xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59 
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 				"Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 				"Copyright (c) 2007-2014 Intel Corporation.";
71 
72 static const struct e1000_info *igb_info_tbl[] = {
73 	[board_82575] = &e1000_82575_info,
74 };
75 
76 static const struct pci_device_id igb_pci_tbl[] = {
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 	/* required last entry */
113 	{0, }
114 };
115 
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117 
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 					  struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 			  netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 			       int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 				   bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 				 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186 
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 			igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 	.notifier_call	= igb_notify_dca,
207 	.next		= NULL,
208 	.priority	= 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220 
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222 		     pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225 
226 static const struct pci_error_handlers igb_err_handler = {
227 	.error_detected = igb_io_error_detected,
228 	.slot_reset = igb_io_slot_reset,
229 	.resume = igb_io_resume,
230 };
231 
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233 
234 static struct pci_driver igb_driver = {
235 	.name     = igb_driver_name,
236 	.id_table = igb_pci_tbl,
237 	.probe    = igb_probe,
238 	.remove   = igb_remove,
239 #ifdef CONFIG_PM
240 	.driver.pm = &igb_pm_ops,
241 #endif
242 	.shutdown = igb_shutdown,
243 	.sriov_configure = igb_pci_sriov_configure,
244 	.err_handler = &igb_err_handler
245 };
246 
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251 
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256 
257 struct igb_reg_info {
258 	u32 ofs;
259 	char *name;
260 };
261 
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263 
264 	/* General Registers */
265 	{E1000_CTRL, "CTRL"},
266 	{E1000_STATUS, "STATUS"},
267 	{E1000_CTRL_EXT, "CTRL_EXT"},
268 
269 	/* Interrupt Registers */
270 	{E1000_ICR, "ICR"},
271 
272 	/* RX Registers */
273 	{E1000_RCTL, "RCTL"},
274 	{E1000_RDLEN(0), "RDLEN"},
275 	{E1000_RDH(0), "RDH"},
276 	{E1000_RDT(0), "RDT"},
277 	{E1000_RXDCTL(0), "RXDCTL"},
278 	{E1000_RDBAL(0), "RDBAL"},
279 	{E1000_RDBAH(0), "RDBAH"},
280 
281 	/* TX Registers */
282 	{E1000_TCTL, "TCTL"},
283 	{E1000_TDBAL(0), "TDBAL"},
284 	{E1000_TDBAH(0), "TDBAH"},
285 	{E1000_TDLEN(0), "TDLEN"},
286 	{E1000_TDH(0), "TDH"},
287 	{E1000_TDT(0), "TDT"},
288 	{E1000_TXDCTL(0), "TXDCTL"},
289 	{E1000_TDFH, "TDFH"},
290 	{E1000_TDFT, "TDFT"},
291 	{E1000_TDFHS, "TDFHS"},
292 	{E1000_TDFPC, "TDFPC"},
293 
294 	/* List Terminator */
295 	{}
296 };
297 
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301 	int n = 0;
302 	char rname[16];
303 	u32 regs[8];
304 
305 	switch (reginfo->ofs) {
306 	case E1000_RDLEN(0):
307 		for (n = 0; n < 4; n++)
308 			regs[n] = rd32(E1000_RDLEN(n));
309 		break;
310 	case E1000_RDH(0):
311 		for (n = 0; n < 4; n++)
312 			regs[n] = rd32(E1000_RDH(n));
313 		break;
314 	case E1000_RDT(0):
315 		for (n = 0; n < 4; n++)
316 			regs[n] = rd32(E1000_RDT(n));
317 		break;
318 	case E1000_RXDCTL(0):
319 		for (n = 0; n < 4; n++)
320 			regs[n] = rd32(E1000_RXDCTL(n));
321 		break;
322 	case E1000_RDBAL(0):
323 		for (n = 0; n < 4; n++)
324 			regs[n] = rd32(E1000_RDBAL(n));
325 		break;
326 	case E1000_RDBAH(0):
327 		for (n = 0; n < 4; n++)
328 			regs[n] = rd32(E1000_RDBAH(n));
329 		break;
330 	case E1000_TDBAL(0):
331 		for (n = 0; n < 4; n++)
332 			regs[n] = rd32(E1000_RDBAL(n));
333 		break;
334 	case E1000_TDBAH(0):
335 		for (n = 0; n < 4; n++)
336 			regs[n] = rd32(E1000_TDBAH(n));
337 		break;
338 	case E1000_TDLEN(0):
339 		for (n = 0; n < 4; n++)
340 			regs[n] = rd32(E1000_TDLEN(n));
341 		break;
342 	case E1000_TDH(0):
343 		for (n = 0; n < 4; n++)
344 			regs[n] = rd32(E1000_TDH(n));
345 		break;
346 	case E1000_TDT(0):
347 		for (n = 0; n < 4; n++)
348 			regs[n] = rd32(E1000_TDT(n));
349 		break;
350 	case E1000_TXDCTL(0):
351 		for (n = 0; n < 4; n++)
352 			regs[n] = rd32(E1000_TXDCTL(n));
353 		break;
354 	default:
355 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356 		return;
357 	}
358 
359 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361 		regs[2], regs[3]);
362 }
363 
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367 	struct net_device *netdev = adapter->netdev;
368 	struct e1000_hw *hw = &adapter->hw;
369 	struct igb_reg_info *reginfo;
370 	struct igb_ring *tx_ring;
371 	union e1000_adv_tx_desc *tx_desc;
372 	struct my_u0 { u64 a; u64 b; } *u0;
373 	struct igb_ring *rx_ring;
374 	union e1000_adv_rx_desc *rx_desc;
375 	u32 staterr;
376 	u16 i, n;
377 
378 	if (!netif_msg_hw(adapter))
379 		return;
380 
381 	/* Print netdevice Info */
382 	if (netdev) {
383 		dev_info(&adapter->pdev->dev, "Net device Info\n");
384 		pr_info("Device Name     state            trans_start      last_rx\n");
385 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386 			netdev->state, dev_trans_start(netdev), netdev->last_rx);
387 	}
388 
389 	/* Print Registers */
390 	dev_info(&adapter->pdev->dev, "Register Dump\n");
391 	pr_info(" Register Name   Value\n");
392 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393 	     reginfo->name; reginfo++) {
394 		igb_regdump(hw, reginfo);
395 	}
396 
397 	/* Print TX Ring Summary */
398 	if (!netdev || !netif_running(netdev))
399 		goto exit;
400 
401 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403 	for (n = 0; n < adapter->num_tx_queues; n++) {
404 		struct igb_tx_buffer *buffer_info;
405 		tx_ring = adapter->tx_ring[n];
406 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 			(u64)dma_unmap_addr(buffer_info, dma),
410 			dma_unmap_len(buffer_info, len),
411 			buffer_info->next_to_watch,
412 			(u64)buffer_info->time_stamp);
413 	}
414 
415 	/* Print TX Rings */
416 	if (!netif_msg_tx_done(adapter))
417 		goto rx_ring_summary;
418 
419 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420 
421 	/* Transmit Descriptor Formats
422 	 *
423 	 * Advanced Transmit Descriptor
424 	 *   +--------------------------------------------------------------+
425 	 * 0 |         Buffer Address [63:0]                                |
426 	 *   +--------------------------------------------------------------+
427 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
428 	 *   +--------------------------------------------------------------+
429 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
430 	 */
431 
432 	for (n = 0; n < adapter->num_tx_queues; n++) {
433 		tx_ring = adapter->tx_ring[n];
434 		pr_info("------------------------------------\n");
435 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436 		pr_info("------------------------------------\n");
437 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
438 
439 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 			const char *next_desc;
441 			struct igb_tx_buffer *buffer_info;
442 			tx_desc = IGB_TX_DESC(tx_ring, i);
443 			buffer_info = &tx_ring->tx_buffer_info[i];
444 			u0 = (struct my_u0 *)tx_desc;
445 			if (i == tx_ring->next_to_use &&
446 			    i == tx_ring->next_to_clean)
447 				next_desc = " NTC/U";
448 			else if (i == tx_ring->next_to_use)
449 				next_desc = " NTU";
450 			else if (i == tx_ring->next_to_clean)
451 				next_desc = " NTC";
452 			else
453 				next_desc = "";
454 
455 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
456 				i, le64_to_cpu(u0->a),
457 				le64_to_cpu(u0->b),
458 				(u64)dma_unmap_addr(buffer_info, dma),
459 				dma_unmap_len(buffer_info, len),
460 				buffer_info->next_to_watch,
461 				(u64)buffer_info->time_stamp,
462 				buffer_info->skb, next_desc);
463 
464 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 				print_hex_dump(KERN_INFO, "",
466 					DUMP_PREFIX_ADDRESS,
467 					16, 1, buffer_info->skb->data,
468 					dma_unmap_len(buffer_info, len),
469 					true);
470 		}
471 	}
472 
473 	/* Print RX Rings Summary */
474 rx_ring_summary:
475 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476 	pr_info("Queue [NTU] [NTC]\n");
477 	for (n = 0; n < adapter->num_rx_queues; n++) {
478 		rx_ring = adapter->rx_ring[n];
479 		pr_info(" %5d %5X %5X\n",
480 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 	}
482 
483 	/* Print RX Rings */
484 	if (!netif_msg_rx_status(adapter))
485 		goto exit;
486 
487 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488 
489 	/* Advanced Receive Descriptor (Read) Format
490 	 *    63                                           1        0
491 	 *    +-----------------------------------------------------+
492 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493 	 *    +----------------------------------------------+------+
494 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
495 	 *    +-----------------------------------------------------+
496 	 *
497 	 *
498 	 * Advanced Receive Descriptor (Write-Back) Format
499 	 *
500 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
501 	 *   +------------------------------------------------------+
502 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503 	 *   | Checksum   Ident  |   |           |    | Type | Type |
504 	 *   +------------------------------------------------------+
505 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 	 *   +------------------------------------------------------+
507 	 *   63       48 47    32 31            20 19               0
508 	 */
509 
510 	for (n = 0; n < adapter->num_rx_queues; n++) {
511 		rx_ring = adapter->rx_ring[n];
512 		pr_info("------------------------------------\n");
513 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 		pr_info("------------------------------------\n");
515 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
516 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517 
518 		for (i = 0; i < rx_ring->count; i++) {
519 			const char *next_desc;
520 			struct igb_rx_buffer *buffer_info;
521 			buffer_info = &rx_ring->rx_buffer_info[i];
522 			rx_desc = IGB_RX_DESC(rx_ring, i);
523 			u0 = (struct my_u0 *)rx_desc;
524 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525 
526 			if (i == rx_ring->next_to_use)
527 				next_desc = " NTU";
528 			else if (i == rx_ring->next_to_clean)
529 				next_desc = " NTC";
530 			else
531 				next_desc = "";
532 
533 			if (staterr & E1000_RXD_STAT_DD) {
534 				/* Descriptor Done */
535 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
536 					"RWB", i,
537 					le64_to_cpu(u0->a),
538 					le64_to_cpu(u0->b),
539 					next_desc);
540 			} else {
541 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
542 					"R  ", i,
543 					le64_to_cpu(u0->a),
544 					le64_to_cpu(u0->b),
545 					(u64)buffer_info->dma,
546 					next_desc);
547 
548 				if (netif_msg_pktdata(adapter) &&
549 				    buffer_info->dma && buffer_info->page) {
550 					print_hex_dump(KERN_INFO, "",
551 					  DUMP_PREFIX_ADDRESS,
552 					  16, 1,
553 					  page_address(buffer_info->page) +
554 						      buffer_info->page_offset,
555 					  IGB_RX_BUFSZ, true);
556 				}
557 			}
558 		}
559 	}
560 
561 exit:
562 	return;
563 }
564 
565 /**
566  *  igb_get_i2c_data - Reads the I2C SDA data bit
567  *  @hw: pointer to hardware structure
568  *  @i2cctl: Current value of I2CCTL register
569  *
570  *  Returns the I2C data bit value
571  **/
572 static int igb_get_i2c_data(void *data)
573 {
574 	struct igb_adapter *adapter = (struct igb_adapter *)data;
575 	struct e1000_hw *hw = &adapter->hw;
576 	s32 i2cctl = rd32(E1000_I2CPARAMS);
577 
578 	return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580 
581 /**
582  *  igb_set_i2c_data - Sets the I2C data bit
583  *  @data: pointer to hardware structure
584  *  @state: I2C data value (0 or 1) to set
585  *
586  *  Sets the I2C data bit
587  **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590 	struct igb_adapter *adapter = (struct igb_adapter *)data;
591 	struct e1000_hw *hw = &adapter->hw;
592 	s32 i2cctl = rd32(E1000_I2CPARAMS);
593 
594 	if (state)
595 		i2cctl |= E1000_I2C_DATA_OUT;
596 	else
597 		i2cctl &= ~E1000_I2C_DATA_OUT;
598 
599 	i2cctl &= ~E1000_I2C_DATA_OE_N;
600 	i2cctl |= E1000_I2C_CLK_OE_N;
601 	wr32(E1000_I2CPARAMS, i2cctl);
602 	wrfl();
603 
604 }
605 
606 /**
607  *  igb_set_i2c_clk - Sets the I2C SCL clock
608  *  @data: pointer to hardware structure
609  *  @state: state to set clock
610  *
611  *  Sets the I2C clock line to state
612  **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615 	struct igb_adapter *adapter = (struct igb_adapter *)data;
616 	struct e1000_hw *hw = &adapter->hw;
617 	s32 i2cctl = rd32(E1000_I2CPARAMS);
618 
619 	if (state) {
620 		i2cctl |= E1000_I2C_CLK_OUT;
621 		i2cctl &= ~E1000_I2C_CLK_OE_N;
622 	} else {
623 		i2cctl &= ~E1000_I2C_CLK_OUT;
624 		i2cctl &= ~E1000_I2C_CLK_OE_N;
625 	}
626 	wr32(E1000_I2CPARAMS, i2cctl);
627 	wrfl();
628 }
629 
630 /**
631  *  igb_get_i2c_clk - Gets the I2C SCL clock state
632  *  @data: pointer to hardware structure
633  *
634  *  Gets the I2C clock state
635  **/
636 static int igb_get_i2c_clk(void *data)
637 {
638 	struct igb_adapter *adapter = (struct igb_adapter *)data;
639 	struct e1000_hw *hw = &adapter->hw;
640 	s32 i2cctl = rd32(E1000_I2CPARAMS);
641 
642 	return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644 
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646 	.setsda		= igb_set_i2c_data,
647 	.setscl		= igb_set_i2c_clk,
648 	.getsda		= igb_get_i2c_data,
649 	.getscl		= igb_get_i2c_clk,
650 	.udelay		= 5,
651 	.timeout	= 20,
652 };
653 
654 /**
655  *  igb_get_hw_dev - return device
656  *  @hw: pointer to hardware structure
657  *
658  *  used by hardware layer to print debugging information
659  **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662 	struct igb_adapter *adapter = hw->back;
663 	return adapter->netdev;
664 }
665 
666 /**
667  *  igb_init_module - Driver Registration Routine
668  *
669  *  igb_init_module is the first routine called when the driver is
670  *  loaded. All it does is register with the PCI subsystem.
671  **/
672 static int __init igb_init_module(void)
673 {
674 	int ret;
675 
676 	pr_info("%s - version %s\n",
677 	       igb_driver_string, igb_driver_version);
678 	pr_info("%s\n", igb_copyright);
679 
680 #ifdef CONFIG_IGB_DCA
681 	dca_register_notify(&dca_notifier);
682 #endif
683 	ret = pci_register_driver(&igb_driver);
684 	return ret;
685 }
686 
687 module_init(igb_init_module);
688 
689 /**
690  *  igb_exit_module - Driver Exit Cleanup Routine
691  *
692  *  igb_exit_module is called just before the driver is removed
693  *  from memory.
694  **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698 	dca_unregister_notify(&dca_notifier);
699 #endif
700 	pci_unregister_driver(&igb_driver);
701 }
702 
703 module_exit(igb_exit_module);
704 
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707  *  igb_cache_ring_register - Descriptor ring to register mapping
708  *  @adapter: board private structure to initialize
709  *
710  *  Once we know the feature-set enabled for the device, we'll cache
711  *  the register offset the descriptor ring is assigned to.
712  **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715 	int i = 0, j = 0;
716 	u32 rbase_offset = adapter->vfs_allocated_count;
717 
718 	switch (adapter->hw.mac.type) {
719 	case e1000_82576:
720 		/* The queues are allocated for virtualization such that VF 0
721 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722 		 * In order to avoid collision we start at the first free queue
723 		 * and continue consuming queues in the same sequence
724 		 */
725 		if (adapter->vfs_allocated_count) {
726 			for (; i < adapter->rss_queues; i++)
727 				adapter->rx_ring[i]->reg_idx = rbase_offset +
728 							       Q_IDX_82576(i);
729 		}
730 		/* Fall through */
731 	case e1000_82575:
732 	case e1000_82580:
733 	case e1000_i350:
734 	case e1000_i354:
735 	case e1000_i210:
736 	case e1000_i211:
737 		/* Fall through */
738 	default:
739 		for (; i < adapter->num_rx_queues; i++)
740 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741 		for (; j < adapter->num_tx_queues; j++)
742 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 		break;
744 	}
745 }
746 
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751 	u32 value = 0;
752 
753 	if (E1000_REMOVED(hw_addr))
754 		return ~value;
755 
756 	value = readl(&hw_addr[reg]);
757 
758 	/* reads should not return all F's */
759 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760 		struct net_device *netdev = igb->netdev;
761 		hw->hw_addr = NULL;
762 		netif_device_detach(netdev);
763 		netdev_err(netdev, "PCIe link lost, device now detached\n");
764 	}
765 
766 	return value;
767 }
768 
769 /**
770  *  igb_write_ivar - configure ivar for given MSI-X vector
771  *  @hw: pointer to the HW structure
772  *  @msix_vector: vector number we are allocating to a given ring
773  *  @index: row index of IVAR register to write within IVAR table
774  *  @offset: column offset of in IVAR, should be multiple of 8
775  *
776  *  This function is intended to handle the writing of the IVAR register
777  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778  *  each containing an cause allocation for an Rx and Tx ring, and a
779  *  variable number of rows depending on the number of queues supported.
780  **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782 			   int index, int offset)
783 {
784 	u32 ivar = array_rd32(E1000_IVAR0, index);
785 
786 	/* clear any bits that are currently set */
787 	ivar &= ~((u32)0xFF << offset);
788 
789 	/* write vector and valid bit */
790 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791 
792 	array_wr32(E1000_IVAR0, index, ivar);
793 }
794 
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798 	struct igb_adapter *adapter = q_vector->adapter;
799 	struct e1000_hw *hw = &adapter->hw;
800 	int rx_queue = IGB_N0_QUEUE;
801 	int tx_queue = IGB_N0_QUEUE;
802 	u32 msixbm = 0;
803 
804 	if (q_vector->rx.ring)
805 		rx_queue = q_vector->rx.ring->reg_idx;
806 	if (q_vector->tx.ring)
807 		tx_queue = q_vector->tx.ring->reg_idx;
808 
809 	switch (hw->mac.type) {
810 	case e1000_82575:
811 		/* The 82575 assigns vectors using a bitmask, which matches the
812 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813 		 * or more queues to a vector, we write the appropriate bits
814 		 * into the MSIXBM register for that vector.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818 		if (tx_queue > IGB_N0_QUEUE)
819 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821 			msixbm |= E1000_EIMS_OTHER;
822 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823 		q_vector->eims_value = msixbm;
824 		break;
825 	case e1000_82576:
826 		/* 82576 uses a table that essentially consists of 2 columns
827 		 * with 8 rows.  The ordering is column-major so we use the
828 		 * lower 3 bits as the row index, and the 4th bit as the
829 		 * column offset.
830 		 */
831 		if (rx_queue > IGB_N0_QUEUE)
832 			igb_write_ivar(hw, msix_vector,
833 				       rx_queue & 0x7,
834 				       (rx_queue & 0x8) << 1);
835 		if (tx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       tx_queue & 0x7,
838 				       ((tx_queue & 0x8) << 1) + 8);
839 		q_vector->eims_value = BIT(msix_vector);
840 		break;
841 	case e1000_82580:
842 	case e1000_i350:
843 	case e1000_i354:
844 	case e1000_i210:
845 	case e1000_i211:
846 		/* On 82580 and newer adapters the scheme is similar to 82576
847 		 * however instead of ordering column-major we have things
848 		 * ordered row-major.  So we traverse the table by using
849 		 * bit 0 as the column offset, and the remaining bits as the
850 		 * row index.
851 		 */
852 		if (rx_queue > IGB_N0_QUEUE)
853 			igb_write_ivar(hw, msix_vector,
854 				       rx_queue >> 1,
855 				       (rx_queue & 0x1) << 4);
856 		if (tx_queue > IGB_N0_QUEUE)
857 			igb_write_ivar(hw, msix_vector,
858 				       tx_queue >> 1,
859 				       ((tx_queue & 0x1) << 4) + 8);
860 		q_vector->eims_value = BIT(msix_vector);
861 		break;
862 	default:
863 		BUG();
864 		break;
865 	}
866 
867 	/* add q_vector eims value to global eims_enable_mask */
868 	adapter->eims_enable_mask |= q_vector->eims_value;
869 
870 	/* configure q_vector to set itr on first interrupt */
871 	q_vector->set_itr = 1;
872 }
873 
874 /**
875  *  igb_configure_msix - Configure MSI-X hardware
876  *  @adapter: board private structure to initialize
877  *
878  *  igb_configure_msix sets up the hardware to properly
879  *  generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883 	u32 tmp;
884 	int i, vector = 0;
885 	struct e1000_hw *hw = &adapter->hw;
886 
887 	adapter->eims_enable_mask = 0;
888 
889 	/* set vector for other causes, i.e. link changes */
890 	switch (hw->mac.type) {
891 	case e1000_82575:
892 		tmp = rd32(E1000_CTRL_EXT);
893 		/* enable MSI-X PBA support*/
894 		tmp |= E1000_CTRL_EXT_PBA_CLR;
895 
896 		/* Auto-Mask interrupts upon ICR read. */
897 		tmp |= E1000_CTRL_EXT_EIAME;
898 		tmp |= E1000_CTRL_EXT_IRCA;
899 
900 		wr32(E1000_CTRL_EXT, tmp);
901 
902 		/* enable msix_other interrupt */
903 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904 		adapter->eims_other = E1000_EIMS_OTHER;
905 
906 		break;
907 
908 	case e1000_82576:
909 	case e1000_82580:
910 	case e1000_i350:
911 	case e1000_i354:
912 	case e1000_i210:
913 	case e1000_i211:
914 		/* Turn on MSI-X capability first, or our settings
915 		 * won't stick.  And it will take days to debug.
916 		 */
917 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
919 		     E1000_GPIE_NSICR);
920 
921 		/* enable msix_other interrupt */
922 		adapter->eims_other = BIT(vector);
923 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
924 
925 		wr32(E1000_IVAR_MISC, tmp);
926 		break;
927 	default:
928 		/* do nothing, since nothing else supports MSI-X */
929 		break;
930 	} /* switch (hw->mac.type) */
931 
932 	adapter->eims_enable_mask |= adapter->eims_other;
933 
934 	for (i = 0; i < adapter->num_q_vectors; i++)
935 		igb_assign_vector(adapter->q_vector[i], vector++);
936 
937 	wrfl();
938 }
939 
940 /**
941  *  igb_request_msix - Initialize MSI-X interrupts
942  *  @adapter: board private structure to initialize
943  *
944  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945  *  kernel.
946  **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949 	struct net_device *netdev = adapter->netdev;
950 	int i, err = 0, vector = 0, free_vector = 0;
951 
952 	err = request_irq(adapter->msix_entries[vector].vector,
953 			  igb_msix_other, 0, netdev->name, adapter);
954 	if (err)
955 		goto err_out;
956 
957 	for (i = 0; i < adapter->num_q_vectors; i++) {
958 		struct igb_q_vector *q_vector = adapter->q_vector[i];
959 
960 		vector++;
961 
962 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963 
964 		if (q_vector->rx.ring && q_vector->tx.ring)
965 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 				q_vector->rx.ring->queue_index);
967 		else if (q_vector->tx.ring)
968 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 				q_vector->tx.ring->queue_index);
970 		else if (q_vector->rx.ring)
971 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 				q_vector->rx.ring->queue_index);
973 		else
974 			sprintf(q_vector->name, "%s-unused", netdev->name);
975 
976 		err = request_irq(adapter->msix_entries[vector].vector,
977 				  igb_msix_ring, 0, q_vector->name,
978 				  q_vector);
979 		if (err)
980 			goto err_free;
981 	}
982 
983 	igb_configure_msix(adapter);
984 	return 0;
985 
986 err_free:
987 	/* free already assigned IRQs */
988 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989 
990 	vector--;
991 	for (i = 0; i < vector; i++) {
992 		free_irq(adapter->msix_entries[free_vector++].vector,
993 			 adapter->q_vector[i]);
994 	}
995 err_out:
996 	return err;
997 }
998 
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009 
1010 	adapter->q_vector[v_idx] = NULL;
1011 
1012 	/* igb_get_stats64() might access the rings on this vector,
1013 	 * we must wait a grace period before freeing it.
1014 	 */
1015 	if (q_vector)
1016 		kfree_rcu(q_vector, rcu);
1017 }
1018 
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030 
1031 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 	 * allocated. So, q_vector is NULL so we should stop here.
1033 	 */
1034 	if (!q_vector)
1035 		return;
1036 
1037 	if (q_vector->tx.ring)
1038 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039 
1040 	if (q_vector->rx.ring)
1041 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042 
1043 	netif_napi_del(&q_vector->napi);
1044 
1045 }
1046 
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049 	int v_idx = adapter->num_q_vectors;
1050 
1051 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 		pci_disable_msix(adapter->pdev);
1053 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 		pci_disable_msi(adapter->pdev);
1055 
1056 	while (v_idx--)
1057 		igb_reset_q_vector(adapter, v_idx);
1058 }
1059 
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070 	int v_idx = adapter->num_q_vectors;
1071 
1072 	adapter->num_tx_queues = 0;
1073 	adapter->num_rx_queues = 0;
1074 	adapter->num_q_vectors = 0;
1075 
1076 	while (v_idx--) {
1077 		igb_reset_q_vector(adapter, v_idx);
1078 		igb_free_q_vector(adapter, v_idx);
1079 	}
1080 }
1081 
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091 	igb_free_q_vectors(adapter);
1092 	igb_reset_interrupt_capability(adapter);
1093 }
1094 
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105 	int err;
1106 	int numvecs, i;
1107 
1108 	if (!msix)
1109 		goto msi_only;
1110 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1111 
1112 	/* Number of supported queues. */
1113 	adapter->num_rx_queues = adapter->rss_queues;
1114 	if (adapter->vfs_allocated_count)
1115 		adapter->num_tx_queues = 1;
1116 	else
1117 		adapter->num_tx_queues = adapter->rss_queues;
1118 
1119 	/* start with one vector for every Rx queue */
1120 	numvecs = adapter->num_rx_queues;
1121 
1122 	/* if Tx handler is separate add 1 for every Tx queue */
1123 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 		numvecs += adapter->num_tx_queues;
1125 
1126 	/* store the number of vectors reserved for queues */
1127 	adapter->num_q_vectors = numvecs;
1128 
1129 	/* add 1 vector for link status interrupts */
1130 	numvecs++;
1131 	for (i = 0; i < numvecs; i++)
1132 		adapter->msix_entries[i].entry = i;
1133 
1134 	err = pci_enable_msix_range(adapter->pdev,
1135 				    adapter->msix_entries,
1136 				    numvecs,
1137 				    numvecs);
1138 	if (err > 0)
1139 		return;
1140 
1141 	igb_reset_interrupt_capability(adapter);
1142 
1143 	/* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 	/* disable SR-IOV for non MSI-X configurations */
1148 	if (adapter->vf_data) {
1149 		struct e1000_hw *hw = &adapter->hw;
1150 		/* disable iov and allow time for transactions to clear */
1151 		pci_disable_sriov(adapter->pdev);
1152 		msleep(500);
1153 
1154 		kfree(adapter->vf_data);
1155 		adapter->vf_data = NULL;
1156 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 		wrfl();
1158 		msleep(100);
1159 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 	}
1161 #endif
1162 	adapter->vfs_allocated_count = 0;
1163 	adapter->rss_queues = 1;
1164 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 	adapter->num_rx_queues = 1;
1166 	adapter->num_tx_queues = 1;
1167 	adapter->num_q_vectors = 1;
1168 	if (!pci_enable_msi(adapter->pdev))
1169 		adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171 
1172 static void igb_add_ring(struct igb_ring *ring,
1173 			 struct igb_ring_container *head)
1174 {
1175 	head->ring = ring;
1176 	head->count++;
1177 }
1178 
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 			      int v_count, int v_idx,
1193 			      int txr_count, int txr_idx,
1194 			      int rxr_count, int rxr_idx)
1195 {
1196 	struct igb_q_vector *q_vector;
1197 	struct igb_ring *ring;
1198 	int ring_count, size;
1199 
1200 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 	if (txr_count > 1 || rxr_count > 1)
1202 		return -ENOMEM;
1203 
1204 	ring_count = txr_count + rxr_count;
1205 	size = sizeof(struct igb_q_vector) +
1206 	       (sizeof(struct igb_ring) * ring_count);
1207 
1208 	/* allocate q_vector and rings */
1209 	q_vector = adapter->q_vector[v_idx];
1210 	if (!q_vector) {
1211 		q_vector = kzalloc(size, GFP_KERNEL);
1212 	} else if (size > ksize(q_vector)) {
1213 		kfree_rcu(q_vector, rcu);
1214 		q_vector = kzalloc(size, GFP_KERNEL);
1215 	} else {
1216 		memset(q_vector, 0, size);
1217 	}
1218 	if (!q_vector)
1219 		return -ENOMEM;
1220 
1221 	/* initialize NAPI */
1222 	netif_napi_add(adapter->netdev, &q_vector->napi,
1223 		       igb_poll, 64);
1224 
1225 	/* tie q_vector and adapter together */
1226 	adapter->q_vector[v_idx] = q_vector;
1227 	q_vector->adapter = adapter;
1228 
1229 	/* initialize work limits */
1230 	q_vector->tx.work_limit = adapter->tx_work_limit;
1231 
1232 	/* initialize ITR configuration */
1233 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234 	q_vector->itr_val = IGB_START_ITR;
1235 
1236 	/* initialize pointer to rings */
1237 	ring = q_vector->ring;
1238 
1239 	/* intialize ITR */
1240 	if (rxr_count) {
1241 		/* rx or rx/tx vector */
1242 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243 			q_vector->itr_val = adapter->rx_itr_setting;
1244 	} else {
1245 		/* tx only vector */
1246 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247 			q_vector->itr_val = adapter->tx_itr_setting;
1248 	}
1249 
1250 	if (txr_count) {
1251 		/* assign generic ring traits */
1252 		ring->dev = &adapter->pdev->dev;
1253 		ring->netdev = adapter->netdev;
1254 
1255 		/* configure backlink on ring */
1256 		ring->q_vector = q_vector;
1257 
1258 		/* update q_vector Tx values */
1259 		igb_add_ring(ring, &q_vector->tx);
1260 
1261 		/* For 82575, context index must be unique per ring. */
1262 		if (adapter->hw.mac.type == e1000_82575)
1263 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264 
1265 		/* apply Tx specific ring traits */
1266 		ring->count = adapter->tx_ring_count;
1267 		ring->queue_index = txr_idx;
1268 
1269 		u64_stats_init(&ring->tx_syncp);
1270 		u64_stats_init(&ring->tx_syncp2);
1271 
1272 		/* assign ring to adapter */
1273 		adapter->tx_ring[txr_idx] = ring;
1274 
1275 		/* push pointer to next ring */
1276 		ring++;
1277 	}
1278 
1279 	if (rxr_count) {
1280 		/* assign generic ring traits */
1281 		ring->dev = &adapter->pdev->dev;
1282 		ring->netdev = adapter->netdev;
1283 
1284 		/* configure backlink on ring */
1285 		ring->q_vector = q_vector;
1286 
1287 		/* update q_vector Rx values */
1288 		igb_add_ring(ring, &q_vector->rx);
1289 
1290 		/* set flag indicating ring supports SCTP checksum offload */
1291 		if (adapter->hw.mac.type >= e1000_82576)
1292 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293 
1294 		/* On i350, i354, i210, and i211, loopback VLAN packets
1295 		 * have the tag byte-swapped.
1296 		 */
1297 		if (adapter->hw.mac.type >= e1000_i350)
1298 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299 
1300 		/* apply Rx specific ring traits */
1301 		ring->count = adapter->rx_ring_count;
1302 		ring->queue_index = rxr_idx;
1303 
1304 		u64_stats_init(&ring->rx_syncp);
1305 
1306 		/* assign ring to adapter */
1307 		adapter->rx_ring[rxr_idx] = ring;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 	int q_vectors = adapter->num_q_vectors;
1324 	int rxr_remaining = adapter->num_rx_queues;
1325 	int txr_remaining = adapter->num_tx_queues;
1326 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 	int err;
1328 
1329 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 		for (; rxr_remaining; v_idx++) {
1331 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 						 0, 0, 1, rxr_idx);
1333 
1334 			if (err)
1335 				goto err_out;
1336 
1337 			/* update counts and index */
1338 			rxr_remaining--;
1339 			rxr_idx++;
1340 		}
1341 	}
1342 
1343 	for (; v_idx < q_vectors; v_idx++) {
1344 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346 
1347 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 					 tqpv, txr_idx, rqpv, rxr_idx);
1349 
1350 		if (err)
1351 			goto err_out;
1352 
1353 		/* update counts and index */
1354 		rxr_remaining -= rqpv;
1355 		txr_remaining -= tqpv;
1356 		rxr_idx++;
1357 		txr_idx++;
1358 	}
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	adapter->num_tx_queues = 0;
1364 	adapter->num_rx_queues = 0;
1365 	adapter->num_q_vectors = 0;
1366 
1367 	while (v_idx--)
1368 		igb_free_q_vector(adapter, v_idx);
1369 
1370 	return -ENOMEM;
1371 }
1372 
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 	struct pci_dev *pdev = adapter->pdev;
1383 	int err;
1384 
1385 	igb_set_interrupt_capability(adapter, msix);
1386 
1387 	err = igb_alloc_q_vectors(adapter);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 		goto err_alloc_q_vectors;
1391 	}
1392 
1393 	igb_cache_ring_register(adapter);
1394 
1395 	return 0;
1396 
1397 err_alloc_q_vectors:
1398 	igb_reset_interrupt_capability(adapter);
1399 	return err;
1400 }
1401 
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 	struct net_device *netdev = adapter->netdev;
1412 	struct pci_dev *pdev = adapter->pdev;
1413 	int err = 0;
1414 
1415 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 		err = igb_request_msix(adapter);
1417 		if (!err)
1418 			goto request_done;
1419 		/* fall back to MSI */
1420 		igb_free_all_tx_resources(adapter);
1421 		igb_free_all_rx_resources(adapter);
1422 
1423 		igb_clear_interrupt_scheme(adapter);
1424 		err = igb_init_interrupt_scheme(adapter, false);
1425 		if (err)
1426 			goto request_done;
1427 
1428 		igb_setup_all_tx_resources(adapter);
1429 		igb_setup_all_rx_resources(adapter);
1430 		igb_configure(adapter);
1431 	}
1432 
1433 	igb_assign_vector(adapter->q_vector[0], 0);
1434 
1435 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 				  netdev->name, adapter);
1438 		if (!err)
1439 			goto request_done;
1440 
1441 		/* fall back to legacy interrupts */
1442 		igb_reset_interrupt_capability(adapter);
1443 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 	}
1445 
1446 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 			  netdev->name, adapter);
1448 
1449 	if (err)
1450 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 			err);
1452 
1453 request_done:
1454 	return err;
1455 }
1456 
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 		int vector = 0, i;
1461 
1462 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1463 
1464 		for (i = 0; i < adapter->num_q_vectors; i++)
1465 			free_irq(adapter->msix_entries[vector++].vector,
1466 				 adapter->q_vector[i]);
1467 	} else {
1468 		free_irq(adapter->pdev->irq, adapter);
1469 	}
1470 }
1471 
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 
1480 	/* we need to be careful when disabling interrupts.  The VFs are also
1481 	 * mapped into these registers and so clearing the bits can cause
1482 	 * issues on the VF drivers so we only need to clear what we set
1483 	 */
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 regval = rd32(E1000_EIAM);
1486 
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 
1499 		for (i = 0; i < adapter->num_q_vectors; i++)
1500 			synchronize_irq(adapter->msix_entries[i].vector);
1501 	} else {
1502 		synchronize_irq(adapter->pdev->irq);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 	struct e1000_hw *hw = &adapter->hw;
1513 
1514 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 		u32 regval = rd32(E1000_EIAC);
1517 
1518 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 		regval = rd32(E1000_EIAM);
1520 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 		if (adapter->vfs_allocated_count) {
1523 			wr32(E1000_MBVFIMR, 0xFF);
1524 			ims |= E1000_IMS_VMMB;
1525 		}
1526 		wr32(E1000_IMS, ims);
1527 	} else {
1528 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 	}
1533 }
1534 
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 	struct e1000_hw *hw = &adapter->hw;
1538 	u16 pf_id = adapter->vfs_allocated_count;
1539 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 	u16 old_vid = adapter->mng_vlan_id;
1541 
1542 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 		/* add VID to filter table */
1544 		igb_vfta_set(hw, vid, pf_id, true, true);
1545 		adapter->mng_vlan_id = vid;
1546 	} else {
1547 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 	}
1549 
1550 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 	    (vid != old_vid) &&
1552 	    !test_bit(old_vid, adapter->active_vlans)) {
1553 		/* remove VID from filter table */
1554 		igb_vfta_set(hw, vid, pf_id, false, true);
1555 	}
1556 }
1557 
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 ctrl_ext;
1570 
1571 	/* Let firmware take over control of h/w */
1572 	ctrl_ext = rd32(E1000_CTRL_EXT);
1573 	wr32(E1000_CTRL_EXT,
1574 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576 
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 	struct e1000_hw *hw = &adapter->hw;
1588 	u32 ctrl_ext;
1589 
1590 	/* Let firmware know the driver has taken over */
1591 	ctrl_ext = rd32(E1000_CTRL_EXT);
1592 	wr32(E1000_CTRL_EXT,
1593 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595 
1596 /**
1597  *  igb_configure - configure the hardware for RX and TX
1598  *  @adapter: private board structure
1599  **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602 	struct net_device *netdev = adapter->netdev;
1603 	int i;
1604 
1605 	igb_get_hw_control(adapter);
1606 	igb_set_rx_mode(netdev);
1607 
1608 	igb_restore_vlan(adapter);
1609 
1610 	igb_setup_tctl(adapter);
1611 	igb_setup_mrqc(adapter);
1612 	igb_setup_rctl(adapter);
1613 
1614 	igb_configure_tx(adapter);
1615 	igb_configure_rx(adapter);
1616 
1617 	igb_rx_fifo_flush_82575(&adapter->hw);
1618 
1619 	/* call igb_desc_unused which always leaves
1620 	 * at least 1 descriptor unused to make sure
1621 	 * next_to_use != next_to_clean
1622 	 */
1623 	for (i = 0; i < adapter->num_rx_queues; i++) {
1624 		struct igb_ring *ring = adapter->rx_ring[i];
1625 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626 	}
1627 }
1628 
1629 /**
1630  *  igb_power_up_link - Power up the phy/serdes link
1631  *  @adapter: address of board private structure
1632  **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635 	igb_reset_phy(&adapter->hw);
1636 
1637 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638 		igb_power_up_phy_copper(&adapter->hw);
1639 	else
1640 		igb_power_up_serdes_link_82575(&adapter->hw);
1641 
1642 	igb_setup_link(&adapter->hw);
1643 }
1644 
1645 /**
1646  *  igb_power_down_link - Power down the phy/serdes link
1647  *  @adapter: address of board private structure
1648  */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652 		igb_power_down_phy_copper_82575(&adapter->hw);
1653 	else
1654 		igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656 
1657 /**
1658  * Detect and switch function for Media Auto Sense
1659  * @adapter: address of the board private structure
1660  **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663 	struct e1000_hw *hw = &adapter->hw;
1664 	u32 ctrl_ext, connsw;
1665 	bool swap_now = false;
1666 
1667 	ctrl_ext = rd32(E1000_CTRL_EXT);
1668 	connsw = rd32(E1000_CONNSW);
1669 
1670 	/* need to live swap if current media is copper and we have fiber/serdes
1671 	 * to go to.
1672 	 */
1673 
1674 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1675 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676 		swap_now = true;
1677 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678 		/* copper signal takes time to appear */
1679 		if (adapter->copper_tries < 4) {
1680 			adapter->copper_tries++;
1681 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682 			wr32(E1000_CONNSW, connsw);
1683 			return;
1684 		} else {
1685 			adapter->copper_tries = 0;
1686 			if ((connsw & E1000_CONNSW_PHYSD) &&
1687 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688 				swap_now = true;
1689 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690 				wr32(E1000_CONNSW, connsw);
1691 			}
1692 		}
1693 	}
1694 
1695 	if (!swap_now)
1696 		return;
1697 
1698 	switch (hw->phy.media_type) {
1699 	case e1000_media_type_copper:
1700 		netdev_info(adapter->netdev,
1701 			"MAS: changing media to fiber/serdes\n");
1702 		ctrl_ext |=
1703 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705 		adapter->copper_tries = 0;
1706 		break;
1707 	case e1000_media_type_internal_serdes:
1708 	case e1000_media_type_fiber:
1709 		netdev_info(adapter->netdev,
1710 			"MAS: changing media to copper\n");
1711 		ctrl_ext &=
1712 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714 		break;
1715 	default:
1716 		/* shouldn't get here during regular operation */
1717 		netdev_err(adapter->netdev,
1718 			"AMS: Invalid media type found, returning\n");
1719 		break;
1720 	}
1721 	wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723 
1724 /**
1725  *  igb_up - Open the interface and prepare it to handle traffic
1726  *  @adapter: board private structure
1727  **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730 	struct e1000_hw *hw = &adapter->hw;
1731 	int i;
1732 
1733 	/* hardware has been reset, we need to reload some things */
1734 	igb_configure(adapter);
1735 
1736 	clear_bit(__IGB_DOWN, &adapter->state);
1737 
1738 	for (i = 0; i < adapter->num_q_vectors; i++)
1739 		napi_enable(&(adapter->q_vector[i]->napi));
1740 
1741 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742 		igb_configure_msix(adapter);
1743 	else
1744 		igb_assign_vector(adapter->q_vector[0], 0);
1745 
1746 	/* Clear any pending interrupts. */
1747 	rd32(E1000_ICR);
1748 	igb_irq_enable(adapter);
1749 
1750 	/* notify VFs that reset has been completed */
1751 	if (adapter->vfs_allocated_count) {
1752 		u32 reg_data = rd32(E1000_CTRL_EXT);
1753 
1754 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1755 		wr32(E1000_CTRL_EXT, reg_data);
1756 	}
1757 
1758 	netif_tx_start_all_queues(adapter->netdev);
1759 
1760 	/* start the watchdog. */
1761 	hw->mac.get_link_status = 1;
1762 	schedule_work(&adapter->watchdog_task);
1763 
1764 	if ((adapter->flags & IGB_FLAG_EEE) &&
1765 	    (!hw->dev_spec._82575.eee_disable))
1766 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767 
1768 	return 0;
1769 }
1770 
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773 	struct net_device *netdev = adapter->netdev;
1774 	struct e1000_hw *hw = &adapter->hw;
1775 	u32 tctl, rctl;
1776 	int i;
1777 
1778 	/* signal that we're down so the interrupt handler does not
1779 	 * reschedule our watchdog timer
1780 	 */
1781 	set_bit(__IGB_DOWN, &adapter->state);
1782 
1783 	/* disable receives in the hardware */
1784 	rctl = rd32(E1000_RCTL);
1785 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786 	/* flush and sleep below */
1787 
1788 	netif_carrier_off(netdev);
1789 	netif_tx_stop_all_queues(netdev);
1790 
1791 	/* disable transmits in the hardware */
1792 	tctl = rd32(E1000_TCTL);
1793 	tctl &= ~E1000_TCTL_EN;
1794 	wr32(E1000_TCTL, tctl);
1795 	/* flush both disables and wait for them to finish */
1796 	wrfl();
1797 	usleep_range(10000, 11000);
1798 
1799 	igb_irq_disable(adapter);
1800 
1801 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802 
1803 	for (i = 0; i < adapter->num_q_vectors; i++) {
1804 		if (adapter->q_vector[i]) {
1805 			napi_synchronize(&adapter->q_vector[i]->napi);
1806 			napi_disable(&adapter->q_vector[i]->napi);
1807 		}
1808 	}
1809 
1810 	del_timer_sync(&adapter->watchdog_timer);
1811 	del_timer_sync(&adapter->phy_info_timer);
1812 
1813 	/* record the stats before reset*/
1814 	spin_lock(&adapter->stats64_lock);
1815 	igb_update_stats(adapter, &adapter->stats64);
1816 	spin_unlock(&adapter->stats64_lock);
1817 
1818 	adapter->link_speed = 0;
1819 	adapter->link_duplex = 0;
1820 
1821 	if (!pci_channel_offline(adapter->pdev))
1822 		igb_reset(adapter);
1823 
1824 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1825 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826 
1827 	igb_clean_all_tx_rings(adapter);
1828 	igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830 
1831 	/* since we reset the hardware DCA settings were cleared */
1832 	igb_setup_dca(adapter);
1833 #endif
1834 }
1835 
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838 	WARN_ON(in_interrupt());
1839 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840 		usleep_range(1000, 2000);
1841 	igb_down(adapter);
1842 	igb_up(adapter);
1843 	clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845 
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847  *
1848  * @adapter: adapter struct
1849  **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852 	struct e1000_hw *hw = &adapter->hw;
1853 	u32 connsw = rd32(E1000_CONNSW);
1854 
1855 	/* configure for SerDes media detect */
1856 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1857 	    (!(connsw & E1000_CONNSW_SERDESD))) {
1858 		connsw |= E1000_CONNSW_ENRGSRC;
1859 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860 		wr32(E1000_CONNSW, connsw);
1861 		wrfl();
1862 	}
1863 }
1864 
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867 	struct pci_dev *pdev = adapter->pdev;
1868 	struct e1000_hw *hw = &adapter->hw;
1869 	struct e1000_mac_info *mac = &hw->mac;
1870 	struct e1000_fc_info *fc = &hw->fc;
1871 	u32 pba, hwm;
1872 
1873 	/* Repartition Pba for greater than 9k mtu
1874 	 * To take effect CTRL.RST is required.
1875 	 */
1876 	switch (mac->type) {
1877 	case e1000_i350:
1878 	case e1000_i354:
1879 	case e1000_82580:
1880 		pba = rd32(E1000_RXPBS);
1881 		pba = igb_rxpbs_adjust_82580(pba);
1882 		break;
1883 	case e1000_82576:
1884 		pba = rd32(E1000_RXPBS);
1885 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 		break;
1887 	case e1000_82575:
1888 	case e1000_i210:
1889 	case e1000_i211:
1890 	default:
1891 		pba = E1000_PBA_34K;
1892 		break;
1893 	}
1894 
1895 	if (mac->type == e1000_82575) {
1896 		u32 min_rx_space, min_tx_space, needed_tx_space;
1897 
1898 		/* write Rx PBA so that hardware can report correct Tx PBA */
1899 		wr32(E1000_PBA, pba);
1900 
1901 		/* To maintain wire speed transmits, the Tx FIFO should be
1902 		 * large enough to accommodate two full transmit packets,
1903 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1904 		 * the Rx FIFO should be large enough to accommodate at least
1905 		 * one full receive packet and is similarly rounded up and
1906 		 * expressed in KB.
1907 		 */
1908 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909 
1910 		/* The Tx FIFO also stores 16 bytes of information about the Tx
1911 		 * but don't include Ethernet FCS because hardware appends it.
1912 		 * We only need to round down to the nearest 512 byte block
1913 		 * count since the value we care about is 2 frames, not 1.
1914 		 */
1915 		min_tx_space = adapter->max_frame_size;
1916 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918 
1919 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1920 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921 
1922 		/* If current Tx allocation is less than the min Tx FIFO size,
1923 		 * and the min Tx FIFO size is less than the current Rx FIFO
1924 		 * allocation, take space away from current Rx allocation.
1925 		 */
1926 		if (needed_tx_space < pba) {
1927 			pba -= needed_tx_space;
1928 
1929 			/* if short on Rx space, Rx wins and must trump Tx
1930 			 * adjustment
1931 			 */
1932 			if (pba < min_rx_space)
1933 				pba = min_rx_space;
1934 		}
1935 
1936 		/* adjust PBA for jumbo frames */
1937 		wr32(E1000_PBA, pba);
1938 	}
1939 
1940 	/* flow control settings
1941 	 * The high water mark must be low enough to fit one full frame
1942 	 * after transmitting the pause frame.  As such we must have enough
1943 	 * space to allow for us to complete our current transmit and then
1944 	 * receive the frame that is in progress from the link partner.
1945 	 * Set it to:
1946 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947 	 */
1948 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949 
1950 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1951 	fc->low_water = fc->high_water - 16;
1952 	fc->pause_time = 0xFFFF;
1953 	fc->send_xon = 1;
1954 	fc->current_mode = fc->requested_mode;
1955 
1956 	/* disable receive for all VFs and wait one second */
1957 	if (adapter->vfs_allocated_count) {
1958 		int i;
1959 
1960 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962 
1963 		/* ping all the active vfs to let them know we are going down */
1964 		igb_ping_all_vfs(adapter);
1965 
1966 		/* disable transmits and receives */
1967 		wr32(E1000_VFRE, 0);
1968 		wr32(E1000_VFTE, 0);
1969 	}
1970 
1971 	/* Allow time for pending master requests to run */
1972 	hw->mac.ops.reset_hw(hw);
1973 	wr32(E1000_WUC, 0);
1974 
1975 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 		/* need to resetup here after media swap */
1977 		adapter->ei.get_invariants(hw);
1978 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 	}
1980 	if ((mac->type == e1000_82575) &&
1981 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982 		igb_enable_mas(adapter);
1983 	}
1984 	if (hw->mac.ops.init_hw(hw))
1985 		dev_err(&pdev->dev, "Hardware Error\n");
1986 
1987 	/* Flow control settings reset on hardware reset, so guarantee flow
1988 	 * control is off when forcing speed.
1989 	 */
1990 	if (!hw->mac.autoneg)
1991 		igb_force_mac_fc(hw);
1992 
1993 	igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995 	/* Re-initialize the thermal sensor on i350 devices. */
1996 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998 			/* If present, re-initialize the external thermal sensor
1999 			 * interface.
2000 			 */
2001 			if (adapter->ets)
2002 				mac->ops.init_thermal_sensor_thresh(hw);
2003 		}
2004 	}
2005 #endif
2006 	/* Re-establish EEE setting */
2007 	if (hw->phy.media_type == e1000_media_type_copper) {
2008 		switch (mac->type) {
2009 		case e1000_i350:
2010 		case e1000_i210:
2011 		case e1000_i211:
2012 			igb_set_eee_i350(hw, true, true);
2013 			break;
2014 		case e1000_i354:
2015 			igb_set_eee_i354(hw, true, true);
2016 			break;
2017 		default:
2018 			break;
2019 		}
2020 	}
2021 	if (!netif_running(adapter->netdev))
2022 		igb_power_down_link(adapter);
2023 
2024 	igb_update_mng_vlan(adapter);
2025 
2026 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028 
2029 	/* Re-enable PTP, where applicable. */
2030 	igb_ptp_reset(adapter);
2031 
2032 	igb_get_phy_info(hw);
2033 }
2034 
2035 static netdev_features_t igb_fix_features(struct net_device *netdev,
2036 	netdev_features_t features)
2037 {
2038 	/* Since there is no support for separate Rx/Tx vlan accel
2039 	 * enable/disable make sure Tx flag is always in same state as Rx.
2040 	 */
2041 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2042 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2043 	else
2044 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2045 
2046 	return features;
2047 }
2048 
2049 static int igb_set_features(struct net_device *netdev,
2050 	netdev_features_t features)
2051 {
2052 	netdev_features_t changed = netdev->features ^ features;
2053 	struct igb_adapter *adapter = netdev_priv(netdev);
2054 
2055 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2056 		igb_vlan_mode(netdev, features);
2057 
2058 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2059 		return 0;
2060 
2061 	netdev->features = features;
2062 
2063 	if (netif_running(netdev))
2064 		igb_reinit_locked(adapter);
2065 	else
2066 		igb_reset(adapter);
2067 
2068 	return 0;
2069 }
2070 
2071 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2072 			   struct net_device *dev,
2073 			   const unsigned char *addr, u16 vid,
2074 			   u16 flags)
2075 {
2076 	/* guarantee we can provide a unique filter for the unicast address */
2077 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2078 		struct igb_adapter *adapter = netdev_priv(dev);
2079 		struct e1000_hw *hw = &adapter->hw;
2080 		int vfn = adapter->vfs_allocated_count;
2081 		int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2082 
2083 		if (netdev_uc_count(dev) >= rar_entries)
2084 			return -ENOMEM;
2085 	}
2086 
2087 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2088 }
2089 
2090 #define IGB_MAX_MAC_HDR_LEN	127
2091 #define IGB_MAX_NETWORK_HDR_LEN	511
2092 
2093 static netdev_features_t
2094 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2095 		   netdev_features_t features)
2096 {
2097 	unsigned int network_hdr_len, mac_hdr_len;
2098 
2099 	/* Make certain the headers can be described by a context descriptor */
2100 	mac_hdr_len = skb_network_header(skb) - skb->data;
2101 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2102 		return features & ~(NETIF_F_HW_CSUM |
2103 				    NETIF_F_SCTP_CRC |
2104 				    NETIF_F_HW_VLAN_CTAG_TX |
2105 				    NETIF_F_TSO |
2106 				    NETIF_F_TSO6);
2107 
2108 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2109 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2110 		return features & ~(NETIF_F_HW_CSUM |
2111 				    NETIF_F_SCTP_CRC |
2112 				    NETIF_F_TSO |
2113 				    NETIF_F_TSO6);
2114 
2115 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2116 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2117 	 */
2118 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2119 		features &= ~NETIF_F_TSO;
2120 
2121 	return features;
2122 }
2123 
2124 static const struct net_device_ops igb_netdev_ops = {
2125 	.ndo_open		= igb_open,
2126 	.ndo_stop		= igb_close,
2127 	.ndo_start_xmit		= igb_xmit_frame,
2128 	.ndo_get_stats64	= igb_get_stats64,
2129 	.ndo_set_rx_mode	= igb_set_rx_mode,
2130 	.ndo_set_mac_address	= igb_set_mac,
2131 	.ndo_change_mtu		= igb_change_mtu,
2132 	.ndo_do_ioctl		= igb_ioctl,
2133 	.ndo_tx_timeout		= igb_tx_timeout,
2134 	.ndo_validate_addr	= eth_validate_addr,
2135 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2136 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2137 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2138 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2139 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2140 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2141 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143 	.ndo_poll_controller	= igb_netpoll,
2144 #endif
2145 	.ndo_fix_features	= igb_fix_features,
2146 	.ndo_set_features	= igb_set_features,
2147 	.ndo_fdb_add		= igb_ndo_fdb_add,
2148 	.ndo_features_check	= igb_features_check,
2149 };
2150 
2151 /**
2152  * igb_set_fw_version - Configure version string for ethtool
2153  * @adapter: adapter struct
2154  **/
2155 void igb_set_fw_version(struct igb_adapter *adapter)
2156 {
2157 	struct e1000_hw *hw = &adapter->hw;
2158 	struct e1000_fw_version fw;
2159 
2160 	igb_get_fw_version(hw, &fw);
2161 
2162 	switch (hw->mac.type) {
2163 	case e1000_i210:
2164 	case e1000_i211:
2165 		if (!(igb_get_flash_presence_i210(hw))) {
2166 			snprintf(adapter->fw_version,
2167 				 sizeof(adapter->fw_version),
2168 				 "%2d.%2d-%d",
2169 				 fw.invm_major, fw.invm_minor,
2170 				 fw.invm_img_type);
2171 			break;
2172 		}
2173 		/* fall through */
2174 	default:
2175 		/* if option is rom valid, display its version too */
2176 		if (fw.or_valid) {
2177 			snprintf(adapter->fw_version,
2178 				 sizeof(adapter->fw_version),
2179 				 "%d.%d, 0x%08x, %d.%d.%d",
2180 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2181 				 fw.or_major, fw.or_build, fw.or_patch);
2182 		/* no option rom */
2183 		} else if (fw.etrack_id != 0X0000) {
2184 			snprintf(adapter->fw_version,
2185 			    sizeof(adapter->fw_version),
2186 			    "%d.%d, 0x%08x",
2187 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2188 		} else {
2189 		snprintf(adapter->fw_version,
2190 		    sizeof(adapter->fw_version),
2191 		    "%d.%d.%d",
2192 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2193 		}
2194 		break;
2195 	}
2196 }
2197 
2198 /**
2199  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2200  *
2201  * @adapter: adapter struct
2202  **/
2203 static void igb_init_mas(struct igb_adapter *adapter)
2204 {
2205 	struct e1000_hw *hw = &adapter->hw;
2206 	u16 eeprom_data;
2207 
2208 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2209 	switch (hw->bus.func) {
2210 	case E1000_FUNC_0:
2211 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2212 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2213 			netdev_info(adapter->netdev,
2214 				"MAS: Enabling Media Autosense for port %d\n",
2215 				hw->bus.func);
2216 		}
2217 		break;
2218 	case E1000_FUNC_1:
2219 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2220 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2221 			netdev_info(adapter->netdev,
2222 				"MAS: Enabling Media Autosense for port %d\n",
2223 				hw->bus.func);
2224 		}
2225 		break;
2226 	case E1000_FUNC_2:
2227 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2228 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2229 			netdev_info(adapter->netdev,
2230 				"MAS: Enabling Media Autosense for port %d\n",
2231 				hw->bus.func);
2232 		}
2233 		break;
2234 	case E1000_FUNC_3:
2235 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2236 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2237 			netdev_info(adapter->netdev,
2238 				"MAS: Enabling Media Autosense for port %d\n",
2239 				hw->bus.func);
2240 		}
2241 		break;
2242 	default:
2243 		/* Shouldn't get here */
2244 		netdev_err(adapter->netdev,
2245 			"MAS: Invalid port configuration, returning\n");
2246 		break;
2247 	}
2248 }
2249 
2250 /**
2251  *  igb_init_i2c - Init I2C interface
2252  *  @adapter: pointer to adapter structure
2253  **/
2254 static s32 igb_init_i2c(struct igb_adapter *adapter)
2255 {
2256 	s32 status = 0;
2257 
2258 	/* I2C interface supported on i350 devices */
2259 	if (adapter->hw.mac.type != e1000_i350)
2260 		return 0;
2261 
2262 	/* Initialize the i2c bus which is controlled by the registers.
2263 	 * This bus will use the i2c_algo_bit structue that implements
2264 	 * the protocol through toggling of the 4 bits in the register.
2265 	 */
2266 	adapter->i2c_adap.owner = THIS_MODULE;
2267 	adapter->i2c_algo = igb_i2c_algo;
2268 	adapter->i2c_algo.data = adapter;
2269 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2270 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2271 	strlcpy(adapter->i2c_adap.name, "igb BB",
2272 		sizeof(adapter->i2c_adap.name));
2273 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2274 	return status;
2275 }
2276 
2277 /**
2278  *  igb_probe - Device Initialization Routine
2279  *  @pdev: PCI device information struct
2280  *  @ent: entry in igb_pci_tbl
2281  *
2282  *  Returns 0 on success, negative on failure
2283  *
2284  *  igb_probe initializes an adapter identified by a pci_dev structure.
2285  *  The OS initialization, configuring of the adapter private structure,
2286  *  and a hardware reset occur.
2287  **/
2288 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2289 {
2290 	struct net_device *netdev;
2291 	struct igb_adapter *adapter;
2292 	struct e1000_hw *hw;
2293 	u16 eeprom_data = 0;
2294 	s32 ret_val;
2295 	static int global_quad_port_a; /* global quad port a indication */
2296 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2297 	int err, pci_using_dac;
2298 	u8 part_str[E1000_PBANUM_LENGTH];
2299 
2300 	/* Catch broken hardware that put the wrong VF device ID in
2301 	 * the PCIe SR-IOV capability.
2302 	 */
2303 	if (pdev->is_virtfn) {
2304 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2305 			pci_name(pdev), pdev->vendor, pdev->device);
2306 		return -EINVAL;
2307 	}
2308 
2309 	err = pci_enable_device_mem(pdev);
2310 	if (err)
2311 		return err;
2312 
2313 	pci_using_dac = 0;
2314 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2315 	if (!err) {
2316 		pci_using_dac = 1;
2317 	} else {
2318 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2319 		if (err) {
2320 			dev_err(&pdev->dev,
2321 				"No usable DMA configuration, aborting\n");
2322 			goto err_dma;
2323 		}
2324 	}
2325 
2326 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2327 					   IORESOURCE_MEM),
2328 					   igb_driver_name);
2329 	if (err)
2330 		goto err_pci_reg;
2331 
2332 	pci_enable_pcie_error_reporting(pdev);
2333 
2334 	pci_set_master(pdev);
2335 	pci_save_state(pdev);
2336 
2337 	err = -ENOMEM;
2338 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2339 				   IGB_MAX_TX_QUEUES);
2340 	if (!netdev)
2341 		goto err_alloc_etherdev;
2342 
2343 	SET_NETDEV_DEV(netdev, &pdev->dev);
2344 
2345 	pci_set_drvdata(pdev, netdev);
2346 	adapter = netdev_priv(netdev);
2347 	adapter->netdev = netdev;
2348 	adapter->pdev = pdev;
2349 	hw = &adapter->hw;
2350 	hw->back = adapter;
2351 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2352 
2353 	err = -EIO;
2354 	adapter->io_addr = pci_iomap(pdev, 0, 0);
2355 	if (!adapter->io_addr)
2356 		goto err_ioremap;
2357 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2358 	hw->hw_addr = adapter->io_addr;
2359 
2360 	netdev->netdev_ops = &igb_netdev_ops;
2361 	igb_set_ethtool_ops(netdev);
2362 	netdev->watchdog_timeo = 5 * HZ;
2363 
2364 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2365 
2366 	netdev->mem_start = pci_resource_start(pdev, 0);
2367 	netdev->mem_end = pci_resource_end(pdev, 0);
2368 
2369 	/* PCI config space info */
2370 	hw->vendor_id = pdev->vendor;
2371 	hw->device_id = pdev->device;
2372 	hw->revision_id = pdev->revision;
2373 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2374 	hw->subsystem_device_id = pdev->subsystem_device;
2375 
2376 	/* Copy the default MAC, PHY and NVM function pointers */
2377 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2378 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2379 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2380 	/* Initialize skew-specific constants */
2381 	err = ei->get_invariants(hw);
2382 	if (err)
2383 		goto err_sw_init;
2384 
2385 	/* setup the private structure */
2386 	err = igb_sw_init(adapter);
2387 	if (err)
2388 		goto err_sw_init;
2389 
2390 	igb_get_bus_info_pcie(hw);
2391 
2392 	hw->phy.autoneg_wait_to_complete = false;
2393 
2394 	/* Copper options */
2395 	if (hw->phy.media_type == e1000_media_type_copper) {
2396 		hw->phy.mdix = AUTO_ALL_MODES;
2397 		hw->phy.disable_polarity_correction = false;
2398 		hw->phy.ms_type = e1000_ms_hw_default;
2399 	}
2400 
2401 	if (igb_check_reset_block(hw))
2402 		dev_info(&pdev->dev,
2403 			"PHY reset is blocked due to SOL/IDER session.\n");
2404 
2405 	/* features is initialized to 0 in allocation, it might have bits
2406 	 * set by igb_sw_init so we should use an or instead of an
2407 	 * assignment.
2408 	 */
2409 	netdev->features |= NETIF_F_SG |
2410 			    NETIF_F_TSO |
2411 			    NETIF_F_TSO6 |
2412 			    NETIF_F_RXHASH |
2413 			    NETIF_F_RXCSUM |
2414 			    NETIF_F_HW_CSUM;
2415 
2416 	if (hw->mac.type >= e1000_82576)
2417 		netdev->features |= NETIF_F_SCTP_CRC;
2418 
2419 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2420 				  NETIF_F_GSO_GRE_CSUM | \
2421 				  NETIF_F_GSO_IPXIP4 | \
2422 				  NETIF_F_GSO_IPXIP6 | \
2423 				  NETIF_F_GSO_UDP_TUNNEL | \
2424 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
2425 
2426 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2427 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2428 
2429 	/* copy netdev features into list of user selectable features */
2430 	netdev->hw_features |= netdev->features |
2431 			       NETIF_F_HW_VLAN_CTAG_RX |
2432 			       NETIF_F_HW_VLAN_CTAG_TX |
2433 			       NETIF_F_RXALL;
2434 
2435 	if (hw->mac.type >= e1000_i350)
2436 		netdev->hw_features |= NETIF_F_NTUPLE;
2437 
2438 	if (pci_using_dac)
2439 		netdev->features |= NETIF_F_HIGHDMA;
2440 
2441 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2442 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2443 	netdev->hw_enc_features |= netdev->vlan_features;
2444 
2445 	/* set this bit last since it cannot be part of vlan_features */
2446 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2447 			    NETIF_F_HW_VLAN_CTAG_RX |
2448 			    NETIF_F_HW_VLAN_CTAG_TX;
2449 
2450 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2451 
2452 	netdev->priv_flags |= IFF_UNICAST_FLT;
2453 
2454 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2455 
2456 	/* before reading the NVM, reset the controller to put the device in a
2457 	 * known good starting state
2458 	 */
2459 	hw->mac.ops.reset_hw(hw);
2460 
2461 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2462 	 * that doesn't contain a checksum
2463 	 */
2464 	switch (hw->mac.type) {
2465 	case e1000_i210:
2466 	case e1000_i211:
2467 		if (igb_get_flash_presence_i210(hw)) {
2468 			if (hw->nvm.ops.validate(hw) < 0) {
2469 				dev_err(&pdev->dev,
2470 					"The NVM Checksum Is Not Valid\n");
2471 				err = -EIO;
2472 				goto err_eeprom;
2473 			}
2474 		}
2475 		break;
2476 	default:
2477 		if (hw->nvm.ops.validate(hw) < 0) {
2478 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2479 			err = -EIO;
2480 			goto err_eeprom;
2481 		}
2482 		break;
2483 	}
2484 
2485 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2486 		/* copy the MAC address out of the NVM */
2487 		if (hw->mac.ops.read_mac_addr(hw))
2488 			dev_err(&pdev->dev, "NVM Read Error\n");
2489 	}
2490 
2491 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2492 
2493 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2494 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2495 		err = -EIO;
2496 		goto err_eeprom;
2497 	}
2498 
2499 	/* get firmware version for ethtool -i */
2500 	igb_set_fw_version(adapter);
2501 
2502 	/* configure RXPBSIZE and TXPBSIZE */
2503 	if (hw->mac.type == e1000_i210) {
2504 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2505 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2506 	}
2507 
2508 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2509 		    (unsigned long) adapter);
2510 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2511 		    (unsigned long) adapter);
2512 
2513 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2514 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2515 
2516 	/* Initialize link properties that are user-changeable */
2517 	adapter->fc_autoneg = true;
2518 	hw->mac.autoneg = true;
2519 	hw->phy.autoneg_advertised = 0x2f;
2520 
2521 	hw->fc.requested_mode = e1000_fc_default;
2522 	hw->fc.current_mode = e1000_fc_default;
2523 
2524 	igb_validate_mdi_setting(hw);
2525 
2526 	/* By default, support wake on port A */
2527 	if (hw->bus.func == 0)
2528 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2529 
2530 	/* Check the NVM for wake support on non-port A ports */
2531 	if (hw->mac.type >= e1000_82580)
2532 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2533 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2534 				 &eeprom_data);
2535 	else if (hw->bus.func == 1)
2536 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2537 
2538 	if (eeprom_data & IGB_EEPROM_APME)
2539 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2540 
2541 	/* now that we have the eeprom settings, apply the special cases where
2542 	 * the eeprom may be wrong or the board simply won't support wake on
2543 	 * lan on a particular port
2544 	 */
2545 	switch (pdev->device) {
2546 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2547 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2548 		break;
2549 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2550 	case E1000_DEV_ID_82576_FIBER:
2551 	case E1000_DEV_ID_82576_SERDES:
2552 		/* Wake events only supported on port A for dual fiber
2553 		 * regardless of eeprom setting
2554 		 */
2555 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2556 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2557 		break;
2558 	case E1000_DEV_ID_82576_QUAD_COPPER:
2559 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2560 		/* if quad port adapter, disable WoL on all but port A */
2561 		if (global_quad_port_a != 0)
2562 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2563 		else
2564 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2565 		/* Reset for multiple quad port adapters */
2566 		if (++global_quad_port_a == 4)
2567 			global_quad_port_a = 0;
2568 		break;
2569 	default:
2570 		/* If the device can't wake, don't set software support */
2571 		if (!device_can_wakeup(&adapter->pdev->dev))
2572 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2573 	}
2574 
2575 	/* initialize the wol settings based on the eeprom settings */
2576 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2577 		adapter->wol |= E1000_WUFC_MAG;
2578 
2579 	/* Some vendors want WoL disabled by default, but still supported */
2580 	if ((hw->mac.type == e1000_i350) &&
2581 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2582 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2583 		adapter->wol = 0;
2584 	}
2585 
2586 	/* Some vendors want the ability to Use the EEPROM setting as
2587 	 * enable/disable only, and not for capability
2588 	 */
2589 	if (((hw->mac.type == e1000_i350) ||
2590 	     (hw->mac.type == e1000_i354)) &&
2591 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2592 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2593 		adapter->wol = 0;
2594 	}
2595 	if (hw->mac.type == e1000_i350) {
2596 		if (((pdev->subsystem_device == 0x5001) ||
2597 		     (pdev->subsystem_device == 0x5002)) &&
2598 				(hw->bus.func == 0)) {
2599 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2600 			adapter->wol = 0;
2601 		}
2602 		if (pdev->subsystem_device == 0x1F52)
2603 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604 	}
2605 
2606 	device_set_wakeup_enable(&adapter->pdev->dev,
2607 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2608 
2609 	/* reset the hardware with the new settings */
2610 	igb_reset(adapter);
2611 
2612 	/* Init the I2C interface */
2613 	err = igb_init_i2c(adapter);
2614 	if (err) {
2615 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2616 		goto err_eeprom;
2617 	}
2618 
2619 	/* let the f/w know that the h/w is now under the control of the
2620 	 * driver.
2621 	 */
2622 	igb_get_hw_control(adapter);
2623 
2624 	strcpy(netdev->name, "eth%d");
2625 	err = register_netdev(netdev);
2626 	if (err)
2627 		goto err_register;
2628 
2629 	/* carrier off reporting is important to ethtool even BEFORE open */
2630 	netif_carrier_off(netdev);
2631 
2632 #ifdef CONFIG_IGB_DCA
2633 	if (dca_add_requester(&pdev->dev) == 0) {
2634 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2635 		dev_info(&pdev->dev, "DCA enabled\n");
2636 		igb_setup_dca(adapter);
2637 	}
2638 
2639 #endif
2640 #ifdef CONFIG_IGB_HWMON
2641 	/* Initialize the thermal sensor on i350 devices. */
2642 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2643 		u16 ets_word;
2644 
2645 		/* Read the NVM to determine if this i350 device supports an
2646 		 * external thermal sensor.
2647 		 */
2648 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2649 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2650 			adapter->ets = true;
2651 		else
2652 			adapter->ets = false;
2653 		if (igb_sysfs_init(adapter))
2654 			dev_err(&pdev->dev,
2655 				"failed to allocate sysfs resources\n");
2656 	} else {
2657 		adapter->ets = false;
2658 	}
2659 #endif
2660 	/* Check if Media Autosense is enabled */
2661 	adapter->ei = *ei;
2662 	if (hw->dev_spec._82575.mas_capable)
2663 		igb_init_mas(adapter);
2664 
2665 	/* do hw tstamp init after resetting */
2666 	igb_ptp_init(adapter);
2667 
2668 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2669 	/* print bus type/speed/width info, not applicable to i354 */
2670 	if (hw->mac.type != e1000_i354) {
2671 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2672 			 netdev->name,
2673 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2674 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2675 			   "unknown"),
2676 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2677 			  "Width x4" :
2678 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2679 			  "Width x2" :
2680 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2681 			  "Width x1" : "unknown"), netdev->dev_addr);
2682 	}
2683 
2684 	if ((hw->mac.type >= e1000_i210 ||
2685 	     igb_get_flash_presence_i210(hw))) {
2686 		ret_val = igb_read_part_string(hw, part_str,
2687 					       E1000_PBANUM_LENGTH);
2688 	} else {
2689 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2690 	}
2691 
2692 	if (ret_val)
2693 		strcpy(part_str, "Unknown");
2694 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2695 	dev_info(&pdev->dev,
2696 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2697 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2698 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2699 		adapter->num_rx_queues, adapter->num_tx_queues);
2700 	if (hw->phy.media_type == e1000_media_type_copper) {
2701 		switch (hw->mac.type) {
2702 		case e1000_i350:
2703 		case e1000_i210:
2704 		case e1000_i211:
2705 			/* Enable EEE for internal copper PHY devices */
2706 			err = igb_set_eee_i350(hw, true, true);
2707 			if ((!err) &&
2708 			    (!hw->dev_spec._82575.eee_disable)) {
2709 				adapter->eee_advert =
2710 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2711 				adapter->flags |= IGB_FLAG_EEE;
2712 			}
2713 			break;
2714 		case e1000_i354:
2715 			if ((rd32(E1000_CTRL_EXT) &
2716 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2717 				err = igb_set_eee_i354(hw, true, true);
2718 				if ((!err) &&
2719 					(!hw->dev_spec._82575.eee_disable)) {
2720 					adapter->eee_advert =
2721 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2722 					adapter->flags |= IGB_FLAG_EEE;
2723 				}
2724 			}
2725 			break;
2726 		default:
2727 			break;
2728 		}
2729 	}
2730 	pm_runtime_put_noidle(&pdev->dev);
2731 	return 0;
2732 
2733 err_register:
2734 	igb_release_hw_control(adapter);
2735 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2736 err_eeprom:
2737 	if (!igb_check_reset_block(hw))
2738 		igb_reset_phy(hw);
2739 
2740 	if (hw->flash_address)
2741 		iounmap(hw->flash_address);
2742 err_sw_init:
2743 	kfree(adapter->shadow_vfta);
2744 	igb_clear_interrupt_scheme(adapter);
2745 #ifdef CONFIG_PCI_IOV
2746 	igb_disable_sriov(pdev);
2747 #endif
2748 	pci_iounmap(pdev, adapter->io_addr);
2749 err_ioremap:
2750 	free_netdev(netdev);
2751 err_alloc_etherdev:
2752 	pci_release_selected_regions(pdev,
2753 				     pci_select_bars(pdev, IORESOURCE_MEM));
2754 err_pci_reg:
2755 err_dma:
2756 	pci_disable_device(pdev);
2757 	return err;
2758 }
2759 
2760 #ifdef CONFIG_PCI_IOV
2761 static int igb_disable_sriov(struct pci_dev *pdev)
2762 {
2763 	struct net_device *netdev = pci_get_drvdata(pdev);
2764 	struct igb_adapter *adapter = netdev_priv(netdev);
2765 	struct e1000_hw *hw = &adapter->hw;
2766 
2767 	/* reclaim resources allocated to VFs */
2768 	if (adapter->vf_data) {
2769 		/* disable iov and allow time for transactions to clear */
2770 		if (pci_vfs_assigned(pdev)) {
2771 			dev_warn(&pdev->dev,
2772 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2773 			return -EPERM;
2774 		} else {
2775 			pci_disable_sriov(pdev);
2776 			msleep(500);
2777 		}
2778 
2779 		kfree(adapter->vf_data);
2780 		adapter->vf_data = NULL;
2781 		adapter->vfs_allocated_count = 0;
2782 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2783 		wrfl();
2784 		msleep(100);
2785 		dev_info(&pdev->dev, "IOV Disabled\n");
2786 
2787 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2788 		adapter->flags |= IGB_FLAG_DMAC;
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2795 {
2796 	struct net_device *netdev = pci_get_drvdata(pdev);
2797 	struct igb_adapter *adapter = netdev_priv(netdev);
2798 	int old_vfs = pci_num_vf(pdev);
2799 	int err = 0;
2800 	int i;
2801 
2802 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2803 		err = -EPERM;
2804 		goto out;
2805 	}
2806 	if (!num_vfs)
2807 		goto out;
2808 
2809 	if (old_vfs) {
2810 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2811 			 old_vfs, max_vfs);
2812 		adapter->vfs_allocated_count = old_vfs;
2813 	} else
2814 		adapter->vfs_allocated_count = num_vfs;
2815 
2816 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2817 				sizeof(struct vf_data_storage), GFP_KERNEL);
2818 
2819 	/* if allocation failed then we do not support SR-IOV */
2820 	if (!adapter->vf_data) {
2821 		adapter->vfs_allocated_count = 0;
2822 		dev_err(&pdev->dev,
2823 			"Unable to allocate memory for VF Data Storage\n");
2824 		err = -ENOMEM;
2825 		goto out;
2826 	}
2827 
2828 	/* only call pci_enable_sriov() if no VFs are allocated already */
2829 	if (!old_vfs) {
2830 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2831 		if (err)
2832 			goto err_out;
2833 	}
2834 	dev_info(&pdev->dev, "%d VFs allocated\n",
2835 		 adapter->vfs_allocated_count);
2836 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2837 		igb_vf_configure(adapter, i);
2838 
2839 	/* DMA Coalescing is not supported in IOV mode. */
2840 	adapter->flags &= ~IGB_FLAG_DMAC;
2841 	goto out;
2842 
2843 err_out:
2844 	kfree(adapter->vf_data);
2845 	adapter->vf_data = NULL;
2846 	adapter->vfs_allocated_count = 0;
2847 out:
2848 	return err;
2849 }
2850 
2851 #endif
2852 /**
2853  *  igb_remove_i2c - Cleanup  I2C interface
2854  *  @adapter: pointer to adapter structure
2855  **/
2856 static void igb_remove_i2c(struct igb_adapter *adapter)
2857 {
2858 	/* free the adapter bus structure */
2859 	i2c_del_adapter(&adapter->i2c_adap);
2860 }
2861 
2862 /**
2863  *  igb_remove - Device Removal Routine
2864  *  @pdev: PCI device information struct
2865  *
2866  *  igb_remove is called by the PCI subsystem to alert the driver
2867  *  that it should release a PCI device.  The could be caused by a
2868  *  Hot-Plug event, or because the driver is going to be removed from
2869  *  memory.
2870  **/
2871 static void igb_remove(struct pci_dev *pdev)
2872 {
2873 	struct net_device *netdev = pci_get_drvdata(pdev);
2874 	struct igb_adapter *adapter = netdev_priv(netdev);
2875 	struct e1000_hw *hw = &adapter->hw;
2876 
2877 	pm_runtime_get_noresume(&pdev->dev);
2878 #ifdef CONFIG_IGB_HWMON
2879 	igb_sysfs_exit(adapter);
2880 #endif
2881 	igb_remove_i2c(adapter);
2882 	igb_ptp_stop(adapter);
2883 	/* The watchdog timer may be rescheduled, so explicitly
2884 	 * disable watchdog from being rescheduled.
2885 	 */
2886 	set_bit(__IGB_DOWN, &adapter->state);
2887 	del_timer_sync(&adapter->watchdog_timer);
2888 	del_timer_sync(&adapter->phy_info_timer);
2889 
2890 	cancel_work_sync(&adapter->reset_task);
2891 	cancel_work_sync(&adapter->watchdog_task);
2892 
2893 #ifdef CONFIG_IGB_DCA
2894 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2895 		dev_info(&pdev->dev, "DCA disabled\n");
2896 		dca_remove_requester(&pdev->dev);
2897 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2898 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2899 	}
2900 #endif
2901 
2902 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2903 	 * would have already happened in close and is redundant.
2904 	 */
2905 	igb_release_hw_control(adapter);
2906 
2907 #ifdef CONFIG_PCI_IOV
2908 	igb_disable_sriov(pdev);
2909 #endif
2910 
2911 	unregister_netdev(netdev);
2912 
2913 	igb_clear_interrupt_scheme(adapter);
2914 
2915 	pci_iounmap(pdev, adapter->io_addr);
2916 	if (hw->flash_address)
2917 		iounmap(hw->flash_address);
2918 	pci_release_selected_regions(pdev,
2919 				     pci_select_bars(pdev, IORESOURCE_MEM));
2920 
2921 	kfree(adapter->shadow_vfta);
2922 	free_netdev(netdev);
2923 
2924 	pci_disable_pcie_error_reporting(pdev);
2925 
2926 	pci_disable_device(pdev);
2927 }
2928 
2929 /**
2930  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2931  *  @adapter: board private structure to initialize
2932  *
2933  *  This function initializes the vf specific data storage and then attempts to
2934  *  allocate the VFs.  The reason for ordering it this way is because it is much
2935  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2936  *  the memory for the VFs.
2937  **/
2938 static void igb_probe_vfs(struct igb_adapter *adapter)
2939 {
2940 #ifdef CONFIG_PCI_IOV
2941 	struct pci_dev *pdev = adapter->pdev;
2942 	struct e1000_hw *hw = &adapter->hw;
2943 
2944 	/* Virtualization features not supported on i210 family. */
2945 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2946 		return;
2947 
2948 	/* Of the below we really only want the effect of getting
2949 	 * IGB_FLAG_HAS_MSIX set (if available), without which
2950 	 * igb_enable_sriov() has no effect.
2951 	 */
2952 	igb_set_interrupt_capability(adapter, true);
2953 	igb_reset_interrupt_capability(adapter);
2954 
2955 	pci_sriov_set_totalvfs(pdev, 7);
2956 	igb_enable_sriov(pdev, max_vfs);
2957 
2958 #endif /* CONFIG_PCI_IOV */
2959 }
2960 
2961 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2962 {
2963 	struct e1000_hw *hw = &adapter->hw;
2964 	u32 max_rss_queues;
2965 
2966 	/* Determine the maximum number of RSS queues supported. */
2967 	switch (hw->mac.type) {
2968 	case e1000_i211:
2969 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2970 		break;
2971 	case e1000_82575:
2972 	case e1000_i210:
2973 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2974 		break;
2975 	case e1000_i350:
2976 		/* I350 cannot do RSS and SR-IOV at the same time */
2977 		if (!!adapter->vfs_allocated_count) {
2978 			max_rss_queues = 1;
2979 			break;
2980 		}
2981 		/* fall through */
2982 	case e1000_82576:
2983 		if (!!adapter->vfs_allocated_count) {
2984 			max_rss_queues = 2;
2985 			break;
2986 		}
2987 		/* fall through */
2988 	case e1000_82580:
2989 	case e1000_i354:
2990 	default:
2991 		max_rss_queues = IGB_MAX_RX_QUEUES;
2992 		break;
2993 	}
2994 
2995 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2996 
2997 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
2998 }
2999 
3000 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3001 			      const u32 max_rss_queues)
3002 {
3003 	struct e1000_hw *hw = &adapter->hw;
3004 
3005 	/* Determine if we need to pair queues. */
3006 	switch (hw->mac.type) {
3007 	case e1000_82575:
3008 	case e1000_i211:
3009 		/* Device supports enough interrupts without queue pairing. */
3010 		break;
3011 	case e1000_82576:
3012 	case e1000_82580:
3013 	case e1000_i350:
3014 	case e1000_i354:
3015 	case e1000_i210:
3016 	default:
3017 		/* If rss_queues > half of max_rss_queues, pair the queues in
3018 		 * order to conserve interrupts due to limited supply.
3019 		 */
3020 		if (adapter->rss_queues > (max_rss_queues / 2))
3021 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3022 		else
3023 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3024 		break;
3025 	}
3026 }
3027 
3028 /**
3029  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3030  *  @adapter: board private structure to initialize
3031  *
3032  *  igb_sw_init initializes the Adapter private data structure.
3033  *  Fields are initialized based on PCI device information and
3034  *  OS network device settings (MTU size).
3035  **/
3036 static int igb_sw_init(struct igb_adapter *adapter)
3037 {
3038 	struct e1000_hw *hw = &adapter->hw;
3039 	struct net_device *netdev = adapter->netdev;
3040 	struct pci_dev *pdev = adapter->pdev;
3041 
3042 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3043 
3044 	/* set default ring sizes */
3045 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3046 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3047 
3048 	/* set default ITR values */
3049 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3050 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3051 
3052 	/* set default work limits */
3053 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3054 
3055 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3056 				  VLAN_HLEN;
3057 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3058 
3059 	spin_lock_init(&adapter->stats64_lock);
3060 #ifdef CONFIG_PCI_IOV
3061 	switch (hw->mac.type) {
3062 	case e1000_82576:
3063 	case e1000_i350:
3064 		if (max_vfs > 7) {
3065 			dev_warn(&pdev->dev,
3066 				 "Maximum of 7 VFs per PF, using max\n");
3067 			max_vfs = adapter->vfs_allocated_count = 7;
3068 		} else
3069 			adapter->vfs_allocated_count = max_vfs;
3070 		if (adapter->vfs_allocated_count)
3071 			dev_warn(&pdev->dev,
3072 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3073 		break;
3074 	default:
3075 		break;
3076 	}
3077 #endif /* CONFIG_PCI_IOV */
3078 
3079 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3080 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3081 
3082 	igb_probe_vfs(adapter);
3083 
3084 	igb_init_queue_configuration(adapter);
3085 
3086 	/* Setup and initialize a copy of the hw vlan table array */
3087 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3088 				       GFP_ATOMIC);
3089 
3090 	/* This call may decrease the number of queues */
3091 	if (igb_init_interrupt_scheme(adapter, true)) {
3092 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3093 		return -ENOMEM;
3094 	}
3095 
3096 	/* Explicitly disable IRQ since the NIC can be in any state. */
3097 	igb_irq_disable(adapter);
3098 
3099 	if (hw->mac.type >= e1000_i350)
3100 		adapter->flags &= ~IGB_FLAG_DMAC;
3101 
3102 	set_bit(__IGB_DOWN, &adapter->state);
3103 	return 0;
3104 }
3105 
3106 /**
3107  *  igb_open - Called when a network interface is made active
3108  *  @netdev: network interface device structure
3109  *
3110  *  Returns 0 on success, negative value on failure
3111  *
3112  *  The open entry point is called when a network interface is made
3113  *  active by the system (IFF_UP).  At this point all resources needed
3114  *  for transmit and receive operations are allocated, the interrupt
3115  *  handler is registered with the OS, the watchdog timer is started,
3116  *  and the stack is notified that the interface is ready.
3117  **/
3118 static int __igb_open(struct net_device *netdev, bool resuming)
3119 {
3120 	struct igb_adapter *adapter = netdev_priv(netdev);
3121 	struct e1000_hw *hw = &adapter->hw;
3122 	struct pci_dev *pdev = adapter->pdev;
3123 	int err;
3124 	int i;
3125 
3126 	/* disallow open during test */
3127 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3128 		WARN_ON(resuming);
3129 		return -EBUSY;
3130 	}
3131 
3132 	if (!resuming)
3133 		pm_runtime_get_sync(&pdev->dev);
3134 
3135 	netif_carrier_off(netdev);
3136 
3137 	/* allocate transmit descriptors */
3138 	err = igb_setup_all_tx_resources(adapter);
3139 	if (err)
3140 		goto err_setup_tx;
3141 
3142 	/* allocate receive descriptors */
3143 	err = igb_setup_all_rx_resources(adapter);
3144 	if (err)
3145 		goto err_setup_rx;
3146 
3147 	igb_power_up_link(adapter);
3148 
3149 	/* before we allocate an interrupt, we must be ready to handle it.
3150 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3151 	 * as soon as we call pci_request_irq, so we have to setup our
3152 	 * clean_rx handler before we do so.
3153 	 */
3154 	igb_configure(adapter);
3155 
3156 	err = igb_request_irq(adapter);
3157 	if (err)
3158 		goto err_req_irq;
3159 
3160 	/* Notify the stack of the actual queue counts. */
3161 	err = netif_set_real_num_tx_queues(adapter->netdev,
3162 					   adapter->num_tx_queues);
3163 	if (err)
3164 		goto err_set_queues;
3165 
3166 	err = netif_set_real_num_rx_queues(adapter->netdev,
3167 					   adapter->num_rx_queues);
3168 	if (err)
3169 		goto err_set_queues;
3170 
3171 	/* From here on the code is the same as igb_up() */
3172 	clear_bit(__IGB_DOWN, &adapter->state);
3173 
3174 	for (i = 0; i < adapter->num_q_vectors; i++)
3175 		napi_enable(&(adapter->q_vector[i]->napi));
3176 
3177 	/* Clear any pending interrupts. */
3178 	rd32(E1000_ICR);
3179 
3180 	igb_irq_enable(adapter);
3181 
3182 	/* notify VFs that reset has been completed */
3183 	if (adapter->vfs_allocated_count) {
3184 		u32 reg_data = rd32(E1000_CTRL_EXT);
3185 
3186 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3187 		wr32(E1000_CTRL_EXT, reg_data);
3188 	}
3189 
3190 	netif_tx_start_all_queues(netdev);
3191 
3192 	if (!resuming)
3193 		pm_runtime_put(&pdev->dev);
3194 
3195 	/* start the watchdog. */
3196 	hw->mac.get_link_status = 1;
3197 	schedule_work(&adapter->watchdog_task);
3198 
3199 	return 0;
3200 
3201 err_set_queues:
3202 	igb_free_irq(adapter);
3203 err_req_irq:
3204 	igb_release_hw_control(adapter);
3205 	igb_power_down_link(adapter);
3206 	igb_free_all_rx_resources(adapter);
3207 err_setup_rx:
3208 	igb_free_all_tx_resources(adapter);
3209 err_setup_tx:
3210 	igb_reset(adapter);
3211 	if (!resuming)
3212 		pm_runtime_put(&pdev->dev);
3213 
3214 	return err;
3215 }
3216 
3217 int igb_open(struct net_device *netdev)
3218 {
3219 	return __igb_open(netdev, false);
3220 }
3221 
3222 /**
3223  *  igb_close - Disables a network interface
3224  *  @netdev: network interface device structure
3225  *
3226  *  Returns 0, this is not allowed to fail
3227  *
3228  *  The close entry point is called when an interface is de-activated
3229  *  by the OS.  The hardware is still under the driver's control, but
3230  *  needs to be disabled.  A global MAC reset is issued to stop the
3231  *  hardware, and all transmit and receive resources are freed.
3232  **/
3233 static int __igb_close(struct net_device *netdev, bool suspending)
3234 {
3235 	struct igb_adapter *adapter = netdev_priv(netdev);
3236 	struct pci_dev *pdev = adapter->pdev;
3237 
3238 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3239 
3240 	if (!suspending)
3241 		pm_runtime_get_sync(&pdev->dev);
3242 
3243 	igb_down(adapter);
3244 	igb_free_irq(adapter);
3245 
3246 	igb_free_all_tx_resources(adapter);
3247 	igb_free_all_rx_resources(adapter);
3248 
3249 	if (!suspending)
3250 		pm_runtime_put_sync(&pdev->dev);
3251 	return 0;
3252 }
3253 
3254 int igb_close(struct net_device *netdev)
3255 {
3256 	return __igb_close(netdev, false);
3257 }
3258 
3259 /**
3260  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3261  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3262  *
3263  *  Return 0 on success, negative on failure
3264  **/
3265 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3266 {
3267 	struct device *dev = tx_ring->dev;
3268 	int size;
3269 
3270 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3271 
3272 	tx_ring->tx_buffer_info = vzalloc(size);
3273 	if (!tx_ring->tx_buffer_info)
3274 		goto err;
3275 
3276 	/* round up to nearest 4K */
3277 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3278 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3279 
3280 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3281 					   &tx_ring->dma, GFP_KERNEL);
3282 	if (!tx_ring->desc)
3283 		goto err;
3284 
3285 	tx_ring->next_to_use = 0;
3286 	tx_ring->next_to_clean = 0;
3287 
3288 	return 0;
3289 
3290 err:
3291 	vfree(tx_ring->tx_buffer_info);
3292 	tx_ring->tx_buffer_info = NULL;
3293 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3294 	return -ENOMEM;
3295 }
3296 
3297 /**
3298  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3299  *				 (Descriptors) for all queues
3300  *  @adapter: board private structure
3301  *
3302  *  Return 0 on success, negative on failure
3303  **/
3304 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3305 {
3306 	struct pci_dev *pdev = adapter->pdev;
3307 	int i, err = 0;
3308 
3309 	for (i = 0; i < adapter->num_tx_queues; i++) {
3310 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3311 		if (err) {
3312 			dev_err(&pdev->dev,
3313 				"Allocation for Tx Queue %u failed\n", i);
3314 			for (i--; i >= 0; i--)
3315 				igb_free_tx_resources(adapter->tx_ring[i]);
3316 			break;
3317 		}
3318 	}
3319 
3320 	return err;
3321 }
3322 
3323 /**
3324  *  igb_setup_tctl - configure the transmit control registers
3325  *  @adapter: Board private structure
3326  **/
3327 void igb_setup_tctl(struct igb_adapter *adapter)
3328 {
3329 	struct e1000_hw *hw = &adapter->hw;
3330 	u32 tctl;
3331 
3332 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3333 	wr32(E1000_TXDCTL(0), 0);
3334 
3335 	/* Program the Transmit Control Register */
3336 	tctl = rd32(E1000_TCTL);
3337 	tctl &= ~E1000_TCTL_CT;
3338 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3339 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3340 
3341 	igb_config_collision_dist(hw);
3342 
3343 	/* Enable transmits */
3344 	tctl |= E1000_TCTL_EN;
3345 
3346 	wr32(E1000_TCTL, tctl);
3347 }
3348 
3349 /**
3350  *  igb_configure_tx_ring - Configure transmit ring after Reset
3351  *  @adapter: board private structure
3352  *  @ring: tx ring to configure
3353  *
3354  *  Configure a transmit ring after a reset.
3355  **/
3356 void igb_configure_tx_ring(struct igb_adapter *adapter,
3357 			   struct igb_ring *ring)
3358 {
3359 	struct e1000_hw *hw = &adapter->hw;
3360 	u32 txdctl = 0;
3361 	u64 tdba = ring->dma;
3362 	int reg_idx = ring->reg_idx;
3363 
3364 	/* disable the queue */
3365 	wr32(E1000_TXDCTL(reg_idx), 0);
3366 	wrfl();
3367 	mdelay(10);
3368 
3369 	wr32(E1000_TDLEN(reg_idx),
3370 	     ring->count * sizeof(union e1000_adv_tx_desc));
3371 	wr32(E1000_TDBAL(reg_idx),
3372 	     tdba & 0x00000000ffffffffULL);
3373 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3374 
3375 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3376 	wr32(E1000_TDH(reg_idx), 0);
3377 	writel(0, ring->tail);
3378 
3379 	txdctl |= IGB_TX_PTHRESH;
3380 	txdctl |= IGB_TX_HTHRESH << 8;
3381 	txdctl |= IGB_TX_WTHRESH << 16;
3382 
3383 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3384 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3385 }
3386 
3387 /**
3388  *  igb_configure_tx - Configure transmit Unit after Reset
3389  *  @adapter: board private structure
3390  *
3391  *  Configure the Tx unit of the MAC after a reset.
3392  **/
3393 static void igb_configure_tx(struct igb_adapter *adapter)
3394 {
3395 	int i;
3396 
3397 	for (i = 0; i < adapter->num_tx_queues; i++)
3398 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3399 }
3400 
3401 /**
3402  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3403  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3404  *
3405  *  Returns 0 on success, negative on failure
3406  **/
3407 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3408 {
3409 	struct device *dev = rx_ring->dev;
3410 	int size;
3411 
3412 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3413 
3414 	rx_ring->rx_buffer_info = vzalloc(size);
3415 	if (!rx_ring->rx_buffer_info)
3416 		goto err;
3417 
3418 	/* Round up to nearest 4K */
3419 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3420 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3421 
3422 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3423 					   &rx_ring->dma, GFP_KERNEL);
3424 	if (!rx_ring->desc)
3425 		goto err;
3426 
3427 	rx_ring->next_to_alloc = 0;
3428 	rx_ring->next_to_clean = 0;
3429 	rx_ring->next_to_use = 0;
3430 
3431 	return 0;
3432 
3433 err:
3434 	vfree(rx_ring->rx_buffer_info);
3435 	rx_ring->rx_buffer_info = NULL;
3436 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3437 	return -ENOMEM;
3438 }
3439 
3440 /**
3441  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3442  *				 (Descriptors) for all queues
3443  *  @adapter: board private structure
3444  *
3445  *  Return 0 on success, negative on failure
3446  **/
3447 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3448 {
3449 	struct pci_dev *pdev = adapter->pdev;
3450 	int i, err = 0;
3451 
3452 	for (i = 0; i < adapter->num_rx_queues; i++) {
3453 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3454 		if (err) {
3455 			dev_err(&pdev->dev,
3456 				"Allocation for Rx Queue %u failed\n", i);
3457 			for (i--; i >= 0; i--)
3458 				igb_free_rx_resources(adapter->rx_ring[i]);
3459 			break;
3460 		}
3461 	}
3462 
3463 	return err;
3464 }
3465 
3466 /**
3467  *  igb_setup_mrqc - configure the multiple receive queue control registers
3468  *  @adapter: Board private structure
3469  **/
3470 static void igb_setup_mrqc(struct igb_adapter *adapter)
3471 {
3472 	struct e1000_hw *hw = &adapter->hw;
3473 	u32 mrqc, rxcsum;
3474 	u32 j, num_rx_queues;
3475 	u32 rss_key[10];
3476 
3477 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3478 	for (j = 0; j < 10; j++)
3479 		wr32(E1000_RSSRK(j), rss_key[j]);
3480 
3481 	num_rx_queues = adapter->rss_queues;
3482 
3483 	switch (hw->mac.type) {
3484 	case e1000_82576:
3485 		/* 82576 supports 2 RSS queues for SR-IOV */
3486 		if (adapter->vfs_allocated_count)
3487 			num_rx_queues = 2;
3488 		break;
3489 	default:
3490 		break;
3491 	}
3492 
3493 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3494 		for (j = 0; j < IGB_RETA_SIZE; j++)
3495 			adapter->rss_indir_tbl[j] =
3496 			(j * num_rx_queues) / IGB_RETA_SIZE;
3497 		adapter->rss_indir_tbl_init = num_rx_queues;
3498 	}
3499 	igb_write_rss_indir_tbl(adapter);
3500 
3501 	/* Disable raw packet checksumming so that RSS hash is placed in
3502 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3503 	 * offloads as they are enabled by default
3504 	 */
3505 	rxcsum = rd32(E1000_RXCSUM);
3506 	rxcsum |= E1000_RXCSUM_PCSD;
3507 
3508 	if (adapter->hw.mac.type >= e1000_82576)
3509 		/* Enable Receive Checksum Offload for SCTP */
3510 		rxcsum |= E1000_RXCSUM_CRCOFL;
3511 
3512 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3513 	wr32(E1000_RXCSUM, rxcsum);
3514 
3515 	/* Generate RSS hash based on packet types, TCP/UDP
3516 	 * port numbers and/or IPv4/v6 src and dst addresses
3517 	 */
3518 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3519 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3520 	       E1000_MRQC_RSS_FIELD_IPV6 |
3521 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3522 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3523 
3524 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3525 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3526 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3527 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3528 
3529 	/* If VMDq is enabled then we set the appropriate mode for that, else
3530 	 * we default to RSS so that an RSS hash is calculated per packet even
3531 	 * if we are only using one queue
3532 	 */
3533 	if (adapter->vfs_allocated_count) {
3534 		if (hw->mac.type > e1000_82575) {
3535 			/* Set the default pool for the PF's first queue */
3536 			u32 vtctl = rd32(E1000_VT_CTL);
3537 
3538 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3539 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3540 			vtctl |= adapter->vfs_allocated_count <<
3541 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3542 			wr32(E1000_VT_CTL, vtctl);
3543 		}
3544 		if (adapter->rss_queues > 1)
3545 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3546 		else
3547 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3548 	} else {
3549 		if (hw->mac.type != e1000_i211)
3550 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3551 	}
3552 	igb_vmm_control(adapter);
3553 
3554 	wr32(E1000_MRQC, mrqc);
3555 }
3556 
3557 /**
3558  *  igb_setup_rctl - configure the receive control registers
3559  *  @adapter: Board private structure
3560  **/
3561 void igb_setup_rctl(struct igb_adapter *adapter)
3562 {
3563 	struct e1000_hw *hw = &adapter->hw;
3564 	u32 rctl;
3565 
3566 	rctl = rd32(E1000_RCTL);
3567 
3568 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3569 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3570 
3571 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3572 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3573 
3574 	/* enable stripping of CRC. It's unlikely this will break BMC
3575 	 * redirection as it did with e1000. Newer features require
3576 	 * that the HW strips the CRC.
3577 	 */
3578 	rctl |= E1000_RCTL_SECRC;
3579 
3580 	/* disable store bad packets and clear size bits. */
3581 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3582 
3583 	/* enable LPE to allow for reception of jumbo frames */
3584 	rctl |= E1000_RCTL_LPE;
3585 
3586 	/* disable queue 0 to prevent tail write w/o re-config */
3587 	wr32(E1000_RXDCTL(0), 0);
3588 
3589 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3590 	 * queue drop for all VF and PF queues to prevent head of line blocking
3591 	 * if an un-trusted VF does not provide descriptors to hardware.
3592 	 */
3593 	if (adapter->vfs_allocated_count) {
3594 		/* set all queue drop enable bits */
3595 		wr32(E1000_QDE, ALL_QUEUES);
3596 	}
3597 
3598 	/* This is useful for sniffing bad packets. */
3599 	if (adapter->netdev->features & NETIF_F_RXALL) {
3600 		/* UPE and MPE will be handled by normal PROMISC logic
3601 		 * in e1000e_set_rx_mode
3602 		 */
3603 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3604 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3605 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3606 
3607 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3608 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3609 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3610 		 * and that breaks VLANs.
3611 		 */
3612 	}
3613 
3614 	wr32(E1000_RCTL, rctl);
3615 }
3616 
3617 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3618 				   int vfn)
3619 {
3620 	struct e1000_hw *hw = &adapter->hw;
3621 	u32 vmolr;
3622 
3623 	if (size > MAX_JUMBO_FRAME_SIZE)
3624 		size = MAX_JUMBO_FRAME_SIZE;
3625 
3626 	vmolr = rd32(E1000_VMOLR(vfn));
3627 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3628 	vmolr |= size | E1000_VMOLR_LPE;
3629 	wr32(E1000_VMOLR(vfn), vmolr);
3630 
3631 	return 0;
3632 }
3633 
3634 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3635 					 int vfn, bool enable)
3636 {
3637 	struct e1000_hw *hw = &adapter->hw;
3638 	u32 val, reg;
3639 
3640 	if (hw->mac.type < e1000_82576)
3641 		return;
3642 
3643 	if (hw->mac.type == e1000_i350)
3644 		reg = E1000_DVMOLR(vfn);
3645 	else
3646 		reg = E1000_VMOLR(vfn);
3647 
3648 	val = rd32(reg);
3649 	if (enable)
3650 		val |= E1000_VMOLR_STRVLAN;
3651 	else
3652 		val &= ~(E1000_VMOLR_STRVLAN);
3653 	wr32(reg, val);
3654 }
3655 
3656 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3657 				 int vfn, bool aupe)
3658 {
3659 	struct e1000_hw *hw = &adapter->hw;
3660 	u32 vmolr;
3661 
3662 	/* This register exists only on 82576 and newer so if we are older then
3663 	 * we should exit and do nothing
3664 	 */
3665 	if (hw->mac.type < e1000_82576)
3666 		return;
3667 
3668 	vmolr = rd32(E1000_VMOLR(vfn));
3669 	if (aupe)
3670 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3671 	else
3672 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3673 
3674 	/* clear all bits that might not be set */
3675 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3676 
3677 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3678 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3679 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3680 	 * multicast packets
3681 	 */
3682 	if (vfn <= adapter->vfs_allocated_count)
3683 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3684 
3685 	wr32(E1000_VMOLR(vfn), vmolr);
3686 }
3687 
3688 /**
3689  *  igb_configure_rx_ring - Configure a receive ring after Reset
3690  *  @adapter: board private structure
3691  *  @ring: receive ring to be configured
3692  *
3693  *  Configure the Rx unit of the MAC after a reset.
3694  **/
3695 void igb_configure_rx_ring(struct igb_adapter *adapter,
3696 			   struct igb_ring *ring)
3697 {
3698 	struct e1000_hw *hw = &adapter->hw;
3699 	u64 rdba = ring->dma;
3700 	int reg_idx = ring->reg_idx;
3701 	u32 srrctl = 0, rxdctl = 0;
3702 
3703 	/* disable the queue */
3704 	wr32(E1000_RXDCTL(reg_idx), 0);
3705 
3706 	/* Set DMA base address registers */
3707 	wr32(E1000_RDBAL(reg_idx),
3708 	     rdba & 0x00000000ffffffffULL);
3709 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3710 	wr32(E1000_RDLEN(reg_idx),
3711 	     ring->count * sizeof(union e1000_adv_rx_desc));
3712 
3713 	/* initialize head and tail */
3714 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3715 	wr32(E1000_RDH(reg_idx), 0);
3716 	writel(0, ring->tail);
3717 
3718 	/* set descriptor configuration */
3719 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3720 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3721 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3722 	if (hw->mac.type >= e1000_82580)
3723 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3724 	/* Only set Drop Enable if we are supporting multiple queues */
3725 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3726 		srrctl |= E1000_SRRCTL_DROP_EN;
3727 
3728 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3729 
3730 	/* set filtering for VMDQ pools */
3731 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3732 
3733 	rxdctl |= IGB_RX_PTHRESH;
3734 	rxdctl |= IGB_RX_HTHRESH << 8;
3735 	rxdctl |= IGB_RX_WTHRESH << 16;
3736 
3737 	/* enable receive descriptor fetching */
3738 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3739 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3740 }
3741 
3742 /**
3743  *  igb_configure_rx - Configure receive Unit after Reset
3744  *  @adapter: board private structure
3745  *
3746  *  Configure the Rx unit of the MAC after a reset.
3747  **/
3748 static void igb_configure_rx(struct igb_adapter *adapter)
3749 {
3750 	int i;
3751 
3752 	/* set the correct pool for the PF default MAC address in entry 0 */
3753 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3754 			 adapter->vfs_allocated_count);
3755 
3756 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3757 	 * the Base and Length of the Rx Descriptor Ring
3758 	 */
3759 	for (i = 0; i < adapter->num_rx_queues; i++)
3760 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3761 }
3762 
3763 /**
3764  *  igb_free_tx_resources - Free Tx Resources per Queue
3765  *  @tx_ring: Tx descriptor ring for a specific queue
3766  *
3767  *  Free all transmit software resources
3768  **/
3769 void igb_free_tx_resources(struct igb_ring *tx_ring)
3770 {
3771 	igb_clean_tx_ring(tx_ring);
3772 
3773 	vfree(tx_ring->tx_buffer_info);
3774 	tx_ring->tx_buffer_info = NULL;
3775 
3776 	/* if not set, then don't free */
3777 	if (!tx_ring->desc)
3778 		return;
3779 
3780 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3781 			  tx_ring->desc, tx_ring->dma);
3782 
3783 	tx_ring->desc = NULL;
3784 }
3785 
3786 /**
3787  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3788  *  @adapter: board private structure
3789  *
3790  *  Free all transmit software resources
3791  **/
3792 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3793 {
3794 	int i;
3795 
3796 	for (i = 0; i < adapter->num_tx_queues; i++)
3797 		if (adapter->tx_ring[i])
3798 			igb_free_tx_resources(adapter->tx_ring[i]);
3799 }
3800 
3801 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3802 				    struct igb_tx_buffer *tx_buffer)
3803 {
3804 	if (tx_buffer->skb) {
3805 		dev_kfree_skb_any(tx_buffer->skb);
3806 		if (dma_unmap_len(tx_buffer, len))
3807 			dma_unmap_single(ring->dev,
3808 					 dma_unmap_addr(tx_buffer, dma),
3809 					 dma_unmap_len(tx_buffer, len),
3810 					 DMA_TO_DEVICE);
3811 	} else if (dma_unmap_len(tx_buffer, len)) {
3812 		dma_unmap_page(ring->dev,
3813 			       dma_unmap_addr(tx_buffer, dma),
3814 			       dma_unmap_len(tx_buffer, len),
3815 			       DMA_TO_DEVICE);
3816 	}
3817 	tx_buffer->next_to_watch = NULL;
3818 	tx_buffer->skb = NULL;
3819 	dma_unmap_len_set(tx_buffer, len, 0);
3820 	/* buffer_info must be completely set up in the transmit path */
3821 }
3822 
3823 /**
3824  *  igb_clean_tx_ring - Free Tx Buffers
3825  *  @tx_ring: ring to be cleaned
3826  **/
3827 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3828 {
3829 	struct igb_tx_buffer *buffer_info;
3830 	unsigned long size;
3831 	u16 i;
3832 
3833 	if (!tx_ring->tx_buffer_info)
3834 		return;
3835 	/* Free all the Tx ring sk_buffs */
3836 
3837 	for (i = 0; i < tx_ring->count; i++) {
3838 		buffer_info = &tx_ring->tx_buffer_info[i];
3839 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3840 	}
3841 
3842 	netdev_tx_reset_queue(txring_txq(tx_ring));
3843 
3844 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3845 	memset(tx_ring->tx_buffer_info, 0, size);
3846 
3847 	/* Zero out the descriptor ring */
3848 	memset(tx_ring->desc, 0, tx_ring->size);
3849 
3850 	tx_ring->next_to_use = 0;
3851 	tx_ring->next_to_clean = 0;
3852 }
3853 
3854 /**
3855  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3856  *  @adapter: board private structure
3857  **/
3858 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3859 {
3860 	int i;
3861 
3862 	for (i = 0; i < adapter->num_tx_queues; i++)
3863 		if (adapter->tx_ring[i])
3864 			igb_clean_tx_ring(adapter->tx_ring[i]);
3865 }
3866 
3867 /**
3868  *  igb_free_rx_resources - Free Rx Resources
3869  *  @rx_ring: ring to clean the resources from
3870  *
3871  *  Free all receive software resources
3872  **/
3873 void igb_free_rx_resources(struct igb_ring *rx_ring)
3874 {
3875 	igb_clean_rx_ring(rx_ring);
3876 
3877 	vfree(rx_ring->rx_buffer_info);
3878 	rx_ring->rx_buffer_info = NULL;
3879 
3880 	/* if not set, then don't free */
3881 	if (!rx_ring->desc)
3882 		return;
3883 
3884 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3885 			  rx_ring->desc, rx_ring->dma);
3886 
3887 	rx_ring->desc = NULL;
3888 }
3889 
3890 /**
3891  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3892  *  @adapter: board private structure
3893  *
3894  *  Free all receive software resources
3895  **/
3896 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3897 {
3898 	int i;
3899 
3900 	for (i = 0; i < adapter->num_rx_queues; i++)
3901 		if (adapter->rx_ring[i])
3902 			igb_free_rx_resources(adapter->rx_ring[i]);
3903 }
3904 
3905 /**
3906  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3907  *  @rx_ring: ring to free buffers from
3908  **/
3909 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3910 {
3911 	unsigned long size;
3912 	u16 i;
3913 
3914 	if (rx_ring->skb)
3915 		dev_kfree_skb(rx_ring->skb);
3916 	rx_ring->skb = NULL;
3917 
3918 	if (!rx_ring->rx_buffer_info)
3919 		return;
3920 
3921 	/* Free all the Rx ring sk_buffs */
3922 	for (i = 0; i < rx_ring->count; i++) {
3923 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3924 
3925 		if (!buffer_info->page)
3926 			continue;
3927 
3928 		dma_unmap_page(rx_ring->dev,
3929 			       buffer_info->dma,
3930 			       PAGE_SIZE,
3931 			       DMA_FROM_DEVICE);
3932 		__free_page(buffer_info->page);
3933 
3934 		buffer_info->page = NULL;
3935 	}
3936 
3937 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3938 	memset(rx_ring->rx_buffer_info, 0, size);
3939 
3940 	/* Zero out the descriptor ring */
3941 	memset(rx_ring->desc, 0, rx_ring->size);
3942 
3943 	rx_ring->next_to_alloc = 0;
3944 	rx_ring->next_to_clean = 0;
3945 	rx_ring->next_to_use = 0;
3946 }
3947 
3948 /**
3949  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3950  *  @adapter: board private structure
3951  **/
3952 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3953 {
3954 	int i;
3955 
3956 	for (i = 0; i < adapter->num_rx_queues; i++)
3957 		if (adapter->rx_ring[i])
3958 			igb_clean_rx_ring(adapter->rx_ring[i]);
3959 }
3960 
3961 /**
3962  *  igb_set_mac - Change the Ethernet Address of the NIC
3963  *  @netdev: network interface device structure
3964  *  @p: pointer to an address structure
3965  *
3966  *  Returns 0 on success, negative on failure
3967  **/
3968 static int igb_set_mac(struct net_device *netdev, void *p)
3969 {
3970 	struct igb_adapter *adapter = netdev_priv(netdev);
3971 	struct e1000_hw *hw = &adapter->hw;
3972 	struct sockaddr *addr = p;
3973 
3974 	if (!is_valid_ether_addr(addr->sa_data))
3975 		return -EADDRNOTAVAIL;
3976 
3977 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3978 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3979 
3980 	/* set the correct pool for the new PF MAC address in entry 0 */
3981 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3982 			 adapter->vfs_allocated_count);
3983 
3984 	return 0;
3985 }
3986 
3987 /**
3988  *  igb_write_mc_addr_list - write multicast addresses to MTA
3989  *  @netdev: network interface device structure
3990  *
3991  *  Writes multicast address list to the MTA hash table.
3992  *  Returns: -ENOMEM on failure
3993  *           0 on no addresses written
3994  *           X on writing X addresses to MTA
3995  **/
3996 static int igb_write_mc_addr_list(struct net_device *netdev)
3997 {
3998 	struct igb_adapter *adapter = netdev_priv(netdev);
3999 	struct e1000_hw *hw = &adapter->hw;
4000 	struct netdev_hw_addr *ha;
4001 	u8  *mta_list;
4002 	int i;
4003 
4004 	if (netdev_mc_empty(netdev)) {
4005 		/* nothing to program, so clear mc list */
4006 		igb_update_mc_addr_list(hw, NULL, 0);
4007 		igb_restore_vf_multicasts(adapter);
4008 		return 0;
4009 	}
4010 
4011 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4012 	if (!mta_list)
4013 		return -ENOMEM;
4014 
4015 	/* The shared function expects a packed array of only addresses. */
4016 	i = 0;
4017 	netdev_for_each_mc_addr(ha, netdev)
4018 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4019 
4020 	igb_update_mc_addr_list(hw, mta_list, i);
4021 	kfree(mta_list);
4022 
4023 	return netdev_mc_count(netdev);
4024 }
4025 
4026 /**
4027  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4028  *  @netdev: network interface device structure
4029  *
4030  *  Writes unicast address list to the RAR table.
4031  *  Returns: -ENOMEM on failure/insufficient address space
4032  *           0 on no addresses written
4033  *           X on writing X addresses to the RAR table
4034  **/
4035 static int igb_write_uc_addr_list(struct net_device *netdev)
4036 {
4037 	struct igb_adapter *adapter = netdev_priv(netdev);
4038 	struct e1000_hw *hw = &adapter->hw;
4039 	unsigned int vfn = adapter->vfs_allocated_count;
4040 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4041 	int count = 0;
4042 
4043 	/* return ENOMEM indicating insufficient memory for addresses */
4044 	if (netdev_uc_count(netdev) > rar_entries)
4045 		return -ENOMEM;
4046 
4047 	if (!netdev_uc_empty(netdev) && rar_entries) {
4048 		struct netdev_hw_addr *ha;
4049 
4050 		netdev_for_each_uc_addr(ha, netdev) {
4051 			if (!rar_entries)
4052 				break;
4053 			igb_rar_set_qsel(adapter, ha->addr,
4054 					 rar_entries--,
4055 					 vfn);
4056 			count++;
4057 		}
4058 	}
4059 	/* write the addresses in reverse order to avoid write combining */
4060 	for (; rar_entries > 0 ; rar_entries--) {
4061 		wr32(E1000_RAH(rar_entries), 0);
4062 		wr32(E1000_RAL(rar_entries), 0);
4063 	}
4064 	wrfl();
4065 
4066 	return count;
4067 }
4068 
4069 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4070 {
4071 	struct e1000_hw *hw = &adapter->hw;
4072 	u32 i, pf_id;
4073 
4074 	switch (hw->mac.type) {
4075 	case e1000_i210:
4076 	case e1000_i211:
4077 	case e1000_i350:
4078 		/* VLAN filtering needed for VLAN prio filter */
4079 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4080 			break;
4081 		/* fall through */
4082 	case e1000_82576:
4083 	case e1000_82580:
4084 	case e1000_i354:
4085 		/* VLAN filtering needed for pool filtering */
4086 		if (adapter->vfs_allocated_count)
4087 			break;
4088 		/* fall through */
4089 	default:
4090 		return 1;
4091 	}
4092 
4093 	/* We are already in VLAN promisc, nothing to do */
4094 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4095 		return 0;
4096 
4097 	if (!adapter->vfs_allocated_count)
4098 		goto set_vfta;
4099 
4100 	/* Add PF to all active pools */
4101 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4102 
4103 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4104 		u32 vlvf = rd32(E1000_VLVF(i));
4105 
4106 		vlvf |= BIT(pf_id);
4107 		wr32(E1000_VLVF(i), vlvf);
4108 	}
4109 
4110 set_vfta:
4111 	/* Set all bits in the VLAN filter table array */
4112 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4113 		hw->mac.ops.write_vfta(hw, i, ~0U);
4114 
4115 	/* Set flag so we don't redo unnecessary work */
4116 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4117 
4118 	return 0;
4119 }
4120 
4121 #define VFTA_BLOCK_SIZE 8
4122 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4123 {
4124 	struct e1000_hw *hw = &adapter->hw;
4125 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4126 	u32 vid_start = vfta_offset * 32;
4127 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4128 	u32 i, vid, word, bits, pf_id;
4129 
4130 	/* guarantee that we don't scrub out management VLAN */
4131 	vid = adapter->mng_vlan_id;
4132 	if (vid >= vid_start && vid < vid_end)
4133 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4134 
4135 	if (!adapter->vfs_allocated_count)
4136 		goto set_vfta;
4137 
4138 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4139 
4140 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4141 		u32 vlvf = rd32(E1000_VLVF(i));
4142 
4143 		/* pull VLAN ID from VLVF */
4144 		vid = vlvf & VLAN_VID_MASK;
4145 
4146 		/* only concern ourselves with a certain range */
4147 		if (vid < vid_start || vid >= vid_end)
4148 			continue;
4149 
4150 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4151 			/* record VLAN ID in VFTA */
4152 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4153 
4154 			/* if PF is part of this then continue */
4155 			if (test_bit(vid, adapter->active_vlans))
4156 				continue;
4157 		}
4158 
4159 		/* remove PF from the pool */
4160 		bits = ~BIT(pf_id);
4161 		bits &= rd32(E1000_VLVF(i));
4162 		wr32(E1000_VLVF(i), bits);
4163 	}
4164 
4165 set_vfta:
4166 	/* extract values from active_vlans and write back to VFTA */
4167 	for (i = VFTA_BLOCK_SIZE; i--;) {
4168 		vid = (vfta_offset + i) * 32;
4169 		word = vid / BITS_PER_LONG;
4170 		bits = vid % BITS_PER_LONG;
4171 
4172 		vfta[i] |= adapter->active_vlans[word] >> bits;
4173 
4174 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4175 	}
4176 }
4177 
4178 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4179 {
4180 	u32 i;
4181 
4182 	/* We are not in VLAN promisc, nothing to do */
4183 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4184 		return;
4185 
4186 	/* Set flag so we don't redo unnecessary work */
4187 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4188 
4189 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4190 		igb_scrub_vfta(adapter, i);
4191 }
4192 
4193 /**
4194  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4195  *  @netdev: network interface device structure
4196  *
4197  *  The set_rx_mode entry point is called whenever the unicast or multicast
4198  *  address lists or the network interface flags are updated.  This routine is
4199  *  responsible for configuring the hardware for proper unicast, multicast,
4200  *  promiscuous mode, and all-multi behavior.
4201  **/
4202 static void igb_set_rx_mode(struct net_device *netdev)
4203 {
4204 	struct igb_adapter *adapter = netdev_priv(netdev);
4205 	struct e1000_hw *hw = &adapter->hw;
4206 	unsigned int vfn = adapter->vfs_allocated_count;
4207 	u32 rctl = 0, vmolr = 0;
4208 	int count;
4209 
4210 	/* Check for Promiscuous and All Multicast modes */
4211 	if (netdev->flags & IFF_PROMISC) {
4212 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4213 		vmolr |= E1000_VMOLR_MPME;
4214 
4215 		/* enable use of UTA filter to force packets to default pool */
4216 		if (hw->mac.type == e1000_82576)
4217 			vmolr |= E1000_VMOLR_ROPE;
4218 	} else {
4219 		if (netdev->flags & IFF_ALLMULTI) {
4220 			rctl |= E1000_RCTL_MPE;
4221 			vmolr |= E1000_VMOLR_MPME;
4222 		} else {
4223 			/* Write addresses to the MTA, if the attempt fails
4224 			 * then we should just turn on promiscuous mode so
4225 			 * that we can at least receive multicast traffic
4226 			 */
4227 			count = igb_write_mc_addr_list(netdev);
4228 			if (count < 0) {
4229 				rctl |= E1000_RCTL_MPE;
4230 				vmolr |= E1000_VMOLR_MPME;
4231 			} else if (count) {
4232 				vmolr |= E1000_VMOLR_ROMPE;
4233 			}
4234 		}
4235 	}
4236 
4237 	/* Write addresses to available RAR registers, if there is not
4238 	 * sufficient space to store all the addresses then enable
4239 	 * unicast promiscuous mode
4240 	 */
4241 	count = igb_write_uc_addr_list(netdev);
4242 	if (count < 0) {
4243 		rctl |= E1000_RCTL_UPE;
4244 		vmolr |= E1000_VMOLR_ROPE;
4245 	}
4246 
4247 	/* enable VLAN filtering by default */
4248 	rctl |= E1000_RCTL_VFE;
4249 
4250 	/* disable VLAN filtering for modes that require it */
4251 	if ((netdev->flags & IFF_PROMISC) ||
4252 	    (netdev->features & NETIF_F_RXALL)) {
4253 		/* if we fail to set all rules then just clear VFE */
4254 		if (igb_vlan_promisc_enable(adapter))
4255 			rctl &= ~E1000_RCTL_VFE;
4256 	} else {
4257 		igb_vlan_promisc_disable(adapter);
4258 	}
4259 
4260 	/* update state of unicast, multicast, and VLAN filtering modes */
4261 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4262 				     E1000_RCTL_VFE);
4263 	wr32(E1000_RCTL, rctl);
4264 
4265 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4266 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4267 	 * we will have issues with VLAN tag stripping not being done for frames
4268 	 * that are only arriving because we are the default pool
4269 	 */
4270 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4271 		return;
4272 
4273 	/* set UTA to appropriate mode */
4274 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4275 
4276 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4277 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4278 
4279 	/* enable Rx jumbo frames, no need for restriction */
4280 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4281 	vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4282 
4283 	wr32(E1000_VMOLR(vfn), vmolr);
4284 	wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4285 
4286 	igb_restore_vf_multicasts(adapter);
4287 }
4288 
4289 static void igb_check_wvbr(struct igb_adapter *adapter)
4290 {
4291 	struct e1000_hw *hw = &adapter->hw;
4292 	u32 wvbr = 0;
4293 
4294 	switch (hw->mac.type) {
4295 	case e1000_82576:
4296 	case e1000_i350:
4297 		wvbr = rd32(E1000_WVBR);
4298 		if (!wvbr)
4299 			return;
4300 		break;
4301 	default:
4302 		break;
4303 	}
4304 
4305 	adapter->wvbr |= wvbr;
4306 }
4307 
4308 #define IGB_STAGGERED_QUEUE_OFFSET 8
4309 
4310 static void igb_spoof_check(struct igb_adapter *adapter)
4311 {
4312 	int j;
4313 
4314 	if (!adapter->wvbr)
4315 		return;
4316 
4317 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4318 		if (adapter->wvbr & BIT(j) ||
4319 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4320 			dev_warn(&adapter->pdev->dev,
4321 				"Spoof event(s) detected on VF %d\n", j);
4322 			adapter->wvbr &=
4323 				~(BIT(j) |
4324 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4325 		}
4326 	}
4327 }
4328 
4329 /* Need to wait a few seconds after link up to get diagnostic information from
4330  * the phy
4331  */
4332 static void igb_update_phy_info(unsigned long data)
4333 {
4334 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4335 	igb_get_phy_info(&adapter->hw);
4336 }
4337 
4338 /**
4339  *  igb_has_link - check shared code for link and determine up/down
4340  *  @adapter: pointer to driver private info
4341  **/
4342 bool igb_has_link(struct igb_adapter *adapter)
4343 {
4344 	struct e1000_hw *hw = &adapter->hw;
4345 	bool link_active = false;
4346 
4347 	/* get_link_status is set on LSC (link status) interrupt or
4348 	 * rx sequence error interrupt.  get_link_status will stay
4349 	 * false until the e1000_check_for_link establishes link
4350 	 * for copper adapters ONLY
4351 	 */
4352 	switch (hw->phy.media_type) {
4353 	case e1000_media_type_copper:
4354 		if (!hw->mac.get_link_status)
4355 			return true;
4356 	case e1000_media_type_internal_serdes:
4357 		hw->mac.ops.check_for_link(hw);
4358 		link_active = !hw->mac.get_link_status;
4359 		break;
4360 	default:
4361 	case e1000_media_type_unknown:
4362 		break;
4363 	}
4364 
4365 	if (((hw->mac.type == e1000_i210) ||
4366 	     (hw->mac.type == e1000_i211)) &&
4367 	     (hw->phy.id == I210_I_PHY_ID)) {
4368 		if (!netif_carrier_ok(adapter->netdev)) {
4369 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4370 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4371 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4372 			adapter->link_check_timeout = jiffies;
4373 		}
4374 	}
4375 
4376 	return link_active;
4377 }
4378 
4379 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4380 {
4381 	bool ret = false;
4382 	u32 ctrl_ext, thstat;
4383 
4384 	/* check for thermal sensor event on i350 copper only */
4385 	if (hw->mac.type == e1000_i350) {
4386 		thstat = rd32(E1000_THSTAT);
4387 		ctrl_ext = rd32(E1000_CTRL_EXT);
4388 
4389 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4390 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4391 			ret = !!(thstat & event);
4392 	}
4393 
4394 	return ret;
4395 }
4396 
4397 /**
4398  *  igb_check_lvmmc - check for malformed packets received
4399  *  and indicated in LVMMC register
4400  *  @adapter: pointer to adapter
4401  **/
4402 static void igb_check_lvmmc(struct igb_adapter *adapter)
4403 {
4404 	struct e1000_hw *hw = &adapter->hw;
4405 	u32 lvmmc;
4406 
4407 	lvmmc = rd32(E1000_LVMMC);
4408 	if (lvmmc) {
4409 		if (unlikely(net_ratelimit())) {
4410 			netdev_warn(adapter->netdev,
4411 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4412 				    lvmmc);
4413 		}
4414 	}
4415 }
4416 
4417 /**
4418  *  igb_watchdog - Timer Call-back
4419  *  @data: pointer to adapter cast into an unsigned long
4420  **/
4421 static void igb_watchdog(unsigned long data)
4422 {
4423 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4424 	/* Do the rest outside of interrupt context */
4425 	schedule_work(&adapter->watchdog_task);
4426 }
4427 
4428 static void igb_watchdog_task(struct work_struct *work)
4429 {
4430 	struct igb_adapter *adapter = container_of(work,
4431 						   struct igb_adapter,
4432 						   watchdog_task);
4433 	struct e1000_hw *hw = &adapter->hw;
4434 	struct e1000_phy_info *phy = &hw->phy;
4435 	struct net_device *netdev = adapter->netdev;
4436 	u32 link;
4437 	int i;
4438 	u32 connsw;
4439 	u16 phy_data, retry_count = 20;
4440 
4441 	link = igb_has_link(adapter);
4442 
4443 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4444 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4445 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4446 		else
4447 			link = false;
4448 	}
4449 
4450 	/* Force link down if we have fiber to swap to */
4451 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4452 		if (hw->phy.media_type == e1000_media_type_copper) {
4453 			connsw = rd32(E1000_CONNSW);
4454 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4455 				link = 0;
4456 		}
4457 	}
4458 	if (link) {
4459 		/* Perform a reset if the media type changed. */
4460 		if (hw->dev_spec._82575.media_changed) {
4461 			hw->dev_spec._82575.media_changed = false;
4462 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4463 			igb_reset(adapter);
4464 		}
4465 		/* Cancel scheduled suspend requests. */
4466 		pm_runtime_resume(netdev->dev.parent);
4467 
4468 		if (!netif_carrier_ok(netdev)) {
4469 			u32 ctrl;
4470 
4471 			hw->mac.ops.get_speed_and_duplex(hw,
4472 							 &adapter->link_speed,
4473 							 &adapter->link_duplex);
4474 
4475 			ctrl = rd32(E1000_CTRL);
4476 			/* Links status message must follow this format */
4477 			netdev_info(netdev,
4478 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4479 			       netdev->name,
4480 			       adapter->link_speed,
4481 			       adapter->link_duplex == FULL_DUPLEX ?
4482 			       "Full" : "Half",
4483 			       (ctrl & E1000_CTRL_TFCE) &&
4484 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4485 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4486 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4487 
4488 			/* disable EEE if enabled */
4489 			if ((adapter->flags & IGB_FLAG_EEE) &&
4490 				(adapter->link_duplex == HALF_DUPLEX)) {
4491 				dev_info(&adapter->pdev->dev,
4492 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4493 				adapter->hw.dev_spec._82575.eee_disable = true;
4494 				adapter->flags &= ~IGB_FLAG_EEE;
4495 			}
4496 
4497 			/* check if SmartSpeed worked */
4498 			igb_check_downshift(hw);
4499 			if (phy->speed_downgraded)
4500 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4501 
4502 			/* check for thermal sensor event */
4503 			if (igb_thermal_sensor_event(hw,
4504 			    E1000_THSTAT_LINK_THROTTLE))
4505 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4506 
4507 			/* adjust timeout factor according to speed/duplex */
4508 			adapter->tx_timeout_factor = 1;
4509 			switch (adapter->link_speed) {
4510 			case SPEED_10:
4511 				adapter->tx_timeout_factor = 14;
4512 				break;
4513 			case SPEED_100:
4514 				/* maybe add some timeout factor ? */
4515 				break;
4516 			}
4517 
4518 			if (adapter->link_speed != SPEED_1000)
4519 				goto no_wait;
4520 
4521 			/* wait for Remote receiver status OK */
4522 retry_read_status:
4523 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4524 					      &phy_data)) {
4525 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4526 				    retry_count) {
4527 					msleep(100);
4528 					retry_count--;
4529 					goto retry_read_status;
4530 				} else if (!retry_count) {
4531 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4532 				}
4533 			} else {
4534 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4535 			}
4536 no_wait:
4537 			netif_carrier_on(netdev);
4538 
4539 			igb_ping_all_vfs(adapter);
4540 			igb_check_vf_rate_limit(adapter);
4541 
4542 			/* link state has changed, schedule phy info update */
4543 			if (!test_bit(__IGB_DOWN, &adapter->state))
4544 				mod_timer(&adapter->phy_info_timer,
4545 					  round_jiffies(jiffies + 2 * HZ));
4546 		}
4547 	} else {
4548 		if (netif_carrier_ok(netdev)) {
4549 			adapter->link_speed = 0;
4550 			adapter->link_duplex = 0;
4551 
4552 			/* check for thermal sensor event */
4553 			if (igb_thermal_sensor_event(hw,
4554 			    E1000_THSTAT_PWR_DOWN)) {
4555 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4556 			}
4557 
4558 			/* Links status message must follow this format */
4559 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4560 			       netdev->name);
4561 			netif_carrier_off(netdev);
4562 
4563 			igb_ping_all_vfs(adapter);
4564 
4565 			/* link state has changed, schedule phy info update */
4566 			if (!test_bit(__IGB_DOWN, &adapter->state))
4567 				mod_timer(&adapter->phy_info_timer,
4568 					  round_jiffies(jiffies + 2 * HZ));
4569 
4570 			/* link is down, time to check for alternate media */
4571 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4572 				igb_check_swap_media(adapter);
4573 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4574 					schedule_work(&adapter->reset_task);
4575 					/* return immediately */
4576 					return;
4577 				}
4578 			}
4579 			pm_schedule_suspend(netdev->dev.parent,
4580 					    MSEC_PER_SEC * 5);
4581 
4582 		/* also check for alternate media here */
4583 		} else if (!netif_carrier_ok(netdev) &&
4584 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4585 			igb_check_swap_media(adapter);
4586 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4587 				schedule_work(&adapter->reset_task);
4588 				/* return immediately */
4589 				return;
4590 			}
4591 		}
4592 	}
4593 
4594 	spin_lock(&adapter->stats64_lock);
4595 	igb_update_stats(adapter, &adapter->stats64);
4596 	spin_unlock(&adapter->stats64_lock);
4597 
4598 	for (i = 0; i < adapter->num_tx_queues; i++) {
4599 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4600 		if (!netif_carrier_ok(netdev)) {
4601 			/* We've lost link, so the controller stops DMA,
4602 			 * but we've got queued Tx work that's never going
4603 			 * to get done, so reset controller to flush Tx.
4604 			 * (Do the reset outside of interrupt context).
4605 			 */
4606 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4607 				adapter->tx_timeout_count++;
4608 				schedule_work(&adapter->reset_task);
4609 				/* return immediately since reset is imminent */
4610 				return;
4611 			}
4612 		}
4613 
4614 		/* Force detection of hung controller every watchdog period */
4615 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4616 	}
4617 
4618 	/* Cause software interrupt to ensure Rx ring is cleaned */
4619 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4620 		u32 eics = 0;
4621 
4622 		for (i = 0; i < adapter->num_q_vectors; i++)
4623 			eics |= adapter->q_vector[i]->eims_value;
4624 		wr32(E1000_EICS, eics);
4625 	} else {
4626 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4627 	}
4628 
4629 	igb_spoof_check(adapter);
4630 	igb_ptp_rx_hang(adapter);
4631 
4632 	/* Check LVMMC register on i350/i354 only */
4633 	if ((adapter->hw.mac.type == e1000_i350) ||
4634 	    (adapter->hw.mac.type == e1000_i354))
4635 		igb_check_lvmmc(adapter);
4636 
4637 	/* Reset the timer */
4638 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4639 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4640 			mod_timer(&adapter->watchdog_timer,
4641 				  round_jiffies(jiffies +  HZ));
4642 		else
4643 			mod_timer(&adapter->watchdog_timer,
4644 				  round_jiffies(jiffies + 2 * HZ));
4645 	}
4646 }
4647 
4648 enum latency_range {
4649 	lowest_latency = 0,
4650 	low_latency = 1,
4651 	bulk_latency = 2,
4652 	latency_invalid = 255
4653 };
4654 
4655 /**
4656  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4657  *  @q_vector: pointer to q_vector
4658  *
4659  *  Stores a new ITR value based on strictly on packet size.  This
4660  *  algorithm is less sophisticated than that used in igb_update_itr,
4661  *  due to the difficulty of synchronizing statistics across multiple
4662  *  receive rings.  The divisors and thresholds used by this function
4663  *  were determined based on theoretical maximum wire speed and testing
4664  *  data, in order to minimize response time while increasing bulk
4665  *  throughput.
4666  *  This functionality is controlled by ethtool's coalescing settings.
4667  *  NOTE:  This function is called only when operating in a multiqueue
4668  *         receive environment.
4669  **/
4670 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4671 {
4672 	int new_val = q_vector->itr_val;
4673 	int avg_wire_size = 0;
4674 	struct igb_adapter *adapter = q_vector->adapter;
4675 	unsigned int packets;
4676 
4677 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4678 	 * ints/sec - ITR timer value of 120 ticks.
4679 	 */
4680 	if (adapter->link_speed != SPEED_1000) {
4681 		new_val = IGB_4K_ITR;
4682 		goto set_itr_val;
4683 	}
4684 
4685 	packets = q_vector->rx.total_packets;
4686 	if (packets)
4687 		avg_wire_size = q_vector->rx.total_bytes / packets;
4688 
4689 	packets = q_vector->tx.total_packets;
4690 	if (packets)
4691 		avg_wire_size = max_t(u32, avg_wire_size,
4692 				      q_vector->tx.total_bytes / packets);
4693 
4694 	/* if avg_wire_size isn't set no work was done */
4695 	if (!avg_wire_size)
4696 		goto clear_counts;
4697 
4698 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4699 	avg_wire_size += 24;
4700 
4701 	/* Don't starve jumbo frames */
4702 	avg_wire_size = min(avg_wire_size, 3000);
4703 
4704 	/* Give a little boost to mid-size frames */
4705 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4706 		new_val = avg_wire_size / 3;
4707 	else
4708 		new_val = avg_wire_size / 2;
4709 
4710 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4711 	if (new_val < IGB_20K_ITR &&
4712 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4713 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4714 		new_val = IGB_20K_ITR;
4715 
4716 set_itr_val:
4717 	if (new_val != q_vector->itr_val) {
4718 		q_vector->itr_val = new_val;
4719 		q_vector->set_itr = 1;
4720 	}
4721 clear_counts:
4722 	q_vector->rx.total_bytes = 0;
4723 	q_vector->rx.total_packets = 0;
4724 	q_vector->tx.total_bytes = 0;
4725 	q_vector->tx.total_packets = 0;
4726 }
4727 
4728 /**
4729  *  igb_update_itr - update the dynamic ITR value based on statistics
4730  *  @q_vector: pointer to q_vector
4731  *  @ring_container: ring info to update the itr for
4732  *
4733  *  Stores a new ITR value based on packets and byte
4734  *  counts during the last interrupt.  The advantage of per interrupt
4735  *  computation is faster updates and more accurate ITR for the current
4736  *  traffic pattern.  Constants in this function were computed
4737  *  based on theoretical maximum wire speed and thresholds were set based
4738  *  on testing data as well as attempting to minimize response time
4739  *  while increasing bulk throughput.
4740  *  This functionality is controlled by ethtool's coalescing settings.
4741  *  NOTE:  These calculations are only valid when operating in a single-
4742  *         queue environment.
4743  **/
4744 static void igb_update_itr(struct igb_q_vector *q_vector,
4745 			   struct igb_ring_container *ring_container)
4746 {
4747 	unsigned int packets = ring_container->total_packets;
4748 	unsigned int bytes = ring_container->total_bytes;
4749 	u8 itrval = ring_container->itr;
4750 
4751 	/* no packets, exit with status unchanged */
4752 	if (packets == 0)
4753 		return;
4754 
4755 	switch (itrval) {
4756 	case lowest_latency:
4757 		/* handle TSO and jumbo frames */
4758 		if (bytes/packets > 8000)
4759 			itrval = bulk_latency;
4760 		else if ((packets < 5) && (bytes > 512))
4761 			itrval = low_latency;
4762 		break;
4763 	case low_latency:  /* 50 usec aka 20000 ints/s */
4764 		if (bytes > 10000) {
4765 			/* this if handles the TSO accounting */
4766 			if (bytes/packets > 8000)
4767 				itrval = bulk_latency;
4768 			else if ((packets < 10) || ((bytes/packets) > 1200))
4769 				itrval = bulk_latency;
4770 			else if ((packets > 35))
4771 				itrval = lowest_latency;
4772 		} else if (bytes/packets > 2000) {
4773 			itrval = bulk_latency;
4774 		} else if (packets <= 2 && bytes < 512) {
4775 			itrval = lowest_latency;
4776 		}
4777 		break;
4778 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4779 		if (bytes > 25000) {
4780 			if (packets > 35)
4781 				itrval = low_latency;
4782 		} else if (bytes < 1500) {
4783 			itrval = low_latency;
4784 		}
4785 		break;
4786 	}
4787 
4788 	/* clear work counters since we have the values we need */
4789 	ring_container->total_bytes = 0;
4790 	ring_container->total_packets = 0;
4791 
4792 	/* write updated itr to ring container */
4793 	ring_container->itr = itrval;
4794 }
4795 
4796 static void igb_set_itr(struct igb_q_vector *q_vector)
4797 {
4798 	struct igb_adapter *adapter = q_vector->adapter;
4799 	u32 new_itr = q_vector->itr_val;
4800 	u8 current_itr = 0;
4801 
4802 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4803 	if (adapter->link_speed != SPEED_1000) {
4804 		current_itr = 0;
4805 		new_itr = IGB_4K_ITR;
4806 		goto set_itr_now;
4807 	}
4808 
4809 	igb_update_itr(q_vector, &q_vector->tx);
4810 	igb_update_itr(q_vector, &q_vector->rx);
4811 
4812 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4813 
4814 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4815 	if (current_itr == lowest_latency &&
4816 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4817 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4818 		current_itr = low_latency;
4819 
4820 	switch (current_itr) {
4821 	/* counts and packets in update_itr are dependent on these numbers */
4822 	case lowest_latency:
4823 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4824 		break;
4825 	case low_latency:
4826 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4827 		break;
4828 	case bulk_latency:
4829 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4830 		break;
4831 	default:
4832 		break;
4833 	}
4834 
4835 set_itr_now:
4836 	if (new_itr != q_vector->itr_val) {
4837 		/* this attempts to bias the interrupt rate towards Bulk
4838 		 * by adding intermediate steps when interrupt rate is
4839 		 * increasing
4840 		 */
4841 		new_itr = new_itr > q_vector->itr_val ?
4842 			  max((new_itr * q_vector->itr_val) /
4843 			  (new_itr + (q_vector->itr_val >> 2)),
4844 			  new_itr) : new_itr;
4845 		/* Don't write the value here; it resets the adapter's
4846 		 * internal timer, and causes us to delay far longer than
4847 		 * we should between interrupts.  Instead, we write the ITR
4848 		 * value at the beginning of the next interrupt so the timing
4849 		 * ends up being correct.
4850 		 */
4851 		q_vector->itr_val = new_itr;
4852 		q_vector->set_itr = 1;
4853 	}
4854 }
4855 
4856 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4857 			    u32 type_tucmd, u32 mss_l4len_idx)
4858 {
4859 	struct e1000_adv_tx_context_desc *context_desc;
4860 	u16 i = tx_ring->next_to_use;
4861 
4862 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4863 
4864 	i++;
4865 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4866 
4867 	/* set bits to identify this as an advanced context descriptor */
4868 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4869 
4870 	/* For 82575, context index must be unique per ring. */
4871 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4872 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4873 
4874 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4875 	context_desc->seqnum_seed	= 0;
4876 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4877 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4878 }
4879 
4880 static int igb_tso(struct igb_ring *tx_ring,
4881 		   struct igb_tx_buffer *first,
4882 		   u8 *hdr_len)
4883 {
4884 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4885 	struct sk_buff *skb = first->skb;
4886 	union {
4887 		struct iphdr *v4;
4888 		struct ipv6hdr *v6;
4889 		unsigned char *hdr;
4890 	} ip;
4891 	union {
4892 		struct tcphdr *tcp;
4893 		unsigned char *hdr;
4894 	} l4;
4895 	u32 paylen, l4_offset;
4896 	int err;
4897 
4898 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4899 		return 0;
4900 
4901 	if (!skb_is_gso(skb))
4902 		return 0;
4903 
4904 	err = skb_cow_head(skb, 0);
4905 	if (err < 0)
4906 		return err;
4907 
4908 	ip.hdr = skb_network_header(skb);
4909 	l4.hdr = skb_checksum_start(skb);
4910 
4911 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4912 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4913 
4914 	/* initialize outer IP header fields */
4915 	if (ip.v4->version == 4) {
4916 		/* IP header will have to cancel out any data that
4917 		 * is not a part of the outer IP header
4918 		 */
4919 		ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4920 						  csum_unfold(l4.tcp->check)));
4921 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4922 
4923 		ip.v4->tot_len = 0;
4924 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4925 				   IGB_TX_FLAGS_CSUM |
4926 				   IGB_TX_FLAGS_IPV4;
4927 	} else {
4928 		ip.v6->payload_len = 0;
4929 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4930 				   IGB_TX_FLAGS_CSUM;
4931 	}
4932 
4933 	/* determine offset of inner transport header */
4934 	l4_offset = l4.hdr - skb->data;
4935 
4936 	/* compute length of segmentation header */
4937 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
4938 
4939 	/* remove payload length from inner checksum */
4940 	paylen = skb->len - l4_offset;
4941 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4942 
4943 	/* update gso size and bytecount with header size */
4944 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4945 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4946 
4947 	/* MSS L4LEN IDX */
4948 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4949 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4950 
4951 	/* VLAN MACLEN IPLEN */
4952 	vlan_macip_lens = l4.hdr - ip.hdr;
4953 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4954 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4955 
4956 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4957 
4958 	return 1;
4959 }
4960 
4961 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4962 {
4963 	unsigned int offset = 0;
4964 
4965 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4966 
4967 	return offset == skb_checksum_start_offset(skb);
4968 }
4969 
4970 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4971 {
4972 	struct sk_buff *skb = first->skb;
4973 	u32 vlan_macip_lens = 0;
4974 	u32 type_tucmd = 0;
4975 
4976 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4977 csum_failed:
4978 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4979 			return;
4980 		goto no_csum;
4981 	}
4982 
4983 	switch (skb->csum_offset) {
4984 	case offsetof(struct tcphdr, check):
4985 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4986 		/* fall through */
4987 	case offsetof(struct udphdr, check):
4988 		break;
4989 	case offsetof(struct sctphdr, checksum):
4990 		/* validate that this is actually an SCTP request */
4991 		if (((first->protocol == htons(ETH_P_IP)) &&
4992 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4993 		    ((first->protocol == htons(ETH_P_IPV6)) &&
4994 		     igb_ipv6_csum_is_sctp(skb))) {
4995 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4996 			break;
4997 		}
4998 	default:
4999 		skb_checksum_help(skb);
5000 		goto csum_failed;
5001 	}
5002 
5003 	/* update TX checksum flag */
5004 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5005 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5006 			  skb_network_offset(skb);
5007 no_csum:
5008 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5009 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5010 
5011 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5012 }
5013 
5014 #define IGB_SET_FLAG(_input, _flag, _result) \
5015 	((_flag <= _result) ? \
5016 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5017 	 ((u32)(_input & _flag) / (_flag / _result)))
5018 
5019 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5020 {
5021 	/* set type for advanced descriptor with frame checksum insertion */
5022 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5023 		       E1000_ADVTXD_DCMD_DEXT |
5024 		       E1000_ADVTXD_DCMD_IFCS;
5025 
5026 	/* set HW vlan bit if vlan is present */
5027 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5028 				 (E1000_ADVTXD_DCMD_VLE));
5029 
5030 	/* set segmentation bits for TSO */
5031 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5032 				 (E1000_ADVTXD_DCMD_TSE));
5033 
5034 	/* set timestamp bit if present */
5035 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5036 				 (E1000_ADVTXD_MAC_TSTAMP));
5037 
5038 	/* insert frame checksum */
5039 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5040 
5041 	return cmd_type;
5042 }
5043 
5044 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5045 				 union e1000_adv_tx_desc *tx_desc,
5046 				 u32 tx_flags, unsigned int paylen)
5047 {
5048 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5049 
5050 	/* 82575 requires a unique index per ring */
5051 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5052 		olinfo_status |= tx_ring->reg_idx << 4;
5053 
5054 	/* insert L4 checksum */
5055 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5056 				      IGB_TX_FLAGS_CSUM,
5057 				      (E1000_TXD_POPTS_TXSM << 8));
5058 
5059 	/* insert IPv4 checksum */
5060 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5061 				      IGB_TX_FLAGS_IPV4,
5062 				      (E1000_TXD_POPTS_IXSM << 8));
5063 
5064 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5065 }
5066 
5067 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5068 {
5069 	struct net_device *netdev = tx_ring->netdev;
5070 
5071 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5072 
5073 	/* Herbert's original patch had:
5074 	 *  smp_mb__after_netif_stop_queue();
5075 	 * but since that doesn't exist yet, just open code it.
5076 	 */
5077 	smp_mb();
5078 
5079 	/* We need to check again in a case another CPU has just
5080 	 * made room available.
5081 	 */
5082 	if (igb_desc_unused(tx_ring) < size)
5083 		return -EBUSY;
5084 
5085 	/* A reprieve! */
5086 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5087 
5088 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5089 	tx_ring->tx_stats.restart_queue2++;
5090 	u64_stats_update_end(&tx_ring->tx_syncp2);
5091 
5092 	return 0;
5093 }
5094 
5095 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5096 {
5097 	if (igb_desc_unused(tx_ring) >= size)
5098 		return 0;
5099 	return __igb_maybe_stop_tx(tx_ring, size);
5100 }
5101 
5102 static void igb_tx_map(struct igb_ring *tx_ring,
5103 		       struct igb_tx_buffer *first,
5104 		       const u8 hdr_len)
5105 {
5106 	struct sk_buff *skb = first->skb;
5107 	struct igb_tx_buffer *tx_buffer;
5108 	union e1000_adv_tx_desc *tx_desc;
5109 	struct skb_frag_struct *frag;
5110 	dma_addr_t dma;
5111 	unsigned int data_len, size;
5112 	u32 tx_flags = first->tx_flags;
5113 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5114 	u16 i = tx_ring->next_to_use;
5115 
5116 	tx_desc = IGB_TX_DESC(tx_ring, i);
5117 
5118 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5119 
5120 	size = skb_headlen(skb);
5121 	data_len = skb->data_len;
5122 
5123 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5124 
5125 	tx_buffer = first;
5126 
5127 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5128 		if (dma_mapping_error(tx_ring->dev, dma))
5129 			goto dma_error;
5130 
5131 		/* record length, and DMA address */
5132 		dma_unmap_len_set(tx_buffer, len, size);
5133 		dma_unmap_addr_set(tx_buffer, dma, dma);
5134 
5135 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5136 
5137 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5138 			tx_desc->read.cmd_type_len =
5139 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5140 
5141 			i++;
5142 			tx_desc++;
5143 			if (i == tx_ring->count) {
5144 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5145 				i = 0;
5146 			}
5147 			tx_desc->read.olinfo_status = 0;
5148 
5149 			dma += IGB_MAX_DATA_PER_TXD;
5150 			size -= IGB_MAX_DATA_PER_TXD;
5151 
5152 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5153 		}
5154 
5155 		if (likely(!data_len))
5156 			break;
5157 
5158 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5159 
5160 		i++;
5161 		tx_desc++;
5162 		if (i == tx_ring->count) {
5163 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5164 			i = 0;
5165 		}
5166 		tx_desc->read.olinfo_status = 0;
5167 
5168 		size = skb_frag_size(frag);
5169 		data_len -= size;
5170 
5171 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5172 				       size, DMA_TO_DEVICE);
5173 
5174 		tx_buffer = &tx_ring->tx_buffer_info[i];
5175 	}
5176 
5177 	/* write last descriptor with RS and EOP bits */
5178 	cmd_type |= size | IGB_TXD_DCMD;
5179 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5180 
5181 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5182 
5183 	/* set the timestamp */
5184 	first->time_stamp = jiffies;
5185 
5186 	/* Force memory writes to complete before letting h/w know there
5187 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5188 	 * memory model archs, such as IA-64).
5189 	 *
5190 	 * We also need this memory barrier to make certain all of the
5191 	 * status bits have been updated before next_to_watch is written.
5192 	 */
5193 	wmb();
5194 
5195 	/* set next_to_watch value indicating a packet is present */
5196 	first->next_to_watch = tx_desc;
5197 
5198 	i++;
5199 	if (i == tx_ring->count)
5200 		i = 0;
5201 
5202 	tx_ring->next_to_use = i;
5203 
5204 	/* Make sure there is space in the ring for the next send. */
5205 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5206 
5207 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5208 		writel(i, tx_ring->tail);
5209 
5210 		/* we need this if more than one processor can write to our tail
5211 		 * at a time, it synchronizes IO on IA64/Altix systems
5212 		 */
5213 		mmiowb();
5214 	}
5215 	return;
5216 
5217 dma_error:
5218 	dev_err(tx_ring->dev, "TX DMA map failed\n");
5219 
5220 	/* clear dma mappings for failed tx_buffer_info map */
5221 	for (;;) {
5222 		tx_buffer = &tx_ring->tx_buffer_info[i];
5223 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5224 		if (tx_buffer == first)
5225 			break;
5226 		if (i == 0)
5227 			i = tx_ring->count;
5228 		i--;
5229 	}
5230 
5231 	tx_ring->next_to_use = i;
5232 }
5233 
5234 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5235 				struct igb_ring *tx_ring)
5236 {
5237 	struct igb_tx_buffer *first;
5238 	int tso;
5239 	u32 tx_flags = 0;
5240 	unsigned short f;
5241 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5242 	__be16 protocol = vlan_get_protocol(skb);
5243 	u8 hdr_len = 0;
5244 
5245 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5246 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5247 	 *       + 2 desc gap to keep tail from touching head,
5248 	 *       + 1 desc for context descriptor,
5249 	 * otherwise try next time
5250 	 */
5251 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5252 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5253 
5254 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5255 		/* this is a hard error */
5256 		return NETDEV_TX_BUSY;
5257 	}
5258 
5259 	/* record the location of the first descriptor for this packet */
5260 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5261 	first->skb = skb;
5262 	first->bytecount = skb->len;
5263 	first->gso_segs = 1;
5264 
5265 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5266 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5267 
5268 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5269 					   &adapter->state)) {
5270 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5271 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5272 
5273 			adapter->ptp_tx_skb = skb_get(skb);
5274 			adapter->ptp_tx_start = jiffies;
5275 			if (adapter->hw.mac.type == e1000_82576)
5276 				schedule_work(&adapter->ptp_tx_work);
5277 		}
5278 	}
5279 
5280 	skb_tx_timestamp(skb);
5281 
5282 	if (skb_vlan_tag_present(skb)) {
5283 		tx_flags |= IGB_TX_FLAGS_VLAN;
5284 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5285 	}
5286 
5287 	/* record initial flags and protocol */
5288 	first->tx_flags = tx_flags;
5289 	first->protocol = protocol;
5290 
5291 	tso = igb_tso(tx_ring, first, &hdr_len);
5292 	if (tso < 0)
5293 		goto out_drop;
5294 	else if (!tso)
5295 		igb_tx_csum(tx_ring, first);
5296 
5297 	igb_tx_map(tx_ring, first, hdr_len);
5298 
5299 	return NETDEV_TX_OK;
5300 
5301 out_drop:
5302 	igb_unmap_and_free_tx_resource(tx_ring, first);
5303 
5304 	return NETDEV_TX_OK;
5305 }
5306 
5307 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5308 						    struct sk_buff *skb)
5309 {
5310 	unsigned int r_idx = skb->queue_mapping;
5311 
5312 	if (r_idx >= adapter->num_tx_queues)
5313 		r_idx = r_idx % adapter->num_tx_queues;
5314 
5315 	return adapter->tx_ring[r_idx];
5316 }
5317 
5318 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5319 				  struct net_device *netdev)
5320 {
5321 	struct igb_adapter *adapter = netdev_priv(netdev);
5322 
5323 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5324 	 * in order to meet this minimum size requirement.
5325 	 */
5326 	if (skb_put_padto(skb, 17))
5327 		return NETDEV_TX_OK;
5328 
5329 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5330 }
5331 
5332 /**
5333  *  igb_tx_timeout - Respond to a Tx Hang
5334  *  @netdev: network interface device structure
5335  **/
5336 static void igb_tx_timeout(struct net_device *netdev)
5337 {
5338 	struct igb_adapter *adapter = netdev_priv(netdev);
5339 	struct e1000_hw *hw = &adapter->hw;
5340 
5341 	/* Do the reset outside of interrupt context */
5342 	adapter->tx_timeout_count++;
5343 
5344 	if (hw->mac.type >= e1000_82580)
5345 		hw->dev_spec._82575.global_device_reset = true;
5346 
5347 	schedule_work(&adapter->reset_task);
5348 	wr32(E1000_EICS,
5349 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5350 }
5351 
5352 static void igb_reset_task(struct work_struct *work)
5353 {
5354 	struct igb_adapter *adapter;
5355 	adapter = container_of(work, struct igb_adapter, reset_task);
5356 
5357 	igb_dump(adapter);
5358 	netdev_err(adapter->netdev, "Reset adapter\n");
5359 	igb_reinit_locked(adapter);
5360 }
5361 
5362 /**
5363  *  igb_get_stats64 - Get System Network Statistics
5364  *  @netdev: network interface device structure
5365  *  @stats: rtnl_link_stats64 pointer
5366  **/
5367 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5368 						struct rtnl_link_stats64 *stats)
5369 {
5370 	struct igb_adapter *adapter = netdev_priv(netdev);
5371 
5372 	spin_lock(&adapter->stats64_lock);
5373 	igb_update_stats(adapter, &adapter->stats64);
5374 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5375 	spin_unlock(&adapter->stats64_lock);
5376 
5377 	return stats;
5378 }
5379 
5380 /**
5381  *  igb_change_mtu - Change the Maximum Transfer Unit
5382  *  @netdev: network interface device structure
5383  *  @new_mtu: new value for maximum frame size
5384  *
5385  *  Returns 0 on success, negative on failure
5386  **/
5387 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5388 {
5389 	struct igb_adapter *adapter = netdev_priv(netdev);
5390 	struct pci_dev *pdev = adapter->pdev;
5391 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5392 
5393 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5394 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5395 		return -EINVAL;
5396 	}
5397 
5398 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5399 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5400 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5401 		return -EINVAL;
5402 	}
5403 
5404 	/* adjust max frame to be at least the size of a standard frame */
5405 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5406 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5407 
5408 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5409 		usleep_range(1000, 2000);
5410 
5411 	/* igb_down has a dependency on max_frame_size */
5412 	adapter->max_frame_size = max_frame;
5413 
5414 	if (netif_running(netdev))
5415 		igb_down(adapter);
5416 
5417 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5418 		 netdev->mtu, new_mtu);
5419 	netdev->mtu = new_mtu;
5420 
5421 	if (netif_running(netdev))
5422 		igb_up(adapter);
5423 	else
5424 		igb_reset(adapter);
5425 
5426 	clear_bit(__IGB_RESETTING, &adapter->state);
5427 
5428 	return 0;
5429 }
5430 
5431 /**
5432  *  igb_update_stats - Update the board statistics counters
5433  *  @adapter: board private structure
5434  **/
5435 void igb_update_stats(struct igb_adapter *adapter,
5436 		      struct rtnl_link_stats64 *net_stats)
5437 {
5438 	struct e1000_hw *hw = &adapter->hw;
5439 	struct pci_dev *pdev = adapter->pdev;
5440 	u32 reg, mpc;
5441 	int i;
5442 	u64 bytes, packets;
5443 	unsigned int start;
5444 	u64 _bytes, _packets;
5445 
5446 	/* Prevent stats update while adapter is being reset, or if the pci
5447 	 * connection is down.
5448 	 */
5449 	if (adapter->link_speed == 0)
5450 		return;
5451 	if (pci_channel_offline(pdev))
5452 		return;
5453 
5454 	bytes = 0;
5455 	packets = 0;
5456 
5457 	rcu_read_lock();
5458 	for (i = 0; i < adapter->num_rx_queues; i++) {
5459 		struct igb_ring *ring = adapter->rx_ring[i];
5460 		u32 rqdpc = rd32(E1000_RQDPC(i));
5461 		if (hw->mac.type >= e1000_i210)
5462 			wr32(E1000_RQDPC(i), 0);
5463 
5464 		if (rqdpc) {
5465 			ring->rx_stats.drops += rqdpc;
5466 			net_stats->rx_fifo_errors += rqdpc;
5467 		}
5468 
5469 		do {
5470 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5471 			_bytes = ring->rx_stats.bytes;
5472 			_packets = ring->rx_stats.packets;
5473 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5474 		bytes += _bytes;
5475 		packets += _packets;
5476 	}
5477 
5478 	net_stats->rx_bytes = bytes;
5479 	net_stats->rx_packets = packets;
5480 
5481 	bytes = 0;
5482 	packets = 0;
5483 	for (i = 0; i < adapter->num_tx_queues; i++) {
5484 		struct igb_ring *ring = adapter->tx_ring[i];
5485 		do {
5486 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5487 			_bytes = ring->tx_stats.bytes;
5488 			_packets = ring->tx_stats.packets;
5489 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5490 		bytes += _bytes;
5491 		packets += _packets;
5492 	}
5493 	net_stats->tx_bytes = bytes;
5494 	net_stats->tx_packets = packets;
5495 	rcu_read_unlock();
5496 
5497 	/* read stats registers */
5498 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5499 	adapter->stats.gprc += rd32(E1000_GPRC);
5500 	adapter->stats.gorc += rd32(E1000_GORCL);
5501 	rd32(E1000_GORCH); /* clear GORCL */
5502 	adapter->stats.bprc += rd32(E1000_BPRC);
5503 	adapter->stats.mprc += rd32(E1000_MPRC);
5504 	adapter->stats.roc += rd32(E1000_ROC);
5505 
5506 	adapter->stats.prc64 += rd32(E1000_PRC64);
5507 	adapter->stats.prc127 += rd32(E1000_PRC127);
5508 	adapter->stats.prc255 += rd32(E1000_PRC255);
5509 	adapter->stats.prc511 += rd32(E1000_PRC511);
5510 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5511 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5512 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5513 	adapter->stats.sec += rd32(E1000_SEC);
5514 
5515 	mpc = rd32(E1000_MPC);
5516 	adapter->stats.mpc += mpc;
5517 	net_stats->rx_fifo_errors += mpc;
5518 	adapter->stats.scc += rd32(E1000_SCC);
5519 	adapter->stats.ecol += rd32(E1000_ECOL);
5520 	adapter->stats.mcc += rd32(E1000_MCC);
5521 	adapter->stats.latecol += rd32(E1000_LATECOL);
5522 	adapter->stats.dc += rd32(E1000_DC);
5523 	adapter->stats.rlec += rd32(E1000_RLEC);
5524 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5525 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5526 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5527 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5528 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5529 	adapter->stats.gptc += rd32(E1000_GPTC);
5530 	adapter->stats.gotc += rd32(E1000_GOTCL);
5531 	rd32(E1000_GOTCH); /* clear GOTCL */
5532 	adapter->stats.rnbc += rd32(E1000_RNBC);
5533 	adapter->stats.ruc += rd32(E1000_RUC);
5534 	adapter->stats.rfc += rd32(E1000_RFC);
5535 	adapter->stats.rjc += rd32(E1000_RJC);
5536 	adapter->stats.tor += rd32(E1000_TORH);
5537 	adapter->stats.tot += rd32(E1000_TOTH);
5538 	adapter->stats.tpr += rd32(E1000_TPR);
5539 
5540 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5541 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5542 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5543 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5544 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5545 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5546 
5547 	adapter->stats.mptc += rd32(E1000_MPTC);
5548 	adapter->stats.bptc += rd32(E1000_BPTC);
5549 
5550 	adapter->stats.tpt += rd32(E1000_TPT);
5551 	adapter->stats.colc += rd32(E1000_COLC);
5552 
5553 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5554 	/* read internal phy specific stats */
5555 	reg = rd32(E1000_CTRL_EXT);
5556 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5557 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5558 
5559 		/* this stat has invalid values on i210/i211 */
5560 		if ((hw->mac.type != e1000_i210) &&
5561 		    (hw->mac.type != e1000_i211))
5562 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5563 	}
5564 
5565 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5566 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5567 
5568 	adapter->stats.iac += rd32(E1000_IAC);
5569 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5570 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5571 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5572 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5573 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5574 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5575 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5576 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5577 
5578 	/* Fill out the OS statistics structure */
5579 	net_stats->multicast = adapter->stats.mprc;
5580 	net_stats->collisions = adapter->stats.colc;
5581 
5582 	/* Rx Errors */
5583 
5584 	/* RLEC on some newer hardware can be incorrect so build
5585 	 * our own version based on RUC and ROC
5586 	 */
5587 	net_stats->rx_errors = adapter->stats.rxerrc +
5588 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5589 		adapter->stats.ruc + adapter->stats.roc +
5590 		adapter->stats.cexterr;
5591 	net_stats->rx_length_errors = adapter->stats.ruc +
5592 				      adapter->stats.roc;
5593 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5594 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5595 	net_stats->rx_missed_errors = adapter->stats.mpc;
5596 
5597 	/* Tx Errors */
5598 	net_stats->tx_errors = adapter->stats.ecol +
5599 			       adapter->stats.latecol;
5600 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5601 	net_stats->tx_window_errors = adapter->stats.latecol;
5602 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5603 
5604 	/* Tx Dropped needs to be maintained elsewhere */
5605 
5606 	/* Management Stats */
5607 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5608 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5609 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5610 
5611 	/* OS2BMC Stats */
5612 	reg = rd32(E1000_MANC);
5613 	if (reg & E1000_MANC_EN_BMC2OS) {
5614 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5615 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5616 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5617 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5618 	}
5619 }
5620 
5621 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5622 {
5623 	struct e1000_hw *hw = &adapter->hw;
5624 	struct ptp_clock_event event;
5625 	struct timespec64 ts;
5626 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5627 
5628 	if (tsicr & TSINTR_SYS_WRAP) {
5629 		event.type = PTP_CLOCK_PPS;
5630 		if (adapter->ptp_caps.pps)
5631 			ptp_clock_event(adapter->ptp_clock, &event);
5632 		else
5633 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5634 		ack |= TSINTR_SYS_WRAP;
5635 	}
5636 
5637 	if (tsicr & E1000_TSICR_TXTS) {
5638 		/* retrieve hardware timestamp */
5639 		schedule_work(&adapter->ptp_tx_work);
5640 		ack |= E1000_TSICR_TXTS;
5641 	}
5642 
5643 	if (tsicr & TSINTR_TT0) {
5644 		spin_lock(&adapter->tmreg_lock);
5645 		ts = timespec64_add(adapter->perout[0].start,
5646 				    adapter->perout[0].period);
5647 		/* u32 conversion of tv_sec is safe until y2106 */
5648 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5649 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5650 		tsauxc = rd32(E1000_TSAUXC);
5651 		tsauxc |= TSAUXC_EN_TT0;
5652 		wr32(E1000_TSAUXC, tsauxc);
5653 		adapter->perout[0].start = ts;
5654 		spin_unlock(&adapter->tmreg_lock);
5655 		ack |= TSINTR_TT0;
5656 	}
5657 
5658 	if (tsicr & TSINTR_TT1) {
5659 		spin_lock(&adapter->tmreg_lock);
5660 		ts = timespec64_add(adapter->perout[1].start,
5661 				    adapter->perout[1].period);
5662 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5663 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5664 		tsauxc = rd32(E1000_TSAUXC);
5665 		tsauxc |= TSAUXC_EN_TT1;
5666 		wr32(E1000_TSAUXC, tsauxc);
5667 		adapter->perout[1].start = ts;
5668 		spin_unlock(&adapter->tmreg_lock);
5669 		ack |= TSINTR_TT1;
5670 	}
5671 
5672 	if (tsicr & TSINTR_AUTT0) {
5673 		nsec = rd32(E1000_AUXSTMPL0);
5674 		sec  = rd32(E1000_AUXSTMPH0);
5675 		event.type = PTP_CLOCK_EXTTS;
5676 		event.index = 0;
5677 		event.timestamp = sec * 1000000000ULL + nsec;
5678 		ptp_clock_event(adapter->ptp_clock, &event);
5679 		ack |= TSINTR_AUTT0;
5680 	}
5681 
5682 	if (tsicr & TSINTR_AUTT1) {
5683 		nsec = rd32(E1000_AUXSTMPL1);
5684 		sec  = rd32(E1000_AUXSTMPH1);
5685 		event.type = PTP_CLOCK_EXTTS;
5686 		event.index = 1;
5687 		event.timestamp = sec * 1000000000ULL + nsec;
5688 		ptp_clock_event(adapter->ptp_clock, &event);
5689 		ack |= TSINTR_AUTT1;
5690 	}
5691 
5692 	/* acknowledge the interrupts */
5693 	wr32(E1000_TSICR, ack);
5694 }
5695 
5696 static irqreturn_t igb_msix_other(int irq, void *data)
5697 {
5698 	struct igb_adapter *adapter = data;
5699 	struct e1000_hw *hw = &adapter->hw;
5700 	u32 icr = rd32(E1000_ICR);
5701 	/* reading ICR causes bit 31 of EICR to be cleared */
5702 
5703 	if (icr & E1000_ICR_DRSTA)
5704 		schedule_work(&adapter->reset_task);
5705 
5706 	if (icr & E1000_ICR_DOUTSYNC) {
5707 		/* HW is reporting DMA is out of sync */
5708 		adapter->stats.doosync++;
5709 		/* The DMA Out of Sync is also indication of a spoof event
5710 		 * in IOV mode. Check the Wrong VM Behavior register to
5711 		 * see if it is really a spoof event.
5712 		 */
5713 		igb_check_wvbr(adapter);
5714 	}
5715 
5716 	/* Check for a mailbox event */
5717 	if (icr & E1000_ICR_VMMB)
5718 		igb_msg_task(adapter);
5719 
5720 	if (icr & E1000_ICR_LSC) {
5721 		hw->mac.get_link_status = 1;
5722 		/* guard against interrupt when we're going down */
5723 		if (!test_bit(__IGB_DOWN, &adapter->state))
5724 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5725 	}
5726 
5727 	if (icr & E1000_ICR_TS)
5728 		igb_tsync_interrupt(adapter);
5729 
5730 	wr32(E1000_EIMS, adapter->eims_other);
5731 
5732 	return IRQ_HANDLED;
5733 }
5734 
5735 static void igb_write_itr(struct igb_q_vector *q_vector)
5736 {
5737 	struct igb_adapter *adapter = q_vector->adapter;
5738 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5739 
5740 	if (!q_vector->set_itr)
5741 		return;
5742 
5743 	if (!itr_val)
5744 		itr_val = 0x4;
5745 
5746 	if (adapter->hw.mac.type == e1000_82575)
5747 		itr_val |= itr_val << 16;
5748 	else
5749 		itr_val |= E1000_EITR_CNT_IGNR;
5750 
5751 	writel(itr_val, q_vector->itr_register);
5752 	q_vector->set_itr = 0;
5753 }
5754 
5755 static irqreturn_t igb_msix_ring(int irq, void *data)
5756 {
5757 	struct igb_q_vector *q_vector = data;
5758 
5759 	/* Write the ITR value calculated from the previous interrupt. */
5760 	igb_write_itr(q_vector);
5761 
5762 	napi_schedule(&q_vector->napi);
5763 
5764 	return IRQ_HANDLED;
5765 }
5766 
5767 #ifdef CONFIG_IGB_DCA
5768 static void igb_update_tx_dca(struct igb_adapter *adapter,
5769 			      struct igb_ring *tx_ring,
5770 			      int cpu)
5771 {
5772 	struct e1000_hw *hw = &adapter->hw;
5773 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5774 
5775 	if (hw->mac.type != e1000_82575)
5776 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5777 
5778 	/* We can enable relaxed ordering for reads, but not writes when
5779 	 * DCA is enabled.  This is due to a known issue in some chipsets
5780 	 * which will cause the DCA tag to be cleared.
5781 	 */
5782 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5783 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5784 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5785 
5786 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5787 }
5788 
5789 static void igb_update_rx_dca(struct igb_adapter *adapter,
5790 			      struct igb_ring *rx_ring,
5791 			      int cpu)
5792 {
5793 	struct e1000_hw *hw = &adapter->hw;
5794 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5795 
5796 	if (hw->mac.type != e1000_82575)
5797 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5798 
5799 	/* We can enable relaxed ordering for reads, but not writes when
5800 	 * DCA is enabled.  This is due to a known issue in some chipsets
5801 	 * which will cause the DCA tag to be cleared.
5802 	 */
5803 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5804 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5805 
5806 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5807 }
5808 
5809 static void igb_update_dca(struct igb_q_vector *q_vector)
5810 {
5811 	struct igb_adapter *adapter = q_vector->adapter;
5812 	int cpu = get_cpu();
5813 
5814 	if (q_vector->cpu == cpu)
5815 		goto out_no_update;
5816 
5817 	if (q_vector->tx.ring)
5818 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5819 
5820 	if (q_vector->rx.ring)
5821 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5822 
5823 	q_vector->cpu = cpu;
5824 out_no_update:
5825 	put_cpu();
5826 }
5827 
5828 static void igb_setup_dca(struct igb_adapter *adapter)
5829 {
5830 	struct e1000_hw *hw = &adapter->hw;
5831 	int i;
5832 
5833 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5834 		return;
5835 
5836 	/* Always use CB2 mode, difference is masked in the CB driver. */
5837 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5838 
5839 	for (i = 0; i < adapter->num_q_vectors; i++) {
5840 		adapter->q_vector[i]->cpu = -1;
5841 		igb_update_dca(adapter->q_vector[i]);
5842 	}
5843 }
5844 
5845 static int __igb_notify_dca(struct device *dev, void *data)
5846 {
5847 	struct net_device *netdev = dev_get_drvdata(dev);
5848 	struct igb_adapter *adapter = netdev_priv(netdev);
5849 	struct pci_dev *pdev = adapter->pdev;
5850 	struct e1000_hw *hw = &adapter->hw;
5851 	unsigned long event = *(unsigned long *)data;
5852 
5853 	switch (event) {
5854 	case DCA_PROVIDER_ADD:
5855 		/* if already enabled, don't do it again */
5856 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5857 			break;
5858 		if (dca_add_requester(dev) == 0) {
5859 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5860 			dev_info(&pdev->dev, "DCA enabled\n");
5861 			igb_setup_dca(adapter);
5862 			break;
5863 		}
5864 		/* Fall Through since DCA is disabled. */
5865 	case DCA_PROVIDER_REMOVE:
5866 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5867 			/* without this a class_device is left
5868 			 * hanging around in the sysfs model
5869 			 */
5870 			dca_remove_requester(dev);
5871 			dev_info(&pdev->dev, "DCA disabled\n");
5872 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5873 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5874 		}
5875 		break;
5876 	}
5877 
5878 	return 0;
5879 }
5880 
5881 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5882 			  void *p)
5883 {
5884 	int ret_val;
5885 
5886 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5887 					 __igb_notify_dca);
5888 
5889 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5890 }
5891 #endif /* CONFIG_IGB_DCA */
5892 
5893 #ifdef CONFIG_PCI_IOV
5894 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5895 {
5896 	unsigned char mac_addr[ETH_ALEN];
5897 
5898 	eth_zero_addr(mac_addr);
5899 	igb_set_vf_mac(adapter, vf, mac_addr);
5900 
5901 	/* By default spoof check is enabled for all VFs */
5902 	adapter->vf_data[vf].spoofchk_enabled = true;
5903 
5904 	return 0;
5905 }
5906 
5907 #endif
5908 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5909 {
5910 	struct e1000_hw *hw = &adapter->hw;
5911 	u32 ping;
5912 	int i;
5913 
5914 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5915 		ping = E1000_PF_CONTROL_MSG;
5916 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5917 			ping |= E1000_VT_MSGTYPE_CTS;
5918 		igb_write_mbx(hw, &ping, 1, i);
5919 	}
5920 }
5921 
5922 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5923 {
5924 	struct e1000_hw *hw = &adapter->hw;
5925 	u32 vmolr = rd32(E1000_VMOLR(vf));
5926 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5927 
5928 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5929 			    IGB_VF_FLAG_MULTI_PROMISC);
5930 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5931 
5932 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5933 		vmolr |= E1000_VMOLR_MPME;
5934 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5935 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5936 	} else {
5937 		/* if we have hashes and we are clearing a multicast promisc
5938 		 * flag we need to write the hashes to the MTA as this step
5939 		 * was previously skipped
5940 		 */
5941 		if (vf_data->num_vf_mc_hashes > 30) {
5942 			vmolr |= E1000_VMOLR_MPME;
5943 		} else if (vf_data->num_vf_mc_hashes) {
5944 			int j;
5945 
5946 			vmolr |= E1000_VMOLR_ROMPE;
5947 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5948 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5949 		}
5950 	}
5951 
5952 	wr32(E1000_VMOLR(vf), vmolr);
5953 
5954 	/* there are flags left unprocessed, likely not supported */
5955 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5956 		return -EINVAL;
5957 
5958 	return 0;
5959 }
5960 
5961 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5962 				  u32 *msgbuf, u32 vf)
5963 {
5964 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5965 	u16 *hash_list = (u16 *)&msgbuf[1];
5966 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5967 	int i;
5968 
5969 	/* salt away the number of multicast addresses assigned
5970 	 * to this VF for later use to restore when the PF multi cast
5971 	 * list changes
5972 	 */
5973 	vf_data->num_vf_mc_hashes = n;
5974 
5975 	/* only up to 30 hash values supported */
5976 	if (n > 30)
5977 		n = 30;
5978 
5979 	/* store the hashes for later use */
5980 	for (i = 0; i < n; i++)
5981 		vf_data->vf_mc_hashes[i] = hash_list[i];
5982 
5983 	/* Flush and reset the mta with the new values */
5984 	igb_set_rx_mode(adapter->netdev);
5985 
5986 	return 0;
5987 }
5988 
5989 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5990 {
5991 	struct e1000_hw *hw = &adapter->hw;
5992 	struct vf_data_storage *vf_data;
5993 	int i, j;
5994 
5995 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5996 		u32 vmolr = rd32(E1000_VMOLR(i));
5997 
5998 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5999 
6000 		vf_data = &adapter->vf_data[i];
6001 
6002 		if ((vf_data->num_vf_mc_hashes > 30) ||
6003 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6004 			vmolr |= E1000_VMOLR_MPME;
6005 		} else if (vf_data->num_vf_mc_hashes) {
6006 			vmolr |= E1000_VMOLR_ROMPE;
6007 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6008 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6009 		}
6010 		wr32(E1000_VMOLR(i), vmolr);
6011 	}
6012 }
6013 
6014 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6015 {
6016 	struct e1000_hw *hw = &adapter->hw;
6017 	u32 pool_mask, vlvf_mask, i;
6018 
6019 	/* create mask for VF and other pools */
6020 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6021 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6022 
6023 	/* drop PF from pool bits */
6024 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6025 			     adapter->vfs_allocated_count);
6026 
6027 	/* Find the vlan filter for this id */
6028 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6029 		u32 vlvf = rd32(E1000_VLVF(i));
6030 		u32 vfta_mask, vid, vfta;
6031 
6032 		/* remove the vf from the pool */
6033 		if (!(vlvf & vlvf_mask))
6034 			continue;
6035 
6036 		/* clear out bit from VLVF */
6037 		vlvf ^= vlvf_mask;
6038 
6039 		/* if other pools are present, just remove ourselves */
6040 		if (vlvf & pool_mask)
6041 			goto update_vlvfb;
6042 
6043 		/* if PF is present, leave VFTA */
6044 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6045 			goto update_vlvf;
6046 
6047 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6048 		vfta_mask = BIT(vid % 32);
6049 
6050 		/* clear bit from VFTA */
6051 		vfta = adapter->shadow_vfta[vid / 32];
6052 		if (vfta & vfta_mask)
6053 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6054 update_vlvf:
6055 		/* clear pool selection enable */
6056 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6057 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6058 		else
6059 			vlvf = 0;
6060 update_vlvfb:
6061 		/* clear pool bits */
6062 		wr32(E1000_VLVF(i), vlvf);
6063 	}
6064 }
6065 
6066 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6067 {
6068 	u32 vlvf;
6069 	int idx;
6070 
6071 	/* short cut the special case */
6072 	if (vlan == 0)
6073 		return 0;
6074 
6075 	/* Search for the VLAN id in the VLVF entries */
6076 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6077 		vlvf = rd32(E1000_VLVF(idx));
6078 		if ((vlvf & VLAN_VID_MASK) == vlan)
6079 			break;
6080 	}
6081 
6082 	return idx;
6083 }
6084 
6085 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6086 {
6087 	struct e1000_hw *hw = &adapter->hw;
6088 	u32 bits, pf_id;
6089 	int idx;
6090 
6091 	idx = igb_find_vlvf_entry(hw, vid);
6092 	if (!idx)
6093 		return;
6094 
6095 	/* See if any other pools are set for this VLAN filter
6096 	 * entry other than the PF.
6097 	 */
6098 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6099 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6100 	bits &= rd32(E1000_VLVF(idx));
6101 
6102 	/* Disable the filter so this falls into the default pool. */
6103 	if (!bits) {
6104 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6105 			wr32(E1000_VLVF(idx), BIT(pf_id));
6106 		else
6107 			wr32(E1000_VLVF(idx), 0);
6108 	}
6109 }
6110 
6111 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6112 			   bool add, u32 vf)
6113 {
6114 	int pf_id = adapter->vfs_allocated_count;
6115 	struct e1000_hw *hw = &adapter->hw;
6116 	int err;
6117 
6118 	/* If VLAN overlaps with one the PF is currently monitoring make
6119 	 * sure that we are able to allocate a VLVF entry.  This may be
6120 	 * redundant but it guarantees PF will maintain visibility to
6121 	 * the VLAN.
6122 	 */
6123 	if (add && test_bit(vid, adapter->active_vlans)) {
6124 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6125 		if (err)
6126 			return err;
6127 	}
6128 
6129 	err = igb_vfta_set(hw, vid, vf, add, false);
6130 
6131 	if (add && !err)
6132 		return err;
6133 
6134 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6135 	 * we may need to drop the PF pool bit in order to allow us to free
6136 	 * up the VLVF resources.
6137 	 */
6138 	if (test_bit(vid, adapter->active_vlans) ||
6139 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6140 		igb_update_pf_vlvf(adapter, vid);
6141 
6142 	return err;
6143 }
6144 
6145 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6146 {
6147 	struct e1000_hw *hw = &adapter->hw;
6148 
6149 	if (vid)
6150 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6151 	else
6152 		wr32(E1000_VMVIR(vf), 0);
6153 }
6154 
6155 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6156 				u16 vlan, u8 qos)
6157 {
6158 	int err;
6159 
6160 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6161 	if (err)
6162 		return err;
6163 
6164 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6165 	igb_set_vmolr(adapter, vf, !vlan);
6166 
6167 	/* revoke access to previous VLAN */
6168 	if (vlan != adapter->vf_data[vf].pf_vlan)
6169 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6170 				false, vf);
6171 
6172 	adapter->vf_data[vf].pf_vlan = vlan;
6173 	adapter->vf_data[vf].pf_qos = qos;
6174 	igb_set_vf_vlan_strip(adapter, vf, true);
6175 	dev_info(&adapter->pdev->dev,
6176 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6177 	if (test_bit(__IGB_DOWN, &adapter->state)) {
6178 		dev_warn(&adapter->pdev->dev,
6179 			 "The VF VLAN has been set, but the PF device is not up.\n");
6180 		dev_warn(&adapter->pdev->dev,
6181 			 "Bring the PF device up before attempting to use the VF device.\n");
6182 	}
6183 
6184 	return err;
6185 }
6186 
6187 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6188 {
6189 	/* Restore tagless access via VLAN 0 */
6190 	igb_set_vf_vlan(adapter, 0, true, vf);
6191 
6192 	igb_set_vmvir(adapter, 0, vf);
6193 	igb_set_vmolr(adapter, vf, true);
6194 
6195 	/* Remove any PF assigned VLAN */
6196 	if (adapter->vf_data[vf].pf_vlan)
6197 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6198 				false, vf);
6199 
6200 	adapter->vf_data[vf].pf_vlan = 0;
6201 	adapter->vf_data[vf].pf_qos = 0;
6202 	igb_set_vf_vlan_strip(adapter, vf, false);
6203 
6204 	return 0;
6205 }
6206 
6207 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6208 			       int vf, u16 vlan, u8 qos)
6209 {
6210 	struct igb_adapter *adapter = netdev_priv(netdev);
6211 
6212 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6213 		return -EINVAL;
6214 
6215 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6216 			       igb_disable_port_vlan(adapter, vf);
6217 }
6218 
6219 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6220 {
6221 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6222 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6223 	int ret;
6224 
6225 	if (adapter->vf_data[vf].pf_vlan)
6226 		return -1;
6227 
6228 	/* VLAN 0 is a special case, don't allow it to be removed */
6229 	if (!vid && !add)
6230 		return 0;
6231 
6232 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6233 	if (!ret)
6234 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6235 	return ret;
6236 }
6237 
6238 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6239 {
6240 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6241 
6242 	/* clear flags - except flag that indicates PF has set the MAC */
6243 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6244 	vf_data->last_nack = jiffies;
6245 
6246 	/* reset vlans for device */
6247 	igb_clear_vf_vfta(adapter, vf);
6248 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6249 	igb_set_vmvir(adapter, vf_data->pf_vlan |
6250 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6251 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6252 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6253 
6254 	/* reset multicast table array for vf */
6255 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6256 
6257 	/* Flush and reset the mta with the new values */
6258 	igb_set_rx_mode(adapter->netdev);
6259 }
6260 
6261 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6262 {
6263 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6264 
6265 	/* clear mac address as we were hotplug removed/added */
6266 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6267 		eth_zero_addr(vf_mac);
6268 
6269 	/* process remaining reset events */
6270 	igb_vf_reset(adapter, vf);
6271 }
6272 
6273 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6274 {
6275 	struct e1000_hw *hw = &adapter->hw;
6276 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6277 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6278 	u32 reg, msgbuf[3];
6279 	u8 *addr = (u8 *)(&msgbuf[1]);
6280 
6281 	/* process all the same items cleared in a function level reset */
6282 	igb_vf_reset(adapter, vf);
6283 
6284 	/* set vf mac address */
6285 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6286 
6287 	/* enable transmit and receive for vf */
6288 	reg = rd32(E1000_VFTE);
6289 	wr32(E1000_VFTE, reg | BIT(vf));
6290 	reg = rd32(E1000_VFRE);
6291 	wr32(E1000_VFRE, reg | BIT(vf));
6292 
6293 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6294 
6295 	/* reply to reset with ack and vf mac address */
6296 	if (!is_zero_ether_addr(vf_mac)) {
6297 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6298 		memcpy(addr, vf_mac, ETH_ALEN);
6299 	} else {
6300 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6301 	}
6302 	igb_write_mbx(hw, msgbuf, 3, vf);
6303 }
6304 
6305 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6306 {
6307 	/* The VF MAC Address is stored in a packed array of bytes
6308 	 * starting at the second 32 bit word of the msg array
6309 	 */
6310 	unsigned char *addr = (char *)&msg[1];
6311 	int err = -1;
6312 
6313 	if (is_valid_ether_addr(addr))
6314 		err = igb_set_vf_mac(adapter, vf, addr);
6315 
6316 	return err;
6317 }
6318 
6319 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6320 {
6321 	struct e1000_hw *hw = &adapter->hw;
6322 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6323 	u32 msg = E1000_VT_MSGTYPE_NACK;
6324 
6325 	/* if device isn't clear to send it shouldn't be reading either */
6326 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6327 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6328 		igb_write_mbx(hw, &msg, 1, vf);
6329 		vf_data->last_nack = jiffies;
6330 	}
6331 }
6332 
6333 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6334 {
6335 	struct pci_dev *pdev = adapter->pdev;
6336 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6337 	struct e1000_hw *hw = &adapter->hw;
6338 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6339 	s32 retval;
6340 
6341 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6342 
6343 	if (retval) {
6344 		/* if receive failed revoke VF CTS stats and restart init */
6345 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6346 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6347 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6348 			return;
6349 		goto out;
6350 	}
6351 
6352 	/* this is a message we already processed, do nothing */
6353 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6354 		return;
6355 
6356 	/* until the vf completes a reset it should not be
6357 	 * allowed to start any configuration.
6358 	 */
6359 	if (msgbuf[0] == E1000_VF_RESET) {
6360 		igb_vf_reset_msg(adapter, vf);
6361 		return;
6362 	}
6363 
6364 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6365 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6366 			return;
6367 		retval = -1;
6368 		goto out;
6369 	}
6370 
6371 	switch ((msgbuf[0] & 0xFFFF)) {
6372 	case E1000_VF_SET_MAC_ADDR:
6373 		retval = -EINVAL;
6374 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6375 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6376 		else
6377 			dev_warn(&pdev->dev,
6378 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6379 				 vf);
6380 		break;
6381 	case E1000_VF_SET_PROMISC:
6382 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6383 		break;
6384 	case E1000_VF_SET_MULTICAST:
6385 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6386 		break;
6387 	case E1000_VF_SET_LPE:
6388 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6389 		break;
6390 	case E1000_VF_SET_VLAN:
6391 		retval = -1;
6392 		if (vf_data->pf_vlan)
6393 			dev_warn(&pdev->dev,
6394 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6395 				 vf);
6396 		else
6397 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6398 		break;
6399 	default:
6400 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6401 		retval = -1;
6402 		break;
6403 	}
6404 
6405 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6406 out:
6407 	/* notify the VF of the results of what it sent us */
6408 	if (retval)
6409 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6410 	else
6411 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6412 
6413 	igb_write_mbx(hw, msgbuf, 1, vf);
6414 }
6415 
6416 static void igb_msg_task(struct igb_adapter *adapter)
6417 {
6418 	struct e1000_hw *hw = &adapter->hw;
6419 	u32 vf;
6420 
6421 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6422 		/* process any reset requests */
6423 		if (!igb_check_for_rst(hw, vf))
6424 			igb_vf_reset_event(adapter, vf);
6425 
6426 		/* process any messages pending */
6427 		if (!igb_check_for_msg(hw, vf))
6428 			igb_rcv_msg_from_vf(adapter, vf);
6429 
6430 		/* process any acks */
6431 		if (!igb_check_for_ack(hw, vf))
6432 			igb_rcv_ack_from_vf(adapter, vf);
6433 	}
6434 }
6435 
6436 /**
6437  *  igb_set_uta - Set unicast filter table address
6438  *  @adapter: board private structure
6439  *  @set: boolean indicating if we are setting or clearing bits
6440  *
6441  *  The unicast table address is a register array of 32-bit registers.
6442  *  The table is meant to be used in a way similar to how the MTA is used
6443  *  however due to certain limitations in the hardware it is necessary to
6444  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6445  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6446  **/
6447 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6448 {
6449 	struct e1000_hw *hw = &adapter->hw;
6450 	u32 uta = set ? ~0 : 0;
6451 	int i;
6452 
6453 	/* we only need to do this if VMDq is enabled */
6454 	if (!adapter->vfs_allocated_count)
6455 		return;
6456 
6457 	for (i = hw->mac.uta_reg_count; i--;)
6458 		array_wr32(E1000_UTA, i, uta);
6459 }
6460 
6461 /**
6462  *  igb_intr_msi - Interrupt Handler
6463  *  @irq: interrupt number
6464  *  @data: pointer to a network interface device structure
6465  **/
6466 static irqreturn_t igb_intr_msi(int irq, void *data)
6467 {
6468 	struct igb_adapter *adapter = data;
6469 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6470 	struct e1000_hw *hw = &adapter->hw;
6471 	/* read ICR disables interrupts using IAM */
6472 	u32 icr = rd32(E1000_ICR);
6473 
6474 	igb_write_itr(q_vector);
6475 
6476 	if (icr & E1000_ICR_DRSTA)
6477 		schedule_work(&adapter->reset_task);
6478 
6479 	if (icr & E1000_ICR_DOUTSYNC) {
6480 		/* HW is reporting DMA is out of sync */
6481 		adapter->stats.doosync++;
6482 	}
6483 
6484 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6485 		hw->mac.get_link_status = 1;
6486 		if (!test_bit(__IGB_DOWN, &adapter->state))
6487 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6488 	}
6489 
6490 	if (icr & E1000_ICR_TS)
6491 		igb_tsync_interrupt(adapter);
6492 
6493 	napi_schedule(&q_vector->napi);
6494 
6495 	return IRQ_HANDLED;
6496 }
6497 
6498 /**
6499  *  igb_intr - Legacy Interrupt Handler
6500  *  @irq: interrupt number
6501  *  @data: pointer to a network interface device structure
6502  **/
6503 static irqreturn_t igb_intr(int irq, void *data)
6504 {
6505 	struct igb_adapter *adapter = data;
6506 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6507 	struct e1000_hw *hw = &adapter->hw;
6508 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6509 	 * need for the IMC write
6510 	 */
6511 	u32 icr = rd32(E1000_ICR);
6512 
6513 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6514 	 * not set, then the adapter didn't send an interrupt
6515 	 */
6516 	if (!(icr & E1000_ICR_INT_ASSERTED))
6517 		return IRQ_NONE;
6518 
6519 	igb_write_itr(q_vector);
6520 
6521 	if (icr & E1000_ICR_DRSTA)
6522 		schedule_work(&adapter->reset_task);
6523 
6524 	if (icr & E1000_ICR_DOUTSYNC) {
6525 		/* HW is reporting DMA is out of sync */
6526 		adapter->stats.doosync++;
6527 	}
6528 
6529 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6530 		hw->mac.get_link_status = 1;
6531 		/* guard against interrupt when we're going down */
6532 		if (!test_bit(__IGB_DOWN, &adapter->state))
6533 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6534 	}
6535 
6536 	if (icr & E1000_ICR_TS)
6537 		igb_tsync_interrupt(adapter);
6538 
6539 	napi_schedule(&q_vector->napi);
6540 
6541 	return IRQ_HANDLED;
6542 }
6543 
6544 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6545 {
6546 	struct igb_adapter *adapter = q_vector->adapter;
6547 	struct e1000_hw *hw = &adapter->hw;
6548 
6549 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6550 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6551 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6552 			igb_set_itr(q_vector);
6553 		else
6554 			igb_update_ring_itr(q_vector);
6555 	}
6556 
6557 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6558 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6559 			wr32(E1000_EIMS, q_vector->eims_value);
6560 		else
6561 			igb_irq_enable(adapter);
6562 	}
6563 }
6564 
6565 /**
6566  *  igb_poll - NAPI Rx polling callback
6567  *  @napi: napi polling structure
6568  *  @budget: count of how many packets we should handle
6569  **/
6570 static int igb_poll(struct napi_struct *napi, int budget)
6571 {
6572 	struct igb_q_vector *q_vector = container_of(napi,
6573 						     struct igb_q_vector,
6574 						     napi);
6575 	bool clean_complete = true;
6576 	int work_done = 0;
6577 
6578 #ifdef CONFIG_IGB_DCA
6579 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6580 		igb_update_dca(q_vector);
6581 #endif
6582 	if (q_vector->tx.ring)
6583 		clean_complete = igb_clean_tx_irq(q_vector, budget);
6584 
6585 	if (q_vector->rx.ring) {
6586 		int cleaned = igb_clean_rx_irq(q_vector, budget);
6587 
6588 		work_done += cleaned;
6589 		if (cleaned >= budget)
6590 			clean_complete = false;
6591 	}
6592 
6593 	/* If all work not completed, return budget and keep polling */
6594 	if (!clean_complete)
6595 		return budget;
6596 
6597 	/* If not enough Rx work done, exit the polling mode */
6598 	napi_complete_done(napi, work_done);
6599 	igb_ring_irq_enable(q_vector);
6600 
6601 	return 0;
6602 }
6603 
6604 /**
6605  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6606  *  @q_vector: pointer to q_vector containing needed info
6607  *  @napi_budget: Used to determine if we are in netpoll
6608  *
6609  *  returns true if ring is completely cleaned
6610  **/
6611 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6612 {
6613 	struct igb_adapter *adapter = q_vector->adapter;
6614 	struct igb_ring *tx_ring = q_vector->tx.ring;
6615 	struct igb_tx_buffer *tx_buffer;
6616 	union e1000_adv_tx_desc *tx_desc;
6617 	unsigned int total_bytes = 0, total_packets = 0;
6618 	unsigned int budget = q_vector->tx.work_limit;
6619 	unsigned int i = tx_ring->next_to_clean;
6620 
6621 	if (test_bit(__IGB_DOWN, &adapter->state))
6622 		return true;
6623 
6624 	tx_buffer = &tx_ring->tx_buffer_info[i];
6625 	tx_desc = IGB_TX_DESC(tx_ring, i);
6626 	i -= tx_ring->count;
6627 
6628 	do {
6629 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6630 
6631 		/* if next_to_watch is not set then there is no work pending */
6632 		if (!eop_desc)
6633 			break;
6634 
6635 		/* prevent any other reads prior to eop_desc */
6636 		read_barrier_depends();
6637 
6638 		/* if DD is not set pending work has not been completed */
6639 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6640 			break;
6641 
6642 		/* clear next_to_watch to prevent false hangs */
6643 		tx_buffer->next_to_watch = NULL;
6644 
6645 		/* update the statistics for this packet */
6646 		total_bytes += tx_buffer->bytecount;
6647 		total_packets += tx_buffer->gso_segs;
6648 
6649 		/* free the skb */
6650 		napi_consume_skb(tx_buffer->skb, napi_budget);
6651 
6652 		/* unmap skb header data */
6653 		dma_unmap_single(tx_ring->dev,
6654 				 dma_unmap_addr(tx_buffer, dma),
6655 				 dma_unmap_len(tx_buffer, len),
6656 				 DMA_TO_DEVICE);
6657 
6658 		/* clear tx_buffer data */
6659 		tx_buffer->skb = NULL;
6660 		dma_unmap_len_set(tx_buffer, len, 0);
6661 
6662 		/* clear last DMA location and unmap remaining buffers */
6663 		while (tx_desc != eop_desc) {
6664 			tx_buffer++;
6665 			tx_desc++;
6666 			i++;
6667 			if (unlikely(!i)) {
6668 				i -= tx_ring->count;
6669 				tx_buffer = tx_ring->tx_buffer_info;
6670 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6671 			}
6672 
6673 			/* unmap any remaining paged data */
6674 			if (dma_unmap_len(tx_buffer, len)) {
6675 				dma_unmap_page(tx_ring->dev,
6676 					       dma_unmap_addr(tx_buffer, dma),
6677 					       dma_unmap_len(tx_buffer, len),
6678 					       DMA_TO_DEVICE);
6679 				dma_unmap_len_set(tx_buffer, len, 0);
6680 			}
6681 		}
6682 
6683 		/* move us one more past the eop_desc for start of next pkt */
6684 		tx_buffer++;
6685 		tx_desc++;
6686 		i++;
6687 		if (unlikely(!i)) {
6688 			i -= tx_ring->count;
6689 			tx_buffer = tx_ring->tx_buffer_info;
6690 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6691 		}
6692 
6693 		/* issue prefetch for next Tx descriptor */
6694 		prefetch(tx_desc);
6695 
6696 		/* update budget accounting */
6697 		budget--;
6698 	} while (likely(budget));
6699 
6700 	netdev_tx_completed_queue(txring_txq(tx_ring),
6701 				  total_packets, total_bytes);
6702 	i += tx_ring->count;
6703 	tx_ring->next_to_clean = i;
6704 	u64_stats_update_begin(&tx_ring->tx_syncp);
6705 	tx_ring->tx_stats.bytes += total_bytes;
6706 	tx_ring->tx_stats.packets += total_packets;
6707 	u64_stats_update_end(&tx_ring->tx_syncp);
6708 	q_vector->tx.total_bytes += total_bytes;
6709 	q_vector->tx.total_packets += total_packets;
6710 
6711 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6712 		struct e1000_hw *hw = &adapter->hw;
6713 
6714 		/* Detect a transmit hang in hardware, this serializes the
6715 		 * check with the clearing of time_stamp and movement of i
6716 		 */
6717 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6718 		if (tx_buffer->next_to_watch &&
6719 		    time_after(jiffies, tx_buffer->time_stamp +
6720 			       (adapter->tx_timeout_factor * HZ)) &&
6721 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6722 
6723 			/* detected Tx unit hang */
6724 			dev_err(tx_ring->dev,
6725 				"Detected Tx Unit Hang\n"
6726 				"  Tx Queue             <%d>\n"
6727 				"  TDH                  <%x>\n"
6728 				"  TDT                  <%x>\n"
6729 				"  next_to_use          <%x>\n"
6730 				"  next_to_clean        <%x>\n"
6731 				"buffer_info[next_to_clean]\n"
6732 				"  time_stamp           <%lx>\n"
6733 				"  next_to_watch        <%p>\n"
6734 				"  jiffies              <%lx>\n"
6735 				"  desc.status          <%x>\n",
6736 				tx_ring->queue_index,
6737 				rd32(E1000_TDH(tx_ring->reg_idx)),
6738 				readl(tx_ring->tail),
6739 				tx_ring->next_to_use,
6740 				tx_ring->next_to_clean,
6741 				tx_buffer->time_stamp,
6742 				tx_buffer->next_to_watch,
6743 				jiffies,
6744 				tx_buffer->next_to_watch->wb.status);
6745 			netif_stop_subqueue(tx_ring->netdev,
6746 					    tx_ring->queue_index);
6747 
6748 			/* we are about to reset, no point in enabling stuff */
6749 			return true;
6750 		}
6751 	}
6752 
6753 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6754 	if (unlikely(total_packets &&
6755 	    netif_carrier_ok(tx_ring->netdev) &&
6756 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6757 		/* Make sure that anybody stopping the queue after this
6758 		 * sees the new next_to_clean.
6759 		 */
6760 		smp_mb();
6761 		if (__netif_subqueue_stopped(tx_ring->netdev,
6762 					     tx_ring->queue_index) &&
6763 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6764 			netif_wake_subqueue(tx_ring->netdev,
6765 					    tx_ring->queue_index);
6766 
6767 			u64_stats_update_begin(&tx_ring->tx_syncp);
6768 			tx_ring->tx_stats.restart_queue++;
6769 			u64_stats_update_end(&tx_ring->tx_syncp);
6770 		}
6771 	}
6772 
6773 	return !!budget;
6774 }
6775 
6776 /**
6777  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6778  *  @rx_ring: rx descriptor ring to store buffers on
6779  *  @old_buff: donor buffer to have page reused
6780  *
6781  *  Synchronizes page for reuse by the adapter
6782  **/
6783 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6784 			      struct igb_rx_buffer *old_buff)
6785 {
6786 	struct igb_rx_buffer *new_buff;
6787 	u16 nta = rx_ring->next_to_alloc;
6788 
6789 	new_buff = &rx_ring->rx_buffer_info[nta];
6790 
6791 	/* update, and store next to alloc */
6792 	nta++;
6793 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6794 
6795 	/* transfer page from old buffer to new buffer */
6796 	*new_buff = *old_buff;
6797 
6798 	/* sync the buffer for use by the device */
6799 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6800 					 old_buff->page_offset,
6801 					 IGB_RX_BUFSZ,
6802 					 DMA_FROM_DEVICE);
6803 }
6804 
6805 static inline bool igb_page_is_reserved(struct page *page)
6806 {
6807 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6808 }
6809 
6810 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6811 				  struct page *page,
6812 				  unsigned int truesize)
6813 {
6814 	/* avoid re-using remote pages */
6815 	if (unlikely(igb_page_is_reserved(page)))
6816 		return false;
6817 
6818 #if (PAGE_SIZE < 8192)
6819 	/* if we are only owner of page we can reuse it */
6820 	if (unlikely(page_count(page) != 1))
6821 		return false;
6822 
6823 	/* flip page offset to other buffer */
6824 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6825 #else
6826 	/* move offset up to the next cache line */
6827 	rx_buffer->page_offset += truesize;
6828 
6829 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6830 		return false;
6831 #endif
6832 
6833 	/* Even if we own the page, we are not allowed to use atomic_set()
6834 	 * This would break get_page_unless_zero() users.
6835 	 */
6836 	page_ref_inc(page);
6837 
6838 	return true;
6839 }
6840 
6841 /**
6842  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6843  *  @rx_ring: rx descriptor ring to transact packets on
6844  *  @rx_buffer: buffer containing page to add
6845  *  @rx_desc: descriptor containing length of buffer written by hardware
6846  *  @skb: sk_buff to place the data into
6847  *
6848  *  This function will add the data contained in rx_buffer->page to the skb.
6849  *  This is done either through a direct copy if the data in the buffer is
6850  *  less than the skb header size, otherwise it will just attach the page as
6851  *  a frag to the skb.
6852  *
6853  *  The function will then update the page offset if necessary and return
6854  *  true if the buffer can be reused by the adapter.
6855  **/
6856 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6857 			    struct igb_rx_buffer *rx_buffer,
6858 			    union e1000_adv_rx_desc *rx_desc,
6859 			    struct sk_buff *skb)
6860 {
6861 	struct page *page = rx_buffer->page;
6862 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
6863 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6864 #if (PAGE_SIZE < 8192)
6865 	unsigned int truesize = IGB_RX_BUFSZ;
6866 #else
6867 	unsigned int truesize = SKB_DATA_ALIGN(size);
6868 #endif
6869 	unsigned int pull_len;
6870 
6871 	if (unlikely(skb_is_nonlinear(skb)))
6872 		goto add_tail_frag;
6873 
6874 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6875 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6876 		va += IGB_TS_HDR_LEN;
6877 		size -= IGB_TS_HDR_LEN;
6878 	}
6879 
6880 	if (likely(size <= IGB_RX_HDR_LEN)) {
6881 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6882 
6883 		/* page is not reserved, we can reuse buffer as-is */
6884 		if (likely(!igb_page_is_reserved(page)))
6885 			return true;
6886 
6887 		/* this page cannot be reused so discard it */
6888 		__free_page(page);
6889 		return false;
6890 	}
6891 
6892 	/* we need the header to contain the greater of either ETH_HLEN or
6893 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6894 	 */
6895 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6896 
6897 	/* align pull length to size of long to optimize memcpy performance */
6898 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6899 
6900 	/* update all of the pointers */
6901 	va += pull_len;
6902 	size -= pull_len;
6903 
6904 add_tail_frag:
6905 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6906 			(unsigned long)va & ~PAGE_MASK, size, truesize);
6907 
6908 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6909 }
6910 
6911 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6912 					   union e1000_adv_rx_desc *rx_desc,
6913 					   struct sk_buff *skb)
6914 {
6915 	struct igb_rx_buffer *rx_buffer;
6916 	struct page *page;
6917 
6918 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6919 	page = rx_buffer->page;
6920 	prefetchw(page);
6921 
6922 	if (likely(!skb)) {
6923 		void *page_addr = page_address(page) +
6924 				  rx_buffer->page_offset;
6925 
6926 		/* prefetch first cache line of first page */
6927 		prefetch(page_addr);
6928 #if L1_CACHE_BYTES < 128
6929 		prefetch(page_addr + L1_CACHE_BYTES);
6930 #endif
6931 
6932 		/* allocate a skb to store the frags */
6933 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6934 		if (unlikely(!skb)) {
6935 			rx_ring->rx_stats.alloc_failed++;
6936 			return NULL;
6937 		}
6938 
6939 		/* we will be copying header into skb->data in
6940 		 * pskb_may_pull so it is in our interest to prefetch
6941 		 * it now to avoid a possible cache miss
6942 		 */
6943 		prefetchw(skb->data);
6944 	}
6945 
6946 	/* we are reusing so sync this buffer for CPU use */
6947 	dma_sync_single_range_for_cpu(rx_ring->dev,
6948 				      rx_buffer->dma,
6949 				      rx_buffer->page_offset,
6950 				      IGB_RX_BUFSZ,
6951 				      DMA_FROM_DEVICE);
6952 
6953 	/* pull page into skb */
6954 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6955 		/* hand second half of page back to the ring */
6956 		igb_reuse_rx_page(rx_ring, rx_buffer);
6957 	} else {
6958 		/* we are not reusing the buffer so unmap it */
6959 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6960 			       PAGE_SIZE, DMA_FROM_DEVICE);
6961 	}
6962 
6963 	/* clear contents of rx_buffer */
6964 	rx_buffer->page = NULL;
6965 
6966 	return skb;
6967 }
6968 
6969 static inline void igb_rx_checksum(struct igb_ring *ring,
6970 				   union e1000_adv_rx_desc *rx_desc,
6971 				   struct sk_buff *skb)
6972 {
6973 	skb_checksum_none_assert(skb);
6974 
6975 	/* Ignore Checksum bit is set */
6976 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6977 		return;
6978 
6979 	/* Rx checksum disabled via ethtool */
6980 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6981 		return;
6982 
6983 	/* TCP/UDP checksum error bit is set */
6984 	if (igb_test_staterr(rx_desc,
6985 			     E1000_RXDEXT_STATERR_TCPE |
6986 			     E1000_RXDEXT_STATERR_IPE)) {
6987 		/* work around errata with sctp packets where the TCPE aka
6988 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6989 		 * packets, (aka let the stack check the crc32c)
6990 		 */
6991 		if (!((skb->len == 60) &&
6992 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6993 			u64_stats_update_begin(&ring->rx_syncp);
6994 			ring->rx_stats.csum_err++;
6995 			u64_stats_update_end(&ring->rx_syncp);
6996 		}
6997 		/* let the stack verify checksum errors */
6998 		return;
6999 	}
7000 	/* It must be a TCP or UDP packet with a valid checksum */
7001 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7002 				      E1000_RXD_STAT_UDPCS))
7003 		skb->ip_summed = CHECKSUM_UNNECESSARY;
7004 
7005 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
7006 		le32_to_cpu(rx_desc->wb.upper.status_error));
7007 }
7008 
7009 static inline void igb_rx_hash(struct igb_ring *ring,
7010 			       union e1000_adv_rx_desc *rx_desc,
7011 			       struct sk_buff *skb)
7012 {
7013 	if (ring->netdev->features & NETIF_F_RXHASH)
7014 		skb_set_hash(skb,
7015 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7016 			     PKT_HASH_TYPE_L3);
7017 }
7018 
7019 /**
7020  *  igb_is_non_eop - process handling of non-EOP buffers
7021  *  @rx_ring: Rx ring being processed
7022  *  @rx_desc: Rx descriptor for current buffer
7023  *  @skb: current socket buffer containing buffer in progress
7024  *
7025  *  This function updates next to clean.  If the buffer is an EOP buffer
7026  *  this function exits returning false, otherwise it will place the
7027  *  sk_buff in the next buffer to be chained and return true indicating
7028  *  that this is in fact a non-EOP buffer.
7029  **/
7030 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7031 			   union e1000_adv_rx_desc *rx_desc)
7032 {
7033 	u32 ntc = rx_ring->next_to_clean + 1;
7034 
7035 	/* fetch, update, and store next to clean */
7036 	ntc = (ntc < rx_ring->count) ? ntc : 0;
7037 	rx_ring->next_to_clean = ntc;
7038 
7039 	prefetch(IGB_RX_DESC(rx_ring, ntc));
7040 
7041 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7042 		return false;
7043 
7044 	return true;
7045 }
7046 
7047 /**
7048  *  igb_cleanup_headers - Correct corrupted or empty headers
7049  *  @rx_ring: rx descriptor ring packet is being transacted on
7050  *  @rx_desc: pointer to the EOP Rx descriptor
7051  *  @skb: pointer to current skb being fixed
7052  *
7053  *  Address the case where we are pulling data in on pages only
7054  *  and as such no data is present in the skb header.
7055  *
7056  *  In addition if skb is not at least 60 bytes we need to pad it so that
7057  *  it is large enough to qualify as a valid Ethernet frame.
7058  *
7059  *  Returns true if an error was encountered and skb was freed.
7060  **/
7061 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7062 				union e1000_adv_rx_desc *rx_desc,
7063 				struct sk_buff *skb)
7064 {
7065 	if (unlikely((igb_test_staterr(rx_desc,
7066 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7067 		struct net_device *netdev = rx_ring->netdev;
7068 		if (!(netdev->features & NETIF_F_RXALL)) {
7069 			dev_kfree_skb_any(skb);
7070 			return true;
7071 		}
7072 	}
7073 
7074 	/* if eth_skb_pad returns an error the skb was freed */
7075 	if (eth_skb_pad(skb))
7076 		return true;
7077 
7078 	return false;
7079 }
7080 
7081 /**
7082  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7083  *  @rx_ring: rx descriptor ring packet is being transacted on
7084  *  @rx_desc: pointer to the EOP Rx descriptor
7085  *  @skb: pointer to current skb being populated
7086  *
7087  *  This function checks the ring, descriptor, and packet information in
7088  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7089  *  other fields within the skb.
7090  **/
7091 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7092 				   union e1000_adv_rx_desc *rx_desc,
7093 				   struct sk_buff *skb)
7094 {
7095 	struct net_device *dev = rx_ring->netdev;
7096 
7097 	igb_rx_hash(rx_ring, rx_desc, skb);
7098 
7099 	igb_rx_checksum(rx_ring, rx_desc, skb);
7100 
7101 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7102 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7103 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7104 
7105 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7106 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7107 		u16 vid;
7108 
7109 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7110 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7111 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7112 		else
7113 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7114 
7115 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7116 	}
7117 
7118 	skb_record_rx_queue(skb, rx_ring->queue_index);
7119 
7120 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7121 }
7122 
7123 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7124 {
7125 	struct igb_ring *rx_ring = q_vector->rx.ring;
7126 	struct sk_buff *skb = rx_ring->skb;
7127 	unsigned int total_bytes = 0, total_packets = 0;
7128 	u16 cleaned_count = igb_desc_unused(rx_ring);
7129 
7130 	while (likely(total_packets < budget)) {
7131 		union e1000_adv_rx_desc *rx_desc;
7132 
7133 		/* return some buffers to hardware, one at a time is too slow */
7134 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7135 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7136 			cleaned_count = 0;
7137 		}
7138 
7139 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7140 
7141 		if (!rx_desc->wb.upper.status_error)
7142 			break;
7143 
7144 		/* This memory barrier is needed to keep us from reading
7145 		 * any other fields out of the rx_desc until we know the
7146 		 * descriptor has been written back
7147 		 */
7148 		dma_rmb();
7149 
7150 		/* retrieve a buffer from the ring */
7151 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7152 
7153 		/* exit if we failed to retrieve a buffer */
7154 		if (!skb)
7155 			break;
7156 
7157 		cleaned_count++;
7158 
7159 		/* fetch next buffer in frame if non-eop */
7160 		if (igb_is_non_eop(rx_ring, rx_desc))
7161 			continue;
7162 
7163 		/* verify the packet layout is correct */
7164 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7165 			skb = NULL;
7166 			continue;
7167 		}
7168 
7169 		/* probably a little skewed due to removing CRC */
7170 		total_bytes += skb->len;
7171 
7172 		/* populate checksum, timestamp, VLAN, and protocol */
7173 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7174 
7175 		napi_gro_receive(&q_vector->napi, skb);
7176 
7177 		/* reset skb pointer */
7178 		skb = NULL;
7179 
7180 		/* update budget accounting */
7181 		total_packets++;
7182 	}
7183 
7184 	/* place incomplete frames back on ring for completion */
7185 	rx_ring->skb = skb;
7186 
7187 	u64_stats_update_begin(&rx_ring->rx_syncp);
7188 	rx_ring->rx_stats.packets += total_packets;
7189 	rx_ring->rx_stats.bytes += total_bytes;
7190 	u64_stats_update_end(&rx_ring->rx_syncp);
7191 	q_vector->rx.total_packets += total_packets;
7192 	q_vector->rx.total_bytes += total_bytes;
7193 
7194 	if (cleaned_count)
7195 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7196 
7197 	return total_packets;
7198 }
7199 
7200 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7201 				  struct igb_rx_buffer *bi)
7202 {
7203 	struct page *page = bi->page;
7204 	dma_addr_t dma;
7205 
7206 	/* since we are recycling buffers we should seldom need to alloc */
7207 	if (likely(page))
7208 		return true;
7209 
7210 	/* alloc new page for storage */
7211 	page = dev_alloc_page();
7212 	if (unlikely(!page)) {
7213 		rx_ring->rx_stats.alloc_failed++;
7214 		return false;
7215 	}
7216 
7217 	/* map page for use */
7218 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7219 
7220 	/* if mapping failed free memory back to system since
7221 	 * there isn't much point in holding memory we can't use
7222 	 */
7223 	if (dma_mapping_error(rx_ring->dev, dma)) {
7224 		__free_page(page);
7225 
7226 		rx_ring->rx_stats.alloc_failed++;
7227 		return false;
7228 	}
7229 
7230 	bi->dma = dma;
7231 	bi->page = page;
7232 	bi->page_offset = 0;
7233 
7234 	return true;
7235 }
7236 
7237 /**
7238  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7239  *  @adapter: address of board private structure
7240  **/
7241 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7242 {
7243 	union e1000_adv_rx_desc *rx_desc;
7244 	struct igb_rx_buffer *bi;
7245 	u16 i = rx_ring->next_to_use;
7246 
7247 	/* nothing to do */
7248 	if (!cleaned_count)
7249 		return;
7250 
7251 	rx_desc = IGB_RX_DESC(rx_ring, i);
7252 	bi = &rx_ring->rx_buffer_info[i];
7253 	i -= rx_ring->count;
7254 
7255 	do {
7256 		if (!igb_alloc_mapped_page(rx_ring, bi))
7257 			break;
7258 
7259 		/* Refresh the desc even if buffer_addrs didn't change
7260 		 * because each write-back erases this info.
7261 		 */
7262 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7263 
7264 		rx_desc++;
7265 		bi++;
7266 		i++;
7267 		if (unlikely(!i)) {
7268 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7269 			bi = rx_ring->rx_buffer_info;
7270 			i -= rx_ring->count;
7271 		}
7272 
7273 		/* clear the status bits for the next_to_use descriptor */
7274 		rx_desc->wb.upper.status_error = 0;
7275 
7276 		cleaned_count--;
7277 	} while (cleaned_count);
7278 
7279 	i += rx_ring->count;
7280 
7281 	if (rx_ring->next_to_use != i) {
7282 		/* record the next descriptor to use */
7283 		rx_ring->next_to_use = i;
7284 
7285 		/* update next to alloc since we have filled the ring */
7286 		rx_ring->next_to_alloc = i;
7287 
7288 		/* Force memory writes to complete before letting h/w
7289 		 * know there are new descriptors to fetch.  (Only
7290 		 * applicable for weak-ordered memory model archs,
7291 		 * such as IA-64).
7292 		 */
7293 		wmb();
7294 		writel(i, rx_ring->tail);
7295 	}
7296 }
7297 
7298 /**
7299  * igb_mii_ioctl -
7300  * @netdev:
7301  * @ifreq:
7302  * @cmd:
7303  **/
7304 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7305 {
7306 	struct igb_adapter *adapter = netdev_priv(netdev);
7307 	struct mii_ioctl_data *data = if_mii(ifr);
7308 
7309 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7310 		return -EOPNOTSUPP;
7311 
7312 	switch (cmd) {
7313 	case SIOCGMIIPHY:
7314 		data->phy_id = adapter->hw.phy.addr;
7315 		break;
7316 	case SIOCGMIIREG:
7317 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7318 				     &data->val_out))
7319 			return -EIO;
7320 		break;
7321 	case SIOCSMIIREG:
7322 	default:
7323 		return -EOPNOTSUPP;
7324 	}
7325 	return 0;
7326 }
7327 
7328 /**
7329  * igb_ioctl -
7330  * @netdev:
7331  * @ifreq:
7332  * @cmd:
7333  **/
7334 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7335 {
7336 	switch (cmd) {
7337 	case SIOCGMIIPHY:
7338 	case SIOCGMIIREG:
7339 	case SIOCSMIIREG:
7340 		return igb_mii_ioctl(netdev, ifr, cmd);
7341 	case SIOCGHWTSTAMP:
7342 		return igb_ptp_get_ts_config(netdev, ifr);
7343 	case SIOCSHWTSTAMP:
7344 		return igb_ptp_set_ts_config(netdev, ifr);
7345 	default:
7346 		return -EOPNOTSUPP;
7347 	}
7348 }
7349 
7350 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7351 {
7352 	struct igb_adapter *adapter = hw->back;
7353 
7354 	pci_read_config_word(adapter->pdev, reg, value);
7355 }
7356 
7357 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7358 {
7359 	struct igb_adapter *adapter = hw->back;
7360 
7361 	pci_write_config_word(adapter->pdev, reg, *value);
7362 }
7363 
7364 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7365 {
7366 	struct igb_adapter *adapter = hw->back;
7367 
7368 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7369 		return -E1000_ERR_CONFIG;
7370 
7371 	return 0;
7372 }
7373 
7374 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7375 {
7376 	struct igb_adapter *adapter = hw->back;
7377 
7378 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7379 		return -E1000_ERR_CONFIG;
7380 
7381 	return 0;
7382 }
7383 
7384 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7385 {
7386 	struct igb_adapter *adapter = netdev_priv(netdev);
7387 	struct e1000_hw *hw = &adapter->hw;
7388 	u32 ctrl, rctl;
7389 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7390 
7391 	if (enable) {
7392 		/* enable VLAN tag insert/strip */
7393 		ctrl = rd32(E1000_CTRL);
7394 		ctrl |= E1000_CTRL_VME;
7395 		wr32(E1000_CTRL, ctrl);
7396 
7397 		/* Disable CFI check */
7398 		rctl = rd32(E1000_RCTL);
7399 		rctl &= ~E1000_RCTL_CFIEN;
7400 		wr32(E1000_RCTL, rctl);
7401 	} else {
7402 		/* disable VLAN tag insert/strip */
7403 		ctrl = rd32(E1000_CTRL);
7404 		ctrl &= ~E1000_CTRL_VME;
7405 		wr32(E1000_CTRL, ctrl);
7406 	}
7407 
7408 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7409 }
7410 
7411 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7412 			       __be16 proto, u16 vid)
7413 {
7414 	struct igb_adapter *adapter = netdev_priv(netdev);
7415 	struct e1000_hw *hw = &adapter->hw;
7416 	int pf_id = adapter->vfs_allocated_count;
7417 
7418 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7419 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7420 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
7421 
7422 	set_bit(vid, adapter->active_vlans);
7423 
7424 	return 0;
7425 }
7426 
7427 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7428 				__be16 proto, u16 vid)
7429 {
7430 	struct igb_adapter *adapter = netdev_priv(netdev);
7431 	int pf_id = adapter->vfs_allocated_count;
7432 	struct e1000_hw *hw = &adapter->hw;
7433 
7434 	/* remove VID from filter table */
7435 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7436 		igb_vfta_set(hw, vid, pf_id, false, true);
7437 
7438 	clear_bit(vid, adapter->active_vlans);
7439 
7440 	return 0;
7441 }
7442 
7443 static void igb_restore_vlan(struct igb_adapter *adapter)
7444 {
7445 	u16 vid = 1;
7446 
7447 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7448 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7449 
7450 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7451 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7452 }
7453 
7454 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7455 {
7456 	struct pci_dev *pdev = adapter->pdev;
7457 	struct e1000_mac_info *mac = &adapter->hw.mac;
7458 
7459 	mac->autoneg = 0;
7460 
7461 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7462 	 * for the switch() below to work
7463 	 */
7464 	if ((spd & 1) || (dplx & ~1))
7465 		goto err_inval;
7466 
7467 	/* Fiber NIC's only allow 1000 gbps Full duplex
7468 	 * and 100Mbps Full duplex for 100baseFx sfp
7469 	 */
7470 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7471 		switch (spd + dplx) {
7472 		case SPEED_10 + DUPLEX_HALF:
7473 		case SPEED_10 + DUPLEX_FULL:
7474 		case SPEED_100 + DUPLEX_HALF:
7475 			goto err_inval;
7476 		default:
7477 			break;
7478 		}
7479 	}
7480 
7481 	switch (spd + dplx) {
7482 	case SPEED_10 + DUPLEX_HALF:
7483 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7484 		break;
7485 	case SPEED_10 + DUPLEX_FULL:
7486 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7487 		break;
7488 	case SPEED_100 + DUPLEX_HALF:
7489 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7490 		break;
7491 	case SPEED_100 + DUPLEX_FULL:
7492 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7493 		break;
7494 	case SPEED_1000 + DUPLEX_FULL:
7495 		mac->autoneg = 1;
7496 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7497 		break;
7498 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7499 	default:
7500 		goto err_inval;
7501 	}
7502 
7503 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7504 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7505 
7506 	return 0;
7507 
7508 err_inval:
7509 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7510 	return -EINVAL;
7511 }
7512 
7513 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7514 			  bool runtime)
7515 {
7516 	struct net_device *netdev = pci_get_drvdata(pdev);
7517 	struct igb_adapter *adapter = netdev_priv(netdev);
7518 	struct e1000_hw *hw = &adapter->hw;
7519 	u32 ctrl, rctl, status;
7520 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7521 #ifdef CONFIG_PM
7522 	int retval = 0;
7523 #endif
7524 
7525 	netif_device_detach(netdev);
7526 
7527 	if (netif_running(netdev))
7528 		__igb_close(netdev, true);
7529 
7530 	igb_clear_interrupt_scheme(adapter);
7531 
7532 #ifdef CONFIG_PM
7533 	retval = pci_save_state(pdev);
7534 	if (retval)
7535 		return retval;
7536 #endif
7537 
7538 	status = rd32(E1000_STATUS);
7539 	if (status & E1000_STATUS_LU)
7540 		wufc &= ~E1000_WUFC_LNKC;
7541 
7542 	if (wufc) {
7543 		igb_setup_rctl(adapter);
7544 		igb_set_rx_mode(netdev);
7545 
7546 		/* turn on all-multi mode if wake on multicast is enabled */
7547 		if (wufc & E1000_WUFC_MC) {
7548 			rctl = rd32(E1000_RCTL);
7549 			rctl |= E1000_RCTL_MPE;
7550 			wr32(E1000_RCTL, rctl);
7551 		}
7552 
7553 		ctrl = rd32(E1000_CTRL);
7554 		/* advertise wake from D3Cold */
7555 		#define E1000_CTRL_ADVD3WUC 0x00100000
7556 		/* phy power management enable */
7557 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7558 		ctrl |= E1000_CTRL_ADVD3WUC;
7559 		wr32(E1000_CTRL, ctrl);
7560 
7561 		/* Allow time for pending master requests to run */
7562 		igb_disable_pcie_master(hw);
7563 
7564 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7565 		wr32(E1000_WUFC, wufc);
7566 	} else {
7567 		wr32(E1000_WUC, 0);
7568 		wr32(E1000_WUFC, 0);
7569 	}
7570 
7571 	*enable_wake = wufc || adapter->en_mng_pt;
7572 	if (!*enable_wake)
7573 		igb_power_down_link(adapter);
7574 	else
7575 		igb_power_up_link(adapter);
7576 
7577 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7578 	 * would have already happened in close and is redundant.
7579 	 */
7580 	igb_release_hw_control(adapter);
7581 
7582 	pci_disable_device(pdev);
7583 
7584 	return 0;
7585 }
7586 
7587 #ifdef CONFIG_PM
7588 #ifdef CONFIG_PM_SLEEP
7589 static int igb_suspend(struct device *dev)
7590 {
7591 	int retval;
7592 	bool wake;
7593 	struct pci_dev *pdev = to_pci_dev(dev);
7594 
7595 	retval = __igb_shutdown(pdev, &wake, 0);
7596 	if (retval)
7597 		return retval;
7598 
7599 	if (wake) {
7600 		pci_prepare_to_sleep(pdev);
7601 	} else {
7602 		pci_wake_from_d3(pdev, false);
7603 		pci_set_power_state(pdev, PCI_D3hot);
7604 	}
7605 
7606 	return 0;
7607 }
7608 #endif /* CONFIG_PM_SLEEP */
7609 
7610 static int igb_resume(struct device *dev)
7611 {
7612 	struct pci_dev *pdev = to_pci_dev(dev);
7613 	struct net_device *netdev = pci_get_drvdata(pdev);
7614 	struct igb_adapter *adapter = netdev_priv(netdev);
7615 	struct e1000_hw *hw = &adapter->hw;
7616 	u32 err;
7617 
7618 	pci_set_power_state(pdev, PCI_D0);
7619 	pci_restore_state(pdev);
7620 	pci_save_state(pdev);
7621 
7622 	if (!pci_device_is_present(pdev))
7623 		return -ENODEV;
7624 	err = pci_enable_device_mem(pdev);
7625 	if (err) {
7626 		dev_err(&pdev->dev,
7627 			"igb: Cannot enable PCI device from suspend\n");
7628 		return err;
7629 	}
7630 	pci_set_master(pdev);
7631 
7632 	pci_enable_wake(pdev, PCI_D3hot, 0);
7633 	pci_enable_wake(pdev, PCI_D3cold, 0);
7634 
7635 	if (igb_init_interrupt_scheme(adapter, true)) {
7636 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7637 		return -ENOMEM;
7638 	}
7639 
7640 	igb_reset(adapter);
7641 
7642 	/* let the f/w know that the h/w is now under the control of the
7643 	 * driver.
7644 	 */
7645 	igb_get_hw_control(adapter);
7646 
7647 	wr32(E1000_WUS, ~0);
7648 
7649 	if (netdev->flags & IFF_UP) {
7650 		rtnl_lock();
7651 		err = __igb_open(netdev, true);
7652 		rtnl_unlock();
7653 		if (err)
7654 			return err;
7655 	}
7656 
7657 	netif_device_attach(netdev);
7658 	return 0;
7659 }
7660 
7661 static int igb_runtime_idle(struct device *dev)
7662 {
7663 	struct pci_dev *pdev = to_pci_dev(dev);
7664 	struct net_device *netdev = pci_get_drvdata(pdev);
7665 	struct igb_adapter *adapter = netdev_priv(netdev);
7666 
7667 	if (!igb_has_link(adapter))
7668 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7669 
7670 	return -EBUSY;
7671 }
7672 
7673 static int igb_runtime_suspend(struct device *dev)
7674 {
7675 	struct pci_dev *pdev = to_pci_dev(dev);
7676 	int retval;
7677 	bool wake;
7678 
7679 	retval = __igb_shutdown(pdev, &wake, 1);
7680 	if (retval)
7681 		return retval;
7682 
7683 	if (wake) {
7684 		pci_prepare_to_sleep(pdev);
7685 	} else {
7686 		pci_wake_from_d3(pdev, false);
7687 		pci_set_power_state(pdev, PCI_D3hot);
7688 	}
7689 
7690 	return 0;
7691 }
7692 
7693 static int igb_runtime_resume(struct device *dev)
7694 {
7695 	return igb_resume(dev);
7696 }
7697 #endif /* CONFIG_PM */
7698 
7699 static void igb_shutdown(struct pci_dev *pdev)
7700 {
7701 	bool wake;
7702 
7703 	__igb_shutdown(pdev, &wake, 0);
7704 
7705 	if (system_state == SYSTEM_POWER_OFF) {
7706 		pci_wake_from_d3(pdev, wake);
7707 		pci_set_power_state(pdev, PCI_D3hot);
7708 	}
7709 }
7710 
7711 #ifdef CONFIG_PCI_IOV
7712 static int igb_sriov_reinit(struct pci_dev *dev)
7713 {
7714 	struct net_device *netdev = pci_get_drvdata(dev);
7715 	struct igb_adapter *adapter = netdev_priv(netdev);
7716 	struct pci_dev *pdev = adapter->pdev;
7717 
7718 	rtnl_lock();
7719 
7720 	if (netif_running(netdev))
7721 		igb_close(netdev);
7722 	else
7723 		igb_reset(adapter);
7724 
7725 	igb_clear_interrupt_scheme(adapter);
7726 
7727 	igb_init_queue_configuration(adapter);
7728 
7729 	if (igb_init_interrupt_scheme(adapter, true)) {
7730 		rtnl_unlock();
7731 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7732 		return -ENOMEM;
7733 	}
7734 
7735 	if (netif_running(netdev))
7736 		igb_open(netdev);
7737 
7738 	rtnl_unlock();
7739 
7740 	return 0;
7741 }
7742 
7743 static int igb_pci_disable_sriov(struct pci_dev *dev)
7744 {
7745 	int err = igb_disable_sriov(dev);
7746 
7747 	if (!err)
7748 		err = igb_sriov_reinit(dev);
7749 
7750 	return err;
7751 }
7752 
7753 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7754 {
7755 	int err = igb_enable_sriov(dev, num_vfs);
7756 
7757 	if (err)
7758 		goto out;
7759 
7760 	err = igb_sriov_reinit(dev);
7761 	if (!err)
7762 		return num_vfs;
7763 
7764 out:
7765 	return err;
7766 }
7767 
7768 #endif
7769 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7770 {
7771 #ifdef CONFIG_PCI_IOV
7772 	if (num_vfs == 0)
7773 		return igb_pci_disable_sriov(dev);
7774 	else
7775 		return igb_pci_enable_sriov(dev, num_vfs);
7776 #endif
7777 	return 0;
7778 }
7779 
7780 #ifdef CONFIG_NET_POLL_CONTROLLER
7781 /* Polling 'interrupt' - used by things like netconsole to send skbs
7782  * without having to re-enable interrupts. It's not called while
7783  * the interrupt routine is executing.
7784  */
7785 static void igb_netpoll(struct net_device *netdev)
7786 {
7787 	struct igb_adapter *adapter = netdev_priv(netdev);
7788 	struct e1000_hw *hw = &adapter->hw;
7789 	struct igb_q_vector *q_vector;
7790 	int i;
7791 
7792 	for (i = 0; i < adapter->num_q_vectors; i++) {
7793 		q_vector = adapter->q_vector[i];
7794 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7795 			wr32(E1000_EIMC, q_vector->eims_value);
7796 		else
7797 			igb_irq_disable(adapter);
7798 		napi_schedule(&q_vector->napi);
7799 	}
7800 }
7801 #endif /* CONFIG_NET_POLL_CONTROLLER */
7802 
7803 /**
7804  *  igb_io_error_detected - called when PCI error is detected
7805  *  @pdev: Pointer to PCI device
7806  *  @state: The current pci connection state
7807  *
7808  *  This function is called after a PCI bus error affecting
7809  *  this device has been detected.
7810  **/
7811 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7812 					      pci_channel_state_t state)
7813 {
7814 	struct net_device *netdev = pci_get_drvdata(pdev);
7815 	struct igb_adapter *adapter = netdev_priv(netdev);
7816 
7817 	netif_device_detach(netdev);
7818 
7819 	if (state == pci_channel_io_perm_failure)
7820 		return PCI_ERS_RESULT_DISCONNECT;
7821 
7822 	if (netif_running(netdev))
7823 		igb_down(adapter);
7824 	pci_disable_device(pdev);
7825 
7826 	/* Request a slot slot reset. */
7827 	return PCI_ERS_RESULT_NEED_RESET;
7828 }
7829 
7830 /**
7831  *  igb_io_slot_reset - called after the pci bus has been reset.
7832  *  @pdev: Pointer to PCI device
7833  *
7834  *  Restart the card from scratch, as if from a cold-boot. Implementation
7835  *  resembles the first-half of the igb_resume routine.
7836  **/
7837 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7838 {
7839 	struct net_device *netdev = pci_get_drvdata(pdev);
7840 	struct igb_adapter *adapter = netdev_priv(netdev);
7841 	struct e1000_hw *hw = &adapter->hw;
7842 	pci_ers_result_t result;
7843 	int err;
7844 
7845 	if (pci_enable_device_mem(pdev)) {
7846 		dev_err(&pdev->dev,
7847 			"Cannot re-enable PCI device after reset.\n");
7848 		result = PCI_ERS_RESULT_DISCONNECT;
7849 	} else {
7850 		pci_set_master(pdev);
7851 		pci_restore_state(pdev);
7852 		pci_save_state(pdev);
7853 
7854 		pci_enable_wake(pdev, PCI_D3hot, 0);
7855 		pci_enable_wake(pdev, PCI_D3cold, 0);
7856 
7857 		igb_reset(adapter);
7858 		wr32(E1000_WUS, ~0);
7859 		result = PCI_ERS_RESULT_RECOVERED;
7860 	}
7861 
7862 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7863 	if (err) {
7864 		dev_err(&pdev->dev,
7865 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7866 			err);
7867 		/* non-fatal, continue */
7868 	}
7869 
7870 	return result;
7871 }
7872 
7873 /**
7874  *  igb_io_resume - called when traffic can start flowing again.
7875  *  @pdev: Pointer to PCI device
7876  *
7877  *  This callback is called when the error recovery driver tells us that
7878  *  its OK to resume normal operation. Implementation resembles the
7879  *  second-half of the igb_resume routine.
7880  */
7881 static void igb_io_resume(struct pci_dev *pdev)
7882 {
7883 	struct net_device *netdev = pci_get_drvdata(pdev);
7884 	struct igb_adapter *adapter = netdev_priv(netdev);
7885 
7886 	if (netif_running(netdev)) {
7887 		if (igb_up(adapter)) {
7888 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7889 			return;
7890 		}
7891 	}
7892 
7893 	netif_device_attach(netdev);
7894 
7895 	/* let the f/w know that the h/w is now under the control of the
7896 	 * driver.
7897 	 */
7898 	igb_get_hw_control(adapter);
7899 }
7900 
7901 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7902 			     u8 qsel)
7903 {
7904 	struct e1000_hw *hw = &adapter->hw;
7905 	u32 rar_low, rar_high;
7906 
7907 	/* HW expects these to be in network order when they are plugged
7908 	 * into the registers which are little endian.  In order to guarantee
7909 	 * that ordering we need to do an leXX_to_cpup here in order to be
7910 	 * ready for the byteswap that occurs with writel
7911 	 */
7912 	rar_low = le32_to_cpup((__le32 *)(addr));
7913 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
7914 
7915 	/* Indicate to hardware the Address is Valid. */
7916 	rar_high |= E1000_RAH_AV;
7917 
7918 	if (hw->mac.type == e1000_82575)
7919 		rar_high |= E1000_RAH_POOL_1 * qsel;
7920 	else
7921 		rar_high |= E1000_RAH_POOL_1 << qsel;
7922 
7923 	wr32(E1000_RAL(index), rar_low);
7924 	wrfl();
7925 	wr32(E1000_RAH(index), rar_high);
7926 	wrfl();
7927 }
7928 
7929 static int igb_set_vf_mac(struct igb_adapter *adapter,
7930 			  int vf, unsigned char *mac_addr)
7931 {
7932 	struct e1000_hw *hw = &adapter->hw;
7933 	/* VF MAC addresses start at end of receive addresses and moves
7934 	 * towards the first, as a result a collision should not be possible
7935 	 */
7936 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7937 
7938 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7939 
7940 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7941 
7942 	return 0;
7943 }
7944 
7945 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7946 {
7947 	struct igb_adapter *adapter = netdev_priv(netdev);
7948 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7949 		return -EINVAL;
7950 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7951 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7952 	dev_info(&adapter->pdev->dev,
7953 		 "Reload the VF driver to make this change effective.");
7954 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7955 		dev_warn(&adapter->pdev->dev,
7956 			 "The VF MAC address has been set, but the PF device is not up.\n");
7957 		dev_warn(&adapter->pdev->dev,
7958 			 "Bring the PF device up before attempting to use the VF device.\n");
7959 	}
7960 	return igb_set_vf_mac(adapter, vf, mac);
7961 }
7962 
7963 static int igb_link_mbps(int internal_link_speed)
7964 {
7965 	switch (internal_link_speed) {
7966 	case SPEED_100:
7967 		return 100;
7968 	case SPEED_1000:
7969 		return 1000;
7970 	default:
7971 		return 0;
7972 	}
7973 }
7974 
7975 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7976 				  int link_speed)
7977 {
7978 	int rf_dec, rf_int;
7979 	u32 bcnrc_val;
7980 
7981 	if (tx_rate != 0) {
7982 		/* Calculate the rate factor values to set */
7983 		rf_int = link_speed / tx_rate;
7984 		rf_dec = (link_speed - (rf_int * tx_rate));
7985 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7986 			 tx_rate;
7987 
7988 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7989 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7990 			      E1000_RTTBCNRC_RF_INT_MASK);
7991 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7992 	} else {
7993 		bcnrc_val = 0;
7994 	}
7995 
7996 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7997 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7998 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7999 	 */
8000 	wr32(E1000_RTTBCNRM, 0x14);
8001 	wr32(E1000_RTTBCNRC, bcnrc_val);
8002 }
8003 
8004 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8005 {
8006 	int actual_link_speed, i;
8007 	bool reset_rate = false;
8008 
8009 	/* VF TX rate limit was not set or not supported */
8010 	if ((adapter->vf_rate_link_speed == 0) ||
8011 	    (adapter->hw.mac.type != e1000_82576))
8012 		return;
8013 
8014 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8015 	if (actual_link_speed != adapter->vf_rate_link_speed) {
8016 		reset_rate = true;
8017 		adapter->vf_rate_link_speed = 0;
8018 		dev_info(&adapter->pdev->dev,
8019 			 "Link speed has been changed. VF Transmit rate is disabled\n");
8020 	}
8021 
8022 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
8023 		if (reset_rate)
8024 			adapter->vf_data[i].tx_rate = 0;
8025 
8026 		igb_set_vf_rate_limit(&adapter->hw, i,
8027 				      adapter->vf_data[i].tx_rate,
8028 				      actual_link_speed);
8029 	}
8030 }
8031 
8032 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8033 			     int min_tx_rate, int max_tx_rate)
8034 {
8035 	struct igb_adapter *adapter = netdev_priv(netdev);
8036 	struct e1000_hw *hw = &adapter->hw;
8037 	int actual_link_speed;
8038 
8039 	if (hw->mac.type != e1000_82576)
8040 		return -EOPNOTSUPP;
8041 
8042 	if (min_tx_rate)
8043 		return -EINVAL;
8044 
8045 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8046 	if ((vf >= adapter->vfs_allocated_count) ||
8047 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8048 	    (max_tx_rate < 0) ||
8049 	    (max_tx_rate > actual_link_speed))
8050 		return -EINVAL;
8051 
8052 	adapter->vf_rate_link_speed = actual_link_speed;
8053 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8054 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8055 
8056 	return 0;
8057 }
8058 
8059 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8060 				   bool setting)
8061 {
8062 	struct igb_adapter *adapter = netdev_priv(netdev);
8063 	struct e1000_hw *hw = &adapter->hw;
8064 	u32 reg_val, reg_offset;
8065 
8066 	if (!adapter->vfs_allocated_count)
8067 		return -EOPNOTSUPP;
8068 
8069 	if (vf >= adapter->vfs_allocated_count)
8070 		return -EINVAL;
8071 
8072 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8073 	reg_val = rd32(reg_offset);
8074 	if (setting)
8075 		reg_val |= (BIT(vf) |
8076 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8077 	else
8078 		reg_val &= ~(BIT(vf) |
8079 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8080 	wr32(reg_offset, reg_val);
8081 
8082 	adapter->vf_data[vf].spoofchk_enabled = setting;
8083 	return 0;
8084 }
8085 
8086 static int igb_ndo_get_vf_config(struct net_device *netdev,
8087 				 int vf, struct ifla_vf_info *ivi)
8088 {
8089 	struct igb_adapter *adapter = netdev_priv(netdev);
8090 	if (vf >= adapter->vfs_allocated_count)
8091 		return -EINVAL;
8092 	ivi->vf = vf;
8093 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8094 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8095 	ivi->min_tx_rate = 0;
8096 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8097 	ivi->qos = adapter->vf_data[vf].pf_qos;
8098 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8099 	return 0;
8100 }
8101 
8102 static void igb_vmm_control(struct igb_adapter *adapter)
8103 {
8104 	struct e1000_hw *hw = &adapter->hw;
8105 	u32 reg;
8106 
8107 	switch (hw->mac.type) {
8108 	case e1000_82575:
8109 	case e1000_i210:
8110 	case e1000_i211:
8111 	case e1000_i354:
8112 	default:
8113 		/* replication is not supported for 82575 */
8114 		return;
8115 	case e1000_82576:
8116 		/* notify HW that the MAC is adding vlan tags */
8117 		reg = rd32(E1000_DTXCTL);
8118 		reg |= E1000_DTXCTL_VLAN_ADDED;
8119 		wr32(E1000_DTXCTL, reg);
8120 		/* Fall through */
8121 	case e1000_82580:
8122 		/* enable replication vlan tag stripping */
8123 		reg = rd32(E1000_RPLOLR);
8124 		reg |= E1000_RPLOLR_STRVLAN;
8125 		wr32(E1000_RPLOLR, reg);
8126 		/* Fall through */
8127 	case e1000_i350:
8128 		/* none of the above registers are supported by i350 */
8129 		break;
8130 	}
8131 
8132 	if (adapter->vfs_allocated_count) {
8133 		igb_vmdq_set_loopback_pf(hw, true);
8134 		igb_vmdq_set_replication_pf(hw, true);
8135 		igb_vmdq_set_anti_spoofing_pf(hw, true,
8136 					      adapter->vfs_allocated_count);
8137 	} else {
8138 		igb_vmdq_set_loopback_pf(hw, false);
8139 		igb_vmdq_set_replication_pf(hw, false);
8140 	}
8141 }
8142 
8143 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8144 {
8145 	struct e1000_hw *hw = &adapter->hw;
8146 	u32 dmac_thr;
8147 	u16 hwm;
8148 
8149 	if (hw->mac.type > e1000_82580) {
8150 		if (adapter->flags & IGB_FLAG_DMAC) {
8151 			u32 reg;
8152 
8153 			/* force threshold to 0. */
8154 			wr32(E1000_DMCTXTH, 0);
8155 
8156 			/* DMA Coalescing high water mark needs to be greater
8157 			 * than the Rx threshold. Set hwm to PBA - max frame
8158 			 * size in 16B units, capping it at PBA - 6KB.
8159 			 */
8160 			hwm = 64 * (pba - 6);
8161 			reg = rd32(E1000_FCRTC);
8162 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8163 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8164 				& E1000_FCRTC_RTH_COAL_MASK);
8165 			wr32(E1000_FCRTC, reg);
8166 
8167 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8168 			 * frame size, capping it at PBA - 10KB.
8169 			 */
8170 			dmac_thr = pba - 10;
8171 			reg = rd32(E1000_DMACR);
8172 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8173 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8174 				& E1000_DMACR_DMACTHR_MASK);
8175 
8176 			/* transition to L0x or L1 if available..*/
8177 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8178 
8179 			/* watchdog timer= +-1000 usec in 32usec intervals */
8180 			reg |= (1000 >> 5);
8181 
8182 			/* Disable BMC-to-OS Watchdog Enable */
8183 			if (hw->mac.type != e1000_i354)
8184 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8185 
8186 			wr32(E1000_DMACR, reg);
8187 
8188 			/* no lower threshold to disable
8189 			 * coalescing(smart fifb)-UTRESH=0
8190 			 */
8191 			wr32(E1000_DMCRTRH, 0);
8192 
8193 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8194 
8195 			wr32(E1000_DMCTLX, reg);
8196 
8197 			/* free space in tx packet buffer to wake from
8198 			 * DMA coal
8199 			 */
8200 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8201 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8202 
8203 			/* make low power state decision controlled
8204 			 * by DMA coal
8205 			 */
8206 			reg = rd32(E1000_PCIEMISC);
8207 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8208 			wr32(E1000_PCIEMISC, reg);
8209 		} /* endif adapter->dmac is not disabled */
8210 	} else if (hw->mac.type == e1000_82580) {
8211 		u32 reg = rd32(E1000_PCIEMISC);
8212 
8213 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8214 		wr32(E1000_DMACR, 0);
8215 	}
8216 }
8217 
8218 /**
8219  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8220  *  @hw: pointer to hardware structure
8221  *  @byte_offset: byte offset to read
8222  *  @dev_addr: device address
8223  *  @data: value read
8224  *
8225  *  Performs byte read operation over I2C interface at
8226  *  a specified device address.
8227  **/
8228 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8229 		      u8 dev_addr, u8 *data)
8230 {
8231 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8232 	struct i2c_client *this_client = adapter->i2c_client;
8233 	s32 status;
8234 	u16 swfw_mask = 0;
8235 
8236 	if (!this_client)
8237 		return E1000_ERR_I2C;
8238 
8239 	swfw_mask = E1000_SWFW_PHY0_SM;
8240 
8241 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8242 		return E1000_ERR_SWFW_SYNC;
8243 
8244 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8245 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8246 
8247 	if (status < 0)
8248 		return E1000_ERR_I2C;
8249 	else {
8250 		*data = status;
8251 		return 0;
8252 	}
8253 }
8254 
8255 /**
8256  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8257  *  @hw: pointer to hardware structure
8258  *  @byte_offset: byte offset to write
8259  *  @dev_addr: device address
8260  *  @data: value to write
8261  *
8262  *  Performs byte write operation over I2C interface at
8263  *  a specified device address.
8264  **/
8265 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8266 		       u8 dev_addr, u8 data)
8267 {
8268 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8269 	struct i2c_client *this_client = adapter->i2c_client;
8270 	s32 status;
8271 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8272 
8273 	if (!this_client)
8274 		return E1000_ERR_I2C;
8275 
8276 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8277 		return E1000_ERR_SWFW_SYNC;
8278 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8279 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8280 
8281 	if (status)
8282 		return E1000_ERR_I2C;
8283 	else
8284 		return 0;
8285 
8286 }
8287 
8288 int igb_reinit_queues(struct igb_adapter *adapter)
8289 {
8290 	struct net_device *netdev = adapter->netdev;
8291 	struct pci_dev *pdev = adapter->pdev;
8292 	int err = 0;
8293 
8294 	if (netif_running(netdev))
8295 		igb_close(netdev);
8296 
8297 	igb_reset_interrupt_capability(adapter);
8298 
8299 	if (igb_init_interrupt_scheme(adapter, true)) {
8300 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8301 		return -ENOMEM;
8302 	}
8303 
8304 	if (netif_running(netdev))
8305 		err = igb_open(netdev);
8306 
8307 	return err;
8308 }
8309 /* igb_main.c */
8310