8146  *  igb_set_uta - Set unicast filter table address
8147  *  @adapter: board private structure
8148  *  @set: boolean indicating if we are setting or clearing bits
8149  *
8150  *  The unicast table address is a register array of 32-bit registers.
8151  *  The table is meant to be used in a way similar to how the MTA is used
8152  *  however due to certain limitations in the hardware it is necessary to
8153  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8154  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8155  **/
8156 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8157 {
8158 	struct e1000_hw *hw = &adapter->hw;
8159 	u32 uta = set ? ~0 : 0;
8160 	int i;
8161 
8162 	/* we only need to do this if VMDq is enabled */
8163 	if (!adapter->vfs_allocated_count)
8164 		return;
8165 
8166 	for (i = hw->mac.uta_reg_count; i--;)
8167 		array_wr32(E1000_UTA, i, uta);
8168 }
8169 
8170 /**
8171  *  igb_intr_msi - Interrupt Handler
8172  *  @irq: interrupt number
8173  *  @data: pointer to a network interface device structure
8174  **/
8175 static irqreturn_t igb_intr_msi(int irq, void *data)
8176 {
8177 	struct igb_adapter *adapter = data;
8178 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8179 	struct e1000_hw *hw = &adapter->hw;
8180 	/* read ICR disables interrupts using IAM */
8181 	u32 icr = rd32(E1000_ICR);
8182 
8183 	igb_write_itr(q_vector);
8184 
8185 	if (icr & E1000_ICR_DRSTA)
8186 		schedule_work(&adapter->reset_task);
8187 
8188 	if (icr & E1000_ICR_DOUTSYNC) {
8189 		/* HW is reporting DMA is out of sync */
8190 		adapter->stats.doosync++;
8191 	}
8192 
8193 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8194 		hw->mac.get_link_status = 1;
8195 		if (!test_bit(__IGB_DOWN, &adapter->state))
8196 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8197 	}
8198 
8199 	if (icr & E1000_ICR_TS)
8200 		igb_tsync_interrupt(adapter);
8201 
8202 	napi_schedule(&q_vector->napi);
8203 
8204 	return IRQ_HANDLED;
8205 }
8206 
8207 /**
8208  *  igb_intr - Legacy Interrupt Handler
8209  *  @irq: interrupt number
8210  *  @data: pointer to a network interface device structure
8211  **/
8212 static irqreturn_t igb_intr(int irq, void *data)
8213 {
8214 	struct igb_adapter *adapter = data;
8215 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8216 	struct e1000_hw *hw = &adapter->hw;
8217 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8218 	 * need for the IMC write
8219 	 */
8220 	u32 icr = rd32(E1000_ICR);
8221 
8222 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8223 	 * not set, then the adapter didn't send an interrupt
8224 	 */
8225 	if (!(icr & E1000_ICR_INT_ASSERTED))
8226 		return IRQ_NONE;
8227 
8228 	igb_write_itr(q_vector);
8229 
8230 	if (icr & E1000_ICR_DRSTA)
8231 		schedule_work(&adapter->reset_task);
8232 
8233 	if (icr & E1000_ICR_DOUTSYNC) {
8234 		/* HW is reporting DMA is out of sync */
8235 		adapter->stats.doosync++;
8236 	}
8237 
8238 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8239 		hw->mac.get_link_status = 1;
8240 		/* guard against interrupt when we're going down */
8241 		if (!test_bit(__IGB_DOWN, &adapter->state))
8242 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8243 	}
8244 
8245 	if (icr & E1000_ICR_TS)
8246 		igb_tsync_interrupt(adapter);
8247 
8248 	napi_schedule(&q_vector->napi);
8249 
8250 	return IRQ_HANDLED;
8251 }
8252 
8253 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8254 {
8255 	struct igb_adapter *adapter = q_vector->adapter;
8256 	struct e1000_hw *hw = &adapter->hw;
8257 
8258 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8259 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8260 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8261 			igb_set_itr(q_vector);
8262 		else
8263 			igb_update_ring_itr(q_vector);
8264 	}
8265 
8266 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8267 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8268 			wr32(E1000_EIMS, q_vector->eims_value);
8269 		else
8270 			igb_irq_enable(adapter);
8271 	}
8272 }
8273 
8274 /**
8275  *  igb_poll - NAPI Rx polling callback
8276  *  @napi: napi polling structure
8277  *  @budget: count of how many packets we should handle
8278  **/
8279 static int igb_poll(struct napi_struct *napi, int budget)
8280 {
8281 	struct igb_q_vector *q_vector = container_of(napi,
8282 						     struct igb_q_vector,
8283 						     napi);
8284 	struct xsk_buff_pool *xsk_pool;
8285 	bool clean_complete = true;
8286 	int work_done = 0;
8287 
8288 #ifdef CONFIG_IGB_DCA
8289 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8290 		igb_update_dca(q_vector);
8291 #endif
8292 	if (q_vector->tx.ring)
8293 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8294 
8295 	if (q_vector->rx.ring) {
8296 		int cleaned;
8297 
8298 		xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8299 		cleaned = xsk_pool ?
8300 			igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8301 			igb_clean_rx_irq(q_vector, budget);
8302 
8303 		work_done += cleaned;
8304 		if (cleaned >= budget)
8305 			clean_complete = false;
8306 	}
8307 
8308 	/* If all work not completed, return budget and keep polling */
8309 	if (!clean_complete)
8310 		return budget;
8311 
8312 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8313 	 * poll us due to busy-polling
8314 	 */
8315 	if (likely(napi_complete_done(napi, work_done)))
8316 		igb_ring_irq_enable(q_vector);
8317 
8318 	return work_done;
8319 }
8320 
8321 /**
8322  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8323  *  @q_vector: pointer to q_vector containing needed info
8324  *  @napi_budget: Used to determine if we are in netpoll
8325  *
8326  *  returns true if ring is completely cleaned
8327  **/
8328 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8329 {
8330 	unsigned int total_bytes = 0, total_packets = 0;
8331 	struct igb_adapter *adapter = q_vector->adapter;
8332 	unsigned int budget = q_vector->tx.work_limit;
8333 	struct igb_ring *tx_ring = q_vector->tx.ring;
8334 	unsigned int i = tx_ring->next_to_clean;
8335 	union e1000_adv_tx_desc *tx_desc;
8336 	struct igb_tx_buffer *tx_buffer;
8337 	struct xsk_buff_pool *xsk_pool;
8338 	int cpu = smp_processor_id();
8339 	bool xsk_xmit_done = true;
8340 	struct netdev_queue *nq;
8341 	u32 xsk_frames = 0;
8342 
8343 	if (test_bit(__IGB_DOWN, &adapter->state))
8344 		return true;
8345 
8346 	tx_buffer = &tx_ring->tx_buffer_info[i];
8347 	tx_desc = IGB_TX_DESC(tx_ring, i);
8348 	i -= tx_ring->count;
8349 
8350 	do {
8351 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8352 
8353 		/* if next_to_watch is not set then there is no work pending */
8354 		if (!eop_desc)
8355 			break;
8356 
8357 		/* prevent any other reads prior to eop_desc */
8358 		smp_rmb();
8359 
8360 		/* if DD is not set pending work has not been completed */
8361 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8362 			break;
8363 
8364 		/* clear next_to_watch to prevent false hangs */
8365 		tx_buffer->next_to_watch = NULL;
8366 
8367 		/* update the statistics for this packet */
8368 		total_bytes += tx_buffer->bytecount;
8369 		total_packets += tx_buffer->gso_segs;
8370 
8371 		/* free the skb */
8372 		if (tx_buffer->type == IGB_TYPE_SKB) {
8373 			napi_consume_skb(tx_buffer->skb, napi_budget);
8374 		} else if (tx_buffer->type == IGB_TYPE_XDP) {
8375 			xdp_return_frame(tx_buffer->xdpf);
8376 		} else if (tx_buffer->type == IGB_TYPE_XSK) {
8377 			xsk_frames++;
8378 			goto skip_for_xsk;
8379 		}
8380 
8381 		/* unmap skb header data */
8382 		dma_unmap_single(tx_ring->dev,
8383 				 dma_unmap_addr(tx_buffer, dma),
8384 				 dma_unmap_len(tx_buffer, len),
8385 				 DMA_TO_DEVICE);
8386 
8387 		/* clear tx_buffer data */
8388 		dma_unmap_len_set(tx_buffer, len, 0);
8389 
8390 		/* clear last DMA location and unmap remaining buffers */
8391 		while (tx_desc != eop_desc) {
8392 			tx_buffer++;
8393 			tx_desc++;
8394 			i++;
8395 			if (unlikely(!i)) {
8396 				i -= tx_ring->count;
8397 				tx_buffer = tx_ring->tx_buffer_info;
8398 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8399 			}
8400 
8401 			/* unmap any remaining paged data */
8402 			if (dma_unmap_len(tx_buffer, len)) {
8403 				dma_unmap_page(tx_ring->dev,
8404 					       dma_unmap_addr(tx_buffer, dma),
8405 					       dma_unmap_len(tx_buffer, len),
8406 					       DMA_TO_DEVICE);
8407 				dma_unmap_len_set(tx_buffer, len, 0);
8408 			}
8409 		}
8410 
8411 skip_for_xsk:
8412 		/* move us one more past the eop_desc for start of next pkt */
8413 		tx_buffer++;
8414 		tx_desc++;
8415 		i++;
8416 		if (unlikely(!i)) {
8417 			i -= tx_ring->count;
8418 			tx_buffer = tx_ring->tx_buffer_info;
8419 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8420 		}
8421 
8422 		/* issue prefetch for next Tx descriptor */
8423 		prefetch(tx_desc);
8424 
8425 		/* update budget accounting */
8426 		budget--;
8427 	} while (likely(budget));
8428 
8429 	netdev_tx_completed_queue(txring_txq(tx_ring),
8430 				  total_packets, total_bytes);
8431 	i += tx_ring->count;
8432 	tx_ring->next_to_clean = i;
8433 	u64_stats_update_begin(&tx_ring->tx_syncp);
8434 	tx_ring->tx_stats.bytes += total_bytes;
8435 	tx_ring->tx_stats.packets += total_packets;
8436 	u64_stats_update_end(&tx_ring->tx_syncp);
8437 	q_vector->tx.total_bytes += total_bytes;
8438 	q_vector->tx.total_packets += total_packets;
8439 
8440 	xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8441 	if (xsk_pool) {
8442 		if (xsk_frames)
8443 			xsk_tx_completed(xsk_pool, xsk_frames);
8444 		if (xsk_uses_need_wakeup(xsk_pool))
8445 			xsk_set_tx_need_wakeup(xsk_pool);
8446 
8447 		nq = txring_txq(tx_ring);
8448 		__netif_tx_lock(nq, cpu);
8449 		/* Avoid transmit queue timeout since we share it with the slow path */
8450 		txq_trans_cond_update(nq);
8451 		xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8452 		__netif_tx_unlock(nq);
8453 	}
8454 
8455 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8456 		struct e1000_hw *hw = &adapter->hw;
8457 
8458 		/* Detect a transmit hang in hardware, this serializes the
8459 		 * check with the clearing of time_stamp and movement of i
8460 		 */
8461 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8462 		if (tx_buffer->next_to_watch &&
8463 		    time_after(jiffies, tx_buffer->time_stamp +
8464 			       (adapter->tx_timeout_factor * HZ)) &&
8465 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8466 
8467 			/* detected Tx unit hang */
8468 			dev_err(tx_ring->dev,
8469 				"Detected Tx Unit Hang\n"
8470 				"  Tx Queue             <%d>\n"
8471 				"  TDH                  <%x>\n"
8472 				"  TDT                  <%x>\n"
8473 				"  next_to_use          <%x>\n"
8474 				"  next_to_clean        <%x>\n"
8475 				"buffer_info[next_to_clean]\n"
8476 				"  time_stamp           <%lx>\n"
8477 				"  next_to_watch        <%p>\n"
8478 				"  jiffies              <%lx>\n"
8479 				"  desc.status          <%x>\n",
8480 				tx_ring->queue_index,
8481 				rd32(E1000_TDH(tx_ring->reg_idx)),
8482 				readl(tx_ring->tail),
8483 				tx_ring->next_to_use,
8484 				tx_ring->next_to_clean,
8485 				tx_buffer->time_stamp,
8486 				tx_buffer->next_to_watch,
8487 				jiffies,
8488 				tx_buffer->next_to_watch->wb.status);
8489 			netif_stop_subqueue(tx_ring->netdev,
8490 					    tx_ring->queue_index);
8491 
8492 			/* we are about to reset, no point in enabling stuff */
8493 			return true;
8494 		}
8495 	}
8496 
8497 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8498 	if (unlikely(total_packets &&
8499 	    netif_carrier_ok(tx_ring->netdev) &&
8500 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8501 		/* Make sure that anybody stopping the queue after this
8502 		 * sees the new next_to_clean.
8503 		 */
8504 		smp_mb();
8505 		if (__netif_subqueue_stopped(tx_ring->netdev,
8506 					     tx_ring->queue_index) &&
8507 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8508 			netif_wake_subqueue(tx_ring->netdev,
8509 					    tx_ring->queue_index);
8510 
8511 			u64_stats_update_begin(&tx_ring->tx_syncp);
8512 			tx_ring->tx_stats.restart_queue++;
8513 			u64_stats_update_end(&tx_ring->tx_syncp);
8514 		}
8515 	}
8516 
8517 	return !!budget && xsk_xmit_done;
8518 }
8519 
8520 /**
8521  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8522  *  @rx_ring: rx descriptor ring to store buffers on
8523  *  @old_buff: donor buffer to have page reused
8524  *
8525  *  Synchronizes page for reuse by the adapter
8526  **/
8527 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8528 			      struct igb_rx_buffer *old_buff)
8529 {
8530 	struct igb_rx_buffer *new_buff;
8531 	u16 nta = rx_ring->next_to_alloc;
8532 
8533 	new_buff = &rx_ring->rx_buffer_info[nta];
8534 
8535 	/* update, and store next to alloc */
8536 	nta++;
8537 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8538 
8539 	/* Transfer page from old buffer to new buffer.
8540 	 * Move each member individually to avoid possible store
8541 	 * forwarding stalls.
8542 	 */
8543 	new_buff->dma		= old_buff->dma;
8544 	new_buff->page		= old_buff->page;
8545 	new_buff->page_offset	= old_buff->page_offset;
8546 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8547 }
8548 
8549 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8550 				  int rx_buf_pgcnt)
8551 {
8552 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8553 	struct page *page = rx_buffer->page;
8554 
8555 	/* avoid re-using remote and pfmemalloc pages */
8556 	if (!dev_page_is_reusable(page))
8557 		return false;
8558 
8559 #if (PAGE_SIZE < 8192)
8560 	/* if we are only owner of page we can reuse it */
8561 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8562 		return false;
8563 #else
8564 #define IGB_LAST_OFFSET \
8565 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8566 
8567 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8568 		return false;
8569 #endif
8570 
8571 	/* If we have drained the page fragment pool we need to update
8572 	 * the pagecnt_bias and page count so that we fully restock the
8573 	 * number of references the driver holds.
8574 	 */
8575 	if (unlikely(pagecnt_bias == 1)) {
8576 		page_ref_add(page, USHRT_MAX - 1);
8577 		rx_buffer->pagecnt_bias = USHRT_MAX;
8578 	}
8579 
8580 	return true;
8581 }
8582 
8583 /**
8584  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8585  *  @rx_ring: rx descriptor ring to transact packets on
8586  *  @rx_buffer: buffer containing page to add
8587  *  @skb: sk_buff to place the data into
8588  *  @size: size of buffer to be added
8589  *
8590  *  This function will add the data contained in rx_buffer->page to the skb.
8591  **/
8592 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8593 			    struct igb_rx_buffer *rx_buffer,
8594 			    struct sk_buff *skb,
8595 			    unsigned int size)
8596 {
8597 #if (PAGE_SIZE < 8192)
8598 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8599 #else
8600 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8601 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8602 				SKB_DATA_ALIGN(size);
8603 #endif
8604 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8605 			rx_buffer->page_offset, size, truesize);
8606 #if (PAGE_SIZE < 8192)
8607 	rx_buffer->page_offset ^= truesize;
8608 #else
8609 	rx_buffer->page_offset += truesize;
8610 #endif
8611 }
8612 
8613 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8614 					 struct igb_rx_buffer *rx_buffer,
8615 					 struct xdp_buff *xdp,
8616 					 ktime_t timestamp)
8617 {
8618 #if (PAGE_SIZE < 8192)
8619 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8620 #else
8621 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8622 					       xdp->data_hard_start);
8623 #endif
8624 	unsigned int size = xdp->data_end - xdp->data;
8625 	unsigned int headlen;
8626 	struct sk_buff *skb;
8627 
8628 	/* prefetch first cache line of first page */
8629 	net_prefetch(xdp->data);
8630 
8631 	/* allocate a skb to store the frags */
8632 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8633 	if (unlikely(!skb))
8634 		return NULL;
8635 
8636 	if (timestamp)
8637 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8638 
8639 	/* Determine available headroom for copy */
8640 	headlen = size;
8641 	if (headlen > IGB_RX_HDR_LEN)
8642 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8643 
8644 	/* align pull length to size of long to optimize memcpy performance */
8645 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8646 
8647 	/* update all of the pointers */
8648 	size -= headlen;
8649 	if (size) {
8650 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8651 				(xdp->data + headlen) - page_address(rx_buffer->page),
8652 				size, truesize);
8653 #if (PAGE_SIZE < 8192)
8654 		rx_buffer->page_offset ^= truesize;
8655 #else
8656 		rx_buffer->page_offset += truesize;
8657 #endif
8658 	} else {
8659 		rx_buffer->pagecnt_bias++;
8660 	}
8661 
8662 	return skb;
8663 }
8664 
8665 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8666 				     struct igb_rx_buffer *rx_buffer,
8667 				     struct xdp_buff *xdp,
8668 				     ktime_t timestamp)
8669 {
8670 #if (PAGE_SIZE < 8192)
8671 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8672 #else
8673 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8674 				SKB_DATA_ALIGN(xdp->data_end -
8675 					       xdp->data_hard_start);
8676 #endif
8677 	unsigned int metasize = xdp->data - xdp->data_meta;
8678 	struct sk_buff *skb;
8679 
8680 	/* prefetch first cache line of first page */
8681 	net_prefetch(xdp->data_meta);
8682 
8683 	/* build an skb around the page buffer */
8684 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8685 	if (unlikely(!skb))
8686 		return NULL;
8687 
8688 	/* update pointers within the skb to store the data */
8689 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8690 	__skb_put(skb, xdp->data_end - xdp->data);
8691 
8692 	if (metasize)
8693 		skb_metadata_set(skb, metasize);
8694 
8695 	if (timestamp)
8696 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8697 
8698 	/* update buffer offset */
8699 #if (PAGE_SIZE < 8192)
8700 	rx_buffer->page_offset ^= truesize;
8701 #else
8702 	rx_buffer->page_offset += truesize;
8703 #endif
8704 
8705 	return skb;
8706 }
8707 
8708 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8709 		       struct xdp_buff *xdp)
8710 {
8711 	int err, result = IGB_XDP_PASS;
8712 	struct bpf_prog *xdp_prog;
8713 	u32 act;
8714 
8715 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8716 
8717 	if (!xdp_prog)
8718 		goto xdp_out;
8719 
8720 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8721 
8722 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8723 	switch (act) {
8724 	case XDP_PASS:
8725 		break;
8726 	case XDP_TX:
8727 		result = igb_xdp_xmit_back(adapter, xdp);
8728 		if (result == IGB_XDP_CONSUMED)
8729 			goto out_failure;
8730 		break;
8731 	case XDP_REDIRECT:
8732 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8733 		if (err)
8734 			goto out_failure;
8735 		result = IGB_XDP_REDIR;
8736 		break;
8737 	default:
8738 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8739 		fallthrough;
8740 	case XDP_ABORTED:
8741 out_failure:
8742 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8743 		fallthrough;
8744 	case XDP_DROP:
8745 		result = IGB_XDP_CONSUMED;
8746 		break;
8747 	}
8748 xdp_out:
8749 	return result;
8750 }
8751 
8752 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8753 					  unsigned int size)
8754 {
8755 	unsigned int truesize;
8756 
8757 #if (PAGE_SIZE < 8192)
8758 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8759 #else
8760 	truesize = ring_uses_build_skb(rx_ring) ?
8761 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8762 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8763 		SKB_DATA_ALIGN(size);
8764 #endif
8765 	return truesize;
8766 }
8767 
8768 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8769 			       struct igb_rx_buffer *rx_buffer,
8770 			       unsigned int size)
8771 {
8772 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8773 #if (PAGE_SIZE < 8192)
8774 	rx_buffer->page_offset ^= truesize;
8775 #else
8776 	rx_buffer->page_offset += truesize;
8777 #endif
8778 }
8779 
8780 static inline void igb_rx_checksum(struct igb_ring *ring,
8781 				   union e1000_adv_rx_desc *rx_desc,
8782 				   struct sk_buff *skb)
8783 {
8784 	skb_checksum_none_assert(skb);
8785 
8786 	/* Ignore Checksum bit is set */
8787 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8788 		return;
8789 
8790 	/* Rx checksum disabled via ethtool */
8791 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8792 		return;
8793 
8794 	/* TCP/UDP checksum error bit is set */
8795 	if (igb_test_staterr(rx_desc,
8796 			     E1000_RXDEXT_STATERR_TCPE |
8797 			     E1000_RXDEXT_STATERR_IPE)) {
8798 		/* work around errata with sctp packets where the TCPE aka
8799 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8800 		 * packets, (aka let the stack check the crc32c)
8801 		 */
8802 		if (!((skb->len == 60) &&
8803 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8804 			u64_stats_update_begin(&ring->rx_syncp);
8805 			ring->rx_stats.csum_err++;
8806 			u64_stats_update_end(&ring->rx_syncp);
8807 		}
8808 		/* let the stack verify checksum errors */
8809 		return;
8810 	}
8811 	/* It must be a TCP or UDP packet with a valid checksum */
8812 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8813 				      E1000_RXD_STAT_UDPCS))
8814 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8815 
8816 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8817 		le32_to_cpu(rx_desc->wb.upper.status_error));
8818 }
8819 
8820 static inline void igb_rx_hash(struct igb_ring *ring,
8821 			       union e1000_adv_rx_desc *rx_desc,
8822 			       struct sk_buff *skb)
8823 {
8824 	if (ring->netdev->features & NETIF_F_RXHASH)
8825 		skb_set_hash(skb,
8826 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8827 			     PKT_HASH_TYPE_L3);
8828 }
8829 
8830 /**
8831  *  igb_is_non_eop - process handling of non-EOP buffers
8832  *  @rx_ring: Rx ring being processed
8833  *  @rx_desc: Rx descriptor for current buffer
8834  *
8835  *  This function updates next to clean.  If the buffer is an EOP buffer
8836  *  this function exits returning false, otherwise it will place the
8837  *  sk_buff in the next buffer to be chained and return true indicating
8838  *  that this is in fact a non-EOP buffer.
8839  **/
8840 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8841 			   union e1000_adv_rx_desc *rx_desc)
8842 {
8843 	u32 ntc = rx_ring->next_to_clean + 1;
8844 
8845 	/* fetch, update, and store next to clean */
8846 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8847 	rx_ring->next_to_clean = ntc;
8848 
8849 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8850 
8851 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8852 		return false;
8853 
8854 	return true;
8855 }
8856 
8857 /**
8858  *  igb_cleanup_headers - Correct corrupted or empty headers
8859  *  @rx_ring: rx descriptor ring packet is being transacted on
8860  *  @rx_desc: pointer to the EOP Rx descriptor
8861  *  @skb: pointer to current skb being fixed
8862  *
8863  *  Address the case where we are pulling data in on pages only
8864  *  and as such no data is present in the skb header.
8865  *
8866  *  In addition if skb is not at least 60 bytes we need to pad it so that
8867  *  it is large enough to qualify as a valid Ethernet frame.
8868  *
8869  *  Returns true if an error was encountered and skb was freed.
8870  **/
8871 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8872 				union e1000_adv_rx_desc *rx_desc,
8873 				struct sk_buff *skb)
8874 {
8875 	if (unlikely((igb_test_staterr(rx_desc,
8876 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8877 		struct net_device *netdev = rx_ring->netdev;
8878 		if (!(netdev->features & NETIF_F_RXALL)) {
8879 			dev_kfree_skb_any(skb);
8880 			return true;
8881 		}
8882 	}
8883 
8884 	/* if eth_skb_pad returns an error the skb was freed */
8885 	if (eth_skb_pad(skb))
8886 		return true;
8887 
8888 	return false;
8889 }
8890 
8891 /**
8892  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8893  *  @rx_ring: rx descriptor ring packet is being transacted on
8894  *  @rx_desc: pointer to the EOP Rx descriptor
8895  *  @skb: pointer to current skb being populated
8896  *
8897  *  This function checks the ring, descriptor, and packet information in
8898  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8899  *  other fields within the skb.
8900  **/
8901 void igb_process_skb_fields(struct igb_ring *rx_ring,
8902 			    union e1000_adv_rx_desc *rx_desc,
8903 			    struct sk_buff *skb)
8904 {
8905 	struct net_device *dev = rx_ring->netdev;
8906 
8907 	igb_rx_hash(rx_ring, rx_desc, skb);
8908 
8909 	igb_rx_checksum(rx_ring, rx_desc, skb);
8910 
8911 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8912 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8913 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8914 
8915 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8916 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8917 		u16 vid;
8918 
8919 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8920 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8921 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8922 		else
8923 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8924 
8925 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8926 	}
8927 
8928 	skb_record_rx_queue(skb, rx_ring->queue_index);
8929 
8930 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8931 }
8932 
8933 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8934 {
8935 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8936 }
8937 
8938 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8939 					       const unsigned int size, int *rx_buf_pgcnt)
8940 {
8941 	struct igb_rx_buffer *rx_buffer;
8942 
8943 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8944 	*rx_buf_pgcnt =
8945 #if (PAGE_SIZE < 8192)
8946 		page_count(rx_buffer->page);
8947 #else
8948 		0;
8949 #endif
8950 	prefetchw(rx_buffer->page);
8951 
8952 	/* we are reusing so sync this buffer for CPU use */
8953 	dma_sync_single_range_for_cpu(rx_ring->dev,
8954 				      rx_buffer->dma,
8955 				      rx_buffer->page_offset,
8956 				      size,
8957 				      DMA_FROM_DEVICE);
8958 
8959 	rx_buffer->pagecnt_bias--;
8960 
8961 	return rx_buffer;
8962 }
8963 
8964 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8965 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8966 {
8967 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8968 		/* hand second half of page back to the ring */
8969 		igb_reuse_rx_page(rx_ring, rx_buffer);
8970 	} else {
8971 		/* We are not reusing the buffer so unmap it and free
8972 		 * any references we are holding to it
8973 		 */
8974 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8975 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8976 				     IGB_RX_DMA_ATTR);
8977 		__page_frag_cache_drain(rx_buffer->page,
8978 					rx_buffer->pagecnt_bias);
8979 	}
8980 
8981 	/* clear contents of rx_buffer */
8982 	rx_buffer->page = NULL;
8983 }
8984 
8985 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8986 {
8987 	int cpu = smp_processor_id();
8988 	struct netdev_queue *nq;
8989 
8990 	if (status & IGB_XDP_REDIR)
8991 		xdp_do_flush();
8992 
8993 	if (status & IGB_XDP_TX) {
8994 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8995 
8996 		nq = txring_txq(tx_ring);
8997 		__netif_tx_lock(nq, cpu);
8998 		igb_xdp_ring_update_tail(tx_ring);
8999 		__netif_tx_unlock(nq);
9000 	}
9001 }
9002 
9003 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
9004 			 unsigned int bytes)
9005 {
9006 	struct igb_ring *ring = q_vector->rx.ring;
9007 
9008 	u64_stats_update_begin(&ring->rx_syncp);
9009 	ring->rx_stats.packets += packets;
9010 	ring->rx_stats.bytes += bytes;
9011 	u64_stats_update_end(&ring->rx_syncp);
9012 
9013 	q_vector->rx.total_packets += packets;
9014 	q_vector->rx.total_bytes += bytes;
9015 }
9016 
9017 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9018 {
9019 	unsigned int total_bytes = 0, total_packets = 0;
9020 	struct igb_adapter *adapter = q_vector->adapter;
9021 	struct igb_ring *rx_ring = q_vector->rx.ring;
9022 	u16 cleaned_count = igb_desc_unused(rx_ring);
9023 	struct sk_buff *skb = rx_ring->skb;
9024 	unsigned int xdp_xmit = 0;
9025 	struct xdp_buff xdp;
9026 	u32 frame_sz = 0;
9027 	int rx_buf_pgcnt;
9028 	int xdp_res = 0;
9029 
9030 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
9031 #if (PAGE_SIZE < 8192)
9032 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
9033 #endif
9034 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
9035 
9036 	while (likely(total_packets < budget)) {
9037 		union e1000_adv_rx_desc *rx_desc;
9038 		struct igb_rx_buffer *rx_buffer;
9039 		ktime_t timestamp = 0;
9040 		int pkt_offset = 0;
9041 		unsigned int size;
9042 		void *pktbuf;
9043 
9044 		/* return some buffers to hardware, one at a time is too slow */
9045 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
9046 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
9047 			cleaned_count = 0;
9048 		}
9049 
9050 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9051 		size = le16_to_cpu(rx_desc->wb.upper.length);
9052 		if (!size)
9053 			break;
9054 
9055 		/* This memory barrier is needed to keep us from reading
9056 		 * any other fields out of the rx_desc until we know the
9057 		 * descriptor has been written back
9058 		 */
9059 		dma_rmb();
9060 
9061 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9062 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9063 
9064 		/* pull rx packet timestamp if available and valid */
9065 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9066 			int ts_hdr_len;
9067 
9068 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9069 							 pktbuf, &timestamp);
9070 
9071 			pkt_offset += ts_hdr_len;
9072 			size -= ts_hdr_len;
9073 		}
9074 
9075 		/* retrieve a buffer from the ring */
9076 		if (!skb) {
9077 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9078 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9079 
9080 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9081 			xdp_buff_clear_frags_flag(&xdp);
9082 #if (PAGE_SIZE > 4096)
9083 			/* At larger PAGE_SIZE, frame_sz depend on len size */
9084 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9085 #endif
9086 			xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9087 		}
9088 
9089 		if (xdp_res) {
9090 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9091 				xdp_xmit |= xdp_res;
9092 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9093 			} else {
9094 				rx_buffer->pagecnt_bias++;
9095 			}
9096 			total_packets++;
9097 			total_bytes += size;
9098 		} else if (skb)
9099 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9100 		else if (ring_uses_build_skb(rx_ring))
9101 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9102 					    timestamp);
9103 		else
9104 			skb = igb_construct_skb(rx_ring, rx_buffer,
9105 						&xdp, timestamp);
9106 
9107 		/* exit if we failed to retrieve a buffer */
9108 		if (!xdp_res && !skb) {
9109 			rx_ring->rx_stats.alloc_failed++;
9110 			rx_buffer->pagecnt_bias++;
9111 			set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9112 			break;
9113 		}
9114 
9115 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9116 		cleaned_count++;
9117 
9118 		/* fetch next buffer in frame if non-eop */
9119 		if (igb_is_non_eop(rx_ring, rx_desc))
9120 			continue;
9121 
9122 		/* verify the packet layout is correct */
9123 		if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9124 			skb = NULL;
9125 			continue;
9126 		}
9127 
9128 		/* probably a little skewed due to removing CRC */
9129 		total_bytes += skb->len;
9130 
9131 		/* populate checksum, timestamp, VLAN, and protocol */
9132 		igb_process_skb_fields(rx_ring, rx_desc, skb);
9133 
9134 		napi_gro_receive(&q_vector->napi, skb);
9135 
9136 		/* reset skb pointer */
9137 		skb = NULL;
9138 
9139 		/* update budget accounting */
9140 		total_packets++;
9141 	}
9142 
9143 	/* place incomplete frames back on ring for completion */
9144 	rx_ring->skb = skb;
9145 
9146 	if (xdp_xmit)
9147 		igb_finalize_xdp(adapter, xdp_xmit);
9148 
9149 	igb_update_rx_stats(q_vector, total_packets, total_bytes);
9150 
9151 	if (cleaned_count)
9152 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9153 
9154 	return total_packets;
9155 }
9156 
9157 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9158 				  struct igb_rx_buffer *bi)
9159 {
9160 	struct page *page = bi->page;
9161 	dma_addr_t dma;
9162 
9163 	/* since we are recycling buffers we should seldom need to alloc */
9164 	if (likely(page))
9165 		return true;
9166 
9167 	/* alloc new page for storage */
9168 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9169 	if (unlikely(!page)) {
9170 		rx_ring->rx_stats.alloc_failed++;
9171 		set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9172 		return false;
9173 	}
9174 
9175 	/* map page for use */
9176 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9177 				 igb_rx_pg_size(rx_ring),
9178 				 DMA_FROM_DEVICE,
9179 				 IGB_RX_DMA_ATTR);
9180 
9181 	/* if mapping failed free memory back to system since
9182 	 * there isn't much point in holding memory we can't use
9183 	 */
9184 	if (dma_mapping_error(rx_ring->dev, dma)) {
9185 		__free_pages(page, igb_rx_pg_order(rx_ring));
9186 
9187 		rx_ring->rx_stats.alloc_failed++;
9188 		set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9189 		return false;
9190 	}
9191 
9192 	bi->dma = dma;
9193 	bi->page = page;
9194 	bi->page_offset = igb_rx_offset(rx_ring);
9195 	page_ref_add(page, USHRT_MAX - 1);
9196 	bi->pagecnt_bias = USHRT_MAX;
9197 
9198 	return true;
9199 }
9200 
9201 /**
9202  *  igb_alloc_rx_buffers - Replace used receive buffers
9203  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9204  *  @cleaned_count: count of buffers to allocate
9205  **/
9206 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9207 {
9208 	union e1000_adv_rx_desc *rx_desc;
9209 	struct igb_rx_buffer *bi;
9210 	u16 i = rx_ring->next_to_use;
9211 	u16 bufsz;
9212 
9213 	/* nothing to do */
9214 	if (!cleaned_count)
9215 		return;
9216 
9217 	rx_desc = IGB_RX_DESC(rx_ring, i);
9218 	bi = &rx_ring->rx_buffer_info[i];
9219 	i -= rx_ring->count;
9220 
9221 	bufsz = igb_rx_bufsz(rx_ring);
9222 
9223 	do {
9224 		if (!igb_alloc_mapped_page(rx_ring, bi))
9225 			break;
9226 
9227 		/* sync the buffer for use by the device */
9228 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9229 						 bi->page_offset, bufsz,
9230 						 DMA_FROM_DEVICE);
9231 
9232 		/* Refresh the desc even if buffer_addrs didn't change
9233 		 * because each write-back erases this info.
9234 		 */
9235 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9236 
9237 		rx_desc++;
9238 		bi++;
9239 		i++;
9240 		if (unlikely(!i)) {
9241 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9242 			bi = rx_ring->rx_buffer_info;
9243 			i -= rx_ring->count;
9244 		}
9245 
9246 		/* clear the length for the next_to_use descriptor */
9247 		rx_desc->wb.upper.length = 0;
9248 
9249 		cleaned_count--;
9250 	} while (cleaned_count);
9251 
9252 	i += rx_ring->count;
9253 
9254 	if (rx_ring->next_to_use != i) {
9255 		/* record the next descriptor to use */
9256 		rx_ring->next_to_use = i;
9257 
9258 		/* update next to alloc since we have filled the ring */
9259 		rx_ring->next_to_alloc = i;
9260 
9261 		/* Force memory writes to complete before letting h/w
9262 		 * know there are new descriptors to fetch.  (Only
9263 		 * applicable for weak-ordered memory model archs,
9264 		 * such as IA-64).
9265 		 */
9266 		dma_wmb();
9267 		writel(i, rx_ring->tail);
9268 	}
9269 }
9270 
9271 /**
9272  * igb_mii_ioctl -
9273  * @netdev: pointer to netdev struct
9274  * @ifr: interface structure
9275  * @cmd: ioctl command to execute
9276  **/
9277 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9278 {
9279 	struct igb_adapter *adapter = netdev_priv(netdev);
9280 	struct mii_ioctl_data *data = if_mii(ifr);
9281 
9282 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9283 		return -EOPNOTSUPP;
9284 
9285 	switch (cmd) {
9286 	case SIOCGMIIPHY:
9287 		data->phy_id = adapter->hw.phy.addr;
9288 		break;
9289 	case SIOCGMIIREG:
9290 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9291 				     &data->val_out))
9292 			return -EIO;
9293 		break;
9294 	case SIOCSMIIREG:
9295 		if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9296 				      data->val_in))
9297 			return -EIO;
9298 		break;
9299 	default:
9300 		return -EOPNOTSUPP;
9301 	}
9302 	return 0;
9303 }
9304 
9305 /**
9306  * igb_ioctl -
9307  * @netdev: pointer to netdev struct
9308  * @ifr: interface structure
9309  * @cmd: ioctl command to execute
9310  **/
9311 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9312 {
9313 	switch (cmd) {
9314 	case SIOCGMIIPHY:
9315 	case SIOCGMIIREG:
9316 	case SIOCSMIIREG:
9317 		return igb_mii_ioctl(netdev, ifr, cmd);
9318 	case SIOCGHWTSTAMP:
9319 		return igb_ptp_get_ts_config(netdev, ifr);
9320 	case SIOCSHWTSTAMP:
9321 		return igb_ptp_set_ts_config(netdev, ifr);
9322 	default:
9323 		return -EOPNOTSUPP;
9324 	}
9325 }
9326 
9327 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9328 {
9329 	struct igb_adapter *adapter = hw->back;
9330 
9331 	pci_read_config_word(adapter->pdev, reg, value);
9332 }
9333 
9334 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9335 {
9336 	struct igb_adapter *adapter = hw->back;
9337 
9338 	pci_write_config_word(adapter->pdev, reg, *value);
9339 }
9340 
9341 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9342 {
9343 	struct igb_adapter *adapter = hw->back;
9344 
9345 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9346 		return -E1000_ERR_CONFIG;
9347 
9348 	return 0;
9349 }
9350 
9351 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9352 {
9353 	struct igb_adapter *adapter = hw->back;
9354 
9355 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9356 		return -E1000_ERR_CONFIG;
9357 
9358 	return 0;
9359 }
9360 
9361 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9362 {
9363 	struct igb_adapter *adapter = netdev_priv(netdev);
9364 	struct e1000_hw *hw = &adapter->hw;
9365 	u32 ctrl, rctl;
9366 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9367 
9368 	if (enable) {
9369 		/* enable VLAN tag insert/strip */
9370 		ctrl = rd32(E1000_CTRL);
9371 		ctrl |= E1000_CTRL_VME;
9372 		wr32(E1000_CTRL, ctrl);
9373 
9374 		/* Disable CFI check */
9375 		rctl = rd32(E1000_RCTL);
9376 		rctl &= ~E1000_RCTL_CFIEN;
9377 		wr32(E1000_RCTL, rctl);
9378 	} else {
9379 		/* disable VLAN tag insert/strip */
9380 		ctrl = rd32(E1000_CTRL);
9381 		ctrl &= ~E1000_CTRL_VME;
9382 		wr32(E1000_CTRL, ctrl);
9383 	}
9384 
9385 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9386 }
9387 
9388 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9389 			       __be16 proto, u16 vid)
9390 {
9391 	struct igb_adapter *adapter = netdev_priv(netdev);
9392 	struct e1000_hw *hw = &adapter->hw;
9393 	int pf_id = adapter->vfs_allocated_count;
9394 
9395 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9396 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9397 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9398 
9399 	set_bit(vid, adapter->active_vlans);
9400 
9401 	return 0;
9402 }
9403 
9404 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9405 				__be16 proto, u16 vid)
9406 {
9407 	struct igb_adapter *adapter = netdev_priv(netdev);
9408 	int pf_id = adapter->vfs_allocated_count;
9409 	struct e1000_hw *hw = &adapter->hw;
9410 
9411 	/* remove VID from filter table */
9412 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9413 		igb_vfta_set(hw, vid, pf_id, false, true);
9414 
9415 	clear_bit(vid, adapter->active_vlans);
9416 
9417 	return 0;
9418 }
9419 
9420 static void igb_restore_vlan(struct igb_adapter *adapter)
9421 {
9422 	u16 vid = 1;
9423 
9424 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9425 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9426 
9427 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9428 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9429 }
9430 
9431 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9432 {
9433 	struct pci_dev *pdev = adapter->pdev;
9434 	struct e1000_mac_info *mac = &adapter->hw.mac;
9435 
9436 	mac->autoneg = 0;
9437 
9438 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9439 	 * for the switch() below to work
9440 	 */
9441 	if ((spd & 1) || (dplx & ~1))
9442 		goto err_inval;
9443 
9444 	/* Fiber NIC's only allow 1000 gbps Full duplex
9445 	 * and 100Mbps Full duplex for 100baseFx sfp
9446 	 */
9447 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9448 		switch (spd + dplx) {
9449 		case SPEED_10 + DUPLEX_HALF:
9450 		case SPEED_10 + DUPLEX_FULL:
9451 		case SPEED_100 + DUPLEX_HALF:
9452 			goto err_inval;
9453 		default:
9454 			break;
9455 		}
9456 	}
9457 
9458 	switch (spd + dplx) {
9459 	case SPEED_10 + DUPLEX_HALF:
9460 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9461 		break;
9462 	case SPEED_10 + DUPLEX_FULL:
9463 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9464 		break;
9465 	case SPEED_100 + DUPLEX_HALF:
9466 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9467 		break;
9468 	case SPEED_100 + DUPLEX_FULL:
9469 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9470 		break;
9471 	case SPEED_1000 + DUPLEX_FULL:
9472 		mac->autoneg = 1;
9473 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9474 		break;
9475 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9476 	default:
9477 		goto err_inval;
9478 	}
9479 
9480 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9481 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9482 
9483 	return 0;
9484 
9485 err_inval:
9486 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9487 	return -EINVAL;
9488 }
9489 
9490 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9491 			  bool runtime)
9492 {
9493 	struct net_device *netdev = pci_get_drvdata(pdev);
9494 	struct igb_adapter *adapter = netdev_priv(netdev);
9495 	struct e1000_hw *hw = &adapter->hw;
9496 	u32 ctrl, rctl, status;
9497 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9498 	bool wake;
9499 
9500 	rtnl_lock();
9501 	netif_device_detach(netdev);
9502 
9503 	if (netif_running(netdev))
9504 		__igb_close(netdev, true);
9505 
9506 	igb_ptp_suspend(adapter);
9507 
9508 	igb_clear_interrupt_scheme(adapter);
9509 	rtnl_unlock();
9510 
9511 	status = rd32(E1000_STATUS);
9512 	if (status & E1000_STATUS_LU)
9513 		wufc &= ~E1000_WUFC_LNKC;
9514 
9515 	if (wufc) {
9516 		igb_setup_rctl(adapter);
9517 		igb_set_rx_mode(netdev);
9518 
9519 		/* turn on all-multi mode if wake on multicast is enabled */
9520 		if (wufc & E1000_WUFC_MC) {
9521 			rctl = rd32(E1000_RCTL);
9522 			rctl |= E1000_RCTL_MPE;
9523 			wr32(E1000_RCTL, rctl);
9524 		}
9525 
9526 		ctrl = rd32(E1000_CTRL);
9527 		ctrl |= E1000_CTRL_ADVD3WUC;
9528 		wr32(E1000_CTRL, ctrl);
9529 
9530 		/* Allow time for pending master requests to run */
9531 		igb_disable_pcie_master(hw);
9532 
9533 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9534 		wr32(E1000_WUFC, wufc);
9535 	} else {
9536 		wr32(E1000_WUC, 0);
9537 		wr32(E1000_WUFC, 0);
9538 	}
9539 
9540 	wake = wufc || adapter->en_mng_pt;
9541 	if (!wake)
9542 		igb_power_down_link(adapter);
9543 	else
9544 		igb_power_up_link(adapter);
9545 
9546 	if (enable_wake)
9547 		*enable_wake = wake;
9548 
9549 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9550 	 * would have already happened in close and is redundant.
9551 	 */
9552 	igb_release_hw_control(adapter);
9553 
9554 	pci_disable_device(pdev);
9555 
9556 	return 0;
9557 }
9558 
9559 static void igb_deliver_wake_packet(struct net_device *netdev)
9560 {
9561 	struct igb_adapter *adapter = netdev_priv(netdev);
9562 	struct e1000_hw *hw = &adapter->hw;
9563 	struct sk_buff *skb;
9564 	u32 wupl;
9565 
9566 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9567 
9568 	/* WUPM stores only the first 128 bytes of the wake packet.
9569 	 * Read the packet only if we have the whole thing.
9570 	 */
9571 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9572 		return;
9573 
9574 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9575 	if (!skb)
9576 		return;
9577 
9578 	skb_put(skb, wupl);
9579 
9580 	/* Ensure reads are 32-bit aligned */
9581 	wupl = roundup(wupl, 4);
9582 
9583 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9584 
9585 	skb->protocol = eth_type_trans(skb, netdev);
9586 	netif_rx(skb);
9587 }
9588 
9589 static int igb_suspend(struct device *dev)
9590 {
9591 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9592 }
9593 
9594 static int __igb_resume(struct device *dev, bool rpm)
9595 {
9596 	struct pci_dev *pdev = to_pci_dev(dev);
9597 	struct net_device *netdev = pci_get_drvdata(pdev);
9598 	struct igb_adapter *adapter = netdev_priv(netdev);
9599 	struct e1000_hw *hw = &adapter->hw;
9600 	u32 err, val;
9601 
9602 	pci_set_power_state(pdev, PCI_D0);
9603 	pci_restore_state(pdev);
9604 	pci_save_state(pdev);
9605 
9606 	if (!pci_device_is_present(pdev))
9607 		return -ENODEV;
9608 	err = pci_enable_device_mem(pdev);
9609 	if (err) {
9610 		dev_err(&pdev->dev,
9611 			"igb: Cannot enable PCI device from suspend\n");
9612 		return err;
9613 	}
9614 	pci_set_master(pdev);
9615 
9616 	pci_enable_wake(pdev, PCI_D3hot, 0);
9617 	pci_enable_wake(pdev, PCI_D3cold, 0);
9618 
9619 	if (igb_init_interrupt_scheme(adapter, true)) {
9620 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9621 		return -ENOMEM;
9622 	}
9623 
9624 	igb_reset(adapter);
9625 
9626 	/* let the f/w know that the h/w is now under the control of the
9627 	 * driver.
9628 	 */
9629 	igb_get_hw_control(adapter);
9630 
9631 	val = rd32(E1000_WUS);
9632 	if (val & WAKE_PKT_WUS)
9633 		igb_deliver_wake_packet(netdev);
9634 
9635 	wr32(E1000_WUS, ~0);
9636 
9637 	if (!rpm)
9638 		rtnl_lock();
9639 	if (!err && netif_running(netdev))
9640 		err = __igb_open(netdev, true);
9641 
9642 	if (!err)
9643 		netif_device_attach(netdev);
9644 	if (!rpm)
9645 		rtnl_unlock();
9646 
9647 	return err;
9648 }
9649 
9650 static int igb_resume(struct device *dev)
9651 {
9652 	return __igb_resume(dev, false);
9653 }
9654 
9655 static int igb_runtime_idle(struct device *dev)
9656 {
9657 	struct net_device *netdev = dev_get_drvdata(dev);
9658 	struct igb_adapter *adapter = netdev_priv(netdev);
9659 
9660 	if (!igb_has_link(adapter))
9661 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9662 
9663 	return -EBUSY;
9664 }
9665 
9666 static int igb_runtime_suspend(struct device *dev)
9667 {
9668 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9669 }
9670 
9671 static int igb_runtime_resume(struct device *dev)
9672 {
9673 	return __igb_resume(dev, true);
9674 }
9675 
9676 static void igb_shutdown(struct pci_dev *pdev)
9677 {
9678 	bool wake;
9679 
9680 	__igb_shutdown(pdev, &wake, 0);
9681 
9682 	if (system_state == SYSTEM_POWER_OFF) {
9683 		pci_wake_from_d3(pdev, wake);
9684 		pci_set_power_state(pdev, PCI_D3hot);
9685 	}
9686 }
9687 
9688 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9689 {
9690 #ifdef CONFIG_PCI_IOV
9691 	int err;
9692 
9693 	if (num_vfs == 0) {
9694 		return igb_disable_sriov(dev, true);
9695 	} else {
9696 		err = igb_enable_sriov(dev, num_vfs, true);
9697 		return err ? err : num_vfs;
9698 	}
9699 #endif
9700 	return 0;
9701 }
9702 
9703 /**
9704  *  igb_io_error_detected - called when PCI error is detected
9705  *  @pdev: Pointer to PCI device
9706  *  @state: The current pci connection state
9707  *
9708  *  This function is called after a PCI bus error affecting
9709  *  this device has been detected.
9710  **/
9711 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9712 					      pci_channel_state_t state)
9713 {
9714 	struct net_device *netdev = pci_get_drvdata(pdev);
9715 	struct igb_adapter *adapter = netdev_priv(netdev);
9716 
9717 	if (state == pci_channel_io_normal) {
9718 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9719 		return PCI_ERS_RESULT_CAN_RECOVER;
9720 	}
9721 
9722 	netif_device_detach(netdev);
9723 
9724 	if (state == pci_channel_io_perm_failure)
9725 		return PCI_ERS_RESULT_DISCONNECT;
9726 
9727 	rtnl_lock();
9728 	if (netif_running(netdev))
9729 		igb_down(adapter);
9730 	rtnl_unlock();
9731 
9732 	pci_disable_device(pdev);
9733 
9734 	/* Request a slot reset. */
9735 	return PCI_ERS_RESULT_NEED_RESET;
9736 }
9737 
9738 /**
9739  *  igb_io_slot_reset - called after the pci bus has been reset.
9740  *  @pdev: Pointer to PCI device
9741  *
9742  *  Restart the card from scratch, as if from a cold-boot. Implementation
9743  *  resembles the first-half of the __igb_resume routine.
9744  **/
9745 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9746 {
9747 	struct net_device *netdev = pci_get_drvdata(pdev);
9748 	struct igb_adapter *adapter = netdev_priv(netdev);
9749 	struct e1000_hw *hw = &adapter->hw;
9750 	pci_ers_result_t result;
9751 
9752 	if (pci_enable_device_mem(pdev)) {
9753 		dev_err(&pdev->dev,
9754 			"Cannot re-enable PCI device after reset.\n");
9755 		result = PCI_ERS_RESULT_DISCONNECT;
9756 	} else {
9757 		pci_set_master(pdev);
9758 		pci_restore_state(pdev);
9759 		pci_save_state(pdev);
9760 
9761 		pci_enable_wake(pdev, PCI_D3hot, 0);
9762 		pci_enable_wake(pdev, PCI_D3cold, 0);
9763 
9764 		/* In case of PCI error, adapter lose its HW address
9765 		 * so we should re-assign it here.
9766 		 */
9767 		hw->hw_addr = adapter->io_addr;
9768 
9769 		igb_reset(adapter);
9770 		wr32(E1000_WUS, ~0);
9771 		result = PCI_ERS_RESULT_RECOVERED;
9772 	}
9773 
9774 	return result;
9775 }
9776 
9777 /**
9778  *  igb_io_resume - called when traffic can start flowing again.
9779  *  @pdev: Pointer to PCI device
9780  *
9781  *  This callback is called when the error recovery driver tells us that
9782  *  its OK to resume normal operation. Implementation resembles the
9783  *  second-half of the __igb_resume routine.
9784  */
9785 static void igb_io_resume(struct pci_dev *pdev)
9786 {
9787 	struct net_device *netdev = pci_get_drvdata(pdev);
9788 	struct igb_adapter *adapter = netdev_priv(netdev);
9789 
9790 	rtnl_lock();
9791 	if (netif_running(netdev)) {
9792 		if (!test_bit(__IGB_DOWN, &adapter->state)) {
9793 			dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9794 			rtnl_unlock();
9795 			return;
9796 		}
9797 
9798 		if (igb_up(adapter)) {
9799 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9800 			rtnl_unlock();
9801 			return;
9802 		}
9803 	}
9804 	rtnl_unlock();
9805 
9806 	netif_device_attach(netdev);
9807 
9808 	/* let the f/w know that the h/w is now under the control of the
9809 	 * driver.
9810 	 */
9811 	igb_get_hw_control(adapter);
9812 }
9813 
9814 /**
9815  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9816  *  @adapter: Pointer to adapter structure
9817  *  @index: Index of the RAR entry which need to be synced with MAC table
9818  **/
9819 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9820 {
9821 	struct e1000_hw *hw = &adapter->hw;
9822 	u32 rar_low, rar_high;
9823 	u8 *addr = adapter->mac_table[index].addr;
9824 
9825 	/* HW expects these to be in network order when they are plugged
9826 	 * into the registers which are little endian.  In order to guarantee
9827 	 * that ordering we need to do an leXX_to_cpup here in order to be
9828 	 * ready for the byteswap that occurs with writel
9829 	 */
9830 	rar_low = le32_to_cpup((__le32 *)(addr));
9831 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9832 
9833 	/* Indicate to hardware the Address is Valid. */
9834 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9835 		if (is_valid_ether_addr(addr))
9836 			rar_high |= E1000_RAH_AV;
9837 
9838 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9839 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9840 
9841 		switch (hw->mac.type) {
9842 		case e1000_82575:
9843 		case e1000_i210:
9844 			if (adapter->mac_table[index].state &
9845 			    IGB_MAC_STATE_QUEUE_STEERING)
9846 				rar_high |= E1000_RAH_QSEL_ENABLE;
9847 
9848 			rar_high |= E1000_RAH_POOL_1 *
9849 				    adapter->mac_table[index].queue;
9850 			break;
9851 		default:
9852 			rar_high |= E1000_RAH_POOL_1 <<
9853 				    adapter->mac_table[index].queue;
9854 			break;
9855 		}
9856 	}
9857 
9858 	wr32(E1000_RAL(index), rar_low);
9859 	wrfl();
9860 	wr32(E1000_RAH(index), rar_high);
9861 	wrfl();
9862 }
9863 
9864 static int igb_set_vf_mac(struct igb_adapter *adapter,
9865 			  int vf, unsigned char *mac_addr)
9866 {
9867 	struct e1000_hw *hw = &adapter->hw;
9868 	/* VF MAC addresses start at end of receive addresses and moves
9869 	 * towards the first, as a result a collision should not be possible
9870 	 */
9871 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9872 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9873 
9874 	ether_addr_copy(vf_mac_addr, mac_addr);
9875 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9876 	adapter->mac_table[rar_entry].queue = vf;
9877 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9878 	igb_rar_set_index(adapter, rar_entry);
9879 
9880 	return 0;
9881 }
9882 
9883 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9884 {
9885 	struct igb_adapter *adapter = netdev_priv(netdev);
9886 
9887 	if (vf >= adapter->vfs_allocated_count)
9888 		return -EINVAL;
9889 
9890 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9891 	 * flag and allows to overwrite the MAC via VF netdev.  This
9892 	 * is necessary to allow libvirt a way to restore the original
9893 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9894 	 * down a VM.
9895 	 */
9896 	if (is_zero_ether_addr(mac)) {
9897 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9898 		dev_info(&adapter->pdev->dev,
9899 			 "remove administratively set MAC on VF %d\n",
9900 			 vf);
9901 	} else if (is_valid_ether_addr(mac)) {
9902 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9903 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9904 			 mac, vf);
9905 		dev_info(&adapter->pdev->dev,
9906 			 "Reload the VF driver to make this change effective.");
9907 		/* Generate additional warning if PF is down */
9908 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9909 			dev_warn(&adapter->pdev->dev,
9910 				 "The VF MAC address has been set, but the PF device is not up.\n");
9911 			dev_warn(&adapter->pdev->dev,
9912 				 "Bring the PF device up before attempting to use the VF device.\n");
9913 		}
9914 	} else {
9915 		return -EINVAL;
9916 	}
9917 	return igb_set_vf_mac(adapter, vf, mac);
9918 }
9919 
9920 static int igb_link_mbps(int internal_link_speed)
9921 {
9922 	switch (internal_link_speed) {
9923 	case SPEED_100:
9924 		return 100;
9925 	case SPEED_1000:
9926 		return 1000;
9927 	default:
9928 		return 0;
9929 	}
9930 }
9931 
9932 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9933 				  int link_speed)
9934 {
9935 	int rf_dec, rf_int;
9936 	u32 bcnrc_val;
9937 
9938 	if (tx_rate != 0) {
9939 		/* Calculate the rate factor values to set */
9940 		rf_int = link_speed / tx_rate;
9941 		rf_dec = (link_speed - (rf_int * tx_rate));
9942 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9943 			 tx_rate;
9944 
9945 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9946 		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9947 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9948 	} else {
9949 		bcnrc_val = 0;
9950 	}
9951 
9952 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9953 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9954 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9955 	 */
9956 	wr32(E1000_RTTBCNRM, 0x14);
9957 	wr32(E1000_RTTBCNRC, bcnrc_val);
9958 }
9959 
9960 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9961 {
9962 	int actual_link_speed, i;
9963 	bool reset_rate = false;
9964 
9965 	/* VF TX rate limit was not set or not supported */
9966 	if ((adapter->vf_rate_link_speed == 0) ||
9967 	    (adapter->hw.mac.type != e1000_82576))
9968 		return;
9969 
9970 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9971 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9972 		reset_rate = true;
9973 		adapter->vf_rate_link_speed = 0;
9974 		dev_info(&adapter->pdev->dev,
9975 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9976 	}
9977 
9978 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9979 		if (reset_rate)
9980 			adapter->vf_data[i].tx_rate = 0;
9981 
9982 		igb_set_vf_rate_limit(&adapter->hw, i,
9983 				      adapter->vf_data[i].tx_rate,
9984 				      actual_link_speed);
9985 	}
9986 }
9987 
9988 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9989 			     int min_tx_rate, int max_tx_rate)
9990 {
9991 	struct igb_adapter *adapter = netdev_priv(netdev);
9992 	struct e1000_hw *hw = &adapter->hw;
9993 	int actual_link_speed;
9994 
9995 	if (hw->mac.type != e1000_82576)
9996 		return -EOPNOTSUPP;
9997 
9998 	if (min_tx_rate)
9999 		return -EINVAL;
10000 
10001 	actual_link_speed = igb_link_mbps(adapter->link_speed);
10002 	if ((vf >= adapter->vfs_allocated_count) ||
10003 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
10004 	    (max_tx_rate < 0) ||
10005 	    (max_tx_rate > actual_link_speed))
10006 		return -EINVAL;
10007 
10008 	adapter->vf_rate_link_speed = actual_link_speed;
10009 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
10010 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
10011 
10012 	return 0;
10013 }
10014 
10015 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
10016 				   bool setting)
10017 {
10018 	struct igb_adapter *adapter = netdev_priv(netdev);
10019 	struct e1000_hw *hw = &adapter->hw;
10020 	u32 reg_val, reg_offset;
10021 
10022 	if (!adapter->vfs_allocated_count)
10023 		return -EOPNOTSUPP;
10024 
10025 	if (vf >= adapter->vfs_allocated_count)
10026 		return -EINVAL;
10027 
10028 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
10029 	reg_val = rd32(reg_offset);
10030 	if (setting)
10031 		reg_val |= (BIT(vf) |
10032 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10033 	else
10034 		reg_val &= ~(BIT(vf) |
10035 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10036 	wr32(reg_offset, reg_val);
10037 
10038 	adapter->vf_data[vf].spoofchk_enabled = setting;
10039 	return 0;
10040 }
10041 
10042 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
10043 {
10044 	struct igb_adapter *adapter = netdev_priv(netdev);
10045 
10046 	if (vf >= adapter->vfs_allocated_count)
10047 		return -EINVAL;
10048 	if (adapter->vf_data[vf].trusted == setting)
10049 		return 0;
10050 
10051 	adapter->vf_data[vf].trusted = setting;
10052 
10053 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
10054 		 vf, setting ? "" : "not ");
10055 	return 0;
10056 }
10057 
10058 static int igb_ndo_get_vf_config(struct net_device *netdev,
10059 				 int vf, struct ifla_vf_info *ivi)
10060 {
10061 	struct igb_adapter *adapter = netdev_priv(netdev);
10062 	if (vf >= adapter->vfs_allocated_count)
10063 		return -EINVAL;
10064 	ivi->vf = vf;
10065 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10066 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10067 	ivi->min_tx_rate = 0;
10068 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
10069 	ivi->qos = adapter->vf_data[vf].pf_qos;
10070 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10071 	ivi->trusted = adapter->vf_data[vf].trusted;
10072 	return 0;
10073 }
10074 
10075 static void igb_vmm_control(struct igb_adapter *adapter)
10076 {
10077 	struct e1000_hw *hw = &adapter->hw;
10078 	u32 reg;
10079 
10080 	switch (hw->mac.type) {
10081 	case e1000_82575:
10082 	case e1000_i210:
10083 	case e1000_i211:
10084 	case e1000_i354:
10085 	default:
10086 		/* replication is not supported for 82575 */
10087 		return;
10088 	case e1000_82576:
10089 		/* notify HW that the MAC is adding vlan tags */
10090 		reg = rd32(E1000_DTXCTL);
10091 		reg |= E1000_DTXCTL_VLAN_ADDED;
10092 		wr32(E1000_DTXCTL, reg);
10093 		fallthrough;
10094 	case e1000_82580:
10095 		/* enable replication vlan tag stripping */
10096 		reg = rd32(E1000_RPLOLR);
10097 		reg |= E1000_RPLOLR_STRVLAN;
10098 		wr32(E1000_RPLOLR, reg);
10099 		fallthrough;
10100 	case e1000_i350:
10101 		/* none of the above registers are supported by i350 */
10102 		break;
10103 	}
10104 
10105 	if (adapter->vfs_allocated_count) {
10106 		igb_vmdq_set_loopback_pf(hw, true);
10107 		igb_vmdq_set_replication_pf(hw, true);
10108 		igb_vmdq_set_anti_spoofing_pf(hw, true,
10109 					      adapter->vfs_allocated_count);
10110 	} else {
10111 		igb_vmdq_set_loopback_pf(hw, false);
10112 		igb_vmdq_set_replication_pf(hw, false);
10113 	}
10114 }
10115 
10116 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10117 {
10118 	struct e1000_hw *hw = &adapter->hw;
10119 	u32 dmac_thr;
10120 	u16 hwm;
10121 	u32 reg;
10122 
10123 	if (hw->mac.type > e1000_82580) {
10124 		if (adapter->flags & IGB_FLAG_DMAC) {
10125 			/* force threshold to 0. */
10126 			wr32(E1000_DMCTXTH, 0);
10127 
10128 			/* DMA Coalescing high water mark needs to be greater
10129 			 * than the Rx threshold. Set hwm to PBA - max frame
10130 			 * size in 16B units, capping it at PBA - 6KB.
10131 			 */
10132 			hwm = 64 * (pba - 6);
10133 			reg = rd32(E1000_FCRTC);
10134 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10135 			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10136 			wr32(E1000_FCRTC, reg);
10137 
10138 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10139 			 * frame size, capping it at PBA - 10KB.
10140 			 */
10141 			dmac_thr = pba - 10;
10142 			reg = rd32(E1000_DMACR);
10143 			reg &= ~E1000_DMACR_DMACTHR_MASK;
10144 			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10145 
10146 			/* transition to L0x or L1 if available..*/
10147 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10148 
10149 			/* watchdog timer= +-1000 usec in 32usec intervals */
10150 			reg |= (1000 >> 5);
10151 
10152 			/* Disable BMC-to-OS Watchdog Enable */
10153 			if (hw->mac.type != e1000_i354)
10154 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10155 			wr32(E1000_DMACR, reg);
10156 
10157 			/* no lower threshold to disable
10158 			 * coalescing(smart fifb)-UTRESH=0
10159 			 */
10160 			wr32(E1000_DMCRTRH, 0);
10161 
10162 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10163 
10164 			wr32(E1000_DMCTLX, reg);
10165 
10166 			/* free space in tx packet buffer to wake from
10167 			 * DMA coal
10168 			 */
10169 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10170 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10171 		}
10172 
10173 		if (hw->mac.type >= e1000_i210 ||
10174 		    (adapter->flags & IGB_FLAG_DMAC)) {
10175 			reg = rd32(E1000_PCIEMISC);
10176 			reg |= E1000_PCIEMISC_LX_DECISION;
10177 			wr32(E1000_PCIEMISC, reg);
10178 		} /* endif adapter->dmac is not disabled */
10179 	} else if (hw->mac.type == e1000_82580) {
10180 		u32 reg = rd32(E1000_PCIEMISC);
10181 
10182 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10183 		wr32(E1000_DMACR, 0);
10184 	}
10185 }
10186 
10187 /**
10188  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10189  *  @hw: pointer to hardware structure
10190  *  @byte_offset: byte offset to read
10191  *  @dev_addr: device address
10192  *  @data: value read
10193  *
10194  *  Performs byte read operation over I2C interface at
10195  *  a specified device address.
10196  **/
10197 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10198 		      u8 dev_addr, u8 *data)
10199 {
10200 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10201 	struct i2c_client *this_client = adapter->i2c_client;
10202 	s32 status;
10203 	u16 swfw_mask = 0;
10204 
10205 	if (!this_client)
10206 		return E1000_ERR_I2C;
10207 
10208 	swfw_mask = E1000_SWFW_PHY0_SM;
10209 
10210 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10211 		return E1000_ERR_SWFW_SYNC;
10212 
10213 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10214 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10215 
10216 	if (status < 0)
10217 		return E1000_ERR_I2C;
10218 	else {
10219 		*data = status;
10220 		return 0;
10221 	}
10222 }
10223 
10224 /**
10225  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10226  *  @hw: pointer to hardware structure
10227  *  @byte_offset: byte offset to write
10228  *  @dev_addr: device address
10229  *  @data: value to write
10230  *
10231  *  Performs byte write operation over I2C interface at
10232  *  a specified device address.
10233  **/
10234 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10235 		       u8 dev_addr, u8 data)
10236 {
10237 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10238 	struct i2c_client *this_client = adapter->i2c_client;
10239 	s32 status;
10240 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10241 
10242 	if (!this_client)
10243 		return E1000_ERR_I2C;
10244 
10245 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10246 		return E1000_ERR_SWFW_SYNC;
10247 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10248 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10249 
10250 	if (status)
10251 		return E1000_ERR_I2C;
10252 	else
10253 		return 0;
10254 
10255 }
10256 
10257 int igb_reinit_queues(struct igb_adapter *adapter)
10258 {
10259 	struct net_device *netdev = adapter->netdev;
10260 	struct pci_dev *pdev = adapter->pdev;
10261 	int err = 0;
10262 
10263 	if (netif_running(netdev))
10264 		igb_close(netdev);
10265 
10266 	igb_reset_interrupt_capability(adapter);
10267 
10268 	if (igb_init_interrupt_scheme(adapter, true)) {
10269 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10270 		return -ENOMEM;
10271 	}
10272 
10273 	if (netif_running(netdev))
10274 		err = igb_open(netdev);
10275 
10276 	return err;
10277 }
10278 
10279 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10280 {
10281 	struct igb_nfc_filter *rule;
10282 
10283 	spin_lock(&adapter->nfc_lock);
10284 
10285 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10286 		igb_erase_filter(adapter, rule);
10287 
10288 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10289 		igb_erase_filter(adapter, rule);
10290 
10291 	spin_unlock(&adapter->nfc_lock);
10292 }
10293 
10294 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10295 {
10296 	struct igb_nfc_filter *rule;
10297 
10298 	spin_lock(&adapter->nfc_lock);
10299 
10300 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10301 		igb_add_filter(adapter, rule);
10302 
10303 	spin_unlock(&adapter->nfc_lock);
10304 }
10305 
10306 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10307 			  igb_runtime_suspend, igb_runtime_resume,
10308 			  igb_runtime_idle);
10309 
10310 static struct pci_driver igb_driver = {
10311 	.name     = igb_driver_name,
10312 	.id_table = igb_pci_tbl,
10313 	.probe    = igb_probe,
10314 	.remove   = igb_remove,
10315 	.driver.pm = pm_ptr(&igb_pm_ops),
10316 	.shutdown = igb_shutdown,
10317 	.sriov_configure = igb_pci_sriov_configure,
10318 	.err_handler = &igb_err_handler
10319 };
10320 
10321 /* igb_main.c */
10322