xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 1fc31357ad194fb98691f3d122bcd47e59239e83)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59 
60 #define MAJ 5
61 #define MIN 4
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 				"Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 				"Copyright (c) 2007-2014 Intel Corporation.";
71 
72 static const struct e1000_info *igb_info_tbl[] = {
73 	[board_82575] = &e1000_82575_info,
74 };
75 
76 static const struct pci_device_id igb_pci_tbl[] = {
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 	/* required last entry */
113 	{0, }
114 };
115 
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117 
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 					  struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 			  netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 				   bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 				 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181 
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 static int igb_disable_sriov(struct pci_dev *dev);
186 static int igb_pci_disable_sriov(struct pci_dev *dev);
187 #endif
188 
189 #ifdef CONFIG_PM
190 #ifdef CONFIG_PM_SLEEP
191 static int igb_suspend(struct device *);
192 #endif
193 static int igb_resume(struct device *);
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 static const struct dev_pm_ops igb_pm_ops = {
198 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 			igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 	.notifier_call	= igb_notify_dca,
209 	.next		= NULL,
210 	.priority	= 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222 
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 		     pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227 
228 static const struct pci_error_handlers igb_err_handler = {
229 	.error_detected = igb_io_error_detected,
230 	.slot_reset = igb_io_slot_reset,
231 	.resume = igb_io_resume,
232 };
233 
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235 
236 static struct pci_driver igb_driver = {
237 	.name     = igb_driver_name,
238 	.id_table = igb_pci_tbl,
239 	.probe    = igb_probe,
240 	.remove   = igb_remove,
241 #ifdef CONFIG_PM
242 	.driver.pm = &igb_pm_ops,
243 #endif
244 	.shutdown = igb_shutdown,
245 	.sriov_configure = igb_pci_sriov_configure,
246 	.err_handler = &igb_err_handler
247 };
248 
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253 
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258 
259 struct igb_reg_info {
260 	u32 ofs;
261 	char *name;
262 };
263 
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265 
266 	/* General Registers */
267 	{E1000_CTRL, "CTRL"},
268 	{E1000_STATUS, "STATUS"},
269 	{E1000_CTRL_EXT, "CTRL_EXT"},
270 
271 	/* Interrupt Registers */
272 	{E1000_ICR, "ICR"},
273 
274 	/* RX Registers */
275 	{E1000_RCTL, "RCTL"},
276 	{E1000_RDLEN(0), "RDLEN"},
277 	{E1000_RDH(0), "RDH"},
278 	{E1000_RDT(0), "RDT"},
279 	{E1000_RXDCTL(0), "RXDCTL"},
280 	{E1000_RDBAL(0), "RDBAL"},
281 	{E1000_RDBAH(0), "RDBAH"},
282 
283 	/* TX Registers */
284 	{E1000_TCTL, "TCTL"},
285 	{E1000_TDBAL(0), "TDBAL"},
286 	{E1000_TDBAH(0), "TDBAH"},
287 	{E1000_TDLEN(0), "TDLEN"},
288 	{E1000_TDH(0), "TDH"},
289 	{E1000_TDT(0), "TDT"},
290 	{E1000_TXDCTL(0), "TXDCTL"},
291 	{E1000_TDFH, "TDFH"},
292 	{E1000_TDFT, "TDFT"},
293 	{E1000_TDFHS, "TDFHS"},
294 	{E1000_TDFPC, "TDFPC"},
295 
296 	/* List Terminator */
297 	{}
298 };
299 
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303 	int n = 0;
304 	char rname[16];
305 	u32 regs[8];
306 
307 	switch (reginfo->ofs) {
308 	case E1000_RDLEN(0):
309 		for (n = 0; n < 4; n++)
310 			regs[n] = rd32(E1000_RDLEN(n));
311 		break;
312 	case E1000_RDH(0):
313 		for (n = 0; n < 4; n++)
314 			regs[n] = rd32(E1000_RDH(n));
315 		break;
316 	case E1000_RDT(0):
317 		for (n = 0; n < 4; n++)
318 			regs[n] = rd32(E1000_RDT(n));
319 		break;
320 	case E1000_RXDCTL(0):
321 		for (n = 0; n < 4; n++)
322 			regs[n] = rd32(E1000_RXDCTL(n));
323 		break;
324 	case E1000_RDBAL(0):
325 		for (n = 0; n < 4; n++)
326 			regs[n] = rd32(E1000_RDBAL(n));
327 		break;
328 	case E1000_RDBAH(0):
329 		for (n = 0; n < 4; n++)
330 			regs[n] = rd32(E1000_RDBAH(n));
331 		break;
332 	case E1000_TDBAL(0):
333 		for (n = 0; n < 4; n++)
334 			regs[n] = rd32(E1000_RDBAL(n));
335 		break;
336 	case E1000_TDBAH(0):
337 		for (n = 0; n < 4; n++)
338 			regs[n] = rd32(E1000_TDBAH(n));
339 		break;
340 	case E1000_TDLEN(0):
341 		for (n = 0; n < 4; n++)
342 			regs[n] = rd32(E1000_TDLEN(n));
343 		break;
344 	case E1000_TDH(0):
345 		for (n = 0; n < 4; n++)
346 			regs[n] = rd32(E1000_TDH(n));
347 		break;
348 	case E1000_TDT(0):
349 		for (n = 0; n < 4; n++)
350 			regs[n] = rd32(E1000_TDT(n));
351 		break;
352 	case E1000_TXDCTL(0):
353 		for (n = 0; n < 4; n++)
354 			regs[n] = rd32(E1000_TXDCTL(n));
355 		break;
356 	default:
357 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358 		return;
359 	}
360 
361 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 		regs[2], regs[3]);
364 }
365 
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369 	struct net_device *netdev = adapter->netdev;
370 	struct e1000_hw *hw = &adapter->hw;
371 	struct igb_reg_info *reginfo;
372 	struct igb_ring *tx_ring;
373 	union e1000_adv_tx_desc *tx_desc;
374 	struct my_u0 { u64 a; u64 b; } *u0;
375 	struct igb_ring *rx_ring;
376 	union e1000_adv_rx_desc *rx_desc;
377 	u32 staterr;
378 	u16 i, n;
379 
380 	if (!netif_msg_hw(adapter))
381 		return;
382 
383 	/* Print netdevice Info */
384 	if (netdev) {
385 		dev_info(&adapter->pdev->dev, "Net device Info\n");
386 		pr_info("Device Name     state            trans_start      last_rx\n");
387 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 			netdev->state, dev_trans_start(netdev), netdev->last_rx);
389 	}
390 
391 	/* Print Registers */
392 	dev_info(&adapter->pdev->dev, "Register Dump\n");
393 	pr_info(" Register Name   Value\n");
394 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 	     reginfo->name; reginfo++) {
396 		igb_regdump(hw, reginfo);
397 	}
398 
399 	/* Print TX Ring Summary */
400 	if (!netdev || !netif_running(netdev))
401 		goto exit;
402 
403 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405 	for (n = 0; n < adapter->num_tx_queues; n++) {
406 		struct igb_tx_buffer *buffer_info;
407 		tx_ring = adapter->tx_ring[n];
408 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 			(u64)dma_unmap_addr(buffer_info, dma),
412 			dma_unmap_len(buffer_info, len),
413 			buffer_info->next_to_watch,
414 			(u64)buffer_info->time_stamp);
415 	}
416 
417 	/* Print TX Rings */
418 	if (!netif_msg_tx_done(adapter))
419 		goto rx_ring_summary;
420 
421 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422 
423 	/* Transmit Descriptor Formats
424 	 *
425 	 * Advanced Transmit Descriptor
426 	 *   +--------------------------------------------------------------+
427 	 * 0 |         Buffer Address [63:0]                                |
428 	 *   +--------------------------------------------------------------+
429 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430 	 *   +--------------------------------------------------------------+
431 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432 	 */
433 
434 	for (n = 0; n < adapter->num_tx_queues; n++) {
435 		tx_ring = adapter->tx_ring[n];
436 		pr_info("------------------------------------\n");
437 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 		pr_info("------------------------------------\n");
439 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440 
441 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442 			const char *next_desc;
443 			struct igb_tx_buffer *buffer_info;
444 			tx_desc = IGB_TX_DESC(tx_ring, i);
445 			buffer_info = &tx_ring->tx_buffer_info[i];
446 			u0 = (struct my_u0 *)tx_desc;
447 			if (i == tx_ring->next_to_use &&
448 			    i == tx_ring->next_to_clean)
449 				next_desc = " NTC/U";
450 			else if (i == tx_ring->next_to_use)
451 				next_desc = " NTU";
452 			else if (i == tx_ring->next_to_clean)
453 				next_desc = " NTC";
454 			else
455 				next_desc = "";
456 
457 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458 				i, le64_to_cpu(u0->a),
459 				le64_to_cpu(u0->b),
460 				(u64)dma_unmap_addr(buffer_info, dma),
461 				dma_unmap_len(buffer_info, len),
462 				buffer_info->next_to_watch,
463 				(u64)buffer_info->time_stamp,
464 				buffer_info->skb, next_desc);
465 
466 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
467 				print_hex_dump(KERN_INFO, "",
468 					DUMP_PREFIX_ADDRESS,
469 					16, 1, buffer_info->skb->data,
470 					dma_unmap_len(buffer_info, len),
471 					true);
472 		}
473 	}
474 
475 	/* Print RX Rings Summary */
476 rx_ring_summary:
477 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478 	pr_info("Queue [NTU] [NTC]\n");
479 	for (n = 0; n < adapter->num_rx_queues; n++) {
480 		rx_ring = adapter->rx_ring[n];
481 		pr_info(" %5d %5X %5X\n",
482 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
483 	}
484 
485 	/* Print RX Rings */
486 	if (!netif_msg_rx_status(adapter))
487 		goto exit;
488 
489 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490 
491 	/* Advanced Receive Descriptor (Read) Format
492 	 *    63                                           1        0
493 	 *    +-----------------------------------------------------+
494 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495 	 *    +----------------------------------------------+------+
496 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
497 	 *    +-----------------------------------------------------+
498 	 *
499 	 *
500 	 * Advanced Receive Descriptor (Write-Back) Format
501 	 *
502 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
503 	 *   +------------------------------------------------------+
504 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505 	 *   | Checksum   Ident  |   |           |    | Type | Type |
506 	 *   +------------------------------------------------------+
507 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 	 *   +------------------------------------------------------+
509 	 *   63       48 47    32 31            20 19               0
510 	 */
511 
512 	for (n = 0; n < adapter->num_rx_queues; n++) {
513 		rx_ring = adapter->rx_ring[n];
514 		pr_info("------------------------------------\n");
515 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 		pr_info("------------------------------------\n");
517 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519 
520 		for (i = 0; i < rx_ring->count; i++) {
521 			const char *next_desc;
522 			struct igb_rx_buffer *buffer_info;
523 			buffer_info = &rx_ring->rx_buffer_info[i];
524 			rx_desc = IGB_RX_DESC(rx_ring, i);
525 			u0 = (struct my_u0 *)rx_desc;
526 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527 
528 			if (i == rx_ring->next_to_use)
529 				next_desc = " NTU";
530 			else if (i == rx_ring->next_to_clean)
531 				next_desc = " NTC";
532 			else
533 				next_desc = "";
534 
535 			if (staterr & E1000_RXD_STAT_DD) {
536 				/* Descriptor Done */
537 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538 					"RWB", i,
539 					le64_to_cpu(u0->a),
540 					le64_to_cpu(u0->b),
541 					next_desc);
542 			} else {
543 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544 					"R  ", i,
545 					le64_to_cpu(u0->a),
546 					le64_to_cpu(u0->b),
547 					(u64)buffer_info->dma,
548 					next_desc);
549 
550 				if (netif_msg_pktdata(adapter) &&
551 				    buffer_info->dma && buffer_info->page) {
552 					print_hex_dump(KERN_INFO, "",
553 					  DUMP_PREFIX_ADDRESS,
554 					  16, 1,
555 					  page_address(buffer_info->page) +
556 						      buffer_info->page_offset,
557 					  IGB_RX_BUFSZ, true);
558 				}
559 			}
560 		}
561 	}
562 
563 exit:
564 	return;
565 }
566 
567 /**
568  *  igb_get_i2c_data - Reads the I2C SDA data bit
569  *  @hw: pointer to hardware structure
570  *  @i2cctl: Current value of I2CCTL register
571  *
572  *  Returns the I2C data bit value
573  **/
574 static int igb_get_i2c_data(void *data)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	return !!(i2cctl & E1000_I2C_DATA_IN);
581 }
582 
583 /**
584  *  igb_set_i2c_data - Sets the I2C data bit
585  *  @data: pointer to hardware structure
586  *  @state: I2C data value (0 or 1) to set
587  *
588  *  Sets the I2C data bit
589  **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592 	struct igb_adapter *adapter = (struct igb_adapter *)data;
593 	struct e1000_hw *hw = &adapter->hw;
594 	s32 i2cctl = rd32(E1000_I2CPARAMS);
595 
596 	if (state)
597 		i2cctl |= E1000_I2C_DATA_OUT;
598 	else
599 		i2cctl &= ~E1000_I2C_DATA_OUT;
600 
601 	i2cctl &= ~E1000_I2C_DATA_OE_N;
602 	i2cctl |= E1000_I2C_CLK_OE_N;
603 	wr32(E1000_I2CPARAMS, i2cctl);
604 	wrfl();
605 
606 }
607 
608 /**
609  *  igb_set_i2c_clk - Sets the I2C SCL clock
610  *  @data: pointer to hardware structure
611  *  @state: state to set clock
612  *
613  *  Sets the I2C clock line to state
614  **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617 	struct igb_adapter *adapter = (struct igb_adapter *)data;
618 	struct e1000_hw *hw = &adapter->hw;
619 	s32 i2cctl = rd32(E1000_I2CPARAMS);
620 
621 	if (state) {
622 		i2cctl |= E1000_I2C_CLK_OUT;
623 		i2cctl &= ~E1000_I2C_CLK_OE_N;
624 	} else {
625 		i2cctl &= ~E1000_I2C_CLK_OUT;
626 		i2cctl &= ~E1000_I2C_CLK_OE_N;
627 	}
628 	wr32(E1000_I2CPARAMS, i2cctl);
629 	wrfl();
630 }
631 
632 /**
633  *  igb_get_i2c_clk - Gets the I2C SCL clock state
634  *  @data: pointer to hardware structure
635  *
636  *  Gets the I2C clock state
637  **/
638 static int igb_get_i2c_clk(void *data)
639 {
640 	struct igb_adapter *adapter = (struct igb_adapter *)data;
641 	struct e1000_hw *hw = &adapter->hw;
642 	s32 i2cctl = rd32(E1000_I2CPARAMS);
643 
644 	return !!(i2cctl & E1000_I2C_CLK_IN);
645 }
646 
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648 	.setsda		= igb_set_i2c_data,
649 	.setscl		= igb_set_i2c_clk,
650 	.getsda		= igb_get_i2c_data,
651 	.getscl		= igb_get_i2c_clk,
652 	.udelay		= 5,
653 	.timeout	= 20,
654 };
655 
656 /**
657  *  igb_get_hw_dev - return device
658  *  @hw: pointer to hardware structure
659  *
660  *  used by hardware layer to print debugging information
661  **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664 	struct igb_adapter *adapter = hw->back;
665 	return adapter->netdev;
666 }
667 
668 /**
669  *  igb_init_module - Driver Registration Routine
670  *
671  *  igb_init_module is the first routine called when the driver is
672  *  loaded. All it does is register with the PCI subsystem.
673  **/
674 static int __init igb_init_module(void)
675 {
676 	int ret;
677 
678 	pr_info("%s - version %s\n",
679 	       igb_driver_string, igb_driver_version);
680 	pr_info("%s\n", igb_copyright);
681 
682 #ifdef CONFIG_IGB_DCA
683 	dca_register_notify(&dca_notifier);
684 #endif
685 	ret = pci_register_driver(&igb_driver);
686 	return ret;
687 }
688 
689 module_init(igb_init_module);
690 
691 /**
692  *  igb_exit_module - Driver Exit Cleanup Routine
693  *
694  *  igb_exit_module is called just before the driver is removed
695  *  from memory.
696  **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700 	dca_unregister_notify(&dca_notifier);
701 #endif
702 	pci_unregister_driver(&igb_driver);
703 }
704 
705 module_exit(igb_exit_module);
706 
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709  *  igb_cache_ring_register - Descriptor ring to register mapping
710  *  @adapter: board private structure to initialize
711  *
712  *  Once we know the feature-set enabled for the device, we'll cache
713  *  the register offset the descriptor ring is assigned to.
714  **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717 	int i = 0, j = 0;
718 	u32 rbase_offset = adapter->vfs_allocated_count;
719 
720 	switch (adapter->hw.mac.type) {
721 	case e1000_82576:
722 		/* The queues are allocated for virtualization such that VF 0
723 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 		 * In order to avoid collision we start at the first free queue
725 		 * and continue consuming queues in the same sequence
726 		 */
727 		if (adapter->vfs_allocated_count) {
728 			for (; i < adapter->rss_queues; i++)
729 				adapter->rx_ring[i]->reg_idx = rbase_offset +
730 							       Q_IDX_82576(i);
731 		}
732 		/* Fall through */
733 	case e1000_82575:
734 	case e1000_82580:
735 	case e1000_i350:
736 	case e1000_i354:
737 	case e1000_i210:
738 	case e1000_i211:
739 		/* Fall through */
740 	default:
741 		for (; i < adapter->num_rx_queues; i++)
742 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
743 		for (; j < adapter->num_tx_queues; j++)
744 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
745 		break;
746 	}
747 }
748 
749 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750 {
751 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753 	u32 value = 0;
754 
755 	if (E1000_REMOVED(hw_addr))
756 		return ~value;
757 
758 	value = readl(&hw_addr[reg]);
759 
760 	/* reads should not return all F's */
761 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762 		struct net_device *netdev = igb->netdev;
763 		hw->hw_addr = NULL;
764 		netif_device_detach(netdev);
765 		netdev_err(netdev, "PCIe link lost, device now detached\n");
766 	}
767 
768 	return value;
769 }
770 
771 /**
772  *  igb_write_ivar - configure ivar for given MSI-X vector
773  *  @hw: pointer to the HW structure
774  *  @msix_vector: vector number we are allocating to a given ring
775  *  @index: row index of IVAR register to write within IVAR table
776  *  @offset: column offset of in IVAR, should be multiple of 8
777  *
778  *  This function is intended to handle the writing of the IVAR register
779  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
780  *  each containing an cause allocation for an Rx and Tx ring, and a
781  *  variable number of rows depending on the number of queues supported.
782  **/
783 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784 			   int index, int offset)
785 {
786 	u32 ivar = array_rd32(E1000_IVAR0, index);
787 
788 	/* clear any bits that are currently set */
789 	ivar &= ~((u32)0xFF << offset);
790 
791 	/* write vector and valid bit */
792 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793 
794 	array_wr32(E1000_IVAR0, index, ivar);
795 }
796 
797 #define IGB_N0_QUEUE -1
798 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
799 {
800 	struct igb_adapter *adapter = q_vector->adapter;
801 	struct e1000_hw *hw = &adapter->hw;
802 	int rx_queue = IGB_N0_QUEUE;
803 	int tx_queue = IGB_N0_QUEUE;
804 	u32 msixbm = 0;
805 
806 	if (q_vector->rx.ring)
807 		rx_queue = q_vector->rx.ring->reg_idx;
808 	if (q_vector->tx.ring)
809 		tx_queue = q_vector->tx.ring->reg_idx;
810 
811 	switch (hw->mac.type) {
812 	case e1000_82575:
813 		/* The 82575 assigns vectors using a bitmask, which matches the
814 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
815 		 * or more queues to a vector, we write the appropriate bits
816 		 * into the MSIXBM register for that vector.
817 		 */
818 		if (rx_queue > IGB_N0_QUEUE)
819 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820 		if (tx_queue > IGB_N0_QUEUE)
821 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
823 			msixbm |= E1000_EIMS_OTHER;
824 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825 		q_vector->eims_value = msixbm;
826 		break;
827 	case e1000_82576:
828 		/* 82576 uses a table that essentially consists of 2 columns
829 		 * with 8 rows.  The ordering is column-major so we use the
830 		 * lower 3 bits as the row index, and the 4th bit as the
831 		 * column offset.
832 		 */
833 		if (rx_queue > IGB_N0_QUEUE)
834 			igb_write_ivar(hw, msix_vector,
835 				       rx_queue & 0x7,
836 				       (rx_queue & 0x8) << 1);
837 		if (tx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       tx_queue & 0x7,
840 				       ((tx_queue & 0x8) << 1) + 8);
841 		q_vector->eims_value = BIT(msix_vector);
842 		break;
843 	case e1000_82580:
844 	case e1000_i350:
845 	case e1000_i354:
846 	case e1000_i210:
847 	case e1000_i211:
848 		/* On 82580 and newer adapters the scheme is similar to 82576
849 		 * however instead of ordering column-major we have things
850 		 * ordered row-major.  So we traverse the table by using
851 		 * bit 0 as the column offset, and the remaining bits as the
852 		 * row index.
853 		 */
854 		if (rx_queue > IGB_N0_QUEUE)
855 			igb_write_ivar(hw, msix_vector,
856 				       rx_queue >> 1,
857 				       (rx_queue & 0x1) << 4);
858 		if (tx_queue > IGB_N0_QUEUE)
859 			igb_write_ivar(hw, msix_vector,
860 				       tx_queue >> 1,
861 				       ((tx_queue & 0x1) << 4) + 8);
862 		q_vector->eims_value = BIT(msix_vector);
863 		break;
864 	default:
865 		BUG();
866 		break;
867 	}
868 
869 	/* add q_vector eims value to global eims_enable_mask */
870 	adapter->eims_enable_mask |= q_vector->eims_value;
871 
872 	/* configure q_vector to set itr on first interrupt */
873 	q_vector->set_itr = 1;
874 }
875 
876 /**
877  *  igb_configure_msix - Configure MSI-X hardware
878  *  @adapter: board private structure to initialize
879  *
880  *  igb_configure_msix sets up the hardware to properly
881  *  generate MSI-X interrupts.
882  **/
883 static void igb_configure_msix(struct igb_adapter *adapter)
884 {
885 	u32 tmp;
886 	int i, vector = 0;
887 	struct e1000_hw *hw = &adapter->hw;
888 
889 	adapter->eims_enable_mask = 0;
890 
891 	/* set vector for other causes, i.e. link changes */
892 	switch (hw->mac.type) {
893 	case e1000_82575:
894 		tmp = rd32(E1000_CTRL_EXT);
895 		/* enable MSI-X PBA support*/
896 		tmp |= E1000_CTRL_EXT_PBA_CLR;
897 
898 		/* Auto-Mask interrupts upon ICR read. */
899 		tmp |= E1000_CTRL_EXT_EIAME;
900 		tmp |= E1000_CTRL_EXT_IRCA;
901 
902 		wr32(E1000_CTRL_EXT, tmp);
903 
904 		/* enable msix_other interrupt */
905 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
906 		adapter->eims_other = E1000_EIMS_OTHER;
907 
908 		break;
909 
910 	case e1000_82576:
911 	case e1000_82580:
912 	case e1000_i350:
913 	case e1000_i354:
914 	case e1000_i210:
915 	case e1000_i211:
916 		/* Turn on MSI-X capability first, or our settings
917 		 * won't stick.  And it will take days to debug.
918 		 */
919 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
920 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
921 		     E1000_GPIE_NSICR);
922 
923 		/* enable msix_other interrupt */
924 		adapter->eims_other = BIT(vector);
925 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
926 
927 		wr32(E1000_IVAR_MISC, tmp);
928 		break;
929 	default:
930 		/* do nothing, since nothing else supports MSI-X */
931 		break;
932 	} /* switch (hw->mac.type) */
933 
934 	adapter->eims_enable_mask |= adapter->eims_other;
935 
936 	for (i = 0; i < adapter->num_q_vectors; i++)
937 		igb_assign_vector(adapter->q_vector[i], vector++);
938 
939 	wrfl();
940 }
941 
942 /**
943  *  igb_request_msix - Initialize MSI-X interrupts
944  *  @adapter: board private structure to initialize
945  *
946  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
947  *  kernel.
948  **/
949 static int igb_request_msix(struct igb_adapter *adapter)
950 {
951 	struct net_device *netdev = adapter->netdev;
952 	int i, err = 0, vector = 0, free_vector = 0;
953 
954 	err = request_irq(adapter->msix_entries[vector].vector,
955 			  igb_msix_other, 0, netdev->name, adapter);
956 	if (err)
957 		goto err_out;
958 
959 	for (i = 0; i < adapter->num_q_vectors; i++) {
960 		struct igb_q_vector *q_vector = adapter->q_vector[i];
961 
962 		vector++;
963 
964 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
965 
966 		if (q_vector->rx.ring && q_vector->tx.ring)
967 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
968 				q_vector->rx.ring->queue_index);
969 		else if (q_vector->tx.ring)
970 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
971 				q_vector->tx.ring->queue_index);
972 		else if (q_vector->rx.ring)
973 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
974 				q_vector->rx.ring->queue_index);
975 		else
976 			sprintf(q_vector->name, "%s-unused", netdev->name);
977 
978 		err = request_irq(adapter->msix_entries[vector].vector,
979 				  igb_msix_ring, 0, q_vector->name,
980 				  q_vector);
981 		if (err)
982 			goto err_free;
983 	}
984 
985 	igb_configure_msix(adapter);
986 	return 0;
987 
988 err_free:
989 	/* free already assigned IRQs */
990 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991 
992 	vector--;
993 	for (i = 0; i < vector; i++) {
994 		free_irq(adapter->msix_entries[free_vector++].vector,
995 			 adapter->q_vector[i]);
996 	}
997 err_out:
998 	return err;
999 }
1000 
1001 /**
1002  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1003  *  @adapter: board private structure to initialize
1004  *  @v_idx: Index of vector to be freed
1005  *
1006  *  This function frees the memory allocated to the q_vector.
1007  **/
1008 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009 {
1010 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011 
1012 	adapter->q_vector[v_idx] = NULL;
1013 
1014 	/* igb_get_stats64() might access the rings on this vector,
1015 	 * we must wait a grace period before freeing it.
1016 	 */
1017 	if (q_vector)
1018 		kfree_rcu(q_vector, rcu);
1019 }
1020 
1021 /**
1022  *  igb_reset_q_vector - Reset config for interrupt vector
1023  *  @adapter: board private structure to initialize
1024  *  @v_idx: Index of vector to be reset
1025  *
1026  *  If NAPI is enabled it will delete any references to the
1027  *  NAPI struct. This is preparation for igb_free_q_vector.
1028  **/
1029 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030 {
1031 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032 
1033 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1034 	 * allocated. So, q_vector is NULL so we should stop here.
1035 	 */
1036 	if (!q_vector)
1037 		return;
1038 
1039 	if (q_vector->tx.ring)
1040 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041 
1042 	if (q_vector->rx.ring)
1043 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1044 
1045 	netif_napi_del(&q_vector->napi);
1046 
1047 }
1048 
1049 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050 {
1051 	int v_idx = adapter->num_q_vectors;
1052 
1053 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1054 		pci_disable_msix(adapter->pdev);
1055 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1056 		pci_disable_msi(adapter->pdev);
1057 
1058 	while (v_idx--)
1059 		igb_reset_q_vector(adapter, v_idx);
1060 }
1061 
1062 /**
1063  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1064  *  @adapter: board private structure to initialize
1065  *
1066  *  This function frees the memory allocated to the q_vectors.  In addition if
1067  *  NAPI is enabled it will delete any references to the NAPI struct prior
1068  *  to freeing the q_vector.
1069  **/
1070 static void igb_free_q_vectors(struct igb_adapter *adapter)
1071 {
1072 	int v_idx = adapter->num_q_vectors;
1073 
1074 	adapter->num_tx_queues = 0;
1075 	adapter->num_rx_queues = 0;
1076 	adapter->num_q_vectors = 0;
1077 
1078 	while (v_idx--) {
1079 		igb_reset_q_vector(adapter, v_idx);
1080 		igb_free_q_vector(adapter, v_idx);
1081 	}
1082 }
1083 
1084 /**
1085  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086  *  @adapter: board private structure to initialize
1087  *
1088  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1089  *  MSI-X interrupts allocated.
1090  */
1091 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092 {
1093 	igb_free_q_vectors(adapter);
1094 	igb_reset_interrupt_capability(adapter);
1095 }
1096 
1097 /**
1098  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1099  *  @adapter: board private structure to initialize
1100  *  @msix: boolean value of MSIX capability
1101  *
1102  *  Attempt to configure interrupts using the best available
1103  *  capabilities of the hardware and kernel.
1104  **/
1105 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1106 {
1107 	int err;
1108 	int numvecs, i;
1109 
1110 	if (!msix)
1111 		goto msi_only;
1112 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1113 
1114 	/* Number of supported queues. */
1115 	adapter->num_rx_queues = adapter->rss_queues;
1116 	if (adapter->vfs_allocated_count)
1117 		adapter->num_tx_queues = 1;
1118 	else
1119 		adapter->num_tx_queues = adapter->rss_queues;
1120 
1121 	/* start with one vector for every Rx queue */
1122 	numvecs = adapter->num_rx_queues;
1123 
1124 	/* if Tx handler is separate add 1 for every Tx queue */
1125 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126 		numvecs += adapter->num_tx_queues;
1127 
1128 	/* store the number of vectors reserved for queues */
1129 	adapter->num_q_vectors = numvecs;
1130 
1131 	/* add 1 vector for link status interrupts */
1132 	numvecs++;
1133 	for (i = 0; i < numvecs; i++)
1134 		adapter->msix_entries[i].entry = i;
1135 
1136 	err = pci_enable_msix_range(adapter->pdev,
1137 				    adapter->msix_entries,
1138 				    numvecs,
1139 				    numvecs);
1140 	if (err > 0)
1141 		return;
1142 
1143 	igb_reset_interrupt_capability(adapter);
1144 
1145 	/* If we can't do MSI-X, try MSI */
1146 msi_only:
1147 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1148 #ifdef CONFIG_PCI_IOV
1149 	/* disable SR-IOV for non MSI-X configurations */
1150 	if (adapter->vf_data) {
1151 		struct e1000_hw *hw = &adapter->hw;
1152 		/* disable iov and allow time for transactions to clear */
1153 		pci_disable_sriov(adapter->pdev);
1154 		msleep(500);
1155 
1156 		kfree(adapter->vf_data);
1157 		adapter->vf_data = NULL;
1158 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1159 		wrfl();
1160 		msleep(100);
1161 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162 	}
1163 #endif
1164 	adapter->vfs_allocated_count = 0;
1165 	adapter->rss_queues = 1;
1166 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1167 	adapter->num_rx_queues = 1;
1168 	adapter->num_tx_queues = 1;
1169 	adapter->num_q_vectors = 1;
1170 	if (!pci_enable_msi(adapter->pdev))
1171 		adapter->flags |= IGB_FLAG_HAS_MSI;
1172 }
1173 
1174 static void igb_add_ring(struct igb_ring *ring,
1175 			 struct igb_ring_container *head)
1176 {
1177 	head->ring = ring;
1178 	head->count++;
1179 }
1180 
1181 /**
1182  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183  *  @adapter: board private structure to initialize
1184  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1185  *  @v_idx: index of vector in adapter struct
1186  *  @txr_count: total number of Tx rings to allocate
1187  *  @txr_idx: index of first Tx ring to allocate
1188  *  @rxr_count: total number of Rx rings to allocate
1189  *  @rxr_idx: index of first Rx ring to allocate
1190  *
1191  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1192  **/
1193 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194 			      int v_count, int v_idx,
1195 			      int txr_count, int txr_idx,
1196 			      int rxr_count, int rxr_idx)
1197 {
1198 	struct igb_q_vector *q_vector;
1199 	struct igb_ring *ring;
1200 	int ring_count, size;
1201 
1202 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203 	if (txr_count > 1 || rxr_count > 1)
1204 		return -ENOMEM;
1205 
1206 	ring_count = txr_count + rxr_count;
1207 	size = sizeof(struct igb_q_vector) +
1208 	       (sizeof(struct igb_ring) * ring_count);
1209 
1210 	/* allocate q_vector and rings */
1211 	q_vector = adapter->q_vector[v_idx];
1212 	if (!q_vector) {
1213 		q_vector = kzalloc(size, GFP_KERNEL);
1214 	} else if (size > ksize(q_vector)) {
1215 		kfree_rcu(q_vector, rcu);
1216 		q_vector = kzalloc(size, GFP_KERNEL);
1217 	} else {
1218 		memset(q_vector, 0, size);
1219 	}
1220 	if (!q_vector)
1221 		return -ENOMEM;
1222 
1223 	/* initialize NAPI */
1224 	netif_napi_add(adapter->netdev, &q_vector->napi,
1225 		       igb_poll, 64);
1226 
1227 	/* tie q_vector and adapter together */
1228 	adapter->q_vector[v_idx] = q_vector;
1229 	q_vector->adapter = adapter;
1230 
1231 	/* initialize work limits */
1232 	q_vector->tx.work_limit = adapter->tx_work_limit;
1233 
1234 	/* initialize ITR configuration */
1235 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1236 	q_vector->itr_val = IGB_START_ITR;
1237 
1238 	/* initialize pointer to rings */
1239 	ring = q_vector->ring;
1240 
1241 	/* intialize ITR */
1242 	if (rxr_count) {
1243 		/* rx or rx/tx vector */
1244 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245 			q_vector->itr_val = adapter->rx_itr_setting;
1246 	} else {
1247 		/* tx only vector */
1248 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249 			q_vector->itr_val = adapter->tx_itr_setting;
1250 	}
1251 
1252 	if (txr_count) {
1253 		/* assign generic ring traits */
1254 		ring->dev = &adapter->pdev->dev;
1255 		ring->netdev = adapter->netdev;
1256 
1257 		/* configure backlink on ring */
1258 		ring->q_vector = q_vector;
1259 
1260 		/* update q_vector Tx values */
1261 		igb_add_ring(ring, &q_vector->tx);
1262 
1263 		/* For 82575, context index must be unique per ring. */
1264 		if (adapter->hw.mac.type == e1000_82575)
1265 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266 
1267 		/* apply Tx specific ring traits */
1268 		ring->count = adapter->tx_ring_count;
1269 		ring->queue_index = txr_idx;
1270 
1271 		u64_stats_init(&ring->tx_syncp);
1272 		u64_stats_init(&ring->tx_syncp2);
1273 
1274 		/* assign ring to adapter */
1275 		adapter->tx_ring[txr_idx] = ring;
1276 
1277 		/* push pointer to next ring */
1278 		ring++;
1279 	}
1280 
1281 	if (rxr_count) {
1282 		/* assign generic ring traits */
1283 		ring->dev = &adapter->pdev->dev;
1284 		ring->netdev = adapter->netdev;
1285 
1286 		/* configure backlink on ring */
1287 		ring->q_vector = q_vector;
1288 
1289 		/* update q_vector Rx values */
1290 		igb_add_ring(ring, &q_vector->rx);
1291 
1292 		/* set flag indicating ring supports SCTP checksum offload */
1293 		if (adapter->hw.mac.type >= e1000_82576)
1294 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295 
1296 		/* On i350, i354, i210, and i211, loopback VLAN packets
1297 		 * have the tag byte-swapped.
1298 		 */
1299 		if (adapter->hw.mac.type >= e1000_i350)
1300 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301 
1302 		/* apply Rx specific ring traits */
1303 		ring->count = adapter->rx_ring_count;
1304 		ring->queue_index = rxr_idx;
1305 
1306 		u64_stats_init(&ring->rx_syncp);
1307 
1308 		/* assign ring to adapter */
1309 		adapter->rx_ring[rxr_idx] = ring;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 	int q_vectors = adapter->num_q_vectors;
1326 	int rxr_remaining = adapter->num_rx_queues;
1327 	int txr_remaining = adapter->num_tx_queues;
1328 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 	int err;
1330 
1331 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 		for (; rxr_remaining; v_idx++) {
1333 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 						 0, 0, 1, rxr_idx);
1335 
1336 			if (err)
1337 				goto err_out;
1338 
1339 			/* update counts and index */
1340 			rxr_remaining--;
1341 			rxr_idx++;
1342 		}
1343 	}
1344 
1345 	for (; v_idx < q_vectors; v_idx++) {
1346 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 
1349 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 					 tqpv, txr_idx, rqpv, rxr_idx);
1351 
1352 		if (err)
1353 			goto err_out;
1354 
1355 		/* update counts and index */
1356 		rxr_remaining -= rqpv;
1357 		txr_remaining -= tqpv;
1358 		rxr_idx++;
1359 		txr_idx++;
1360 	}
1361 
1362 	return 0;
1363 
1364 err_out:
1365 	adapter->num_tx_queues = 0;
1366 	adapter->num_rx_queues = 0;
1367 	adapter->num_q_vectors = 0;
1368 
1369 	while (v_idx--)
1370 		igb_free_q_vector(adapter, v_idx);
1371 
1372 	return -ENOMEM;
1373 }
1374 
1375 /**
1376  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377  *  @adapter: board private structure to initialize
1378  *  @msix: boolean value of MSIX capability
1379  *
1380  *  This function initializes the interrupts and allocates all of the queues.
1381  **/
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384 	struct pci_dev *pdev = adapter->pdev;
1385 	int err;
1386 
1387 	igb_set_interrupt_capability(adapter, msix);
1388 
1389 	err = igb_alloc_q_vectors(adapter);
1390 	if (err) {
1391 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 		goto err_alloc_q_vectors;
1393 	}
1394 
1395 	igb_cache_ring_register(adapter);
1396 
1397 	return 0;
1398 
1399 err_alloc_q_vectors:
1400 	igb_reset_interrupt_capability(adapter);
1401 	return err;
1402 }
1403 
1404 /**
1405  *  igb_request_irq - initialize interrupts
1406  *  @adapter: board private structure to initialize
1407  *
1408  *  Attempts to configure interrupts using the best available
1409  *  capabilities of the hardware and kernel.
1410  **/
1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413 	struct net_device *netdev = adapter->netdev;
1414 	struct pci_dev *pdev = adapter->pdev;
1415 	int err = 0;
1416 
1417 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 		err = igb_request_msix(adapter);
1419 		if (!err)
1420 			goto request_done;
1421 		/* fall back to MSI */
1422 		igb_free_all_tx_resources(adapter);
1423 		igb_free_all_rx_resources(adapter);
1424 
1425 		igb_clear_interrupt_scheme(adapter);
1426 		err = igb_init_interrupt_scheme(adapter, false);
1427 		if (err)
1428 			goto request_done;
1429 
1430 		igb_setup_all_tx_resources(adapter);
1431 		igb_setup_all_rx_resources(adapter);
1432 		igb_configure(adapter);
1433 	}
1434 
1435 	igb_assign_vector(adapter->q_vector[0], 0);
1436 
1437 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 				  netdev->name, adapter);
1440 		if (!err)
1441 			goto request_done;
1442 
1443 		/* fall back to legacy interrupts */
1444 		igb_reset_interrupt_capability(adapter);
1445 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 	}
1447 
1448 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 			  netdev->name, adapter);
1450 
1451 	if (err)
1452 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453 			err);
1454 
1455 request_done:
1456 	return err;
1457 }
1458 
1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 		int vector = 0, i;
1463 
1464 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1465 
1466 		for (i = 0; i < adapter->num_q_vectors; i++)
1467 			free_irq(adapter->msix_entries[vector++].vector,
1468 				 adapter->q_vector[i]);
1469 	} else {
1470 		free_irq(adapter->pdev->irq, adapter);
1471 	}
1472 }
1473 
1474 /**
1475  *  igb_irq_disable - Mask off interrupt generation on the NIC
1476  *  @adapter: board private structure
1477  **/
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480 	struct e1000_hw *hw = &adapter->hw;
1481 
1482 	/* we need to be careful when disabling interrupts.  The VFs are also
1483 	 * mapped into these registers and so clearing the bits can cause
1484 	 * issues on the VF drivers so we only need to clear what we set
1485 	 */
1486 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 		u32 regval = rd32(E1000_EIAM);
1488 
1489 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 		regval = rd32(E1000_EIAC);
1492 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493 	}
1494 
1495 	wr32(E1000_IAM, 0);
1496 	wr32(E1000_IMC, ~0);
1497 	wrfl();
1498 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 		int i;
1500 
1501 		for (i = 0; i < adapter->num_q_vectors; i++)
1502 			synchronize_irq(adapter->msix_entries[i].vector);
1503 	} else {
1504 		synchronize_irq(adapter->pdev->irq);
1505 	}
1506 }
1507 
1508 /**
1509  *  igb_irq_enable - Enable default interrupt generation settings
1510  *  @adapter: board private structure
1511  **/
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514 	struct e1000_hw *hw = &adapter->hw;
1515 
1516 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 		u32 regval = rd32(E1000_EIAC);
1519 
1520 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 		regval = rd32(E1000_EIAM);
1522 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 		if (adapter->vfs_allocated_count) {
1525 			wr32(E1000_MBVFIMR, 0xFF);
1526 			ims |= E1000_IMS_VMMB;
1527 		}
1528 		wr32(E1000_IMS, ims);
1529 	} else {
1530 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 				E1000_IMS_DRSTA);
1534 	}
1535 }
1536 
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539 	struct e1000_hw *hw = &adapter->hw;
1540 	u16 pf_id = adapter->vfs_allocated_count;
1541 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 	u16 old_vid = adapter->mng_vlan_id;
1543 
1544 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 		/* add VID to filter table */
1546 		igb_vfta_set(hw, vid, pf_id, true, true);
1547 		adapter->mng_vlan_id = vid;
1548 	} else {
1549 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 	}
1551 
1552 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 	    (vid != old_vid) &&
1554 	    !test_bit(old_vid, adapter->active_vlans)) {
1555 		/* remove VID from filter table */
1556 		igb_vfta_set(hw, vid, pf_id, false, true);
1557 	}
1558 }
1559 
1560 /**
1561  *  igb_release_hw_control - release control of the h/w to f/w
1562  *  @adapter: address of board private structure
1563  *
1564  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565  *  For ASF and Pass Through versions of f/w this means that the
1566  *  driver is no longer loaded.
1567  **/
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570 	struct e1000_hw *hw = &adapter->hw;
1571 	u32 ctrl_ext;
1572 
1573 	/* Let firmware take over control of h/w */
1574 	ctrl_ext = rd32(E1000_CTRL_EXT);
1575 	wr32(E1000_CTRL_EXT,
1576 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578 
1579 /**
1580  *  igb_get_hw_control - get control of the h/w from f/w
1581  *  @adapter: address of board private structure
1582  *
1583  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584  *  For ASF and Pass Through versions of f/w this means that
1585  *  the driver is loaded.
1586  **/
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589 	struct e1000_hw *hw = &adapter->hw;
1590 	u32 ctrl_ext;
1591 
1592 	/* Let firmware know the driver has taken over */
1593 	ctrl_ext = rd32(E1000_CTRL_EXT);
1594 	wr32(E1000_CTRL_EXT,
1595 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597 
1598 /**
1599  *  igb_configure - configure the hardware for RX and TX
1600  *  @adapter: private board structure
1601  **/
1602 static void igb_configure(struct igb_adapter *adapter)
1603 {
1604 	struct net_device *netdev = adapter->netdev;
1605 	int i;
1606 
1607 	igb_get_hw_control(adapter);
1608 	igb_set_rx_mode(netdev);
1609 
1610 	igb_restore_vlan(adapter);
1611 
1612 	igb_setup_tctl(adapter);
1613 	igb_setup_mrqc(adapter);
1614 	igb_setup_rctl(adapter);
1615 
1616 	igb_nfc_filter_restore(adapter);
1617 	igb_configure_tx(adapter);
1618 	igb_configure_rx(adapter);
1619 
1620 	igb_rx_fifo_flush_82575(&adapter->hw);
1621 
1622 	/* call igb_desc_unused which always leaves
1623 	 * at least 1 descriptor unused to make sure
1624 	 * next_to_use != next_to_clean
1625 	 */
1626 	for (i = 0; i < adapter->num_rx_queues; i++) {
1627 		struct igb_ring *ring = adapter->rx_ring[i];
1628 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1629 	}
1630 }
1631 
1632 /**
1633  *  igb_power_up_link - Power up the phy/serdes link
1634  *  @adapter: address of board private structure
1635  **/
1636 void igb_power_up_link(struct igb_adapter *adapter)
1637 {
1638 	igb_reset_phy(&adapter->hw);
1639 
1640 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641 		igb_power_up_phy_copper(&adapter->hw);
1642 	else
1643 		igb_power_up_serdes_link_82575(&adapter->hw);
1644 
1645 	igb_setup_link(&adapter->hw);
1646 }
1647 
1648 /**
1649  *  igb_power_down_link - Power down the phy/serdes link
1650  *  @adapter: address of board private structure
1651  */
1652 static void igb_power_down_link(struct igb_adapter *adapter)
1653 {
1654 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655 		igb_power_down_phy_copper_82575(&adapter->hw);
1656 	else
1657 		igb_shutdown_serdes_link_82575(&adapter->hw);
1658 }
1659 
1660 /**
1661  * Detect and switch function for Media Auto Sense
1662  * @adapter: address of the board private structure
1663  **/
1664 static void igb_check_swap_media(struct igb_adapter *adapter)
1665 {
1666 	struct e1000_hw *hw = &adapter->hw;
1667 	u32 ctrl_ext, connsw;
1668 	bool swap_now = false;
1669 
1670 	ctrl_ext = rd32(E1000_CTRL_EXT);
1671 	connsw = rd32(E1000_CONNSW);
1672 
1673 	/* need to live swap if current media is copper and we have fiber/serdes
1674 	 * to go to.
1675 	 */
1676 
1677 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1678 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679 		swap_now = true;
1680 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681 		/* copper signal takes time to appear */
1682 		if (adapter->copper_tries < 4) {
1683 			adapter->copper_tries++;
1684 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685 			wr32(E1000_CONNSW, connsw);
1686 			return;
1687 		} else {
1688 			adapter->copper_tries = 0;
1689 			if ((connsw & E1000_CONNSW_PHYSD) &&
1690 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691 				swap_now = true;
1692 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693 				wr32(E1000_CONNSW, connsw);
1694 			}
1695 		}
1696 	}
1697 
1698 	if (!swap_now)
1699 		return;
1700 
1701 	switch (hw->phy.media_type) {
1702 	case e1000_media_type_copper:
1703 		netdev_info(adapter->netdev,
1704 			"MAS: changing media to fiber/serdes\n");
1705 		ctrl_ext |=
1706 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708 		adapter->copper_tries = 0;
1709 		break;
1710 	case e1000_media_type_internal_serdes:
1711 	case e1000_media_type_fiber:
1712 		netdev_info(adapter->netdev,
1713 			"MAS: changing media to copper\n");
1714 		ctrl_ext &=
1715 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717 		break;
1718 	default:
1719 		/* shouldn't get here during regular operation */
1720 		netdev_err(adapter->netdev,
1721 			"AMS: Invalid media type found, returning\n");
1722 		break;
1723 	}
1724 	wr32(E1000_CTRL_EXT, ctrl_ext);
1725 }
1726 
1727 /**
1728  *  igb_up - Open the interface and prepare it to handle traffic
1729  *  @adapter: board private structure
1730  **/
1731 int igb_up(struct igb_adapter *adapter)
1732 {
1733 	struct e1000_hw *hw = &adapter->hw;
1734 	int i;
1735 
1736 	/* hardware has been reset, we need to reload some things */
1737 	igb_configure(adapter);
1738 
1739 	clear_bit(__IGB_DOWN, &adapter->state);
1740 
1741 	for (i = 0; i < adapter->num_q_vectors; i++)
1742 		napi_enable(&(adapter->q_vector[i]->napi));
1743 
1744 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1745 		igb_configure_msix(adapter);
1746 	else
1747 		igb_assign_vector(adapter->q_vector[0], 0);
1748 
1749 	/* Clear any pending interrupts. */
1750 	rd32(E1000_ICR);
1751 	igb_irq_enable(adapter);
1752 
1753 	/* notify VFs that reset has been completed */
1754 	if (adapter->vfs_allocated_count) {
1755 		u32 reg_data = rd32(E1000_CTRL_EXT);
1756 
1757 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1758 		wr32(E1000_CTRL_EXT, reg_data);
1759 	}
1760 
1761 	netif_tx_start_all_queues(adapter->netdev);
1762 
1763 	/* start the watchdog. */
1764 	hw->mac.get_link_status = 1;
1765 	schedule_work(&adapter->watchdog_task);
1766 
1767 	if ((adapter->flags & IGB_FLAG_EEE) &&
1768 	    (!hw->dev_spec._82575.eee_disable))
1769 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770 
1771 	return 0;
1772 }
1773 
1774 void igb_down(struct igb_adapter *adapter)
1775 {
1776 	struct net_device *netdev = adapter->netdev;
1777 	struct e1000_hw *hw = &adapter->hw;
1778 	u32 tctl, rctl;
1779 	int i;
1780 
1781 	/* signal that we're down so the interrupt handler does not
1782 	 * reschedule our watchdog timer
1783 	 */
1784 	set_bit(__IGB_DOWN, &adapter->state);
1785 
1786 	/* disable receives in the hardware */
1787 	rctl = rd32(E1000_RCTL);
1788 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789 	/* flush and sleep below */
1790 
1791 	netif_carrier_off(netdev);
1792 	netif_tx_stop_all_queues(netdev);
1793 
1794 	/* disable transmits in the hardware */
1795 	tctl = rd32(E1000_TCTL);
1796 	tctl &= ~E1000_TCTL_EN;
1797 	wr32(E1000_TCTL, tctl);
1798 	/* flush both disables and wait for them to finish */
1799 	wrfl();
1800 	usleep_range(10000, 11000);
1801 
1802 	igb_irq_disable(adapter);
1803 
1804 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805 
1806 	for (i = 0; i < adapter->num_q_vectors; i++) {
1807 		if (adapter->q_vector[i]) {
1808 			napi_synchronize(&adapter->q_vector[i]->napi);
1809 			napi_disable(&adapter->q_vector[i]->napi);
1810 		}
1811 	}
1812 
1813 	del_timer_sync(&adapter->watchdog_timer);
1814 	del_timer_sync(&adapter->phy_info_timer);
1815 
1816 	/* record the stats before reset*/
1817 	spin_lock(&adapter->stats64_lock);
1818 	igb_update_stats(adapter, &adapter->stats64);
1819 	spin_unlock(&adapter->stats64_lock);
1820 
1821 	adapter->link_speed = 0;
1822 	adapter->link_duplex = 0;
1823 
1824 	if (!pci_channel_offline(adapter->pdev))
1825 		igb_reset(adapter);
1826 
1827 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1828 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829 
1830 	igb_clean_all_tx_rings(adapter);
1831 	igb_clean_all_rx_rings(adapter);
1832 #ifdef CONFIG_IGB_DCA
1833 
1834 	/* since we reset the hardware DCA settings were cleared */
1835 	igb_setup_dca(adapter);
1836 #endif
1837 }
1838 
1839 void igb_reinit_locked(struct igb_adapter *adapter)
1840 {
1841 	WARN_ON(in_interrupt());
1842 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1843 		usleep_range(1000, 2000);
1844 	igb_down(adapter);
1845 	igb_up(adapter);
1846 	clear_bit(__IGB_RESETTING, &adapter->state);
1847 }
1848 
1849 /** igb_enable_mas - Media Autosense re-enable after swap
1850  *
1851  * @adapter: adapter struct
1852  **/
1853 static void igb_enable_mas(struct igb_adapter *adapter)
1854 {
1855 	struct e1000_hw *hw = &adapter->hw;
1856 	u32 connsw = rd32(E1000_CONNSW);
1857 
1858 	/* configure for SerDes media detect */
1859 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1860 	    (!(connsw & E1000_CONNSW_SERDESD))) {
1861 		connsw |= E1000_CONNSW_ENRGSRC;
1862 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863 		wr32(E1000_CONNSW, connsw);
1864 		wrfl();
1865 	}
1866 }
1867 
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870 	struct pci_dev *pdev = adapter->pdev;
1871 	struct e1000_hw *hw = &adapter->hw;
1872 	struct e1000_mac_info *mac = &hw->mac;
1873 	struct e1000_fc_info *fc = &hw->fc;
1874 	u32 pba, hwm;
1875 
1876 	/* Repartition Pba for greater than 9k mtu
1877 	 * To take effect CTRL.RST is required.
1878 	 */
1879 	switch (mac->type) {
1880 	case e1000_i350:
1881 	case e1000_i354:
1882 	case e1000_82580:
1883 		pba = rd32(E1000_RXPBS);
1884 		pba = igb_rxpbs_adjust_82580(pba);
1885 		break;
1886 	case e1000_82576:
1887 		pba = rd32(E1000_RXPBS);
1888 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1889 		break;
1890 	case e1000_82575:
1891 	case e1000_i210:
1892 	case e1000_i211:
1893 	default:
1894 		pba = E1000_PBA_34K;
1895 		break;
1896 	}
1897 
1898 	if (mac->type == e1000_82575) {
1899 		u32 min_rx_space, min_tx_space, needed_tx_space;
1900 
1901 		/* write Rx PBA so that hardware can report correct Tx PBA */
1902 		wr32(E1000_PBA, pba);
1903 
1904 		/* To maintain wire speed transmits, the Tx FIFO should be
1905 		 * large enough to accommodate two full transmit packets,
1906 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1907 		 * the Rx FIFO should be large enough to accommodate at least
1908 		 * one full receive packet and is similarly rounded up and
1909 		 * expressed in KB.
1910 		 */
1911 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912 
1913 		/* The Tx FIFO also stores 16 bytes of information about the Tx
1914 		 * but don't include Ethernet FCS because hardware appends it.
1915 		 * We only need to round down to the nearest 512 byte block
1916 		 * count since the value we care about is 2 frames, not 1.
1917 		 */
1918 		min_tx_space = adapter->max_frame_size;
1919 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921 
1922 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1923 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1924 
1925 		/* If current Tx allocation is less than the min Tx FIFO size,
1926 		 * and the min Tx FIFO size is less than the current Rx FIFO
1927 		 * allocation, take space away from current Rx allocation.
1928 		 */
1929 		if (needed_tx_space < pba) {
1930 			pba -= needed_tx_space;
1931 
1932 			/* if short on Rx space, Rx wins and must trump Tx
1933 			 * adjustment
1934 			 */
1935 			if (pba < min_rx_space)
1936 				pba = min_rx_space;
1937 		}
1938 
1939 		/* adjust PBA for jumbo frames */
1940 		wr32(E1000_PBA, pba);
1941 	}
1942 
1943 	/* flow control settings
1944 	 * The high water mark must be low enough to fit one full frame
1945 	 * after transmitting the pause frame.  As such we must have enough
1946 	 * space to allow for us to complete our current transmit and then
1947 	 * receive the frame that is in progress from the link partner.
1948 	 * Set it to:
1949 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1950 	 */
1951 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1952 
1953 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1954 	fc->low_water = fc->high_water - 16;
1955 	fc->pause_time = 0xFFFF;
1956 	fc->send_xon = 1;
1957 	fc->current_mode = fc->requested_mode;
1958 
1959 	/* disable receive for all VFs and wait one second */
1960 	if (adapter->vfs_allocated_count) {
1961 		int i;
1962 
1963 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965 
1966 		/* ping all the active vfs to let them know we are going down */
1967 		igb_ping_all_vfs(adapter);
1968 
1969 		/* disable transmits and receives */
1970 		wr32(E1000_VFRE, 0);
1971 		wr32(E1000_VFTE, 0);
1972 	}
1973 
1974 	/* Allow time for pending master requests to run */
1975 	hw->mac.ops.reset_hw(hw);
1976 	wr32(E1000_WUC, 0);
1977 
1978 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 		/* need to resetup here after media swap */
1980 		adapter->ei.get_invariants(hw);
1981 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 	}
1983 	if ((mac->type == e1000_82575) &&
1984 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985 		igb_enable_mas(adapter);
1986 	}
1987 	if (hw->mac.ops.init_hw(hw))
1988 		dev_err(&pdev->dev, "Hardware Error\n");
1989 
1990 	/* Flow control settings reset on hardware reset, so guarantee flow
1991 	 * control is off when forcing speed.
1992 	 */
1993 	if (!hw->mac.autoneg)
1994 		igb_force_mac_fc(hw);
1995 
1996 	igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998 	/* Re-initialize the thermal sensor on i350 devices. */
1999 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 			/* If present, re-initialize the external thermal sensor
2002 			 * interface.
2003 			 */
2004 			if (adapter->ets)
2005 				mac->ops.init_thermal_sensor_thresh(hw);
2006 		}
2007 	}
2008 #endif
2009 	/* Re-establish EEE setting */
2010 	if (hw->phy.media_type == e1000_media_type_copper) {
2011 		switch (mac->type) {
2012 		case e1000_i350:
2013 		case e1000_i210:
2014 		case e1000_i211:
2015 			igb_set_eee_i350(hw, true, true);
2016 			break;
2017 		case e1000_i354:
2018 			igb_set_eee_i354(hw, true, true);
2019 			break;
2020 		default:
2021 			break;
2022 		}
2023 	}
2024 	if (!netif_running(adapter->netdev))
2025 		igb_power_down_link(adapter);
2026 
2027 	igb_update_mng_vlan(adapter);
2028 
2029 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031 
2032 	/* Re-enable PTP, where applicable. */
2033 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034 		igb_ptp_reset(adapter);
2035 
2036 	igb_get_phy_info(hw);
2037 }
2038 
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 	netdev_features_t features)
2041 {
2042 	/* Since there is no support for separate Rx/Tx vlan accel
2043 	 * enable/disable make sure Tx flag is always in same state as Rx.
2044 	 */
2045 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 	else
2048 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049 
2050 	return features;
2051 }
2052 
2053 static int igb_set_features(struct net_device *netdev,
2054 	netdev_features_t features)
2055 {
2056 	netdev_features_t changed = netdev->features ^ features;
2057 	struct igb_adapter *adapter = netdev_priv(netdev);
2058 
2059 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 		igb_vlan_mode(netdev, features);
2061 
2062 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2063 		return 0;
2064 
2065 	if (!(features & NETIF_F_NTUPLE)) {
2066 		struct hlist_node *node2;
2067 		struct igb_nfc_filter *rule;
2068 
2069 		spin_lock(&adapter->nfc_lock);
2070 		hlist_for_each_entry_safe(rule, node2,
2071 					  &adapter->nfc_filter_list, nfc_node) {
2072 			igb_erase_filter(adapter, rule);
2073 			hlist_del(&rule->nfc_node);
2074 			kfree(rule);
2075 		}
2076 		spin_unlock(&adapter->nfc_lock);
2077 		adapter->nfc_filter_count = 0;
2078 	}
2079 
2080 	netdev->features = features;
2081 
2082 	if (netif_running(netdev))
2083 		igb_reinit_locked(adapter);
2084 	else
2085 		igb_reset(adapter);
2086 
2087 	return 0;
2088 }
2089 
2090 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091 			   struct net_device *dev,
2092 			   const unsigned char *addr, u16 vid,
2093 			   u16 flags)
2094 {
2095 	/* guarantee we can provide a unique filter for the unicast address */
2096 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097 		struct igb_adapter *adapter = netdev_priv(dev);
2098 		struct e1000_hw *hw = &adapter->hw;
2099 		int vfn = adapter->vfs_allocated_count;
2100 		int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101 
2102 		if (netdev_uc_count(dev) >= rar_entries)
2103 			return -ENOMEM;
2104 	}
2105 
2106 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107 }
2108 
2109 #define IGB_MAX_MAC_HDR_LEN	127
2110 #define IGB_MAX_NETWORK_HDR_LEN	511
2111 
2112 static netdev_features_t
2113 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114 		   netdev_features_t features)
2115 {
2116 	unsigned int network_hdr_len, mac_hdr_len;
2117 
2118 	/* Make certain the headers can be described by a context descriptor */
2119 	mac_hdr_len = skb_network_header(skb) - skb->data;
2120 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121 		return features & ~(NETIF_F_HW_CSUM |
2122 				    NETIF_F_SCTP_CRC |
2123 				    NETIF_F_HW_VLAN_CTAG_TX |
2124 				    NETIF_F_TSO |
2125 				    NETIF_F_TSO6);
2126 
2127 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2129 		return features & ~(NETIF_F_HW_CSUM |
2130 				    NETIF_F_SCTP_CRC |
2131 				    NETIF_F_TSO |
2132 				    NETIF_F_TSO6);
2133 
2134 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2135 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136 	 */
2137 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138 		features &= ~NETIF_F_TSO;
2139 
2140 	return features;
2141 }
2142 
2143 static const struct net_device_ops igb_netdev_ops = {
2144 	.ndo_open		= igb_open,
2145 	.ndo_stop		= igb_close,
2146 	.ndo_start_xmit		= igb_xmit_frame,
2147 	.ndo_get_stats64	= igb_get_stats64,
2148 	.ndo_set_rx_mode	= igb_set_rx_mode,
2149 	.ndo_set_mac_address	= igb_set_mac,
2150 	.ndo_change_mtu		= igb_change_mtu,
2151 	.ndo_do_ioctl		= igb_ioctl,
2152 	.ndo_tx_timeout		= igb_tx_timeout,
2153 	.ndo_validate_addr	= eth_validate_addr,
2154 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2155 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2156 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2157 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2158 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2159 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2160 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2161 #ifdef CONFIG_NET_POLL_CONTROLLER
2162 	.ndo_poll_controller	= igb_netpoll,
2163 #endif
2164 	.ndo_fix_features	= igb_fix_features,
2165 	.ndo_set_features	= igb_set_features,
2166 	.ndo_fdb_add		= igb_ndo_fdb_add,
2167 	.ndo_features_check	= igb_features_check,
2168 };
2169 
2170 /**
2171  * igb_set_fw_version - Configure version string for ethtool
2172  * @adapter: adapter struct
2173  **/
2174 void igb_set_fw_version(struct igb_adapter *adapter)
2175 {
2176 	struct e1000_hw *hw = &adapter->hw;
2177 	struct e1000_fw_version fw;
2178 
2179 	igb_get_fw_version(hw, &fw);
2180 
2181 	switch (hw->mac.type) {
2182 	case e1000_i210:
2183 	case e1000_i211:
2184 		if (!(igb_get_flash_presence_i210(hw))) {
2185 			snprintf(adapter->fw_version,
2186 				 sizeof(adapter->fw_version),
2187 				 "%2d.%2d-%d",
2188 				 fw.invm_major, fw.invm_minor,
2189 				 fw.invm_img_type);
2190 			break;
2191 		}
2192 		/* fall through */
2193 	default:
2194 		/* if option is rom valid, display its version too */
2195 		if (fw.or_valid) {
2196 			snprintf(adapter->fw_version,
2197 				 sizeof(adapter->fw_version),
2198 				 "%d.%d, 0x%08x, %d.%d.%d",
2199 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2200 				 fw.or_major, fw.or_build, fw.or_patch);
2201 		/* no option rom */
2202 		} else if (fw.etrack_id != 0X0000) {
2203 			snprintf(adapter->fw_version,
2204 			    sizeof(adapter->fw_version),
2205 			    "%d.%d, 0x%08x",
2206 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2207 		} else {
2208 		snprintf(adapter->fw_version,
2209 		    sizeof(adapter->fw_version),
2210 		    "%d.%d.%d",
2211 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2212 		}
2213 		break;
2214 	}
2215 }
2216 
2217 /**
2218  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219  *
2220  * @adapter: adapter struct
2221  **/
2222 static void igb_init_mas(struct igb_adapter *adapter)
2223 {
2224 	struct e1000_hw *hw = &adapter->hw;
2225 	u16 eeprom_data;
2226 
2227 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228 	switch (hw->bus.func) {
2229 	case E1000_FUNC_0:
2230 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2231 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232 			netdev_info(adapter->netdev,
2233 				"MAS: Enabling Media Autosense for port %d\n",
2234 				hw->bus.func);
2235 		}
2236 		break;
2237 	case E1000_FUNC_1:
2238 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2239 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240 			netdev_info(adapter->netdev,
2241 				"MAS: Enabling Media Autosense for port %d\n",
2242 				hw->bus.func);
2243 		}
2244 		break;
2245 	case E1000_FUNC_2:
2246 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2247 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248 			netdev_info(adapter->netdev,
2249 				"MAS: Enabling Media Autosense for port %d\n",
2250 				hw->bus.func);
2251 		}
2252 		break;
2253 	case E1000_FUNC_3:
2254 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2255 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256 			netdev_info(adapter->netdev,
2257 				"MAS: Enabling Media Autosense for port %d\n",
2258 				hw->bus.func);
2259 		}
2260 		break;
2261 	default:
2262 		/* Shouldn't get here */
2263 		netdev_err(adapter->netdev,
2264 			"MAS: Invalid port configuration, returning\n");
2265 		break;
2266 	}
2267 }
2268 
2269 /**
2270  *  igb_init_i2c - Init I2C interface
2271  *  @adapter: pointer to adapter structure
2272  **/
2273 static s32 igb_init_i2c(struct igb_adapter *adapter)
2274 {
2275 	s32 status = 0;
2276 
2277 	/* I2C interface supported on i350 devices */
2278 	if (adapter->hw.mac.type != e1000_i350)
2279 		return 0;
2280 
2281 	/* Initialize the i2c bus which is controlled by the registers.
2282 	 * This bus will use the i2c_algo_bit structue that implements
2283 	 * the protocol through toggling of the 4 bits in the register.
2284 	 */
2285 	adapter->i2c_adap.owner = THIS_MODULE;
2286 	adapter->i2c_algo = igb_i2c_algo;
2287 	adapter->i2c_algo.data = adapter;
2288 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290 	strlcpy(adapter->i2c_adap.name, "igb BB",
2291 		sizeof(adapter->i2c_adap.name));
2292 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2293 	return status;
2294 }
2295 
2296 /**
2297  *  igb_probe - Device Initialization Routine
2298  *  @pdev: PCI device information struct
2299  *  @ent: entry in igb_pci_tbl
2300  *
2301  *  Returns 0 on success, negative on failure
2302  *
2303  *  igb_probe initializes an adapter identified by a pci_dev structure.
2304  *  The OS initialization, configuring of the adapter private structure,
2305  *  and a hardware reset occur.
2306  **/
2307 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2308 {
2309 	struct net_device *netdev;
2310 	struct igb_adapter *adapter;
2311 	struct e1000_hw *hw;
2312 	u16 eeprom_data = 0;
2313 	s32 ret_val;
2314 	static int global_quad_port_a; /* global quad port a indication */
2315 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2316 	int err, pci_using_dac;
2317 	u8 part_str[E1000_PBANUM_LENGTH];
2318 
2319 	/* Catch broken hardware that put the wrong VF device ID in
2320 	 * the PCIe SR-IOV capability.
2321 	 */
2322 	if (pdev->is_virtfn) {
2323 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2324 			pci_name(pdev), pdev->vendor, pdev->device);
2325 		return -EINVAL;
2326 	}
2327 
2328 	err = pci_enable_device_mem(pdev);
2329 	if (err)
2330 		return err;
2331 
2332 	pci_using_dac = 0;
2333 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2334 	if (!err) {
2335 		pci_using_dac = 1;
2336 	} else {
2337 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2338 		if (err) {
2339 			dev_err(&pdev->dev,
2340 				"No usable DMA configuration, aborting\n");
2341 			goto err_dma;
2342 		}
2343 	}
2344 
2345 	err = pci_request_mem_regions(pdev, igb_driver_name);
2346 	if (err)
2347 		goto err_pci_reg;
2348 
2349 	pci_enable_pcie_error_reporting(pdev);
2350 
2351 	pci_set_master(pdev);
2352 	pci_save_state(pdev);
2353 
2354 	err = -ENOMEM;
2355 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2356 				   IGB_MAX_TX_QUEUES);
2357 	if (!netdev)
2358 		goto err_alloc_etherdev;
2359 
2360 	SET_NETDEV_DEV(netdev, &pdev->dev);
2361 
2362 	pci_set_drvdata(pdev, netdev);
2363 	adapter = netdev_priv(netdev);
2364 	adapter->netdev = netdev;
2365 	adapter->pdev = pdev;
2366 	hw = &adapter->hw;
2367 	hw->back = adapter;
2368 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2369 
2370 	err = -EIO;
2371 	adapter->io_addr = pci_iomap(pdev, 0, 0);
2372 	if (!adapter->io_addr)
2373 		goto err_ioremap;
2374 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375 	hw->hw_addr = adapter->io_addr;
2376 
2377 	netdev->netdev_ops = &igb_netdev_ops;
2378 	igb_set_ethtool_ops(netdev);
2379 	netdev->watchdog_timeo = 5 * HZ;
2380 
2381 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382 
2383 	netdev->mem_start = pci_resource_start(pdev, 0);
2384 	netdev->mem_end = pci_resource_end(pdev, 0);
2385 
2386 	/* PCI config space info */
2387 	hw->vendor_id = pdev->vendor;
2388 	hw->device_id = pdev->device;
2389 	hw->revision_id = pdev->revision;
2390 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391 	hw->subsystem_device_id = pdev->subsystem_device;
2392 
2393 	/* Copy the default MAC, PHY and NVM function pointers */
2394 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397 	/* Initialize skew-specific constants */
2398 	err = ei->get_invariants(hw);
2399 	if (err)
2400 		goto err_sw_init;
2401 
2402 	/* setup the private structure */
2403 	err = igb_sw_init(adapter);
2404 	if (err)
2405 		goto err_sw_init;
2406 
2407 	igb_get_bus_info_pcie(hw);
2408 
2409 	hw->phy.autoneg_wait_to_complete = false;
2410 
2411 	/* Copper options */
2412 	if (hw->phy.media_type == e1000_media_type_copper) {
2413 		hw->phy.mdix = AUTO_ALL_MODES;
2414 		hw->phy.disable_polarity_correction = false;
2415 		hw->phy.ms_type = e1000_ms_hw_default;
2416 	}
2417 
2418 	if (igb_check_reset_block(hw))
2419 		dev_info(&pdev->dev,
2420 			"PHY reset is blocked due to SOL/IDER session.\n");
2421 
2422 	/* features is initialized to 0 in allocation, it might have bits
2423 	 * set by igb_sw_init so we should use an or instead of an
2424 	 * assignment.
2425 	 */
2426 	netdev->features |= NETIF_F_SG |
2427 			    NETIF_F_TSO |
2428 			    NETIF_F_TSO6 |
2429 			    NETIF_F_RXHASH |
2430 			    NETIF_F_RXCSUM |
2431 			    NETIF_F_HW_CSUM;
2432 
2433 	if (hw->mac.type >= e1000_82576)
2434 		netdev->features |= NETIF_F_SCTP_CRC;
2435 
2436 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437 				  NETIF_F_GSO_GRE_CSUM | \
2438 				  NETIF_F_GSO_IPXIP4 | \
2439 				  NETIF_F_GSO_IPXIP6 | \
2440 				  NETIF_F_GSO_UDP_TUNNEL | \
2441 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442 
2443 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445 
2446 	/* copy netdev features into list of user selectable features */
2447 	netdev->hw_features |= netdev->features |
2448 			       NETIF_F_HW_VLAN_CTAG_RX |
2449 			       NETIF_F_HW_VLAN_CTAG_TX |
2450 			       NETIF_F_RXALL;
2451 
2452 	if (hw->mac.type >= e1000_i350)
2453 		netdev->hw_features |= NETIF_F_NTUPLE;
2454 
2455 	if (pci_using_dac)
2456 		netdev->features |= NETIF_F_HIGHDMA;
2457 
2458 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2459 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2460 	netdev->hw_enc_features |= netdev->vlan_features;
2461 
2462 	/* set this bit last since it cannot be part of vlan_features */
2463 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464 			    NETIF_F_HW_VLAN_CTAG_RX |
2465 			    NETIF_F_HW_VLAN_CTAG_TX;
2466 
2467 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2468 
2469 	netdev->priv_flags |= IFF_UNICAST_FLT;
2470 
2471 	/* MTU range: 68 - 9216 */
2472 	netdev->min_mtu = ETH_MIN_MTU;
2473 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2474 
2475 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2476 
2477 	/* before reading the NVM, reset the controller to put the device in a
2478 	 * known good starting state
2479 	 */
2480 	hw->mac.ops.reset_hw(hw);
2481 
2482 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2483 	 * that doesn't contain a checksum
2484 	 */
2485 	switch (hw->mac.type) {
2486 	case e1000_i210:
2487 	case e1000_i211:
2488 		if (igb_get_flash_presence_i210(hw)) {
2489 			if (hw->nvm.ops.validate(hw) < 0) {
2490 				dev_err(&pdev->dev,
2491 					"The NVM Checksum Is Not Valid\n");
2492 				err = -EIO;
2493 				goto err_eeprom;
2494 			}
2495 		}
2496 		break;
2497 	default:
2498 		if (hw->nvm.ops.validate(hw) < 0) {
2499 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2500 			err = -EIO;
2501 			goto err_eeprom;
2502 		}
2503 		break;
2504 	}
2505 
2506 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2507 		/* copy the MAC address out of the NVM */
2508 		if (hw->mac.ops.read_mac_addr(hw))
2509 			dev_err(&pdev->dev, "NVM Read Error\n");
2510 	}
2511 
2512 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2513 
2514 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2515 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2516 		err = -EIO;
2517 		goto err_eeprom;
2518 	}
2519 
2520 	/* get firmware version for ethtool -i */
2521 	igb_set_fw_version(adapter);
2522 
2523 	/* configure RXPBSIZE and TXPBSIZE */
2524 	if (hw->mac.type == e1000_i210) {
2525 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2526 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2527 	}
2528 
2529 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2530 		    (unsigned long) adapter);
2531 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2532 		    (unsigned long) adapter);
2533 
2534 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2535 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2536 
2537 	/* Initialize link properties that are user-changeable */
2538 	adapter->fc_autoneg = true;
2539 	hw->mac.autoneg = true;
2540 	hw->phy.autoneg_advertised = 0x2f;
2541 
2542 	hw->fc.requested_mode = e1000_fc_default;
2543 	hw->fc.current_mode = e1000_fc_default;
2544 
2545 	igb_validate_mdi_setting(hw);
2546 
2547 	/* By default, support wake on port A */
2548 	if (hw->bus.func == 0)
2549 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2550 
2551 	/* Check the NVM for wake support on non-port A ports */
2552 	if (hw->mac.type >= e1000_82580)
2553 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2554 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2555 				 &eeprom_data);
2556 	else if (hw->bus.func == 1)
2557 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2558 
2559 	if (eeprom_data & IGB_EEPROM_APME)
2560 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2561 
2562 	/* now that we have the eeprom settings, apply the special cases where
2563 	 * the eeprom may be wrong or the board simply won't support wake on
2564 	 * lan on a particular port
2565 	 */
2566 	switch (pdev->device) {
2567 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2568 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2569 		break;
2570 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2571 	case E1000_DEV_ID_82576_FIBER:
2572 	case E1000_DEV_ID_82576_SERDES:
2573 		/* Wake events only supported on port A for dual fiber
2574 		 * regardless of eeprom setting
2575 		 */
2576 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2577 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2578 		break;
2579 	case E1000_DEV_ID_82576_QUAD_COPPER:
2580 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2581 		/* if quad port adapter, disable WoL on all but port A */
2582 		if (global_quad_port_a != 0)
2583 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2584 		else
2585 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2586 		/* Reset for multiple quad port adapters */
2587 		if (++global_quad_port_a == 4)
2588 			global_quad_port_a = 0;
2589 		break;
2590 	default:
2591 		/* If the device can't wake, don't set software support */
2592 		if (!device_can_wakeup(&adapter->pdev->dev))
2593 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2594 	}
2595 
2596 	/* initialize the wol settings based on the eeprom settings */
2597 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2598 		adapter->wol |= E1000_WUFC_MAG;
2599 
2600 	/* Some vendors want WoL disabled by default, but still supported */
2601 	if ((hw->mac.type == e1000_i350) &&
2602 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2603 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604 		adapter->wol = 0;
2605 	}
2606 
2607 	/* Some vendors want the ability to Use the EEPROM setting as
2608 	 * enable/disable only, and not for capability
2609 	 */
2610 	if (((hw->mac.type == e1000_i350) ||
2611 	     (hw->mac.type == e1000_i354)) &&
2612 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2613 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2614 		adapter->wol = 0;
2615 	}
2616 	if (hw->mac.type == e1000_i350) {
2617 		if (((pdev->subsystem_device == 0x5001) ||
2618 		     (pdev->subsystem_device == 0x5002)) &&
2619 				(hw->bus.func == 0)) {
2620 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621 			adapter->wol = 0;
2622 		}
2623 		if (pdev->subsystem_device == 0x1F52)
2624 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2625 	}
2626 
2627 	device_set_wakeup_enable(&adapter->pdev->dev,
2628 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2629 
2630 	/* reset the hardware with the new settings */
2631 	igb_reset(adapter);
2632 
2633 	/* Init the I2C interface */
2634 	err = igb_init_i2c(adapter);
2635 	if (err) {
2636 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2637 		goto err_eeprom;
2638 	}
2639 
2640 	/* let the f/w know that the h/w is now under the control of the
2641 	 * driver.
2642 	 */
2643 	igb_get_hw_control(adapter);
2644 
2645 	strcpy(netdev->name, "eth%d");
2646 	err = register_netdev(netdev);
2647 	if (err)
2648 		goto err_register;
2649 
2650 	/* carrier off reporting is important to ethtool even BEFORE open */
2651 	netif_carrier_off(netdev);
2652 
2653 #ifdef CONFIG_IGB_DCA
2654 	if (dca_add_requester(&pdev->dev) == 0) {
2655 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2656 		dev_info(&pdev->dev, "DCA enabled\n");
2657 		igb_setup_dca(adapter);
2658 	}
2659 
2660 #endif
2661 #ifdef CONFIG_IGB_HWMON
2662 	/* Initialize the thermal sensor on i350 devices. */
2663 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2664 		u16 ets_word;
2665 
2666 		/* Read the NVM to determine if this i350 device supports an
2667 		 * external thermal sensor.
2668 		 */
2669 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2670 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2671 			adapter->ets = true;
2672 		else
2673 			adapter->ets = false;
2674 		if (igb_sysfs_init(adapter))
2675 			dev_err(&pdev->dev,
2676 				"failed to allocate sysfs resources\n");
2677 	} else {
2678 		adapter->ets = false;
2679 	}
2680 #endif
2681 	/* Check if Media Autosense is enabled */
2682 	adapter->ei = *ei;
2683 	if (hw->dev_spec._82575.mas_capable)
2684 		igb_init_mas(adapter);
2685 
2686 	/* do hw tstamp init after resetting */
2687 	igb_ptp_init(adapter);
2688 
2689 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2690 	/* print bus type/speed/width info, not applicable to i354 */
2691 	if (hw->mac.type != e1000_i354) {
2692 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2693 			 netdev->name,
2694 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2695 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2696 			   "unknown"),
2697 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2698 			  "Width x4" :
2699 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2700 			  "Width x2" :
2701 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2702 			  "Width x1" : "unknown"), netdev->dev_addr);
2703 	}
2704 
2705 	if ((hw->mac.type >= e1000_i210 ||
2706 	     igb_get_flash_presence_i210(hw))) {
2707 		ret_val = igb_read_part_string(hw, part_str,
2708 					       E1000_PBANUM_LENGTH);
2709 	} else {
2710 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2711 	}
2712 
2713 	if (ret_val)
2714 		strcpy(part_str, "Unknown");
2715 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2716 	dev_info(&pdev->dev,
2717 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2718 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2719 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2720 		adapter->num_rx_queues, adapter->num_tx_queues);
2721 	if (hw->phy.media_type == e1000_media_type_copper) {
2722 		switch (hw->mac.type) {
2723 		case e1000_i350:
2724 		case e1000_i210:
2725 		case e1000_i211:
2726 			/* Enable EEE for internal copper PHY devices */
2727 			err = igb_set_eee_i350(hw, true, true);
2728 			if ((!err) &&
2729 			    (!hw->dev_spec._82575.eee_disable)) {
2730 				adapter->eee_advert =
2731 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2732 				adapter->flags |= IGB_FLAG_EEE;
2733 			}
2734 			break;
2735 		case e1000_i354:
2736 			if ((rd32(E1000_CTRL_EXT) &
2737 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2738 				err = igb_set_eee_i354(hw, true, true);
2739 				if ((!err) &&
2740 					(!hw->dev_spec._82575.eee_disable)) {
2741 					adapter->eee_advert =
2742 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2743 					adapter->flags |= IGB_FLAG_EEE;
2744 				}
2745 			}
2746 			break;
2747 		default:
2748 			break;
2749 		}
2750 	}
2751 	pm_runtime_put_noidle(&pdev->dev);
2752 	return 0;
2753 
2754 err_register:
2755 	igb_release_hw_control(adapter);
2756 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2757 err_eeprom:
2758 	if (!igb_check_reset_block(hw))
2759 		igb_reset_phy(hw);
2760 
2761 	if (hw->flash_address)
2762 		iounmap(hw->flash_address);
2763 err_sw_init:
2764 	kfree(adapter->shadow_vfta);
2765 	igb_clear_interrupt_scheme(adapter);
2766 #ifdef CONFIG_PCI_IOV
2767 	igb_disable_sriov(pdev);
2768 #endif
2769 	pci_iounmap(pdev, adapter->io_addr);
2770 err_ioremap:
2771 	free_netdev(netdev);
2772 err_alloc_etherdev:
2773 	pci_release_mem_regions(pdev);
2774 err_pci_reg:
2775 err_dma:
2776 	pci_disable_device(pdev);
2777 	return err;
2778 }
2779 
2780 #ifdef CONFIG_PCI_IOV
2781 static int igb_disable_sriov(struct pci_dev *pdev)
2782 {
2783 	struct net_device *netdev = pci_get_drvdata(pdev);
2784 	struct igb_adapter *adapter = netdev_priv(netdev);
2785 	struct e1000_hw *hw = &adapter->hw;
2786 
2787 	/* reclaim resources allocated to VFs */
2788 	if (adapter->vf_data) {
2789 		/* disable iov and allow time for transactions to clear */
2790 		if (pci_vfs_assigned(pdev)) {
2791 			dev_warn(&pdev->dev,
2792 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2793 			return -EPERM;
2794 		} else {
2795 			pci_disable_sriov(pdev);
2796 			msleep(500);
2797 		}
2798 
2799 		kfree(adapter->vf_data);
2800 		adapter->vf_data = NULL;
2801 		adapter->vfs_allocated_count = 0;
2802 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2803 		wrfl();
2804 		msleep(100);
2805 		dev_info(&pdev->dev, "IOV Disabled\n");
2806 
2807 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2808 		adapter->flags |= IGB_FLAG_DMAC;
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2815 {
2816 	struct net_device *netdev = pci_get_drvdata(pdev);
2817 	struct igb_adapter *adapter = netdev_priv(netdev);
2818 	int old_vfs = pci_num_vf(pdev);
2819 	int err = 0;
2820 	int i;
2821 
2822 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2823 		err = -EPERM;
2824 		goto out;
2825 	}
2826 	if (!num_vfs)
2827 		goto out;
2828 
2829 	if (old_vfs) {
2830 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2831 			 old_vfs, max_vfs);
2832 		adapter->vfs_allocated_count = old_vfs;
2833 	} else
2834 		adapter->vfs_allocated_count = num_vfs;
2835 
2836 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2837 				sizeof(struct vf_data_storage), GFP_KERNEL);
2838 
2839 	/* if allocation failed then we do not support SR-IOV */
2840 	if (!adapter->vf_data) {
2841 		adapter->vfs_allocated_count = 0;
2842 		dev_err(&pdev->dev,
2843 			"Unable to allocate memory for VF Data Storage\n");
2844 		err = -ENOMEM;
2845 		goto out;
2846 	}
2847 
2848 	/* only call pci_enable_sriov() if no VFs are allocated already */
2849 	if (!old_vfs) {
2850 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2851 		if (err)
2852 			goto err_out;
2853 	}
2854 	dev_info(&pdev->dev, "%d VFs allocated\n",
2855 		 adapter->vfs_allocated_count);
2856 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2857 		igb_vf_configure(adapter, i);
2858 
2859 	/* DMA Coalescing is not supported in IOV mode. */
2860 	adapter->flags &= ~IGB_FLAG_DMAC;
2861 	goto out;
2862 
2863 err_out:
2864 	kfree(adapter->vf_data);
2865 	adapter->vf_data = NULL;
2866 	adapter->vfs_allocated_count = 0;
2867 out:
2868 	return err;
2869 }
2870 
2871 #endif
2872 /**
2873  *  igb_remove_i2c - Cleanup  I2C interface
2874  *  @adapter: pointer to adapter structure
2875  **/
2876 static void igb_remove_i2c(struct igb_adapter *adapter)
2877 {
2878 	/* free the adapter bus structure */
2879 	i2c_del_adapter(&adapter->i2c_adap);
2880 }
2881 
2882 /**
2883  *  igb_remove - Device Removal Routine
2884  *  @pdev: PCI device information struct
2885  *
2886  *  igb_remove is called by the PCI subsystem to alert the driver
2887  *  that it should release a PCI device.  The could be caused by a
2888  *  Hot-Plug event, or because the driver is going to be removed from
2889  *  memory.
2890  **/
2891 static void igb_remove(struct pci_dev *pdev)
2892 {
2893 	struct net_device *netdev = pci_get_drvdata(pdev);
2894 	struct igb_adapter *adapter = netdev_priv(netdev);
2895 	struct e1000_hw *hw = &adapter->hw;
2896 
2897 	pm_runtime_get_noresume(&pdev->dev);
2898 #ifdef CONFIG_IGB_HWMON
2899 	igb_sysfs_exit(adapter);
2900 #endif
2901 	igb_remove_i2c(adapter);
2902 	igb_ptp_stop(adapter);
2903 	/* The watchdog timer may be rescheduled, so explicitly
2904 	 * disable watchdog from being rescheduled.
2905 	 */
2906 	set_bit(__IGB_DOWN, &adapter->state);
2907 	del_timer_sync(&adapter->watchdog_timer);
2908 	del_timer_sync(&adapter->phy_info_timer);
2909 
2910 	cancel_work_sync(&adapter->reset_task);
2911 	cancel_work_sync(&adapter->watchdog_task);
2912 
2913 #ifdef CONFIG_IGB_DCA
2914 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2915 		dev_info(&pdev->dev, "DCA disabled\n");
2916 		dca_remove_requester(&pdev->dev);
2917 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2918 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2919 	}
2920 #endif
2921 
2922 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2923 	 * would have already happened in close and is redundant.
2924 	 */
2925 	igb_release_hw_control(adapter);
2926 
2927 #ifdef CONFIG_PCI_IOV
2928 	igb_disable_sriov(pdev);
2929 #endif
2930 
2931 	unregister_netdev(netdev);
2932 
2933 	igb_clear_interrupt_scheme(adapter);
2934 
2935 	pci_iounmap(pdev, adapter->io_addr);
2936 	if (hw->flash_address)
2937 		iounmap(hw->flash_address);
2938 	pci_release_mem_regions(pdev);
2939 
2940 	kfree(adapter->shadow_vfta);
2941 	free_netdev(netdev);
2942 
2943 	pci_disable_pcie_error_reporting(pdev);
2944 
2945 	pci_disable_device(pdev);
2946 }
2947 
2948 /**
2949  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2950  *  @adapter: board private structure to initialize
2951  *
2952  *  This function initializes the vf specific data storage and then attempts to
2953  *  allocate the VFs.  The reason for ordering it this way is because it is much
2954  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2955  *  the memory for the VFs.
2956  **/
2957 static void igb_probe_vfs(struct igb_adapter *adapter)
2958 {
2959 #ifdef CONFIG_PCI_IOV
2960 	struct pci_dev *pdev = adapter->pdev;
2961 	struct e1000_hw *hw = &adapter->hw;
2962 
2963 	/* Virtualization features not supported on i210 family. */
2964 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2965 		return;
2966 
2967 	/* Of the below we really only want the effect of getting
2968 	 * IGB_FLAG_HAS_MSIX set (if available), without which
2969 	 * igb_enable_sriov() has no effect.
2970 	 */
2971 	igb_set_interrupt_capability(adapter, true);
2972 	igb_reset_interrupt_capability(adapter);
2973 
2974 	pci_sriov_set_totalvfs(pdev, 7);
2975 	igb_enable_sriov(pdev, max_vfs);
2976 
2977 #endif /* CONFIG_PCI_IOV */
2978 }
2979 
2980 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2981 {
2982 	struct e1000_hw *hw = &adapter->hw;
2983 	u32 max_rss_queues;
2984 
2985 	/* Determine the maximum number of RSS queues supported. */
2986 	switch (hw->mac.type) {
2987 	case e1000_i211:
2988 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2989 		break;
2990 	case e1000_82575:
2991 	case e1000_i210:
2992 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2993 		break;
2994 	case e1000_i350:
2995 		/* I350 cannot do RSS and SR-IOV at the same time */
2996 		if (!!adapter->vfs_allocated_count) {
2997 			max_rss_queues = 1;
2998 			break;
2999 		}
3000 		/* fall through */
3001 	case e1000_82576:
3002 		if (!!adapter->vfs_allocated_count) {
3003 			max_rss_queues = 2;
3004 			break;
3005 		}
3006 		/* fall through */
3007 	case e1000_82580:
3008 	case e1000_i354:
3009 	default:
3010 		max_rss_queues = IGB_MAX_RX_QUEUES;
3011 		break;
3012 	}
3013 
3014 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3015 
3016 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3017 }
3018 
3019 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3020 			      const u32 max_rss_queues)
3021 {
3022 	struct e1000_hw *hw = &adapter->hw;
3023 
3024 	/* Determine if we need to pair queues. */
3025 	switch (hw->mac.type) {
3026 	case e1000_82575:
3027 	case e1000_i211:
3028 		/* Device supports enough interrupts without queue pairing. */
3029 		break;
3030 	case e1000_82576:
3031 	case e1000_82580:
3032 	case e1000_i350:
3033 	case e1000_i354:
3034 	case e1000_i210:
3035 	default:
3036 		/* If rss_queues > half of max_rss_queues, pair the queues in
3037 		 * order to conserve interrupts due to limited supply.
3038 		 */
3039 		if (adapter->rss_queues > (max_rss_queues / 2))
3040 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3041 		else
3042 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3043 		break;
3044 	}
3045 }
3046 
3047 /**
3048  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3049  *  @adapter: board private structure to initialize
3050  *
3051  *  igb_sw_init initializes the Adapter private data structure.
3052  *  Fields are initialized based on PCI device information and
3053  *  OS network device settings (MTU size).
3054  **/
3055 static int igb_sw_init(struct igb_adapter *adapter)
3056 {
3057 	struct e1000_hw *hw = &adapter->hw;
3058 	struct net_device *netdev = adapter->netdev;
3059 	struct pci_dev *pdev = adapter->pdev;
3060 
3061 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3062 
3063 	/* set default ring sizes */
3064 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3065 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3066 
3067 	/* set default ITR values */
3068 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3069 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3070 
3071 	/* set default work limits */
3072 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3073 
3074 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3075 				  VLAN_HLEN;
3076 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3077 
3078 	spin_lock_init(&adapter->nfc_lock);
3079 	spin_lock_init(&adapter->stats64_lock);
3080 #ifdef CONFIG_PCI_IOV
3081 	switch (hw->mac.type) {
3082 	case e1000_82576:
3083 	case e1000_i350:
3084 		if (max_vfs > 7) {
3085 			dev_warn(&pdev->dev,
3086 				 "Maximum of 7 VFs per PF, using max\n");
3087 			max_vfs = adapter->vfs_allocated_count = 7;
3088 		} else
3089 			adapter->vfs_allocated_count = max_vfs;
3090 		if (adapter->vfs_allocated_count)
3091 			dev_warn(&pdev->dev,
3092 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3093 		break;
3094 	default:
3095 		break;
3096 	}
3097 #endif /* CONFIG_PCI_IOV */
3098 
3099 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3100 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3101 
3102 	igb_probe_vfs(adapter);
3103 
3104 	igb_init_queue_configuration(adapter);
3105 
3106 	/* Setup and initialize a copy of the hw vlan table array */
3107 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3108 				       GFP_ATOMIC);
3109 
3110 	/* This call may decrease the number of queues */
3111 	if (igb_init_interrupt_scheme(adapter, true)) {
3112 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3113 		return -ENOMEM;
3114 	}
3115 
3116 	/* Explicitly disable IRQ since the NIC can be in any state. */
3117 	igb_irq_disable(adapter);
3118 
3119 	if (hw->mac.type >= e1000_i350)
3120 		adapter->flags &= ~IGB_FLAG_DMAC;
3121 
3122 	set_bit(__IGB_DOWN, &adapter->state);
3123 	return 0;
3124 }
3125 
3126 /**
3127  *  igb_open - Called when a network interface is made active
3128  *  @netdev: network interface device structure
3129  *
3130  *  Returns 0 on success, negative value on failure
3131  *
3132  *  The open entry point is called when a network interface is made
3133  *  active by the system (IFF_UP).  At this point all resources needed
3134  *  for transmit and receive operations are allocated, the interrupt
3135  *  handler is registered with the OS, the watchdog timer is started,
3136  *  and the stack is notified that the interface is ready.
3137  **/
3138 static int __igb_open(struct net_device *netdev, bool resuming)
3139 {
3140 	struct igb_adapter *adapter = netdev_priv(netdev);
3141 	struct e1000_hw *hw = &adapter->hw;
3142 	struct pci_dev *pdev = adapter->pdev;
3143 	int err;
3144 	int i;
3145 
3146 	/* disallow open during test */
3147 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3148 		WARN_ON(resuming);
3149 		return -EBUSY;
3150 	}
3151 
3152 	if (!resuming)
3153 		pm_runtime_get_sync(&pdev->dev);
3154 
3155 	netif_carrier_off(netdev);
3156 
3157 	/* allocate transmit descriptors */
3158 	err = igb_setup_all_tx_resources(adapter);
3159 	if (err)
3160 		goto err_setup_tx;
3161 
3162 	/* allocate receive descriptors */
3163 	err = igb_setup_all_rx_resources(adapter);
3164 	if (err)
3165 		goto err_setup_rx;
3166 
3167 	igb_power_up_link(adapter);
3168 
3169 	/* before we allocate an interrupt, we must be ready to handle it.
3170 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3171 	 * as soon as we call pci_request_irq, so we have to setup our
3172 	 * clean_rx handler before we do so.
3173 	 */
3174 	igb_configure(adapter);
3175 
3176 	err = igb_request_irq(adapter);
3177 	if (err)
3178 		goto err_req_irq;
3179 
3180 	/* Notify the stack of the actual queue counts. */
3181 	err = netif_set_real_num_tx_queues(adapter->netdev,
3182 					   adapter->num_tx_queues);
3183 	if (err)
3184 		goto err_set_queues;
3185 
3186 	err = netif_set_real_num_rx_queues(adapter->netdev,
3187 					   adapter->num_rx_queues);
3188 	if (err)
3189 		goto err_set_queues;
3190 
3191 	/* From here on the code is the same as igb_up() */
3192 	clear_bit(__IGB_DOWN, &adapter->state);
3193 
3194 	for (i = 0; i < adapter->num_q_vectors; i++)
3195 		napi_enable(&(adapter->q_vector[i]->napi));
3196 
3197 	/* Clear any pending interrupts. */
3198 	rd32(E1000_ICR);
3199 
3200 	igb_irq_enable(adapter);
3201 
3202 	/* notify VFs that reset has been completed */
3203 	if (adapter->vfs_allocated_count) {
3204 		u32 reg_data = rd32(E1000_CTRL_EXT);
3205 
3206 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3207 		wr32(E1000_CTRL_EXT, reg_data);
3208 	}
3209 
3210 	netif_tx_start_all_queues(netdev);
3211 
3212 	if (!resuming)
3213 		pm_runtime_put(&pdev->dev);
3214 
3215 	/* start the watchdog. */
3216 	hw->mac.get_link_status = 1;
3217 	schedule_work(&adapter->watchdog_task);
3218 
3219 	return 0;
3220 
3221 err_set_queues:
3222 	igb_free_irq(adapter);
3223 err_req_irq:
3224 	igb_release_hw_control(adapter);
3225 	igb_power_down_link(adapter);
3226 	igb_free_all_rx_resources(adapter);
3227 err_setup_rx:
3228 	igb_free_all_tx_resources(adapter);
3229 err_setup_tx:
3230 	igb_reset(adapter);
3231 	if (!resuming)
3232 		pm_runtime_put(&pdev->dev);
3233 
3234 	return err;
3235 }
3236 
3237 int igb_open(struct net_device *netdev)
3238 {
3239 	return __igb_open(netdev, false);
3240 }
3241 
3242 /**
3243  *  igb_close - Disables a network interface
3244  *  @netdev: network interface device structure
3245  *
3246  *  Returns 0, this is not allowed to fail
3247  *
3248  *  The close entry point is called when an interface is de-activated
3249  *  by the OS.  The hardware is still under the driver's control, but
3250  *  needs to be disabled.  A global MAC reset is issued to stop the
3251  *  hardware, and all transmit and receive resources are freed.
3252  **/
3253 static int __igb_close(struct net_device *netdev, bool suspending)
3254 {
3255 	struct igb_adapter *adapter = netdev_priv(netdev);
3256 	struct pci_dev *pdev = adapter->pdev;
3257 
3258 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3259 
3260 	if (!suspending)
3261 		pm_runtime_get_sync(&pdev->dev);
3262 
3263 	igb_down(adapter);
3264 	igb_free_irq(adapter);
3265 
3266 	igb_nfc_filter_exit(adapter);
3267 
3268 	igb_free_all_tx_resources(adapter);
3269 	igb_free_all_rx_resources(adapter);
3270 
3271 	if (!suspending)
3272 		pm_runtime_put_sync(&pdev->dev);
3273 	return 0;
3274 }
3275 
3276 int igb_close(struct net_device *netdev)
3277 {
3278 	return __igb_close(netdev, false);
3279 }
3280 
3281 /**
3282  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3283  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3284  *
3285  *  Return 0 on success, negative on failure
3286  **/
3287 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3288 {
3289 	struct device *dev = tx_ring->dev;
3290 	int size;
3291 
3292 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3293 
3294 	tx_ring->tx_buffer_info = vzalloc(size);
3295 	if (!tx_ring->tx_buffer_info)
3296 		goto err;
3297 
3298 	/* round up to nearest 4K */
3299 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3300 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3301 
3302 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3303 					   &tx_ring->dma, GFP_KERNEL);
3304 	if (!tx_ring->desc)
3305 		goto err;
3306 
3307 	tx_ring->next_to_use = 0;
3308 	tx_ring->next_to_clean = 0;
3309 
3310 	return 0;
3311 
3312 err:
3313 	vfree(tx_ring->tx_buffer_info);
3314 	tx_ring->tx_buffer_info = NULL;
3315 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3316 	return -ENOMEM;
3317 }
3318 
3319 /**
3320  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3321  *				 (Descriptors) for all queues
3322  *  @adapter: board private structure
3323  *
3324  *  Return 0 on success, negative on failure
3325  **/
3326 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3327 {
3328 	struct pci_dev *pdev = adapter->pdev;
3329 	int i, err = 0;
3330 
3331 	for (i = 0; i < adapter->num_tx_queues; i++) {
3332 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3333 		if (err) {
3334 			dev_err(&pdev->dev,
3335 				"Allocation for Tx Queue %u failed\n", i);
3336 			for (i--; i >= 0; i--)
3337 				igb_free_tx_resources(adapter->tx_ring[i]);
3338 			break;
3339 		}
3340 	}
3341 
3342 	return err;
3343 }
3344 
3345 /**
3346  *  igb_setup_tctl - configure the transmit control registers
3347  *  @adapter: Board private structure
3348  **/
3349 void igb_setup_tctl(struct igb_adapter *adapter)
3350 {
3351 	struct e1000_hw *hw = &adapter->hw;
3352 	u32 tctl;
3353 
3354 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3355 	wr32(E1000_TXDCTL(0), 0);
3356 
3357 	/* Program the Transmit Control Register */
3358 	tctl = rd32(E1000_TCTL);
3359 	tctl &= ~E1000_TCTL_CT;
3360 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3361 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3362 
3363 	igb_config_collision_dist(hw);
3364 
3365 	/* Enable transmits */
3366 	tctl |= E1000_TCTL_EN;
3367 
3368 	wr32(E1000_TCTL, tctl);
3369 }
3370 
3371 /**
3372  *  igb_configure_tx_ring - Configure transmit ring after Reset
3373  *  @adapter: board private structure
3374  *  @ring: tx ring to configure
3375  *
3376  *  Configure a transmit ring after a reset.
3377  **/
3378 void igb_configure_tx_ring(struct igb_adapter *adapter,
3379 			   struct igb_ring *ring)
3380 {
3381 	struct e1000_hw *hw = &adapter->hw;
3382 	u32 txdctl = 0;
3383 	u64 tdba = ring->dma;
3384 	int reg_idx = ring->reg_idx;
3385 
3386 	/* disable the queue */
3387 	wr32(E1000_TXDCTL(reg_idx), 0);
3388 	wrfl();
3389 	mdelay(10);
3390 
3391 	wr32(E1000_TDLEN(reg_idx),
3392 	     ring->count * sizeof(union e1000_adv_tx_desc));
3393 	wr32(E1000_TDBAL(reg_idx),
3394 	     tdba & 0x00000000ffffffffULL);
3395 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3396 
3397 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3398 	wr32(E1000_TDH(reg_idx), 0);
3399 	writel(0, ring->tail);
3400 
3401 	txdctl |= IGB_TX_PTHRESH;
3402 	txdctl |= IGB_TX_HTHRESH << 8;
3403 	txdctl |= IGB_TX_WTHRESH << 16;
3404 
3405 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3406 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3407 }
3408 
3409 /**
3410  *  igb_configure_tx - Configure transmit Unit after Reset
3411  *  @adapter: board private structure
3412  *
3413  *  Configure the Tx unit of the MAC after a reset.
3414  **/
3415 static void igb_configure_tx(struct igb_adapter *adapter)
3416 {
3417 	int i;
3418 
3419 	for (i = 0; i < adapter->num_tx_queues; i++)
3420 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3421 }
3422 
3423 /**
3424  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3425  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3426  *
3427  *  Returns 0 on success, negative on failure
3428  **/
3429 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3430 {
3431 	struct device *dev = rx_ring->dev;
3432 	int size;
3433 
3434 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3435 
3436 	rx_ring->rx_buffer_info = vzalloc(size);
3437 	if (!rx_ring->rx_buffer_info)
3438 		goto err;
3439 
3440 	/* Round up to nearest 4K */
3441 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3442 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3443 
3444 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3445 					   &rx_ring->dma, GFP_KERNEL);
3446 	if (!rx_ring->desc)
3447 		goto err;
3448 
3449 	rx_ring->next_to_alloc = 0;
3450 	rx_ring->next_to_clean = 0;
3451 	rx_ring->next_to_use = 0;
3452 
3453 	return 0;
3454 
3455 err:
3456 	vfree(rx_ring->rx_buffer_info);
3457 	rx_ring->rx_buffer_info = NULL;
3458 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3459 	return -ENOMEM;
3460 }
3461 
3462 /**
3463  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3464  *				 (Descriptors) for all queues
3465  *  @adapter: board private structure
3466  *
3467  *  Return 0 on success, negative on failure
3468  **/
3469 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3470 {
3471 	struct pci_dev *pdev = adapter->pdev;
3472 	int i, err = 0;
3473 
3474 	for (i = 0; i < adapter->num_rx_queues; i++) {
3475 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3476 		if (err) {
3477 			dev_err(&pdev->dev,
3478 				"Allocation for Rx Queue %u failed\n", i);
3479 			for (i--; i >= 0; i--)
3480 				igb_free_rx_resources(adapter->rx_ring[i]);
3481 			break;
3482 		}
3483 	}
3484 
3485 	return err;
3486 }
3487 
3488 /**
3489  *  igb_setup_mrqc - configure the multiple receive queue control registers
3490  *  @adapter: Board private structure
3491  **/
3492 static void igb_setup_mrqc(struct igb_adapter *adapter)
3493 {
3494 	struct e1000_hw *hw = &adapter->hw;
3495 	u32 mrqc, rxcsum;
3496 	u32 j, num_rx_queues;
3497 	u32 rss_key[10];
3498 
3499 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3500 	for (j = 0; j < 10; j++)
3501 		wr32(E1000_RSSRK(j), rss_key[j]);
3502 
3503 	num_rx_queues = adapter->rss_queues;
3504 
3505 	switch (hw->mac.type) {
3506 	case e1000_82576:
3507 		/* 82576 supports 2 RSS queues for SR-IOV */
3508 		if (adapter->vfs_allocated_count)
3509 			num_rx_queues = 2;
3510 		break;
3511 	default:
3512 		break;
3513 	}
3514 
3515 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3516 		for (j = 0; j < IGB_RETA_SIZE; j++)
3517 			adapter->rss_indir_tbl[j] =
3518 			(j * num_rx_queues) / IGB_RETA_SIZE;
3519 		adapter->rss_indir_tbl_init = num_rx_queues;
3520 	}
3521 	igb_write_rss_indir_tbl(adapter);
3522 
3523 	/* Disable raw packet checksumming so that RSS hash is placed in
3524 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3525 	 * offloads as they are enabled by default
3526 	 */
3527 	rxcsum = rd32(E1000_RXCSUM);
3528 	rxcsum |= E1000_RXCSUM_PCSD;
3529 
3530 	if (adapter->hw.mac.type >= e1000_82576)
3531 		/* Enable Receive Checksum Offload for SCTP */
3532 		rxcsum |= E1000_RXCSUM_CRCOFL;
3533 
3534 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3535 	wr32(E1000_RXCSUM, rxcsum);
3536 
3537 	/* Generate RSS hash based on packet types, TCP/UDP
3538 	 * port numbers and/or IPv4/v6 src and dst addresses
3539 	 */
3540 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3541 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3542 	       E1000_MRQC_RSS_FIELD_IPV6 |
3543 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3544 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3545 
3546 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3547 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3548 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3549 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3550 
3551 	/* If VMDq is enabled then we set the appropriate mode for that, else
3552 	 * we default to RSS so that an RSS hash is calculated per packet even
3553 	 * if we are only using one queue
3554 	 */
3555 	if (adapter->vfs_allocated_count) {
3556 		if (hw->mac.type > e1000_82575) {
3557 			/* Set the default pool for the PF's first queue */
3558 			u32 vtctl = rd32(E1000_VT_CTL);
3559 
3560 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3561 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3562 			vtctl |= adapter->vfs_allocated_count <<
3563 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3564 			wr32(E1000_VT_CTL, vtctl);
3565 		}
3566 		if (adapter->rss_queues > 1)
3567 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3568 		else
3569 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3570 	} else {
3571 		if (hw->mac.type != e1000_i211)
3572 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3573 	}
3574 	igb_vmm_control(adapter);
3575 
3576 	wr32(E1000_MRQC, mrqc);
3577 }
3578 
3579 /**
3580  *  igb_setup_rctl - configure the receive control registers
3581  *  @adapter: Board private structure
3582  **/
3583 void igb_setup_rctl(struct igb_adapter *adapter)
3584 {
3585 	struct e1000_hw *hw = &adapter->hw;
3586 	u32 rctl;
3587 
3588 	rctl = rd32(E1000_RCTL);
3589 
3590 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3591 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3592 
3593 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3594 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3595 
3596 	/* enable stripping of CRC. It's unlikely this will break BMC
3597 	 * redirection as it did with e1000. Newer features require
3598 	 * that the HW strips the CRC.
3599 	 */
3600 	rctl |= E1000_RCTL_SECRC;
3601 
3602 	/* disable store bad packets and clear size bits. */
3603 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3604 
3605 	/* enable LPE to allow for reception of jumbo frames */
3606 	rctl |= E1000_RCTL_LPE;
3607 
3608 	/* disable queue 0 to prevent tail write w/o re-config */
3609 	wr32(E1000_RXDCTL(0), 0);
3610 
3611 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3612 	 * queue drop for all VF and PF queues to prevent head of line blocking
3613 	 * if an un-trusted VF does not provide descriptors to hardware.
3614 	 */
3615 	if (adapter->vfs_allocated_count) {
3616 		/* set all queue drop enable bits */
3617 		wr32(E1000_QDE, ALL_QUEUES);
3618 	}
3619 
3620 	/* This is useful for sniffing bad packets. */
3621 	if (adapter->netdev->features & NETIF_F_RXALL) {
3622 		/* UPE and MPE will be handled by normal PROMISC logic
3623 		 * in e1000e_set_rx_mode
3624 		 */
3625 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3626 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3627 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3628 
3629 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3630 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3631 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3632 		 * and that breaks VLANs.
3633 		 */
3634 	}
3635 
3636 	wr32(E1000_RCTL, rctl);
3637 }
3638 
3639 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3640 				   int vfn)
3641 {
3642 	struct e1000_hw *hw = &adapter->hw;
3643 	u32 vmolr;
3644 
3645 	if (size > MAX_JUMBO_FRAME_SIZE)
3646 		size = MAX_JUMBO_FRAME_SIZE;
3647 
3648 	vmolr = rd32(E1000_VMOLR(vfn));
3649 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3650 	vmolr |= size | E1000_VMOLR_LPE;
3651 	wr32(E1000_VMOLR(vfn), vmolr);
3652 
3653 	return 0;
3654 }
3655 
3656 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3657 					 int vfn, bool enable)
3658 {
3659 	struct e1000_hw *hw = &adapter->hw;
3660 	u32 val, reg;
3661 
3662 	if (hw->mac.type < e1000_82576)
3663 		return;
3664 
3665 	if (hw->mac.type == e1000_i350)
3666 		reg = E1000_DVMOLR(vfn);
3667 	else
3668 		reg = E1000_VMOLR(vfn);
3669 
3670 	val = rd32(reg);
3671 	if (enable)
3672 		val |= E1000_VMOLR_STRVLAN;
3673 	else
3674 		val &= ~(E1000_VMOLR_STRVLAN);
3675 	wr32(reg, val);
3676 }
3677 
3678 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3679 				 int vfn, bool aupe)
3680 {
3681 	struct e1000_hw *hw = &adapter->hw;
3682 	u32 vmolr;
3683 
3684 	/* This register exists only on 82576 and newer so if we are older then
3685 	 * we should exit and do nothing
3686 	 */
3687 	if (hw->mac.type < e1000_82576)
3688 		return;
3689 
3690 	vmolr = rd32(E1000_VMOLR(vfn));
3691 	if (aupe)
3692 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3693 	else
3694 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3695 
3696 	/* clear all bits that might not be set */
3697 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3698 
3699 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3700 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3701 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3702 	 * multicast packets
3703 	 */
3704 	if (vfn <= adapter->vfs_allocated_count)
3705 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3706 
3707 	wr32(E1000_VMOLR(vfn), vmolr);
3708 }
3709 
3710 /**
3711  *  igb_configure_rx_ring - Configure a receive ring after Reset
3712  *  @adapter: board private structure
3713  *  @ring: receive ring to be configured
3714  *
3715  *  Configure the Rx unit of the MAC after a reset.
3716  **/
3717 void igb_configure_rx_ring(struct igb_adapter *adapter,
3718 			   struct igb_ring *ring)
3719 {
3720 	struct e1000_hw *hw = &adapter->hw;
3721 	u64 rdba = ring->dma;
3722 	int reg_idx = ring->reg_idx;
3723 	u32 srrctl = 0, rxdctl = 0;
3724 
3725 	/* disable the queue */
3726 	wr32(E1000_RXDCTL(reg_idx), 0);
3727 
3728 	/* Set DMA base address registers */
3729 	wr32(E1000_RDBAL(reg_idx),
3730 	     rdba & 0x00000000ffffffffULL);
3731 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3732 	wr32(E1000_RDLEN(reg_idx),
3733 	     ring->count * sizeof(union e1000_adv_rx_desc));
3734 
3735 	/* initialize head and tail */
3736 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3737 	wr32(E1000_RDH(reg_idx), 0);
3738 	writel(0, ring->tail);
3739 
3740 	/* set descriptor configuration */
3741 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3742 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3743 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3744 	if (hw->mac.type >= e1000_82580)
3745 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3746 	/* Only set Drop Enable if we are supporting multiple queues */
3747 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3748 		srrctl |= E1000_SRRCTL_DROP_EN;
3749 
3750 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3751 
3752 	/* set filtering for VMDQ pools */
3753 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3754 
3755 	rxdctl |= IGB_RX_PTHRESH;
3756 	rxdctl |= IGB_RX_HTHRESH << 8;
3757 	rxdctl |= IGB_RX_WTHRESH << 16;
3758 
3759 	/* enable receive descriptor fetching */
3760 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3761 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3762 }
3763 
3764 /**
3765  *  igb_configure_rx - Configure receive Unit after Reset
3766  *  @adapter: board private structure
3767  *
3768  *  Configure the Rx unit of the MAC after a reset.
3769  **/
3770 static void igb_configure_rx(struct igb_adapter *adapter)
3771 {
3772 	int i;
3773 
3774 	/* set the correct pool for the PF default MAC address in entry 0 */
3775 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3776 			 adapter->vfs_allocated_count);
3777 
3778 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3779 	 * the Base and Length of the Rx Descriptor Ring
3780 	 */
3781 	for (i = 0; i < adapter->num_rx_queues; i++)
3782 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3783 }
3784 
3785 /**
3786  *  igb_free_tx_resources - Free Tx Resources per Queue
3787  *  @tx_ring: Tx descriptor ring for a specific queue
3788  *
3789  *  Free all transmit software resources
3790  **/
3791 void igb_free_tx_resources(struct igb_ring *tx_ring)
3792 {
3793 	igb_clean_tx_ring(tx_ring);
3794 
3795 	vfree(tx_ring->tx_buffer_info);
3796 	tx_ring->tx_buffer_info = NULL;
3797 
3798 	/* if not set, then don't free */
3799 	if (!tx_ring->desc)
3800 		return;
3801 
3802 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3803 			  tx_ring->desc, tx_ring->dma);
3804 
3805 	tx_ring->desc = NULL;
3806 }
3807 
3808 /**
3809  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3810  *  @adapter: board private structure
3811  *
3812  *  Free all transmit software resources
3813  **/
3814 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3815 {
3816 	int i;
3817 
3818 	for (i = 0; i < adapter->num_tx_queues; i++)
3819 		if (adapter->tx_ring[i])
3820 			igb_free_tx_resources(adapter->tx_ring[i]);
3821 }
3822 
3823 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3824 				    struct igb_tx_buffer *tx_buffer)
3825 {
3826 	if (tx_buffer->skb) {
3827 		dev_kfree_skb_any(tx_buffer->skb);
3828 		if (dma_unmap_len(tx_buffer, len))
3829 			dma_unmap_single(ring->dev,
3830 					 dma_unmap_addr(tx_buffer, dma),
3831 					 dma_unmap_len(tx_buffer, len),
3832 					 DMA_TO_DEVICE);
3833 	} else if (dma_unmap_len(tx_buffer, len)) {
3834 		dma_unmap_page(ring->dev,
3835 			       dma_unmap_addr(tx_buffer, dma),
3836 			       dma_unmap_len(tx_buffer, len),
3837 			       DMA_TO_DEVICE);
3838 	}
3839 	tx_buffer->next_to_watch = NULL;
3840 	tx_buffer->skb = NULL;
3841 	dma_unmap_len_set(tx_buffer, len, 0);
3842 	/* buffer_info must be completely set up in the transmit path */
3843 }
3844 
3845 /**
3846  *  igb_clean_tx_ring - Free Tx Buffers
3847  *  @tx_ring: ring to be cleaned
3848  **/
3849 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3850 {
3851 	struct igb_tx_buffer *buffer_info;
3852 	unsigned long size;
3853 	u16 i;
3854 
3855 	if (!tx_ring->tx_buffer_info)
3856 		return;
3857 	/* Free all the Tx ring sk_buffs */
3858 
3859 	for (i = 0; i < tx_ring->count; i++) {
3860 		buffer_info = &tx_ring->tx_buffer_info[i];
3861 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3862 	}
3863 
3864 	netdev_tx_reset_queue(txring_txq(tx_ring));
3865 
3866 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3867 	memset(tx_ring->tx_buffer_info, 0, size);
3868 
3869 	/* Zero out the descriptor ring */
3870 	memset(tx_ring->desc, 0, tx_ring->size);
3871 
3872 	tx_ring->next_to_use = 0;
3873 	tx_ring->next_to_clean = 0;
3874 }
3875 
3876 /**
3877  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3878  *  @adapter: board private structure
3879  **/
3880 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3881 {
3882 	int i;
3883 
3884 	for (i = 0; i < adapter->num_tx_queues; i++)
3885 		if (adapter->tx_ring[i])
3886 			igb_clean_tx_ring(adapter->tx_ring[i]);
3887 }
3888 
3889 /**
3890  *  igb_free_rx_resources - Free Rx Resources
3891  *  @rx_ring: ring to clean the resources from
3892  *
3893  *  Free all receive software resources
3894  **/
3895 void igb_free_rx_resources(struct igb_ring *rx_ring)
3896 {
3897 	igb_clean_rx_ring(rx_ring);
3898 
3899 	vfree(rx_ring->rx_buffer_info);
3900 	rx_ring->rx_buffer_info = NULL;
3901 
3902 	/* if not set, then don't free */
3903 	if (!rx_ring->desc)
3904 		return;
3905 
3906 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3907 			  rx_ring->desc, rx_ring->dma);
3908 
3909 	rx_ring->desc = NULL;
3910 }
3911 
3912 /**
3913  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3914  *  @adapter: board private structure
3915  *
3916  *  Free all receive software resources
3917  **/
3918 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3919 {
3920 	int i;
3921 
3922 	for (i = 0; i < adapter->num_rx_queues; i++)
3923 		if (adapter->rx_ring[i])
3924 			igb_free_rx_resources(adapter->rx_ring[i]);
3925 }
3926 
3927 /**
3928  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3929  *  @rx_ring: ring to free buffers from
3930  **/
3931 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3932 {
3933 	unsigned long size;
3934 	u16 i;
3935 
3936 	if (rx_ring->skb)
3937 		dev_kfree_skb(rx_ring->skb);
3938 	rx_ring->skb = NULL;
3939 
3940 	if (!rx_ring->rx_buffer_info)
3941 		return;
3942 
3943 	/* Free all the Rx ring sk_buffs */
3944 	for (i = 0; i < rx_ring->count; i++) {
3945 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3946 
3947 		if (!buffer_info->page)
3948 			continue;
3949 
3950 		dma_unmap_page(rx_ring->dev,
3951 			       buffer_info->dma,
3952 			       PAGE_SIZE,
3953 			       DMA_FROM_DEVICE);
3954 		__free_page(buffer_info->page);
3955 
3956 		buffer_info->page = NULL;
3957 	}
3958 
3959 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3960 	memset(rx_ring->rx_buffer_info, 0, size);
3961 
3962 	/* Zero out the descriptor ring */
3963 	memset(rx_ring->desc, 0, rx_ring->size);
3964 
3965 	rx_ring->next_to_alloc = 0;
3966 	rx_ring->next_to_clean = 0;
3967 	rx_ring->next_to_use = 0;
3968 }
3969 
3970 /**
3971  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3972  *  @adapter: board private structure
3973  **/
3974 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3975 {
3976 	int i;
3977 
3978 	for (i = 0; i < adapter->num_rx_queues; i++)
3979 		if (adapter->rx_ring[i])
3980 			igb_clean_rx_ring(adapter->rx_ring[i]);
3981 }
3982 
3983 /**
3984  *  igb_set_mac - Change the Ethernet Address of the NIC
3985  *  @netdev: network interface device structure
3986  *  @p: pointer to an address structure
3987  *
3988  *  Returns 0 on success, negative on failure
3989  **/
3990 static int igb_set_mac(struct net_device *netdev, void *p)
3991 {
3992 	struct igb_adapter *adapter = netdev_priv(netdev);
3993 	struct e1000_hw *hw = &adapter->hw;
3994 	struct sockaddr *addr = p;
3995 
3996 	if (!is_valid_ether_addr(addr->sa_data))
3997 		return -EADDRNOTAVAIL;
3998 
3999 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4000 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4001 
4002 	/* set the correct pool for the new PF MAC address in entry 0 */
4003 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
4004 			 adapter->vfs_allocated_count);
4005 
4006 	return 0;
4007 }
4008 
4009 /**
4010  *  igb_write_mc_addr_list - write multicast addresses to MTA
4011  *  @netdev: network interface device structure
4012  *
4013  *  Writes multicast address list to the MTA hash table.
4014  *  Returns: -ENOMEM on failure
4015  *           0 on no addresses written
4016  *           X on writing X addresses to MTA
4017  **/
4018 static int igb_write_mc_addr_list(struct net_device *netdev)
4019 {
4020 	struct igb_adapter *adapter = netdev_priv(netdev);
4021 	struct e1000_hw *hw = &adapter->hw;
4022 	struct netdev_hw_addr *ha;
4023 	u8  *mta_list;
4024 	int i;
4025 
4026 	if (netdev_mc_empty(netdev)) {
4027 		/* nothing to program, so clear mc list */
4028 		igb_update_mc_addr_list(hw, NULL, 0);
4029 		igb_restore_vf_multicasts(adapter);
4030 		return 0;
4031 	}
4032 
4033 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4034 	if (!mta_list)
4035 		return -ENOMEM;
4036 
4037 	/* The shared function expects a packed array of only addresses. */
4038 	i = 0;
4039 	netdev_for_each_mc_addr(ha, netdev)
4040 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4041 
4042 	igb_update_mc_addr_list(hw, mta_list, i);
4043 	kfree(mta_list);
4044 
4045 	return netdev_mc_count(netdev);
4046 }
4047 
4048 /**
4049  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4050  *  @netdev: network interface device structure
4051  *
4052  *  Writes unicast address list to the RAR table.
4053  *  Returns: -ENOMEM on failure/insufficient address space
4054  *           0 on no addresses written
4055  *           X on writing X addresses to the RAR table
4056  **/
4057 static int igb_write_uc_addr_list(struct net_device *netdev)
4058 {
4059 	struct igb_adapter *adapter = netdev_priv(netdev);
4060 	struct e1000_hw *hw = &adapter->hw;
4061 	unsigned int vfn = adapter->vfs_allocated_count;
4062 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4063 	int count = 0;
4064 
4065 	/* return ENOMEM indicating insufficient memory for addresses */
4066 	if (netdev_uc_count(netdev) > rar_entries)
4067 		return -ENOMEM;
4068 
4069 	if (!netdev_uc_empty(netdev) && rar_entries) {
4070 		struct netdev_hw_addr *ha;
4071 
4072 		netdev_for_each_uc_addr(ha, netdev) {
4073 			if (!rar_entries)
4074 				break;
4075 			igb_rar_set_qsel(adapter, ha->addr,
4076 					 rar_entries--,
4077 					 vfn);
4078 			count++;
4079 		}
4080 	}
4081 	/* write the addresses in reverse order to avoid write combining */
4082 	for (; rar_entries > 0 ; rar_entries--) {
4083 		wr32(E1000_RAH(rar_entries), 0);
4084 		wr32(E1000_RAL(rar_entries), 0);
4085 	}
4086 	wrfl();
4087 
4088 	return count;
4089 }
4090 
4091 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4092 {
4093 	struct e1000_hw *hw = &adapter->hw;
4094 	u32 i, pf_id;
4095 
4096 	switch (hw->mac.type) {
4097 	case e1000_i210:
4098 	case e1000_i211:
4099 	case e1000_i350:
4100 		/* VLAN filtering needed for VLAN prio filter */
4101 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4102 			break;
4103 		/* fall through */
4104 	case e1000_82576:
4105 	case e1000_82580:
4106 	case e1000_i354:
4107 		/* VLAN filtering needed for pool filtering */
4108 		if (adapter->vfs_allocated_count)
4109 			break;
4110 		/* fall through */
4111 	default:
4112 		return 1;
4113 	}
4114 
4115 	/* We are already in VLAN promisc, nothing to do */
4116 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4117 		return 0;
4118 
4119 	if (!adapter->vfs_allocated_count)
4120 		goto set_vfta;
4121 
4122 	/* Add PF to all active pools */
4123 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4124 
4125 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4126 		u32 vlvf = rd32(E1000_VLVF(i));
4127 
4128 		vlvf |= BIT(pf_id);
4129 		wr32(E1000_VLVF(i), vlvf);
4130 	}
4131 
4132 set_vfta:
4133 	/* Set all bits in the VLAN filter table array */
4134 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4135 		hw->mac.ops.write_vfta(hw, i, ~0U);
4136 
4137 	/* Set flag so we don't redo unnecessary work */
4138 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4139 
4140 	return 0;
4141 }
4142 
4143 #define VFTA_BLOCK_SIZE 8
4144 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4145 {
4146 	struct e1000_hw *hw = &adapter->hw;
4147 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4148 	u32 vid_start = vfta_offset * 32;
4149 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4150 	u32 i, vid, word, bits, pf_id;
4151 
4152 	/* guarantee that we don't scrub out management VLAN */
4153 	vid = adapter->mng_vlan_id;
4154 	if (vid >= vid_start && vid < vid_end)
4155 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4156 
4157 	if (!adapter->vfs_allocated_count)
4158 		goto set_vfta;
4159 
4160 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4161 
4162 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4163 		u32 vlvf = rd32(E1000_VLVF(i));
4164 
4165 		/* pull VLAN ID from VLVF */
4166 		vid = vlvf & VLAN_VID_MASK;
4167 
4168 		/* only concern ourselves with a certain range */
4169 		if (vid < vid_start || vid >= vid_end)
4170 			continue;
4171 
4172 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4173 			/* record VLAN ID in VFTA */
4174 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4175 
4176 			/* if PF is part of this then continue */
4177 			if (test_bit(vid, adapter->active_vlans))
4178 				continue;
4179 		}
4180 
4181 		/* remove PF from the pool */
4182 		bits = ~BIT(pf_id);
4183 		bits &= rd32(E1000_VLVF(i));
4184 		wr32(E1000_VLVF(i), bits);
4185 	}
4186 
4187 set_vfta:
4188 	/* extract values from active_vlans and write back to VFTA */
4189 	for (i = VFTA_BLOCK_SIZE; i--;) {
4190 		vid = (vfta_offset + i) * 32;
4191 		word = vid / BITS_PER_LONG;
4192 		bits = vid % BITS_PER_LONG;
4193 
4194 		vfta[i] |= adapter->active_vlans[word] >> bits;
4195 
4196 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4197 	}
4198 }
4199 
4200 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4201 {
4202 	u32 i;
4203 
4204 	/* We are not in VLAN promisc, nothing to do */
4205 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4206 		return;
4207 
4208 	/* Set flag so we don't redo unnecessary work */
4209 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4210 
4211 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4212 		igb_scrub_vfta(adapter, i);
4213 }
4214 
4215 /**
4216  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4217  *  @netdev: network interface device structure
4218  *
4219  *  The set_rx_mode entry point is called whenever the unicast or multicast
4220  *  address lists or the network interface flags are updated.  This routine is
4221  *  responsible for configuring the hardware for proper unicast, multicast,
4222  *  promiscuous mode, and all-multi behavior.
4223  **/
4224 static void igb_set_rx_mode(struct net_device *netdev)
4225 {
4226 	struct igb_adapter *adapter = netdev_priv(netdev);
4227 	struct e1000_hw *hw = &adapter->hw;
4228 	unsigned int vfn = adapter->vfs_allocated_count;
4229 	u32 rctl = 0, vmolr = 0;
4230 	int count;
4231 
4232 	/* Check for Promiscuous and All Multicast modes */
4233 	if (netdev->flags & IFF_PROMISC) {
4234 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4235 		vmolr |= E1000_VMOLR_MPME;
4236 
4237 		/* enable use of UTA filter to force packets to default pool */
4238 		if (hw->mac.type == e1000_82576)
4239 			vmolr |= E1000_VMOLR_ROPE;
4240 	} else {
4241 		if (netdev->flags & IFF_ALLMULTI) {
4242 			rctl |= E1000_RCTL_MPE;
4243 			vmolr |= E1000_VMOLR_MPME;
4244 		} else {
4245 			/* Write addresses to the MTA, if the attempt fails
4246 			 * then we should just turn on promiscuous mode so
4247 			 * that we can at least receive multicast traffic
4248 			 */
4249 			count = igb_write_mc_addr_list(netdev);
4250 			if (count < 0) {
4251 				rctl |= E1000_RCTL_MPE;
4252 				vmolr |= E1000_VMOLR_MPME;
4253 			} else if (count) {
4254 				vmolr |= E1000_VMOLR_ROMPE;
4255 			}
4256 		}
4257 	}
4258 
4259 	/* Write addresses to available RAR registers, if there is not
4260 	 * sufficient space to store all the addresses then enable
4261 	 * unicast promiscuous mode
4262 	 */
4263 	count = igb_write_uc_addr_list(netdev);
4264 	if (count < 0) {
4265 		rctl |= E1000_RCTL_UPE;
4266 		vmolr |= E1000_VMOLR_ROPE;
4267 	}
4268 
4269 	/* enable VLAN filtering by default */
4270 	rctl |= E1000_RCTL_VFE;
4271 
4272 	/* disable VLAN filtering for modes that require it */
4273 	if ((netdev->flags & IFF_PROMISC) ||
4274 	    (netdev->features & NETIF_F_RXALL)) {
4275 		/* if we fail to set all rules then just clear VFE */
4276 		if (igb_vlan_promisc_enable(adapter))
4277 			rctl &= ~E1000_RCTL_VFE;
4278 	} else {
4279 		igb_vlan_promisc_disable(adapter);
4280 	}
4281 
4282 	/* update state of unicast, multicast, and VLAN filtering modes */
4283 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4284 				     E1000_RCTL_VFE);
4285 	wr32(E1000_RCTL, rctl);
4286 
4287 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4288 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4289 	 * we will have issues with VLAN tag stripping not being done for frames
4290 	 * that are only arriving because we are the default pool
4291 	 */
4292 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4293 		return;
4294 
4295 	/* set UTA to appropriate mode */
4296 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4297 
4298 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4299 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4300 
4301 	/* enable Rx jumbo frames, no need for restriction */
4302 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4303 	vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4304 
4305 	wr32(E1000_VMOLR(vfn), vmolr);
4306 	wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4307 
4308 	igb_restore_vf_multicasts(adapter);
4309 }
4310 
4311 static void igb_check_wvbr(struct igb_adapter *adapter)
4312 {
4313 	struct e1000_hw *hw = &adapter->hw;
4314 	u32 wvbr = 0;
4315 
4316 	switch (hw->mac.type) {
4317 	case e1000_82576:
4318 	case e1000_i350:
4319 		wvbr = rd32(E1000_WVBR);
4320 		if (!wvbr)
4321 			return;
4322 		break;
4323 	default:
4324 		break;
4325 	}
4326 
4327 	adapter->wvbr |= wvbr;
4328 }
4329 
4330 #define IGB_STAGGERED_QUEUE_OFFSET 8
4331 
4332 static void igb_spoof_check(struct igb_adapter *adapter)
4333 {
4334 	int j;
4335 
4336 	if (!adapter->wvbr)
4337 		return;
4338 
4339 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4340 		if (adapter->wvbr & BIT(j) ||
4341 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4342 			dev_warn(&adapter->pdev->dev,
4343 				"Spoof event(s) detected on VF %d\n", j);
4344 			adapter->wvbr &=
4345 				~(BIT(j) |
4346 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4347 		}
4348 	}
4349 }
4350 
4351 /* Need to wait a few seconds after link up to get diagnostic information from
4352  * the phy
4353  */
4354 static void igb_update_phy_info(unsigned long data)
4355 {
4356 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4357 	igb_get_phy_info(&adapter->hw);
4358 }
4359 
4360 /**
4361  *  igb_has_link - check shared code for link and determine up/down
4362  *  @adapter: pointer to driver private info
4363  **/
4364 bool igb_has_link(struct igb_adapter *adapter)
4365 {
4366 	struct e1000_hw *hw = &adapter->hw;
4367 	bool link_active = false;
4368 
4369 	/* get_link_status is set on LSC (link status) interrupt or
4370 	 * rx sequence error interrupt.  get_link_status will stay
4371 	 * false until the e1000_check_for_link establishes link
4372 	 * for copper adapters ONLY
4373 	 */
4374 	switch (hw->phy.media_type) {
4375 	case e1000_media_type_copper:
4376 		if (!hw->mac.get_link_status)
4377 			return true;
4378 	case e1000_media_type_internal_serdes:
4379 		hw->mac.ops.check_for_link(hw);
4380 		link_active = !hw->mac.get_link_status;
4381 		break;
4382 	default:
4383 	case e1000_media_type_unknown:
4384 		break;
4385 	}
4386 
4387 	if (((hw->mac.type == e1000_i210) ||
4388 	     (hw->mac.type == e1000_i211)) &&
4389 	     (hw->phy.id == I210_I_PHY_ID)) {
4390 		if (!netif_carrier_ok(adapter->netdev)) {
4391 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4392 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4393 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4394 			adapter->link_check_timeout = jiffies;
4395 		}
4396 	}
4397 
4398 	return link_active;
4399 }
4400 
4401 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4402 {
4403 	bool ret = false;
4404 	u32 ctrl_ext, thstat;
4405 
4406 	/* check for thermal sensor event on i350 copper only */
4407 	if (hw->mac.type == e1000_i350) {
4408 		thstat = rd32(E1000_THSTAT);
4409 		ctrl_ext = rd32(E1000_CTRL_EXT);
4410 
4411 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4412 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4413 			ret = !!(thstat & event);
4414 	}
4415 
4416 	return ret;
4417 }
4418 
4419 /**
4420  *  igb_check_lvmmc - check for malformed packets received
4421  *  and indicated in LVMMC register
4422  *  @adapter: pointer to adapter
4423  **/
4424 static void igb_check_lvmmc(struct igb_adapter *adapter)
4425 {
4426 	struct e1000_hw *hw = &adapter->hw;
4427 	u32 lvmmc;
4428 
4429 	lvmmc = rd32(E1000_LVMMC);
4430 	if (lvmmc) {
4431 		if (unlikely(net_ratelimit())) {
4432 			netdev_warn(adapter->netdev,
4433 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4434 				    lvmmc);
4435 		}
4436 	}
4437 }
4438 
4439 /**
4440  *  igb_watchdog - Timer Call-back
4441  *  @data: pointer to adapter cast into an unsigned long
4442  **/
4443 static void igb_watchdog(unsigned long data)
4444 {
4445 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4446 	/* Do the rest outside of interrupt context */
4447 	schedule_work(&adapter->watchdog_task);
4448 }
4449 
4450 static void igb_watchdog_task(struct work_struct *work)
4451 {
4452 	struct igb_adapter *adapter = container_of(work,
4453 						   struct igb_adapter,
4454 						   watchdog_task);
4455 	struct e1000_hw *hw = &adapter->hw;
4456 	struct e1000_phy_info *phy = &hw->phy;
4457 	struct net_device *netdev = adapter->netdev;
4458 	u32 link;
4459 	int i;
4460 	u32 connsw;
4461 	u16 phy_data, retry_count = 20;
4462 
4463 	link = igb_has_link(adapter);
4464 
4465 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4466 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4467 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4468 		else
4469 			link = false;
4470 	}
4471 
4472 	/* Force link down if we have fiber to swap to */
4473 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4474 		if (hw->phy.media_type == e1000_media_type_copper) {
4475 			connsw = rd32(E1000_CONNSW);
4476 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4477 				link = 0;
4478 		}
4479 	}
4480 	if (link) {
4481 		/* Perform a reset if the media type changed. */
4482 		if (hw->dev_spec._82575.media_changed) {
4483 			hw->dev_spec._82575.media_changed = false;
4484 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4485 			igb_reset(adapter);
4486 		}
4487 		/* Cancel scheduled suspend requests. */
4488 		pm_runtime_resume(netdev->dev.parent);
4489 
4490 		if (!netif_carrier_ok(netdev)) {
4491 			u32 ctrl;
4492 
4493 			hw->mac.ops.get_speed_and_duplex(hw,
4494 							 &adapter->link_speed,
4495 							 &adapter->link_duplex);
4496 
4497 			ctrl = rd32(E1000_CTRL);
4498 			/* Links status message must follow this format */
4499 			netdev_info(netdev,
4500 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4501 			       netdev->name,
4502 			       adapter->link_speed,
4503 			       adapter->link_duplex == FULL_DUPLEX ?
4504 			       "Full" : "Half",
4505 			       (ctrl & E1000_CTRL_TFCE) &&
4506 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4507 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4508 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4509 
4510 			/* disable EEE if enabled */
4511 			if ((adapter->flags & IGB_FLAG_EEE) &&
4512 				(adapter->link_duplex == HALF_DUPLEX)) {
4513 				dev_info(&adapter->pdev->dev,
4514 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4515 				adapter->hw.dev_spec._82575.eee_disable = true;
4516 				adapter->flags &= ~IGB_FLAG_EEE;
4517 			}
4518 
4519 			/* check if SmartSpeed worked */
4520 			igb_check_downshift(hw);
4521 			if (phy->speed_downgraded)
4522 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4523 
4524 			/* check for thermal sensor event */
4525 			if (igb_thermal_sensor_event(hw,
4526 			    E1000_THSTAT_LINK_THROTTLE))
4527 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4528 
4529 			/* adjust timeout factor according to speed/duplex */
4530 			adapter->tx_timeout_factor = 1;
4531 			switch (adapter->link_speed) {
4532 			case SPEED_10:
4533 				adapter->tx_timeout_factor = 14;
4534 				break;
4535 			case SPEED_100:
4536 				/* maybe add some timeout factor ? */
4537 				break;
4538 			}
4539 
4540 			if (adapter->link_speed != SPEED_1000)
4541 				goto no_wait;
4542 
4543 			/* wait for Remote receiver status OK */
4544 retry_read_status:
4545 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4546 					      &phy_data)) {
4547 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4548 				    retry_count) {
4549 					msleep(100);
4550 					retry_count--;
4551 					goto retry_read_status;
4552 				} else if (!retry_count) {
4553 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4554 				}
4555 			} else {
4556 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4557 			}
4558 no_wait:
4559 			netif_carrier_on(netdev);
4560 
4561 			igb_ping_all_vfs(adapter);
4562 			igb_check_vf_rate_limit(adapter);
4563 
4564 			/* link state has changed, schedule phy info update */
4565 			if (!test_bit(__IGB_DOWN, &adapter->state))
4566 				mod_timer(&adapter->phy_info_timer,
4567 					  round_jiffies(jiffies + 2 * HZ));
4568 		}
4569 	} else {
4570 		if (netif_carrier_ok(netdev)) {
4571 			adapter->link_speed = 0;
4572 			adapter->link_duplex = 0;
4573 
4574 			/* check for thermal sensor event */
4575 			if (igb_thermal_sensor_event(hw,
4576 			    E1000_THSTAT_PWR_DOWN)) {
4577 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4578 			}
4579 
4580 			/* Links status message must follow this format */
4581 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4582 			       netdev->name);
4583 			netif_carrier_off(netdev);
4584 
4585 			igb_ping_all_vfs(adapter);
4586 
4587 			/* link state has changed, schedule phy info update */
4588 			if (!test_bit(__IGB_DOWN, &adapter->state))
4589 				mod_timer(&adapter->phy_info_timer,
4590 					  round_jiffies(jiffies + 2 * HZ));
4591 
4592 			/* link is down, time to check for alternate media */
4593 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4594 				igb_check_swap_media(adapter);
4595 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4596 					schedule_work(&adapter->reset_task);
4597 					/* return immediately */
4598 					return;
4599 				}
4600 			}
4601 			pm_schedule_suspend(netdev->dev.parent,
4602 					    MSEC_PER_SEC * 5);
4603 
4604 		/* also check for alternate media here */
4605 		} else if (!netif_carrier_ok(netdev) &&
4606 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4607 			igb_check_swap_media(adapter);
4608 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4609 				schedule_work(&adapter->reset_task);
4610 				/* return immediately */
4611 				return;
4612 			}
4613 		}
4614 	}
4615 
4616 	spin_lock(&adapter->stats64_lock);
4617 	igb_update_stats(adapter, &adapter->stats64);
4618 	spin_unlock(&adapter->stats64_lock);
4619 
4620 	for (i = 0; i < adapter->num_tx_queues; i++) {
4621 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4622 		if (!netif_carrier_ok(netdev)) {
4623 			/* We've lost link, so the controller stops DMA,
4624 			 * but we've got queued Tx work that's never going
4625 			 * to get done, so reset controller to flush Tx.
4626 			 * (Do the reset outside of interrupt context).
4627 			 */
4628 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4629 				adapter->tx_timeout_count++;
4630 				schedule_work(&adapter->reset_task);
4631 				/* return immediately since reset is imminent */
4632 				return;
4633 			}
4634 		}
4635 
4636 		/* Force detection of hung controller every watchdog period */
4637 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4638 	}
4639 
4640 	/* Cause software interrupt to ensure Rx ring is cleaned */
4641 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4642 		u32 eics = 0;
4643 
4644 		for (i = 0; i < adapter->num_q_vectors; i++)
4645 			eics |= adapter->q_vector[i]->eims_value;
4646 		wr32(E1000_EICS, eics);
4647 	} else {
4648 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4649 	}
4650 
4651 	igb_spoof_check(adapter);
4652 	igb_ptp_rx_hang(adapter);
4653 
4654 	/* Check LVMMC register on i350/i354 only */
4655 	if ((adapter->hw.mac.type == e1000_i350) ||
4656 	    (adapter->hw.mac.type == e1000_i354))
4657 		igb_check_lvmmc(adapter);
4658 
4659 	/* Reset the timer */
4660 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4661 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4662 			mod_timer(&adapter->watchdog_timer,
4663 				  round_jiffies(jiffies +  HZ));
4664 		else
4665 			mod_timer(&adapter->watchdog_timer,
4666 				  round_jiffies(jiffies + 2 * HZ));
4667 	}
4668 }
4669 
4670 enum latency_range {
4671 	lowest_latency = 0,
4672 	low_latency = 1,
4673 	bulk_latency = 2,
4674 	latency_invalid = 255
4675 };
4676 
4677 /**
4678  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4679  *  @q_vector: pointer to q_vector
4680  *
4681  *  Stores a new ITR value based on strictly on packet size.  This
4682  *  algorithm is less sophisticated than that used in igb_update_itr,
4683  *  due to the difficulty of synchronizing statistics across multiple
4684  *  receive rings.  The divisors and thresholds used by this function
4685  *  were determined based on theoretical maximum wire speed and testing
4686  *  data, in order to minimize response time while increasing bulk
4687  *  throughput.
4688  *  This functionality is controlled by ethtool's coalescing settings.
4689  *  NOTE:  This function is called only when operating in a multiqueue
4690  *         receive environment.
4691  **/
4692 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4693 {
4694 	int new_val = q_vector->itr_val;
4695 	int avg_wire_size = 0;
4696 	struct igb_adapter *adapter = q_vector->adapter;
4697 	unsigned int packets;
4698 
4699 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4700 	 * ints/sec - ITR timer value of 120 ticks.
4701 	 */
4702 	if (adapter->link_speed != SPEED_1000) {
4703 		new_val = IGB_4K_ITR;
4704 		goto set_itr_val;
4705 	}
4706 
4707 	packets = q_vector->rx.total_packets;
4708 	if (packets)
4709 		avg_wire_size = q_vector->rx.total_bytes / packets;
4710 
4711 	packets = q_vector->tx.total_packets;
4712 	if (packets)
4713 		avg_wire_size = max_t(u32, avg_wire_size,
4714 				      q_vector->tx.total_bytes / packets);
4715 
4716 	/* if avg_wire_size isn't set no work was done */
4717 	if (!avg_wire_size)
4718 		goto clear_counts;
4719 
4720 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4721 	avg_wire_size += 24;
4722 
4723 	/* Don't starve jumbo frames */
4724 	avg_wire_size = min(avg_wire_size, 3000);
4725 
4726 	/* Give a little boost to mid-size frames */
4727 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4728 		new_val = avg_wire_size / 3;
4729 	else
4730 		new_val = avg_wire_size / 2;
4731 
4732 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4733 	if (new_val < IGB_20K_ITR &&
4734 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4735 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4736 		new_val = IGB_20K_ITR;
4737 
4738 set_itr_val:
4739 	if (new_val != q_vector->itr_val) {
4740 		q_vector->itr_val = new_val;
4741 		q_vector->set_itr = 1;
4742 	}
4743 clear_counts:
4744 	q_vector->rx.total_bytes = 0;
4745 	q_vector->rx.total_packets = 0;
4746 	q_vector->tx.total_bytes = 0;
4747 	q_vector->tx.total_packets = 0;
4748 }
4749 
4750 /**
4751  *  igb_update_itr - update the dynamic ITR value based on statistics
4752  *  @q_vector: pointer to q_vector
4753  *  @ring_container: ring info to update the itr for
4754  *
4755  *  Stores a new ITR value based on packets and byte
4756  *  counts during the last interrupt.  The advantage of per interrupt
4757  *  computation is faster updates and more accurate ITR for the current
4758  *  traffic pattern.  Constants in this function were computed
4759  *  based on theoretical maximum wire speed and thresholds were set based
4760  *  on testing data as well as attempting to minimize response time
4761  *  while increasing bulk throughput.
4762  *  This functionality is controlled by ethtool's coalescing settings.
4763  *  NOTE:  These calculations are only valid when operating in a single-
4764  *         queue environment.
4765  **/
4766 static void igb_update_itr(struct igb_q_vector *q_vector,
4767 			   struct igb_ring_container *ring_container)
4768 {
4769 	unsigned int packets = ring_container->total_packets;
4770 	unsigned int bytes = ring_container->total_bytes;
4771 	u8 itrval = ring_container->itr;
4772 
4773 	/* no packets, exit with status unchanged */
4774 	if (packets == 0)
4775 		return;
4776 
4777 	switch (itrval) {
4778 	case lowest_latency:
4779 		/* handle TSO and jumbo frames */
4780 		if (bytes/packets > 8000)
4781 			itrval = bulk_latency;
4782 		else if ((packets < 5) && (bytes > 512))
4783 			itrval = low_latency;
4784 		break;
4785 	case low_latency:  /* 50 usec aka 20000 ints/s */
4786 		if (bytes > 10000) {
4787 			/* this if handles the TSO accounting */
4788 			if (bytes/packets > 8000)
4789 				itrval = bulk_latency;
4790 			else if ((packets < 10) || ((bytes/packets) > 1200))
4791 				itrval = bulk_latency;
4792 			else if ((packets > 35))
4793 				itrval = lowest_latency;
4794 		} else if (bytes/packets > 2000) {
4795 			itrval = bulk_latency;
4796 		} else if (packets <= 2 && bytes < 512) {
4797 			itrval = lowest_latency;
4798 		}
4799 		break;
4800 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4801 		if (bytes > 25000) {
4802 			if (packets > 35)
4803 				itrval = low_latency;
4804 		} else if (bytes < 1500) {
4805 			itrval = low_latency;
4806 		}
4807 		break;
4808 	}
4809 
4810 	/* clear work counters since we have the values we need */
4811 	ring_container->total_bytes = 0;
4812 	ring_container->total_packets = 0;
4813 
4814 	/* write updated itr to ring container */
4815 	ring_container->itr = itrval;
4816 }
4817 
4818 static void igb_set_itr(struct igb_q_vector *q_vector)
4819 {
4820 	struct igb_adapter *adapter = q_vector->adapter;
4821 	u32 new_itr = q_vector->itr_val;
4822 	u8 current_itr = 0;
4823 
4824 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4825 	if (adapter->link_speed != SPEED_1000) {
4826 		current_itr = 0;
4827 		new_itr = IGB_4K_ITR;
4828 		goto set_itr_now;
4829 	}
4830 
4831 	igb_update_itr(q_vector, &q_vector->tx);
4832 	igb_update_itr(q_vector, &q_vector->rx);
4833 
4834 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4835 
4836 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4837 	if (current_itr == lowest_latency &&
4838 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4839 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4840 		current_itr = low_latency;
4841 
4842 	switch (current_itr) {
4843 	/* counts and packets in update_itr are dependent on these numbers */
4844 	case lowest_latency:
4845 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4846 		break;
4847 	case low_latency:
4848 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4849 		break;
4850 	case bulk_latency:
4851 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4852 		break;
4853 	default:
4854 		break;
4855 	}
4856 
4857 set_itr_now:
4858 	if (new_itr != q_vector->itr_val) {
4859 		/* this attempts to bias the interrupt rate towards Bulk
4860 		 * by adding intermediate steps when interrupt rate is
4861 		 * increasing
4862 		 */
4863 		new_itr = new_itr > q_vector->itr_val ?
4864 			  max((new_itr * q_vector->itr_val) /
4865 			  (new_itr + (q_vector->itr_val >> 2)),
4866 			  new_itr) : new_itr;
4867 		/* Don't write the value here; it resets the adapter's
4868 		 * internal timer, and causes us to delay far longer than
4869 		 * we should between interrupts.  Instead, we write the ITR
4870 		 * value at the beginning of the next interrupt so the timing
4871 		 * ends up being correct.
4872 		 */
4873 		q_vector->itr_val = new_itr;
4874 		q_vector->set_itr = 1;
4875 	}
4876 }
4877 
4878 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4879 			    u32 type_tucmd, u32 mss_l4len_idx)
4880 {
4881 	struct e1000_adv_tx_context_desc *context_desc;
4882 	u16 i = tx_ring->next_to_use;
4883 
4884 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4885 
4886 	i++;
4887 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4888 
4889 	/* set bits to identify this as an advanced context descriptor */
4890 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4891 
4892 	/* For 82575, context index must be unique per ring. */
4893 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4894 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4895 
4896 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4897 	context_desc->seqnum_seed	= 0;
4898 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4899 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4900 }
4901 
4902 static int igb_tso(struct igb_ring *tx_ring,
4903 		   struct igb_tx_buffer *first,
4904 		   u8 *hdr_len)
4905 {
4906 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4907 	struct sk_buff *skb = first->skb;
4908 	union {
4909 		struct iphdr *v4;
4910 		struct ipv6hdr *v6;
4911 		unsigned char *hdr;
4912 	} ip;
4913 	union {
4914 		struct tcphdr *tcp;
4915 		unsigned char *hdr;
4916 	} l4;
4917 	u32 paylen, l4_offset;
4918 	int err;
4919 
4920 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4921 		return 0;
4922 
4923 	if (!skb_is_gso(skb))
4924 		return 0;
4925 
4926 	err = skb_cow_head(skb, 0);
4927 	if (err < 0)
4928 		return err;
4929 
4930 	ip.hdr = skb_network_header(skb);
4931 	l4.hdr = skb_checksum_start(skb);
4932 
4933 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4934 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4935 
4936 	/* initialize outer IP header fields */
4937 	if (ip.v4->version == 4) {
4938 		/* IP header will have to cancel out any data that
4939 		 * is not a part of the outer IP header
4940 		 */
4941 		ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4942 						  csum_unfold(l4.tcp->check)));
4943 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4944 
4945 		ip.v4->tot_len = 0;
4946 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4947 				   IGB_TX_FLAGS_CSUM |
4948 				   IGB_TX_FLAGS_IPV4;
4949 	} else {
4950 		ip.v6->payload_len = 0;
4951 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4952 				   IGB_TX_FLAGS_CSUM;
4953 	}
4954 
4955 	/* determine offset of inner transport header */
4956 	l4_offset = l4.hdr - skb->data;
4957 
4958 	/* compute length of segmentation header */
4959 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
4960 
4961 	/* remove payload length from inner checksum */
4962 	paylen = skb->len - l4_offset;
4963 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4964 
4965 	/* update gso size and bytecount with header size */
4966 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4967 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4968 
4969 	/* MSS L4LEN IDX */
4970 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4971 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4972 
4973 	/* VLAN MACLEN IPLEN */
4974 	vlan_macip_lens = l4.hdr - ip.hdr;
4975 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4976 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4977 
4978 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4979 
4980 	return 1;
4981 }
4982 
4983 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4984 {
4985 	unsigned int offset = 0;
4986 
4987 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4988 
4989 	return offset == skb_checksum_start_offset(skb);
4990 }
4991 
4992 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4993 {
4994 	struct sk_buff *skb = first->skb;
4995 	u32 vlan_macip_lens = 0;
4996 	u32 type_tucmd = 0;
4997 
4998 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4999 csum_failed:
5000 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5001 			return;
5002 		goto no_csum;
5003 	}
5004 
5005 	switch (skb->csum_offset) {
5006 	case offsetof(struct tcphdr, check):
5007 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5008 		/* fall through */
5009 	case offsetof(struct udphdr, check):
5010 		break;
5011 	case offsetof(struct sctphdr, checksum):
5012 		/* validate that this is actually an SCTP request */
5013 		if (((first->protocol == htons(ETH_P_IP)) &&
5014 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5015 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5016 		     igb_ipv6_csum_is_sctp(skb))) {
5017 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5018 			break;
5019 		}
5020 	default:
5021 		skb_checksum_help(skb);
5022 		goto csum_failed;
5023 	}
5024 
5025 	/* update TX checksum flag */
5026 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5027 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5028 			  skb_network_offset(skb);
5029 no_csum:
5030 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5031 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5032 
5033 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5034 }
5035 
5036 #define IGB_SET_FLAG(_input, _flag, _result) \
5037 	((_flag <= _result) ? \
5038 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5039 	 ((u32)(_input & _flag) / (_flag / _result)))
5040 
5041 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5042 {
5043 	/* set type for advanced descriptor with frame checksum insertion */
5044 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5045 		       E1000_ADVTXD_DCMD_DEXT |
5046 		       E1000_ADVTXD_DCMD_IFCS;
5047 
5048 	/* set HW vlan bit if vlan is present */
5049 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5050 				 (E1000_ADVTXD_DCMD_VLE));
5051 
5052 	/* set segmentation bits for TSO */
5053 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5054 				 (E1000_ADVTXD_DCMD_TSE));
5055 
5056 	/* set timestamp bit if present */
5057 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5058 				 (E1000_ADVTXD_MAC_TSTAMP));
5059 
5060 	/* insert frame checksum */
5061 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5062 
5063 	return cmd_type;
5064 }
5065 
5066 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5067 				 union e1000_adv_tx_desc *tx_desc,
5068 				 u32 tx_flags, unsigned int paylen)
5069 {
5070 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5071 
5072 	/* 82575 requires a unique index per ring */
5073 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5074 		olinfo_status |= tx_ring->reg_idx << 4;
5075 
5076 	/* insert L4 checksum */
5077 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5078 				      IGB_TX_FLAGS_CSUM,
5079 				      (E1000_TXD_POPTS_TXSM << 8));
5080 
5081 	/* insert IPv4 checksum */
5082 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5083 				      IGB_TX_FLAGS_IPV4,
5084 				      (E1000_TXD_POPTS_IXSM << 8));
5085 
5086 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5087 }
5088 
5089 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5090 {
5091 	struct net_device *netdev = tx_ring->netdev;
5092 
5093 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5094 
5095 	/* Herbert's original patch had:
5096 	 *  smp_mb__after_netif_stop_queue();
5097 	 * but since that doesn't exist yet, just open code it.
5098 	 */
5099 	smp_mb();
5100 
5101 	/* We need to check again in a case another CPU has just
5102 	 * made room available.
5103 	 */
5104 	if (igb_desc_unused(tx_ring) < size)
5105 		return -EBUSY;
5106 
5107 	/* A reprieve! */
5108 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5109 
5110 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5111 	tx_ring->tx_stats.restart_queue2++;
5112 	u64_stats_update_end(&tx_ring->tx_syncp2);
5113 
5114 	return 0;
5115 }
5116 
5117 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5118 {
5119 	if (igb_desc_unused(tx_ring) >= size)
5120 		return 0;
5121 	return __igb_maybe_stop_tx(tx_ring, size);
5122 }
5123 
5124 static void igb_tx_map(struct igb_ring *tx_ring,
5125 		       struct igb_tx_buffer *first,
5126 		       const u8 hdr_len)
5127 {
5128 	struct sk_buff *skb = first->skb;
5129 	struct igb_tx_buffer *tx_buffer;
5130 	union e1000_adv_tx_desc *tx_desc;
5131 	struct skb_frag_struct *frag;
5132 	dma_addr_t dma;
5133 	unsigned int data_len, size;
5134 	u32 tx_flags = first->tx_flags;
5135 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5136 	u16 i = tx_ring->next_to_use;
5137 
5138 	tx_desc = IGB_TX_DESC(tx_ring, i);
5139 
5140 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5141 
5142 	size = skb_headlen(skb);
5143 	data_len = skb->data_len;
5144 
5145 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5146 
5147 	tx_buffer = first;
5148 
5149 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5150 		if (dma_mapping_error(tx_ring->dev, dma))
5151 			goto dma_error;
5152 
5153 		/* record length, and DMA address */
5154 		dma_unmap_len_set(tx_buffer, len, size);
5155 		dma_unmap_addr_set(tx_buffer, dma, dma);
5156 
5157 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5158 
5159 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5160 			tx_desc->read.cmd_type_len =
5161 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5162 
5163 			i++;
5164 			tx_desc++;
5165 			if (i == tx_ring->count) {
5166 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5167 				i = 0;
5168 			}
5169 			tx_desc->read.olinfo_status = 0;
5170 
5171 			dma += IGB_MAX_DATA_PER_TXD;
5172 			size -= IGB_MAX_DATA_PER_TXD;
5173 
5174 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5175 		}
5176 
5177 		if (likely(!data_len))
5178 			break;
5179 
5180 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5181 
5182 		i++;
5183 		tx_desc++;
5184 		if (i == tx_ring->count) {
5185 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5186 			i = 0;
5187 		}
5188 		tx_desc->read.olinfo_status = 0;
5189 
5190 		size = skb_frag_size(frag);
5191 		data_len -= size;
5192 
5193 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5194 				       size, DMA_TO_DEVICE);
5195 
5196 		tx_buffer = &tx_ring->tx_buffer_info[i];
5197 	}
5198 
5199 	/* write last descriptor with RS and EOP bits */
5200 	cmd_type |= size | IGB_TXD_DCMD;
5201 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5202 
5203 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5204 
5205 	/* set the timestamp */
5206 	first->time_stamp = jiffies;
5207 
5208 	/* Force memory writes to complete before letting h/w know there
5209 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5210 	 * memory model archs, such as IA-64).
5211 	 *
5212 	 * We also need this memory barrier to make certain all of the
5213 	 * status bits have been updated before next_to_watch is written.
5214 	 */
5215 	wmb();
5216 
5217 	/* set next_to_watch value indicating a packet is present */
5218 	first->next_to_watch = tx_desc;
5219 
5220 	i++;
5221 	if (i == tx_ring->count)
5222 		i = 0;
5223 
5224 	tx_ring->next_to_use = i;
5225 
5226 	/* Make sure there is space in the ring for the next send. */
5227 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5228 
5229 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5230 		writel(i, tx_ring->tail);
5231 
5232 		/* we need this if more than one processor can write to our tail
5233 		 * at a time, it synchronizes IO on IA64/Altix systems
5234 		 */
5235 		mmiowb();
5236 	}
5237 	return;
5238 
5239 dma_error:
5240 	dev_err(tx_ring->dev, "TX DMA map failed\n");
5241 
5242 	/* clear dma mappings for failed tx_buffer_info map */
5243 	for (;;) {
5244 		tx_buffer = &tx_ring->tx_buffer_info[i];
5245 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5246 		if (tx_buffer == first)
5247 			break;
5248 		if (i == 0)
5249 			i = tx_ring->count;
5250 		i--;
5251 	}
5252 
5253 	tx_ring->next_to_use = i;
5254 }
5255 
5256 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5257 				struct igb_ring *tx_ring)
5258 {
5259 	struct igb_tx_buffer *first;
5260 	int tso;
5261 	u32 tx_flags = 0;
5262 	unsigned short f;
5263 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5264 	__be16 protocol = vlan_get_protocol(skb);
5265 	u8 hdr_len = 0;
5266 
5267 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5268 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5269 	 *       + 2 desc gap to keep tail from touching head,
5270 	 *       + 1 desc for context descriptor,
5271 	 * otherwise try next time
5272 	 */
5273 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5274 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5275 
5276 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5277 		/* this is a hard error */
5278 		return NETDEV_TX_BUSY;
5279 	}
5280 
5281 	/* record the location of the first descriptor for this packet */
5282 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5283 	first->skb = skb;
5284 	first->bytecount = skb->len;
5285 	first->gso_segs = 1;
5286 
5287 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5288 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5289 
5290 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5291 					   &adapter->state)) {
5292 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5293 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5294 
5295 			adapter->ptp_tx_skb = skb_get(skb);
5296 			adapter->ptp_tx_start = jiffies;
5297 			if (adapter->hw.mac.type == e1000_82576)
5298 				schedule_work(&adapter->ptp_tx_work);
5299 		}
5300 	}
5301 
5302 	skb_tx_timestamp(skb);
5303 
5304 	if (skb_vlan_tag_present(skb)) {
5305 		tx_flags |= IGB_TX_FLAGS_VLAN;
5306 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5307 	}
5308 
5309 	/* record initial flags and protocol */
5310 	first->tx_flags = tx_flags;
5311 	first->protocol = protocol;
5312 
5313 	tso = igb_tso(tx_ring, first, &hdr_len);
5314 	if (tso < 0)
5315 		goto out_drop;
5316 	else if (!tso)
5317 		igb_tx_csum(tx_ring, first);
5318 
5319 	igb_tx_map(tx_ring, first, hdr_len);
5320 
5321 	return NETDEV_TX_OK;
5322 
5323 out_drop:
5324 	igb_unmap_and_free_tx_resource(tx_ring, first);
5325 
5326 	return NETDEV_TX_OK;
5327 }
5328 
5329 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5330 						    struct sk_buff *skb)
5331 {
5332 	unsigned int r_idx = skb->queue_mapping;
5333 
5334 	if (r_idx >= adapter->num_tx_queues)
5335 		r_idx = r_idx % adapter->num_tx_queues;
5336 
5337 	return adapter->tx_ring[r_idx];
5338 }
5339 
5340 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5341 				  struct net_device *netdev)
5342 {
5343 	struct igb_adapter *adapter = netdev_priv(netdev);
5344 
5345 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5346 	 * in order to meet this minimum size requirement.
5347 	 */
5348 	if (skb_put_padto(skb, 17))
5349 		return NETDEV_TX_OK;
5350 
5351 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5352 }
5353 
5354 /**
5355  *  igb_tx_timeout - Respond to a Tx Hang
5356  *  @netdev: network interface device structure
5357  **/
5358 static void igb_tx_timeout(struct net_device *netdev)
5359 {
5360 	struct igb_adapter *adapter = netdev_priv(netdev);
5361 	struct e1000_hw *hw = &adapter->hw;
5362 
5363 	/* Do the reset outside of interrupt context */
5364 	adapter->tx_timeout_count++;
5365 
5366 	if (hw->mac.type >= e1000_82580)
5367 		hw->dev_spec._82575.global_device_reset = true;
5368 
5369 	schedule_work(&adapter->reset_task);
5370 	wr32(E1000_EICS,
5371 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5372 }
5373 
5374 static void igb_reset_task(struct work_struct *work)
5375 {
5376 	struct igb_adapter *adapter;
5377 	adapter = container_of(work, struct igb_adapter, reset_task);
5378 
5379 	igb_dump(adapter);
5380 	netdev_err(adapter->netdev, "Reset adapter\n");
5381 	igb_reinit_locked(adapter);
5382 }
5383 
5384 /**
5385  *  igb_get_stats64 - Get System Network Statistics
5386  *  @netdev: network interface device structure
5387  *  @stats: rtnl_link_stats64 pointer
5388  **/
5389 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5390 						struct rtnl_link_stats64 *stats)
5391 {
5392 	struct igb_adapter *adapter = netdev_priv(netdev);
5393 
5394 	spin_lock(&adapter->stats64_lock);
5395 	igb_update_stats(adapter, &adapter->stats64);
5396 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5397 	spin_unlock(&adapter->stats64_lock);
5398 
5399 	return stats;
5400 }
5401 
5402 /**
5403  *  igb_change_mtu - Change the Maximum Transfer Unit
5404  *  @netdev: network interface device structure
5405  *  @new_mtu: new value for maximum frame size
5406  *
5407  *  Returns 0 on success, negative on failure
5408  **/
5409 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5410 {
5411 	struct igb_adapter *adapter = netdev_priv(netdev);
5412 	struct pci_dev *pdev = adapter->pdev;
5413 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5414 
5415 	/* adjust max frame to be at least the size of a standard frame */
5416 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5417 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5418 
5419 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5420 		usleep_range(1000, 2000);
5421 
5422 	/* igb_down has a dependency on max_frame_size */
5423 	adapter->max_frame_size = max_frame;
5424 
5425 	if (netif_running(netdev))
5426 		igb_down(adapter);
5427 
5428 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5429 		 netdev->mtu, new_mtu);
5430 	netdev->mtu = new_mtu;
5431 
5432 	if (netif_running(netdev))
5433 		igb_up(adapter);
5434 	else
5435 		igb_reset(adapter);
5436 
5437 	clear_bit(__IGB_RESETTING, &adapter->state);
5438 
5439 	return 0;
5440 }
5441 
5442 /**
5443  *  igb_update_stats - Update the board statistics counters
5444  *  @adapter: board private structure
5445  **/
5446 void igb_update_stats(struct igb_adapter *adapter,
5447 		      struct rtnl_link_stats64 *net_stats)
5448 {
5449 	struct e1000_hw *hw = &adapter->hw;
5450 	struct pci_dev *pdev = adapter->pdev;
5451 	u32 reg, mpc;
5452 	int i;
5453 	u64 bytes, packets;
5454 	unsigned int start;
5455 	u64 _bytes, _packets;
5456 
5457 	/* Prevent stats update while adapter is being reset, or if the pci
5458 	 * connection is down.
5459 	 */
5460 	if (adapter->link_speed == 0)
5461 		return;
5462 	if (pci_channel_offline(pdev))
5463 		return;
5464 
5465 	bytes = 0;
5466 	packets = 0;
5467 
5468 	rcu_read_lock();
5469 	for (i = 0; i < adapter->num_rx_queues; i++) {
5470 		struct igb_ring *ring = adapter->rx_ring[i];
5471 		u32 rqdpc = rd32(E1000_RQDPC(i));
5472 		if (hw->mac.type >= e1000_i210)
5473 			wr32(E1000_RQDPC(i), 0);
5474 
5475 		if (rqdpc) {
5476 			ring->rx_stats.drops += rqdpc;
5477 			net_stats->rx_fifo_errors += rqdpc;
5478 		}
5479 
5480 		do {
5481 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5482 			_bytes = ring->rx_stats.bytes;
5483 			_packets = ring->rx_stats.packets;
5484 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5485 		bytes += _bytes;
5486 		packets += _packets;
5487 	}
5488 
5489 	net_stats->rx_bytes = bytes;
5490 	net_stats->rx_packets = packets;
5491 
5492 	bytes = 0;
5493 	packets = 0;
5494 	for (i = 0; i < adapter->num_tx_queues; i++) {
5495 		struct igb_ring *ring = adapter->tx_ring[i];
5496 		do {
5497 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5498 			_bytes = ring->tx_stats.bytes;
5499 			_packets = ring->tx_stats.packets;
5500 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5501 		bytes += _bytes;
5502 		packets += _packets;
5503 	}
5504 	net_stats->tx_bytes = bytes;
5505 	net_stats->tx_packets = packets;
5506 	rcu_read_unlock();
5507 
5508 	/* read stats registers */
5509 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5510 	adapter->stats.gprc += rd32(E1000_GPRC);
5511 	adapter->stats.gorc += rd32(E1000_GORCL);
5512 	rd32(E1000_GORCH); /* clear GORCL */
5513 	adapter->stats.bprc += rd32(E1000_BPRC);
5514 	adapter->stats.mprc += rd32(E1000_MPRC);
5515 	adapter->stats.roc += rd32(E1000_ROC);
5516 
5517 	adapter->stats.prc64 += rd32(E1000_PRC64);
5518 	adapter->stats.prc127 += rd32(E1000_PRC127);
5519 	adapter->stats.prc255 += rd32(E1000_PRC255);
5520 	adapter->stats.prc511 += rd32(E1000_PRC511);
5521 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5522 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5523 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5524 	adapter->stats.sec += rd32(E1000_SEC);
5525 
5526 	mpc = rd32(E1000_MPC);
5527 	adapter->stats.mpc += mpc;
5528 	net_stats->rx_fifo_errors += mpc;
5529 	adapter->stats.scc += rd32(E1000_SCC);
5530 	adapter->stats.ecol += rd32(E1000_ECOL);
5531 	adapter->stats.mcc += rd32(E1000_MCC);
5532 	adapter->stats.latecol += rd32(E1000_LATECOL);
5533 	adapter->stats.dc += rd32(E1000_DC);
5534 	adapter->stats.rlec += rd32(E1000_RLEC);
5535 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5536 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5537 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5538 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5539 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5540 	adapter->stats.gptc += rd32(E1000_GPTC);
5541 	adapter->stats.gotc += rd32(E1000_GOTCL);
5542 	rd32(E1000_GOTCH); /* clear GOTCL */
5543 	adapter->stats.rnbc += rd32(E1000_RNBC);
5544 	adapter->stats.ruc += rd32(E1000_RUC);
5545 	adapter->stats.rfc += rd32(E1000_RFC);
5546 	adapter->stats.rjc += rd32(E1000_RJC);
5547 	adapter->stats.tor += rd32(E1000_TORH);
5548 	adapter->stats.tot += rd32(E1000_TOTH);
5549 	adapter->stats.tpr += rd32(E1000_TPR);
5550 
5551 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5552 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5553 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5554 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5555 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5556 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5557 
5558 	adapter->stats.mptc += rd32(E1000_MPTC);
5559 	adapter->stats.bptc += rd32(E1000_BPTC);
5560 
5561 	adapter->stats.tpt += rd32(E1000_TPT);
5562 	adapter->stats.colc += rd32(E1000_COLC);
5563 
5564 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5565 	/* read internal phy specific stats */
5566 	reg = rd32(E1000_CTRL_EXT);
5567 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5568 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5569 
5570 		/* this stat has invalid values on i210/i211 */
5571 		if ((hw->mac.type != e1000_i210) &&
5572 		    (hw->mac.type != e1000_i211))
5573 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5574 	}
5575 
5576 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5577 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5578 
5579 	adapter->stats.iac += rd32(E1000_IAC);
5580 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5581 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5582 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5583 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5584 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5585 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5586 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5587 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5588 
5589 	/* Fill out the OS statistics structure */
5590 	net_stats->multicast = adapter->stats.mprc;
5591 	net_stats->collisions = adapter->stats.colc;
5592 
5593 	/* Rx Errors */
5594 
5595 	/* RLEC on some newer hardware can be incorrect so build
5596 	 * our own version based on RUC and ROC
5597 	 */
5598 	net_stats->rx_errors = adapter->stats.rxerrc +
5599 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5600 		adapter->stats.ruc + adapter->stats.roc +
5601 		adapter->stats.cexterr;
5602 	net_stats->rx_length_errors = adapter->stats.ruc +
5603 				      adapter->stats.roc;
5604 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5605 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5606 	net_stats->rx_missed_errors = adapter->stats.mpc;
5607 
5608 	/* Tx Errors */
5609 	net_stats->tx_errors = adapter->stats.ecol +
5610 			       adapter->stats.latecol;
5611 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5612 	net_stats->tx_window_errors = adapter->stats.latecol;
5613 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5614 
5615 	/* Tx Dropped needs to be maintained elsewhere */
5616 
5617 	/* Management Stats */
5618 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5619 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5620 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5621 
5622 	/* OS2BMC Stats */
5623 	reg = rd32(E1000_MANC);
5624 	if (reg & E1000_MANC_EN_BMC2OS) {
5625 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5626 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5627 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5628 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5629 	}
5630 }
5631 
5632 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5633 {
5634 	struct e1000_hw *hw = &adapter->hw;
5635 	struct ptp_clock_event event;
5636 	struct timespec64 ts;
5637 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5638 
5639 	if (tsicr & TSINTR_SYS_WRAP) {
5640 		event.type = PTP_CLOCK_PPS;
5641 		if (adapter->ptp_caps.pps)
5642 			ptp_clock_event(adapter->ptp_clock, &event);
5643 		else
5644 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5645 		ack |= TSINTR_SYS_WRAP;
5646 	}
5647 
5648 	if (tsicr & E1000_TSICR_TXTS) {
5649 		/* retrieve hardware timestamp */
5650 		schedule_work(&adapter->ptp_tx_work);
5651 		ack |= E1000_TSICR_TXTS;
5652 	}
5653 
5654 	if (tsicr & TSINTR_TT0) {
5655 		spin_lock(&adapter->tmreg_lock);
5656 		ts = timespec64_add(adapter->perout[0].start,
5657 				    adapter->perout[0].period);
5658 		/* u32 conversion of tv_sec is safe until y2106 */
5659 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5660 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5661 		tsauxc = rd32(E1000_TSAUXC);
5662 		tsauxc |= TSAUXC_EN_TT0;
5663 		wr32(E1000_TSAUXC, tsauxc);
5664 		adapter->perout[0].start = ts;
5665 		spin_unlock(&adapter->tmreg_lock);
5666 		ack |= TSINTR_TT0;
5667 	}
5668 
5669 	if (tsicr & TSINTR_TT1) {
5670 		spin_lock(&adapter->tmreg_lock);
5671 		ts = timespec64_add(adapter->perout[1].start,
5672 				    adapter->perout[1].period);
5673 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5674 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5675 		tsauxc = rd32(E1000_TSAUXC);
5676 		tsauxc |= TSAUXC_EN_TT1;
5677 		wr32(E1000_TSAUXC, tsauxc);
5678 		adapter->perout[1].start = ts;
5679 		spin_unlock(&adapter->tmreg_lock);
5680 		ack |= TSINTR_TT1;
5681 	}
5682 
5683 	if (tsicr & TSINTR_AUTT0) {
5684 		nsec = rd32(E1000_AUXSTMPL0);
5685 		sec  = rd32(E1000_AUXSTMPH0);
5686 		event.type = PTP_CLOCK_EXTTS;
5687 		event.index = 0;
5688 		event.timestamp = sec * 1000000000ULL + nsec;
5689 		ptp_clock_event(adapter->ptp_clock, &event);
5690 		ack |= TSINTR_AUTT0;
5691 	}
5692 
5693 	if (tsicr & TSINTR_AUTT1) {
5694 		nsec = rd32(E1000_AUXSTMPL1);
5695 		sec  = rd32(E1000_AUXSTMPH1);
5696 		event.type = PTP_CLOCK_EXTTS;
5697 		event.index = 1;
5698 		event.timestamp = sec * 1000000000ULL + nsec;
5699 		ptp_clock_event(adapter->ptp_clock, &event);
5700 		ack |= TSINTR_AUTT1;
5701 	}
5702 
5703 	/* acknowledge the interrupts */
5704 	wr32(E1000_TSICR, ack);
5705 }
5706 
5707 static irqreturn_t igb_msix_other(int irq, void *data)
5708 {
5709 	struct igb_adapter *adapter = data;
5710 	struct e1000_hw *hw = &adapter->hw;
5711 	u32 icr = rd32(E1000_ICR);
5712 	/* reading ICR causes bit 31 of EICR to be cleared */
5713 
5714 	if (icr & E1000_ICR_DRSTA)
5715 		schedule_work(&adapter->reset_task);
5716 
5717 	if (icr & E1000_ICR_DOUTSYNC) {
5718 		/* HW is reporting DMA is out of sync */
5719 		adapter->stats.doosync++;
5720 		/* The DMA Out of Sync is also indication of a spoof event
5721 		 * in IOV mode. Check the Wrong VM Behavior register to
5722 		 * see if it is really a spoof event.
5723 		 */
5724 		igb_check_wvbr(adapter);
5725 	}
5726 
5727 	/* Check for a mailbox event */
5728 	if (icr & E1000_ICR_VMMB)
5729 		igb_msg_task(adapter);
5730 
5731 	if (icr & E1000_ICR_LSC) {
5732 		hw->mac.get_link_status = 1;
5733 		/* guard against interrupt when we're going down */
5734 		if (!test_bit(__IGB_DOWN, &adapter->state))
5735 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5736 	}
5737 
5738 	if (icr & E1000_ICR_TS)
5739 		igb_tsync_interrupt(adapter);
5740 
5741 	wr32(E1000_EIMS, adapter->eims_other);
5742 
5743 	return IRQ_HANDLED;
5744 }
5745 
5746 static void igb_write_itr(struct igb_q_vector *q_vector)
5747 {
5748 	struct igb_adapter *adapter = q_vector->adapter;
5749 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5750 
5751 	if (!q_vector->set_itr)
5752 		return;
5753 
5754 	if (!itr_val)
5755 		itr_val = 0x4;
5756 
5757 	if (adapter->hw.mac.type == e1000_82575)
5758 		itr_val |= itr_val << 16;
5759 	else
5760 		itr_val |= E1000_EITR_CNT_IGNR;
5761 
5762 	writel(itr_val, q_vector->itr_register);
5763 	q_vector->set_itr = 0;
5764 }
5765 
5766 static irqreturn_t igb_msix_ring(int irq, void *data)
5767 {
5768 	struct igb_q_vector *q_vector = data;
5769 
5770 	/* Write the ITR value calculated from the previous interrupt. */
5771 	igb_write_itr(q_vector);
5772 
5773 	napi_schedule(&q_vector->napi);
5774 
5775 	return IRQ_HANDLED;
5776 }
5777 
5778 #ifdef CONFIG_IGB_DCA
5779 static void igb_update_tx_dca(struct igb_adapter *adapter,
5780 			      struct igb_ring *tx_ring,
5781 			      int cpu)
5782 {
5783 	struct e1000_hw *hw = &adapter->hw;
5784 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5785 
5786 	if (hw->mac.type != e1000_82575)
5787 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5788 
5789 	/* We can enable relaxed ordering for reads, but not writes when
5790 	 * DCA is enabled.  This is due to a known issue in some chipsets
5791 	 * which will cause the DCA tag to be cleared.
5792 	 */
5793 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5794 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5795 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5796 
5797 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5798 }
5799 
5800 static void igb_update_rx_dca(struct igb_adapter *adapter,
5801 			      struct igb_ring *rx_ring,
5802 			      int cpu)
5803 {
5804 	struct e1000_hw *hw = &adapter->hw;
5805 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5806 
5807 	if (hw->mac.type != e1000_82575)
5808 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5809 
5810 	/* We can enable relaxed ordering for reads, but not writes when
5811 	 * DCA is enabled.  This is due to a known issue in some chipsets
5812 	 * which will cause the DCA tag to be cleared.
5813 	 */
5814 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5815 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5816 
5817 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5818 }
5819 
5820 static void igb_update_dca(struct igb_q_vector *q_vector)
5821 {
5822 	struct igb_adapter *adapter = q_vector->adapter;
5823 	int cpu = get_cpu();
5824 
5825 	if (q_vector->cpu == cpu)
5826 		goto out_no_update;
5827 
5828 	if (q_vector->tx.ring)
5829 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5830 
5831 	if (q_vector->rx.ring)
5832 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5833 
5834 	q_vector->cpu = cpu;
5835 out_no_update:
5836 	put_cpu();
5837 }
5838 
5839 static void igb_setup_dca(struct igb_adapter *adapter)
5840 {
5841 	struct e1000_hw *hw = &adapter->hw;
5842 	int i;
5843 
5844 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5845 		return;
5846 
5847 	/* Always use CB2 mode, difference is masked in the CB driver. */
5848 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5849 
5850 	for (i = 0; i < adapter->num_q_vectors; i++) {
5851 		adapter->q_vector[i]->cpu = -1;
5852 		igb_update_dca(adapter->q_vector[i]);
5853 	}
5854 }
5855 
5856 static int __igb_notify_dca(struct device *dev, void *data)
5857 {
5858 	struct net_device *netdev = dev_get_drvdata(dev);
5859 	struct igb_adapter *adapter = netdev_priv(netdev);
5860 	struct pci_dev *pdev = adapter->pdev;
5861 	struct e1000_hw *hw = &adapter->hw;
5862 	unsigned long event = *(unsigned long *)data;
5863 
5864 	switch (event) {
5865 	case DCA_PROVIDER_ADD:
5866 		/* if already enabled, don't do it again */
5867 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5868 			break;
5869 		if (dca_add_requester(dev) == 0) {
5870 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5871 			dev_info(&pdev->dev, "DCA enabled\n");
5872 			igb_setup_dca(adapter);
5873 			break;
5874 		}
5875 		/* Fall Through since DCA is disabled. */
5876 	case DCA_PROVIDER_REMOVE:
5877 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5878 			/* without this a class_device is left
5879 			 * hanging around in the sysfs model
5880 			 */
5881 			dca_remove_requester(dev);
5882 			dev_info(&pdev->dev, "DCA disabled\n");
5883 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5884 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5885 		}
5886 		break;
5887 	}
5888 
5889 	return 0;
5890 }
5891 
5892 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5893 			  void *p)
5894 {
5895 	int ret_val;
5896 
5897 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5898 					 __igb_notify_dca);
5899 
5900 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5901 }
5902 #endif /* CONFIG_IGB_DCA */
5903 
5904 #ifdef CONFIG_PCI_IOV
5905 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5906 {
5907 	unsigned char mac_addr[ETH_ALEN];
5908 
5909 	eth_zero_addr(mac_addr);
5910 	igb_set_vf_mac(adapter, vf, mac_addr);
5911 
5912 	/* By default spoof check is enabled for all VFs */
5913 	adapter->vf_data[vf].spoofchk_enabled = true;
5914 
5915 	return 0;
5916 }
5917 
5918 #endif
5919 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5920 {
5921 	struct e1000_hw *hw = &adapter->hw;
5922 	u32 ping;
5923 	int i;
5924 
5925 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5926 		ping = E1000_PF_CONTROL_MSG;
5927 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5928 			ping |= E1000_VT_MSGTYPE_CTS;
5929 		igb_write_mbx(hw, &ping, 1, i);
5930 	}
5931 }
5932 
5933 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5934 {
5935 	struct e1000_hw *hw = &adapter->hw;
5936 	u32 vmolr = rd32(E1000_VMOLR(vf));
5937 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5938 
5939 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5940 			    IGB_VF_FLAG_MULTI_PROMISC);
5941 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5942 
5943 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5944 		vmolr |= E1000_VMOLR_MPME;
5945 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5946 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5947 	} else {
5948 		/* if we have hashes and we are clearing a multicast promisc
5949 		 * flag we need to write the hashes to the MTA as this step
5950 		 * was previously skipped
5951 		 */
5952 		if (vf_data->num_vf_mc_hashes > 30) {
5953 			vmolr |= E1000_VMOLR_MPME;
5954 		} else if (vf_data->num_vf_mc_hashes) {
5955 			int j;
5956 
5957 			vmolr |= E1000_VMOLR_ROMPE;
5958 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5959 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5960 		}
5961 	}
5962 
5963 	wr32(E1000_VMOLR(vf), vmolr);
5964 
5965 	/* there are flags left unprocessed, likely not supported */
5966 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5967 		return -EINVAL;
5968 
5969 	return 0;
5970 }
5971 
5972 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5973 				  u32 *msgbuf, u32 vf)
5974 {
5975 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5976 	u16 *hash_list = (u16 *)&msgbuf[1];
5977 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5978 	int i;
5979 
5980 	/* salt away the number of multicast addresses assigned
5981 	 * to this VF for later use to restore when the PF multi cast
5982 	 * list changes
5983 	 */
5984 	vf_data->num_vf_mc_hashes = n;
5985 
5986 	/* only up to 30 hash values supported */
5987 	if (n > 30)
5988 		n = 30;
5989 
5990 	/* store the hashes for later use */
5991 	for (i = 0; i < n; i++)
5992 		vf_data->vf_mc_hashes[i] = hash_list[i];
5993 
5994 	/* Flush and reset the mta with the new values */
5995 	igb_set_rx_mode(adapter->netdev);
5996 
5997 	return 0;
5998 }
5999 
6000 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6001 {
6002 	struct e1000_hw *hw = &adapter->hw;
6003 	struct vf_data_storage *vf_data;
6004 	int i, j;
6005 
6006 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6007 		u32 vmolr = rd32(E1000_VMOLR(i));
6008 
6009 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6010 
6011 		vf_data = &adapter->vf_data[i];
6012 
6013 		if ((vf_data->num_vf_mc_hashes > 30) ||
6014 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6015 			vmolr |= E1000_VMOLR_MPME;
6016 		} else if (vf_data->num_vf_mc_hashes) {
6017 			vmolr |= E1000_VMOLR_ROMPE;
6018 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6019 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6020 		}
6021 		wr32(E1000_VMOLR(i), vmolr);
6022 	}
6023 }
6024 
6025 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6026 {
6027 	struct e1000_hw *hw = &adapter->hw;
6028 	u32 pool_mask, vlvf_mask, i;
6029 
6030 	/* create mask for VF and other pools */
6031 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6032 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6033 
6034 	/* drop PF from pool bits */
6035 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6036 			     adapter->vfs_allocated_count);
6037 
6038 	/* Find the vlan filter for this id */
6039 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6040 		u32 vlvf = rd32(E1000_VLVF(i));
6041 		u32 vfta_mask, vid, vfta;
6042 
6043 		/* remove the vf from the pool */
6044 		if (!(vlvf & vlvf_mask))
6045 			continue;
6046 
6047 		/* clear out bit from VLVF */
6048 		vlvf ^= vlvf_mask;
6049 
6050 		/* if other pools are present, just remove ourselves */
6051 		if (vlvf & pool_mask)
6052 			goto update_vlvfb;
6053 
6054 		/* if PF is present, leave VFTA */
6055 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6056 			goto update_vlvf;
6057 
6058 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6059 		vfta_mask = BIT(vid % 32);
6060 
6061 		/* clear bit from VFTA */
6062 		vfta = adapter->shadow_vfta[vid / 32];
6063 		if (vfta & vfta_mask)
6064 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6065 update_vlvf:
6066 		/* clear pool selection enable */
6067 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6068 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6069 		else
6070 			vlvf = 0;
6071 update_vlvfb:
6072 		/* clear pool bits */
6073 		wr32(E1000_VLVF(i), vlvf);
6074 	}
6075 }
6076 
6077 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6078 {
6079 	u32 vlvf;
6080 	int idx;
6081 
6082 	/* short cut the special case */
6083 	if (vlan == 0)
6084 		return 0;
6085 
6086 	/* Search for the VLAN id in the VLVF entries */
6087 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6088 		vlvf = rd32(E1000_VLVF(idx));
6089 		if ((vlvf & VLAN_VID_MASK) == vlan)
6090 			break;
6091 	}
6092 
6093 	return idx;
6094 }
6095 
6096 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6097 {
6098 	struct e1000_hw *hw = &adapter->hw;
6099 	u32 bits, pf_id;
6100 	int idx;
6101 
6102 	idx = igb_find_vlvf_entry(hw, vid);
6103 	if (!idx)
6104 		return;
6105 
6106 	/* See if any other pools are set for this VLAN filter
6107 	 * entry other than the PF.
6108 	 */
6109 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6110 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6111 	bits &= rd32(E1000_VLVF(idx));
6112 
6113 	/* Disable the filter so this falls into the default pool. */
6114 	if (!bits) {
6115 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6116 			wr32(E1000_VLVF(idx), BIT(pf_id));
6117 		else
6118 			wr32(E1000_VLVF(idx), 0);
6119 	}
6120 }
6121 
6122 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6123 			   bool add, u32 vf)
6124 {
6125 	int pf_id = adapter->vfs_allocated_count;
6126 	struct e1000_hw *hw = &adapter->hw;
6127 	int err;
6128 
6129 	/* If VLAN overlaps with one the PF is currently monitoring make
6130 	 * sure that we are able to allocate a VLVF entry.  This may be
6131 	 * redundant but it guarantees PF will maintain visibility to
6132 	 * the VLAN.
6133 	 */
6134 	if (add && test_bit(vid, adapter->active_vlans)) {
6135 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6136 		if (err)
6137 			return err;
6138 	}
6139 
6140 	err = igb_vfta_set(hw, vid, vf, add, false);
6141 
6142 	if (add && !err)
6143 		return err;
6144 
6145 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6146 	 * we may need to drop the PF pool bit in order to allow us to free
6147 	 * up the VLVF resources.
6148 	 */
6149 	if (test_bit(vid, adapter->active_vlans) ||
6150 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6151 		igb_update_pf_vlvf(adapter, vid);
6152 
6153 	return err;
6154 }
6155 
6156 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6157 {
6158 	struct e1000_hw *hw = &adapter->hw;
6159 
6160 	if (vid)
6161 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6162 	else
6163 		wr32(E1000_VMVIR(vf), 0);
6164 }
6165 
6166 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6167 				u16 vlan, u8 qos)
6168 {
6169 	int err;
6170 
6171 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6172 	if (err)
6173 		return err;
6174 
6175 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6176 	igb_set_vmolr(adapter, vf, !vlan);
6177 
6178 	/* revoke access to previous VLAN */
6179 	if (vlan != adapter->vf_data[vf].pf_vlan)
6180 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6181 				false, vf);
6182 
6183 	adapter->vf_data[vf].pf_vlan = vlan;
6184 	adapter->vf_data[vf].pf_qos = qos;
6185 	igb_set_vf_vlan_strip(adapter, vf, true);
6186 	dev_info(&adapter->pdev->dev,
6187 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6188 	if (test_bit(__IGB_DOWN, &adapter->state)) {
6189 		dev_warn(&adapter->pdev->dev,
6190 			 "The VF VLAN has been set, but the PF device is not up.\n");
6191 		dev_warn(&adapter->pdev->dev,
6192 			 "Bring the PF device up before attempting to use the VF device.\n");
6193 	}
6194 
6195 	return err;
6196 }
6197 
6198 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6199 {
6200 	/* Restore tagless access via VLAN 0 */
6201 	igb_set_vf_vlan(adapter, 0, true, vf);
6202 
6203 	igb_set_vmvir(adapter, 0, vf);
6204 	igb_set_vmolr(adapter, vf, true);
6205 
6206 	/* Remove any PF assigned VLAN */
6207 	if (adapter->vf_data[vf].pf_vlan)
6208 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6209 				false, vf);
6210 
6211 	adapter->vf_data[vf].pf_vlan = 0;
6212 	adapter->vf_data[vf].pf_qos = 0;
6213 	igb_set_vf_vlan_strip(adapter, vf, false);
6214 
6215 	return 0;
6216 }
6217 
6218 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6219 			       u16 vlan, u8 qos, __be16 vlan_proto)
6220 {
6221 	struct igb_adapter *adapter = netdev_priv(netdev);
6222 
6223 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6224 		return -EINVAL;
6225 
6226 	if (vlan_proto != htons(ETH_P_8021Q))
6227 		return -EPROTONOSUPPORT;
6228 
6229 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6230 			       igb_disable_port_vlan(adapter, vf);
6231 }
6232 
6233 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6234 {
6235 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6236 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6237 	int ret;
6238 
6239 	if (adapter->vf_data[vf].pf_vlan)
6240 		return -1;
6241 
6242 	/* VLAN 0 is a special case, don't allow it to be removed */
6243 	if (!vid && !add)
6244 		return 0;
6245 
6246 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6247 	if (!ret)
6248 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6249 	return ret;
6250 }
6251 
6252 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6253 {
6254 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6255 
6256 	/* clear flags - except flag that indicates PF has set the MAC */
6257 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6258 	vf_data->last_nack = jiffies;
6259 
6260 	/* reset vlans for device */
6261 	igb_clear_vf_vfta(adapter, vf);
6262 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6263 	igb_set_vmvir(adapter, vf_data->pf_vlan |
6264 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6265 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6266 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6267 
6268 	/* reset multicast table array for vf */
6269 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6270 
6271 	/* Flush and reset the mta with the new values */
6272 	igb_set_rx_mode(adapter->netdev);
6273 }
6274 
6275 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6276 {
6277 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6278 
6279 	/* clear mac address as we were hotplug removed/added */
6280 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6281 		eth_zero_addr(vf_mac);
6282 
6283 	/* process remaining reset events */
6284 	igb_vf_reset(adapter, vf);
6285 }
6286 
6287 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6288 {
6289 	struct e1000_hw *hw = &adapter->hw;
6290 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6291 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6292 	u32 reg, msgbuf[3];
6293 	u8 *addr = (u8 *)(&msgbuf[1]);
6294 
6295 	/* process all the same items cleared in a function level reset */
6296 	igb_vf_reset(adapter, vf);
6297 
6298 	/* set vf mac address */
6299 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6300 
6301 	/* enable transmit and receive for vf */
6302 	reg = rd32(E1000_VFTE);
6303 	wr32(E1000_VFTE, reg | BIT(vf));
6304 	reg = rd32(E1000_VFRE);
6305 	wr32(E1000_VFRE, reg | BIT(vf));
6306 
6307 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6308 
6309 	/* reply to reset with ack and vf mac address */
6310 	if (!is_zero_ether_addr(vf_mac)) {
6311 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6312 		memcpy(addr, vf_mac, ETH_ALEN);
6313 	} else {
6314 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6315 	}
6316 	igb_write_mbx(hw, msgbuf, 3, vf);
6317 }
6318 
6319 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6320 {
6321 	/* The VF MAC Address is stored in a packed array of bytes
6322 	 * starting at the second 32 bit word of the msg array
6323 	 */
6324 	unsigned char *addr = (char *)&msg[1];
6325 	int err = -1;
6326 
6327 	if (is_valid_ether_addr(addr))
6328 		err = igb_set_vf_mac(adapter, vf, addr);
6329 
6330 	return err;
6331 }
6332 
6333 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6334 {
6335 	struct e1000_hw *hw = &adapter->hw;
6336 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6337 	u32 msg = E1000_VT_MSGTYPE_NACK;
6338 
6339 	/* if device isn't clear to send it shouldn't be reading either */
6340 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6341 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6342 		igb_write_mbx(hw, &msg, 1, vf);
6343 		vf_data->last_nack = jiffies;
6344 	}
6345 }
6346 
6347 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6348 {
6349 	struct pci_dev *pdev = adapter->pdev;
6350 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6351 	struct e1000_hw *hw = &adapter->hw;
6352 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6353 	s32 retval;
6354 
6355 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6356 
6357 	if (retval) {
6358 		/* if receive failed revoke VF CTS stats and restart init */
6359 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6360 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6361 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6362 			return;
6363 		goto out;
6364 	}
6365 
6366 	/* this is a message we already processed, do nothing */
6367 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6368 		return;
6369 
6370 	/* until the vf completes a reset it should not be
6371 	 * allowed to start any configuration.
6372 	 */
6373 	if (msgbuf[0] == E1000_VF_RESET) {
6374 		igb_vf_reset_msg(adapter, vf);
6375 		return;
6376 	}
6377 
6378 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6379 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6380 			return;
6381 		retval = -1;
6382 		goto out;
6383 	}
6384 
6385 	switch ((msgbuf[0] & 0xFFFF)) {
6386 	case E1000_VF_SET_MAC_ADDR:
6387 		retval = -EINVAL;
6388 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6389 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6390 		else
6391 			dev_warn(&pdev->dev,
6392 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6393 				 vf);
6394 		break;
6395 	case E1000_VF_SET_PROMISC:
6396 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6397 		break;
6398 	case E1000_VF_SET_MULTICAST:
6399 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6400 		break;
6401 	case E1000_VF_SET_LPE:
6402 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6403 		break;
6404 	case E1000_VF_SET_VLAN:
6405 		retval = -1;
6406 		if (vf_data->pf_vlan)
6407 			dev_warn(&pdev->dev,
6408 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6409 				 vf);
6410 		else
6411 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6412 		break;
6413 	default:
6414 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6415 		retval = -1;
6416 		break;
6417 	}
6418 
6419 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6420 out:
6421 	/* notify the VF of the results of what it sent us */
6422 	if (retval)
6423 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6424 	else
6425 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6426 
6427 	igb_write_mbx(hw, msgbuf, 1, vf);
6428 }
6429 
6430 static void igb_msg_task(struct igb_adapter *adapter)
6431 {
6432 	struct e1000_hw *hw = &adapter->hw;
6433 	u32 vf;
6434 
6435 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6436 		/* process any reset requests */
6437 		if (!igb_check_for_rst(hw, vf))
6438 			igb_vf_reset_event(adapter, vf);
6439 
6440 		/* process any messages pending */
6441 		if (!igb_check_for_msg(hw, vf))
6442 			igb_rcv_msg_from_vf(adapter, vf);
6443 
6444 		/* process any acks */
6445 		if (!igb_check_for_ack(hw, vf))
6446 			igb_rcv_ack_from_vf(adapter, vf);
6447 	}
6448 }
6449 
6450 /**
6451  *  igb_set_uta - Set unicast filter table address
6452  *  @adapter: board private structure
6453  *  @set: boolean indicating if we are setting or clearing bits
6454  *
6455  *  The unicast table address is a register array of 32-bit registers.
6456  *  The table is meant to be used in a way similar to how the MTA is used
6457  *  however due to certain limitations in the hardware it is necessary to
6458  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6459  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6460  **/
6461 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6462 {
6463 	struct e1000_hw *hw = &adapter->hw;
6464 	u32 uta = set ? ~0 : 0;
6465 	int i;
6466 
6467 	/* we only need to do this if VMDq is enabled */
6468 	if (!adapter->vfs_allocated_count)
6469 		return;
6470 
6471 	for (i = hw->mac.uta_reg_count; i--;)
6472 		array_wr32(E1000_UTA, i, uta);
6473 }
6474 
6475 /**
6476  *  igb_intr_msi - Interrupt Handler
6477  *  @irq: interrupt number
6478  *  @data: pointer to a network interface device structure
6479  **/
6480 static irqreturn_t igb_intr_msi(int irq, void *data)
6481 {
6482 	struct igb_adapter *adapter = data;
6483 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6484 	struct e1000_hw *hw = &adapter->hw;
6485 	/* read ICR disables interrupts using IAM */
6486 	u32 icr = rd32(E1000_ICR);
6487 
6488 	igb_write_itr(q_vector);
6489 
6490 	if (icr & E1000_ICR_DRSTA)
6491 		schedule_work(&adapter->reset_task);
6492 
6493 	if (icr & E1000_ICR_DOUTSYNC) {
6494 		/* HW is reporting DMA is out of sync */
6495 		adapter->stats.doosync++;
6496 	}
6497 
6498 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6499 		hw->mac.get_link_status = 1;
6500 		if (!test_bit(__IGB_DOWN, &adapter->state))
6501 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6502 	}
6503 
6504 	if (icr & E1000_ICR_TS)
6505 		igb_tsync_interrupt(adapter);
6506 
6507 	napi_schedule(&q_vector->napi);
6508 
6509 	return IRQ_HANDLED;
6510 }
6511 
6512 /**
6513  *  igb_intr - Legacy Interrupt Handler
6514  *  @irq: interrupt number
6515  *  @data: pointer to a network interface device structure
6516  **/
6517 static irqreturn_t igb_intr(int irq, void *data)
6518 {
6519 	struct igb_adapter *adapter = data;
6520 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6521 	struct e1000_hw *hw = &adapter->hw;
6522 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6523 	 * need for the IMC write
6524 	 */
6525 	u32 icr = rd32(E1000_ICR);
6526 
6527 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6528 	 * not set, then the adapter didn't send an interrupt
6529 	 */
6530 	if (!(icr & E1000_ICR_INT_ASSERTED))
6531 		return IRQ_NONE;
6532 
6533 	igb_write_itr(q_vector);
6534 
6535 	if (icr & E1000_ICR_DRSTA)
6536 		schedule_work(&adapter->reset_task);
6537 
6538 	if (icr & E1000_ICR_DOUTSYNC) {
6539 		/* HW is reporting DMA is out of sync */
6540 		adapter->stats.doosync++;
6541 	}
6542 
6543 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6544 		hw->mac.get_link_status = 1;
6545 		/* guard against interrupt when we're going down */
6546 		if (!test_bit(__IGB_DOWN, &adapter->state))
6547 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6548 	}
6549 
6550 	if (icr & E1000_ICR_TS)
6551 		igb_tsync_interrupt(adapter);
6552 
6553 	napi_schedule(&q_vector->napi);
6554 
6555 	return IRQ_HANDLED;
6556 }
6557 
6558 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6559 {
6560 	struct igb_adapter *adapter = q_vector->adapter;
6561 	struct e1000_hw *hw = &adapter->hw;
6562 
6563 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6564 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6565 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6566 			igb_set_itr(q_vector);
6567 		else
6568 			igb_update_ring_itr(q_vector);
6569 	}
6570 
6571 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6572 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6573 			wr32(E1000_EIMS, q_vector->eims_value);
6574 		else
6575 			igb_irq_enable(adapter);
6576 	}
6577 }
6578 
6579 /**
6580  *  igb_poll - NAPI Rx polling callback
6581  *  @napi: napi polling structure
6582  *  @budget: count of how many packets we should handle
6583  **/
6584 static int igb_poll(struct napi_struct *napi, int budget)
6585 {
6586 	struct igb_q_vector *q_vector = container_of(napi,
6587 						     struct igb_q_vector,
6588 						     napi);
6589 	bool clean_complete = true;
6590 	int work_done = 0;
6591 
6592 #ifdef CONFIG_IGB_DCA
6593 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6594 		igb_update_dca(q_vector);
6595 #endif
6596 	if (q_vector->tx.ring)
6597 		clean_complete = igb_clean_tx_irq(q_vector, budget);
6598 
6599 	if (q_vector->rx.ring) {
6600 		int cleaned = igb_clean_rx_irq(q_vector, budget);
6601 
6602 		work_done += cleaned;
6603 		if (cleaned >= budget)
6604 			clean_complete = false;
6605 	}
6606 
6607 	/* If all work not completed, return budget and keep polling */
6608 	if (!clean_complete)
6609 		return budget;
6610 
6611 	/* If not enough Rx work done, exit the polling mode */
6612 	napi_complete_done(napi, work_done);
6613 	igb_ring_irq_enable(q_vector);
6614 
6615 	return 0;
6616 }
6617 
6618 /**
6619  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6620  *  @q_vector: pointer to q_vector containing needed info
6621  *  @napi_budget: Used to determine if we are in netpoll
6622  *
6623  *  returns true if ring is completely cleaned
6624  **/
6625 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6626 {
6627 	struct igb_adapter *adapter = q_vector->adapter;
6628 	struct igb_ring *tx_ring = q_vector->tx.ring;
6629 	struct igb_tx_buffer *tx_buffer;
6630 	union e1000_adv_tx_desc *tx_desc;
6631 	unsigned int total_bytes = 0, total_packets = 0;
6632 	unsigned int budget = q_vector->tx.work_limit;
6633 	unsigned int i = tx_ring->next_to_clean;
6634 
6635 	if (test_bit(__IGB_DOWN, &adapter->state))
6636 		return true;
6637 
6638 	tx_buffer = &tx_ring->tx_buffer_info[i];
6639 	tx_desc = IGB_TX_DESC(tx_ring, i);
6640 	i -= tx_ring->count;
6641 
6642 	do {
6643 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6644 
6645 		/* if next_to_watch is not set then there is no work pending */
6646 		if (!eop_desc)
6647 			break;
6648 
6649 		/* prevent any other reads prior to eop_desc */
6650 		read_barrier_depends();
6651 
6652 		/* if DD is not set pending work has not been completed */
6653 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6654 			break;
6655 
6656 		/* clear next_to_watch to prevent false hangs */
6657 		tx_buffer->next_to_watch = NULL;
6658 
6659 		/* update the statistics for this packet */
6660 		total_bytes += tx_buffer->bytecount;
6661 		total_packets += tx_buffer->gso_segs;
6662 
6663 		/* free the skb */
6664 		napi_consume_skb(tx_buffer->skb, napi_budget);
6665 
6666 		/* unmap skb header data */
6667 		dma_unmap_single(tx_ring->dev,
6668 				 dma_unmap_addr(tx_buffer, dma),
6669 				 dma_unmap_len(tx_buffer, len),
6670 				 DMA_TO_DEVICE);
6671 
6672 		/* clear tx_buffer data */
6673 		tx_buffer->skb = NULL;
6674 		dma_unmap_len_set(tx_buffer, len, 0);
6675 
6676 		/* clear last DMA location and unmap remaining buffers */
6677 		while (tx_desc != eop_desc) {
6678 			tx_buffer++;
6679 			tx_desc++;
6680 			i++;
6681 			if (unlikely(!i)) {
6682 				i -= tx_ring->count;
6683 				tx_buffer = tx_ring->tx_buffer_info;
6684 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6685 			}
6686 
6687 			/* unmap any remaining paged data */
6688 			if (dma_unmap_len(tx_buffer, len)) {
6689 				dma_unmap_page(tx_ring->dev,
6690 					       dma_unmap_addr(tx_buffer, dma),
6691 					       dma_unmap_len(tx_buffer, len),
6692 					       DMA_TO_DEVICE);
6693 				dma_unmap_len_set(tx_buffer, len, 0);
6694 			}
6695 		}
6696 
6697 		/* move us one more past the eop_desc for start of next pkt */
6698 		tx_buffer++;
6699 		tx_desc++;
6700 		i++;
6701 		if (unlikely(!i)) {
6702 			i -= tx_ring->count;
6703 			tx_buffer = tx_ring->tx_buffer_info;
6704 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6705 		}
6706 
6707 		/* issue prefetch for next Tx descriptor */
6708 		prefetch(tx_desc);
6709 
6710 		/* update budget accounting */
6711 		budget--;
6712 	} while (likely(budget));
6713 
6714 	netdev_tx_completed_queue(txring_txq(tx_ring),
6715 				  total_packets, total_bytes);
6716 	i += tx_ring->count;
6717 	tx_ring->next_to_clean = i;
6718 	u64_stats_update_begin(&tx_ring->tx_syncp);
6719 	tx_ring->tx_stats.bytes += total_bytes;
6720 	tx_ring->tx_stats.packets += total_packets;
6721 	u64_stats_update_end(&tx_ring->tx_syncp);
6722 	q_vector->tx.total_bytes += total_bytes;
6723 	q_vector->tx.total_packets += total_packets;
6724 
6725 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6726 		struct e1000_hw *hw = &adapter->hw;
6727 
6728 		/* Detect a transmit hang in hardware, this serializes the
6729 		 * check with the clearing of time_stamp and movement of i
6730 		 */
6731 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6732 		if (tx_buffer->next_to_watch &&
6733 		    time_after(jiffies, tx_buffer->time_stamp +
6734 			       (adapter->tx_timeout_factor * HZ)) &&
6735 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6736 
6737 			/* detected Tx unit hang */
6738 			dev_err(tx_ring->dev,
6739 				"Detected Tx Unit Hang\n"
6740 				"  Tx Queue             <%d>\n"
6741 				"  TDH                  <%x>\n"
6742 				"  TDT                  <%x>\n"
6743 				"  next_to_use          <%x>\n"
6744 				"  next_to_clean        <%x>\n"
6745 				"buffer_info[next_to_clean]\n"
6746 				"  time_stamp           <%lx>\n"
6747 				"  next_to_watch        <%p>\n"
6748 				"  jiffies              <%lx>\n"
6749 				"  desc.status          <%x>\n",
6750 				tx_ring->queue_index,
6751 				rd32(E1000_TDH(tx_ring->reg_idx)),
6752 				readl(tx_ring->tail),
6753 				tx_ring->next_to_use,
6754 				tx_ring->next_to_clean,
6755 				tx_buffer->time_stamp,
6756 				tx_buffer->next_to_watch,
6757 				jiffies,
6758 				tx_buffer->next_to_watch->wb.status);
6759 			netif_stop_subqueue(tx_ring->netdev,
6760 					    tx_ring->queue_index);
6761 
6762 			/* we are about to reset, no point in enabling stuff */
6763 			return true;
6764 		}
6765 	}
6766 
6767 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6768 	if (unlikely(total_packets &&
6769 	    netif_carrier_ok(tx_ring->netdev) &&
6770 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6771 		/* Make sure that anybody stopping the queue after this
6772 		 * sees the new next_to_clean.
6773 		 */
6774 		smp_mb();
6775 		if (__netif_subqueue_stopped(tx_ring->netdev,
6776 					     tx_ring->queue_index) &&
6777 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6778 			netif_wake_subqueue(tx_ring->netdev,
6779 					    tx_ring->queue_index);
6780 
6781 			u64_stats_update_begin(&tx_ring->tx_syncp);
6782 			tx_ring->tx_stats.restart_queue++;
6783 			u64_stats_update_end(&tx_ring->tx_syncp);
6784 		}
6785 	}
6786 
6787 	return !!budget;
6788 }
6789 
6790 /**
6791  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6792  *  @rx_ring: rx descriptor ring to store buffers on
6793  *  @old_buff: donor buffer to have page reused
6794  *
6795  *  Synchronizes page for reuse by the adapter
6796  **/
6797 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6798 			      struct igb_rx_buffer *old_buff)
6799 {
6800 	struct igb_rx_buffer *new_buff;
6801 	u16 nta = rx_ring->next_to_alloc;
6802 
6803 	new_buff = &rx_ring->rx_buffer_info[nta];
6804 
6805 	/* update, and store next to alloc */
6806 	nta++;
6807 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6808 
6809 	/* transfer page from old buffer to new buffer */
6810 	*new_buff = *old_buff;
6811 
6812 	/* sync the buffer for use by the device */
6813 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6814 					 old_buff->page_offset,
6815 					 IGB_RX_BUFSZ,
6816 					 DMA_FROM_DEVICE);
6817 }
6818 
6819 static inline bool igb_page_is_reserved(struct page *page)
6820 {
6821 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6822 }
6823 
6824 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6825 				  struct page *page,
6826 				  unsigned int truesize)
6827 {
6828 	/* avoid re-using remote pages */
6829 	if (unlikely(igb_page_is_reserved(page)))
6830 		return false;
6831 
6832 #if (PAGE_SIZE < 8192)
6833 	/* if we are only owner of page we can reuse it */
6834 	if (unlikely(page_count(page) != 1))
6835 		return false;
6836 
6837 	/* flip page offset to other buffer */
6838 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6839 #else
6840 	/* move offset up to the next cache line */
6841 	rx_buffer->page_offset += truesize;
6842 
6843 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6844 		return false;
6845 #endif
6846 
6847 	/* Even if we own the page, we are not allowed to use atomic_set()
6848 	 * This would break get_page_unless_zero() users.
6849 	 */
6850 	page_ref_inc(page);
6851 
6852 	return true;
6853 }
6854 
6855 /**
6856  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6857  *  @rx_ring: rx descriptor ring to transact packets on
6858  *  @rx_buffer: buffer containing page to add
6859  *  @rx_desc: descriptor containing length of buffer written by hardware
6860  *  @skb: sk_buff to place the data into
6861  *
6862  *  This function will add the data contained in rx_buffer->page to the skb.
6863  *  This is done either through a direct copy if the data in the buffer is
6864  *  less than the skb header size, otherwise it will just attach the page as
6865  *  a frag to the skb.
6866  *
6867  *  The function will then update the page offset if necessary and return
6868  *  true if the buffer can be reused by the adapter.
6869  **/
6870 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6871 			    struct igb_rx_buffer *rx_buffer,
6872 			    unsigned int size,
6873 			    union e1000_adv_rx_desc *rx_desc,
6874 			    struct sk_buff *skb)
6875 {
6876 	struct page *page = rx_buffer->page;
6877 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
6878 #if (PAGE_SIZE < 8192)
6879 	unsigned int truesize = IGB_RX_BUFSZ;
6880 #else
6881 	unsigned int truesize = SKB_DATA_ALIGN(size);
6882 #endif
6883 	unsigned int pull_len;
6884 
6885 	if (unlikely(skb_is_nonlinear(skb)))
6886 		goto add_tail_frag;
6887 
6888 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6889 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6890 		va += IGB_TS_HDR_LEN;
6891 		size -= IGB_TS_HDR_LEN;
6892 	}
6893 
6894 	if (likely(size <= IGB_RX_HDR_LEN)) {
6895 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6896 
6897 		/* page is not reserved, we can reuse buffer as-is */
6898 		if (likely(!igb_page_is_reserved(page)))
6899 			return true;
6900 
6901 		/* this page cannot be reused so discard it */
6902 		__free_page(page);
6903 		return false;
6904 	}
6905 
6906 	/* we need the header to contain the greater of either ETH_HLEN or
6907 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6908 	 */
6909 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6910 
6911 	/* align pull length to size of long to optimize memcpy performance */
6912 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6913 
6914 	/* update all of the pointers */
6915 	va += pull_len;
6916 	size -= pull_len;
6917 
6918 add_tail_frag:
6919 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6920 			(unsigned long)va & ~PAGE_MASK, size, truesize);
6921 
6922 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6923 }
6924 
6925 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6926 					   union e1000_adv_rx_desc *rx_desc,
6927 					   struct sk_buff *skb)
6928 {
6929 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6930 	struct igb_rx_buffer *rx_buffer;
6931 	struct page *page;
6932 
6933 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6934 	page = rx_buffer->page;
6935 	prefetchw(page);
6936 
6937 	if (likely(!skb)) {
6938 		void *page_addr = page_address(page) +
6939 				  rx_buffer->page_offset;
6940 
6941 		/* prefetch first cache line of first page */
6942 		prefetch(page_addr);
6943 #if L1_CACHE_BYTES < 128
6944 		prefetch(page_addr + L1_CACHE_BYTES);
6945 #endif
6946 
6947 		/* allocate a skb to store the frags */
6948 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6949 		if (unlikely(!skb)) {
6950 			rx_ring->rx_stats.alloc_failed++;
6951 			return NULL;
6952 		}
6953 
6954 		/* we will be copying header into skb->data in
6955 		 * pskb_may_pull so it is in our interest to prefetch
6956 		 * it now to avoid a possible cache miss
6957 		 */
6958 		prefetchw(skb->data);
6959 	}
6960 
6961 	/* we are reusing so sync this buffer for CPU use */
6962 	dma_sync_single_range_for_cpu(rx_ring->dev,
6963 				      rx_buffer->dma,
6964 				      rx_buffer->page_offset,
6965 				      size,
6966 				      DMA_FROM_DEVICE);
6967 
6968 	/* pull page into skb */
6969 	if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6970 		/* hand second half of page back to the ring */
6971 		igb_reuse_rx_page(rx_ring, rx_buffer);
6972 	} else {
6973 		/* we are not reusing the buffer so unmap it */
6974 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6975 			       PAGE_SIZE, DMA_FROM_DEVICE);
6976 	}
6977 
6978 	/* clear contents of rx_buffer */
6979 	rx_buffer->page = NULL;
6980 
6981 	return skb;
6982 }
6983 
6984 static inline void igb_rx_checksum(struct igb_ring *ring,
6985 				   union e1000_adv_rx_desc *rx_desc,
6986 				   struct sk_buff *skb)
6987 {
6988 	skb_checksum_none_assert(skb);
6989 
6990 	/* Ignore Checksum bit is set */
6991 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6992 		return;
6993 
6994 	/* Rx checksum disabled via ethtool */
6995 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6996 		return;
6997 
6998 	/* TCP/UDP checksum error bit is set */
6999 	if (igb_test_staterr(rx_desc,
7000 			     E1000_RXDEXT_STATERR_TCPE |
7001 			     E1000_RXDEXT_STATERR_IPE)) {
7002 		/* work around errata with sctp packets where the TCPE aka
7003 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7004 		 * packets, (aka let the stack check the crc32c)
7005 		 */
7006 		if (!((skb->len == 60) &&
7007 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7008 			u64_stats_update_begin(&ring->rx_syncp);
7009 			ring->rx_stats.csum_err++;
7010 			u64_stats_update_end(&ring->rx_syncp);
7011 		}
7012 		/* let the stack verify checksum errors */
7013 		return;
7014 	}
7015 	/* It must be a TCP or UDP packet with a valid checksum */
7016 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7017 				      E1000_RXD_STAT_UDPCS))
7018 		skb->ip_summed = CHECKSUM_UNNECESSARY;
7019 
7020 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
7021 		le32_to_cpu(rx_desc->wb.upper.status_error));
7022 }
7023 
7024 static inline void igb_rx_hash(struct igb_ring *ring,
7025 			       union e1000_adv_rx_desc *rx_desc,
7026 			       struct sk_buff *skb)
7027 {
7028 	if (ring->netdev->features & NETIF_F_RXHASH)
7029 		skb_set_hash(skb,
7030 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7031 			     PKT_HASH_TYPE_L3);
7032 }
7033 
7034 /**
7035  *  igb_is_non_eop - process handling of non-EOP buffers
7036  *  @rx_ring: Rx ring being processed
7037  *  @rx_desc: Rx descriptor for current buffer
7038  *  @skb: current socket buffer containing buffer in progress
7039  *
7040  *  This function updates next to clean.  If the buffer is an EOP buffer
7041  *  this function exits returning false, otherwise it will place the
7042  *  sk_buff in the next buffer to be chained and return true indicating
7043  *  that this is in fact a non-EOP buffer.
7044  **/
7045 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7046 			   union e1000_adv_rx_desc *rx_desc)
7047 {
7048 	u32 ntc = rx_ring->next_to_clean + 1;
7049 
7050 	/* fetch, update, and store next to clean */
7051 	ntc = (ntc < rx_ring->count) ? ntc : 0;
7052 	rx_ring->next_to_clean = ntc;
7053 
7054 	prefetch(IGB_RX_DESC(rx_ring, ntc));
7055 
7056 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7057 		return false;
7058 
7059 	return true;
7060 }
7061 
7062 /**
7063  *  igb_cleanup_headers - Correct corrupted or empty headers
7064  *  @rx_ring: rx descriptor ring packet is being transacted on
7065  *  @rx_desc: pointer to the EOP Rx descriptor
7066  *  @skb: pointer to current skb being fixed
7067  *
7068  *  Address the case where we are pulling data in on pages only
7069  *  and as such no data is present in the skb header.
7070  *
7071  *  In addition if skb is not at least 60 bytes we need to pad it so that
7072  *  it is large enough to qualify as a valid Ethernet frame.
7073  *
7074  *  Returns true if an error was encountered and skb was freed.
7075  **/
7076 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7077 				union e1000_adv_rx_desc *rx_desc,
7078 				struct sk_buff *skb)
7079 {
7080 	if (unlikely((igb_test_staterr(rx_desc,
7081 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7082 		struct net_device *netdev = rx_ring->netdev;
7083 		if (!(netdev->features & NETIF_F_RXALL)) {
7084 			dev_kfree_skb_any(skb);
7085 			return true;
7086 		}
7087 	}
7088 
7089 	/* if eth_skb_pad returns an error the skb was freed */
7090 	if (eth_skb_pad(skb))
7091 		return true;
7092 
7093 	return false;
7094 }
7095 
7096 /**
7097  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7098  *  @rx_ring: rx descriptor ring packet is being transacted on
7099  *  @rx_desc: pointer to the EOP Rx descriptor
7100  *  @skb: pointer to current skb being populated
7101  *
7102  *  This function checks the ring, descriptor, and packet information in
7103  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7104  *  other fields within the skb.
7105  **/
7106 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7107 				   union e1000_adv_rx_desc *rx_desc,
7108 				   struct sk_buff *skb)
7109 {
7110 	struct net_device *dev = rx_ring->netdev;
7111 
7112 	igb_rx_hash(rx_ring, rx_desc, skb);
7113 
7114 	igb_rx_checksum(rx_ring, rx_desc, skb);
7115 
7116 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7117 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7118 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7119 
7120 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7121 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7122 		u16 vid;
7123 
7124 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7125 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7126 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7127 		else
7128 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7129 
7130 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7131 	}
7132 
7133 	skb_record_rx_queue(skb, rx_ring->queue_index);
7134 
7135 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7136 }
7137 
7138 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7139 {
7140 	struct igb_ring *rx_ring = q_vector->rx.ring;
7141 	struct sk_buff *skb = rx_ring->skb;
7142 	unsigned int total_bytes = 0, total_packets = 0;
7143 	u16 cleaned_count = igb_desc_unused(rx_ring);
7144 
7145 	while (likely(total_packets < budget)) {
7146 		union e1000_adv_rx_desc *rx_desc;
7147 
7148 		/* return some buffers to hardware, one at a time is too slow */
7149 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7150 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7151 			cleaned_count = 0;
7152 		}
7153 
7154 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7155 
7156 		if (!rx_desc->wb.upper.status_error)
7157 			break;
7158 
7159 		/* This memory barrier is needed to keep us from reading
7160 		 * any other fields out of the rx_desc until we know the
7161 		 * descriptor has been written back
7162 		 */
7163 		dma_rmb();
7164 
7165 		/* retrieve a buffer from the ring */
7166 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7167 
7168 		/* exit if we failed to retrieve a buffer */
7169 		if (!skb)
7170 			break;
7171 
7172 		cleaned_count++;
7173 
7174 		/* fetch next buffer in frame if non-eop */
7175 		if (igb_is_non_eop(rx_ring, rx_desc))
7176 			continue;
7177 
7178 		/* verify the packet layout is correct */
7179 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7180 			skb = NULL;
7181 			continue;
7182 		}
7183 
7184 		/* probably a little skewed due to removing CRC */
7185 		total_bytes += skb->len;
7186 
7187 		/* populate checksum, timestamp, VLAN, and protocol */
7188 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7189 
7190 		napi_gro_receive(&q_vector->napi, skb);
7191 
7192 		/* reset skb pointer */
7193 		skb = NULL;
7194 
7195 		/* update budget accounting */
7196 		total_packets++;
7197 	}
7198 
7199 	/* place incomplete frames back on ring for completion */
7200 	rx_ring->skb = skb;
7201 
7202 	u64_stats_update_begin(&rx_ring->rx_syncp);
7203 	rx_ring->rx_stats.packets += total_packets;
7204 	rx_ring->rx_stats.bytes += total_bytes;
7205 	u64_stats_update_end(&rx_ring->rx_syncp);
7206 	q_vector->rx.total_packets += total_packets;
7207 	q_vector->rx.total_bytes += total_bytes;
7208 
7209 	if (cleaned_count)
7210 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7211 
7212 	return total_packets;
7213 }
7214 
7215 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7216 				  struct igb_rx_buffer *bi)
7217 {
7218 	struct page *page = bi->page;
7219 	dma_addr_t dma;
7220 
7221 	/* since we are recycling buffers we should seldom need to alloc */
7222 	if (likely(page))
7223 		return true;
7224 
7225 	/* alloc new page for storage */
7226 	page = dev_alloc_page();
7227 	if (unlikely(!page)) {
7228 		rx_ring->rx_stats.alloc_failed++;
7229 		return false;
7230 	}
7231 
7232 	/* map page for use */
7233 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7234 
7235 	/* if mapping failed free memory back to system since
7236 	 * there isn't much point in holding memory we can't use
7237 	 */
7238 	if (dma_mapping_error(rx_ring->dev, dma)) {
7239 		__free_page(page);
7240 
7241 		rx_ring->rx_stats.alloc_failed++;
7242 		return false;
7243 	}
7244 
7245 	bi->dma = dma;
7246 	bi->page = page;
7247 	bi->page_offset = 0;
7248 
7249 	return true;
7250 }
7251 
7252 /**
7253  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7254  *  @adapter: address of board private structure
7255  **/
7256 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7257 {
7258 	union e1000_adv_rx_desc *rx_desc;
7259 	struct igb_rx_buffer *bi;
7260 	u16 i = rx_ring->next_to_use;
7261 
7262 	/* nothing to do */
7263 	if (!cleaned_count)
7264 		return;
7265 
7266 	rx_desc = IGB_RX_DESC(rx_ring, i);
7267 	bi = &rx_ring->rx_buffer_info[i];
7268 	i -= rx_ring->count;
7269 
7270 	do {
7271 		if (!igb_alloc_mapped_page(rx_ring, bi))
7272 			break;
7273 
7274 		/* Refresh the desc even if buffer_addrs didn't change
7275 		 * because each write-back erases this info.
7276 		 */
7277 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7278 
7279 		rx_desc++;
7280 		bi++;
7281 		i++;
7282 		if (unlikely(!i)) {
7283 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7284 			bi = rx_ring->rx_buffer_info;
7285 			i -= rx_ring->count;
7286 		}
7287 
7288 		/* clear the status bits for the next_to_use descriptor */
7289 		rx_desc->wb.upper.status_error = 0;
7290 
7291 		cleaned_count--;
7292 	} while (cleaned_count);
7293 
7294 	i += rx_ring->count;
7295 
7296 	if (rx_ring->next_to_use != i) {
7297 		/* record the next descriptor to use */
7298 		rx_ring->next_to_use = i;
7299 
7300 		/* update next to alloc since we have filled the ring */
7301 		rx_ring->next_to_alloc = i;
7302 
7303 		/* Force memory writes to complete before letting h/w
7304 		 * know there are new descriptors to fetch.  (Only
7305 		 * applicable for weak-ordered memory model archs,
7306 		 * such as IA-64).
7307 		 */
7308 		wmb();
7309 		writel(i, rx_ring->tail);
7310 	}
7311 }
7312 
7313 /**
7314  * igb_mii_ioctl -
7315  * @netdev:
7316  * @ifreq:
7317  * @cmd:
7318  **/
7319 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7320 {
7321 	struct igb_adapter *adapter = netdev_priv(netdev);
7322 	struct mii_ioctl_data *data = if_mii(ifr);
7323 
7324 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7325 		return -EOPNOTSUPP;
7326 
7327 	switch (cmd) {
7328 	case SIOCGMIIPHY:
7329 		data->phy_id = adapter->hw.phy.addr;
7330 		break;
7331 	case SIOCGMIIREG:
7332 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7333 				     &data->val_out))
7334 			return -EIO;
7335 		break;
7336 	case SIOCSMIIREG:
7337 	default:
7338 		return -EOPNOTSUPP;
7339 	}
7340 	return 0;
7341 }
7342 
7343 /**
7344  * igb_ioctl -
7345  * @netdev:
7346  * @ifreq:
7347  * @cmd:
7348  **/
7349 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7350 {
7351 	switch (cmd) {
7352 	case SIOCGMIIPHY:
7353 	case SIOCGMIIREG:
7354 	case SIOCSMIIREG:
7355 		return igb_mii_ioctl(netdev, ifr, cmd);
7356 	case SIOCGHWTSTAMP:
7357 		return igb_ptp_get_ts_config(netdev, ifr);
7358 	case SIOCSHWTSTAMP:
7359 		return igb_ptp_set_ts_config(netdev, ifr);
7360 	default:
7361 		return -EOPNOTSUPP;
7362 	}
7363 }
7364 
7365 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7366 {
7367 	struct igb_adapter *adapter = hw->back;
7368 
7369 	pci_read_config_word(adapter->pdev, reg, value);
7370 }
7371 
7372 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7373 {
7374 	struct igb_adapter *adapter = hw->back;
7375 
7376 	pci_write_config_word(adapter->pdev, reg, *value);
7377 }
7378 
7379 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7380 {
7381 	struct igb_adapter *adapter = hw->back;
7382 
7383 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7384 		return -E1000_ERR_CONFIG;
7385 
7386 	return 0;
7387 }
7388 
7389 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7390 {
7391 	struct igb_adapter *adapter = hw->back;
7392 
7393 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7394 		return -E1000_ERR_CONFIG;
7395 
7396 	return 0;
7397 }
7398 
7399 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7400 {
7401 	struct igb_adapter *adapter = netdev_priv(netdev);
7402 	struct e1000_hw *hw = &adapter->hw;
7403 	u32 ctrl, rctl;
7404 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7405 
7406 	if (enable) {
7407 		/* enable VLAN tag insert/strip */
7408 		ctrl = rd32(E1000_CTRL);
7409 		ctrl |= E1000_CTRL_VME;
7410 		wr32(E1000_CTRL, ctrl);
7411 
7412 		/* Disable CFI check */
7413 		rctl = rd32(E1000_RCTL);
7414 		rctl &= ~E1000_RCTL_CFIEN;
7415 		wr32(E1000_RCTL, rctl);
7416 	} else {
7417 		/* disable VLAN tag insert/strip */
7418 		ctrl = rd32(E1000_CTRL);
7419 		ctrl &= ~E1000_CTRL_VME;
7420 		wr32(E1000_CTRL, ctrl);
7421 	}
7422 
7423 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7424 }
7425 
7426 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7427 			       __be16 proto, u16 vid)
7428 {
7429 	struct igb_adapter *adapter = netdev_priv(netdev);
7430 	struct e1000_hw *hw = &adapter->hw;
7431 	int pf_id = adapter->vfs_allocated_count;
7432 
7433 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7434 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7435 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
7436 
7437 	set_bit(vid, adapter->active_vlans);
7438 
7439 	return 0;
7440 }
7441 
7442 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7443 				__be16 proto, u16 vid)
7444 {
7445 	struct igb_adapter *adapter = netdev_priv(netdev);
7446 	int pf_id = adapter->vfs_allocated_count;
7447 	struct e1000_hw *hw = &adapter->hw;
7448 
7449 	/* remove VID from filter table */
7450 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7451 		igb_vfta_set(hw, vid, pf_id, false, true);
7452 
7453 	clear_bit(vid, adapter->active_vlans);
7454 
7455 	return 0;
7456 }
7457 
7458 static void igb_restore_vlan(struct igb_adapter *adapter)
7459 {
7460 	u16 vid = 1;
7461 
7462 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7463 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7464 
7465 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7466 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7467 }
7468 
7469 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7470 {
7471 	struct pci_dev *pdev = adapter->pdev;
7472 	struct e1000_mac_info *mac = &adapter->hw.mac;
7473 
7474 	mac->autoneg = 0;
7475 
7476 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7477 	 * for the switch() below to work
7478 	 */
7479 	if ((spd & 1) || (dplx & ~1))
7480 		goto err_inval;
7481 
7482 	/* Fiber NIC's only allow 1000 gbps Full duplex
7483 	 * and 100Mbps Full duplex for 100baseFx sfp
7484 	 */
7485 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7486 		switch (spd + dplx) {
7487 		case SPEED_10 + DUPLEX_HALF:
7488 		case SPEED_10 + DUPLEX_FULL:
7489 		case SPEED_100 + DUPLEX_HALF:
7490 			goto err_inval;
7491 		default:
7492 			break;
7493 		}
7494 	}
7495 
7496 	switch (spd + dplx) {
7497 	case SPEED_10 + DUPLEX_HALF:
7498 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7499 		break;
7500 	case SPEED_10 + DUPLEX_FULL:
7501 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7502 		break;
7503 	case SPEED_100 + DUPLEX_HALF:
7504 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7505 		break;
7506 	case SPEED_100 + DUPLEX_FULL:
7507 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7508 		break;
7509 	case SPEED_1000 + DUPLEX_FULL:
7510 		mac->autoneg = 1;
7511 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7512 		break;
7513 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7514 	default:
7515 		goto err_inval;
7516 	}
7517 
7518 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7519 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7520 
7521 	return 0;
7522 
7523 err_inval:
7524 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7525 	return -EINVAL;
7526 }
7527 
7528 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7529 			  bool runtime)
7530 {
7531 	struct net_device *netdev = pci_get_drvdata(pdev);
7532 	struct igb_adapter *adapter = netdev_priv(netdev);
7533 	struct e1000_hw *hw = &adapter->hw;
7534 	u32 ctrl, rctl, status;
7535 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7536 #ifdef CONFIG_PM
7537 	int retval = 0;
7538 #endif
7539 
7540 	netif_device_detach(netdev);
7541 
7542 	if (netif_running(netdev))
7543 		__igb_close(netdev, true);
7544 
7545 	igb_ptp_suspend(adapter);
7546 
7547 	igb_clear_interrupt_scheme(adapter);
7548 
7549 #ifdef CONFIG_PM
7550 	retval = pci_save_state(pdev);
7551 	if (retval)
7552 		return retval;
7553 #endif
7554 
7555 	status = rd32(E1000_STATUS);
7556 	if (status & E1000_STATUS_LU)
7557 		wufc &= ~E1000_WUFC_LNKC;
7558 
7559 	if (wufc) {
7560 		igb_setup_rctl(adapter);
7561 		igb_set_rx_mode(netdev);
7562 
7563 		/* turn on all-multi mode if wake on multicast is enabled */
7564 		if (wufc & E1000_WUFC_MC) {
7565 			rctl = rd32(E1000_RCTL);
7566 			rctl |= E1000_RCTL_MPE;
7567 			wr32(E1000_RCTL, rctl);
7568 		}
7569 
7570 		ctrl = rd32(E1000_CTRL);
7571 		/* advertise wake from D3Cold */
7572 		#define E1000_CTRL_ADVD3WUC 0x00100000
7573 		/* phy power management enable */
7574 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7575 		ctrl |= E1000_CTRL_ADVD3WUC;
7576 		wr32(E1000_CTRL, ctrl);
7577 
7578 		/* Allow time for pending master requests to run */
7579 		igb_disable_pcie_master(hw);
7580 
7581 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7582 		wr32(E1000_WUFC, wufc);
7583 	} else {
7584 		wr32(E1000_WUC, 0);
7585 		wr32(E1000_WUFC, 0);
7586 	}
7587 
7588 	*enable_wake = wufc || adapter->en_mng_pt;
7589 	if (!*enable_wake)
7590 		igb_power_down_link(adapter);
7591 	else
7592 		igb_power_up_link(adapter);
7593 
7594 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7595 	 * would have already happened in close and is redundant.
7596 	 */
7597 	igb_release_hw_control(adapter);
7598 
7599 	pci_disable_device(pdev);
7600 
7601 	return 0;
7602 }
7603 
7604 #ifdef CONFIG_PM
7605 #ifdef CONFIG_PM_SLEEP
7606 static int igb_suspend(struct device *dev)
7607 {
7608 	int retval;
7609 	bool wake;
7610 	struct pci_dev *pdev = to_pci_dev(dev);
7611 
7612 	retval = __igb_shutdown(pdev, &wake, 0);
7613 	if (retval)
7614 		return retval;
7615 
7616 	if (wake) {
7617 		pci_prepare_to_sleep(pdev);
7618 	} else {
7619 		pci_wake_from_d3(pdev, false);
7620 		pci_set_power_state(pdev, PCI_D3hot);
7621 	}
7622 
7623 	return 0;
7624 }
7625 #endif /* CONFIG_PM_SLEEP */
7626 
7627 static int igb_resume(struct device *dev)
7628 {
7629 	struct pci_dev *pdev = to_pci_dev(dev);
7630 	struct net_device *netdev = pci_get_drvdata(pdev);
7631 	struct igb_adapter *adapter = netdev_priv(netdev);
7632 	struct e1000_hw *hw = &adapter->hw;
7633 	u32 err;
7634 
7635 	pci_set_power_state(pdev, PCI_D0);
7636 	pci_restore_state(pdev);
7637 	pci_save_state(pdev);
7638 
7639 	if (!pci_device_is_present(pdev))
7640 		return -ENODEV;
7641 	err = pci_enable_device_mem(pdev);
7642 	if (err) {
7643 		dev_err(&pdev->dev,
7644 			"igb: Cannot enable PCI device from suspend\n");
7645 		return err;
7646 	}
7647 	pci_set_master(pdev);
7648 
7649 	pci_enable_wake(pdev, PCI_D3hot, 0);
7650 	pci_enable_wake(pdev, PCI_D3cold, 0);
7651 
7652 	if (igb_init_interrupt_scheme(adapter, true)) {
7653 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7654 		return -ENOMEM;
7655 	}
7656 
7657 	igb_reset(adapter);
7658 
7659 	/* let the f/w know that the h/w is now under the control of the
7660 	 * driver.
7661 	 */
7662 	igb_get_hw_control(adapter);
7663 
7664 	wr32(E1000_WUS, ~0);
7665 
7666 	if (netdev->flags & IFF_UP) {
7667 		rtnl_lock();
7668 		err = __igb_open(netdev, true);
7669 		rtnl_unlock();
7670 		if (err)
7671 			return err;
7672 	}
7673 
7674 	netif_device_attach(netdev);
7675 	return 0;
7676 }
7677 
7678 static int igb_runtime_idle(struct device *dev)
7679 {
7680 	struct pci_dev *pdev = to_pci_dev(dev);
7681 	struct net_device *netdev = pci_get_drvdata(pdev);
7682 	struct igb_adapter *adapter = netdev_priv(netdev);
7683 
7684 	if (!igb_has_link(adapter))
7685 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7686 
7687 	return -EBUSY;
7688 }
7689 
7690 static int igb_runtime_suspend(struct device *dev)
7691 {
7692 	struct pci_dev *pdev = to_pci_dev(dev);
7693 	int retval;
7694 	bool wake;
7695 
7696 	retval = __igb_shutdown(pdev, &wake, 1);
7697 	if (retval)
7698 		return retval;
7699 
7700 	if (wake) {
7701 		pci_prepare_to_sleep(pdev);
7702 	} else {
7703 		pci_wake_from_d3(pdev, false);
7704 		pci_set_power_state(pdev, PCI_D3hot);
7705 	}
7706 
7707 	return 0;
7708 }
7709 
7710 static int igb_runtime_resume(struct device *dev)
7711 {
7712 	return igb_resume(dev);
7713 }
7714 #endif /* CONFIG_PM */
7715 
7716 static void igb_shutdown(struct pci_dev *pdev)
7717 {
7718 	bool wake;
7719 
7720 	__igb_shutdown(pdev, &wake, 0);
7721 
7722 	if (system_state == SYSTEM_POWER_OFF) {
7723 		pci_wake_from_d3(pdev, wake);
7724 		pci_set_power_state(pdev, PCI_D3hot);
7725 	}
7726 }
7727 
7728 #ifdef CONFIG_PCI_IOV
7729 static int igb_sriov_reinit(struct pci_dev *dev)
7730 {
7731 	struct net_device *netdev = pci_get_drvdata(dev);
7732 	struct igb_adapter *adapter = netdev_priv(netdev);
7733 	struct pci_dev *pdev = adapter->pdev;
7734 
7735 	rtnl_lock();
7736 
7737 	if (netif_running(netdev))
7738 		igb_close(netdev);
7739 	else
7740 		igb_reset(adapter);
7741 
7742 	igb_clear_interrupt_scheme(adapter);
7743 
7744 	igb_init_queue_configuration(adapter);
7745 
7746 	if (igb_init_interrupt_scheme(adapter, true)) {
7747 		rtnl_unlock();
7748 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7749 		return -ENOMEM;
7750 	}
7751 
7752 	if (netif_running(netdev))
7753 		igb_open(netdev);
7754 
7755 	rtnl_unlock();
7756 
7757 	return 0;
7758 }
7759 
7760 static int igb_pci_disable_sriov(struct pci_dev *dev)
7761 {
7762 	int err = igb_disable_sriov(dev);
7763 
7764 	if (!err)
7765 		err = igb_sriov_reinit(dev);
7766 
7767 	return err;
7768 }
7769 
7770 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7771 {
7772 	int err = igb_enable_sriov(dev, num_vfs);
7773 
7774 	if (err)
7775 		goto out;
7776 
7777 	err = igb_sriov_reinit(dev);
7778 	if (!err)
7779 		return num_vfs;
7780 
7781 out:
7782 	return err;
7783 }
7784 
7785 #endif
7786 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7787 {
7788 #ifdef CONFIG_PCI_IOV
7789 	if (num_vfs == 0)
7790 		return igb_pci_disable_sriov(dev);
7791 	else
7792 		return igb_pci_enable_sriov(dev, num_vfs);
7793 #endif
7794 	return 0;
7795 }
7796 
7797 #ifdef CONFIG_NET_POLL_CONTROLLER
7798 /* Polling 'interrupt' - used by things like netconsole to send skbs
7799  * without having to re-enable interrupts. It's not called while
7800  * the interrupt routine is executing.
7801  */
7802 static void igb_netpoll(struct net_device *netdev)
7803 {
7804 	struct igb_adapter *adapter = netdev_priv(netdev);
7805 	struct e1000_hw *hw = &adapter->hw;
7806 	struct igb_q_vector *q_vector;
7807 	int i;
7808 
7809 	for (i = 0; i < adapter->num_q_vectors; i++) {
7810 		q_vector = adapter->q_vector[i];
7811 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7812 			wr32(E1000_EIMC, q_vector->eims_value);
7813 		else
7814 			igb_irq_disable(adapter);
7815 		napi_schedule(&q_vector->napi);
7816 	}
7817 }
7818 #endif /* CONFIG_NET_POLL_CONTROLLER */
7819 
7820 /**
7821  *  igb_io_error_detected - called when PCI error is detected
7822  *  @pdev: Pointer to PCI device
7823  *  @state: The current pci connection state
7824  *
7825  *  This function is called after a PCI bus error affecting
7826  *  this device has been detected.
7827  **/
7828 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7829 					      pci_channel_state_t state)
7830 {
7831 	struct net_device *netdev = pci_get_drvdata(pdev);
7832 	struct igb_adapter *adapter = netdev_priv(netdev);
7833 
7834 	netif_device_detach(netdev);
7835 
7836 	if (state == pci_channel_io_perm_failure)
7837 		return PCI_ERS_RESULT_DISCONNECT;
7838 
7839 	if (netif_running(netdev))
7840 		igb_down(adapter);
7841 	pci_disable_device(pdev);
7842 
7843 	/* Request a slot slot reset. */
7844 	return PCI_ERS_RESULT_NEED_RESET;
7845 }
7846 
7847 /**
7848  *  igb_io_slot_reset - called after the pci bus has been reset.
7849  *  @pdev: Pointer to PCI device
7850  *
7851  *  Restart the card from scratch, as if from a cold-boot. Implementation
7852  *  resembles the first-half of the igb_resume routine.
7853  **/
7854 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7855 {
7856 	struct net_device *netdev = pci_get_drvdata(pdev);
7857 	struct igb_adapter *adapter = netdev_priv(netdev);
7858 	struct e1000_hw *hw = &adapter->hw;
7859 	pci_ers_result_t result;
7860 	int err;
7861 
7862 	if (pci_enable_device_mem(pdev)) {
7863 		dev_err(&pdev->dev,
7864 			"Cannot re-enable PCI device after reset.\n");
7865 		result = PCI_ERS_RESULT_DISCONNECT;
7866 	} else {
7867 		pci_set_master(pdev);
7868 		pci_restore_state(pdev);
7869 		pci_save_state(pdev);
7870 
7871 		pci_enable_wake(pdev, PCI_D3hot, 0);
7872 		pci_enable_wake(pdev, PCI_D3cold, 0);
7873 
7874 		igb_reset(adapter);
7875 		wr32(E1000_WUS, ~0);
7876 		result = PCI_ERS_RESULT_RECOVERED;
7877 	}
7878 
7879 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7880 	if (err) {
7881 		dev_err(&pdev->dev,
7882 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7883 			err);
7884 		/* non-fatal, continue */
7885 	}
7886 
7887 	return result;
7888 }
7889 
7890 /**
7891  *  igb_io_resume - called when traffic can start flowing again.
7892  *  @pdev: Pointer to PCI device
7893  *
7894  *  This callback is called when the error recovery driver tells us that
7895  *  its OK to resume normal operation. Implementation resembles the
7896  *  second-half of the igb_resume routine.
7897  */
7898 static void igb_io_resume(struct pci_dev *pdev)
7899 {
7900 	struct net_device *netdev = pci_get_drvdata(pdev);
7901 	struct igb_adapter *adapter = netdev_priv(netdev);
7902 
7903 	if (netif_running(netdev)) {
7904 		if (igb_up(adapter)) {
7905 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7906 			return;
7907 		}
7908 	}
7909 
7910 	netif_device_attach(netdev);
7911 
7912 	/* let the f/w know that the h/w is now under the control of the
7913 	 * driver.
7914 	 */
7915 	igb_get_hw_control(adapter);
7916 }
7917 
7918 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7919 			     u8 qsel)
7920 {
7921 	struct e1000_hw *hw = &adapter->hw;
7922 	u32 rar_low, rar_high;
7923 
7924 	/* HW expects these to be in network order when they are plugged
7925 	 * into the registers which are little endian.  In order to guarantee
7926 	 * that ordering we need to do an leXX_to_cpup here in order to be
7927 	 * ready for the byteswap that occurs with writel
7928 	 */
7929 	rar_low = le32_to_cpup((__le32 *)(addr));
7930 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
7931 
7932 	/* Indicate to hardware the Address is Valid. */
7933 	rar_high |= E1000_RAH_AV;
7934 
7935 	if (hw->mac.type == e1000_82575)
7936 		rar_high |= E1000_RAH_POOL_1 * qsel;
7937 	else
7938 		rar_high |= E1000_RAH_POOL_1 << qsel;
7939 
7940 	wr32(E1000_RAL(index), rar_low);
7941 	wrfl();
7942 	wr32(E1000_RAH(index), rar_high);
7943 	wrfl();
7944 }
7945 
7946 static int igb_set_vf_mac(struct igb_adapter *adapter,
7947 			  int vf, unsigned char *mac_addr)
7948 {
7949 	struct e1000_hw *hw = &adapter->hw;
7950 	/* VF MAC addresses start at end of receive addresses and moves
7951 	 * towards the first, as a result a collision should not be possible
7952 	 */
7953 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7954 
7955 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7956 
7957 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7958 
7959 	return 0;
7960 }
7961 
7962 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7963 {
7964 	struct igb_adapter *adapter = netdev_priv(netdev);
7965 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7966 		return -EINVAL;
7967 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7968 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7969 	dev_info(&adapter->pdev->dev,
7970 		 "Reload the VF driver to make this change effective.");
7971 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7972 		dev_warn(&adapter->pdev->dev,
7973 			 "The VF MAC address has been set, but the PF device is not up.\n");
7974 		dev_warn(&adapter->pdev->dev,
7975 			 "Bring the PF device up before attempting to use the VF device.\n");
7976 	}
7977 	return igb_set_vf_mac(adapter, vf, mac);
7978 }
7979 
7980 static int igb_link_mbps(int internal_link_speed)
7981 {
7982 	switch (internal_link_speed) {
7983 	case SPEED_100:
7984 		return 100;
7985 	case SPEED_1000:
7986 		return 1000;
7987 	default:
7988 		return 0;
7989 	}
7990 }
7991 
7992 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7993 				  int link_speed)
7994 {
7995 	int rf_dec, rf_int;
7996 	u32 bcnrc_val;
7997 
7998 	if (tx_rate != 0) {
7999 		/* Calculate the rate factor values to set */
8000 		rf_int = link_speed / tx_rate;
8001 		rf_dec = (link_speed - (rf_int * tx_rate));
8002 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8003 			 tx_rate;
8004 
8005 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8006 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8007 			      E1000_RTTBCNRC_RF_INT_MASK);
8008 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8009 	} else {
8010 		bcnrc_val = 0;
8011 	}
8012 
8013 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8014 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8015 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8016 	 */
8017 	wr32(E1000_RTTBCNRM, 0x14);
8018 	wr32(E1000_RTTBCNRC, bcnrc_val);
8019 }
8020 
8021 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8022 {
8023 	int actual_link_speed, i;
8024 	bool reset_rate = false;
8025 
8026 	/* VF TX rate limit was not set or not supported */
8027 	if ((adapter->vf_rate_link_speed == 0) ||
8028 	    (adapter->hw.mac.type != e1000_82576))
8029 		return;
8030 
8031 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8032 	if (actual_link_speed != adapter->vf_rate_link_speed) {
8033 		reset_rate = true;
8034 		adapter->vf_rate_link_speed = 0;
8035 		dev_info(&adapter->pdev->dev,
8036 			 "Link speed has been changed. VF Transmit rate is disabled\n");
8037 	}
8038 
8039 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
8040 		if (reset_rate)
8041 			adapter->vf_data[i].tx_rate = 0;
8042 
8043 		igb_set_vf_rate_limit(&adapter->hw, i,
8044 				      adapter->vf_data[i].tx_rate,
8045 				      actual_link_speed);
8046 	}
8047 }
8048 
8049 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8050 			     int min_tx_rate, int max_tx_rate)
8051 {
8052 	struct igb_adapter *adapter = netdev_priv(netdev);
8053 	struct e1000_hw *hw = &adapter->hw;
8054 	int actual_link_speed;
8055 
8056 	if (hw->mac.type != e1000_82576)
8057 		return -EOPNOTSUPP;
8058 
8059 	if (min_tx_rate)
8060 		return -EINVAL;
8061 
8062 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8063 	if ((vf >= adapter->vfs_allocated_count) ||
8064 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8065 	    (max_tx_rate < 0) ||
8066 	    (max_tx_rate > actual_link_speed))
8067 		return -EINVAL;
8068 
8069 	adapter->vf_rate_link_speed = actual_link_speed;
8070 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8071 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8072 
8073 	return 0;
8074 }
8075 
8076 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8077 				   bool setting)
8078 {
8079 	struct igb_adapter *adapter = netdev_priv(netdev);
8080 	struct e1000_hw *hw = &adapter->hw;
8081 	u32 reg_val, reg_offset;
8082 
8083 	if (!adapter->vfs_allocated_count)
8084 		return -EOPNOTSUPP;
8085 
8086 	if (vf >= adapter->vfs_allocated_count)
8087 		return -EINVAL;
8088 
8089 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8090 	reg_val = rd32(reg_offset);
8091 	if (setting)
8092 		reg_val |= (BIT(vf) |
8093 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8094 	else
8095 		reg_val &= ~(BIT(vf) |
8096 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8097 	wr32(reg_offset, reg_val);
8098 
8099 	adapter->vf_data[vf].spoofchk_enabled = setting;
8100 	return 0;
8101 }
8102 
8103 static int igb_ndo_get_vf_config(struct net_device *netdev,
8104 				 int vf, struct ifla_vf_info *ivi)
8105 {
8106 	struct igb_adapter *adapter = netdev_priv(netdev);
8107 	if (vf >= adapter->vfs_allocated_count)
8108 		return -EINVAL;
8109 	ivi->vf = vf;
8110 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8111 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8112 	ivi->min_tx_rate = 0;
8113 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8114 	ivi->qos = adapter->vf_data[vf].pf_qos;
8115 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8116 	return 0;
8117 }
8118 
8119 static void igb_vmm_control(struct igb_adapter *adapter)
8120 {
8121 	struct e1000_hw *hw = &adapter->hw;
8122 	u32 reg;
8123 
8124 	switch (hw->mac.type) {
8125 	case e1000_82575:
8126 	case e1000_i210:
8127 	case e1000_i211:
8128 	case e1000_i354:
8129 	default:
8130 		/* replication is not supported for 82575 */
8131 		return;
8132 	case e1000_82576:
8133 		/* notify HW that the MAC is adding vlan tags */
8134 		reg = rd32(E1000_DTXCTL);
8135 		reg |= E1000_DTXCTL_VLAN_ADDED;
8136 		wr32(E1000_DTXCTL, reg);
8137 		/* Fall through */
8138 	case e1000_82580:
8139 		/* enable replication vlan tag stripping */
8140 		reg = rd32(E1000_RPLOLR);
8141 		reg |= E1000_RPLOLR_STRVLAN;
8142 		wr32(E1000_RPLOLR, reg);
8143 		/* Fall through */
8144 	case e1000_i350:
8145 		/* none of the above registers are supported by i350 */
8146 		break;
8147 	}
8148 
8149 	if (adapter->vfs_allocated_count) {
8150 		igb_vmdq_set_loopback_pf(hw, true);
8151 		igb_vmdq_set_replication_pf(hw, true);
8152 		igb_vmdq_set_anti_spoofing_pf(hw, true,
8153 					      adapter->vfs_allocated_count);
8154 	} else {
8155 		igb_vmdq_set_loopback_pf(hw, false);
8156 		igb_vmdq_set_replication_pf(hw, false);
8157 	}
8158 }
8159 
8160 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8161 {
8162 	struct e1000_hw *hw = &adapter->hw;
8163 	u32 dmac_thr;
8164 	u16 hwm;
8165 
8166 	if (hw->mac.type > e1000_82580) {
8167 		if (adapter->flags & IGB_FLAG_DMAC) {
8168 			u32 reg;
8169 
8170 			/* force threshold to 0. */
8171 			wr32(E1000_DMCTXTH, 0);
8172 
8173 			/* DMA Coalescing high water mark needs to be greater
8174 			 * than the Rx threshold. Set hwm to PBA - max frame
8175 			 * size in 16B units, capping it at PBA - 6KB.
8176 			 */
8177 			hwm = 64 * (pba - 6);
8178 			reg = rd32(E1000_FCRTC);
8179 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8180 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8181 				& E1000_FCRTC_RTH_COAL_MASK);
8182 			wr32(E1000_FCRTC, reg);
8183 
8184 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8185 			 * frame size, capping it at PBA - 10KB.
8186 			 */
8187 			dmac_thr = pba - 10;
8188 			reg = rd32(E1000_DMACR);
8189 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8190 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8191 				& E1000_DMACR_DMACTHR_MASK);
8192 
8193 			/* transition to L0x or L1 if available..*/
8194 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8195 
8196 			/* watchdog timer= +-1000 usec in 32usec intervals */
8197 			reg |= (1000 >> 5);
8198 
8199 			/* Disable BMC-to-OS Watchdog Enable */
8200 			if (hw->mac.type != e1000_i354)
8201 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8202 
8203 			wr32(E1000_DMACR, reg);
8204 
8205 			/* no lower threshold to disable
8206 			 * coalescing(smart fifb)-UTRESH=0
8207 			 */
8208 			wr32(E1000_DMCRTRH, 0);
8209 
8210 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8211 
8212 			wr32(E1000_DMCTLX, reg);
8213 
8214 			/* free space in tx packet buffer to wake from
8215 			 * DMA coal
8216 			 */
8217 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8218 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8219 
8220 			/* make low power state decision controlled
8221 			 * by DMA coal
8222 			 */
8223 			reg = rd32(E1000_PCIEMISC);
8224 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8225 			wr32(E1000_PCIEMISC, reg);
8226 		} /* endif adapter->dmac is not disabled */
8227 	} else if (hw->mac.type == e1000_82580) {
8228 		u32 reg = rd32(E1000_PCIEMISC);
8229 
8230 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8231 		wr32(E1000_DMACR, 0);
8232 	}
8233 }
8234 
8235 /**
8236  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8237  *  @hw: pointer to hardware structure
8238  *  @byte_offset: byte offset to read
8239  *  @dev_addr: device address
8240  *  @data: value read
8241  *
8242  *  Performs byte read operation over I2C interface at
8243  *  a specified device address.
8244  **/
8245 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8246 		      u8 dev_addr, u8 *data)
8247 {
8248 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8249 	struct i2c_client *this_client = adapter->i2c_client;
8250 	s32 status;
8251 	u16 swfw_mask = 0;
8252 
8253 	if (!this_client)
8254 		return E1000_ERR_I2C;
8255 
8256 	swfw_mask = E1000_SWFW_PHY0_SM;
8257 
8258 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8259 		return E1000_ERR_SWFW_SYNC;
8260 
8261 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8262 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8263 
8264 	if (status < 0)
8265 		return E1000_ERR_I2C;
8266 	else {
8267 		*data = status;
8268 		return 0;
8269 	}
8270 }
8271 
8272 /**
8273  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8274  *  @hw: pointer to hardware structure
8275  *  @byte_offset: byte offset to write
8276  *  @dev_addr: device address
8277  *  @data: value to write
8278  *
8279  *  Performs byte write operation over I2C interface at
8280  *  a specified device address.
8281  **/
8282 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8283 		       u8 dev_addr, u8 data)
8284 {
8285 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8286 	struct i2c_client *this_client = adapter->i2c_client;
8287 	s32 status;
8288 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8289 
8290 	if (!this_client)
8291 		return E1000_ERR_I2C;
8292 
8293 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8294 		return E1000_ERR_SWFW_SYNC;
8295 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8296 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8297 
8298 	if (status)
8299 		return E1000_ERR_I2C;
8300 	else
8301 		return 0;
8302 
8303 }
8304 
8305 int igb_reinit_queues(struct igb_adapter *adapter)
8306 {
8307 	struct net_device *netdev = adapter->netdev;
8308 	struct pci_dev *pdev = adapter->pdev;
8309 	int err = 0;
8310 
8311 	if (netif_running(netdev))
8312 		igb_close(netdev);
8313 
8314 	igb_reset_interrupt_capability(adapter);
8315 
8316 	if (igb_init_interrupt_scheme(adapter, true)) {
8317 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8318 		return -ENOMEM;
8319 	}
8320 
8321 	if (netif_running(netdev))
8322 		err = igb_open(netdev);
8323 
8324 	return err;
8325 }
8326 
8327 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8328 {
8329 	struct igb_nfc_filter *rule;
8330 
8331 	spin_lock(&adapter->nfc_lock);
8332 
8333 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8334 		igb_erase_filter(adapter, rule);
8335 
8336 	spin_unlock(&adapter->nfc_lock);
8337 }
8338 
8339 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8340 {
8341 	struct igb_nfc_filter *rule;
8342 
8343 	spin_lock(&adapter->nfc_lock);
8344 
8345 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8346 		igb_add_filter(adapter, rule);
8347 
8348 	spin_unlock(&adapter->nfc_lock);
8349 }
8350 /* igb_main.c */
8351