xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #include <linux/lockdep.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static void igb_init_queue_configuration(struct igb_adapter *adapter);
111 static int igb_sw_init(struct igb_adapter *);
112 int igb_open(struct net_device *);
113 int igb_close(struct net_device *);
114 static void igb_configure(struct igb_adapter *);
115 static void igb_configure_tx(struct igb_adapter *);
116 static void igb_configure_rx(struct igb_adapter *);
117 static void igb_clean_all_tx_rings(struct igb_adapter *);
118 static void igb_clean_all_rx_rings(struct igb_adapter *);
119 static void igb_clean_tx_ring(struct igb_ring *);
120 static void igb_clean_rx_ring(struct igb_ring *);
121 static void igb_set_rx_mode(struct net_device *);
122 static void igb_update_phy_info(struct timer_list *);
123 static void igb_watchdog(struct timer_list *);
124 static void igb_watchdog_task(struct work_struct *);
125 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
126 static void igb_get_stats64(struct net_device *dev,
127 			    struct rtnl_link_stats64 *stats);
128 static int igb_change_mtu(struct net_device *, int);
129 static int igb_set_mac(struct net_device *, void *);
130 static void igb_set_uta(struct igb_adapter *adapter, bool set);
131 static irqreturn_t igb_intr(int irq, void *);
132 static irqreturn_t igb_intr_msi(int irq, void *);
133 static irqreturn_t igb_msix_other(int irq, void *);
134 static irqreturn_t igb_msix_ring(int irq, void *);
135 #ifdef CONFIG_IGB_DCA
136 static void igb_update_dca(struct igb_q_vector *);
137 static void igb_setup_dca(struct igb_adapter *);
138 #endif /* CONFIG_IGB_DCA */
139 static int igb_poll(struct napi_struct *, int);
140 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
141 static int igb_clean_rx_irq(struct igb_q_vector *, int);
142 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
143 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
144 static void igb_reset_task(struct work_struct *);
145 static void igb_vlan_mode(struct net_device *netdev,
146 			  netdev_features_t features);
147 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
148 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
149 static void igb_restore_vlan(struct igb_adapter *);
150 static void igb_rar_set_index(struct igb_adapter *, u32);
151 static void igb_ping_all_vfs(struct igb_adapter *);
152 static void igb_msg_task(struct igb_adapter *);
153 static void igb_vmm_control(struct igb_adapter *);
154 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
155 static void igb_flush_mac_table(struct igb_adapter *);
156 static int igb_available_rars(struct igb_adapter *, u8);
157 static void igb_set_default_mac_filter(struct igb_adapter *);
158 static int igb_uc_sync(struct net_device *, const unsigned char *);
159 static int igb_uc_unsync(struct net_device *, const unsigned char *);
160 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
161 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
162 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
163 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
164 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
165 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
166 				   bool setting);
167 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
168 				bool setting);
169 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170 				 struct ifla_vf_info *ivi);
171 static void igb_check_vf_rate_limit(struct igb_adapter *);
172 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
173 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
174 
175 #ifdef CONFIG_PCI_IOV
176 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
177 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
178 #endif
179 
180 #ifdef CONFIG_IGB_DCA
181 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
182 static struct notifier_block dca_notifier = {
183 	.notifier_call	= igb_notify_dca,
184 	.next		= NULL,
185 	.priority	= 0
186 };
187 #endif
188 #ifdef CONFIG_PCI_IOV
189 static unsigned int max_vfs;
190 module_param(max_vfs, uint, 0444);
191 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
192 #endif /* CONFIG_PCI_IOV */
193 
194 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
195 		     pci_channel_state_t);
196 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
197 static void igb_io_resume(struct pci_dev *);
198 
199 static const struct pci_error_handlers igb_err_handler = {
200 	.error_detected = igb_io_error_detected,
201 	.slot_reset = igb_io_slot_reset,
202 	.resume = igb_io_resume,
203 };
204 
205 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
206 
207 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
208 MODULE_LICENSE("GPL v2");
209 
210 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
211 static int debug = -1;
212 module_param(debug, int, 0);
213 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
214 
215 struct igb_reg_info {
216 	u32 ofs;
217 	char *name;
218 };
219 
220 static const struct igb_reg_info igb_reg_info_tbl[] = {
221 
222 	/* General Registers */
223 	{E1000_CTRL, "CTRL"},
224 	{E1000_STATUS, "STATUS"},
225 	{E1000_CTRL_EXT, "CTRL_EXT"},
226 
227 	/* Interrupt Registers */
228 	{E1000_ICR, "ICR"},
229 
230 	/* RX Registers */
231 	{E1000_RCTL, "RCTL"},
232 	{E1000_RDLEN(0), "RDLEN"},
233 	{E1000_RDH(0), "RDH"},
234 	{E1000_RDT(0), "RDT"},
235 	{E1000_RXDCTL(0), "RXDCTL"},
236 	{E1000_RDBAL(0), "RDBAL"},
237 	{E1000_RDBAH(0), "RDBAH"},
238 
239 	/* TX Registers */
240 	{E1000_TCTL, "TCTL"},
241 	{E1000_TDBAL(0), "TDBAL"},
242 	{E1000_TDBAH(0), "TDBAH"},
243 	{E1000_TDLEN(0), "TDLEN"},
244 	{E1000_TDH(0), "TDH"},
245 	{E1000_TDT(0), "TDT"},
246 	{E1000_TXDCTL(0), "TXDCTL"},
247 	{E1000_TDFH, "TDFH"},
248 	{E1000_TDFT, "TDFT"},
249 	{E1000_TDFHS, "TDFHS"},
250 	{E1000_TDFPC, "TDFPC"},
251 
252 	/* List Terminator */
253 	{}
254 };
255 
256 /* igb_regdump - register printout routine */
257 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
258 {
259 	int n = 0;
260 	char rname[16];
261 	u32 regs[8];
262 
263 	switch (reginfo->ofs) {
264 	case E1000_RDLEN(0):
265 		for (n = 0; n < 4; n++)
266 			regs[n] = rd32(E1000_RDLEN(n));
267 		break;
268 	case E1000_RDH(0):
269 		for (n = 0; n < 4; n++)
270 			regs[n] = rd32(E1000_RDH(n));
271 		break;
272 	case E1000_RDT(0):
273 		for (n = 0; n < 4; n++)
274 			regs[n] = rd32(E1000_RDT(n));
275 		break;
276 	case E1000_RXDCTL(0):
277 		for (n = 0; n < 4; n++)
278 			regs[n] = rd32(E1000_RXDCTL(n));
279 		break;
280 	case E1000_RDBAL(0):
281 		for (n = 0; n < 4; n++)
282 			regs[n] = rd32(E1000_RDBAL(n));
283 		break;
284 	case E1000_RDBAH(0):
285 		for (n = 0; n < 4; n++)
286 			regs[n] = rd32(E1000_RDBAH(n));
287 		break;
288 	case E1000_TDBAL(0):
289 		for (n = 0; n < 4; n++)
290 			regs[n] = rd32(E1000_TDBAL(n));
291 		break;
292 	case E1000_TDBAH(0):
293 		for (n = 0; n < 4; n++)
294 			regs[n] = rd32(E1000_TDBAH(n));
295 		break;
296 	case E1000_TDLEN(0):
297 		for (n = 0; n < 4; n++)
298 			regs[n] = rd32(E1000_TDLEN(n));
299 		break;
300 	case E1000_TDH(0):
301 		for (n = 0; n < 4; n++)
302 			regs[n] = rd32(E1000_TDH(n));
303 		break;
304 	case E1000_TDT(0):
305 		for (n = 0; n < 4; n++)
306 			regs[n] = rd32(E1000_TDT(n));
307 		break;
308 	case E1000_TXDCTL(0):
309 		for (n = 0; n < 4; n++)
310 			regs[n] = rd32(E1000_TXDCTL(n));
311 		break;
312 	default:
313 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
314 		return;
315 	}
316 
317 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
318 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
319 		regs[2], regs[3]);
320 }
321 
322 /* igb_dump - Print registers, Tx-rings and Rx-rings */
323 static void igb_dump(struct igb_adapter *adapter)
324 {
325 	struct net_device *netdev = adapter->netdev;
326 	struct e1000_hw *hw = &adapter->hw;
327 	struct igb_reg_info *reginfo;
328 	struct igb_ring *tx_ring;
329 	union e1000_adv_tx_desc *tx_desc;
330 	struct my_u0 { __le64 a; __le64 b; } *u0;
331 	struct igb_ring *rx_ring;
332 	union e1000_adv_rx_desc *rx_desc;
333 	u32 staterr;
334 	u16 i, n;
335 
336 	if (!netif_msg_hw(adapter))
337 		return;
338 
339 	/* Print netdevice Info */
340 	if (netdev) {
341 		dev_info(&adapter->pdev->dev, "Net device Info\n");
342 		pr_info("Device Name     state            trans_start\n");
343 		pr_info("%-15s %016lX %016lX\n", netdev->name,
344 			netdev->state, dev_trans_start(netdev));
345 	}
346 
347 	/* Print Registers */
348 	dev_info(&adapter->pdev->dev, "Register Dump\n");
349 	pr_info(" Register Name   Value\n");
350 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
351 	     reginfo->name; reginfo++) {
352 		igb_regdump(hw, reginfo);
353 	}
354 
355 	/* Print TX Ring Summary */
356 	if (!netdev || !netif_running(netdev))
357 		goto exit;
358 
359 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
360 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
361 	for (n = 0; n < adapter->num_tx_queues; n++) {
362 		struct igb_tx_buffer *buffer_info;
363 		tx_ring = adapter->tx_ring[n];
364 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
365 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
366 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
367 			(u64)dma_unmap_addr(buffer_info, dma),
368 			dma_unmap_len(buffer_info, len),
369 			buffer_info->next_to_watch,
370 			(u64)buffer_info->time_stamp);
371 	}
372 
373 	/* Print TX Rings */
374 	if (!netif_msg_tx_done(adapter))
375 		goto rx_ring_summary;
376 
377 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
378 
379 	/* Transmit Descriptor Formats
380 	 *
381 	 * Advanced Transmit Descriptor
382 	 *   +--------------------------------------------------------------+
383 	 * 0 |         Buffer Address [63:0]                                |
384 	 *   +--------------------------------------------------------------+
385 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
386 	 *   +--------------------------------------------------------------+
387 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
388 	 */
389 
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		tx_ring = adapter->tx_ring[n];
392 		pr_info("------------------------------------\n");
393 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
394 		pr_info("------------------------------------\n");
395 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
396 
397 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
398 			const char *next_desc;
399 			struct igb_tx_buffer *buffer_info;
400 			tx_desc = IGB_TX_DESC(tx_ring, i);
401 			buffer_info = &tx_ring->tx_buffer_info[i];
402 			u0 = (struct my_u0 *)tx_desc;
403 			if (i == tx_ring->next_to_use &&
404 			    i == tx_ring->next_to_clean)
405 				next_desc = " NTC/U";
406 			else if (i == tx_ring->next_to_use)
407 				next_desc = " NTU";
408 			else if (i == tx_ring->next_to_clean)
409 				next_desc = " NTC";
410 			else
411 				next_desc = "";
412 
413 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
414 				i, le64_to_cpu(u0->a),
415 				le64_to_cpu(u0->b),
416 				(u64)dma_unmap_addr(buffer_info, dma),
417 				dma_unmap_len(buffer_info, len),
418 				buffer_info->next_to_watch,
419 				(u64)buffer_info->time_stamp,
420 				buffer_info->skb, next_desc);
421 
422 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
423 				print_hex_dump(KERN_INFO, "",
424 					DUMP_PREFIX_ADDRESS,
425 					16, 1, buffer_info->skb->data,
426 					dma_unmap_len(buffer_info, len),
427 					true);
428 		}
429 	}
430 
431 	/* Print RX Rings Summary */
432 rx_ring_summary:
433 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
434 	pr_info("Queue [NTU] [NTC]\n");
435 	for (n = 0; n < adapter->num_rx_queues; n++) {
436 		rx_ring = adapter->rx_ring[n];
437 		pr_info(" %5d %5X %5X\n",
438 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
439 	}
440 
441 	/* Print RX Rings */
442 	if (!netif_msg_rx_status(adapter))
443 		goto exit;
444 
445 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
446 
447 	/* Advanced Receive Descriptor (Read) Format
448 	 *    63                                           1        0
449 	 *    +-----------------------------------------------------+
450 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
451 	 *    +----------------------------------------------+------+
452 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
453 	 *    +-----------------------------------------------------+
454 	 *
455 	 *
456 	 * Advanced Receive Descriptor (Write-Back) Format
457 	 *
458 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
459 	 *   +------------------------------------------------------+
460 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
461 	 *   | Checksum   Ident  |   |           |    | Type | Type |
462 	 *   +------------------------------------------------------+
463 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
464 	 *   +------------------------------------------------------+
465 	 *   63       48 47    32 31            20 19               0
466 	 */
467 
468 	for (n = 0; n < adapter->num_rx_queues; n++) {
469 		rx_ring = adapter->rx_ring[n];
470 		pr_info("------------------------------------\n");
471 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
472 		pr_info("------------------------------------\n");
473 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
474 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
475 
476 		for (i = 0; i < rx_ring->count; i++) {
477 			const char *next_desc;
478 			struct igb_rx_buffer *buffer_info;
479 			buffer_info = &rx_ring->rx_buffer_info[i];
480 			rx_desc = IGB_RX_DESC(rx_ring, i);
481 			u0 = (struct my_u0 *)rx_desc;
482 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
483 
484 			if (i == rx_ring->next_to_use)
485 				next_desc = " NTU";
486 			else if (i == rx_ring->next_to_clean)
487 				next_desc = " NTC";
488 			else
489 				next_desc = "";
490 
491 			if (staterr & E1000_RXD_STAT_DD) {
492 				/* Descriptor Done */
493 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
494 					"RWB", i,
495 					le64_to_cpu(u0->a),
496 					le64_to_cpu(u0->b),
497 					next_desc);
498 			} else {
499 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
500 					"R  ", i,
501 					le64_to_cpu(u0->a),
502 					le64_to_cpu(u0->b),
503 					(u64)buffer_info->dma,
504 					next_desc);
505 
506 				if (netif_msg_pktdata(adapter) &&
507 				    buffer_info->dma && buffer_info->page) {
508 					print_hex_dump(KERN_INFO, "",
509 					  DUMP_PREFIX_ADDRESS,
510 					  16, 1,
511 					  page_address(buffer_info->page) +
512 						      buffer_info->page_offset,
513 					  igb_rx_bufsz(rx_ring), true);
514 				}
515 			}
516 		}
517 	}
518 
519 exit:
520 	return;
521 }
522 
523 /**
524  *  igb_get_i2c_data - Reads the I2C SDA data bit
525  *  @data: opaque pointer to adapter struct
526  *
527  *  Returns the I2C data bit value
528  **/
529 static int igb_get_i2c_data(void *data)
530 {
531 	struct igb_adapter *adapter = (struct igb_adapter *)data;
532 	struct e1000_hw *hw = &adapter->hw;
533 	s32 i2cctl = rd32(E1000_I2CPARAMS);
534 
535 	return !!(i2cctl & E1000_I2C_DATA_IN);
536 }
537 
538 /**
539  *  igb_set_i2c_data - Sets the I2C data bit
540  *  @data: pointer to hardware structure
541  *  @state: I2C data value (0 or 1) to set
542  *
543  *  Sets the I2C data bit
544  **/
545 static void igb_set_i2c_data(void *data, int state)
546 {
547 	struct igb_adapter *adapter = (struct igb_adapter *)data;
548 	struct e1000_hw *hw = &adapter->hw;
549 	s32 i2cctl = rd32(E1000_I2CPARAMS);
550 
551 	if (state) {
552 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
553 	} else {
554 		i2cctl &= ~E1000_I2C_DATA_OE_N;
555 		i2cctl &= ~E1000_I2C_DATA_OUT;
556 	}
557 
558 	wr32(E1000_I2CPARAMS, i2cctl);
559 	wrfl();
560 }
561 
562 /**
563  *  igb_set_i2c_clk - Sets the I2C SCL clock
564  *  @data: pointer to hardware structure
565  *  @state: state to set clock
566  *
567  *  Sets the I2C clock line to state
568  **/
569 static void igb_set_i2c_clk(void *data, int state)
570 {
571 	struct igb_adapter *adapter = (struct igb_adapter *)data;
572 	struct e1000_hw *hw = &adapter->hw;
573 	s32 i2cctl = rd32(E1000_I2CPARAMS);
574 
575 	if (state) {
576 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
577 	} else {
578 		i2cctl &= ~E1000_I2C_CLK_OUT;
579 		i2cctl &= ~E1000_I2C_CLK_OE_N;
580 	}
581 	wr32(E1000_I2CPARAMS, i2cctl);
582 	wrfl();
583 }
584 
585 /**
586  *  igb_get_i2c_clk - Gets the I2C SCL clock state
587  *  @data: pointer to hardware structure
588  *
589  *  Gets the I2C clock state
590  **/
591 static int igb_get_i2c_clk(void *data)
592 {
593 	struct igb_adapter *adapter = (struct igb_adapter *)data;
594 	struct e1000_hw *hw = &adapter->hw;
595 	s32 i2cctl = rd32(E1000_I2CPARAMS);
596 
597 	return !!(i2cctl & E1000_I2C_CLK_IN);
598 }
599 
600 static const struct i2c_algo_bit_data igb_i2c_algo = {
601 	.setsda		= igb_set_i2c_data,
602 	.setscl		= igb_set_i2c_clk,
603 	.getsda		= igb_get_i2c_data,
604 	.getscl		= igb_get_i2c_clk,
605 	.udelay		= 5,
606 	.timeout	= 20,
607 };
608 
609 /**
610  *  igb_get_hw_dev - return device
611  *  @hw: pointer to hardware structure
612  *
613  *  used by hardware layer to print debugging information
614  **/
615 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
616 {
617 	struct igb_adapter *adapter = hw->back;
618 	return adapter->netdev;
619 }
620 
621 static struct pci_driver igb_driver;
622 
623 /**
624  *  igb_init_module - Driver Registration Routine
625  *
626  *  igb_init_module is the first routine called when the driver is
627  *  loaded. All it does is register with the PCI subsystem.
628  **/
629 static int __init igb_init_module(void)
630 {
631 	int ret;
632 
633 	pr_info("%s\n", igb_driver_string);
634 	pr_info("%s\n", igb_copyright);
635 
636 #ifdef CONFIG_IGB_DCA
637 	dca_register_notify(&dca_notifier);
638 #endif
639 	ret = pci_register_driver(&igb_driver);
640 #ifdef CONFIG_IGB_DCA
641 	if (ret)
642 		dca_unregister_notify(&dca_notifier);
643 #endif
644 	return ret;
645 }
646 
647 module_init(igb_init_module);
648 
649 /**
650  *  igb_exit_module - Driver Exit Cleanup Routine
651  *
652  *  igb_exit_module is called just before the driver is removed
653  *  from memory.
654  **/
655 static void __exit igb_exit_module(void)
656 {
657 #ifdef CONFIG_IGB_DCA
658 	dca_unregister_notify(&dca_notifier);
659 #endif
660 	pci_unregister_driver(&igb_driver);
661 }
662 
663 module_exit(igb_exit_module);
664 
665 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
666 /**
667  *  igb_cache_ring_register - Descriptor ring to register mapping
668  *  @adapter: board private structure to initialize
669  *
670  *  Once we know the feature-set enabled for the device, we'll cache
671  *  the register offset the descriptor ring is assigned to.
672  **/
673 static void igb_cache_ring_register(struct igb_adapter *adapter)
674 {
675 	int i = 0, j = 0;
676 	u32 rbase_offset = adapter->vfs_allocated_count;
677 
678 	switch (adapter->hw.mac.type) {
679 	case e1000_82576:
680 		/* The queues are allocated for virtualization such that VF 0
681 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
682 		 * In order to avoid collision we start at the first free queue
683 		 * and continue consuming queues in the same sequence
684 		 */
685 		if (adapter->vfs_allocated_count) {
686 			for (; i < adapter->rss_queues; i++)
687 				adapter->rx_ring[i]->reg_idx = rbase_offset +
688 							       Q_IDX_82576(i);
689 		}
690 		fallthrough;
691 	case e1000_82575:
692 	case e1000_82580:
693 	case e1000_i350:
694 	case e1000_i354:
695 	case e1000_i210:
696 	case e1000_i211:
697 	default:
698 		for (; i < adapter->num_rx_queues; i++)
699 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
700 		for (; j < adapter->num_tx_queues; j++)
701 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
702 		break;
703 	}
704 }
705 
706 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
707 {
708 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
709 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
710 	u32 value = 0;
711 
712 	if (E1000_REMOVED(hw_addr))
713 		return ~value;
714 
715 	value = readl(&hw_addr[reg]);
716 
717 	/* reads should not return all F's */
718 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
719 		struct net_device *netdev = igb->netdev;
720 		hw->hw_addr = NULL;
721 		netdev_err(netdev, "PCIe link lost\n");
722 		WARN(pci_device_is_present(igb->pdev),
723 		     "igb: Failed to read reg 0x%x!\n", reg);
724 	}
725 
726 	return value;
727 }
728 
729 /**
730  *  igb_write_ivar - configure ivar for given MSI-X vector
731  *  @hw: pointer to the HW structure
732  *  @msix_vector: vector number we are allocating to a given ring
733  *  @index: row index of IVAR register to write within IVAR table
734  *  @offset: column offset of in IVAR, should be multiple of 8
735  *
736  *  This function is intended to handle the writing of the IVAR register
737  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
738  *  each containing an cause allocation for an Rx and Tx ring, and a
739  *  variable number of rows depending on the number of queues supported.
740  **/
741 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
742 			   int index, int offset)
743 {
744 	u32 ivar = array_rd32(E1000_IVAR0, index);
745 
746 	/* clear any bits that are currently set */
747 	ivar &= ~((u32)0xFF << offset);
748 
749 	/* write vector and valid bit */
750 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
751 
752 	array_wr32(E1000_IVAR0, index, ivar);
753 }
754 
755 #define IGB_N0_QUEUE -1
756 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
757 {
758 	struct igb_adapter *adapter = q_vector->adapter;
759 	struct e1000_hw *hw = &adapter->hw;
760 	int rx_queue = IGB_N0_QUEUE;
761 	int tx_queue = IGB_N0_QUEUE;
762 	u32 msixbm = 0;
763 
764 	if (q_vector->rx.ring)
765 		rx_queue = q_vector->rx.ring->reg_idx;
766 	if (q_vector->tx.ring)
767 		tx_queue = q_vector->tx.ring->reg_idx;
768 
769 	switch (hw->mac.type) {
770 	case e1000_82575:
771 		/* The 82575 assigns vectors using a bitmask, which matches the
772 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
773 		 * or more queues to a vector, we write the appropriate bits
774 		 * into the MSIXBM register for that vector.
775 		 */
776 		if (rx_queue > IGB_N0_QUEUE)
777 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
778 		if (tx_queue > IGB_N0_QUEUE)
779 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
780 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
781 			msixbm |= E1000_EIMS_OTHER;
782 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
783 		q_vector->eims_value = msixbm;
784 		break;
785 	case e1000_82576:
786 		/* 82576 uses a table that essentially consists of 2 columns
787 		 * with 8 rows.  The ordering is column-major so we use the
788 		 * lower 3 bits as the row index, and the 4th bit as the
789 		 * column offset.
790 		 */
791 		if (rx_queue > IGB_N0_QUEUE)
792 			igb_write_ivar(hw, msix_vector,
793 				       rx_queue & 0x7,
794 				       (rx_queue & 0x8) << 1);
795 		if (tx_queue > IGB_N0_QUEUE)
796 			igb_write_ivar(hw, msix_vector,
797 				       tx_queue & 0x7,
798 				       ((tx_queue & 0x8) << 1) + 8);
799 		q_vector->eims_value = BIT(msix_vector);
800 		break;
801 	case e1000_82580:
802 	case e1000_i350:
803 	case e1000_i354:
804 	case e1000_i210:
805 	case e1000_i211:
806 		/* On 82580 and newer adapters the scheme is similar to 82576
807 		 * however instead of ordering column-major we have things
808 		 * ordered row-major.  So we traverse the table by using
809 		 * bit 0 as the column offset, and the remaining bits as the
810 		 * row index.
811 		 */
812 		if (rx_queue > IGB_N0_QUEUE)
813 			igb_write_ivar(hw, msix_vector,
814 				       rx_queue >> 1,
815 				       (rx_queue & 0x1) << 4);
816 		if (tx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       tx_queue >> 1,
819 				       ((tx_queue & 0x1) << 4) + 8);
820 		q_vector->eims_value = BIT(msix_vector);
821 		break;
822 	default:
823 		BUG();
824 		break;
825 	}
826 
827 	/* add q_vector eims value to global eims_enable_mask */
828 	adapter->eims_enable_mask |= q_vector->eims_value;
829 
830 	/* configure q_vector to set itr on first interrupt */
831 	q_vector->set_itr = 1;
832 }
833 
834 /**
835  *  igb_configure_msix - Configure MSI-X hardware
836  *  @adapter: board private structure to initialize
837  *
838  *  igb_configure_msix sets up the hardware to properly
839  *  generate MSI-X interrupts.
840  **/
841 static void igb_configure_msix(struct igb_adapter *adapter)
842 {
843 	u32 tmp;
844 	int i, vector = 0;
845 	struct e1000_hw *hw = &adapter->hw;
846 
847 	adapter->eims_enable_mask = 0;
848 
849 	/* set vector for other causes, i.e. link changes */
850 	switch (hw->mac.type) {
851 	case e1000_82575:
852 		tmp = rd32(E1000_CTRL_EXT);
853 		/* enable MSI-X PBA support*/
854 		tmp |= E1000_CTRL_EXT_PBA_CLR;
855 
856 		/* Auto-Mask interrupts upon ICR read. */
857 		tmp |= E1000_CTRL_EXT_EIAME;
858 		tmp |= E1000_CTRL_EXT_IRCA;
859 
860 		wr32(E1000_CTRL_EXT, tmp);
861 
862 		/* enable msix_other interrupt */
863 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
864 		adapter->eims_other = E1000_EIMS_OTHER;
865 
866 		break;
867 
868 	case e1000_82576:
869 	case e1000_82580:
870 	case e1000_i350:
871 	case e1000_i354:
872 	case e1000_i210:
873 	case e1000_i211:
874 		/* Turn on MSI-X capability first, or our settings
875 		 * won't stick.  And it will take days to debug.
876 		 */
877 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
878 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
879 		     E1000_GPIE_NSICR);
880 
881 		/* enable msix_other interrupt */
882 		adapter->eims_other = BIT(vector);
883 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
884 
885 		wr32(E1000_IVAR_MISC, tmp);
886 		break;
887 	default:
888 		/* do nothing, since nothing else supports MSI-X */
889 		break;
890 	} /* switch (hw->mac.type) */
891 
892 	adapter->eims_enable_mask |= adapter->eims_other;
893 
894 	for (i = 0; i < adapter->num_q_vectors; i++)
895 		igb_assign_vector(adapter->q_vector[i], vector++);
896 
897 	wrfl();
898 }
899 
900 /**
901  *  igb_request_msix - Initialize MSI-X interrupts
902  *  @adapter: board private structure to initialize
903  *
904  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
905  *  kernel.
906  **/
907 static int igb_request_msix(struct igb_adapter *adapter)
908 {
909 	unsigned int num_q_vectors = adapter->num_q_vectors;
910 	struct net_device *netdev = adapter->netdev;
911 	int i, err = 0, vector = 0, free_vector = 0;
912 
913 	err = request_irq(adapter->msix_entries[vector].vector,
914 			  igb_msix_other, 0, netdev->name, adapter);
915 	if (err)
916 		goto err_out;
917 
918 	if (num_q_vectors > MAX_Q_VECTORS) {
919 		num_q_vectors = MAX_Q_VECTORS;
920 		dev_warn(&adapter->pdev->dev,
921 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
922 			 adapter->num_q_vectors, MAX_Q_VECTORS);
923 	}
924 	for (i = 0; i < num_q_vectors; i++) {
925 		struct igb_q_vector *q_vector = adapter->q_vector[i];
926 
927 		vector++;
928 
929 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
930 
931 		if (q_vector->rx.ring && q_vector->tx.ring)
932 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
933 				q_vector->rx.ring->queue_index);
934 		else if (q_vector->tx.ring)
935 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
936 				q_vector->tx.ring->queue_index);
937 		else if (q_vector->rx.ring)
938 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
939 				q_vector->rx.ring->queue_index);
940 		else
941 			sprintf(q_vector->name, "%s-unused", netdev->name);
942 
943 		err = request_irq(adapter->msix_entries[vector].vector,
944 				  igb_msix_ring, 0, q_vector->name,
945 				  q_vector);
946 		if (err)
947 			goto err_free;
948 	}
949 
950 	igb_configure_msix(adapter);
951 	return 0;
952 
953 err_free:
954 	/* free already assigned IRQs */
955 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
956 
957 	vector--;
958 	for (i = 0; i < vector; i++) {
959 		free_irq(adapter->msix_entries[free_vector++].vector,
960 			 adapter->q_vector[i]);
961 	}
962 err_out:
963 	return err;
964 }
965 
966 /**
967  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
968  *  @adapter: board private structure to initialize
969  *  @v_idx: Index of vector to be freed
970  *
971  *  This function frees the memory allocated to the q_vector.
972  **/
973 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
974 {
975 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
976 
977 	adapter->q_vector[v_idx] = NULL;
978 
979 	/* igb_get_stats64() might access the rings on this vector,
980 	 * we must wait a grace period before freeing it.
981 	 */
982 	if (q_vector)
983 		kfree_rcu(q_vector, rcu);
984 }
985 
986 /**
987  *  igb_reset_q_vector - Reset config for interrupt vector
988  *  @adapter: board private structure to initialize
989  *  @v_idx: Index of vector to be reset
990  *
991  *  If NAPI is enabled it will delete any references to the
992  *  NAPI struct. This is preparation for igb_free_q_vector.
993  **/
994 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
995 {
996 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
997 
998 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
999 	 * allocated. So, q_vector is NULL so we should stop here.
1000 	 */
1001 	if (!q_vector)
1002 		return;
1003 
1004 	if (q_vector->tx.ring)
1005 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1006 
1007 	if (q_vector->rx.ring)
1008 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1009 
1010 	netif_napi_del(&q_vector->napi);
1011 
1012 }
1013 
1014 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1015 {
1016 	int v_idx = adapter->num_q_vectors;
1017 
1018 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1019 		pci_disable_msix(adapter->pdev);
1020 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1021 		pci_disable_msi(adapter->pdev);
1022 
1023 	while (v_idx--)
1024 		igb_reset_q_vector(adapter, v_idx);
1025 }
1026 
1027 /**
1028  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1029  *  @adapter: board private structure to initialize
1030  *
1031  *  This function frees the memory allocated to the q_vectors.  In addition if
1032  *  NAPI is enabled it will delete any references to the NAPI struct prior
1033  *  to freeing the q_vector.
1034  **/
1035 static void igb_free_q_vectors(struct igb_adapter *adapter)
1036 {
1037 	int v_idx = adapter->num_q_vectors;
1038 
1039 	adapter->num_tx_queues = 0;
1040 	adapter->num_rx_queues = 0;
1041 	adapter->num_q_vectors = 0;
1042 
1043 	while (v_idx--) {
1044 		igb_reset_q_vector(adapter, v_idx);
1045 		igb_free_q_vector(adapter, v_idx);
1046 	}
1047 }
1048 
1049 /**
1050  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1051  *  @adapter: board private structure to initialize
1052  *
1053  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1054  *  MSI-X interrupts allocated.
1055  */
1056 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1057 {
1058 	igb_free_q_vectors(adapter);
1059 	igb_reset_interrupt_capability(adapter);
1060 }
1061 
1062 /**
1063  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1064  *  @adapter: board private structure to initialize
1065  *  @msix: boolean value of MSIX capability
1066  *
1067  *  Attempt to configure interrupts using the best available
1068  *  capabilities of the hardware and kernel.
1069  **/
1070 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1071 {
1072 	int err;
1073 	int numvecs, i;
1074 
1075 	if (!msix)
1076 		goto msi_only;
1077 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1078 
1079 	/* Number of supported queues. */
1080 	adapter->num_rx_queues = adapter->rss_queues;
1081 	if (adapter->vfs_allocated_count)
1082 		adapter->num_tx_queues = 1;
1083 	else
1084 		adapter->num_tx_queues = adapter->rss_queues;
1085 
1086 	/* start with one vector for every Rx queue */
1087 	numvecs = adapter->num_rx_queues;
1088 
1089 	/* if Tx handler is separate add 1 for every Tx queue */
1090 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1091 		numvecs += adapter->num_tx_queues;
1092 
1093 	/* store the number of vectors reserved for queues */
1094 	adapter->num_q_vectors = numvecs;
1095 
1096 	/* add 1 vector for link status interrupts */
1097 	numvecs++;
1098 	for (i = 0; i < numvecs; i++)
1099 		adapter->msix_entries[i].entry = i;
1100 
1101 	err = pci_enable_msix_range(adapter->pdev,
1102 				    adapter->msix_entries,
1103 				    numvecs,
1104 				    numvecs);
1105 	if (err > 0)
1106 		return;
1107 
1108 	igb_reset_interrupt_capability(adapter);
1109 
1110 	/* If we can't do MSI-X, try MSI */
1111 msi_only:
1112 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1113 #ifdef CONFIG_PCI_IOV
1114 	/* disable SR-IOV for non MSI-X configurations */
1115 	if (adapter->vf_data) {
1116 		struct e1000_hw *hw = &adapter->hw;
1117 		/* disable iov and allow time for transactions to clear */
1118 		pci_disable_sriov(adapter->pdev);
1119 		msleep(500);
1120 
1121 		kfree(adapter->vf_mac_list);
1122 		adapter->vf_mac_list = NULL;
1123 		kfree(adapter->vf_data);
1124 		adapter->vf_data = NULL;
1125 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1126 		wrfl();
1127 		msleep(100);
1128 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1129 	}
1130 #endif
1131 	adapter->vfs_allocated_count = 0;
1132 	adapter->rss_queues = 1;
1133 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1134 	adapter->num_rx_queues = 1;
1135 	adapter->num_tx_queues = 1;
1136 	adapter->num_q_vectors = 1;
1137 	if (!pci_enable_msi(adapter->pdev))
1138 		adapter->flags |= IGB_FLAG_HAS_MSI;
1139 }
1140 
1141 static void igb_add_ring(struct igb_ring *ring,
1142 			 struct igb_ring_container *head)
1143 {
1144 	head->ring = ring;
1145 	head->count++;
1146 }
1147 
1148 /**
1149  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1150  *  @adapter: board private structure to initialize
1151  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1152  *  @v_idx: index of vector in adapter struct
1153  *  @txr_count: total number of Tx rings to allocate
1154  *  @txr_idx: index of first Tx ring to allocate
1155  *  @rxr_count: total number of Rx rings to allocate
1156  *  @rxr_idx: index of first Rx ring to allocate
1157  *
1158  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1159  **/
1160 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1161 			      int v_count, int v_idx,
1162 			      int txr_count, int txr_idx,
1163 			      int rxr_count, int rxr_idx)
1164 {
1165 	struct igb_q_vector *q_vector;
1166 	struct igb_ring *ring;
1167 	int ring_count;
1168 	size_t size;
1169 
1170 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1171 	if (txr_count > 1 || rxr_count > 1)
1172 		return -ENOMEM;
1173 
1174 	ring_count = txr_count + rxr_count;
1175 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1176 
1177 	/* allocate q_vector and rings */
1178 	q_vector = adapter->q_vector[v_idx];
1179 	if (!q_vector) {
1180 		q_vector = kzalloc(size, GFP_KERNEL);
1181 	} else if (size > ksize(q_vector)) {
1182 		struct igb_q_vector *new_q_vector;
1183 
1184 		new_q_vector = kzalloc(size, GFP_KERNEL);
1185 		if (new_q_vector)
1186 			kfree_rcu(q_vector, rcu);
1187 		q_vector = new_q_vector;
1188 	} else {
1189 		memset(q_vector, 0, size);
1190 	}
1191 	if (!q_vector)
1192 		return -ENOMEM;
1193 
1194 	/* initialize NAPI */
1195 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1196 
1197 	/* tie q_vector and adapter together */
1198 	adapter->q_vector[v_idx] = q_vector;
1199 	q_vector->adapter = adapter;
1200 
1201 	/* initialize work limits */
1202 	q_vector->tx.work_limit = adapter->tx_work_limit;
1203 
1204 	/* initialize ITR configuration */
1205 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1206 	q_vector->itr_val = IGB_START_ITR;
1207 
1208 	/* initialize pointer to rings */
1209 	ring = q_vector->ring;
1210 
1211 	/* initialize ITR */
1212 	if (rxr_count) {
1213 		/* rx or rx/tx vector */
1214 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1215 			q_vector->itr_val = adapter->rx_itr_setting;
1216 	} else {
1217 		/* tx only vector */
1218 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1219 			q_vector->itr_val = adapter->tx_itr_setting;
1220 	}
1221 
1222 	if (txr_count) {
1223 		/* assign generic ring traits */
1224 		ring->dev = &adapter->pdev->dev;
1225 		ring->netdev = adapter->netdev;
1226 
1227 		/* configure backlink on ring */
1228 		ring->q_vector = q_vector;
1229 
1230 		/* update q_vector Tx values */
1231 		igb_add_ring(ring, &q_vector->tx);
1232 
1233 		/* For 82575, context index must be unique per ring. */
1234 		if (adapter->hw.mac.type == e1000_82575)
1235 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1236 
1237 		/* apply Tx specific ring traits */
1238 		ring->count = adapter->tx_ring_count;
1239 		ring->queue_index = txr_idx;
1240 
1241 		ring->cbs_enable = false;
1242 		ring->idleslope = 0;
1243 		ring->sendslope = 0;
1244 		ring->hicredit = 0;
1245 		ring->locredit = 0;
1246 
1247 		u64_stats_init(&ring->tx_syncp);
1248 		u64_stats_init(&ring->tx_syncp2);
1249 
1250 		/* assign ring to adapter */
1251 		adapter->tx_ring[txr_idx] = ring;
1252 
1253 		/* push pointer to next ring */
1254 		ring++;
1255 	}
1256 
1257 	if (rxr_count) {
1258 		/* assign generic ring traits */
1259 		ring->dev = &adapter->pdev->dev;
1260 		ring->netdev = adapter->netdev;
1261 
1262 		/* configure backlink on ring */
1263 		ring->q_vector = q_vector;
1264 
1265 		/* update q_vector Rx values */
1266 		igb_add_ring(ring, &q_vector->rx);
1267 
1268 		/* set flag indicating ring supports SCTP checksum offload */
1269 		if (adapter->hw.mac.type >= e1000_82576)
1270 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1271 
1272 		/* On i350, i354, i210, and i211, loopback VLAN packets
1273 		 * have the tag byte-swapped.
1274 		 */
1275 		if (adapter->hw.mac.type >= e1000_i350)
1276 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1277 
1278 		/* apply Rx specific ring traits */
1279 		ring->count = adapter->rx_ring_count;
1280 		ring->queue_index = rxr_idx;
1281 
1282 		u64_stats_init(&ring->rx_syncp);
1283 
1284 		/* assign ring to adapter */
1285 		adapter->rx_ring[rxr_idx] = ring;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 
1292 /**
1293  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1294  *  @adapter: board private structure to initialize
1295  *
1296  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1297  *  return -ENOMEM.
1298  **/
1299 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1300 {
1301 	int q_vectors = adapter->num_q_vectors;
1302 	int rxr_remaining = adapter->num_rx_queues;
1303 	int txr_remaining = adapter->num_tx_queues;
1304 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1305 	int err;
1306 
1307 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1308 		for (; rxr_remaining; v_idx++) {
1309 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1310 						 0, 0, 1, rxr_idx);
1311 
1312 			if (err)
1313 				goto err_out;
1314 
1315 			/* update counts and index */
1316 			rxr_remaining--;
1317 			rxr_idx++;
1318 		}
1319 	}
1320 
1321 	for (; v_idx < q_vectors; v_idx++) {
1322 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1323 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1324 
1325 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326 					 tqpv, txr_idx, rqpv, rxr_idx);
1327 
1328 		if (err)
1329 			goto err_out;
1330 
1331 		/* update counts and index */
1332 		rxr_remaining -= rqpv;
1333 		txr_remaining -= tqpv;
1334 		rxr_idx++;
1335 		txr_idx++;
1336 	}
1337 
1338 	return 0;
1339 
1340 err_out:
1341 	adapter->num_tx_queues = 0;
1342 	adapter->num_rx_queues = 0;
1343 	adapter->num_q_vectors = 0;
1344 
1345 	while (v_idx--)
1346 		igb_free_q_vector(adapter, v_idx);
1347 
1348 	return -ENOMEM;
1349 }
1350 
1351 /**
1352  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1353  *  @adapter: board private structure to initialize
1354  *  @msix: boolean value of MSIX capability
1355  *
1356  *  This function initializes the interrupts and allocates all of the queues.
1357  **/
1358 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1359 {
1360 	struct pci_dev *pdev = adapter->pdev;
1361 	int err;
1362 
1363 	igb_set_interrupt_capability(adapter, msix);
1364 
1365 	err = igb_alloc_q_vectors(adapter);
1366 	if (err) {
1367 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1368 		goto err_alloc_q_vectors;
1369 	}
1370 
1371 	igb_cache_ring_register(adapter);
1372 
1373 	return 0;
1374 
1375 err_alloc_q_vectors:
1376 	igb_reset_interrupt_capability(adapter);
1377 	return err;
1378 }
1379 
1380 /**
1381  *  igb_request_irq - initialize interrupts
1382  *  @adapter: board private structure to initialize
1383  *
1384  *  Attempts to configure interrupts using the best available
1385  *  capabilities of the hardware and kernel.
1386  **/
1387 static int igb_request_irq(struct igb_adapter *adapter)
1388 {
1389 	struct net_device *netdev = adapter->netdev;
1390 	struct pci_dev *pdev = adapter->pdev;
1391 	int err = 0;
1392 
1393 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1394 		err = igb_request_msix(adapter);
1395 		if (!err)
1396 			goto request_done;
1397 		/* fall back to MSI */
1398 		igb_free_all_tx_resources(adapter);
1399 		igb_free_all_rx_resources(adapter);
1400 
1401 		igb_clear_interrupt_scheme(adapter);
1402 		err = igb_init_interrupt_scheme(adapter, false);
1403 		if (err)
1404 			goto request_done;
1405 
1406 		igb_setup_all_tx_resources(adapter);
1407 		igb_setup_all_rx_resources(adapter);
1408 		igb_configure(adapter);
1409 	}
1410 
1411 	igb_assign_vector(adapter->q_vector[0], 0);
1412 
1413 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1414 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1415 				  netdev->name, adapter);
1416 		if (!err)
1417 			goto request_done;
1418 
1419 		/* fall back to legacy interrupts */
1420 		igb_reset_interrupt_capability(adapter);
1421 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1422 	}
1423 
1424 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1425 			  netdev->name, adapter);
1426 
1427 	if (err)
1428 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1429 			err);
1430 
1431 request_done:
1432 	return err;
1433 }
1434 
1435 static void igb_free_irq(struct igb_adapter *adapter)
1436 {
1437 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1438 		int vector = 0, i;
1439 
1440 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1441 
1442 		for (i = 0; i < adapter->num_q_vectors; i++)
1443 			free_irq(adapter->msix_entries[vector++].vector,
1444 				 adapter->q_vector[i]);
1445 	} else {
1446 		free_irq(adapter->pdev->irq, adapter);
1447 	}
1448 }
1449 
1450 /**
1451  *  igb_irq_disable - Mask off interrupt generation on the NIC
1452  *  @adapter: board private structure
1453  **/
1454 static void igb_irq_disable(struct igb_adapter *adapter)
1455 {
1456 	struct e1000_hw *hw = &adapter->hw;
1457 
1458 	/* we need to be careful when disabling interrupts.  The VFs are also
1459 	 * mapped into these registers and so clearing the bits can cause
1460 	 * issues on the VF drivers so we only need to clear what we set
1461 	 */
1462 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1463 		u32 regval = rd32(E1000_EIAM);
1464 
1465 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1466 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1467 		regval = rd32(E1000_EIAC);
1468 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1469 	}
1470 
1471 	wr32(E1000_IAM, 0);
1472 	wr32(E1000_IMC, ~0);
1473 	wrfl();
1474 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1475 		int i;
1476 
1477 		for (i = 0; i < adapter->num_q_vectors; i++)
1478 			synchronize_irq(adapter->msix_entries[i].vector);
1479 	} else {
1480 		synchronize_irq(adapter->pdev->irq);
1481 	}
1482 }
1483 
1484 /**
1485  *  igb_irq_enable - Enable default interrupt generation settings
1486  *  @adapter: board private structure
1487  **/
1488 static void igb_irq_enable(struct igb_adapter *adapter)
1489 {
1490 	struct e1000_hw *hw = &adapter->hw;
1491 
1492 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1493 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1494 		u32 regval = rd32(E1000_EIAC);
1495 
1496 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1497 		regval = rd32(E1000_EIAM);
1498 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1499 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1500 		if (adapter->vfs_allocated_count) {
1501 			wr32(E1000_MBVFIMR, 0xFF);
1502 			ims |= E1000_IMS_VMMB;
1503 		}
1504 		wr32(E1000_IMS, ims);
1505 	} else {
1506 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1507 				E1000_IMS_DRSTA);
1508 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1509 				E1000_IMS_DRSTA);
1510 	}
1511 }
1512 
1513 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1514 {
1515 	struct e1000_hw *hw = &adapter->hw;
1516 	u16 pf_id = adapter->vfs_allocated_count;
1517 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1518 	u16 old_vid = adapter->mng_vlan_id;
1519 
1520 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1521 		/* add VID to filter table */
1522 		igb_vfta_set(hw, vid, pf_id, true, true);
1523 		adapter->mng_vlan_id = vid;
1524 	} else {
1525 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1526 	}
1527 
1528 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1529 	    (vid != old_vid) &&
1530 	    !test_bit(old_vid, adapter->active_vlans)) {
1531 		/* remove VID from filter table */
1532 		igb_vfta_set(hw, vid, pf_id, false, true);
1533 	}
1534 }
1535 
1536 /**
1537  *  igb_release_hw_control - release control of the h/w to f/w
1538  *  @adapter: address of board private structure
1539  *
1540  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1541  *  For ASF and Pass Through versions of f/w this means that the
1542  *  driver is no longer loaded.
1543  **/
1544 static void igb_release_hw_control(struct igb_adapter *adapter)
1545 {
1546 	struct e1000_hw *hw = &adapter->hw;
1547 	u32 ctrl_ext;
1548 
1549 	/* Let firmware take over control of h/w */
1550 	ctrl_ext = rd32(E1000_CTRL_EXT);
1551 	wr32(E1000_CTRL_EXT,
1552 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1553 }
1554 
1555 /**
1556  *  igb_get_hw_control - get control of the h/w from f/w
1557  *  @adapter: address of board private structure
1558  *
1559  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1560  *  For ASF and Pass Through versions of f/w this means that
1561  *  the driver is loaded.
1562  **/
1563 static void igb_get_hw_control(struct igb_adapter *adapter)
1564 {
1565 	struct e1000_hw *hw = &adapter->hw;
1566 	u32 ctrl_ext;
1567 
1568 	/* Let firmware know the driver has taken over */
1569 	ctrl_ext = rd32(E1000_CTRL_EXT);
1570 	wr32(E1000_CTRL_EXT,
1571 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1572 }
1573 
1574 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1575 {
1576 	struct net_device *netdev = adapter->netdev;
1577 	struct e1000_hw *hw = &adapter->hw;
1578 
1579 	WARN_ON(hw->mac.type != e1000_i210);
1580 
1581 	if (enable)
1582 		adapter->flags |= IGB_FLAG_FQTSS;
1583 	else
1584 		adapter->flags &= ~IGB_FLAG_FQTSS;
1585 
1586 	if (netif_running(netdev))
1587 		schedule_work(&adapter->reset_task);
1588 }
1589 
1590 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1591 {
1592 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1593 }
1594 
1595 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1596 				   enum tx_queue_prio prio)
1597 {
1598 	u32 val;
1599 
1600 	WARN_ON(hw->mac.type != e1000_i210);
1601 	WARN_ON(queue < 0 || queue > 4);
1602 
1603 	val = rd32(E1000_I210_TXDCTL(queue));
1604 
1605 	if (prio == TX_QUEUE_PRIO_HIGH)
1606 		val |= E1000_TXDCTL_PRIORITY;
1607 	else
1608 		val &= ~E1000_TXDCTL_PRIORITY;
1609 
1610 	wr32(E1000_I210_TXDCTL(queue), val);
1611 }
1612 
1613 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1614 {
1615 	u32 val;
1616 
1617 	WARN_ON(hw->mac.type != e1000_i210);
1618 	WARN_ON(queue < 0 || queue > 1);
1619 
1620 	val = rd32(E1000_I210_TQAVCC(queue));
1621 
1622 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1623 		val |= E1000_TQAVCC_QUEUEMODE;
1624 	else
1625 		val &= ~E1000_TQAVCC_QUEUEMODE;
1626 
1627 	wr32(E1000_I210_TQAVCC(queue), val);
1628 }
1629 
1630 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1631 {
1632 	int i;
1633 
1634 	for (i = 0; i < adapter->num_tx_queues; i++) {
1635 		if (adapter->tx_ring[i]->cbs_enable)
1636 			return true;
1637 	}
1638 
1639 	return false;
1640 }
1641 
1642 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1643 {
1644 	int i;
1645 
1646 	for (i = 0; i < adapter->num_tx_queues; i++) {
1647 		if (adapter->tx_ring[i]->launchtime_enable)
1648 			return true;
1649 	}
1650 
1651 	return false;
1652 }
1653 
1654 /**
1655  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1656  *  @adapter: pointer to adapter struct
1657  *  @queue: queue number
1658  *
1659  *  Configure CBS and Launchtime for a given hardware queue.
1660  *  Parameters are retrieved from the correct Tx ring, so
1661  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1662  *  for setting those correctly prior to this function being called.
1663  **/
1664 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1665 {
1666 	struct net_device *netdev = adapter->netdev;
1667 	struct e1000_hw *hw = &adapter->hw;
1668 	struct igb_ring *ring;
1669 	u32 tqavcc, tqavctrl;
1670 	u16 value;
1671 
1672 	WARN_ON(hw->mac.type != e1000_i210);
1673 	WARN_ON(queue < 0 || queue > 1);
1674 	ring = adapter->tx_ring[queue];
1675 
1676 	/* If any of the Qav features is enabled, configure queues as SR and
1677 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1678 	 * as SP.
1679 	 */
1680 	if (ring->cbs_enable || ring->launchtime_enable) {
1681 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1682 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1683 	} else {
1684 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1685 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1686 	}
1687 
1688 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1689 	if (ring->cbs_enable || queue == 0) {
1690 		/* i210 does not allow the queue 0 to be in the Strict
1691 		 * Priority mode while the Qav mode is enabled, so,
1692 		 * instead of disabling strict priority mode, we give
1693 		 * queue 0 the maximum of credits possible.
1694 		 *
1695 		 * See section 8.12.19 of the i210 datasheet, "Note:
1696 		 * Queue0 QueueMode must be set to 1b when
1697 		 * TransmitMode is set to Qav."
1698 		 */
1699 		if (queue == 0 && !ring->cbs_enable) {
1700 			/* max "linkspeed" idleslope in kbps */
1701 			ring->idleslope = 1000000;
1702 			ring->hicredit = ETH_FRAME_LEN;
1703 		}
1704 
1705 		/* Always set data transfer arbitration to credit-based
1706 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1707 		 * the queues.
1708 		 */
1709 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1710 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1711 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1712 
1713 		/* According to i210 datasheet section 7.2.7.7, we should set
1714 		 * the 'idleSlope' field from TQAVCC register following the
1715 		 * equation:
1716 		 *
1717 		 * For 100 Mbps link speed:
1718 		 *
1719 		 *     value = BW * 0x7735 * 0.2                          (E1)
1720 		 *
1721 		 * For 1000Mbps link speed:
1722 		 *
1723 		 *     value = BW * 0x7735 * 2                            (E2)
1724 		 *
1725 		 * E1 and E2 can be merged into one equation as shown below.
1726 		 * Note that 'link-speed' is in Mbps.
1727 		 *
1728 		 *     value = BW * 0x7735 * 2 * link-speed
1729 		 *                           --------------               (E3)
1730 		 *                                1000
1731 		 *
1732 		 * 'BW' is the percentage bandwidth out of full link speed
1733 		 * which can be found with the following equation. Note that
1734 		 * idleSlope here is the parameter from this function which
1735 		 * is in kbps.
1736 		 *
1737 		 *     BW =     idleSlope
1738 		 *          -----------------                             (E4)
1739 		 *          link-speed * 1000
1740 		 *
1741 		 * That said, we can come up with a generic equation to
1742 		 * calculate the value we should set it TQAVCC register by
1743 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1744 		 *
1745 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1746 		 *         -----------------            --------------    (E5)
1747 		 *         link-speed * 1000                 1000
1748 		 *
1749 		 * 'link-speed' is present in both sides of the fraction so
1750 		 * it is canceled out. The final equation is the following:
1751 		 *
1752 		 *     value = idleSlope * 61034
1753 		 *             -----------------                          (E6)
1754 		 *                  1000000
1755 		 *
1756 		 * NOTE: For i210, given the above, we can see that idleslope
1757 		 *       is represented in 16.38431 kbps units by the value at
1758 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1759 		 *       the granularity for idleslope increments.
1760 		 *       For instance, if you want to configure a 2576kbps
1761 		 *       idleslope, the value to be written on the register
1762 		 *       would have to be 157.23. If rounded down, you end
1763 		 *       up with less bandwidth available than originally
1764 		 *       required (~2572 kbps). If rounded up, you end up
1765 		 *       with a higher bandwidth (~2589 kbps). Below the
1766 		 *       approach we take is to always round up the
1767 		 *       calculated value, so the resulting bandwidth might
1768 		 *       be slightly higher for some configurations.
1769 		 */
1770 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1771 
1772 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1773 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1774 		tqavcc |= value;
1775 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1776 
1777 		wr32(E1000_I210_TQAVHC(queue),
1778 		     0x80000000 + ring->hicredit * 0x7735);
1779 	} else {
1780 
1781 		/* Set idleSlope to zero. */
1782 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1783 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1784 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1785 
1786 		/* Set hiCredit to zero. */
1787 		wr32(E1000_I210_TQAVHC(queue), 0);
1788 
1789 		/* If CBS is not enabled for any queues anymore, then return to
1790 		 * the default state of Data Transmission Arbitration on
1791 		 * TQAVCTRL.
1792 		 */
1793 		if (!is_any_cbs_enabled(adapter)) {
1794 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1795 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1796 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1797 		}
1798 	}
1799 
1800 	/* If LaunchTime is enabled, set DataTranTIM. */
1801 	if (ring->launchtime_enable) {
1802 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1803 		 * for any of the SR queues, and configure fetchtime delta.
1804 		 * XXX NOTE:
1805 		 *     - LaunchTime will be enabled for all SR queues.
1806 		 *     - A fixed offset can be added relative to the launch
1807 		 *       time of all packets if configured at reg LAUNCH_OS0.
1808 		 *       We are keeping it as 0 for now (default value).
1809 		 */
1810 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1811 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1812 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1813 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1814 	} else {
1815 		/* If Launchtime is not enabled for any SR queues anymore,
1816 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1817 		 * effectively disabling Launchtime.
1818 		 */
1819 		if (!is_any_txtime_enabled(adapter)) {
1820 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1821 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1822 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1823 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1824 		}
1825 	}
1826 
1827 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1828 	 * CBS are not configurable by software so we don't do any 'controller
1829 	 * configuration' in respect to these parameters.
1830 	 */
1831 
1832 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1833 		   ring->cbs_enable ? "enabled" : "disabled",
1834 		   ring->launchtime_enable ? "enabled" : "disabled",
1835 		   queue,
1836 		   ring->idleslope, ring->sendslope,
1837 		   ring->hicredit, ring->locredit);
1838 }
1839 
1840 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1841 				  bool enable)
1842 {
1843 	struct igb_ring *ring;
1844 
1845 	if (queue < 0 || queue > adapter->num_tx_queues)
1846 		return -EINVAL;
1847 
1848 	ring = adapter->tx_ring[queue];
1849 	ring->launchtime_enable = enable;
1850 
1851 	return 0;
1852 }
1853 
1854 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1855 			       bool enable, int idleslope, int sendslope,
1856 			       int hicredit, int locredit)
1857 {
1858 	struct igb_ring *ring;
1859 
1860 	if (queue < 0 || queue > adapter->num_tx_queues)
1861 		return -EINVAL;
1862 
1863 	ring = adapter->tx_ring[queue];
1864 
1865 	ring->cbs_enable = enable;
1866 	ring->idleslope = idleslope;
1867 	ring->sendslope = sendslope;
1868 	ring->hicredit = hicredit;
1869 	ring->locredit = locredit;
1870 
1871 	return 0;
1872 }
1873 
1874 /**
1875  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1876  *  @adapter: pointer to adapter struct
1877  *
1878  *  Configure TQAVCTRL register switching the controller's Tx mode
1879  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1880  *  a call to igb_config_tx_modes() per queue so any previously saved
1881  *  Tx parameters are applied.
1882  **/
1883 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1884 {
1885 	struct net_device *netdev = adapter->netdev;
1886 	struct e1000_hw *hw = &adapter->hw;
1887 	u32 val;
1888 
1889 	/* Only i210 controller supports changing the transmission mode. */
1890 	if (hw->mac.type != e1000_i210)
1891 		return;
1892 
1893 	if (is_fqtss_enabled(adapter)) {
1894 		int i, max_queue;
1895 
1896 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1897 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1898 		 * so SP queues wait for SR ones.
1899 		 */
1900 		val = rd32(E1000_I210_TQAVCTRL);
1901 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1902 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1903 		wr32(E1000_I210_TQAVCTRL, val);
1904 
1905 		/* Configure Tx and Rx packet buffers sizes as described in
1906 		 * i210 datasheet section 7.2.7.7.
1907 		 */
1908 		val = rd32(E1000_TXPBS);
1909 		val &= ~I210_TXPBSIZE_MASK;
1910 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1911 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1912 		wr32(E1000_TXPBS, val);
1913 
1914 		val = rd32(E1000_RXPBS);
1915 		val &= ~I210_RXPBSIZE_MASK;
1916 		val |= I210_RXPBSIZE_PB_30KB;
1917 		wr32(E1000_RXPBS, val);
1918 
1919 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1920 		 * register should not exceed the buffer size programmed in
1921 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1922 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1923 		 * 4kB / 64.
1924 		 *
1925 		 * However, when we do so, no frame from queue 2 and 3 are
1926 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1927 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1928 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1929 		 */
1930 		val = (4096 - 1) / 64;
1931 		wr32(E1000_I210_DTXMXPKTSZ, val);
1932 
1933 		/* Since FQTSS mode is enabled, apply any CBS configuration
1934 		 * previously set. If no previous CBS configuration has been
1935 		 * done, then the initial configuration is applied, which means
1936 		 * CBS is disabled.
1937 		 */
1938 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1939 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1940 
1941 		for (i = 0; i < max_queue; i++) {
1942 			igb_config_tx_modes(adapter, i);
1943 		}
1944 	} else {
1945 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1946 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1947 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1948 
1949 		val = rd32(E1000_I210_TQAVCTRL);
1950 		/* According to Section 8.12.21, the other flags we've set when
1951 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1952 		 * don't set they here.
1953 		 */
1954 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1955 		wr32(E1000_I210_TQAVCTRL, val);
1956 	}
1957 
1958 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1959 		   "enabled" : "disabled");
1960 }
1961 
1962 /**
1963  *  igb_configure - configure the hardware for RX and TX
1964  *  @adapter: private board structure
1965  **/
1966 static void igb_configure(struct igb_adapter *adapter)
1967 {
1968 	struct net_device *netdev = adapter->netdev;
1969 	int i;
1970 
1971 	igb_get_hw_control(adapter);
1972 	igb_set_rx_mode(netdev);
1973 	igb_setup_tx_mode(adapter);
1974 
1975 	igb_restore_vlan(adapter);
1976 
1977 	igb_setup_tctl(adapter);
1978 	igb_setup_mrqc(adapter);
1979 	igb_setup_rctl(adapter);
1980 
1981 	igb_nfc_filter_restore(adapter);
1982 	igb_configure_tx(adapter);
1983 	igb_configure_rx(adapter);
1984 
1985 	igb_rx_fifo_flush_82575(&adapter->hw);
1986 
1987 	/* call igb_desc_unused which always leaves
1988 	 * at least 1 descriptor unused to make sure
1989 	 * next_to_use != next_to_clean
1990 	 */
1991 	for (i = 0; i < adapter->num_rx_queues; i++) {
1992 		struct igb_ring *ring = adapter->rx_ring[i];
1993 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1994 	}
1995 }
1996 
1997 /**
1998  *  igb_power_up_link - Power up the phy/serdes link
1999  *  @adapter: address of board private structure
2000  **/
2001 void igb_power_up_link(struct igb_adapter *adapter)
2002 {
2003 	igb_reset_phy(&adapter->hw);
2004 
2005 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2006 		igb_power_up_phy_copper(&adapter->hw);
2007 	else
2008 		igb_power_up_serdes_link_82575(&adapter->hw);
2009 
2010 	igb_setup_link(&adapter->hw);
2011 }
2012 
2013 /**
2014  *  igb_power_down_link - Power down the phy/serdes link
2015  *  @adapter: address of board private structure
2016  */
2017 static void igb_power_down_link(struct igb_adapter *adapter)
2018 {
2019 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020 		igb_power_down_phy_copper_82575(&adapter->hw);
2021 	else
2022 		igb_shutdown_serdes_link_82575(&adapter->hw);
2023 }
2024 
2025 /**
2026  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2027  * @adapter: address of the board private structure
2028  **/
2029 static void igb_check_swap_media(struct igb_adapter *adapter)
2030 {
2031 	struct e1000_hw *hw = &adapter->hw;
2032 	u32 ctrl_ext, connsw;
2033 	bool swap_now = false;
2034 
2035 	ctrl_ext = rd32(E1000_CTRL_EXT);
2036 	connsw = rd32(E1000_CONNSW);
2037 
2038 	/* need to live swap if current media is copper and we have fiber/serdes
2039 	 * to go to.
2040 	 */
2041 
2042 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2043 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2044 		swap_now = true;
2045 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2046 		   !(connsw & E1000_CONNSW_SERDESD)) {
2047 		/* copper signal takes time to appear */
2048 		if (adapter->copper_tries < 4) {
2049 			adapter->copper_tries++;
2050 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2051 			wr32(E1000_CONNSW, connsw);
2052 			return;
2053 		} else {
2054 			adapter->copper_tries = 0;
2055 			if ((connsw & E1000_CONNSW_PHYSD) &&
2056 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2057 				swap_now = true;
2058 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2059 				wr32(E1000_CONNSW, connsw);
2060 			}
2061 		}
2062 	}
2063 
2064 	if (!swap_now)
2065 		return;
2066 
2067 	switch (hw->phy.media_type) {
2068 	case e1000_media_type_copper:
2069 		netdev_info(adapter->netdev,
2070 			"MAS: changing media to fiber/serdes\n");
2071 		ctrl_ext |=
2072 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2073 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2074 		adapter->copper_tries = 0;
2075 		break;
2076 	case e1000_media_type_internal_serdes:
2077 	case e1000_media_type_fiber:
2078 		netdev_info(adapter->netdev,
2079 			"MAS: changing media to copper\n");
2080 		ctrl_ext &=
2081 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2082 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2083 		break;
2084 	default:
2085 		/* shouldn't get here during regular operation */
2086 		netdev_err(adapter->netdev,
2087 			"AMS: Invalid media type found, returning\n");
2088 		break;
2089 	}
2090 	wr32(E1000_CTRL_EXT, ctrl_ext);
2091 }
2092 
2093 /**
2094  *  igb_up - Open the interface and prepare it to handle traffic
2095  *  @adapter: board private structure
2096  **/
2097 int igb_up(struct igb_adapter *adapter)
2098 {
2099 	struct e1000_hw *hw = &adapter->hw;
2100 	int i;
2101 
2102 	/* hardware has been reset, we need to reload some things */
2103 	igb_configure(adapter);
2104 
2105 	clear_bit(__IGB_DOWN, &adapter->state);
2106 
2107 	for (i = 0; i < adapter->num_q_vectors; i++)
2108 		napi_enable(&(adapter->q_vector[i]->napi));
2109 
2110 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2111 		igb_configure_msix(adapter);
2112 	else
2113 		igb_assign_vector(adapter->q_vector[0], 0);
2114 
2115 	/* Clear any pending interrupts. */
2116 	rd32(E1000_TSICR);
2117 	rd32(E1000_ICR);
2118 	igb_irq_enable(adapter);
2119 
2120 	/* notify VFs that reset has been completed */
2121 	if (adapter->vfs_allocated_count) {
2122 		u32 reg_data = rd32(E1000_CTRL_EXT);
2123 
2124 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2125 		wr32(E1000_CTRL_EXT, reg_data);
2126 	}
2127 
2128 	netif_tx_start_all_queues(adapter->netdev);
2129 
2130 	/* start the watchdog. */
2131 	hw->mac.get_link_status = 1;
2132 	schedule_work(&adapter->watchdog_task);
2133 
2134 	if ((adapter->flags & IGB_FLAG_EEE) &&
2135 	    (!hw->dev_spec._82575.eee_disable))
2136 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2137 
2138 	return 0;
2139 }
2140 
2141 void igb_down(struct igb_adapter *adapter)
2142 {
2143 	struct net_device *netdev = adapter->netdev;
2144 	struct e1000_hw *hw = &adapter->hw;
2145 	u32 tctl, rctl;
2146 	int i;
2147 
2148 	/* signal that we're down so the interrupt handler does not
2149 	 * reschedule our watchdog timer
2150 	 */
2151 	set_bit(__IGB_DOWN, &adapter->state);
2152 
2153 	/* disable receives in the hardware */
2154 	rctl = rd32(E1000_RCTL);
2155 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2156 	/* flush and sleep below */
2157 
2158 	igb_nfc_filter_exit(adapter);
2159 
2160 	netif_carrier_off(netdev);
2161 	netif_tx_stop_all_queues(netdev);
2162 
2163 	/* disable transmits in the hardware */
2164 	tctl = rd32(E1000_TCTL);
2165 	tctl &= ~E1000_TCTL_EN;
2166 	wr32(E1000_TCTL, tctl);
2167 	/* flush both disables and wait for them to finish */
2168 	wrfl();
2169 	usleep_range(10000, 11000);
2170 
2171 	igb_irq_disable(adapter);
2172 
2173 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2174 
2175 	for (i = 0; i < adapter->num_q_vectors; i++) {
2176 		if (adapter->q_vector[i]) {
2177 			napi_synchronize(&adapter->q_vector[i]->napi);
2178 			napi_disable(&adapter->q_vector[i]->napi);
2179 		}
2180 	}
2181 
2182 	del_timer_sync(&adapter->watchdog_timer);
2183 	del_timer_sync(&adapter->phy_info_timer);
2184 
2185 	/* record the stats before reset*/
2186 	spin_lock(&adapter->stats64_lock);
2187 	igb_update_stats(adapter);
2188 	spin_unlock(&adapter->stats64_lock);
2189 
2190 	adapter->link_speed = 0;
2191 	adapter->link_duplex = 0;
2192 
2193 	if (!pci_channel_offline(adapter->pdev))
2194 		igb_reset(adapter);
2195 
2196 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2197 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2198 
2199 	igb_clean_all_tx_rings(adapter);
2200 	igb_clean_all_rx_rings(adapter);
2201 #ifdef CONFIG_IGB_DCA
2202 
2203 	/* since we reset the hardware DCA settings were cleared */
2204 	igb_setup_dca(adapter);
2205 #endif
2206 }
2207 
2208 void igb_reinit_locked(struct igb_adapter *adapter)
2209 {
2210 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2211 		usleep_range(1000, 2000);
2212 	igb_down(adapter);
2213 	igb_up(adapter);
2214 	clear_bit(__IGB_RESETTING, &adapter->state);
2215 }
2216 
2217 /** igb_enable_mas - Media Autosense re-enable after swap
2218  *
2219  * @adapter: adapter struct
2220  **/
2221 static void igb_enable_mas(struct igb_adapter *adapter)
2222 {
2223 	struct e1000_hw *hw = &adapter->hw;
2224 	u32 connsw = rd32(E1000_CONNSW);
2225 
2226 	/* configure for SerDes media detect */
2227 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2228 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2229 		connsw |= E1000_CONNSW_ENRGSRC;
2230 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2231 		wr32(E1000_CONNSW, connsw);
2232 		wrfl();
2233 	}
2234 }
2235 
2236 #ifdef CONFIG_IGB_HWMON
2237 /**
2238  *  igb_set_i2c_bb - Init I2C interface
2239  *  @hw: pointer to hardware structure
2240  **/
2241 static void igb_set_i2c_bb(struct e1000_hw *hw)
2242 {
2243 	u32 ctrl_ext;
2244 	s32 i2cctl;
2245 
2246 	ctrl_ext = rd32(E1000_CTRL_EXT);
2247 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2248 	wr32(E1000_CTRL_EXT, ctrl_ext);
2249 	wrfl();
2250 
2251 	i2cctl = rd32(E1000_I2CPARAMS);
2252 	i2cctl |= E1000_I2CBB_EN
2253 		| E1000_I2C_CLK_OE_N
2254 		| E1000_I2C_DATA_OE_N;
2255 	wr32(E1000_I2CPARAMS, i2cctl);
2256 	wrfl();
2257 }
2258 #endif
2259 
2260 void igb_reset(struct igb_adapter *adapter)
2261 {
2262 	struct pci_dev *pdev = adapter->pdev;
2263 	struct e1000_hw *hw = &adapter->hw;
2264 	struct e1000_mac_info *mac = &hw->mac;
2265 	struct e1000_fc_info *fc = &hw->fc;
2266 	u32 pba, hwm;
2267 
2268 	/* Repartition Pba for greater than 9k mtu
2269 	 * To take effect CTRL.RST is required.
2270 	 */
2271 	switch (mac->type) {
2272 	case e1000_i350:
2273 	case e1000_i354:
2274 	case e1000_82580:
2275 		pba = rd32(E1000_RXPBS);
2276 		pba = igb_rxpbs_adjust_82580(pba);
2277 		break;
2278 	case e1000_82576:
2279 		pba = rd32(E1000_RXPBS);
2280 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2281 		break;
2282 	case e1000_82575:
2283 	case e1000_i210:
2284 	case e1000_i211:
2285 	default:
2286 		pba = E1000_PBA_34K;
2287 		break;
2288 	}
2289 
2290 	if (mac->type == e1000_82575) {
2291 		u32 min_rx_space, min_tx_space, needed_tx_space;
2292 
2293 		/* write Rx PBA so that hardware can report correct Tx PBA */
2294 		wr32(E1000_PBA, pba);
2295 
2296 		/* To maintain wire speed transmits, the Tx FIFO should be
2297 		 * large enough to accommodate two full transmit packets,
2298 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2299 		 * the Rx FIFO should be large enough to accommodate at least
2300 		 * one full receive packet and is similarly rounded up and
2301 		 * expressed in KB.
2302 		 */
2303 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2304 
2305 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2306 		 * but don't include Ethernet FCS because hardware appends it.
2307 		 * We only need to round down to the nearest 512 byte block
2308 		 * count since the value we care about is 2 frames, not 1.
2309 		 */
2310 		min_tx_space = adapter->max_frame_size;
2311 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2312 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2313 
2314 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2315 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2316 
2317 		/* If current Tx allocation is less than the min Tx FIFO size,
2318 		 * and the min Tx FIFO size is less than the current Rx FIFO
2319 		 * allocation, take space away from current Rx allocation.
2320 		 */
2321 		if (needed_tx_space < pba) {
2322 			pba -= needed_tx_space;
2323 
2324 			/* if short on Rx space, Rx wins and must trump Tx
2325 			 * adjustment
2326 			 */
2327 			if (pba < min_rx_space)
2328 				pba = min_rx_space;
2329 		}
2330 
2331 		/* adjust PBA for jumbo frames */
2332 		wr32(E1000_PBA, pba);
2333 	}
2334 
2335 	/* flow control settings
2336 	 * The high water mark must be low enough to fit one full frame
2337 	 * after transmitting the pause frame.  As such we must have enough
2338 	 * space to allow for us to complete our current transmit and then
2339 	 * receive the frame that is in progress from the link partner.
2340 	 * Set it to:
2341 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2342 	 */
2343 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2344 
2345 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2346 	fc->low_water = fc->high_water - 16;
2347 	fc->pause_time = 0xFFFF;
2348 	fc->send_xon = 1;
2349 	fc->current_mode = fc->requested_mode;
2350 
2351 	/* disable receive for all VFs and wait one second */
2352 	if (adapter->vfs_allocated_count) {
2353 		int i;
2354 
2355 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2356 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2357 
2358 		/* ping all the active vfs to let them know we are going down */
2359 		igb_ping_all_vfs(adapter);
2360 
2361 		/* disable transmits and receives */
2362 		wr32(E1000_VFRE, 0);
2363 		wr32(E1000_VFTE, 0);
2364 	}
2365 
2366 	/* Allow time for pending master requests to run */
2367 	hw->mac.ops.reset_hw(hw);
2368 	wr32(E1000_WUC, 0);
2369 
2370 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2371 		/* need to resetup here after media swap */
2372 		adapter->ei.get_invariants(hw);
2373 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2374 	}
2375 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2376 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2377 		igb_enable_mas(adapter);
2378 	}
2379 	if (hw->mac.ops.init_hw(hw))
2380 		dev_err(&pdev->dev, "Hardware Error\n");
2381 
2382 	/* RAR registers were cleared during init_hw, clear mac table */
2383 	igb_flush_mac_table(adapter);
2384 	__dev_uc_unsync(adapter->netdev, NULL);
2385 
2386 	/* Recover default RAR entry */
2387 	igb_set_default_mac_filter(adapter);
2388 
2389 	/* Flow control settings reset on hardware reset, so guarantee flow
2390 	 * control is off when forcing speed.
2391 	 */
2392 	if (!hw->mac.autoneg)
2393 		igb_force_mac_fc(hw);
2394 
2395 	igb_init_dmac(adapter, pba);
2396 #ifdef CONFIG_IGB_HWMON
2397 	/* Re-initialize the thermal sensor on i350 devices. */
2398 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2399 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2400 			/* If present, re-initialize the external thermal sensor
2401 			 * interface.
2402 			 */
2403 			if (adapter->ets)
2404 				igb_set_i2c_bb(hw);
2405 			mac->ops.init_thermal_sensor_thresh(hw);
2406 		}
2407 	}
2408 #endif
2409 	/* Re-establish EEE setting */
2410 	if (hw->phy.media_type == e1000_media_type_copper) {
2411 		switch (mac->type) {
2412 		case e1000_i350:
2413 		case e1000_i210:
2414 		case e1000_i211:
2415 			igb_set_eee_i350(hw, true, true);
2416 			break;
2417 		case e1000_i354:
2418 			igb_set_eee_i354(hw, true, true);
2419 			break;
2420 		default:
2421 			break;
2422 		}
2423 	}
2424 	if (!netif_running(adapter->netdev))
2425 		igb_power_down_link(adapter);
2426 
2427 	igb_update_mng_vlan(adapter);
2428 
2429 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2430 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2431 
2432 	/* Re-enable PTP, where applicable. */
2433 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2434 		igb_ptp_reset(adapter);
2435 
2436 	igb_get_phy_info(hw);
2437 }
2438 
2439 static netdev_features_t igb_fix_features(struct net_device *netdev,
2440 	netdev_features_t features)
2441 {
2442 	/* Since there is no support for separate Rx/Tx vlan accel
2443 	 * enable/disable make sure Tx flag is always in same state as Rx.
2444 	 */
2445 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2446 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2447 	else
2448 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2449 
2450 	return features;
2451 }
2452 
2453 static int igb_set_features(struct net_device *netdev,
2454 	netdev_features_t features)
2455 {
2456 	netdev_features_t changed = netdev->features ^ features;
2457 	struct igb_adapter *adapter = netdev_priv(netdev);
2458 
2459 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2460 		igb_vlan_mode(netdev, features);
2461 
2462 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2463 		return 0;
2464 
2465 	if (!(features & NETIF_F_NTUPLE)) {
2466 		struct hlist_node *node2;
2467 		struct igb_nfc_filter *rule;
2468 
2469 		spin_lock(&adapter->nfc_lock);
2470 		hlist_for_each_entry_safe(rule, node2,
2471 					  &adapter->nfc_filter_list, nfc_node) {
2472 			igb_erase_filter(adapter, rule);
2473 			hlist_del(&rule->nfc_node);
2474 			kfree(rule);
2475 		}
2476 		spin_unlock(&adapter->nfc_lock);
2477 		adapter->nfc_filter_count = 0;
2478 	}
2479 
2480 	netdev->features = features;
2481 
2482 	if (netif_running(netdev))
2483 		igb_reinit_locked(adapter);
2484 	else
2485 		igb_reset(adapter);
2486 
2487 	return 1;
2488 }
2489 
2490 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2491 			   struct net_device *dev,
2492 			   const unsigned char *addr, u16 vid,
2493 			   u16 flags, bool *notified,
2494 			   struct netlink_ext_ack *extack)
2495 {
2496 	/* guarantee we can provide a unique filter for the unicast address */
2497 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2498 		struct igb_adapter *adapter = netdev_priv(dev);
2499 		int vfn = adapter->vfs_allocated_count;
2500 
2501 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2502 			return -ENOMEM;
2503 	}
2504 
2505 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2506 }
2507 
2508 #define IGB_MAX_MAC_HDR_LEN	127
2509 #define IGB_MAX_NETWORK_HDR_LEN	511
2510 
2511 static netdev_features_t
2512 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2513 		   netdev_features_t features)
2514 {
2515 	unsigned int network_hdr_len, mac_hdr_len;
2516 
2517 	/* Make certain the headers can be described by a context descriptor */
2518 	mac_hdr_len = skb_network_offset(skb);
2519 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2520 		return features & ~(NETIF_F_HW_CSUM |
2521 				    NETIF_F_SCTP_CRC |
2522 				    NETIF_F_GSO_UDP_L4 |
2523 				    NETIF_F_HW_VLAN_CTAG_TX |
2524 				    NETIF_F_TSO |
2525 				    NETIF_F_TSO6);
2526 
2527 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2528 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2529 		return features & ~(NETIF_F_HW_CSUM |
2530 				    NETIF_F_SCTP_CRC |
2531 				    NETIF_F_GSO_UDP_L4 |
2532 				    NETIF_F_TSO |
2533 				    NETIF_F_TSO6);
2534 
2535 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2536 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2537 	 */
2538 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2539 		features &= ~NETIF_F_TSO;
2540 
2541 	return features;
2542 }
2543 
2544 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2545 {
2546 	if (!is_fqtss_enabled(adapter)) {
2547 		enable_fqtss(adapter, true);
2548 		return;
2549 	}
2550 
2551 	igb_config_tx_modes(adapter, queue);
2552 
2553 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2554 		enable_fqtss(adapter, false);
2555 }
2556 
2557 static int igb_offload_cbs(struct igb_adapter *adapter,
2558 			   struct tc_cbs_qopt_offload *qopt)
2559 {
2560 	struct e1000_hw *hw = &adapter->hw;
2561 	int err;
2562 
2563 	/* CBS offloading is only supported by i210 controller. */
2564 	if (hw->mac.type != e1000_i210)
2565 		return -EOPNOTSUPP;
2566 
2567 	/* CBS offloading is only supported by queue 0 and queue 1. */
2568 	if (qopt->queue < 0 || qopt->queue > 1)
2569 		return -EINVAL;
2570 
2571 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2572 				  qopt->idleslope, qopt->sendslope,
2573 				  qopt->hicredit, qopt->locredit);
2574 	if (err)
2575 		return err;
2576 
2577 	igb_offload_apply(adapter, qopt->queue);
2578 
2579 	return 0;
2580 }
2581 
2582 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2583 #define VLAN_PRIO_FULL_MASK (0x07)
2584 
2585 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2586 				struct flow_cls_offload *f,
2587 				int traffic_class,
2588 				struct igb_nfc_filter *input)
2589 {
2590 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2591 	struct flow_dissector *dissector = rule->match.dissector;
2592 	struct netlink_ext_ack *extack = f->common.extack;
2593 
2594 	if (dissector->used_keys &
2595 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2596 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2597 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2598 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2599 		NL_SET_ERR_MSG_MOD(extack,
2600 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2601 		return -EOPNOTSUPP;
2602 	}
2603 
2604 	if (flow_rule_match_has_control_flags(rule, extack))
2605 		return -EOPNOTSUPP;
2606 
2607 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2608 		struct flow_match_eth_addrs match;
2609 
2610 		flow_rule_match_eth_addrs(rule, &match);
2611 		if (!is_zero_ether_addr(match.mask->dst)) {
2612 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2613 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2614 				return -EINVAL;
2615 			}
2616 
2617 			input->filter.match_flags |=
2618 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2619 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2620 		}
2621 
2622 		if (!is_zero_ether_addr(match.mask->src)) {
2623 			if (!is_broadcast_ether_addr(match.mask->src)) {
2624 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2625 				return -EINVAL;
2626 			}
2627 
2628 			input->filter.match_flags |=
2629 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2630 			ether_addr_copy(input->filter.src_addr, match.key->src);
2631 		}
2632 	}
2633 
2634 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2635 		struct flow_match_basic match;
2636 
2637 		flow_rule_match_basic(rule, &match);
2638 		if (match.mask->n_proto) {
2639 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2640 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2641 				return -EINVAL;
2642 			}
2643 
2644 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2645 			input->filter.etype = match.key->n_proto;
2646 		}
2647 	}
2648 
2649 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2650 		struct flow_match_vlan match;
2651 
2652 		flow_rule_match_vlan(rule, &match);
2653 		if (match.mask->vlan_priority) {
2654 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2655 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2656 				return -EINVAL;
2657 			}
2658 
2659 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2660 			input->filter.vlan_tci =
2661 				(__force __be16)match.key->vlan_priority;
2662 		}
2663 	}
2664 
2665 	input->action = traffic_class;
2666 	input->cookie = f->cookie;
2667 
2668 	return 0;
2669 }
2670 
2671 static int igb_configure_clsflower(struct igb_adapter *adapter,
2672 				   struct flow_cls_offload *cls_flower)
2673 {
2674 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2675 	struct igb_nfc_filter *filter, *f;
2676 	int err, tc;
2677 
2678 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2679 	if (tc < 0) {
2680 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2681 		return -EINVAL;
2682 	}
2683 
2684 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2685 	if (!filter)
2686 		return -ENOMEM;
2687 
2688 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2689 	if (err < 0)
2690 		goto err_parse;
2691 
2692 	spin_lock(&adapter->nfc_lock);
2693 
2694 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2695 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2696 			err = -EEXIST;
2697 			NL_SET_ERR_MSG_MOD(extack,
2698 					   "This filter is already set in ethtool");
2699 			goto err_locked;
2700 		}
2701 	}
2702 
2703 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2704 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2705 			err = -EEXIST;
2706 			NL_SET_ERR_MSG_MOD(extack,
2707 					   "This filter is already set in cls_flower");
2708 			goto err_locked;
2709 		}
2710 	}
2711 
2712 	err = igb_add_filter(adapter, filter);
2713 	if (err < 0) {
2714 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2715 		goto err_locked;
2716 	}
2717 
2718 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2719 
2720 	spin_unlock(&adapter->nfc_lock);
2721 
2722 	return 0;
2723 
2724 err_locked:
2725 	spin_unlock(&adapter->nfc_lock);
2726 
2727 err_parse:
2728 	kfree(filter);
2729 
2730 	return err;
2731 }
2732 
2733 static int igb_delete_clsflower(struct igb_adapter *adapter,
2734 				struct flow_cls_offload *cls_flower)
2735 {
2736 	struct igb_nfc_filter *filter;
2737 	int err;
2738 
2739 	spin_lock(&adapter->nfc_lock);
2740 
2741 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2742 		if (filter->cookie == cls_flower->cookie)
2743 			break;
2744 
2745 	if (!filter) {
2746 		err = -ENOENT;
2747 		goto out;
2748 	}
2749 
2750 	err = igb_erase_filter(adapter, filter);
2751 	if (err < 0)
2752 		goto out;
2753 
2754 	hlist_del(&filter->nfc_node);
2755 	kfree(filter);
2756 
2757 out:
2758 	spin_unlock(&adapter->nfc_lock);
2759 
2760 	return err;
2761 }
2762 
2763 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2764 				   struct flow_cls_offload *cls_flower)
2765 {
2766 	switch (cls_flower->command) {
2767 	case FLOW_CLS_REPLACE:
2768 		return igb_configure_clsflower(adapter, cls_flower);
2769 	case FLOW_CLS_DESTROY:
2770 		return igb_delete_clsflower(adapter, cls_flower);
2771 	case FLOW_CLS_STATS:
2772 		return -EOPNOTSUPP;
2773 	default:
2774 		return -EOPNOTSUPP;
2775 	}
2776 }
2777 
2778 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2779 				 void *cb_priv)
2780 {
2781 	struct igb_adapter *adapter = cb_priv;
2782 
2783 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2784 		return -EOPNOTSUPP;
2785 
2786 	switch (type) {
2787 	case TC_SETUP_CLSFLOWER:
2788 		return igb_setup_tc_cls_flower(adapter, type_data);
2789 
2790 	default:
2791 		return -EOPNOTSUPP;
2792 	}
2793 }
2794 
2795 static int igb_offload_txtime(struct igb_adapter *adapter,
2796 			      struct tc_etf_qopt_offload *qopt)
2797 {
2798 	struct e1000_hw *hw = &adapter->hw;
2799 	int err;
2800 
2801 	/* Launchtime offloading is only supported by i210 controller. */
2802 	if (hw->mac.type != e1000_i210)
2803 		return -EOPNOTSUPP;
2804 
2805 	/* Launchtime offloading is only supported by queues 0 and 1. */
2806 	if (qopt->queue < 0 || qopt->queue > 1)
2807 		return -EINVAL;
2808 
2809 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2810 	if (err)
2811 		return err;
2812 
2813 	igb_offload_apply(adapter, qopt->queue);
2814 
2815 	return 0;
2816 }
2817 
2818 static int igb_tc_query_caps(struct igb_adapter *adapter,
2819 			     struct tc_query_caps_base *base)
2820 {
2821 	switch (base->type) {
2822 	case TC_SETUP_QDISC_TAPRIO: {
2823 		struct tc_taprio_caps *caps = base->caps;
2824 
2825 		caps->broken_mqprio = true;
2826 
2827 		return 0;
2828 	}
2829 	default:
2830 		return -EOPNOTSUPP;
2831 	}
2832 }
2833 
2834 static LIST_HEAD(igb_block_cb_list);
2835 
2836 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2837 			void *type_data)
2838 {
2839 	struct igb_adapter *adapter = netdev_priv(dev);
2840 
2841 	switch (type) {
2842 	case TC_QUERY_CAPS:
2843 		return igb_tc_query_caps(adapter, type_data);
2844 	case TC_SETUP_QDISC_CBS:
2845 		return igb_offload_cbs(adapter, type_data);
2846 	case TC_SETUP_BLOCK:
2847 		return flow_block_cb_setup_simple(type_data,
2848 						  &igb_block_cb_list,
2849 						  igb_setup_tc_block_cb,
2850 						  adapter, adapter, true);
2851 
2852 	case TC_SETUP_QDISC_ETF:
2853 		return igb_offload_txtime(adapter, type_data);
2854 
2855 	default:
2856 		return -EOPNOTSUPP;
2857 	}
2858 }
2859 
2860 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2861 {
2862 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2863 	struct igb_adapter *adapter = netdev_priv(dev);
2864 	struct bpf_prog *prog = bpf->prog, *old_prog;
2865 	bool running = netif_running(dev);
2866 	bool need_reset;
2867 
2868 	/* verify igb ring attributes are sufficient for XDP */
2869 	for (i = 0; i < adapter->num_rx_queues; i++) {
2870 		struct igb_ring *ring = adapter->rx_ring[i];
2871 
2872 		if (frame_size > igb_rx_bufsz(ring)) {
2873 			NL_SET_ERR_MSG_MOD(bpf->extack,
2874 					   "The RX buffer size is too small for the frame size");
2875 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2876 				    igb_rx_bufsz(ring), frame_size);
2877 			return -EINVAL;
2878 		}
2879 	}
2880 
2881 	old_prog = xchg(&adapter->xdp_prog, prog);
2882 	need_reset = (!!prog != !!old_prog);
2883 
2884 	/* device is up and bpf is added/removed, must setup the RX queues */
2885 	if (need_reset && running) {
2886 		igb_close(dev);
2887 	} else {
2888 		for (i = 0; i < adapter->num_rx_queues; i++)
2889 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2890 			    adapter->xdp_prog);
2891 	}
2892 
2893 	if (old_prog)
2894 		bpf_prog_put(old_prog);
2895 
2896 	/* bpf is just replaced, RXQ and MTU are already setup */
2897 	if (!need_reset) {
2898 		return 0;
2899 	} else {
2900 		if (prog)
2901 			xdp_features_set_redirect_target(dev, true);
2902 		else
2903 			xdp_features_clear_redirect_target(dev);
2904 	}
2905 
2906 	if (running)
2907 		igb_open(dev);
2908 
2909 	return 0;
2910 }
2911 
2912 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2913 {
2914 	switch (xdp->command) {
2915 	case XDP_SETUP_PROG:
2916 		return igb_xdp_setup(dev, xdp);
2917 	default:
2918 		return -EINVAL;
2919 	}
2920 }
2921 
2922 /* This function assumes __netif_tx_lock is held by the caller. */
2923 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2924 {
2925 	lockdep_assert_held(&txring_txq(ring)->_xmit_lock);
2926 
2927 	/* Force memory writes to complete before letting h/w know there
2928 	 * are new descriptors to fetch.
2929 	 */
2930 	wmb();
2931 	writel(ring->next_to_use, ring->tail);
2932 }
2933 
2934 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2935 {
2936 	unsigned int r_idx = smp_processor_id();
2937 
2938 	if (r_idx >= adapter->num_tx_queues)
2939 		r_idx = r_idx % adapter->num_tx_queues;
2940 
2941 	return adapter->tx_ring[r_idx];
2942 }
2943 
2944 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2945 {
2946 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2947 	int cpu = smp_processor_id();
2948 	struct igb_ring *tx_ring;
2949 	struct netdev_queue *nq;
2950 	u32 ret;
2951 
2952 	if (unlikely(!xdpf))
2953 		return IGB_XDP_CONSUMED;
2954 
2955 	/* During program transitions its possible adapter->xdp_prog is assigned
2956 	 * but ring has not been configured yet. In this case simply abort xmit.
2957 	 */
2958 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2959 	if (unlikely(!tx_ring))
2960 		return IGB_XDP_CONSUMED;
2961 
2962 	nq = txring_txq(tx_ring);
2963 	__netif_tx_lock(nq, cpu);
2964 	/* Avoid transmit queue timeout since we share it with the slow path */
2965 	txq_trans_cond_update(nq);
2966 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2967 	__netif_tx_unlock(nq);
2968 
2969 	return ret;
2970 }
2971 
2972 static int igb_xdp_xmit(struct net_device *dev, int n,
2973 			struct xdp_frame **frames, u32 flags)
2974 {
2975 	struct igb_adapter *adapter = netdev_priv(dev);
2976 	int cpu = smp_processor_id();
2977 	struct igb_ring *tx_ring;
2978 	struct netdev_queue *nq;
2979 	int nxmit = 0;
2980 	int i;
2981 
2982 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2983 		return -ENETDOWN;
2984 
2985 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2986 		return -EINVAL;
2987 
2988 	/* During program transitions its possible adapter->xdp_prog is assigned
2989 	 * but ring has not been configured yet. In this case simply abort xmit.
2990 	 */
2991 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2992 	if (unlikely(!tx_ring))
2993 		return -ENXIO;
2994 
2995 	nq = txring_txq(tx_ring);
2996 	__netif_tx_lock(nq, cpu);
2997 
2998 	/* Avoid transmit queue timeout since we share it with the slow path */
2999 	txq_trans_cond_update(nq);
3000 
3001 	for (i = 0; i < n; i++) {
3002 		struct xdp_frame *xdpf = frames[i];
3003 		int err;
3004 
3005 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3006 		if (err != IGB_XDP_TX)
3007 			break;
3008 		nxmit++;
3009 	}
3010 
3011 	if (unlikely(flags & XDP_XMIT_FLUSH))
3012 		igb_xdp_ring_update_tail(tx_ring);
3013 
3014 	__netif_tx_unlock(nq);
3015 
3016 	return nxmit;
3017 }
3018 
3019 static const struct net_device_ops igb_netdev_ops = {
3020 	.ndo_open		= igb_open,
3021 	.ndo_stop		= igb_close,
3022 	.ndo_start_xmit		= igb_xmit_frame,
3023 	.ndo_get_stats64	= igb_get_stats64,
3024 	.ndo_set_rx_mode	= igb_set_rx_mode,
3025 	.ndo_set_mac_address	= igb_set_mac,
3026 	.ndo_change_mtu		= igb_change_mtu,
3027 	.ndo_eth_ioctl		= igb_ioctl,
3028 	.ndo_tx_timeout		= igb_tx_timeout,
3029 	.ndo_validate_addr	= eth_validate_addr,
3030 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3031 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3032 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3033 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3034 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3035 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3036 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3037 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3038 	.ndo_fix_features	= igb_fix_features,
3039 	.ndo_set_features	= igb_set_features,
3040 	.ndo_fdb_add		= igb_ndo_fdb_add,
3041 	.ndo_features_check	= igb_features_check,
3042 	.ndo_setup_tc		= igb_setup_tc,
3043 	.ndo_bpf		= igb_xdp,
3044 	.ndo_xdp_xmit		= igb_xdp_xmit,
3045 };
3046 
3047 /**
3048  * igb_set_fw_version - Configure version string for ethtool
3049  * @adapter: adapter struct
3050  **/
3051 void igb_set_fw_version(struct igb_adapter *adapter)
3052 {
3053 	struct e1000_hw *hw = &adapter->hw;
3054 	struct e1000_fw_version fw;
3055 
3056 	igb_get_fw_version(hw, &fw);
3057 
3058 	switch (hw->mac.type) {
3059 	case e1000_i210:
3060 	case e1000_i211:
3061 		if (!(igb_get_flash_presence_i210(hw))) {
3062 			snprintf(adapter->fw_version,
3063 				 sizeof(adapter->fw_version),
3064 				 "%2d.%2d-%d",
3065 				 fw.invm_major, fw.invm_minor,
3066 				 fw.invm_img_type);
3067 			break;
3068 		}
3069 		fallthrough;
3070 	default:
3071 		/* if option rom is valid, display its version too */
3072 		if (fw.or_valid) {
3073 			snprintf(adapter->fw_version,
3074 				 sizeof(adapter->fw_version),
3075 				 "%d.%d, 0x%08x, %d.%d.%d",
3076 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3077 				 fw.or_major, fw.or_build, fw.or_patch);
3078 		/* no option rom */
3079 		} else if (fw.etrack_id != 0X0000) {
3080 			snprintf(adapter->fw_version,
3081 				 sizeof(adapter->fw_version),
3082 				 "%d.%d, 0x%08x",
3083 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
3084 		} else {
3085 			snprintf(adapter->fw_version,
3086 				 sizeof(adapter->fw_version),
3087 				 "%d.%d.%d",
3088 				 fw.eep_major, fw.eep_minor, fw.eep_build);
3089 		}
3090 		break;
3091 	}
3092 }
3093 
3094 /**
3095  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3096  *
3097  * @adapter: adapter struct
3098  **/
3099 static void igb_init_mas(struct igb_adapter *adapter)
3100 {
3101 	struct e1000_hw *hw = &adapter->hw;
3102 	u16 eeprom_data;
3103 
3104 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3105 	switch (hw->bus.func) {
3106 	case E1000_FUNC_0:
3107 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3108 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3109 			netdev_info(adapter->netdev,
3110 				"MAS: Enabling Media Autosense for port %d\n",
3111 				hw->bus.func);
3112 		}
3113 		break;
3114 	case E1000_FUNC_1:
3115 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3116 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3117 			netdev_info(adapter->netdev,
3118 				"MAS: Enabling Media Autosense for port %d\n",
3119 				hw->bus.func);
3120 		}
3121 		break;
3122 	case E1000_FUNC_2:
3123 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3124 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3125 			netdev_info(adapter->netdev,
3126 				"MAS: Enabling Media Autosense for port %d\n",
3127 				hw->bus.func);
3128 		}
3129 		break;
3130 	case E1000_FUNC_3:
3131 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3132 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3133 			netdev_info(adapter->netdev,
3134 				"MAS: Enabling Media Autosense for port %d\n",
3135 				hw->bus.func);
3136 		}
3137 		break;
3138 	default:
3139 		/* Shouldn't get here */
3140 		netdev_err(adapter->netdev,
3141 			"MAS: Invalid port configuration, returning\n");
3142 		break;
3143 	}
3144 }
3145 
3146 /**
3147  *  igb_init_i2c - Init I2C interface
3148  *  @adapter: pointer to adapter structure
3149  **/
3150 static s32 igb_init_i2c(struct igb_adapter *adapter)
3151 {
3152 	s32 status = 0;
3153 
3154 	/* I2C interface supported on i350 devices */
3155 	if (adapter->hw.mac.type != e1000_i350)
3156 		return 0;
3157 
3158 	/* Initialize the i2c bus which is controlled by the registers.
3159 	 * This bus will use the i2c_algo_bit structure that implements
3160 	 * the protocol through toggling of the 4 bits in the register.
3161 	 */
3162 	adapter->i2c_adap.owner = THIS_MODULE;
3163 	adapter->i2c_algo = igb_i2c_algo;
3164 	adapter->i2c_algo.data = adapter;
3165 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3166 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3167 	strscpy(adapter->i2c_adap.name, "igb BB",
3168 		sizeof(adapter->i2c_adap.name));
3169 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3170 	return status;
3171 }
3172 
3173 /**
3174  *  igb_probe - Device Initialization Routine
3175  *  @pdev: PCI device information struct
3176  *  @ent: entry in igb_pci_tbl
3177  *
3178  *  Returns 0 on success, negative on failure
3179  *
3180  *  igb_probe initializes an adapter identified by a pci_dev structure.
3181  *  The OS initialization, configuring of the adapter private structure,
3182  *  and a hardware reset occur.
3183  **/
3184 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3185 {
3186 	struct net_device *netdev;
3187 	struct igb_adapter *adapter;
3188 	struct e1000_hw *hw;
3189 	u16 eeprom_data = 0;
3190 	s32 ret_val;
3191 	static int global_quad_port_a; /* global quad port a indication */
3192 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3193 	u8 part_str[E1000_PBANUM_LENGTH];
3194 	int err;
3195 
3196 	/* Catch broken hardware that put the wrong VF device ID in
3197 	 * the PCIe SR-IOV capability.
3198 	 */
3199 	if (pdev->is_virtfn) {
3200 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3201 			pci_name(pdev), pdev->vendor, pdev->device);
3202 		return -EINVAL;
3203 	}
3204 
3205 	err = pci_enable_device_mem(pdev);
3206 	if (err)
3207 		return err;
3208 
3209 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3210 	if (err) {
3211 		dev_err(&pdev->dev,
3212 			"No usable DMA configuration, aborting\n");
3213 		goto err_dma;
3214 	}
3215 
3216 	err = pci_request_mem_regions(pdev, igb_driver_name);
3217 	if (err)
3218 		goto err_pci_reg;
3219 
3220 	pci_set_master(pdev);
3221 	pci_save_state(pdev);
3222 
3223 	err = -ENOMEM;
3224 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3225 				   IGB_MAX_TX_QUEUES);
3226 	if (!netdev)
3227 		goto err_alloc_etherdev;
3228 
3229 	SET_NETDEV_DEV(netdev, &pdev->dev);
3230 
3231 	pci_set_drvdata(pdev, netdev);
3232 	adapter = netdev_priv(netdev);
3233 	adapter->netdev = netdev;
3234 	adapter->pdev = pdev;
3235 	hw = &adapter->hw;
3236 	hw->back = adapter;
3237 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3238 
3239 	err = -EIO;
3240 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3241 	if (!adapter->io_addr)
3242 		goto err_ioremap;
3243 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3244 	hw->hw_addr = adapter->io_addr;
3245 
3246 	netdev->netdev_ops = &igb_netdev_ops;
3247 	igb_set_ethtool_ops(netdev);
3248 	netdev->watchdog_timeo = 5 * HZ;
3249 
3250 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3251 
3252 	netdev->mem_start = pci_resource_start(pdev, 0);
3253 	netdev->mem_end = pci_resource_end(pdev, 0);
3254 
3255 	/* PCI config space info */
3256 	hw->vendor_id = pdev->vendor;
3257 	hw->device_id = pdev->device;
3258 	hw->revision_id = pdev->revision;
3259 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3260 	hw->subsystem_device_id = pdev->subsystem_device;
3261 
3262 	/* Copy the default MAC, PHY and NVM function pointers */
3263 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3264 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3265 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3266 	/* Initialize skew-specific constants */
3267 	err = ei->get_invariants(hw);
3268 	if (err)
3269 		goto err_sw_init;
3270 
3271 	/* setup the private structure */
3272 	err = igb_sw_init(adapter);
3273 	if (err)
3274 		goto err_sw_init;
3275 
3276 	igb_get_bus_info_pcie(hw);
3277 
3278 	hw->phy.autoneg_wait_to_complete = false;
3279 
3280 	/* Copper options */
3281 	if (hw->phy.media_type == e1000_media_type_copper) {
3282 		hw->phy.mdix = AUTO_ALL_MODES;
3283 		hw->phy.disable_polarity_correction = false;
3284 		hw->phy.ms_type = e1000_ms_hw_default;
3285 	}
3286 
3287 	if (igb_check_reset_block(hw))
3288 		dev_info(&pdev->dev,
3289 			"PHY reset is blocked due to SOL/IDER session.\n");
3290 
3291 	/* features is initialized to 0 in allocation, it might have bits
3292 	 * set by igb_sw_init so we should use an or instead of an
3293 	 * assignment.
3294 	 */
3295 	netdev->features |= NETIF_F_SG |
3296 			    NETIF_F_TSO |
3297 			    NETIF_F_TSO6 |
3298 			    NETIF_F_RXHASH |
3299 			    NETIF_F_RXCSUM |
3300 			    NETIF_F_HW_CSUM;
3301 
3302 	if (hw->mac.type >= e1000_82576)
3303 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3304 
3305 	if (hw->mac.type >= e1000_i350)
3306 		netdev->features |= NETIF_F_HW_TC;
3307 
3308 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3309 				  NETIF_F_GSO_GRE_CSUM | \
3310 				  NETIF_F_GSO_IPXIP4 | \
3311 				  NETIF_F_GSO_IPXIP6 | \
3312 				  NETIF_F_GSO_UDP_TUNNEL | \
3313 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3314 
3315 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3316 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3317 
3318 	/* copy netdev features into list of user selectable features */
3319 	netdev->hw_features |= netdev->features |
3320 			       NETIF_F_HW_VLAN_CTAG_RX |
3321 			       NETIF_F_HW_VLAN_CTAG_TX |
3322 			       NETIF_F_RXALL;
3323 
3324 	if (hw->mac.type >= e1000_i350)
3325 		netdev->hw_features |= NETIF_F_NTUPLE;
3326 
3327 	netdev->features |= NETIF_F_HIGHDMA;
3328 
3329 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3330 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3331 	netdev->hw_enc_features |= netdev->vlan_features;
3332 
3333 	/* set this bit last since it cannot be part of vlan_features */
3334 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3335 			    NETIF_F_HW_VLAN_CTAG_RX |
3336 			    NETIF_F_HW_VLAN_CTAG_TX;
3337 
3338 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3339 
3340 	netdev->priv_flags |= IFF_UNICAST_FLT;
3341 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3342 
3343 	/* MTU range: 68 - 9216 */
3344 	netdev->min_mtu = ETH_MIN_MTU;
3345 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3346 
3347 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3348 
3349 	/* before reading the NVM, reset the controller to put the device in a
3350 	 * known good starting state
3351 	 */
3352 	hw->mac.ops.reset_hw(hw);
3353 
3354 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3355 	 * that doesn't contain a checksum
3356 	 */
3357 	switch (hw->mac.type) {
3358 	case e1000_i210:
3359 	case e1000_i211:
3360 		if (igb_get_flash_presence_i210(hw)) {
3361 			if (hw->nvm.ops.validate(hw) < 0) {
3362 				dev_err(&pdev->dev,
3363 					"The NVM Checksum Is Not Valid\n");
3364 				err = -EIO;
3365 				goto err_eeprom;
3366 			}
3367 		}
3368 		break;
3369 	default:
3370 		if (hw->nvm.ops.validate(hw) < 0) {
3371 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3372 			err = -EIO;
3373 			goto err_eeprom;
3374 		}
3375 		break;
3376 	}
3377 
3378 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3379 		/* copy the MAC address out of the NVM */
3380 		if (hw->mac.ops.read_mac_addr(hw))
3381 			dev_err(&pdev->dev, "NVM Read Error\n");
3382 	}
3383 
3384 	eth_hw_addr_set(netdev, hw->mac.addr);
3385 
3386 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3387 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3388 		err = -EIO;
3389 		goto err_eeprom;
3390 	}
3391 
3392 	igb_set_default_mac_filter(adapter);
3393 
3394 	/* get firmware version for ethtool -i */
3395 	igb_set_fw_version(adapter);
3396 
3397 	/* configure RXPBSIZE and TXPBSIZE */
3398 	if (hw->mac.type == e1000_i210) {
3399 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3400 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3401 	}
3402 
3403 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3404 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3405 
3406 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3407 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3408 
3409 	/* Initialize link properties that are user-changeable */
3410 	adapter->fc_autoneg = true;
3411 	hw->mac.autoneg = true;
3412 	hw->phy.autoneg_advertised = 0x2f;
3413 
3414 	hw->fc.requested_mode = e1000_fc_default;
3415 	hw->fc.current_mode = e1000_fc_default;
3416 
3417 	igb_validate_mdi_setting(hw);
3418 
3419 	/* By default, support wake on port A */
3420 	if (hw->bus.func == 0)
3421 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3422 
3423 	/* Check the NVM for wake support on non-port A ports */
3424 	if (hw->mac.type >= e1000_82580)
3425 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3426 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3427 				 &eeprom_data);
3428 	else if (hw->bus.func == 1)
3429 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3430 
3431 	if (eeprom_data & IGB_EEPROM_APME)
3432 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3433 
3434 	/* now that we have the eeprom settings, apply the special cases where
3435 	 * the eeprom may be wrong or the board simply won't support wake on
3436 	 * lan on a particular port
3437 	 */
3438 	switch (pdev->device) {
3439 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3440 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3441 		break;
3442 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3443 	case E1000_DEV_ID_82576_FIBER:
3444 	case E1000_DEV_ID_82576_SERDES:
3445 		/* Wake events only supported on port A for dual fiber
3446 		 * regardless of eeprom setting
3447 		 */
3448 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3449 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3450 		break;
3451 	case E1000_DEV_ID_82576_QUAD_COPPER:
3452 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3453 		/* if quad port adapter, disable WoL on all but port A */
3454 		if (global_quad_port_a != 0)
3455 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3456 		else
3457 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3458 		/* Reset for multiple quad port adapters */
3459 		if (++global_quad_port_a == 4)
3460 			global_quad_port_a = 0;
3461 		break;
3462 	default:
3463 		/* If the device can't wake, don't set software support */
3464 		if (!device_can_wakeup(&adapter->pdev->dev))
3465 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3466 	}
3467 
3468 	/* initialize the wol settings based on the eeprom settings */
3469 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3470 		adapter->wol |= E1000_WUFC_MAG;
3471 
3472 	/* Some vendors want WoL disabled by default, but still supported */
3473 	if ((hw->mac.type == e1000_i350) &&
3474 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3475 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3476 		adapter->wol = 0;
3477 	}
3478 
3479 	/* Some vendors want the ability to Use the EEPROM setting as
3480 	 * enable/disable only, and not for capability
3481 	 */
3482 	if (((hw->mac.type == e1000_i350) ||
3483 	     (hw->mac.type == e1000_i354)) &&
3484 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3485 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3486 		adapter->wol = 0;
3487 	}
3488 	if (hw->mac.type == e1000_i350) {
3489 		if (((pdev->subsystem_device == 0x5001) ||
3490 		     (pdev->subsystem_device == 0x5002)) &&
3491 				(hw->bus.func == 0)) {
3492 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 			adapter->wol = 0;
3494 		}
3495 		if (pdev->subsystem_device == 0x1F52)
3496 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3497 	}
3498 
3499 	device_set_wakeup_enable(&adapter->pdev->dev,
3500 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3501 
3502 	/* reset the hardware with the new settings */
3503 	igb_reset(adapter);
3504 
3505 	/* Init the I2C interface */
3506 	err = igb_init_i2c(adapter);
3507 	if (err) {
3508 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3509 		goto err_eeprom;
3510 	}
3511 
3512 	/* let the f/w know that the h/w is now under the control of the
3513 	 * driver.
3514 	 */
3515 	igb_get_hw_control(adapter);
3516 
3517 	strcpy(netdev->name, "eth%d");
3518 	err = register_netdev(netdev);
3519 	if (err)
3520 		goto err_register;
3521 
3522 	/* carrier off reporting is important to ethtool even BEFORE open */
3523 	netif_carrier_off(netdev);
3524 
3525 #ifdef CONFIG_IGB_DCA
3526 	if (dca_add_requester(&pdev->dev) == 0) {
3527 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3528 		dev_info(&pdev->dev, "DCA enabled\n");
3529 		igb_setup_dca(adapter);
3530 	}
3531 
3532 #endif
3533 #ifdef CONFIG_IGB_HWMON
3534 	/* Initialize the thermal sensor on i350 devices. */
3535 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3536 		u16 ets_word;
3537 
3538 		/* Read the NVM to determine if this i350 device supports an
3539 		 * external thermal sensor.
3540 		 */
3541 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3542 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3543 			adapter->ets = true;
3544 		else
3545 			adapter->ets = false;
3546 		/* Only enable I2C bit banging if an external thermal
3547 		 * sensor is supported.
3548 		 */
3549 		if (adapter->ets)
3550 			igb_set_i2c_bb(hw);
3551 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3552 		if (igb_sysfs_init(adapter))
3553 			dev_err(&pdev->dev,
3554 				"failed to allocate sysfs resources\n");
3555 	} else {
3556 		adapter->ets = false;
3557 	}
3558 #endif
3559 	/* Check if Media Autosense is enabled */
3560 	adapter->ei = *ei;
3561 	if (hw->dev_spec._82575.mas_capable)
3562 		igb_init_mas(adapter);
3563 
3564 	/* do hw tstamp init after resetting */
3565 	igb_ptp_init(adapter);
3566 
3567 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3568 	/* print bus type/speed/width info, not applicable to i354 */
3569 	if (hw->mac.type != e1000_i354) {
3570 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3571 			 netdev->name,
3572 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3573 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3574 			   "unknown"),
3575 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3576 			  "Width x4" :
3577 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3578 			  "Width x2" :
3579 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3580 			  "Width x1" : "unknown"), netdev->dev_addr);
3581 	}
3582 
3583 	if ((hw->mac.type == e1000_82576 &&
3584 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3585 	    (hw->mac.type >= e1000_i210 ||
3586 	     igb_get_flash_presence_i210(hw))) {
3587 		ret_val = igb_read_part_string(hw, part_str,
3588 					       E1000_PBANUM_LENGTH);
3589 	} else {
3590 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3591 	}
3592 
3593 	if (ret_val)
3594 		strcpy(part_str, "Unknown");
3595 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3596 	dev_info(&pdev->dev,
3597 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3598 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3599 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3600 		adapter->num_rx_queues, adapter->num_tx_queues);
3601 	if (hw->phy.media_type == e1000_media_type_copper) {
3602 		switch (hw->mac.type) {
3603 		case e1000_i350:
3604 		case e1000_i210:
3605 		case e1000_i211:
3606 			/* Enable EEE for internal copper PHY devices */
3607 			err = igb_set_eee_i350(hw, true, true);
3608 			if ((!err) &&
3609 			    (!hw->dev_spec._82575.eee_disable)) {
3610 				adapter->eee_advert =
3611 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3612 				adapter->flags |= IGB_FLAG_EEE;
3613 			}
3614 			break;
3615 		case e1000_i354:
3616 			if ((rd32(E1000_CTRL_EXT) &
3617 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3618 				err = igb_set_eee_i354(hw, true, true);
3619 				if ((!err) &&
3620 					(!hw->dev_spec._82575.eee_disable)) {
3621 					adapter->eee_advert =
3622 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3623 					adapter->flags |= IGB_FLAG_EEE;
3624 				}
3625 			}
3626 			break;
3627 		default:
3628 			break;
3629 		}
3630 	}
3631 
3632 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3633 
3634 	pm_runtime_put_noidle(&pdev->dev);
3635 	return 0;
3636 
3637 err_register:
3638 	igb_release_hw_control(adapter);
3639 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3640 err_eeprom:
3641 	if (!igb_check_reset_block(hw))
3642 		igb_reset_phy(hw);
3643 
3644 	if (hw->flash_address)
3645 		iounmap(hw->flash_address);
3646 err_sw_init:
3647 	kfree(adapter->mac_table);
3648 	kfree(adapter->shadow_vfta);
3649 	igb_clear_interrupt_scheme(adapter);
3650 #ifdef CONFIG_PCI_IOV
3651 	igb_disable_sriov(pdev, false);
3652 #endif
3653 	pci_iounmap(pdev, adapter->io_addr);
3654 err_ioremap:
3655 	free_netdev(netdev);
3656 err_alloc_etherdev:
3657 	pci_release_mem_regions(pdev);
3658 err_pci_reg:
3659 err_dma:
3660 	pci_disable_device(pdev);
3661 	return err;
3662 }
3663 
3664 #ifdef CONFIG_PCI_IOV
3665 static int igb_sriov_reinit(struct pci_dev *dev)
3666 {
3667 	struct net_device *netdev = pci_get_drvdata(dev);
3668 	struct igb_adapter *adapter = netdev_priv(netdev);
3669 	struct pci_dev *pdev = adapter->pdev;
3670 
3671 	rtnl_lock();
3672 
3673 	if (netif_running(netdev))
3674 		igb_close(netdev);
3675 	else
3676 		igb_reset(adapter);
3677 
3678 	igb_clear_interrupt_scheme(adapter);
3679 
3680 	igb_init_queue_configuration(adapter);
3681 
3682 	if (igb_init_interrupt_scheme(adapter, true)) {
3683 		rtnl_unlock();
3684 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3685 		return -ENOMEM;
3686 	}
3687 
3688 	if (netif_running(netdev))
3689 		igb_open(netdev);
3690 
3691 	rtnl_unlock();
3692 
3693 	return 0;
3694 }
3695 
3696 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3697 {
3698 	struct net_device *netdev = pci_get_drvdata(pdev);
3699 	struct igb_adapter *adapter = netdev_priv(netdev);
3700 	struct e1000_hw *hw = &adapter->hw;
3701 	unsigned long flags;
3702 
3703 	/* reclaim resources allocated to VFs */
3704 	if (adapter->vf_data) {
3705 		/* disable iov and allow time for transactions to clear */
3706 		if (pci_vfs_assigned(pdev)) {
3707 			dev_warn(&pdev->dev,
3708 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3709 			return -EPERM;
3710 		} else {
3711 			pci_disable_sriov(pdev);
3712 			msleep(500);
3713 		}
3714 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3715 		kfree(adapter->vf_mac_list);
3716 		adapter->vf_mac_list = NULL;
3717 		kfree(adapter->vf_data);
3718 		adapter->vf_data = NULL;
3719 		adapter->vfs_allocated_count = 0;
3720 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3721 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3722 		wrfl();
3723 		msleep(100);
3724 		dev_info(&pdev->dev, "IOV Disabled\n");
3725 
3726 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3727 		adapter->flags |= IGB_FLAG_DMAC;
3728 	}
3729 
3730 	return reinit ? igb_sriov_reinit(pdev) : 0;
3731 }
3732 
3733 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3734 {
3735 	struct net_device *netdev = pci_get_drvdata(pdev);
3736 	struct igb_adapter *adapter = netdev_priv(netdev);
3737 	int old_vfs = pci_num_vf(pdev);
3738 	struct vf_mac_filter *mac_list;
3739 	int err = 0;
3740 	int num_vf_mac_filters, i;
3741 
3742 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3743 		err = -EPERM;
3744 		goto out;
3745 	}
3746 	if (!num_vfs)
3747 		goto out;
3748 
3749 	if (old_vfs) {
3750 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3751 			 old_vfs, max_vfs);
3752 		adapter->vfs_allocated_count = old_vfs;
3753 	} else
3754 		adapter->vfs_allocated_count = num_vfs;
3755 
3756 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3757 				sizeof(struct vf_data_storage), GFP_KERNEL);
3758 
3759 	/* if allocation failed then we do not support SR-IOV */
3760 	if (!adapter->vf_data) {
3761 		adapter->vfs_allocated_count = 0;
3762 		err = -ENOMEM;
3763 		goto out;
3764 	}
3765 
3766 	/* Due to the limited number of RAR entries calculate potential
3767 	 * number of MAC filters available for the VFs. Reserve entries
3768 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3769 	 * for each VF for VF MAC.
3770 	 */
3771 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3772 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3773 			      adapter->vfs_allocated_count);
3774 
3775 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3776 				       sizeof(struct vf_mac_filter),
3777 				       GFP_KERNEL);
3778 
3779 	mac_list = adapter->vf_mac_list;
3780 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3781 
3782 	if (adapter->vf_mac_list) {
3783 		/* Initialize list of VF MAC filters */
3784 		for (i = 0; i < num_vf_mac_filters; i++) {
3785 			mac_list->vf = -1;
3786 			mac_list->free = true;
3787 			list_add(&mac_list->l, &adapter->vf_macs.l);
3788 			mac_list++;
3789 		}
3790 	} else {
3791 		/* If we could not allocate memory for the VF MAC filters
3792 		 * we can continue without this feature but warn user.
3793 		 */
3794 		dev_err(&pdev->dev,
3795 			"Unable to allocate memory for VF MAC filter list\n");
3796 	}
3797 
3798 	dev_info(&pdev->dev, "%d VFs allocated\n",
3799 		 adapter->vfs_allocated_count);
3800 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3801 		igb_vf_configure(adapter, i);
3802 
3803 	/* DMA Coalescing is not supported in IOV mode. */
3804 	adapter->flags &= ~IGB_FLAG_DMAC;
3805 
3806 	if (reinit) {
3807 		err = igb_sriov_reinit(pdev);
3808 		if (err)
3809 			goto err_out;
3810 	}
3811 
3812 	/* only call pci_enable_sriov() if no VFs are allocated already */
3813 	if (!old_vfs) {
3814 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3815 		if (err)
3816 			goto err_out;
3817 	}
3818 
3819 	goto out;
3820 
3821 err_out:
3822 	kfree(adapter->vf_mac_list);
3823 	adapter->vf_mac_list = NULL;
3824 	kfree(adapter->vf_data);
3825 	adapter->vf_data = NULL;
3826 	adapter->vfs_allocated_count = 0;
3827 out:
3828 	return err;
3829 }
3830 
3831 #endif
3832 /**
3833  *  igb_remove_i2c - Cleanup  I2C interface
3834  *  @adapter: pointer to adapter structure
3835  **/
3836 static void igb_remove_i2c(struct igb_adapter *adapter)
3837 {
3838 	/* free the adapter bus structure */
3839 	i2c_del_adapter(&adapter->i2c_adap);
3840 }
3841 
3842 /**
3843  *  igb_remove - Device Removal Routine
3844  *  @pdev: PCI device information struct
3845  *
3846  *  igb_remove is called by the PCI subsystem to alert the driver
3847  *  that it should release a PCI device.  The could be caused by a
3848  *  Hot-Plug event, or because the driver is going to be removed from
3849  *  memory.
3850  **/
3851 static void igb_remove(struct pci_dev *pdev)
3852 {
3853 	struct net_device *netdev = pci_get_drvdata(pdev);
3854 	struct igb_adapter *adapter = netdev_priv(netdev);
3855 	struct e1000_hw *hw = &adapter->hw;
3856 
3857 	pm_runtime_get_noresume(&pdev->dev);
3858 #ifdef CONFIG_IGB_HWMON
3859 	igb_sysfs_exit(adapter);
3860 #endif
3861 	igb_remove_i2c(adapter);
3862 	igb_ptp_stop(adapter);
3863 	/* The watchdog timer may be rescheduled, so explicitly
3864 	 * disable watchdog from being rescheduled.
3865 	 */
3866 	set_bit(__IGB_DOWN, &adapter->state);
3867 	del_timer_sync(&adapter->watchdog_timer);
3868 	del_timer_sync(&adapter->phy_info_timer);
3869 
3870 	cancel_work_sync(&adapter->reset_task);
3871 	cancel_work_sync(&adapter->watchdog_task);
3872 
3873 #ifdef CONFIG_IGB_DCA
3874 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3875 		dev_info(&pdev->dev, "DCA disabled\n");
3876 		dca_remove_requester(&pdev->dev);
3877 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3878 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3879 	}
3880 #endif
3881 
3882 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3883 	 * would have already happened in close and is redundant.
3884 	 */
3885 	igb_release_hw_control(adapter);
3886 
3887 #ifdef CONFIG_PCI_IOV
3888 	igb_disable_sriov(pdev, false);
3889 #endif
3890 
3891 	unregister_netdev(netdev);
3892 
3893 	igb_clear_interrupt_scheme(adapter);
3894 
3895 	pci_iounmap(pdev, adapter->io_addr);
3896 	if (hw->flash_address)
3897 		iounmap(hw->flash_address);
3898 	pci_release_mem_regions(pdev);
3899 
3900 	kfree(adapter->mac_table);
3901 	kfree(adapter->shadow_vfta);
3902 	free_netdev(netdev);
3903 
3904 	pci_disable_device(pdev);
3905 }
3906 
3907 /**
3908  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3909  *  @adapter: board private structure to initialize
3910  *
3911  *  This function initializes the vf specific data storage and then attempts to
3912  *  allocate the VFs.  The reason for ordering it this way is because it is much
3913  *  more expensive time wise to disable SR-IOV than it is to allocate and free
3914  *  the memory for the VFs.
3915  **/
3916 static void igb_probe_vfs(struct igb_adapter *adapter)
3917 {
3918 #ifdef CONFIG_PCI_IOV
3919 	struct pci_dev *pdev = adapter->pdev;
3920 	struct e1000_hw *hw = &adapter->hw;
3921 
3922 	/* Virtualization features not supported on i210 and 82580 family. */
3923 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3924 	    (hw->mac.type == e1000_82580))
3925 		return;
3926 
3927 	/* Of the below we really only want the effect of getting
3928 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3929 	 * igb_enable_sriov() has no effect.
3930 	 */
3931 	igb_set_interrupt_capability(adapter, true);
3932 	igb_reset_interrupt_capability(adapter);
3933 
3934 	pci_sriov_set_totalvfs(pdev, 7);
3935 	igb_enable_sriov(pdev, max_vfs, false);
3936 
3937 #endif /* CONFIG_PCI_IOV */
3938 }
3939 
3940 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3941 {
3942 	struct e1000_hw *hw = &adapter->hw;
3943 	unsigned int max_rss_queues;
3944 
3945 	/* Determine the maximum number of RSS queues supported. */
3946 	switch (hw->mac.type) {
3947 	case e1000_i211:
3948 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3949 		break;
3950 	case e1000_82575:
3951 	case e1000_i210:
3952 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3953 		break;
3954 	case e1000_i350:
3955 		/* I350 cannot do RSS and SR-IOV at the same time */
3956 		if (!!adapter->vfs_allocated_count) {
3957 			max_rss_queues = 1;
3958 			break;
3959 		}
3960 		fallthrough;
3961 	case e1000_82576:
3962 		if (!!adapter->vfs_allocated_count) {
3963 			max_rss_queues = 2;
3964 			break;
3965 		}
3966 		fallthrough;
3967 	case e1000_82580:
3968 	case e1000_i354:
3969 	default:
3970 		max_rss_queues = IGB_MAX_RX_QUEUES;
3971 		break;
3972 	}
3973 
3974 	return max_rss_queues;
3975 }
3976 
3977 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3978 {
3979 	u32 max_rss_queues;
3980 
3981 	max_rss_queues = igb_get_max_rss_queues(adapter);
3982 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3983 
3984 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3985 }
3986 
3987 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3988 			      const u32 max_rss_queues)
3989 {
3990 	struct e1000_hw *hw = &adapter->hw;
3991 
3992 	/* Determine if we need to pair queues. */
3993 	switch (hw->mac.type) {
3994 	case e1000_82575:
3995 	case e1000_i211:
3996 		/* Device supports enough interrupts without queue pairing. */
3997 		break;
3998 	case e1000_82576:
3999 	case e1000_82580:
4000 	case e1000_i350:
4001 	case e1000_i354:
4002 	case e1000_i210:
4003 	default:
4004 		/* If rss_queues > half of max_rss_queues, pair the queues in
4005 		 * order to conserve interrupts due to limited supply.
4006 		 */
4007 		if (adapter->rss_queues > (max_rss_queues / 2))
4008 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4009 		else
4010 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4011 		break;
4012 	}
4013 }
4014 
4015 /**
4016  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4017  *  @adapter: board private structure to initialize
4018  *
4019  *  igb_sw_init initializes the Adapter private data structure.
4020  *  Fields are initialized based on PCI device information and
4021  *  OS network device settings (MTU size).
4022  **/
4023 static int igb_sw_init(struct igb_adapter *adapter)
4024 {
4025 	struct e1000_hw *hw = &adapter->hw;
4026 	struct net_device *netdev = adapter->netdev;
4027 	struct pci_dev *pdev = adapter->pdev;
4028 
4029 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4030 
4031 	/* set default ring sizes */
4032 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4033 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4034 
4035 	/* set default ITR values */
4036 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4037 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4038 
4039 	/* set default work limits */
4040 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4041 
4042 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4043 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4044 
4045 	spin_lock_init(&adapter->nfc_lock);
4046 	spin_lock_init(&adapter->stats64_lock);
4047 
4048 	/* init spinlock to avoid concurrency of VF resources */
4049 	spin_lock_init(&adapter->vfs_lock);
4050 #ifdef CONFIG_PCI_IOV
4051 	switch (hw->mac.type) {
4052 	case e1000_82576:
4053 	case e1000_i350:
4054 		if (max_vfs > 7) {
4055 			dev_warn(&pdev->dev,
4056 				 "Maximum of 7 VFs per PF, using max\n");
4057 			max_vfs = adapter->vfs_allocated_count = 7;
4058 		} else
4059 			adapter->vfs_allocated_count = max_vfs;
4060 		if (adapter->vfs_allocated_count)
4061 			dev_warn(&pdev->dev,
4062 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4063 		break;
4064 	default:
4065 		break;
4066 	}
4067 #endif /* CONFIG_PCI_IOV */
4068 
4069 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4070 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4071 
4072 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4073 				     sizeof(struct igb_mac_addr),
4074 				     GFP_KERNEL);
4075 	if (!adapter->mac_table)
4076 		return -ENOMEM;
4077 
4078 	igb_probe_vfs(adapter);
4079 
4080 	igb_init_queue_configuration(adapter);
4081 
4082 	/* Setup and initialize a copy of the hw vlan table array */
4083 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4084 				       GFP_KERNEL);
4085 	if (!adapter->shadow_vfta)
4086 		return -ENOMEM;
4087 
4088 	/* This call may decrease the number of queues */
4089 	if (igb_init_interrupt_scheme(adapter, true)) {
4090 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4091 		return -ENOMEM;
4092 	}
4093 
4094 	/* Explicitly disable IRQ since the NIC can be in any state. */
4095 	igb_irq_disable(adapter);
4096 
4097 	if (hw->mac.type >= e1000_i350)
4098 		adapter->flags &= ~IGB_FLAG_DMAC;
4099 
4100 	set_bit(__IGB_DOWN, &adapter->state);
4101 	return 0;
4102 }
4103 
4104 /**
4105  *  __igb_open - Called when a network interface is made active
4106  *  @netdev: network interface device structure
4107  *  @resuming: indicates whether we are in a resume call
4108  *
4109  *  Returns 0 on success, negative value on failure
4110  *
4111  *  The open entry point is called when a network interface is made
4112  *  active by the system (IFF_UP).  At this point all resources needed
4113  *  for transmit and receive operations are allocated, the interrupt
4114  *  handler is registered with the OS, the watchdog timer is started,
4115  *  and the stack is notified that the interface is ready.
4116  **/
4117 static int __igb_open(struct net_device *netdev, bool resuming)
4118 {
4119 	struct igb_adapter *adapter = netdev_priv(netdev);
4120 	struct e1000_hw *hw = &adapter->hw;
4121 	struct pci_dev *pdev = adapter->pdev;
4122 	int err;
4123 	int i;
4124 
4125 	/* disallow open during test */
4126 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4127 		WARN_ON(resuming);
4128 		return -EBUSY;
4129 	}
4130 
4131 	if (!resuming)
4132 		pm_runtime_get_sync(&pdev->dev);
4133 
4134 	netif_carrier_off(netdev);
4135 
4136 	/* allocate transmit descriptors */
4137 	err = igb_setup_all_tx_resources(adapter);
4138 	if (err)
4139 		goto err_setup_tx;
4140 
4141 	/* allocate receive descriptors */
4142 	err = igb_setup_all_rx_resources(adapter);
4143 	if (err)
4144 		goto err_setup_rx;
4145 
4146 	igb_power_up_link(adapter);
4147 
4148 	/* before we allocate an interrupt, we must be ready to handle it.
4149 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4150 	 * as soon as we call pci_request_irq, so we have to setup our
4151 	 * clean_rx handler before we do so.
4152 	 */
4153 	igb_configure(adapter);
4154 
4155 	err = igb_request_irq(adapter);
4156 	if (err)
4157 		goto err_req_irq;
4158 
4159 	/* Notify the stack of the actual queue counts. */
4160 	err = netif_set_real_num_tx_queues(adapter->netdev,
4161 					   adapter->num_tx_queues);
4162 	if (err)
4163 		goto err_set_queues;
4164 
4165 	err = netif_set_real_num_rx_queues(adapter->netdev,
4166 					   adapter->num_rx_queues);
4167 	if (err)
4168 		goto err_set_queues;
4169 
4170 	/* From here on the code is the same as igb_up() */
4171 	clear_bit(__IGB_DOWN, &adapter->state);
4172 
4173 	for (i = 0; i < adapter->num_q_vectors; i++)
4174 		napi_enable(&(adapter->q_vector[i]->napi));
4175 
4176 	/* Clear any pending interrupts. */
4177 	rd32(E1000_TSICR);
4178 	rd32(E1000_ICR);
4179 
4180 	igb_irq_enable(adapter);
4181 
4182 	/* notify VFs that reset has been completed */
4183 	if (adapter->vfs_allocated_count) {
4184 		u32 reg_data = rd32(E1000_CTRL_EXT);
4185 
4186 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4187 		wr32(E1000_CTRL_EXT, reg_data);
4188 	}
4189 
4190 	netif_tx_start_all_queues(netdev);
4191 
4192 	if (!resuming)
4193 		pm_runtime_put(&pdev->dev);
4194 
4195 	/* start the watchdog. */
4196 	hw->mac.get_link_status = 1;
4197 	schedule_work(&adapter->watchdog_task);
4198 
4199 	return 0;
4200 
4201 err_set_queues:
4202 	igb_free_irq(adapter);
4203 err_req_irq:
4204 	igb_release_hw_control(adapter);
4205 	igb_power_down_link(adapter);
4206 	igb_free_all_rx_resources(adapter);
4207 err_setup_rx:
4208 	igb_free_all_tx_resources(adapter);
4209 err_setup_tx:
4210 	igb_reset(adapter);
4211 	if (!resuming)
4212 		pm_runtime_put(&pdev->dev);
4213 
4214 	return err;
4215 }
4216 
4217 int igb_open(struct net_device *netdev)
4218 {
4219 	return __igb_open(netdev, false);
4220 }
4221 
4222 /**
4223  *  __igb_close - Disables a network interface
4224  *  @netdev: network interface device structure
4225  *  @suspending: indicates we are in a suspend call
4226  *
4227  *  Returns 0, this is not allowed to fail
4228  *
4229  *  The close entry point is called when an interface is de-activated
4230  *  by the OS.  The hardware is still under the driver's control, but
4231  *  needs to be disabled.  A global MAC reset is issued to stop the
4232  *  hardware, and all transmit and receive resources are freed.
4233  **/
4234 static int __igb_close(struct net_device *netdev, bool suspending)
4235 {
4236 	struct igb_adapter *adapter = netdev_priv(netdev);
4237 	struct pci_dev *pdev = adapter->pdev;
4238 
4239 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4240 
4241 	if (!suspending)
4242 		pm_runtime_get_sync(&pdev->dev);
4243 
4244 	igb_down(adapter);
4245 	igb_free_irq(adapter);
4246 
4247 	igb_free_all_tx_resources(adapter);
4248 	igb_free_all_rx_resources(adapter);
4249 
4250 	if (!suspending)
4251 		pm_runtime_put_sync(&pdev->dev);
4252 	return 0;
4253 }
4254 
4255 int igb_close(struct net_device *netdev)
4256 {
4257 	if (netif_device_present(netdev) || netdev->dismantle)
4258 		return __igb_close(netdev, false);
4259 	return 0;
4260 }
4261 
4262 /**
4263  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4264  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4265  *
4266  *  Return 0 on success, negative on failure
4267  **/
4268 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4269 {
4270 	struct device *dev = tx_ring->dev;
4271 	int size;
4272 
4273 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4274 
4275 	tx_ring->tx_buffer_info = vmalloc(size);
4276 	if (!tx_ring->tx_buffer_info)
4277 		goto err;
4278 
4279 	/* round up to nearest 4K */
4280 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4281 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4282 
4283 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4284 					   &tx_ring->dma, GFP_KERNEL);
4285 	if (!tx_ring->desc)
4286 		goto err;
4287 
4288 	tx_ring->next_to_use = 0;
4289 	tx_ring->next_to_clean = 0;
4290 
4291 	return 0;
4292 
4293 err:
4294 	vfree(tx_ring->tx_buffer_info);
4295 	tx_ring->tx_buffer_info = NULL;
4296 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4297 	return -ENOMEM;
4298 }
4299 
4300 /**
4301  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4302  *				 (Descriptors) for all queues
4303  *  @adapter: board private structure
4304  *
4305  *  Return 0 on success, negative on failure
4306  **/
4307 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4308 {
4309 	struct pci_dev *pdev = adapter->pdev;
4310 	int i, err = 0;
4311 
4312 	for (i = 0; i < adapter->num_tx_queues; i++) {
4313 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4314 		if (err) {
4315 			dev_err(&pdev->dev,
4316 				"Allocation for Tx Queue %u failed\n", i);
4317 			for (i--; i >= 0; i--)
4318 				igb_free_tx_resources(adapter->tx_ring[i]);
4319 			break;
4320 		}
4321 	}
4322 
4323 	return err;
4324 }
4325 
4326 /**
4327  *  igb_setup_tctl - configure the transmit control registers
4328  *  @adapter: Board private structure
4329  **/
4330 void igb_setup_tctl(struct igb_adapter *adapter)
4331 {
4332 	struct e1000_hw *hw = &adapter->hw;
4333 	u32 tctl;
4334 
4335 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4336 	wr32(E1000_TXDCTL(0), 0);
4337 
4338 	/* Program the Transmit Control Register */
4339 	tctl = rd32(E1000_TCTL);
4340 	tctl &= ~E1000_TCTL_CT;
4341 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4342 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4343 
4344 	igb_config_collision_dist(hw);
4345 
4346 	/* Enable transmits */
4347 	tctl |= E1000_TCTL_EN;
4348 
4349 	wr32(E1000_TCTL, tctl);
4350 }
4351 
4352 /**
4353  *  igb_configure_tx_ring - Configure transmit ring after Reset
4354  *  @adapter: board private structure
4355  *  @ring: tx ring to configure
4356  *
4357  *  Configure a transmit ring after a reset.
4358  **/
4359 void igb_configure_tx_ring(struct igb_adapter *adapter,
4360 			   struct igb_ring *ring)
4361 {
4362 	struct e1000_hw *hw = &adapter->hw;
4363 	u32 txdctl = 0;
4364 	u64 tdba = ring->dma;
4365 	int reg_idx = ring->reg_idx;
4366 
4367 	wr32(E1000_TDLEN(reg_idx),
4368 	     ring->count * sizeof(union e1000_adv_tx_desc));
4369 	wr32(E1000_TDBAL(reg_idx),
4370 	     tdba & 0x00000000ffffffffULL);
4371 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4372 
4373 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4374 	wr32(E1000_TDH(reg_idx), 0);
4375 	writel(0, ring->tail);
4376 
4377 	txdctl |= IGB_TX_PTHRESH;
4378 	txdctl |= IGB_TX_HTHRESH << 8;
4379 	txdctl |= IGB_TX_WTHRESH << 16;
4380 
4381 	/* reinitialize tx_buffer_info */
4382 	memset(ring->tx_buffer_info, 0,
4383 	       sizeof(struct igb_tx_buffer) * ring->count);
4384 
4385 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4386 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4387 }
4388 
4389 /**
4390  *  igb_configure_tx - Configure transmit Unit after Reset
4391  *  @adapter: board private structure
4392  *
4393  *  Configure the Tx unit of the MAC after a reset.
4394  **/
4395 static void igb_configure_tx(struct igb_adapter *adapter)
4396 {
4397 	struct e1000_hw *hw = &adapter->hw;
4398 	int i;
4399 
4400 	/* disable the queues */
4401 	for (i = 0; i < adapter->num_tx_queues; i++)
4402 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4403 
4404 	wrfl();
4405 	usleep_range(10000, 20000);
4406 
4407 	for (i = 0; i < adapter->num_tx_queues; i++)
4408 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4409 }
4410 
4411 /**
4412  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4413  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4414  *
4415  *  Returns 0 on success, negative on failure
4416  **/
4417 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4418 {
4419 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4420 	struct device *dev = rx_ring->dev;
4421 	int size, res;
4422 
4423 	/* XDP RX-queue info */
4424 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4425 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4426 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4427 			       rx_ring->queue_index, 0);
4428 	if (res < 0) {
4429 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4430 			rx_ring->queue_index);
4431 		return res;
4432 	}
4433 
4434 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4435 
4436 	rx_ring->rx_buffer_info = vmalloc(size);
4437 	if (!rx_ring->rx_buffer_info)
4438 		goto err;
4439 
4440 	/* Round up to nearest 4K */
4441 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4442 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4443 
4444 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4445 					   &rx_ring->dma, GFP_KERNEL);
4446 	if (!rx_ring->desc)
4447 		goto err;
4448 
4449 	rx_ring->next_to_alloc = 0;
4450 	rx_ring->next_to_clean = 0;
4451 	rx_ring->next_to_use = 0;
4452 
4453 	rx_ring->xdp_prog = adapter->xdp_prog;
4454 
4455 	return 0;
4456 
4457 err:
4458 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4459 	vfree(rx_ring->rx_buffer_info);
4460 	rx_ring->rx_buffer_info = NULL;
4461 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4462 	return -ENOMEM;
4463 }
4464 
4465 /**
4466  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4467  *				 (Descriptors) for all queues
4468  *  @adapter: board private structure
4469  *
4470  *  Return 0 on success, negative on failure
4471  **/
4472 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4473 {
4474 	struct pci_dev *pdev = adapter->pdev;
4475 	int i, err = 0;
4476 
4477 	for (i = 0; i < adapter->num_rx_queues; i++) {
4478 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4479 		if (err) {
4480 			dev_err(&pdev->dev,
4481 				"Allocation for Rx Queue %u failed\n", i);
4482 			for (i--; i >= 0; i--)
4483 				igb_free_rx_resources(adapter->rx_ring[i]);
4484 			break;
4485 		}
4486 	}
4487 
4488 	return err;
4489 }
4490 
4491 /**
4492  *  igb_setup_mrqc - configure the multiple receive queue control registers
4493  *  @adapter: Board private structure
4494  **/
4495 static void igb_setup_mrqc(struct igb_adapter *adapter)
4496 {
4497 	struct e1000_hw *hw = &adapter->hw;
4498 	u32 mrqc, rxcsum;
4499 	u32 j, num_rx_queues;
4500 	u32 rss_key[10];
4501 
4502 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4503 	for (j = 0; j < 10; j++)
4504 		wr32(E1000_RSSRK(j), rss_key[j]);
4505 
4506 	num_rx_queues = adapter->rss_queues;
4507 
4508 	switch (hw->mac.type) {
4509 	case e1000_82576:
4510 		/* 82576 supports 2 RSS queues for SR-IOV */
4511 		if (adapter->vfs_allocated_count)
4512 			num_rx_queues = 2;
4513 		break;
4514 	default:
4515 		break;
4516 	}
4517 
4518 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4519 		for (j = 0; j < IGB_RETA_SIZE; j++)
4520 			adapter->rss_indir_tbl[j] =
4521 			(j * num_rx_queues) / IGB_RETA_SIZE;
4522 		adapter->rss_indir_tbl_init = num_rx_queues;
4523 	}
4524 	igb_write_rss_indir_tbl(adapter);
4525 
4526 	/* Disable raw packet checksumming so that RSS hash is placed in
4527 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4528 	 * offloads as they are enabled by default
4529 	 */
4530 	rxcsum = rd32(E1000_RXCSUM);
4531 	rxcsum |= E1000_RXCSUM_PCSD;
4532 
4533 	if (adapter->hw.mac.type >= e1000_82576)
4534 		/* Enable Receive Checksum Offload for SCTP */
4535 		rxcsum |= E1000_RXCSUM_CRCOFL;
4536 
4537 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4538 	wr32(E1000_RXCSUM, rxcsum);
4539 
4540 	/* Generate RSS hash based on packet types, TCP/UDP
4541 	 * port numbers and/or IPv4/v6 src and dst addresses
4542 	 */
4543 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4544 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4545 	       E1000_MRQC_RSS_FIELD_IPV6 |
4546 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4547 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4548 
4549 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4550 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4551 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4552 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4553 
4554 	/* If VMDq is enabled then we set the appropriate mode for that, else
4555 	 * we default to RSS so that an RSS hash is calculated per packet even
4556 	 * if we are only using one queue
4557 	 */
4558 	if (adapter->vfs_allocated_count) {
4559 		if (hw->mac.type > e1000_82575) {
4560 			/* Set the default pool for the PF's first queue */
4561 			u32 vtctl = rd32(E1000_VT_CTL);
4562 
4563 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4564 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4565 			vtctl |= adapter->vfs_allocated_count <<
4566 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4567 			wr32(E1000_VT_CTL, vtctl);
4568 		}
4569 		if (adapter->rss_queues > 1)
4570 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4571 		else
4572 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4573 	} else {
4574 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4575 	}
4576 	igb_vmm_control(adapter);
4577 
4578 	wr32(E1000_MRQC, mrqc);
4579 }
4580 
4581 /**
4582  *  igb_setup_rctl - configure the receive control registers
4583  *  @adapter: Board private structure
4584  **/
4585 void igb_setup_rctl(struct igb_adapter *adapter)
4586 {
4587 	struct e1000_hw *hw = &adapter->hw;
4588 	u32 rctl;
4589 
4590 	rctl = rd32(E1000_RCTL);
4591 
4592 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4593 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4594 
4595 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4596 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4597 
4598 	/* enable stripping of CRC. It's unlikely this will break BMC
4599 	 * redirection as it did with e1000. Newer features require
4600 	 * that the HW strips the CRC.
4601 	 */
4602 	rctl |= E1000_RCTL_SECRC;
4603 
4604 	/* disable store bad packets and clear size bits. */
4605 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4606 
4607 	/* enable LPE to allow for reception of jumbo frames */
4608 	rctl |= E1000_RCTL_LPE;
4609 
4610 	/* disable queue 0 to prevent tail write w/o re-config */
4611 	wr32(E1000_RXDCTL(0), 0);
4612 
4613 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4614 	 * queue drop for all VF and PF queues to prevent head of line blocking
4615 	 * if an un-trusted VF does not provide descriptors to hardware.
4616 	 */
4617 	if (adapter->vfs_allocated_count) {
4618 		/* set all queue drop enable bits */
4619 		wr32(E1000_QDE, ALL_QUEUES);
4620 	}
4621 
4622 	/* This is useful for sniffing bad packets. */
4623 	if (adapter->netdev->features & NETIF_F_RXALL) {
4624 		/* UPE and MPE will be handled by normal PROMISC logic
4625 		 * in e1000e_set_rx_mode
4626 		 */
4627 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4628 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4629 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4630 
4631 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4632 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4633 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4634 		 * and that breaks VLANs.
4635 		 */
4636 	}
4637 
4638 	wr32(E1000_RCTL, rctl);
4639 }
4640 
4641 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4642 				   int vfn)
4643 {
4644 	struct e1000_hw *hw = &adapter->hw;
4645 	u32 vmolr;
4646 
4647 	if (size > MAX_JUMBO_FRAME_SIZE)
4648 		size = MAX_JUMBO_FRAME_SIZE;
4649 
4650 	vmolr = rd32(E1000_VMOLR(vfn));
4651 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4652 	vmolr |= size | E1000_VMOLR_LPE;
4653 	wr32(E1000_VMOLR(vfn), vmolr);
4654 
4655 	return 0;
4656 }
4657 
4658 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4659 					 int vfn, bool enable)
4660 {
4661 	struct e1000_hw *hw = &adapter->hw;
4662 	u32 val, reg;
4663 
4664 	if (hw->mac.type < e1000_82576)
4665 		return;
4666 
4667 	if (hw->mac.type == e1000_i350)
4668 		reg = E1000_DVMOLR(vfn);
4669 	else
4670 		reg = E1000_VMOLR(vfn);
4671 
4672 	val = rd32(reg);
4673 	if (enable)
4674 		val |= E1000_VMOLR_STRVLAN;
4675 	else
4676 		val &= ~(E1000_VMOLR_STRVLAN);
4677 	wr32(reg, val);
4678 }
4679 
4680 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4681 				 int vfn, bool aupe)
4682 {
4683 	struct e1000_hw *hw = &adapter->hw;
4684 	u32 vmolr;
4685 
4686 	/* This register exists only on 82576 and newer so if we are older then
4687 	 * we should exit and do nothing
4688 	 */
4689 	if (hw->mac.type < e1000_82576)
4690 		return;
4691 
4692 	vmolr = rd32(E1000_VMOLR(vfn));
4693 	if (aupe)
4694 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4695 	else
4696 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4697 
4698 	/* clear all bits that might not be set */
4699 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4700 
4701 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4702 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4703 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4704 	 * multicast packets
4705 	 */
4706 	if (vfn <= adapter->vfs_allocated_count)
4707 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4708 
4709 	wr32(E1000_VMOLR(vfn), vmolr);
4710 }
4711 
4712 /**
4713  *  igb_setup_srrctl - configure the split and replication receive control
4714  *                     registers
4715  *  @adapter: Board private structure
4716  *  @ring: receive ring to be configured
4717  **/
4718 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4719 {
4720 	struct e1000_hw *hw = &adapter->hw;
4721 	int reg_idx = ring->reg_idx;
4722 	u32 srrctl = 0;
4723 
4724 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4725 	if (ring_uses_large_buffer(ring))
4726 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4727 	else
4728 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4729 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4730 	if (hw->mac.type >= e1000_82580)
4731 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4732 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4733 	 * queues and rx flow control is disabled
4734 	 */
4735 	if (adapter->vfs_allocated_count ||
4736 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4737 	     adapter->num_rx_queues > 1))
4738 		srrctl |= E1000_SRRCTL_DROP_EN;
4739 
4740 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4741 }
4742 
4743 /**
4744  *  igb_configure_rx_ring - Configure a receive ring after Reset
4745  *  @adapter: board private structure
4746  *  @ring: receive ring to be configured
4747  *
4748  *  Configure the Rx unit of the MAC after a reset.
4749  **/
4750 void igb_configure_rx_ring(struct igb_adapter *adapter,
4751 			   struct igb_ring *ring)
4752 {
4753 	struct e1000_hw *hw = &adapter->hw;
4754 	union e1000_adv_rx_desc *rx_desc;
4755 	u64 rdba = ring->dma;
4756 	int reg_idx = ring->reg_idx;
4757 	u32 rxdctl = 0;
4758 
4759 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4760 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4761 					   MEM_TYPE_PAGE_SHARED, NULL));
4762 
4763 	/* disable the queue */
4764 	wr32(E1000_RXDCTL(reg_idx), 0);
4765 
4766 	/* Set DMA base address registers */
4767 	wr32(E1000_RDBAL(reg_idx),
4768 	     rdba & 0x00000000ffffffffULL);
4769 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4770 	wr32(E1000_RDLEN(reg_idx),
4771 	     ring->count * sizeof(union e1000_adv_rx_desc));
4772 
4773 	/* initialize head and tail */
4774 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4775 	wr32(E1000_RDH(reg_idx), 0);
4776 	writel(0, ring->tail);
4777 
4778 	/* set descriptor configuration */
4779 	igb_setup_srrctl(adapter, ring);
4780 
4781 	/* set filtering for VMDQ pools */
4782 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4783 
4784 	rxdctl |= IGB_RX_PTHRESH;
4785 	rxdctl |= IGB_RX_HTHRESH << 8;
4786 	rxdctl |= IGB_RX_WTHRESH << 16;
4787 
4788 	/* initialize rx_buffer_info */
4789 	memset(ring->rx_buffer_info, 0,
4790 	       sizeof(struct igb_rx_buffer) * ring->count);
4791 
4792 	/* initialize Rx descriptor 0 */
4793 	rx_desc = IGB_RX_DESC(ring, 0);
4794 	rx_desc->wb.upper.length = 0;
4795 
4796 	/* enable receive descriptor fetching */
4797 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4798 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4799 }
4800 
4801 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4802 				  struct igb_ring *rx_ring)
4803 {
4804 #if (PAGE_SIZE < 8192)
4805 	struct e1000_hw *hw = &adapter->hw;
4806 #endif
4807 
4808 	/* set build_skb and buffer size flags */
4809 	clear_ring_build_skb_enabled(rx_ring);
4810 	clear_ring_uses_large_buffer(rx_ring);
4811 
4812 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4813 		return;
4814 
4815 	set_ring_build_skb_enabled(rx_ring);
4816 
4817 #if (PAGE_SIZE < 8192)
4818 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4819 	    IGB_2K_TOO_SMALL_WITH_PADDING ||
4820 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4821 		set_ring_uses_large_buffer(rx_ring);
4822 #endif
4823 }
4824 
4825 /**
4826  *  igb_configure_rx - Configure receive Unit after Reset
4827  *  @adapter: board private structure
4828  *
4829  *  Configure the Rx unit of the MAC after a reset.
4830  **/
4831 static void igb_configure_rx(struct igb_adapter *adapter)
4832 {
4833 	int i;
4834 
4835 	/* set the correct pool for the PF default MAC address in entry 0 */
4836 	igb_set_default_mac_filter(adapter);
4837 
4838 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4839 	 * the Base and Length of the Rx Descriptor Ring
4840 	 */
4841 	for (i = 0; i < adapter->num_rx_queues; i++) {
4842 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4843 
4844 		igb_set_rx_buffer_len(adapter, rx_ring);
4845 		igb_configure_rx_ring(adapter, rx_ring);
4846 	}
4847 }
4848 
4849 /**
4850  *  igb_free_tx_resources - Free Tx Resources per Queue
4851  *  @tx_ring: Tx descriptor ring for a specific queue
4852  *
4853  *  Free all transmit software resources
4854  **/
4855 void igb_free_tx_resources(struct igb_ring *tx_ring)
4856 {
4857 	igb_clean_tx_ring(tx_ring);
4858 
4859 	vfree(tx_ring->tx_buffer_info);
4860 	tx_ring->tx_buffer_info = NULL;
4861 
4862 	/* if not set, then don't free */
4863 	if (!tx_ring->desc)
4864 		return;
4865 
4866 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4867 			  tx_ring->desc, tx_ring->dma);
4868 
4869 	tx_ring->desc = NULL;
4870 }
4871 
4872 /**
4873  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4874  *  @adapter: board private structure
4875  *
4876  *  Free all transmit software resources
4877  **/
4878 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4879 {
4880 	int i;
4881 
4882 	for (i = 0; i < adapter->num_tx_queues; i++)
4883 		if (adapter->tx_ring[i])
4884 			igb_free_tx_resources(adapter->tx_ring[i]);
4885 }
4886 
4887 /**
4888  *  igb_clean_tx_ring - Free Tx Buffers
4889  *  @tx_ring: ring to be cleaned
4890  **/
4891 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4892 {
4893 	u16 i = tx_ring->next_to_clean;
4894 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4895 
4896 	while (i != tx_ring->next_to_use) {
4897 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4898 
4899 		/* Free all the Tx ring sk_buffs or xdp frames */
4900 		if (tx_buffer->type == IGB_TYPE_SKB)
4901 			dev_kfree_skb_any(tx_buffer->skb);
4902 		else
4903 			xdp_return_frame(tx_buffer->xdpf);
4904 
4905 		/* unmap skb header data */
4906 		dma_unmap_single(tx_ring->dev,
4907 				 dma_unmap_addr(tx_buffer, dma),
4908 				 dma_unmap_len(tx_buffer, len),
4909 				 DMA_TO_DEVICE);
4910 
4911 		/* check for eop_desc to determine the end of the packet */
4912 		eop_desc = tx_buffer->next_to_watch;
4913 		tx_desc = IGB_TX_DESC(tx_ring, i);
4914 
4915 		/* unmap remaining buffers */
4916 		while (tx_desc != eop_desc) {
4917 			tx_buffer++;
4918 			tx_desc++;
4919 			i++;
4920 			if (unlikely(i == tx_ring->count)) {
4921 				i = 0;
4922 				tx_buffer = tx_ring->tx_buffer_info;
4923 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4924 			}
4925 
4926 			/* unmap any remaining paged data */
4927 			if (dma_unmap_len(tx_buffer, len))
4928 				dma_unmap_page(tx_ring->dev,
4929 					       dma_unmap_addr(tx_buffer, dma),
4930 					       dma_unmap_len(tx_buffer, len),
4931 					       DMA_TO_DEVICE);
4932 		}
4933 
4934 		tx_buffer->next_to_watch = NULL;
4935 
4936 		/* move us one more past the eop_desc for start of next pkt */
4937 		tx_buffer++;
4938 		i++;
4939 		if (unlikely(i == tx_ring->count)) {
4940 			i = 0;
4941 			tx_buffer = tx_ring->tx_buffer_info;
4942 		}
4943 	}
4944 
4945 	/* reset BQL for queue */
4946 	netdev_tx_reset_queue(txring_txq(tx_ring));
4947 
4948 	/* reset next_to_use and next_to_clean */
4949 	tx_ring->next_to_use = 0;
4950 	tx_ring->next_to_clean = 0;
4951 }
4952 
4953 /**
4954  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4955  *  @adapter: board private structure
4956  **/
4957 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4958 {
4959 	int i;
4960 
4961 	for (i = 0; i < adapter->num_tx_queues; i++)
4962 		if (adapter->tx_ring[i])
4963 			igb_clean_tx_ring(adapter->tx_ring[i]);
4964 }
4965 
4966 /**
4967  *  igb_free_rx_resources - Free Rx Resources
4968  *  @rx_ring: ring to clean the resources from
4969  *
4970  *  Free all receive software resources
4971  **/
4972 void igb_free_rx_resources(struct igb_ring *rx_ring)
4973 {
4974 	igb_clean_rx_ring(rx_ring);
4975 
4976 	rx_ring->xdp_prog = NULL;
4977 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4978 	vfree(rx_ring->rx_buffer_info);
4979 	rx_ring->rx_buffer_info = NULL;
4980 
4981 	/* if not set, then don't free */
4982 	if (!rx_ring->desc)
4983 		return;
4984 
4985 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4986 			  rx_ring->desc, rx_ring->dma);
4987 
4988 	rx_ring->desc = NULL;
4989 }
4990 
4991 /**
4992  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4993  *  @adapter: board private structure
4994  *
4995  *  Free all receive software resources
4996  **/
4997 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4998 {
4999 	int i;
5000 
5001 	for (i = 0; i < adapter->num_rx_queues; i++)
5002 		if (adapter->rx_ring[i])
5003 			igb_free_rx_resources(adapter->rx_ring[i]);
5004 }
5005 
5006 /**
5007  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5008  *  @rx_ring: ring to free buffers from
5009  **/
5010 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5011 {
5012 	u16 i = rx_ring->next_to_clean;
5013 
5014 	dev_kfree_skb(rx_ring->skb);
5015 	rx_ring->skb = NULL;
5016 
5017 	/* Free all the Rx ring sk_buffs */
5018 	while (i != rx_ring->next_to_alloc) {
5019 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5020 
5021 		/* Invalidate cache lines that may have been written to by
5022 		 * device so that we avoid corrupting memory.
5023 		 */
5024 		dma_sync_single_range_for_cpu(rx_ring->dev,
5025 					      buffer_info->dma,
5026 					      buffer_info->page_offset,
5027 					      igb_rx_bufsz(rx_ring),
5028 					      DMA_FROM_DEVICE);
5029 
5030 		/* free resources associated with mapping */
5031 		dma_unmap_page_attrs(rx_ring->dev,
5032 				     buffer_info->dma,
5033 				     igb_rx_pg_size(rx_ring),
5034 				     DMA_FROM_DEVICE,
5035 				     IGB_RX_DMA_ATTR);
5036 		__page_frag_cache_drain(buffer_info->page,
5037 					buffer_info->pagecnt_bias);
5038 
5039 		i++;
5040 		if (i == rx_ring->count)
5041 			i = 0;
5042 	}
5043 
5044 	rx_ring->next_to_alloc = 0;
5045 	rx_ring->next_to_clean = 0;
5046 	rx_ring->next_to_use = 0;
5047 }
5048 
5049 /**
5050  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5051  *  @adapter: board private structure
5052  **/
5053 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5054 {
5055 	int i;
5056 
5057 	for (i = 0; i < adapter->num_rx_queues; i++)
5058 		if (adapter->rx_ring[i])
5059 			igb_clean_rx_ring(adapter->rx_ring[i]);
5060 }
5061 
5062 /**
5063  *  igb_set_mac - Change the Ethernet Address of the NIC
5064  *  @netdev: network interface device structure
5065  *  @p: pointer to an address structure
5066  *
5067  *  Returns 0 on success, negative on failure
5068  **/
5069 static int igb_set_mac(struct net_device *netdev, void *p)
5070 {
5071 	struct igb_adapter *adapter = netdev_priv(netdev);
5072 	struct e1000_hw *hw = &adapter->hw;
5073 	struct sockaddr *addr = p;
5074 
5075 	if (!is_valid_ether_addr(addr->sa_data))
5076 		return -EADDRNOTAVAIL;
5077 
5078 	eth_hw_addr_set(netdev, addr->sa_data);
5079 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5080 
5081 	/* set the correct pool for the new PF MAC address in entry 0 */
5082 	igb_set_default_mac_filter(adapter);
5083 
5084 	return 0;
5085 }
5086 
5087 /**
5088  *  igb_write_mc_addr_list - write multicast addresses to MTA
5089  *  @netdev: network interface device structure
5090  *
5091  *  Writes multicast address list to the MTA hash table.
5092  *  Returns: -ENOMEM on failure
5093  *           0 on no addresses written
5094  *           X on writing X addresses to MTA
5095  **/
5096 static int igb_write_mc_addr_list(struct net_device *netdev)
5097 {
5098 	struct igb_adapter *adapter = netdev_priv(netdev);
5099 	struct e1000_hw *hw = &adapter->hw;
5100 	struct netdev_hw_addr *ha;
5101 	u8  *mta_list;
5102 	int i;
5103 
5104 	if (netdev_mc_empty(netdev)) {
5105 		/* nothing to program, so clear mc list */
5106 		igb_update_mc_addr_list(hw, NULL, 0);
5107 		igb_restore_vf_multicasts(adapter);
5108 		return 0;
5109 	}
5110 
5111 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5112 	if (!mta_list)
5113 		return -ENOMEM;
5114 
5115 	/* The shared function expects a packed array of only addresses. */
5116 	i = 0;
5117 	netdev_for_each_mc_addr(ha, netdev)
5118 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5119 
5120 	igb_update_mc_addr_list(hw, mta_list, i);
5121 	kfree(mta_list);
5122 
5123 	return netdev_mc_count(netdev);
5124 }
5125 
5126 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5127 {
5128 	struct e1000_hw *hw = &adapter->hw;
5129 	u32 i, pf_id;
5130 
5131 	switch (hw->mac.type) {
5132 	case e1000_i210:
5133 	case e1000_i211:
5134 	case e1000_i350:
5135 		/* VLAN filtering needed for VLAN prio filter */
5136 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5137 			break;
5138 		fallthrough;
5139 	case e1000_82576:
5140 	case e1000_82580:
5141 	case e1000_i354:
5142 		/* VLAN filtering needed for pool filtering */
5143 		if (adapter->vfs_allocated_count)
5144 			break;
5145 		fallthrough;
5146 	default:
5147 		return 1;
5148 	}
5149 
5150 	/* We are already in VLAN promisc, nothing to do */
5151 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5152 		return 0;
5153 
5154 	if (!adapter->vfs_allocated_count)
5155 		goto set_vfta;
5156 
5157 	/* Add PF to all active pools */
5158 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5159 
5160 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5161 		u32 vlvf = rd32(E1000_VLVF(i));
5162 
5163 		vlvf |= BIT(pf_id);
5164 		wr32(E1000_VLVF(i), vlvf);
5165 	}
5166 
5167 set_vfta:
5168 	/* Set all bits in the VLAN filter table array */
5169 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5170 		hw->mac.ops.write_vfta(hw, i, ~0U);
5171 
5172 	/* Set flag so we don't redo unnecessary work */
5173 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5174 
5175 	return 0;
5176 }
5177 
5178 #define VFTA_BLOCK_SIZE 8
5179 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5180 {
5181 	struct e1000_hw *hw = &adapter->hw;
5182 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5183 	u32 vid_start = vfta_offset * 32;
5184 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5185 	u32 i, vid, word, bits, pf_id;
5186 
5187 	/* guarantee that we don't scrub out management VLAN */
5188 	vid = adapter->mng_vlan_id;
5189 	if (vid >= vid_start && vid < vid_end)
5190 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5191 
5192 	if (!adapter->vfs_allocated_count)
5193 		goto set_vfta;
5194 
5195 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5196 
5197 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5198 		u32 vlvf = rd32(E1000_VLVF(i));
5199 
5200 		/* pull VLAN ID from VLVF */
5201 		vid = vlvf & VLAN_VID_MASK;
5202 
5203 		/* only concern ourselves with a certain range */
5204 		if (vid < vid_start || vid >= vid_end)
5205 			continue;
5206 
5207 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5208 			/* record VLAN ID in VFTA */
5209 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5210 
5211 			/* if PF is part of this then continue */
5212 			if (test_bit(vid, adapter->active_vlans))
5213 				continue;
5214 		}
5215 
5216 		/* remove PF from the pool */
5217 		bits = ~BIT(pf_id);
5218 		bits &= rd32(E1000_VLVF(i));
5219 		wr32(E1000_VLVF(i), bits);
5220 	}
5221 
5222 set_vfta:
5223 	/* extract values from active_vlans and write back to VFTA */
5224 	for (i = VFTA_BLOCK_SIZE; i--;) {
5225 		vid = (vfta_offset + i) * 32;
5226 		word = vid / BITS_PER_LONG;
5227 		bits = vid % BITS_PER_LONG;
5228 
5229 		vfta[i] |= adapter->active_vlans[word] >> bits;
5230 
5231 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5232 	}
5233 }
5234 
5235 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5236 {
5237 	u32 i;
5238 
5239 	/* We are not in VLAN promisc, nothing to do */
5240 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5241 		return;
5242 
5243 	/* Set flag so we don't redo unnecessary work */
5244 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5245 
5246 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5247 		igb_scrub_vfta(adapter, i);
5248 }
5249 
5250 /**
5251  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5252  *  @netdev: network interface device structure
5253  *
5254  *  The set_rx_mode entry point is called whenever the unicast or multicast
5255  *  address lists or the network interface flags are updated.  This routine is
5256  *  responsible for configuring the hardware for proper unicast, multicast,
5257  *  promiscuous mode, and all-multi behavior.
5258  **/
5259 static void igb_set_rx_mode(struct net_device *netdev)
5260 {
5261 	struct igb_adapter *adapter = netdev_priv(netdev);
5262 	struct e1000_hw *hw = &adapter->hw;
5263 	unsigned int vfn = adapter->vfs_allocated_count;
5264 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5265 	int count;
5266 
5267 	/* Check for Promiscuous and All Multicast modes */
5268 	if (netdev->flags & IFF_PROMISC) {
5269 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5270 		vmolr |= E1000_VMOLR_MPME;
5271 
5272 		/* enable use of UTA filter to force packets to default pool */
5273 		if (hw->mac.type == e1000_82576)
5274 			vmolr |= E1000_VMOLR_ROPE;
5275 	} else {
5276 		if (netdev->flags & IFF_ALLMULTI) {
5277 			rctl |= E1000_RCTL_MPE;
5278 			vmolr |= E1000_VMOLR_MPME;
5279 		} else {
5280 			/* Write addresses to the MTA, if the attempt fails
5281 			 * then we should just turn on promiscuous mode so
5282 			 * that we can at least receive multicast traffic
5283 			 */
5284 			count = igb_write_mc_addr_list(netdev);
5285 			if (count < 0) {
5286 				rctl |= E1000_RCTL_MPE;
5287 				vmolr |= E1000_VMOLR_MPME;
5288 			} else if (count) {
5289 				vmolr |= E1000_VMOLR_ROMPE;
5290 			}
5291 		}
5292 	}
5293 
5294 	/* Write addresses to available RAR registers, if there is not
5295 	 * sufficient space to store all the addresses then enable
5296 	 * unicast promiscuous mode
5297 	 */
5298 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5299 		rctl |= E1000_RCTL_UPE;
5300 		vmolr |= E1000_VMOLR_ROPE;
5301 	}
5302 
5303 	/* enable VLAN filtering by default */
5304 	rctl |= E1000_RCTL_VFE;
5305 
5306 	/* disable VLAN filtering for modes that require it */
5307 	if ((netdev->flags & IFF_PROMISC) ||
5308 	    (netdev->features & NETIF_F_RXALL)) {
5309 		/* if we fail to set all rules then just clear VFE */
5310 		if (igb_vlan_promisc_enable(adapter))
5311 			rctl &= ~E1000_RCTL_VFE;
5312 	} else {
5313 		igb_vlan_promisc_disable(adapter);
5314 	}
5315 
5316 	/* update state of unicast, multicast, and VLAN filtering modes */
5317 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5318 				     E1000_RCTL_VFE);
5319 	wr32(E1000_RCTL, rctl);
5320 
5321 #if (PAGE_SIZE < 8192)
5322 	if (!adapter->vfs_allocated_count) {
5323 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5324 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5325 	}
5326 #endif
5327 	wr32(E1000_RLPML, rlpml);
5328 
5329 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5330 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5331 	 * we will have issues with VLAN tag stripping not being done for frames
5332 	 * that are only arriving because we are the default pool
5333 	 */
5334 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5335 		return;
5336 
5337 	/* set UTA to appropriate mode */
5338 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5339 
5340 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5341 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5342 
5343 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5344 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5345 #if (PAGE_SIZE < 8192)
5346 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5347 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5348 	else
5349 #endif
5350 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5351 	vmolr |= E1000_VMOLR_LPE;
5352 
5353 	wr32(E1000_VMOLR(vfn), vmolr);
5354 
5355 	igb_restore_vf_multicasts(adapter);
5356 }
5357 
5358 static void igb_check_wvbr(struct igb_adapter *adapter)
5359 {
5360 	struct e1000_hw *hw = &adapter->hw;
5361 	u32 wvbr = 0;
5362 
5363 	switch (hw->mac.type) {
5364 	case e1000_82576:
5365 	case e1000_i350:
5366 		wvbr = rd32(E1000_WVBR);
5367 		if (!wvbr)
5368 			return;
5369 		break;
5370 	default:
5371 		break;
5372 	}
5373 
5374 	adapter->wvbr |= wvbr;
5375 }
5376 
5377 #define IGB_STAGGERED_QUEUE_OFFSET 8
5378 
5379 static void igb_spoof_check(struct igb_adapter *adapter)
5380 {
5381 	int j;
5382 
5383 	if (!adapter->wvbr)
5384 		return;
5385 
5386 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5387 		if (adapter->wvbr & BIT(j) ||
5388 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5389 			dev_warn(&adapter->pdev->dev,
5390 				"Spoof event(s) detected on VF %d\n", j);
5391 			adapter->wvbr &=
5392 				~(BIT(j) |
5393 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5394 		}
5395 	}
5396 }
5397 
5398 /* Need to wait a few seconds after link up to get diagnostic information from
5399  * the phy
5400  */
5401 static void igb_update_phy_info(struct timer_list *t)
5402 {
5403 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5404 	igb_get_phy_info(&adapter->hw);
5405 }
5406 
5407 /**
5408  *  igb_has_link - check shared code for link and determine up/down
5409  *  @adapter: pointer to driver private info
5410  **/
5411 bool igb_has_link(struct igb_adapter *adapter)
5412 {
5413 	struct e1000_hw *hw = &adapter->hw;
5414 	bool link_active = false;
5415 
5416 	/* get_link_status is set on LSC (link status) interrupt or
5417 	 * rx sequence error interrupt.  get_link_status will stay
5418 	 * false until the e1000_check_for_link establishes link
5419 	 * for copper adapters ONLY
5420 	 */
5421 	switch (hw->phy.media_type) {
5422 	case e1000_media_type_copper:
5423 		if (!hw->mac.get_link_status)
5424 			return true;
5425 		fallthrough;
5426 	case e1000_media_type_internal_serdes:
5427 		hw->mac.ops.check_for_link(hw);
5428 		link_active = !hw->mac.get_link_status;
5429 		break;
5430 	default:
5431 	case e1000_media_type_unknown:
5432 		break;
5433 	}
5434 
5435 	if (((hw->mac.type == e1000_i210) ||
5436 	     (hw->mac.type == e1000_i211)) &&
5437 	     (hw->phy.id == I210_I_PHY_ID)) {
5438 		if (!netif_carrier_ok(adapter->netdev)) {
5439 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5440 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5441 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5442 			adapter->link_check_timeout = jiffies;
5443 		}
5444 	}
5445 
5446 	return link_active;
5447 }
5448 
5449 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5450 {
5451 	bool ret = false;
5452 	u32 ctrl_ext, thstat;
5453 
5454 	/* check for thermal sensor event on i350 copper only */
5455 	if (hw->mac.type == e1000_i350) {
5456 		thstat = rd32(E1000_THSTAT);
5457 		ctrl_ext = rd32(E1000_CTRL_EXT);
5458 
5459 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5460 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5461 			ret = !!(thstat & event);
5462 	}
5463 
5464 	return ret;
5465 }
5466 
5467 /**
5468  *  igb_check_lvmmc - check for malformed packets received
5469  *  and indicated in LVMMC register
5470  *  @adapter: pointer to adapter
5471  **/
5472 static void igb_check_lvmmc(struct igb_adapter *adapter)
5473 {
5474 	struct e1000_hw *hw = &adapter->hw;
5475 	u32 lvmmc;
5476 
5477 	lvmmc = rd32(E1000_LVMMC);
5478 	if (lvmmc) {
5479 		if (unlikely(net_ratelimit())) {
5480 			netdev_warn(adapter->netdev,
5481 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5482 				    lvmmc);
5483 		}
5484 	}
5485 }
5486 
5487 /**
5488  *  igb_watchdog - Timer Call-back
5489  *  @t: pointer to timer_list containing our private info pointer
5490  **/
5491 static void igb_watchdog(struct timer_list *t)
5492 {
5493 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5494 	/* Do the rest outside of interrupt context */
5495 	schedule_work(&adapter->watchdog_task);
5496 }
5497 
5498 static void igb_watchdog_task(struct work_struct *work)
5499 {
5500 	struct igb_adapter *adapter = container_of(work,
5501 						   struct igb_adapter,
5502 						   watchdog_task);
5503 	struct e1000_hw *hw = &adapter->hw;
5504 	struct e1000_phy_info *phy = &hw->phy;
5505 	struct net_device *netdev = adapter->netdev;
5506 	u32 link;
5507 	int i;
5508 	u32 connsw;
5509 	u16 phy_data, retry_count = 20;
5510 
5511 	link = igb_has_link(adapter);
5512 
5513 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5514 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5515 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5516 		else
5517 			link = false;
5518 	}
5519 
5520 	/* Force link down if we have fiber to swap to */
5521 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5522 		if (hw->phy.media_type == e1000_media_type_copper) {
5523 			connsw = rd32(E1000_CONNSW);
5524 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5525 				link = 0;
5526 		}
5527 	}
5528 	if (link) {
5529 		/* Perform a reset if the media type changed. */
5530 		if (hw->dev_spec._82575.media_changed) {
5531 			hw->dev_spec._82575.media_changed = false;
5532 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5533 			igb_reset(adapter);
5534 		}
5535 		/* Cancel scheduled suspend requests. */
5536 		pm_runtime_resume(netdev->dev.parent);
5537 
5538 		if (!netif_carrier_ok(netdev)) {
5539 			u32 ctrl;
5540 
5541 			hw->mac.ops.get_speed_and_duplex(hw,
5542 							 &adapter->link_speed,
5543 							 &adapter->link_duplex);
5544 
5545 			ctrl = rd32(E1000_CTRL);
5546 			/* Links status message must follow this format */
5547 			netdev_info(netdev,
5548 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5549 			       netdev->name,
5550 			       adapter->link_speed,
5551 			       adapter->link_duplex == FULL_DUPLEX ?
5552 			       "Full" : "Half",
5553 			       (ctrl & E1000_CTRL_TFCE) &&
5554 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5555 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5556 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5557 
5558 			/* disable EEE if enabled */
5559 			if ((adapter->flags & IGB_FLAG_EEE) &&
5560 				(adapter->link_duplex == HALF_DUPLEX)) {
5561 				dev_info(&adapter->pdev->dev,
5562 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5563 				adapter->hw.dev_spec._82575.eee_disable = true;
5564 				adapter->flags &= ~IGB_FLAG_EEE;
5565 			}
5566 
5567 			/* check if SmartSpeed worked */
5568 			igb_check_downshift(hw);
5569 			if (phy->speed_downgraded)
5570 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5571 
5572 			/* check for thermal sensor event */
5573 			if (igb_thermal_sensor_event(hw,
5574 			    E1000_THSTAT_LINK_THROTTLE))
5575 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5576 
5577 			/* adjust timeout factor according to speed/duplex */
5578 			adapter->tx_timeout_factor = 1;
5579 			switch (adapter->link_speed) {
5580 			case SPEED_10:
5581 				adapter->tx_timeout_factor = 14;
5582 				break;
5583 			case SPEED_100:
5584 				/* maybe add some timeout factor ? */
5585 				break;
5586 			}
5587 
5588 			if (adapter->link_speed != SPEED_1000 ||
5589 			    !hw->phy.ops.read_reg)
5590 				goto no_wait;
5591 
5592 			/* wait for Remote receiver status OK */
5593 retry_read_status:
5594 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5595 					      &phy_data)) {
5596 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5597 				    retry_count) {
5598 					msleep(100);
5599 					retry_count--;
5600 					goto retry_read_status;
5601 				} else if (!retry_count) {
5602 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5603 				}
5604 			} else {
5605 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5606 			}
5607 no_wait:
5608 			netif_carrier_on(netdev);
5609 
5610 			igb_ping_all_vfs(adapter);
5611 			igb_check_vf_rate_limit(adapter);
5612 
5613 			/* link state has changed, schedule phy info update */
5614 			if (!test_bit(__IGB_DOWN, &adapter->state))
5615 				mod_timer(&adapter->phy_info_timer,
5616 					  round_jiffies(jiffies + 2 * HZ));
5617 		}
5618 	} else {
5619 		if (netif_carrier_ok(netdev)) {
5620 			adapter->link_speed = 0;
5621 			adapter->link_duplex = 0;
5622 
5623 			/* check for thermal sensor event */
5624 			if (igb_thermal_sensor_event(hw,
5625 			    E1000_THSTAT_PWR_DOWN)) {
5626 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5627 			}
5628 
5629 			/* Links status message must follow this format */
5630 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5631 			       netdev->name);
5632 			netif_carrier_off(netdev);
5633 
5634 			igb_ping_all_vfs(adapter);
5635 
5636 			/* link state has changed, schedule phy info update */
5637 			if (!test_bit(__IGB_DOWN, &adapter->state))
5638 				mod_timer(&adapter->phy_info_timer,
5639 					  round_jiffies(jiffies + 2 * HZ));
5640 
5641 			/* link is down, time to check for alternate media */
5642 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5643 				igb_check_swap_media(adapter);
5644 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5645 					schedule_work(&adapter->reset_task);
5646 					/* return immediately */
5647 					return;
5648 				}
5649 			}
5650 			pm_schedule_suspend(netdev->dev.parent,
5651 					    MSEC_PER_SEC * 5);
5652 
5653 		/* also check for alternate media here */
5654 		} else if (!netif_carrier_ok(netdev) &&
5655 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5656 			igb_check_swap_media(adapter);
5657 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5658 				schedule_work(&adapter->reset_task);
5659 				/* return immediately */
5660 				return;
5661 			}
5662 		}
5663 	}
5664 
5665 	spin_lock(&adapter->stats64_lock);
5666 	igb_update_stats(adapter);
5667 	spin_unlock(&adapter->stats64_lock);
5668 
5669 	for (i = 0; i < adapter->num_tx_queues; i++) {
5670 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5671 		if (!netif_carrier_ok(netdev)) {
5672 			/* We've lost link, so the controller stops DMA,
5673 			 * but we've got queued Tx work that's never going
5674 			 * to get done, so reset controller to flush Tx.
5675 			 * (Do the reset outside of interrupt context).
5676 			 */
5677 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5678 				adapter->tx_timeout_count++;
5679 				schedule_work(&adapter->reset_task);
5680 				/* return immediately since reset is imminent */
5681 				return;
5682 			}
5683 		}
5684 
5685 		/* Force detection of hung controller every watchdog period */
5686 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5687 	}
5688 
5689 	/* Cause software interrupt to ensure Rx ring is cleaned */
5690 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5691 		u32 eics = 0;
5692 
5693 		for (i = 0; i < adapter->num_q_vectors; i++)
5694 			eics |= adapter->q_vector[i]->eims_value;
5695 		wr32(E1000_EICS, eics);
5696 	} else {
5697 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5698 	}
5699 
5700 	igb_spoof_check(adapter);
5701 	igb_ptp_rx_hang(adapter);
5702 	igb_ptp_tx_hang(adapter);
5703 
5704 	/* Check LVMMC register on i350/i354 only */
5705 	if ((adapter->hw.mac.type == e1000_i350) ||
5706 	    (adapter->hw.mac.type == e1000_i354))
5707 		igb_check_lvmmc(adapter);
5708 
5709 	/* Reset the timer */
5710 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5711 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5712 			mod_timer(&adapter->watchdog_timer,
5713 				  round_jiffies(jiffies +  HZ));
5714 		else
5715 			mod_timer(&adapter->watchdog_timer,
5716 				  round_jiffies(jiffies + 2 * HZ));
5717 	}
5718 }
5719 
5720 enum latency_range {
5721 	lowest_latency = 0,
5722 	low_latency = 1,
5723 	bulk_latency = 2,
5724 	latency_invalid = 255
5725 };
5726 
5727 /**
5728  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5729  *  @q_vector: pointer to q_vector
5730  *
5731  *  Stores a new ITR value based on strictly on packet size.  This
5732  *  algorithm is less sophisticated than that used in igb_update_itr,
5733  *  due to the difficulty of synchronizing statistics across multiple
5734  *  receive rings.  The divisors and thresholds used by this function
5735  *  were determined based on theoretical maximum wire speed and testing
5736  *  data, in order to minimize response time while increasing bulk
5737  *  throughput.
5738  *  This functionality is controlled by ethtool's coalescing settings.
5739  *  NOTE:  This function is called only when operating in a multiqueue
5740  *         receive environment.
5741  **/
5742 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5743 {
5744 	int new_val = q_vector->itr_val;
5745 	int avg_wire_size = 0;
5746 	struct igb_adapter *adapter = q_vector->adapter;
5747 	unsigned int packets;
5748 
5749 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5750 	 * ints/sec - ITR timer value of 120 ticks.
5751 	 */
5752 	if (adapter->link_speed != SPEED_1000) {
5753 		new_val = IGB_4K_ITR;
5754 		goto set_itr_val;
5755 	}
5756 
5757 	packets = q_vector->rx.total_packets;
5758 	if (packets)
5759 		avg_wire_size = q_vector->rx.total_bytes / packets;
5760 
5761 	packets = q_vector->tx.total_packets;
5762 	if (packets)
5763 		avg_wire_size = max_t(u32, avg_wire_size,
5764 				      q_vector->tx.total_bytes / packets);
5765 
5766 	/* if avg_wire_size isn't set no work was done */
5767 	if (!avg_wire_size)
5768 		goto clear_counts;
5769 
5770 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5771 	avg_wire_size += 24;
5772 
5773 	/* Don't starve jumbo frames */
5774 	avg_wire_size = min(avg_wire_size, 3000);
5775 
5776 	/* Give a little boost to mid-size frames */
5777 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5778 		new_val = avg_wire_size / 3;
5779 	else
5780 		new_val = avg_wire_size / 2;
5781 
5782 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5783 	if (new_val < IGB_20K_ITR &&
5784 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5785 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5786 		new_val = IGB_20K_ITR;
5787 
5788 set_itr_val:
5789 	if (new_val != q_vector->itr_val) {
5790 		q_vector->itr_val = new_val;
5791 		q_vector->set_itr = 1;
5792 	}
5793 clear_counts:
5794 	q_vector->rx.total_bytes = 0;
5795 	q_vector->rx.total_packets = 0;
5796 	q_vector->tx.total_bytes = 0;
5797 	q_vector->tx.total_packets = 0;
5798 }
5799 
5800 /**
5801  *  igb_update_itr - update the dynamic ITR value based on statistics
5802  *  @q_vector: pointer to q_vector
5803  *  @ring_container: ring info to update the itr for
5804  *
5805  *  Stores a new ITR value based on packets and byte
5806  *  counts during the last interrupt.  The advantage of per interrupt
5807  *  computation is faster updates and more accurate ITR for the current
5808  *  traffic pattern.  Constants in this function were computed
5809  *  based on theoretical maximum wire speed and thresholds were set based
5810  *  on testing data as well as attempting to minimize response time
5811  *  while increasing bulk throughput.
5812  *  This functionality is controlled by ethtool's coalescing settings.
5813  *  NOTE:  These calculations are only valid when operating in a single-
5814  *         queue environment.
5815  **/
5816 static void igb_update_itr(struct igb_q_vector *q_vector,
5817 			   struct igb_ring_container *ring_container)
5818 {
5819 	unsigned int packets = ring_container->total_packets;
5820 	unsigned int bytes = ring_container->total_bytes;
5821 	u8 itrval = ring_container->itr;
5822 
5823 	/* no packets, exit with status unchanged */
5824 	if (packets == 0)
5825 		return;
5826 
5827 	switch (itrval) {
5828 	case lowest_latency:
5829 		/* handle TSO and jumbo frames */
5830 		if (bytes/packets > 8000)
5831 			itrval = bulk_latency;
5832 		else if ((packets < 5) && (bytes > 512))
5833 			itrval = low_latency;
5834 		break;
5835 	case low_latency:  /* 50 usec aka 20000 ints/s */
5836 		if (bytes > 10000) {
5837 			/* this if handles the TSO accounting */
5838 			if (bytes/packets > 8000)
5839 				itrval = bulk_latency;
5840 			else if ((packets < 10) || ((bytes/packets) > 1200))
5841 				itrval = bulk_latency;
5842 			else if ((packets > 35))
5843 				itrval = lowest_latency;
5844 		} else if (bytes/packets > 2000) {
5845 			itrval = bulk_latency;
5846 		} else if (packets <= 2 && bytes < 512) {
5847 			itrval = lowest_latency;
5848 		}
5849 		break;
5850 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5851 		if (bytes > 25000) {
5852 			if (packets > 35)
5853 				itrval = low_latency;
5854 		} else if (bytes < 1500) {
5855 			itrval = low_latency;
5856 		}
5857 		break;
5858 	}
5859 
5860 	/* clear work counters since we have the values we need */
5861 	ring_container->total_bytes = 0;
5862 	ring_container->total_packets = 0;
5863 
5864 	/* write updated itr to ring container */
5865 	ring_container->itr = itrval;
5866 }
5867 
5868 static void igb_set_itr(struct igb_q_vector *q_vector)
5869 {
5870 	struct igb_adapter *adapter = q_vector->adapter;
5871 	u32 new_itr = q_vector->itr_val;
5872 	u8 current_itr = 0;
5873 
5874 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5875 	if (adapter->link_speed != SPEED_1000) {
5876 		current_itr = 0;
5877 		new_itr = IGB_4K_ITR;
5878 		goto set_itr_now;
5879 	}
5880 
5881 	igb_update_itr(q_vector, &q_vector->tx);
5882 	igb_update_itr(q_vector, &q_vector->rx);
5883 
5884 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5885 
5886 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5887 	if (current_itr == lowest_latency &&
5888 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5889 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5890 		current_itr = low_latency;
5891 
5892 	switch (current_itr) {
5893 	/* counts and packets in update_itr are dependent on these numbers */
5894 	case lowest_latency:
5895 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5896 		break;
5897 	case low_latency:
5898 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5899 		break;
5900 	case bulk_latency:
5901 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5902 		break;
5903 	default:
5904 		break;
5905 	}
5906 
5907 set_itr_now:
5908 	if (new_itr != q_vector->itr_val) {
5909 		/* this attempts to bias the interrupt rate towards Bulk
5910 		 * by adding intermediate steps when interrupt rate is
5911 		 * increasing
5912 		 */
5913 		new_itr = new_itr > q_vector->itr_val ?
5914 			  max((new_itr * q_vector->itr_val) /
5915 			  (new_itr + (q_vector->itr_val >> 2)),
5916 			  new_itr) : new_itr;
5917 		/* Don't write the value here; it resets the adapter's
5918 		 * internal timer, and causes us to delay far longer than
5919 		 * we should between interrupts.  Instead, we write the ITR
5920 		 * value at the beginning of the next interrupt so the timing
5921 		 * ends up being correct.
5922 		 */
5923 		q_vector->itr_val = new_itr;
5924 		q_vector->set_itr = 1;
5925 	}
5926 }
5927 
5928 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5929 			    struct igb_tx_buffer *first,
5930 			    u32 vlan_macip_lens, u32 type_tucmd,
5931 			    u32 mss_l4len_idx)
5932 {
5933 	struct e1000_adv_tx_context_desc *context_desc;
5934 	u16 i = tx_ring->next_to_use;
5935 	struct timespec64 ts;
5936 
5937 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5938 
5939 	i++;
5940 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5941 
5942 	/* set bits to identify this as an advanced context descriptor */
5943 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5944 
5945 	/* For 82575, context index must be unique per ring. */
5946 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5947 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5948 
5949 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5950 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5951 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5952 
5953 	/* We assume there is always a valid tx time available. Invalid times
5954 	 * should have been handled by the upper layers.
5955 	 */
5956 	if (tx_ring->launchtime_enable) {
5957 		ts = ktime_to_timespec64(first->skb->tstamp);
5958 		skb_txtime_consumed(first->skb);
5959 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5960 	} else {
5961 		context_desc->seqnum_seed = 0;
5962 	}
5963 }
5964 
5965 static int igb_tso(struct igb_ring *tx_ring,
5966 		   struct igb_tx_buffer *first,
5967 		   u8 *hdr_len)
5968 {
5969 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5970 	struct sk_buff *skb = first->skb;
5971 	union {
5972 		struct iphdr *v4;
5973 		struct ipv6hdr *v6;
5974 		unsigned char *hdr;
5975 	} ip;
5976 	union {
5977 		struct tcphdr *tcp;
5978 		struct udphdr *udp;
5979 		unsigned char *hdr;
5980 	} l4;
5981 	u32 paylen, l4_offset;
5982 	int err;
5983 
5984 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5985 		return 0;
5986 
5987 	if (!skb_is_gso(skb))
5988 		return 0;
5989 
5990 	err = skb_cow_head(skb, 0);
5991 	if (err < 0)
5992 		return err;
5993 
5994 	ip.hdr = skb_network_header(skb);
5995 	l4.hdr = skb_checksum_start(skb);
5996 
5997 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5998 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5999 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6000 
6001 	/* initialize outer IP header fields */
6002 	if (ip.v4->version == 4) {
6003 		unsigned char *csum_start = skb_checksum_start(skb);
6004 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6005 
6006 		/* IP header will have to cancel out any data that
6007 		 * is not a part of the outer IP header
6008 		 */
6009 		ip.v4->check = csum_fold(csum_partial(trans_start,
6010 						      csum_start - trans_start,
6011 						      0));
6012 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6013 
6014 		ip.v4->tot_len = 0;
6015 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6016 				   IGB_TX_FLAGS_CSUM |
6017 				   IGB_TX_FLAGS_IPV4;
6018 	} else {
6019 		ip.v6->payload_len = 0;
6020 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6021 				   IGB_TX_FLAGS_CSUM;
6022 	}
6023 
6024 	/* determine offset of inner transport header */
6025 	l4_offset = l4.hdr - skb->data;
6026 
6027 	/* remove payload length from inner checksum */
6028 	paylen = skb->len - l4_offset;
6029 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6030 		/* compute length of segmentation header */
6031 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6032 		csum_replace_by_diff(&l4.tcp->check,
6033 			(__force __wsum)htonl(paylen));
6034 	} else {
6035 		/* compute length of segmentation header */
6036 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6037 		csum_replace_by_diff(&l4.udp->check,
6038 				     (__force __wsum)htonl(paylen));
6039 	}
6040 
6041 	/* update gso size and bytecount with header size */
6042 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6043 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6044 
6045 	/* MSS L4LEN IDX */
6046 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6047 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6048 
6049 	/* VLAN MACLEN IPLEN */
6050 	vlan_macip_lens = l4.hdr - ip.hdr;
6051 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6052 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6053 
6054 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6055 			type_tucmd, mss_l4len_idx);
6056 
6057 	return 1;
6058 }
6059 
6060 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6061 {
6062 	struct sk_buff *skb = first->skb;
6063 	u32 vlan_macip_lens = 0;
6064 	u32 type_tucmd = 0;
6065 
6066 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6067 csum_failed:
6068 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6069 		    !tx_ring->launchtime_enable)
6070 			return;
6071 		goto no_csum;
6072 	}
6073 
6074 	switch (skb->csum_offset) {
6075 	case offsetof(struct tcphdr, check):
6076 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6077 		fallthrough;
6078 	case offsetof(struct udphdr, check):
6079 		break;
6080 	case offsetof(struct sctphdr, checksum):
6081 		/* validate that this is actually an SCTP request */
6082 		if (skb_csum_is_sctp(skb)) {
6083 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6084 			break;
6085 		}
6086 		fallthrough;
6087 	default:
6088 		skb_checksum_help(skb);
6089 		goto csum_failed;
6090 	}
6091 
6092 	/* update TX checksum flag */
6093 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6094 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6095 			  skb_network_offset(skb);
6096 no_csum:
6097 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6098 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6099 
6100 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6101 }
6102 
6103 #define IGB_SET_FLAG(_input, _flag, _result) \
6104 	((_flag <= _result) ? \
6105 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6106 	 ((u32)(_input & _flag) / (_flag / _result)))
6107 
6108 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6109 {
6110 	/* set type for advanced descriptor with frame checksum insertion */
6111 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6112 		       E1000_ADVTXD_DCMD_DEXT |
6113 		       E1000_ADVTXD_DCMD_IFCS;
6114 
6115 	/* set HW vlan bit if vlan is present */
6116 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6117 				 (E1000_ADVTXD_DCMD_VLE));
6118 
6119 	/* set segmentation bits for TSO */
6120 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6121 				 (E1000_ADVTXD_DCMD_TSE));
6122 
6123 	/* set timestamp bit if present */
6124 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6125 				 (E1000_ADVTXD_MAC_TSTAMP));
6126 
6127 	/* insert frame checksum */
6128 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6129 
6130 	return cmd_type;
6131 }
6132 
6133 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6134 				 union e1000_adv_tx_desc *tx_desc,
6135 				 u32 tx_flags, unsigned int paylen)
6136 {
6137 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6138 
6139 	/* 82575 requires a unique index per ring */
6140 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6141 		olinfo_status |= tx_ring->reg_idx << 4;
6142 
6143 	/* insert L4 checksum */
6144 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6145 				      IGB_TX_FLAGS_CSUM,
6146 				      (E1000_TXD_POPTS_TXSM << 8));
6147 
6148 	/* insert IPv4 checksum */
6149 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6150 				      IGB_TX_FLAGS_IPV4,
6151 				      (E1000_TXD_POPTS_IXSM << 8));
6152 
6153 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6154 }
6155 
6156 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6157 {
6158 	struct net_device *netdev = tx_ring->netdev;
6159 
6160 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6161 
6162 	/* Herbert's original patch had:
6163 	 *  smp_mb__after_netif_stop_queue();
6164 	 * but since that doesn't exist yet, just open code it.
6165 	 */
6166 	smp_mb();
6167 
6168 	/* We need to check again in a case another CPU has just
6169 	 * made room available.
6170 	 */
6171 	if (igb_desc_unused(tx_ring) < size)
6172 		return -EBUSY;
6173 
6174 	/* A reprieve! */
6175 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6176 
6177 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6178 	tx_ring->tx_stats.restart_queue2++;
6179 	u64_stats_update_end(&tx_ring->tx_syncp2);
6180 
6181 	return 0;
6182 }
6183 
6184 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6185 {
6186 	if (igb_desc_unused(tx_ring) >= size)
6187 		return 0;
6188 	return __igb_maybe_stop_tx(tx_ring, size);
6189 }
6190 
6191 static int igb_tx_map(struct igb_ring *tx_ring,
6192 		      struct igb_tx_buffer *first,
6193 		      const u8 hdr_len)
6194 {
6195 	struct sk_buff *skb = first->skb;
6196 	struct igb_tx_buffer *tx_buffer;
6197 	union e1000_adv_tx_desc *tx_desc;
6198 	skb_frag_t *frag;
6199 	dma_addr_t dma;
6200 	unsigned int data_len, size;
6201 	u32 tx_flags = first->tx_flags;
6202 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6203 	u16 i = tx_ring->next_to_use;
6204 
6205 	tx_desc = IGB_TX_DESC(tx_ring, i);
6206 
6207 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6208 
6209 	size = skb_headlen(skb);
6210 	data_len = skb->data_len;
6211 
6212 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6213 
6214 	tx_buffer = first;
6215 
6216 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6217 		if (dma_mapping_error(tx_ring->dev, dma))
6218 			goto dma_error;
6219 
6220 		/* record length, and DMA address */
6221 		dma_unmap_len_set(tx_buffer, len, size);
6222 		dma_unmap_addr_set(tx_buffer, dma, dma);
6223 
6224 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6225 
6226 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6227 			tx_desc->read.cmd_type_len =
6228 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6229 
6230 			i++;
6231 			tx_desc++;
6232 			if (i == tx_ring->count) {
6233 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6234 				i = 0;
6235 			}
6236 			tx_desc->read.olinfo_status = 0;
6237 
6238 			dma += IGB_MAX_DATA_PER_TXD;
6239 			size -= IGB_MAX_DATA_PER_TXD;
6240 
6241 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6242 		}
6243 
6244 		if (likely(!data_len))
6245 			break;
6246 
6247 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6248 
6249 		i++;
6250 		tx_desc++;
6251 		if (i == tx_ring->count) {
6252 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6253 			i = 0;
6254 		}
6255 		tx_desc->read.olinfo_status = 0;
6256 
6257 		size = skb_frag_size(frag);
6258 		data_len -= size;
6259 
6260 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6261 				       size, DMA_TO_DEVICE);
6262 
6263 		tx_buffer = &tx_ring->tx_buffer_info[i];
6264 	}
6265 
6266 	/* write last descriptor with RS and EOP bits */
6267 	cmd_type |= size | IGB_TXD_DCMD;
6268 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6269 
6270 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6271 
6272 	/* set the timestamp */
6273 	first->time_stamp = jiffies;
6274 
6275 	skb_tx_timestamp(skb);
6276 
6277 	/* Force memory writes to complete before letting h/w know there
6278 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6279 	 * memory model archs, such as IA-64).
6280 	 *
6281 	 * We also need this memory barrier to make certain all of the
6282 	 * status bits have been updated before next_to_watch is written.
6283 	 */
6284 	dma_wmb();
6285 
6286 	/* set next_to_watch value indicating a packet is present */
6287 	first->next_to_watch = tx_desc;
6288 
6289 	i++;
6290 	if (i == tx_ring->count)
6291 		i = 0;
6292 
6293 	tx_ring->next_to_use = i;
6294 
6295 	/* Make sure there is space in the ring for the next send. */
6296 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6297 
6298 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6299 		writel(i, tx_ring->tail);
6300 	}
6301 	return 0;
6302 
6303 dma_error:
6304 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6305 	tx_buffer = &tx_ring->tx_buffer_info[i];
6306 
6307 	/* clear dma mappings for failed tx_buffer_info map */
6308 	while (tx_buffer != first) {
6309 		if (dma_unmap_len(tx_buffer, len))
6310 			dma_unmap_page(tx_ring->dev,
6311 				       dma_unmap_addr(tx_buffer, dma),
6312 				       dma_unmap_len(tx_buffer, len),
6313 				       DMA_TO_DEVICE);
6314 		dma_unmap_len_set(tx_buffer, len, 0);
6315 
6316 		if (i-- == 0)
6317 			i += tx_ring->count;
6318 		tx_buffer = &tx_ring->tx_buffer_info[i];
6319 	}
6320 
6321 	if (dma_unmap_len(tx_buffer, len))
6322 		dma_unmap_single(tx_ring->dev,
6323 				 dma_unmap_addr(tx_buffer, dma),
6324 				 dma_unmap_len(tx_buffer, len),
6325 				 DMA_TO_DEVICE);
6326 	dma_unmap_len_set(tx_buffer, len, 0);
6327 
6328 	dev_kfree_skb_any(tx_buffer->skb);
6329 	tx_buffer->skb = NULL;
6330 
6331 	tx_ring->next_to_use = i;
6332 
6333 	return -1;
6334 }
6335 
6336 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6337 		      struct igb_ring *tx_ring,
6338 		      struct xdp_frame *xdpf)
6339 {
6340 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6341 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6342 	u16 count, i, index = tx_ring->next_to_use;
6343 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6344 	struct igb_tx_buffer *tx_buffer = tx_head;
6345 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6346 	u32 len = xdpf->len, cmd_type, olinfo_status;
6347 	void *data = xdpf->data;
6348 
6349 	count = TXD_USE_COUNT(len);
6350 	for (i = 0; i < nr_frags; i++)
6351 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6352 
6353 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6354 		return IGB_XDP_CONSUMED;
6355 
6356 	i = 0;
6357 	/* record the location of the first descriptor for this packet */
6358 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6359 	tx_head->type = IGB_TYPE_XDP;
6360 	tx_head->gso_segs = 1;
6361 	tx_head->xdpf = xdpf;
6362 
6363 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6364 	/* 82575 requires a unique index per ring */
6365 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6366 		olinfo_status |= tx_ring->reg_idx << 4;
6367 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6368 
6369 	for (;;) {
6370 		dma_addr_t dma;
6371 
6372 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6373 		if (dma_mapping_error(tx_ring->dev, dma))
6374 			goto unmap;
6375 
6376 		/* record length, and DMA address */
6377 		dma_unmap_len_set(tx_buffer, len, len);
6378 		dma_unmap_addr_set(tx_buffer, dma, dma);
6379 
6380 		/* put descriptor type bits */
6381 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6382 			   E1000_ADVTXD_DCMD_IFCS | len;
6383 
6384 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6385 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6386 
6387 		tx_buffer->protocol = 0;
6388 
6389 		if (++index == tx_ring->count)
6390 			index = 0;
6391 
6392 		if (i == nr_frags)
6393 			break;
6394 
6395 		tx_buffer = &tx_ring->tx_buffer_info[index];
6396 		tx_desc = IGB_TX_DESC(tx_ring, index);
6397 		tx_desc->read.olinfo_status = 0;
6398 
6399 		data = skb_frag_address(&sinfo->frags[i]);
6400 		len = skb_frag_size(&sinfo->frags[i]);
6401 		i++;
6402 	}
6403 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6404 
6405 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6406 	/* set the timestamp */
6407 	tx_head->time_stamp = jiffies;
6408 
6409 	/* Avoid any potential race with xdp_xmit and cleanup */
6410 	smp_wmb();
6411 
6412 	/* set next_to_watch value indicating a packet is present */
6413 	tx_head->next_to_watch = tx_desc;
6414 	tx_ring->next_to_use = index;
6415 
6416 	/* Make sure there is space in the ring for the next send. */
6417 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6418 
6419 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6420 		writel(index, tx_ring->tail);
6421 
6422 	return IGB_XDP_TX;
6423 
6424 unmap:
6425 	for (;;) {
6426 		tx_buffer = &tx_ring->tx_buffer_info[index];
6427 		if (dma_unmap_len(tx_buffer, len))
6428 			dma_unmap_page(tx_ring->dev,
6429 				       dma_unmap_addr(tx_buffer, dma),
6430 				       dma_unmap_len(tx_buffer, len),
6431 				       DMA_TO_DEVICE);
6432 		dma_unmap_len_set(tx_buffer, len, 0);
6433 		if (tx_buffer == tx_head)
6434 			break;
6435 
6436 		if (!index)
6437 			index += tx_ring->count;
6438 		index--;
6439 	}
6440 
6441 	return IGB_XDP_CONSUMED;
6442 }
6443 
6444 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6445 				struct igb_ring *tx_ring)
6446 {
6447 	struct igb_tx_buffer *first;
6448 	int tso;
6449 	u32 tx_flags = 0;
6450 	unsigned short f;
6451 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6452 	__be16 protocol = vlan_get_protocol(skb);
6453 	u8 hdr_len = 0;
6454 
6455 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6456 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6457 	 *       + 2 desc gap to keep tail from touching head,
6458 	 *       + 1 desc for context descriptor,
6459 	 * otherwise try next time
6460 	 */
6461 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6462 		count += TXD_USE_COUNT(skb_frag_size(
6463 						&skb_shinfo(skb)->frags[f]));
6464 
6465 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6466 		/* this is a hard error */
6467 		return NETDEV_TX_BUSY;
6468 	}
6469 
6470 	/* record the location of the first descriptor for this packet */
6471 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6472 	first->type = IGB_TYPE_SKB;
6473 	first->skb = skb;
6474 	first->bytecount = skb->len;
6475 	first->gso_segs = 1;
6476 
6477 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6478 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6479 
6480 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6481 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6482 					   &adapter->state)) {
6483 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6484 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6485 
6486 			adapter->ptp_tx_skb = skb_get(skb);
6487 			adapter->ptp_tx_start = jiffies;
6488 			if (adapter->hw.mac.type == e1000_82576)
6489 				schedule_work(&adapter->ptp_tx_work);
6490 		} else {
6491 			adapter->tx_hwtstamp_skipped++;
6492 		}
6493 	}
6494 
6495 	if (skb_vlan_tag_present(skb)) {
6496 		tx_flags |= IGB_TX_FLAGS_VLAN;
6497 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6498 	}
6499 
6500 	/* record initial flags and protocol */
6501 	first->tx_flags = tx_flags;
6502 	first->protocol = protocol;
6503 
6504 	tso = igb_tso(tx_ring, first, &hdr_len);
6505 	if (tso < 0)
6506 		goto out_drop;
6507 	else if (!tso)
6508 		igb_tx_csum(tx_ring, first);
6509 
6510 	if (igb_tx_map(tx_ring, first, hdr_len))
6511 		goto cleanup_tx_tstamp;
6512 
6513 	return NETDEV_TX_OK;
6514 
6515 out_drop:
6516 	dev_kfree_skb_any(first->skb);
6517 	first->skb = NULL;
6518 cleanup_tx_tstamp:
6519 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6520 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6521 
6522 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6523 		adapter->ptp_tx_skb = NULL;
6524 		if (adapter->hw.mac.type == e1000_82576)
6525 			cancel_work_sync(&adapter->ptp_tx_work);
6526 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6527 	}
6528 
6529 	return NETDEV_TX_OK;
6530 }
6531 
6532 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6533 						    struct sk_buff *skb)
6534 {
6535 	unsigned int r_idx = skb->queue_mapping;
6536 
6537 	if (r_idx >= adapter->num_tx_queues)
6538 		r_idx = r_idx % adapter->num_tx_queues;
6539 
6540 	return adapter->tx_ring[r_idx];
6541 }
6542 
6543 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6544 				  struct net_device *netdev)
6545 {
6546 	struct igb_adapter *adapter = netdev_priv(netdev);
6547 
6548 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6549 	 * in order to meet this minimum size requirement.
6550 	 */
6551 	if (skb_put_padto(skb, 17))
6552 		return NETDEV_TX_OK;
6553 
6554 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6555 }
6556 
6557 /**
6558  *  igb_tx_timeout - Respond to a Tx Hang
6559  *  @netdev: network interface device structure
6560  *  @txqueue: number of the Tx queue that hung (unused)
6561  **/
6562 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6563 {
6564 	struct igb_adapter *adapter = netdev_priv(netdev);
6565 	struct e1000_hw *hw = &adapter->hw;
6566 
6567 	/* Do the reset outside of interrupt context */
6568 	adapter->tx_timeout_count++;
6569 
6570 	if (hw->mac.type >= e1000_82580)
6571 		hw->dev_spec._82575.global_device_reset = true;
6572 
6573 	schedule_work(&adapter->reset_task);
6574 	wr32(E1000_EICS,
6575 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6576 }
6577 
6578 static void igb_reset_task(struct work_struct *work)
6579 {
6580 	struct igb_adapter *adapter;
6581 	adapter = container_of(work, struct igb_adapter, reset_task);
6582 
6583 	rtnl_lock();
6584 	/* If we're already down or resetting, just bail */
6585 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6586 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6587 		rtnl_unlock();
6588 		return;
6589 	}
6590 
6591 	igb_dump(adapter);
6592 	netdev_err(adapter->netdev, "Reset adapter\n");
6593 	igb_reinit_locked(adapter);
6594 	rtnl_unlock();
6595 }
6596 
6597 /**
6598  *  igb_get_stats64 - Get System Network Statistics
6599  *  @netdev: network interface device structure
6600  *  @stats: rtnl_link_stats64 pointer
6601  **/
6602 static void igb_get_stats64(struct net_device *netdev,
6603 			    struct rtnl_link_stats64 *stats)
6604 {
6605 	struct igb_adapter *adapter = netdev_priv(netdev);
6606 
6607 	spin_lock(&adapter->stats64_lock);
6608 	igb_update_stats(adapter);
6609 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6610 	spin_unlock(&adapter->stats64_lock);
6611 }
6612 
6613 /**
6614  *  igb_change_mtu - Change the Maximum Transfer Unit
6615  *  @netdev: network interface device structure
6616  *  @new_mtu: new value for maximum frame size
6617  *
6618  *  Returns 0 on success, negative on failure
6619  **/
6620 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6621 {
6622 	struct igb_adapter *adapter = netdev_priv(netdev);
6623 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6624 
6625 	if (adapter->xdp_prog) {
6626 		int i;
6627 
6628 		for (i = 0; i < adapter->num_rx_queues; i++) {
6629 			struct igb_ring *ring = adapter->rx_ring[i];
6630 
6631 			if (max_frame > igb_rx_bufsz(ring)) {
6632 				netdev_warn(adapter->netdev,
6633 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6634 					    max_frame);
6635 				return -EINVAL;
6636 			}
6637 		}
6638 	}
6639 
6640 	/* adjust max frame to be at least the size of a standard frame */
6641 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6642 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6643 
6644 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6645 		usleep_range(1000, 2000);
6646 
6647 	/* igb_down has a dependency on max_frame_size */
6648 	adapter->max_frame_size = max_frame;
6649 
6650 	if (netif_running(netdev))
6651 		igb_down(adapter);
6652 
6653 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6654 		   netdev->mtu, new_mtu);
6655 	WRITE_ONCE(netdev->mtu, new_mtu);
6656 
6657 	if (netif_running(netdev))
6658 		igb_up(adapter);
6659 	else
6660 		igb_reset(adapter);
6661 
6662 	clear_bit(__IGB_RESETTING, &adapter->state);
6663 
6664 	return 0;
6665 }
6666 
6667 /**
6668  *  igb_update_stats - Update the board statistics counters
6669  *  @adapter: board private structure
6670  **/
6671 void igb_update_stats(struct igb_adapter *adapter)
6672 {
6673 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6674 	struct e1000_hw *hw = &adapter->hw;
6675 	struct pci_dev *pdev = adapter->pdev;
6676 	u32 reg, mpc;
6677 	int i;
6678 	u64 bytes, packets;
6679 	unsigned int start;
6680 	u64 _bytes, _packets;
6681 
6682 	/* Prevent stats update while adapter is being reset, or if the pci
6683 	 * connection is down.
6684 	 */
6685 	if (adapter->link_speed == 0)
6686 		return;
6687 	if (pci_channel_offline(pdev))
6688 		return;
6689 
6690 	bytes = 0;
6691 	packets = 0;
6692 
6693 	rcu_read_lock();
6694 	for (i = 0; i < adapter->num_rx_queues; i++) {
6695 		struct igb_ring *ring = adapter->rx_ring[i];
6696 		u32 rqdpc = rd32(E1000_RQDPC(i));
6697 		if (hw->mac.type >= e1000_i210)
6698 			wr32(E1000_RQDPC(i), 0);
6699 
6700 		if (rqdpc) {
6701 			ring->rx_stats.drops += rqdpc;
6702 			net_stats->rx_fifo_errors += rqdpc;
6703 		}
6704 
6705 		do {
6706 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6707 			_bytes = ring->rx_stats.bytes;
6708 			_packets = ring->rx_stats.packets;
6709 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6710 		bytes += _bytes;
6711 		packets += _packets;
6712 	}
6713 
6714 	net_stats->rx_bytes = bytes;
6715 	net_stats->rx_packets = packets;
6716 
6717 	bytes = 0;
6718 	packets = 0;
6719 	for (i = 0; i < adapter->num_tx_queues; i++) {
6720 		struct igb_ring *ring = adapter->tx_ring[i];
6721 		do {
6722 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6723 			_bytes = ring->tx_stats.bytes;
6724 			_packets = ring->tx_stats.packets;
6725 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6726 		bytes += _bytes;
6727 		packets += _packets;
6728 	}
6729 	net_stats->tx_bytes = bytes;
6730 	net_stats->tx_packets = packets;
6731 	rcu_read_unlock();
6732 
6733 	/* read stats registers */
6734 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6735 	adapter->stats.gprc += rd32(E1000_GPRC);
6736 	adapter->stats.gorc += rd32(E1000_GORCL);
6737 	rd32(E1000_GORCH); /* clear GORCL */
6738 	adapter->stats.bprc += rd32(E1000_BPRC);
6739 	adapter->stats.mprc += rd32(E1000_MPRC);
6740 	adapter->stats.roc += rd32(E1000_ROC);
6741 
6742 	adapter->stats.prc64 += rd32(E1000_PRC64);
6743 	adapter->stats.prc127 += rd32(E1000_PRC127);
6744 	adapter->stats.prc255 += rd32(E1000_PRC255);
6745 	adapter->stats.prc511 += rd32(E1000_PRC511);
6746 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6747 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6748 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6749 	adapter->stats.sec += rd32(E1000_SEC);
6750 
6751 	mpc = rd32(E1000_MPC);
6752 	adapter->stats.mpc += mpc;
6753 	net_stats->rx_fifo_errors += mpc;
6754 	adapter->stats.scc += rd32(E1000_SCC);
6755 	adapter->stats.ecol += rd32(E1000_ECOL);
6756 	adapter->stats.mcc += rd32(E1000_MCC);
6757 	adapter->stats.latecol += rd32(E1000_LATECOL);
6758 	adapter->stats.dc += rd32(E1000_DC);
6759 	adapter->stats.rlec += rd32(E1000_RLEC);
6760 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6761 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6762 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6763 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6764 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6765 	adapter->stats.gptc += rd32(E1000_GPTC);
6766 	adapter->stats.gotc += rd32(E1000_GOTCL);
6767 	rd32(E1000_GOTCH); /* clear GOTCL */
6768 	adapter->stats.rnbc += rd32(E1000_RNBC);
6769 	adapter->stats.ruc += rd32(E1000_RUC);
6770 	adapter->stats.rfc += rd32(E1000_RFC);
6771 	adapter->stats.rjc += rd32(E1000_RJC);
6772 	adapter->stats.tor += rd32(E1000_TORH);
6773 	adapter->stats.tot += rd32(E1000_TOTH);
6774 	adapter->stats.tpr += rd32(E1000_TPR);
6775 
6776 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6777 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6778 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6779 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6780 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6781 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6782 
6783 	adapter->stats.mptc += rd32(E1000_MPTC);
6784 	adapter->stats.bptc += rd32(E1000_BPTC);
6785 
6786 	adapter->stats.tpt += rd32(E1000_TPT);
6787 	adapter->stats.colc += rd32(E1000_COLC);
6788 
6789 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6790 	/* read internal phy specific stats */
6791 	reg = rd32(E1000_CTRL_EXT);
6792 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6793 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6794 
6795 		/* this stat has invalid values on i210/i211 */
6796 		if ((hw->mac.type != e1000_i210) &&
6797 		    (hw->mac.type != e1000_i211))
6798 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6799 	}
6800 
6801 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6802 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6803 
6804 	adapter->stats.iac += rd32(E1000_IAC);
6805 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6806 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6807 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6808 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6809 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6810 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6811 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6812 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6813 
6814 	/* Fill out the OS statistics structure */
6815 	net_stats->multicast = adapter->stats.mprc;
6816 	net_stats->collisions = adapter->stats.colc;
6817 
6818 	/* Rx Errors */
6819 
6820 	/* RLEC on some newer hardware can be incorrect so build
6821 	 * our own version based on RUC and ROC
6822 	 */
6823 	net_stats->rx_errors = adapter->stats.rxerrc +
6824 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6825 		adapter->stats.ruc + adapter->stats.roc +
6826 		adapter->stats.cexterr;
6827 	net_stats->rx_length_errors = adapter->stats.ruc +
6828 				      adapter->stats.roc;
6829 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6830 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6831 	net_stats->rx_missed_errors = adapter->stats.mpc;
6832 
6833 	/* Tx Errors */
6834 	net_stats->tx_errors = adapter->stats.ecol +
6835 			       adapter->stats.latecol;
6836 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6837 	net_stats->tx_window_errors = adapter->stats.latecol;
6838 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6839 
6840 	/* Tx Dropped needs to be maintained elsewhere */
6841 
6842 	/* Management Stats */
6843 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6844 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6845 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6846 
6847 	/* OS2BMC Stats */
6848 	reg = rd32(E1000_MANC);
6849 	if (reg & E1000_MANC_EN_BMC2OS) {
6850 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6851 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6852 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6853 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6854 	}
6855 }
6856 
6857 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6858 {
6859 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6860 	struct e1000_hw *hw = &adapter->hw;
6861 	struct timespec64 ts;
6862 	u32 tsauxc;
6863 
6864 	if (pin < 0 || pin >= IGB_N_SDP)
6865 		return;
6866 
6867 	spin_lock(&adapter->tmreg_lock);
6868 
6869 	if (hw->mac.type == e1000_82580 ||
6870 	    hw->mac.type == e1000_i354 ||
6871 	    hw->mac.type == e1000_i350) {
6872 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6873 		u32 systiml, systimh, level_mask, level, rem;
6874 		u64 systim, now;
6875 
6876 		/* read systim registers in sequence */
6877 		rd32(E1000_SYSTIMR);
6878 		systiml = rd32(E1000_SYSTIML);
6879 		systimh = rd32(E1000_SYSTIMH);
6880 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6881 		now = timecounter_cyc2time(&adapter->tc, systim);
6882 
6883 		if (pin < 2) {
6884 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6885 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6886 		} else {
6887 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6888 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6889 		}
6890 
6891 		div_u64_rem(now, ns, &rem);
6892 		systim = systim + (ns - rem);
6893 
6894 		/* synchronize pin level with rising/falling edges */
6895 		div_u64_rem(now, ns << 1, &rem);
6896 		if (rem < ns) {
6897 			/* first half of period */
6898 			if (level == 0) {
6899 				/* output is already low, skip this period */
6900 				systim += ns;
6901 				pr_notice("igb: periodic output on %s missed falling edge\n",
6902 					  adapter->sdp_config[pin].name);
6903 			}
6904 		} else {
6905 			/* second half of period */
6906 			if (level == 1) {
6907 				/* output is already high, skip this period */
6908 				systim += ns;
6909 				pr_notice("igb: periodic output on %s missed rising edge\n",
6910 					  adapter->sdp_config[pin].name);
6911 			}
6912 		}
6913 
6914 		/* for this chip family tv_sec is the upper part of the binary value,
6915 		 * so not seconds
6916 		 */
6917 		ts.tv_nsec = (u32)systim;
6918 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6919 	} else {
6920 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
6921 				    adapter->perout[tsintr_tt].period);
6922 	}
6923 
6924 	/* u32 conversion of tv_sec is safe until y2106 */
6925 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6926 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6927 	tsauxc = rd32(E1000_TSAUXC);
6928 	tsauxc |= TSAUXC_EN_TT0;
6929 	wr32(E1000_TSAUXC, tsauxc);
6930 	adapter->perout[tsintr_tt].start = ts;
6931 
6932 	spin_unlock(&adapter->tmreg_lock);
6933 }
6934 
6935 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6936 {
6937 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6938 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6939 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6940 	struct e1000_hw *hw = &adapter->hw;
6941 	struct ptp_clock_event event;
6942 	struct timespec64 ts;
6943 	unsigned long flags;
6944 
6945 	if (pin < 0 || pin >= IGB_N_SDP)
6946 		return;
6947 
6948 	if (hw->mac.type == e1000_82580 ||
6949 	    hw->mac.type == e1000_i354 ||
6950 	    hw->mac.type == e1000_i350) {
6951 		u64 ns = rd32(auxstmpl);
6952 
6953 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6954 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
6955 		ns = timecounter_cyc2time(&adapter->tc, ns);
6956 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6957 		ts = ns_to_timespec64(ns);
6958 	} else {
6959 		ts.tv_nsec = rd32(auxstmpl);
6960 		ts.tv_sec  = rd32(auxstmph);
6961 	}
6962 
6963 	event.type = PTP_CLOCK_EXTTS;
6964 	event.index = tsintr_tt;
6965 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6966 	ptp_clock_event(adapter->ptp_clock, &event);
6967 }
6968 
6969 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6970 {
6971 	const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
6972 			  TSINTR_TT0 | TSINTR_TT1 |
6973 			  TSINTR_AUTT0 | TSINTR_AUTT1);
6974 	struct e1000_hw *hw = &adapter->hw;
6975 	u32 tsicr = rd32(E1000_TSICR);
6976 	struct ptp_clock_event event;
6977 
6978 	if (hw->mac.type == e1000_82580) {
6979 		/* 82580 has a hardware bug that requires an explicit
6980 		 * write to clear the TimeSync interrupt cause.
6981 		 */
6982 		wr32(E1000_TSICR, tsicr & mask);
6983 	}
6984 
6985 	if (tsicr & TSINTR_SYS_WRAP) {
6986 		event.type = PTP_CLOCK_PPS;
6987 		if (adapter->ptp_caps.pps)
6988 			ptp_clock_event(adapter->ptp_clock, &event);
6989 	}
6990 
6991 	if (tsicr & E1000_TSICR_TXTS) {
6992 		/* retrieve hardware timestamp */
6993 		schedule_work(&adapter->ptp_tx_work);
6994 	}
6995 
6996 	if (tsicr & TSINTR_TT0)
6997 		igb_perout(adapter, 0);
6998 
6999 	if (tsicr & TSINTR_TT1)
7000 		igb_perout(adapter, 1);
7001 
7002 	if (tsicr & TSINTR_AUTT0)
7003 		igb_extts(adapter, 0);
7004 
7005 	if (tsicr & TSINTR_AUTT1)
7006 		igb_extts(adapter, 1);
7007 }
7008 
7009 static irqreturn_t igb_msix_other(int irq, void *data)
7010 {
7011 	struct igb_adapter *adapter = data;
7012 	struct e1000_hw *hw = &adapter->hw;
7013 	u32 icr = rd32(E1000_ICR);
7014 	/* reading ICR causes bit 31 of EICR to be cleared */
7015 
7016 	if (icr & E1000_ICR_DRSTA)
7017 		schedule_work(&adapter->reset_task);
7018 
7019 	if (icr & E1000_ICR_DOUTSYNC) {
7020 		/* HW is reporting DMA is out of sync */
7021 		adapter->stats.doosync++;
7022 		/* The DMA Out of Sync is also indication of a spoof event
7023 		 * in IOV mode. Check the Wrong VM Behavior register to
7024 		 * see if it is really a spoof event.
7025 		 */
7026 		igb_check_wvbr(adapter);
7027 	}
7028 
7029 	/* Check for a mailbox event */
7030 	if (icr & E1000_ICR_VMMB)
7031 		igb_msg_task(adapter);
7032 
7033 	if (icr & E1000_ICR_LSC) {
7034 		hw->mac.get_link_status = 1;
7035 		/* guard against interrupt when we're going down */
7036 		if (!test_bit(__IGB_DOWN, &adapter->state))
7037 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7038 	}
7039 
7040 	if (icr & E1000_ICR_TS)
7041 		igb_tsync_interrupt(adapter);
7042 
7043 	wr32(E1000_EIMS, adapter->eims_other);
7044 
7045 	return IRQ_HANDLED;
7046 }
7047 
7048 static void igb_write_itr(struct igb_q_vector *q_vector)
7049 {
7050 	struct igb_adapter *adapter = q_vector->adapter;
7051 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7052 
7053 	if (!q_vector->set_itr)
7054 		return;
7055 
7056 	if (!itr_val)
7057 		itr_val = 0x4;
7058 
7059 	if (adapter->hw.mac.type == e1000_82575)
7060 		itr_val |= itr_val << 16;
7061 	else
7062 		itr_val |= E1000_EITR_CNT_IGNR;
7063 
7064 	writel(itr_val, q_vector->itr_register);
7065 	q_vector->set_itr = 0;
7066 }
7067 
7068 static irqreturn_t igb_msix_ring(int irq, void *data)
7069 {
7070 	struct igb_q_vector *q_vector = data;
7071 
7072 	/* Write the ITR value calculated from the previous interrupt. */
7073 	igb_write_itr(q_vector);
7074 
7075 	napi_schedule(&q_vector->napi);
7076 
7077 	return IRQ_HANDLED;
7078 }
7079 
7080 #ifdef CONFIG_IGB_DCA
7081 static void igb_update_tx_dca(struct igb_adapter *adapter,
7082 			      struct igb_ring *tx_ring,
7083 			      int cpu)
7084 {
7085 	struct e1000_hw *hw = &adapter->hw;
7086 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7087 
7088 	if (hw->mac.type != e1000_82575)
7089 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7090 
7091 	/* We can enable relaxed ordering for reads, but not writes when
7092 	 * DCA is enabled.  This is due to a known issue in some chipsets
7093 	 * which will cause the DCA tag to be cleared.
7094 	 */
7095 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7096 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7097 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7098 
7099 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7100 }
7101 
7102 static void igb_update_rx_dca(struct igb_adapter *adapter,
7103 			      struct igb_ring *rx_ring,
7104 			      int cpu)
7105 {
7106 	struct e1000_hw *hw = &adapter->hw;
7107 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7108 
7109 	if (hw->mac.type != e1000_82575)
7110 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7111 
7112 	/* We can enable relaxed ordering for reads, but not writes when
7113 	 * DCA is enabled.  This is due to a known issue in some chipsets
7114 	 * which will cause the DCA tag to be cleared.
7115 	 */
7116 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7117 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7118 
7119 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7120 }
7121 
7122 static void igb_update_dca(struct igb_q_vector *q_vector)
7123 {
7124 	struct igb_adapter *adapter = q_vector->adapter;
7125 	int cpu = get_cpu();
7126 
7127 	if (q_vector->cpu == cpu)
7128 		goto out_no_update;
7129 
7130 	if (q_vector->tx.ring)
7131 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7132 
7133 	if (q_vector->rx.ring)
7134 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7135 
7136 	q_vector->cpu = cpu;
7137 out_no_update:
7138 	put_cpu();
7139 }
7140 
7141 static void igb_setup_dca(struct igb_adapter *adapter)
7142 {
7143 	struct e1000_hw *hw = &adapter->hw;
7144 	int i;
7145 
7146 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7147 		return;
7148 
7149 	/* Always use CB2 mode, difference is masked in the CB driver. */
7150 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7151 
7152 	for (i = 0; i < adapter->num_q_vectors; i++) {
7153 		adapter->q_vector[i]->cpu = -1;
7154 		igb_update_dca(adapter->q_vector[i]);
7155 	}
7156 }
7157 
7158 static int __igb_notify_dca(struct device *dev, void *data)
7159 {
7160 	struct net_device *netdev = dev_get_drvdata(dev);
7161 	struct igb_adapter *adapter = netdev_priv(netdev);
7162 	struct pci_dev *pdev = adapter->pdev;
7163 	struct e1000_hw *hw = &adapter->hw;
7164 	unsigned long event = *(unsigned long *)data;
7165 
7166 	switch (event) {
7167 	case DCA_PROVIDER_ADD:
7168 		/* if already enabled, don't do it again */
7169 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7170 			break;
7171 		if (dca_add_requester(dev) == 0) {
7172 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7173 			dev_info(&pdev->dev, "DCA enabled\n");
7174 			igb_setup_dca(adapter);
7175 			break;
7176 		}
7177 		fallthrough; /* since DCA is disabled. */
7178 	case DCA_PROVIDER_REMOVE:
7179 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7180 			/* without this a class_device is left
7181 			 * hanging around in the sysfs model
7182 			 */
7183 			dca_remove_requester(dev);
7184 			dev_info(&pdev->dev, "DCA disabled\n");
7185 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7186 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7187 		}
7188 		break;
7189 	}
7190 
7191 	return 0;
7192 }
7193 
7194 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7195 			  void *p)
7196 {
7197 	int ret_val;
7198 
7199 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7200 					 __igb_notify_dca);
7201 
7202 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7203 }
7204 #endif /* CONFIG_IGB_DCA */
7205 
7206 #ifdef CONFIG_PCI_IOV
7207 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7208 {
7209 	unsigned char mac_addr[ETH_ALEN];
7210 
7211 	eth_zero_addr(mac_addr);
7212 	igb_set_vf_mac(adapter, vf, mac_addr);
7213 
7214 	/* By default spoof check is enabled for all VFs */
7215 	adapter->vf_data[vf].spoofchk_enabled = true;
7216 
7217 	/* By default VFs are not trusted */
7218 	adapter->vf_data[vf].trusted = false;
7219 
7220 	return 0;
7221 }
7222 
7223 #endif
7224 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7225 {
7226 	struct e1000_hw *hw = &adapter->hw;
7227 	u32 ping;
7228 	int i;
7229 
7230 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7231 		ping = E1000_PF_CONTROL_MSG;
7232 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7233 			ping |= E1000_VT_MSGTYPE_CTS;
7234 		igb_write_mbx(hw, &ping, 1, i);
7235 	}
7236 }
7237 
7238 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7239 {
7240 	struct e1000_hw *hw = &adapter->hw;
7241 	u32 vmolr = rd32(E1000_VMOLR(vf));
7242 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7243 
7244 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7245 			    IGB_VF_FLAG_MULTI_PROMISC);
7246 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7247 
7248 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7249 		vmolr |= E1000_VMOLR_MPME;
7250 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7251 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7252 	} else {
7253 		/* if we have hashes and we are clearing a multicast promisc
7254 		 * flag we need to write the hashes to the MTA as this step
7255 		 * was previously skipped
7256 		 */
7257 		if (vf_data->num_vf_mc_hashes > 30) {
7258 			vmolr |= E1000_VMOLR_MPME;
7259 		} else if (vf_data->num_vf_mc_hashes) {
7260 			int j;
7261 
7262 			vmolr |= E1000_VMOLR_ROMPE;
7263 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7264 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7265 		}
7266 	}
7267 
7268 	wr32(E1000_VMOLR(vf), vmolr);
7269 
7270 	/* there are flags left unprocessed, likely not supported */
7271 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7272 		return -EINVAL;
7273 
7274 	return 0;
7275 }
7276 
7277 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7278 				  u32 *msgbuf, u32 vf)
7279 {
7280 	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7281 	u16 *hash_list = (u16 *)&msgbuf[1];
7282 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7283 	int i;
7284 
7285 	/* salt away the number of multicast addresses assigned
7286 	 * to this VF for later use to restore when the PF multi cast
7287 	 * list changes
7288 	 */
7289 	vf_data->num_vf_mc_hashes = n;
7290 
7291 	/* only up to 30 hash values supported */
7292 	if (n > 30)
7293 		n = 30;
7294 
7295 	/* store the hashes for later use */
7296 	for (i = 0; i < n; i++)
7297 		vf_data->vf_mc_hashes[i] = hash_list[i];
7298 
7299 	/* Flush and reset the mta with the new values */
7300 	igb_set_rx_mode(adapter->netdev);
7301 
7302 	return 0;
7303 }
7304 
7305 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7306 {
7307 	struct e1000_hw *hw = &adapter->hw;
7308 	struct vf_data_storage *vf_data;
7309 	int i, j;
7310 
7311 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7312 		u32 vmolr = rd32(E1000_VMOLR(i));
7313 
7314 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7315 
7316 		vf_data = &adapter->vf_data[i];
7317 
7318 		if ((vf_data->num_vf_mc_hashes > 30) ||
7319 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7320 			vmolr |= E1000_VMOLR_MPME;
7321 		} else if (vf_data->num_vf_mc_hashes) {
7322 			vmolr |= E1000_VMOLR_ROMPE;
7323 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7324 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7325 		}
7326 		wr32(E1000_VMOLR(i), vmolr);
7327 	}
7328 }
7329 
7330 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7331 {
7332 	struct e1000_hw *hw = &adapter->hw;
7333 	u32 pool_mask, vlvf_mask, i;
7334 
7335 	/* create mask for VF and other pools */
7336 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7337 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7338 
7339 	/* drop PF from pool bits */
7340 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7341 			     adapter->vfs_allocated_count);
7342 
7343 	/* Find the vlan filter for this id */
7344 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7345 		u32 vlvf = rd32(E1000_VLVF(i));
7346 		u32 vfta_mask, vid, vfta;
7347 
7348 		/* remove the vf from the pool */
7349 		if (!(vlvf & vlvf_mask))
7350 			continue;
7351 
7352 		/* clear out bit from VLVF */
7353 		vlvf ^= vlvf_mask;
7354 
7355 		/* if other pools are present, just remove ourselves */
7356 		if (vlvf & pool_mask)
7357 			goto update_vlvfb;
7358 
7359 		/* if PF is present, leave VFTA */
7360 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7361 			goto update_vlvf;
7362 
7363 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7364 		vfta_mask = BIT(vid % 32);
7365 
7366 		/* clear bit from VFTA */
7367 		vfta = adapter->shadow_vfta[vid / 32];
7368 		if (vfta & vfta_mask)
7369 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7370 update_vlvf:
7371 		/* clear pool selection enable */
7372 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7373 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7374 		else
7375 			vlvf = 0;
7376 update_vlvfb:
7377 		/* clear pool bits */
7378 		wr32(E1000_VLVF(i), vlvf);
7379 	}
7380 }
7381 
7382 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7383 {
7384 	u32 vlvf;
7385 	int idx;
7386 
7387 	/* short cut the special case */
7388 	if (vlan == 0)
7389 		return 0;
7390 
7391 	/* Search for the VLAN id in the VLVF entries */
7392 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7393 		vlvf = rd32(E1000_VLVF(idx));
7394 		if ((vlvf & VLAN_VID_MASK) == vlan)
7395 			break;
7396 	}
7397 
7398 	return idx;
7399 }
7400 
7401 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7402 {
7403 	struct e1000_hw *hw = &adapter->hw;
7404 	u32 bits, pf_id;
7405 	int idx;
7406 
7407 	idx = igb_find_vlvf_entry(hw, vid);
7408 	if (!idx)
7409 		return;
7410 
7411 	/* See if any other pools are set for this VLAN filter
7412 	 * entry other than the PF.
7413 	 */
7414 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7415 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7416 	bits &= rd32(E1000_VLVF(idx));
7417 
7418 	/* Disable the filter so this falls into the default pool. */
7419 	if (!bits) {
7420 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7421 			wr32(E1000_VLVF(idx), BIT(pf_id));
7422 		else
7423 			wr32(E1000_VLVF(idx), 0);
7424 	}
7425 }
7426 
7427 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7428 			   bool add, u32 vf)
7429 {
7430 	int pf_id = adapter->vfs_allocated_count;
7431 	struct e1000_hw *hw = &adapter->hw;
7432 	int err;
7433 
7434 	/* If VLAN overlaps with one the PF is currently monitoring make
7435 	 * sure that we are able to allocate a VLVF entry.  This may be
7436 	 * redundant but it guarantees PF will maintain visibility to
7437 	 * the VLAN.
7438 	 */
7439 	if (add && test_bit(vid, adapter->active_vlans)) {
7440 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7441 		if (err)
7442 			return err;
7443 	}
7444 
7445 	err = igb_vfta_set(hw, vid, vf, add, false);
7446 
7447 	if (add && !err)
7448 		return err;
7449 
7450 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7451 	 * we may need to drop the PF pool bit in order to allow us to free
7452 	 * up the VLVF resources.
7453 	 */
7454 	if (test_bit(vid, adapter->active_vlans) ||
7455 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7456 		igb_update_pf_vlvf(adapter, vid);
7457 
7458 	return err;
7459 }
7460 
7461 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7462 {
7463 	struct e1000_hw *hw = &adapter->hw;
7464 
7465 	if (vid)
7466 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7467 	else
7468 		wr32(E1000_VMVIR(vf), 0);
7469 }
7470 
7471 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7472 				u16 vlan, u8 qos)
7473 {
7474 	int err;
7475 
7476 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7477 	if (err)
7478 		return err;
7479 
7480 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7481 	igb_set_vmolr(adapter, vf, !vlan);
7482 
7483 	/* revoke access to previous VLAN */
7484 	if (vlan != adapter->vf_data[vf].pf_vlan)
7485 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7486 				false, vf);
7487 
7488 	adapter->vf_data[vf].pf_vlan = vlan;
7489 	adapter->vf_data[vf].pf_qos = qos;
7490 	igb_set_vf_vlan_strip(adapter, vf, true);
7491 	dev_info(&adapter->pdev->dev,
7492 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7493 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7494 		dev_warn(&adapter->pdev->dev,
7495 			 "The VF VLAN has been set, but the PF device is not up.\n");
7496 		dev_warn(&adapter->pdev->dev,
7497 			 "Bring the PF device up before attempting to use the VF device.\n");
7498 	}
7499 
7500 	return err;
7501 }
7502 
7503 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7504 {
7505 	/* Restore tagless access via VLAN 0 */
7506 	igb_set_vf_vlan(adapter, 0, true, vf);
7507 
7508 	igb_set_vmvir(adapter, 0, vf);
7509 	igb_set_vmolr(adapter, vf, true);
7510 
7511 	/* Remove any PF assigned VLAN */
7512 	if (adapter->vf_data[vf].pf_vlan)
7513 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7514 				false, vf);
7515 
7516 	adapter->vf_data[vf].pf_vlan = 0;
7517 	adapter->vf_data[vf].pf_qos = 0;
7518 	igb_set_vf_vlan_strip(adapter, vf, false);
7519 
7520 	return 0;
7521 }
7522 
7523 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7524 			       u16 vlan, u8 qos, __be16 vlan_proto)
7525 {
7526 	struct igb_adapter *adapter = netdev_priv(netdev);
7527 
7528 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7529 		return -EINVAL;
7530 
7531 	if (vlan_proto != htons(ETH_P_8021Q))
7532 		return -EPROTONOSUPPORT;
7533 
7534 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7535 			       igb_disable_port_vlan(adapter, vf);
7536 }
7537 
7538 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7539 {
7540 	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7541 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7542 	int ret;
7543 
7544 	if (adapter->vf_data[vf].pf_vlan)
7545 		return -1;
7546 
7547 	/* VLAN 0 is a special case, don't allow it to be removed */
7548 	if (!vid && !add)
7549 		return 0;
7550 
7551 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7552 	if (!ret)
7553 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7554 	return ret;
7555 }
7556 
7557 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7558 {
7559 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7560 
7561 	/* clear flags - except flag that indicates PF has set the MAC */
7562 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7563 	vf_data->last_nack = jiffies;
7564 
7565 	/* reset vlans for device */
7566 	igb_clear_vf_vfta(adapter, vf);
7567 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7568 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7569 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7570 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7571 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7572 
7573 	/* reset multicast table array for vf */
7574 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7575 
7576 	/* Flush and reset the mta with the new values */
7577 	igb_set_rx_mode(adapter->netdev);
7578 }
7579 
7580 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7581 {
7582 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7583 
7584 	/* clear mac address as we were hotplug removed/added */
7585 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7586 		eth_zero_addr(vf_mac);
7587 
7588 	/* process remaining reset events */
7589 	igb_vf_reset(adapter, vf);
7590 }
7591 
7592 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7593 {
7594 	struct e1000_hw *hw = &adapter->hw;
7595 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7596 	u32 reg, msgbuf[3] = {};
7597 	u8 *addr = (u8 *)(&msgbuf[1]);
7598 
7599 	/* process all the same items cleared in a function level reset */
7600 	igb_vf_reset(adapter, vf);
7601 
7602 	/* set vf mac address */
7603 	igb_set_vf_mac(adapter, vf, vf_mac);
7604 
7605 	/* enable transmit and receive for vf */
7606 	reg = rd32(E1000_VFTE);
7607 	wr32(E1000_VFTE, reg | BIT(vf));
7608 	reg = rd32(E1000_VFRE);
7609 	wr32(E1000_VFRE, reg | BIT(vf));
7610 
7611 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7612 
7613 	/* reply to reset with ack and vf mac address */
7614 	if (!is_zero_ether_addr(vf_mac)) {
7615 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7616 		memcpy(addr, vf_mac, ETH_ALEN);
7617 	} else {
7618 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7619 	}
7620 	igb_write_mbx(hw, msgbuf, 3, vf);
7621 }
7622 
7623 static void igb_flush_mac_table(struct igb_adapter *adapter)
7624 {
7625 	struct e1000_hw *hw = &adapter->hw;
7626 	int i;
7627 
7628 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7629 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7630 		eth_zero_addr(adapter->mac_table[i].addr);
7631 		adapter->mac_table[i].queue = 0;
7632 		igb_rar_set_index(adapter, i);
7633 	}
7634 }
7635 
7636 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7637 {
7638 	struct e1000_hw *hw = &adapter->hw;
7639 	/* do not count rar entries reserved for VFs MAC addresses */
7640 	int rar_entries = hw->mac.rar_entry_count -
7641 			  adapter->vfs_allocated_count;
7642 	int i, count = 0;
7643 
7644 	for (i = 0; i < rar_entries; i++) {
7645 		/* do not count default entries */
7646 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7647 			continue;
7648 
7649 		/* do not count "in use" entries for different queues */
7650 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7651 		    (adapter->mac_table[i].queue != queue))
7652 			continue;
7653 
7654 		count++;
7655 	}
7656 
7657 	return count;
7658 }
7659 
7660 /* Set default MAC address for the PF in the first RAR entry */
7661 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7662 {
7663 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7664 
7665 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7666 	mac_table->queue = adapter->vfs_allocated_count;
7667 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7668 
7669 	igb_rar_set_index(adapter, 0);
7670 }
7671 
7672 /* If the filter to be added and an already existing filter express
7673  * the same address and address type, it should be possible to only
7674  * override the other configurations, for example the queue to steer
7675  * traffic.
7676  */
7677 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7678 				      const u8 *addr, const u8 flags)
7679 {
7680 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7681 		return true;
7682 
7683 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7684 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7685 		return false;
7686 
7687 	if (!ether_addr_equal(addr, entry->addr))
7688 		return false;
7689 
7690 	return true;
7691 }
7692 
7693 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7694  * 'flags' is used to indicate what kind of match is made, match is by
7695  * default for the destination address, if matching by source address
7696  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7697  */
7698 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7699 				    const u8 *addr, const u8 queue,
7700 				    const u8 flags)
7701 {
7702 	struct e1000_hw *hw = &adapter->hw;
7703 	int rar_entries = hw->mac.rar_entry_count -
7704 			  adapter->vfs_allocated_count;
7705 	int i;
7706 
7707 	if (is_zero_ether_addr(addr))
7708 		return -EINVAL;
7709 
7710 	/* Search for the first empty entry in the MAC table.
7711 	 * Do not touch entries at the end of the table reserved for the VF MAC
7712 	 * addresses.
7713 	 */
7714 	for (i = 0; i < rar_entries; i++) {
7715 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7716 					       addr, flags))
7717 			continue;
7718 
7719 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7720 		adapter->mac_table[i].queue = queue;
7721 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7722 
7723 		igb_rar_set_index(adapter, i);
7724 		return i;
7725 	}
7726 
7727 	return -ENOSPC;
7728 }
7729 
7730 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7731 			      const u8 queue)
7732 {
7733 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7734 }
7735 
7736 /* Remove a MAC filter for 'addr' directing matching traffic to
7737  * 'queue', 'flags' is used to indicate what kind of match need to be
7738  * removed, match is by default for the destination address, if
7739  * matching by source address is to be removed the flag
7740  * IGB_MAC_STATE_SRC_ADDR can be used.
7741  */
7742 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7743 				    const u8 *addr, const u8 queue,
7744 				    const u8 flags)
7745 {
7746 	struct e1000_hw *hw = &adapter->hw;
7747 	int rar_entries = hw->mac.rar_entry_count -
7748 			  adapter->vfs_allocated_count;
7749 	int i;
7750 
7751 	if (is_zero_ether_addr(addr))
7752 		return -EINVAL;
7753 
7754 	/* Search for matching entry in the MAC table based on given address
7755 	 * and queue. Do not touch entries at the end of the table reserved
7756 	 * for the VF MAC addresses.
7757 	 */
7758 	for (i = 0; i < rar_entries; i++) {
7759 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7760 			continue;
7761 		if ((adapter->mac_table[i].state & flags) != flags)
7762 			continue;
7763 		if (adapter->mac_table[i].queue != queue)
7764 			continue;
7765 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7766 			continue;
7767 
7768 		/* When a filter for the default address is "deleted",
7769 		 * we return it to its initial configuration
7770 		 */
7771 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7772 			adapter->mac_table[i].state =
7773 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7774 			adapter->mac_table[i].queue =
7775 				adapter->vfs_allocated_count;
7776 		} else {
7777 			adapter->mac_table[i].state = 0;
7778 			adapter->mac_table[i].queue = 0;
7779 			eth_zero_addr(adapter->mac_table[i].addr);
7780 		}
7781 
7782 		igb_rar_set_index(adapter, i);
7783 		return 0;
7784 	}
7785 
7786 	return -ENOENT;
7787 }
7788 
7789 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7790 			      const u8 queue)
7791 {
7792 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7793 }
7794 
7795 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7796 				const u8 *addr, u8 queue, u8 flags)
7797 {
7798 	struct e1000_hw *hw = &adapter->hw;
7799 
7800 	/* In theory, this should be supported on 82575 as well, but
7801 	 * that part wasn't easily accessible during development.
7802 	 */
7803 	if (hw->mac.type != e1000_i210)
7804 		return -EOPNOTSUPP;
7805 
7806 	return igb_add_mac_filter_flags(adapter, addr, queue,
7807 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7808 }
7809 
7810 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7811 				const u8 *addr, u8 queue, u8 flags)
7812 {
7813 	return igb_del_mac_filter_flags(adapter, addr, queue,
7814 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7815 }
7816 
7817 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7818 {
7819 	struct igb_adapter *adapter = netdev_priv(netdev);
7820 	int ret;
7821 
7822 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7823 
7824 	return min_t(int, ret, 0);
7825 }
7826 
7827 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7828 {
7829 	struct igb_adapter *adapter = netdev_priv(netdev);
7830 
7831 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7832 
7833 	return 0;
7834 }
7835 
7836 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7837 				 const u32 info, const u8 *addr)
7838 {
7839 	struct pci_dev *pdev = adapter->pdev;
7840 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7841 	struct vf_mac_filter *entry;
7842 	bool found = false;
7843 	int ret = 0;
7844 
7845 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7846 	    !vf_data->trusted) {
7847 		dev_warn(&pdev->dev,
7848 			 "VF %d requested MAC filter but is administratively denied\n",
7849 			  vf);
7850 		return -EINVAL;
7851 	}
7852 	if (!is_valid_ether_addr(addr)) {
7853 		dev_warn(&pdev->dev,
7854 			 "VF %d attempted to set invalid MAC filter\n",
7855 			  vf);
7856 		return -EINVAL;
7857 	}
7858 
7859 	switch (info) {
7860 	case E1000_VF_MAC_FILTER_CLR:
7861 		/* remove all unicast MAC filters related to the current VF */
7862 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7863 			if (entry->vf == vf) {
7864 				entry->vf = -1;
7865 				entry->free = true;
7866 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7867 			}
7868 		}
7869 		break;
7870 	case E1000_VF_MAC_FILTER_ADD:
7871 		/* try to find empty slot in the list */
7872 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7873 			if (entry->free) {
7874 				found = true;
7875 				break;
7876 			}
7877 		}
7878 
7879 		if (found) {
7880 			entry->free = false;
7881 			entry->vf = vf;
7882 			ether_addr_copy(entry->vf_mac, addr);
7883 
7884 			ret = igb_add_mac_filter(adapter, addr, vf);
7885 			ret = min_t(int, ret, 0);
7886 		} else {
7887 			ret = -ENOSPC;
7888 		}
7889 
7890 		if (ret == -ENOSPC)
7891 			dev_warn(&pdev->dev,
7892 				 "VF %d has requested MAC filter but there is no space for it\n",
7893 				 vf);
7894 		break;
7895 	default:
7896 		ret = -EINVAL;
7897 		break;
7898 	}
7899 
7900 	return ret;
7901 }
7902 
7903 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7904 {
7905 	struct pci_dev *pdev = adapter->pdev;
7906 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7907 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7908 
7909 	/* The VF MAC Address is stored in a packed array of bytes
7910 	 * starting at the second 32 bit word of the msg array
7911 	 */
7912 	unsigned char *addr = (unsigned char *)&msg[1];
7913 	int ret = 0;
7914 
7915 	if (!info) {
7916 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7917 		    !vf_data->trusted) {
7918 			dev_warn(&pdev->dev,
7919 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7920 				 vf);
7921 			return -EINVAL;
7922 		}
7923 
7924 		if (!is_valid_ether_addr(addr)) {
7925 			dev_warn(&pdev->dev,
7926 				 "VF %d attempted to set invalid MAC\n",
7927 				 vf);
7928 			return -EINVAL;
7929 		}
7930 
7931 		ret = igb_set_vf_mac(adapter, vf, addr);
7932 	} else {
7933 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7934 	}
7935 
7936 	return ret;
7937 }
7938 
7939 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7940 {
7941 	struct e1000_hw *hw = &adapter->hw;
7942 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7943 	u32 msg = E1000_VT_MSGTYPE_NACK;
7944 
7945 	/* if device isn't clear to send it shouldn't be reading either */
7946 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7947 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7948 		igb_write_mbx(hw, &msg, 1, vf);
7949 		vf_data->last_nack = jiffies;
7950 	}
7951 }
7952 
7953 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7954 {
7955 	struct pci_dev *pdev = adapter->pdev;
7956 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7957 	struct e1000_hw *hw = &adapter->hw;
7958 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7959 	s32 retval;
7960 
7961 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7962 
7963 	if (retval) {
7964 		/* if receive failed revoke VF CTS stats and restart init */
7965 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7966 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7967 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7968 			goto unlock;
7969 		goto out;
7970 	}
7971 
7972 	/* this is a message we already processed, do nothing */
7973 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7974 		goto unlock;
7975 
7976 	/* until the vf completes a reset it should not be
7977 	 * allowed to start any configuration.
7978 	 */
7979 	if (msgbuf[0] == E1000_VF_RESET) {
7980 		/* unlocks mailbox */
7981 		igb_vf_reset_msg(adapter, vf);
7982 		return;
7983 	}
7984 
7985 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7986 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7987 			goto unlock;
7988 		retval = -1;
7989 		goto out;
7990 	}
7991 
7992 	switch ((msgbuf[0] & 0xFFFF)) {
7993 	case E1000_VF_SET_MAC_ADDR:
7994 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7995 		break;
7996 	case E1000_VF_SET_PROMISC:
7997 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7998 		break;
7999 	case E1000_VF_SET_MULTICAST:
8000 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8001 		break;
8002 	case E1000_VF_SET_LPE:
8003 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8004 		break;
8005 	case E1000_VF_SET_VLAN:
8006 		retval = -1;
8007 		if (vf_data->pf_vlan)
8008 			dev_warn(&pdev->dev,
8009 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8010 				 vf);
8011 		else
8012 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8013 		break;
8014 	default:
8015 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8016 		retval = -1;
8017 		break;
8018 	}
8019 
8020 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8021 out:
8022 	/* notify the VF of the results of what it sent us */
8023 	if (retval)
8024 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8025 	else
8026 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8027 
8028 	/* unlocks mailbox */
8029 	igb_write_mbx(hw, msgbuf, 1, vf);
8030 	return;
8031 
8032 unlock:
8033 	igb_unlock_mbx(hw, vf);
8034 }
8035 
8036 static void igb_msg_task(struct igb_adapter *adapter)
8037 {
8038 	struct e1000_hw *hw = &adapter->hw;
8039 	unsigned long flags;
8040 	u32 vf;
8041 
8042 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8043 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8044 		/* process any reset requests */
8045 		if (!igb_check_for_rst(hw, vf))
8046 			igb_vf_reset_event(adapter, vf);
8047 
8048 		/* process any messages pending */
8049 		if (!igb_check_for_msg(hw, vf))
8050 			igb_rcv_msg_from_vf(adapter, vf);
8051 
8052 		/* process any acks */
8053 		if (!igb_check_for_ack(hw, vf))
8054 			igb_rcv_ack_from_vf(adapter, vf);
8055 	}
8056 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8057 }
8058 
8059 /**
8060  *  igb_set_uta - Set unicast filter table address
8061  *  @adapter: board private structure
8062  *  @set: boolean indicating if we are setting or clearing bits
8063  *
8064  *  The unicast table address is a register array of 32-bit registers.
8065  *  The table is meant to be used in a way similar to how the MTA is used
8066  *  however due to certain limitations in the hardware it is necessary to
8067  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8068  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8069  **/
8070 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8071 {
8072 	struct e1000_hw *hw = &adapter->hw;
8073 	u32 uta = set ? ~0 : 0;
8074 	int i;
8075 
8076 	/* we only need to do this if VMDq is enabled */
8077 	if (!adapter->vfs_allocated_count)
8078 		return;
8079 
8080 	for (i = hw->mac.uta_reg_count; i--;)
8081 		array_wr32(E1000_UTA, i, uta);
8082 }
8083 
8084 /**
8085  *  igb_intr_msi - Interrupt Handler
8086  *  @irq: interrupt number
8087  *  @data: pointer to a network interface device structure
8088  **/
8089 static irqreturn_t igb_intr_msi(int irq, void *data)
8090 {
8091 	struct igb_adapter *adapter = data;
8092 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8093 	struct e1000_hw *hw = &adapter->hw;
8094 	/* read ICR disables interrupts using IAM */
8095 	u32 icr = rd32(E1000_ICR);
8096 
8097 	igb_write_itr(q_vector);
8098 
8099 	if (icr & E1000_ICR_DRSTA)
8100 		schedule_work(&adapter->reset_task);
8101 
8102 	if (icr & E1000_ICR_DOUTSYNC) {
8103 		/* HW is reporting DMA is out of sync */
8104 		adapter->stats.doosync++;
8105 	}
8106 
8107 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8108 		hw->mac.get_link_status = 1;
8109 		if (!test_bit(__IGB_DOWN, &adapter->state))
8110 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8111 	}
8112 
8113 	if (icr & E1000_ICR_TS)
8114 		igb_tsync_interrupt(adapter);
8115 
8116 	napi_schedule(&q_vector->napi);
8117 
8118 	return IRQ_HANDLED;
8119 }
8120 
8121 /**
8122  *  igb_intr - Legacy Interrupt Handler
8123  *  @irq: interrupt number
8124  *  @data: pointer to a network interface device structure
8125  **/
8126 static irqreturn_t igb_intr(int irq, void *data)
8127 {
8128 	struct igb_adapter *adapter = data;
8129 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8130 	struct e1000_hw *hw = &adapter->hw;
8131 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8132 	 * need for the IMC write
8133 	 */
8134 	u32 icr = rd32(E1000_ICR);
8135 
8136 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8137 	 * not set, then the adapter didn't send an interrupt
8138 	 */
8139 	if (!(icr & E1000_ICR_INT_ASSERTED))
8140 		return IRQ_NONE;
8141 
8142 	igb_write_itr(q_vector);
8143 
8144 	if (icr & E1000_ICR_DRSTA)
8145 		schedule_work(&adapter->reset_task);
8146 
8147 	if (icr & E1000_ICR_DOUTSYNC) {
8148 		/* HW is reporting DMA is out of sync */
8149 		adapter->stats.doosync++;
8150 	}
8151 
8152 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8153 		hw->mac.get_link_status = 1;
8154 		/* guard against interrupt when we're going down */
8155 		if (!test_bit(__IGB_DOWN, &adapter->state))
8156 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8157 	}
8158 
8159 	if (icr & E1000_ICR_TS)
8160 		igb_tsync_interrupt(adapter);
8161 
8162 	napi_schedule(&q_vector->napi);
8163 
8164 	return IRQ_HANDLED;
8165 }
8166 
8167 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8168 {
8169 	struct igb_adapter *adapter = q_vector->adapter;
8170 	struct e1000_hw *hw = &adapter->hw;
8171 
8172 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8173 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8174 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8175 			igb_set_itr(q_vector);
8176 		else
8177 			igb_update_ring_itr(q_vector);
8178 	}
8179 
8180 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8181 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8182 			wr32(E1000_EIMS, q_vector->eims_value);
8183 		else
8184 			igb_irq_enable(adapter);
8185 	}
8186 }
8187 
8188 /**
8189  *  igb_poll - NAPI Rx polling callback
8190  *  @napi: napi polling structure
8191  *  @budget: count of how many packets we should handle
8192  **/
8193 static int igb_poll(struct napi_struct *napi, int budget)
8194 {
8195 	struct igb_q_vector *q_vector = container_of(napi,
8196 						     struct igb_q_vector,
8197 						     napi);
8198 	bool clean_complete = true;
8199 	int work_done = 0;
8200 
8201 #ifdef CONFIG_IGB_DCA
8202 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8203 		igb_update_dca(q_vector);
8204 #endif
8205 	if (q_vector->tx.ring)
8206 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8207 
8208 	if (q_vector->rx.ring) {
8209 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8210 
8211 		work_done += cleaned;
8212 		if (cleaned >= budget)
8213 			clean_complete = false;
8214 	}
8215 
8216 	/* If all work not completed, return budget and keep polling */
8217 	if (!clean_complete)
8218 		return budget;
8219 
8220 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8221 	 * poll us due to busy-polling
8222 	 */
8223 	if (likely(napi_complete_done(napi, work_done)))
8224 		igb_ring_irq_enable(q_vector);
8225 
8226 	return work_done;
8227 }
8228 
8229 /**
8230  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8231  *  @q_vector: pointer to q_vector containing needed info
8232  *  @napi_budget: Used to determine if we are in netpoll
8233  *
8234  *  returns true if ring is completely cleaned
8235  **/
8236 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8237 {
8238 	struct igb_adapter *adapter = q_vector->adapter;
8239 	struct igb_ring *tx_ring = q_vector->tx.ring;
8240 	struct igb_tx_buffer *tx_buffer;
8241 	union e1000_adv_tx_desc *tx_desc;
8242 	unsigned int total_bytes = 0, total_packets = 0;
8243 	unsigned int budget = q_vector->tx.work_limit;
8244 	unsigned int i = tx_ring->next_to_clean;
8245 
8246 	if (test_bit(__IGB_DOWN, &adapter->state))
8247 		return true;
8248 
8249 	tx_buffer = &tx_ring->tx_buffer_info[i];
8250 	tx_desc = IGB_TX_DESC(tx_ring, i);
8251 	i -= tx_ring->count;
8252 
8253 	do {
8254 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8255 
8256 		/* if next_to_watch is not set then there is no work pending */
8257 		if (!eop_desc)
8258 			break;
8259 
8260 		/* prevent any other reads prior to eop_desc */
8261 		smp_rmb();
8262 
8263 		/* if DD is not set pending work has not been completed */
8264 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8265 			break;
8266 
8267 		/* clear next_to_watch to prevent false hangs */
8268 		tx_buffer->next_to_watch = NULL;
8269 
8270 		/* update the statistics for this packet */
8271 		total_bytes += tx_buffer->bytecount;
8272 		total_packets += tx_buffer->gso_segs;
8273 
8274 		/* free the skb */
8275 		if (tx_buffer->type == IGB_TYPE_SKB)
8276 			napi_consume_skb(tx_buffer->skb, napi_budget);
8277 		else
8278 			xdp_return_frame(tx_buffer->xdpf);
8279 
8280 		/* unmap skb header data */
8281 		dma_unmap_single(tx_ring->dev,
8282 				 dma_unmap_addr(tx_buffer, dma),
8283 				 dma_unmap_len(tx_buffer, len),
8284 				 DMA_TO_DEVICE);
8285 
8286 		/* clear tx_buffer data */
8287 		dma_unmap_len_set(tx_buffer, len, 0);
8288 
8289 		/* clear last DMA location and unmap remaining buffers */
8290 		while (tx_desc != eop_desc) {
8291 			tx_buffer++;
8292 			tx_desc++;
8293 			i++;
8294 			if (unlikely(!i)) {
8295 				i -= tx_ring->count;
8296 				tx_buffer = tx_ring->tx_buffer_info;
8297 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8298 			}
8299 
8300 			/* unmap any remaining paged data */
8301 			if (dma_unmap_len(tx_buffer, len)) {
8302 				dma_unmap_page(tx_ring->dev,
8303 					       dma_unmap_addr(tx_buffer, dma),
8304 					       dma_unmap_len(tx_buffer, len),
8305 					       DMA_TO_DEVICE);
8306 				dma_unmap_len_set(tx_buffer, len, 0);
8307 			}
8308 		}
8309 
8310 		/* move us one more past the eop_desc for start of next pkt */
8311 		tx_buffer++;
8312 		tx_desc++;
8313 		i++;
8314 		if (unlikely(!i)) {
8315 			i -= tx_ring->count;
8316 			tx_buffer = tx_ring->tx_buffer_info;
8317 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8318 		}
8319 
8320 		/* issue prefetch for next Tx descriptor */
8321 		prefetch(tx_desc);
8322 
8323 		/* update budget accounting */
8324 		budget--;
8325 	} while (likely(budget));
8326 
8327 	netdev_tx_completed_queue(txring_txq(tx_ring),
8328 				  total_packets, total_bytes);
8329 	i += tx_ring->count;
8330 	tx_ring->next_to_clean = i;
8331 	u64_stats_update_begin(&tx_ring->tx_syncp);
8332 	tx_ring->tx_stats.bytes += total_bytes;
8333 	tx_ring->tx_stats.packets += total_packets;
8334 	u64_stats_update_end(&tx_ring->tx_syncp);
8335 	q_vector->tx.total_bytes += total_bytes;
8336 	q_vector->tx.total_packets += total_packets;
8337 
8338 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8339 		struct e1000_hw *hw = &adapter->hw;
8340 
8341 		/* Detect a transmit hang in hardware, this serializes the
8342 		 * check with the clearing of time_stamp and movement of i
8343 		 */
8344 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8345 		if (tx_buffer->next_to_watch &&
8346 		    time_after(jiffies, tx_buffer->time_stamp +
8347 			       (adapter->tx_timeout_factor * HZ)) &&
8348 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8349 
8350 			/* detected Tx unit hang */
8351 			dev_err(tx_ring->dev,
8352 				"Detected Tx Unit Hang\n"
8353 				"  Tx Queue             <%d>\n"
8354 				"  TDH                  <%x>\n"
8355 				"  TDT                  <%x>\n"
8356 				"  next_to_use          <%x>\n"
8357 				"  next_to_clean        <%x>\n"
8358 				"buffer_info[next_to_clean]\n"
8359 				"  time_stamp           <%lx>\n"
8360 				"  next_to_watch        <%p>\n"
8361 				"  jiffies              <%lx>\n"
8362 				"  desc.status          <%x>\n",
8363 				tx_ring->queue_index,
8364 				rd32(E1000_TDH(tx_ring->reg_idx)),
8365 				readl(tx_ring->tail),
8366 				tx_ring->next_to_use,
8367 				tx_ring->next_to_clean,
8368 				tx_buffer->time_stamp,
8369 				tx_buffer->next_to_watch,
8370 				jiffies,
8371 				tx_buffer->next_to_watch->wb.status);
8372 			netif_stop_subqueue(tx_ring->netdev,
8373 					    tx_ring->queue_index);
8374 
8375 			/* we are about to reset, no point in enabling stuff */
8376 			return true;
8377 		}
8378 	}
8379 
8380 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8381 	if (unlikely(total_packets &&
8382 	    netif_carrier_ok(tx_ring->netdev) &&
8383 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8384 		/* Make sure that anybody stopping the queue after this
8385 		 * sees the new next_to_clean.
8386 		 */
8387 		smp_mb();
8388 		if (__netif_subqueue_stopped(tx_ring->netdev,
8389 					     tx_ring->queue_index) &&
8390 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8391 			netif_wake_subqueue(tx_ring->netdev,
8392 					    tx_ring->queue_index);
8393 
8394 			u64_stats_update_begin(&tx_ring->tx_syncp);
8395 			tx_ring->tx_stats.restart_queue++;
8396 			u64_stats_update_end(&tx_ring->tx_syncp);
8397 		}
8398 	}
8399 
8400 	return !!budget;
8401 }
8402 
8403 /**
8404  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8405  *  @rx_ring: rx descriptor ring to store buffers on
8406  *  @old_buff: donor buffer to have page reused
8407  *
8408  *  Synchronizes page for reuse by the adapter
8409  **/
8410 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8411 			      struct igb_rx_buffer *old_buff)
8412 {
8413 	struct igb_rx_buffer *new_buff;
8414 	u16 nta = rx_ring->next_to_alloc;
8415 
8416 	new_buff = &rx_ring->rx_buffer_info[nta];
8417 
8418 	/* update, and store next to alloc */
8419 	nta++;
8420 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8421 
8422 	/* Transfer page from old buffer to new buffer.
8423 	 * Move each member individually to avoid possible store
8424 	 * forwarding stalls.
8425 	 */
8426 	new_buff->dma		= old_buff->dma;
8427 	new_buff->page		= old_buff->page;
8428 	new_buff->page_offset	= old_buff->page_offset;
8429 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8430 }
8431 
8432 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8433 				  int rx_buf_pgcnt)
8434 {
8435 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8436 	struct page *page = rx_buffer->page;
8437 
8438 	/* avoid re-using remote and pfmemalloc pages */
8439 	if (!dev_page_is_reusable(page))
8440 		return false;
8441 
8442 #if (PAGE_SIZE < 8192)
8443 	/* if we are only owner of page we can reuse it */
8444 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8445 		return false;
8446 #else
8447 #define IGB_LAST_OFFSET \
8448 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8449 
8450 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8451 		return false;
8452 #endif
8453 
8454 	/* If we have drained the page fragment pool we need to update
8455 	 * the pagecnt_bias and page count so that we fully restock the
8456 	 * number of references the driver holds.
8457 	 */
8458 	if (unlikely(pagecnt_bias == 1)) {
8459 		page_ref_add(page, USHRT_MAX - 1);
8460 		rx_buffer->pagecnt_bias = USHRT_MAX;
8461 	}
8462 
8463 	return true;
8464 }
8465 
8466 /**
8467  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8468  *  @rx_ring: rx descriptor ring to transact packets on
8469  *  @rx_buffer: buffer containing page to add
8470  *  @skb: sk_buff to place the data into
8471  *  @size: size of buffer to be added
8472  *
8473  *  This function will add the data contained in rx_buffer->page to the skb.
8474  **/
8475 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8476 			    struct igb_rx_buffer *rx_buffer,
8477 			    struct sk_buff *skb,
8478 			    unsigned int size)
8479 {
8480 #if (PAGE_SIZE < 8192)
8481 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8482 #else
8483 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8484 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8485 				SKB_DATA_ALIGN(size);
8486 #endif
8487 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8488 			rx_buffer->page_offset, size, truesize);
8489 #if (PAGE_SIZE < 8192)
8490 	rx_buffer->page_offset ^= truesize;
8491 #else
8492 	rx_buffer->page_offset += truesize;
8493 #endif
8494 }
8495 
8496 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8497 					 struct igb_rx_buffer *rx_buffer,
8498 					 struct xdp_buff *xdp,
8499 					 ktime_t timestamp)
8500 {
8501 #if (PAGE_SIZE < 8192)
8502 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8503 #else
8504 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8505 					       xdp->data_hard_start);
8506 #endif
8507 	unsigned int size = xdp->data_end - xdp->data;
8508 	unsigned int headlen;
8509 	struct sk_buff *skb;
8510 
8511 	/* prefetch first cache line of first page */
8512 	net_prefetch(xdp->data);
8513 
8514 	/* allocate a skb to store the frags */
8515 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8516 	if (unlikely(!skb))
8517 		return NULL;
8518 
8519 	if (timestamp)
8520 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8521 
8522 	/* Determine available headroom for copy */
8523 	headlen = size;
8524 	if (headlen > IGB_RX_HDR_LEN)
8525 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8526 
8527 	/* align pull length to size of long to optimize memcpy performance */
8528 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8529 
8530 	/* update all of the pointers */
8531 	size -= headlen;
8532 	if (size) {
8533 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8534 				(xdp->data + headlen) - page_address(rx_buffer->page),
8535 				size, truesize);
8536 #if (PAGE_SIZE < 8192)
8537 		rx_buffer->page_offset ^= truesize;
8538 #else
8539 		rx_buffer->page_offset += truesize;
8540 #endif
8541 	} else {
8542 		rx_buffer->pagecnt_bias++;
8543 	}
8544 
8545 	return skb;
8546 }
8547 
8548 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8549 				     struct igb_rx_buffer *rx_buffer,
8550 				     struct xdp_buff *xdp,
8551 				     ktime_t timestamp)
8552 {
8553 #if (PAGE_SIZE < 8192)
8554 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8555 #else
8556 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8557 				SKB_DATA_ALIGN(xdp->data_end -
8558 					       xdp->data_hard_start);
8559 #endif
8560 	unsigned int metasize = xdp->data - xdp->data_meta;
8561 	struct sk_buff *skb;
8562 
8563 	/* prefetch first cache line of first page */
8564 	net_prefetch(xdp->data_meta);
8565 
8566 	/* build an skb around the page buffer */
8567 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8568 	if (unlikely(!skb))
8569 		return NULL;
8570 
8571 	/* update pointers within the skb to store the data */
8572 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8573 	__skb_put(skb, xdp->data_end - xdp->data);
8574 
8575 	if (metasize)
8576 		skb_metadata_set(skb, metasize);
8577 
8578 	if (timestamp)
8579 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8580 
8581 	/* update buffer offset */
8582 #if (PAGE_SIZE < 8192)
8583 	rx_buffer->page_offset ^= truesize;
8584 #else
8585 	rx_buffer->page_offset += truesize;
8586 #endif
8587 
8588 	return skb;
8589 }
8590 
8591 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8592 				   struct igb_ring *rx_ring,
8593 				   struct xdp_buff *xdp)
8594 {
8595 	int err, result = IGB_XDP_PASS;
8596 	struct bpf_prog *xdp_prog;
8597 	u32 act;
8598 
8599 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8600 
8601 	if (!xdp_prog)
8602 		goto xdp_out;
8603 
8604 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8605 
8606 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8607 	switch (act) {
8608 	case XDP_PASS:
8609 		break;
8610 	case XDP_TX:
8611 		result = igb_xdp_xmit_back(adapter, xdp);
8612 		if (result == IGB_XDP_CONSUMED)
8613 			goto out_failure;
8614 		break;
8615 	case XDP_REDIRECT:
8616 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8617 		if (err)
8618 			goto out_failure;
8619 		result = IGB_XDP_REDIR;
8620 		break;
8621 	default:
8622 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8623 		fallthrough;
8624 	case XDP_ABORTED:
8625 out_failure:
8626 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8627 		fallthrough;
8628 	case XDP_DROP:
8629 		result = IGB_XDP_CONSUMED;
8630 		break;
8631 	}
8632 xdp_out:
8633 	return ERR_PTR(-result);
8634 }
8635 
8636 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8637 					  unsigned int size)
8638 {
8639 	unsigned int truesize;
8640 
8641 #if (PAGE_SIZE < 8192)
8642 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8643 #else
8644 	truesize = ring_uses_build_skb(rx_ring) ?
8645 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8646 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8647 		SKB_DATA_ALIGN(size);
8648 #endif
8649 	return truesize;
8650 }
8651 
8652 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8653 			       struct igb_rx_buffer *rx_buffer,
8654 			       unsigned int size)
8655 {
8656 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8657 #if (PAGE_SIZE < 8192)
8658 	rx_buffer->page_offset ^= truesize;
8659 #else
8660 	rx_buffer->page_offset += truesize;
8661 #endif
8662 }
8663 
8664 static inline void igb_rx_checksum(struct igb_ring *ring,
8665 				   union e1000_adv_rx_desc *rx_desc,
8666 				   struct sk_buff *skb)
8667 {
8668 	skb_checksum_none_assert(skb);
8669 
8670 	/* Ignore Checksum bit is set */
8671 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8672 		return;
8673 
8674 	/* Rx checksum disabled via ethtool */
8675 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8676 		return;
8677 
8678 	/* TCP/UDP checksum error bit is set */
8679 	if (igb_test_staterr(rx_desc,
8680 			     E1000_RXDEXT_STATERR_TCPE |
8681 			     E1000_RXDEXT_STATERR_IPE)) {
8682 		/* work around errata with sctp packets where the TCPE aka
8683 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8684 		 * packets, (aka let the stack check the crc32c)
8685 		 */
8686 		if (!((skb->len == 60) &&
8687 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8688 			u64_stats_update_begin(&ring->rx_syncp);
8689 			ring->rx_stats.csum_err++;
8690 			u64_stats_update_end(&ring->rx_syncp);
8691 		}
8692 		/* let the stack verify checksum errors */
8693 		return;
8694 	}
8695 	/* It must be a TCP or UDP packet with a valid checksum */
8696 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8697 				      E1000_RXD_STAT_UDPCS))
8698 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8699 
8700 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8701 		le32_to_cpu(rx_desc->wb.upper.status_error));
8702 }
8703 
8704 static inline void igb_rx_hash(struct igb_ring *ring,
8705 			       union e1000_adv_rx_desc *rx_desc,
8706 			       struct sk_buff *skb)
8707 {
8708 	if (ring->netdev->features & NETIF_F_RXHASH)
8709 		skb_set_hash(skb,
8710 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8711 			     PKT_HASH_TYPE_L3);
8712 }
8713 
8714 /**
8715  *  igb_is_non_eop - process handling of non-EOP buffers
8716  *  @rx_ring: Rx ring being processed
8717  *  @rx_desc: Rx descriptor for current buffer
8718  *
8719  *  This function updates next to clean.  If the buffer is an EOP buffer
8720  *  this function exits returning false, otherwise it will place the
8721  *  sk_buff in the next buffer to be chained and return true indicating
8722  *  that this is in fact a non-EOP buffer.
8723  **/
8724 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8725 			   union e1000_adv_rx_desc *rx_desc)
8726 {
8727 	u32 ntc = rx_ring->next_to_clean + 1;
8728 
8729 	/* fetch, update, and store next to clean */
8730 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8731 	rx_ring->next_to_clean = ntc;
8732 
8733 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8734 
8735 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8736 		return false;
8737 
8738 	return true;
8739 }
8740 
8741 /**
8742  *  igb_cleanup_headers - Correct corrupted or empty headers
8743  *  @rx_ring: rx descriptor ring packet is being transacted on
8744  *  @rx_desc: pointer to the EOP Rx descriptor
8745  *  @skb: pointer to current skb being fixed
8746  *
8747  *  Address the case where we are pulling data in on pages only
8748  *  and as such no data is present in the skb header.
8749  *
8750  *  In addition if skb is not at least 60 bytes we need to pad it so that
8751  *  it is large enough to qualify as a valid Ethernet frame.
8752  *
8753  *  Returns true if an error was encountered and skb was freed.
8754  **/
8755 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8756 				union e1000_adv_rx_desc *rx_desc,
8757 				struct sk_buff *skb)
8758 {
8759 	/* XDP packets use error pointer so abort at this point */
8760 	if (IS_ERR(skb))
8761 		return true;
8762 
8763 	if (unlikely((igb_test_staterr(rx_desc,
8764 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8765 		struct net_device *netdev = rx_ring->netdev;
8766 		if (!(netdev->features & NETIF_F_RXALL)) {
8767 			dev_kfree_skb_any(skb);
8768 			return true;
8769 		}
8770 	}
8771 
8772 	/* if eth_skb_pad returns an error the skb was freed */
8773 	if (eth_skb_pad(skb))
8774 		return true;
8775 
8776 	return false;
8777 }
8778 
8779 /**
8780  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8781  *  @rx_ring: rx descriptor ring packet is being transacted on
8782  *  @rx_desc: pointer to the EOP Rx descriptor
8783  *  @skb: pointer to current skb being populated
8784  *
8785  *  This function checks the ring, descriptor, and packet information in
8786  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8787  *  other fields within the skb.
8788  **/
8789 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8790 				   union e1000_adv_rx_desc *rx_desc,
8791 				   struct sk_buff *skb)
8792 {
8793 	struct net_device *dev = rx_ring->netdev;
8794 
8795 	igb_rx_hash(rx_ring, rx_desc, skb);
8796 
8797 	igb_rx_checksum(rx_ring, rx_desc, skb);
8798 
8799 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8800 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8801 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8802 
8803 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8804 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8805 		u16 vid;
8806 
8807 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8808 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8809 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8810 		else
8811 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8812 
8813 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8814 	}
8815 
8816 	skb_record_rx_queue(skb, rx_ring->queue_index);
8817 
8818 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8819 }
8820 
8821 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8822 {
8823 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8824 }
8825 
8826 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8827 					       const unsigned int size, int *rx_buf_pgcnt)
8828 {
8829 	struct igb_rx_buffer *rx_buffer;
8830 
8831 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8832 	*rx_buf_pgcnt =
8833 #if (PAGE_SIZE < 8192)
8834 		page_count(rx_buffer->page);
8835 #else
8836 		0;
8837 #endif
8838 	prefetchw(rx_buffer->page);
8839 
8840 	/* we are reusing so sync this buffer for CPU use */
8841 	dma_sync_single_range_for_cpu(rx_ring->dev,
8842 				      rx_buffer->dma,
8843 				      rx_buffer->page_offset,
8844 				      size,
8845 				      DMA_FROM_DEVICE);
8846 
8847 	rx_buffer->pagecnt_bias--;
8848 
8849 	return rx_buffer;
8850 }
8851 
8852 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8853 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8854 {
8855 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8856 		/* hand second half of page back to the ring */
8857 		igb_reuse_rx_page(rx_ring, rx_buffer);
8858 	} else {
8859 		/* We are not reusing the buffer so unmap it and free
8860 		 * any references we are holding to it
8861 		 */
8862 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8863 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8864 				     IGB_RX_DMA_ATTR);
8865 		__page_frag_cache_drain(rx_buffer->page,
8866 					rx_buffer->pagecnt_bias);
8867 	}
8868 
8869 	/* clear contents of rx_buffer */
8870 	rx_buffer->page = NULL;
8871 }
8872 
8873 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8874 {
8875 	unsigned int total_bytes = 0, total_packets = 0;
8876 	struct igb_adapter *adapter = q_vector->adapter;
8877 	struct igb_ring *rx_ring = q_vector->rx.ring;
8878 	u16 cleaned_count = igb_desc_unused(rx_ring);
8879 	struct sk_buff *skb = rx_ring->skb;
8880 	int cpu = smp_processor_id();
8881 	unsigned int xdp_xmit = 0;
8882 	struct netdev_queue *nq;
8883 	struct xdp_buff xdp;
8884 	u32 frame_sz = 0;
8885 	int rx_buf_pgcnt;
8886 
8887 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8888 #if (PAGE_SIZE < 8192)
8889 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8890 #endif
8891 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8892 
8893 	while (likely(total_packets < budget)) {
8894 		union e1000_adv_rx_desc *rx_desc;
8895 		struct igb_rx_buffer *rx_buffer;
8896 		ktime_t timestamp = 0;
8897 		int pkt_offset = 0;
8898 		unsigned int size;
8899 		void *pktbuf;
8900 
8901 		/* return some buffers to hardware, one at a time is too slow */
8902 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8903 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8904 			cleaned_count = 0;
8905 		}
8906 
8907 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8908 		size = le16_to_cpu(rx_desc->wb.upper.length);
8909 		if (!size)
8910 			break;
8911 
8912 		/* This memory barrier is needed to keep us from reading
8913 		 * any other fields out of the rx_desc until we know the
8914 		 * descriptor has been written back
8915 		 */
8916 		dma_rmb();
8917 
8918 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8919 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8920 
8921 		/* pull rx packet timestamp if available and valid */
8922 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8923 			int ts_hdr_len;
8924 
8925 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8926 							 pktbuf, &timestamp);
8927 
8928 			pkt_offset += ts_hdr_len;
8929 			size -= ts_hdr_len;
8930 		}
8931 
8932 		/* retrieve a buffer from the ring */
8933 		if (!skb) {
8934 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8935 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8936 
8937 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8938 			xdp_buff_clear_frags_flag(&xdp);
8939 #if (PAGE_SIZE > 4096)
8940 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8941 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8942 #endif
8943 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8944 		}
8945 
8946 		if (IS_ERR(skb)) {
8947 			unsigned int xdp_res = -PTR_ERR(skb);
8948 
8949 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8950 				xdp_xmit |= xdp_res;
8951 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8952 			} else {
8953 				rx_buffer->pagecnt_bias++;
8954 			}
8955 			total_packets++;
8956 			total_bytes += size;
8957 		} else if (skb)
8958 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8959 		else if (ring_uses_build_skb(rx_ring))
8960 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8961 					    timestamp);
8962 		else
8963 			skb = igb_construct_skb(rx_ring, rx_buffer,
8964 						&xdp, timestamp);
8965 
8966 		/* exit if we failed to retrieve a buffer */
8967 		if (!skb) {
8968 			rx_ring->rx_stats.alloc_failed++;
8969 			rx_buffer->pagecnt_bias++;
8970 			break;
8971 		}
8972 
8973 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8974 		cleaned_count++;
8975 
8976 		/* fetch next buffer in frame if non-eop */
8977 		if (igb_is_non_eop(rx_ring, rx_desc))
8978 			continue;
8979 
8980 		/* verify the packet layout is correct */
8981 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8982 			skb = NULL;
8983 			continue;
8984 		}
8985 
8986 		/* probably a little skewed due to removing CRC */
8987 		total_bytes += skb->len;
8988 
8989 		/* populate checksum, timestamp, VLAN, and protocol */
8990 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8991 
8992 		napi_gro_receive(&q_vector->napi, skb);
8993 
8994 		/* reset skb pointer */
8995 		skb = NULL;
8996 
8997 		/* update budget accounting */
8998 		total_packets++;
8999 	}
9000 
9001 	/* place incomplete frames back on ring for completion */
9002 	rx_ring->skb = skb;
9003 
9004 	if (xdp_xmit & IGB_XDP_REDIR)
9005 		xdp_do_flush();
9006 
9007 	if (xdp_xmit & IGB_XDP_TX) {
9008 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9009 
9010 		nq = txring_txq(tx_ring);
9011 		__netif_tx_lock(nq, cpu);
9012 		igb_xdp_ring_update_tail(tx_ring);
9013 		__netif_tx_unlock(nq);
9014 	}
9015 
9016 	u64_stats_update_begin(&rx_ring->rx_syncp);
9017 	rx_ring->rx_stats.packets += total_packets;
9018 	rx_ring->rx_stats.bytes += total_bytes;
9019 	u64_stats_update_end(&rx_ring->rx_syncp);
9020 	q_vector->rx.total_packets += total_packets;
9021 	q_vector->rx.total_bytes += total_bytes;
9022 
9023 	if (cleaned_count)
9024 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9025 
9026 	return total_packets;
9027 }
9028 
9029 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9030 				  struct igb_rx_buffer *bi)
9031 {
9032 	struct page *page = bi->page;
9033 	dma_addr_t dma;
9034 
9035 	/* since we are recycling buffers we should seldom need to alloc */
9036 	if (likely(page))
9037 		return true;
9038 
9039 	/* alloc new page for storage */
9040 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9041 	if (unlikely(!page)) {
9042 		rx_ring->rx_stats.alloc_failed++;
9043 		return false;
9044 	}
9045 
9046 	/* map page for use */
9047 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9048 				 igb_rx_pg_size(rx_ring),
9049 				 DMA_FROM_DEVICE,
9050 				 IGB_RX_DMA_ATTR);
9051 
9052 	/* if mapping failed free memory back to system since
9053 	 * there isn't much point in holding memory we can't use
9054 	 */
9055 	if (dma_mapping_error(rx_ring->dev, dma)) {
9056 		__free_pages(page, igb_rx_pg_order(rx_ring));
9057 
9058 		rx_ring->rx_stats.alloc_failed++;
9059 		return false;
9060 	}
9061 
9062 	bi->dma = dma;
9063 	bi->page = page;
9064 	bi->page_offset = igb_rx_offset(rx_ring);
9065 	page_ref_add(page, USHRT_MAX - 1);
9066 	bi->pagecnt_bias = USHRT_MAX;
9067 
9068 	return true;
9069 }
9070 
9071 /**
9072  *  igb_alloc_rx_buffers - Replace used receive buffers
9073  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9074  *  @cleaned_count: count of buffers to allocate
9075  **/
9076 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9077 {
9078 	union e1000_adv_rx_desc *rx_desc;
9079 	struct igb_rx_buffer *bi;
9080 	u16 i = rx_ring->next_to_use;
9081 	u16 bufsz;
9082 
9083 	/* nothing to do */
9084 	if (!cleaned_count)
9085 		return;
9086 
9087 	rx_desc = IGB_RX_DESC(rx_ring, i);
9088 	bi = &rx_ring->rx_buffer_info[i];
9089 	i -= rx_ring->count;
9090 
9091 	bufsz = igb_rx_bufsz(rx_ring);
9092 
9093 	do {
9094 		if (!igb_alloc_mapped_page(rx_ring, bi))
9095 			break;
9096 
9097 		/* sync the buffer for use by the device */
9098 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9099 						 bi->page_offset, bufsz,
9100 						 DMA_FROM_DEVICE);
9101 
9102 		/* Refresh the desc even if buffer_addrs didn't change
9103 		 * because each write-back erases this info.
9104 		 */
9105 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9106 
9107 		rx_desc++;
9108 		bi++;
9109 		i++;
9110 		if (unlikely(!i)) {
9111 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9112 			bi = rx_ring->rx_buffer_info;
9113 			i -= rx_ring->count;
9114 		}
9115 
9116 		/* clear the length for the next_to_use descriptor */
9117 		rx_desc->wb.upper.length = 0;
9118 
9119 		cleaned_count--;
9120 	} while (cleaned_count);
9121 
9122 	i += rx_ring->count;
9123 
9124 	if (rx_ring->next_to_use != i) {
9125 		/* record the next descriptor to use */
9126 		rx_ring->next_to_use = i;
9127 
9128 		/* update next to alloc since we have filled the ring */
9129 		rx_ring->next_to_alloc = i;
9130 
9131 		/* Force memory writes to complete before letting h/w
9132 		 * know there are new descriptors to fetch.  (Only
9133 		 * applicable for weak-ordered memory model archs,
9134 		 * such as IA-64).
9135 		 */
9136 		dma_wmb();
9137 		writel(i, rx_ring->tail);
9138 	}
9139 }
9140 
9141 /**
9142  * igb_mii_ioctl -
9143  * @netdev: pointer to netdev struct
9144  * @ifr: interface structure
9145  * @cmd: ioctl command to execute
9146  **/
9147 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9148 {
9149 	struct igb_adapter *adapter = netdev_priv(netdev);
9150 	struct mii_ioctl_data *data = if_mii(ifr);
9151 
9152 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9153 		return -EOPNOTSUPP;
9154 
9155 	switch (cmd) {
9156 	case SIOCGMIIPHY:
9157 		data->phy_id = adapter->hw.phy.addr;
9158 		break;
9159 	case SIOCGMIIREG:
9160 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9161 				     &data->val_out))
9162 			return -EIO;
9163 		break;
9164 	case SIOCSMIIREG:
9165 		if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9166 				      data->val_in))
9167 			return -EIO;
9168 		break;
9169 	default:
9170 		return -EOPNOTSUPP;
9171 	}
9172 	return 0;
9173 }
9174 
9175 /**
9176  * igb_ioctl -
9177  * @netdev: pointer to netdev struct
9178  * @ifr: interface structure
9179  * @cmd: ioctl command to execute
9180  **/
9181 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9182 {
9183 	switch (cmd) {
9184 	case SIOCGMIIPHY:
9185 	case SIOCGMIIREG:
9186 	case SIOCSMIIREG:
9187 		return igb_mii_ioctl(netdev, ifr, cmd);
9188 	case SIOCGHWTSTAMP:
9189 		return igb_ptp_get_ts_config(netdev, ifr);
9190 	case SIOCSHWTSTAMP:
9191 		return igb_ptp_set_ts_config(netdev, ifr);
9192 	default:
9193 		return -EOPNOTSUPP;
9194 	}
9195 }
9196 
9197 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9198 {
9199 	struct igb_adapter *adapter = hw->back;
9200 
9201 	pci_read_config_word(adapter->pdev, reg, value);
9202 }
9203 
9204 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9205 {
9206 	struct igb_adapter *adapter = hw->back;
9207 
9208 	pci_write_config_word(adapter->pdev, reg, *value);
9209 }
9210 
9211 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9212 {
9213 	struct igb_adapter *adapter = hw->back;
9214 
9215 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9216 		return -E1000_ERR_CONFIG;
9217 
9218 	return 0;
9219 }
9220 
9221 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9222 {
9223 	struct igb_adapter *adapter = hw->back;
9224 
9225 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9226 		return -E1000_ERR_CONFIG;
9227 
9228 	return 0;
9229 }
9230 
9231 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9232 {
9233 	struct igb_adapter *adapter = netdev_priv(netdev);
9234 	struct e1000_hw *hw = &adapter->hw;
9235 	u32 ctrl, rctl;
9236 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9237 
9238 	if (enable) {
9239 		/* enable VLAN tag insert/strip */
9240 		ctrl = rd32(E1000_CTRL);
9241 		ctrl |= E1000_CTRL_VME;
9242 		wr32(E1000_CTRL, ctrl);
9243 
9244 		/* Disable CFI check */
9245 		rctl = rd32(E1000_RCTL);
9246 		rctl &= ~E1000_RCTL_CFIEN;
9247 		wr32(E1000_RCTL, rctl);
9248 	} else {
9249 		/* disable VLAN tag insert/strip */
9250 		ctrl = rd32(E1000_CTRL);
9251 		ctrl &= ~E1000_CTRL_VME;
9252 		wr32(E1000_CTRL, ctrl);
9253 	}
9254 
9255 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9256 }
9257 
9258 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9259 			       __be16 proto, u16 vid)
9260 {
9261 	struct igb_adapter *adapter = netdev_priv(netdev);
9262 	struct e1000_hw *hw = &adapter->hw;
9263 	int pf_id = adapter->vfs_allocated_count;
9264 
9265 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9266 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9267 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9268 
9269 	set_bit(vid, adapter->active_vlans);
9270 
9271 	return 0;
9272 }
9273 
9274 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9275 				__be16 proto, u16 vid)
9276 {
9277 	struct igb_adapter *adapter = netdev_priv(netdev);
9278 	int pf_id = adapter->vfs_allocated_count;
9279 	struct e1000_hw *hw = &adapter->hw;
9280 
9281 	/* remove VID from filter table */
9282 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9283 		igb_vfta_set(hw, vid, pf_id, false, true);
9284 
9285 	clear_bit(vid, adapter->active_vlans);
9286 
9287 	return 0;
9288 }
9289 
9290 static void igb_restore_vlan(struct igb_adapter *adapter)
9291 {
9292 	u16 vid = 1;
9293 
9294 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9295 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9296 
9297 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9298 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9299 }
9300 
9301 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9302 {
9303 	struct pci_dev *pdev = adapter->pdev;
9304 	struct e1000_mac_info *mac = &adapter->hw.mac;
9305 
9306 	mac->autoneg = 0;
9307 
9308 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9309 	 * for the switch() below to work
9310 	 */
9311 	if ((spd & 1) || (dplx & ~1))
9312 		goto err_inval;
9313 
9314 	/* Fiber NIC's only allow 1000 gbps Full duplex
9315 	 * and 100Mbps Full duplex for 100baseFx sfp
9316 	 */
9317 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9318 		switch (spd + dplx) {
9319 		case SPEED_10 + DUPLEX_HALF:
9320 		case SPEED_10 + DUPLEX_FULL:
9321 		case SPEED_100 + DUPLEX_HALF:
9322 			goto err_inval;
9323 		default:
9324 			break;
9325 		}
9326 	}
9327 
9328 	switch (spd + dplx) {
9329 	case SPEED_10 + DUPLEX_HALF:
9330 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9331 		break;
9332 	case SPEED_10 + DUPLEX_FULL:
9333 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9334 		break;
9335 	case SPEED_100 + DUPLEX_HALF:
9336 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9337 		break;
9338 	case SPEED_100 + DUPLEX_FULL:
9339 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9340 		break;
9341 	case SPEED_1000 + DUPLEX_FULL:
9342 		mac->autoneg = 1;
9343 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9344 		break;
9345 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9346 	default:
9347 		goto err_inval;
9348 	}
9349 
9350 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9351 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9352 
9353 	return 0;
9354 
9355 err_inval:
9356 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9357 	return -EINVAL;
9358 }
9359 
9360 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9361 			  bool runtime)
9362 {
9363 	struct net_device *netdev = pci_get_drvdata(pdev);
9364 	struct igb_adapter *adapter = netdev_priv(netdev);
9365 	struct e1000_hw *hw = &adapter->hw;
9366 	u32 ctrl, rctl, status;
9367 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9368 	bool wake;
9369 
9370 	rtnl_lock();
9371 	netif_device_detach(netdev);
9372 
9373 	if (netif_running(netdev))
9374 		__igb_close(netdev, true);
9375 
9376 	igb_ptp_suspend(adapter);
9377 
9378 	igb_clear_interrupt_scheme(adapter);
9379 	rtnl_unlock();
9380 
9381 	status = rd32(E1000_STATUS);
9382 	if (status & E1000_STATUS_LU)
9383 		wufc &= ~E1000_WUFC_LNKC;
9384 
9385 	if (wufc) {
9386 		igb_setup_rctl(adapter);
9387 		igb_set_rx_mode(netdev);
9388 
9389 		/* turn on all-multi mode if wake on multicast is enabled */
9390 		if (wufc & E1000_WUFC_MC) {
9391 			rctl = rd32(E1000_RCTL);
9392 			rctl |= E1000_RCTL_MPE;
9393 			wr32(E1000_RCTL, rctl);
9394 		}
9395 
9396 		ctrl = rd32(E1000_CTRL);
9397 		ctrl |= E1000_CTRL_ADVD3WUC;
9398 		wr32(E1000_CTRL, ctrl);
9399 
9400 		/* Allow time for pending master requests to run */
9401 		igb_disable_pcie_master(hw);
9402 
9403 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9404 		wr32(E1000_WUFC, wufc);
9405 	} else {
9406 		wr32(E1000_WUC, 0);
9407 		wr32(E1000_WUFC, 0);
9408 	}
9409 
9410 	wake = wufc || adapter->en_mng_pt;
9411 	if (!wake)
9412 		igb_power_down_link(adapter);
9413 	else
9414 		igb_power_up_link(adapter);
9415 
9416 	if (enable_wake)
9417 		*enable_wake = wake;
9418 
9419 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9420 	 * would have already happened in close and is redundant.
9421 	 */
9422 	igb_release_hw_control(adapter);
9423 
9424 	pci_disable_device(pdev);
9425 
9426 	return 0;
9427 }
9428 
9429 static void igb_deliver_wake_packet(struct net_device *netdev)
9430 {
9431 	struct igb_adapter *adapter = netdev_priv(netdev);
9432 	struct e1000_hw *hw = &adapter->hw;
9433 	struct sk_buff *skb;
9434 	u32 wupl;
9435 
9436 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9437 
9438 	/* WUPM stores only the first 128 bytes of the wake packet.
9439 	 * Read the packet only if we have the whole thing.
9440 	 */
9441 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9442 		return;
9443 
9444 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9445 	if (!skb)
9446 		return;
9447 
9448 	skb_put(skb, wupl);
9449 
9450 	/* Ensure reads are 32-bit aligned */
9451 	wupl = roundup(wupl, 4);
9452 
9453 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9454 
9455 	skb->protocol = eth_type_trans(skb, netdev);
9456 	netif_rx(skb);
9457 }
9458 
9459 static int igb_suspend(struct device *dev)
9460 {
9461 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9462 }
9463 
9464 static int __igb_resume(struct device *dev, bool rpm)
9465 {
9466 	struct pci_dev *pdev = to_pci_dev(dev);
9467 	struct net_device *netdev = pci_get_drvdata(pdev);
9468 	struct igb_adapter *adapter = netdev_priv(netdev);
9469 	struct e1000_hw *hw = &adapter->hw;
9470 	u32 err, val;
9471 
9472 	pci_set_power_state(pdev, PCI_D0);
9473 	pci_restore_state(pdev);
9474 	pci_save_state(pdev);
9475 
9476 	if (!pci_device_is_present(pdev))
9477 		return -ENODEV;
9478 	err = pci_enable_device_mem(pdev);
9479 	if (err) {
9480 		dev_err(&pdev->dev,
9481 			"igb: Cannot enable PCI device from suspend\n");
9482 		return err;
9483 	}
9484 	pci_set_master(pdev);
9485 
9486 	pci_enable_wake(pdev, PCI_D3hot, 0);
9487 	pci_enable_wake(pdev, PCI_D3cold, 0);
9488 
9489 	if (igb_init_interrupt_scheme(adapter, true)) {
9490 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9491 		return -ENOMEM;
9492 	}
9493 
9494 	igb_reset(adapter);
9495 
9496 	/* let the f/w know that the h/w is now under the control of the
9497 	 * driver.
9498 	 */
9499 	igb_get_hw_control(adapter);
9500 
9501 	val = rd32(E1000_WUS);
9502 	if (val & WAKE_PKT_WUS)
9503 		igb_deliver_wake_packet(netdev);
9504 
9505 	wr32(E1000_WUS, ~0);
9506 
9507 	if (!rpm)
9508 		rtnl_lock();
9509 	if (!err && netif_running(netdev))
9510 		err = __igb_open(netdev, true);
9511 
9512 	if (!err)
9513 		netif_device_attach(netdev);
9514 	if (!rpm)
9515 		rtnl_unlock();
9516 
9517 	return err;
9518 }
9519 
9520 static int igb_resume(struct device *dev)
9521 {
9522 	return __igb_resume(dev, false);
9523 }
9524 
9525 static int igb_runtime_idle(struct device *dev)
9526 {
9527 	struct net_device *netdev = dev_get_drvdata(dev);
9528 	struct igb_adapter *adapter = netdev_priv(netdev);
9529 
9530 	if (!igb_has_link(adapter))
9531 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9532 
9533 	return -EBUSY;
9534 }
9535 
9536 static int igb_runtime_suspend(struct device *dev)
9537 {
9538 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9539 }
9540 
9541 static int igb_runtime_resume(struct device *dev)
9542 {
9543 	return __igb_resume(dev, true);
9544 }
9545 
9546 static void igb_shutdown(struct pci_dev *pdev)
9547 {
9548 	bool wake;
9549 
9550 	__igb_shutdown(pdev, &wake, 0);
9551 
9552 	if (system_state == SYSTEM_POWER_OFF) {
9553 		pci_wake_from_d3(pdev, wake);
9554 		pci_set_power_state(pdev, PCI_D3hot);
9555 	}
9556 }
9557 
9558 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9559 {
9560 #ifdef CONFIG_PCI_IOV
9561 	int err;
9562 
9563 	if (num_vfs == 0) {
9564 		return igb_disable_sriov(dev, true);
9565 	} else {
9566 		err = igb_enable_sriov(dev, num_vfs, true);
9567 		return err ? err : num_vfs;
9568 	}
9569 #endif
9570 	return 0;
9571 }
9572 
9573 /**
9574  *  igb_io_error_detected - called when PCI error is detected
9575  *  @pdev: Pointer to PCI device
9576  *  @state: The current pci connection state
9577  *
9578  *  This function is called after a PCI bus error affecting
9579  *  this device has been detected.
9580  **/
9581 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9582 					      pci_channel_state_t state)
9583 {
9584 	struct net_device *netdev = pci_get_drvdata(pdev);
9585 	struct igb_adapter *adapter = netdev_priv(netdev);
9586 
9587 	if (state == pci_channel_io_normal) {
9588 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9589 		return PCI_ERS_RESULT_CAN_RECOVER;
9590 	}
9591 
9592 	netif_device_detach(netdev);
9593 
9594 	if (state == pci_channel_io_perm_failure)
9595 		return PCI_ERS_RESULT_DISCONNECT;
9596 
9597 	if (netif_running(netdev))
9598 		igb_down(adapter);
9599 	pci_disable_device(pdev);
9600 
9601 	/* Request a slot reset. */
9602 	return PCI_ERS_RESULT_NEED_RESET;
9603 }
9604 
9605 /**
9606  *  igb_io_slot_reset - called after the pci bus has been reset.
9607  *  @pdev: Pointer to PCI device
9608  *
9609  *  Restart the card from scratch, as if from a cold-boot. Implementation
9610  *  resembles the first-half of the __igb_resume routine.
9611  **/
9612 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9613 {
9614 	struct net_device *netdev = pci_get_drvdata(pdev);
9615 	struct igb_adapter *adapter = netdev_priv(netdev);
9616 	struct e1000_hw *hw = &adapter->hw;
9617 	pci_ers_result_t result;
9618 
9619 	if (pci_enable_device_mem(pdev)) {
9620 		dev_err(&pdev->dev,
9621 			"Cannot re-enable PCI device after reset.\n");
9622 		result = PCI_ERS_RESULT_DISCONNECT;
9623 	} else {
9624 		pci_set_master(pdev);
9625 		pci_restore_state(pdev);
9626 		pci_save_state(pdev);
9627 
9628 		pci_enable_wake(pdev, PCI_D3hot, 0);
9629 		pci_enable_wake(pdev, PCI_D3cold, 0);
9630 
9631 		/* In case of PCI error, adapter lose its HW address
9632 		 * so we should re-assign it here.
9633 		 */
9634 		hw->hw_addr = adapter->io_addr;
9635 
9636 		igb_reset(adapter);
9637 		wr32(E1000_WUS, ~0);
9638 		result = PCI_ERS_RESULT_RECOVERED;
9639 	}
9640 
9641 	return result;
9642 }
9643 
9644 /**
9645  *  igb_io_resume - called when traffic can start flowing again.
9646  *  @pdev: Pointer to PCI device
9647  *
9648  *  This callback is called when the error recovery driver tells us that
9649  *  its OK to resume normal operation. Implementation resembles the
9650  *  second-half of the __igb_resume routine.
9651  */
9652 static void igb_io_resume(struct pci_dev *pdev)
9653 {
9654 	struct net_device *netdev = pci_get_drvdata(pdev);
9655 	struct igb_adapter *adapter = netdev_priv(netdev);
9656 
9657 	if (netif_running(netdev)) {
9658 		if (!test_bit(__IGB_DOWN, &adapter->state)) {
9659 			dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9660 			return;
9661 		}
9662 		if (igb_up(adapter)) {
9663 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9664 			return;
9665 		}
9666 	}
9667 
9668 	netif_device_attach(netdev);
9669 
9670 	/* let the f/w know that the h/w is now under the control of the
9671 	 * driver.
9672 	 */
9673 	igb_get_hw_control(adapter);
9674 }
9675 
9676 /**
9677  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9678  *  @adapter: Pointer to adapter structure
9679  *  @index: Index of the RAR entry which need to be synced with MAC table
9680  **/
9681 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9682 {
9683 	struct e1000_hw *hw = &adapter->hw;
9684 	u32 rar_low, rar_high;
9685 	u8 *addr = adapter->mac_table[index].addr;
9686 
9687 	/* HW expects these to be in network order when they are plugged
9688 	 * into the registers which are little endian.  In order to guarantee
9689 	 * that ordering we need to do an leXX_to_cpup here in order to be
9690 	 * ready for the byteswap that occurs with writel
9691 	 */
9692 	rar_low = le32_to_cpup((__le32 *)(addr));
9693 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9694 
9695 	/* Indicate to hardware the Address is Valid. */
9696 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9697 		if (is_valid_ether_addr(addr))
9698 			rar_high |= E1000_RAH_AV;
9699 
9700 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9701 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9702 
9703 		switch (hw->mac.type) {
9704 		case e1000_82575:
9705 		case e1000_i210:
9706 			if (adapter->mac_table[index].state &
9707 			    IGB_MAC_STATE_QUEUE_STEERING)
9708 				rar_high |= E1000_RAH_QSEL_ENABLE;
9709 
9710 			rar_high |= E1000_RAH_POOL_1 *
9711 				    adapter->mac_table[index].queue;
9712 			break;
9713 		default:
9714 			rar_high |= E1000_RAH_POOL_1 <<
9715 				    adapter->mac_table[index].queue;
9716 			break;
9717 		}
9718 	}
9719 
9720 	wr32(E1000_RAL(index), rar_low);
9721 	wrfl();
9722 	wr32(E1000_RAH(index), rar_high);
9723 	wrfl();
9724 }
9725 
9726 static int igb_set_vf_mac(struct igb_adapter *adapter,
9727 			  int vf, unsigned char *mac_addr)
9728 {
9729 	struct e1000_hw *hw = &adapter->hw;
9730 	/* VF MAC addresses start at end of receive addresses and moves
9731 	 * towards the first, as a result a collision should not be possible
9732 	 */
9733 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9734 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9735 
9736 	ether_addr_copy(vf_mac_addr, mac_addr);
9737 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9738 	adapter->mac_table[rar_entry].queue = vf;
9739 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9740 	igb_rar_set_index(adapter, rar_entry);
9741 
9742 	return 0;
9743 }
9744 
9745 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9746 {
9747 	struct igb_adapter *adapter = netdev_priv(netdev);
9748 
9749 	if (vf >= adapter->vfs_allocated_count)
9750 		return -EINVAL;
9751 
9752 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9753 	 * flag and allows to overwrite the MAC via VF netdev.  This
9754 	 * is necessary to allow libvirt a way to restore the original
9755 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9756 	 * down a VM.
9757 	 */
9758 	if (is_zero_ether_addr(mac)) {
9759 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9760 		dev_info(&adapter->pdev->dev,
9761 			 "remove administratively set MAC on VF %d\n",
9762 			 vf);
9763 	} else if (is_valid_ether_addr(mac)) {
9764 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9765 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9766 			 mac, vf);
9767 		dev_info(&adapter->pdev->dev,
9768 			 "Reload the VF driver to make this change effective.");
9769 		/* Generate additional warning if PF is down */
9770 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9771 			dev_warn(&adapter->pdev->dev,
9772 				 "The VF MAC address has been set, but the PF device is not up.\n");
9773 			dev_warn(&adapter->pdev->dev,
9774 				 "Bring the PF device up before attempting to use the VF device.\n");
9775 		}
9776 	} else {
9777 		return -EINVAL;
9778 	}
9779 	return igb_set_vf_mac(adapter, vf, mac);
9780 }
9781 
9782 static int igb_link_mbps(int internal_link_speed)
9783 {
9784 	switch (internal_link_speed) {
9785 	case SPEED_100:
9786 		return 100;
9787 	case SPEED_1000:
9788 		return 1000;
9789 	default:
9790 		return 0;
9791 	}
9792 }
9793 
9794 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9795 				  int link_speed)
9796 {
9797 	int rf_dec, rf_int;
9798 	u32 bcnrc_val;
9799 
9800 	if (tx_rate != 0) {
9801 		/* Calculate the rate factor values to set */
9802 		rf_int = link_speed / tx_rate;
9803 		rf_dec = (link_speed - (rf_int * tx_rate));
9804 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9805 			 tx_rate;
9806 
9807 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9808 		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9809 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9810 	} else {
9811 		bcnrc_val = 0;
9812 	}
9813 
9814 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9815 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9816 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9817 	 */
9818 	wr32(E1000_RTTBCNRM, 0x14);
9819 	wr32(E1000_RTTBCNRC, bcnrc_val);
9820 }
9821 
9822 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9823 {
9824 	int actual_link_speed, i;
9825 	bool reset_rate = false;
9826 
9827 	/* VF TX rate limit was not set or not supported */
9828 	if ((adapter->vf_rate_link_speed == 0) ||
9829 	    (adapter->hw.mac.type != e1000_82576))
9830 		return;
9831 
9832 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9833 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9834 		reset_rate = true;
9835 		adapter->vf_rate_link_speed = 0;
9836 		dev_info(&adapter->pdev->dev,
9837 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9838 	}
9839 
9840 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9841 		if (reset_rate)
9842 			adapter->vf_data[i].tx_rate = 0;
9843 
9844 		igb_set_vf_rate_limit(&adapter->hw, i,
9845 				      adapter->vf_data[i].tx_rate,
9846 				      actual_link_speed);
9847 	}
9848 }
9849 
9850 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9851 			     int min_tx_rate, int max_tx_rate)
9852 {
9853 	struct igb_adapter *adapter = netdev_priv(netdev);
9854 	struct e1000_hw *hw = &adapter->hw;
9855 	int actual_link_speed;
9856 
9857 	if (hw->mac.type != e1000_82576)
9858 		return -EOPNOTSUPP;
9859 
9860 	if (min_tx_rate)
9861 		return -EINVAL;
9862 
9863 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9864 	if ((vf >= adapter->vfs_allocated_count) ||
9865 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9866 	    (max_tx_rate < 0) ||
9867 	    (max_tx_rate > actual_link_speed))
9868 		return -EINVAL;
9869 
9870 	adapter->vf_rate_link_speed = actual_link_speed;
9871 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9872 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9873 
9874 	return 0;
9875 }
9876 
9877 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9878 				   bool setting)
9879 {
9880 	struct igb_adapter *adapter = netdev_priv(netdev);
9881 	struct e1000_hw *hw = &adapter->hw;
9882 	u32 reg_val, reg_offset;
9883 
9884 	if (!adapter->vfs_allocated_count)
9885 		return -EOPNOTSUPP;
9886 
9887 	if (vf >= adapter->vfs_allocated_count)
9888 		return -EINVAL;
9889 
9890 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9891 	reg_val = rd32(reg_offset);
9892 	if (setting)
9893 		reg_val |= (BIT(vf) |
9894 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9895 	else
9896 		reg_val &= ~(BIT(vf) |
9897 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9898 	wr32(reg_offset, reg_val);
9899 
9900 	adapter->vf_data[vf].spoofchk_enabled = setting;
9901 	return 0;
9902 }
9903 
9904 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9905 {
9906 	struct igb_adapter *adapter = netdev_priv(netdev);
9907 
9908 	if (vf >= adapter->vfs_allocated_count)
9909 		return -EINVAL;
9910 	if (adapter->vf_data[vf].trusted == setting)
9911 		return 0;
9912 
9913 	adapter->vf_data[vf].trusted = setting;
9914 
9915 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9916 		 vf, setting ? "" : "not ");
9917 	return 0;
9918 }
9919 
9920 static int igb_ndo_get_vf_config(struct net_device *netdev,
9921 				 int vf, struct ifla_vf_info *ivi)
9922 {
9923 	struct igb_adapter *adapter = netdev_priv(netdev);
9924 	if (vf >= adapter->vfs_allocated_count)
9925 		return -EINVAL;
9926 	ivi->vf = vf;
9927 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9928 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9929 	ivi->min_tx_rate = 0;
9930 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9931 	ivi->qos = adapter->vf_data[vf].pf_qos;
9932 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9933 	ivi->trusted = adapter->vf_data[vf].trusted;
9934 	return 0;
9935 }
9936 
9937 static void igb_vmm_control(struct igb_adapter *adapter)
9938 {
9939 	struct e1000_hw *hw = &adapter->hw;
9940 	u32 reg;
9941 
9942 	switch (hw->mac.type) {
9943 	case e1000_82575:
9944 	case e1000_i210:
9945 	case e1000_i211:
9946 	case e1000_i354:
9947 	default:
9948 		/* replication is not supported for 82575 */
9949 		return;
9950 	case e1000_82576:
9951 		/* notify HW that the MAC is adding vlan tags */
9952 		reg = rd32(E1000_DTXCTL);
9953 		reg |= E1000_DTXCTL_VLAN_ADDED;
9954 		wr32(E1000_DTXCTL, reg);
9955 		fallthrough;
9956 	case e1000_82580:
9957 		/* enable replication vlan tag stripping */
9958 		reg = rd32(E1000_RPLOLR);
9959 		reg |= E1000_RPLOLR_STRVLAN;
9960 		wr32(E1000_RPLOLR, reg);
9961 		fallthrough;
9962 	case e1000_i350:
9963 		/* none of the above registers are supported by i350 */
9964 		break;
9965 	}
9966 
9967 	if (adapter->vfs_allocated_count) {
9968 		igb_vmdq_set_loopback_pf(hw, true);
9969 		igb_vmdq_set_replication_pf(hw, true);
9970 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9971 					      adapter->vfs_allocated_count);
9972 	} else {
9973 		igb_vmdq_set_loopback_pf(hw, false);
9974 		igb_vmdq_set_replication_pf(hw, false);
9975 	}
9976 }
9977 
9978 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9979 {
9980 	struct e1000_hw *hw = &adapter->hw;
9981 	u32 dmac_thr;
9982 	u16 hwm;
9983 	u32 reg;
9984 
9985 	if (hw->mac.type > e1000_82580) {
9986 		if (adapter->flags & IGB_FLAG_DMAC) {
9987 			/* force threshold to 0. */
9988 			wr32(E1000_DMCTXTH, 0);
9989 
9990 			/* DMA Coalescing high water mark needs to be greater
9991 			 * than the Rx threshold. Set hwm to PBA - max frame
9992 			 * size in 16B units, capping it at PBA - 6KB.
9993 			 */
9994 			hwm = 64 * (pba - 6);
9995 			reg = rd32(E1000_FCRTC);
9996 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9997 			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
9998 			wr32(E1000_FCRTC, reg);
9999 
10000 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10001 			 * frame size, capping it at PBA - 10KB.
10002 			 */
10003 			dmac_thr = pba - 10;
10004 			reg = rd32(E1000_DMACR);
10005 			reg &= ~E1000_DMACR_DMACTHR_MASK;
10006 			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10007 
10008 			/* transition to L0x or L1 if available..*/
10009 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10010 
10011 			/* watchdog timer= +-1000 usec in 32usec intervals */
10012 			reg |= (1000 >> 5);
10013 
10014 			/* Disable BMC-to-OS Watchdog Enable */
10015 			if (hw->mac.type != e1000_i354)
10016 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10017 			wr32(E1000_DMACR, reg);
10018 
10019 			/* no lower threshold to disable
10020 			 * coalescing(smart fifb)-UTRESH=0
10021 			 */
10022 			wr32(E1000_DMCRTRH, 0);
10023 
10024 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10025 
10026 			wr32(E1000_DMCTLX, reg);
10027 
10028 			/* free space in tx packet buffer to wake from
10029 			 * DMA coal
10030 			 */
10031 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10032 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10033 		}
10034 
10035 		if (hw->mac.type >= e1000_i210 ||
10036 		    (adapter->flags & IGB_FLAG_DMAC)) {
10037 			reg = rd32(E1000_PCIEMISC);
10038 			reg |= E1000_PCIEMISC_LX_DECISION;
10039 			wr32(E1000_PCIEMISC, reg);
10040 		} /* endif adapter->dmac is not disabled */
10041 	} else if (hw->mac.type == e1000_82580) {
10042 		u32 reg = rd32(E1000_PCIEMISC);
10043 
10044 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10045 		wr32(E1000_DMACR, 0);
10046 	}
10047 }
10048 
10049 /**
10050  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10051  *  @hw: pointer to hardware structure
10052  *  @byte_offset: byte offset to read
10053  *  @dev_addr: device address
10054  *  @data: value read
10055  *
10056  *  Performs byte read operation over I2C interface at
10057  *  a specified device address.
10058  **/
10059 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10060 		      u8 dev_addr, u8 *data)
10061 {
10062 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10063 	struct i2c_client *this_client = adapter->i2c_client;
10064 	s32 status;
10065 	u16 swfw_mask = 0;
10066 
10067 	if (!this_client)
10068 		return E1000_ERR_I2C;
10069 
10070 	swfw_mask = E1000_SWFW_PHY0_SM;
10071 
10072 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10073 		return E1000_ERR_SWFW_SYNC;
10074 
10075 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10076 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10077 
10078 	if (status < 0)
10079 		return E1000_ERR_I2C;
10080 	else {
10081 		*data = status;
10082 		return 0;
10083 	}
10084 }
10085 
10086 /**
10087  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10088  *  @hw: pointer to hardware structure
10089  *  @byte_offset: byte offset to write
10090  *  @dev_addr: device address
10091  *  @data: value to write
10092  *
10093  *  Performs byte write operation over I2C interface at
10094  *  a specified device address.
10095  **/
10096 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10097 		       u8 dev_addr, u8 data)
10098 {
10099 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10100 	struct i2c_client *this_client = adapter->i2c_client;
10101 	s32 status;
10102 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10103 
10104 	if (!this_client)
10105 		return E1000_ERR_I2C;
10106 
10107 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10108 		return E1000_ERR_SWFW_SYNC;
10109 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10110 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10111 
10112 	if (status)
10113 		return E1000_ERR_I2C;
10114 	else
10115 		return 0;
10116 
10117 }
10118 
10119 int igb_reinit_queues(struct igb_adapter *adapter)
10120 {
10121 	struct net_device *netdev = adapter->netdev;
10122 	struct pci_dev *pdev = adapter->pdev;
10123 	int err = 0;
10124 
10125 	if (netif_running(netdev))
10126 		igb_close(netdev);
10127 
10128 	igb_reset_interrupt_capability(adapter);
10129 
10130 	if (igb_init_interrupt_scheme(adapter, true)) {
10131 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10132 		return -ENOMEM;
10133 	}
10134 
10135 	if (netif_running(netdev))
10136 		err = igb_open(netdev);
10137 
10138 	return err;
10139 }
10140 
10141 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10142 {
10143 	struct igb_nfc_filter *rule;
10144 
10145 	spin_lock(&adapter->nfc_lock);
10146 
10147 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10148 		igb_erase_filter(adapter, rule);
10149 
10150 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10151 		igb_erase_filter(adapter, rule);
10152 
10153 	spin_unlock(&adapter->nfc_lock);
10154 }
10155 
10156 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10157 {
10158 	struct igb_nfc_filter *rule;
10159 
10160 	spin_lock(&adapter->nfc_lock);
10161 
10162 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10163 		igb_add_filter(adapter, rule);
10164 
10165 	spin_unlock(&adapter->nfc_lock);
10166 }
10167 
10168 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10169 			  igb_runtime_suspend, igb_runtime_resume,
10170 			  igb_runtime_idle);
10171 
10172 static struct pci_driver igb_driver = {
10173 	.name     = igb_driver_name,
10174 	.id_table = igb_pci_tbl,
10175 	.probe    = igb_probe,
10176 	.remove   = igb_remove,
10177 	.driver.pm = pm_ptr(&igb_pm_ops),
10178 	.shutdown = igb_shutdown,
10179 	.sriov_configure = igb_pci_sriov_configure,
10180 	.err_handler = &igb_err_handler
10181 };
10182 
10183 /* igb_main.c */
10184