xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41 
42 enum queue_mode {
43 	QUEUE_MODE_STRICT_PRIORITY,
44 	QUEUE_MODE_STREAM_RESERVATION,
45 };
46 
47 enum tx_queue_prio {
48 	TX_QUEUE_PRIO_HIGH,
49 	TX_QUEUE_PRIO_LOW,
50 };
51 
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 				"Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 				"Copyright (c) 2007-2014 Intel Corporation.";
57 
58 static const struct e1000_info *igb_info_tbl[] = {
59 	[board_82575] = &e1000_82575_info,
60 };
61 
62 static const struct pci_device_id igb_pci_tbl[] = {
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 	/* required last entry */
99 	{0, }
100 };
101 
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103 
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 			    struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 			  netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163 				   bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165 				bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 				 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171 
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176 
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 	.notifier_call	= igb_notify_dca,
181 	.next		= NULL,
182 	.priority	= 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190 
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 		     pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195 
196 static const struct pci_error_handlers igb_err_handler = {
197 	.error_detected = igb_io_error_detected,
198 	.slot_reset = igb_io_slot_reset,
199 	.resume = igb_io_resume,
200 };
201 
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203 
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206 
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 
212 struct igb_reg_info {
213 	u32 ofs;
214 	char *name;
215 };
216 
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218 
219 	/* General Registers */
220 	{E1000_CTRL, "CTRL"},
221 	{E1000_STATUS, "STATUS"},
222 	{E1000_CTRL_EXT, "CTRL_EXT"},
223 
224 	/* Interrupt Registers */
225 	{E1000_ICR, "ICR"},
226 
227 	/* RX Registers */
228 	{E1000_RCTL, "RCTL"},
229 	{E1000_RDLEN(0), "RDLEN"},
230 	{E1000_RDH(0), "RDH"},
231 	{E1000_RDT(0), "RDT"},
232 	{E1000_RXDCTL(0), "RXDCTL"},
233 	{E1000_RDBAL(0), "RDBAL"},
234 	{E1000_RDBAH(0), "RDBAH"},
235 
236 	/* TX Registers */
237 	{E1000_TCTL, "TCTL"},
238 	{E1000_TDBAL(0), "TDBAL"},
239 	{E1000_TDBAH(0), "TDBAH"},
240 	{E1000_TDLEN(0), "TDLEN"},
241 	{E1000_TDH(0), "TDH"},
242 	{E1000_TDT(0), "TDT"},
243 	{E1000_TXDCTL(0), "TXDCTL"},
244 	{E1000_TDFH, "TDFH"},
245 	{E1000_TDFT, "TDFT"},
246 	{E1000_TDFHS, "TDFHS"},
247 	{E1000_TDFPC, "TDFPC"},
248 
249 	/* List Terminator */
250 	{}
251 };
252 
253 /* igb_regdump - register printout routine */
254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256 	int n = 0;
257 	char rname[16];
258 	u32 regs[8];
259 
260 	switch (reginfo->ofs) {
261 	case E1000_RDLEN(0):
262 		for (n = 0; n < 4; n++)
263 			regs[n] = rd32(E1000_RDLEN(n));
264 		break;
265 	case E1000_RDH(0):
266 		for (n = 0; n < 4; n++)
267 			regs[n] = rd32(E1000_RDH(n));
268 		break;
269 	case E1000_RDT(0):
270 		for (n = 0; n < 4; n++)
271 			regs[n] = rd32(E1000_RDT(n));
272 		break;
273 	case E1000_RXDCTL(0):
274 		for (n = 0; n < 4; n++)
275 			regs[n] = rd32(E1000_RXDCTL(n));
276 		break;
277 	case E1000_RDBAL(0):
278 		for (n = 0; n < 4; n++)
279 			regs[n] = rd32(E1000_RDBAL(n));
280 		break;
281 	case E1000_RDBAH(0):
282 		for (n = 0; n < 4; n++)
283 			regs[n] = rd32(E1000_RDBAH(n));
284 		break;
285 	case E1000_TDBAL(0):
286 		for (n = 0; n < 4; n++)
287 			regs[n] = rd32(E1000_TDBAL(n));
288 		break;
289 	case E1000_TDBAH(0):
290 		for (n = 0; n < 4; n++)
291 			regs[n] = rd32(E1000_TDBAH(n));
292 		break;
293 	case E1000_TDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_TDLEN(n));
296 		break;
297 	case E1000_TDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_TDH(n));
300 		break;
301 	case E1000_TDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_TDT(n));
304 		break;
305 	case E1000_TXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_TXDCTL(n));
308 		break;
309 	default:
310 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311 		return;
312 	}
313 
314 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316 		regs[2], regs[3]);
317 }
318 
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
320 static void igb_dump(struct igb_adapter *adapter)
321 {
322 	struct net_device *netdev = adapter->netdev;
323 	struct e1000_hw *hw = &adapter->hw;
324 	struct igb_reg_info *reginfo;
325 	struct igb_ring *tx_ring;
326 	union e1000_adv_tx_desc *tx_desc;
327 	struct my_u0 { __le64 a; __le64 b; } *u0;
328 	struct igb_ring *rx_ring;
329 	union e1000_adv_rx_desc *rx_desc;
330 	u32 staterr;
331 	u16 i, n;
332 
333 	if (!netif_msg_hw(adapter))
334 		return;
335 
336 	/* Print netdevice Info */
337 	if (netdev) {
338 		dev_info(&adapter->pdev->dev, "Net device Info\n");
339 		pr_info("Device Name     state            trans_start\n");
340 		pr_info("%-15s %016lX %016lX\n", netdev->name,
341 			netdev->state, dev_trans_start(netdev));
342 	}
343 
344 	/* Print Registers */
345 	dev_info(&adapter->pdev->dev, "Register Dump\n");
346 	pr_info(" Register Name   Value\n");
347 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 	     reginfo->name; reginfo++) {
349 		igb_regdump(hw, reginfo);
350 	}
351 
352 	/* Print TX Ring Summary */
353 	if (!netdev || !netif_running(netdev))
354 		goto exit;
355 
356 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
358 	for (n = 0; n < adapter->num_tx_queues; n++) {
359 		struct igb_tx_buffer *buffer_info;
360 		tx_ring = adapter->tx_ring[n];
361 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 			(u64)dma_unmap_addr(buffer_info, dma),
365 			dma_unmap_len(buffer_info, len),
366 			buffer_info->next_to_watch,
367 			(u64)buffer_info->time_stamp);
368 	}
369 
370 	/* Print TX Rings */
371 	if (!netif_msg_tx_done(adapter))
372 		goto rx_ring_summary;
373 
374 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375 
376 	/* Transmit Descriptor Formats
377 	 *
378 	 * Advanced Transmit Descriptor
379 	 *   +--------------------------------------------------------------+
380 	 * 0 |         Buffer Address [63:0]                                |
381 	 *   +--------------------------------------------------------------+
382 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
383 	 *   +--------------------------------------------------------------+
384 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
385 	 */
386 
387 	for (n = 0; n < adapter->num_tx_queues; n++) {
388 		tx_ring = adapter->tx_ring[n];
389 		pr_info("------------------------------------\n");
390 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 		pr_info("------------------------------------\n");
392 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
393 
394 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 			const char *next_desc;
396 			struct igb_tx_buffer *buffer_info;
397 			tx_desc = IGB_TX_DESC(tx_ring, i);
398 			buffer_info = &tx_ring->tx_buffer_info[i];
399 			u0 = (struct my_u0 *)tx_desc;
400 			if (i == tx_ring->next_to_use &&
401 			    i == tx_ring->next_to_clean)
402 				next_desc = " NTC/U";
403 			else if (i == tx_ring->next_to_use)
404 				next_desc = " NTU";
405 			else if (i == tx_ring->next_to_clean)
406 				next_desc = " NTC";
407 			else
408 				next_desc = "";
409 
410 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
411 				i, le64_to_cpu(u0->a),
412 				le64_to_cpu(u0->b),
413 				(u64)dma_unmap_addr(buffer_info, dma),
414 				dma_unmap_len(buffer_info, len),
415 				buffer_info->next_to_watch,
416 				(u64)buffer_info->time_stamp,
417 				buffer_info->skb, next_desc);
418 
419 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 				print_hex_dump(KERN_INFO, "",
421 					DUMP_PREFIX_ADDRESS,
422 					16, 1, buffer_info->skb->data,
423 					dma_unmap_len(buffer_info, len),
424 					true);
425 		}
426 	}
427 
428 	/* Print RX Rings Summary */
429 rx_ring_summary:
430 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 	pr_info("Queue [NTU] [NTC]\n");
432 	for (n = 0; n < adapter->num_rx_queues; n++) {
433 		rx_ring = adapter->rx_ring[n];
434 		pr_info(" %5d %5X %5X\n",
435 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
436 	}
437 
438 	/* Print RX Rings */
439 	if (!netif_msg_rx_status(adapter))
440 		goto exit;
441 
442 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443 
444 	/* Advanced Receive Descriptor (Read) Format
445 	 *    63                                           1        0
446 	 *    +-----------------------------------------------------+
447 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
448 	 *    +----------------------------------------------+------+
449 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
450 	 *    +-----------------------------------------------------+
451 	 *
452 	 *
453 	 * Advanced Receive Descriptor (Write-Back) Format
454 	 *
455 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
456 	 *   +------------------------------------------------------+
457 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
458 	 *   | Checksum   Ident  |   |           |    | Type | Type |
459 	 *   +------------------------------------------------------+
460 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 	 *   +------------------------------------------------------+
462 	 *   63       48 47    32 31            20 19               0
463 	 */
464 
465 	for (n = 0; n < adapter->num_rx_queues; n++) {
466 		rx_ring = adapter->rx_ring[n];
467 		pr_info("------------------------------------\n");
468 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 		pr_info("------------------------------------\n");
470 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
471 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472 
473 		for (i = 0; i < rx_ring->count; i++) {
474 			const char *next_desc;
475 			dma_addr_t dma = (dma_addr_t)0;
476 			struct igb_rx_buffer *buffer_info = NULL;
477 			rx_desc = IGB_RX_DESC(rx_ring, i);
478 			u0 = (struct my_u0 *)rx_desc;
479 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480 
481 			if (!rx_ring->xsk_pool) {
482 				buffer_info = &rx_ring->rx_buffer_info[i];
483 				dma = buffer_info->dma;
484 			}
485 
486 			if (i == rx_ring->next_to_use)
487 				next_desc = " NTU";
488 			else if (i == rx_ring->next_to_clean)
489 				next_desc = " NTC";
490 			else
491 				next_desc = "";
492 
493 			if (staterr & E1000_RXD_STAT_DD) {
494 				/* Descriptor Done */
495 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
496 					"RWB", i,
497 					le64_to_cpu(u0->a),
498 					le64_to_cpu(u0->b),
499 					next_desc);
500 			} else {
501 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
502 					"R  ", i,
503 					le64_to_cpu(u0->a),
504 					le64_to_cpu(u0->b),
505 					(u64)dma,
506 					next_desc);
507 
508 				if (netif_msg_pktdata(adapter) &&
509 				    buffer_info && dma && buffer_info->page) {
510 					print_hex_dump(KERN_INFO, "",
511 					  DUMP_PREFIX_ADDRESS,
512 					  16, 1,
513 					  page_address(buffer_info->page) +
514 						      buffer_info->page_offset,
515 					  igb_rx_bufsz(rx_ring), true);
516 				}
517 			}
518 		}
519 	}
520 
521 exit:
522 	return;
523 }
524 
525 /**
526  *  igb_get_i2c_data - Reads the I2C SDA data bit
527  *  @data: opaque pointer to adapter struct
528  *
529  *  Returns the I2C data bit value
530  **/
531 static int igb_get_i2c_data(void *data)
532 {
533 	struct igb_adapter *adapter = (struct igb_adapter *)data;
534 	struct e1000_hw *hw = &adapter->hw;
535 	s32 i2cctl = rd32(E1000_I2CPARAMS);
536 
537 	return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539 
540 /**
541  *  igb_set_i2c_data - Sets the I2C data bit
542  *  @data: pointer to hardware structure
543  *  @state: I2C data value (0 or 1) to set
544  *
545  *  Sets the I2C data bit
546  **/
547 static void igb_set_i2c_data(void *data, int state)
548 {
549 	struct igb_adapter *adapter = (struct igb_adapter *)data;
550 	struct e1000_hw *hw = &adapter->hw;
551 	s32 i2cctl = rd32(E1000_I2CPARAMS);
552 
553 	if (state) {
554 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555 	} else {
556 		i2cctl &= ~E1000_I2C_DATA_OE_N;
557 		i2cctl &= ~E1000_I2C_DATA_OUT;
558 	}
559 
560 	wr32(E1000_I2CPARAMS, i2cctl);
561 	wrfl();
562 }
563 
564 /**
565  *  igb_set_i2c_clk - Sets the I2C SCL clock
566  *  @data: pointer to hardware structure
567  *  @state: state to set clock
568  *
569  *  Sets the I2C clock line to state
570  **/
571 static void igb_set_i2c_clk(void *data, int state)
572 {
573 	struct igb_adapter *adapter = (struct igb_adapter *)data;
574 	struct e1000_hw *hw = &adapter->hw;
575 	s32 i2cctl = rd32(E1000_I2CPARAMS);
576 
577 	if (state) {
578 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579 	} else {
580 		i2cctl &= ~E1000_I2C_CLK_OUT;
581 		i2cctl &= ~E1000_I2C_CLK_OE_N;
582 	}
583 	wr32(E1000_I2CPARAMS, i2cctl);
584 	wrfl();
585 }
586 
587 /**
588  *  igb_get_i2c_clk - Gets the I2C SCL clock state
589  *  @data: pointer to hardware structure
590  *
591  *  Gets the I2C clock state
592  **/
593 static int igb_get_i2c_clk(void *data)
594 {
595 	struct igb_adapter *adapter = (struct igb_adapter *)data;
596 	struct e1000_hw *hw = &adapter->hw;
597 	s32 i2cctl = rd32(E1000_I2CPARAMS);
598 
599 	return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601 
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 	.setsda		= igb_set_i2c_data,
604 	.setscl		= igb_set_i2c_clk,
605 	.getsda		= igb_get_i2c_data,
606 	.getscl		= igb_get_i2c_clk,
607 	.udelay		= 5,
608 	.timeout	= 20,
609 };
610 
611 /**
612  *  igb_get_hw_dev - return device
613  *  @hw: pointer to hardware structure
614  *
615  *  used by hardware layer to print debugging information
616  **/
617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619 	struct igb_adapter *adapter = hw->back;
620 	return adapter->netdev;
621 }
622 
623 static struct pci_driver igb_driver;
624 
625 /**
626  *  igb_init_module - Driver Registration Routine
627  *
628  *  igb_init_module is the first routine called when the driver is
629  *  loaded. All it does is register with the PCI subsystem.
630  **/
631 static int __init igb_init_module(void)
632 {
633 	int ret;
634 
635 	pr_info("%s\n", igb_driver_string);
636 	pr_info("%s\n", igb_copyright);
637 
638 #ifdef CONFIG_IGB_DCA
639 	dca_register_notify(&dca_notifier);
640 #endif
641 	ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643 	if (ret)
644 		dca_unregister_notify(&dca_notifier);
645 #endif
646 	return ret;
647 }
648 
649 module_init(igb_init_module);
650 
651 /**
652  *  igb_exit_module - Driver Exit Cleanup Routine
653  *
654  *  igb_exit_module is called just before the driver is removed
655  *  from memory.
656  **/
657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660 	dca_unregister_notify(&dca_notifier);
661 #endif
662 	pci_unregister_driver(&igb_driver);
663 }
664 
665 module_exit(igb_exit_module);
666 
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669  *  igb_cache_ring_register - Descriptor ring to register mapping
670  *  @adapter: board private structure to initialize
671  *
672  *  Once we know the feature-set enabled for the device, we'll cache
673  *  the register offset the descriptor ring is assigned to.
674  **/
675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677 	int i = 0, j = 0;
678 	u32 rbase_offset = adapter->vfs_allocated_count;
679 
680 	switch (adapter->hw.mac.type) {
681 	case e1000_82576:
682 		/* The queues are allocated for virtualization such that VF 0
683 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 		 * In order to avoid collision we start at the first free queue
685 		 * and continue consuming queues in the same sequence
686 		 */
687 		if (adapter->vfs_allocated_count) {
688 			for (; i < adapter->rss_queues; i++)
689 				adapter->rx_ring[i]->reg_idx = rbase_offset +
690 							       Q_IDX_82576(i);
691 		}
692 		fallthrough;
693 	case e1000_82575:
694 	case e1000_82580:
695 	case e1000_i350:
696 	case e1000_i354:
697 	case e1000_i210:
698 	case e1000_i211:
699 	default:
700 		for (; i < adapter->num_rx_queues; i++)
701 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 		for (; j < adapter->num_tx_queues; j++)
703 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704 		break;
705 	}
706 }
707 
708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712 	u32 value = 0;
713 
714 	if (E1000_REMOVED(hw_addr))
715 		return ~value;
716 
717 	value = readl(&hw_addr[reg]);
718 
719 	/* reads should not return all F's */
720 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 		struct net_device *netdev = igb->netdev;
722 		hw->hw_addr = NULL;
723 		netdev_err(netdev, "PCIe link lost\n");
724 		WARN(pci_device_is_present(igb->pdev),
725 		     "igb: Failed to read reg 0x%x!\n", reg);
726 	}
727 
728 	return value;
729 }
730 
731 /**
732  *  igb_write_ivar - configure ivar for given MSI-X vector
733  *  @hw: pointer to the HW structure
734  *  @msix_vector: vector number we are allocating to a given ring
735  *  @index: row index of IVAR register to write within IVAR table
736  *  @offset: column offset of in IVAR, should be multiple of 8
737  *
738  *  This function is intended to handle the writing of the IVAR register
739  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
740  *  each containing an cause allocation for an Rx and Tx ring, and a
741  *  variable number of rows depending on the number of queues supported.
742  **/
743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 			   int index, int offset)
745 {
746 	u32 ivar = array_rd32(E1000_IVAR0, index);
747 
748 	/* clear any bits that are currently set */
749 	ivar &= ~((u32)0xFF << offset);
750 
751 	/* write vector and valid bit */
752 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753 
754 	array_wr32(E1000_IVAR0, index, ivar);
755 }
756 
757 #define IGB_N0_QUEUE -1
758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760 	struct igb_adapter *adapter = q_vector->adapter;
761 	struct e1000_hw *hw = &adapter->hw;
762 	int rx_queue = IGB_N0_QUEUE;
763 	int tx_queue = IGB_N0_QUEUE;
764 	u32 msixbm = 0;
765 
766 	if (q_vector->rx.ring)
767 		rx_queue = q_vector->rx.ring->reg_idx;
768 	if (q_vector->tx.ring)
769 		tx_queue = q_vector->tx.ring->reg_idx;
770 
771 	switch (hw->mac.type) {
772 	case e1000_82575:
773 		/* The 82575 assigns vectors using a bitmask, which matches the
774 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
775 		 * or more queues to a vector, we write the appropriate bits
776 		 * into the MSIXBM register for that vector.
777 		 */
778 		if (rx_queue > IGB_N0_QUEUE)
779 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 		if (tx_queue > IGB_N0_QUEUE)
781 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 			msixbm |= E1000_EIMS_OTHER;
784 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 		q_vector->eims_value = msixbm;
786 		break;
787 	case e1000_82576:
788 		/* 82576 uses a table that essentially consists of 2 columns
789 		 * with 8 rows.  The ordering is column-major so we use the
790 		 * lower 3 bits as the row index, and the 4th bit as the
791 		 * column offset.
792 		 */
793 		if (rx_queue > IGB_N0_QUEUE)
794 			igb_write_ivar(hw, msix_vector,
795 				       rx_queue & 0x7,
796 				       (rx_queue & 0x8) << 1);
797 		if (tx_queue > IGB_N0_QUEUE)
798 			igb_write_ivar(hw, msix_vector,
799 				       tx_queue & 0x7,
800 				       ((tx_queue & 0x8) << 1) + 8);
801 		q_vector->eims_value = BIT(msix_vector);
802 		break;
803 	case e1000_82580:
804 	case e1000_i350:
805 	case e1000_i354:
806 	case e1000_i210:
807 	case e1000_i211:
808 		/* On 82580 and newer adapters the scheme is similar to 82576
809 		 * however instead of ordering column-major we have things
810 		 * ordered row-major.  So we traverse the table by using
811 		 * bit 0 as the column offset, and the remaining bits as the
812 		 * row index.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue >> 1,
817 				       (rx_queue & 0x1) << 4);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue >> 1,
821 				       ((tx_queue & 0x1) << 4) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	default:
825 		BUG();
826 		break;
827 	}
828 
829 	/* add q_vector eims value to global eims_enable_mask */
830 	adapter->eims_enable_mask |= q_vector->eims_value;
831 
832 	/* configure q_vector to set itr on first interrupt */
833 	q_vector->set_itr = 1;
834 }
835 
836 /**
837  *  igb_configure_msix - Configure MSI-X hardware
838  *  @adapter: board private structure to initialize
839  *
840  *  igb_configure_msix sets up the hardware to properly
841  *  generate MSI-X interrupts.
842  **/
843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845 	u32 tmp;
846 	int i, vector = 0;
847 	struct e1000_hw *hw = &adapter->hw;
848 
849 	adapter->eims_enable_mask = 0;
850 
851 	/* set vector for other causes, i.e. link changes */
852 	switch (hw->mac.type) {
853 	case e1000_82575:
854 		tmp = rd32(E1000_CTRL_EXT);
855 		/* enable MSI-X PBA support*/
856 		tmp |= E1000_CTRL_EXT_PBA_CLR;
857 
858 		/* Auto-Mask interrupts upon ICR read. */
859 		tmp |= E1000_CTRL_EXT_EIAME;
860 		tmp |= E1000_CTRL_EXT_IRCA;
861 
862 		wr32(E1000_CTRL_EXT, tmp);
863 
864 		/* enable msix_other interrupt */
865 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 		adapter->eims_other = E1000_EIMS_OTHER;
867 
868 		break;
869 
870 	case e1000_82576:
871 	case e1000_82580:
872 	case e1000_i350:
873 	case e1000_i354:
874 	case e1000_i210:
875 	case e1000_i211:
876 		/* Turn on MSI-X capability first, or our settings
877 		 * won't stick.  And it will take days to debug.
878 		 */
879 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 		     E1000_GPIE_NSICR);
882 
883 		/* enable msix_other interrupt */
884 		adapter->eims_other = BIT(vector);
885 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
886 
887 		wr32(E1000_IVAR_MISC, tmp);
888 		break;
889 	default:
890 		/* do nothing, since nothing else supports MSI-X */
891 		break;
892 	} /* switch (hw->mac.type) */
893 
894 	adapter->eims_enable_mask |= adapter->eims_other;
895 
896 	for (i = 0; i < adapter->num_q_vectors; i++)
897 		igb_assign_vector(adapter->q_vector[i], vector++);
898 
899 	wrfl();
900 }
901 
902 /**
903  *  igb_request_msix - Initialize MSI-X interrupts
904  *  @adapter: board private structure to initialize
905  *
906  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
907  *  kernel.
908  **/
909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911 	unsigned int num_q_vectors = adapter->num_q_vectors;
912 	struct net_device *netdev = adapter->netdev;
913 	int i, err = 0, vector = 0, free_vector = 0;
914 
915 	err = request_irq(adapter->msix_entries[vector].vector,
916 			  igb_msix_other, 0, netdev->name, adapter);
917 	if (err)
918 		goto err_out;
919 
920 	if (num_q_vectors > MAX_Q_VECTORS) {
921 		num_q_vectors = MAX_Q_VECTORS;
922 		dev_warn(&adapter->pdev->dev,
923 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 			 adapter->num_q_vectors, MAX_Q_VECTORS);
925 	}
926 	for (i = 0; i < num_q_vectors; i++) {
927 		struct igb_q_vector *q_vector = adapter->q_vector[i];
928 
929 		vector++;
930 
931 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932 
933 		if (q_vector->rx.ring && q_vector->tx.ring)
934 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 				q_vector->rx.ring->queue_index);
936 		else if (q_vector->tx.ring)
937 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 				q_vector->tx.ring->queue_index);
939 		else if (q_vector->rx.ring)
940 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 				q_vector->rx.ring->queue_index);
942 		else
943 			sprintf(q_vector->name, "%s-unused", netdev->name);
944 
945 		err = request_irq(adapter->msix_entries[vector].vector,
946 				  igb_msix_ring, 0, q_vector->name,
947 				  q_vector);
948 		if (err)
949 			goto err_free;
950 
951 		netif_napi_set_irq(&q_vector->napi,
952 				   adapter->msix_entries[vector].vector);
953 	}
954 
955 	igb_configure_msix(adapter);
956 	return 0;
957 
958 err_free:
959 	/* free already assigned IRQs */
960 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
961 
962 	vector--;
963 	for (i = 0; i < vector; i++) {
964 		free_irq(adapter->msix_entries[free_vector++].vector,
965 			 adapter->q_vector[i]);
966 	}
967 err_out:
968 	return err;
969 }
970 
971 /**
972  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
973  *  @adapter: board private structure to initialize
974  *  @v_idx: Index of vector to be freed
975  *
976  *  This function frees the memory allocated to the q_vector.
977  **/
978 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
979 {
980 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
981 
982 	adapter->q_vector[v_idx] = NULL;
983 
984 	/* igb_get_stats64() might access the rings on this vector,
985 	 * we must wait a grace period before freeing it.
986 	 */
987 	if (q_vector)
988 		kfree_rcu(q_vector, rcu);
989 }
990 
991 /**
992  *  igb_reset_q_vector - Reset config for interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be reset
995  *
996  *  If NAPI is enabled it will delete any references to the
997  *  NAPI struct. This is preparation for igb_free_q_vector.
998  **/
999 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002 
1003 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1004 	 * allocated. So, q_vector is NULL so we should stop here.
1005 	 */
1006 	if (!q_vector)
1007 		return;
1008 
1009 	if (q_vector->tx.ring)
1010 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011 
1012 	if (q_vector->rx.ring)
1013 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1014 
1015 	netif_napi_del(&q_vector->napi);
1016 
1017 }
1018 
1019 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1020 {
1021 	int v_idx = adapter->num_q_vectors;
1022 
1023 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1024 		pci_disable_msix(adapter->pdev);
1025 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1026 		pci_disable_msi(adapter->pdev);
1027 
1028 	while (v_idx--)
1029 		igb_reset_q_vector(adapter, v_idx);
1030 }
1031 
1032 /**
1033  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1034  *  @adapter: board private structure to initialize
1035  *
1036  *  This function frees the memory allocated to the q_vectors.  In addition if
1037  *  NAPI is enabled it will delete any references to the NAPI struct prior
1038  *  to freeing the q_vector.
1039  **/
1040 static void igb_free_q_vectors(struct igb_adapter *adapter)
1041 {
1042 	int v_idx = adapter->num_q_vectors;
1043 
1044 	adapter->num_tx_queues = 0;
1045 	adapter->num_rx_queues = 0;
1046 	adapter->num_q_vectors = 0;
1047 
1048 	while (v_idx--) {
1049 		igb_reset_q_vector(adapter, v_idx);
1050 		igb_free_q_vector(adapter, v_idx);
1051 	}
1052 }
1053 
1054 /**
1055  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1056  *  @adapter: board private structure to initialize
1057  *
1058  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1059  *  MSI-X interrupts allocated.
1060  */
1061 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1062 {
1063 	igb_free_q_vectors(adapter);
1064 	igb_reset_interrupt_capability(adapter);
1065 }
1066 
1067 /**
1068  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1069  *  @adapter: board private structure to initialize
1070  *  @msix: boolean value of MSIX capability
1071  *
1072  *  Attempt to configure interrupts using the best available
1073  *  capabilities of the hardware and kernel.
1074  **/
1075 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1076 {
1077 	int err;
1078 	int numvecs, i;
1079 
1080 	if (!msix)
1081 		goto msi_only;
1082 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1083 
1084 	/* Number of supported queues. */
1085 	adapter->num_rx_queues = adapter->rss_queues;
1086 	if (adapter->vfs_allocated_count)
1087 		adapter->num_tx_queues = 1;
1088 	else
1089 		adapter->num_tx_queues = adapter->rss_queues;
1090 
1091 	/* start with one vector for every Rx queue */
1092 	numvecs = adapter->num_rx_queues;
1093 
1094 	/* if Tx handler is separate add 1 for every Tx queue */
1095 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1096 		numvecs += adapter->num_tx_queues;
1097 
1098 	/* store the number of vectors reserved for queues */
1099 	adapter->num_q_vectors = numvecs;
1100 
1101 	/* add 1 vector for link status interrupts */
1102 	numvecs++;
1103 	for (i = 0; i < numvecs; i++)
1104 		adapter->msix_entries[i].entry = i;
1105 
1106 	err = pci_enable_msix_range(adapter->pdev,
1107 				    adapter->msix_entries,
1108 				    numvecs,
1109 				    numvecs);
1110 	if (err > 0)
1111 		return;
1112 
1113 	igb_reset_interrupt_capability(adapter);
1114 
1115 	/* If we can't do MSI-X, try MSI */
1116 msi_only:
1117 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1118 #ifdef CONFIG_PCI_IOV
1119 	/* disable SR-IOV for non MSI-X configurations */
1120 	if (adapter->vf_data) {
1121 		struct e1000_hw *hw = &adapter->hw;
1122 		/* disable iov and allow time for transactions to clear */
1123 		pci_disable_sriov(adapter->pdev);
1124 		msleep(500);
1125 
1126 		kfree(adapter->vf_mac_list);
1127 		adapter->vf_mac_list = NULL;
1128 		kfree(adapter->vf_data);
1129 		adapter->vf_data = NULL;
1130 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1131 		wrfl();
1132 		msleep(100);
1133 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1134 	}
1135 #endif
1136 	adapter->vfs_allocated_count = 0;
1137 	adapter->rss_queues = 1;
1138 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1139 	adapter->num_rx_queues = 1;
1140 	adapter->num_tx_queues = 1;
1141 	adapter->num_q_vectors = 1;
1142 	if (!pci_enable_msi(adapter->pdev))
1143 		adapter->flags |= IGB_FLAG_HAS_MSI;
1144 }
1145 
1146 static void igb_add_ring(struct igb_ring *ring,
1147 			 struct igb_ring_container *head)
1148 {
1149 	head->ring = ring;
1150 	head->count++;
1151 }
1152 
1153 /**
1154  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1155  *  @adapter: board private structure to initialize
1156  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1157  *  @v_idx: index of vector in adapter struct
1158  *  @txr_count: total number of Tx rings to allocate
1159  *  @txr_idx: index of first Tx ring to allocate
1160  *  @rxr_count: total number of Rx rings to allocate
1161  *  @rxr_idx: index of first Rx ring to allocate
1162  *
1163  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1164  **/
1165 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1166 			      int v_count, int v_idx,
1167 			      int txr_count, int txr_idx,
1168 			      int rxr_count, int rxr_idx)
1169 {
1170 	struct igb_q_vector *q_vector;
1171 	struct igb_ring *ring;
1172 	int ring_count;
1173 	size_t size;
1174 
1175 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1176 	if (txr_count > 1 || rxr_count > 1)
1177 		return -ENOMEM;
1178 
1179 	ring_count = txr_count + rxr_count;
1180 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1181 
1182 	/* allocate q_vector and rings */
1183 	q_vector = adapter->q_vector[v_idx];
1184 	if (!q_vector) {
1185 		q_vector = kzalloc(size, GFP_KERNEL);
1186 	} else if (size > ksize(q_vector)) {
1187 		struct igb_q_vector *new_q_vector;
1188 
1189 		new_q_vector = kzalloc(size, GFP_KERNEL);
1190 		if (new_q_vector)
1191 			kfree_rcu(q_vector, rcu);
1192 		q_vector = new_q_vector;
1193 	} else {
1194 		memset(q_vector, 0, size);
1195 	}
1196 	if (!q_vector)
1197 		return -ENOMEM;
1198 
1199 	/* initialize NAPI */
1200 	netif_napi_add_config(adapter->netdev, &q_vector->napi, igb_poll,
1201 			      v_idx);
1202 
1203 	/* tie q_vector and adapter together */
1204 	adapter->q_vector[v_idx] = q_vector;
1205 	q_vector->adapter = adapter;
1206 
1207 	/* initialize work limits */
1208 	q_vector->tx.work_limit = adapter->tx_work_limit;
1209 
1210 	/* initialize ITR configuration */
1211 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1212 	q_vector->itr_val = IGB_START_ITR;
1213 
1214 	/* initialize pointer to rings */
1215 	ring = q_vector->ring;
1216 
1217 	/* initialize ITR */
1218 	if (rxr_count) {
1219 		/* rx or rx/tx vector */
1220 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1221 			q_vector->itr_val = adapter->rx_itr_setting;
1222 	} else {
1223 		/* tx only vector */
1224 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1225 			q_vector->itr_val = adapter->tx_itr_setting;
1226 	}
1227 
1228 	if (txr_count) {
1229 		/* assign generic ring traits */
1230 		ring->dev = &adapter->pdev->dev;
1231 		ring->netdev = adapter->netdev;
1232 
1233 		/* configure backlink on ring */
1234 		ring->q_vector = q_vector;
1235 
1236 		/* update q_vector Tx values */
1237 		igb_add_ring(ring, &q_vector->tx);
1238 
1239 		/* For 82575, context index must be unique per ring. */
1240 		if (adapter->hw.mac.type == e1000_82575)
1241 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1242 
1243 		/* apply Tx specific ring traits */
1244 		ring->count = adapter->tx_ring_count;
1245 		ring->queue_index = txr_idx;
1246 
1247 		ring->cbs_enable = false;
1248 		ring->idleslope = 0;
1249 		ring->sendslope = 0;
1250 		ring->hicredit = 0;
1251 		ring->locredit = 0;
1252 
1253 		u64_stats_init(&ring->tx_syncp);
1254 		u64_stats_init(&ring->tx_syncp2);
1255 
1256 		/* assign ring to adapter */
1257 		adapter->tx_ring[txr_idx] = ring;
1258 
1259 		/* push pointer to next ring */
1260 		ring++;
1261 	}
1262 
1263 	if (rxr_count) {
1264 		/* assign generic ring traits */
1265 		ring->dev = &adapter->pdev->dev;
1266 		ring->netdev = adapter->netdev;
1267 
1268 		/* configure backlink on ring */
1269 		ring->q_vector = q_vector;
1270 
1271 		/* update q_vector Rx values */
1272 		igb_add_ring(ring, &q_vector->rx);
1273 
1274 		/* set flag indicating ring supports SCTP checksum offload */
1275 		if (adapter->hw.mac.type >= e1000_82576)
1276 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1277 
1278 		/* On i350, i354, i210, and i211, loopback VLAN packets
1279 		 * have the tag byte-swapped.
1280 		 */
1281 		if (adapter->hw.mac.type >= e1000_i350)
1282 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1283 
1284 		/* apply Rx specific ring traits */
1285 		ring->count = adapter->rx_ring_count;
1286 		ring->queue_index = rxr_idx;
1287 
1288 		u64_stats_init(&ring->rx_syncp);
1289 
1290 		/* assign ring to adapter */
1291 		adapter->rx_ring[rxr_idx] = ring;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 
1298 /**
1299  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1300  *  @adapter: board private structure to initialize
1301  *
1302  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1303  *  return -ENOMEM.
1304  **/
1305 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1306 {
1307 	int q_vectors = adapter->num_q_vectors;
1308 	int rxr_remaining = adapter->num_rx_queues;
1309 	int txr_remaining = adapter->num_tx_queues;
1310 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1311 	int err;
1312 
1313 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1314 		for (; rxr_remaining; v_idx++) {
1315 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1316 						 0, 0, 1, rxr_idx);
1317 
1318 			if (err)
1319 				goto err_out;
1320 
1321 			/* update counts and index */
1322 			rxr_remaining--;
1323 			rxr_idx++;
1324 		}
1325 	}
1326 
1327 	for (; v_idx < q_vectors; v_idx++) {
1328 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1329 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1330 
1331 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 					 tqpv, txr_idx, rqpv, rxr_idx);
1333 
1334 		if (err)
1335 			goto err_out;
1336 
1337 		/* update counts and index */
1338 		rxr_remaining -= rqpv;
1339 		txr_remaining -= tqpv;
1340 		rxr_idx++;
1341 		txr_idx++;
1342 	}
1343 
1344 	return 0;
1345 
1346 err_out:
1347 	adapter->num_tx_queues = 0;
1348 	adapter->num_rx_queues = 0;
1349 	adapter->num_q_vectors = 0;
1350 
1351 	while (v_idx--)
1352 		igb_free_q_vector(adapter, v_idx);
1353 
1354 	return -ENOMEM;
1355 }
1356 
1357 /**
1358  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1359  *  @adapter: board private structure to initialize
1360  *  @msix: boolean value of MSIX capability
1361  *
1362  *  This function initializes the interrupts and allocates all of the queues.
1363  **/
1364 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1365 {
1366 	struct pci_dev *pdev = adapter->pdev;
1367 	int err;
1368 
1369 	igb_set_interrupt_capability(adapter, msix);
1370 
1371 	err = igb_alloc_q_vectors(adapter);
1372 	if (err) {
1373 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1374 		goto err_alloc_q_vectors;
1375 	}
1376 
1377 	igb_cache_ring_register(adapter);
1378 
1379 	return 0;
1380 
1381 err_alloc_q_vectors:
1382 	igb_reset_interrupt_capability(adapter);
1383 	return err;
1384 }
1385 
1386 /**
1387  *  igb_request_irq - initialize interrupts
1388  *  @adapter: board private structure to initialize
1389  *
1390  *  Attempts to configure interrupts using the best available
1391  *  capabilities of the hardware and kernel.
1392  **/
1393 static int igb_request_irq(struct igb_adapter *adapter)
1394 {
1395 	struct net_device *netdev = adapter->netdev;
1396 	struct pci_dev *pdev = adapter->pdev;
1397 	int err = 0;
1398 
1399 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1400 		err = igb_request_msix(adapter);
1401 		if (!err)
1402 			goto request_done;
1403 		/* fall back to MSI */
1404 		igb_free_all_tx_resources(adapter);
1405 		igb_free_all_rx_resources(adapter);
1406 
1407 		igb_clear_interrupt_scheme(adapter);
1408 		err = igb_init_interrupt_scheme(adapter, false);
1409 		if (err)
1410 			goto request_done;
1411 
1412 		igb_setup_all_tx_resources(adapter);
1413 		igb_setup_all_rx_resources(adapter);
1414 		igb_configure(adapter);
1415 	}
1416 
1417 	igb_assign_vector(adapter->q_vector[0], 0);
1418 
1419 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1420 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1421 				  netdev->name, adapter);
1422 		if (!err)
1423 			goto request_done;
1424 
1425 		/* fall back to legacy interrupts */
1426 		igb_reset_interrupt_capability(adapter);
1427 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1428 	}
1429 
1430 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1431 			  netdev->name, adapter);
1432 
1433 	if (err)
1434 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1435 			err);
1436 
1437 request_done:
1438 	return err;
1439 }
1440 
1441 static void igb_free_irq(struct igb_adapter *adapter)
1442 {
1443 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1444 		int vector = 0, i;
1445 
1446 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1447 
1448 		for (i = 0; i < adapter->num_q_vectors; i++)
1449 			free_irq(adapter->msix_entries[vector++].vector,
1450 				 adapter->q_vector[i]);
1451 	} else {
1452 		free_irq(adapter->pdev->irq, adapter);
1453 	}
1454 }
1455 
1456 /**
1457  *  igb_irq_disable - Mask off interrupt generation on the NIC
1458  *  @adapter: board private structure
1459  **/
1460 static void igb_irq_disable(struct igb_adapter *adapter)
1461 {
1462 	struct e1000_hw *hw = &adapter->hw;
1463 
1464 	/* we need to be careful when disabling interrupts.  The VFs are also
1465 	 * mapped into these registers and so clearing the bits can cause
1466 	 * issues on the VF drivers so we only need to clear what we set
1467 	 */
1468 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1469 		u32 regval = rd32(E1000_EIAM);
1470 
1471 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1472 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1473 		regval = rd32(E1000_EIAC);
1474 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1475 	}
1476 
1477 	wr32(E1000_IAM, 0);
1478 	wr32(E1000_IMC, ~0);
1479 	wrfl();
1480 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1481 		int i;
1482 
1483 		for (i = 0; i < adapter->num_q_vectors; i++)
1484 			synchronize_irq(adapter->msix_entries[i].vector);
1485 	} else {
1486 		synchronize_irq(adapter->pdev->irq);
1487 	}
1488 }
1489 
1490 /**
1491  *  igb_irq_enable - Enable default interrupt generation settings
1492  *  @adapter: board private structure
1493  **/
1494 static void igb_irq_enable(struct igb_adapter *adapter)
1495 {
1496 	struct e1000_hw *hw = &adapter->hw;
1497 
1498 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1500 		u32 regval = rd32(E1000_EIAC);
1501 
1502 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1503 		regval = rd32(E1000_EIAM);
1504 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1505 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1506 		if (adapter->vfs_allocated_count) {
1507 			wr32(E1000_MBVFIMR, 0xFF);
1508 			ims |= E1000_IMS_VMMB;
1509 		}
1510 		wr32(E1000_IMS, ims);
1511 	} else {
1512 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1513 				E1000_IMS_DRSTA);
1514 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1515 				E1000_IMS_DRSTA);
1516 	}
1517 }
1518 
1519 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1520 {
1521 	struct e1000_hw *hw = &adapter->hw;
1522 	u16 pf_id = adapter->vfs_allocated_count;
1523 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1524 	u16 old_vid = adapter->mng_vlan_id;
1525 
1526 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1527 		/* add VID to filter table */
1528 		igb_vfta_set(hw, vid, pf_id, true, true);
1529 		adapter->mng_vlan_id = vid;
1530 	} else {
1531 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1532 	}
1533 
1534 	if (old_vid != IGB_MNG_VLAN_NONE && vid != old_vid &&
1535 	    !test_bit(old_vid, adapter->active_vlans)) {
1536 		/* remove VID from filter table */
1537 		igb_vfta_set(hw, vid, pf_id, false, true);
1538 	}
1539 }
1540 
1541 /**
1542  *  igb_release_hw_control - release control of the h/w to f/w
1543  *  @adapter: address of board private structure
1544  *
1545  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1546  *  For ASF and Pass Through versions of f/w this means that the
1547  *  driver is no longer loaded.
1548  **/
1549 static void igb_release_hw_control(struct igb_adapter *adapter)
1550 {
1551 	struct e1000_hw *hw = &adapter->hw;
1552 	u32 ctrl_ext;
1553 
1554 	/* Let firmware take over control of h/w */
1555 	ctrl_ext = rd32(E1000_CTRL_EXT);
1556 	wr32(E1000_CTRL_EXT,
1557 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1558 }
1559 
1560 /**
1561  *  igb_get_hw_control - get control of the h/w from f/w
1562  *  @adapter: address of board private structure
1563  *
1564  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1565  *  For ASF and Pass Through versions of f/w this means that
1566  *  the driver is loaded.
1567  **/
1568 static void igb_get_hw_control(struct igb_adapter *adapter)
1569 {
1570 	struct e1000_hw *hw = &adapter->hw;
1571 	u32 ctrl_ext;
1572 
1573 	/* Let firmware know the driver has taken over */
1574 	ctrl_ext = rd32(E1000_CTRL_EXT);
1575 	wr32(E1000_CTRL_EXT,
1576 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578 
1579 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1580 {
1581 	struct net_device *netdev = adapter->netdev;
1582 	struct e1000_hw *hw = &adapter->hw;
1583 
1584 	WARN_ON(hw->mac.type != e1000_i210);
1585 
1586 	if (enable)
1587 		adapter->flags |= IGB_FLAG_FQTSS;
1588 	else
1589 		adapter->flags &= ~IGB_FLAG_FQTSS;
1590 
1591 	if (netif_running(netdev))
1592 		schedule_work(&adapter->reset_task);
1593 }
1594 
1595 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1596 {
1597 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1598 }
1599 
1600 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1601 				   enum tx_queue_prio prio)
1602 {
1603 	u32 val;
1604 
1605 	WARN_ON(hw->mac.type != e1000_i210);
1606 	WARN_ON(queue < 0 || queue > 4);
1607 
1608 	val = rd32(E1000_I210_TXDCTL(queue));
1609 
1610 	if (prio == TX_QUEUE_PRIO_HIGH)
1611 		val |= E1000_TXDCTL_PRIORITY;
1612 	else
1613 		val &= ~E1000_TXDCTL_PRIORITY;
1614 
1615 	wr32(E1000_I210_TXDCTL(queue), val);
1616 }
1617 
1618 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1619 {
1620 	u32 val;
1621 
1622 	WARN_ON(hw->mac.type != e1000_i210);
1623 	WARN_ON(queue < 0 || queue > 1);
1624 
1625 	val = rd32(E1000_I210_TQAVCC(queue));
1626 
1627 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1628 		val |= E1000_TQAVCC_QUEUEMODE;
1629 	else
1630 		val &= ~E1000_TQAVCC_QUEUEMODE;
1631 
1632 	wr32(E1000_I210_TQAVCC(queue), val);
1633 }
1634 
1635 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1636 {
1637 	int i;
1638 
1639 	for (i = 0; i < adapter->num_tx_queues; i++) {
1640 		if (adapter->tx_ring[i]->cbs_enable)
1641 			return true;
1642 	}
1643 
1644 	return false;
1645 }
1646 
1647 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1648 {
1649 	int i;
1650 
1651 	for (i = 0; i < adapter->num_tx_queues; i++) {
1652 		if (adapter->tx_ring[i]->launchtime_enable)
1653 			return true;
1654 	}
1655 
1656 	return false;
1657 }
1658 
1659 /**
1660  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1661  *  @adapter: pointer to adapter struct
1662  *  @queue: queue number
1663  *
1664  *  Configure CBS and Launchtime for a given hardware queue.
1665  *  Parameters are retrieved from the correct Tx ring, so
1666  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1667  *  for setting those correctly prior to this function being called.
1668  **/
1669 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1670 {
1671 	struct net_device *netdev = adapter->netdev;
1672 	struct e1000_hw *hw = &adapter->hw;
1673 	struct igb_ring *ring;
1674 	u32 tqavcc, tqavctrl;
1675 	u16 value;
1676 
1677 	WARN_ON(hw->mac.type != e1000_i210);
1678 	WARN_ON(queue < 0 || queue > 1);
1679 	ring = adapter->tx_ring[queue];
1680 
1681 	/* If any of the Qav features is enabled, configure queues as SR and
1682 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1683 	 * as SP.
1684 	 */
1685 	if (ring->cbs_enable || ring->launchtime_enable) {
1686 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1687 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1688 	} else {
1689 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1690 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1691 	}
1692 
1693 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1694 	if (ring->cbs_enable || queue == 0) {
1695 		/* i210 does not allow the queue 0 to be in the Strict
1696 		 * Priority mode while the Qav mode is enabled, so,
1697 		 * instead of disabling strict priority mode, we give
1698 		 * queue 0 the maximum of credits possible.
1699 		 *
1700 		 * See section 8.12.19 of the i210 datasheet, "Note:
1701 		 * Queue0 QueueMode must be set to 1b when
1702 		 * TransmitMode is set to Qav."
1703 		 */
1704 		if (queue == 0 && !ring->cbs_enable) {
1705 			/* max "linkspeed" idleslope in kbps */
1706 			ring->idleslope = 1000000;
1707 			ring->hicredit = ETH_FRAME_LEN;
1708 		}
1709 
1710 		/* Always set data transfer arbitration to credit-based
1711 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1712 		 * the queues.
1713 		 */
1714 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1715 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1716 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1717 
1718 		/* According to i210 datasheet section 7.2.7.7, we should set
1719 		 * the 'idleSlope' field from TQAVCC register following the
1720 		 * equation:
1721 		 *
1722 		 * For 100 Mbps link speed:
1723 		 *
1724 		 *     value = BW * 0x7735 * 0.2                          (E1)
1725 		 *
1726 		 * For 1000Mbps link speed:
1727 		 *
1728 		 *     value = BW * 0x7735 * 2                            (E2)
1729 		 *
1730 		 * E1 and E2 can be merged into one equation as shown below.
1731 		 * Note that 'link-speed' is in Mbps.
1732 		 *
1733 		 *     value = BW * 0x7735 * 2 * link-speed
1734 		 *                           --------------               (E3)
1735 		 *                                1000
1736 		 *
1737 		 * 'BW' is the percentage bandwidth out of full link speed
1738 		 * which can be found with the following equation. Note that
1739 		 * idleSlope here is the parameter from this function which
1740 		 * is in kbps.
1741 		 *
1742 		 *     BW =     idleSlope
1743 		 *          -----------------                             (E4)
1744 		 *          link-speed * 1000
1745 		 *
1746 		 * That said, we can come up with a generic equation to
1747 		 * calculate the value we should set it TQAVCC register by
1748 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1749 		 *
1750 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1751 		 *         -----------------            --------------    (E5)
1752 		 *         link-speed * 1000                 1000
1753 		 *
1754 		 * 'link-speed' is present in both sides of the fraction so
1755 		 * it is canceled out. The final equation is the following:
1756 		 *
1757 		 *     value = idleSlope * 61034
1758 		 *             -----------------                          (E6)
1759 		 *                  1000000
1760 		 *
1761 		 * NOTE: For i210, given the above, we can see that idleslope
1762 		 *       is represented in 16.38431 kbps units by the value at
1763 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1764 		 *       the granularity for idleslope increments.
1765 		 *       For instance, if you want to configure a 2576kbps
1766 		 *       idleslope, the value to be written on the register
1767 		 *       would have to be 157.23. If rounded down, you end
1768 		 *       up with less bandwidth available than originally
1769 		 *       required (~2572 kbps). If rounded up, you end up
1770 		 *       with a higher bandwidth (~2589 kbps). Below the
1771 		 *       approach we take is to always round up the
1772 		 *       calculated value, so the resulting bandwidth might
1773 		 *       be slightly higher for some configurations.
1774 		 */
1775 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1776 
1777 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1778 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1779 		tqavcc |= value;
1780 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1781 
1782 		wr32(E1000_I210_TQAVHC(queue),
1783 		     0x80000000 + ring->hicredit * 0x7735);
1784 	} else {
1785 
1786 		/* Set idleSlope to zero. */
1787 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1788 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1789 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790 
1791 		/* Set hiCredit to zero. */
1792 		wr32(E1000_I210_TQAVHC(queue), 0);
1793 
1794 		/* If CBS is not enabled for any queues anymore, then return to
1795 		 * the default state of Data Transmission Arbitration on
1796 		 * TQAVCTRL.
1797 		 */
1798 		if (!is_any_cbs_enabled(adapter)) {
1799 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1800 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1801 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1802 		}
1803 	}
1804 
1805 	/* If LaunchTime is enabled, set DataTranTIM. */
1806 	if (ring->launchtime_enable) {
1807 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1808 		 * for any of the SR queues, and configure fetchtime delta.
1809 		 * XXX NOTE:
1810 		 *     - LaunchTime will be enabled for all SR queues.
1811 		 *     - A fixed offset can be added relative to the launch
1812 		 *       time of all packets if configured at reg LAUNCH_OS0.
1813 		 *       We are keeping it as 0 for now (default value).
1814 		 */
1815 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1817 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1818 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819 	} else {
1820 		/* If Launchtime is not enabled for any SR queues anymore,
1821 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1822 		 * effectively disabling Launchtime.
1823 		 */
1824 		if (!is_any_txtime_enabled(adapter)) {
1825 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1826 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1827 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1828 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1829 		}
1830 	}
1831 
1832 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1833 	 * CBS are not configurable by software so we don't do any 'controller
1834 	 * configuration' in respect to these parameters.
1835 	 */
1836 
1837 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1838 		   ring->cbs_enable ? "enabled" : "disabled",
1839 		   ring->launchtime_enable ? "enabled" : "disabled",
1840 		   queue,
1841 		   ring->idleslope, ring->sendslope,
1842 		   ring->hicredit, ring->locredit);
1843 }
1844 
1845 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1846 				  bool enable)
1847 {
1848 	struct igb_ring *ring;
1849 
1850 	if (queue < 0 || queue > adapter->num_tx_queues)
1851 		return -EINVAL;
1852 
1853 	ring = adapter->tx_ring[queue];
1854 	ring->launchtime_enable = enable;
1855 
1856 	return 0;
1857 }
1858 
1859 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1860 			       bool enable, int idleslope, int sendslope,
1861 			       int hicredit, int locredit)
1862 {
1863 	struct igb_ring *ring;
1864 
1865 	if (queue < 0 || queue > adapter->num_tx_queues)
1866 		return -EINVAL;
1867 
1868 	ring = adapter->tx_ring[queue];
1869 
1870 	ring->cbs_enable = enable;
1871 	ring->idleslope = idleslope;
1872 	ring->sendslope = sendslope;
1873 	ring->hicredit = hicredit;
1874 	ring->locredit = locredit;
1875 
1876 	return 0;
1877 }
1878 
1879 /**
1880  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1881  *  @adapter: pointer to adapter struct
1882  *
1883  *  Configure TQAVCTRL register switching the controller's Tx mode
1884  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1885  *  a call to igb_config_tx_modes() per queue so any previously saved
1886  *  Tx parameters are applied.
1887  **/
1888 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1889 {
1890 	struct net_device *netdev = adapter->netdev;
1891 	struct e1000_hw *hw = &adapter->hw;
1892 	u32 val;
1893 
1894 	/* Only i210 controller supports changing the transmission mode. */
1895 	if (hw->mac.type != e1000_i210)
1896 		return;
1897 
1898 	if (is_fqtss_enabled(adapter)) {
1899 		int i, max_queue;
1900 
1901 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1902 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1903 		 * so SP queues wait for SR ones.
1904 		 */
1905 		val = rd32(E1000_I210_TQAVCTRL);
1906 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1907 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1908 		wr32(E1000_I210_TQAVCTRL, val);
1909 
1910 		/* Configure Tx and Rx packet buffers sizes as described in
1911 		 * i210 datasheet section 7.2.7.7.
1912 		 */
1913 		val = rd32(E1000_TXPBS);
1914 		val &= ~I210_TXPBSIZE_MASK;
1915 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1916 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1917 		wr32(E1000_TXPBS, val);
1918 
1919 		val = rd32(E1000_RXPBS);
1920 		val &= ~I210_RXPBSIZE_MASK;
1921 		val |= I210_RXPBSIZE_PB_30KB;
1922 		wr32(E1000_RXPBS, val);
1923 
1924 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1925 		 * register should not exceed the buffer size programmed in
1926 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1927 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1928 		 * 4kB / 64.
1929 		 *
1930 		 * However, when we do so, no frame from queue 2 and 3 are
1931 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1932 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1933 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1934 		 */
1935 		val = (4096 - 1) / 64;
1936 		wr32(E1000_I210_DTXMXPKTSZ, val);
1937 
1938 		/* Since FQTSS mode is enabled, apply any CBS configuration
1939 		 * previously set. If no previous CBS configuration has been
1940 		 * done, then the initial configuration is applied, which means
1941 		 * CBS is disabled.
1942 		 */
1943 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1944 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1945 
1946 		for (i = 0; i < max_queue; i++) {
1947 			igb_config_tx_modes(adapter, i);
1948 		}
1949 	} else {
1950 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1951 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1952 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1953 
1954 		val = rd32(E1000_I210_TQAVCTRL);
1955 		/* According to Section 8.12.21, the other flags we've set when
1956 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1957 		 * don't set they here.
1958 		 */
1959 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1960 		wr32(E1000_I210_TQAVCTRL, val);
1961 	}
1962 
1963 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1964 		   "enabled" : "disabled");
1965 }
1966 
1967 /**
1968  *  igb_configure - configure the hardware for RX and TX
1969  *  @adapter: private board structure
1970  **/
1971 static void igb_configure(struct igb_adapter *adapter)
1972 {
1973 	struct net_device *netdev = adapter->netdev;
1974 	int i;
1975 
1976 	igb_get_hw_control(adapter);
1977 	igb_set_rx_mode(netdev);
1978 	igb_setup_tx_mode(adapter);
1979 
1980 	igb_restore_vlan(adapter);
1981 
1982 	igb_setup_tctl(adapter);
1983 	igb_setup_mrqc(adapter);
1984 	igb_setup_rctl(adapter);
1985 
1986 	igb_nfc_filter_restore(adapter);
1987 	igb_configure_tx(adapter);
1988 	igb_configure_rx(adapter);
1989 
1990 	igb_rx_fifo_flush_82575(&adapter->hw);
1991 
1992 	/* call igb_desc_unused which always leaves
1993 	 * at least 1 descriptor unused to make sure
1994 	 * next_to_use != next_to_clean
1995 	 */
1996 	for (i = 0; i < adapter->num_rx_queues; i++) {
1997 		struct igb_ring *ring = adapter->rx_ring[i];
1998 		if (ring->xsk_pool)
1999 			igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
2000 						igb_desc_unused(ring));
2001 		else
2002 			igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2003 	}
2004 }
2005 
2006 /**
2007  *  igb_power_up_link - Power up the phy/serdes link
2008  *  @adapter: address of board private structure
2009  **/
2010 void igb_power_up_link(struct igb_adapter *adapter)
2011 {
2012 	igb_reset_phy(&adapter->hw);
2013 
2014 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2015 		igb_power_up_phy_copper(&adapter->hw);
2016 	else
2017 		igb_power_up_serdes_link_82575(&adapter->hw);
2018 
2019 	igb_setup_link(&adapter->hw);
2020 }
2021 
2022 /**
2023  *  igb_power_down_link - Power down the phy/serdes link
2024  *  @adapter: address of board private structure
2025  */
2026 static void igb_power_down_link(struct igb_adapter *adapter)
2027 {
2028 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 		igb_power_down_phy_copper_82575(&adapter->hw);
2030 	else
2031 		igb_shutdown_serdes_link_82575(&adapter->hw);
2032 }
2033 
2034 /**
2035  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2036  * @adapter: address of the board private structure
2037  **/
2038 static void igb_check_swap_media(struct igb_adapter *adapter)
2039 {
2040 	struct e1000_hw *hw = &adapter->hw;
2041 	u32 ctrl_ext, connsw;
2042 	bool swap_now = false;
2043 
2044 	ctrl_ext = rd32(E1000_CTRL_EXT);
2045 	connsw = rd32(E1000_CONNSW);
2046 
2047 	/* need to live swap if current media is copper and we have fiber/serdes
2048 	 * to go to.
2049 	 */
2050 
2051 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2052 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2053 		swap_now = true;
2054 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2055 		   !(connsw & E1000_CONNSW_SERDESD)) {
2056 		/* copper signal takes time to appear */
2057 		if (adapter->copper_tries < 4) {
2058 			adapter->copper_tries++;
2059 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2060 			wr32(E1000_CONNSW, connsw);
2061 			return;
2062 		} else {
2063 			adapter->copper_tries = 0;
2064 			if ((connsw & E1000_CONNSW_PHYSD) &&
2065 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2066 				swap_now = true;
2067 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2068 				wr32(E1000_CONNSW, connsw);
2069 			}
2070 		}
2071 	}
2072 
2073 	if (!swap_now)
2074 		return;
2075 
2076 	switch (hw->phy.media_type) {
2077 	case e1000_media_type_copper:
2078 		netdev_info(adapter->netdev,
2079 			"MAS: changing media to fiber/serdes\n");
2080 		ctrl_ext |=
2081 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2082 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2083 		adapter->copper_tries = 0;
2084 		break;
2085 	case e1000_media_type_internal_serdes:
2086 	case e1000_media_type_fiber:
2087 		netdev_info(adapter->netdev,
2088 			"MAS: changing media to copper\n");
2089 		ctrl_ext &=
2090 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2091 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2092 		break;
2093 	default:
2094 		/* shouldn't get here during regular operation */
2095 		netdev_err(adapter->netdev,
2096 			"AMS: Invalid media type found, returning\n");
2097 		break;
2098 	}
2099 	wr32(E1000_CTRL_EXT, ctrl_ext);
2100 }
2101 
2102 void igb_set_queue_napi(struct igb_adapter *adapter, int vector,
2103 			struct napi_struct *napi)
2104 {
2105 	struct igb_q_vector *q_vector = adapter->q_vector[vector];
2106 
2107 	if (q_vector->rx.ring)
2108 		netif_queue_set_napi(adapter->netdev,
2109 				     q_vector->rx.ring->queue_index,
2110 				     NETDEV_QUEUE_TYPE_RX, napi);
2111 
2112 	if (q_vector->tx.ring)
2113 		netif_queue_set_napi(adapter->netdev,
2114 				     q_vector->tx.ring->queue_index,
2115 				     NETDEV_QUEUE_TYPE_TX, napi);
2116 }
2117 
2118 /**
2119  *  igb_up - Open the interface and prepare it to handle traffic
2120  *  @adapter: board private structure
2121  **/
2122 int igb_up(struct igb_adapter *adapter)
2123 {
2124 	struct e1000_hw *hw = &adapter->hw;
2125 	struct napi_struct *napi;
2126 	int i;
2127 
2128 	/* hardware has been reset, we need to reload some things */
2129 	igb_configure(adapter);
2130 
2131 	clear_bit(__IGB_DOWN, &adapter->state);
2132 
2133 	for (i = 0; i < adapter->num_q_vectors; i++) {
2134 		napi = &adapter->q_vector[i]->napi;
2135 		napi_enable(napi);
2136 		igb_set_queue_napi(adapter, i, napi);
2137 	}
2138 
2139 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2140 		igb_configure_msix(adapter);
2141 	else
2142 		igb_assign_vector(adapter->q_vector[0], 0);
2143 
2144 	/* Clear any pending interrupts. */
2145 	rd32(E1000_TSICR);
2146 	rd32(E1000_ICR);
2147 	igb_irq_enable(adapter);
2148 
2149 	/* notify VFs that reset has been completed */
2150 	if (adapter->vfs_allocated_count) {
2151 		u32 reg_data = rd32(E1000_CTRL_EXT);
2152 
2153 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2154 		wr32(E1000_CTRL_EXT, reg_data);
2155 	}
2156 
2157 	netif_tx_start_all_queues(adapter->netdev);
2158 
2159 	/* start the watchdog. */
2160 	hw->mac.get_link_status = 1;
2161 	schedule_work(&adapter->watchdog_task);
2162 
2163 	if ((adapter->flags & IGB_FLAG_EEE) &&
2164 	    (!hw->dev_spec._82575.eee_disable))
2165 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2166 
2167 	return 0;
2168 }
2169 
2170 void igb_down(struct igb_adapter *adapter)
2171 {
2172 	struct net_device *netdev = adapter->netdev;
2173 	struct e1000_hw *hw = &adapter->hw;
2174 	u32 tctl, rctl;
2175 	int i;
2176 
2177 	/* signal that we're down so the interrupt handler does not
2178 	 * reschedule our watchdog timer
2179 	 */
2180 	set_bit(__IGB_DOWN, &adapter->state);
2181 
2182 	/* disable receives in the hardware */
2183 	rctl = rd32(E1000_RCTL);
2184 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2185 	/* flush and sleep below */
2186 
2187 	igb_nfc_filter_exit(adapter);
2188 
2189 	netif_carrier_off(netdev);
2190 	netif_tx_stop_all_queues(netdev);
2191 
2192 	/* disable transmits in the hardware */
2193 	tctl = rd32(E1000_TCTL);
2194 	tctl &= ~E1000_TCTL_EN;
2195 	wr32(E1000_TCTL, tctl);
2196 	/* flush both disables and wait for them to finish */
2197 	wrfl();
2198 	usleep_range(10000, 11000);
2199 
2200 	igb_irq_disable(adapter);
2201 
2202 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2203 
2204 	for (i = 0; i < adapter->num_q_vectors; i++) {
2205 		if (adapter->q_vector[i]) {
2206 			napi_synchronize(&adapter->q_vector[i]->napi);
2207 			igb_set_queue_napi(adapter, i, NULL);
2208 			napi_disable(&adapter->q_vector[i]->napi);
2209 		}
2210 	}
2211 
2212 	timer_delete_sync(&adapter->watchdog_timer);
2213 	timer_delete_sync(&adapter->phy_info_timer);
2214 
2215 	/* record the stats before reset*/
2216 	spin_lock(&adapter->stats64_lock);
2217 	igb_update_stats(adapter);
2218 	spin_unlock(&adapter->stats64_lock);
2219 
2220 	adapter->link_speed = 0;
2221 	adapter->link_duplex = 0;
2222 
2223 	if (!pci_channel_offline(adapter->pdev))
2224 		igb_reset(adapter);
2225 
2226 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2227 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2228 
2229 	igb_clean_all_tx_rings(adapter);
2230 	igb_clean_all_rx_rings(adapter);
2231 #ifdef CONFIG_IGB_DCA
2232 
2233 	/* since we reset the hardware DCA settings were cleared */
2234 	igb_setup_dca(adapter);
2235 #endif
2236 }
2237 
2238 void igb_reinit_locked(struct igb_adapter *adapter)
2239 {
2240 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2241 		usleep_range(1000, 2000);
2242 	igb_down(adapter);
2243 	igb_up(adapter);
2244 	clear_bit(__IGB_RESETTING, &adapter->state);
2245 }
2246 
2247 /** igb_enable_mas - Media Autosense re-enable after swap
2248  *
2249  * @adapter: adapter struct
2250  **/
2251 static void igb_enable_mas(struct igb_adapter *adapter)
2252 {
2253 	struct e1000_hw *hw = &adapter->hw;
2254 	u32 connsw = rd32(E1000_CONNSW);
2255 
2256 	/* configure for SerDes media detect */
2257 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2258 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2259 		connsw |= E1000_CONNSW_ENRGSRC;
2260 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2261 		wr32(E1000_CONNSW, connsw);
2262 		wrfl();
2263 	}
2264 }
2265 
2266 #ifdef CONFIG_IGB_HWMON
2267 /**
2268  *  igb_set_i2c_bb - Init I2C interface
2269  *  @hw: pointer to hardware structure
2270  **/
2271 static void igb_set_i2c_bb(struct e1000_hw *hw)
2272 {
2273 	u32 ctrl_ext;
2274 	s32 i2cctl;
2275 
2276 	ctrl_ext = rd32(E1000_CTRL_EXT);
2277 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2278 	wr32(E1000_CTRL_EXT, ctrl_ext);
2279 	wrfl();
2280 
2281 	i2cctl = rd32(E1000_I2CPARAMS);
2282 	i2cctl |= E1000_I2CBB_EN
2283 		| E1000_I2C_CLK_OE_N
2284 		| E1000_I2C_DATA_OE_N;
2285 	wr32(E1000_I2CPARAMS, i2cctl);
2286 	wrfl();
2287 }
2288 #endif
2289 
2290 void igb_reset(struct igb_adapter *adapter)
2291 {
2292 	struct pci_dev *pdev = adapter->pdev;
2293 	struct e1000_hw *hw = &adapter->hw;
2294 	struct e1000_mac_info *mac = &hw->mac;
2295 	struct e1000_fc_info *fc = &hw->fc;
2296 	u32 pba, hwm;
2297 
2298 	/* Repartition Pba for greater than 9k mtu
2299 	 * To take effect CTRL.RST is required.
2300 	 */
2301 	switch (mac->type) {
2302 	case e1000_i350:
2303 	case e1000_i354:
2304 	case e1000_82580:
2305 		pba = rd32(E1000_RXPBS);
2306 		pba = igb_rxpbs_adjust_82580(pba);
2307 		break;
2308 	case e1000_82576:
2309 		pba = rd32(E1000_RXPBS);
2310 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2311 		break;
2312 	case e1000_82575:
2313 	case e1000_i210:
2314 	case e1000_i211:
2315 	default:
2316 		pba = E1000_PBA_34K;
2317 		break;
2318 	}
2319 
2320 	if (mac->type == e1000_82575) {
2321 		u32 min_rx_space, min_tx_space, needed_tx_space;
2322 
2323 		/* write Rx PBA so that hardware can report correct Tx PBA */
2324 		wr32(E1000_PBA, pba);
2325 
2326 		/* To maintain wire speed transmits, the Tx FIFO should be
2327 		 * large enough to accommodate two full transmit packets,
2328 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2329 		 * the Rx FIFO should be large enough to accommodate at least
2330 		 * one full receive packet and is similarly rounded up and
2331 		 * expressed in KB.
2332 		 */
2333 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2334 
2335 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2336 		 * but don't include Ethernet FCS because hardware appends it.
2337 		 * We only need to round down to the nearest 512 byte block
2338 		 * count since the value we care about is 2 frames, not 1.
2339 		 */
2340 		min_tx_space = adapter->max_frame_size;
2341 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2342 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2343 
2344 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2345 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2346 
2347 		/* If current Tx allocation is less than the min Tx FIFO size,
2348 		 * and the min Tx FIFO size is less than the current Rx FIFO
2349 		 * allocation, take space away from current Rx allocation.
2350 		 */
2351 		if (needed_tx_space < pba) {
2352 			pba -= needed_tx_space;
2353 
2354 			/* if short on Rx space, Rx wins and must trump Tx
2355 			 * adjustment
2356 			 */
2357 			if (pba < min_rx_space)
2358 				pba = min_rx_space;
2359 		}
2360 
2361 		/* adjust PBA for jumbo frames */
2362 		wr32(E1000_PBA, pba);
2363 	}
2364 
2365 	/* flow control settings
2366 	 * The high water mark must be low enough to fit one full frame
2367 	 * after transmitting the pause frame.  As such we must have enough
2368 	 * space to allow for us to complete our current transmit and then
2369 	 * receive the frame that is in progress from the link partner.
2370 	 * Set it to:
2371 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2372 	 */
2373 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2374 
2375 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2376 	fc->low_water = fc->high_water - 16;
2377 	fc->pause_time = 0xFFFF;
2378 	fc->send_xon = 1;
2379 	fc->current_mode = fc->requested_mode;
2380 
2381 	/* disable receive for all VFs and wait one second */
2382 	if (adapter->vfs_allocated_count) {
2383 		int i;
2384 
2385 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2386 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2387 
2388 		/* ping all the active vfs to let them know we are going down */
2389 		igb_ping_all_vfs(adapter);
2390 
2391 		/* disable transmits and receives */
2392 		wr32(E1000_VFRE, 0);
2393 		wr32(E1000_VFTE, 0);
2394 	}
2395 
2396 	/* Allow time for pending master requests to run */
2397 	hw->mac.ops.reset_hw(hw);
2398 	wr32(E1000_WUC, 0);
2399 
2400 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2401 		/* need to resetup here after media swap */
2402 		adapter->ei.get_invariants(hw);
2403 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2404 	}
2405 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2406 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2407 		igb_enable_mas(adapter);
2408 	}
2409 	if (hw->mac.ops.init_hw(hw))
2410 		dev_err(&pdev->dev, "Hardware Error\n");
2411 
2412 	/* RAR registers were cleared during init_hw, clear mac table */
2413 	igb_flush_mac_table(adapter);
2414 	__dev_uc_unsync(adapter->netdev, NULL);
2415 
2416 	/* Recover default RAR entry */
2417 	igb_set_default_mac_filter(adapter);
2418 
2419 	/* Flow control settings reset on hardware reset, so guarantee flow
2420 	 * control is off when forcing speed.
2421 	 */
2422 	if (!hw->mac.autoneg)
2423 		igb_force_mac_fc(hw);
2424 
2425 	igb_init_dmac(adapter, pba);
2426 #ifdef CONFIG_IGB_HWMON
2427 	/* Re-initialize the thermal sensor on i350 devices. */
2428 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2429 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2430 			/* If present, re-initialize the external thermal sensor
2431 			 * interface.
2432 			 */
2433 			if (adapter->ets)
2434 				igb_set_i2c_bb(hw);
2435 			mac->ops.init_thermal_sensor_thresh(hw);
2436 		}
2437 	}
2438 #endif
2439 	/* Re-establish EEE setting */
2440 	if (hw->phy.media_type == e1000_media_type_copper) {
2441 		switch (mac->type) {
2442 		case e1000_i350:
2443 		case e1000_i210:
2444 		case e1000_i211:
2445 			igb_set_eee_i350(hw, true, true);
2446 			break;
2447 		case e1000_i354:
2448 			igb_set_eee_i354(hw, true, true);
2449 			break;
2450 		default:
2451 			break;
2452 		}
2453 	}
2454 	if (!netif_running(adapter->netdev))
2455 		igb_power_down_link(adapter);
2456 
2457 	igb_update_mng_vlan(adapter);
2458 
2459 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2460 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2461 
2462 	/* Re-enable PTP, where applicable. */
2463 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2464 		igb_ptp_reset(adapter);
2465 
2466 	igb_get_phy_info(hw);
2467 }
2468 
2469 static netdev_features_t igb_fix_features(struct net_device *netdev,
2470 	netdev_features_t features)
2471 {
2472 	/* Since there is no support for separate Rx/Tx vlan accel
2473 	 * enable/disable make sure Tx flag is always in same state as Rx.
2474 	 */
2475 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2476 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2477 	else
2478 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2479 
2480 	return features;
2481 }
2482 
2483 static int igb_set_features(struct net_device *netdev,
2484 	netdev_features_t features)
2485 {
2486 	netdev_features_t changed = netdev->features ^ features;
2487 	struct igb_adapter *adapter = netdev_priv(netdev);
2488 
2489 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2490 		igb_vlan_mode(netdev, features);
2491 
2492 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2493 		return 0;
2494 
2495 	if (!(features & NETIF_F_NTUPLE)) {
2496 		struct hlist_node *node2;
2497 		struct igb_nfc_filter *rule;
2498 
2499 		spin_lock(&adapter->nfc_lock);
2500 		hlist_for_each_entry_safe(rule, node2,
2501 					  &adapter->nfc_filter_list, nfc_node) {
2502 			igb_erase_filter(adapter, rule);
2503 			hlist_del(&rule->nfc_node);
2504 			kfree(rule);
2505 		}
2506 		spin_unlock(&adapter->nfc_lock);
2507 		adapter->nfc_filter_count = 0;
2508 	}
2509 
2510 	netdev->features = features;
2511 
2512 	if (netif_running(netdev))
2513 		igb_reinit_locked(adapter);
2514 	else
2515 		igb_reset(adapter);
2516 
2517 	return 1;
2518 }
2519 
2520 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2521 			   struct net_device *dev,
2522 			   const unsigned char *addr, u16 vid,
2523 			   u16 flags, bool *notified,
2524 			   struct netlink_ext_ack *extack)
2525 {
2526 	/* guarantee we can provide a unique filter for the unicast address */
2527 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2528 		struct igb_adapter *adapter = netdev_priv(dev);
2529 		int vfn = adapter->vfs_allocated_count;
2530 
2531 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2532 			return -ENOMEM;
2533 	}
2534 
2535 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2536 }
2537 
2538 #define IGB_MAX_MAC_HDR_LEN	127
2539 #define IGB_MAX_NETWORK_HDR_LEN	511
2540 
2541 static netdev_features_t
2542 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2543 		   netdev_features_t features)
2544 {
2545 	unsigned int network_hdr_len, mac_hdr_len;
2546 
2547 	/* Make certain the headers can be described by a context descriptor */
2548 	mac_hdr_len = skb_network_offset(skb);
2549 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2550 		return features & ~(NETIF_F_HW_CSUM |
2551 				    NETIF_F_SCTP_CRC |
2552 				    NETIF_F_GSO_UDP_L4 |
2553 				    NETIF_F_HW_VLAN_CTAG_TX |
2554 				    NETIF_F_TSO |
2555 				    NETIF_F_TSO6);
2556 
2557 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2558 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2559 		return features & ~(NETIF_F_HW_CSUM |
2560 				    NETIF_F_SCTP_CRC |
2561 				    NETIF_F_GSO_UDP_L4 |
2562 				    NETIF_F_TSO |
2563 				    NETIF_F_TSO6);
2564 
2565 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2566 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2567 	 */
2568 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2569 		features &= ~NETIF_F_TSO;
2570 
2571 	return features;
2572 }
2573 
2574 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2575 {
2576 	if (!is_fqtss_enabled(adapter)) {
2577 		enable_fqtss(adapter, true);
2578 		return;
2579 	}
2580 
2581 	igb_config_tx_modes(adapter, queue);
2582 
2583 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2584 		enable_fqtss(adapter, false);
2585 }
2586 
2587 static int igb_offload_cbs(struct igb_adapter *adapter,
2588 			   struct tc_cbs_qopt_offload *qopt)
2589 {
2590 	struct e1000_hw *hw = &adapter->hw;
2591 	int err;
2592 
2593 	/* CBS offloading is only supported by i210 controller. */
2594 	if (hw->mac.type != e1000_i210)
2595 		return -EOPNOTSUPP;
2596 
2597 	/* CBS offloading is only supported by queue 0 and queue 1. */
2598 	if (qopt->queue < 0 || qopt->queue > 1)
2599 		return -EINVAL;
2600 
2601 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2602 				  qopt->idleslope, qopt->sendslope,
2603 				  qopt->hicredit, qopt->locredit);
2604 	if (err)
2605 		return err;
2606 
2607 	igb_offload_apply(adapter, qopt->queue);
2608 
2609 	return 0;
2610 }
2611 
2612 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2613 #define VLAN_PRIO_FULL_MASK (0x07)
2614 
2615 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2616 				struct flow_cls_offload *f,
2617 				int traffic_class,
2618 				struct igb_nfc_filter *input)
2619 {
2620 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2621 	struct flow_dissector *dissector = rule->match.dissector;
2622 	struct netlink_ext_ack *extack = f->common.extack;
2623 
2624 	if (dissector->used_keys &
2625 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2626 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2627 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2628 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2629 		NL_SET_ERR_MSG_MOD(extack,
2630 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2631 		return -EOPNOTSUPP;
2632 	}
2633 
2634 	if (flow_rule_match_has_control_flags(rule, extack))
2635 		return -EOPNOTSUPP;
2636 
2637 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2638 		struct flow_match_eth_addrs match;
2639 
2640 		flow_rule_match_eth_addrs(rule, &match);
2641 		if (!is_zero_ether_addr(match.mask->dst)) {
2642 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2643 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2644 				return -EINVAL;
2645 			}
2646 
2647 			input->filter.match_flags |=
2648 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2649 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2650 		}
2651 
2652 		if (!is_zero_ether_addr(match.mask->src)) {
2653 			if (!is_broadcast_ether_addr(match.mask->src)) {
2654 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2655 				return -EINVAL;
2656 			}
2657 
2658 			input->filter.match_flags |=
2659 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2660 			ether_addr_copy(input->filter.src_addr, match.key->src);
2661 		}
2662 	}
2663 
2664 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2665 		struct flow_match_basic match;
2666 
2667 		flow_rule_match_basic(rule, &match);
2668 		if (match.mask->n_proto) {
2669 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2670 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2671 				return -EINVAL;
2672 			}
2673 
2674 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2675 			input->filter.etype = match.key->n_proto;
2676 		}
2677 	}
2678 
2679 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2680 		struct flow_match_vlan match;
2681 
2682 		flow_rule_match_vlan(rule, &match);
2683 		if (match.mask->vlan_priority) {
2684 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2685 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2686 				return -EINVAL;
2687 			}
2688 
2689 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2690 			input->filter.vlan_tci =
2691 				(__force __be16)match.key->vlan_priority;
2692 		}
2693 	}
2694 
2695 	input->action = traffic_class;
2696 	input->cookie = f->cookie;
2697 
2698 	return 0;
2699 }
2700 
2701 static int igb_configure_clsflower(struct igb_adapter *adapter,
2702 				   struct flow_cls_offload *cls_flower)
2703 {
2704 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2705 	struct igb_nfc_filter *filter, *f;
2706 	int err, tc;
2707 
2708 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2709 	if (tc < 0) {
2710 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2711 		return -EINVAL;
2712 	}
2713 
2714 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2715 	if (!filter)
2716 		return -ENOMEM;
2717 
2718 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2719 	if (err < 0)
2720 		goto err_parse;
2721 
2722 	spin_lock(&adapter->nfc_lock);
2723 
2724 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2725 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2726 			err = -EEXIST;
2727 			NL_SET_ERR_MSG_MOD(extack,
2728 					   "This filter is already set in ethtool");
2729 			goto err_locked;
2730 		}
2731 	}
2732 
2733 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2734 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2735 			err = -EEXIST;
2736 			NL_SET_ERR_MSG_MOD(extack,
2737 					   "This filter is already set in cls_flower");
2738 			goto err_locked;
2739 		}
2740 	}
2741 
2742 	err = igb_add_filter(adapter, filter);
2743 	if (err < 0) {
2744 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2745 		goto err_locked;
2746 	}
2747 
2748 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2749 
2750 	spin_unlock(&adapter->nfc_lock);
2751 
2752 	return 0;
2753 
2754 err_locked:
2755 	spin_unlock(&adapter->nfc_lock);
2756 
2757 err_parse:
2758 	kfree(filter);
2759 
2760 	return err;
2761 }
2762 
2763 static int igb_delete_clsflower(struct igb_adapter *adapter,
2764 				struct flow_cls_offload *cls_flower)
2765 {
2766 	struct igb_nfc_filter *filter;
2767 	int err;
2768 
2769 	spin_lock(&adapter->nfc_lock);
2770 
2771 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2772 		if (filter->cookie == cls_flower->cookie)
2773 			break;
2774 
2775 	if (!filter) {
2776 		err = -ENOENT;
2777 		goto out;
2778 	}
2779 
2780 	err = igb_erase_filter(adapter, filter);
2781 	if (err < 0)
2782 		goto out;
2783 
2784 	hlist_del(&filter->nfc_node);
2785 	kfree(filter);
2786 
2787 out:
2788 	spin_unlock(&adapter->nfc_lock);
2789 
2790 	return err;
2791 }
2792 
2793 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2794 				   struct flow_cls_offload *cls_flower)
2795 {
2796 	switch (cls_flower->command) {
2797 	case FLOW_CLS_REPLACE:
2798 		return igb_configure_clsflower(adapter, cls_flower);
2799 	case FLOW_CLS_DESTROY:
2800 		return igb_delete_clsflower(adapter, cls_flower);
2801 	case FLOW_CLS_STATS:
2802 		return -EOPNOTSUPP;
2803 	default:
2804 		return -EOPNOTSUPP;
2805 	}
2806 }
2807 
2808 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2809 				 void *cb_priv)
2810 {
2811 	struct igb_adapter *adapter = cb_priv;
2812 
2813 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2814 		return -EOPNOTSUPP;
2815 
2816 	switch (type) {
2817 	case TC_SETUP_CLSFLOWER:
2818 		return igb_setup_tc_cls_flower(adapter, type_data);
2819 
2820 	default:
2821 		return -EOPNOTSUPP;
2822 	}
2823 }
2824 
2825 static int igb_offload_txtime(struct igb_adapter *adapter,
2826 			      struct tc_etf_qopt_offload *qopt)
2827 {
2828 	struct e1000_hw *hw = &adapter->hw;
2829 	int err;
2830 
2831 	/* Launchtime offloading is only supported by i210 controller. */
2832 	if (hw->mac.type != e1000_i210)
2833 		return -EOPNOTSUPP;
2834 
2835 	/* Launchtime offloading is only supported by queues 0 and 1. */
2836 	if (qopt->queue < 0 || qopt->queue > 1)
2837 		return -EINVAL;
2838 
2839 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2840 	if (err)
2841 		return err;
2842 
2843 	igb_offload_apply(adapter, qopt->queue);
2844 
2845 	return 0;
2846 }
2847 
2848 static int igb_tc_query_caps(struct igb_adapter *adapter,
2849 			     struct tc_query_caps_base *base)
2850 {
2851 	switch (base->type) {
2852 	case TC_SETUP_QDISC_TAPRIO: {
2853 		struct tc_taprio_caps *caps = base->caps;
2854 
2855 		caps->broken_mqprio = true;
2856 
2857 		return 0;
2858 	}
2859 	default:
2860 		return -EOPNOTSUPP;
2861 	}
2862 }
2863 
2864 static LIST_HEAD(igb_block_cb_list);
2865 
2866 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2867 			void *type_data)
2868 {
2869 	struct igb_adapter *adapter = netdev_priv(dev);
2870 
2871 	switch (type) {
2872 	case TC_QUERY_CAPS:
2873 		return igb_tc_query_caps(adapter, type_data);
2874 	case TC_SETUP_QDISC_CBS:
2875 		return igb_offload_cbs(adapter, type_data);
2876 	case TC_SETUP_BLOCK:
2877 		return flow_block_cb_setup_simple(type_data,
2878 						  &igb_block_cb_list,
2879 						  igb_setup_tc_block_cb,
2880 						  adapter, adapter, true);
2881 
2882 	case TC_SETUP_QDISC_ETF:
2883 		return igb_offload_txtime(adapter, type_data);
2884 
2885 	default:
2886 		return -EOPNOTSUPP;
2887 	}
2888 }
2889 
2890 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2891 {
2892 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2893 	struct igb_adapter *adapter = netdev_priv(dev);
2894 	struct bpf_prog *prog = bpf->prog, *old_prog;
2895 	bool running = netif_running(dev);
2896 	bool need_reset;
2897 
2898 	/* verify igb ring attributes are sufficient for XDP */
2899 	for (i = 0; i < adapter->num_rx_queues; i++) {
2900 		struct igb_ring *ring = adapter->rx_ring[i];
2901 
2902 		if (frame_size > igb_rx_bufsz(ring)) {
2903 			NL_SET_ERR_MSG_MOD(bpf->extack,
2904 					   "The RX buffer size is too small for the frame size");
2905 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2906 				    igb_rx_bufsz(ring), frame_size);
2907 			return -EINVAL;
2908 		}
2909 	}
2910 
2911 	old_prog = xchg(&adapter->xdp_prog, prog);
2912 	need_reset = (!!prog != !!old_prog);
2913 
2914 	/* device is up and bpf is added/removed, must setup the RX queues */
2915 	if (need_reset && running) {
2916 		igb_close(dev);
2917 	} else {
2918 		for (i = 0; i < adapter->num_rx_queues; i++)
2919 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2920 			    adapter->xdp_prog);
2921 	}
2922 
2923 	if (old_prog)
2924 		bpf_prog_put(old_prog);
2925 
2926 	/* bpf is just replaced, RXQ and MTU are already setup */
2927 	if (!need_reset) {
2928 		return 0;
2929 	} else {
2930 		if (prog)
2931 			xdp_features_set_redirect_target(dev, true);
2932 		else
2933 			xdp_features_clear_redirect_target(dev);
2934 	}
2935 
2936 	if (running)
2937 		igb_open(dev);
2938 
2939 	return 0;
2940 }
2941 
2942 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2943 {
2944 	struct igb_adapter *adapter = netdev_priv(dev);
2945 
2946 	switch (xdp->command) {
2947 	case XDP_SETUP_PROG:
2948 		return igb_xdp_setup(dev, xdp);
2949 	case XDP_SETUP_XSK_POOL:
2950 		return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2951 					  xdp->xsk.queue_id);
2952 	default:
2953 		return -EINVAL;
2954 	}
2955 }
2956 
2957 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2958 {
2959 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2960 	int cpu = smp_processor_id();
2961 	struct igb_ring *tx_ring;
2962 	struct netdev_queue *nq;
2963 	u32 ret;
2964 
2965 	if (unlikely(!xdpf))
2966 		return IGB_XDP_CONSUMED;
2967 
2968 	/* During program transitions its possible adapter->xdp_prog is assigned
2969 	 * but ring has not been configured yet. In this case simply abort xmit.
2970 	 */
2971 	tx_ring = igb_xdp_is_enabled(adapter) ?
2972 		igb_xdp_tx_queue_mapping(adapter) : NULL;
2973 	if (unlikely(!tx_ring))
2974 		return IGB_XDP_CONSUMED;
2975 
2976 	nq = txring_txq(tx_ring);
2977 	__netif_tx_lock(nq, cpu);
2978 	/* Avoid transmit queue timeout since we share it with the slow path */
2979 	txq_trans_cond_update(nq);
2980 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2981 	__netif_tx_unlock(nq);
2982 
2983 	return ret;
2984 }
2985 
2986 static int igb_xdp_xmit(struct net_device *dev, int n,
2987 			struct xdp_frame **frames, u32 flags)
2988 {
2989 	struct igb_adapter *adapter = netdev_priv(dev);
2990 	int cpu = smp_processor_id();
2991 	struct igb_ring *tx_ring;
2992 	struct netdev_queue *nq;
2993 	int nxmit = 0;
2994 	int i;
2995 
2996 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2997 		return -ENETDOWN;
2998 
2999 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3000 		return -EINVAL;
3001 
3002 	/* During program transitions its possible adapter->xdp_prog is assigned
3003 	 * but ring has not been configured yet. In this case simply abort xmit.
3004 	 */
3005 	tx_ring = igb_xdp_is_enabled(adapter) ?
3006 		igb_xdp_tx_queue_mapping(adapter) : NULL;
3007 	if (unlikely(!tx_ring))
3008 		return -ENXIO;
3009 
3010 	if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
3011 		return -ENXIO;
3012 
3013 	nq = txring_txq(tx_ring);
3014 	__netif_tx_lock(nq, cpu);
3015 
3016 	/* Avoid transmit queue timeout since we share it with the slow path */
3017 	txq_trans_cond_update(nq);
3018 
3019 	for (i = 0; i < n; i++) {
3020 		struct xdp_frame *xdpf = frames[i];
3021 		int err;
3022 
3023 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3024 		if (err != IGB_XDP_TX)
3025 			break;
3026 		nxmit++;
3027 	}
3028 
3029 	if (unlikely(flags & XDP_XMIT_FLUSH))
3030 		igb_xdp_ring_update_tail(tx_ring);
3031 
3032 	__netif_tx_unlock(nq);
3033 
3034 	return nxmit;
3035 }
3036 
3037 static const struct net_device_ops igb_netdev_ops = {
3038 	.ndo_open		= igb_open,
3039 	.ndo_stop		= igb_close,
3040 	.ndo_start_xmit		= igb_xmit_frame,
3041 	.ndo_get_stats64	= igb_get_stats64,
3042 	.ndo_set_rx_mode	= igb_set_rx_mode,
3043 	.ndo_set_mac_address	= igb_set_mac,
3044 	.ndo_change_mtu		= igb_change_mtu,
3045 	.ndo_eth_ioctl		= igb_ioctl,
3046 	.ndo_tx_timeout		= igb_tx_timeout,
3047 	.ndo_validate_addr	= eth_validate_addr,
3048 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3049 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3050 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3051 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3052 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3053 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3054 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3055 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3056 	.ndo_fix_features	= igb_fix_features,
3057 	.ndo_set_features	= igb_set_features,
3058 	.ndo_fdb_add		= igb_ndo_fdb_add,
3059 	.ndo_features_check	= igb_features_check,
3060 	.ndo_setup_tc		= igb_setup_tc,
3061 	.ndo_bpf		= igb_xdp,
3062 	.ndo_xdp_xmit		= igb_xdp_xmit,
3063 	.ndo_xsk_wakeup         = igb_xsk_wakeup,
3064 	.ndo_hwtstamp_get	= igb_ptp_hwtstamp_get,
3065 	.ndo_hwtstamp_set	= igb_ptp_hwtstamp_set,
3066 };
3067 
3068 /**
3069  * igb_set_fw_version - Configure version string for ethtool
3070  * @adapter: adapter struct
3071  **/
3072 void igb_set_fw_version(struct igb_adapter *adapter)
3073 {
3074 	struct e1000_hw *hw = &adapter->hw;
3075 	struct e1000_fw_version fw;
3076 
3077 	igb_get_fw_version(hw, &fw);
3078 
3079 	switch (hw->mac.type) {
3080 	case e1000_i210:
3081 	case e1000_i211:
3082 		if (!(igb_get_flash_presence_i210(hw))) {
3083 			snprintf(adapter->fw_version,
3084 				 sizeof(adapter->fw_version),
3085 				 "%2d.%2d-%d",
3086 				 fw.invm_major, fw.invm_minor,
3087 				 fw.invm_img_type);
3088 			break;
3089 		}
3090 		fallthrough;
3091 	default:
3092 		/* if option rom is valid, display its version too */
3093 		if (fw.or_valid) {
3094 			snprintf(adapter->fw_version,
3095 				 sizeof(adapter->fw_version),
3096 				 "%d.%d, 0x%08x, %d.%d.%d",
3097 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3098 				 fw.or_major, fw.or_build, fw.or_patch);
3099 		/* no option rom */
3100 		} else if (fw.etrack_id != 0X0000) {
3101 			snprintf(adapter->fw_version,
3102 				 sizeof(adapter->fw_version),
3103 				 "%d.%d, 0x%08x",
3104 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
3105 		} else {
3106 			snprintf(adapter->fw_version,
3107 				 sizeof(adapter->fw_version),
3108 				 "%d.%d.%d",
3109 				 fw.eep_major, fw.eep_minor, fw.eep_build);
3110 		}
3111 		break;
3112 	}
3113 }
3114 
3115 /**
3116  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3117  *
3118  * @adapter: adapter struct
3119  **/
3120 static void igb_init_mas(struct igb_adapter *adapter)
3121 {
3122 	struct e1000_hw *hw = &adapter->hw;
3123 	u16 eeprom_data;
3124 
3125 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3126 	switch (hw->bus.func) {
3127 	case E1000_FUNC_0:
3128 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3129 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3130 			netdev_info(adapter->netdev,
3131 				"MAS: Enabling Media Autosense for port %d\n",
3132 				hw->bus.func);
3133 		}
3134 		break;
3135 	case E1000_FUNC_1:
3136 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3137 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3138 			netdev_info(adapter->netdev,
3139 				"MAS: Enabling Media Autosense for port %d\n",
3140 				hw->bus.func);
3141 		}
3142 		break;
3143 	case E1000_FUNC_2:
3144 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3145 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3146 			netdev_info(adapter->netdev,
3147 				"MAS: Enabling Media Autosense for port %d\n",
3148 				hw->bus.func);
3149 		}
3150 		break;
3151 	case E1000_FUNC_3:
3152 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3153 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3154 			netdev_info(adapter->netdev,
3155 				"MAS: Enabling Media Autosense for port %d\n",
3156 				hw->bus.func);
3157 		}
3158 		break;
3159 	default:
3160 		/* Shouldn't get here */
3161 		netdev_err(adapter->netdev,
3162 			"MAS: Invalid port configuration, returning\n");
3163 		break;
3164 	}
3165 }
3166 
3167 /**
3168  *  igb_init_i2c - Init I2C interface
3169  *  @adapter: pointer to adapter structure
3170  **/
3171 static s32 igb_init_i2c(struct igb_adapter *adapter)
3172 {
3173 	s32 status = 0;
3174 
3175 	/* I2C interface supported on i350 devices */
3176 	if (adapter->hw.mac.type != e1000_i350)
3177 		return 0;
3178 
3179 	/* Initialize the i2c bus which is controlled by the registers.
3180 	 * This bus will use the i2c_algo_bit structure that implements
3181 	 * the protocol through toggling of the 4 bits in the register.
3182 	 */
3183 	adapter->i2c_adap.owner = THIS_MODULE;
3184 	adapter->i2c_algo = igb_i2c_algo;
3185 	adapter->i2c_algo.data = adapter;
3186 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3187 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3188 	strscpy(adapter->i2c_adap.name, "igb BB",
3189 		sizeof(adapter->i2c_adap.name));
3190 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3191 	return status;
3192 }
3193 
3194 /**
3195  *  igb_probe - Device Initialization Routine
3196  *  @pdev: PCI device information struct
3197  *  @ent: entry in igb_pci_tbl
3198  *
3199  *  Returns 0 on success, negative on failure
3200  *
3201  *  igb_probe initializes an adapter identified by a pci_dev structure.
3202  *  The OS initialization, configuring of the adapter private structure,
3203  *  and a hardware reset occur.
3204  **/
3205 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3206 {
3207 	struct net_device *netdev;
3208 	struct igb_adapter *adapter;
3209 	struct e1000_hw *hw;
3210 	u16 eeprom_data = 0;
3211 	s32 ret_val;
3212 	static int global_quad_port_a; /* global quad port a indication */
3213 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3214 	u8 part_str[E1000_PBANUM_LENGTH];
3215 	int err;
3216 
3217 	/* Catch broken hardware that put the wrong VF device ID in
3218 	 * the PCIe SR-IOV capability.
3219 	 */
3220 	if (pdev->is_virtfn) {
3221 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3222 			pci_name(pdev), pdev->vendor, pdev->device);
3223 		return -EINVAL;
3224 	}
3225 
3226 	err = pci_enable_device_mem(pdev);
3227 	if (err)
3228 		return err;
3229 
3230 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3231 	if (err) {
3232 		dev_err(&pdev->dev,
3233 			"No usable DMA configuration, aborting\n");
3234 		goto err_dma;
3235 	}
3236 
3237 	err = pci_request_mem_regions(pdev, igb_driver_name);
3238 	if (err)
3239 		goto err_pci_reg;
3240 
3241 	pci_set_master(pdev);
3242 	pci_save_state(pdev);
3243 
3244 	err = -ENOMEM;
3245 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3246 				   IGB_MAX_TX_QUEUES);
3247 	if (!netdev)
3248 		goto err_alloc_etherdev;
3249 
3250 	SET_NETDEV_DEV(netdev, &pdev->dev);
3251 
3252 	pci_set_drvdata(pdev, netdev);
3253 	adapter = netdev_priv(netdev);
3254 	adapter->netdev = netdev;
3255 	adapter->pdev = pdev;
3256 	hw = &adapter->hw;
3257 	hw->back = adapter;
3258 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3259 
3260 	err = -EIO;
3261 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3262 	if (!adapter->io_addr)
3263 		goto err_ioremap;
3264 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3265 	hw->hw_addr = adapter->io_addr;
3266 
3267 	netdev->netdev_ops = &igb_netdev_ops;
3268 	igb_set_ethtool_ops(netdev);
3269 	netdev->watchdog_timeo = 5 * HZ;
3270 
3271 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3272 
3273 	netdev->mem_start = pci_resource_start(pdev, 0);
3274 	netdev->mem_end = pci_resource_end(pdev, 0);
3275 
3276 	/* PCI config space info */
3277 	hw->vendor_id = pdev->vendor;
3278 	hw->device_id = pdev->device;
3279 	hw->revision_id = pdev->revision;
3280 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3281 	hw->subsystem_device_id = pdev->subsystem_device;
3282 
3283 	/* Copy the default MAC, PHY and NVM function pointers */
3284 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3285 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3286 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3287 	/* Initialize skew-specific constants */
3288 	err = ei->get_invariants(hw);
3289 	if (err)
3290 		goto err_sw_init;
3291 
3292 	/* setup the private structure */
3293 	err = igb_sw_init(adapter);
3294 	if (err)
3295 		goto err_sw_init;
3296 
3297 	igb_get_bus_info_pcie(hw);
3298 
3299 	hw->phy.autoneg_wait_to_complete = false;
3300 
3301 	/* Copper options */
3302 	if (hw->phy.media_type == e1000_media_type_copper) {
3303 		hw->phy.mdix = AUTO_ALL_MODES;
3304 		hw->phy.disable_polarity_correction = false;
3305 		hw->phy.ms_type = e1000_ms_hw_default;
3306 	}
3307 
3308 	if (igb_check_reset_block(hw))
3309 		dev_info(&pdev->dev,
3310 			"PHY reset is blocked due to SOL/IDER session.\n");
3311 
3312 	/* features is initialized to 0 in allocation, it might have bits
3313 	 * set by igb_sw_init so we should use an or instead of an
3314 	 * assignment.
3315 	 */
3316 	netdev->features |= NETIF_F_SG |
3317 			    NETIF_F_TSO |
3318 			    NETIF_F_TSO6 |
3319 			    NETIF_F_RXHASH |
3320 			    NETIF_F_RXCSUM |
3321 			    NETIF_F_HW_CSUM;
3322 
3323 	if (hw->mac.type >= e1000_82576)
3324 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3325 
3326 	if (hw->mac.type >= e1000_i350)
3327 		netdev->features |= NETIF_F_HW_TC;
3328 
3329 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3330 				  NETIF_F_GSO_GRE_CSUM | \
3331 				  NETIF_F_GSO_IPXIP4 | \
3332 				  NETIF_F_GSO_IPXIP6 | \
3333 				  NETIF_F_GSO_UDP_TUNNEL | \
3334 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3335 
3336 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3337 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3338 
3339 	/* copy netdev features into list of user selectable features */
3340 	netdev->hw_features |= netdev->features |
3341 			       NETIF_F_HW_VLAN_CTAG_RX |
3342 			       NETIF_F_HW_VLAN_CTAG_TX |
3343 			       NETIF_F_RXALL;
3344 
3345 	if (hw->mac.type >= e1000_i350)
3346 		netdev->hw_features |= NETIF_F_NTUPLE;
3347 
3348 	netdev->features |= NETIF_F_HIGHDMA;
3349 
3350 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3351 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3352 	netdev->hw_enc_features |= netdev->vlan_features;
3353 
3354 	/* set this bit last since it cannot be part of vlan_features */
3355 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3356 			    NETIF_F_HW_VLAN_CTAG_RX |
3357 			    NETIF_F_HW_VLAN_CTAG_TX;
3358 
3359 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3360 
3361 	netdev->priv_flags |= IFF_UNICAST_FLT;
3362 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3363 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
3364 
3365 	/* MTU range: 68 - 9216 */
3366 	netdev->min_mtu = ETH_MIN_MTU;
3367 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3368 
3369 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3370 
3371 	/* before reading the NVM, reset the controller to put the device in a
3372 	 * known good starting state
3373 	 */
3374 	hw->mac.ops.reset_hw(hw);
3375 
3376 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3377 	 * that doesn't contain a checksum
3378 	 */
3379 	switch (hw->mac.type) {
3380 	case e1000_i210:
3381 	case e1000_i211:
3382 		if (igb_get_flash_presence_i210(hw)) {
3383 			if (hw->nvm.ops.validate(hw) < 0) {
3384 				dev_err(&pdev->dev,
3385 					"The NVM Checksum Is Not Valid\n");
3386 				err = -EIO;
3387 				goto err_eeprom;
3388 			}
3389 		}
3390 		break;
3391 	default:
3392 		if (hw->nvm.ops.validate(hw) < 0) {
3393 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3394 			err = -EIO;
3395 			goto err_eeprom;
3396 		}
3397 		break;
3398 	}
3399 
3400 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3401 		/* copy the MAC address out of the NVM */
3402 		if (hw->mac.ops.read_mac_addr(hw))
3403 			dev_err(&pdev->dev, "NVM Read Error\n");
3404 	}
3405 
3406 	eth_hw_addr_set(netdev, hw->mac.addr);
3407 
3408 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3409 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3410 		err = -EIO;
3411 		goto err_eeprom;
3412 	}
3413 
3414 	igb_set_default_mac_filter(adapter);
3415 
3416 	/* get firmware version for ethtool -i */
3417 	igb_set_fw_version(adapter);
3418 
3419 	/* configure RXPBSIZE and TXPBSIZE */
3420 	if (hw->mac.type == e1000_i210) {
3421 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3422 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3423 	}
3424 
3425 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3426 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3427 
3428 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3429 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3430 
3431 	/* Initialize link properties that are user-changeable */
3432 	adapter->fc_autoneg = true;
3433 	hw->mac.autoneg = true;
3434 	hw->phy.autoneg_advertised = 0x2f;
3435 
3436 	hw->fc.requested_mode = e1000_fc_default;
3437 	hw->fc.current_mode = e1000_fc_default;
3438 
3439 	igb_validate_mdi_setting(hw);
3440 
3441 	/* By default, support wake on port A */
3442 	if (hw->bus.func == 0)
3443 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3444 
3445 	/* Check the NVM for wake support on non-port A ports */
3446 	if (hw->mac.type >= e1000_82580)
3447 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3448 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3449 				 &eeprom_data);
3450 	else if (hw->bus.func == 1)
3451 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3452 
3453 	if (eeprom_data & IGB_EEPROM_APME)
3454 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3455 
3456 	/* now that we have the eeprom settings, apply the special cases where
3457 	 * the eeprom may be wrong or the board simply won't support wake on
3458 	 * lan on a particular port
3459 	 */
3460 	switch (pdev->device) {
3461 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3462 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3463 		break;
3464 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3465 	case E1000_DEV_ID_82576_FIBER:
3466 	case E1000_DEV_ID_82576_SERDES:
3467 		/* Wake events only supported on port A for dual fiber
3468 		 * regardless of eeprom setting
3469 		 */
3470 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3471 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3472 		break;
3473 	case E1000_DEV_ID_82576_QUAD_COPPER:
3474 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3475 		/* if quad port adapter, disable WoL on all but port A */
3476 		if (global_quad_port_a != 0)
3477 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3478 		else
3479 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3480 		/* Reset for multiple quad port adapters */
3481 		if (++global_quad_port_a == 4)
3482 			global_quad_port_a = 0;
3483 		break;
3484 	default:
3485 		/* If the device can't wake, don't set software support */
3486 		if (!device_can_wakeup(&adapter->pdev->dev))
3487 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3488 	}
3489 
3490 	/* initialize the wol settings based on the eeprom settings */
3491 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3492 		adapter->wol |= E1000_WUFC_MAG;
3493 
3494 	/* Some vendors want WoL disabled by default, but still supported */
3495 	if ((hw->mac.type == e1000_i350) &&
3496 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3497 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3498 		adapter->wol = 0;
3499 	}
3500 
3501 	/* Some vendors want the ability to Use the EEPROM setting as
3502 	 * enable/disable only, and not for capability
3503 	 */
3504 	if (((hw->mac.type == e1000_i350) ||
3505 	     (hw->mac.type == e1000_i354)) &&
3506 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3507 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3508 		adapter->wol = 0;
3509 	}
3510 	if (hw->mac.type == e1000_i350) {
3511 		if (((pdev->subsystem_device == 0x5001) ||
3512 		     (pdev->subsystem_device == 0x5002)) &&
3513 				(hw->bus.func == 0)) {
3514 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3515 			adapter->wol = 0;
3516 		}
3517 		if (pdev->subsystem_device == 0x1F52)
3518 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3519 	}
3520 
3521 	device_set_wakeup_enable(&adapter->pdev->dev,
3522 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3523 
3524 	/* reset the hardware with the new settings */
3525 	igb_reset(adapter);
3526 
3527 	/* Init the I2C interface */
3528 	err = igb_init_i2c(adapter);
3529 	if (err) {
3530 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3531 		goto err_eeprom;
3532 	}
3533 
3534 	/* let the f/w know that the h/w is now under the control of the
3535 	 * driver.
3536 	 */
3537 	igb_get_hw_control(adapter);
3538 
3539 	strcpy(netdev->name, "eth%d");
3540 	err = register_netdev(netdev);
3541 	if (err)
3542 		goto err_register;
3543 
3544 	/* carrier off reporting is important to ethtool even BEFORE open */
3545 	netif_carrier_off(netdev);
3546 
3547 #ifdef CONFIG_IGB_DCA
3548 	if (dca_add_requester(&pdev->dev) == 0) {
3549 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3550 		dev_info(&pdev->dev, "DCA enabled\n");
3551 		igb_setup_dca(adapter);
3552 	}
3553 
3554 #endif
3555 #ifdef CONFIG_IGB_HWMON
3556 	/* Initialize the thermal sensor on i350 devices. */
3557 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3558 		u16 ets_word;
3559 
3560 		/* Read the NVM to determine if this i350 device supports an
3561 		 * external thermal sensor.
3562 		 */
3563 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3564 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3565 			adapter->ets = true;
3566 		else
3567 			adapter->ets = false;
3568 		/* Only enable I2C bit banging if an external thermal
3569 		 * sensor is supported.
3570 		 */
3571 		if (adapter->ets)
3572 			igb_set_i2c_bb(hw);
3573 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3574 		if (igb_sysfs_init(adapter))
3575 			dev_err(&pdev->dev,
3576 				"failed to allocate sysfs resources\n");
3577 	} else {
3578 		adapter->ets = false;
3579 	}
3580 #endif
3581 	/* Check if Media Autosense is enabled */
3582 	adapter->ei = *ei;
3583 	if (hw->dev_spec._82575.mas_capable)
3584 		igb_init_mas(adapter);
3585 
3586 	/* do hw tstamp init after resetting */
3587 	igb_ptp_init(adapter);
3588 
3589 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3590 	/* print bus type/speed/width info, not applicable to i354 */
3591 	if (hw->mac.type != e1000_i354) {
3592 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3593 			 netdev->name,
3594 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3595 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3596 			   "unknown"),
3597 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3598 			  "Width x4" :
3599 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3600 			  "Width x2" :
3601 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3602 			  "Width x1" : "unknown"), netdev->dev_addr);
3603 	}
3604 
3605 	if ((hw->mac.type == e1000_82576 &&
3606 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3607 	    (hw->mac.type >= e1000_i210 ||
3608 	     igb_get_flash_presence_i210(hw))) {
3609 		ret_val = igb_read_part_string(hw, part_str,
3610 					       E1000_PBANUM_LENGTH);
3611 	} else {
3612 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3613 	}
3614 
3615 	if (ret_val)
3616 		strcpy(part_str, "Unknown");
3617 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3618 	dev_info(&pdev->dev,
3619 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3620 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3621 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3622 		adapter->num_rx_queues, adapter->num_tx_queues);
3623 	if (hw->phy.media_type == e1000_media_type_copper) {
3624 		switch (hw->mac.type) {
3625 		case e1000_i350:
3626 		case e1000_i210:
3627 		case e1000_i211:
3628 			/* Enable EEE for internal copper PHY devices */
3629 			err = igb_set_eee_i350(hw, true, true);
3630 			if ((!err) &&
3631 			    (!hw->dev_spec._82575.eee_disable)) {
3632 				adapter->eee_advert =
3633 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3634 				adapter->flags |= IGB_FLAG_EEE;
3635 			}
3636 			break;
3637 		case e1000_i354:
3638 			if ((rd32(E1000_CTRL_EXT) &
3639 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3640 				err = igb_set_eee_i354(hw, true, true);
3641 				if ((!err) &&
3642 					(!hw->dev_spec._82575.eee_disable)) {
3643 					adapter->eee_advert =
3644 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3645 					adapter->flags |= IGB_FLAG_EEE;
3646 				}
3647 			}
3648 			break;
3649 		default:
3650 			break;
3651 		}
3652 	}
3653 
3654 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3655 
3656 	pm_runtime_put_noidle(&pdev->dev);
3657 	return 0;
3658 
3659 err_register:
3660 	igb_release_hw_control(adapter);
3661 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3662 err_eeprom:
3663 	if (!igb_check_reset_block(hw))
3664 		igb_reset_phy(hw);
3665 
3666 	if (hw->flash_address)
3667 		iounmap(hw->flash_address);
3668 err_sw_init:
3669 	kfree(adapter->mac_table);
3670 	kfree(adapter->shadow_vfta);
3671 	igb_clear_interrupt_scheme(adapter);
3672 #ifdef CONFIG_PCI_IOV
3673 	igb_disable_sriov(pdev, false);
3674 #endif
3675 	pci_iounmap(pdev, adapter->io_addr);
3676 err_ioremap:
3677 	free_netdev(netdev);
3678 err_alloc_etherdev:
3679 	pci_release_mem_regions(pdev);
3680 err_pci_reg:
3681 err_dma:
3682 	pci_disable_device(pdev);
3683 	return err;
3684 }
3685 
3686 #ifdef CONFIG_PCI_IOV
3687 static int igb_sriov_reinit(struct pci_dev *dev)
3688 {
3689 	struct net_device *netdev = pci_get_drvdata(dev);
3690 	struct igb_adapter *adapter = netdev_priv(netdev);
3691 	struct pci_dev *pdev = adapter->pdev;
3692 
3693 	rtnl_lock();
3694 
3695 	if (netif_running(netdev))
3696 		igb_close(netdev);
3697 	else
3698 		igb_reset(adapter);
3699 
3700 	igb_clear_interrupt_scheme(adapter);
3701 
3702 	igb_init_queue_configuration(adapter);
3703 
3704 	if (igb_init_interrupt_scheme(adapter, true)) {
3705 		rtnl_unlock();
3706 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3707 		return -ENOMEM;
3708 	}
3709 
3710 	if (netif_running(netdev))
3711 		igb_open(netdev);
3712 
3713 	rtnl_unlock();
3714 
3715 	return 0;
3716 }
3717 
3718 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3719 {
3720 	struct net_device *netdev = pci_get_drvdata(pdev);
3721 	struct igb_adapter *adapter = netdev_priv(netdev);
3722 	struct e1000_hw *hw = &adapter->hw;
3723 	unsigned long flags;
3724 
3725 	/* reclaim resources allocated to VFs */
3726 	if (adapter->vf_data) {
3727 		/* disable iov and allow time for transactions to clear */
3728 		if (pci_vfs_assigned(pdev)) {
3729 			dev_warn(&pdev->dev,
3730 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3731 			return -EPERM;
3732 		} else {
3733 			pci_disable_sriov(pdev);
3734 			msleep(500);
3735 		}
3736 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3737 		kfree(adapter->vf_mac_list);
3738 		adapter->vf_mac_list = NULL;
3739 		kfree(adapter->vf_data);
3740 		adapter->vf_data = NULL;
3741 		adapter->vfs_allocated_count = 0;
3742 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3743 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3744 		wrfl();
3745 		msleep(100);
3746 		dev_info(&pdev->dev, "IOV Disabled\n");
3747 
3748 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3749 		adapter->flags |= IGB_FLAG_DMAC;
3750 	}
3751 
3752 	return reinit ? igb_sriov_reinit(pdev) : 0;
3753 }
3754 
3755 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3756 {
3757 	struct net_device *netdev = pci_get_drvdata(pdev);
3758 	struct igb_adapter *adapter = netdev_priv(netdev);
3759 	int old_vfs = pci_num_vf(pdev);
3760 	struct vf_mac_filter *mac_list;
3761 	int err = 0;
3762 	int num_vf_mac_filters, i;
3763 
3764 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3765 		err = -EPERM;
3766 		goto out;
3767 	}
3768 	if (!num_vfs)
3769 		goto out;
3770 
3771 	if (old_vfs) {
3772 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3773 			 old_vfs, max_vfs);
3774 		adapter->vfs_allocated_count = old_vfs;
3775 	} else
3776 		adapter->vfs_allocated_count = num_vfs;
3777 
3778 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3779 				sizeof(struct vf_data_storage), GFP_KERNEL);
3780 
3781 	/* if allocation failed then we do not support SR-IOV */
3782 	if (!adapter->vf_data) {
3783 		adapter->vfs_allocated_count = 0;
3784 		err = -ENOMEM;
3785 		goto out;
3786 	}
3787 
3788 	/* Due to the limited number of RAR entries calculate potential
3789 	 * number of MAC filters available for the VFs. Reserve entries
3790 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3791 	 * for each VF for VF MAC.
3792 	 */
3793 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3794 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3795 			      adapter->vfs_allocated_count);
3796 
3797 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3798 				       sizeof(struct vf_mac_filter),
3799 				       GFP_KERNEL);
3800 
3801 	mac_list = adapter->vf_mac_list;
3802 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3803 
3804 	if (adapter->vf_mac_list) {
3805 		/* Initialize list of VF MAC filters */
3806 		for (i = 0; i < num_vf_mac_filters; i++) {
3807 			mac_list->vf = -1;
3808 			mac_list->free = true;
3809 			list_add(&mac_list->l, &adapter->vf_macs.l);
3810 			mac_list++;
3811 		}
3812 	} else {
3813 		/* If we could not allocate memory for the VF MAC filters
3814 		 * we can continue without this feature but warn user.
3815 		 */
3816 		dev_err(&pdev->dev,
3817 			"Unable to allocate memory for VF MAC filter list\n");
3818 	}
3819 
3820 	dev_info(&pdev->dev, "%d VFs allocated\n",
3821 		 adapter->vfs_allocated_count);
3822 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3823 		igb_vf_configure(adapter, i);
3824 
3825 	/* DMA Coalescing is not supported in IOV mode. */
3826 	adapter->flags &= ~IGB_FLAG_DMAC;
3827 
3828 	if (reinit) {
3829 		err = igb_sriov_reinit(pdev);
3830 		if (err)
3831 			goto err_out;
3832 	}
3833 
3834 	/* only call pci_enable_sriov() if no VFs are allocated already */
3835 	if (!old_vfs) {
3836 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3837 		if (err)
3838 			goto err_out;
3839 	}
3840 
3841 	goto out;
3842 
3843 err_out:
3844 	kfree(adapter->vf_mac_list);
3845 	adapter->vf_mac_list = NULL;
3846 	kfree(adapter->vf_data);
3847 	adapter->vf_data = NULL;
3848 	adapter->vfs_allocated_count = 0;
3849 out:
3850 	return err;
3851 }
3852 
3853 #endif
3854 /**
3855  *  igb_remove_i2c - Cleanup  I2C interface
3856  *  @adapter: pointer to adapter structure
3857  **/
3858 static void igb_remove_i2c(struct igb_adapter *adapter)
3859 {
3860 	/* free the adapter bus structure */
3861 	i2c_del_adapter(&adapter->i2c_adap);
3862 }
3863 
3864 /**
3865  *  igb_remove - Device Removal Routine
3866  *  @pdev: PCI device information struct
3867  *
3868  *  igb_remove is called by the PCI subsystem to alert the driver
3869  *  that it should release a PCI device.  The could be caused by a
3870  *  Hot-Plug event, or because the driver is going to be removed from
3871  *  memory.
3872  **/
3873 static void igb_remove(struct pci_dev *pdev)
3874 {
3875 	struct net_device *netdev = pci_get_drvdata(pdev);
3876 	struct igb_adapter *adapter = netdev_priv(netdev);
3877 	struct e1000_hw *hw = &adapter->hw;
3878 
3879 	pm_runtime_get_noresume(&pdev->dev);
3880 #ifdef CONFIG_IGB_HWMON
3881 	igb_sysfs_exit(adapter);
3882 #endif
3883 	igb_remove_i2c(adapter);
3884 	igb_ptp_stop(adapter);
3885 	/* The watchdog timer may be rescheduled, so explicitly
3886 	 * disable watchdog from being rescheduled.
3887 	 */
3888 	set_bit(__IGB_DOWN, &adapter->state);
3889 	timer_delete_sync(&adapter->watchdog_timer);
3890 	timer_delete_sync(&adapter->phy_info_timer);
3891 
3892 	cancel_work_sync(&adapter->reset_task);
3893 	cancel_work_sync(&adapter->watchdog_task);
3894 
3895 #ifdef CONFIG_IGB_DCA
3896 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3897 		dev_info(&pdev->dev, "DCA disabled\n");
3898 		dca_remove_requester(&pdev->dev);
3899 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3900 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3901 	}
3902 #endif
3903 
3904 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3905 	 * would have already happened in close and is redundant.
3906 	 */
3907 	igb_release_hw_control(adapter);
3908 
3909 #ifdef CONFIG_PCI_IOV
3910 	igb_disable_sriov(pdev, false);
3911 #endif
3912 
3913 	unregister_netdev(netdev);
3914 
3915 	igb_clear_interrupt_scheme(adapter);
3916 
3917 	pci_iounmap(pdev, adapter->io_addr);
3918 	if (hw->flash_address)
3919 		iounmap(hw->flash_address);
3920 	pci_release_mem_regions(pdev);
3921 
3922 	kfree(adapter->mac_table);
3923 	kfree(adapter->shadow_vfta);
3924 	free_netdev(netdev);
3925 
3926 	pci_disable_device(pdev);
3927 }
3928 
3929 /**
3930  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3931  *  @adapter: board private structure to initialize
3932  *
3933  *  This function initializes the vf specific data storage and then attempts to
3934  *  allocate the VFs.  The reason for ordering it this way is because it is much
3935  *  more expensive time wise to disable SR-IOV than it is to allocate and free
3936  *  the memory for the VFs.
3937  **/
3938 static void igb_probe_vfs(struct igb_adapter *adapter)
3939 {
3940 #ifdef CONFIG_PCI_IOV
3941 	struct pci_dev *pdev = adapter->pdev;
3942 	struct e1000_hw *hw = &adapter->hw;
3943 
3944 	/* Virtualization features not supported on i210 and 82580 family. */
3945 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3946 	    (hw->mac.type == e1000_82580))
3947 		return;
3948 
3949 	/* Of the below we really only want the effect of getting
3950 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3951 	 * igb_enable_sriov() has no effect.
3952 	 */
3953 	igb_set_interrupt_capability(adapter, true);
3954 	igb_reset_interrupt_capability(adapter);
3955 
3956 	pci_sriov_set_totalvfs(pdev, 7);
3957 	igb_enable_sriov(pdev, max_vfs, false);
3958 
3959 #endif /* CONFIG_PCI_IOV */
3960 }
3961 
3962 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3963 {
3964 	struct e1000_hw *hw = &adapter->hw;
3965 	unsigned int max_rss_queues;
3966 
3967 	/* Determine the maximum number of RSS queues supported. */
3968 	switch (hw->mac.type) {
3969 	case e1000_i211:
3970 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3971 		break;
3972 	case e1000_82575:
3973 	case e1000_i210:
3974 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3975 		break;
3976 	case e1000_i350:
3977 		/* I350 cannot do RSS and SR-IOV at the same time */
3978 		if (!!adapter->vfs_allocated_count) {
3979 			max_rss_queues = 1;
3980 			break;
3981 		}
3982 		fallthrough;
3983 	case e1000_82576:
3984 		if (!!adapter->vfs_allocated_count) {
3985 			max_rss_queues = 2;
3986 			break;
3987 		}
3988 		fallthrough;
3989 	case e1000_82580:
3990 	case e1000_i354:
3991 	default:
3992 		max_rss_queues = IGB_MAX_RX_QUEUES;
3993 		break;
3994 	}
3995 
3996 	return max_rss_queues;
3997 }
3998 
3999 static void igb_init_queue_configuration(struct igb_adapter *adapter)
4000 {
4001 	u32 max_rss_queues;
4002 
4003 	max_rss_queues = igb_get_max_rss_queues(adapter);
4004 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4005 
4006 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
4007 }
4008 
4009 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4010 			      const u32 max_rss_queues)
4011 {
4012 	struct e1000_hw *hw = &adapter->hw;
4013 
4014 	/* Determine if we need to pair queues. */
4015 	switch (hw->mac.type) {
4016 	case e1000_82575:
4017 	case e1000_i211:
4018 		/* Device supports enough interrupts without queue pairing. */
4019 		break;
4020 	case e1000_82576:
4021 	case e1000_82580:
4022 	case e1000_i350:
4023 	case e1000_i354:
4024 	case e1000_i210:
4025 	default:
4026 		/* If rss_queues > half of max_rss_queues, pair the queues in
4027 		 * order to conserve interrupts due to limited supply.
4028 		 */
4029 		if (adapter->rss_queues > (max_rss_queues / 2))
4030 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4031 		else
4032 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4033 		break;
4034 	}
4035 }
4036 
4037 /**
4038  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4039  *  @adapter: board private structure to initialize
4040  *
4041  *  igb_sw_init initializes the Adapter private data structure.
4042  *  Fields are initialized based on PCI device information and
4043  *  OS network device settings (MTU size).
4044  **/
4045 static int igb_sw_init(struct igb_adapter *adapter)
4046 {
4047 	struct e1000_hw *hw = &adapter->hw;
4048 	struct net_device *netdev = adapter->netdev;
4049 	struct pci_dev *pdev = adapter->pdev;
4050 
4051 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4052 
4053 	/* set default ring sizes */
4054 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4055 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4056 
4057 	/* set default ITR values */
4058 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4059 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4060 
4061 	/* set default work limits */
4062 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4063 
4064 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4065 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4066 
4067 	spin_lock_init(&adapter->nfc_lock);
4068 	spin_lock_init(&adapter->stats64_lock);
4069 
4070 	/* init spinlock to avoid concurrency of VF resources */
4071 	spin_lock_init(&adapter->vfs_lock);
4072 #ifdef CONFIG_PCI_IOV
4073 	switch (hw->mac.type) {
4074 	case e1000_82576:
4075 	case e1000_i350:
4076 		if (max_vfs > 7) {
4077 			dev_warn(&pdev->dev,
4078 				 "Maximum of 7 VFs per PF, using max\n");
4079 			max_vfs = adapter->vfs_allocated_count = 7;
4080 		} else
4081 			adapter->vfs_allocated_count = max_vfs;
4082 		if (adapter->vfs_allocated_count)
4083 			dev_warn(&pdev->dev,
4084 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4085 		break;
4086 	default:
4087 		break;
4088 	}
4089 #endif /* CONFIG_PCI_IOV */
4090 
4091 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4092 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4093 
4094 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4095 				     sizeof(struct igb_mac_addr),
4096 				     GFP_KERNEL);
4097 	if (!adapter->mac_table)
4098 		return -ENOMEM;
4099 
4100 	igb_probe_vfs(adapter);
4101 
4102 	igb_init_queue_configuration(adapter);
4103 
4104 	/* Setup and initialize a copy of the hw vlan table array */
4105 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4106 				       GFP_KERNEL);
4107 	if (!adapter->shadow_vfta)
4108 		return -ENOMEM;
4109 
4110 	/* This call may decrease the number of queues */
4111 	if (igb_init_interrupt_scheme(adapter, true)) {
4112 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4113 		return -ENOMEM;
4114 	}
4115 
4116 	/* Explicitly disable IRQ since the NIC can be in any state. */
4117 	igb_irq_disable(adapter);
4118 
4119 	if (hw->mac.type >= e1000_i350)
4120 		adapter->flags &= ~IGB_FLAG_DMAC;
4121 
4122 	set_bit(__IGB_DOWN, &adapter->state);
4123 	return 0;
4124 }
4125 
4126 /**
4127  *  __igb_open - Called when a network interface is made active
4128  *  @netdev: network interface device structure
4129  *  @resuming: indicates whether we are in a resume call
4130  *
4131  *  Returns 0 on success, negative value on failure
4132  *
4133  *  The open entry point is called when a network interface is made
4134  *  active by the system (IFF_UP).  At this point all resources needed
4135  *  for transmit and receive operations are allocated, the interrupt
4136  *  handler is registered with the OS, the watchdog timer is started,
4137  *  and the stack is notified that the interface is ready.
4138  **/
4139 static int __igb_open(struct net_device *netdev, bool resuming)
4140 {
4141 	struct igb_adapter *adapter = netdev_priv(netdev);
4142 	struct pci_dev *pdev = adapter->pdev;
4143 	struct e1000_hw *hw = &adapter->hw;
4144 	struct napi_struct *napi;
4145 	int err;
4146 	int i;
4147 
4148 	/* disallow open during test */
4149 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4150 		WARN_ON(resuming);
4151 		return -EBUSY;
4152 	}
4153 
4154 	if (!resuming)
4155 		pm_runtime_get_sync(&pdev->dev);
4156 
4157 	netif_carrier_off(netdev);
4158 
4159 	/* allocate transmit descriptors */
4160 	err = igb_setup_all_tx_resources(adapter);
4161 	if (err)
4162 		goto err_setup_tx;
4163 
4164 	/* allocate receive descriptors */
4165 	err = igb_setup_all_rx_resources(adapter);
4166 	if (err)
4167 		goto err_setup_rx;
4168 
4169 	igb_power_up_link(adapter);
4170 
4171 	/* before we allocate an interrupt, we must be ready to handle it.
4172 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4173 	 * as soon as we call pci_request_irq, so we have to setup our
4174 	 * clean_rx handler before we do so.
4175 	 */
4176 	igb_configure(adapter);
4177 
4178 	err = igb_request_irq(adapter);
4179 	if (err)
4180 		goto err_req_irq;
4181 
4182 	/* Notify the stack of the actual queue counts. */
4183 	err = netif_set_real_num_tx_queues(adapter->netdev,
4184 					   adapter->num_tx_queues);
4185 	if (err)
4186 		goto err_set_queues;
4187 
4188 	err = netif_set_real_num_rx_queues(adapter->netdev,
4189 					   adapter->num_rx_queues);
4190 	if (err)
4191 		goto err_set_queues;
4192 
4193 	/* From here on the code is the same as igb_up() */
4194 	clear_bit(__IGB_DOWN, &adapter->state);
4195 
4196 	for (i = 0; i < adapter->num_q_vectors; i++) {
4197 		napi = &adapter->q_vector[i]->napi;
4198 		napi_enable(napi);
4199 		igb_set_queue_napi(adapter, i, napi);
4200 	}
4201 
4202 	/* Clear any pending interrupts. */
4203 	rd32(E1000_TSICR);
4204 	rd32(E1000_ICR);
4205 
4206 	igb_irq_enable(adapter);
4207 
4208 	/* notify VFs that reset has been completed */
4209 	if (adapter->vfs_allocated_count) {
4210 		u32 reg_data = rd32(E1000_CTRL_EXT);
4211 
4212 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4213 		wr32(E1000_CTRL_EXT, reg_data);
4214 	}
4215 
4216 	netif_tx_start_all_queues(netdev);
4217 
4218 	if (!resuming)
4219 		pm_runtime_put(&pdev->dev);
4220 
4221 	/* start the watchdog. */
4222 	hw->mac.get_link_status = 1;
4223 	schedule_work(&adapter->watchdog_task);
4224 
4225 	return 0;
4226 
4227 err_set_queues:
4228 	igb_free_irq(adapter);
4229 err_req_irq:
4230 	igb_release_hw_control(adapter);
4231 	igb_power_down_link(adapter);
4232 	igb_free_all_rx_resources(adapter);
4233 err_setup_rx:
4234 	igb_free_all_tx_resources(adapter);
4235 err_setup_tx:
4236 	igb_reset(adapter);
4237 	if (!resuming)
4238 		pm_runtime_put(&pdev->dev);
4239 
4240 	return err;
4241 }
4242 
4243 int igb_open(struct net_device *netdev)
4244 {
4245 	return __igb_open(netdev, false);
4246 }
4247 
4248 /**
4249  *  __igb_close - Disables a network interface
4250  *  @netdev: network interface device structure
4251  *  @suspending: indicates we are in a suspend call
4252  *
4253  *  Returns 0, this is not allowed to fail
4254  *
4255  *  The close entry point is called when an interface is de-activated
4256  *  by the OS.  The hardware is still under the driver's control, but
4257  *  needs to be disabled.  A global MAC reset is issued to stop the
4258  *  hardware, and all transmit and receive resources are freed.
4259  **/
4260 static int __igb_close(struct net_device *netdev, bool suspending)
4261 {
4262 	struct igb_adapter *adapter = netdev_priv(netdev);
4263 	struct pci_dev *pdev = adapter->pdev;
4264 
4265 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4266 
4267 	if (!suspending)
4268 		pm_runtime_get_sync(&pdev->dev);
4269 
4270 	igb_down(adapter);
4271 	igb_free_irq(adapter);
4272 
4273 	igb_free_all_tx_resources(adapter);
4274 	igb_free_all_rx_resources(adapter);
4275 
4276 	if (!suspending)
4277 		pm_runtime_put_sync(&pdev->dev);
4278 	return 0;
4279 }
4280 
4281 int igb_close(struct net_device *netdev)
4282 {
4283 	if (netif_device_present(netdev) || netdev->dismantle)
4284 		return __igb_close(netdev, false);
4285 	return 0;
4286 }
4287 
4288 /**
4289  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4290  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4291  *
4292  *  Return 0 on success, negative on failure
4293  **/
4294 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4295 {
4296 	struct device *dev = tx_ring->dev;
4297 	int size;
4298 
4299 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4300 
4301 	tx_ring->tx_buffer_info = vmalloc(size);
4302 	if (!tx_ring->tx_buffer_info)
4303 		goto err;
4304 
4305 	/* round up to nearest 4K */
4306 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4307 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4308 
4309 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4310 					   &tx_ring->dma, GFP_KERNEL);
4311 	if (!tx_ring->desc)
4312 		goto err;
4313 
4314 	tx_ring->next_to_use = 0;
4315 	tx_ring->next_to_clean = 0;
4316 
4317 	return 0;
4318 
4319 err:
4320 	vfree(tx_ring->tx_buffer_info);
4321 	tx_ring->tx_buffer_info = NULL;
4322 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4323 	return -ENOMEM;
4324 }
4325 
4326 /**
4327  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4328  *				 (Descriptors) for all queues
4329  *  @adapter: board private structure
4330  *
4331  *  Return 0 on success, negative on failure
4332  **/
4333 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4334 {
4335 	struct pci_dev *pdev = adapter->pdev;
4336 	int i, err = 0;
4337 
4338 	for (i = 0; i < adapter->num_tx_queues; i++) {
4339 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4340 		if (err) {
4341 			dev_err(&pdev->dev,
4342 				"Allocation for Tx Queue %u failed\n", i);
4343 			for (i--; i >= 0; i--)
4344 				igb_free_tx_resources(adapter->tx_ring[i]);
4345 			break;
4346 		}
4347 	}
4348 
4349 	return err;
4350 }
4351 
4352 /**
4353  *  igb_setup_tctl - configure the transmit control registers
4354  *  @adapter: Board private structure
4355  **/
4356 void igb_setup_tctl(struct igb_adapter *adapter)
4357 {
4358 	struct e1000_hw *hw = &adapter->hw;
4359 	u32 tctl;
4360 
4361 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4362 	wr32(E1000_TXDCTL(0), 0);
4363 
4364 	/* Program the Transmit Control Register */
4365 	tctl = rd32(E1000_TCTL);
4366 	tctl &= ~E1000_TCTL_CT;
4367 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4368 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4369 
4370 	igb_config_collision_dist(hw);
4371 
4372 	/* Enable transmits */
4373 	tctl |= E1000_TCTL_EN;
4374 
4375 	wr32(E1000_TCTL, tctl);
4376 }
4377 
4378 /**
4379  *  igb_configure_tx_ring - Configure transmit ring after Reset
4380  *  @adapter: board private structure
4381  *  @ring: tx ring to configure
4382  *
4383  *  Configure a transmit ring after a reset.
4384  **/
4385 void igb_configure_tx_ring(struct igb_adapter *adapter,
4386 			   struct igb_ring *ring)
4387 {
4388 	struct e1000_hw *hw = &adapter->hw;
4389 	u32 txdctl = 0;
4390 	u64 tdba = ring->dma;
4391 	int reg_idx = ring->reg_idx;
4392 
4393 	WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4394 
4395 	wr32(E1000_TDLEN(reg_idx),
4396 	     ring->count * sizeof(union e1000_adv_tx_desc));
4397 	wr32(E1000_TDBAL(reg_idx),
4398 	     tdba & 0x00000000ffffffffULL);
4399 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4400 
4401 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4402 	wr32(E1000_TDH(reg_idx), 0);
4403 	writel(0, ring->tail);
4404 
4405 	txdctl |= IGB_TX_PTHRESH;
4406 	txdctl |= IGB_TX_HTHRESH << 8;
4407 	txdctl |= IGB_TX_WTHRESH << 16;
4408 
4409 	/* reinitialize tx_buffer_info */
4410 	memset(ring->tx_buffer_info, 0,
4411 	       sizeof(struct igb_tx_buffer) * ring->count);
4412 
4413 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4414 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4415 }
4416 
4417 /**
4418  *  igb_configure_tx - Configure transmit Unit after Reset
4419  *  @adapter: board private structure
4420  *
4421  *  Configure the Tx unit of the MAC after a reset.
4422  **/
4423 static void igb_configure_tx(struct igb_adapter *adapter)
4424 {
4425 	struct e1000_hw *hw = &adapter->hw;
4426 	int i;
4427 
4428 	/* disable the queues */
4429 	for (i = 0; i < adapter->num_tx_queues; i++)
4430 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4431 
4432 	wrfl();
4433 	usleep_range(10000, 20000);
4434 
4435 	for (i = 0; i < adapter->num_tx_queues; i++)
4436 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4437 }
4438 
4439 /**
4440  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4441  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4442  *
4443  *  Returns 0 on success, negative on failure
4444  **/
4445 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4446 {
4447 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4448 	struct device *dev = rx_ring->dev;
4449 	int size, res;
4450 
4451 	/* XDP RX-queue info */
4452 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4453 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4454 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4455 			       rx_ring->queue_index, 0);
4456 	if (res < 0) {
4457 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4458 			rx_ring->queue_index);
4459 		return res;
4460 	}
4461 
4462 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4463 
4464 	rx_ring->rx_buffer_info = vmalloc(size);
4465 	if (!rx_ring->rx_buffer_info)
4466 		goto err;
4467 
4468 	/* Round up to nearest 4K */
4469 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4470 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4471 
4472 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4473 					   &rx_ring->dma, GFP_KERNEL);
4474 	if (!rx_ring->desc)
4475 		goto err;
4476 
4477 	rx_ring->next_to_alloc = 0;
4478 	rx_ring->next_to_clean = 0;
4479 	rx_ring->next_to_use = 0;
4480 
4481 	rx_ring->xdp_prog = adapter->xdp_prog;
4482 
4483 	return 0;
4484 
4485 err:
4486 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4487 	vfree(rx_ring->rx_buffer_info);
4488 	rx_ring->rx_buffer_info = NULL;
4489 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4490 	return -ENOMEM;
4491 }
4492 
4493 /**
4494  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4495  *				 (Descriptors) for all queues
4496  *  @adapter: board private structure
4497  *
4498  *  Return 0 on success, negative on failure
4499  **/
4500 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4501 {
4502 	struct pci_dev *pdev = adapter->pdev;
4503 	int i, err = 0;
4504 
4505 	for (i = 0; i < adapter->num_rx_queues; i++) {
4506 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4507 		if (err) {
4508 			dev_err(&pdev->dev,
4509 				"Allocation for Rx Queue %u failed\n", i);
4510 			for (i--; i >= 0; i--)
4511 				igb_free_rx_resources(adapter->rx_ring[i]);
4512 			break;
4513 		}
4514 	}
4515 
4516 	return err;
4517 }
4518 
4519 /**
4520  *  igb_setup_mrqc - configure the multiple receive queue control registers
4521  *  @adapter: Board private structure
4522  **/
4523 static void igb_setup_mrqc(struct igb_adapter *adapter)
4524 {
4525 	struct e1000_hw *hw = &adapter->hw;
4526 	u32 mrqc, rxcsum;
4527 	u32 j, num_rx_queues;
4528 	u32 rss_key[10];
4529 
4530 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4531 	for (j = 0; j < 10; j++)
4532 		wr32(E1000_RSSRK(j), rss_key[j]);
4533 
4534 	num_rx_queues = adapter->rss_queues;
4535 
4536 	switch (hw->mac.type) {
4537 	case e1000_82576:
4538 		/* 82576 supports 2 RSS queues for SR-IOV */
4539 		if (adapter->vfs_allocated_count)
4540 			num_rx_queues = 2;
4541 		break;
4542 	default:
4543 		break;
4544 	}
4545 
4546 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4547 		for (j = 0; j < IGB_RETA_SIZE; j++)
4548 			adapter->rss_indir_tbl[j] =
4549 			(j * num_rx_queues) / IGB_RETA_SIZE;
4550 		adapter->rss_indir_tbl_init = num_rx_queues;
4551 	}
4552 	igb_write_rss_indir_tbl(adapter);
4553 
4554 	/* Disable raw packet checksumming so that RSS hash is placed in
4555 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4556 	 * offloads as they are enabled by default
4557 	 */
4558 	rxcsum = rd32(E1000_RXCSUM);
4559 	rxcsum |= E1000_RXCSUM_PCSD;
4560 
4561 	if (adapter->hw.mac.type >= e1000_82576)
4562 		/* Enable Receive Checksum Offload for SCTP */
4563 		rxcsum |= E1000_RXCSUM_CRCOFL;
4564 
4565 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4566 	wr32(E1000_RXCSUM, rxcsum);
4567 
4568 	/* Generate RSS hash based on packet types, TCP/UDP
4569 	 * port numbers and/or IPv4/v6 src and dst addresses
4570 	 */
4571 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4572 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4573 	       E1000_MRQC_RSS_FIELD_IPV6 |
4574 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4575 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4576 
4577 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4578 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4579 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4580 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4581 
4582 	/* If VMDq is enabled then we set the appropriate mode for that, else
4583 	 * we default to RSS so that an RSS hash is calculated per packet even
4584 	 * if we are only using one queue
4585 	 */
4586 	if (adapter->vfs_allocated_count) {
4587 		if (hw->mac.type > e1000_82575) {
4588 			/* Set the default pool for the PF's first queue */
4589 			u32 vtctl = rd32(E1000_VT_CTL);
4590 
4591 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4592 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4593 			vtctl |= adapter->vfs_allocated_count <<
4594 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4595 			wr32(E1000_VT_CTL, vtctl);
4596 		}
4597 		if (adapter->rss_queues > 1)
4598 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4599 		else
4600 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4601 	} else {
4602 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4603 	}
4604 	igb_vmm_control(adapter);
4605 
4606 	wr32(E1000_MRQC, mrqc);
4607 }
4608 
4609 /**
4610  *  igb_setup_rctl - configure the receive control registers
4611  *  @adapter: Board private structure
4612  **/
4613 void igb_setup_rctl(struct igb_adapter *adapter)
4614 {
4615 	struct e1000_hw *hw = &adapter->hw;
4616 	u32 rctl;
4617 
4618 	rctl = rd32(E1000_RCTL);
4619 
4620 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4621 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4622 
4623 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4624 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4625 
4626 	/* enable stripping of CRC. It's unlikely this will break BMC
4627 	 * redirection as it did with e1000. Newer features require
4628 	 * that the HW strips the CRC.
4629 	 */
4630 	rctl |= E1000_RCTL_SECRC;
4631 
4632 	/* disable store bad packets and clear size bits. */
4633 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4634 
4635 	/* enable LPE to allow for reception of jumbo frames */
4636 	rctl |= E1000_RCTL_LPE;
4637 
4638 	/* disable queue 0 to prevent tail write w/o re-config */
4639 	wr32(E1000_RXDCTL(0), 0);
4640 
4641 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4642 	 * queue drop for all VF and PF queues to prevent head of line blocking
4643 	 * if an un-trusted VF does not provide descriptors to hardware.
4644 	 */
4645 	if (adapter->vfs_allocated_count) {
4646 		/* set all queue drop enable bits */
4647 		wr32(E1000_QDE, ALL_QUEUES);
4648 	}
4649 
4650 	/* This is useful for sniffing bad packets. */
4651 	if (adapter->netdev->features & NETIF_F_RXALL) {
4652 		/* UPE and MPE will be handled by normal PROMISC logic
4653 		 * in e1000e_set_rx_mode
4654 		 */
4655 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4656 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4657 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4658 
4659 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4660 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4661 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4662 		 * and that breaks VLANs.
4663 		 */
4664 	}
4665 
4666 	wr32(E1000_RCTL, rctl);
4667 }
4668 
4669 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4670 				   int vfn)
4671 {
4672 	struct e1000_hw *hw = &adapter->hw;
4673 	u32 vmolr;
4674 
4675 	if (size > MAX_JUMBO_FRAME_SIZE)
4676 		size = MAX_JUMBO_FRAME_SIZE;
4677 
4678 	vmolr = rd32(E1000_VMOLR(vfn));
4679 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4680 	vmolr |= size | E1000_VMOLR_LPE;
4681 	wr32(E1000_VMOLR(vfn), vmolr);
4682 
4683 	return 0;
4684 }
4685 
4686 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4687 					 int vfn, bool enable)
4688 {
4689 	struct e1000_hw *hw = &adapter->hw;
4690 	u32 val, reg;
4691 
4692 	if (hw->mac.type < e1000_82576)
4693 		return;
4694 
4695 	if (hw->mac.type == e1000_i350)
4696 		reg = E1000_DVMOLR(vfn);
4697 	else
4698 		reg = E1000_VMOLR(vfn);
4699 
4700 	val = rd32(reg);
4701 	if (enable)
4702 		val |= E1000_VMOLR_STRVLAN;
4703 	else
4704 		val &= ~(E1000_VMOLR_STRVLAN);
4705 	wr32(reg, val);
4706 }
4707 
4708 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4709 				 int vfn, bool aupe)
4710 {
4711 	struct e1000_hw *hw = &adapter->hw;
4712 	u32 vmolr;
4713 
4714 	/* This register exists only on 82576 and newer so if we are older then
4715 	 * we should exit and do nothing
4716 	 */
4717 	if (hw->mac.type < e1000_82576)
4718 		return;
4719 
4720 	vmolr = rd32(E1000_VMOLR(vfn));
4721 	if (aupe)
4722 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4723 	else
4724 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4725 
4726 	/* clear all bits that might not be set */
4727 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4728 
4729 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4730 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4731 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4732 	 * multicast packets
4733 	 */
4734 	if (vfn <= adapter->vfs_allocated_count)
4735 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4736 
4737 	wr32(E1000_VMOLR(vfn), vmolr);
4738 }
4739 
4740 /**
4741  *  igb_setup_srrctl - configure the split and replication receive control
4742  *                     registers
4743  *  @adapter: Board private structure
4744  *  @ring: receive ring to be configured
4745  **/
4746 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4747 {
4748 	struct e1000_hw *hw = &adapter->hw;
4749 	int reg_idx = ring->reg_idx;
4750 	u32 srrctl = 0;
4751 	u32 buf_size;
4752 
4753 	if (ring->xsk_pool)
4754 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4755 	else if (ring_uses_large_buffer(ring))
4756 		buf_size = IGB_RXBUFFER_3072;
4757 	else
4758 		buf_size = IGB_RXBUFFER_2048;
4759 
4760 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4761 	srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4762 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4763 	if (hw->mac.type >= e1000_82580)
4764 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4765 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4766 	 * queues and rx flow control is disabled
4767 	 */
4768 	if (adapter->vfs_allocated_count ||
4769 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4770 	     adapter->num_rx_queues > 1))
4771 		srrctl |= E1000_SRRCTL_DROP_EN;
4772 
4773 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4774 }
4775 
4776 /**
4777  *  igb_configure_rx_ring - Configure a receive ring after Reset
4778  *  @adapter: board private structure
4779  *  @ring: receive ring to be configured
4780  *
4781  *  Configure the Rx unit of the MAC after a reset.
4782  **/
4783 void igb_configure_rx_ring(struct igb_adapter *adapter,
4784 			   struct igb_ring *ring)
4785 {
4786 	struct e1000_hw *hw = &adapter->hw;
4787 	union e1000_adv_rx_desc *rx_desc;
4788 	u64 rdba = ring->dma;
4789 	int reg_idx = ring->reg_idx;
4790 	u32 rxdctl = 0;
4791 
4792 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4793 	WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4794 	if (ring->xsk_pool) {
4795 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4796 						   MEM_TYPE_XSK_BUFF_POOL,
4797 						   NULL));
4798 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4799 	} else {
4800 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4801 						   MEM_TYPE_PAGE_SHARED,
4802 						   NULL));
4803 	}
4804 
4805 	/* disable the queue */
4806 	wr32(E1000_RXDCTL(reg_idx), 0);
4807 
4808 	/* Set DMA base address registers */
4809 	wr32(E1000_RDBAL(reg_idx),
4810 	     rdba & 0x00000000ffffffffULL);
4811 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4812 	wr32(E1000_RDLEN(reg_idx),
4813 	     ring->count * sizeof(union e1000_adv_rx_desc));
4814 
4815 	/* initialize head and tail */
4816 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4817 	wr32(E1000_RDH(reg_idx), 0);
4818 	writel(0, ring->tail);
4819 
4820 	/* set descriptor configuration */
4821 	igb_setup_srrctl(adapter, ring);
4822 
4823 	/* set filtering for VMDQ pools */
4824 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4825 
4826 	rxdctl |= IGB_RX_PTHRESH;
4827 	rxdctl |= IGB_RX_HTHRESH << 8;
4828 	rxdctl |= IGB_RX_WTHRESH << 16;
4829 
4830 	if (ring->xsk_pool)
4831 		memset(ring->rx_buffer_info_zc, 0,
4832 		       sizeof(*ring->rx_buffer_info_zc) * ring->count);
4833 	else
4834 		memset(ring->rx_buffer_info, 0,
4835 		       sizeof(*ring->rx_buffer_info) * ring->count);
4836 
4837 	/* initialize Rx descriptor 0 */
4838 	rx_desc = IGB_RX_DESC(ring, 0);
4839 	rx_desc->wb.upper.length = 0;
4840 
4841 	/* enable receive descriptor fetching */
4842 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4843 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4844 }
4845 
4846 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4847 				  struct igb_ring *rx_ring)
4848 {
4849 #if (PAGE_SIZE < 8192)
4850 	struct e1000_hw *hw = &adapter->hw;
4851 #endif
4852 
4853 	/* set build_skb and buffer size flags */
4854 	clear_ring_build_skb_enabled(rx_ring);
4855 	clear_ring_uses_large_buffer(rx_ring);
4856 
4857 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4858 		return;
4859 
4860 	set_ring_build_skb_enabled(rx_ring);
4861 
4862 #if (PAGE_SIZE < 8192)
4863 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4864 	    IGB_2K_TOO_SMALL_WITH_PADDING ||
4865 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4866 		set_ring_uses_large_buffer(rx_ring);
4867 #endif
4868 }
4869 
4870 /**
4871  *  igb_configure_rx - Configure receive Unit after Reset
4872  *  @adapter: board private structure
4873  *
4874  *  Configure the Rx unit of the MAC after a reset.
4875  **/
4876 static void igb_configure_rx(struct igb_adapter *adapter)
4877 {
4878 	int i;
4879 
4880 	/* set the correct pool for the PF default MAC address in entry 0 */
4881 	igb_set_default_mac_filter(adapter);
4882 
4883 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4884 	 * the Base and Length of the Rx Descriptor Ring
4885 	 */
4886 	for (i = 0; i < adapter->num_rx_queues; i++) {
4887 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4888 
4889 		igb_set_rx_buffer_len(adapter, rx_ring);
4890 		igb_configure_rx_ring(adapter, rx_ring);
4891 	}
4892 }
4893 
4894 /**
4895  *  igb_free_tx_resources - Free Tx Resources per Queue
4896  *  @tx_ring: Tx descriptor ring for a specific queue
4897  *
4898  *  Free all transmit software resources
4899  **/
4900 void igb_free_tx_resources(struct igb_ring *tx_ring)
4901 {
4902 	igb_clean_tx_ring(tx_ring);
4903 
4904 	vfree(tx_ring->tx_buffer_info);
4905 	tx_ring->tx_buffer_info = NULL;
4906 
4907 	/* if not set, then don't free */
4908 	if (!tx_ring->desc)
4909 		return;
4910 
4911 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4912 			  tx_ring->desc, tx_ring->dma);
4913 
4914 	tx_ring->desc = NULL;
4915 }
4916 
4917 /**
4918  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4919  *  @adapter: board private structure
4920  *
4921  *  Free all transmit software resources
4922  **/
4923 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4924 {
4925 	int i;
4926 
4927 	for (i = 0; i < adapter->num_tx_queues; i++)
4928 		if (adapter->tx_ring[i])
4929 			igb_free_tx_resources(adapter->tx_ring[i]);
4930 }
4931 
4932 /**
4933  *  igb_clean_tx_ring - Free Tx Buffers
4934  *  @tx_ring: ring to be cleaned
4935  **/
4936 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4937 {
4938 	u16 i = tx_ring->next_to_clean;
4939 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4940 	u32 xsk_frames = 0;
4941 
4942 	while (i != tx_ring->next_to_use) {
4943 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4944 
4945 		/* Free all the Tx ring sk_buffs or xdp frames */
4946 		if (tx_buffer->type == IGB_TYPE_SKB) {
4947 			dev_kfree_skb_any(tx_buffer->skb);
4948 		} else if (tx_buffer->type == IGB_TYPE_XDP) {
4949 			xdp_return_frame(tx_buffer->xdpf);
4950 		} else if (tx_buffer->type == IGB_TYPE_XSK) {
4951 			xsk_frames++;
4952 			goto skip_for_xsk;
4953 		}
4954 
4955 		/* unmap skb header data */
4956 		dma_unmap_single(tx_ring->dev,
4957 				 dma_unmap_addr(tx_buffer, dma),
4958 				 dma_unmap_len(tx_buffer, len),
4959 				 DMA_TO_DEVICE);
4960 
4961 		/* check for eop_desc to determine the end of the packet */
4962 		eop_desc = tx_buffer->next_to_watch;
4963 		tx_desc = IGB_TX_DESC(tx_ring, i);
4964 
4965 		/* unmap remaining buffers */
4966 		while (tx_desc != eop_desc) {
4967 			tx_buffer++;
4968 			tx_desc++;
4969 			i++;
4970 			if (unlikely(i == tx_ring->count)) {
4971 				i = 0;
4972 				tx_buffer = tx_ring->tx_buffer_info;
4973 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4974 			}
4975 
4976 			/* unmap any remaining paged data */
4977 			if (dma_unmap_len(tx_buffer, len))
4978 				dma_unmap_page(tx_ring->dev,
4979 					       dma_unmap_addr(tx_buffer, dma),
4980 					       dma_unmap_len(tx_buffer, len),
4981 					       DMA_TO_DEVICE);
4982 		}
4983 
4984 skip_for_xsk:
4985 		tx_buffer->next_to_watch = NULL;
4986 
4987 		/* move us one more past the eop_desc for start of next pkt */
4988 		tx_buffer++;
4989 		i++;
4990 		if (unlikely(i == tx_ring->count)) {
4991 			i = 0;
4992 			tx_buffer = tx_ring->tx_buffer_info;
4993 		}
4994 	}
4995 
4996 	/* reset BQL for queue */
4997 	netdev_tx_reset_queue(txring_txq(tx_ring));
4998 
4999 	if (tx_ring->xsk_pool && xsk_frames)
5000 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
5001 
5002 	/* reset next_to_use and next_to_clean */
5003 	tx_ring->next_to_use = 0;
5004 	tx_ring->next_to_clean = 0;
5005 }
5006 
5007 /**
5008  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
5009  *  @adapter: board private structure
5010  **/
5011 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
5012 {
5013 	int i;
5014 
5015 	for (i = 0; i < adapter->num_tx_queues; i++)
5016 		if (adapter->tx_ring[i])
5017 			igb_clean_tx_ring(adapter->tx_ring[i]);
5018 }
5019 
5020 /**
5021  *  igb_free_rx_resources - Free Rx Resources
5022  *  @rx_ring: ring to clean the resources from
5023  *
5024  *  Free all receive software resources
5025  **/
5026 void igb_free_rx_resources(struct igb_ring *rx_ring)
5027 {
5028 	igb_clean_rx_ring(rx_ring);
5029 
5030 	rx_ring->xdp_prog = NULL;
5031 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5032 	if (rx_ring->xsk_pool) {
5033 		vfree(rx_ring->rx_buffer_info_zc);
5034 		rx_ring->rx_buffer_info_zc = NULL;
5035 	} else {
5036 		vfree(rx_ring->rx_buffer_info);
5037 		rx_ring->rx_buffer_info = NULL;
5038 	}
5039 
5040 	/* if not set, then don't free */
5041 	if (!rx_ring->desc)
5042 		return;
5043 
5044 	dma_free_coherent(rx_ring->dev, rx_ring->size,
5045 			  rx_ring->desc, rx_ring->dma);
5046 
5047 	rx_ring->desc = NULL;
5048 }
5049 
5050 /**
5051  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
5052  *  @adapter: board private structure
5053  *
5054  *  Free all receive software resources
5055  **/
5056 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5057 {
5058 	int i;
5059 
5060 	for (i = 0; i < adapter->num_rx_queues; i++)
5061 		if (adapter->rx_ring[i])
5062 			igb_free_rx_resources(adapter->rx_ring[i]);
5063 }
5064 
5065 /**
5066  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5067  *  @rx_ring: ring to free buffers from
5068  **/
5069 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5070 {
5071 	u16 i = rx_ring->next_to_clean;
5072 
5073 	dev_kfree_skb(rx_ring->skb);
5074 	rx_ring->skb = NULL;
5075 
5076 	if (rx_ring->xsk_pool) {
5077 		igb_clean_rx_ring_zc(rx_ring);
5078 		goto skip_for_xsk;
5079 	}
5080 
5081 	/* Free all the Rx ring sk_buffs */
5082 	while (i != rx_ring->next_to_alloc) {
5083 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5084 
5085 		/* Invalidate cache lines that may have been written to by
5086 		 * device so that we avoid corrupting memory.
5087 		 */
5088 		dma_sync_single_range_for_cpu(rx_ring->dev,
5089 					      buffer_info->dma,
5090 					      buffer_info->page_offset,
5091 					      igb_rx_bufsz(rx_ring),
5092 					      DMA_FROM_DEVICE);
5093 
5094 		/* free resources associated with mapping */
5095 		dma_unmap_page_attrs(rx_ring->dev,
5096 				     buffer_info->dma,
5097 				     igb_rx_pg_size(rx_ring),
5098 				     DMA_FROM_DEVICE,
5099 				     IGB_RX_DMA_ATTR);
5100 		__page_frag_cache_drain(buffer_info->page,
5101 					buffer_info->pagecnt_bias);
5102 
5103 		i++;
5104 		if (i == rx_ring->count)
5105 			i = 0;
5106 	}
5107 
5108 skip_for_xsk:
5109 	rx_ring->next_to_alloc = 0;
5110 	rx_ring->next_to_clean = 0;
5111 	rx_ring->next_to_use = 0;
5112 }
5113 
5114 /**
5115  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5116  *  @adapter: board private structure
5117  **/
5118 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5119 {
5120 	int i;
5121 
5122 	for (i = 0; i < adapter->num_rx_queues; i++)
5123 		if (adapter->rx_ring[i])
5124 			igb_clean_rx_ring(adapter->rx_ring[i]);
5125 }
5126 
5127 /**
5128  *  igb_set_mac - Change the Ethernet Address of the NIC
5129  *  @netdev: network interface device structure
5130  *  @p: pointer to an address structure
5131  *
5132  *  Returns 0 on success, negative on failure
5133  **/
5134 static int igb_set_mac(struct net_device *netdev, void *p)
5135 {
5136 	struct igb_adapter *adapter = netdev_priv(netdev);
5137 	struct e1000_hw *hw = &adapter->hw;
5138 	struct sockaddr *addr = p;
5139 
5140 	if (!is_valid_ether_addr(addr->sa_data))
5141 		return -EADDRNOTAVAIL;
5142 
5143 	eth_hw_addr_set(netdev, addr->sa_data);
5144 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5145 
5146 	/* set the correct pool for the new PF MAC address in entry 0 */
5147 	igb_set_default_mac_filter(adapter);
5148 
5149 	return 0;
5150 }
5151 
5152 /**
5153  *  igb_write_mc_addr_list - write multicast addresses to MTA
5154  *  @netdev: network interface device structure
5155  *
5156  *  Writes multicast address list to the MTA hash table.
5157  *  Returns: -ENOMEM on failure
5158  *           0 on no addresses written
5159  *           X on writing X addresses to MTA
5160  **/
5161 static int igb_write_mc_addr_list(struct net_device *netdev)
5162 {
5163 	struct igb_adapter *adapter = netdev_priv(netdev);
5164 	struct e1000_hw *hw = &adapter->hw;
5165 	struct netdev_hw_addr *ha;
5166 	u8  *mta_list;
5167 	int i;
5168 
5169 	if (netdev_mc_empty(netdev)) {
5170 		/* nothing to program, so clear mc list */
5171 		igb_update_mc_addr_list(hw, NULL, 0);
5172 		igb_restore_vf_multicasts(adapter);
5173 		return 0;
5174 	}
5175 
5176 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5177 	if (!mta_list)
5178 		return -ENOMEM;
5179 
5180 	/* The shared function expects a packed array of only addresses. */
5181 	i = 0;
5182 	netdev_for_each_mc_addr(ha, netdev)
5183 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5184 
5185 	igb_update_mc_addr_list(hw, mta_list, i);
5186 	kfree(mta_list);
5187 
5188 	return netdev_mc_count(netdev);
5189 }
5190 
5191 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5192 {
5193 	struct e1000_hw *hw = &adapter->hw;
5194 	u32 i, pf_id;
5195 
5196 	switch (hw->mac.type) {
5197 	case e1000_i210:
5198 	case e1000_i211:
5199 	case e1000_i350:
5200 		/* VLAN filtering needed for VLAN prio filter */
5201 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5202 			break;
5203 		fallthrough;
5204 	case e1000_82576:
5205 	case e1000_82580:
5206 	case e1000_i354:
5207 		/* VLAN filtering needed for pool filtering */
5208 		if (adapter->vfs_allocated_count)
5209 			break;
5210 		fallthrough;
5211 	default:
5212 		return 1;
5213 	}
5214 
5215 	/* We are already in VLAN promisc, nothing to do */
5216 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5217 		return 0;
5218 
5219 	if (!adapter->vfs_allocated_count)
5220 		goto set_vfta;
5221 
5222 	/* Add PF to all active pools */
5223 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5224 
5225 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5226 		u32 vlvf = rd32(E1000_VLVF(i));
5227 
5228 		vlvf |= BIT(pf_id);
5229 		wr32(E1000_VLVF(i), vlvf);
5230 	}
5231 
5232 set_vfta:
5233 	/* Set all bits in the VLAN filter table array */
5234 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5235 		hw->mac.ops.write_vfta(hw, i, ~0U);
5236 
5237 	/* Set flag so we don't redo unnecessary work */
5238 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5239 
5240 	return 0;
5241 }
5242 
5243 #define VFTA_BLOCK_SIZE 8
5244 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5245 {
5246 	struct e1000_hw *hw = &adapter->hw;
5247 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5248 	u32 vid_start = vfta_offset * 32;
5249 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5250 	u32 i, vid, word, bits, pf_id;
5251 
5252 	/* guarantee that we don't scrub out management VLAN */
5253 	vid = adapter->mng_vlan_id;
5254 	if (vid >= vid_start && vid < vid_end)
5255 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5256 
5257 	if (!adapter->vfs_allocated_count)
5258 		goto set_vfta;
5259 
5260 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5261 
5262 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5263 		u32 vlvf = rd32(E1000_VLVF(i));
5264 
5265 		/* pull VLAN ID from VLVF */
5266 		vid = vlvf & VLAN_VID_MASK;
5267 
5268 		/* only concern ourselves with a certain range */
5269 		if (vid < vid_start || vid >= vid_end)
5270 			continue;
5271 
5272 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5273 			/* record VLAN ID in VFTA */
5274 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5275 
5276 			/* if PF is part of this then continue */
5277 			if (test_bit(vid, adapter->active_vlans))
5278 				continue;
5279 		}
5280 
5281 		/* remove PF from the pool */
5282 		bits = ~BIT(pf_id);
5283 		bits &= rd32(E1000_VLVF(i));
5284 		wr32(E1000_VLVF(i), bits);
5285 	}
5286 
5287 set_vfta:
5288 	/* extract values from active_vlans and write back to VFTA */
5289 	for (i = VFTA_BLOCK_SIZE; i--;) {
5290 		vid = (vfta_offset + i) * 32;
5291 		word = vid / BITS_PER_LONG;
5292 		bits = vid % BITS_PER_LONG;
5293 
5294 		vfta[i] |= adapter->active_vlans[word] >> bits;
5295 
5296 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5297 	}
5298 }
5299 
5300 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5301 {
5302 	u32 i;
5303 
5304 	/* We are not in VLAN promisc, nothing to do */
5305 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5306 		return;
5307 
5308 	/* Set flag so we don't redo unnecessary work */
5309 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5310 
5311 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5312 		igb_scrub_vfta(adapter, i);
5313 }
5314 
5315 /**
5316  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5317  *  @netdev: network interface device structure
5318  *
5319  *  The set_rx_mode entry point is called whenever the unicast or multicast
5320  *  address lists or the network interface flags are updated.  This routine is
5321  *  responsible for configuring the hardware for proper unicast, multicast,
5322  *  promiscuous mode, and all-multi behavior.
5323  **/
5324 static void igb_set_rx_mode(struct net_device *netdev)
5325 {
5326 	struct igb_adapter *adapter = netdev_priv(netdev);
5327 	struct e1000_hw *hw = &adapter->hw;
5328 	unsigned int vfn = adapter->vfs_allocated_count;
5329 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5330 	int count;
5331 
5332 	/* Check for Promiscuous and All Multicast modes */
5333 	if (netdev->flags & IFF_PROMISC) {
5334 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5335 		vmolr |= E1000_VMOLR_MPME;
5336 
5337 		/* enable use of UTA filter to force packets to default pool */
5338 		if (hw->mac.type == e1000_82576)
5339 			vmolr |= E1000_VMOLR_ROPE;
5340 	} else {
5341 		if (netdev->flags & IFF_ALLMULTI) {
5342 			rctl |= E1000_RCTL_MPE;
5343 			vmolr |= E1000_VMOLR_MPME;
5344 		} else {
5345 			/* Write addresses to the MTA, if the attempt fails
5346 			 * then we should just turn on promiscuous mode so
5347 			 * that we can at least receive multicast traffic
5348 			 */
5349 			count = igb_write_mc_addr_list(netdev);
5350 			if (count < 0) {
5351 				rctl |= E1000_RCTL_MPE;
5352 				vmolr |= E1000_VMOLR_MPME;
5353 			} else if (count) {
5354 				vmolr |= E1000_VMOLR_ROMPE;
5355 			}
5356 		}
5357 	}
5358 
5359 	/* Write addresses to available RAR registers, if there is not
5360 	 * sufficient space to store all the addresses then enable
5361 	 * unicast promiscuous mode
5362 	 */
5363 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5364 		rctl |= E1000_RCTL_UPE;
5365 		vmolr |= E1000_VMOLR_ROPE;
5366 	}
5367 
5368 	/* enable VLAN filtering by default */
5369 	rctl |= E1000_RCTL_VFE;
5370 
5371 	/* disable VLAN filtering for modes that require it */
5372 	if ((netdev->flags & IFF_PROMISC) ||
5373 	    (netdev->features & NETIF_F_RXALL)) {
5374 		/* if we fail to set all rules then just clear VFE */
5375 		if (igb_vlan_promisc_enable(adapter))
5376 			rctl &= ~E1000_RCTL_VFE;
5377 	} else {
5378 		igb_vlan_promisc_disable(adapter);
5379 	}
5380 
5381 	/* update state of unicast, multicast, and VLAN filtering modes */
5382 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5383 				     E1000_RCTL_VFE);
5384 	wr32(E1000_RCTL, rctl);
5385 
5386 #if (PAGE_SIZE < 8192)
5387 	if (!adapter->vfs_allocated_count) {
5388 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5389 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5390 	}
5391 #endif
5392 	wr32(E1000_RLPML, rlpml);
5393 
5394 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5395 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5396 	 * we will have issues with VLAN tag stripping not being done for frames
5397 	 * that are only arriving because we are the default pool
5398 	 */
5399 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5400 		return;
5401 
5402 	/* set UTA to appropriate mode */
5403 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5404 
5405 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5406 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5407 
5408 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5409 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5410 #if (PAGE_SIZE < 8192)
5411 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5412 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5413 	else
5414 #endif
5415 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5416 	vmolr |= E1000_VMOLR_LPE;
5417 
5418 	wr32(E1000_VMOLR(vfn), vmolr);
5419 
5420 	igb_restore_vf_multicasts(adapter);
5421 }
5422 
5423 static void igb_check_wvbr(struct igb_adapter *adapter)
5424 {
5425 	struct e1000_hw *hw = &adapter->hw;
5426 	u32 wvbr = 0;
5427 
5428 	switch (hw->mac.type) {
5429 	case e1000_82576:
5430 	case e1000_i350:
5431 		wvbr = rd32(E1000_WVBR);
5432 		if (!wvbr)
5433 			return;
5434 		break;
5435 	default:
5436 		break;
5437 	}
5438 
5439 	adapter->wvbr |= wvbr;
5440 }
5441 
5442 #define IGB_STAGGERED_QUEUE_OFFSET 8
5443 
5444 static void igb_spoof_check(struct igb_adapter *adapter)
5445 {
5446 	int j;
5447 
5448 	if (!adapter->wvbr)
5449 		return;
5450 
5451 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5452 		if (adapter->wvbr & BIT(j) ||
5453 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5454 			dev_warn(&adapter->pdev->dev,
5455 				"Spoof event(s) detected on VF %d\n", j);
5456 			adapter->wvbr &=
5457 				~(BIT(j) |
5458 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5459 		}
5460 	}
5461 }
5462 
5463 /* Need to wait a few seconds after link up to get diagnostic information from
5464  * the phy
5465  */
5466 static void igb_update_phy_info(struct timer_list *t)
5467 {
5468 	struct igb_adapter *adapter = timer_container_of(adapter, t,
5469 							 phy_info_timer);
5470 	igb_get_phy_info(&adapter->hw);
5471 }
5472 
5473 /**
5474  *  igb_has_link - check shared code for link and determine up/down
5475  *  @adapter: pointer to driver private info
5476  **/
5477 bool igb_has_link(struct igb_adapter *adapter)
5478 {
5479 	struct e1000_hw *hw = &adapter->hw;
5480 	bool link_active = false;
5481 
5482 	/* get_link_status is set on LSC (link status) interrupt or
5483 	 * rx sequence error interrupt.  get_link_status will stay
5484 	 * false until the e1000_check_for_link establishes link
5485 	 * for copper adapters ONLY
5486 	 */
5487 	switch (hw->phy.media_type) {
5488 	case e1000_media_type_copper:
5489 		if (!hw->mac.get_link_status)
5490 			return true;
5491 		fallthrough;
5492 	case e1000_media_type_internal_serdes:
5493 		hw->mac.ops.check_for_link(hw);
5494 		link_active = !hw->mac.get_link_status;
5495 		break;
5496 	default:
5497 	case e1000_media_type_unknown:
5498 		break;
5499 	}
5500 
5501 	if (((hw->mac.type == e1000_i210) ||
5502 	     (hw->mac.type == e1000_i211)) &&
5503 	     (hw->phy.id == I210_I_PHY_ID)) {
5504 		if (!netif_carrier_ok(adapter->netdev)) {
5505 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5506 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5507 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5508 			adapter->link_check_timeout = jiffies;
5509 		}
5510 	}
5511 
5512 	return link_active;
5513 }
5514 
5515 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5516 {
5517 	bool ret = false;
5518 	u32 ctrl_ext, thstat;
5519 
5520 	/* check for thermal sensor event on i350 copper only */
5521 	if (hw->mac.type == e1000_i350) {
5522 		thstat = rd32(E1000_THSTAT);
5523 		ctrl_ext = rd32(E1000_CTRL_EXT);
5524 
5525 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5526 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5527 			ret = !!(thstat & event);
5528 	}
5529 
5530 	return ret;
5531 }
5532 
5533 /**
5534  *  igb_check_lvmmc - check for malformed packets received
5535  *  and indicated in LVMMC register
5536  *  @adapter: pointer to adapter
5537  **/
5538 static void igb_check_lvmmc(struct igb_adapter *adapter)
5539 {
5540 	struct e1000_hw *hw = &adapter->hw;
5541 	u32 lvmmc;
5542 
5543 	lvmmc = rd32(E1000_LVMMC);
5544 	if (lvmmc) {
5545 		if (unlikely(net_ratelimit())) {
5546 			netdev_warn(adapter->netdev,
5547 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5548 				    lvmmc);
5549 		}
5550 	}
5551 }
5552 
5553 /**
5554  *  igb_watchdog - Timer Call-back
5555  *  @t: pointer to timer_list containing our private info pointer
5556  **/
5557 static void igb_watchdog(struct timer_list *t)
5558 {
5559 	struct igb_adapter *adapter = timer_container_of(adapter, t,
5560 							 watchdog_timer);
5561 	/* Do the rest outside of interrupt context */
5562 	schedule_work(&adapter->watchdog_task);
5563 }
5564 
5565 static void igb_watchdog_task(struct work_struct *work)
5566 {
5567 	struct igb_adapter *adapter = container_of(work,
5568 						   struct igb_adapter,
5569 						   watchdog_task);
5570 	struct e1000_hw *hw = &adapter->hw;
5571 	struct e1000_phy_info *phy = &hw->phy;
5572 	struct net_device *netdev = adapter->netdev;
5573 	u32 link;
5574 	int i;
5575 	u32 connsw;
5576 	u16 phy_data, retry_count = 20;
5577 
5578 	link = igb_has_link(adapter);
5579 
5580 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5581 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5582 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5583 		else
5584 			link = false;
5585 	}
5586 
5587 	/* Force link down if we have fiber to swap to */
5588 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5589 		if (hw->phy.media_type == e1000_media_type_copper) {
5590 			connsw = rd32(E1000_CONNSW);
5591 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5592 				link = 0;
5593 		}
5594 	}
5595 	if (link) {
5596 		/* Perform a reset if the media type changed. */
5597 		if (hw->dev_spec._82575.media_changed) {
5598 			hw->dev_spec._82575.media_changed = false;
5599 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5600 			igb_reset(adapter);
5601 		}
5602 		/* Cancel scheduled suspend requests. */
5603 		pm_runtime_resume(netdev->dev.parent);
5604 
5605 		if (!netif_carrier_ok(netdev)) {
5606 			u32 ctrl;
5607 
5608 			hw->mac.ops.get_speed_and_duplex(hw,
5609 							 &adapter->link_speed,
5610 							 &adapter->link_duplex);
5611 
5612 			ctrl = rd32(E1000_CTRL);
5613 			/* Links status message must follow this format */
5614 			netdev_info(netdev,
5615 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5616 			       netdev->name,
5617 			       adapter->link_speed,
5618 			       adapter->link_duplex == FULL_DUPLEX ?
5619 			       "Full" : "Half",
5620 			       (ctrl & E1000_CTRL_TFCE) &&
5621 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5622 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5623 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5624 
5625 			/* disable EEE if enabled */
5626 			if ((adapter->flags & IGB_FLAG_EEE) &&
5627 				(adapter->link_duplex == HALF_DUPLEX)) {
5628 				dev_info(&adapter->pdev->dev,
5629 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5630 				adapter->hw.dev_spec._82575.eee_disable = true;
5631 				adapter->flags &= ~IGB_FLAG_EEE;
5632 			}
5633 
5634 			/* check if SmartSpeed worked */
5635 			igb_check_downshift(hw);
5636 			if (phy->speed_downgraded)
5637 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5638 
5639 			/* check for thermal sensor event */
5640 			if (igb_thermal_sensor_event(hw,
5641 			    E1000_THSTAT_LINK_THROTTLE))
5642 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5643 
5644 			/* adjust timeout factor according to speed/duplex */
5645 			adapter->tx_timeout_factor = 1;
5646 			switch (adapter->link_speed) {
5647 			case SPEED_10:
5648 				adapter->tx_timeout_factor = 14;
5649 				break;
5650 			case SPEED_100:
5651 				/* maybe add some timeout factor ? */
5652 				break;
5653 			}
5654 
5655 			if (adapter->link_speed != SPEED_1000 ||
5656 			    !hw->phy.ops.read_reg)
5657 				goto no_wait;
5658 
5659 			/* wait for Remote receiver status OK */
5660 retry_read_status:
5661 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5662 					      &phy_data)) {
5663 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5664 				    retry_count) {
5665 					msleep(100);
5666 					retry_count--;
5667 					goto retry_read_status;
5668 				} else if (!retry_count) {
5669 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5670 				}
5671 			} else {
5672 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5673 			}
5674 no_wait:
5675 			netif_carrier_on(netdev);
5676 
5677 			igb_ping_all_vfs(adapter);
5678 			igb_check_vf_rate_limit(adapter);
5679 
5680 			/* link state has changed, schedule phy info update */
5681 			if (!test_bit(__IGB_DOWN, &adapter->state))
5682 				mod_timer(&adapter->phy_info_timer,
5683 					  round_jiffies(jiffies + 2 * HZ));
5684 		}
5685 	} else {
5686 		if (netif_carrier_ok(netdev)) {
5687 			adapter->link_speed = 0;
5688 			adapter->link_duplex = 0;
5689 
5690 			/* check for thermal sensor event */
5691 			if (igb_thermal_sensor_event(hw,
5692 			    E1000_THSTAT_PWR_DOWN)) {
5693 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5694 			}
5695 
5696 			/* Links status message must follow this format */
5697 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5698 			       netdev->name);
5699 			netif_carrier_off(netdev);
5700 
5701 			igb_ping_all_vfs(adapter);
5702 
5703 			/* link state has changed, schedule phy info update */
5704 			if (!test_bit(__IGB_DOWN, &adapter->state))
5705 				mod_timer(&adapter->phy_info_timer,
5706 					  round_jiffies(jiffies + 2 * HZ));
5707 
5708 			/* link is down, time to check for alternate media */
5709 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5710 				igb_check_swap_media(adapter);
5711 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5712 					schedule_work(&adapter->reset_task);
5713 					/* return immediately */
5714 					return;
5715 				}
5716 			}
5717 			pm_schedule_suspend(netdev->dev.parent,
5718 					    MSEC_PER_SEC * 5);
5719 
5720 		/* also check for alternate media here */
5721 		} else if (!netif_carrier_ok(netdev) &&
5722 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5723 			igb_check_swap_media(adapter);
5724 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5725 				schedule_work(&adapter->reset_task);
5726 				/* return immediately */
5727 				return;
5728 			}
5729 		}
5730 	}
5731 
5732 	spin_lock(&adapter->stats64_lock);
5733 	igb_update_stats(adapter);
5734 	spin_unlock(&adapter->stats64_lock);
5735 
5736 	for (i = 0; i < adapter->num_tx_queues; i++) {
5737 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5738 		if (!netif_carrier_ok(netdev)) {
5739 			/* We've lost link, so the controller stops DMA,
5740 			 * but we've got queued Tx work that's never going
5741 			 * to get done, so reset controller to flush Tx.
5742 			 * (Do the reset outside of interrupt context).
5743 			 */
5744 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5745 				adapter->tx_timeout_count++;
5746 				schedule_work(&adapter->reset_task);
5747 				/* return immediately since reset is imminent */
5748 				return;
5749 			}
5750 		}
5751 
5752 		/* Force detection of hung controller every watchdog period */
5753 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5754 	}
5755 
5756 	/* Cause software interrupt to ensure Rx ring is cleaned */
5757 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5758 		u32 eics = 0;
5759 
5760 		for (i = 0; i < adapter->num_q_vectors; i++) {
5761 			struct igb_q_vector *q_vector = adapter->q_vector[i];
5762 			struct igb_ring *rx_ring;
5763 
5764 			if (!q_vector->rx.ring)
5765 				continue;
5766 
5767 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5768 
5769 			if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5770 				eics |= q_vector->eims_value;
5771 				clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5772 			}
5773 		}
5774 		if (eics)
5775 			wr32(E1000_EICS, eics);
5776 	} else {
5777 		struct igb_ring *rx_ring = adapter->rx_ring[0];
5778 
5779 		if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5780 			clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5781 			wr32(E1000_ICS, E1000_ICS_RXDMT0);
5782 		}
5783 	}
5784 
5785 	igb_spoof_check(adapter);
5786 	igb_ptp_rx_hang(adapter);
5787 	igb_ptp_tx_hang(adapter);
5788 
5789 	/* Check LVMMC register on i350/i354 only */
5790 	if ((adapter->hw.mac.type == e1000_i350) ||
5791 	    (adapter->hw.mac.type == e1000_i354))
5792 		igb_check_lvmmc(adapter);
5793 
5794 	/* Reset the timer */
5795 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5796 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5797 			mod_timer(&adapter->watchdog_timer,
5798 				  round_jiffies(jiffies +  HZ));
5799 		else
5800 			mod_timer(&adapter->watchdog_timer,
5801 				  round_jiffies(jiffies + 2 * HZ));
5802 	}
5803 }
5804 
5805 enum latency_range {
5806 	lowest_latency = 0,
5807 	low_latency = 1,
5808 	bulk_latency = 2,
5809 	latency_invalid = 255
5810 };
5811 
5812 /**
5813  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5814  *  @q_vector: pointer to q_vector
5815  *
5816  *  Stores a new ITR value based on strictly on packet size.  This
5817  *  algorithm is less sophisticated than that used in igb_update_itr,
5818  *  due to the difficulty of synchronizing statistics across multiple
5819  *  receive rings.  The divisors and thresholds used by this function
5820  *  were determined based on theoretical maximum wire speed and testing
5821  *  data, in order to minimize response time while increasing bulk
5822  *  throughput.
5823  *  This functionality is controlled by ethtool's coalescing settings.
5824  *  NOTE:  This function is called only when operating in a multiqueue
5825  *         receive environment.
5826  **/
5827 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5828 {
5829 	int new_val = q_vector->itr_val;
5830 	int avg_wire_size = 0;
5831 	struct igb_adapter *adapter = q_vector->adapter;
5832 	unsigned int packets;
5833 
5834 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5835 	 * ints/sec - ITR timer value of 120 ticks.
5836 	 */
5837 	if (adapter->link_speed != SPEED_1000) {
5838 		new_val = IGB_4K_ITR;
5839 		goto set_itr_val;
5840 	}
5841 
5842 	packets = q_vector->rx.total_packets;
5843 	if (packets)
5844 		avg_wire_size = q_vector->rx.total_bytes / packets;
5845 
5846 	packets = q_vector->tx.total_packets;
5847 	if (packets)
5848 		avg_wire_size = max_t(u32, avg_wire_size,
5849 				      q_vector->tx.total_bytes / packets);
5850 
5851 	/* if avg_wire_size isn't set no work was done */
5852 	if (!avg_wire_size)
5853 		goto clear_counts;
5854 
5855 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5856 	avg_wire_size += 24;
5857 
5858 	/* Don't starve jumbo frames */
5859 	avg_wire_size = min(avg_wire_size, 3000);
5860 
5861 	/* Give a little boost to mid-size frames */
5862 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5863 		new_val = avg_wire_size / 3;
5864 	else
5865 		new_val = avg_wire_size / 2;
5866 
5867 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5868 	if (new_val < IGB_20K_ITR &&
5869 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5870 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5871 		new_val = IGB_20K_ITR;
5872 
5873 set_itr_val:
5874 	if (new_val != q_vector->itr_val) {
5875 		q_vector->itr_val = new_val;
5876 		q_vector->set_itr = 1;
5877 	}
5878 clear_counts:
5879 	q_vector->rx.total_bytes = 0;
5880 	q_vector->rx.total_packets = 0;
5881 	q_vector->tx.total_bytes = 0;
5882 	q_vector->tx.total_packets = 0;
5883 }
5884 
5885 /**
5886  *  igb_update_itr - update the dynamic ITR value based on statistics
5887  *  @q_vector: pointer to q_vector
5888  *  @ring_container: ring info to update the itr for
5889  *
5890  *  Stores a new ITR value based on packets and byte
5891  *  counts during the last interrupt.  The advantage of per interrupt
5892  *  computation is faster updates and more accurate ITR for the current
5893  *  traffic pattern.  Constants in this function were computed
5894  *  based on theoretical maximum wire speed and thresholds were set based
5895  *  on testing data as well as attempting to minimize response time
5896  *  while increasing bulk throughput.
5897  *  This functionality is controlled by ethtool's coalescing settings.
5898  *  NOTE:  These calculations are only valid when operating in a single-
5899  *         queue environment.
5900  **/
5901 static void igb_update_itr(struct igb_q_vector *q_vector,
5902 			   struct igb_ring_container *ring_container)
5903 {
5904 	unsigned int packets = ring_container->total_packets;
5905 	unsigned int bytes = ring_container->total_bytes;
5906 	u8 itrval = ring_container->itr;
5907 
5908 	/* no packets, exit with status unchanged */
5909 	if (packets == 0)
5910 		return;
5911 
5912 	switch (itrval) {
5913 	case lowest_latency:
5914 		/* handle TSO and jumbo frames */
5915 		if (bytes/packets > 8000)
5916 			itrval = bulk_latency;
5917 		else if ((packets < 5) && (bytes > 512))
5918 			itrval = low_latency;
5919 		break;
5920 	case low_latency:  /* 50 usec aka 20000 ints/s */
5921 		if (bytes > 10000) {
5922 			/* this if handles the TSO accounting */
5923 			if (bytes/packets > 8000)
5924 				itrval = bulk_latency;
5925 			else if ((packets < 10) || ((bytes/packets) > 1200))
5926 				itrval = bulk_latency;
5927 			else if ((packets > 35))
5928 				itrval = lowest_latency;
5929 		} else if (bytes/packets > 2000) {
5930 			itrval = bulk_latency;
5931 		} else if (packets <= 2 && bytes < 512) {
5932 			itrval = lowest_latency;
5933 		}
5934 		break;
5935 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5936 		if (bytes > 25000) {
5937 			if (packets > 35)
5938 				itrval = low_latency;
5939 		} else if (bytes < 1500) {
5940 			itrval = low_latency;
5941 		}
5942 		break;
5943 	}
5944 
5945 	/* clear work counters since we have the values we need */
5946 	ring_container->total_bytes = 0;
5947 	ring_container->total_packets = 0;
5948 
5949 	/* write updated itr to ring container */
5950 	ring_container->itr = itrval;
5951 }
5952 
5953 static void igb_set_itr(struct igb_q_vector *q_vector)
5954 {
5955 	struct igb_adapter *adapter = q_vector->adapter;
5956 	u32 new_itr = q_vector->itr_val;
5957 	u8 current_itr = 0;
5958 
5959 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5960 	if (adapter->link_speed != SPEED_1000) {
5961 		current_itr = 0;
5962 		new_itr = IGB_4K_ITR;
5963 		goto set_itr_now;
5964 	}
5965 
5966 	igb_update_itr(q_vector, &q_vector->tx);
5967 	igb_update_itr(q_vector, &q_vector->rx);
5968 
5969 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5970 
5971 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5972 	if (current_itr == lowest_latency &&
5973 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5974 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5975 		current_itr = low_latency;
5976 
5977 	switch (current_itr) {
5978 	/* counts and packets in update_itr are dependent on these numbers */
5979 	case lowest_latency:
5980 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5981 		break;
5982 	case low_latency:
5983 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5984 		break;
5985 	case bulk_latency:
5986 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5987 		break;
5988 	default:
5989 		break;
5990 	}
5991 
5992 set_itr_now:
5993 	if (new_itr != q_vector->itr_val) {
5994 		/* this attempts to bias the interrupt rate towards Bulk
5995 		 * by adding intermediate steps when interrupt rate is
5996 		 * increasing
5997 		 */
5998 		new_itr = new_itr > q_vector->itr_val ?
5999 			  max((new_itr * q_vector->itr_val) /
6000 			  (new_itr + (q_vector->itr_val >> 2)),
6001 			  new_itr) : new_itr;
6002 		/* Don't write the value here; it resets the adapter's
6003 		 * internal timer, and causes us to delay far longer than
6004 		 * we should between interrupts.  Instead, we write the ITR
6005 		 * value at the beginning of the next interrupt so the timing
6006 		 * ends up being correct.
6007 		 */
6008 		q_vector->itr_val = new_itr;
6009 		q_vector->set_itr = 1;
6010 	}
6011 }
6012 
6013 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
6014 			    struct igb_tx_buffer *first,
6015 			    u32 vlan_macip_lens, u32 type_tucmd,
6016 			    u32 mss_l4len_idx)
6017 {
6018 	struct e1000_adv_tx_context_desc *context_desc;
6019 	u16 i = tx_ring->next_to_use;
6020 	struct timespec64 ts;
6021 
6022 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
6023 
6024 	i++;
6025 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
6026 
6027 	/* set bits to identify this as an advanced context descriptor */
6028 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
6029 
6030 	/* For 82575, context index must be unique per ring. */
6031 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6032 		mss_l4len_idx |= tx_ring->reg_idx << 4;
6033 
6034 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
6035 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
6036 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
6037 
6038 	/* We assume there is always a valid tx time available. Invalid times
6039 	 * should have been handled by the upper layers.
6040 	 */
6041 	if (tx_ring->launchtime_enable) {
6042 		ts = ktime_to_timespec64(first->skb->tstamp);
6043 		skb_txtime_consumed(first->skb);
6044 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
6045 	} else {
6046 		context_desc->seqnum_seed = 0;
6047 	}
6048 }
6049 
6050 static int igb_tso(struct igb_ring *tx_ring,
6051 		   struct igb_tx_buffer *first,
6052 		   u8 *hdr_len)
6053 {
6054 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6055 	struct sk_buff *skb = first->skb;
6056 	union {
6057 		struct iphdr *v4;
6058 		struct ipv6hdr *v6;
6059 		unsigned char *hdr;
6060 	} ip;
6061 	union {
6062 		struct tcphdr *tcp;
6063 		struct udphdr *udp;
6064 		unsigned char *hdr;
6065 	} l4;
6066 	u32 paylen, l4_offset;
6067 	int err;
6068 
6069 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6070 		return 0;
6071 
6072 	if (!skb_is_gso(skb))
6073 		return 0;
6074 
6075 	err = skb_cow_head(skb, 0);
6076 	if (err < 0)
6077 		return err;
6078 
6079 	ip.hdr = skb_network_header(skb);
6080 	l4.hdr = skb_checksum_start(skb);
6081 
6082 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6083 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6084 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6085 
6086 	/* initialize outer IP header fields */
6087 	if (ip.v4->version == 4) {
6088 		unsigned char *csum_start = skb_checksum_start(skb);
6089 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6090 
6091 		/* IP header will have to cancel out any data that
6092 		 * is not a part of the outer IP header
6093 		 */
6094 		ip.v4->check = csum_fold(csum_partial(trans_start,
6095 						      csum_start - trans_start,
6096 						      0));
6097 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6098 
6099 		ip.v4->tot_len = 0;
6100 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6101 				   IGB_TX_FLAGS_CSUM |
6102 				   IGB_TX_FLAGS_IPV4;
6103 	} else {
6104 		ip.v6->payload_len = 0;
6105 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6106 				   IGB_TX_FLAGS_CSUM;
6107 	}
6108 
6109 	/* determine offset of inner transport header */
6110 	l4_offset = l4.hdr - skb->data;
6111 
6112 	/* remove payload length from inner checksum */
6113 	paylen = skb->len - l4_offset;
6114 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6115 		/* compute length of segmentation header */
6116 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6117 		csum_replace_by_diff(&l4.tcp->check,
6118 			(__force __wsum)htonl(paylen));
6119 	} else {
6120 		/* compute length of segmentation header */
6121 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6122 		csum_replace_by_diff(&l4.udp->check,
6123 				     (__force __wsum)htonl(paylen));
6124 	}
6125 
6126 	/* update gso size and bytecount with header size */
6127 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6128 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6129 
6130 	/* MSS L4LEN IDX */
6131 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6132 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6133 
6134 	/* VLAN MACLEN IPLEN */
6135 	vlan_macip_lens = l4.hdr - ip.hdr;
6136 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6137 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6138 
6139 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6140 			type_tucmd, mss_l4len_idx);
6141 
6142 	return 1;
6143 }
6144 
6145 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6146 {
6147 	struct sk_buff *skb = first->skb;
6148 	u32 vlan_macip_lens = 0;
6149 	u32 type_tucmd = 0;
6150 
6151 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6152 csum_failed:
6153 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6154 		    !tx_ring->launchtime_enable)
6155 			return;
6156 		goto no_csum;
6157 	}
6158 
6159 	switch (skb->csum_offset) {
6160 	case offsetof(struct tcphdr, check):
6161 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6162 		fallthrough;
6163 	case offsetof(struct udphdr, check):
6164 		break;
6165 	case offsetof(struct sctphdr, checksum):
6166 		/* validate that this is actually an SCTP request */
6167 		if (skb_csum_is_sctp(skb)) {
6168 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6169 			break;
6170 		}
6171 		fallthrough;
6172 	default:
6173 		skb_checksum_help(skb);
6174 		goto csum_failed;
6175 	}
6176 
6177 	/* update TX checksum flag */
6178 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6179 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6180 			  skb_network_offset(skb);
6181 no_csum:
6182 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6183 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6184 
6185 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6186 }
6187 
6188 #define IGB_SET_FLAG(_input, _flag, _result) \
6189 	((_flag <= _result) ? \
6190 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6191 	 ((u32)(_input & _flag) / (_flag / _result)))
6192 
6193 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6194 {
6195 	/* set type for advanced descriptor with frame checksum insertion */
6196 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6197 		       E1000_ADVTXD_DCMD_DEXT |
6198 		       E1000_ADVTXD_DCMD_IFCS;
6199 
6200 	/* set HW vlan bit if vlan is present */
6201 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6202 				 (E1000_ADVTXD_DCMD_VLE));
6203 
6204 	/* set segmentation bits for TSO */
6205 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6206 				 (E1000_ADVTXD_DCMD_TSE));
6207 
6208 	/* set timestamp bit if present */
6209 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6210 				 (E1000_ADVTXD_MAC_TSTAMP));
6211 
6212 	/* insert frame checksum */
6213 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6214 
6215 	return cmd_type;
6216 }
6217 
6218 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6219 				 union e1000_adv_tx_desc *tx_desc,
6220 				 u32 tx_flags, unsigned int paylen)
6221 {
6222 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6223 
6224 	/* 82575 requires a unique index per ring */
6225 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6226 		olinfo_status |= tx_ring->reg_idx << 4;
6227 
6228 	/* insert L4 checksum */
6229 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6230 				      IGB_TX_FLAGS_CSUM,
6231 				      (E1000_TXD_POPTS_TXSM << 8));
6232 
6233 	/* insert IPv4 checksum */
6234 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6235 				      IGB_TX_FLAGS_IPV4,
6236 				      (E1000_TXD_POPTS_IXSM << 8));
6237 
6238 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6239 }
6240 
6241 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6242 {
6243 	struct net_device *netdev = tx_ring->netdev;
6244 
6245 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6246 
6247 	/* Herbert's original patch had:
6248 	 *  smp_mb__after_netif_stop_queue();
6249 	 * but since that doesn't exist yet, just open code it.
6250 	 */
6251 	smp_mb();
6252 
6253 	/* We need to check again in a case another CPU has just
6254 	 * made room available.
6255 	 */
6256 	if (igb_desc_unused(tx_ring) < size)
6257 		return -EBUSY;
6258 
6259 	/* A reprieve! */
6260 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6261 
6262 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6263 	tx_ring->tx_stats.restart_queue2++;
6264 	u64_stats_update_end(&tx_ring->tx_syncp2);
6265 
6266 	return 0;
6267 }
6268 
6269 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6270 {
6271 	if (igb_desc_unused(tx_ring) >= size)
6272 		return 0;
6273 	return __igb_maybe_stop_tx(tx_ring, size);
6274 }
6275 
6276 static int igb_tx_map(struct igb_ring *tx_ring,
6277 		      struct igb_tx_buffer *first,
6278 		      const u8 hdr_len)
6279 {
6280 	struct sk_buff *skb = first->skb;
6281 	struct igb_tx_buffer *tx_buffer;
6282 	union e1000_adv_tx_desc *tx_desc;
6283 	skb_frag_t *frag;
6284 	dma_addr_t dma;
6285 	unsigned int data_len, size;
6286 	u32 tx_flags = first->tx_flags;
6287 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6288 	u16 i = tx_ring->next_to_use;
6289 
6290 	tx_desc = IGB_TX_DESC(tx_ring, i);
6291 
6292 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6293 
6294 	size = skb_headlen(skb);
6295 	data_len = skb->data_len;
6296 
6297 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6298 
6299 	tx_buffer = first;
6300 
6301 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6302 		if (dma_mapping_error(tx_ring->dev, dma))
6303 			goto dma_error;
6304 
6305 		/* record length, and DMA address */
6306 		dma_unmap_len_set(tx_buffer, len, size);
6307 		dma_unmap_addr_set(tx_buffer, dma, dma);
6308 
6309 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6310 
6311 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6312 			tx_desc->read.cmd_type_len =
6313 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6314 
6315 			i++;
6316 			tx_desc++;
6317 			if (i == tx_ring->count) {
6318 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6319 				i = 0;
6320 			}
6321 			tx_desc->read.olinfo_status = 0;
6322 
6323 			dma += IGB_MAX_DATA_PER_TXD;
6324 			size -= IGB_MAX_DATA_PER_TXD;
6325 
6326 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6327 		}
6328 
6329 		if (likely(!data_len))
6330 			break;
6331 
6332 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6333 
6334 		i++;
6335 		tx_desc++;
6336 		if (i == tx_ring->count) {
6337 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6338 			i = 0;
6339 		}
6340 		tx_desc->read.olinfo_status = 0;
6341 
6342 		size = skb_frag_size(frag);
6343 		data_len -= size;
6344 
6345 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6346 				       size, DMA_TO_DEVICE);
6347 
6348 		tx_buffer = &tx_ring->tx_buffer_info[i];
6349 	}
6350 
6351 	/* write last descriptor with RS and EOP bits */
6352 	cmd_type |= size | IGB_TXD_DCMD;
6353 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6354 
6355 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6356 
6357 	/* set the timestamp */
6358 	first->time_stamp = jiffies;
6359 
6360 	skb_tx_timestamp(skb);
6361 
6362 	/* Force memory writes to complete before letting h/w know there
6363 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6364 	 * memory model archs, such as IA-64).
6365 	 *
6366 	 * We also need this memory barrier to make certain all of the
6367 	 * status bits have been updated before next_to_watch is written.
6368 	 */
6369 	dma_wmb();
6370 
6371 	/* set next_to_watch value indicating a packet is present */
6372 	first->next_to_watch = tx_desc;
6373 
6374 	i++;
6375 	if (i == tx_ring->count)
6376 		i = 0;
6377 
6378 	tx_ring->next_to_use = i;
6379 
6380 	/* Make sure there is space in the ring for the next send. */
6381 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6382 
6383 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6384 		writel(i, tx_ring->tail);
6385 	}
6386 	return 0;
6387 
6388 dma_error:
6389 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6390 	tx_buffer = &tx_ring->tx_buffer_info[i];
6391 
6392 	/* clear dma mappings for failed tx_buffer_info map */
6393 	while (tx_buffer != first) {
6394 		if (dma_unmap_len(tx_buffer, len))
6395 			dma_unmap_page(tx_ring->dev,
6396 				       dma_unmap_addr(tx_buffer, dma),
6397 				       dma_unmap_len(tx_buffer, len),
6398 				       DMA_TO_DEVICE);
6399 		dma_unmap_len_set(tx_buffer, len, 0);
6400 
6401 		if (i-- == 0)
6402 			i += tx_ring->count;
6403 		tx_buffer = &tx_ring->tx_buffer_info[i];
6404 	}
6405 
6406 	if (dma_unmap_len(tx_buffer, len))
6407 		dma_unmap_single(tx_ring->dev,
6408 				 dma_unmap_addr(tx_buffer, dma),
6409 				 dma_unmap_len(tx_buffer, len),
6410 				 DMA_TO_DEVICE);
6411 	dma_unmap_len_set(tx_buffer, len, 0);
6412 
6413 	dev_kfree_skb_any(tx_buffer->skb);
6414 	tx_buffer->skb = NULL;
6415 
6416 	tx_ring->next_to_use = i;
6417 
6418 	return -1;
6419 }
6420 
6421 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6422 		      struct igb_ring *tx_ring,
6423 		      struct xdp_frame *xdpf)
6424 {
6425 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6426 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6427 	u16 count, i, index = tx_ring->next_to_use;
6428 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6429 	struct igb_tx_buffer *tx_buffer = tx_head;
6430 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6431 	u32 len = xdpf->len, cmd_type, olinfo_status;
6432 	void *data = xdpf->data;
6433 
6434 	count = TXD_USE_COUNT(len);
6435 	for (i = 0; i < nr_frags; i++)
6436 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6437 
6438 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6439 		return IGB_XDP_CONSUMED;
6440 
6441 	i = 0;
6442 	/* record the location of the first descriptor for this packet */
6443 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6444 	tx_head->type = IGB_TYPE_XDP;
6445 	tx_head->gso_segs = 1;
6446 	tx_head->xdpf = xdpf;
6447 
6448 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6449 	/* 82575 requires a unique index per ring */
6450 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6451 		olinfo_status |= tx_ring->reg_idx << 4;
6452 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6453 
6454 	for (;;) {
6455 		dma_addr_t dma;
6456 
6457 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6458 		if (dma_mapping_error(tx_ring->dev, dma))
6459 			goto unmap;
6460 
6461 		/* record length, and DMA address */
6462 		dma_unmap_len_set(tx_buffer, len, len);
6463 		dma_unmap_addr_set(tx_buffer, dma, dma);
6464 
6465 		/* put descriptor type bits */
6466 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6467 			   E1000_ADVTXD_DCMD_IFCS | len;
6468 
6469 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6470 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6471 
6472 		tx_buffer->protocol = 0;
6473 
6474 		if (++index == tx_ring->count)
6475 			index = 0;
6476 
6477 		if (i == nr_frags)
6478 			break;
6479 
6480 		tx_buffer = &tx_ring->tx_buffer_info[index];
6481 		tx_desc = IGB_TX_DESC(tx_ring, index);
6482 		tx_desc->read.olinfo_status = 0;
6483 
6484 		data = skb_frag_address(&sinfo->frags[i]);
6485 		len = skb_frag_size(&sinfo->frags[i]);
6486 		i++;
6487 	}
6488 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6489 
6490 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6491 	/* set the timestamp */
6492 	tx_head->time_stamp = jiffies;
6493 
6494 	/* Avoid any potential race with xdp_xmit and cleanup */
6495 	smp_wmb();
6496 
6497 	/* set next_to_watch value indicating a packet is present */
6498 	tx_head->next_to_watch = tx_desc;
6499 	tx_ring->next_to_use = index;
6500 
6501 	/* Make sure there is space in the ring for the next send. */
6502 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6503 
6504 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6505 		writel(index, tx_ring->tail);
6506 
6507 	return IGB_XDP_TX;
6508 
6509 unmap:
6510 	for (;;) {
6511 		tx_buffer = &tx_ring->tx_buffer_info[index];
6512 		if (dma_unmap_len(tx_buffer, len))
6513 			dma_unmap_page(tx_ring->dev,
6514 				       dma_unmap_addr(tx_buffer, dma),
6515 				       dma_unmap_len(tx_buffer, len),
6516 				       DMA_TO_DEVICE);
6517 		dma_unmap_len_set(tx_buffer, len, 0);
6518 		if (tx_buffer == tx_head)
6519 			break;
6520 
6521 		if (!index)
6522 			index += tx_ring->count;
6523 		index--;
6524 	}
6525 
6526 	return IGB_XDP_CONSUMED;
6527 }
6528 
6529 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6530 				struct igb_ring *tx_ring)
6531 {
6532 	struct igb_tx_buffer *first;
6533 	int tso;
6534 	u32 tx_flags = 0;
6535 	unsigned short f;
6536 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6537 	__be16 protocol = vlan_get_protocol(skb);
6538 	u8 hdr_len = 0;
6539 
6540 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6541 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6542 	 *       + 2 desc gap to keep tail from touching head,
6543 	 *       + 1 desc for context descriptor,
6544 	 * otherwise try next time
6545 	 */
6546 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6547 		count += TXD_USE_COUNT(skb_frag_size(
6548 						&skb_shinfo(skb)->frags[f]));
6549 
6550 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6551 		/* this is a hard error */
6552 		return NETDEV_TX_BUSY;
6553 	}
6554 
6555 	if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6556 		return NETDEV_TX_BUSY;
6557 
6558 	/* record the location of the first descriptor for this packet */
6559 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6560 	first->type = IGB_TYPE_SKB;
6561 	first->skb = skb;
6562 	first->bytecount = skb->len;
6563 	first->gso_segs = 1;
6564 
6565 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6566 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6567 
6568 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6569 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6570 					   &adapter->state)) {
6571 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6572 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6573 
6574 			adapter->ptp_tx_skb = skb_get(skb);
6575 			adapter->ptp_tx_start = jiffies;
6576 			if (adapter->hw.mac.type == e1000_82576)
6577 				schedule_work(&adapter->ptp_tx_work);
6578 		} else {
6579 			adapter->tx_hwtstamp_skipped++;
6580 		}
6581 	}
6582 
6583 	if (skb_vlan_tag_present(skb)) {
6584 		tx_flags |= IGB_TX_FLAGS_VLAN;
6585 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6586 	}
6587 
6588 	/* record initial flags and protocol */
6589 	first->tx_flags = tx_flags;
6590 	first->protocol = protocol;
6591 
6592 	tso = igb_tso(tx_ring, first, &hdr_len);
6593 	if (tso < 0)
6594 		goto out_drop;
6595 	else if (!tso)
6596 		igb_tx_csum(tx_ring, first);
6597 
6598 	if (igb_tx_map(tx_ring, first, hdr_len))
6599 		goto cleanup_tx_tstamp;
6600 
6601 	return NETDEV_TX_OK;
6602 
6603 out_drop:
6604 	dev_kfree_skb_any(first->skb);
6605 	first->skb = NULL;
6606 cleanup_tx_tstamp:
6607 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6608 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6609 
6610 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6611 		adapter->ptp_tx_skb = NULL;
6612 		if (adapter->hw.mac.type == e1000_82576)
6613 			cancel_work_sync(&adapter->ptp_tx_work);
6614 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6615 	}
6616 
6617 	return NETDEV_TX_OK;
6618 }
6619 
6620 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6621 						    struct sk_buff *skb)
6622 {
6623 	unsigned int r_idx = skb->queue_mapping;
6624 
6625 	if (r_idx >= adapter->num_tx_queues)
6626 		r_idx = r_idx % adapter->num_tx_queues;
6627 
6628 	return adapter->tx_ring[r_idx];
6629 }
6630 
6631 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6632 				  struct net_device *netdev)
6633 {
6634 	struct igb_adapter *adapter = netdev_priv(netdev);
6635 
6636 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6637 	 * in order to meet this minimum size requirement.
6638 	 */
6639 	if (skb_put_padto(skb, 17))
6640 		return NETDEV_TX_OK;
6641 
6642 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6643 }
6644 
6645 /**
6646  *  igb_tx_timeout - Respond to a Tx Hang
6647  *  @netdev: network interface device structure
6648  *  @txqueue: number of the Tx queue that hung (unused)
6649  **/
6650 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6651 {
6652 	struct igb_adapter *adapter = netdev_priv(netdev);
6653 	struct e1000_hw *hw = &adapter->hw;
6654 
6655 	/* Do the reset outside of interrupt context */
6656 	adapter->tx_timeout_count++;
6657 
6658 	if (hw->mac.type >= e1000_82580)
6659 		hw->dev_spec._82575.global_device_reset = true;
6660 
6661 	schedule_work(&adapter->reset_task);
6662 	wr32(E1000_EICS,
6663 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6664 }
6665 
6666 static void igb_reset_task(struct work_struct *work)
6667 {
6668 	struct igb_adapter *adapter;
6669 	adapter = container_of(work, struct igb_adapter, reset_task);
6670 
6671 	rtnl_lock();
6672 	/* If we're already down or resetting, just bail */
6673 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6674 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6675 		rtnl_unlock();
6676 		return;
6677 	}
6678 
6679 	igb_dump(adapter);
6680 	netdev_err(adapter->netdev, "Reset adapter\n");
6681 	igb_reinit_locked(adapter);
6682 	rtnl_unlock();
6683 }
6684 
6685 /**
6686  *  igb_get_stats64 - Get System Network Statistics
6687  *  @netdev: network interface device structure
6688  *  @stats: rtnl_link_stats64 pointer
6689  **/
6690 static void igb_get_stats64(struct net_device *netdev,
6691 			    struct rtnl_link_stats64 *stats)
6692 {
6693 	struct igb_adapter *adapter = netdev_priv(netdev);
6694 
6695 	spin_lock(&adapter->stats64_lock);
6696 	igb_update_stats(adapter);
6697 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6698 	spin_unlock(&adapter->stats64_lock);
6699 }
6700 
6701 /**
6702  *  igb_change_mtu - Change the Maximum Transfer Unit
6703  *  @netdev: network interface device structure
6704  *  @new_mtu: new value for maximum frame size
6705  *
6706  *  Returns 0 on success, negative on failure
6707  **/
6708 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6709 {
6710 	struct igb_adapter *adapter = netdev_priv(netdev);
6711 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6712 
6713 	if (igb_xdp_is_enabled(adapter)) {
6714 		int i;
6715 
6716 		for (i = 0; i < adapter->num_rx_queues; i++) {
6717 			struct igb_ring *ring = adapter->rx_ring[i];
6718 
6719 			if (max_frame > igb_rx_bufsz(ring)) {
6720 				netdev_warn(adapter->netdev,
6721 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6722 					    max_frame);
6723 				return -EINVAL;
6724 			}
6725 		}
6726 	}
6727 
6728 	/* adjust max frame to be at least the size of a standard frame */
6729 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6730 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6731 
6732 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6733 		usleep_range(1000, 2000);
6734 
6735 	/* igb_down has a dependency on max_frame_size */
6736 	adapter->max_frame_size = max_frame;
6737 
6738 	if (netif_running(netdev))
6739 		igb_down(adapter);
6740 
6741 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6742 		   netdev->mtu, new_mtu);
6743 	WRITE_ONCE(netdev->mtu, new_mtu);
6744 
6745 	if (netif_running(netdev))
6746 		igb_up(adapter);
6747 	else
6748 		igb_reset(adapter);
6749 
6750 	clear_bit(__IGB_RESETTING, &adapter->state);
6751 
6752 	return 0;
6753 }
6754 
6755 /**
6756  *  igb_update_stats - Update the board statistics counters
6757  *  @adapter: board private structure
6758  **/
6759 void igb_update_stats(struct igb_adapter *adapter)
6760 {
6761 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6762 	struct e1000_hw *hw = &adapter->hw;
6763 	struct pci_dev *pdev = adapter->pdev;
6764 	u32 reg, mpc;
6765 	int i;
6766 	u64 bytes, packets;
6767 	unsigned int start;
6768 	u64 _bytes, _packets;
6769 
6770 	/* Prevent stats update while adapter is being reset, or if the pci
6771 	 * connection is down.
6772 	 */
6773 	if (adapter->link_speed == 0)
6774 		return;
6775 	if (pci_channel_offline(pdev))
6776 		return;
6777 
6778 	bytes = 0;
6779 	packets = 0;
6780 
6781 	rcu_read_lock();
6782 	for (i = 0; i < adapter->num_rx_queues; i++) {
6783 		struct igb_ring *ring = adapter->rx_ring[i];
6784 		u32 rqdpc = rd32(E1000_RQDPC(i));
6785 		if (hw->mac.type >= e1000_i210)
6786 			wr32(E1000_RQDPC(i), 0);
6787 
6788 		if (rqdpc) {
6789 			ring->rx_stats.drops += rqdpc;
6790 			net_stats->rx_fifo_errors += rqdpc;
6791 		}
6792 
6793 		do {
6794 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6795 			_bytes = ring->rx_stats.bytes;
6796 			_packets = ring->rx_stats.packets;
6797 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6798 		bytes += _bytes;
6799 		packets += _packets;
6800 	}
6801 
6802 	net_stats->rx_bytes = bytes;
6803 	net_stats->rx_packets = packets;
6804 
6805 	bytes = 0;
6806 	packets = 0;
6807 	for (i = 0; i < adapter->num_tx_queues; i++) {
6808 		struct igb_ring *ring = adapter->tx_ring[i];
6809 		do {
6810 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6811 			_bytes = ring->tx_stats.bytes;
6812 			_packets = ring->tx_stats.packets;
6813 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6814 		bytes += _bytes;
6815 		packets += _packets;
6816 	}
6817 	net_stats->tx_bytes = bytes;
6818 	net_stats->tx_packets = packets;
6819 	rcu_read_unlock();
6820 
6821 	/* read stats registers */
6822 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6823 	adapter->stats.gprc += rd32(E1000_GPRC);
6824 	adapter->stats.gorc += rd32(E1000_GORCL);
6825 	rd32(E1000_GORCH); /* clear GORCL */
6826 	adapter->stats.bprc += rd32(E1000_BPRC);
6827 	adapter->stats.mprc += rd32(E1000_MPRC);
6828 	adapter->stats.roc += rd32(E1000_ROC);
6829 
6830 	adapter->stats.prc64 += rd32(E1000_PRC64);
6831 	adapter->stats.prc127 += rd32(E1000_PRC127);
6832 	adapter->stats.prc255 += rd32(E1000_PRC255);
6833 	adapter->stats.prc511 += rd32(E1000_PRC511);
6834 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6835 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6836 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6837 	adapter->stats.sec += rd32(E1000_SEC);
6838 
6839 	mpc = rd32(E1000_MPC);
6840 	adapter->stats.mpc += mpc;
6841 	net_stats->rx_fifo_errors += mpc;
6842 	adapter->stats.scc += rd32(E1000_SCC);
6843 	adapter->stats.ecol += rd32(E1000_ECOL);
6844 	adapter->stats.mcc += rd32(E1000_MCC);
6845 	adapter->stats.latecol += rd32(E1000_LATECOL);
6846 	adapter->stats.dc += rd32(E1000_DC);
6847 	adapter->stats.rlec += rd32(E1000_RLEC);
6848 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6849 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6850 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6851 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6852 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6853 	adapter->stats.gptc += rd32(E1000_GPTC);
6854 	adapter->stats.gotc += rd32(E1000_GOTCL);
6855 	rd32(E1000_GOTCH); /* clear GOTCL */
6856 	adapter->stats.rnbc += rd32(E1000_RNBC);
6857 	adapter->stats.ruc += rd32(E1000_RUC);
6858 	adapter->stats.rfc += rd32(E1000_RFC);
6859 	adapter->stats.rjc += rd32(E1000_RJC);
6860 	adapter->stats.tor += rd32(E1000_TORH);
6861 	adapter->stats.tot += rd32(E1000_TOTH);
6862 	adapter->stats.tpr += rd32(E1000_TPR);
6863 
6864 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6865 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6866 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6867 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6868 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6869 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6870 
6871 	adapter->stats.mptc += rd32(E1000_MPTC);
6872 	adapter->stats.bptc += rd32(E1000_BPTC);
6873 
6874 	adapter->stats.tpt += rd32(E1000_TPT);
6875 	adapter->stats.colc += rd32(E1000_COLC);
6876 
6877 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6878 	/* read internal phy specific stats */
6879 	reg = rd32(E1000_CTRL_EXT);
6880 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6881 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6882 
6883 		/* this stat has invalid values on i210/i211 */
6884 		if ((hw->mac.type != e1000_i210) &&
6885 		    (hw->mac.type != e1000_i211))
6886 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6887 	}
6888 
6889 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6890 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6891 
6892 	adapter->stats.iac += rd32(E1000_IAC);
6893 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6894 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6895 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6896 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6897 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6898 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6899 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6900 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6901 
6902 	/* Fill out the OS statistics structure */
6903 	net_stats->multicast = adapter->stats.mprc;
6904 	net_stats->collisions = adapter->stats.colc;
6905 
6906 	/* Rx Errors */
6907 
6908 	/* RLEC on some newer hardware can be incorrect so build
6909 	 * our own version based on RUC and ROC
6910 	 */
6911 	net_stats->rx_errors = adapter->stats.rxerrc +
6912 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6913 		adapter->stats.ruc + adapter->stats.roc +
6914 		adapter->stats.cexterr;
6915 	net_stats->rx_length_errors = adapter->stats.ruc +
6916 				      adapter->stats.roc;
6917 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6918 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6919 	net_stats->rx_missed_errors = adapter->stats.mpc;
6920 
6921 	/* Tx Errors */
6922 	net_stats->tx_errors = adapter->stats.ecol +
6923 			       adapter->stats.latecol;
6924 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6925 	net_stats->tx_window_errors = adapter->stats.latecol;
6926 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6927 
6928 	/* Tx Dropped needs to be maintained elsewhere */
6929 
6930 	/* Management Stats */
6931 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6932 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6933 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6934 
6935 	/* OS2BMC Stats */
6936 	reg = rd32(E1000_MANC);
6937 	if (reg & E1000_MANC_EN_BMC2OS) {
6938 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6939 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6940 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6941 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6942 	}
6943 }
6944 
6945 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6946 {
6947 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6948 	struct e1000_hw *hw = &adapter->hw;
6949 	struct timespec64 ts;
6950 	u32 tsauxc;
6951 
6952 	if (pin < 0 || pin >= IGB_N_SDP)
6953 		return;
6954 
6955 	spin_lock(&adapter->tmreg_lock);
6956 
6957 	if (hw->mac.type == e1000_82580 ||
6958 	    hw->mac.type == e1000_i354 ||
6959 	    hw->mac.type == e1000_i350) {
6960 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6961 		u32 systiml, systimh, level_mask, level, rem;
6962 		u64 systim, now;
6963 
6964 		/* read systim registers in sequence */
6965 		rd32(E1000_SYSTIMR);
6966 		systiml = rd32(E1000_SYSTIML);
6967 		systimh = rd32(E1000_SYSTIMH);
6968 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6969 		now = timecounter_cyc2time(&adapter->tc, systim);
6970 
6971 		if (pin < 2) {
6972 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6973 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6974 		} else {
6975 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6976 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6977 		}
6978 
6979 		div_u64_rem(now, ns, &rem);
6980 		systim = systim + (ns - rem);
6981 
6982 		/* synchronize pin level with rising/falling edges */
6983 		div_u64_rem(now, ns << 1, &rem);
6984 		if (rem < ns) {
6985 			/* first half of period */
6986 			if (level == 0) {
6987 				/* output is already low, skip this period */
6988 				systim += ns;
6989 				pr_notice("igb: periodic output on %s missed falling edge\n",
6990 					  adapter->sdp_config[pin].name);
6991 			}
6992 		} else {
6993 			/* second half of period */
6994 			if (level == 1) {
6995 				/* output is already high, skip this period */
6996 				systim += ns;
6997 				pr_notice("igb: periodic output on %s missed rising edge\n",
6998 					  adapter->sdp_config[pin].name);
6999 			}
7000 		}
7001 
7002 		/* for this chip family tv_sec is the upper part of the binary value,
7003 		 * so not seconds
7004 		 */
7005 		ts.tv_nsec = (u32)systim;
7006 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
7007 	} else {
7008 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
7009 				    adapter->perout[tsintr_tt].period);
7010 	}
7011 
7012 	/* u32 conversion of tv_sec is safe until y2106 */
7013 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
7014 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
7015 	tsauxc = rd32(E1000_TSAUXC);
7016 	tsauxc |= TSAUXC_EN_TT0;
7017 	wr32(E1000_TSAUXC, tsauxc);
7018 	adapter->perout[tsintr_tt].start = ts;
7019 
7020 	spin_unlock(&adapter->tmreg_lock);
7021 }
7022 
7023 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
7024 {
7025 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
7026 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
7027 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
7028 	struct e1000_hw *hw = &adapter->hw;
7029 	struct ptp_clock_event event;
7030 	struct timespec64 ts;
7031 	unsigned long flags;
7032 
7033 	if (pin < 0 || pin >= IGB_N_SDP)
7034 		return;
7035 
7036 	if (hw->mac.type == e1000_82580 ||
7037 	    hw->mac.type == e1000_i354 ||
7038 	    hw->mac.type == e1000_i350) {
7039 		u64 ns = rd32(auxstmpl);
7040 
7041 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
7042 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
7043 		ns = timecounter_cyc2time(&adapter->tc, ns);
7044 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
7045 		ts = ns_to_timespec64(ns);
7046 	} else {
7047 		ts.tv_nsec = rd32(auxstmpl);
7048 		ts.tv_sec  = rd32(auxstmph);
7049 	}
7050 
7051 	event.type = PTP_CLOCK_EXTTS;
7052 	event.index = tsintr_tt;
7053 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7054 	ptp_clock_event(adapter->ptp_clock, &event);
7055 }
7056 
7057 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7058 {
7059 	const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7060 			  TSINTR_TT0 | TSINTR_TT1 |
7061 			  TSINTR_AUTT0 | TSINTR_AUTT1);
7062 	struct e1000_hw *hw = &adapter->hw;
7063 	u32 tsicr = rd32(E1000_TSICR);
7064 	struct ptp_clock_event event;
7065 
7066 	if (hw->mac.type == e1000_82580) {
7067 		/* 82580 has a hardware bug that requires an explicit
7068 		 * write to clear the TimeSync interrupt cause.
7069 		 */
7070 		wr32(E1000_TSICR, tsicr & mask);
7071 	}
7072 
7073 	if (tsicr & TSINTR_SYS_WRAP) {
7074 		event.type = PTP_CLOCK_PPS;
7075 		if (adapter->ptp_caps.pps)
7076 			ptp_clock_event(adapter->ptp_clock, &event);
7077 	}
7078 
7079 	if (tsicr & E1000_TSICR_TXTS) {
7080 		/* retrieve hardware timestamp */
7081 		schedule_work(&adapter->ptp_tx_work);
7082 	}
7083 
7084 	if (tsicr & TSINTR_TT0)
7085 		igb_perout(adapter, 0);
7086 
7087 	if (tsicr & TSINTR_TT1)
7088 		igb_perout(adapter, 1);
7089 
7090 	if (tsicr & TSINTR_AUTT0)
7091 		igb_extts(adapter, 0);
7092 
7093 	if (tsicr & TSINTR_AUTT1)
7094 		igb_extts(adapter, 1);
7095 }
7096 
7097 static irqreturn_t igb_msix_other(int irq, void *data)
7098 {
7099 	struct igb_adapter *adapter = data;
7100 	struct e1000_hw *hw = &adapter->hw;
7101 	u32 icr = rd32(E1000_ICR);
7102 	/* reading ICR causes bit 31 of EICR to be cleared */
7103 
7104 	if (icr & E1000_ICR_DRSTA)
7105 		schedule_work(&adapter->reset_task);
7106 
7107 	if (icr & E1000_ICR_DOUTSYNC) {
7108 		/* HW is reporting DMA is out of sync */
7109 		adapter->stats.doosync++;
7110 		/* The DMA Out of Sync is also indication of a spoof event
7111 		 * in IOV mode. Check the Wrong VM Behavior register to
7112 		 * see if it is really a spoof event.
7113 		 */
7114 		igb_check_wvbr(adapter);
7115 	}
7116 
7117 	/* Check for a mailbox event */
7118 	if (icr & E1000_ICR_VMMB)
7119 		igb_msg_task(adapter);
7120 
7121 	if (icr & E1000_ICR_LSC) {
7122 		hw->mac.get_link_status = 1;
7123 		/* guard against interrupt when we're going down */
7124 		if (!test_bit(__IGB_DOWN, &adapter->state))
7125 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7126 	}
7127 
7128 	if (icr & E1000_ICR_TS)
7129 		igb_tsync_interrupt(adapter);
7130 
7131 	wr32(E1000_EIMS, adapter->eims_other);
7132 
7133 	return IRQ_HANDLED;
7134 }
7135 
7136 static void igb_write_itr(struct igb_q_vector *q_vector)
7137 {
7138 	struct igb_adapter *adapter = q_vector->adapter;
7139 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7140 
7141 	if (!q_vector->set_itr)
7142 		return;
7143 
7144 	if (!itr_val)
7145 		itr_val = 0x4;
7146 
7147 	if (adapter->hw.mac.type == e1000_82575)
7148 		itr_val |= itr_val << 16;
7149 	else
7150 		itr_val |= E1000_EITR_CNT_IGNR;
7151 
7152 	writel(itr_val, q_vector->itr_register);
7153 	q_vector->set_itr = 0;
7154 }
7155 
7156 static irqreturn_t igb_msix_ring(int irq, void *data)
7157 {
7158 	struct igb_q_vector *q_vector = data;
7159 
7160 	/* Write the ITR value calculated from the previous interrupt. */
7161 	igb_write_itr(q_vector);
7162 
7163 	napi_schedule(&q_vector->napi);
7164 
7165 	return IRQ_HANDLED;
7166 }
7167 
7168 #ifdef CONFIG_IGB_DCA
7169 static void igb_update_tx_dca(struct igb_adapter *adapter,
7170 			      struct igb_ring *tx_ring,
7171 			      int cpu)
7172 {
7173 	struct e1000_hw *hw = &adapter->hw;
7174 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7175 
7176 	if (hw->mac.type != e1000_82575)
7177 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7178 
7179 	/* We can enable relaxed ordering for reads, but not writes when
7180 	 * DCA is enabled.  This is due to a known issue in some chipsets
7181 	 * which will cause the DCA tag to be cleared.
7182 	 */
7183 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7184 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7185 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7186 
7187 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7188 }
7189 
7190 static void igb_update_rx_dca(struct igb_adapter *adapter,
7191 			      struct igb_ring *rx_ring,
7192 			      int cpu)
7193 {
7194 	struct e1000_hw *hw = &adapter->hw;
7195 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7196 
7197 	if (hw->mac.type != e1000_82575)
7198 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7199 
7200 	/* We can enable relaxed ordering for reads, but not writes when
7201 	 * DCA is enabled.  This is due to a known issue in some chipsets
7202 	 * which will cause the DCA tag to be cleared.
7203 	 */
7204 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7205 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7206 
7207 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7208 }
7209 
7210 static void igb_update_dca(struct igb_q_vector *q_vector)
7211 {
7212 	struct igb_adapter *adapter = q_vector->adapter;
7213 	int cpu = get_cpu();
7214 
7215 	if (q_vector->cpu == cpu)
7216 		goto out_no_update;
7217 
7218 	if (q_vector->tx.ring)
7219 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7220 
7221 	if (q_vector->rx.ring)
7222 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7223 
7224 	q_vector->cpu = cpu;
7225 out_no_update:
7226 	put_cpu();
7227 }
7228 
7229 static void igb_setup_dca(struct igb_adapter *adapter)
7230 {
7231 	struct e1000_hw *hw = &adapter->hw;
7232 	int i;
7233 
7234 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7235 		return;
7236 
7237 	/* Always use CB2 mode, difference is masked in the CB driver. */
7238 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7239 
7240 	for (i = 0; i < adapter->num_q_vectors; i++) {
7241 		adapter->q_vector[i]->cpu = -1;
7242 		igb_update_dca(adapter->q_vector[i]);
7243 	}
7244 }
7245 
7246 static int __igb_notify_dca(struct device *dev, void *data)
7247 {
7248 	struct net_device *netdev = dev_get_drvdata(dev);
7249 	struct igb_adapter *adapter = netdev_priv(netdev);
7250 	struct pci_dev *pdev = adapter->pdev;
7251 	struct e1000_hw *hw = &adapter->hw;
7252 	unsigned long event = *(unsigned long *)data;
7253 
7254 	switch (event) {
7255 	case DCA_PROVIDER_ADD:
7256 		/* if already enabled, don't do it again */
7257 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7258 			break;
7259 		if (dca_add_requester(dev) == 0) {
7260 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7261 			dev_info(&pdev->dev, "DCA enabled\n");
7262 			igb_setup_dca(adapter);
7263 			break;
7264 		}
7265 		fallthrough; /* since DCA is disabled. */
7266 	case DCA_PROVIDER_REMOVE:
7267 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7268 			/* without this a class_device is left
7269 			 * hanging around in the sysfs model
7270 			 */
7271 			dca_remove_requester(dev);
7272 			dev_info(&pdev->dev, "DCA disabled\n");
7273 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7274 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7275 		}
7276 		break;
7277 	}
7278 
7279 	return 0;
7280 }
7281 
7282 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7283 			  void *p)
7284 {
7285 	int ret_val;
7286 
7287 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7288 					 __igb_notify_dca);
7289 
7290 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7291 }
7292 #endif /* CONFIG_IGB_DCA */
7293 
7294 #ifdef CONFIG_PCI_IOV
7295 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7296 {
7297 	unsigned char mac_addr[ETH_ALEN];
7298 
7299 	eth_zero_addr(mac_addr);
7300 	igb_set_vf_mac(adapter, vf, mac_addr);
7301 
7302 	/* By default spoof check is enabled for all VFs */
7303 	adapter->vf_data[vf].spoofchk_enabled = true;
7304 
7305 	/* By default VFs are not trusted */
7306 	adapter->vf_data[vf].trusted = false;
7307 
7308 	return 0;
7309 }
7310 
7311 #endif
7312 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7313 {
7314 	struct e1000_hw *hw = &adapter->hw;
7315 	u32 ping;
7316 	int i;
7317 
7318 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7319 		ping = E1000_PF_CONTROL_MSG;
7320 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7321 			ping |= E1000_VT_MSGTYPE_CTS;
7322 		igb_write_mbx(hw, &ping, 1, i);
7323 	}
7324 }
7325 
7326 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7327 {
7328 	struct e1000_hw *hw = &adapter->hw;
7329 	u32 vmolr = rd32(E1000_VMOLR(vf));
7330 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7331 
7332 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7333 			    IGB_VF_FLAG_MULTI_PROMISC);
7334 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7335 
7336 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7337 		vmolr |= E1000_VMOLR_MPME;
7338 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7339 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7340 	} else {
7341 		/* if we have hashes and we are clearing a multicast promisc
7342 		 * flag we need to write the hashes to the MTA as this step
7343 		 * was previously skipped
7344 		 */
7345 		if (vf_data->num_vf_mc_hashes > 30) {
7346 			vmolr |= E1000_VMOLR_MPME;
7347 		} else if (vf_data->num_vf_mc_hashes) {
7348 			int j;
7349 
7350 			vmolr |= E1000_VMOLR_ROMPE;
7351 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7352 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7353 		}
7354 	}
7355 
7356 	wr32(E1000_VMOLR(vf), vmolr);
7357 
7358 	/* there are flags left unprocessed, likely not supported */
7359 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7360 		return -EINVAL;
7361 
7362 	return 0;
7363 }
7364 
7365 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7366 				  u32 *msgbuf, u32 vf)
7367 {
7368 	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7369 	u16 *hash_list = (u16 *)&msgbuf[1];
7370 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7371 	int i;
7372 
7373 	/* salt away the number of multicast addresses assigned
7374 	 * to this VF for later use to restore when the PF multi cast
7375 	 * list changes
7376 	 */
7377 	vf_data->num_vf_mc_hashes = n;
7378 
7379 	/* only up to 30 hash values supported */
7380 	if (n > 30)
7381 		n = 30;
7382 
7383 	/* store the hashes for later use */
7384 	for (i = 0; i < n; i++)
7385 		vf_data->vf_mc_hashes[i] = hash_list[i];
7386 
7387 	/* Flush and reset the mta with the new values */
7388 	igb_set_rx_mode(adapter->netdev);
7389 
7390 	return 0;
7391 }
7392 
7393 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7394 {
7395 	struct e1000_hw *hw = &adapter->hw;
7396 	struct vf_data_storage *vf_data;
7397 	int i, j;
7398 
7399 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7400 		u32 vmolr = rd32(E1000_VMOLR(i));
7401 
7402 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7403 
7404 		vf_data = &adapter->vf_data[i];
7405 
7406 		if ((vf_data->num_vf_mc_hashes > 30) ||
7407 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7408 			vmolr |= E1000_VMOLR_MPME;
7409 		} else if (vf_data->num_vf_mc_hashes) {
7410 			vmolr |= E1000_VMOLR_ROMPE;
7411 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7412 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7413 		}
7414 		wr32(E1000_VMOLR(i), vmolr);
7415 	}
7416 }
7417 
7418 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7419 {
7420 	struct e1000_hw *hw = &adapter->hw;
7421 	u32 pool_mask, vlvf_mask, i;
7422 
7423 	/* create mask for VF and other pools */
7424 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7425 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7426 
7427 	/* drop PF from pool bits */
7428 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7429 			     adapter->vfs_allocated_count);
7430 
7431 	/* Find the vlan filter for this id */
7432 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7433 		u32 vlvf = rd32(E1000_VLVF(i));
7434 		u32 vfta_mask, vid, vfta;
7435 
7436 		/* remove the vf from the pool */
7437 		if (!(vlvf & vlvf_mask))
7438 			continue;
7439 
7440 		/* clear out bit from VLVF */
7441 		vlvf ^= vlvf_mask;
7442 
7443 		/* if other pools are present, just remove ourselves */
7444 		if (vlvf & pool_mask)
7445 			goto update_vlvfb;
7446 
7447 		/* if PF is present, leave VFTA */
7448 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7449 			goto update_vlvf;
7450 
7451 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7452 		vfta_mask = BIT(vid % 32);
7453 
7454 		/* clear bit from VFTA */
7455 		vfta = adapter->shadow_vfta[vid / 32];
7456 		if (vfta & vfta_mask)
7457 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7458 update_vlvf:
7459 		/* clear pool selection enable */
7460 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7461 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7462 		else
7463 			vlvf = 0;
7464 update_vlvfb:
7465 		/* clear pool bits */
7466 		wr32(E1000_VLVF(i), vlvf);
7467 	}
7468 }
7469 
7470 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7471 {
7472 	u32 vlvf;
7473 	int idx;
7474 
7475 	/* short cut the special case */
7476 	if (vlan == 0)
7477 		return 0;
7478 
7479 	/* Search for the VLAN id in the VLVF entries */
7480 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7481 		vlvf = rd32(E1000_VLVF(idx));
7482 		if ((vlvf & VLAN_VID_MASK) == vlan)
7483 			break;
7484 	}
7485 
7486 	return idx;
7487 }
7488 
7489 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7490 {
7491 	struct e1000_hw *hw = &adapter->hw;
7492 	u32 bits, pf_id;
7493 	int idx;
7494 
7495 	idx = igb_find_vlvf_entry(hw, vid);
7496 	if (!idx)
7497 		return;
7498 
7499 	/* See if any other pools are set for this VLAN filter
7500 	 * entry other than the PF.
7501 	 */
7502 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7503 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7504 	bits &= rd32(E1000_VLVF(idx));
7505 
7506 	/* Disable the filter so this falls into the default pool. */
7507 	if (!bits) {
7508 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7509 			wr32(E1000_VLVF(idx), BIT(pf_id));
7510 		else
7511 			wr32(E1000_VLVF(idx), 0);
7512 	}
7513 }
7514 
7515 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7516 			   bool add, u32 vf)
7517 {
7518 	int pf_id = adapter->vfs_allocated_count;
7519 	struct e1000_hw *hw = &adapter->hw;
7520 	int err;
7521 
7522 	/* If VLAN overlaps with one the PF is currently monitoring make
7523 	 * sure that we are able to allocate a VLVF entry.  This may be
7524 	 * redundant but it guarantees PF will maintain visibility to
7525 	 * the VLAN.
7526 	 */
7527 	if (add && test_bit(vid, adapter->active_vlans)) {
7528 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7529 		if (err)
7530 			return err;
7531 	}
7532 
7533 	err = igb_vfta_set(hw, vid, vf, add, false);
7534 
7535 	if (add && !err)
7536 		return err;
7537 
7538 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7539 	 * we may need to drop the PF pool bit in order to allow us to free
7540 	 * up the VLVF resources.
7541 	 */
7542 	if (test_bit(vid, adapter->active_vlans) ||
7543 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7544 		igb_update_pf_vlvf(adapter, vid);
7545 
7546 	return err;
7547 }
7548 
7549 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7550 {
7551 	struct e1000_hw *hw = &adapter->hw;
7552 
7553 	if (vid)
7554 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7555 	else
7556 		wr32(E1000_VMVIR(vf), 0);
7557 }
7558 
7559 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7560 				u16 vlan, u8 qos)
7561 {
7562 	int err;
7563 
7564 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7565 	if (err)
7566 		return err;
7567 
7568 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7569 	igb_set_vmolr(adapter, vf, !vlan);
7570 
7571 	/* revoke access to previous VLAN */
7572 	if (vlan != adapter->vf_data[vf].pf_vlan)
7573 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7574 				false, vf);
7575 
7576 	adapter->vf_data[vf].pf_vlan = vlan;
7577 	adapter->vf_data[vf].pf_qos = qos;
7578 	igb_set_vf_vlan_strip(adapter, vf, true);
7579 	dev_info(&adapter->pdev->dev,
7580 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7581 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7582 		dev_warn(&adapter->pdev->dev,
7583 			 "The VF VLAN has been set, but the PF device is not up.\n");
7584 		dev_warn(&adapter->pdev->dev,
7585 			 "Bring the PF device up before attempting to use the VF device.\n");
7586 	}
7587 
7588 	return err;
7589 }
7590 
7591 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7592 {
7593 	/* Restore tagless access via VLAN 0 */
7594 	igb_set_vf_vlan(adapter, 0, true, vf);
7595 
7596 	igb_set_vmvir(adapter, 0, vf);
7597 	igb_set_vmolr(adapter, vf, true);
7598 
7599 	/* Remove any PF assigned VLAN */
7600 	if (adapter->vf_data[vf].pf_vlan)
7601 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7602 				false, vf);
7603 
7604 	adapter->vf_data[vf].pf_vlan = 0;
7605 	adapter->vf_data[vf].pf_qos = 0;
7606 	igb_set_vf_vlan_strip(adapter, vf, false);
7607 
7608 	return 0;
7609 }
7610 
7611 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7612 			       u16 vlan, u8 qos, __be16 vlan_proto)
7613 {
7614 	struct igb_adapter *adapter = netdev_priv(netdev);
7615 
7616 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7617 		return -EINVAL;
7618 
7619 	if (vlan_proto != htons(ETH_P_8021Q))
7620 		return -EPROTONOSUPPORT;
7621 
7622 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7623 			       igb_disable_port_vlan(adapter, vf);
7624 }
7625 
7626 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7627 {
7628 	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7629 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7630 	int ret;
7631 
7632 	if (adapter->vf_data[vf].pf_vlan)
7633 		return -1;
7634 
7635 	/* VLAN 0 is a special case, don't allow it to be removed */
7636 	if (!vid && !add)
7637 		return 0;
7638 
7639 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7640 	if (!ret)
7641 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7642 	return ret;
7643 }
7644 
7645 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7646 {
7647 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7648 
7649 	/* clear flags - except flag that indicates PF has set the MAC */
7650 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7651 	vf_data->last_nack = jiffies;
7652 
7653 	/* reset vlans for device */
7654 	igb_clear_vf_vfta(adapter, vf);
7655 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7656 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7657 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7658 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7659 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7660 
7661 	/* reset multicast table array for vf */
7662 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7663 
7664 	/* Flush and reset the mta with the new values */
7665 	igb_set_rx_mode(adapter->netdev);
7666 }
7667 
7668 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7669 {
7670 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7671 
7672 	/* clear mac address as we were hotplug removed/added */
7673 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7674 		eth_zero_addr(vf_mac);
7675 
7676 	/* process remaining reset events */
7677 	igb_vf_reset(adapter, vf);
7678 }
7679 
7680 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7681 {
7682 	struct e1000_hw *hw = &adapter->hw;
7683 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7684 	u32 reg, msgbuf[3] = {};
7685 	u8 *addr = (u8 *)(&msgbuf[1]);
7686 
7687 	/* process all the same items cleared in a function level reset */
7688 	igb_vf_reset(adapter, vf);
7689 
7690 	/* set vf mac address */
7691 	igb_set_vf_mac(adapter, vf, vf_mac);
7692 
7693 	/* enable transmit and receive for vf */
7694 	reg = rd32(E1000_VFTE);
7695 	wr32(E1000_VFTE, reg | BIT(vf));
7696 	reg = rd32(E1000_VFRE);
7697 	wr32(E1000_VFRE, reg | BIT(vf));
7698 
7699 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7700 
7701 	/* reply to reset with ack and vf mac address */
7702 	if (!is_zero_ether_addr(vf_mac)) {
7703 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7704 		memcpy(addr, vf_mac, ETH_ALEN);
7705 	} else {
7706 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7707 	}
7708 	igb_write_mbx(hw, msgbuf, 3, vf);
7709 }
7710 
7711 static void igb_flush_mac_table(struct igb_adapter *adapter)
7712 {
7713 	struct e1000_hw *hw = &adapter->hw;
7714 	int i;
7715 
7716 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7717 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7718 		eth_zero_addr(adapter->mac_table[i].addr);
7719 		adapter->mac_table[i].queue = 0;
7720 		igb_rar_set_index(adapter, i);
7721 	}
7722 }
7723 
7724 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7725 {
7726 	struct e1000_hw *hw = &adapter->hw;
7727 	/* do not count rar entries reserved for VFs MAC addresses */
7728 	int rar_entries = hw->mac.rar_entry_count -
7729 			  adapter->vfs_allocated_count;
7730 	int i, count = 0;
7731 
7732 	for (i = 0; i < rar_entries; i++) {
7733 		/* do not count default entries */
7734 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7735 			continue;
7736 
7737 		/* do not count "in use" entries for different queues */
7738 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7739 		    (adapter->mac_table[i].queue != queue))
7740 			continue;
7741 
7742 		count++;
7743 	}
7744 
7745 	return count;
7746 }
7747 
7748 /* Set default MAC address for the PF in the first RAR entry */
7749 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7750 {
7751 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7752 
7753 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7754 	mac_table->queue = adapter->vfs_allocated_count;
7755 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7756 
7757 	igb_rar_set_index(adapter, 0);
7758 }
7759 
7760 /* If the filter to be added and an already existing filter express
7761  * the same address and address type, it should be possible to only
7762  * override the other configurations, for example the queue to steer
7763  * traffic.
7764  */
7765 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7766 				      const u8 *addr, const u8 flags)
7767 {
7768 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7769 		return true;
7770 
7771 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7772 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7773 		return false;
7774 
7775 	if (!ether_addr_equal(addr, entry->addr))
7776 		return false;
7777 
7778 	return true;
7779 }
7780 
7781 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7782  * 'flags' is used to indicate what kind of match is made, match is by
7783  * default for the destination address, if matching by source address
7784  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7785  */
7786 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7787 				    const u8 *addr, const u8 queue,
7788 				    const u8 flags)
7789 {
7790 	struct e1000_hw *hw = &adapter->hw;
7791 	int rar_entries = hw->mac.rar_entry_count -
7792 			  adapter->vfs_allocated_count;
7793 	int i;
7794 
7795 	if (is_zero_ether_addr(addr))
7796 		return -EINVAL;
7797 
7798 	/* Search for the first empty entry in the MAC table.
7799 	 * Do not touch entries at the end of the table reserved for the VF MAC
7800 	 * addresses.
7801 	 */
7802 	for (i = 0; i < rar_entries; i++) {
7803 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7804 					       addr, flags))
7805 			continue;
7806 
7807 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7808 		adapter->mac_table[i].queue = queue;
7809 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7810 
7811 		igb_rar_set_index(adapter, i);
7812 		return i;
7813 	}
7814 
7815 	return -ENOSPC;
7816 }
7817 
7818 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7819 			      const u8 queue)
7820 {
7821 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7822 }
7823 
7824 /* Remove a MAC filter for 'addr' directing matching traffic to
7825  * 'queue', 'flags' is used to indicate what kind of match need to be
7826  * removed, match is by default for the destination address, if
7827  * matching by source address is to be removed the flag
7828  * IGB_MAC_STATE_SRC_ADDR can be used.
7829  */
7830 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7831 				    const u8 *addr, const u8 queue,
7832 				    const u8 flags)
7833 {
7834 	struct e1000_hw *hw = &adapter->hw;
7835 	int rar_entries = hw->mac.rar_entry_count -
7836 			  adapter->vfs_allocated_count;
7837 	int i;
7838 
7839 	if (is_zero_ether_addr(addr))
7840 		return -EINVAL;
7841 
7842 	/* Search for matching entry in the MAC table based on given address
7843 	 * and queue. Do not touch entries at the end of the table reserved
7844 	 * for the VF MAC addresses.
7845 	 */
7846 	for (i = 0; i < rar_entries; i++) {
7847 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7848 			continue;
7849 		if ((adapter->mac_table[i].state & flags) != flags)
7850 			continue;
7851 		if (adapter->mac_table[i].queue != queue)
7852 			continue;
7853 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7854 			continue;
7855 
7856 		/* When a filter for the default address is "deleted",
7857 		 * we return it to its initial configuration
7858 		 */
7859 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7860 			adapter->mac_table[i].state =
7861 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7862 			adapter->mac_table[i].queue =
7863 				adapter->vfs_allocated_count;
7864 		} else {
7865 			adapter->mac_table[i].state = 0;
7866 			adapter->mac_table[i].queue = 0;
7867 			eth_zero_addr(adapter->mac_table[i].addr);
7868 		}
7869 
7870 		igb_rar_set_index(adapter, i);
7871 		return 0;
7872 	}
7873 
7874 	return -ENOENT;
7875 }
7876 
7877 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7878 			      const u8 queue)
7879 {
7880 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7881 }
7882 
7883 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7884 				const u8 *addr, u8 queue, u8 flags)
7885 {
7886 	struct e1000_hw *hw = &adapter->hw;
7887 
7888 	/* In theory, this should be supported on 82575 as well, but
7889 	 * that part wasn't easily accessible during development.
7890 	 */
7891 	if (hw->mac.type != e1000_i210)
7892 		return -EOPNOTSUPP;
7893 
7894 	return igb_add_mac_filter_flags(adapter, addr, queue,
7895 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7896 }
7897 
7898 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7899 				const u8 *addr, u8 queue, u8 flags)
7900 {
7901 	return igb_del_mac_filter_flags(adapter, addr, queue,
7902 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7903 }
7904 
7905 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7906 {
7907 	struct igb_adapter *adapter = netdev_priv(netdev);
7908 	int ret;
7909 
7910 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7911 
7912 	return min_t(int, ret, 0);
7913 }
7914 
7915 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7916 {
7917 	struct igb_adapter *adapter = netdev_priv(netdev);
7918 
7919 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7920 
7921 	return 0;
7922 }
7923 
7924 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7925 				 const u32 info, const u8 *addr)
7926 {
7927 	struct pci_dev *pdev = adapter->pdev;
7928 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7929 	struct vf_mac_filter *entry;
7930 	bool found = false;
7931 	int ret = 0;
7932 
7933 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7934 	    !vf_data->trusted) {
7935 		dev_warn(&pdev->dev,
7936 			 "VF %d requested MAC filter but is administratively denied\n",
7937 			  vf);
7938 		return -EINVAL;
7939 	}
7940 	if (!is_valid_ether_addr(addr)) {
7941 		dev_warn(&pdev->dev,
7942 			 "VF %d attempted to set invalid MAC filter\n",
7943 			  vf);
7944 		return -EINVAL;
7945 	}
7946 
7947 	switch (info) {
7948 	case E1000_VF_MAC_FILTER_CLR:
7949 		/* remove all unicast MAC filters related to the current VF */
7950 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7951 			if (entry->vf == vf) {
7952 				entry->vf = -1;
7953 				entry->free = true;
7954 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7955 			}
7956 		}
7957 		break;
7958 	case E1000_VF_MAC_FILTER_ADD:
7959 		/* try to find empty slot in the list */
7960 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7961 			if (entry->free) {
7962 				found = true;
7963 				break;
7964 			}
7965 		}
7966 
7967 		if (found) {
7968 			entry->free = false;
7969 			entry->vf = vf;
7970 			ether_addr_copy(entry->vf_mac, addr);
7971 
7972 			ret = igb_add_mac_filter(adapter, addr, vf);
7973 			ret = min_t(int, ret, 0);
7974 		} else {
7975 			ret = -ENOSPC;
7976 		}
7977 
7978 		if (ret == -ENOSPC)
7979 			dev_warn(&pdev->dev,
7980 				 "VF %d has requested MAC filter but there is no space for it\n",
7981 				 vf);
7982 		break;
7983 	default:
7984 		ret = -EINVAL;
7985 		break;
7986 	}
7987 
7988 	return ret;
7989 }
7990 
7991 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7992 {
7993 	struct pci_dev *pdev = adapter->pdev;
7994 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7995 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7996 
7997 	/* The VF MAC Address is stored in a packed array of bytes
7998 	 * starting at the second 32 bit word of the msg array
7999 	 */
8000 	unsigned char *addr = (unsigned char *)&msg[1];
8001 	int ret = 0;
8002 
8003 	if (!info) {
8004 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
8005 		    !vf_data->trusted) {
8006 			dev_warn(&pdev->dev,
8007 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
8008 				 vf);
8009 			return -EINVAL;
8010 		}
8011 
8012 		if (!is_valid_ether_addr(addr)) {
8013 			dev_warn(&pdev->dev,
8014 				 "VF %d attempted to set invalid MAC\n",
8015 				 vf);
8016 			return -EINVAL;
8017 		}
8018 
8019 		ret = igb_set_vf_mac(adapter, vf, addr);
8020 	} else {
8021 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
8022 	}
8023 
8024 	return ret;
8025 }
8026 
8027 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
8028 {
8029 	struct e1000_hw *hw = &adapter->hw;
8030 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8031 	u32 msg = E1000_VT_MSGTYPE_NACK;
8032 
8033 	/* if device isn't clear to send it shouldn't be reading either */
8034 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
8035 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
8036 		igb_write_mbx(hw, &msg, 1, vf);
8037 		vf_data->last_nack = jiffies;
8038 	}
8039 }
8040 
8041 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
8042 {
8043 	struct pci_dev *pdev = adapter->pdev;
8044 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
8045 	struct e1000_hw *hw = &adapter->hw;
8046 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8047 	s32 retval;
8048 
8049 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8050 
8051 	if (retval) {
8052 		/* if receive failed revoke VF CTS stats and restart init */
8053 		dev_err(&pdev->dev, "Error receiving message from VF\n");
8054 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
8055 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8056 			goto unlock;
8057 		goto out;
8058 	}
8059 
8060 	/* this is a message we already processed, do nothing */
8061 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8062 		goto unlock;
8063 
8064 	/* until the vf completes a reset it should not be
8065 	 * allowed to start any configuration.
8066 	 */
8067 	if (msgbuf[0] == E1000_VF_RESET) {
8068 		/* unlocks mailbox */
8069 		igb_vf_reset_msg(adapter, vf);
8070 		return;
8071 	}
8072 
8073 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8074 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8075 			goto unlock;
8076 		retval = -1;
8077 		goto out;
8078 	}
8079 
8080 	switch ((msgbuf[0] & 0xFFFF)) {
8081 	case E1000_VF_SET_MAC_ADDR:
8082 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8083 		break;
8084 	case E1000_VF_SET_PROMISC:
8085 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8086 		break;
8087 	case E1000_VF_SET_MULTICAST:
8088 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8089 		break;
8090 	case E1000_VF_SET_LPE:
8091 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8092 		break;
8093 	case E1000_VF_SET_VLAN:
8094 		retval = -1;
8095 		if (vf_data->pf_vlan)
8096 			dev_warn(&pdev->dev,
8097 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8098 				 vf);
8099 		else
8100 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8101 		break;
8102 	default:
8103 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8104 		retval = -1;
8105 		break;
8106 	}
8107 
8108 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8109 out:
8110 	/* notify the VF of the results of what it sent us */
8111 	if (retval)
8112 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8113 	else
8114 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8115 
8116 	/* unlocks mailbox */
8117 	igb_write_mbx(hw, msgbuf, 1, vf);
8118 	return;
8119 
8120 unlock:
8121 	igb_unlock_mbx(hw, vf);
8122 }
8123 
8124 static void igb_msg_task(struct igb_adapter *adapter)
8125 {
8126 	struct e1000_hw *hw = &adapter->hw;
8127 	unsigned long flags;
8128 	u32 vf;
8129 
8130 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8131 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8132 		/* process any reset requests */
8133 		if (!igb_check_for_rst(hw, vf))
8134 			igb_vf_reset_event(adapter, vf);
8135 
8136 		/* process any messages pending */
8137 		if (!igb_check_for_msg(hw, vf))
8138 			igb_rcv_msg_from_vf(adapter, vf);
8139 
8140 		/* process any acks */
8141 		if (!igb_check_for_ack(hw, vf))
8142 			igb_rcv_ack_from_vf(adapter, vf);
8143 	}
8144 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8145 }
8146 
8147 /**
8148  *  igb_set_uta - Set unicast filter table address
8149  *  @adapter: board private structure
8150  *  @set: boolean indicating if we are setting or clearing bits
8151  *
8152  *  The unicast table address is a register array of 32-bit registers.
8153  *  The table is meant to be used in a way similar to how the MTA is used
8154  *  however due to certain limitations in the hardware it is necessary to
8155  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8156  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8157  **/
8158 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8159 {
8160 	struct e1000_hw *hw = &adapter->hw;
8161 	u32 uta = set ? ~0 : 0;
8162 	int i;
8163 
8164 	/* we only need to do this if VMDq is enabled */
8165 	if (!adapter->vfs_allocated_count)
8166 		return;
8167 
8168 	for (i = hw->mac.uta_reg_count; i--;)
8169 		array_wr32(E1000_UTA, i, uta);
8170 }
8171 
8172 /**
8173  *  igb_intr_msi - Interrupt Handler
8174  *  @irq: interrupt number
8175  *  @data: pointer to a network interface device structure
8176  **/
8177 static irqreturn_t igb_intr_msi(int irq, void *data)
8178 {
8179 	struct igb_adapter *adapter = data;
8180 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8181 	struct e1000_hw *hw = &adapter->hw;
8182 	/* read ICR disables interrupts using IAM */
8183 	u32 icr = rd32(E1000_ICR);
8184 
8185 	igb_write_itr(q_vector);
8186 
8187 	if (icr & E1000_ICR_DRSTA)
8188 		schedule_work(&adapter->reset_task);
8189 
8190 	if (icr & E1000_ICR_DOUTSYNC) {
8191 		/* HW is reporting DMA is out of sync */
8192 		adapter->stats.doosync++;
8193 	}
8194 
8195 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8196 		hw->mac.get_link_status = 1;
8197 		if (!test_bit(__IGB_DOWN, &adapter->state))
8198 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8199 	}
8200 
8201 	if (icr & E1000_ICR_TS)
8202 		igb_tsync_interrupt(adapter);
8203 
8204 	napi_schedule(&q_vector->napi);
8205 
8206 	return IRQ_HANDLED;
8207 }
8208 
8209 /**
8210  *  igb_intr - Legacy Interrupt Handler
8211  *  @irq: interrupt number
8212  *  @data: pointer to a network interface device structure
8213  **/
8214 static irqreturn_t igb_intr(int irq, void *data)
8215 {
8216 	struct igb_adapter *adapter = data;
8217 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8218 	struct e1000_hw *hw = &adapter->hw;
8219 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8220 	 * need for the IMC write
8221 	 */
8222 	u32 icr = rd32(E1000_ICR);
8223 
8224 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8225 	 * not set, then the adapter didn't send an interrupt
8226 	 */
8227 	if (!(icr & E1000_ICR_INT_ASSERTED))
8228 		return IRQ_NONE;
8229 
8230 	igb_write_itr(q_vector);
8231 
8232 	if (icr & E1000_ICR_DRSTA)
8233 		schedule_work(&adapter->reset_task);
8234 
8235 	if (icr & E1000_ICR_DOUTSYNC) {
8236 		/* HW is reporting DMA is out of sync */
8237 		adapter->stats.doosync++;
8238 	}
8239 
8240 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8241 		hw->mac.get_link_status = 1;
8242 		/* guard against interrupt when we're going down */
8243 		if (!test_bit(__IGB_DOWN, &adapter->state))
8244 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8245 	}
8246 
8247 	if (icr & E1000_ICR_TS)
8248 		igb_tsync_interrupt(adapter);
8249 
8250 	napi_schedule(&q_vector->napi);
8251 
8252 	return IRQ_HANDLED;
8253 }
8254 
8255 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8256 {
8257 	struct igb_adapter *adapter = q_vector->adapter;
8258 	struct e1000_hw *hw = &adapter->hw;
8259 
8260 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8261 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8262 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8263 			igb_set_itr(q_vector);
8264 		else
8265 			igb_update_ring_itr(q_vector);
8266 	}
8267 
8268 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8269 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8270 			wr32(E1000_EIMS, q_vector->eims_value);
8271 		else
8272 			igb_irq_enable(adapter);
8273 	}
8274 }
8275 
8276 /**
8277  *  igb_poll - NAPI Rx polling callback
8278  *  @napi: napi polling structure
8279  *  @budget: count of how many packets we should handle
8280  **/
8281 static int igb_poll(struct napi_struct *napi, int budget)
8282 {
8283 	struct igb_q_vector *q_vector = container_of(napi,
8284 						     struct igb_q_vector,
8285 						     napi);
8286 	struct xsk_buff_pool *xsk_pool;
8287 	bool clean_complete = true;
8288 	int work_done = 0;
8289 
8290 #ifdef CONFIG_IGB_DCA
8291 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8292 		igb_update_dca(q_vector);
8293 #endif
8294 	if (q_vector->tx.ring)
8295 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8296 
8297 	if (q_vector->rx.ring) {
8298 		int cleaned;
8299 
8300 		xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8301 		cleaned = xsk_pool ?
8302 			igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8303 			igb_clean_rx_irq(q_vector, budget);
8304 
8305 		work_done += cleaned;
8306 		if (cleaned >= budget)
8307 			clean_complete = false;
8308 	}
8309 
8310 	/* If all work not completed, return budget and keep polling */
8311 	if (!clean_complete)
8312 		return budget;
8313 
8314 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8315 	 * poll us due to busy-polling
8316 	 */
8317 	if (likely(napi_complete_done(napi, work_done)))
8318 		igb_ring_irq_enable(q_vector);
8319 
8320 	return work_done;
8321 }
8322 
8323 /**
8324  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8325  *  @q_vector: pointer to q_vector containing needed info
8326  *  @napi_budget: Used to determine if we are in netpoll
8327  *
8328  *  returns true if ring is completely cleaned
8329  **/
8330 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8331 {
8332 	unsigned int total_bytes = 0, total_packets = 0;
8333 	struct igb_adapter *adapter = q_vector->adapter;
8334 	unsigned int budget = q_vector->tx.work_limit;
8335 	struct igb_ring *tx_ring = q_vector->tx.ring;
8336 	unsigned int i = tx_ring->next_to_clean;
8337 	union e1000_adv_tx_desc *tx_desc;
8338 	struct igb_tx_buffer *tx_buffer;
8339 	struct xsk_buff_pool *xsk_pool;
8340 	int cpu = smp_processor_id();
8341 	bool xsk_xmit_done = true;
8342 	struct netdev_queue *nq;
8343 	u32 xsk_frames = 0;
8344 
8345 	if (test_bit(__IGB_DOWN, &adapter->state))
8346 		return true;
8347 
8348 	tx_buffer = &tx_ring->tx_buffer_info[i];
8349 	tx_desc = IGB_TX_DESC(tx_ring, i);
8350 	i -= tx_ring->count;
8351 
8352 	do {
8353 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8354 
8355 		/* if next_to_watch is not set then there is no work pending */
8356 		if (!eop_desc)
8357 			break;
8358 
8359 		/* prevent any other reads prior to eop_desc */
8360 		smp_rmb();
8361 
8362 		/* if DD is not set pending work has not been completed */
8363 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8364 			break;
8365 
8366 		/* clear next_to_watch to prevent false hangs */
8367 		tx_buffer->next_to_watch = NULL;
8368 
8369 		/* update the statistics for this packet */
8370 		total_bytes += tx_buffer->bytecount;
8371 		total_packets += tx_buffer->gso_segs;
8372 
8373 		/* free the skb */
8374 		if (tx_buffer->type == IGB_TYPE_SKB) {
8375 			napi_consume_skb(tx_buffer->skb, napi_budget);
8376 		} else if (tx_buffer->type == IGB_TYPE_XDP) {
8377 			xdp_return_frame(tx_buffer->xdpf);
8378 		} else if (tx_buffer->type == IGB_TYPE_XSK) {
8379 			xsk_frames++;
8380 			goto skip_for_xsk;
8381 		}
8382 
8383 		/* unmap skb header data */
8384 		dma_unmap_single(tx_ring->dev,
8385 				 dma_unmap_addr(tx_buffer, dma),
8386 				 dma_unmap_len(tx_buffer, len),
8387 				 DMA_TO_DEVICE);
8388 
8389 		/* clear tx_buffer data */
8390 		dma_unmap_len_set(tx_buffer, len, 0);
8391 
8392 		/* clear last DMA location and unmap remaining buffers */
8393 		while (tx_desc != eop_desc) {
8394 			tx_buffer++;
8395 			tx_desc++;
8396 			i++;
8397 			if (unlikely(!i)) {
8398 				i -= tx_ring->count;
8399 				tx_buffer = tx_ring->tx_buffer_info;
8400 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8401 			}
8402 
8403 			/* unmap any remaining paged data */
8404 			if (dma_unmap_len(tx_buffer, len)) {
8405 				dma_unmap_page(tx_ring->dev,
8406 					       dma_unmap_addr(tx_buffer, dma),
8407 					       dma_unmap_len(tx_buffer, len),
8408 					       DMA_TO_DEVICE);
8409 				dma_unmap_len_set(tx_buffer, len, 0);
8410 			}
8411 		}
8412 
8413 skip_for_xsk:
8414 		/* move us one more past the eop_desc for start of next pkt */
8415 		tx_buffer++;
8416 		tx_desc++;
8417 		i++;
8418 		if (unlikely(!i)) {
8419 			i -= tx_ring->count;
8420 			tx_buffer = tx_ring->tx_buffer_info;
8421 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8422 		}
8423 
8424 		/* issue prefetch for next Tx descriptor */
8425 		prefetch(tx_desc);
8426 
8427 		/* update budget accounting */
8428 		budget--;
8429 	} while (likely(budget));
8430 
8431 	netdev_tx_completed_queue(txring_txq(tx_ring),
8432 				  total_packets, total_bytes);
8433 	i += tx_ring->count;
8434 	tx_ring->next_to_clean = i;
8435 	u64_stats_update_begin(&tx_ring->tx_syncp);
8436 	tx_ring->tx_stats.bytes += total_bytes;
8437 	tx_ring->tx_stats.packets += total_packets;
8438 	u64_stats_update_end(&tx_ring->tx_syncp);
8439 	q_vector->tx.total_bytes += total_bytes;
8440 	q_vector->tx.total_packets += total_packets;
8441 
8442 	xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8443 	if (xsk_pool) {
8444 		if (xsk_frames)
8445 			xsk_tx_completed(xsk_pool, xsk_frames);
8446 		if (xsk_uses_need_wakeup(xsk_pool))
8447 			xsk_set_tx_need_wakeup(xsk_pool);
8448 
8449 		nq = txring_txq(tx_ring);
8450 		__netif_tx_lock(nq, cpu);
8451 		/* Avoid transmit queue timeout since we share it with the slow path */
8452 		txq_trans_cond_update(nq);
8453 		xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8454 		__netif_tx_unlock(nq);
8455 	}
8456 
8457 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8458 		struct e1000_hw *hw = &adapter->hw;
8459 
8460 		/* Detect a transmit hang in hardware, this serializes the
8461 		 * check with the clearing of time_stamp and movement of i
8462 		 */
8463 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8464 		if (tx_buffer->next_to_watch &&
8465 		    time_after(jiffies, tx_buffer->time_stamp +
8466 			       (adapter->tx_timeout_factor * HZ)) &&
8467 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8468 
8469 			/* detected Tx unit hang */
8470 			dev_err(tx_ring->dev,
8471 				"Detected Tx Unit Hang\n"
8472 				"  Tx Queue             <%d>\n"
8473 				"  TDH                  <%x>\n"
8474 				"  TDT                  <%x>\n"
8475 				"  next_to_use          <%x>\n"
8476 				"  next_to_clean        <%x>\n"
8477 				"buffer_info[next_to_clean]\n"
8478 				"  time_stamp           <%lx>\n"
8479 				"  next_to_watch        <%p>\n"
8480 				"  jiffies              <%lx>\n"
8481 				"  desc.status          <%x>\n",
8482 				tx_ring->queue_index,
8483 				rd32(E1000_TDH(tx_ring->reg_idx)),
8484 				readl(tx_ring->tail),
8485 				tx_ring->next_to_use,
8486 				tx_ring->next_to_clean,
8487 				tx_buffer->time_stamp,
8488 				tx_buffer->next_to_watch,
8489 				jiffies,
8490 				tx_buffer->next_to_watch->wb.status);
8491 			netif_stop_subqueue(tx_ring->netdev,
8492 					    tx_ring->queue_index);
8493 
8494 			/* we are about to reset, no point in enabling stuff */
8495 			return true;
8496 		}
8497 	}
8498 
8499 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8500 	if (unlikely(total_packets &&
8501 	    netif_carrier_ok(tx_ring->netdev) &&
8502 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8503 		/* Make sure that anybody stopping the queue after this
8504 		 * sees the new next_to_clean.
8505 		 */
8506 		smp_mb();
8507 		if (__netif_subqueue_stopped(tx_ring->netdev,
8508 					     tx_ring->queue_index) &&
8509 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8510 			netif_wake_subqueue(tx_ring->netdev,
8511 					    tx_ring->queue_index);
8512 
8513 			u64_stats_update_begin(&tx_ring->tx_syncp);
8514 			tx_ring->tx_stats.restart_queue++;
8515 			u64_stats_update_end(&tx_ring->tx_syncp);
8516 		}
8517 	}
8518 
8519 	return !!budget && xsk_xmit_done;
8520 }
8521 
8522 /**
8523  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8524  *  @rx_ring: rx descriptor ring to store buffers on
8525  *  @old_buff: donor buffer to have page reused
8526  *
8527  *  Synchronizes page for reuse by the adapter
8528  **/
8529 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8530 			      struct igb_rx_buffer *old_buff)
8531 {
8532 	struct igb_rx_buffer *new_buff;
8533 	u16 nta = rx_ring->next_to_alloc;
8534 
8535 	new_buff = &rx_ring->rx_buffer_info[nta];
8536 
8537 	/* update, and store next to alloc */
8538 	nta++;
8539 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8540 
8541 	/* Transfer page from old buffer to new buffer.
8542 	 * Move each member individually to avoid possible store
8543 	 * forwarding stalls.
8544 	 */
8545 	new_buff->dma		= old_buff->dma;
8546 	new_buff->page		= old_buff->page;
8547 	new_buff->page_offset	= old_buff->page_offset;
8548 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8549 }
8550 
8551 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8552 				  int rx_buf_pgcnt)
8553 {
8554 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8555 	struct page *page = rx_buffer->page;
8556 
8557 	/* avoid re-using remote and pfmemalloc pages */
8558 	if (!dev_page_is_reusable(page))
8559 		return false;
8560 
8561 #if (PAGE_SIZE < 8192)
8562 	/* if we are only owner of page we can reuse it */
8563 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8564 		return false;
8565 #else
8566 #define IGB_LAST_OFFSET \
8567 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8568 
8569 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8570 		return false;
8571 #endif
8572 
8573 	/* If we have drained the page fragment pool we need to update
8574 	 * the pagecnt_bias and page count so that we fully restock the
8575 	 * number of references the driver holds.
8576 	 */
8577 	if (unlikely(pagecnt_bias == 1)) {
8578 		page_ref_add(page, USHRT_MAX - 1);
8579 		rx_buffer->pagecnt_bias = USHRT_MAX;
8580 	}
8581 
8582 	return true;
8583 }
8584 
8585 /**
8586  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8587  *  @rx_ring: rx descriptor ring to transact packets on
8588  *  @rx_buffer: buffer containing page to add
8589  *  @skb: sk_buff to place the data into
8590  *  @size: size of buffer to be added
8591  *
8592  *  This function will add the data contained in rx_buffer->page to the skb.
8593  **/
8594 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8595 			    struct igb_rx_buffer *rx_buffer,
8596 			    struct sk_buff *skb,
8597 			    unsigned int size)
8598 {
8599 #if (PAGE_SIZE < 8192)
8600 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8601 #else
8602 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8603 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8604 				SKB_DATA_ALIGN(size);
8605 #endif
8606 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8607 			rx_buffer->page_offset, size, truesize);
8608 #if (PAGE_SIZE < 8192)
8609 	rx_buffer->page_offset ^= truesize;
8610 #else
8611 	rx_buffer->page_offset += truesize;
8612 #endif
8613 }
8614 
8615 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8616 					 struct igb_rx_buffer *rx_buffer,
8617 					 struct xdp_buff *xdp,
8618 					 ktime_t timestamp)
8619 {
8620 #if (PAGE_SIZE < 8192)
8621 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8622 #else
8623 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8624 					       xdp->data_hard_start);
8625 #endif
8626 	unsigned int size = xdp->data_end - xdp->data;
8627 	unsigned int headlen;
8628 	struct sk_buff *skb;
8629 
8630 	/* prefetch first cache line of first page */
8631 	net_prefetch(xdp->data);
8632 
8633 	/* allocate a skb to store the frags */
8634 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8635 	if (unlikely(!skb))
8636 		return NULL;
8637 
8638 	if (timestamp)
8639 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8640 
8641 	/* Determine available headroom for copy */
8642 	headlen = size;
8643 	if (headlen > IGB_RX_HDR_LEN)
8644 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8645 
8646 	/* align pull length to size of long to optimize memcpy performance */
8647 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8648 
8649 	/* update all of the pointers */
8650 	size -= headlen;
8651 	if (size) {
8652 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8653 				(xdp->data + headlen) - page_address(rx_buffer->page),
8654 				size, truesize);
8655 #if (PAGE_SIZE < 8192)
8656 		rx_buffer->page_offset ^= truesize;
8657 #else
8658 		rx_buffer->page_offset += truesize;
8659 #endif
8660 	} else {
8661 		rx_buffer->pagecnt_bias++;
8662 	}
8663 
8664 	return skb;
8665 }
8666 
8667 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8668 				     struct igb_rx_buffer *rx_buffer,
8669 				     struct xdp_buff *xdp,
8670 				     ktime_t timestamp)
8671 {
8672 #if (PAGE_SIZE < 8192)
8673 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8674 #else
8675 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8676 				SKB_DATA_ALIGN(xdp->data_end -
8677 					       xdp->data_hard_start);
8678 #endif
8679 	unsigned int metasize = xdp->data - xdp->data_meta;
8680 	struct sk_buff *skb;
8681 
8682 	/* prefetch first cache line of first page */
8683 	net_prefetch(xdp->data_meta);
8684 
8685 	/* build an skb around the page buffer */
8686 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8687 	if (unlikely(!skb))
8688 		return NULL;
8689 
8690 	/* update pointers within the skb to store the data */
8691 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8692 	__skb_put(skb, xdp->data_end - xdp->data);
8693 
8694 	if (metasize)
8695 		skb_metadata_set(skb, metasize);
8696 
8697 	if (timestamp)
8698 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8699 
8700 	/* update buffer offset */
8701 #if (PAGE_SIZE < 8192)
8702 	rx_buffer->page_offset ^= truesize;
8703 #else
8704 	rx_buffer->page_offset += truesize;
8705 #endif
8706 
8707 	return skb;
8708 }
8709 
8710 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8711 		       struct xdp_buff *xdp)
8712 {
8713 	int err, result = IGB_XDP_PASS;
8714 	struct bpf_prog *xdp_prog;
8715 	u32 act;
8716 
8717 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8718 
8719 	if (!xdp_prog)
8720 		goto xdp_out;
8721 
8722 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8723 
8724 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8725 	switch (act) {
8726 	case XDP_PASS:
8727 		break;
8728 	case XDP_TX:
8729 		result = igb_xdp_xmit_back(adapter, xdp);
8730 		if (result == IGB_XDP_CONSUMED)
8731 			goto out_failure;
8732 		break;
8733 	case XDP_REDIRECT:
8734 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8735 		if (err)
8736 			goto out_failure;
8737 		result = IGB_XDP_REDIR;
8738 		break;
8739 	default:
8740 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8741 		fallthrough;
8742 	case XDP_ABORTED:
8743 out_failure:
8744 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8745 		fallthrough;
8746 	case XDP_DROP:
8747 		result = IGB_XDP_CONSUMED;
8748 		break;
8749 	}
8750 xdp_out:
8751 	return result;
8752 }
8753 
8754 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8755 					  unsigned int size)
8756 {
8757 	unsigned int truesize;
8758 
8759 #if (PAGE_SIZE < 8192)
8760 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8761 #else
8762 	truesize = ring_uses_build_skb(rx_ring) ?
8763 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8764 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8765 		SKB_DATA_ALIGN(size);
8766 #endif
8767 	return truesize;
8768 }
8769 
8770 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8771 			       struct igb_rx_buffer *rx_buffer,
8772 			       unsigned int size)
8773 {
8774 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8775 #if (PAGE_SIZE < 8192)
8776 	rx_buffer->page_offset ^= truesize;
8777 #else
8778 	rx_buffer->page_offset += truesize;
8779 #endif
8780 }
8781 
8782 static inline void igb_rx_checksum(struct igb_ring *ring,
8783 				   union e1000_adv_rx_desc *rx_desc,
8784 				   struct sk_buff *skb)
8785 {
8786 	skb_checksum_none_assert(skb);
8787 
8788 	/* Ignore Checksum bit is set */
8789 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8790 		return;
8791 
8792 	/* Rx checksum disabled via ethtool */
8793 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8794 		return;
8795 
8796 	/* TCP/UDP checksum error bit is set */
8797 	if (igb_test_staterr(rx_desc,
8798 			     E1000_RXDEXT_STATERR_TCPE |
8799 			     E1000_RXDEXT_STATERR_IPE)) {
8800 		/* work around errata with sctp packets where the TCPE aka
8801 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8802 		 * packets, (aka let the stack check the crc32c)
8803 		 */
8804 		if (!((skb->len == 60) &&
8805 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8806 			u64_stats_update_begin(&ring->rx_syncp);
8807 			ring->rx_stats.csum_err++;
8808 			u64_stats_update_end(&ring->rx_syncp);
8809 		}
8810 		/* let the stack verify checksum errors */
8811 		return;
8812 	}
8813 	/* It must be a TCP or UDP packet with a valid checksum */
8814 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8815 				      E1000_RXD_STAT_UDPCS))
8816 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8817 
8818 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8819 		le32_to_cpu(rx_desc->wb.upper.status_error));
8820 }
8821 
8822 static inline void igb_rx_hash(struct igb_ring *ring,
8823 			       union e1000_adv_rx_desc *rx_desc,
8824 			       struct sk_buff *skb)
8825 {
8826 	if (ring->netdev->features & NETIF_F_RXHASH)
8827 		skb_set_hash(skb,
8828 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8829 			     PKT_HASH_TYPE_L3);
8830 }
8831 
8832 /**
8833  *  igb_is_non_eop - process handling of non-EOP buffers
8834  *  @rx_ring: Rx ring being processed
8835  *  @rx_desc: Rx descriptor for current buffer
8836  *
8837  *  This function updates next to clean.  If the buffer is an EOP buffer
8838  *  this function exits returning false, otherwise it will place the
8839  *  sk_buff in the next buffer to be chained and return true indicating
8840  *  that this is in fact a non-EOP buffer.
8841  **/
8842 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8843 			   union e1000_adv_rx_desc *rx_desc)
8844 {
8845 	u32 ntc = rx_ring->next_to_clean + 1;
8846 
8847 	/* fetch, update, and store next to clean */
8848 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8849 	rx_ring->next_to_clean = ntc;
8850 
8851 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8852 
8853 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8854 		return false;
8855 
8856 	return true;
8857 }
8858 
8859 /**
8860  *  igb_cleanup_headers - Correct corrupted or empty headers
8861  *  @rx_ring: rx descriptor ring packet is being transacted on
8862  *  @rx_desc: pointer to the EOP Rx descriptor
8863  *  @skb: pointer to current skb being fixed
8864  *
8865  *  Address the case where we are pulling data in on pages only
8866  *  and as such no data is present in the skb header.
8867  *
8868  *  In addition if skb is not at least 60 bytes we need to pad it so that
8869  *  it is large enough to qualify as a valid Ethernet frame.
8870  *
8871  *  Returns true if an error was encountered and skb was freed.
8872  **/
8873 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8874 				union e1000_adv_rx_desc *rx_desc,
8875 				struct sk_buff *skb)
8876 {
8877 	if (unlikely((igb_test_staterr(rx_desc,
8878 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8879 		struct net_device *netdev = rx_ring->netdev;
8880 		if (!(netdev->features & NETIF_F_RXALL)) {
8881 			dev_kfree_skb_any(skb);
8882 			return true;
8883 		}
8884 	}
8885 
8886 	/* if eth_skb_pad returns an error the skb was freed */
8887 	if (eth_skb_pad(skb))
8888 		return true;
8889 
8890 	return false;
8891 }
8892 
8893 /**
8894  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8895  *  @rx_ring: rx descriptor ring packet is being transacted on
8896  *  @rx_desc: pointer to the EOP Rx descriptor
8897  *  @skb: pointer to current skb being populated
8898  *
8899  *  This function checks the ring, descriptor, and packet information in
8900  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8901  *  other fields within the skb.
8902  **/
8903 void igb_process_skb_fields(struct igb_ring *rx_ring,
8904 			    union e1000_adv_rx_desc *rx_desc,
8905 			    struct sk_buff *skb)
8906 {
8907 	struct net_device *dev = rx_ring->netdev;
8908 
8909 	igb_rx_hash(rx_ring, rx_desc, skb);
8910 
8911 	igb_rx_checksum(rx_ring, rx_desc, skb);
8912 
8913 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8914 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8915 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8916 
8917 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8918 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8919 		u16 vid;
8920 
8921 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8922 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8923 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8924 		else
8925 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8926 
8927 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8928 	}
8929 
8930 	skb_record_rx_queue(skb, rx_ring->queue_index);
8931 
8932 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8933 }
8934 
8935 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8936 {
8937 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8938 }
8939 
8940 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8941 					       const unsigned int size, int *rx_buf_pgcnt)
8942 {
8943 	struct igb_rx_buffer *rx_buffer;
8944 
8945 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8946 	*rx_buf_pgcnt =
8947 #if (PAGE_SIZE < 8192)
8948 		page_count(rx_buffer->page);
8949 #else
8950 		0;
8951 #endif
8952 	prefetchw(rx_buffer->page);
8953 
8954 	/* we are reusing so sync this buffer for CPU use */
8955 	dma_sync_single_range_for_cpu(rx_ring->dev,
8956 				      rx_buffer->dma,
8957 				      rx_buffer->page_offset,
8958 				      size,
8959 				      DMA_FROM_DEVICE);
8960 
8961 	rx_buffer->pagecnt_bias--;
8962 
8963 	return rx_buffer;
8964 }
8965 
8966 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8967 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8968 {
8969 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8970 		/* hand second half of page back to the ring */
8971 		igb_reuse_rx_page(rx_ring, rx_buffer);
8972 	} else {
8973 		/* We are not reusing the buffer so unmap it and free
8974 		 * any references we are holding to it
8975 		 */
8976 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8977 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8978 				     IGB_RX_DMA_ATTR);
8979 		__page_frag_cache_drain(rx_buffer->page,
8980 					rx_buffer->pagecnt_bias);
8981 	}
8982 
8983 	/* clear contents of rx_buffer */
8984 	rx_buffer->page = NULL;
8985 }
8986 
8987 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8988 {
8989 	int cpu = smp_processor_id();
8990 	struct netdev_queue *nq;
8991 
8992 	if (status & IGB_XDP_REDIR)
8993 		xdp_do_flush();
8994 
8995 	if (status & IGB_XDP_TX) {
8996 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8997 
8998 		nq = txring_txq(tx_ring);
8999 		__netif_tx_lock(nq, cpu);
9000 		igb_xdp_ring_update_tail(tx_ring);
9001 		__netif_tx_unlock(nq);
9002 	}
9003 }
9004 
9005 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
9006 			 unsigned int bytes)
9007 {
9008 	struct igb_ring *ring = q_vector->rx.ring;
9009 
9010 	u64_stats_update_begin(&ring->rx_syncp);
9011 	ring->rx_stats.packets += packets;
9012 	ring->rx_stats.bytes += bytes;
9013 	u64_stats_update_end(&ring->rx_syncp);
9014 
9015 	q_vector->rx.total_packets += packets;
9016 	q_vector->rx.total_bytes += bytes;
9017 }
9018 
9019 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9020 {
9021 	unsigned int total_bytes = 0, total_packets = 0;
9022 	struct igb_adapter *adapter = q_vector->adapter;
9023 	struct igb_ring *rx_ring = q_vector->rx.ring;
9024 	u16 cleaned_count = igb_desc_unused(rx_ring);
9025 	struct sk_buff *skb = rx_ring->skb;
9026 	unsigned int xdp_xmit = 0;
9027 	struct xdp_buff xdp;
9028 	u32 frame_sz = 0;
9029 	int rx_buf_pgcnt;
9030 	int xdp_res = 0;
9031 
9032 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
9033 #if (PAGE_SIZE < 8192)
9034 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
9035 #endif
9036 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
9037 
9038 	while (likely(total_packets < budget)) {
9039 		union e1000_adv_rx_desc *rx_desc;
9040 		struct igb_rx_buffer *rx_buffer;
9041 		ktime_t timestamp = 0;
9042 		int pkt_offset = 0;
9043 		unsigned int size;
9044 		void *pktbuf;
9045 
9046 		/* return some buffers to hardware, one at a time is too slow */
9047 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
9048 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
9049 			cleaned_count = 0;
9050 		}
9051 
9052 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9053 		size = le16_to_cpu(rx_desc->wb.upper.length);
9054 		if (!size)
9055 			break;
9056 
9057 		/* This memory barrier is needed to keep us from reading
9058 		 * any other fields out of the rx_desc until we know the
9059 		 * descriptor has been written back
9060 		 */
9061 		dma_rmb();
9062 
9063 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9064 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9065 
9066 		/* pull rx packet timestamp if available and valid */
9067 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9068 			int ts_hdr_len;
9069 
9070 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9071 							 pktbuf, &timestamp);
9072 
9073 			pkt_offset += ts_hdr_len;
9074 			size -= ts_hdr_len;
9075 		}
9076 
9077 		/* retrieve a buffer from the ring */
9078 		if (!skb) {
9079 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9080 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9081 
9082 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9083 			xdp_buff_clear_frags_flag(&xdp);
9084 #if (PAGE_SIZE > 4096)
9085 			/* At larger PAGE_SIZE, frame_sz depend on len size */
9086 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9087 #endif
9088 			xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9089 		}
9090 
9091 		if (xdp_res) {
9092 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9093 				xdp_xmit |= xdp_res;
9094 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9095 			} else {
9096 				rx_buffer->pagecnt_bias++;
9097 			}
9098 			total_packets++;
9099 			total_bytes += size;
9100 		} else if (skb)
9101 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9102 		else if (ring_uses_build_skb(rx_ring))
9103 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9104 					    timestamp);
9105 		else
9106 			skb = igb_construct_skb(rx_ring, rx_buffer,
9107 						&xdp, timestamp);
9108 
9109 		/* exit if we failed to retrieve a buffer */
9110 		if (!xdp_res && !skb) {
9111 			rx_ring->rx_stats.alloc_failed++;
9112 			rx_buffer->pagecnt_bias++;
9113 			set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9114 			break;
9115 		}
9116 
9117 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9118 		cleaned_count++;
9119 
9120 		/* fetch next buffer in frame if non-eop */
9121 		if (igb_is_non_eop(rx_ring, rx_desc))
9122 			continue;
9123 
9124 		/* verify the packet layout is correct */
9125 		if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9126 			skb = NULL;
9127 			continue;
9128 		}
9129 
9130 		/* probably a little skewed due to removing CRC */
9131 		total_bytes += skb->len;
9132 
9133 		/* populate checksum, timestamp, VLAN, and protocol */
9134 		igb_process_skb_fields(rx_ring, rx_desc, skb);
9135 
9136 		napi_gro_receive(&q_vector->napi, skb);
9137 
9138 		/* reset skb pointer */
9139 		skb = NULL;
9140 
9141 		/* update budget accounting */
9142 		total_packets++;
9143 	}
9144 
9145 	/* place incomplete frames back on ring for completion */
9146 	rx_ring->skb = skb;
9147 
9148 	if (xdp_xmit)
9149 		igb_finalize_xdp(adapter, xdp_xmit);
9150 
9151 	igb_update_rx_stats(q_vector, total_packets, total_bytes);
9152 
9153 	if (cleaned_count)
9154 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9155 
9156 	return total_packets;
9157 }
9158 
9159 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9160 				  struct igb_rx_buffer *bi)
9161 {
9162 	struct page *page = bi->page;
9163 	dma_addr_t dma;
9164 
9165 	/* since we are recycling buffers we should seldom need to alloc */
9166 	if (likely(page))
9167 		return true;
9168 
9169 	/* alloc new page for storage */
9170 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9171 	if (unlikely(!page)) {
9172 		rx_ring->rx_stats.alloc_failed++;
9173 		set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9174 		return false;
9175 	}
9176 
9177 	/* map page for use */
9178 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9179 				 igb_rx_pg_size(rx_ring),
9180 				 DMA_FROM_DEVICE,
9181 				 IGB_RX_DMA_ATTR);
9182 
9183 	/* if mapping failed free memory back to system since
9184 	 * there isn't much point in holding memory we can't use
9185 	 */
9186 	if (dma_mapping_error(rx_ring->dev, dma)) {
9187 		__free_pages(page, igb_rx_pg_order(rx_ring));
9188 
9189 		rx_ring->rx_stats.alloc_failed++;
9190 		set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9191 		return false;
9192 	}
9193 
9194 	bi->dma = dma;
9195 	bi->page = page;
9196 	bi->page_offset = igb_rx_offset(rx_ring);
9197 	page_ref_add(page, USHRT_MAX - 1);
9198 	bi->pagecnt_bias = USHRT_MAX;
9199 
9200 	return true;
9201 }
9202 
9203 /**
9204  *  igb_alloc_rx_buffers - Replace used receive buffers
9205  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9206  *  @cleaned_count: count of buffers to allocate
9207  **/
9208 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9209 {
9210 	union e1000_adv_rx_desc *rx_desc;
9211 	struct igb_rx_buffer *bi;
9212 	u16 i = rx_ring->next_to_use;
9213 	u16 bufsz;
9214 
9215 	/* nothing to do */
9216 	if (!cleaned_count)
9217 		return;
9218 
9219 	rx_desc = IGB_RX_DESC(rx_ring, i);
9220 	bi = &rx_ring->rx_buffer_info[i];
9221 	i -= rx_ring->count;
9222 
9223 	bufsz = igb_rx_bufsz(rx_ring);
9224 
9225 	do {
9226 		if (!igb_alloc_mapped_page(rx_ring, bi))
9227 			break;
9228 
9229 		/* sync the buffer for use by the device */
9230 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9231 						 bi->page_offset, bufsz,
9232 						 DMA_FROM_DEVICE);
9233 
9234 		/* Refresh the desc even if buffer_addrs didn't change
9235 		 * because each write-back erases this info.
9236 		 */
9237 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9238 
9239 		rx_desc++;
9240 		bi++;
9241 		i++;
9242 		if (unlikely(!i)) {
9243 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9244 			bi = rx_ring->rx_buffer_info;
9245 			i -= rx_ring->count;
9246 		}
9247 
9248 		/* clear the length for the next_to_use descriptor */
9249 		rx_desc->wb.upper.length = 0;
9250 
9251 		cleaned_count--;
9252 	} while (cleaned_count);
9253 
9254 	i += rx_ring->count;
9255 
9256 	if (rx_ring->next_to_use != i) {
9257 		/* record the next descriptor to use */
9258 		rx_ring->next_to_use = i;
9259 
9260 		/* update next to alloc since we have filled the ring */
9261 		rx_ring->next_to_alloc = i;
9262 
9263 		/* Force memory writes to complete before letting h/w
9264 		 * know there are new descriptors to fetch.  (Only
9265 		 * applicable for weak-ordered memory model archs,
9266 		 * such as IA-64).
9267 		 */
9268 		dma_wmb();
9269 		writel(i, rx_ring->tail);
9270 	}
9271 }
9272 
9273 /**
9274  * igb_mii_ioctl -
9275  * @netdev: pointer to netdev struct
9276  * @ifr: interface structure
9277  * @cmd: ioctl command to execute
9278  **/
9279 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9280 {
9281 	struct igb_adapter *adapter = netdev_priv(netdev);
9282 	struct mii_ioctl_data *data = if_mii(ifr);
9283 
9284 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9285 		return -EOPNOTSUPP;
9286 
9287 	switch (cmd) {
9288 	case SIOCGMIIPHY:
9289 		data->phy_id = adapter->hw.phy.addr;
9290 		break;
9291 	case SIOCGMIIREG:
9292 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9293 				     &data->val_out))
9294 			return -EIO;
9295 		break;
9296 	case SIOCSMIIREG:
9297 		if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9298 				      data->val_in))
9299 			return -EIO;
9300 		break;
9301 	default:
9302 		return -EOPNOTSUPP;
9303 	}
9304 	return 0;
9305 }
9306 
9307 /**
9308  * igb_ioctl -
9309  * @netdev: pointer to netdev struct
9310  * @ifr: interface structure
9311  * @cmd: ioctl command to execute
9312  **/
9313 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9314 {
9315 	switch (cmd) {
9316 	case SIOCGMIIPHY:
9317 	case SIOCGMIIREG:
9318 	case SIOCSMIIREG:
9319 		return igb_mii_ioctl(netdev, ifr, cmd);
9320 	default:
9321 		return -EOPNOTSUPP;
9322 	}
9323 }
9324 
9325 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9326 {
9327 	struct igb_adapter *adapter = hw->back;
9328 
9329 	pci_read_config_word(adapter->pdev, reg, value);
9330 }
9331 
9332 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9333 {
9334 	struct igb_adapter *adapter = hw->back;
9335 
9336 	pci_write_config_word(adapter->pdev, reg, *value);
9337 }
9338 
9339 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9340 {
9341 	struct igb_adapter *adapter = hw->back;
9342 
9343 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9344 		return -E1000_ERR_CONFIG;
9345 
9346 	return 0;
9347 }
9348 
9349 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9350 {
9351 	struct igb_adapter *adapter = hw->back;
9352 
9353 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9354 		return -E1000_ERR_CONFIG;
9355 
9356 	return 0;
9357 }
9358 
9359 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9360 {
9361 	struct igb_adapter *adapter = netdev_priv(netdev);
9362 	struct e1000_hw *hw = &adapter->hw;
9363 	u32 ctrl, rctl;
9364 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9365 
9366 	if (enable) {
9367 		/* enable VLAN tag insert/strip */
9368 		ctrl = rd32(E1000_CTRL);
9369 		ctrl |= E1000_CTRL_VME;
9370 		wr32(E1000_CTRL, ctrl);
9371 
9372 		/* Disable CFI check */
9373 		rctl = rd32(E1000_RCTL);
9374 		rctl &= ~E1000_RCTL_CFIEN;
9375 		wr32(E1000_RCTL, rctl);
9376 	} else {
9377 		/* disable VLAN tag insert/strip */
9378 		ctrl = rd32(E1000_CTRL);
9379 		ctrl &= ~E1000_CTRL_VME;
9380 		wr32(E1000_CTRL, ctrl);
9381 	}
9382 
9383 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9384 }
9385 
9386 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9387 			       __be16 proto, u16 vid)
9388 {
9389 	struct igb_adapter *adapter = netdev_priv(netdev);
9390 	struct e1000_hw *hw = &adapter->hw;
9391 	int pf_id = adapter->vfs_allocated_count;
9392 
9393 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9394 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9395 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9396 
9397 	set_bit(vid, adapter->active_vlans);
9398 
9399 	return 0;
9400 }
9401 
9402 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9403 				__be16 proto, u16 vid)
9404 {
9405 	struct igb_adapter *adapter = netdev_priv(netdev);
9406 	int pf_id = adapter->vfs_allocated_count;
9407 	struct e1000_hw *hw = &adapter->hw;
9408 
9409 	/* remove VID from filter table */
9410 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9411 		igb_vfta_set(hw, vid, pf_id, false, true);
9412 
9413 	clear_bit(vid, adapter->active_vlans);
9414 
9415 	return 0;
9416 }
9417 
9418 static void igb_restore_vlan(struct igb_adapter *adapter)
9419 {
9420 	u16 vid = 1;
9421 
9422 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9423 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9424 
9425 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9426 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9427 }
9428 
9429 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9430 {
9431 	struct pci_dev *pdev = adapter->pdev;
9432 	struct e1000_mac_info *mac = &adapter->hw.mac;
9433 
9434 	mac->autoneg = 0;
9435 
9436 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9437 	 * for the switch() below to work
9438 	 */
9439 	if ((spd & 1) || (dplx & ~1))
9440 		goto err_inval;
9441 
9442 	/* Fiber NIC's only allow 1000 gbps Full duplex
9443 	 * and 100Mbps Full duplex for 100baseFx sfp
9444 	 */
9445 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9446 		switch (spd + dplx) {
9447 		case SPEED_10 + DUPLEX_HALF:
9448 		case SPEED_10 + DUPLEX_FULL:
9449 		case SPEED_100 + DUPLEX_HALF:
9450 			goto err_inval;
9451 		default:
9452 			break;
9453 		}
9454 	}
9455 
9456 	switch (spd + dplx) {
9457 	case SPEED_10 + DUPLEX_HALF:
9458 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9459 		break;
9460 	case SPEED_10 + DUPLEX_FULL:
9461 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9462 		break;
9463 	case SPEED_100 + DUPLEX_HALF:
9464 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9465 		break;
9466 	case SPEED_100 + DUPLEX_FULL:
9467 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9468 		break;
9469 	case SPEED_1000 + DUPLEX_FULL:
9470 		mac->autoneg = 1;
9471 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9472 		break;
9473 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9474 	default:
9475 		goto err_inval;
9476 	}
9477 
9478 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9479 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9480 
9481 	return 0;
9482 
9483 err_inval:
9484 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9485 	return -EINVAL;
9486 }
9487 
9488 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9489 			  bool runtime)
9490 {
9491 	struct net_device *netdev = pci_get_drvdata(pdev);
9492 	struct igb_adapter *adapter = netdev_priv(netdev);
9493 	struct e1000_hw *hw = &adapter->hw;
9494 	u32 ctrl, rctl, status;
9495 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9496 	bool wake;
9497 
9498 	rtnl_lock();
9499 	netif_device_detach(netdev);
9500 
9501 	if (netif_running(netdev))
9502 		__igb_close(netdev, true);
9503 
9504 	igb_ptp_suspend(adapter);
9505 
9506 	igb_clear_interrupt_scheme(adapter);
9507 	rtnl_unlock();
9508 
9509 	status = rd32(E1000_STATUS);
9510 	if (status & E1000_STATUS_LU)
9511 		wufc &= ~E1000_WUFC_LNKC;
9512 
9513 	if (wufc) {
9514 		igb_setup_rctl(adapter);
9515 		igb_set_rx_mode(netdev);
9516 
9517 		/* turn on all-multi mode if wake on multicast is enabled */
9518 		if (wufc & E1000_WUFC_MC) {
9519 			rctl = rd32(E1000_RCTL);
9520 			rctl |= E1000_RCTL_MPE;
9521 			wr32(E1000_RCTL, rctl);
9522 		}
9523 
9524 		ctrl = rd32(E1000_CTRL);
9525 		ctrl |= E1000_CTRL_ADVD3WUC;
9526 		wr32(E1000_CTRL, ctrl);
9527 
9528 		/* Allow time for pending master requests to run */
9529 		igb_disable_pcie_master(hw);
9530 
9531 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9532 		wr32(E1000_WUFC, wufc);
9533 	} else {
9534 		wr32(E1000_WUC, 0);
9535 		wr32(E1000_WUFC, 0);
9536 	}
9537 
9538 	wake = wufc || adapter->en_mng_pt;
9539 	if (!wake)
9540 		igb_power_down_link(adapter);
9541 	else
9542 		igb_power_up_link(adapter);
9543 
9544 	if (enable_wake)
9545 		*enable_wake = wake;
9546 
9547 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9548 	 * would have already happened in close and is redundant.
9549 	 */
9550 	igb_release_hw_control(adapter);
9551 
9552 	pci_disable_device(pdev);
9553 
9554 	return 0;
9555 }
9556 
9557 static void igb_deliver_wake_packet(struct net_device *netdev)
9558 {
9559 	struct igb_adapter *adapter = netdev_priv(netdev);
9560 	struct e1000_hw *hw = &adapter->hw;
9561 	struct sk_buff *skb;
9562 	u32 wupl;
9563 
9564 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9565 
9566 	/* WUPM stores only the first 128 bytes of the wake packet.
9567 	 * Read the packet only if we have the whole thing.
9568 	 */
9569 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9570 		return;
9571 
9572 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9573 	if (!skb)
9574 		return;
9575 
9576 	skb_put(skb, wupl);
9577 
9578 	/* Ensure reads are 32-bit aligned */
9579 	wupl = roundup(wupl, 4);
9580 
9581 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9582 
9583 	skb->protocol = eth_type_trans(skb, netdev);
9584 	netif_rx(skb);
9585 }
9586 
9587 static int igb_suspend(struct device *dev)
9588 {
9589 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9590 }
9591 
9592 static int __igb_resume(struct device *dev, bool rpm)
9593 {
9594 	struct pci_dev *pdev = to_pci_dev(dev);
9595 	struct net_device *netdev = pci_get_drvdata(pdev);
9596 	struct igb_adapter *adapter = netdev_priv(netdev);
9597 	struct e1000_hw *hw = &adapter->hw;
9598 	u32 err, val;
9599 
9600 	pci_set_power_state(pdev, PCI_D0);
9601 	pci_restore_state(pdev);
9602 	pci_save_state(pdev);
9603 
9604 	if (!pci_device_is_present(pdev))
9605 		return -ENODEV;
9606 	err = pci_enable_device_mem(pdev);
9607 	if (err) {
9608 		dev_err(&pdev->dev,
9609 			"igb: Cannot enable PCI device from suspend\n");
9610 		return err;
9611 	}
9612 	pci_set_master(pdev);
9613 
9614 	pci_enable_wake(pdev, PCI_D3hot, 0);
9615 	pci_enable_wake(pdev, PCI_D3cold, 0);
9616 
9617 	if (igb_init_interrupt_scheme(adapter, true)) {
9618 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9619 		return -ENOMEM;
9620 	}
9621 
9622 	igb_reset(adapter);
9623 
9624 	/* let the f/w know that the h/w is now under the control of the
9625 	 * driver.
9626 	 */
9627 	igb_get_hw_control(adapter);
9628 
9629 	val = rd32(E1000_WUS);
9630 	if (val & WAKE_PKT_WUS)
9631 		igb_deliver_wake_packet(netdev);
9632 
9633 	wr32(E1000_WUS, ~0);
9634 
9635 	if (!rpm)
9636 		rtnl_lock();
9637 	if (!err && netif_running(netdev))
9638 		err = __igb_open(netdev, true);
9639 
9640 	if (!err)
9641 		netif_device_attach(netdev);
9642 	if (!rpm)
9643 		rtnl_unlock();
9644 
9645 	return err;
9646 }
9647 
9648 static int igb_resume(struct device *dev)
9649 {
9650 	return __igb_resume(dev, false);
9651 }
9652 
9653 static int igb_runtime_idle(struct device *dev)
9654 {
9655 	struct net_device *netdev = dev_get_drvdata(dev);
9656 	struct igb_adapter *adapter = netdev_priv(netdev);
9657 
9658 	if (!igb_has_link(adapter))
9659 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9660 
9661 	return -EBUSY;
9662 }
9663 
9664 static int igb_runtime_suspend(struct device *dev)
9665 {
9666 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9667 }
9668 
9669 static int igb_runtime_resume(struct device *dev)
9670 {
9671 	return __igb_resume(dev, true);
9672 }
9673 
9674 static void igb_shutdown(struct pci_dev *pdev)
9675 {
9676 	bool wake;
9677 
9678 	__igb_shutdown(pdev, &wake, 0);
9679 
9680 	if (system_state == SYSTEM_POWER_OFF) {
9681 		pci_wake_from_d3(pdev, wake);
9682 		pci_set_power_state(pdev, PCI_D3hot);
9683 	}
9684 }
9685 
9686 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9687 {
9688 #ifdef CONFIG_PCI_IOV
9689 	int err;
9690 
9691 	if (num_vfs == 0) {
9692 		return igb_disable_sriov(dev, true);
9693 	} else {
9694 		err = igb_enable_sriov(dev, num_vfs, true);
9695 		return err ? err : num_vfs;
9696 	}
9697 #endif
9698 	return 0;
9699 }
9700 
9701 /**
9702  *  igb_io_error_detected - called when PCI error is detected
9703  *  @pdev: Pointer to PCI device
9704  *  @state: The current pci connection state
9705  *
9706  *  This function is called after a PCI bus error affecting
9707  *  this device has been detected.
9708  **/
9709 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9710 					      pci_channel_state_t state)
9711 {
9712 	struct net_device *netdev = pci_get_drvdata(pdev);
9713 	struct igb_adapter *adapter = netdev_priv(netdev);
9714 
9715 	if (state == pci_channel_io_normal) {
9716 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9717 		return PCI_ERS_RESULT_CAN_RECOVER;
9718 	}
9719 
9720 	netif_device_detach(netdev);
9721 
9722 	if (state == pci_channel_io_perm_failure)
9723 		return PCI_ERS_RESULT_DISCONNECT;
9724 
9725 	rtnl_lock();
9726 	if (netif_running(netdev))
9727 		igb_down(adapter);
9728 	rtnl_unlock();
9729 
9730 	pci_disable_device(pdev);
9731 
9732 	/* Request a slot reset. */
9733 	return PCI_ERS_RESULT_NEED_RESET;
9734 }
9735 
9736 /**
9737  *  igb_io_slot_reset - called after the pci bus has been reset.
9738  *  @pdev: Pointer to PCI device
9739  *
9740  *  Restart the card from scratch, as if from a cold-boot. Implementation
9741  *  resembles the first-half of the __igb_resume routine.
9742  **/
9743 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9744 {
9745 	struct net_device *netdev = pci_get_drvdata(pdev);
9746 	struct igb_adapter *adapter = netdev_priv(netdev);
9747 	struct e1000_hw *hw = &adapter->hw;
9748 	pci_ers_result_t result;
9749 
9750 	if (pci_enable_device_mem(pdev)) {
9751 		dev_err(&pdev->dev,
9752 			"Cannot re-enable PCI device after reset.\n");
9753 		result = PCI_ERS_RESULT_DISCONNECT;
9754 	} else {
9755 		pci_set_master(pdev);
9756 		pci_restore_state(pdev);
9757 		pci_save_state(pdev);
9758 
9759 		pci_enable_wake(pdev, PCI_D3hot, 0);
9760 		pci_enable_wake(pdev, PCI_D3cold, 0);
9761 
9762 		/* In case of PCI error, adapter lose its HW address
9763 		 * so we should re-assign it here.
9764 		 */
9765 		hw->hw_addr = adapter->io_addr;
9766 
9767 		igb_reset(adapter);
9768 		wr32(E1000_WUS, ~0);
9769 		result = PCI_ERS_RESULT_RECOVERED;
9770 	}
9771 
9772 	return result;
9773 }
9774 
9775 /**
9776  *  igb_io_resume - called when traffic can start flowing again.
9777  *  @pdev: Pointer to PCI device
9778  *
9779  *  This callback is called when the error recovery driver tells us that
9780  *  its OK to resume normal operation. Implementation resembles the
9781  *  second-half of the __igb_resume routine.
9782  */
9783 static void igb_io_resume(struct pci_dev *pdev)
9784 {
9785 	struct net_device *netdev = pci_get_drvdata(pdev);
9786 	struct igb_adapter *adapter = netdev_priv(netdev);
9787 
9788 	rtnl_lock();
9789 	if (netif_running(netdev)) {
9790 		if (!test_bit(__IGB_DOWN, &adapter->state)) {
9791 			dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9792 			rtnl_unlock();
9793 			return;
9794 		}
9795 
9796 		if (igb_up(adapter)) {
9797 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9798 			rtnl_unlock();
9799 			return;
9800 		}
9801 	}
9802 	rtnl_unlock();
9803 
9804 	netif_device_attach(netdev);
9805 
9806 	/* let the f/w know that the h/w is now under the control of the
9807 	 * driver.
9808 	 */
9809 	igb_get_hw_control(adapter);
9810 }
9811 
9812 /**
9813  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9814  *  @adapter: Pointer to adapter structure
9815  *  @index: Index of the RAR entry which need to be synced with MAC table
9816  **/
9817 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9818 {
9819 	struct e1000_hw *hw = &adapter->hw;
9820 	u32 rar_low, rar_high;
9821 	u8 *addr = adapter->mac_table[index].addr;
9822 
9823 	/* HW expects these to be in network order when they are plugged
9824 	 * into the registers which are little endian.  In order to guarantee
9825 	 * that ordering we need to do an leXX_to_cpup here in order to be
9826 	 * ready for the byteswap that occurs with writel
9827 	 */
9828 	rar_low = le32_to_cpup((__le32 *)(addr));
9829 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9830 
9831 	/* Indicate to hardware the Address is Valid. */
9832 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9833 		if (is_valid_ether_addr(addr))
9834 			rar_high |= E1000_RAH_AV;
9835 
9836 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9837 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9838 
9839 		switch (hw->mac.type) {
9840 		case e1000_82575:
9841 		case e1000_i210:
9842 			if (adapter->mac_table[index].state &
9843 			    IGB_MAC_STATE_QUEUE_STEERING)
9844 				rar_high |= E1000_RAH_QSEL_ENABLE;
9845 
9846 			rar_high |= E1000_RAH_POOL_1 *
9847 				    adapter->mac_table[index].queue;
9848 			break;
9849 		default:
9850 			rar_high |= E1000_RAH_POOL_1 <<
9851 				    adapter->mac_table[index].queue;
9852 			break;
9853 		}
9854 	}
9855 
9856 	wr32(E1000_RAL(index), rar_low);
9857 	wrfl();
9858 	wr32(E1000_RAH(index), rar_high);
9859 	wrfl();
9860 }
9861 
9862 static int igb_set_vf_mac(struct igb_adapter *adapter,
9863 			  int vf, unsigned char *mac_addr)
9864 {
9865 	struct e1000_hw *hw = &adapter->hw;
9866 	/* VF MAC addresses start at end of receive addresses and moves
9867 	 * towards the first, as a result a collision should not be possible
9868 	 */
9869 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9870 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9871 
9872 	ether_addr_copy(vf_mac_addr, mac_addr);
9873 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9874 	adapter->mac_table[rar_entry].queue = vf;
9875 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9876 	igb_rar_set_index(adapter, rar_entry);
9877 
9878 	return 0;
9879 }
9880 
9881 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9882 {
9883 	struct igb_adapter *adapter = netdev_priv(netdev);
9884 
9885 	if (vf >= adapter->vfs_allocated_count)
9886 		return -EINVAL;
9887 
9888 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9889 	 * flag and allows to overwrite the MAC via VF netdev.  This
9890 	 * is necessary to allow libvirt a way to restore the original
9891 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9892 	 * down a VM.
9893 	 */
9894 	if (is_zero_ether_addr(mac)) {
9895 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9896 		dev_info(&adapter->pdev->dev,
9897 			 "remove administratively set MAC on VF %d\n",
9898 			 vf);
9899 	} else if (is_valid_ether_addr(mac)) {
9900 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9901 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9902 			 mac, vf);
9903 		dev_info(&adapter->pdev->dev,
9904 			 "Reload the VF driver to make this change effective.");
9905 		/* Generate additional warning if PF is down */
9906 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9907 			dev_warn(&adapter->pdev->dev,
9908 				 "The VF MAC address has been set, but the PF device is not up.\n");
9909 			dev_warn(&adapter->pdev->dev,
9910 				 "Bring the PF device up before attempting to use the VF device.\n");
9911 		}
9912 	} else {
9913 		return -EINVAL;
9914 	}
9915 	return igb_set_vf_mac(adapter, vf, mac);
9916 }
9917 
9918 static int igb_link_mbps(int internal_link_speed)
9919 {
9920 	switch (internal_link_speed) {
9921 	case SPEED_100:
9922 		return 100;
9923 	case SPEED_1000:
9924 		return 1000;
9925 	default:
9926 		return 0;
9927 	}
9928 }
9929 
9930 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9931 				  int link_speed)
9932 {
9933 	int rf_dec, rf_int;
9934 	u32 bcnrc_val;
9935 
9936 	if (tx_rate != 0) {
9937 		/* Calculate the rate factor values to set */
9938 		rf_int = link_speed / tx_rate;
9939 		rf_dec = (link_speed - (rf_int * tx_rate));
9940 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9941 			 tx_rate;
9942 
9943 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9944 		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9945 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9946 	} else {
9947 		bcnrc_val = 0;
9948 	}
9949 
9950 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9951 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9952 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9953 	 */
9954 	wr32(E1000_RTTBCNRM, 0x14);
9955 	wr32(E1000_RTTBCNRC, bcnrc_val);
9956 }
9957 
9958 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9959 {
9960 	int actual_link_speed, i;
9961 	bool reset_rate = false;
9962 
9963 	/* VF TX rate limit was not set or not supported */
9964 	if ((adapter->vf_rate_link_speed == 0) ||
9965 	    (adapter->hw.mac.type != e1000_82576))
9966 		return;
9967 
9968 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9969 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9970 		reset_rate = true;
9971 		adapter->vf_rate_link_speed = 0;
9972 		dev_info(&adapter->pdev->dev,
9973 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9974 	}
9975 
9976 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9977 		if (reset_rate)
9978 			adapter->vf_data[i].tx_rate = 0;
9979 
9980 		igb_set_vf_rate_limit(&adapter->hw, i,
9981 				      adapter->vf_data[i].tx_rate,
9982 				      actual_link_speed);
9983 	}
9984 }
9985 
9986 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9987 			     int min_tx_rate, int max_tx_rate)
9988 {
9989 	struct igb_adapter *adapter = netdev_priv(netdev);
9990 	struct e1000_hw *hw = &adapter->hw;
9991 	int actual_link_speed;
9992 
9993 	if (hw->mac.type != e1000_82576)
9994 		return -EOPNOTSUPP;
9995 
9996 	if (min_tx_rate)
9997 		return -EINVAL;
9998 
9999 	actual_link_speed = igb_link_mbps(adapter->link_speed);
10000 	if ((vf >= adapter->vfs_allocated_count) ||
10001 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
10002 	    (max_tx_rate < 0) ||
10003 	    (max_tx_rate > actual_link_speed))
10004 		return -EINVAL;
10005 
10006 	adapter->vf_rate_link_speed = actual_link_speed;
10007 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
10008 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
10009 
10010 	return 0;
10011 }
10012 
10013 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
10014 				   bool setting)
10015 {
10016 	struct igb_adapter *adapter = netdev_priv(netdev);
10017 	struct e1000_hw *hw = &adapter->hw;
10018 	u32 reg_val, reg_offset;
10019 
10020 	if (!adapter->vfs_allocated_count)
10021 		return -EOPNOTSUPP;
10022 
10023 	if (vf >= adapter->vfs_allocated_count)
10024 		return -EINVAL;
10025 
10026 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
10027 	reg_val = rd32(reg_offset);
10028 	if (setting)
10029 		reg_val |= (BIT(vf) |
10030 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10031 	else
10032 		reg_val &= ~(BIT(vf) |
10033 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10034 	wr32(reg_offset, reg_val);
10035 
10036 	adapter->vf_data[vf].spoofchk_enabled = setting;
10037 	return 0;
10038 }
10039 
10040 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
10041 {
10042 	struct igb_adapter *adapter = netdev_priv(netdev);
10043 
10044 	if (vf >= adapter->vfs_allocated_count)
10045 		return -EINVAL;
10046 	if (adapter->vf_data[vf].trusted == setting)
10047 		return 0;
10048 
10049 	adapter->vf_data[vf].trusted = setting;
10050 
10051 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
10052 		 vf, setting ? "" : "not ");
10053 	return 0;
10054 }
10055 
10056 static int igb_ndo_get_vf_config(struct net_device *netdev,
10057 				 int vf, struct ifla_vf_info *ivi)
10058 {
10059 	struct igb_adapter *adapter = netdev_priv(netdev);
10060 	if (vf >= adapter->vfs_allocated_count)
10061 		return -EINVAL;
10062 	ivi->vf = vf;
10063 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10064 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10065 	ivi->min_tx_rate = 0;
10066 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
10067 	ivi->qos = adapter->vf_data[vf].pf_qos;
10068 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10069 	ivi->trusted = adapter->vf_data[vf].trusted;
10070 	return 0;
10071 }
10072 
10073 static void igb_vmm_control(struct igb_adapter *adapter)
10074 {
10075 	struct e1000_hw *hw = &adapter->hw;
10076 	u32 reg;
10077 
10078 	switch (hw->mac.type) {
10079 	case e1000_82575:
10080 	case e1000_i210:
10081 	case e1000_i211:
10082 	case e1000_i354:
10083 	default:
10084 		/* replication is not supported for 82575 */
10085 		return;
10086 	case e1000_82576:
10087 		/* notify HW that the MAC is adding vlan tags */
10088 		reg = rd32(E1000_DTXCTL);
10089 		reg |= E1000_DTXCTL_VLAN_ADDED;
10090 		wr32(E1000_DTXCTL, reg);
10091 		fallthrough;
10092 	case e1000_82580:
10093 		/* enable replication vlan tag stripping */
10094 		reg = rd32(E1000_RPLOLR);
10095 		reg |= E1000_RPLOLR_STRVLAN;
10096 		wr32(E1000_RPLOLR, reg);
10097 		fallthrough;
10098 	case e1000_i350:
10099 		/* none of the above registers are supported by i350 */
10100 		break;
10101 	}
10102 
10103 	if (adapter->vfs_allocated_count) {
10104 		igb_vmdq_set_loopback_pf(hw, true);
10105 		igb_vmdq_set_replication_pf(hw, true);
10106 		igb_vmdq_set_anti_spoofing_pf(hw, true,
10107 					      adapter->vfs_allocated_count);
10108 	} else {
10109 		igb_vmdq_set_loopback_pf(hw, false);
10110 		igb_vmdq_set_replication_pf(hw, false);
10111 	}
10112 }
10113 
10114 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10115 {
10116 	struct e1000_hw *hw = &adapter->hw;
10117 	u32 dmac_thr;
10118 	u16 hwm;
10119 	u32 reg;
10120 
10121 	if (hw->mac.type > e1000_82580) {
10122 		if (adapter->flags & IGB_FLAG_DMAC) {
10123 			/* force threshold to 0. */
10124 			wr32(E1000_DMCTXTH, 0);
10125 
10126 			/* DMA Coalescing high water mark needs to be greater
10127 			 * than the Rx threshold. Set hwm to PBA - max frame
10128 			 * size in 16B units, capping it at PBA - 6KB.
10129 			 */
10130 			hwm = 64 * (pba - 6);
10131 			reg = rd32(E1000_FCRTC);
10132 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10133 			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10134 			wr32(E1000_FCRTC, reg);
10135 
10136 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10137 			 * frame size, capping it at PBA - 10KB.
10138 			 */
10139 			dmac_thr = pba - 10;
10140 			reg = rd32(E1000_DMACR);
10141 			reg &= ~E1000_DMACR_DMACTHR_MASK;
10142 			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10143 
10144 			/* transition to L0x or L1 if available..*/
10145 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10146 
10147 			/* watchdog timer= +-1000 usec in 32usec intervals */
10148 			reg |= (1000 >> 5);
10149 
10150 			/* Disable BMC-to-OS Watchdog Enable */
10151 			if (hw->mac.type != e1000_i354)
10152 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10153 			wr32(E1000_DMACR, reg);
10154 
10155 			/* no lower threshold to disable
10156 			 * coalescing(smart fifb)-UTRESH=0
10157 			 */
10158 			wr32(E1000_DMCRTRH, 0);
10159 
10160 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10161 
10162 			wr32(E1000_DMCTLX, reg);
10163 
10164 			/* free space in tx packet buffer to wake from
10165 			 * DMA coal
10166 			 */
10167 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10168 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10169 		}
10170 
10171 		if (hw->mac.type >= e1000_i210 ||
10172 		    (adapter->flags & IGB_FLAG_DMAC)) {
10173 			reg = rd32(E1000_PCIEMISC);
10174 			reg |= E1000_PCIEMISC_LX_DECISION;
10175 			wr32(E1000_PCIEMISC, reg);
10176 		} /* endif adapter->dmac is not disabled */
10177 	} else if (hw->mac.type == e1000_82580) {
10178 		u32 reg = rd32(E1000_PCIEMISC);
10179 
10180 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10181 		wr32(E1000_DMACR, 0);
10182 	}
10183 }
10184 
10185 /**
10186  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10187  *  @hw: pointer to hardware structure
10188  *  @byte_offset: byte offset to read
10189  *  @dev_addr: device address
10190  *  @data: value read
10191  *
10192  *  Performs byte read operation over I2C interface at
10193  *  a specified device address.
10194  **/
10195 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10196 		      u8 dev_addr, u8 *data)
10197 {
10198 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10199 	struct i2c_client *this_client = adapter->i2c_client;
10200 	s32 status;
10201 	u16 swfw_mask = 0;
10202 
10203 	if (!this_client)
10204 		return E1000_ERR_I2C;
10205 
10206 	swfw_mask = E1000_SWFW_PHY0_SM;
10207 
10208 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10209 		return E1000_ERR_SWFW_SYNC;
10210 
10211 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10212 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10213 
10214 	if (status < 0)
10215 		return E1000_ERR_I2C;
10216 	else {
10217 		*data = status;
10218 		return 0;
10219 	}
10220 }
10221 
10222 /**
10223  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10224  *  @hw: pointer to hardware structure
10225  *  @byte_offset: byte offset to write
10226  *  @dev_addr: device address
10227  *  @data: value to write
10228  *
10229  *  Performs byte write operation over I2C interface at
10230  *  a specified device address.
10231  **/
10232 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10233 		       u8 dev_addr, u8 data)
10234 {
10235 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10236 	struct i2c_client *this_client = adapter->i2c_client;
10237 	s32 status;
10238 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10239 
10240 	if (!this_client)
10241 		return E1000_ERR_I2C;
10242 
10243 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10244 		return E1000_ERR_SWFW_SYNC;
10245 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10246 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10247 
10248 	if (status)
10249 		return E1000_ERR_I2C;
10250 	else
10251 		return 0;
10252 
10253 }
10254 
10255 int igb_reinit_queues(struct igb_adapter *adapter)
10256 {
10257 	struct net_device *netdev = adapter->netdev;
10258 	struct pci_dev *pdev = adapter->pdev;
10259 	int err = 0;
10260 
10261 	if (netif_running(netdev))
10262 		igb_close(netdev);
10263 
10264 	igb_reset_interrupt_capability(adapter);
10265 
10266 	if (igb_init_interrupt_scheme(adapter, true)) {
10267 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10268 		return -ENOMEM;
10269 	}
10270 
10271 	if (netif_running(netdev))
10272 		err = igb_open(netdev);
10273 
10274 	return err;
10275 }
10276 
10277 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10278 {
10279 	struct igb_nfc_filter *rule;
10280 
10281 	spin_lock(&adapter->nfc_lock);
10282 
10283 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10284 		igb_erase_filter(adapter, rule);
10285 
10286 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10287 		igb_erase_filter(adapter, rule);
10288 
10289 	spin_unlock(&adapter->nfc_lock);
10290 }
10291 
10292 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10293 {
10294 	struct igb_nfc_filter *rule;
10295 
10296 	spin_lock(&adapter->nfc_lock);
10297 
10298 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10299 		igb_add_filter(adapter, rule);
10300 
10301 	spin_unlock(&adapter->nfc_lock);
10302 }
10303 
10304 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10305 			  igb_runtime_suspend, igb_runtime_resume,
10306 			  igb_runtime_idle);
10307 
10308 static struct pci_driver igb_driver = {
10309 	.name     = igb_driver_name,
10310 	.id_table = igb_pci_tbl,
10311 	.probe    = igb_probe,
10312 	.remove   = igb_remove,
10313 	.driver.pm = pm_ptr(&igb_pm_ops),
10314 	.shutdown = igb_shutdown,
10315 	.sriov_configure = igb_pci_sriov_configure,
10316 	.err_handler = &igb_err_handler
10317 };
10318 
10319 /* igb_main.c */
10320