xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41 
42 enum queue_mode {
43 	QUEUE_MODE_STRICT_PRIORITY,
44 	QUEUE_MODE_STREAM_RESERVATION,
45 };
46 
47 enum tx_queue_prio {
48 	TX_QUEUE_PRIO_HIGH,
49 	TX_QUEUE_PRIO_LOW,
50 };
51 
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 				"Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 				"Copyright (c) 2007-2014 Intel Corporation.";
57 
58 static const struct e1000_info *igb_info_tbl[] = {
59 	[board_82575] = &e1000_82575_info,
60 };
61 
62 static const struct pci_device_id igb_pci_tbl[] = {
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 	/* required last entry */
99 	{0, }
100 };
101 
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103 
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_clean_tx_ring(struct igb_ring *);
119 static void igb_clean_rx_ring(struct igb_ring *);
120 static void igb_set_rx_mode(struct net_device *);
121 static void igb_update_phy_info(struct timer_list *);
122 static void igb_watchdog(struct timer_list *);
123 static void igb_watchdog_task(struct work_struct *);
124 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
125 static void igb_get_stats64(struct net_device *dev,
126 			    struct rtnl_link_stats64 *stats);
127 static int igb_change_mtu(struct net_device *, int);
128 static int igb_set_mac(struct net_device *, void *);
129 static void igb_set_uta(struct igb_adapter *adapter, bool set);
130 static irqreturn_t igb_intr(int irq, void *);
131 static irqreturn_t igb_intr_msi(int irq, void *);
132 static irqreturn_t igb_msix_other(int irq, void *);
133 static irqreturn_t igb_msix_ring(int irq, void *);
134 #ifdef CONFIG_IGB_DCA
135 static void igb_update_dca(struct igb_q_vector *);
136 static void igb_setup_dca(struct igb_adapter *);
137 #endif /* CONFIG_IGB_DCA */
138 static int igb_poll(struct napi_struct *, int);
139 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
140 static int igb_clean_rx_irq(struct igb_q_vector *, int);
141 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
142 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
143 static void igb_reset_task(struct work_struct *);
144 static void igb_vlan_mode(struct net_device *netdev,
145 			  netdev_features_t features);
146 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
147 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
148 static void igb_restore_vlan(struct igb_adapter *);
149 static void igb_rar_set_index(struct igb_adapter *, u32);
150 static void igb_ping_all_vfs(struct igb_adapter *);
151 static void igb_msg_task(struct igb_adapter *);
152 static void igb_vmm_control(struct igb_adapter *);
153 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
154 static void igb_flush_mac_table(struct igb_adapter *);
155 static int igb_available_rars(struct igb_adapter *, u8);
156 static void igb_set_default_mac_filter(struct igb_adapter *);
157 static int igb_uc_sync(struct net_device *, const unsigned char *);
158 static int igb_uc_unsync(struct net_device *, const unsigned char *);
159 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
160 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
161 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
162 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
163 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
164 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
165 				   bool setting);
166 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
167 				bool setting);
168 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
169 				 struct ifla_vf_info *ivi);
170 static void igb_check_vf_rate_limit(struct igb_adapter *);
171 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
172 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
173 
174 #ifdef CONFIG_PCI_IOV
175 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
176 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
177 #endif
178 
179 #ifdef CONFIG_IGB_DCA
180 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
181 static struct notifier_block dca_notifier = {
182 	.notifier_call	= igb_notify_dca,
183 	.next		= NULL,
184 	.priority	= 0
185 };
186 #endif
187 #ifdef CONFIG_PCI_IOV
188 static unsigned int max_vfs;
189 module_param(max_vfs, uint, 0444);
190 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
191 #endif /* CONFIG_PCI_IOV */
192 
193 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
194 		     pci_channel_state_t);
195 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
196 static void igb_io_resume(struct pci_dev *);
197 
198 static const struct pci_error_handlers igb_err_handler = {
199 	.error_detected = igb_io_error_detected,
200 	.slot_reset = igb_io_slot_reset,
201 	.resume = igb_io_resume,
202 };
203 
204 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
205 
206 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
207 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
208 MODULE_LICENSE("GPL v2");
209 
210 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
211 static int debug = -1;
212 module_param(debug, int, 0);
213 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
214 
215 struct igb_reg_info {
216 	u32 ofs;
217 	char *name;
218 };
219 
220 static const struct igb_reg_info igb_reg_info_tbl[] = {
221 
222 	/* General Registers */
223 	{E1000_CTRL, "CTRL"},
224 	{E1000_STATUS, "STATUS"},
225 	{E1000_CTRL_EXT, "CTRL_EXT"},
226 
227 	/* Interrupt Registers */
228 	{E1000_ICR, "ICR"},
229 
230 	/* RX Registers */
231 	{E1000_RCTL, "RCTL"},
232 	{E1000_RDLEN(0), "RDLEN"},
233 	{E1000_RDH(0), "RDH"},
234 	{E1000_RDT(0), "RDT"},
235 	{E1000_RXDCTL(0), "RXDCTL"},
236 	{E1000_RDBAL(0), "RDBAL"},
237 	{E1000_RDBAH(0), "RDBAH"},
238 
239 	/* TX Registers */
240 	{E1000_TCTL, "TCTL"},
241 	{E1000_TDBAL(0), "TDBAL"},
242 	{E1000_TDBAH(0), "TDBAH"},
243 	{E1000_TDLEN(0), "TDLEN"},
244 	{E1000_TDH(0), "TDH"},
245 	{E1000_TDT(0), "TDT"},
246 	{E1000_TXDCTL(0), "TXDCTL"},
247 	{E1000_TDFH, "TDFH"},
248 	{E1000_TDFT, "TDFT"},
249 	{E1000_TDFHS, "TDFHS"},
250 	{E1000_TDFPC, "TDFPC"},
251 
252 	/* List Terminator */
253 	{}
254 };
255 
256 /* igb_regdump - register printout routine */
257 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
258 {
259 	int n = 0;
260 	char rname[16];
261 	u32 regs[8];
262 
263 	switch (reginfo->ofs) {
264 	case E1000_RDLEN(0):
265 		for (n = 0; n < 4; n++)
266 			regs[n] = rd32(E1000_RDLEN(n));
267 		break;
268 	case E1000_RDH(0):
269 		for (n = 0; n < 4; n++)
270 			regs[n] = rd32(E1000_RDH(n));
271 		break;
272 	case E1000_RDT(0):
273 		for (n = 0; n < 4; n++)
274 			regs[n] = rd32(E1000_RDT(n));
275 		break;
276 	case E1000_RXDCTL(0):
277 		for (n = 0; n < 4; n++)
278 			regs[n] = rd32(E1000_RXDCTL(n));
279 		break;
280 	case E1000_RDBAL(0):
281 		for (n = 0; n < 4; n++)
282 			regs[n] = rd32(E1000_RDBAL(n));
283 		break;
284 	case E1000_RDBAH(0):
285 		for (n = 0; n < 4; n++)
286 			regs[n] = rd32(E1000_RDBAH(n));
287 		break;
288 	case E1000_TDBAL(0):
289 		for (n = 0; n < 4; n++)
290 			regs[n] = rd32(E1000_TDBAL(n));
291 		break;
292 	case E1000_TDBAH(0):
293 		for (n = 0; n < 4; n++)
294 			regs[n] = rd32(E1000_TDBAH(n));
295 		break;
296 	case E1000_TDLEN(0):
297 		for (n = 0; n < 4; n++)
298 			regs[n] = rd32(E1000_TDLEN(n));
299 		break;
300 	case E1000_TDH(0):
301 		for (n = 0; n < 4; n++)
302 			regs[n] = rd32(E1000_TDH(n));
303 		break;
304 	case E1000_TDT(0):
305 		for (n = 0; n < 4; n++)
306 			regs[n] = rd32(E1000_TDT(n));
307 		break;
308 	case E1000_TXDCTL(0):
309 		for (n = 0; n < 4; n++)
310 			regs[n] = rd32(E1000_TXDCTL(n));
311 		break;
312 	default:
313 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
314 		return;
315 	}
316 
317 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
318 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
319 		regs[2], regs[3]);
320 }
321 
322 /* igb_dump - Print registers, Tx-rings and Rx-rings */
323 static void igb_dump(struct igb_adapter *adapter)
324 {
325 	struct net_device *netdev = adapter->netdev;
326 	struct e1000_hw *hw = &adapter->hw;
327 	struct igb_reg_info *reginfo;
328 	struct igb_ring *tx_ring;
329 	union e1000_adv_tx_desc *tx_desc;
330 	struct my_u0 { __le64 a; __le64 b; } *u0;
331 	struct igb_ring *rx_ring;
332 	union e1000_adv_rx_desc *rx_desc;
333 	u32 staterr;
334 	u16 i, n;
335 
336 	if (!netif_msg_hw(adapter))
337 		return;
338 
339 	/* Print netdevice Info */
340 	if (netdev) {
341 		dev_info(&adapter->pdev->dev, "Net device Info\n");
342 		pr_info("Device Name     state            trans_start\n");
343 		pr_info("%-15s %016lX %016lX\n", netdev->name,
344 			netdev->state, dev_trans_start(netdev));
345 	}
346 
347 	/* Print Registers */
348 	dev_info(&adapter->pdev->dev, "Register Dump\n");
349 	pr_info(" Register Name   Value\n");
350 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
351 	     reginfo->name; reginfo++) {
352 		igb_regdump(hw, reginfo);
353 	}
354 
355 	/* Print TX Ring Summary */
356 	if (!netdev || !netif_running(netdev))
357 		goto exit;
358 
359 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
360 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
361 	for (n = 0; n < adapter->num_tx_queues; n++) {
362 		struct igb_tx_buffer *buffer_info;
363 		tx_ring = adapter->tx_ring[n];
364 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
365 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
366 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
367 			(u64)dma_unmap_addr(buffer_info, dma),
368 			dma_unmap_len(buffer_info, len),
369 			buffer_info->next_to_watch,
370 			(u64)buffer_info->time_stamp);
371 	}
372 
373 	/* Print TX Rings */
374 	if (!netif_msg_tx_done(adapter))
375 		goto rx_ring_summary;
376 
377 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
378 
379 	/* Transmit Descriptor Formats
380 	 *
381 	 * Advanced Transmit Descriptor
382 	 *   +--------------------------------------------------------------+
383 	 * 0 |         Buffer Address [63:0]                                |
384 	 *   +--------------------------------------------------------------+
385 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
386 	 *   +--------------------------------------------------------------+
387 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
388 	 */
389 
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		tx_ring = adapter->tx_ring[n];
392 		pr_info("------------------------------------\n");
393 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
394 		pr_info("------------------------------------\n");
395 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
396 
397 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
398 			const char *next_desc;
399 			struct igb_tx_buffer *buffer_info;
400 			tx_desc = IGB_TX_DESC(tx_ring, i);
401 			buffer_info = &tx_ring->tx_buffer_info[i];
402 			u0 = (struct my_u0 *)tx_desc;
403 			if (i == tx_ring->next_to_use &&
404 			    i == tx_ring->next_to_clean)
405 				next_desc = " NTC/U";
406 			else if (i == tx_ring->next_to_use)
407 				next_desc = " NTU";
408 			else if (i == tx_ring->next_to_clean)
409 				next_desc = " NTC";
410 			else
411 				next_desc = "";
412 
413 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
414 				i, le64_to_cpu(u0->a),
415 				le64_to_cpu(u0->b),
416 				(u64)dma_unmap_addr(buffer_info, dma),
417 				dma_unmap_len(buffer_info, len),
418 				buffer_info->next_to_watch,
419 				(u64)buffer_info->time_stamp,
420 				buffer_info->skb, next_desc);
421 
422 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
423 				print_hex_dump(KERN_INFO, "",
424 					DUMP_PREFIX_ADDRESS,
425 					16, 1, buffer_info->skb->data,
426 					dma_unmap_len(buffer_info, len),
427 					true);
428 		}
429 	}
430 
431 	/* Print RX Rings Summary */
432 rx_ring_summary:
433 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
434 	pr_info("Queue [NTU] [NTC]\n");
435 	for (n = 0; n < adapter->num_rx_queues; n++) {
436 		rx_ring = adapter->rx_ring[n];
437 		pr_info(" %5d %5X %5X\n",
438 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
439 	}
440 
441 	/* Print RX Rings */
442 	if (!netif_msg_rx_status(adapter))
443 		goto exit;
444 
445 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
446 
447 	/* Advanced Receive Descriptor (Read) Format
448 	 *    63                                           1        0
449 	 *    +-----------------------------------------------------+
450 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
451 	 *    +----------------------------------------------+------+
452 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
453 	 *    +-----------------------------------------------------+
454 	 *
455 	 *
456 	 * Advanced Receive Descriptor (Write-Back) Format
457 	 *
458 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
459 	 *   +------------------------------------------------------+
460 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
461 	 *   | Checksum   Ident  |   |           |    | Type | Type |
462 	 *   +------------------------------------------------------+
463 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
464 	 *   +------------------------------------------------------+
465 	 *   63       48 47    32 31            20 19               0
466 	 */
467 
468 	for (n = 0; n < adapter->num_rx_queues; n++) {
469 		rx_ring = adapter->rx_ring[n];
470 		pr_info("------------------------------------\n");
471 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
472 		pr_info("------------------------------------\n");
473 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
474 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
475 
476 		for (i = 0; i < rx_ring->count; i++) {
477 			const char *next_desc;
478 			struct igb_rx_buffer *buffer_info;
479 			buffer_info = &rx_ring->rx_buffer_info[i];
480 			rx_desc = IGB_RX_DESC(rx_ring, i);
481 			u0 = (struct my_u0 *)rx_desc;
482 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
483 
484 			if (i == rx_ring->next_to_use)
485 				next_desc = " NTU";
486 			else if (i == rx_ring->next_to_clean)
487 				next_desc = " NTC";
488 			else
489 				next_desc = "";
490 
491 			if (staterr & E1000_RXD_STAT_DD) {
492 				/* Descriptor Done */
493 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
494 					"RWB", i,
495 					le64_to_cpu(u0->a),
496 					le64_to_cpu(u0->b),
497 					next_desc);
498 			} else {
499 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
500 					"R  ", i,
501 					le64_to_cpu(u0->a),
502 					le64_to_cpu(u0->b),
503 					(u64)buffer_info->dma,
504 					next_desc);
505 
506 				if (netif_msg_pktdata(adapter) &&
507 				    buffer_info->dma && buffer_info->page) {
508 					print_hex_dump(KERN_INFO, "",
509 					  DUMP_PREFIX_ADDRESS,
510 					  16, 1,
511 					  page_address(buffer_info->page) +
512 						      buffer_info->page_offset,
513 					  igb_rx_bufsz(rx_ring), true);
514 				}
515 			}
516 		}
517 	}
518 
519 exit:
520 	return;
521 }
522 
523 /**
524  *  igb_get_i2c_data - Reads the I2C SDA data bit
525  *  @data: opaque pointer to adapter struct
526  *
527  *  Returns the I2C data bit value
528  **/
529 static int igb_get_i2c_data(void *data)
530 {
531 	struct igb_adapter *adapter = (struct igb_adapter *)data;
532 	struct e1000_hw *hw = &adapter->hw;
533 	s32 i2cctl = rd32(E1000_I2CPARAMS);
534 
535 	return !!(i2cctl & E1000_I2C_DATA_IN);
536 }
537 
538 /**
539  *  igb_set_i2c_data - Sets the I2C data bit
540  *  @data: pointer to hardware structure
541  *  @state: I2C data value (0 or 1) to set
542  *
543  *  Sets the I2C data bit
544  **/
545 static void igb_set_i2c_data(void *data, int state)
546 {
547 	struct igb_adapter *adapter = (struct igb_adapter *)data;
548 	struct e1000_hw *hw = &adapter->hw;
549 	s32 i2cctl = rd32(E1000_I2CPARAMS);
550 
551 	if (state) {
552 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
553 	} else {
554 		i2cctl &= ~E1000_I2C_DATA_OE_N;
555 		i2cctl &= ~E1000_I2C_DATA_OUT;
556 	}
557 
558 	wr32(E1000_I2CPARAMS, i2cctl);
559 	wrfl();
560 }
561 
562 /**
563  *  igb_set_i2c_clk - Sets the I2C SCL clock
564  *  @data: pointer to hardware structure
565  *  @state: state to set clock
566  *
567  *  Sets the I2C clock line to state
568  **/
569 static void igb_set_i2c_clk(void *data, int state)
570 {
571 	struct igb_adapter *adapter = (struct igb_adapter *)data;
572 	struct e1000_hw *hw = &adapter->hw;
573 	s32 i2cctl = rd32(E1000_I2CPARAMS);
574 
575 	if (state) {
576 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
577 	} else {
578 		i2cctl &= ~E1000_I2C_CLK_OUT;
579 		i2cctl &= ~E1000_I2C_CLK_OE_N;
580 	}
581 	wr32(E1000_I2CPARAMS, i2cctl);
582 	wrfl();
583 }
584 
585 /**
586  *  igb_get_i2c_clk - Gets the I2C SCL clock state
587  *  @data: pointer to hardware structure
588  *
589  *  Gets the I2C clock state
590  **/
591 static int igb_get_i2c_clk(void *data)
592 {
593 	struct igb_adapter *adapter = (struct igb_adapter *)data;
594 	struct e1000_hw *hw = &adapter->hw;
595 	s32 i2cctl = rd32(E1000_I2CPARAMS);
596 
597 	return !!(i2cctl & E1000_I2C_CLK_IN);
598 }
599 
600 static const struct i2c_algo_bit_data igb_i2c_algo = {
601 	.setsda		= igb_set_i2c_data,
602 	.setscl		= igb_set_i2c_clk,
603 	.getsda		= igb_get_i2c_data,
604 	.getscl		= igb_get_i2c_clk,
605 	.udelay		= 5,
606 	.timeout	= 20,
607 };
608 
609 /**
610  *  igb_get_hw_dev - return device
611  *  @hw: pointer to hardware structure
612  *
613  *  used by hardware layer to print debugging information
614  **/
615 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
616 {
617 	struct igb_adapter *adapter = hw->back;
618 	return adapter->netdev;
619 }
620 
621 static struct pci_driver igb_driver;
622 
623 /**
624  *  igb_init_module - Driver Registration Routine
625  *
626  *  igb_init_module is the first routine called when the driver is
627  *  loaded. All it does is register with the PCI subsystem.
628  **/
629 static int __init igb_init_module(void)
630 {
631 	int ret;
632 
633 	pr_info("%s\n", igb_driver_string);
634 	pr_info("%s\n", igb_copyright);
635 
636 #ifdef CONFIG_IGB_DCA
637 	dca_register_notify(&dca_notifier);
638 #endif
639 	ret = pci_register_driver(&igb_driver);
640 	return ret;
641 }
642 
643 module_init(igb_init_module);
644 
645 /**
646  *  igb_exit_module - Driver Exit Cleanup Routine
647  *
648  *  igb_exit_module is called just before the driver is removed
649  *  from memory.
650  **/
651 static void __exit igb_exit_module(void)
652 {
653 #ifdef CONFIG_IGB_DCA
654 	dca_unregister_notify(&dca_notifier);
655 #endif
656 	pci_unregister_driver(&igb_driver);
657 }
658 
659 module_exit(igb_exit_module);
660 
661 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
662 /**
663  *  igb_cache_ring_register - Descriptor ring to register mapping
664  *  @adapter: board private structure to initialize
665  *
666  *  Once we know the feature-set enabled for the device, we'll cache
667  *  the register offset the descriptor ring is assigned to.
668  **/
669 static void igb_cache_ring_register(struct igb_adapter *adapter)
670 {
671 	int i = 0, j = 0;
672 	u32 rbase_offset = adapter->vfs_allocated_count;
673 
674 	switch (adapter->hw.mac.type) {
675 	case e1000_82576:
676 		/* The queues are allocated for virtualization such that VF 0
677 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
678 		 * In order to avoid collision we start at the first free queue
679 		 * and continue consuming queues in the same sequence
680 		 */
681 		if (adapter->vfs_allocated_count) {
682 			for (; i < adapter->rss_queues; i++)
683 				adapter->rx_ring[i]->reg_idx = rbase_offset +
684 							       Q_IDX_82576(i);
685 		}
686 		fallthrough;
687 	case e1000_82575:
688 	case e1000_82580:
689 	case e1000_i350:
690 	case e1000_i354:
691 	case e1000_i210:
692 	case e1000_i211:
693 	default:
694 		for (; i < adapter->num_rx_queues; i++)
695 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
696 		for (; j < adapter->num_tx_queues; j++)
697 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
698 		break;
699 	}
700 }
701 
702 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
703 {
704 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
705 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
706 	u32 value = 0;
707 
708 	if (E1000_REMOVED(hw_addr))
709 		return ~value;
710 
711 	value = readl(&hw_addr[reg]);
712 
713 	/* reads should not return all F's */
714 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
715 		struct net_device *netdev = igb->netdev;
716 		hw->hw_addr = NULL;
717 		netdev_err(netdev, "PCIe link lost\n");
718 		WARN(pci_device_is_present(igb->pdev),
719 		     "igb: Failed to read reg 0x%x!\n", reg);
720 	}
721 
722 	return value;
723 }
724 
725 /**
726  *  igb_write_ivar - configure ivar for given MSI-X vector
727  *  @hw: pointer to the HW structure
728  *  @msix_vector: vector number we are allocating to a given ring
729  *  @index: row index of IVAR register to write within IVAR table
730  *  @offset: column offset of in IVAR, should be multiple of 8
731  *
732  *  This function is intended to handle the writing of the IVAR register
733  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
734  *  each containing an cause allocation for an Rx and Tx ring, and a
735  *  variable number of rows depending on the number of queues supported.
736  **/
737 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
738 			   int index, int offset)
739 {
740 	u32 ivar = array_rd32(E1000_IVAR0, index);
741 
742 	/* clear any bits that are currently set */
743 	ivar &= ~((u32)0xFF << offset);
744 
745 	/* write vector and valid bit */
746 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
747 
748 	array_wr32(E1000_IVAR0, index, ivar);
749 }
750 
751 #define IGB_N0_QUEUE -1
752 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
753 {
754 	struct igb_adapter *adapter = q_vector->adapter;
755 	struct e1000_hw *hw = &adapter->hw;
756 	int rx_queue = IGB_N0_QUEUE;
757 	int tx_queue = IGB_N0_QUEUE;
758 	u32 msixbm = 0;
759 
760 	if (q_vector->rx.ring)
761 		rx_queue = q_vector->rx.ring->reg_idx;
762 	if (q_vector->tx.ring)
763 		tx_queue = q_vector->tx.ring->reg_idx;
764 
765 	switch (hw->mac.type) {
766 	case e1000_82575:
767 		/* The 82575 assigns vectors using a bitmask, which matches the
768 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
769 		 * or more queues to a vector, we write the appropriate bits
770 		 * into the MSIXBM register for that vector.
771 		 */
772 		if (rx_queue > IGB_N0_QUEUE)
773 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
774 		if (tx_queue > IGB_N0_QUEUE)
775 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
776 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
777 			msixbm |= E1000_EIMS_OTHER;
778 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
779 		q_vector->eims_value = msixbm;
780 		break;
781 	case e1000_82576:
782 		/* 82576 uses a table that essentially consists of 2 columns
783 		 * with 8 rows.  The ordering is column-major so we use the
784 		 * lower 3 bits as the row index, and the 4th bit as the
785 		 * column offset.
786 		 */
787 		if (rx_queue > IGB_N0_QUEUE)
788 			igb_write_ivar(hw, msix_vector,
789 				       rx_queue & 0x7,
790 				       (rx_queue & 0x8) << 1);
791 		if (tx_queue > IGB_N0_QUEUE)
792 			igb_write_ivar(hw, msix_vector,
793 				       tx_queue & 0x7,
794 				       ((tx_queue & 0x8) << 1) + 8);
795 		q_vector->eims_value = BIT(msix_vector);
796 		break;
797 	case e1000_82580:
798 	case e1000_i350:
799 	case e1000_i354:
800 	case e1000_i210:
801 	case e1000_i211:
802 		/* On 82580 and newer adapters the scheme is similar to 82576
803 		 * however instead of ordering column-major we have things
804 		 * ordered row-major.  So we traverse the table by using
805 		 * bit 0 as the column offset, and the remaining bits as the
806 		 * row index.
807 		 */
808 		if (rx_queue > IGB_N0_QUEUE)
809 			igb_write_ivar(hw, msix_vector,
810 				       rx_queue >> 1,
811 				       (rx_queue & 0x1) << 4);
812 		if (tx_queue > IGB_N0_QUEUE)
813 			igb_write_ivar(hw, msix_vector,
814 				       tx_queue >> 1,
815 				       ((tx_queue & 0x1) << 4) + 8);
816 		q_vector->eims_value = BIT(msix_vector);
817 		break;
818 	default:
819 		BUG();
820 		break;
821 	}
822 
823 	/* add q_vector eims value to global eims_enable_mask */
824 	adapter->eims_enable_mask |= q_vector->eims_value;
825 
826 	/* configure q_vector to set itr on first interrupt */
827 	q_vector->set_itr = 1;
828 }
829 
830 /**
831  *  igb_configure_msix - Configure MSI-X hardware
832  *  @adapter: board private structure to initialize
833  *
834  *  igb_configure_msix sets up the hardware to properly
835  *  generate MSI-X interrupts.
836  **/
837 static void igb_configure_msix(struct igb_adapter *adapter)
838 {
839 	u32 tmp;
840 	int i, vector = 0;
841 	struct e1000_hw *hw = &adapter->hw;
842 
843 	adapter->eims_enable_mask = 0;
844 
845 	/* set vector for other causes, i.e. link changes */
846 	switch (hw->mac.type) {
847 	case e1000_82575:
848 		tmp = rd32(E1000_CTRL_EXT);
849 		/* enable MSI-X PBA support*/
850 		tmp |= E1000_CTRL_EXT_PBA_CLR;
851 
852 		/* Auto-Mask interrupts upon ICR read. */
853 		tmp |= E1000_CTRL_EXT_EIAME;
854 		tmp |= E1000_CTRL_EXT_IRCA;
855 
856 		wr32(E1000_CTRL_EXT, tmp);
857 
858 		/* enable msix_other interrupt */
859 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
860 		adapter->eims_other = E1000_EIMS_OTHER;
861 
862 		break;
863 
864 	case e1000_82576:
865 	case e1000_82580:
866 	case e1000_i350:
867 	case e1000_i354:
868 	case e1000_i210:
869 	case e1000_i211:
870 		/* Turn on MSI-X capability first, or our settings
871 		 * won't stick.  And it will take days to debug.
872 		 */
873 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
874 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
875 		     E1000_GPIE_NSICR);
876 
877 		/* enable msix_other interrupt */
878 		adapter->eims_other = BIT(vector);
879 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
880 
881 		wr32(E1000_IVAR_MISC, tmp);
882 		break;
883 	default:
884 		/* do nothing, since nothing else supports MSI-X */
885 		break;
886 	} /* switch (hw->mac.type) */
887 
888 	adapter->eims_enable_mask |= adapter->eims_other;
889 
890 	for (i = 0; i < adapter->num_q_vectors; i++)
891 		igb_assign_vector(adapter->q_vector[i], vector++);
892 
893 	wrfl();
894 }
895 
896 /**
897  *  igb_request_msix - Initialize MSI-X interrupts
898  *  @adapter: board private structure to initialize
899  *
900  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
901  *  kernel.
902  **/
903 static int igb_request_msix(struct igb_adapter *adapter)
904 {
905 	unsigned int num_q_vectors = adapter->num_q_vectors;
906 	struct net_device *netdev = adapter->netdev;
907 	int i, err = 0, vector = 0, free_vector = 0;
908 
909 	err = request_irq(adapter->msix_entries[vector].vector,
910 			  igb_msix_other, 0, netdev->name, adapter);
911 	if (err)
912 		goto err_out;
913 
914 	if (num_q_vectors > MAX_Q_VECTORS) {
915 		num_q_vectors = MAX_Q_VECTORS;
916 		dev_warn(&adapter->pdev->dev,
917 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
918 			 adapter->num_q_vectors, MAX_Q_VECTORS);
919 	}
920 	for (i = 0; i < num_q_vectors; i++) {
921 		struct igb_q_vector *q_vector = adapter->q_vector[i];
922 
923 		vector++;
924 
925 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
926 
927 		if (q_vector->rx.ring && q_vector->tx.ring)
928 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
929 				q_vector->rx.ring->queue_index);
930 		else if (q_vector->tx.ring)
931 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
932 				q_vector->tx.ring->queue_index);
933 		else if (q_vector->rx.ring)
934 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
935 				q_vector->rx.ring->queue_index);
936 		else
937 			sprintf(q_vector->name, "%s-unused", netdev->name);
938 
939 		err = request_irq(adapter->msix_entries[vector].vector,
940 				  igb_msix_ring, 0, q_vector->name,
941 				  q_vector);
942 		if (err)
943 			goto err_free;
944 	}
945 
946 	igb_configure_msix(adapter);
947 	return 0;
948 
949 err_free:
950 	/* free already assigned IRQs */
951 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
952 
953 	vector--;
954 	for (i = 0; i < vector; i++) {
955 		free_irq(adapter->msix_entries[free_vector++].vector,
956 			 adapter->q_vector[i]);
957 	}
958 err_out:
959 	return err;
960 }
961 
962 /**
963  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
964  *  @adapter: board private structure to initialize
965  *  @v_idx: Index of vector to be freed
966  *
967  *  This function frees the memory allocated to the q_vector.
968  **/
969 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
970 {
971 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
972 
973 	adapter->q_vector[v_idx] = NULL;
974 
975 	/* igb_get_stats64() might access the rings on this vector,
976 	 * we must wait a grace period before freeing it.
977 	 */
978 	if (q_vector)
979 		kfree_rcu(q_vector, rcu);
980 }
981 
982 /**
983  *  igb_reset_q_vector - Reset config for interrupt vector
984  *  @adapter: board private structure to initialize
985  *  @v_idx: Index of vector to be reset
986  *
987  *  If NAPI is enabled it will delete any references to the
988  *  NAPI struct. This is preparation for igb_free_q_vector.
989  **/
990 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
991 {
992 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
993 
994 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
995 	 * allocated. So, q_vector is NULL so we should stop here.
996 	 */
997 	if (!q_vector)
998 		return;
999 
1000 	if (q_vector->tx.ring)
1001 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1002 
1003 	if (q_vector->rx.ring)
1004 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1005 
1006 	netif_napi_del(&q_vector->napi);
1007 
1008 }
1009 
1010 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1011 {
1012 	int v_idx = adapter->num_q_vectors;
1013 
1014 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1015 		pci_disable_msix(adapter->pdev);
1016 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1017 		pci_disable_msi(adapter->pdev);
1018 
1019 	while (v_idx--)
1020 		igb_reset_q_vector(adapter, v_idx);
1021 }
1022 
1023 /**
1024  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1025  *  @adapter: board private structure to initialize
1026  *
1027  *  This function frees the memory allocated to the q_vectors.  In addition if
1028  *  NAPI is enabled it will delete any references to the NAPI struct prior
1029  *  to freeing the q_vector.
1030  **/
1031 static void igb_free_q_vectors(struct igb_adapter *adapter)
1032 {
1033 	int v_idx = adapter->num_q_vectors;
1034 
1035 	adapter->num_tx_queues = 0;
1036 	adapter->num_rx_queues = 0;
1037 	adapter->num_q_vectors = 0;
1038 
1039 	while (v_idx--) {
1040 		igb_reset_q_vector(adapter, v_idx);
1041 		igb_free_q_vector(adapter, v_idx);
1042 	}
1043 }
1044 
1045 /**
1046  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1050  *  MSI-X interrupts allocated.
1051  */
1052 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1053 {
1054 	igb_free_q_vectors(adapter);
1055 	igb_reset_interrupt_capability(adapter);
1056 }
1057 
1058 /**
1059  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1060  *  @adapter: board private structure to initialize
1061  *  @msix: boolean value of MSIX capability
1062  *
1063  *  Attempt to configure interrupts using the best available
1064  *  capabilities of the hardware and kernel.
1065  **/
1066 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1067 {
1068 	int err;
1069 	int numvecs, i;
1070 
1071 	if (!msix)
1072 		goto msi_only;
1073 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1074 
1075 	/* Number of supported queues. */
1076 	adapter->num_rx_queues = adapter->rss_queues;
1077 	if (adapter->vfs_allocated_count)
1078 		adapter->num_tx_queues = 1;
1079 	else
1080 		adapter->num_tx_queues = adapter->rss_queues;
1081 
1082 	/* start with one vector for every Rx queue */
1083 	numvecs = adapter->num_rx_queues;
1084 
1085 	/* if Tx handler is separate add 1 for every Tx queue */
1086 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1087 		numvecs += adapter->num_tx_queues;
1088 
1089 	/* store the number of vectors reserved for queues */
1090 	adapter->num_q_vectors = numvecs;
1091 
1092 	/* add 1 vector for link status interrupts */
1093 	numvecs++;
1094 	for (i = 0; i < numvecs; i++)
1095 		adapter->msix_entries[i].entry = i;
1096 
1097 	err = pci_enable_msix_range(adapter->pdev,
1098 				    adapter->msix_entries,
1099 				    numvecs,
1100 				    numvecs);
1101 	if (err > 0)
1102 		return;
1103 
1104 	igb_reset_interrupt_capability(adapter);
1105 
1106 	/* If we can't do MSI-X, try MSI */
1107 msi_only:
1108 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1109 #ifdef CONFIG_PCI_IOV
1110 	/* disable SR-IOV for non MSI-X configurations */
1111 	if (adapter->vf_data) {
1112 		struct e1000_hw *hw = &adapter->hw;
1113 		/* disable iov and allow time for transactions to clear */
1114 		pci_disable_sriov(adapter->pdev);
1115 		msleep(500);
1116 
1117 		kfree(adapter->vf_mac_list);
1118 		adapter->vf_mac_list = NULL;
1119 		kfree(adapter->vf_data);
1120 		adapter->vf_data = NULL;
1121 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122 		wrfl();
1123 		msleep(100);
1124 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125 	}
1126 #endif
1127 	adapter->vfs_allocated_count = 0;
1128 	adapter->rss_queues = 1;
1129 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130 	adapter->num_rx_queues = 1;
1131 	adapter->num_tx_queues = 1;
1132 	adapter->num_q_vectors = 1;
1133 	if (!pci_enable_msi(adapter->pdev))
1134 		adapter->flags |= IGB_FLAG_HAS_MSI;
1135 }
1136 
1137 static void igb_add_ring(struct igb_ring *ring,
1138 			 struct igb_ring_container *head)
1139 {
1140 	head->ring = ring;
1141 	head->count++;
1142 }
1143 
1144 /**
1145  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146  *  @adapter: board private structure to initialize
1147  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1148  *  @v_idx: index of vector in adapter struct
1149  *  @txr_count: total number of Tx rings to allocate
1150  *  @txr_idx: index of first Tx ring to allocate
1151  *  @rxr_count: total number of Rx rings to allocate
1152  *  @rxr_idx: index of first Rx ring to allocate
1153  *
1154  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155  **/
1156 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157 			      int v_count, int v_idx,
1158 			      int txr_count, int txr_idx,
1159 			      int rxr_count, int rxr_idx)
1160 {
1161 	struct igb_q_vector *q_vector;
1162 	struct igb_ring *ring;
1163 	int ring_count;
1164 	size_t size;
1165 
1166 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1167 	if (txr_count > 1 || rxr_count > 1)
1168 		return -ENOMEM;
1169 
1170 	ring_count = txr_count + rxr_count;
1171 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1172 
1173 	/* allocate q_vector and rings */
1174 	q_vector = adapter->q_vector[v_idx];
1175 	if (!q_vector) {
1176 		q_vector = kzalloc(size, GFP_KERNEL);
1177 	} else if (size > ksize(q_vector)) {
1178 		struct igb_q_vector *new_q_vector;
1179 
1180 		new_q_vector = kzalloc(size, GFP_KERNEL);
1181 		if (new_q_vector)
1182 			kfree_rcu(q_vector, rcu);
1183 		q_vector = new_q_vector;
1184 	} else {
1185 		memset(q_vector, 0, size);
1186 	}
1187 	if (!q_vector)
1188 		return -ENOMEM;
1189 
1190 	/* initialize NAPI */
1191 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1192 
1193 	/* tie q_vector and adapter together */
1194 	adapter->q_vector[v_idx] = q_vector;
1195 	q_vector->adapter = adapter;
1196 
1197 	/* initialize work limits */
1198 	q_vector->tx.work_limit = adapter->tx_work_limit;
1199 
1200 	/* initialize ITR configuration */
1201 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1202 	q_vector->itr_val = IGB_START_ITR;
1203 
1204 	/* initialize pointer to rings */
1205 	ring = q_vector->ring;
1206 
1207 	/* intialize ITR */
1208 	if (rxr_count) {
1209 		/* rx or rx/tx vector */
1210 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1211 			q_vector->itr_val = adapter->rx_itr_setting;
1212 	} else {
1213 		/* tx only vector */
1214 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1215 			q_vector->itr_val = adapter->tx_itr_setting;
1216 	}
1217 
1218 	if (txr_count) {
1219 		/* assign generic ring traits */
1220 		ring->dev = &adapter->pdev->dev;
1221 		ring->netdev = adapter->netdev;
1222 
1223 		/* configure backlink on ring */
1224 		ring->q_vector = q_vector;
1225 
1226 		/* update q_vector Tx values */
1227 		igb_add_ring(ring, &q_vector->tx);
1228 
1229 		/* For 82575, context index must be unique per ring. */
1230 		if (adapter->hw.mac.type == e1000_82575)
1231 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1232 
1233 		/* apply Tx specific ring traits */
1234 		ring->count = adapter->tx_ring_count;
1235 		ring->queue_index = txr_idx;
1236 
1237 		ring->cbs_enable = false;
1238 		ring->idleslope = 0;
1239 		ring->sendslope = 0;
1240 		ring->hicredit = 0;
1241 		ring->locredit = 0;
1242 
1243 		u64_stats_init(&ring->tx_syncp);
1244 		u64_stats_init(&ring->tx_syncp2);
1245 
1246 		/* assign ring to adapter */
1247 		adapter->tx_ring[txr_idx] = ring;
1248 
1249 		/* push pointer to next ring */
1250 		ring++;
1251 	}
1252 
1253 	if (rxr_count) {
1254 		/* assign generic ring traits */
1255 		ring->dev = &adapter->pdev->dev;
1256 		ring->netdev = adapter->netdev;
1257 
1258 		/* configure backlink on ring */
1259 		ring->q_vector = q_vector;
1260 
1261 		/* update q_vector Rx values */
1262 		igb_add_ring(ring, &q_vector->rx);
1263 
1264 		/* set flag indicating ring supports SCTP checksum offload */
1265 		if (adapter->hw.mac.type >= e1000_82576)
1266 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1267 
1268 		/* On i350, i354, i210, and i211, loopback VLAN packets
1269 		 * have the tag byte-swapped.
1270 		 */
1271 		if (adapter->hw.mac.type >= e1000_i350)
1272 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1273 
1274 		/* apply Rx specific ring traits */
1275 		ring->count = adapter->rx_ring_count;
1276 		ring->queue_index = rxr_idx;
1277 
1278 		u64_stats_init(&ring->rx_syncp);
1279 
1280 		/* assign ring to adapter */
1281 		adapter->rx_ring[rxr_idx] = ring;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 
1288 /**
1289  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1290  *  @adapter: board private structure to initialize
1291  *
1292  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1293  *  return -ENOMEM.
1294  **/
1295 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1296 {
1297 	int q_vectors = adapter->num_q_vectors;
1298 	int rxr_remaining = adapter->num_rx_queues;
1299 	int txr_remaining = adapter->num_tx_queues;
1300 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1301 	int err;
1302 
1303 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1304 		for (; rxr_remaining; v_idx++) {
1305 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1306 						 0, 0, 1, rxr_idx);
1307 
1308 			if (err)
1309 				goto err_out;
1310 
1311 			/* update counts and index */
1312 			rxr_remaining--;
1313 			rxr_idx++;
1314 		}
1315 	}
1316 
1317 	for (; v_idx < q_vectors; v_idx++) {
1318 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1319 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1320 
1321 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1322 					 tqpv, txr_idx, rqpv, rxr_idx);
1323 
1324 		if (err)
1325 			goto err_out;
1326 
1327 		/* update counts and index */
1328 		rxr_remaining -= rqpv;
1329 		txr_remaining -= tqpv;
1330 		rxr_idx++;
1331 		txr_idx++;
1332 	}
1333 
1334 	return 0;
1335 
1336 err_out:
1337 	adapter->num_tx_queues = 0;
1338 	adapter->num_rx_queues = 0;
1339 	adapter->num_q_vectors = 0;
1340 
1341 	while (v_idx--)
1342 		igb_free_q_vector(adapter, v_idx);
1343 
1344 	return -ENOMEM;
1345 }
1346 
1347 /**
1348  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1349  *  @adapter: board private structure to initialize
1350  *  @msix: boolean value of MSIX capability
1351  *
1352  *  This function initializes the interrupts and allocates all of the queues.
1353  **/
1354 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1355 {
1356 	struct pci_dev *pdev = adapter->pdev;
1357 	int err;
1358 
1359 	igb_set_interrupt_capability(adapter, msix);
1360 
1361 	err = igb_alloc_q_vectors(adapter);
1362 	if (err) {
1363 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1364 		goto err_alloc_q_vectors;
1365 	}
1366 
1367 	igb_cache_ring_register(adapter);
1368 
1369 	return 0;
1370 
1371 err_alloc_q_vectors:
1372 	igb_reset_interrupt_capability(adapter);
1373 	return err;
1374 }
1375 
1376 /**
1377  *  igb_request_irq - initialize interrupts
1378  *  @adapter: board private structure to initialize
1379  *
1380  *  Attempts to configure interrupts using the best available
1381  *  capabilities of the hardware and kernel.
1382  **/
1383 static int igb_request_irq(struct igb_adapter *adapter)
1384 {
1385 	struct net_device *netdev = adapter->netdev;
1386 	struct pci_dev *pdev = adapter->pdev;
1387 	int err = 0;
1388 
1389 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1390 		err = igb_request_msix(adapter);
1391 		if (!err)
1392 			goto request_done;
1393 		/* fall back to MSI */
1394 		igb_free_all_tx_resources(adapter);
1395 		igb_free_all_rx_resources(adapter);
1396 
1397 		igb_clear_interrupt_scheme(adapter);
1398 		err = igb_init_interrupt_scheme(adapter, false);
1399 		if (err)
1400 			goto request_done;
1401 
1402 		igb_setup_all_tx_resources(adapter);
1403 		igb_setup_all_rx_resources(adapter);
1404 		igb_configure(adapter);
1405 	}
1406 
1407 	igb_assign_vector(adapter->q_vector[0], 0);
1408 
1409 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1410 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1411 				  netdev->name, adapter);
1412 		if (!err)
1413 			goto request_done;
1414 
1415 		/* fall back to legacy interrupts */
1416 		igb_reset_interrupt_capability(adapter);
1417 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1418 	}
1419 
1420 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1421 			  netdev->name, adapter);
1422 
1423 	if (err)
1424 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1425 			err);
1426 
1427 request_done:
1428 	return err;
1429 }
1430 
1431 static void igb_free_irq(struct igb_adapter *adapter)
1432 {
1433 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1434 		int vector = 0, i;
1435 
1436 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1437 
1438 		for (i = 0; i < adapter->num_q_vectors; i++)
1439 			free_irq(adapter->msix_entries[vector++].vector,
1440 				 adapter->q_vector[i]);
1441 	} else {
1442 		free_irq(adapter->pdev->irq, adapter);
1443 	}
1444 }
1445 
1446 /**
1447  *  igb_irq_disable - Mask off interrupt generation on the NIC
1448  *  @adapter: board private structure
1449  **/
1450 static void igb_irq_disable(struct igb_adapter *adapter)
1451 {
1452 	struct e1000_hw *hw = &adapter->hw;
1453 
1454 	/* we need to be careful when disabling interrupts.  The VFs are also
1455 	 * mapped into these registers and so clearing the bits can cause
1456 	 * issues on the VF drivers so we only need to clear what we set
1457 	 */
1458 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459 		u32 regval = rd32(E1000_EIAM);
1460 
1461 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1462 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1463 		regval = rd32(E1000_EIAC);
1464 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1465 	}
1466 
1467 	wr32(E1000_IAM, 0);
1468 	wr32(E1000_IMC, ~0);
1469 	wrfl();
1470 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1471 		int i;
1472 
1473 		for (i = 0; i < adapter->num_q_vectors; i++)
1474 			synchronize_irq(adapter->msix_entries[i].vector);
1475 	} else {
1476 		synchronize_irq(adapter->pdev->irq);
1477 	}
1478 }
1479 
1480 /**
1481  *  igb_irq_enable - Enable default interrupt generation settings
1482  *  @adapter: board private structure
1483  **/
1484 static void igb_irq_enable(struct igb_adapter *adapter)
1485 {
1486 	struct e1000_hw *hw = &adapter->hw;
1487 
1488 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1490 		u32 regval = rd32(E1000_EIAC);
1491 
1492 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1493 		regval = rd32(E1000_EIAM);
1494 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1495 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1496 		if (adapter->vfs_allocated_count) {
1497 			wr32(E1000_MBVFIMR, 0xFF);
1498 			ims |= E1000_IMS_VMMB;
1499 		}
1500 		wr32(E1000_IMS, ims);
1501 	} else {
1502 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1503 				E1000_IMS_DRSTA);
1504 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1505 				E1000_IMS_DRSTA);
1506 	}
1507 }
1508 
1509 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 	u16 pf_id = adapter->vfs_allocated_count;
1513 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1514 	u16 old_vid = adapter->mng_vlan_id;
1515 
1516 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1517 		/* add VID to filter table */
1518 		igb_vfta_set(hw, vid, pf_id, true, true);
1519 		adapter->mng_vlan_id = vid;
1520 	} else {
1521 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1522 	}
1523 
1524 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1525 	    (vid != old_vid) &&
1526 	    !test_bit(old_vid, adapter->active_vlans)) {
1527 		/* remove VID from filter table */
1528 		igb_vfta_set(hw, vid, pf_id, false, true);
1529 	}
1530 }
1531 
1532 /**
1533  *  igb_release_hw_control - release control of the h/w to f/w
1534  *  @adapter: address of board private structure
1535  *
1536  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1537  *  For ASF and Pass Through versions of f/w this means that the
1538  *  driver is no longer loaded.
1539  **/
1540 static void igb_release_hw_control(struct igb_adapter *adapter)
1541 {
1542 	struct e1000_hw *hw = &adapter->hw;
1543 	u32 ctrl_ext;
1544 
1545 	/* Let firmware take over control of h/w */
1546 	ctrl_ext = rd32(E1000_CTRL_EXT);
1547 	wr32(E1000_CTRL_EXT,
1548 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1549 }
1550 
1551 /**
1552  *  igb_get_hw_control - get control of the h/w from f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that
1557  *  the driver is loaded.
1558  **/
1559 static void igb_get_hw_control(struct igb_adapter *adapter)
1560 {
1561 	struct e1000_hw *hw = &adapter->hw;
1562 	u32 ctrl_ext;
1563 
1564 	/* Let firmware know the driver has taken over */
1565 	ctrl_ext = rd32(E1000_CTRL_EXT);
1566 	wr32(E1000_CTRL_EXT,
1567 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569 
1570 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1571 {
1572 	struct net_device *netdev = adapter->netdev;
1573 	struct e1000_hw *hw = &adapter->hw;
1574 
1575 	WARN_ON(hw->mac.type != e1000_i210);
1576 
1577 	if (enable)
1578 		adapter->flags |= IGB_FLAG_FQTSS;
1579 	else
1580 		adapter->flags &= ~IGB_FLAG_FQTSS;
1581 
1582 	if (netif_running(netdev))
1583 		schedule_work(&adapter->reset_task);
1584 }
1585 
1586 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1587 {
1588 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1589 }
1590 
1591 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1592 				   enum tx_queue_prio prio)
1593 {
1594 	u32 val;
1595 
1596 	WARN_ON(hw->mac.type != e1000_i210);
1597 	WARN_ON(queue < 0 || queue > 4);
1598 
1599 	val = rd32(E1000_I210_TXDCTL(queue));
1600 
1601 	if (prio == TX_QUEUE_PRIO_HIGH)
1602 		val |= E1000_TXDCTL_PRIORITY;
1603 	else
1604 		val &= ~E1000_TXDCTL_PRIORITY;
1605 
1606 	wr32(E1000_I210_TXDCTL(queue), val);
1607 }
1608 
1609 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1610 {
1611 	u32 val;
1612 
1613 	WARN_ON(hw->mac.type != e1000_i210);
1614 	WARN_ON(queue < 0 || queue > 1);
1615 
1616 	val = rd32(E1000_I210_TQAVCC(queue));
1617 
1618 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1619 		val |= E1000_TQAVCC_QUEUEMODE;
1620 	else
1621 		val &= ~E1000_TQAVCC_QUEUEMODE;
1622 
1623 	wr32(E1000_I210_TQAVCC(queue), val);
1624 }
1625 
1626 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1627 {
1628 	int i;
1629 
1630 	for (i = 0; i < adapter->num_tx_queues; i++) {
1631 		if (adapter->tx_ring[i]->cbs_enable)
1632 			return true;
1633 	}
1634 
1635 	return false;
1636 }
1637 
1638 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1639 {
1640 	int i;
1641 
1642 	for (i = 0; i < adapter->num_tx_queues; i++) {
1643 		if (adapter->tx_ring[i]->launchtime_enable)
1644 			return true;
1645 	}
1646 
1647 	return false;
1648 }
1649 
1650 /**
1651  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1652  *  @adapter: pointer to adapter struct
1653  *  @queue: queue number
1654  *
1655  *  Configure CBS and Launchtime for a given hardware queue.
1656  *  Parameters are retrieved from the correct Tx ring, so
1657  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1658  *  for setting those correctly prior to this function being called.
1659  **/
1660 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1661 {
1662 	struct net_device *netdev = adapter->netdev;
1663 	struct e1000_hw *hw = &adapter->hw;
1664 	struct igb_ring *ring;
1665 	u32 tqavcc, tqavctrl;
1666 	u16 value;
1667 
1668 	WARN_ON(hw->mac.type != e1000_i210);
1669 	WARN_ON(queue < 0 || queue > 1);
1670 	ring = adapter->tx_ring[queue];
1671 
1672 	/* If any of the Qav features is enabled, configure queues as SR and
1673 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1674 	 * as SP.
1675 	 */
1676 	if (ring->cbs_enable || ring->launchtime_enable) {
1677 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1678 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1679 	} else {
1680 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1681 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1682 	}
1683 
1684 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1685 	if (ring->cbs_enable || queue == 0) {
1686 		/* i210 does not allow the queue 0 to be in the Strict
1687 		 * Priority mode while the Qav mode is enabled, so,
1688 		 * instead of disabling strict priority mode, we give
1689 		 * queue 0 the maximum of credits possible.
1690 		 *
1691 		 * See section 8.12.19 of the i210 datasheet, "Note:
1692 		 * Queue0 QueueMode must be set to 1b when
1693 		 * TransmitMode is set to Qav."
1694 		 */
1695 		if (queue == 0 && !ring->cbs_enable) {
1696 			/* max "linkspeed" idleslope in kbps */
1697 			ring->idleslope = 1000000;
1698 			ring->hicredit = ETH_FRAME_LEN;
1699 		}
1700 
1701 		/* Always set data transfer arbitration to credit-based
1702 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1703 		 * the queues.
1704 		 */
1705 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1706 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1707 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1708 
1709 		/* According to i210 datasheet section 7.2.7.7, we should set
1710 		 * the 'idleSlope' field from TQAVCC register following the
1711 		 * equation:
1712 		 *
1713 		 * For 100 Mbps link speed:
1714 		 *
1715 		 *     value = BW * 0x7735 * 0.2                          (E1)
1716 		 *
1717 		 * For 1000Mbps link speed:
1718 		 *
1719 		 *     value = BW * 0x7735 * 2                            (E2)
1720 		 *
1721 		 * E1 and E2 can be merged into one equation as shown below.
1722 		 * Note that 'link-speed' is in Mbps.
1723 		 *
1724 		 *     value = BW * 0x7735 * 2 * link-speed
1725 		 *                           --------------               (E3)
1726 		 *                                1000
1727 		 *
1728 		 * 'BW' is the percentage bandwidth out of full link speed
1729 		 * which can be found with the following equation. Note that
1730 		 * idleSlope here is the parameter from this function which
1731 		 * is in kbps.
1732 		 *
1733 		 *     BW =     idleSlope
1734 		 *          -----------------                             (E4)
1735 		 *          link-speed * 1000
1736 		 *
1737 		 * That said, we can come up with a generic equation to
1738 		 * calculate the value we should set it TQAVCC register by
1739 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1740 		 *
1741 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1742 		 *         -----------------            --------------    (E5)
1743 		 *         link-speed * 1000                 1000
1744 		 *
1745 		 * 'link-speed' is present in both sides of the fraction so
1746 		 * it is canceled out. The final equation is the following:
1747 		 *
1748 		 *     value = idleSlope * 61034
1749 		 *             -----------------                          (E6)
1750 		 *                  1000000
1751 		 *
1752 		 * NOTE: For i210, given the above, we can see that idleslope
1753 		 *       is represented in 16.38431 kbps units by the value at
1754 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1755 		 *       the granularity for idleslope increments.
1756 		 *       For instance, if you want to configure a 2576kbps
1757 		 *       idleslope, the value to be written on the register
1758 		 *       would have to be 157.23. If rounded down, you end
1759 		 *       up with less bandwidth available than originally
1760 		 *       required (~2572 kbps). If rounded up, you end up
1761 		 *       with a higher bandwidth (~2589 kbps). Below the
1762 		 *       approach we take is to always round up the
1763 		 *       calculated value, so the resulting bandwidth might
1764 		 *       be slightly higher for some configurations.
1765 		 */
1766 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1767 
1768 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1769 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1770 		tqavcc |= value;
1771 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1772 
1773 		wr32(E1000_I210_TQAVHC(queue),
1774 		     0x80000000 + ring->hicredit * 0x7735);
1775 	} else {
1776 
1777 		/* Set idleSlope to zero. */
1778 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1781 
1782 		/* Set hiCredit to zero. */
1783 		wr32(E1000_I210_TQAVHC(queue), 0);
1784 
1785 		/* If CBS is not enabled for any queues anymore, then return to
1786 		 * the default state of Data Transmission Arbitration on
1787 		 * TQAVCTRL.
1788 		 */
1789 		if (!is_any_cbs_enabled(adapter)) {
1790 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1791 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1792 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1793 		}
1794 	}
1795 
1796 	/* If LaunchTime is enabled, set DataTranTIM. */
1797 	if (ring->launchtime_enable) {
1798 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1799 		 * for any of the SR queues, and configure fetchtime delta.
1800 		 * XXX NOTE:
1801 		 *     - LaunchTime will be enabled for all SR queues.
1802 		 *     - A fixed offset can be added relative to the launch
1803 		 *       time of all packets if configured at reg LAUNCH_OS0.
1804 		 *       We are keeping it as 0 for now (default value).
1805 		 */
1806 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1807 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1808 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1809 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1810 	} else {
1811 		/* If Launchtime is not enabled for any SR queues anymore,
1812 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1813 		 * effectively disabling Launchtime.
1814 		 */
1815 		if (!is_any_txtime_enabled(adapter)) {
1816 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1818 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1824 	 * CBS are not configurable by software so we don't do any 'controller
1825 	 * configuration' in respect to these parameters.
1826 	 */
1827 
1828 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1829 		   ring->cbs_enable ? "enabled" : "disabled",
1830 		   ring->launchtime_enable ? "enabled" : "disabled",
1831 		   queue,
1832 		   ring->idleslope, ring->sendslope,
1833 		   ring->hicredit, ring->locredit);
1834 }
1835 
1836 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1837 				  bool enable)
1838 {
1839 	struct igb_ring *ring;
1840 
1841 	if (queue < 0 || queue > adapter->num_tx_queues)
1842 		return -EINVAL;
1843 
1844 	ring = adapter->tx_ring[queue];
1845 	ring->launchtime_enable = enable;
1846 
1847 	return 0;
1848 }
1849 
1850 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1851 			       bool enable, int idleslope, int sendslope,
1852 			       int hicredit, int locredit)
1853 {
1854 	struct igb_ring *ring;
1855 
1856 	if (queue < 0 || queue > adapter->num_tx_queues)
1857 		return -EINVAL;
1858 
1859 	ring = adapter->tx_ring[queue];
1860 
1861 	ring->cbs_enable = enable;
1862 	ring->idleslope = idleslope;
1863 	ring->sendslope = sendslope;
1864 	ring->hicredit = hicredit;
1865 	ring->locredit = locredit;
1866 
1867 	return 0;
1868 }
1869 
1870 /**
1871  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1872  *  @adapter: pointer to adapter struct
1873  *
1874  *  Configure TQAVCTRL register switching the controller's Tx mode
1875  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1876  *  a call to igb_config_tx_modes() per queue so any previously saved
1877  *  Tx parameters are applied.
1878  **/
1879 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1880 {
1881 	struct net_device *netdev = adapter->netdev;
1882 	struct e1000_hw *hw = &adapter->hw;
1883 	u32 val;
1884 
1885 	/* Only i210 controller supports changing the transmission mode. */
1886 	if (hw->mac.type != e1000_i210)
1887 		return;
1888 
1889 	if (is_fqtss_enabled(adapter)) {
1890 		int i, max_queue;
1891 
1892 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1893 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1894 		 * so SP queues wait for SR ones.
1895 		 */
1896 		val = rd32(E1000_I210_TQAVCTRL);
1897 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1898 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1899 		wr32(E1000_I210_TQAVCTRL, val);
1900 
1901 		/* Configure Tx and Rx packet buffers sizes as described in
1902 		 * i210 datasheet section 7.2.7.7.
1903 		 */
1904 		val = rd32(E1000_TXPBS);
1905 		val &= ~I210_TXPBSIZE_MASK;
1906 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1907 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1908 		wr32(E1000_TXPBS, val);
1909 
1910 		val = rd32(E1000_RXPBS);
1911 		val &= ~I210_RXPBSIZE_MASK;
1912 		val |= I210_RXPBSIZE_PB_30KB;
1913 		wr32(E1000_RXPBS, val);
1914 
1915 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1916 		 * register should not exceed the buffer size programmed in
1917 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1918 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1919 		 * 4kB / 64.
1920 		 *
1921 		 * However, when we do so, no frame from queue 2 and 3 are
1922 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1923 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1924 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1925 		 */
1926 		val = (4096 - 1) / 64;
1927 		wr32(E1000_I210_DTXMXPKTSZ, val);
1928 
1929 		/* Since FQTSS mode is enabled, apply any CBS configuration
1930 		 * previously set. If no previous CBS configuration has been
1931 		 * done, then the initial configuration is applied, which means
1932 		 * CBS is disabled.
1933 		 */
1934 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1935 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1936 
1937 		for (i = 0; i < max_queue; i++) {
1938 			igb_config_tx_modes(adapter, i);
1939 		}
1940 	} else {
1941 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1942 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1943 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1944 
1945 		val = rd32(E1000_I210_TQAVCTRL);
1946 		/* According to Section 8.12.21, the other flags we've set when
1947 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1948 		 * don't set they here.
1949 		 */
1950 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1951 		wr32(E1000_I210_TQAVCTRL, val);
1952 	}
1953 
1954 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1955 		   "enabled" : "disabled");
1956 }
1957 
1958 /**
1959  *  igb_configure - configure the hardware for RX and TX
1960  *  @adapter: private board structure
1961  **/
1962 static void igb_configure(struct igb_adapter *adapter)
1963 {
1964 	struct net_device *netdev = adapter->netdev;
1965 	int i;
1966 
1967 	igb_get_hw_control(adapter);
1968 	igb_set_rx_mode(netdev);
1969 	igb_setup_tx_mode(adapter);
1970 
1971 	igb_restore_vlan(adapter);
1972 
1973 	igb_setup_tctl(adapter);
1974 	igb_setup_mrqc(adapter);
1975 	igb_setup_rctl(adapter);
1976 
1977 	igb_nfc_filter_restore(adapter);
1978 	igb_configure_tx(adapter);
1979 	igb_configure_rx(adapter);
1980 
1981 	igb_rx_fifo_flush_82575(&adapter->hw);
1982 
1983 	/* call igb_desc_unused which always leaves
1984 	 * at least 1 descriptor unused to make sure
1985 	 * next_to_use != next_to_clean
1986 	 */
1987 	for (i = 0; i < adapter->num_rx_queues; i++) {
1988 		struct igb_ring *ring = adapter->rx_ring[i];
1989 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1990 	}
1991 }
1992 
1993 /**
1994  *  igb_power_up_link - Power up the phy/serdes link
1995  *  @adapter: address of board private structure
1996  **/
1997 void igb_power_up_link(struct igb_adapter *adapter)
1998 {
1999 	igb_reset_phy(&adapter->hw);
2000 
2001 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2002 		igb_power_up_phy_copper(&adapter->hw);
2003 	else
2004 		igb_power_up_serdes_link_82575(&adapter->hw);
2005 
2006 	igb_setup_link(&adapter->hw);
2007 }
2008 
2009 /**
2010  *  igb_power_down_link - Power down the phy/serdes link
2011  *  @adapter: address of board private structure
2012  */
2013 static void igb_power_down_link(struct igb_adapter *adapter)
2014 {
2015 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 		igb_power_down_phy_copper_82575(&adapter->hw);
2017 	else
2018 		igb_shutdown_serdes_link_82575(&adapter->hw);
2019 }
2020 
2021 /**
2022  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2023  * @adapter: address of the board private structure
2024  **/
2025 static void igb_check_swap_media(struct igb_adapter *adapter)
2026 {
2027 	struct e1000_hw *hw = &adapter->hw;
2028 	u32 ctrl_ext, connsw;
2029 	bool swap_now = false;
2030 
2031 	ctrl_ext = rd32(E1000_CTRL_EXT);
2032 	connsw = rd32(E1000_CONNSW);
2033 
2034 	/* need to live swap if current media is copper and we have fiber/serdes
2035 	 * to go to.
2036 	 */
2037 
2038 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2039 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2040 		swap_now = true;
2041 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2042 		   !(connsw & E1000_CONNSW_SERDESD)) {
2043 		/* copper signal takes time to appear */
2044 		if (adapter->copper_tries < 4) {
2045 			adapter->copper_tries++;
2046 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2047 			wr32(E1000_CONNSW, connsw);
2048 			return;
2049 		} else {
2050 			adapter->copper_tries = 0;
2051 			if ((connsw & E1000_CONNSW_PHYSD) &&
2052 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2053 				swap_now = true;
2054 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2055 				wr32(E1000_CONNSW, connsw);
2056 			}
2057 		}
2058 	}
2059 
2060 	if (!swap_now)
2061 		return;
2062 
2063 	switch (hw->phy.media_type) {
2064 	case e1000_media_type_copper:
2065 		netdev_info(adapter->netdev,
2066 			"MAS: changing media to fiber/serdes\n");
2067 		ctrl_ext |=
2068 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2069 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2070 		adapter->copper_tries = 0;
2071 		break;
2072 	case e1000_media_type_internal_serdes:
2073 	case e1000_media_type_fiber:
2074 		netdev_info(adapter->netdev,
2075 			"MAS: changing media to copper\n");
2076 		ctrl_ext &=
2077 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2078 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2079 		break;
2080 	default:
2081 		/* shouldn't get here during regular operation */
2082 		netdev_err(adapter->netdev,
2083 			"AMS: Invalid media type found, returning\n");
2084 		break;
2085 	}
2086 	wr32(E1000_CTRL_EXT, ctrl_ext);
2087 }
2088 
2089 /**
2090  *  igb_up - Open the interface and prepare it to handle traffic
2091  *  @adapter: board private structure
2092  **/
2093 int igb_up(struct igb_adapter *adapter)
2094 {
2095 	struct e1000_hw *hw = &adapter->hw;
2096 	int i;
2097 
2098 	/* hardware has been reset, we need to reload some things */
2099 	igb_configure(adapter);
2100 
2101 	clear_bit(__IGB_DOWN, &adapter->state);
2102 
2103 	for (i = 0; i < adapter->num_q_vectors; i++)
2104 		napi_enable(&(adapter->q_vector[i]->napi));
2105 
2106 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2107 		igb_configure_msix(adapter);
2108 	else
2109 		igb_assign_vector(adapter->q_vector[0], 0);
2110 
2111 	/* Clear any pending interrupts. */
2112 	rd32(E1000_TSICR);
2113 	rd32(E1000_ICR);
2114 	igb_irq_enable(adapter);
2115 
2116 	/* notify VFs that reset has been completed */
2117 	if (adapter->vfs_allocated_count) {
2118 		u32 reg_data = rd32(E1000_CTRL_EXT);
2119 
2120 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2121 		wr32(E1000_CTRL_EXT, reg_data);
2122 	}
2123 
2124 	netif_tx_start_all_queues(adapter->netdev);
2125 
2126 	/* start the watchdog. */
2127 	hw->mac.get_link_status = 1;
2128 	schedule_work(&adapter->watchdog_task);
2129 
2130 	if ((adapter->flags & IGB_FLAG_EEE) &&
2131 	    (!hw->dev_spec._82575.eee_disable))
2132 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2133 
2134 	return 0;
2135 }
2136 
2137 void igb_down(struct igb_adapter *adapter)
2138 {
2139 	struct net_device *netdev = adapter->netdev;
2140 	struct e1000_hw *hw = &adapter->hw;
2141 	u32 tctl, rctl;
2142 	int i;
2143 
2144 	/* signal that we're down so the interrupt handler does not
2145 	 * reschedule our watchdog timer
2146 	 */
2147 	set_bit(__IGB_DOWN, &adapter->state);
2148 
2149 	/* disable receives in the hardware */
2150 	rctl = rd32(E1000_RCTL);
2151 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2152 	/* flush and sleep below */
2153 
2154 	igb_nfc_filter_exit(adapter);
2155 
2156 	netif_carrier_off(netdev);
2157 	netif_tx_stop_all_queues(netdev);
2158 
2159 	/* disable transmits in the hardware */
2160 	tctl = rd32(E1000_TCTL);
2161 	tctl &= ~E1000_TCTL_EN;
2162 	wr32(E1000_TCTL, tctl);
2163 	/* flush both disables and wait for them to finish */
2164 	wrfl();
2165 	usleep_range(10000, 11000);
2166 
2167 	igb_irq_disable(adapter);
2168 
2169 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2170 
2171 	for (i = 0; i < adapter->num_q_vectors; i++) {
2172 		if (adapter->q_vector[i]) {
2173 			napi_synchronize(&adapter->q_vector[i]->napi);
2174 			napi_disable(&adapter->q_vector[i]->napi);
2175 		}
2176 	}
2177 
2178 	del_timer_sync(&adapter->watchdog_timer);
2179 	del_timer_sync(&adapter->phy_info_timer);
2180 
2181 	/* record the stats before reset*/
2182 	spin_lock(&adapter->stats64_lock);
2183 	igb_update_stats(adapter);
2184 	spin_unlock(&adapter->stats64_lock);
2185 
2186 	adapter->link_speed = 0;
2187 	adapter->link_duplex = 0;
2188 
2189 	if (!pci_channel_offline(adapter->pdev))
2190 		igb_reset(adapter);
2191 
2192 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2193 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2194 
2195 	igb_clean_all_tx_rings(adapter);
2196 	igb_clean_all_rx_rings(adapter);
2197 #ifdef CONFIG_IGB_DCA
2198 
2199 	/* since we reset the hardware DCA settings were cleared */
2200 	igb_setup_dca(adapter);
2201 #endif
2202 }
2203 
2204 void igb_reinit_locked(struct igb_adapter *adapter)
2205 {
2206 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2207 		usleep_range(1000, 2000);
2208 	igb_down(adapter);
2209 	igb_up(adapter);
2210 	clear_bit(__IGB_RESETTING, &adapter->state);
2211 }
2212 
2213 /** igb_enable_mas - Media Autosense re-enable after swap
2214  *
2215  * @adapter: adapter struct
2216  **/
2217 static void igb_enable_mas(struct igb_adapter *adapter)
2218 {
2219 	struct e1000_hw *hw = &adapter->hw;
2220 	u32 connsw = rd32(E1000_CONNSW);
2221 
2222 	/* configure for SerDes media detect */
2223 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2224 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2225 		connsw |= E1000_CONNSW_ENRGSRC;
2226 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2227 		wr32(E1000_CONNSW, connsw);
2228 		wrfl();
2229 	}
2230 }
2231 
2232 #ifdef CONFIG_IGB_HWMON
2233 /**
2234  *  igb_set_i2c_bb - Init I2C interface
2235  *  @hw: pointer to hardware structure
2236  **/
2237 static void igb_set_i2c_bb(struct e1000_hw *hw)
2238 {
2239 	u32 ctrl_ext;
2240 	s32 i2cctl;
2241 
2242 	ctrl_ext = rd32(E1000_CTRL_EXT);
2243 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2244 	wr32(E1000_CTRL_EXT, ctrl_ext);
2245 	wrfl();
2246 
2247 	i2cctl = rd32(E1000_I2CPARAMS);
2248 	i2cctl |= E1000_I2CBB_EN
2249 		| E1000_I2C_CLK_OE_N
2250 		| E1000_I2C_DATA_OE_N;
2251 	wr32(E1000_I2CPARAMS, i2cctl);
2252 	wrfl();
2253 }
2254 #endif
2255 
2256 void igb_reset(struct igb_adapter *adapter)
2257 {
2258 	struct pci_dev *pdev = adapter->pdev;
2259 	struct e1000_hw *hw = &adapter->hw;
2260 	struct e1000_mac_info *mac = &hw->mac;
2261 	struct e1000_fc_info *fc = &hw->fc;
2262 	u32 pba, hwm;
2263 
2264 	/* Repartition Pba for greater than 9k mtu
2265 	 * To take effect CTRL.RST is required.
2266 	 */
2267 	switch (mac->type) {
2268 	case e1000_i350:
2269 	case e1000_i354:
2270 	case e1000_82580:
2271 		pba = rd32(E1000_RXPBS);
2272 		pba = igb_rxpbs_adjust_82580(pba);
2273 		break;
2274 	case e1000_82576:
2275 		pba = rd32(E1000_RXPBS);
2276 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2277 		break;
2278 	case e1000_82575:
2279 	case e1000_i210:
2280 	case e1000_i211:
2281 	default:
2282 		pba = E1000_PBA_34K;
2283 		break;
2284 	}
2285 
2286 	if (mac->type == e1000_82575) {
2287 		u32 min_rx_space, min_tx_space, needed_tx_space;
2288 
2289 		/* write Rx PBA so that hardware can report correct Tx PBA */
2290 		wr32(E1000_PBA, pba);
2291 
2292 		/* To maintain wire speed transmits, the Tx FIFO should be
2293 		 * large enough to accommodate two full transmit packets,
2294 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2295 		 * the Rx FIFO should be large enough to accommodate at least
2296 		 * one full receive packet and is similarly rounded up and
2297 		 * expressed in KB.
2298 		 */
2299 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2300 
2301 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2302 		 * but don't include Ethernet FCS because hardware appends it.
2303 		 * We only need to round down to the nearest 512 byte block
2304 		 * count since the value we care about is 2 frames, not 1.
2305 		 */
2306 		min_tx_space = adapter->max_frame_size;
2307 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2308 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2309 
2310 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2311 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2312 
2313 		/* If current Tx allocation is less than the min Tx FIFO size,
2314 		 * and the min Tx FIFO size is less than the current Rx FIFO
2315 		 * allocation, take space away from current Rx allocation.
2316 		 */
2317 		if (needed_tx_space < pba) {
2318 			pba -= needed_tx_space;
2319 
2320 			/* if short on Rx space, Rx wins and must trump Tx
2321 			 * adjustment
2322 			 */
2323 			if (pba < min_rx_space)
2324 				pba = min_rx_space;
2325 		}
2326 
2327 		/* adjust PBA for jumbo frames */
2328 		wr32(E1000_PBA, pba);
2329 	}
2330 
2331 	/* flow control settings
2332 	 * The high water mark must be low enough to fit one full frame
2333 	 * after transmitting the pause frame.  As such we must have enough
2334 	 * space to allow for us to complete our current transmit and then
2335 	 * receive the frame that is in progress from the link partner.
2336 	 * Set it to:
2337 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2338 	 */
2339 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2340 
2341 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2342 	fc->low_water = fc->high_water - 16;
2343 	fc->pause_time = 0xFFFF;
2344 	fc->send_xon = 1;
2345 	fc->current_mode = fc->requested_mode;
2346 
2347 	/* disable receive for all VFs and wait one second */
2348 	if (adapter->vfs_allocated_count) {
2349 		int i;
2350 
2351 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2352 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2353 
2354 		/* ping all the active vfs to let them know we are going down */
2355 		igb_ping_all_vfs(adapter);
2356 
2357 		/* disable transmits and receives */
2358 		wr32(E1000_VFRE, 0);
2359 		wr32(E1000_VFTE, 0);
2360 	}
2361 
2362 	/* Allow time for pending master requests to run */
2363 	hw->mac.ops.reset_hw(hw);
2364 	wr32(E1000_WUC, 0);
2365 
2366 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2367 		/* need to resetup here after media swap */
2368 		adapter->ei.get_invariants(hw);
2369 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2370 	}
2371 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2372 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2373 		igb_enable_mas(adapter);
2374 	}
2375 	if (hw->mac.ops.init_hw(hw))
2376 		dev_err(&pdev->dev, "Hardware Error\n");
2377 
2378 	/* RAR registers were cleared during init_hw, clear mac table */
2379 	igb_flush_mac_table(adapter);
2380 	__dev_uc_unsync(adapter->netdev, NULL);
2381 
2382 	/* Recover default RAR entry */
2383 	igb_set_default_mac_filter(adapter);
2384 
2385 	/* Flow control settings reset on hardware reset, so guarantee flow
2386 	 * control is off when forcing speed.
2387 	 */
2388 	if (!hw->mac.autoneg)
2389 		igb_force_mac_fc(hw);
2390 
2391 	igb_init_dmac(adapter, pba);
2392 #ifdef CONFIG_IGB_HWMON
2393 	/* Re-initialize the thermal sensor on i350 devices. */
2394 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2395 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2396 			/* If present, re-initialize the external thermal sensor
2397 			 * interface.
2398 			 */
2399 			if (adapter->ets)
2400 				igb_set_i2c_bb(hw);
2401 			mac->ops.init_thermal_sensor_thresh(hw);
2402 		}
2403 	}
2404 #endif
2405 	/* Re-establish EEE setting */
2406 	if (hw->phy.media_type == e1000_media_type_copper) {
2407 		switch (mac->type) {
2408 		case e1000_i350:
2409 		case e1000_i210:
2410 		case e1000_i211:
2411 			igb_set_eee_i350(hw, true, true);
2412 			break;
2413 		case e1000_i354:
2414 			igb_set_eee_i354(hw, true, true);
2415 			break;
2416 		default:
2417 			break;
2418 		}
2419 	}
2420 	if (!netif_running(adapter->netdev))
2421 		igb_power_down_link(adapter);
2422 
2423 	igb_update_mng_vlan(adapter);
2424 
2425 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427 
2428 	/* Re-enable PTP, where applicable. */
2429 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430 		igb_ptp_reset(adapter);
2431 
2432 	igb_get_phy_info(hw);
2433 }
2434 
2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436 	netdev_features_t features)
2437 {
2438 	/* Since there is no support for separate Rx/Tx vlan accel
2439 	 * enable/disable make sure Tx flag is always in same state as Rx.
2440 	 */
2441 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2443 	else
2444 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445 
2446 	return features;
2447 }
2448 
2449 static int igb_set_features(struct net_device *netdev,
2450 	netdev_features_t features)
2451 {
2452 	netdev_features_t changed = netdev->features ^ features;
2453 	struct igb_adapter *adapter = netdev_priv(netdev);
2454 
2455 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456 		igb_vlan_mode(netdev, features);
2457 
2458 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459 		return 0;
2460 
2461 	if (!(features & NETIF_F_NTUPLE)) {
2462 		struct hlist_node *node2;
2463 		struct igb_nfc_filter *rule;
2464 
2465 		spin_lock(&adapter->nfc_lock);
2466 		hlist_for_each_entry_safe(rule, node2,
2467 					  &adapter->nfc_filter_list, nfc_node) {
2468 			igb_erase_filter(adapter, rule);
2469 			hlist_del(&rule->nfc_node);
2470 			kfree(rule);
2471 		}
2472 		spin_unlock(&adapter->nfc_lock);
2473 		adapter->nfc_filter_count = 0;
2474 	}
2475 
2476 	netdev->features = features;
2477 
2478 	if (netif_running(netdev))
2479 		igb_reinit_locked(adapter);
2480 	else
2481 		igb_reset(adapter);
2482 
2483 	return 1;
2484 }
2485 
2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487 			   struct net_device *dev,
2488 			   const unsigned char *addr, u16 vid,
2489 			   u16 flags,
2490 			   struct netlink_ext_ack *extack)
2491 {
2492 	/* guarantee we can provide a unique filter for the unicast address */
2493 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494 		struct igb_adapter *adapter = netdev_priv(dev);
2495 		int vfn = adapter->vfs_allocated_count;
2496 
2497 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2498 			return -ENOMEM;
2499 	}
2500 
2501 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2502 }
2503 
2504 #define IGB_MAX_MAC_HDR_LEN	127
2505 #define IGB_MAX_NETWORK_HDR_LEN	511
2506 
2507 static netdev_features_t
2508 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509 		   netdev_features_t features)
2510 {
2511 	unsigned int network_hdr_len, mac_hdr_len;
2512 
2513 	/* Make certain the headers can be described by a context descriptor */
2514 	mac_hdr_len = skb_network_offset(skb);
2515 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516 		return features & ~(NETIF_F_HW_CSUM |
2517 				    NETIF_F_SCTP_CRC |
2518 				    NETIF_F_GSO_UDP_L4 |
2519 				    NETIF_F_HW_VLAN_CTAG_TX |
2520 				    NETIF_F_TSO |
2521 				    NETIF_F_TSO6);
2522 
2523 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2524 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2525 		return features & ~(NETIF_F_HW_CSUM |
2526 				    NETIF_F_SCTP_CRC |
2527 				    NETIF_F_GSO_UDP_L4 |
2528 				    NETIF_F_TSO |
2529 				    NETIF_F_TSO6);
2530 
2531 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2532 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2533 	 */
2534 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2535 		features &= ~NETIF_F_TSO;
2536 
2537 	return features;
2538 }
2539 
2540 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2541 {
2542 	if (!is_fqtss_enabled(adapter)) {
2543 		enable_fqtss(adapter, true);
2544 		return;
2545 	}
2546 
2547 	igb_config_tx_modes(adapter, queue);
2548 
2549 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2550 		enable_fqtss(adapter, false);
2551 }
2552 
2553 static int igb_offload_cbs(struct igb_adapter *adapter,
2554 			   struct tc_cbs_qopt_offload *qopt)
2555 {
2556 	struct e1000_hw *hw = &adapter->hw;
2557 	int err;
2558 
2559 	/* CBS offloading is only supported by i210 controller. */
2560 	if (hw->mac.type != e1000_i210)
2561 		return -EOPNOTSUPP;
2562 
2563 	/* CBS offloading is only supported by queue 0 and queue 1. */
2564 	if (qopt->queue < 0 || qopt->queue > 1)
2565 		return -EINVAL;
2566 
2567 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2568 				  qopt->idleslope, qopt->sendslope,
2569 				  qopt->hicredit, qopt->locredit);
2570 	if (err)
2571 		return err;
2572 
2573 	igb_offload_apply(adapter, qopt->queue);
2574 
2575 	return 0;
2576 }
2577 
2578 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2579 #define VLAN_PRIO_FULL_MASK (0x07)
2580 
2581 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2582 				struct flow_cls_offload *f,
2583 				int traffic_class,
2584 				struct igb_nfc_filter *input)
2585 {
2586 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2587 	struct flow_dissector *dissector = rule->match.dissector;
2588 	struct netlink_ext_ack *extack = f->common.extack;
2589 
2590 	if (dissector->used_keys &
2591 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2592 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2593 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2594 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2595 		NL_SET_ERR_MSG_MOD(extack,
2596 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2597 		return -EOPNOTSUPP;
2598 	}
2599 
2600 	if (flow_rule_match_has_control_flags(rule, extack))
2601 		return -EOPNOTSUPP;
2602 
2603 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2604 		struct flow_match_eth_addrs match;
2605 
2606 		flow_rule_match_eth_addrs(rule, &match);
2607 		if (!is_zero_ether_addr(match.mask->dst)) {
2608 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2609 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2610 				return -EINVAL;
2611 			}
2612 
2613 			input->filter.match_flags |=
2614 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2615 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2616 		}
2617 
2618 		if (!is_zero_ether_addr(match.mask->src)) {
2619 			if (!is_broadcast_ether_addr(match.mask->src)) {
2620 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2621 				return -EINVAL;
2622 			}
2623 
2624 			input->filter.match_flags |=
2625 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2626 			ether_addr_copy(input->filter.src_addr, match.key->src);
2627 		}
2628 	}
2629 
2630 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2631 		struct flow_match_basic match;
2632 
2633 		flow_rule_match_basic(rule, &match);
2634 		if (match.mask->n_proto) {
2635 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2636 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2637 				return -EINVAL;
2638 			}
2639 
2640 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2641 			input->filter.etype = match.key->n_proto;
2642 		}
2643 	}
2644 
2645 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2646 		struct flow_match_vlan match;
2647 
2648 		flow_rule_match_vlan(rule, &match);
2649 		if (match.mask->vlan_priority) {
2650 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2651 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2652 				return -EINVAL;
2653 			}
2654 
2655 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2656 			input->filter.vlan_tci =
2657 				(__force __be16)match.key->vlan_priority;
2658 		}
2659 	}
2660 
2661 	input->action = traffic_class;
2662 	input->cookie = f->cookie;
2663 
2664 	return 0;
2665 }
2666 
2667 static int igb_configure_clsflower(struct igb_adapter *adapter,
2668 				   struct flow_cls_offload *cls_flower)
2669 {
2670 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2671 	struct igb_nfc_filter *filter, *f;
2672 	int err, tc;
2673 
2674 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2675 	if (tc < 0) {
2676 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2677 		return -EINVAL;
2678 	}
2679 
2680 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2681 	if (!filter)
2682 		return -ENOMEM;
2683 
2684 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2685 	if (err < 0)
2686 		goto err_parse;
2687 
2688 	spin_lock(&adapter->nfc_lock);
2689 
2690 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2691 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2692 			err = -EEXIST;
2693 			NL_SET_ERR_MSG_MOD(extack,
2694 					   "This filter is already set in ethtool");
2695 			goto err_locked;
2696 		}
2697 	}
2698 
2699 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2700 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701 			err = -EEXIST;
2702 			NL_SET_ERR_MSG_MOD(extack,
2703 					   "This filter is already set in cls_flower");
2704 			goto err_locked;
2705 		}
2706 	}
2707 
2708 	err = igb_add_filter(adapter, filter);
2709 	if (err < 0) {
2710 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2711 		goto err_locked;
2712 	}
2713 
2714 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2715 
2716 	spin_unlock(&adapter->nfc_lock);
2717 
2718 	return 0;
2719 
2720 err_locked:
2721 	spin_unlock(&adapter->nfc_lock);
2722 
2723 err_parse:
2724 	kfree(filter);
2725 
2726 	return err;
2727 }
2728 
2729 static int igb_delete_clsflower(struct igb_adapter *adapter,
2730 				struct flow_cls_offload *cls_flower)
2731 {
2732 	struct igb_nfc_filter *filter;
2733 	int err;
2734 
2735 	spin_lock(&adapter->nfc_lock);
2736 
2737 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2738 		if (filter->cookie == cls_flower->cookie)
2739 			break;
2740 
2741 	if (!filter) {
2742 		err = -ENOENT;
2743 		goto out;
2744 	}
2745 
2746 	err = igb_erase_filter(adapter, filter);
2747 	if (err < 0)
2748 		goto out;
2749 
2750 	hlist_del(&filter->nfc_node);
2751 	kfree(filter);
2752 
2753 out:
2754 	spin_unlock(&adapter->nfc_lock);
2755 
2756 	return err;
2757 }
2758 
2759 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2760 				   struct flow_cls_offload *cls_flower)
2761 {
2762 	switch (cls_flower->command) {
2763 	case FLOW_CLS_REPLACE:
2764 		return igb_configure_clsflower(adapter, cls_flower);
2765 	case FLOW_CLS_DESTROY:
2766 		return igb_delete_clsflower(adapter, cls_flower);
2767 	case FLOW_CLS_STATS:
2768 		return -EOPNOTSUPP;
2769 	default:
2770 		return -EOPNOTSUPP;
2771 	}
2772 }
2773 
2774 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2775 				 void *cb_priv)
2776 {
2777 	struct igb_adapter *adapter = cb_priv;
2778 
2779 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2780 		return -EOPNOTSUPP;
2781 
2782 	switch (type) {
2783 	case TC_SETUP_CLSFLOWER:
2784 		return igb_setup_tc_cls_flower(adapter, type_data);
2785 
2786 	default:
2787 		return -EOPNOTSUPP;
2788 	}
2789 }
2790 
2791 static int igb_offload_txtime(struct igb_adapter *adapter,
2792 			      struct tc_etf_qopt_offload *qopt)
2793 {
2794 	struct e1000_hw *hw = &adapter->hw;
2795 	int err;
2796 
2797 	/* Launchtime offloading is only supported by i210 controller. */
2798 	if (hw->mac.type != e1000_i210)
2799 		return -EOPNOTSUPP;
2800 
2801 	/* Launchtime offloading is only supported by queues 0 and 1. */
2802 	if (qopt->queue < 0 || qopt->queue > 1)
2803 		return -EINVAL;
2804 
2805 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2806 	if (err)
2807 		return err;
2808 
2809 	igb_offload_apply(adapter, qopt->queue);
2810 
2811 	return 0;
2812 }
2813 
2814 static int igb_tc_query_caps(struct igb_adapter *adapter,
2815 			     struct tc_query_caps_base *base)
2816 {
2817 	switch (base->type) {
2818 	case TC_SETUP_QDISC_TAPRIO: {
2819 		struct tc_taprio_caps *caps = base->caps;
2820 
2821 		caps->broken_mqprio = true;
2822 
2823 		return 0;
2824 	}
2825 	default:
2826 		return -EOPNOTSUPP;
2827 	}
2828 }
2829 
2830 static LIST_HEAD(igb_block_cb_list);
2831 
2832 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2833 			void *type_data)
2834 {
2835 	struct igb_adapter *adapter = netdev_priv(dev);
2836 
2837 	switch (type) {
2838 	case TC_QUERY_CAPS:
2839 		return igb_tc_query_caps(adapter, type_data);
2840 	case TC_SETUP_QDISC_CBS:
2841 		return igb_offload_cbs(adapter, type_data);
2842 	case TC_SETUP_BLOCK:
2843 		return flow_block_cb_setup_simple(type_data,
2844 						  &igb_block_cb_list,
2845 						  igb_setup_tc_block_cb,
2846 						  adapter, adapter, true);
2847 
2848 	case TC_SETUP_QDISC_ETF:
2849 		return igb_offload_txtime(adapter, type_data);
2850 
2851 	default:
2852 		return -EOPNOTSUPP;
2853 	}
2854 }
2855 
2856 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2857 {
2858 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2859 	struct igb_adapter *adapter = netdev_priv(dev);
2860 	struct bpf_prog *prog = bpf->prog, *old_prog;
2861 	bool running = netif_running(dev);
2862 	bool need_reset;
2863 
2864 	/* verify igb ring attributes are sufficient for XDP */
2865 	for (i = 0; i < adapter->num_rx_queues; i++) {
2866 		struct igb_ring *ring = adapter->rx_ring[i];
2867 
2868 		if (frame_size > igb_rx_bufsz(ring)) {
2869 			NL_SET_ERR_MSG_MOD(bpf->extack,
2870 					   "The RX buffer size is too small for the frame size");
2871 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2872 				    igb_rx_bufsz(ring), frame_size);
2873 			return -EINVAL;
2874 		}
2875 	}
2876 
2877 	old_prog = xchg(&adapter->xdp_prog, prog);
2878 	need_reset = (!!prog != !!old_prog);
2879 
2880 	/* device is up and bpf is added/removed, must setup the RX queues */
2881 	if (need_reset && running) {
2882 		igb_close(dev);
2883 	} else {
2884 		for (i = 0; i < adapter->num_rx_queues; i++)
2885 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2886 			    adapter->xdp_prog);
2887 	}
2888 
2889 	if (old_prog)
2890 		bpf_prog_put(old_prog);
2891 
2892 	/* bpf is just replaced, RXQ and MTU are already setup */
2893 	if (!need_reset) {
2894 		return 0;
2895 	} else {
2896 		if (prog)
2897 			xdp_features_set_redirect_target(dev, true);
2898 		else
2899 			xdp_features_clear_redirect_target(dev);
2900 	}
2901 
2902 	if (running)
2903 		igb_open(dev);
2904 
2905 	return 0;
2906 }
2907 
2908 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2909 {
2910 	switch (xdp->command) {
2911 	case XDP_SETUP_PROG:
2912 		return igb_xdp_setup(dev, xdp);
2913 	default:
2914 		return -EINVAL;
2915 	}
2916 }
2917 
2918 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2919 {
2920 	/* Force memory writes to complete before letting h/w know there
2921 	 * are new descriptors to fetch.
2922 	 */
2923 	wmb();
2924 	writel(ring->next_to_use, ring->tail);
2925 }
2926 
2927 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2928 {
2929 	unsigned int r_idx = smp_processor_id();
2930 
2931 	if (r_idx >= adapter->num_tx_queues)
2932 		r_idx = r_idx % adapter->num_tx_queues;
2933 
2934 	return adapter->tx_ring[r_idx];
2935 }
2936 
2937 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2938 {
2939 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2940 	int cpu = smp_processor_id();
2941 	struct igb_ring *tx_ring;
2942 	struct netdev_queue *nq;
2943 	u32 ret;
2944 
2945 	if (unlikely(!xdpf))
2946 		return IGB_XDP_CONSUMED;
2947 
2948 	/* During program transitions its possible adapter->xdp_prog is assigned
2949 	 * but ring has not been configured yet. In this case simply abort xmit.
2950 	 */
2951 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2952 	if (unlikely(!tx_ring))
2953 		return IGB_XDP_CONSUMED;
2954 
2955 	nq = txring_txq(tx_ring);
2956 	__netif_tx_lock(nq, cpu);
2957 	/* Avoid transmit queue timeout since we share it with the slow path */
2958 	txq_trans_cond_update(nq);
2959 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2960 	__netif_tx_unlock(nq);
2961 
2962 	return ret;
2963 }
2964 
2965 static int igb_xdp_xmit(struct net_device *dev, int n,
2966 			struct xdp_frame **frames, u32 flags)
2967 {
2968 	struct igb_adapter *adapter = netdev_priv(dev);
2969 	int cpu = smp_processor_id();
2970 	struct igb_ring *tx_ring;
2971 	struct netdev_queue *nq;
2972 	int nxmit = 0;
2973 	int i;
2974 
2975 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2976 		return -ENETDOWN;
2977 
2978 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2979 		return -EINVAL;
2980 
2981 	/* During program transitions its possible adapter->xdp_prog is assigned
2982 	 * but ring has not been configured yet. In this case simply abort xmit.
2983 	 */
2984 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2985 	if (unlikely(!tx_ring))
2986 		return -ENXIO;
2987 
2988 	nq = txring_txq(tx_ring);
2989 	__netif_tx_lock(nq, cpu);
2990 
2991 	/* Avoid transmit queue timeout since we share it with the slow path */
2992 	txq_trans_cond_update(nq);
2993 
2994 	for (i = 0; i < n; i++) {
2995 		struct xdp_frame *xdpf = frames[i];
2996 		int err;
2997 
2998 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2999 		if (err != IGB_XDP_TX)
3000 			break;
3001 		nxmit++;
3002 	}
3003 
3004 	__netif_tx_unlock(nq);
3005 
3006 	if (unlikely(flags & XDP_XMIT_FLUSH))
3007 		igb_xdp_ring_update_tail(tx_ring);
3008 
3009 	return nxmit;
3010 }
3011 
3012 static const struct net_device_ops igb_netdev_ops = {
3013 	.ndo_open		= igb_open,
3014 	.ndo_stop		= igb_close,
3015 	.ndo_start_xmit		= igb_xmit_frame,
3016 	.ndo_get_stats64	= igb_get_stats64,
3017 	.ndo_set_rx_mode	= igb_set_rx_mode,
3018 	.ndo_set_mac_address	= igb_set_mac,
3019 	.ndo_change_mtu		= igb_change_mtu,
3020 	.ndo_eth_ioctl		= igb_ioctl,
3021 	.ndo_tx_timeout		= igb_tx_timeout,
3022 	.ndo_validate_addr	= eth_validate_addr,
3023 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3024 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3025 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3026 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3027 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3028 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3029 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3030 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3031 	.ndo_fix_features	= igb_fix_features,
3032 	.ndo_set_features	= igb_set_features,
3033 	.ndo_fdb_add		= igb_ndo_fdb_add,
3034 	.ndo_features_check	= igb_features_check,
3035 	.ndo_setup_tc		= igb_setup_tc,
3036 	.ndo_bpf		= igb_xdp,
3037 	.ndo_xdp_xmit		= igb_xdp_xmit,
3038 };
3039 
3040 /**
3041  * igb_set_fw_version - Configure version string for ethtool
3042  * @adapter: adapter struct
3043  **/
3044 void igb_set_fw_version(struct igb_adapter *adapter)
3045 {
3046 	struct e1000_hw *hw = &adapter->hw;
3047 	struct e1000_fw_version fw;
3048 
3049 	igb_get_fw_version(hw, &fw);
3050 
3051 	switch (hw->mac.type) {
3052 	case e1000_i210:
3053 	case e1000_i211:
3054 		if (!(igb_get_flash_presence_i210(hw))) {
3055 			snprintf(adapter->fw_version,
3056 				 sizeof(adapter->fw_version),
3057 				 "%2d.%2d-%d",
3058 				 fw.invm_major, fw.invm_minor,
3059 				 fw.invm_img_type);
3060 			break;
3061 		}
3062 		fallthrough;
3063 	default:
3064 		/* if option rom is valid, display its version too */
3065 		if (fw.or_valid) {
3066 			snprintf(adapter->fw_version,
3067 				 sizeof(adapter->fw_version),
3068 				 "%d.%d, 0x%08x, %d.%d.%d",
3069 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3070 				 fw.or_major, fw.or_build, fw.or_patch);
3071 		/* no option rom */
3072 		} else if (fw.etrack_id != 0X0000) {
3073 			snprintf(adapter->fw_version,
3074 				 sizeof(adapter->fw_version),
3075 				 "%d.%d, 0x%08x",
3076 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
3077 		} else {
3078 			snprintf(adapter->fw_version,
3079 				 sizeof(adapter->fw_version),
3080 				 "%d.%d.%d",
3081 				 fw.eep_major, fw.eep_minor, fw.eep_build);
3082 		}
3083 		break;
3084 	}
3085 }
3086 
3087 /**
3088  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3089  *
3090  * @adapter: adapter struct
3091  **/
3092 static void igb_init_mas(struct igb_adapter *adapter)
3093 {
3094 	struct e1000_hw *hw = &adapter->hw;
3095 	u16 eeprom_data;
3096 
3097 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3098 	switch (hw->bus.func) {
3099 	case E1000_FUNC_0:
3100 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3101 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3102 			netdev_info(adapter->netdev,
3103 				"MAS: Enabling Media Autosense for port %d\n",
3104 				hw->bus.func);
3105 		}
3106 		break;
3107 	case E1000_FUNC_1:
3108 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3109 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3110 			netdev_info(adapter->netdev,
3111 				"MAS: Enabling Media Autosense for port %d\n",
3112 				hw->bus.func);
3113 		}
3114 		break;
3115 	case E1000_FUNC_2:
3116 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3117 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3118 			netdev_info(adapter->netdev,
3119 				"MAS: Enabling Media Autosense for port %d\n",
3120 				hw->bus.func);
3121 		}
3122 		break;
3123 	case E1000_FUNC_3:
3124 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3125 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3126 			netdev_info(adapter->netdev,
3127 				"MAS: Enabling Media Autosense for port %d\n",
3128 				hw->bus.func);
3129 		}
3130 		break;
3131 	default:
3132 		/* Shouldn't get here */
3133 		netdev_err(adapter->netdev,
3134 			"MAS: Invalid port configuration, returning\n");
3135 		break;
3136 	}
3137 }
3138 
3139 /**
3140  *  igb_init_i2c - Init I2C interface
3141  *  @adapter: pointer to adapter structure
3142  **/
3143 static s32 igb_init_i2c(struct igb_adapter *adapter)
3144 {
3145 	s32 status = 0;
3146 
3147 	/* I2C interface supported on i350 devices */
3148 	if (adapter->hw.mac.type != e1000_i350)
3149 		return 0;
3150 
3151 	/* Initialize the i2c bus which is controlled by the registers.
3152 	 * This bus will use the i2c_algo_bit structure that implements
3153 	 * the protocol through toggling of the 4 bits in the register.
3154 	 */
3155 	adapter->i2c_adap.owner = THIS_MODULE;
3156 	adapter->i2c_algo = igb_i2c_algo;
3157 	adapter->i2c_algo.data = adapter;
3158 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3159 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3160 	strscpy(adapter->i2c_adap.name, "igb BB",
3161 		sizeof(adapter->i2c_adap.name));
3162 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3163 	return status;
3164 }
3165 
3166 /**
3167  *  igb_probe - Device Initialization Routine
3168  *  @pdev: PCI device information struct
3169  *  @ent: entry in igb_pci_tbl
3170  *
3171  *  Returns 0 on success, negative on failure
3172  *
3173  *  igb_probe initializes an adapter identified by a pci_dev structure.
3174  *  The OS initialization, configuring of the adapter private structure,
3175  *  and a hardware reset occur.
3176  **/
3177 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3178 {
3179 	struct net_device *netdev;
3180 	struct igb_adapter *adapter;
3181 	struct e1000_hw *hw;
3182 	u16 eeprom_data = 0;
3183 	s32 ret_val;
3184 	static int global_quad_port_a; /* global quad port a indication */
3185 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3186 	u8 part_str[E1000_PBANUM_LENGTH];
3187 	int err;
3188 
3189 	/* Catch broken hardware that put the wrong VF device ID in
3190 	 * the PCIe SR-IOV capability.
3191 	 */
3192 	if (pdev->is_virtfn) {
3193 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3194 			pci_name(pdev), pdev->vendor, pdev->device);
3195 		return -EINVAL;
3196 	}
3197 
3198 	err = pci_enable_device_mem(pdev);
3199 	if (err)
3200 		return err;
3201 
3202 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3203 	if (err) {
3204 		dev_err(&pdev->dev,
3205 			"No usable DMA configuration, aborting\n");
3206 		goto err_dma;
3207 	}
3208 
3209 	err = pci_request_mem_regions(pdev, igb_driver_name);
3210 	if (err)
3211 		goto err_pci_reg;
3212 
3213 	pci_set_master(pdev);
3214 	pci_save_state(pdev);
3215 
3216 	err = -ENOMEM;
3217 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3218 				   IGB_MAX_TX_QUEUES);
3219 	if (!netdev)
3220 		goto err_alloc_etherdev;
3221 
3222 	SET_NETDEV_DEV(netdev, &pdev->dev);
3223 
3224 	pci_set_drvdata(pdev, netdev);
3225 	adapter = netdev_priv(netdev);
3226 	adapter->netdev = netdev;
3227 	adapter->pdev = pdev;
3228 	hw = &adapter->hw;
3229 	hw->back = adapter;
3230 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3231 
3232 	err = -EIO;
3233 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3234 	if (!adapter->io_addr)
3235 		goto err_ioremap;
3236 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3237 	hw->hw_addr = adapter->io_addr;
3238 
3239 	netdev->netdev_ops = &igb_netdev_ops;
3240 	igb_set_ethtool_ops(netdev);
3241 	netdev->watchdog_timeo = 5 * HZ;
3242 
3243 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3244 
3245 	netdev->mem_start = pci_resource_start(pdev, 0);
3246 	netdev->mem_end = pci_resource_end(pdev, 0);
3247 
3248 	/* PCI config space info */
3249 	hw->vendor_id = pdev->vendor;
3250 	hw->device_id = pdev->device;
3251 	hw->revision_id = pdev->revision;
3252 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3253 	hw->subsystem_device_id = pdev->subsystem_device;
3254 
3255 	/* Copy the default MAC, PHY and NVM function pointers */
3256 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3257 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3258 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3259 	/* Initialize skew-specific constants */
3260 	err = ei->get_invariants(hw);
3261 	if (err)
3262 		goto err_sw_init;
3263 
3264 	/* setup the private structure */
3265 	err = igb_sw_init(adapter);
3266 	if (err)
3267 		goto err_sw_init;
3268 
3269 	igb_get_bus_info_pcie(hw);
3270 
3271 	hw->phy.autoneg_wait_to_complete = false;
3272 
3273 	/* Copper options */
3274 	if (hw->phy.media_type == e1000_media_type_copper) {
3275 		hw->phy.mdix = AUTO_ALL_MODES;
3276 		hw->phy.disable_polarity_correction = false;
3277 		hw->phy.ms_type = e1000_ms_hw_default;
3278 	}
3279 
3280 	if (igb_check_reset_block(hw))
3281 		dev_info(&pdev->dev,
3282 			"PHY reset is blocked due to SOL/IDER session.\n");
3283 
3284 	/* features is initialized to 0 in allocation, it might have bits
3285 	 * set by igb_sw_init so we should use an or instead of an
3286 	 * assignment.
3287 	 */
3288 	netdev->features |= NETIF_F_SG |
3289 			    NETIF_F_TSO |
3290 			    NETIF_F_TSO6 |
3291 			    NETIF_F_RXHASH |
3292 			    NETIF_F_RXCSUM |
3293 			    NETIF_F_HW_CSUM;
3294 
3295 	if (hw->mac.type >= e1000_82576)
3296 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3297 
3298 	if (hw->mac.type >= e1000_i350)
3299 		netdev->features |= NETIF_F_HW_TC;
3300 
3301 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3302 				  NETIF_F_GSO_GRE_CSUM | \
3303 				  NETIF_F_GSO_IPXIP4 | \
3304 				  NETIF_F_GSO_IPXIP6 | \
3305 				  NETIF_F_GSO_UDP_TUNNEL | \
3306 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3307 
3308 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3309 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3310 
3311 	/* copy netdev features into list of user selectable features */
3312 	netdev->hw_features |= netdev->features |
3313 			       NETIF_F_HW_VLAN_CTAG_RX |
3314 			       NETIF_F_HW_VLAN_CTAG_TX |
3315 			       NETIF_F_RXALL;
3316 
3317 	if (hw->mac.type >= e1000_i350)
3318 		netdev->hw_features |= NETIF_F_NTUPLE;
3319 
3320 	netdev->features |= NETIF_F_HIGHDMA;
3321 
3322 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3323 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3324 	netdev->hw_enc_features |= netdev->vlan_features;
3325 
3326 	/* set this bit last since it cannot be part of vlan_features */
3327 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3328 			    NETIF_F_HW_VLAN_CTAG_RX |
3329 			    NETIF_F_HW_VLAN_CTAG_TX;
3330 
3331 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3332 
3333 	netdev->priv_flags |= IFF_UNICAST_FLT;
3334 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3335 
3336 	/* MTU range: 68 - 9216 */
3337 	netdev->min_mtu = ETH_MIN_MTU;
3338 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3339 
3340 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3341 
3342 	/* before reading the NVM, reset the controller to put the device in a
3343 	 * known good starting state
3344 	 */
3345 	hw->mac.ops.reset_hw(hw);
3346 
3347 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3348 	 * that doesn't contain a checksum
3349 	 */
3350 	switch (hw->mac.type) {
3351 	case e1000_i210:
3352 	case e1000_i211:
3353 		if (igb_get_flash_presence_i210(hw)) {
3354 			if (hw->nvm.ops.validate(hw) < 0) {
3355 				dev_err(&pdev->dev,
3356 					"The NVM Checksum Is Not Valid\n");
3357 				err = -EIO;
3358 				goto err_eeprom;
3359 			}
3360 		}
3361 		break;
3362 	default:
3363 		if (hw->nvm.ops.validate(hw) < 0) {
3364 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3365 			err = -EIO;
3366 			goto err_eeprom;
3367 		}
3368 		break;
3369 	}
3370 
3371 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3372 		/* copy the MAC address out of the NVM */
3373 		if (hw->mac.ops.read_mac_addr(hw))
3374 			dev_err(&pdev->dev, "NVM Read Error\n");
3375 	}
3376 
3377 	eth_hw_addr_set(netdev, hw->mac.addr);
3378 
3379 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3380 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3381 		err = -EIO;
3382 		goto err_eeprom;
3383 	}
3384 
3385 	igb_set_default_mac_filter(adapter);
3386 
3387 	/* get firmware version for ethtool -i */
3388 	igb_set_fw_version(adapter);
3389 
3390 	/* configure RXPBSIZE and TXPBSIZE */
3391 	if (hw->mac.type == e1000_i210) {
3392 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3393 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3394 	}
3395 
3396 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3397 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3398 
3399 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3400 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3401 
3402 	/* Initialize link properties that are user-changeable */
3403 	adapter->fc_autoneg = true;
3404 	hw->mac.autoneg = true;
3405 	hw->phy.autoneg_advertised = 0x2f;
3406 
3407 	hw->fc.requested_mode = e1000_fc_default;
3408 	hw->fc.current_mode = e1000_fc_default;
3409 
3410 	igb_validate_mdi_setting(hw);
3411 
3412 	/* By default, support wake on port A */
3413 	if (hw->bus.func == 0)
3414 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3415 
3416 	/* Check the NVM for wake support on non-port A ports */
3417 	if (hw->mac.type >= e1000_82580)
3418 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3419 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3420 				 &eeprom_data);
3421 	else if (hw->bus.func == 1)
3422 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3423 
3424 	if (eeprom_data & IGB_EEPROM_APME)
3425 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3426 
3427 	/* now that we have the eeprom settings, apply the special cases where
3428 	 * the eeprom may be wrong or the board simply won't support wake on
3429 	 * lan on a particular port
3430 	 */
3431 	switch (pdev->device) {
3432 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3433 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3434 		break;
3435 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3436 	case E1000_DEV_ID_82576_FIBER:
3437 	case E1000_DEV_ID_82576_SERDES:
3438 		/* Wake events only supported on port A for dual fiber
3439 		 * regardless of eeprom setting
3440 		 */
3441 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3442 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3443 		break;
3444 	case E1000_DEV_ID_82576_QUAD_COPPER:
3445 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3446 		/* if quad port adapter, disable WoL on all but port A */
3447 		if (global_quad_port_a != 0)
3448 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3449 		else
3450 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3451 		/* Reset for multiple quad port adapters */
3452 		if (++global_quad_port_a == 4)
3453 			global_quad_port_a = 0;
3454 		break;
3455 	default:
3456 		/* If the device can't wake, don't set software support */
3457 		if (!device_can_wakeup(&adapter->pdev->dev))
3458 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3459 	}
3460 
3461 	/* initialize the wol settings based on the eeprom settings */
3462 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3463 		adapter->wol |= E1000_WUFC_MAG;
3464 
3465 	/* Some vendors want WoL disabled by default, but still supported */
3466 	if ((hw->mac.type == e1000_i350) &&
3467 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3468 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3469 		adapter->wol = 0;
3470 	}
3471 
3472 	/* Some vendors want the ability to Use the EEPROM setting as
3473 	 * enable/disable only, and not for capability
3474 	 */
3475 	if (((hw->mac.type == e1000_i350) ||
3476 	     (hw->mac.type == e1000_i354)) &&
3477 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3478 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3479 		adapter->wol = 0;
3480 	}
3481 	if (hw->mac.type == e1000_i350) {
3482 		if (((pdev->subsystem_device == 0x5001) ||
3483 		     (pdev->subsystem_device == 0x5002)) &&
3484 				(hw->bus.func == 0)) {
3485 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3486 			adapter->wol = 0;
3487 		}
3488 		if (pdev->subsystem_device == 0x1F52)
3489 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3490 	}
3491 
3492 	device_set_wakeup_enable(&adapter->pdev->dev,
3493 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3494 
3495 	/* reset the hardware with the new settings */
3496 	igb_reset(adapter);
3497 
3498 	/* Init the I2C interface */
3499 	err = igb_init_i2c(adapter);
3500 	if (err) {
3501 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3502 		goto err_eeprom;
3503 	}
3504 
3505 	/* let the f/w know that the h/w is now under the control of the
3506 	 * driver.
3507 	 */
3508 	igb_get_hw_control(adapter);
3509 
3510 	strcpy(netdev->name, "eth%d");
3511 	err = register_netdev(netdev);
3512 	if (err)
3513 		goto err_register;
3514 
3515 	/* carrier off reporting is important to ethtool even BEFORE open */
3516 	netif_carrier_off(netdev);
3517 
3518 #ifdef CONFIG_IGB_DCA
3519 	if (dca_add_requester(&pdev->dev) == 0) {
3520 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3521 		dev_info(&pdev->dev, "DCA enabled\n");
3522 		igb_setup_dca(adapter);
3523 	}
3524 
3525 #endif
3526 #ifdef CONFIG_IGB_HWMON
3527 	/* Initialize the thermal sensor on i350 devices. */
3528 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3529 		u16 ets_word;
3530 
3531 		/* Read the NVM to determine if this i350 device supports an
3532 		 * external thermal sensor.
3533 		 */
3534 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3535 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3536 			adapter->ets = true;
3537 		else
3538 			adapter->ets = false;
3539 		/* Only enable I2C bit banging if an external thermal
3540 		 * sensor is supported.
3541 		 */
3542 		if (adapter->ets)
3543 			igb_set_i2c_bb(hw);
3544 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3545 		if (igb_sysfs_init(adapter))
3546 			dev_err(&pdev->dev,
3547 				"failed to allocate sysfs resources\n");
3548 	} else {
3549 		adapter->ets = false;
3550 	}
3551 #endif
3552 	/* Check if Media Autosense is enabled */
3553 	adapter->ei = *ei;
3554 	if (hw->dev_spec._82575.mas_capable)
3555 		igb_init_mas(adapter);
3556 
3557 	/* do hw tstamp init after resetting */
3558 	igb_ptp_init(adapter);
3559 
3560 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3561 	/* print bus type/speed/width info, not applicable to i354 */
3562 	if (hw->mac.type != e1000_i354) {
3563 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3564 			 netdev->name,
3565 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3566 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3567 			   "unknown"),
3568 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3569 			  "Width x4" :
3570 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3571 			  "Width x2" :
3572 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3573 			  "Width x1" : "unknown"), netdev->dev_addr);
3574 	}
3575 
3576 	if ((hw->mac.type == e1000_82576 &&
3577 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3578 	    (hw->mac.type >= e1000_i210 ||
3579 	     igb_get_flash_presence_i210(hw))) {
3580 		ret_val = igb_read_part_string(hw, part_str,
3581 					       E1000_PBANUM_LENGTH);
3582 	} else {
3583 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3584 	}
3585 
3586 	if (ret_val)
3587 		strcpy(part_str, "Unknown");
3588 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3589 	dev_info(&pdev->dev,
3590 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3591 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3592 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3593 		adapter->num_rx_queues, adapter->num_tx_queues);
3594 	if (hw->phy.media_type == e1000_media_type_copper) {
3595 		switch (hw->mac.type) {
3596 		case e1000_i350:
3597 		case e1000_i210:
3598 		case e1000_i211:
3599 			/* Enable EEE for internal copper PHY devices */
3600 			err = igb_set_eee_i350(hw, true, true);
3601 			if ((!err) &&
3602 			    (!hw->dev_spec._82575.eee_disable)) {
3603 				adapter->eee_advert =
3604 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3605 				adapter->flags |= IGB_FLAG_EEE;
3606 			}
3607 			break;
3608 		case e1000_i354:
3609 			if ((rd32(E1000_CTRL_EXT) &
3610 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3611 				err = igb_set_eee_i354(hw, true, true);
3612 				if ((!err) &&
3613 					(!hw->dev_spec._82575.eee_disable)) {
3614 					adapter->eee_advert =
3615 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3616 					adapter->flags |= IGB_FLAG_EEE;
3617 				}
3618 			}
3619 			break;
3620 		default:
3621 			break;
3622 		}
3623 	}
3624 
3625 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3626 
3627 	pm_runtime_put_noidle(&pdev->dev);
3628 	return 0;
3629 
3630 err_register:
3631 	igb_release_hw_control(adapter);
3632 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3633 err_eeprom:
3634 	if (!igb_check_reset_block(hw))
3635 		igb_reset_phy(hw);
3636 
3637 	if (hw->flash_address)
3638 		iounmap(hw->flash_address);
3639 err_sw_init:
3640 	kfree(adapter->mac_table);
3641 	kfree(adapter->shadow_vfta);
3642 	igb_clear_interrupt_scheme(adapter);
3643 #ifdef CONFIG_PCI_IOV
3644 	igb_disable_sriov(pdev, false);
3645 #endif
3646 	pci_iounmap(pdev, adapter->io_addr);
3647 err_ioremap:
3648 	free_netdev(netdev);
3649 err_alloc_etherdev:
3650 	pci_release_mem_regions(pdev);
3651 err_pci_reg:
3652 err_dma:
3653 	pci_disable_device(pdev);
3654 	return err;
3655 }
3656 
3657 #ifdef CONFIG_PCI_IOV
3658 static int igb_sriov_reinit(struct pci_dev *dev)
3659 {
3660 	struct net_device *netdev = pci_get_drvdata(dev);
3661 	struct igb_adapter *adapter = netdev_priv(netdev);
3662 	struct pci_dev *pdev = adapter->pdev;
3663 
3664 	rtnl_lock();
3665 
3666 	if (netif_running(netdev))
3667 		igb_close(netdev);
3668 	else
3669 		igb_reset(adapter);
3670 
3671 	igb_clear_interrupt_scheme(adapter);
3672 
3673 	igb_init_queue_configuration(adapter);
3674 
3675 	if (igb_init_interrupt_scheme(adapter, true)) {
3676 		rtnl_unlock();
3677 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3678 		return -ENOMEM;
3679 	}
3680 
3681 	if (netif_running(netdev))
3682 		igb_open(netdev);
3683 
3684 	rtnl_unlock();
3685 
3686 	return 0;
3687 }
3688 
3689 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3690 {
3691 	struct net_device *netdev = pci_get_drvdata(pdev);
3692 	struct igb_adapter *adapter = netdev_priv(netdev);
3693 	struct e1000_hw *hw = &adapter->hw;
3694 	unsigned long flags;
3695 
3696 	/* reclaim resources allocated to VFs */
3697 	if (adapter->vf_data) {
3698 		/* disable iov and allow time for transactions to clear */
3699 		if (pci_vfs_assigned(pdev)) {
3700 			dev_warn(&pdev->dev,
3701 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3702 			return -EPERM;
3703 		} else {
3704 			pci_disable_sriov(pdev);
3705 			msleep(500);
3706 		}
3707 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3708 		kfree(adapter->vf_mac_list);
3709 		adapter->vf_mac_list = NULL;
3710 		kfree(adapter->vf_data);
3711 		adapter->vf_data = NULL;
3712 		adapter->vfs_allocated_count = 0;
3713 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3714 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3715 		wrfl();
3716 		msleep(100);
3717 		dev_info(&pdev->dev, "IOV Disabled\n");
3718 
3719 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3720 		adapter->flags |= IGB_FLAG_DMAC;
3721 	}
3722 
3723 	return reinit ? igb_sriov_reinit(pdev) : 0;
3724 }
3725 
3726 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3727 {
3728 	struct net_device *netdev = pci_get_drvdata(pdev);
3729 	struct igb_adapter *adapter = netdev_priv(netdev);
3730 	int old_vfs = pci_num_vf(pdev);
3731 	struct vf_mac_filter *mac_list;
3732 	int err = 0;
3733 	int num_vf_mac_filters, i;
3734 
3735 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3736 		err = -EPERM;
3737 		goto out;
3738 	}
3739 	if (!num_vfs)
3740 		goto out;
3741 
3742 	if (old_vfs) {
3743 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3744 			 old_vfs, max_vfs);
3745 		adapter->vfs_allocated_count = old_vfs;
3746 	} else
3747 		adapter->vfs_allocated_count = num_vfs;
3748 
3749 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3750 				sizeof(struct vf_data_storage), GFP_KERNEL);
3751 
3752 	/* if allocation failed then we do not support SR-IOV */
3753 	if (!adapter->vf_data) {
3754 		adapter->vfs_allocated_count = 0;
3755 		err = -ENOMEM;
3756 		goto out;
3757 	}
3758 
3759 	/* Due to the limited number of RAR entries calculate potential
3760 	 * number of MAC filters available for the VFs. Reserve entries
3761 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3762 	 * for each VF for VF MAC.
3763 	 */
3764 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3765 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3766 			      adapter->vfs_allocated_count);
3767 
3768 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3769 				       sizeof(struct vf_mac_filter),
3770 				       GFP_KERNEL);
3771 
3772 	mac_list = adapter->vf_mac_list;
3773 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3774 
3775 	if (adapter->vf_mac_list) {
3776 		/* Initialize list of VF MAC filters */
3777 		for (i = 0; i < num_vf_mac_filters; i++) {
3778 			mac_list->vf = -1;
3779 			mac_list->free = true;
3780 			list_add(&mac_list->l, &adapter->vf_macs.l);
3781 			mac_list++;
3782 		}
3783 	} else {
3784 		/* If we could not allocate memory for the VF MAC filters
3785 		 * we can continue without this feature but warn user.
3786 		 */
3787 		dev_err(&pdev->dev,
3788 			"Unable to allocate memory for VF MAC filter list\n");
3789 	}
3790 
3791 	dev_info(&pdev->dev, "%d VFs allocated\n",
3792 		 adapter->vfs_allocated_count);
3793 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3794 		igb_vf_configure(adapter, i);
3795 
3796 	/* DMA Coalescing is not supported in IOV mode. */
3797 	adapter->flags &= ~IGB_FLAG_DMAC;
3798 
3799 	if (reinit) {
3800 		err = igb_sriov_reinit(pdev);
3801 		if (err)
3802 			goto err_out;
3803 	}
3804 
3805 	/* only call pci_enable_sriov() if no VFs are allocated already */
3806 	if (!old_vfs) {
3807 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3808 		if (err)
3809 			goto err_out;
3810 	}
3811 
3812 	goto out;
3813 
3814 err_out:
3815 	kfree(adapter->vf_mac_list);
3816 	adapter->vf_mac_list = NULL;
3817 	kfree(adapter->vf_data);
3818 	adapter->vf_data = NULL;
3819 	adapter->vfs_allocated_count = 0;
3820 out:
3821 	return err;
3822 }
3823 
3824 #endif
3825 /**
3826  *  igb_remove_i2c - Cleanup  I2C interface
3827  *  @adapter: pointer to adapter structure
3828  **/
3829 static void igb_remove_i2c(struct igb_adapter *adapter)
3830 {
3831 	/* free the adapter bus structure */
3832 	i2c_del_adapter(&adapter->i2c_adap);
3833 }
3834 
3835 /**
3836  *  igb_remove - Device Removal Routine
3837  *  @pdev: PCI device information struct
3838  *
3839  *  igb_remove is called by the PCI subsystem to alert the driver
3840  *  that it should release a PCI device.  The could be caused by a
3841  *  Hot-Plug event, or because the driver is going to be removed from
3842  *  memory.
3843  **/
3844 static void igb_remove(struct pci_dev *pdev)
3845 {
3846 	struct net_device *netdev = pci_get_drvdata(pdev);
3847 	struct igb_adapter *adapter = netdev_priv(netdev);
3848 	struct e1000_hw *hw = &adapter->hw;
3849 
3850 	pm_runtime_get_noresume(&pdev->dev);
3851 #ifdef CONFIG_IGB_HWMON
3852 	igb_sysfs_exit(adapter);
3853 #endif
3854 	igb_remove_i2c(adapter);
3855 	igb_ptp_stop(adapter);
3856 	/* The watchdog timer may be rescheduled, so explicitly
3857 	 * disable watchdog from being rescheduled.
3858 	 */
3859 	set_bit(__IGB_DOWN, &adapter->state);
3860 	del_timer_sync(&adapter->watchdog_timer);
3861 	del_timer_sync(&adapter->phy_info_timer);
3862 
3863 	cancel_work_sync(&adapter->reset_task);
3864 	cancel_work_sync(&adapter->watchdog_task);
3865 
3866 #ifdef CONFIG_IGB_DCA
3867 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3868 		dev_info(&pdev->dev, "DCA disabled\n");
3869 		dca_remove_requester(&pdev->dev);
3870 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3871 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3872 	}
3873 #endif
3874 
3875 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3876 	 * would have already happened in close and is redundant.
3877 	 */
3878 	igb_release_hw_control(adapter);
3879 
3880 #ifdef CONFIG_PCI_IOV
3881 	igb_disable_sriov(pdev, false);
3882 #endif
3883 
3884 	unregister_netdev(netdev);
3885 
3886 	igb_clear_interrupt_scheme(adapter);
3887 
3888 	pci_iounmap(pdev, adapter->io_addr);
3889 	if (hw->flash_address)
3890 		iounmap(hw->flash_address);
3891 	pci_release_mem_regions(pdev);
3892 
3893 	kfree(adapter->mac_table);
3894 	kfree(adapter->shadow_vfta);
3895 	free_netdev(netdev);
3896 
3897 	pci_disable_device(pdev);
3898 }
3899 
3900 /**
3901  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3902  *  @adapter: board private structure to initialize
3903  *
3904  *  This function initializes the vf specific data storage and then attempts to
3905  *  allocate the VFs.  The reason for ordering it this way is because it is much
3906  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3907  *  the memory for the VFs.
3908  **/
3909 static void igb_probe_vfs(struct igb_adapter *adapter)
3910 {
3911 #ifdef CONFIG_PCI_IOV
3912 	struct pci_dev *pdev = adapter->pdev;
3913 	struct e1000_hw *hw = &adapter->hw;
3914 
3915 	/* Virtualization features not supported on i210 and 82580 family. */
3916 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3917 	    (hw->mac.type == e1000_82580))
3918 		return;
3919 
3920 	/* Of the below we really only want the effect of getting
3921 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3922 	 * igb_enable_sriov() has no effect.
3923 	 */
3924 	igb_set_interrupt_capability(adapter, true);
3925 	igb_reset_interrupt_capability(adapter);
3926 
3927 	pci_sriov_set_totalvfs(pdev, 7);
3928 	igb_enable_sriov(pdev, max_vfs, false);
3929 
3930 #endif /* CONFIG_PCI_IOV */
3931 }
3932 
3933 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3934 {
3935 	struct e1000_hw *hw = &adapter->hw;
3936 	unsigned int max_rss_queues;
3937 
3938 	/* Determine the maximum number of RSS queues supported. */
3939 	switch (hw->mac.type) {
3940 	case e1000_i211:
3941 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3942 		break;
3943 	case e1000_82575:
3944 	case e1000_i210:
3945 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3946 		break;
3947 	case e1000_i350:
3948 		/* I350 cannot do RSS and SR-IOV at the same time */
3949 		if (!!adapter->vfs_allocated_count) {
3950 			max_rss_queues = 1;
3951 			break;
3952 		}
3953 		fallthrough;
3954 	case e1000_82576:
3955 		if (!!adapter->vfs_allocated_count) {
3956 			max_rss_queues = 2;
3957 			break;
3958 		}
3959 		fallthrough;
3960 	case e1000_82580:
3961 	case e1000_i354:
3962 	default:
3963 		max_rss_queues = IGB_MAX_RX_QUEUES;
3964 		break;
3965 	}
3966 
3967 	return max_rss_queues;
3968 }
3969 
3970 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3971 {
3972 	u32 max_rss_queues;
3973 
3974 	max_rss_queues = igb_get_max_rss_queues(adapter);
3975 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3976 
3977 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3978 }
3979 
3980 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3981 			      const u32 max_rss_queues)
3982 {
3983 	struct e1000_hw *hw = &adapter->hw;
3984 
3985 	/* Determine if we need to pair queues. */
3986 	switch (hw->mac.type) {
3987 	case e1000_82575:
3988 	case e1000_i211:
3989 		/* Device supports enough interrupts without queue pairing. */
3990 		break;
3991 	case e1000_82576:
3992 	case e1000_82580:
3993 	case e1000_i350:
3994 	case e1000_i354:
3995 	case e1000_i210:
3996 	default:
3997 		/* If rss_queues > half of max_rss_queues, pair the queues in
3998 		 * order to conserve interrupts due to limited supply.
3999 		 */
4000 		if (adapter->rss_queues > (max_rss_queues / 2))
4001 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4002 		else
4003 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4004 		break;
4005 	}
4006 }
4007 
4008 /**
4009  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4010  *  @adapter: board private structure to initialize
4011  *
4012  *  igb_sw_init initializes the Adapter private data structure.
4013  *  Fields are initialized based on PCI device information and
4014  *  OS network device settings (MTU size).
4015  **/
4016 static int igb_sw_init(struct igb_adapter *adapter)
4017 {
4018 	struct e1000_hw *hw = &adapter->hw;
4019 	struct net_device *netdev = adapter->netdev;
4020 	struct pci_dev *pdev = adapter->pdev;
4021 
4022 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4023 
4024 	/* set default ring sizes */
4025 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4026 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4027 
4028 	/* set default ITR values */
4029 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4030 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4031 
4032 	/* set default work limits */
4033 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4034 
4035 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4036 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4037 
4038 	spin_lock_init(&adapter->nfc_lock);
4039 	spin_lock_init(&adapter->stats64_lock);
4040 
4041 	/* init spinlock to avoid concurrency of VF resources */
4042 	spin_lock_init(&adapter->vfs_lock);
4043 #ifdef CONFIG_PCI_IOV
4044 	switch (hw->mac.type) {
4045 	case e1000_82576:
4046 	case e1000_i350:
4047 		if (max_vfs > 7) {
4048 			dev_warn(&pdev->dev,
4049 				 "Maximum of 7 VFs per PF, using max\n");
4050 			max_vfs = adapter->vfs_allocated_count = 7;
4051 		} else
4052 			adapter->vfs_allocated_count = max_vfs;
4053 		if (adapter->vfs_allocated_count)
4054 			dev_warn(&pdev->dev,
4055 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4056 		break;
4057 	default:
4058 		break;
4059 	}
4060 #endif /* CONFIG_PCI_IOV */
4061 
4062 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4063 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4064 
4065 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4066 				     sizeof(struct igb_mac_addr),
4067 				     GFP_KERNEL);
4068 	if (!adapter->mac_table)
4069 		return -ENOMEM;
4070 
4071 	igb_probe_vfs(adapter);
4072 
4073 	igb_init_queue_configuration(adapter);
4074 
4075 	/* Setup and initialize a copy of the hw vlan table array */
4076 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4077 				       GFP_KERNEL);
4078 	if (!adapter->shadow_vfta)
4079 		return -ENOMEM;
4080 
4081 	/* This call may decrease the number of queues */
4082 	if (igb_init_interrupt_scheme(adapter, true)) {
4083 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4084 		return -ENOMEM;
4085 	}
4086 
4087 	/* Explicitly disable IRQ since the NIC can be in any state. */
4088 	igb_irq_disable(adapter);
4089 
4090 	if (hw->mac.type >= e1000_i350)
4091 		adapter->flags &= ~IGB_FLAG_DMAC;
4092 
4093 	set_bit(__IGB_DOWN, &adapter->state);
4094 	return 0;
4095 }
4096 
4097 /**
4098  *  __igb_open - Called when a network interface is made active
4099  *  @netdev: network interface device structure
4100  *  @resuming: indicates whether we are in a resume call
4101  *
4102  *  Returns 0 on success, negative value on failure
4103  *
4104  *  The open entry point is called when a network interface is made
4105  *  active by the system (IFF_UP).  At this point all resources needed
4106  *  for transmit and receive operations are allocated, the interrupt
4107  *  handler is registered with the OS, the watchdog timer is started,
4108  *  and the stack is notified that the interface is ready.
4109  **/
4110 static int __igb_open(struct net_device *netdev, bool resuming)
4111 {
4112 	struct igb_adapter *adapter = netdev_priv(netdev);
4113 	struct e1000_hw *hw = &adapter->hw;
4114 	struct pci_dev *pdev = adapter->pdev;
4115 	int err;
4116 	int i;
4117 
4118 	/* disallow open during test */
4119 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4120 		WARN_ON(resuming);
4121 		return -EBUSY;
4122 	}
4123 
4124 	if (!resuming)
4125 		pm_runtime_get_sync(&pdev->dev);
4126 
4127 	netif_carrier_off(netdev);
4128 
4129 	/* allocate transmit descriptors */
4130 	err = igb_setup_all_tx_resources(adapter);
4131 	if (err)
4132 		goto err_setup_tx;
4133 
4134 	/* allocate receive descriptors */
4135 	err = igb_setup_all_rx_resources(adapter);
4136 	if (err)
4137 		goto err_setup_rx;
4138 
4139 	igb_power_up_link(adapter);
4140 
4141 	/* before we allocate an interrupt, we must be ready to handle it.
4142 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4143 	 * as soon as we call pci_request_irq, so we have to setup our
4144 	 * clean_rx handler before we do so.
4145 	 */
4146 	igb_configure(adapter);
4147 
4148 	err = igb_request_irq(adapter);
4149 	if (err)
4150 		goto err_req_irq;
4151 
4152 	/* Notify the stack of the actual queue counts. */
4153 	err = netif_set_real_num_tx_queues(adapter->netdev,
4154 					   adapter->num_tx_queues);
4155 	if (err)
4156 		goto err_set_queues;
4157 
4158 	err = netif_set_real_num_rx_queues(adapter->netdev,
4159 					   adapter->num_rx_queues);
4160 	if (err)
4161 		goto err_set_queues;
4162 
4163 	/* From here on the code is the same as igb_up() */
4164 	clear_bit(__IGB_DOWN, &adapter->state);
4165 
4166 	for (i = 0; i < adapter->num_q_vectors; i++)
4167 		napi_enable(&(adapter->q_vector[i]->napi));
4168 
4169 	/* Clear any pending interrupts. */
4170 	rd32(E1000_TSICR);
4171 	rd32(E1000_ICR);
4172 
4173 	igb_irq_enable(adapter);
4174 
4175 	/* notify VFs that reset has been completed */
4176 	if (adapter->vfs_allocated_count) {
4177 		u32 reg_data = rd32(E1000_CTRL_EXT);
4178 
4179 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4180 		wr32(E1000_CTRL_EXT, reg_data);
4181 	}
4182 
4183 	netif_tx_start_all_queues(netdev);
4184 
4185 	if (!resuming)
4186 		pm_runtime_put(&pdev->dev);
4187 
4188 	/* start the watchdog. */
4189 	hw->mac.get_link_status = 1;
4190 	schedule_work(&adapter->watchdog_task);
4191 
4192 	return 0;
4193 
4194 err_set_queues:
4195 	igb_free_irq(adapter);
4196 err_req_irq:
4197 	igb_release_hw_control(adapter);
4198 	igb_power_down_link(adapter);
4199 	igb_free_all_rx_resources(adapter);
4200 err_setup_rx:
4201 	igb_free_all_tx_resources(adapter);
4202 err_setup_tx:
4203 	igb_reset(adapter);
4204 	if (!resuming)
4205 		pm_runtime_put(&pdev->dev);
4206 
4207 	return err;
4208 }
4209 
4210 int igb_open(struct net_device *netdev)
4211 {
4212 	return __igb_open(netdev, false);
4213 }
4214 
4215 /**
4216  *  __igb_close - Disables a network interface
4217  *  @netdev: network interface device structure
4218  *  @suspending: indicates we are in a suspend call
4219  *
4220  *  Returns 0, this is not allowed to fail
4221  *
4222  *  The close entry point is called when an interface is de-activated
4223  *  by the OS.  The hardware is still under the driver's control, but
4224  *  needs to be disabled.  A global MAC reset is issued to stop the
4225  *  hardware, and all transmit and receive resources are freed.
4226  **/
4227 static int __igb_close(struct net_device *netdev, bool suspending)
4228 {
4229 	struct igb_adapter *adapter = netdev_priv(netdev);
4230 	struct pci_dev *pdev = adapter->pdev;
4231 
4232 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4233 
4234 	if (!suspending)
4235 		pm_runtime_get_sync(&pdev->dev);
4236 
4237 	igb_down(adapter);
4238 	igb_free_irq(adapter);
4239 
4240 	igb_free_all_tx_resources(adapter);
4241 	igb_free_all_rx_resources(adapter);
4242 
4243 	if (!suspending)
4244 		pm_runtime_put_sync(&pdev->dev);
4245 	return 0;
4246 }
4247 
4248 int igb_close(struct net_device *netdev)
4249 {
4250 	if (netif_device_present(netdev) || netdev->dismantle)
4251 		return __igb_close(netdev, false);
4252 	return 0;
4253 }
4254 
4255 /**
4256  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4257  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4258  *
4259  *  Return 0 on success, negative on failure
4260  **/
4261 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4262 {
4263 	struct device *dev = tx_ring->dev;
4264 	int size;
4265 
4266 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4267 
4268 	tx_ring->tx_buffer_info = vmalloc(size);
4269 	if (!tx_ring->tx_buffer_info)
4270 		goto err;
4271 
4272 	/* round up to nearest 4K */
4273 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4274 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4275 
4276 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4277 					   &tx_ring->dma, GFP_KERNEL);
4278 	if (!tx_ring->desc)
4279 		goto err;
4280 
4281 	tx_ring->next_to_use = 0;
4282 	tx_ring->next_to_clean = 0;
4283 
4284 	return 0;
4285 
4286 err:
4287 	vfree(tx_ring->tx_buffer_info);
4288 	tx_ring->tx_buffer_info = NULL;
4289 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4290 	return -ENOMEM;
4291 }
4292 
4293 /**
4294  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4295  *				 (Descriptors) for all queues
4296  *  @adapter: board private structure
4297  *
4298  *  Return 0 on success, negative on failure
4299  **/
4300 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4301 {
4302 	struct pci_dev *pdev = adapter->pdev;
4303 	int i, err = 0;
4304 
4305 	for (i = 0; i < adapter->num_tx_queues; i++) {
4306 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4307 		if (err) {
4308 			dev_err(&pdev->dev,
4309 				"Allocation for Tx Queue %u failed\n", i);
4310 			for (i--; i >= 0; i--)
4311 				igb_free_tx_resources(adapter->tx_ring[i]);
4312 			break;
4313 		}
4314 	}
4315 
4316 	return err;
4317 }
4318 
4319 /**
4320  *  igb_setup_tctl - configure the transmit control registers
4321  *  @adapter: Board private structure
4322  **/
4323 void igb_setup_tctl(struct igb_adapter *adapter)
4324 {
4325 	struct e1000_hw *hw = &adapter->hw;
4326 	u32 tctl;
4327 
4328 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4329 	wr32(E1000_TXDCTL(0), 0);
4330 
4331 	/* Program the Transmit Control Register */
4332 	tctl = rd32(E1000_TCTL);
4333 	tctl &= ~E1000_TCTL_CT;
4334 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4335 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4336 
4337 	igb_config_collision_dist(hw);
4338 
4339 	/* Enable transmits */
4340 	tctl |= E1000_TCTL_EN;
4341 
4342 	wr32(E1000_TCTL, tctl);
4343 }
4344 
4345 /**
4346  *  igb_configure_tx_ring - Configure transmit ring after Reset
4347  *  @adapter: board private structure
4348  *  @ring: tx ring to configure
4349  *
4350  *  Configure a transmit ring after a reset.
4351  **/
4352 void igb_configure_tx_ring(struct igb_adapter *adapter,
4353 			   struct igb_ring *ring)
4354 {
4355 	struct e1000_hw *hw = &adapter->hw;
4356 	u32 txdctl = 0;
4357 	u64 tdba = ring->dma;
4358 	int reg_idx = ring->reg_idx;
4359 
4360 	wr32(E1000_TDLEN(reg_idx),
4361 	     ring->count * sizeof(union e1000_adv_tx_desc));
4362 	wr32(E1000_TDBAL(reg_idx),
4363 	     tdba & 0x00000000ffffffffULL);
4364 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4365 
4366 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4367 	wr32(E1000_TDH(reg_idx), 0);
4368 	writel(0, ring->tail);
4369 
4370 	txdctl |= IGB_TX_PTHRESH;
4371 	txdctl |= IGB_TX_HTHRESH << 8;
4372 	txdctl |= IGB_TX_WTHRESH << 16;
4373 
4374 	/* reinitialize tx_buffer_info */
4375 	memset(ring->tx_buffer_info, 0,
4376 	       sizeof(struct igb_tx_buffer) * ring->count);
4377 
4378 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4379 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4380 }
4381 
4382 /**
4383  *  igb_configure_tx - Configure transmit Unit after Reset
4384  *  @adapter: board private structure
4385  *
4386  *  Configure the Tx unit of the MAC after a reset.
4387  **/
4388 static void igb_configure_tx(struct igb_adapter *adapter)
4389 {
4390 	struct e1000_hw *hw = &adapter->hw;
4391 	int i;
4392 
4393 	/* disable the queues */
4394 	for (i = 0; i < adapter->num_tx_queues; i++)
4395 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4396 
4397 	wrfl();
4398 	usleep_range(10000, 20000);
4399 
4400 	for (i = 0; i < adapter->num_tx_queues; i++)
4401 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4402 }
4403 
4404 /**
4405  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4406  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4407  *
4408  *  Returns 0 on success, negative on failure
4409  **/
4410 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4411 {
4412 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4413 	struct device *dev = rx_ring->dev;
4414 	int size, res;
4415 
4416 	/* XDP RX-queue info */
4417 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4418 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4419 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4420 			       rx_ring->queue_index, 0);
4421 	if (res < 0) {
4422 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4423 			rx_ring->queue_index);
4424 		return res;
4425 	}
4426 
4427 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4428 
4429 	rx_ring->rx_buffer_info = vmalloc(size);
4430 	if (!rx_ring->rx_buffer_info)
4431 		goto err;
4432 
4433 	/* Round up to nearest 4K */
4434 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4435 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4436 
4437 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4438 					   &rx_ring->dma, GFP_KERNEL);
4439 	if (!rx_ring->desc)
4440 		goto err;
4441 
4442 	rx_ring->next_to_alloc = 0;
4443 	rx_ring->next_to_clean = 0;
4444 	rx_ring->next_to_use = 0;
4445 
4446 	rx_ring->xdp_prog = adapter->xdp_prog;
4447 
4448 	return 0;
4449 
4450 err:
4451 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4452 	vfree(rx_ring->rx_buffer_info);
4453 	rx_ring->rx_buffer_info = NULL;
4454 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4455 	return -ENOMEM;
4456 }
4457 
4458 /**
4459  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4460  *				 (Descriptors) for all queues
4461  *  @adapter: board private structure
4462  *
4463  *  Return 0 on success, negative on failure
4464  **/
4465 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4466 {
4467 	struct pci_dev *pdev = adapter->pdev;
4468 	int i, err = 0;
4469 
4470 	for (i = 0; i < adapter->num_rx_queues; i++) {
4471 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4472 		if (err) {
4473 			dev_err(&pdev->dev,
4474 				"Allocation for Rx Queue %u failed\n", i);
4475 			for (i--; i >= 0; i--)
4476 				igb_free_rx_resources(adapter->rx_ring[i]);
4477 			break;
4478 		}
4479 	}
4480 
4481 	return err;
4482 }
4483 
4484 /**
4485  *  igb_setup_mrqc - configure the multiple receive queue control registers
4486  *  @adapter: Board private structure
4487  **/
4488 static void igb_setup_mrqc(struct igb_adapter *adapter)
4489 {
4490 	struct e1000_hw *hw = &adapter->hw;
4491 	u32 mrqc, rxcsum;
4492 	u32 j, num_rx_queues;
4493 	u32 rss_key[10];
4494 
4495 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4496 	for (j = 0; j < 10; j++)
4497 		wr32(E1000_RSSRK(j), rss_key[j]);
4498 
4499 	num_rx_queues = adapter->rss_queues;
4500 
4501 	switch (hw->mac.type) {
4502 	case e1000_82576:
4503 		/* 82576 supports 2 RSS queues for SR-IOV */
4504 		if (adapter->vfs_allocated_count)
4505 			num_rx_queues = 2;
4506 		break;
4507 	default:
4508 		break;
4509 	}
4510 
4511 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4512 		for (j = 0; j < IGB_RETA_SIZE; j++)
4513 			adapter->rss_indir_tbl[j] =
4514 			(j * num_rx_queues) / IGB_RETA_SIZE;
4515 		adapter->rss_indir_tbl_init = num_rx_queues;
4516 	}
4517 	igb_write_rss_indir_tbl(adapter);
4518 
4519 	/* Disable raw packet checksumming so that RSS hash is placed in
4520 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4521 	 * offloads as they are enabled by default
4522 	 */
4523 	rxcsum = rd32(E1000_RXCSUM);
4524 	rxcsum |= E1000_RXCSUM_PCSD;
4525 
4526 	if (adapter->hw.mac.type >= e1000_82576)
4527 		/* Enable Receive Checksum Offload for SCTP */
4528 		rxcsum |= E1000_RXCSUM_CRCOFL;
4529 
4530 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4531 	wr32(E1000_RXCSUM, rxcsum);
4532 
4533 	/* Generate RSS hash based on packet types, TCP/UDP
4534 	 * port numbers and/or IPv4/v6 src and dst addresses
4535 	 */
4536 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4537 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4538 	       E1000_MRQC_RSS_FIELD_IPV6 |
4539 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4540 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4541 
4542 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4543 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4544 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4545 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4546 
4547 	/* If VMDq is enabled then we set the appropriate mode for that, else
4548 	 * we default to RSS so that an RSS hash is calculated per packet even
4549 	 * if we are only using one queue
4550 	 */
4551 	if (adapter->vfs_allocated_count) {
4552 		if (hw->mac.type > e1000_82575) {
4553 			/* Set the default pool for the PF's first queue */
4554 			u32 vtctl = rd32(E1000_VT_CTL);
4555 
4556 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4557 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4558 			vtctl |= adapter->vfs_allocated_count <<
4559 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4560 			wr32(E1000_VT_CTL, vtctl);
4561 		}
4562 		if (adapter->rss_queues > 1)
4563 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4564 		else
4565 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4566 	} else {
4567 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4568 	}
4569 	igb_vmm_control(adapter);
4570 
4571 	wr32(E1000_MRQC, mrqc);
4572 }
4573 
4574 /**
4575  *  igb_setup_rctl - configure the receive control registers
4576  *  @adapter: Board private structure
4577  **/
4578 void igb_setup_rctl(struct igb_adapter *adapter)
4579 {
4580 	struct e1000_hw *hw = &adapter->hw;
4581 	u32 rctl;
4582 
4583 	rctl = rd32(E1000_RCTL);
4584 
4585 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4586 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4587 
4588 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4589 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4590 
4591 	/* enable stripping of CRC. It's unlikely this will break BMC
4592 	 * redirection as it did with e1000. Newer features require
4593 	 * that the HW strips the CRC.
4594 	 */
4595 	rctl |= E1000_RCTL_SECRC;
4596 
4597 	/* disable store bad packets and clear size bits. */
4598 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4599 
4600 	/* enable LPE to allow for reception of jumbo frames */
4601 	rctl |= E1000_RCTL_LPE;
4602 
4603 	/* disable queue 0 to prevent tail write w/o re-config */
4604 	wr32(E1000_RXDCTL(0), 0);
4605 
4606 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4607 	 * queue drop for all VF and PF queues to prevent head of line blocking
4608 	 * if an un-trusted VF does not provide descriptors to hardware.
4609 	 */
4610 	if (adapter->vfs_allocated_count) {
4611 		/* set all queue drop enable bits */
4612 		wr32(E1000_QDE, ALL_QUEUES);
4613 	}
4614 
4615 	/* This is useful for sniffing bad packets. */
4616 	if (adapter->netdev->features & NETIF_F_RXALL) {
4617 		/* UPE and MPE will be handled by normal PROMISC logic
4618 		 * in e1000e_set_rx_mode
4619 		 */
4620 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4621 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4622 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4623 
4624 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4625 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4626 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4627 		 * and that breaks VLANs.
4628 		 */
4629 	}
4630 
4631 	wr32(E1000_RCTL, rctl);
4632 }
4633 
4634 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4635 				   int vfn)
4636 {
4637 	struct e1000_hw *hw = &adapter->hw;
4638 	u32 vmolr;
4639 
4640 	if (size > MAX_JUMBO_FRAME_SIZE)
4641 		size = MAX_JUMBO_FRAME_SIZE;
4642 
4643 	vmolr = rd32(E1000_VMOLR(vfn));
4644 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4645 	vmolr |= size | E1000_VMOLR_LPE;
4646 	wr32(E1000_VMOLR(vfn), vmolr);
4647 
4648 	return 0;
4649 }
4650 
4651 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4652 					 int vfn, bool enable)
4653 {
4654 	struct e1000_hw *hw = &adapter->hw;
4655 	u32 val, reg;
4656 
4657 	if (hw->mac.type < e1000_82576)
4658 		return;
4659 
4660 	if (hw->mac.type == e1000_i350)
4661 		reg = E1000_DVMOLR(vfn);
4662 	else
4663 		reg = E1000_VMOLR(vfn);
4664 
4665 	val = rd32(reg);
4666 	if (enable)
4667 		val |= E1000_VMOLR_STRVLAN;
4668 	else
4669 		val &= ~(E1000_VMOLR_STRVLAN);
4670 	wr32(reg, val);
4671 }
4672 
4673 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4674 				 int vfn, bool aupe)
4675 {
4676 	struct e1000_hw *hw = &adapter->hw;
4677 	u32 vmolr;
4678 
4679 	/* This register exists only on 82576 and newer so if we are older then
4680 	 * we should exit and do nothing
4681 	 */
4682 	if (hw->mac.type < e1000_82576)
4683 		return;
4684 
4685 	vmolr = rd32(E1000_VMOLR(vfn));
4686 	if (aupe)
4687 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4688 	else
4689 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4690 
4691 	/* clear all bits that might not be set */
4692 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4693 
4694 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4695 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4696 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4697 	 * multicast packets
4698 	 */
4699 	if (vfn <= adapter->vfs_allocated_count)
4700 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4701 
4702 	wr32(E1000_VMOLR(vfn), vmolr);
4703 }
4704 
4705 /**
4706  *  igb_setup_srrctl - configure the split and replication receive control
4707  *                     registers
4708  *  @adapter: Board private structure
4709  *  @ring: receive ring to be configured
4710  **/
4711 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4712 {
4713 	struct e1000_hw *hw = &adapter->hw;
4714 	int reg_idx = ring->reg_idx;
4715 	u32 srrctl = 0;
4716 
4717 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4718 	if (ring_uses_large_buffer(ring))
4719 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4720 	else
4721 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4722 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4723 	if (hw->mac.type >= e1000_82580)
4724 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4725 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4726 	 * queues and rx flow control is disabled
4727 	 */
4728 	if (adapter->vfs_allocated_count ||
4729 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4730 	     adapter->num_rx_queues > 1))
4731 		srrctl |= E1000_SRRCTL_DROP_EN;
4732 
4733 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4734 }
4735 
4736 /**
4737  *  igb_configure_rx_ring - Configure a receive ring after Reset
4738  *  @adapter: board private structure
4739  *  @ring: receive ring to be configured
4740  *
4741  *  Configure the Rx unit of the MAC after a reset.
4742  **/
4743 void igb_configure_rx_ring(struct igb_adapter *adapter,
4744 			   struct igb_ring *ring)
4745 {
4746 	struct e1000_hw *hw = &adapter->hw;
4747 	union e1000_adv_rx_desc *rx_desc;
4748 	u64 rdba = ring->dma;
4749 	int reg_idx = ring->reg_idx;
4750 	u32 rxdctl = 0;
4751 
4752 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4753 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4754 					   MEM_TYPE_PAGE_SHARED, NULL));
4755 
4756 	/* disable the queue */
4757 	wr32(E1000_RXDCTL(reg_idx), 0);
4758 
4759 	/* Set DMA base address registers */
4760 	wr32(E1000_RDBAL(reg_idx),
4761 	     rdba & 0x00000000ffffffffULL);
4762 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4763 	wr32(E1000_RDLEN(reg_idx),
4764 	     ring->count * sizeof(union e1000_adv_rx_desc));
4765 
4766 	/* initialize head and tail */
4767 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4768 	wr32(E1000_RDH(reg_idx), 0);
4769 	writel(0, ring->tail);
4770 
4771 	/* set descriptor configuration */
4772 	igb_setup_srrctl(adapter, ring);
4773 
4774 	/* set filtering for VMDQ pools */
4775 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4776 
4777 	rxdctl |= IGB_RX_PTHRESH;
4778 	rxdctl |= IGB_RX_HTHRESH << 8;
4779 	rxdctl |= IGB_RX_WTHRESH << 16;
4780 
4781 	/* initialize rx_buffer_info */
4782 	memset(ring->rx_buffer_info, 0,
4783 	       sizeof(struct igb_rx_buffer) * ring->count);
4784 
4785 	/* initialize Rx descriptor 0 */
4786 	rx_desc = IGB_RX_DESC(ring, 0);
4787 	rx_desc->wb.upper.length = 0;
4788 
4789 	/* enable receive descriptor fetching */
4790 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4791 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4792 }
4793 
4794 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4795 				  struct igb_ring *rx_ring)
4796 {
4797 #if (PAGE_SIZE < 8192)
4798 	struct e1000_hw *hw = &adapter->hw;
4799 #endif
4800 
4801 	/* set build_skb and buffer size flags */
4802 	clear_ring_build_skb_enabled(rx_ring);
4803 	clear_ring_uses_large_buffer(rx_ring);
4804 
4805 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4806 		return;
4807 
4808 	set_ring_build_skb_enabled(rx_ring);
4809 
4810 #if (PAGE_SIZE < 8192)
4811 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4812 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4813 		set_ring_uses_large_buffer(rx_ring);
4814 #endif
4815 }
4816 
4817 /**
4818  *  igb_configure_rx - Configure receive Unit after Reset
4819  *  @adapter: board private structure
4820  *
4821  *  Configure the Rx unit of the MAC after a reset.
4822  **/
4823 static void igb_configure_rx(struct igb_adapter *adapter)
4824 {
4825 	int i;
4826 
4827 	/* set the correct pool for the PF default MAC address in entry 0 */
4828 	igb_set_default_mac_filter(adapter);
4829 
4830 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4831 	 * the Base and Length of the Rx Descriptor Ring
4832 	 */
4833 	for (i = 0; i < adapter->num_rx_queues; i++) {
4834 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4835 
4836 		igb_set_rx_buffer_len(adapter, rx_ring);
4837 		igb_configure_rx_ring(adapter, rx_ring);
4838 	}
4839 }
4840 
4841 /**
4842  *  igb_free_tx_resources - Free Tx Resources per Queue
4843  *  @tx_ring: Tx descriptor ring for a specific queue
4844  *
4845  *  Free all transmit software resources
4846  **/
4847 void igb_free_tx_resources(struct igb_ring *tx_ring)
4848 {
4849 	igb_clean_tx_ring(tx_ring);
4850 
4851 	vfree(tx_ring->tx_buffer_info);
4852 	tx_ring->tx_buffer_info = NULL;
4853 
4854 	/* if not set, then don't free */
4855 	if (!tx_ring->desc)
4856 		return;
4857 
4858 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4859 			  tx_ring->desc, tx_ring->dma);
4860 
4861 	tx_ring->desc = NULL;
4862 }
4863 
4864 /**
4865  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4866  *  @adapter: board private structure
4867  *
4868  *  Free all transmit software resources
4869  **/
4870 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4871 {
4872 	int i;
4873 
4874 	for (i = 0; i < adapter->num_tx_queues; i++)
4875 		if (adapter->tx_ring[i])
4876 			igb_free_tx_resources(adapter->tx_ring[i]);
4877 }
4878 
4879 /**
4880  *  igb_clean_tx_ring - Free Tx Buffers
4881  *  @tx_ring: ring to be cleaned
4882  **/
4883 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4884 {
4885 	u16 i = tx_ring->next_to_clean;
4886 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4887 
4888 	while (i != tx_ring->next_to_use) {
4889 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4890 
4891 		/* Free all the Tx ring sk_buffs or xdp frames */
4892 		if (tx_buffer->type == IGB_TYPE_SKB)
4893 			dev_kfree_skb_any(tx_buffer->skb);
4894 		else
4895 			xdp_return_frame(tx_buffer->xdpf);
4896 
4897 		/* unmap skb header data */
4898 		dma_unmap_single(tx_ring->dev,
4899 				 dma_unmap_addr(tx_buffer, dma),
4900 				 dma_unmap_len(tx_buffer, len),
4901 				 DMA_TO_DEVICE);
4902 
4903 		/* check for eop_desc to determine the end of the packet */
4904 		eop_desc = tx_buffer->next_to_watch;
4905 		tx_desc = IGB_TX_DESC(tx_ring, i);
4906 
4907 		/* unmap remaining buffers */
4908 		while (tx_desc != eop_desc) {
4909 			tx_buffer++;
4910 			tx_desc++;
4911 			i++;
4912 			if (unlikely(i == tx_ring->count)) {
4913 				i = 0;
4914 				tx_buffer = tx_ring->tx_buffer_info;
4915 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4916 			}
4917 
4918 			/* unmap any remaining paged data */
4919 			if (dma_unmap_len(tx_buffer, len))
4920 				dma_unmap_page(tx_ring->dev,
4921 					       dma_unmap_addr(tx_buffer, dma),
4922 					       dma_unmap_len(tx_buffer, len),
4923 					       DMA_TO_DEVICE);
4924 		}
4925 
4926 		tx_buffer->next_to_watch = NULL;
4927 
4928 		/* move us one more past the eop_desc for start of next pkt */
4929 		tx_buffer++;
4930 		i++;
4931 		if (unlikely(i == tx_ring->count)) {
4932 			i = 0;
4933 			tx_buffer = tx_ring->tx_buffer_info;
4934 		}
4935 	}
4936 
4937 	/* reset BQL for queue */
4938 	netdev_tx_reset_queue(txring_txq(tx_ring));
4939 
4940 	/* reset next_to_use and next_to_clean */
4941 	tx_ring->next_to_use = 0;
4942 	tx_ring->next_to_clean = 0;
4943 }
4944 
4945 /**
4946  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4947  *  @adapter: board private structure
4948  **/
4949 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4950 {
4951 	int i;
4952 
4953 	for (i = 0; i < adapter->num_tx_queues; i++)
4954 		if (adapter->tx_ring[i])
4955 			igb_clean_tx_ring(adapter->tx_ring[i]);
4956 }
4957 
4958 /**
4959  *  igb_free_rx_resources - Free Rx Resources
4960  *  @rx_ring: ring to clean the resources from
4961  *
4962  *  Free all receive software resources
4963  **/
4964 void igb_free_rx_resources(struct igb_ring *rx_ring)
4965 {
4966 	igb_clean_rx_ring(rx_ring);
4967 
4968 	rx_ring->xdp_prog = NULL;
4969 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4970 	vfree(rx_ring->rx_buffer_info);
4971 	rx_ring->rx_buffer_info = NULL;
4972 
4973 	/* if not set, then don't free */
4974 	if (!rx_ring->desc)
4975 		return;
4976 
4977 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4978 			  rx_ring->desc, rx_ring->dma);
4979 
4980 	rx_ring->desc = NULL;
4981 }
4982 
4983 /**
4984  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4985  *  @adapter: board private structure
4986  *
4987  *  Free all receive software resources
4988  **/
4989 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4990 {
4991 	int i;
4992 
4993 	for (i = 0; i < adapter->num_rx_queues; i++)
4994 		if (adapter->rx_ring[i])
4995 			igb_free_rx_resources(adapter->rx_ring[i]);
4996 }
4997 
4998 /**
4999  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5000  *  @rx_ring: ring to free buffers from
5001  **/
5002 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5003 {
5004 	u16 i = rx_ring->next_to_clean;
5005 
5006 	dev_kfree_skb(rx_ring->skb);
5007 	rx_ring->skb = NULL;
5008 
5009 	/* Free all the Rx ring sk_buffs */
5010 	while (i != rx_ring->next_to_alloc) {
5011 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5012 
5013 		/* Invalidate cache lines that may have been written to by
5014 		 * device so that we avoid corrupting memory.
5015 		 */
5016 		dma_sync_single_range_for_cpu(rx_ring->dev,
5017 					      buffer_info->dma,
5018 					      buffer_info->page_offset,
5019 					      igb_rx_bufsz(rx_ring),
5020 					      DMA_FROM_DEVICE);
5021 
5022 		/* free resources associated with mapping */
5023 		dma_unmap_page_attrs(rx_ring->dev,
5024 				     buffer_info->dma,
5025 				     igb_rx_pg_size(rx_ring),
5026 				     DMA_FROM_DEVICE,
5027 				     IGB_RX_DMA_ATTR);
5028 		__page_frag_cache_drain(buffer_info->page,
5029 					buffer_info->pagecnt_bias);
5030 
5031 		i++;
5032 		if (i == rx_ring->count)
5033 			i = 0;
5034 	}
5035 
5036 	rx_ring->next_to_alloc = 0;
5037 	rx_ring->next_to_clean = 0;
5038 	rx_ring->next_to_use = 0;
5039 }
5040 
5041 /**
5042  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5043  *  @adapter: board private structure
5044  **/
5045 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5046 {
5047 	int i;
5048 
5049 	for (i = 0; i < adapter->num_rx_queues; i++)
5050 		if (adapter->rx_ring[i])
5051 			igb_clean_rx_ring(adapter->rx_ring[i]);
5052 }
5053 
5054 /**
5055  *  igb_set_mac - Change the Ethernet Address of the NIC
5056  *  @netdev: network interface device structure
5057  *  @p: pointer to an address structure
5058  *
5059  *  Returns 0 on success, negative on failure
5060  **/
5061 static int igb_set_mac(struct net_device *netdev, void *p)
5062 {
5063 	struct igb_adapter *adapter = netdev_priv(netdev);
5064 	struct e1000_hw *hw = &adapter->hw;
5065 	struct sockaddr *addr = p;
5066 
5067 	if (!is_valid_ether_addr(addr->sa_data))
5068 		return -EADDRNOTAVAIL;
5069 
5070 	eth_hw_addr_set(netdev, addr->sa_data);
5071 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5072 
5073 	/* set the correct pool for the new PF MAC address in entry 0 */
5074 	igb_set_default_mac_filter(adapter);
5075 
5076 	return 0;
5077 }
5078 
5079 /**
5080  *  igb_write_mc_addr_list - write multicast addresses to MTA
5081  *  @netdev: network interface device structure
5082  *
5083  *  Writes multicast address list to the MTA hash table.
5084  *  Returns: -ENOMEM on failure
5085  *           0 on no addresses written
5086  *           X on writing X addresses to MTA
5087  **/
5088 static int igb_write_mc_addr_list(struct net_device *netdev)
5089 {
5090 	struct igb_adapter *adapter = netdev_priv(netdev);
5091 	struct e1000_hw *hw = &adapter->hw;
5092 	struct netdev_hw_addr *ha;
5093 	u8  *mta_list;
5094 	int i;
5095 
5096 	if (netdev_mc_empty(netdev)) {
5097 		/* nothing to program, so clear mc list */
5098 		igb_update_mc_addr_list(hw, NULL, 0);
5099 		igb_restore_vf_multicasts(adapter);
5100 		return 0;
5101 	}
5102 
5103 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5104 	if (!mta_list)
5105 		return -ENOMEM;
5106 
5107 	/* The shared function expects a packed array of only addresses. */
5108 	i = 0;
5109 	netdev_for_each_mc_addr(ha, netdev)
5110 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5111 
5112 	igb_update_mc_addr_list(hw, mta_list, i);
5113 	kfree(mta_list);
5114 
5115 	return netdev_mc_count(netdev);
5116 }
5117 
5118 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5119 {
5120 	struct e1000_hw *hw = &adapter->hw;
5121 	u32 i, pf_id;
5122 
5123 	switch (hw->mac.type) {
5124 	case e1000_i210:
5125 	case e1000_i211:
5126 	case e1000_i350:
5127 		/* VLAN filtering needed for VLAN prio filter */
5128 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5129 			break;
5130 		fallthrough;
5131 	case e1000_82576:
5132 	case e1000_82580:
5133 	case e1000_i354:
5134 		/* VLAN filtering needed for pool filtering */
5135 		if (adapter->vfs_allocated_count)
5136 			break;
5137 		fallthrough;
5138 	default:
5139 		return 1;
5140 	}
5141 
5142 	/* We are already in VLAN promisc, nothing to do */
5143 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5144 		return 0;
5145 
5146 	if (!adapter->vfs_allocated_count)
5147 		goto set_vfta;
5148 
5149 	/* Add PF to all active pools */
5150 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5151 
5152 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5153 		u32 vlvf = rd32(E1000_VLVF(i));
5154 
5155 		vlvf |= BIT(pf_id);
5156 		wr32(E1000_VLVF(i), vlvf);
5157 	}
5158 
5159 set_vfta:
5160 	/* Set all bits in the VLAN filter table array */
5161 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5162 		hw->mac.ops.write_vfta(hw, i, ~0U);
5163 
5164 	/* Set flag so we don't redo unnecessary work */
5165 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5166 
5167 	return 0;
5168 }
5169 
5170 #define VFTA_BLOCK_SIZE 8
5171 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5172 {
5173 	struct e1000_hw *hw = &adapter->hw;
5174 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5175 	u32 vid_start = vfta_offset * 32;
5176 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5177 	u32 i, vid, word, bits, pf_id;
5178 
5179 	/* guarantee that we don't scrub out management VLAN */
5180 	vid = adapter->mng_vlan_id;
5181 	if (vid >= vid_start && vid < vid_end)
5182 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5183 
5184 	if (!adapter->vfs_allocated_count)
5185 		goto set_vfta;
5186 
5187 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5188 
5189 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5190 		u32 vlvf = rd32(E1000_VLVF(i));
5191 
5192 		/* pull VLAN ID from VLVF */
5193 		vid = vlvf & VLAN_VID_MASK;
5194 
5195 		/* only concern ourselves with a certain range */
5196 		if (vid < vid_start || vid >= vid_end)
5197 			continue;
5198 
5199 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5200 			/* record VLAN ID in VFTA */
5201 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5202 
5203 			/* if PF is part of this then continue */
5204 			if (test_bit(vid, adapter->active_vlans))
5205 				continue;
5206 		}
5207 
5208 		/* remove PF from the pool */
5209 		bits = ~BIT(pf_id);
5210 		bits &= rd32(E1000_VLVF(i));
5211 		wr32(E1000_VLVF(i), bits);
5212 	}
5213 
5214 set_vfta:
5215 	/* extract values from active_vlans and write back to VFTA */
5216 	for (i = VFTA_BLOCK_SIZE; i--;) {
5217 		vid = (vfta_offset + i) * 32;
5218 		word = vid / BITS_PER_LONG;
5219 		bits = vid % BITS_PER_LONG;
5220 
5221 		vfta[i] |= adapter->active_vlans[word] >> bits;
5222 
5223 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5224 	}
5225 }
5226 
5227 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5228 {
5229 	u32 i;
5230 
5231 	/* We are not in VLAN promisc, nothing to do */
5232 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5233 		return;
5234 
5235 	/* Set flag so we don't redo unnecessary work */
5236 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5237 
5238 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5239 		igb_scrub_vfta(adapter, i);
5240 }
5241 
5242 /**
5243  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5244  *  @netdev: network interface device structure
5245  *
5246  *  The set_rx_mode entry point is called whenever the unicast or multicast
5247  *  address lists or the network interface flags are updated.  This routine is
5248  *  responsible for configuring the hardware for proper unicast, multicast,
5249  *  promiscuous mode, and all-multi behavior.
5250  **/
5251 static void igb_set_rx_mode(struct net_device *netdev)
5252 {
5253 	struct igb_adapter *adapter = netdev_priv(netdev);
5254 	struct e1000_hw *hw = &adapter->hw;
5255 	unsigned int vfn = adapter->vfs_allocated_count;
5256 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5257 	int count;
5258 
5259 	/* Check for Promiscuous and All Multicast modes */
5260 	if (netdev->flags & IFF_PROMISC) {
5261 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5262 		vmolr |= E1000_VMOLR_MPME;
5263 
5264 		/* enable use of UTA filter to force packets to default pool */
5265 		if (hw->mac.type == e1000_82576)
5266 			vmolr |= E1000_VMOLR_ROPE;
5267 	} else {
5268 		if (netdev->flags & IFF_ALLMULTI) {
5269 			rctl |= E1000_RCTL_MPE;
5270 			vmolr |= E1000_VMOLR_MPME;
5271 		} else {
5272 			/* Write addresses to the MTA, if the attempt fails
5273 			 * then we should just turn on promiscuous mode so
5274 			 * that we can at least receive multicast traffic
5275 			 */
5276 			count = igb_write_mc_addr_list(netdev);
5277 			if (count < 0) {
5278 				rctl |= E1000_RCTL_MPE;
5279 				vmolr |= E1000_VMOLR_MPME;
5280 			} else if (count) {
5281 				vmolr |= E1000_VMOLR_ROMPE;
5282 			}
5283 		}
5284 	}
5285 
5286 	/* Write addresses to available RAR registers, if there is not
5287 	 * sufficient space to store all the addresses then enable
5288 	 * unicast promiscuous mode
5289 	 */
5290 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5291 		rctl |= E1000_RCTL_UPE;
5292 		vmolr |= E1000_VMOLR_ROPE;
5293 	}
5294 
5295 	/* enable VLAN filtering by default */
5296 	rctl |= E1000_RCTL_VFE;
5297 
5298 	/* disable VLAN filtering for modes that require it */
5299 	if ((netdev->flags & IFF_PROMISC) ||
5300 	    (netdev->features & NETIF_F_RXALL)) {
5301 		/* if we fail to set all rules then just clear VFE */
5302 		if (igb_vlan_promisc_enable(adapter))
5303 			rctl &= ~E1000_RCTL_VFE;
5304 	} else {
5305 		igb_vlan_promisc_disable(adapter);
5306 	}
5307 
5308 	/* update state of unicast, multicast, and VLAN filtering modes */
5309 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5310 				     E1000_RCTL_VFE);
5311 	wr32(E1000_RCTL, rctl);
5312 
5313 #if (PAGE_SIZE < 8192)
5314 	if (!adapter->vfs_allocated_count) {
5315 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5316 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5317 	}
5318 #endif
5319 	wr32(E1000_RLPML, rlpml);
5320 
5321 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5322 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5323 	 * we will have issues with VLAN tag stripping not being done for frames
5324 	 * that are only arriving because we are the default pool
5325 	 */
5326 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5327 		return;
5328 
5329 	/* set UTA to appropriate mode */
5330 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5331 
5332 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5333 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5334 
5335 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5336 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5337 #if (PAGE_SIZE < 8192)
5338 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5339 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5340 	else
5341 #endif
5342 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5343 	vmolr |= E1000_VMOLR_LPE;
5344 
5345 	wr32(E1000_VMOLR(vfn), vmolr);
5346 
5347 	igb_restore_vf_multicasts(adapter);
5348 }
5349 
5350 static void igb_check_wvbr(struct igb_adapter *adapter)
5351 {
5352 	struct e1000_hw *hw = &adapter->hw;
5353 	u32 wvbr = 0;
5354 
5355 	switch (hw->mac.type) {
5356 	case e1000_82576:
5357 	case e1000_i350:
5358 		wvbr = rd32(E1000_WVBR);
5359 		if (!wvbr)
5360 			return;
5361 		break;
5362 	default:
5363 		break;
5364 	}
5365 
5366 	adapter->wvbr |= wvbr;
5367 }
5368 
5369 #define IGB_STAGGERED_QUEUE_OFFSET 8
5370 
5371 static void igb_spoof_check(struct igb_adapter *adapter)
5372 {
5373 	int j;
5374 
5375 	if (!adapter->wvbr)
5376 		return;
5377 
5378 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5379 		if (adapter->wvbr & BIT(j) ||
5380 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5381 			dev_warn(&adapter->pdev->dev,
5382 				"Spoof event(s) detected on VF %d\n", j);
5383 			adapter->wvbr &=
5384 				~(BIT(j) |
5385 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5386 		}
5387 	}
5388 }
5389 
5390 /* Need to wait a few seconds after link up to get diagnostic information from
5391  * the phy
5392  */
5393 static void igb_update_phy_info(struct timer_list *t)
5394 {
5395 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5396 	igb_get_phy_info(&adapter->hw);
5397 }
5398 
5399 /**
5400  *  igb_has_link - check shared code for link and determine up/down
5401  *  @adapter: pointer to driver private info
5402  **/
5403 bool igb_has_link(struct igb_adapter *adapter)
5404 {
5405 	struct e1000_hw *hw = &adapter->hw;
5406 	bool link_active = false;
5407 
5408 	/* get_link_status is set on LSC (link status) interrupt or
5409 	 * rx sequence error interrupt.  get_link_status will stay
5410 	 * false until the e1000_check_for_link establishes link
5411 	 * for copper adapters ONLY
5412 	 */
5413 	switch (hw->phy.media_type) {
5414 	case e1000_media_type_copper:
5415 		if (!hw->mac.get_link_status)
5416 			return true;
5417 		fallthrough;
5418 	case e1000_media_type_internal_serdes:
5419 		hw->mac.ops.check_for_link(hw);
5420 		link_active = !hw->mac.get_link_status;
5421 		break;
5422 	default:
5423 	case e1000_media_type_unknown:
5424 		break;
5425 	}
5426 
5427 	if (((hw->mac.type == e1000_i210) ||
5428 	     (hw->mac.type == e1000_i211)) &&
5429 	     (hw->phy.id == I210_I_PHY_ID)) {
5430 		if (!netif_carrier_ok(adapter->netdev)) {
5431 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5432 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5433 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5434 			adapter->link_check_timeout = jiffies;
5435 		}
5436 	}
5437 
5438 	return link_active;
5439 }
5440 
5441 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5442 {
5443 	bool ret = false;
5444 	u32 ctrl_ext, thstat;
5445 
5446 	/* check for thermal sensor event on i350 copper only */
5447 	if (hw->mac.type == e1000_i350) {
5448 		thstat = rd32(E1000_THSTAT);
5449 		ctrl_ext = rd32(E1000_CTRL_EXT);
5450 
5451 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5452 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5453 			ret = !!(thstat & event);
5454 	}
5455 
5456 	return ret;
5457 }
5458 
5459 /**
5460  *  igb_check_lvmmc - check for malformed packets received
5461  *  and indicated in LVMMC register
5462  *  @adapter: pointer to adapter
5463  **/
5464 static void igb_check_lvmmc(struct igb_adapter *adapter)
5465 {
5466 	struct e1000_hw *hw = &adapter->hw;
5467 	u32 lvmmc;
5468 
5469 	lvmmc = rd32(E1000_LVMMC);
5470 	if (lvmmc) {
5471 		if (unlikely(net_ratelimit())) {
5472 			netdev_warn(adapter->netdev,
5473 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5474 				    lvmmc);
5475 		}
5476 	}
5477 }
5478 
5479 /**
5480  *  igb_watchdog - Timer Call-back
5481  *  @t: pointer to timer_list containing our private info pointer
5482  **/
5483 static void igb_watchdog(struct timer_list *t)
5484 {
5485 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5486 	/* Do the rest outside of interrupt context */
5487 	schedule_work(&adapter->watchdog_task);
5488 }
5489 
5490 static void igb_watchdog_task(struct work_struct *work)
5491 {
5492 	struct igb_adapter *adapter = container_of(work,
5493 						   struct igb_adapter,
5494 						   watchdog_task);
5495 	struct e1000_hw *hw = &adapter->hw;
5496 	struct e1000_phy_info *phy = &hw->phy;
5497 	struct net_device *netdev = adapter->netdev;
5498 	u32 link;
5499 	int i;
5500 	u32 connsw;
5501 	u16 phy_data, retry_count = 20;
5502 
5503 	link = igb_has_link(adapter);
5504 
5505 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5506 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5507 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5508 		else
5509 			link = false;
5510 	}
5511 
5512 	/* Force link down if we have fiber to swap to */
5513 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5514 		if (hw->phy.media_type == e1000_media_type_copper) {
5515 			connsw = rd32(E1000_CONNSW);
5516 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5517 				link = 0;
5518 		}
5519 	}
5520 	if (link) {
5521 		/* Perform a reset if the media type changed. */
5522 		if (hw->dev_spec._82575.media_changed) {
5523 			hw->dev_spec._82575.media_changed = false;
5524 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5525 			igb_reset(adapter);
5526 		}
5527 		/* Cancel scheduled suspend requests. */
5528 		pm_runtime_resume(netdev->dev.parent);
5529 
5530 		if (!netif_carrier_ok(netdev)) {
5531 			u32 ctrl;
5532 
5533 			hw->mac.ops.get_speed_and_duplex(hw,
5534 							 &adapter->link_speed,
5535 							 &adapter->link_duplex);
5536 
5537 			ctrl = rd32(E1000_CTRL);
5538 			/* Links status message must follow this format */
5539 			netdev_info(netdev,
5540 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5541 			       netdev->name,
5542 			       adapter->link_speed,
5543 			       adapter->link_duplex == FULL_DUPLEX ?
5544 			       "Full" : "Half",
5545 			       (ctrl & E1000_CTRL_TFCE) &&
5546 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5547 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5548 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5549 
5550 			/* disable EEE if enabled */
5551 			if ((adapter->flags & IGB_FLAG_EEE) &&
5552 				(adapter->link_duplex == HALF_DUPLEX)) {
5553 				dev_info(&adapter->pdev->dev,
5554 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5555 				adapter->hw.dev_spec._82575.eee_disable = true;
5556 				adapter->flags &= ~IGB_FLAG_EEE;
5557 			}
5558 
5559 			/* check if SmartSpeed worked */
5560 			igb_check_downshift(hw);
5561 			if (phy->speed_downgraded)
5562 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5563 
5564 			/* check for thermal sensor event */
5565 			if (igb_thermal_sensor_event(hw,
5566 			    E1000_THSTAT_LINK_THROTTLE))
5567 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5568 
5569 			/* adjust timeout factor according to speed/duplex */
5570 			adapter->tx_timeout_factor = 1;
5571 			switch (adapter->link_speed) {
5572 			case SPEED_10:
5573 				adapter->tx_timeout_factor = 14;
5574 				break;
5575 			case SPEED_100:
5576 				/* maybe add some timeout factor ? */
5577 				break;
5578 			}
5579 
5580 			if (adapter->link_speed != SPEED_1000 ||
5581 			    !hw->phy.ops.read_reg)
5582 				goto no_wait;
5583 
5584 			/* wait for Remote receiver status OK */
5585 retry_read_status:
5586 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5587 					      &phy_data)) {
5588 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5589 				    retry_count) {
5590 					msleep(100);
5591 					retry_count--;
5592 					goto retry_read_status;
5593 				} else if (!retry_count) {
5594 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5595 				}
5596 			} else {
5597 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5598 			}
5599 no_wait:
5600 			netif_carrier_on(netdev);
5601 
5602 			igb_ping_all_vfs(adapter);
5603 			igb_check_vf_rate_limit(adapter);
5604 
5605 			/* link state has changed, schedule phy info update */
5606 			if (!test_bit(__IGB_DOWN, &adapter->state))
5607 				mod_timer(&adapter->phy_info_timer,
5608 					  round_jiffies(jiffies + 2 * HZ));
5609 		}
5610 	} else {
5611 		if (netif_carrier_ok(netdev)) {
5612 			adapter->link_speed = 0;
5613 			adapter->link_duplex = 0;
5614 
5615 			/* check for thermal sensor event */
5616 			if (igb_thermal_sensor_event(hw,
5617 			    E1000_THSTAT_PWR_DOWN)) {
5618 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5619 			}
5620 
5621 			/* Links status message must follow this format */
5622 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5623 			       netdev->name);
5624 			netif_carrier_off(netdev);
5625 
5626 			igb_ping_all_vfs(adapter);
5627 
5628 			/* link state has changed, schedule phy info update */
5629 			if (!test_bit(__IGB_DOWN, &adapter->state))
5630 				mod_timer(&adapter->phy_info_timer,
5631 					  round_jiffies(jiffies + 2 * HZ));
5632 
5633 			/* link is down, time to check for alternate media */
5634 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5635 				igb_check_swap_media(adapter);
5636 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5637 					schedule_work(&adapter->reset_task);
5638 					/* return immediately */
5639 					return;
5640 				}
5641 			}
5642 			pm_schedule_suspend(netdev->dev.parent,
5643 					    MSEC_PER_SEC * 5);
5644 
5645 		/* also check for alternate media here */
5646 		} else if (!netif_carrier_ok(netdev) &&
5647 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5648 			igb_check_swap_media(adapter);
5649 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5650 				schedule_work(&adapter->reset_task);
5651 				/* return immediately */
5652 				return;
5653 			}
5654 		}
5655 	}
5656 
5657 	spin_lock(&adapter->stats64_lock);
5658 	igb_update_stats(adapter);
5659 	spin_unlock(&adapter->stats64_lock);
5660 
5661 	for (i = 0; i < adapter->num_tx_queues; i++) {
5662 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5663 		if (!netif_carrier_ok(netdev)) {
5664 			/* We've lost link, so the controller stops DMA,
5665 			 * but we've got queued Tx work that's never going
5666 			 * to get done, so reset controller to flush Tx.
5667 			 * (Do the reset outside of interrupt context).
5668 			 */
5669 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5670 				adapter->tx_timeout_count++;
5671 				schedule_work(&adapter->reset_task);
5672 				/* return immediately since reset is imminent */
5673 				return;
5674 			}
5675 		}
5676 
5677 		/* Force detection of hung controller every watchdog period */
5678 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5679 	}
5680 
5681 	/* Cause software interrupt to ensure Rx ring is cleaned */
5682 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5683 		u32 eics = 0;
5684 
5685 		for (i = 0; i < adapter->num_q_vectors; i++)
5686 			eics |= adapter->q_vector[i]->eims_value;
5687 		wr32(E1000_EICS, eics);
5688 	} else {
5689 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5690 	}
5691 
5692 	igb_spoof_check(adapter);
5693 	igb_ptp_rx_hang(adapter);
5694 	igb_ptp_tx_hang(adapter);
5695 
5696 	/* Check LVMMC register on i350/i354 only */
5697 	if ((adapter->hw.mac.type == e1000_i350) ||
5698 	    (adapter->hw.mac.type == e1000_i354))
5699 		igb_check_lvmmc(adapter);
5700 
5701 	/* Reset the timer */
5702 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5703 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5704 			mod_timer(&adapter->watchdog_timer,
5705 				  round_jiffies(jiffies +  HZ));
5706 		else
5707 			mod_timer(&adapter->watchdog_timer,
5708 				  round_jiffies(jiffies + 2 * HZ));
5709 	}
5710 }
5711 
5712 enum latency_range {
5713 	lowest_latency = 0,
5714 	low_latency = 1,
5715 	bulk_latency = 2,
5716 	latency_invalid = 255
5717 };
5718 
5719 /**
5720  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5721  *  @q_vector: pointer to q_vector
5722  *
5723  *  Stores a new ITR value based on strictly on packet size.  This
5724  *  algorithm is less sophisticated than that used in igb_update_itr,
5725  *  due to the difficulty of synchronizing statistics across multiple
5726  *  receive rings.  The divisors and thresholds used by this function
5727  *  were determined based on theoretical maximum wire speed and testing
5728  *  data, in order to minimize response time while increasing bulk
5729  *  throughput.
5730  *  This functionality is controlled by ethtool's coalescing settings.
5731  *  NOTE:  This function is called only when operating in a multiqueue
5732  *         receive environment.
5733  **/
5734 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5735 {
5736 	int new_val = q_vector->itr_val;
5737 	int avg_wire_size = 0;
5738 	struct igb_adapter *adapter = q_vector->adapter;
5739 	unsigned int packets;
5740 
5741 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5742 	 * ints/sec - ITR timer value of 120 ticks.
5743 	 */
5744 	if (adapter->link_speed != SPEED_1000) {
5745 		new_val = IGB_4K_ITR;
5746 		goto set_itr_val;
5747 	}
5748 
5749 	packets = q_vector->rx.total_packets;
5750 	if (packets)
5751 		avg_wire_size = q_vector->rx.total_bytes / packets;
5752 
5753 	packets = q_vector->tx.total_packets;
5754 	if (packets)
5755 		avg_wire_size = max_t(u32, avg_wire_size,
5756 				      q_vector->tx.total_bytes / packets);
5757 
5758 	/* if avg_wire_size isn't set no work was done */
5759 	if (!avg_wire_size)
5760 		goto clear_counts;
5761 
5762 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5763 	avg_wire_size += 24;
5764 
5765 	/* Don't starve jumbo frames */
5766 	avg_wire_size = min(avg_wire_size, 3000);
5767 
5768 	/* Give a little boost to mid-size frames */
5769 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5770 		new_val = avg_wire_size / 3;
5771 	else
5772 		new_val = avg_wire_size / 2;
5773 
5774 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5775 	if (new_val < IGB_20K_ITR &&
5776 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5777 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5778 		new_val = IGB_20K_ITR;
5779 
5780 set_itr_val:
5781 	if (new_val != q_vector->itr_val) {
5782 		q_vector->itr_val = new_val;
5783 		q_vector->set_itr = 1;
5784 	}
5785 clear_counts:
5786 	q_vector->rx.total_bytes = 0;
5787 	q_vector->rx.total_packets = 0;
5788 	q_vector->tx.total_bytes = 0;
5789 	q_vector->tx.total_packets = 0;
5790 }
5791 
5792 /**
5793  *  igb_update_itr - update the dynamic ITR value based on statistics
5794  *  @q_vector: pointer to q_vector
5795  *  @ring_container: ring info to update the itr for
5796  *
5797  *  Stores a new ITR value based on packets and byte
5798  *  counts during the last interrupt.  The advantage of per interrupt
5799  *  computation is faster updates and more accurate ITR for the current
5800  *  traffic pattern.  Constants in this function were computed
5801  *  based on theoretical maximum wire speed and thresholds were set based
5802  *  on testing data as well as attempting to minimize response time
5803  *  while increasing bulk throughput.
5804  *  This functionality is controlled by ethtool's coalescing settings.
5805  *  NOTE:  These calculations are only valid when operating in a single-
5806  *         queue environment.
5807  **/
5808 static void igb_update_itr(struct igb_q_vector *q_vector,
5809 			   struct igb_ring_container *ring_container)
5810 {
5811 	unsigned int packets = ring_container->total_packets;
5812 	unsigned int bytes = ring_container->total_bytes;
5813 	u8 itrval = ring_container->itr;
5814 
5815 	/* no packets, exit with status unchanged */
5816 	if (packets == 0)
5817 		return;
5818 
5819 	switch (itrval) {
5820 	case lowest_latency:
5821 		/* handle TSO and jumbo frames */
5822 		if (bytes/packets > 8000)
5823 			itrval = bulk_latency;
5824 		else if ((packets < 5) && (bytes > 512))
5825 			itrval = low_latency;
5826 		break;
5827 	case low_latency:  /* 50 usec aka 20000 ints/s */
5828 		if (bytes > 10000) {
5829 			/* this if handles the TSO accounting */
5830 			if (bytes/packets > 8000)
5831 				itrval = bulk_latency;
5832 			else if ((packets < 10) || ((bytes/packets) > 1200))
5833 				itrval = bulk_latency;
5834 			else if ((packets > 35))
5835 				itrval = lowest_latency;
5836 		} else if (bytes/packets > 2000) {
5837 			itrval = bulk_latency;
5838 		} else if (packets <= 2 && bytes < 512) {
5839 			itrval = lowest_latency;
5840 		}
5841 		break;
5842 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5843 		if (bytes > 25000) {
5844 			if (packets > 35)
5845 				itrval = low_latency;
5846 		} else if (bytes < 1500) {
5847 			itrval = low_latency;
5848 		}
5849 		break;
5850 	}
5851 
5852 	/* clear work counters since we have the values we need */
5853 	ring_container->total_bytes = 0;
5854 	ring_container->total_packets = 0;
5855 
5856 	/* write updated itr to ring container */
5857 	ring_container->itr = itrval;
5858 }
5859 
5860 static void igb_set_itr(struct igb_q_vector *q_vector)
5861 {
5862 	struct igb_adapter *adapter = q_vector->adapter;
5863 	u32 new_itr = q_vector->itr_val;
5864 	u8 current_itr = 0;
5865 
5866 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5867 	if (adapter->link_speed != SPEED_1000) {
5868 		current_itr = 0;
5869 		new_itr = IGB_4K_ITR;
5870 		goto set_itr_now;
5871 	}
5872 
5873 	igb_update_itr(q_vector, &q_vector->tx);
5874 	igb_update_itr(q_vector, &q_vector->rx);
5875 
5876 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5877 
5878 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5879 	if (current_itr == lowest_latency &&
5880 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5881 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5882 		current_itr = low_latency;
5883 
5884 	switch (current_itr) {
5885 	/* counts and packets in update_itr are dependent on these numbers */
5886 	case lowest_latency:
5887 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5888 		break;
5889 	case low_latency:
5890 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5891 		break;
5892 	case bulk_latency:
5893 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5894 		break;
5895 	default:
5896 		break;
5897 	}
5898 
5899 set_itr_now:
5900 	if (new_itr != q_vector->itr_val) {
5901 		/* this attempts to bias the interrupt rate towards Bulk
5902 		 * by adding intermediate steps when interrupt rate is
5903 		 * increasing
5904 		 */
5905 		new_itr = new_itr > q_vector->itr_val ?
5906 			  max((new_itr * q_vector->itr_val) /
5907 			  (new_itr + (q_vector->itr_val >> 2)),
5908 			  new_itr) : new_itr;
5909 		/* Don't write the value here; it resets the adapter's
5910 		 * internal timer, and causes us to delay far longer than
5911 		 * we should between interrupts.  Instead, we write the ITR
5912 		 * value at the beginning of the next interrupt so the timing
5913 		 * ends up being correct.
5914 		 */
5915 		q_vector->itr_val = new_itr;
5916 		q_vector->set_itr = 1;
5917 	}
5918 }
5919 
5920 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5921 			    struct igb_tx_buffer *first,
5922 			    u32 vlan_macip_lens, u32 type_tucmd,
5923 			    u32 mss_l4len_idx)
5924 {
5925 	struct e1000_adv_tx_context_desc *context_desc;
5926 	u16 i = tx_ring->next_to_use;
5927 	struct timespec64 ts;
5928 
5929 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5930 
5931 	i++;
5932 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5933 
5934 	/* set bits to identify this as an advanced context descriptor */
5935 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5936 
5937 	/* For 82575, context index must be unique per ring. */
5938 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5939 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5940 
5941 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5942 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5943 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5944 
5945 	/* We assume there is always a valid tx time available. Invalid times
5946 	 * should have been handled by the upper layers.
5947 	 */
5948 	if (tx_ring->launchtime_enable) {
5949 		ts = ktime_to_timespec64(first->skb->tstamp);
5950 		skb_txtime_consumed(first->skb);
5951 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5952 	} else {
5953 		context_desc->seqnum_seed = 0;
5954 	}
5955 }
5956 
5957 static int igb_tso(struct igb_ring *tx_ring,
5958 		   struct igb_tx_buffer *first,
5959 		   u8 *hdr_len)
5960 {
5961 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5962 	struct sk_buff *skb = first->skb;
5963 	union {
5964 		struct iphdr *v4;
5965 		struct ipv6hdr *v6;
5966 		unsigned char *hdr;
5967 	} ip;
5968 	union {
5969 		struct tcphdr *tcp;
5970 		struct udphdr *udp;
5971 		unsigned char *hdr;
5972 	} l4;
5973 	u32 paylen, l4_offset;
5974 	int err;
5975 
5976 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5977 		return 0;
5978 
5979 	if (!skb_is_gso(skb))
5980 		return 0;
5981 
5982 	err = skb_cow_head(skb, 0);
5983 	if (err < 0)
5984 		return err;
5985 
5986 	ip.hdr = skb_network_header(skb);
5987 	l4.hdr = skb_checksum_start(skb);
5988 
5989 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5990 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5991 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5992 
5993 	/* initialize outer IP header fields */
5994 	if (ip.v4->version == 4) {
5995 		unsigned char *csum_start = skb_checksum_start(skb);
5996 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5997 
5998 		/* IP header will have to cancel out any data that
5999 		 * is not a part of the outer IP header
6000 		 */
6001 		ip.v4->check = csum_fold(csum_partial(trans_start,
6002 						      csum_start - trans_start,
6003 						      0));
6004 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6005 
6006 		ip.v4->tot_len = 0;
6007 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6008 				   IGB_TX_FLAGS_CSUM |
6009 				   IGB_TX_FLAGS_IPV4;
6010 	} else {
6011 		ip.v6->payload_len = 0;
6012 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6013 				   IGB_TX_FLAGS_CSUM;
6014 	}
6015 
6016 	/* determine offset of inner transport header */
6017 	l4_offset = l4.hdr - skb->data;
6018 
6019 	/* remove payload length from inner checksum */
6020 	paylen = skb->len - l4_offset;
6021 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6022 		/* compute length of segmentation header */
6023 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6024 		csum_replace_by_diff(&l4.tcp->check,
6025 			(__force __wsum)htonl(paylen));
6026 	} else {
6027 		/* compute length of segmentation header */
6028 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6029 		csum_replace_by_diff(&l4.udp->check,
6030 				     (__force __wsum)htonl(paylen));
6031 	}
6032 
6033 	/* update gso size and bytecount with header size */
6034 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6035 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6036 
6037 	/* MSS L4LEN IDX */
6038 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6039 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6040 
6041 	/* VLAN MACLEN IPLEN */
6042 	vlan_macip_lens = l4.hdr - ip.hdr;
6043 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6044 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6045 
6046 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6047 			type_tucmd, mss_l4len_idx);
6048 
6049 	return 1;
6050 }
6051 
6052 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6053 {
6054 	struct sk_buff *skb = first->skb;
6055 	u32 vlan_macip_lens = 0;
6056 	u32 type_tucmd = 0;
6057 
6058 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6059 csum_failed:
6060 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6061 		    !tx_ring->launchtime_enable)
6062 			return;
6063 		goto no_csum;
6064 	}
6065 
6066 	switch (skb->csum_offset) {
6067 	case offsetof(struct tcphdr, check):
6068 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6069 		fallthrough;
6070 	case offsetof(struct udphdr, check):
6071 		break;
6072 	case offsetof(struct sctphdr, checksum):
6073 		/* validate that this is actually an SCTP request */
6074 		if (skb_csum_is_sctp(skb)) {
6075 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6076 			break;
6077 		}
6078 		fallthrough;
6079 	default:
6080 		skb_checksum_help(skb);
6081 		goto csum_failed;
6082 	}
6083 
6084 	/* update TX checksum flag */
6085 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6086 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6087 			  skb_network_offset(skb);
6088 no_csum:
6089 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6090 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6091 
6092 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6093 }
6094 
6095 #define IGB_SET_FLAG(_input, _flag, _result) \
6096 	((_flag <= _result) ? \
6097 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6098 	 ((u32)(_input & _flag) / (_flag / _result)))
6099 
6100 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6101 {
6102 	/* set type for advanced descriptor with frame checksum insertion */
6103 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6104 		       E1000_ADVTXD_DCMD_DEXT |
6105 		       E1000_ADVTXD_DCMD_IFCS;
6106 
6107 	/* set HW vlan bit if vlan is present */
6108 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6109 				 (E1000_ADVTXD_DCMD_VLE));
6110 
6111 	/* set segmentation bits for TSO */
6112 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6113 				 (E1000_ADVTXD_DCMD_TSE));
6114 
6115 	/* set timestamp bit if present */
6116 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6117 				 (E1000_ADVTXD_MAC_TSTAMP));
6118 
6119 	/* insert frame checksum */
6120 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6121 
6122 	return cmd_type;
6123 }
6124 
6125 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6126 				 union e1000_adv_tx_desc *tx_desc,
6127 				 u32 tx_flags, unsigned int paylen)
6128 {
6129 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6130 
6131 	/* 82575 requires a unique index per ring */
6132 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6133 		olinfo_status |= tx_ring->reg_idx << 4;
6134 
6135 	/* insert L4 checksum */
6136 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6137 				      IGB_TX_FLAGS_CSUM,
6138 				      (E1000_TXD_POPTS_TXSM << 8));
6139 
6140 	/* insert IPv4 checksum */
6141 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6142 				      IGB_TX_FLAGS_IPV4,
6143 				      (E1000_TXD_POPTS_IXSM << 8));
6144 
6145 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6146 }
6147 
6148 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6149 {
6150 	struct net_device *netdev = tx_ring->netdev;
6151 
6152 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6153 
6154 	/* Herbert's original patch had:
6155 	 *  smp_mb__after_netif_stop_queue();
6156 	 * but since that doesn't exist yet, just open code it.
6157 	 */
6158 	smp_mb();
6159 
6160 	/* We need to check again in a case another CPU has just
6161 	 * made room available.
6162 	 */
6163 	if (igb_desc_unused(tx_ring) < size)
6164 		return -EBUSY;
6165 
6166 	/* A reprieve! */
6167 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6168 
6169 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6170 	tx_ring->tx_stats.restart_queue2++;
6171 	u64_stats_update_end(&tx_ring->tx_syncp2);
6172 
6173 	return 0;
6174 }
6175 
6176 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6177 {
6178 	if (igb_desc_unused(tx_ring) >= size)
6179 		return 0;
6180 	return __igb_maybe_stop_tx(tx_ring, size);
6181 }
6182 
6183 static int igb_tx_map(struct igb_ring *tx_ring,
6184 		      struct igb_tx_buffer *first,
6185 		      const u8 hdr_len)
6186 {
6187 	struct sk_buff *skb = first->skb;
6188 	struct igb_tx_buffer *tx_buffer;
6189 	union e1000_adv_tx_desc *tx_desc;
6190 	skb_frag_t *frag;
6191 	dma_addr_t dma;
6192 	unsigned int data_len, size;
6193 	u32 tx_flags = first->tx_flags;
6194 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6195 	u16 i = tx_ring->next_to_use;
6196 
6197 	tx_desc = IGB_TX_DESC(tx_ring, i);
6198 
6199 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6200 
6201 	size = skb_headlen(skb);
6202 	data_len = skb->data_len;
6203 
6204 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6205 
6206 	tx_buffer = first;
6207 
6208 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6209 		if (dma_mapping_error(tx_ring->dev, dma))
6210 			goto dma_error;
6211 
6212 		/* record length, and DMA address */
6213 		dma_unmap_len_set(tx_buffer, len, size);
6214 		dma_unmap_addr_set(tx_buffer, dma, dma);
6215 
6216 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6217 
6218 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6219 			tx_desc->read.cmd_type_len =
6220 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6221 
6222 			i++;
6223 			tx_desc++;
6224 			if (i == tx_ring->count) {
6225 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6226 				i = 0;
6227 			}
6228 			tx_desc->read.olinfo_status = 0;
6229 
6230 			dma += IGB_MAX_DATA_PER_TXD;
6231 			size -= IGB_MAX_DATA_PER_TXD;
6232 
6233 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6234 		}
6235 
6236 		if (likely(!data_len))
6237 			break;
6238 
6239 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6240 
6241 		i++;
6242 		tx_desc++;
6243 		if (i == tx_ring->count) {
6244 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6245 			i = 0;
6246 		}
6247 		tx_desc->read.olinfo_status = 0;
6248 
6249 		size = skb_frag_size(frag);
6250 		data_len -= size;
6251 
6252 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6253 				       size, DMA_TO_DEVICE);
6254 
6255 		tx_buffer = &tx_ring->tx_buffer_info[i];
6256 	}
6257 
6258 	/* write last descriptor with RS and EOP bits */
6259 	cmd_type |= size | IGB_TXD_DCMD;
6260 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6261 
6262 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6263 
6264 	/* set the timestamp */
6265 	first->time_stamp = jiffies;
6266 
6267 	skb_tx_timestamp(skb);
6268 
6269 	/* Force memory writes to complete before letting h/w know there
6270 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6271 	 * memory model archs, such as IA-64).
6272 	 *
6273 	 * We also need this memory barrier to make certain all of the
6274 	 * status bits have been updated before next_to_watch is written.
6275 	 */
6276 	dma_wmb();
6277 
6278 	/* set next_to_watch value indicating a packet is present */
6279 	first->next_to_watch = tx_desc;
6280 
6281 	i++;
6282 	if (i == tx_ring->count)
6283 		i = 0;
6284 
6285 	tx_ring->next_to_use = i;
6286 
6287 	/* Make sure there is space in the ring for the next send. */
6288 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6289 
6290 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6291 		writel(i, tx_ring->tail);
6292 	}
6293 	return 0;
6294 
6295 dma_error:
6296 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6297 	tx_buffer = &tx_ring->tx_buffer_info[i];
6298 
6299 	/* clear dma mappings for failed tx_buffer_info map */
6300 	while (tx_buffer != first) {
6301 		if (dma_unmap_len(tx_buffer, len))
6302 			dma_unmap_page(tx_ring->dev,
6303 				       dma_unmap_addr(tx_buffer, dma),
6304 				       dma_unmap_len(tx_buffer, len),
6305 				       DMA_TO_DEVICE);
6306 		dma_unmap_len_set(tx_buffer, len, 0);
6307 
6308 		if (i-- == 0)
6309 			i += tx_ring->count;
6310 		tx_buffer = &tx_ring->tx_buffer_info[i];
6311 	}
6312 
6313 	if (dma_unmap_len(tx_buffer, len))
6314 		dma_unmap_single(tx_ring->dev,
6315 				 dma_unmap_addr(tx_buffer, dma),
6316 				 dma_unmap_len(tx_buffer, len),
6317 				 DMA_TO_DEVICE);
6318 	dma_unmap_len_set(tx_buffer, len, 0);
6319 
6320 	dev_kfree_skb_any(tx_buffer->skb);
6321 	tx_buffer->skb = NULL;
6322 
6323 	tx_ring->next_to_use = i;
6324 
6325 	return -1;
6326 }
6327 
6328 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6329 		      struct igb_ring *tx_ring,
6330 		      struct xdp_frame *xdpf)
6331 {
6332 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6333 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6334 	u16 count, i, index = tx_ring->next_to_use;
6335 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6336 	struct igb_tx_buffer *tx_buffer = tx_head;
6337 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6338 	u32 len = xdpf->len, cmd_type, olinfo_status;
6339 	void *data = xdpf->data;
6340 
6341 	count = TXD_USE_COUNT(len);
6342 	for (i = 0; i < nr_frags; i++)
6343 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6344 
6345 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6346 		return IGB_XDP_CONSUMED;
6347 
6348 	i = 0;
6349 	/* record the location of the first descriptor for this packet */
6350 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6351 	tx_head->type = IGB_TYPE_XDP;
6352 	tx_head->gso_segs = 1;
6353 	tx_head->xdpf = xdpf;
6354 
6355 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6356 	/* 82575 requires a unique index per ring */
6357 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6358 		olinfo_status |= tx_ring->reg_idx << 4;
6359 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6360 
6361 	for (;;) {
6362 		dma_addr_t dma;
6363 
6364 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6365 		if (dma_mapping_error(tx_ring->dev, dma))
6366 			goto unmap;
6367 
6368 		/* record length, and DMA address */
6369 		dma_unmap_len_set(tx_buffer, len, len);
6370 		dma_unmap_addr_set(tx_buffer, dma, dma);
6371 
6372 		/* put descriptor type bits */
6373 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6374 			   E1000_ADVTXD_DCMD_IFCS | len;
6375 
6376 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6377 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6378 
6379 		tx_buffer->protocol = 0;
6380 
6381 		if (++index == tx_ring->count)
6382 			index = 0;
6383 
6384 		if (i == nr_frags)
6385 			break;
6386 
6387 		tx_buffer = &tx_ring->tx_buffer_info[index];
6388 		tx_desc = IGB_TX_DESC(tx_ring, index);
6389 		tx_desc->read.olinfo_status = 0;
6390 
6391 		data = skb_frag_address(&sinfo->frags[i]);
6392 		len = skb_frag_size(&sinfo->frags[i]);
6393 		i++;
6394 	}
6395 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6396 
6397 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6398 	/* set the timestamp */
6399 	tx_head->time_stamp = jiffies;
6400 
6401 	/* Avoid any potential race with xdp_xmit and cleanup */
6402 	smp_wmb();
6403 
6404 	/* set next_to_watch value indicating a packet is present */
6405 	tx_head->next_to_watch = tx_desc;
6406 	tx_ring->next_to_use = index;
6407 
6408 	/* Make sure there is space in the ring for the next send. */
6409 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6410 
6411 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6412 		writel(index, tx_ring->tail);
6413 
6414 	return IGB_XDP_TX;
6415 
6416 unmap:
6417 	for (;;) {
6418 		tx_buffer = &tx_ring->tx_buffer_info[index];
6419 		if (dma_unmap_len(tx_buffer, len))
6420 			dma_unmap_page(tx_ring->dev,
6421 				       dma_unmap_addr(tx_buffer, dma),
6422 				       dma_unmap_len(tx_buffer, len),
6423 				       DMA_TO_DEVICE);
6424 		dma_unmap_len_set(tx_buffer, len, 0);
6425 		if (tx_buffer == tx_head)
6426 			break;
6427 
6428 		if (!index)
6429 			index += tx_ring->count;
6430 		index--;
6431 	}
6432 
6433 	return IGB_XDP_CONSUMED;
6434 }
6435 
6436 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6437 				struct igb_ring *tx_ring)
6438 {
6439 	struct igb_tx_buffer *first;
6440 	int tso;
6441 	u32 tx_flags = 0;
6442 	unsigned short f;
6443 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6444 	__be16 protocol = vlan_get_protocol(skb);
6445 	u8 hdr_len = 0;
6446 
6447 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6448 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6449 	 *       + 2 desc gap to keep tail from touching head,
6450 	 *       + 1 desc for context descriptor,
6451 	 * otherwise try next time
6452 	 */
6453 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6454 		count += TXD_USE_COUNT(skb_frag_size(
6455 						&skb_shinfo(skb)->frags[f]));
6456 
6457 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6458 		/* this is a hard error */
6459 		return NETDEV_TX_BUSY;
6460 	}
6461 
6462 	/* record the location of the first descriptor for this packet */
6463 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6464 	first->type = IGB_TYPE_SKB;
6465 	first->skb = skb;
6466 	first->bytecount = skb->len;
6467 	first->gso_segs = 1;
6468 
6469 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6470 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6471 
6472 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6473 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6474 					   &adapter->state)) {
6475 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6476 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6477 
6478 			adapter->ptp_tx_skb = skb_get(skb);
6479 			adapter->ptp_tx_start = jiffies;
6480 			if (adapter->hw.mac.type == e1000_82576)
6481 				schedule_work(&adapter->ptp_tx_work);
6482 		} else {
6483 			adapter->tx_hwtstamp_skipped++;
6484 		}
6485 	}
6486 
6487 	if (skb_vlan_tag_present(skb)) {
6488 		tx_flags |= IGB_TX_FLAGS_VLAN;
6489 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6490 	}
6491 
6492 	/* record initial flags and protocol */
6493 	first->tx_flags = tx_flags;
6494 	first->protocol = protocol;
6495 
6496 	tso = igb_tso(tx_ring, first, &hdr_len);
6497 	if (tso < 0)
6498 		goto out_drop;
6499 	else if (!tso)
6500 		igb_tx_csum(tx_ring, first);
6501 
6502 	if (igb_tx_map(tx_ring, first, hdr_len))
6503 		goto cleanup_tx_tstamp;
6504 
6505 	return NETDEV_TX_OK;
6506 
6507 out_drop:
6508 	dev_kfree_skb_any(first->skb);
6509 	first->skb = NULL;
6510 cleanup_tx_tstamp:
6511 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6512 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6513 
6514 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6515 		adapter->ptp_tx_skb = NULL;
6516 		if (adapter->hw.mac.type == e1000_82576)
6517 			cancel_work_sync(&adapter->ptp_tx_work);
6518 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6519 	}
6520 
6521 	return NETDEV_TX_OK;
6522 }
6523 
6524 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6525 						    struct sk_buff *skb)
6526 {
6527 	unsigned int r_idx = skb->queue_mapping;
6528 
6529 	if (r_idx >= adapter->num_tx_queues)
6530 		r_idx = r_idx % adapter->num_tx_queues;
6531 
6532 	return adapter->tx_ring[r_idx];
6533 }
6534 
6535 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6536 				  struct net_device *netdev)
6537 {
6538 	struct igb_adapter *adapter = netdev_priv(netdev);
6539 
6540 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6541 	 * in order to meet this minimum size requirement.
6542 	 */
6543 	if (skb_put_padto(skb, 17))
6544 		return NETDEV_TX_OK;
6545 
6546 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6547 }
6548 
6549 /**
6550  *  igb_tx_timeout - Respond to a Tx Hang
6551  *  @netdev: network interface device structure
6552  *  @txqueue: number of the Tx queue that hung (unused)
6553  **/
6554 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6555 {
6556 	struct igb_adapter *adapter = netdev_priv(netdev);
6557 	struct e1000_hw *hw = &adapter->hw;
6558 
6559 	/* Do the reset outside of interrupt context */
6560 	adapter->tx_timeout_count++;
6561 
6562 	if (hw->mac.type >= e1000_82580)
6563 		hw->dev_spec._82575.global_device_reset = true;
6564 
6565 	schedule_work(&adapter->reset_task);
6566 	wr32(E1000_EICS,
6567 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6568 }
6569 
6570 static void igb_reset_task(struct work_struct *work)
6571 {
6572 	struct igb_adapter *adapter;
6573 	adapter = container_of(work, struct igb_adapter, reset_task);
6574 
6575 	rtnl_lock();
6576 	/* If we're already down or resetting, just bail */
6577 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6578 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6579 		rtnl_unlock();
6580 		return;
6581 	}
6582 
6583 	igb_dump(adapter);
6584 	netdev_err(adapter->netdev, "Reset adapter\n");
6585 	igb_reinit_locked(adapter);
6586 	rtnl_unlock();
6587 }
6588 
6589 /**
6590  *  igb_get_stats64 - Get System Network Statistics
6591  *  @netdev: network interface device structure
6592  *  @stats: rtnl_link_stats64 pointer
6593  **/
6594 static void igb_get_stats64(struct net_device *netdev,
6595 			    struct rtnl_link_stats64 *stats)
6596 {
6597 	struct igb_adapter *adapter = netdev_priv(netdev);
6598 
6599 	spin_lock(&adapter->stats64_lock);
6600 	igb_update_stats(adapter);
6601 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6602 	spin_unlock(&adapter->stats64_lock);
6603 }
6604 
6605 /**
6606  *  igb_change_mtu - Change the Maximum Transfer Unit
6607  *  @netdev: network interface device structure
6608  *  @new_mtu: new value for maximum frame size
6609  *
6610  *  Returns 0 on success, negative on failure
6611  **/
6612 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6613 {
6614 	struct igb_adapter *adapter = netdev_priv(netdev);
6615 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6616 
6617 	if (adapter->xdp_prog) {
6618 		int i;
6619 
6620 		for (i = 0; i < adapter->num_rx_queues; i++) {
6621 			struct igb_ring *ring = adapter->rx_ring[i];
6622 
6623 			if (max_frame > igb_rx_bufsz(ring)) {
6624 				netdev_warn(adapter->netdev,
6625 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6626 					    max_frame);
6627 				return -EINVAL;
6628 			}
6629 		}
6630 	}
6631 
6632 	/* adjust max frame to be at least the size of a standard frame */
6633 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6634 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6635 
6636 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6637 		usleep_range(1000, 2000);
6638 
6639 	/* igb_down has a dependency on max_frame_size */
6640 	adapter->max_frame_size = max_frame;
6641 
6642 	if (netif_running(netdev))
6643 		igb_down(adapter);
6644 
6645 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6646 		   netdev->mtu, new_mtu);
6647 	WRITE_ONCE(netdev->mtu, new_mtu);
6648 
6649 	if (netif_running(netdev))
6650 		igb_up(adapter);
6651 	else
6652 		igb_reset(adapter);
6653 
6654 	clear_bit(__IGB_RESETTING, &adapter->state);
6655 
6656 	return 0;
6657 }
6658 
6659 /**
6660  *  igb_update_stats - Update the board statistics counters
6661  *  @adapter: board private structure
6662  **/
6663 void igb_update_stats(struct igb_adapter *adapter)
6664 {
6665 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6666 	struct e1000_hw *hw = &adapter->hw;
6667 	struct pci_dev *pdev = adapter->pdev;
6668 	u32 reg, mpc;
6669 	int i;
6670 	u64 bytes, packets;
6671 	unsigned int start;
6672 	u64 _bytes, _packets;
6673 
6674 	/* Prevent stats update while adapter is being reset, or if the pci
6675 	 * connection is down.
6676 	 */
6677 	if (adapter->link_speed == 0)
6678 		return;
6679 	if (pci_channel_offline(pdev))
6680 		return;
6681 
6682 	bytes = 0;
6683 	packets = 0;
6684 
6685 	rcu_read_lock();
6686 	for (i = 0; i < adapter->num_rx_queues; i++) {
6687 		struct igb_ring *ring = adapter->rx_ring[i];
6688 		u32 rqdpc = rd32(E1000_RQDPC(i));
6689 		if (hw->mac.type >= e1000_i210)
6690 			wr32(E1000_RQDPC(i), 0);
6691 
6692 		if (rqdpc) {
6693 			ring->rx_stats.drops += rqdpc;
6694 			net_stats->rx_fifo_errors += rqdpc;
6695 		}
6696 
6697 		do {
6698 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6699 			_bytes = ring->rx_stats.bytes;
6700 			_packets = ring->rx_stats.packets;
6701 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6702 		bytes += _bytes;
6703 		packets += _packets;
6704 	}
6705 
6706 	net_stats->rx_bytes = bytes;
6707 	net_stats->rx_packets = packets;
6708 
6709 	bytes = 0;
6710 	packets = 0;
6711 	for (i = 0; i < adapter->num_tx_queues; i++) {
6712 		struct igb_ring *ring = adapter->tx_ring[i];
6713 		do {
6714 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6715 			_bytes = ring->tx_stats.bytes;
6716 			_packets = ring->tx_stats.packets;
6717 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6718 		bytes += _bytes;
6719 		packets += _packets;
6720 	}
6721 	net_stats->tx_bytes = bytes;
6722 	net_stats->tx_packets = packets;
6723 	rcu_read_unlock();
6724 
6725 	/* read stats registers */
6726 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6727 	adapter->stats.gprc += rd32(E1000_GPRC);
6728 	adapter->stats.gorc += rd32(E1000_GORCL);
6729 	rd32(E1000_GORCH); /* clear GORCL */
6730 	adapter->stats.bprc += rd32(E1000_BPRC);
6731 	adapter->stats.mprc += rd32(E1000_MPRC);
6732 	adapter->stats.roc += rd32(E1000_ROC);
6733 
6734 	adapter->stats.prc64 += rd32(E1000_PRC64);
6735 	adapter->stats.prc127 += rd32(E1000_PRC127);
6736 	adapter->stats.prc255 += rd32(E1000_PRC255);
6737 	adapter->stats.prc511 += rd32(E1000_PRC511);
6738 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6739 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6740 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6741 	adapter->stats.sec += rd32(E1000_SEC);
6742 
6743 	mpc = rd32(E1000_MPC);
6744 	adapter->stats.mpc += mpc;
6745 	net_stats->rx_fifo_errors += mpc;
6746 	adapter->stats.scc += rd32(E1000_SCC);
6747 	adapter->stats.ecol += rd32(E1000_ECOL);
6748 	adapter->stats.mcc += rd32(E1000_MCC);
6749 	adapter->stats.latecol += rd32(E1000_LATECOL);
6750 	adapter->stats.dc += rd32(E1000_DC);
6751 	adapter->stats.rlec += rd32(E1000_RLEC);
6752 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6753 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6754 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6755 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6756 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6757 	adapter->stats.gptc += rd32(E1000_GPTC);
6758 	adapter->stats.gotc += rd32(E1000_GOTCL);
6759 	rd32(E1000_GOTCH); /* clear GOTCL */
6760 	adapter->stats.rnbc += rd32(E1000_RNBC);
6761 	adapter->stats.ruc += rd32(E1000_RUC);
6762 	adapter->stats.rfc += rd32(E1000_RFC);
6763 	adapter->stats.rjc += rd32(E1000_RJC);
6764 	adapter->stats.tor += rd32(E1000_TORH);
6765 	adapter->stats.tot += rd32(E1000_TOTH);
6766 	adapter->stats.tpr += rd32(E1000_TPR);
6767 
6768 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6769 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6770 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6771 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6772 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6773 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6774 
6775 	adapter->stats.mptc += rd32(E1000_MPTC);
6776 	adapter->stats.bptc += rd32(E1000_BPTC);
6777 
6778 	adapter->stats.tpt += rd32(E1000_TPT);
6779 	adapter->stats.colc += rd32(E1000_COLC);
6780 
6781 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6782 	/* read internal phy specific stats */
6783 	reg = rd32(E1000_CTRL_EXT);
6784 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6785 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6786 
6787 		/* this stat has invalid values on i210/i211 */
6788 		if ((hw->mac.type != e1000_i210) &&
6789 		    (hw->mac.type != e1000_i211))
6790 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6791 	}
6792 
6793 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6794 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6795 
6796 	adapter->stats.iac += rd32(E1000_IAC);
6797 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6798 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6799 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6800 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6801 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6802 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6803 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6804 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6805 
6806 	/* Fill out the OS statistics structure */
6807 	net_stats->multicast = adapter->stats.mprc;
6808 	net_stats->collisions = adapter->stats.colc;
6809 
6810 	/* Rx Errors */
6811 
6812 	/* RLEC on some newer hardware can be incorrect so build
6813 	 * our own version based on RUC and ROC
6814 	 */
6815 	net_stats->rx_errors = adapter->stats.rxerrc +
6816 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6817 		adapter->stats.ruc + adapter->stats.roc +
6818 		adapter->stats.cexterr;
6819 	net_stats->rx_length_errors = adapter->stats.ruc +
6820 				      adapter->stats.roc;
6821 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6822 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6823 	net_stats->rx_missed_errors = adapter->stats.mpc;
6824 
6825 	/* Tx Errors */
6826 	net_stats->tx_errors = adapter->stats.ecol +
6827 			       adapter->stats.latecol;
6828 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6829 	net_stats->tx_window_errors = adapter->stats.latecol;
6830 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6831 
6832 	/* Tx Dropped needs to be maintained elsewhere */
6833 
6834 	/* Management Stats */
6835 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6836 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6837 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6838 
6839 	/* OS2BMC Stats */
6840 	reg = rd32(E1000_MANC);
6841 	if (reg & E1000_MANC_EN_BMC2OS) {
6842 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6843 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6844 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6845 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6846 	}
6847 }
6848 
6849 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6850 {
6851 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6852 	struct e1000_hw *hw = &adapter->hw;
6853 	struct timespec64 ts;
6854 	u32 tsauxc;
6855 
6856 	if (pin < 0 || pin >= IGB_N_SDP)
6857 		return;
6858 
6859 	spin_lock(&adapter->tmreg_lock);
6860 
6861 	if (hw->mac.type == e1000_82580 ||
6862 	    hw->mac.type == e1000_i354 ||
6863 	    hw->mac.type == e1000_i350) {
6864 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6865 		u32 systiml, systimh, level_mask, level, rem;
6866 		u64 systim, now;
6867 
6868 		/* read systim registers in sequence */
6869 		rd32(E1000_SYSTIMR);
6870 		systiml = rd32(E1000_SYSTIML);
6871 		systimh = rd32(E1000_SYSTIMH);
6872 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6873 		now = timecounter_cyc2time(&adapter->tc, systim);
6874 
6875 		if (pin < 2) {
6876 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6877 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6878 		} else {
6879 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6880 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6881 		}
6882 
6883 		div_u64_rem(now, ns, &rem);
6884 		systim = systim + (ns - rem);
6885 
6886 		/* synchronize pin level with rising/falling edges */
6887 		div_u64_rem(now, ns << 1, &rem);
6888 		if (rem < ns) {
6889 			/* first half of period */
6890 			if (level == 0) {
6891 				/* output is already low, skip this period */
6892 				systim += ns;
6893 				pr_notice("igb: periodic output on %s missed falling edge\n",
6894 					  adapter->sdp_config[pin].name);
6895 			}
6896 		} else {
6897 			/* second half of period */
6898 			if (level == 1) {
6899 				/* output is already high, skip this period */
6900 				systim += ns;
6901 				pr_notice("igb: periodic output on %s missed rising edge\n",
6902 					  adapter->sdp_config[pin].name);
6903 			}
6904 		}
6905 
6906 		/* for this chip family tv_sec is the upper part of the binary value,
6907 		 * so not seconds
6908 		 */
6909 		ts.tv_nsec = (u32)systim;
6910 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6911 	} else {
6912 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
6913 				    adapter->perout[tsintr_tt].period);
6914 	}
6915 
6916 	/* u32 conversion of tv_sec is safe until y2106 */
6917 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6918 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6919 	tsauxc = rd32(E1000_TSAUXC);
6920 	tsauxc |= TSAUXC_EN_TT0;
6921 	wr32(E1000_TSAUXC, tsauxc);
6922 	adapter->perout[tsintr_tt].start = ts;
6923 
6924 	spin_unlock(&adapter->tmreg_lock);
6925 }
6926 
6927 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6928 {
6929 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6930 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6931 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6932 	struct e1000_hw *hw = &adapter->hw;
6933 	struct ptp_clock_event event;
6934 	struct timespec64 ts;
6935 	unsigned long flags;
6936 
6937 	if (pin < 0 || pin >= IGB_N_SDP)
6938 		return;
6939 
6940 	if (hw->mac.type == e1000_82580 ||
6941 	    hw->mac.type == e1000_i354 ||
6942 	    hw->mac.type == e1000_i350) {
6943 		u64 ns = rd32(auxstmpl);
6944 
6945 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6946 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
6947 		ns = timecounter_cyc2time(&adapter->tc, ns);
6948 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6949 		ts = ns_to_timespec64(ns);
6950 	} else {
6951 		ts.tv_nsec = rd32(auxstmpl);
6952 		ts.tv_sec  = rd32(auxstmph);
6953 	}
6954 
6955 	event.type = PTP_CLOCK_EXTTS;
6956 	event.index = tsintr_tt;
6957 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6958 	ptp_clock_event(adapter->ptp_clock, &event);
6959 }
6960 
6961 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6962 {
6963 	struct e1000_hw *hw = &adapter->hw;
6964 	u32 tsicr = rd32(E1000_TSICR);
6965 	struct ptp_clock_event event;
6966 
6967 	if (tsicr & TSINTR_SYS_WRAP) {
6968 		event.type = PTP_CLOCK_PPS;
6969 		if (adapter->ptp_caps.pps)
6970 			ptp_clock_event(adapter->ptp_clock, &event);
6971 	}
6972 
6973 	if (tsicr & E1000_TSICR_TXTS) {
6974 		/* retrieve hardware timestamp */
6975 		schedule_work(&adapter->ptp_tx_work);
6976 	}
6977 
6978 	if (tsicr & TSINTR_TT0)
6979 		igb_perout(adapter, 0);
6980 
6981 	if (tsicr & TSINTR_TT1)
6982 		igb_perout(adapter, 1);
6983 
6984 	if (tsicr & TSINTR_AUTT0)
6985 		igb_extts(adapter, 0);
6986 
6987 	if (tsicr & TSINTR_AUTT1)
6988 		igb_extts(adapter, 1);
6989 }
6990 
6991 static irqreturn_t igb_msix_other(int irq, void *data)
6992 {
6993 	struct igb_adapter *adapter = data;
6994 	struct e1000_hw *hw = &adapter->hw;
6995 	u32 icr = rd32(E1000_ICR);
6996 	/* reading ICR causes bit 31 of EICR to be cleared */
6997 
6998 	if (icr & E1000_ICR_DRSTA)
6999 		schedule_work(&adapter->reset_task);
7000 
7001 	if (icr & E1000_ICR_DOUTSYNC) {
7002 		/* HW is reporting DMA is out of sync */
7003 		adapter->stats.doosync++;
7004 		/* The DMA Out of Sync is also indication of a spoof event
7005 		 * in IOV mode. Check the Wrong VM Behavior register to
7006 		 * see if it is really a spoof event.
7007 		 */
7008 		igb_check_wvbr(adapter);
7009 	}
7010 
7011 	/* Check for a mailbox event */
7012 	if (icr & E1000_ICR_VMMB)
7013 		igb_msg_task(adapter);
7014 
7015 	if (icr & E1000_ICR_LSC) {
7016 		hw->mac.get_link_status = 1;
7017 		/* guard against interrupt when we're going down */
7018 		if (!test_bit(__IGB_DOWN, &adapter->state))
7019 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7020 	}
7021 
7022 	if (icr & E1000_ICR_TS)
7023 		igb_tsync_interrupt(adapter);
7024 
7025 	wr32(E1000_EIMS, adapter->eims_other);
7026 
7027 	return IRQ_HANDLED;
7028 }
7029 
7030 static void igb_write_itr(struct igb_q_vector *q_vector)
7031 {
7032 	struct igb_adapter *adapter = q_vector->adapter;
7033 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7034 
7035 	if (!q_vector->set_itr)
7036 		return;
7037 
7038 	if (!itr_val)
7039 		itr_val = 0x4;
7040 
7041 	if (adapter->hw.mac.type == e1000_82575)
7042 		itr_val |= itr_val << 16;
7043 	else
7044 		itr_val |= E1000_EITR_CNT_IGNR;
7045 
7046 	writel(itr_val, q_vector->itr_register);
7047 	q_vector->set_itr = 0;
7048 }
7049 
7050 static irqreturn_t igb_msix_ring(int irq, void *data)
7051 {
7052 	struct igb_q_vector *q_vector = data;
7053 
7054 	/* Write the ITR value calculated from the previous interrupt. */
7055 	igb_write_itr(q_vector);
7056 
7057 	napi_schedule(&q_vector->napi);
7058 
7059 	return IRQ_HANDLED;
7060 }
7061 
7062 #ifdef CONFIG_IGB_DCA
7063 static void igb_update_tx_dca(struct igb_adapter *adapter,
7064 			      struct igb_ring *tx_ring,
7065 			      int cpu)
7066 {
7067 	struct e1000_hw *hw = &adapter->hw;
7068 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7069 
7070 	if (hw->mac.type != e1000_82575)
7071 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7072 
7073 	/* We can enable relaxed ordering for reads, but not writes when
7074 	 * DCA is enabled.  This is due to a known issue in some chipsets
7075 	 * which will cause the DCA tag to be cleared.
7076 	 */
7077 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7078 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7079 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7080 
7081 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7082 }
7083 
7084 static void igb_update_rx_dca(struct igb_adapter *adapter,
7085 			      struct igb_ring *rx_ring,
7086 			      int cpu)
7087 {
7088 	struct e1000_hw *hw = &adapter->hw;
7089 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7090 
7091 	if (hw->mac.type != e1000_82575)
7092 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7093 
7094 	/* We can enable relaxed ordering for reads, but not writes when
7095 	 * DCA is enabled.  This is due to a known issue in some chipsets
7096 	 * which will cause the DCA tag to be cleared.
7097 	 */
7098 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7099 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7100 
7101 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7102 }
7103 
7104 static void igb_update_dca(struct igb_q_vector *q_vector)
7105 {
7106 	struct igb_adapter *adapter = q_vector->adapter;
7107 	int cpu = get_cpu();
7108 
7109 	if (q_vector->cpu == cpu)
7110 		goto out_no_update;
7111 
7112 	if (q_vector->tx.ring)
7113 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7114 
7115 	if (q_vector->rx.ring)
7116 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7117 
7118 	q_vector->cpu = cpu;
7119 out_no_update:
7120 	put_cpu();
7121 }
7122 
7123 static void igb_setup_dca(struct igb_adapter *adapter)
7124 {
7125 	struct e1000_hw *hw = &adapter->hw;
7126 	int i;
7127 
7128 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7129 		return;
7130 
7131 	/* Always use CB2 mode, difference is masked in the CB driver. */
7132 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7133 
7134 	for (i = 0; i < adapter->num_q_vectors; i++) {
7135 		adapter->q_vector[i]->cpu = -1;
7136 		igb_update_dca(adapter->q_vector[i]);
7137 	}
7138 }
7139 
7140 static int __igb_notify_dca(struct device *dev, void *data)
7141 {
7142 	struct net_device *netdev = dev_get_drvdata(dev);
7143 	struct igb_adapter *adapter = netdev_priv(netdev);
7144 	struct pci_dev *pdev = adapter->pdev;
7145 	struct e1000_hw *hw = &adapter->hw;
7146 	unsigned long event = *(unsigned long *)data;
7147 
7148 	switch (event) {
7149 	case DCA_PROVIDER_ADD:
7150 		/* if already enabled, don't do it again */
7151 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7152 			break;
7153 		if (dca_add_requester(dev) == 0) {
7154 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7155 			dev_info(&pdev->dev, "DCA enabled\n");
7156 			igb_setup_dca(adapter);
7157 			break;
7158 		}
7159 		fallthrough; /* since DCA is disabled. */
7160 	case DCA_PROVIDER_REMOVE:
7161 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7162 			/* without this a class_device is left
7163 			 * hanging around in the sysfs model
7164 			 */
7165 			dca_remove_requester(dev);
7166 			dev_info(&pdev->dev, "DCA disabled\n");
7167 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7168 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7169 		}
7170 		break;
7171 	}
7172 
7173 	return 0;
7174 }
7175 
7176 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7177 			  void *p)
7178 {
7179 	int ret_val;
7180 
7181 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7182 					 __igb_notify_dca);
7183 
7184 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7185 }
7186 #endif /* CONFIG_IGB_DCA */
7187 
7188 #ifdef CONFIG_PCI_IOV
7189 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7190 {
7191 	unsigned char mac_addr[ETH_ALEN];
7192 
7193 	eth_zero_addr(mac_addr);
7194 	igb_set_vf_mac(adapter, vf, mac_addr);
7195 
7196 	/* By default spoof check is enabled for all VFs */
7197 	adapter->vf_data[vf].spoofchk_enabled = true;
7198 
7199 	/* By default VFs are not trusted */
7200 	adapter->vf_data[vf].trusted = false;
7201 
7202 	return 0;
7203 }
7204 
7205 #endif
7206 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7207 {
7208 	struct e1000_hw *hw = &adapter->hw;
7209 	u32 ping;
7210 	int i;
7211 
7212 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7213 		ping = E1000_PF_CONTROL_MSG;
7214 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7215 			ping |= E1000_VT_MSGTYPE_CTS;
7216 		igb_write_mbx(hw, &ping, 1, i);
7217 	}
7218 }
7219 
7220 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7221 {
7222 	struct e1000_hw *hw = &adapter->hw;
7223 	u32 vmolr = rd32(E1000_VMOLR(vf));
7224 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7225 
7226 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7227 			    IGB_VF_FLAG_MULTI_PROMISC);
7228 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7229 
7230 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7231 		vmolr |= E1000_VMOLR_MPME;
7232 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7233 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7234 	} else {
7235 		/* if we have hashes and we are clearing a multicast promisc
7236 		 * flag we need to write the hashes to the MTA as this step
7237 		 * was previously skipped
7238 		 */
7239 		if (vf_data->num_vf_mc_hashes > 30) {
7240 			vmolr |= E1000_VMOLR_MPME;
7241 		} else if (vf_data->num_vf_mc_hashes) {
7242 			int j;
7243 
7244 			vmolr |= E1000_VMOLR_ROMPE;
7245 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7246 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7247 		}
7248 	}
7249 
7250 	wr32(E1000_VMOLR(vf), vmolr);
7251 
7252 	/* there are flags left unprocessed, likely not supported */
7253 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7254 		return -EINVAL;
7255 
7256 	return 0;
7257 }
7258 
7259 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7260 				  u32 *msgbuf, u32 vf)
7261 {
7262 	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7263 	u16 *hash_list = (u16 *)&msgbuf[1];
7264 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7265 	int i;
7266 
7267 	/* salt away the number of multicast addresses assigned
7268 	 * to this VF for later use to restore when the PF multi cast
7269 	 * list changes
7270 	 */
7271 	vf_data->num_vf_mc_hashes = n;
7272 
7273 	/* only up to 30 hash values supported */
7274 	if (n > 30)
7275 		n = 30;
7276 
7277 	/* store the hashes for later use */
7278 	for (i = 0; i < n; i++)
7279 		vf_data->vf_mc_hashes[i] = hash_list[i];
7280 
7281 	/* Flush and reset the mta with the new values */
7282 	igb_set_rx_mode(adapter->netdev);
7283 
7284 	return 0;
7285 }
7286 
7287 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7288 {
7289 	struct e1000_hw *hw = &adapter->hw;
7290 	struct vf_data_storage *vf_data;
7291 	int i, j;
7292 
7293 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7294 		u32 vmolr = rd32(E1000_VMOLR(i));
7295 
7296 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7297 
7298 		vf_data = &adapter->vf_data[i];
7299 
7300 		if ((vf_data->num_vf_mc_hashes > 30) ||
7301 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7302 			vmolr |= E1000_VMOLR_MPME;
7303 		} else if (vf_data->num_vf_mc_hashes) {
7304 			vmolr |= E1000_VMOLR_ROMPE;
7305 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7306 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7307 		}
7308 		wr32(E1000_VMOLR(i), vmolr);
7309 	}
7310 }
7311 
7312 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7313 {
7314 	struct e1000_hw *hw = &adapter->hw;
7315 	u32 pool_mask, vlvf_mask, i;
7316 
7317 	/* create mask for VF and other pools */
7318 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7319 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7320 
7321 	/* drop PF from pool bits */
7322 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7323 			     adapter->vfs_allocated_count);
7324 
7325 	/* Find the vlan filter for this id */
7326 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7327 		u32 vlvf = rd32(E1000_VLVF(i));
7328 		u32 vfta_mask, vid, vfta;
7329 
7330 		/* remove the vf from the pool */
7331 		if (!(vlvf & vlvf_mask))
7332 			continue;
7333 
7334 		/* clear out bit from VLVF */
7335 		vlvf ^= vlvf_mask;
7336 
7337 		/* if other pools are present, just remove ourselves */
7338 		if (vlvf & pool_mask)
7339 			goto update_vlvfb;
7340 
7341 		/* if PF is present, leave VFTA */
7342 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7343 			goto update_vlvf;
7344 
7345 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7346 		vfta_mask = BIT(vid % 32);
7347 
7348 		/* clear bit from VFTA */
7349 		vfta = adapter->shadow_vfta[vid / 32];
7350 		if (vfta & vfta_mask)
7351 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7352 update_vlvf:
7353 		/* clear pool selection enable */
7354 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7355 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7356 		else
7357 			vlvf = 0;
7358 update_vlvfb:
7359 		/* clear pool bits */
7360 		wr32(E1000_VLVF(i), vlvf);
7361 	}
7362 }
7363 
7364 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7365 {
7366 	u32 vlvf;
7367 	int idx;
7368 
7369 	/* short cut the special case */
7370 	if (vlan == 0)
7371 		return 0;
7372 
7373 	/* Search for the VLAN id in the VLVF entries */
7374 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7375 		vlvf = rd32(E1000_VLVF(idx));
7376 		if ((vlvf & VLAN_VID_MASK) == vlan)
7377 			break;
7378 	}
7379 
7380 	return idx;
7381 }
7382 
7383 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7384 {
7385 	struct e1000_hw *hw = &adapter->hw;
7386 	u32 bits, pf_id;
7387 	int idx;
7388 
7389 	idx = igb_find_vlvf_entry(hw, vid);
7390 	if (!idx)
7391 		return;
7392 
7393 	/* See if any other pools are set for this VLAN filter
7394 	 * entry other than the PF.
7395 	 */
7396 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7397 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7398 	bits &= rd32(E1000_VLVF(idx));
7399 
7400 	/* Disable the filter so this falls into the default pool. */
7401 	if (!bits) {
7402 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7403 			wr32(E1000_VLVF(idx), BIT(pf_id));
7404 		else
7405 			wr32(E1000_VLVF(idx), 0);
7406 	}
7407 }
7408 
7409 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7410 			   bool add, u32 vf)
7411 {
7412 	int pf_id = adapter->vfs_allocated_count;
7413 	struct e1000_hw *hw = &adapter->hw;
7414 	int err;
7415 
7416 	/* If VLAN overlaps with one the PF is currently monitoring make
7417 	 * sure that we are able to allocate a VLVF entry.  This may be
7418 	 * redundant but it guarantees PF will maintain visibility to
7419 	 * the VLAN.
7420 	 */
7421 	if (add && test_bit(vid, adapter->active_vlans)) {
7422 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7423 		if (err)
7424 			return err;
7425 	}
7426 
7427 	err = igb_vfta_set(hw, vid, vf, add, false);
7428 
7429 	if (add && !err)
7430 		return err;
7431 
7432 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7433 	 * we may need to drop the PF pool bit in order to allow us to free
7434 	 * up the VLVF resources.
7435 	 */
7436 	if (test_bit(vid, adapter->active_vlans) ||
7437 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7438 		igb_update_pf_vlvf(adapter, vid);
7439 
7440 	return err;
7441 }
7442 
7443 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7444 {
7445 	struct e1000_hw *hw = &adapter->hw;
7446 
7447 	if (vid)
7448 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7449 	else
7450 		wr32(E1000_VMVIR(vf), 0);
7451 }
7452 
7453 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7454 				u16 vlan, u8 qos)
7455 {
7456 	int err;
7457 
7458 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7459 	if (err)
7460 		return err;
7461 
7462 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7463 	igb_set_vmolr(adapter, vf, !vlan);
7464 
7465 	/* revoke access to previous VLAN */
7466 	if (vlan != adapter->vf_data[vf].pf_vlan)
7467 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7468 				false, vf);
7469 
7470 	adapter->vf_data[vf].pf_vlan = vlan;
7471 	adapter->vf_data[vf].pf_qos = qos;
7472 	igb_set_vf_vlan_strip(adapter, vf, true);
7473 	dev_info(&adapter->pdev->dev,
7474 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7475 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7476 		dev_warn(&adapter->pdev->dev,
7477 			 "The VF VLAN has been set, but the PF device is not up.\n");
7478 		dev_warn(&adapter->pdev->dev,
7479 			 "Bring the PF device up before attempting to use the VF device.\n");
7480 	}
7481 
7482 	return err;
7483 }
7484 
7485 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7486 {
7487 	/* Restore tagless access via VLAN 0 */
7488 	igb_set_vf_vlan(adapter, 0, true, vf);
7489 
7490 	igb_set_vmvir(adapter, 0, vf);
7491 	igb_set_vmolr(adapter, vf, true);
7492 
7493 	/* Remove any PF assigned VLAN */
7494 	if (adapter->vf_data[vf].pf_vlan)
7495 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7496 				false, vf);
7497 
7498 	adapter->vf_data[vf].pf_vlan = 0;
7499 	adapter->vf_data[vf].pf_qos = 0;
7500 	igb_set_vf_vlan_strip(adapter, vf, false);
7501 
7502 	return 0;
7503 }
7504 
7505 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7506 			       u16 vlan, u8 qos, __be16 vlan_proto)
7507 {
7508 	struct igb_adapter *adapter = netdev_priv(netdev);
7509 
7510 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7511 		return -EINVAL;
7512 
7513 	if (vlan_proto != htons(ETH_P_8021Q))
7514 		return -EPROTONOSUPPORT;
7515 
7516 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7517 			       igb_disable_port_vlan(adapter, vf);
7518 }
7519 
7520 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7521 {
7522 	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7523 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7524 	int ret;
7525 
7526 	if (adapter->vf_data[vf].pf_vlan)
7527 		return -1;
7528 
7529 	/* VLAN 0 is a special case, don't allow it to be removed */
7530 	if (!vid && !add)
7531 		return 0;
7532 
7533 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7534 	if (!ret)
7535 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7536 	return ret;
7537 }
7538 
7539 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7540 {
7541 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7542 
7543 	/* clear flags - except flag that indicates PF has set the MAC */
7544 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7545 	vf_data->last_nack = jiffies;
7546 
7547 	/* reset vlans for device */
7548 	igb_clear_vf_vfta(adapter, vf);
7549 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7550 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7551 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7552 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7553 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7554 
7555 	/* reset multicast table array for vf */
7556 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7557 
7558 	/* Flush and reset the mta with the new values */
7559 	igb_set_rx_mode(adapter->netdev);
7560 }
7561 
7562 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7563 {
7564 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7565 
7566 	/* clear mac address as we were hotplug removed/added */
7567 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7568 		eth_zero_addr(vf_mac);
7569 
7570 	/* process remaining reset events */
7571 	igb_vf_reset(adapter, vf);
7572 }
7573 
7574 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7575 {
7576 	struct e1000_hw *hw = &adapter->hw;
7577 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7578 	u32 reg, msgbuf[3] = {};
7579 	u8 *addr = (u8 *)(&msgbuf[1]);
7580 
7581 	/* process all the same items cleared in a function level reset */
7582 	igb_vf_reset(adapter, vf);
7583 
7584 	/* set vf mac address */
7585 	igb_set_vf_mac(adapter, vf, vf_mac);
7586 
7587 	/* enable transmit and receive for vf */
7588 	reg = rd32(E1000_VFTE);
7589 	wr32(E1000_VFTE, reg | BIT(vf));
7590 	reg = rd32(E1000_VFRE);
7591 	wr32(E1000_VFRE, reg | BIT(vf));
7592 
7593 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7594 
7595 	/* reply to reset with ack and vf mac address */
7596 	if (!is_zero_ether_addr(vf_mac)) {
7597 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7598 		memcpy(addr, vf_mac, ETH_ALEN);
7599 	} else {
7600 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7601 	}
7602 	igb_write_mbx(hw, msgbuf, 3, vf);
7603 }
7604 
7605 static void igb_flush_mac_table(struct igb_adapter *adapter)
7606 {
7607 	struct e1000_hw *hw = &adapter->hw;
7608 	int i;
7609 
7610 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7611 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7612 		eth_zero_addr(adapter->mac_table[i].addr);
7613 		adapter->mac_table[i].queue = 0;
7614 		igb_rar_set_index(adapter, i);
7615 	}
7616 }
7617 
7618 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7619 {
7620 	struct e1000_hw *hw = &adapter->hw;
7621 	/* do not count rar entries reserved for VFs MAC addresses */
7622 	int rar_entries = hw->mac.rar_entry_count -
7623 			  adapter->vfs_allocated_count;
7624 	int i, count = 0;
7625 
7626 	for (i = 0; i < rar_entries; i++) {
7627 		/* do not count default entries */
7628 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7629 			continue;
7630 
7631 		/* do not count "in use" entries for different queues */
7632 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7633 		    (adapter->mac_table[i].queue != queue))
7634 			continue;
7635 
7636 		count++;
7637 	}
7638 
7639 	return count;
7640 }
7641 
7642 /* Set default MAC address for the PF in the first RAR entry */
7643 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7644 {
7645 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7646 
7647 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7648 	mac_table->queue = adapter->vfs_allocated_count;
7649 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7650 
7651 	igb_rar_set_index(adapter, 0);
7652 }
7653 
7654 /* If the filter to be added and an already existing filter express
7655  * the same address and address type, it should be possible to only
7656  * override the other configurations, for example the queue to steer
7657  * traffic.
7658  */
7659 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7660 				      const u8 *addr, const u8 flags)
7661 {
7662 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7663 		return true;
7664 
7665 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7666 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7667 		return false;
7668 
7669 	if (!ether_addr_equal(addr, entry->addr))
7670 		return false;
7671 
7672 	return true;
7673 }
7674 
7675 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7676  * 'flags' is used to indicate what kind of match is made, match is by
7677  * default for the destination address, if matching by source address
7678  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7679  */
7680 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7681 				    const u8 *addr, const u8 queue,
7682 				    const u8 flags)
7683 {
7684 	struct e1000_hw *hw = &adapter->hw;
7685 	int rar_entries = hw->mac.rar_entry_count -
7686 			  adapter->vfs_allocated_count;
7687 	int i;
7688 
7689 	if (is_zero_ether_addr(addr))
7690 		return -EINVAL;
7691 
7692 	/* Search for the first empty entry in the MAC table.
7693 	 * Do not touch entries at the end of the table reserved for the VF MAC
7694 	 * addresses.
7695 	 */
7696 	for (i = 0; i < rar_entries; i++) {
7697 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7698 					       addr, flags))
7699 			continue;
7700 
7701 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7702 		adapter->mac_table[i].queue = queue;
7703 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7704 
7705 		igb_rar_set_index(adapter, i);
7706 		return i;
7707 	}
7708 
7709 	return -ENOSPC;
7710 }
7711 
7712 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7713 			      const u8 queue)
7714 {
7715 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7716 }
7717 
7718 /* Remove a MAC filter for 'addr' directing matching traffic to
7719  * 'queue', 'flags' is used to indicate what kind of match need to be
7720  * removed, match is by default for the destination address, if
7721  * matching by source address is to be removed the flag
7722  * IGB_MAC_STATE_SRC_ADDR can be used.
7723  */
7724 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7725 				    const u8 *addr, const u8 queue,
7726 				    const u8 flags)
7727 {
7728 	struct e1000_hw *hw = &adapter->hw;
7729 	int rar_entries = hw->mac.rar_entry_count -
7730 			  adapter->vfs_allocated_count;
7731 	int i;
7732 
7733 	if (is_zero_ether_addr(addr))
7734 		return -EINVAL;
7735 
7736 	/* Search for matching entry in the MAC table based on given address
7737 	 * and queue. Do not touch entries at the end of the table reserved
7738 	 * for the VF MAC addresses.
7739 	 */
7740 	for (i = 0; i < rar_entries; i++) {
7741 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7742 			continue;
7743 		if ((adapter->mac_table[i].state & flags) != flags)
7744 			continue;
7745 		if (adapter->mac_table[i].queue != queue)
7746 			continue;
7747 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7748 			continue;
7749 
7750 		/* When a filter for the default address is "deleted",
7751 		 * we return it to its initial configuration
7752 		 */
7753 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7754 			adapter->mac_table[i].state =
7755 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7756 			adapter->mac_table[i].queue =
7757 				adapter->vfs_allocated_count;
7758 		} else {
7759 			adapter->mac_table[i].state = 0;
7760 			adapter->mac_table[i].queue = 0;
7761 			eth_zero_addr(adapter->mac_table[i].addr);
7762 		}
7763 
7764 		igb_rar_set_index(adapter, i);
7765 		return 0;
7766 	}
7767 
7768 	return -ENOENT;
7769 }
7770 
7771 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7772 			      const u8 queue)
7773 {
7774 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7775 }
7776 
7777 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7778 				const u8 *addr, u8 queue, u8 flags)
7779 {
7780 	struct e1000_hw *hw = &adapter->hw;
7781 
7782 	/* In theory, this should be supported on 82575 as well, but
7783 	 * that part wasn't easily accessible during development.
7784 	 */
7785 	if (hw->mac.type != e1000_i210)
7786 		return -EOPNOTSUPP;
7787 
7788 	return igb_add_mac_filter_flags(adapter, addr, queue,
7789 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7790 }
7791 
7792 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7793 				const u8 *addr, u8 queue, u8 flags)
7794 {
7795 	return igb_del_mac_filter_flags(adapter, addr, queue,
7796 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7797 }
7798 
7799 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7800 {
7801 	struct igb_adapter *adapter = netdev_priv(netdev);
7802 	int ret;
7803 
7804 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7805 
7806 	return min_t(int, ret, 0);
7807 }
7808 
7809 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7810 {
7811 	struct igb_adapter *adapter = netdev_priv(netdev);
7812 
7813 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7814 
7815 	return 0;
7816 }
7817 
7818 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7819 				 const u32 info, const u8 *addr)
7820 {
7821 	struct pci_dev *pdev = adapter->pdev;
7822 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7823 	struct vf_mac_filter *entry;
7824 	bool found = false;
7825 	int ret = 0;
7826 
7827 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7828 	    !vf_data->trusted) {
7829 		dev_warn(&pdev->dev,
7830 			 "VF %d requested MAC filter but is administratively denied\n",
7831 			  vf);
7832 		return -EINVAL;
7833 	}
7834 	if (!is_valid_ether_addr(addr)) {
7835 		dev_warn(&pdev->dev,
7836 			 "VF %d attempted to set invalid MAC filter\n",
7837 			  vf);
7838 		return -EINVAL;
7839 	}
7840 
7841 	switch (info) {
7842 	case E1000_VF_MAC_FILTER_CLR:
7843 		/* remove all unicast MAC filters related to the current VF */
7844 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7845 			if (entry->vf == vf) {
7846 				entry->vf = -1;
7847 				entry->free = true;
7848 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7849 			}
7850 		}
7851 		break;
7852 	case E1000_VF_MAC_FILTER_ADD:
7853 		/* try to find empty slot in the list */
7854 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7855 			if (entry->free) {
7856 				found = true;
7857 				break;
7858 			}
7859 		}
7860 
7861 		if (found) {
7862 			entry->free = false;
7863 			entry->vf = vf;
7864 			ether_addr_copy(entry->vf_mac, addr);
7865 
7866 			ret = igb_add_mac_filter(adapter, addr, vf);
7867 			ret = min_t(int, ret, 0);
7868 		} else {
7869 			ret = -ENOSPC;
7870 		}
7871 
7872 		if (ret == -ENOSPC)
7873 			dev_warn(&pdev->dev,
7874 				 "VF %d has requested MAC filter but there is no space for it\n",
7875 				 vf);
7876 		break;
7877 	default:
7878 		ret = -EINVAL;
7879 		break;
7880 	}
7881 
7882 	return ret;
7883 }
7884 
7885 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7886 {
7887 	struct pci_dev *pdev = adapter->pdev;
7888 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7889 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7890 
7891 	/* The VF MAC Address is stored in a packed array of bytes
7892 	 * starting at the second 32 bit word of the msg array
7893 	 */
7894 	unsigned char *addr = (unsigned char *)&msg[1];
7895 	int ret = 0;
7896 
7897 	if (!info) {
7898 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7899 		    !vf_data->trusted) {
7900 			dev_warn(&pdev->dev,
7901 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7902 				 vf);
7903 			return -EINVAL;
7904 		}
7905 
7906 		if (!is_valid_ether_addr(addr)) {
7907 			dev_warn(&pdev->dev,
7908 				 "VF %d attempted to set invalid MAC\n",
7909 				 vf);
7910 			return -EINVAL;
7911 		}
7912 
7913 		ret = igb_set_vf_mac(adapter, vf, addr);
7914 	} else {
7915 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7916 	}
7917 
7918 	return ret;
7919 }
7920 
7921 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7922 {
7923 	struct e1000_hw *hw = &adapter->hw;
7924 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7925 	u32 msg = E1000_VT_MSGTYPE_NACK;
7926 
7927 	/* if device isn't clear to send it shouldn't be reading either */
7928 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7929 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7930 		igb_write_mbx(hw, &msg, 1, vf);
7931 		vf_data->last_nack = jiffies;
7932 	}
7933 }
7934 
7935 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7936 {
7937 	struct pci_dev *pdev = adapter->pdev;
7938 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7939 	struct e1000_hw *hw = &adapter->hw;
7940 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7941 	s32 retval;
7942 
7943 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7944 
7945 	if (retval) {
7946 		/* if receive failed revoke VF CTS stats and restart init */
7947 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7948 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7949 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7950 			goto unlock;
7951 		goto out;
7952 	}
7953 
7954 	/* this is a message we already processed, do nothing */
7955 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7956 		goto unlock;
7957 
7958 	/* until the vf completes a reset it should not be
7959 	 * allowed to start any configuration.
7960 	 */
7961 	if (msgbuf[0] == E1000_VF_RESET) {
7962 		/* unlocks mailbox */
7963 		igb_vf_reset_msg(adapter, vf);
7964 		return;
7965 	}
7966 
7967 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7968 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7969 			goto unlock;
7970 		retval = -1;
7971 		goto out;
7972 	}
7973 
7974 	switch ((msgbuf[0] & 0xFFFF)) {
7975 	case E1000_VF_SET_MAC_ADDR:
7976 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7977 		break;
7978 	case E1000_VF_SET_PROMISC:
7979 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7980 		break;
7981 	case E1000_VF_SET_MULTICAST:
7982 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7983 		break;
7984 	case E1000_VF_SET_LPE:
7985 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7986 		break;
7987 	case E1000_VF_SET_VLAN:
7988 		retval = -1;
7989 		if (vf_data->pf_vlan)
7990 			dev_warn(&pdev->dev,
7991 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7992 				 vf);
7993 		else
7994 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7995 		break;
7996 	default:
7997 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7998 		retval = -1;
7999 		break;
8000 	}
8001 
8002 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8003 out:
8004 	/* notify the VF of the results of what it sent us */
8005 	if (retval)
8006 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8007 	else
8008 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8009 
8010 	/* unlocks mailbox */
8011 	igb_write_mbx(hw, msgbuf, 1, vf);
8012 	return;
8013 
8014 unlock:
8015 	igb_unlock_mbx(hw, vf);
8016 }
8017 
8018 static void igb_msg_task(struct igb_adapter *adapter)
8019 {
8020 	struct e1000_hw *hw = &adapter->hw;
8021 	unsigned long flags;
8022 	u32 vf;
8023 
8024 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8025 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8026 		/* process any reset requests */
8027 		if (!igb_check_for_rst(hw, vf))
8028 			igb_vf_reset_event(adapter, vf);
8029 
8030 		/* process any messages pending */
8031 		if (!igb_check_for_msg(hw, vf))
8032 			igb_rcv_msg_from_vf(adapter, vf);
8033 
8034 		/* process any acks */
8035 		if (!igb_check_for_ack(hw, vf))
8036 			igb_rcv_ack_from_vf(adapter, vf);
8037 	}
8038 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8039 }
8040 
8041 /**
8042  *  igb_set_uta - Set unicast filter table address
8043  *  @adapter: board private structure
8044  *  @set: boolean indicating if we are setting or clearing bits
8045  *
8046  *  The unicast table address is a register array of 32-bit registers.
8047  *  The table is meant to be used in a way similar to how the MTA is used
8048  *  however due to certain limitations in the hardware it is necessary to
8049  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8050  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8051  **/
8052 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8053 {
8054 	struct e1000_hw *hw = &adapter->hw;
8055 	u32 uta = set ? ~0 : 0;
8056 	int i;
8057 
8058 	/* we only need to do this if VMDq is enabled */
8059 	if (!adapter->vfs_allocated_count)
8060 		return;
8061 
8062 	for (i = hw->mac.uta_reg_count; i--;)
8063 		array_wr32(E1000_UTA, i, uta);
8064 }
8065 
8066 /**
8067  *  igb_intr_msi - Interrupt Handler
8068  *  @irq: interrupt number
8069  *  @data: pointer to a network interface device structure
8070  **/
8071 static irqreturn_t igb_intr_msi(int irq, void *data)
8072 {
8073 	struct igb_adapter *adapter = data;
8074 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8075 	struct e1000_hw *hw = &adapter->hw;
8076 	/* read ICR disables interrupts using IAM */
8077 	u32 icr = rd32(E1000_ICR);
8078 
8079 	igb_write_itr(q_vector);
8080 
8081 	if (icr & E1000_ICR_DRSTA)
8082 		schedule_work(&adapter->reset_task);
8083 
8084 	if (icr & E1000_ICR_DOUTSYNC) {
8085 		/* HW is reporting DMA is out of sync */
8086 		adapter->stats.doosync++;
8087 	}
8088 
8089 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8090 		hw->mac.get_link_status = 1;
8091 		if (!test_bit(__IGB_DOWN, &adapter->state))
8092 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8093 	}
8094 
8095 	if (icr & E1000_ICR_TS)
8096 		igb_tsync_interrupt(adapter);
8097 
8098 	napi_schedule(&q_vector->napi);
8099 
8100 	return IRQ_HANDLED;
8101 }
8102 
8103 /**
8104  *  igb_intr - Legacy Interrupt Handler
8105  *  @irq: interrupt number
8106  *  @data: pointer to a network interface device structure
8107  **/
8108 static irqreturn_t igb_intr(int irq, void *data)
8109 {
8110 	struct igb_adapter *adapter = data;
8111 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8112 	struct e1000_hw *hw = &adapter->hw;
8113 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8114 	 * need for the IMC write
8115 	 */
8116 	u32 icr = rd32(E1000_ICR);
8117 
8118 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8119 	 * not set, then the adapter didn't send an interrupt
8120 	 */
8121 	if (!(icr & E1000_ICR_INT_ASSERTED))
8122 		return IRQ_NONE;
8123 
8124 	igb_write_itr(q_vector);
8125 
8126 	if (icr & E1000_ICR_DRSTA)
8127 		schedule_work(&adapter->reset_task);
8128 
8129 	if (icr & E1000_ICR_DOUTSYNC) {
8130 		/* HW is reporting DMA is out of sync */
8131 		adapter->stats.doosync++;
8132 	}
8133 
8134 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8135 		hw->mac.get_link_status = 1;
8136 		/* guard against interrupt when we're going down */
8137 		if (!test_bit(__IGB_DOWN, &adapter->state))
8138 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8139 	}
8140 
8141 	if (icr & E1000_ICR_TS)
8142 		igb_tsync_interrupt(adapter);
8143 
8144 	napi_schedule(&q_vector->napi);
8145 
8146 	return IRQ_HANDLED;
8147 }
8148 
8149 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8150 {
8151 	struct igb_adapter *adapter = q_vector->adapter;
8152 	struct e1000_hw *hw = &adapter->hw;
8153 
8154 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8155 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8156 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8157 			igb_set_itr(q_vector);
8158 		else
8159 			igb_update_ring_itr(q_vector);
8160 	}
8161 
8162 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8163 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8164 			wr32(E1000_EIMS, q_vector->eims_value);
8165 		else
8166 			igb_irq_enable(adapter);
8167 	}
8168 }
8169 
8170 /**
8171  *  igb_poll - NAPI Rx polling callback
8172  *  @napi: napi polling structure
8173  *  @budget: count of how many packets we should handle
8174  **/
8175 static int igb_poll(struct napi_struct *napi, int budget)
8176 {
8177 	struct igb_q_vector *q_vector = container_of(napi,
8178 						     struct igb_q_vector,
8179 						     napi);
8180 	bool clean_complete = true;
8181 	int work_done = 0;
8182 
8183 #ifdef CONFIG_IGB_DCA
8184 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8185 		igb_update_dca(q_vector);
8186 #endif
8187 	if (q_vector->tx.ring)
8188 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8189 
8190 	if (q_vector->rx.ring) {
8191 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8192 
8193 		work_done += cleaned;
8194 		if (cleaned >= budget)
8195 			clean_complete = false;
8196 	}
8197 
8198 	/* If all work not completed, return budget and keep polling */
8199 	if (!clean_complete)
8200 		return budget;
8201 
8202 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8203 	 * poll us due to busy-polling
8204 	 */
8205 	if (likely(napi_complete_done(napi, work_done)))
8206 		igb_ring_irq_enable(q_vector);
8207 
8208 	return work_done;
8209 }
8210 
8211 /**
8212  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8213  *  @q_vector: pointer to q_vector containing needed info
8214  *  @napi_budget: Used to determine if we are in netpoll
8215  *
8216  *  returns true if ring is completely cleaned
8217  **/
8218 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8219 {
8220 	struct igb_adapter *adapter = q_vector->adapter;
8221 	struct igb_ring *tx_ring = q_vector->tx.ring;
8222 	struct igb_tx_buffer *tx_buffer;
8223 	union e1000_adv_tx_desc *tx_desc;
8224 	unsigned int total_bytes = 0, total_packets = 0;
8225 	unsigned int budget = q_vector->tx.work_limit;
8226 	unsigned int i = tx_ring->next_to_clean;
8227 
8228 	if (test_bit(__IGB_DOWN, &adapter->state))
8229 		return true;
8230 
8231 	tx_buffer = &tx_ring->tx_buffer_info[i];
8232 	tx_desc = IGB_TX_DESC(tx_ring, i);
8233 	i -= tx_ring->count;
8234 
8235 	do {
8236 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8237 
8238 		/* if next_to_watch is not set then there is no work pending */
8239 		if (!eop_desc)
8240 			break;
8241 
8242 		/* prevent any other reads prior to eop_desc */
8243 		smp_rmb();
8244 
8245 		/* if DD is not set pending work has not been completed */
8246 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8247 			break;
8248 
8249 		/* clear next_to_watch to prevent false hangs */
8250 		tx_buffer->next_to_watch = NULL;
8251 
8252 		/* update the statistics for this packet */
8253 		total_bytes += tx_buffer->bytecount;
8254 		total_packets += tx_buffer->gso_segs;
8255 
8256 		/* free the skb */
8257 		if (tx_buffer->type == IGB_TYPE_SKB)
8258 			napi_consume_skb(tx_buffer->skb, napi_budget);
8259 		else
8260 			xdp_return_frame(tx_buffer->xdpf);
8261 
8262 		/* unmap skb header data */
8263 		dma_unmap_single(tx_ring->dev,
8264 				 dma_unmap_addr(tx_buffer, dma),
8265 				 dma_unmap_len(tx_buffer, len),
8266 				 DMA_TO_DEVICE);
8267 
8268 		/* clear tx_buffer data */
8269 		dma_unmap_len_set(tx_buffer, len, 0);
8270 
8271 		/* clear last DMA location and unmap remaining buffers */
8272 		while (tx_desc != eop_desc) {
8273 			tx_buffer++;
8274 			tx_desc++;
8275 			i++;
8276 			if (unlikely(!i)) {
8277 				i -= tx_ring->count;
8278 				tx_buffer = tx_ring->tx_buffer_info;
8279 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8280 			}
8281 
8282 			/* unmap any remaining paged data */
8283 			if (dma_unmap_len(tx_buffer, len)) {
8284 				dma_unmap_page(tx_ring->dev,
8285 					       dma_unmap_addr(tx_buffer, dma),
8286 					       dma_unmap_len(tx_buffer, len),
8287 					       DMA_TO_DEVICE);
8288 				dma_unmap_len_set(tx_buffer, len, 0);
8289 			}
8290 		}
8291 
8292 		/* move us one more past the eop_desc for start of next pkt */
8293 		tx_buffer++;
8294 		tx_desc++;
8295 		i++;
8296 		if (unlikely(!i)) {
8297 			i -= tx_ring->count;
8298 			tx_buffer = tx_ring->tx_buffer_info;
8299 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8300 		}
8301 
8302 		/* issue prefetch for next Tx descriptor */
8303 		prefetch(tx_desc);
8304 
8305 		/* update budget accounting */
8306 		budget--;
8307 	} while (likely(budget));
8308 
8309 	netdev_tx_completed_queue(txring_txq(tx_ring),
8310 				  total_packets, total_bytes);
8311 	i += tx_ring->count;
8312 	tx_ring->next_to_clean = i;
8313 	u64_stats_update_begin(&tx_ring->tx_syncp);
8314 	tx_ring->tx_stats.bytes += total_bytes;
8315 	tx_ring->tx_stats.packets += total_packets;
8316 	u64_stats_update_end(&tx_ring->tx_syncp);
8317 	q_vector->tx.total_bytes += total_bytes;
8318 	q_vector->tx.total_packets += total_packets;
8319 
8320 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8321 		struct e1000_hw *hw = &adapter->hw;
8322 
8323 		/* Detect a transmit hang in hardware, this serializes the
8324 		 * check with the clearing of time_stamp and movement of i
8325 		 */
8326 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8327 		if (tx_buffer->next_to_watch &&
8328 		    time_after(jiffies, tx_buffer->time_stamp +
8329 			       (adapter->tx_timeout_factor * HZ)) &&
8330 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8331 
8332 			/* detected Tx unit hang */
8333 			dev_err(tx_ring->dev,
8334 				"Detected Tx Unit Hang\n"
8335 				"  Tx Queue             <%d>\n"
8336 				"  TDH                  <%x>\n"
8337 				"  TDT                  <%x>\n"
8338 				"  next_to_use          <%x>\n"
8339 				"  next_to_clean        <%x>\n"
8340 				"buffer_info[next_to_clean]\n"
8341 				"  time_stamp           <%lx>\n"
8342 				"  next_to_watch        <%p>\n"
8343 				"  jiffies              <%lx>\n"
8344 				"  desc.status          <%x>\n",
8345 				tx_ring->queue_index,
8346 				rd32(E1000_TDH(tx_ring->reg_idx)),
8347 				readl(tx_ring->tail),
8348 				tx_ring->next_to_use,
8349 				tx_ring->next_to_clean,
8350 				tx_buffer->time_stamp,
8351 				tx_buffer->next_to_watch,
8352 				jiffies,
8353 				tx_buffer->next_to_watch->wb.status);
8354 			netif_stop_subqueue(tx_ring->netdev,
8355 					    tx_ring->queue_index);
8356 
8357 			/* we are about to reset, no point in enabling stuff */
8358 			return true;
8359 		}
8360 	}
8361 
8362 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8363 	if (unlikely(total_packets &&
8364 	    netif_carrier_ok(tx_ring->netdev) &&
8365 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8366 		/* Make sure that anybody stopping the queue after this
8367 		 * sees the new next_to_clean.
8368 		 */
8369 		smp_mb();
8370 		if (__netif_subqueue_stopped(tx_ring->netdev,
8371 					     tx_ring->queue_index) &&
8372 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8373 			netif_wake_subqueue(tx_ring->netdev,
8374 					    tx_ring->queue_index);
8375 
8376 			u64_stats_update_begin(&tx_ring->tx_syncp);
8377 			tx_ring->tx_stats.restart_queue++;
8378 			u64_stats_update_end(&tx_ring->tx_syncp);
8379 		}
8380 	}
8381 
8382 	return !!budget;
8383 }
8384 
8385 /**
8386  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8387  *  @rx_ring: rx descriptor ring to store buffers on
8388  *  @old_buff: donor buffer to have page reused
8389  *
8390  *  Synchronizes page for reuse by the adapter
8391  **/
8392 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8393 			      struct igb_rx_buffer *old_buff)
8394 {
8395 	struct igb_rx_buffer *new_buff;
8396 	u16 nta = rx_ring->next_to_alloc;
8397 
8398 	new_buff = &rx_ring->rx_buffer_info[nta];
8399 
8400 	/* update, and store next to alloc */
8401 	nta++;
8402 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8403 
8404 	/* Transfer page from old buffer to new buffer.
8405 	 * Move each member individually to avoid possible store
8406 	 * forwarding stalls.
8407 	 */
8408 	new_buff->dma		= old_buff->dma;
8409 	new_buff->page		= old_buff->page;
8410 	new_buff->page_offset	= old_buff->page_offset;
8411 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8412 }
8413 
8414 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8415 				  int rx_buf_pgcnt)
8416 {
8417 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8418 	struct page *page = rx_buffer->page;
8419 
8420 	/* avoid re-using remote and pfmemalloc pages */
8421 	if (!dev_page_is_reusable(page))
8422 		return false;
8423 
8424 #if (PAGE_SIZE < 8192)
8425 	/* if we are only owner of page we can reuse it */
8426 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8427 		return false;
8428 #else
8429 #define IGB_LAST_OFFSET \
8430 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8431 
8432 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8433 		return false;
8434 #endif
8435 
8436 	/* If we have drained the page fragment pool we need to update
8437 	 * the pagecnt_bias and page count so that we fully restock the
8438 	 * number of references the driver holds.
8439 	 */
8440 	if (unlikely(pagecnt_bias == 1)) {
8441 		page_ref_add(page, USHRT_MAX - 1);
8442 		rx_buffer->pagecnt_bias = USHRT_MAX;
8443 	}
8444 
8445 	return true;
8446 }
8447 
8448 /**
8449  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8450  *  @rx_ring: rx descriptor ring to transact packets on
8451  *  @rx_buffer: buffer containing page to add
8452  *  @skb: sk_buff to place the data into
8453  *  @size: size of buffer to be added
8454  *
8455  *  This function will add the data contained in rx_buffer->page to the skb.
8456  **/
8457 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8458 			    struct igb_rx_buffer *rx_buffer,
8459 			    struct sk_buff *skb,
8460 			    unsigned int size)
8461 {
8462 #if (PAGE_SIZE < 8192)
8463 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8464 #else
8465 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8466 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8467 				SKB_DATA_ALIGN(size);
8468 #endif
8469 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8470 			rx_buffer->page_offset, size, truesize);
8471 #if (PAGE_SIZE < 8192)
8472 	rx_buffer->page_offset ^= truesize;
8473 #else
8474 	rx_buffer->page_offset += truesize;
8475 #endif
8476 }
8477 
8478 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8479 					 struct igb_rx_buffer *rx_buffer,
8480 					 struct xdp_buff *xdp,
8481 					 ktime_t timestamp)
8482 {
8483 #if (PAGE_SIZE < 8192)
8484 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8485 #else
8486 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8487 					       xdp->data_hard_start);
8488 #endif
8489 	unsigned int size = xdp->data_end - xdp->data;
8490 	unsigned int headlen;
8491 	struct sk_buff *skb;
8492 
8493 	/* prefetch first cache line of first page */
8494 	net_prefetch(xdp->data);
8495 
8496 	/* allocate a skb to store the frags */
8497 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8498 	if (unlikely(!skb))
8499 		return NULL;
8500 
8501 	if (timestamp)
8502 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8503 
8504 	/* Determine available headroom for copy */
8505 	headlen = size;
8506 	if (headlen > IGB_RX_HDR_LEN)
8507 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8508 
8509 	/* align pull length to size of long to optimize memcpy performance */
8510 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8511 
8512 	/* update all of the pointers */
8513 	size -= headlen;
8514 	if (size) {
8515 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8516 				(xdp->data + headlen) - page_address(rx_buffer->page),
8517 				size, truesize);
8518 #if (PAGE_SIZE < 8192)
8519 		rx_buffer->page_offset ^= truesize;
8520 #else
8521 		rx_buffer->page_offset += truesize;
8522 #endif
8523 	} else {
8524 		rx_buffer->pagecnt_bias++;
8525 	}
8526 
8527 	return skb;
8528 }
8529 
8530 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8531 				     struct igb_rx_buffer *rx_buffer,
8532 				     struct xdp_buff *xdp,
8533 				     ktime_t timestamp)
8534 {
8535 #if (PAGE_SIZE < 8192)
8536 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8537 #else
8538 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8539 				SKB_DATA_ALIGN(xdp->data_end -
8540 					       xdp->data_hard_start);
8541 #endif
8542 	unsigned int metasize = xdp->data - xdp->data_meta;
8543 	struct sk_buff *skb;
8544 
8545 	/* prefetch first cache line of first page */
8546 	net_prefetch(xdp->data_meta);
8547 
8548 	/* build an skb around the page buffer */
8549 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8550 	if (unlikely(!skb))
8551 		return NULL;
8552 
8553 	/* update pointers within the skb to store the data */
8554 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8555 	__skb_put(skb, xdp->data_end - xdp->data);
8556 
8557 	if (metasize)
8558 		skb_metadata_set(skb, metasize);
8559 
8560 	if (timestamp)
8561 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8562 
8563 	/* update buffer offset */
8564 #if (PAGE_SIZE < 8192)
8565 	rx_buffer->page_offset ^= truesize;
8566 #else
8567 	rx_buffer->page_offset += truesize;
8568 #endif
8569 
8570 	return skb;
8571 }
8572 
8573 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8574 				   struct igb_ring *rx_ring,
8575 				   struct xdp_buff *xdp)
8576 {
8577 	int err, result = IGB_XDP_PASS;
8578 	struct bpf_prog *xdp_prog;
8579 	u32 act;
8580 
8581 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8582 
8583 	if (!xdp_prog)
8584 		goto xdp_out;
8585 
8586 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8587 
8588 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8589 	switch (act) {
8590 	case XDP_PASS:
8591 		break;
8592 	case XDP_TX:
8593 		result = igb_xdp_xmit_back(adapter, xdp);
8594 		if (result == IGB_XDP_CONSUMED)
8595 			goto out_failure;
8596 		break;
8597 	case XDP_REDIRECT:
8598 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8599 		if (err)
8600 			goto out_failure;
8601 		result = IGB_XDP_REDIR;
8602 		break;
8603 	default:
8604 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8605 		fallthrough;
8606 	case XDP_ABORTED:
8607 out_failure:
8608 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8609 		fallthrough;
8610 	case XDP_DROP:
8611 		result = IGB_XDP_CONSUMED;
8612 		break;
8613 	}
8614 xdp_out:
8615 	return ERR_PTR(-result);
8616 }
8617 
8618 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8619 					  unsigned int size)
8620 {
8621 	unsigned int truesize;
8622 
8623 #if (PAGE_SIZE < 8192)
8624 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8625 #else
8626 	truesize = ring_uses_build_skb(rx_ring) ?
8627 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8628 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8629 		SKB_DATA_ALIGN(size);
8630 #endif
8631 	return truesize;
8632 }
8633 
8634 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8635 			       struct igb_rx_buffer *rx_buffer,
8636 			       unsigned int size)
8637 {
8638 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8639 #if (PAGE_SIZE < 8192)
8640 	rx_buffer->page_offset ^= truesize;
8641 #else
8642 	rx_buffer->page_offset += truesize;
8643 #endif
8644 }
8645 
8646 static inline void igb_rx_checksum(struct igb_ring *ring,
8647 				   union e1000_adv_rx_desc *rx_desc,
8648 				   struct sk_buff *skb)
8649 {
8650 	skb_checksum_none_assert(skb);
8651 
8652 	/* Ignore Checksum bit is set */
8653 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8654 		return;
8655 
8656 	/* Rx checksum disabled via ethtool */
8657 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8658 		return;
8659 
8660 	/* TCP/UDP checksum error bit is set */
8661 	if (igb_test_staterr(rx_desc,
8662 			     E1000_RXDEXT_STATERR_TCPE |
8663 			     E1000_RXDEXT_STATERR_IPE)) {
8664 		/* work around errata with sctp packets where the TCPE aka
8665 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8666 		 * packets, (aka let the stack check the crc32c)
8667 		 */
8668 		if (!((skb->len == 60) &&
8669 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8670 			u64_stats_update_begin(&ring->rx_syncp);
8671 			ring->rx_stats.csum_err++;
8672 			u64_stats_update_end(&ring->rx_syncp);
8673 		}
8674 		/* let the stack verify checksum errors */
8675 		return;
8676 	}
8677 	/* It must be a TCP or UDP packet with a valid checksum */
8678 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8679 				      E1000_RXD_STAT_UDPCS))
8680 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8681 
8682 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8683 		le32_to_cpu(rx_desc->wb.upper.status_error));
8684 }
8685 
8686 static inline void igb_rx_hash(struct igb_ring *ring,
8687 			       union e1000_adv_rx_desc *rx_desc,
8688 			       struct sk_buff *skb)
8689 {
8690 	if (ring->netdev->features & NETIF_F_RXHASH)
8691 		skb_set_hash(skb,
8692 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8693 			     PKT_HASH_TYPE_L3);
8694 }
8695 
8696 /**
8697  *  igb_is_non_eop - process handling of non-EOP buffers
8698  *  @rx_ring: Rx ring being processed
8699  *  @rx_desc: Rx descriptor for current buffer
8700  *
8701  *  This function updates next to clean.  If the buffer is an EOP buffer
8702  *  this function exits returning false, otherwise it will place the
8703  *  sk_buff in the next buffer to be chained and return true indicating
8704  *  that this is in fact a non-EOP buffer.
8705  **/
8706 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8707 			   union e1000_adv_rx_desc *rx_desc)
8708 {
8709 	u32 ntc = rx_ring->next_to_clean + 1;
8710 
8711 	/* fetch, update, and store next to clean */
8712 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8713 	rx_ring->next_to_clean = ntc;
8714 
8715 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8716 
8717 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8718 		return false;
8719 
8720 	return true;
8721 }
8722 
8723 /**
8724  *  igb_cleanup_headers - Correct corrupted or empty headers
8725  *  @rx_ring: rx descriptor ring packet is being transacted on
8726  *  @rx_desc: pointer to the EOP Rx descriptor
8727  *  @skb: pointer to current skb being fixed
8728  *
8729  *  Address the case where we are pulling data in on pages only
8730  *  and as such no data is present in the skb header.
8731  *
8732  *  In addition if skb is not at least 60 bytes we need to pad it so that
8733  *  it is large enough to qualify as a valid Ethernet frame.
8734  *
8735  *  Returns true if an error was encountered and skb was freed.
8736  **/
8737 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8738 				union e1000_adv_rx_desc *rx_desc,
8739 				struct sk_buff *skb)
8740 {
8741 	/* XDP packets use error pointer so abort at this point */
8742 	if (IS_ERR(skb))
8743 		return true;
8744 
8745 	if (unlikely((igb_test_staterr(rx_desc,
8746 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8747 		struct net_device *netdev = rx_ring->netdev;
8748 		if (!(netdev->features & NETIF_F_RXALL)) {
8749 			dev_kfree_skb_any(skb);
8750 			return true;
8751 		}
8752 	}
8753 
8754 	/* if eth_skb_pad returns an error the skb was freed */
8755 	if (eth_skb_pad(skb))
8756 		return true;
8757 
8758 	return false;
8759 }
8760 
8761 /**
8762  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8763  *  @rx_ring: rx descriptor ring packet is being transacted on
8764  *  @rx_desc: pointer to the EOP Rx descriptor
8765  *  @skb: pointer to current skb being populated
8766  *
8767  *  This function checks the ring, descriptor, and packet information in
8768  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8769  *  other fields within the skb.
8770  **/
8771 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8772 				   union e1000_adv_rx_desc *rx_desc,
8773 				   struct sk_buff *skb)
8774 {
8775 	struct net_device *dev = rx_ring->netdev;
8776 
8777 	igb_rx_hash(rx_ring, rx_desc, skb);
8778 
8779 	igb_rx_checksum(rx_ring, rx_desc, skb);
8780 
8781 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8782 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8783 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8784 
8785 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8786 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8787 		u16 vid;
8788 
8789 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8790 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8791 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8792 		else
8793 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8794 
8795 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8796 	}
8797 
8798 	skb_record_rx_queue(skb, rx_ring->queue_index);
8799 
8800 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8801 }
8802 
8803 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8804 {
8805 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8806 }
8807 
8808 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8809 					       const unsigned int size, int *rx_buf_pgcnt)
8810 {
8811 	struct igb_rx_buffer *rx_buffer;
8812 
8813 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8814 	*rx_buf_pgcnt =
8815 #if (PAGE_SIZE < 8192)
8816 		page_count(rx_buffer->page);
8817 #else
8818 		0;
8819 #endif
8820 	prefetchw(rx_buffer->page);
8821 
8822 	/* we are reusing so sync this buffer for CPU use */
8823 	dma_sync_single_range_for_cpu(rx_ring->dev,
8824 				      rx_buffer->dma,
8825 				      rx_buffer->page_offset,
8826 				      size,
8827 				      DMA_FROM_DEVICE);
8828 
8829 	rx_buffer->pagecnt_bias--;
8830 
8831 	return rx_buffer;
8832 }
8833 
8834 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8835 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8836 {
8837 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8838 		/* hand second half of page back to the ring */
8839 		igb_reuse_rx_page(rx_ring, rx_buffer);
8840 	} else {
8841 		/* We are not reusing the buffer so unmap it and free
8842 		 * any references we are holding to it
8843 		 */
8844 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8845 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8846 				     IGB_RX_DMA_ATTR);
8847 		__page_frag_cache_drain(rx_buffer->page,
8848 					rx_buffer->pagecnt_bias);
8849 	}
8850 
8851 	/* clear contents of rx_buffer */
8852 	rx_buffer->page = NULL;
8853 }
8854 
8855 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8856 {
8857 	struct igb_adapter *adapter = q_vector->adapter;
8858 	struct igb_ring *rx_ring = q_vector->rx.ring;
8859 	struct sk_buff *skb = rx_ring->skb;
8860 	unsigned int total_bytes = 0, total_packets = 0;
8861 	u16 cleaned_count = igb_desc_unused(rx_ring);
8862 	unsigned int xdp_xmit = 0;
8863 	struct xdp_buff xdp;
8864 	u32 frame_sz = 0;
8865 	int rx_buf_pgcnt;
8866 
8867 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8868 #if (PAGE_SIZE < 8192)
8869 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8870 #endif
8871 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8872 
8873 	while (likely(total_packets < budget)) {
8874 		union e1000_adv_rx_desc *rx_desc;
8875 		struct igb_rx_buffer *rx_buffer;
8876 		ktime_t timestamp = 0;
8877 		int pkt_offset = 0;
8878 		unsigned int size;
8879 		void *pktbuf;
8880 
8881 		/* return some buffers to hardware, one at a time is too slow */
8882 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8883 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8884 			cleaned_count = 0;
8885 		}
8886 
8887 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8888 		size = le16_to_cpu(rx_desc->wb.upper.length);
8889 		if (!size)
8890 			break;
8891 
8892 		/* This memory barrier is needed to keep us from reading
8893 		 * any other fields out of the rx_desc until we know the
8894 		 * descriptor has been written back
8895 		 */
8896 		dma_rmb();
8897 
8898 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8899 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8900 
8901 		/* pull rx packet timestamp if available and valid */
8902 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8903 			int ts_hdr_len;
8904 
8905 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8906 							 pktbuf, &timestamp);
8907 
8908 			pkt_offset += ts_hdr_len;
8909 			size -= ts_hdr_len;
8910 		}
8911 
8912 		/* retrieve a buffer from the ring */
8913 		if (!skb) {
8914 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8915 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8916 
8917 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8918 			xdp_buff_clear_frags_flag(&xdp);
8919 #if (PAGE_SIZE > 4096)
8920 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8921 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8922 #endif
8923 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8924 		}
8925 
8926 		if (IS_ERR(skb)) {
8927 			unsigned int xdp_res = -PTR_ERR(skb);
8928 
8929 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8930 				xdp_xmit |= xdp_res;
8931 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8932 			} else {
8933 				rx_buffer->pagecnt_bias++;
8934 			}
8935 			total_packets++;
8936 			total_bytes += size;
8937 		} else if (skb)
8938 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8939 		else if (ring_uses_build_skb(rx_ring))
8940 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8941 					    timestamp);
8942 		else
8943 			skb = igb_construct_skb(rx_ring, rx_buffer,
8944 						&xdp, timestamp);
8945 
8946 		/* exit if we failed to retrieve a buffer */
8947 		if (!skb) {
8948 			rx_ring->rx_stats.alloc_failed++;
8949 			rx_buffer->pagecnt_bias++;
8950 			break;
8951 		}
8952 
8953 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8954 		cleaned_count++;
8955 
8956 		/* fetch next buffer in frame if non-eop */
8957 		if (igb_is_non_eop(rx_ring, rx_desc))
8958 			continue;
8959 
8960 		/* verify the packet layout is correct */
8961 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8962 			skb = NULL;
8963 			continue;
8964 		}
8965 
8966 		/* probably a little skewed due to removing CRC */
8967 		total_bytes += skb->len;
8968 
8969 		/* populate checksum, timestamp, VLAN, and protocol */
8970 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8971 
8972 		napi_gro_receive(&q_vector->napi, skb);
8973 
8974 		/* reset skb pointer */
8975 		skb = NULL;
8976 
8977 		/* update budget accounting */
8978 		total_packets++;
8979 	}
8980 
8981 	/* place incomplete frames back on ring for completion */
8982 	rx_ring->skb = skb;
8983 
8984 	if (xdp_xmit & IGB_XDP_REDIR)
8985 		xdp_do_flush();
8986 
8987 	if (xdp_xmit & IGB_XDP_TX) {
8988 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8989 
8990 		igb_xdp_ring_update_tail(tx_ring);
8991 	}
8992 
8993 	u64_stats_update_begin(&rx_ring->rx_syncp);
8994 	rx_ring->rx_stats.packets += total_packets;
8995 	rx_ring->rx_stats.bytes += total_bytes;
8996 	u64_stats_update_end(&rx_ring->rx_syncp);
8997 	q_vector->rx.total_packets += total_packets;
8998 	q_vector->rx.total_bytes += total_bytes;
8999 
9000 	if (cleaned_count)
9001 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9002 
9003 	return total_packets;
9004 }
9005 
9006 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9007 				  struct igb_rx_buffer *bi)
9008 {
9009 	struct page *page = bi->page;
9010 	dma_addr_t dma;
9011 
9012 	/* since we are recycling buffers we should seldom need to alloc */
9013 	if (likely(page))
9014 		return true;
9015 
9016 	/* alloc new page for storage */
9017 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9018 	if (unlikely(!page)) {
9019 		rx_ring->rx_stats.alloc_failed++;
9020 		return false;
9021 	}
9022 
9023 	/* map page for use */
9024 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9025 				 igb_rx_pg_size(rx_ring),
9026 				 DMA_FROM_DEVICE,
9027 				 IGB_RX_DMA_ATTR);
9028 
9029 	/* if mapping failed free memory back to system since
9030 	 * there isn't much point in holding memory we can't use
9031 	 */
9032 	if (dma_mapping_error(rx_ring->dev, dma)) {
9033 		__free_pages(page, igb_rx_pg_order(rx_ring));
9034 
9035 		rx_ring->rx_stats.alloc_failed++;
9036 		return false;
9037 	}
9038 
9039 	bi->dma = dma;
9040 	bi->page = page;
9041 	bi->page_offset = igb_rx_offset(rx_ring);
9042 	page_ref_add(page, USHRT_MAX - 1);
9043 	bi->pagecnt_bias = USHRT_MAX;
9044 
9045 	return true;
9046 }
9047 
9048 /**
9049  *  igb_alloc_rx_buffers - Replace used receive buffers
9050  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9051  *  @cleaned_count: count of buffers to allocate
9052  **/
9053 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9054 {
9055 	union e1000_adv_rx_desc *rx_desc;
9056 	struct igb_rx_buffer *bi;
9057 	u16 i = rx_ring->next_to_use;
9058 	u16 bufsz;
9059 
9060 	/* nothing to do */
9061 	if (!cleaned_count)
9062 		return;
9063 
9064 	rx_desc = IGB_RX_DESC(rx_ring, i);
9065 	bi = &rx_ring->rx_buffer_info[i];
9066 	i -= rx_ring->count;
9067 
9068 	bufsz = igb_rx_bufsz(rx_ring);
9069 
9070 	do {
9071 		if (!igb_alloc_mapped_page(rx_ring, bi))
9072 			break;
9073 
9074 		/* sync the buffer for use by the device */
9075 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9076 						 bi->page_offset, bufsz,
9077 						 DMA_FROM_DEVICE);
9078 
9079 		/* Refresh the desc even if buffer_addrs didn't change
9080 		 * because each write-back erases this info.
9081 		 */
9082 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9083 
9084 		rx_desc++;
9085 		bi++;
9086 		i++;
9087 		if (unlikely(!i)) {
9088 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9089 			bi = rx_ring->rx_buffer_info;
9090 			i -= rx_ring->count;
9091 		}
9092 
9093 		/* clear the length for the next_to_use descriptor */
9094 		rx_desc->wb.upper.length = 0;
9095 
9096 		cleaned_count--;
9097 	} while (cleaned_count);
9098 
9099 	i += rx_ring->count;
9100 
9101 	if (rx_ring->next_to_use != i) {
9102 		/* record the next descriptor to use */
9103 		rx_ring->next_to_use = i;
9104 
9105 		/* update next to alloc since we have filled the ring */
9106 		rx_ring->next_to_alloc = i;
9107 
9108 		/* Force memory writes to complete before letting h/w
9109 		 * know there are new descriptors to fetch.  (Only
9110 		 * applicable for weak-ordered memory model archs,
9111 		 * such as IA-64).
9112 		 */
9113 		dma_wmb();
9114 		writel(i, rx_ring->tail);
9115 	}
9116 }
9117 
9118 /**
9119  * igb_mii_ioctl -
9120  * @netdev: pointer to netdev struct
9121  * @ifr: interface structure
9122  * @cmd: ioctl command to execute
9123  **/
9124 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9125 {
9126 	struct igb_adapter *adapter = netdev_priv(netdev);
9127 	struct mii_ioctl_data *data = if_mii(ifr);
9128 
9129 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9130 		return -EOPNOTSUPP;
9131 
9132 	switch (cmd) {
9133 	case SIOCGMIIPHY:
9134 		data->phy_id = adapter->hw.phy.addr;
9135 		break;
9136 	case SIOCGMIIREG:
9137 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9138 				     &data->val_out))
9139 			return -EIO;
9140 		break;
9141 	case SIOCSMIIREG:
9142 	default:
9143 		return -EOPNOTSUPP;
9144 	}
9145 	return 0;
9146 }
9147 
9148 /**
9149  * igb_ioctl -
9150  * @netdev: pointer to netdev struct
9151  * @ifr: interface structure
9152  * @cmd: ioctl command to execute
9153  **/
9154 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9155 {
9156 	switch (cmd) {
9157 	case SIOCGMIIPHY:
9158 	case SIOCGMIIREG:
9159 	case SIOCSMIIREG:
9160 		return igb_mii_ioctl(netdev, ifr, cmd);
9161 	case SIOCGHWTSTAMP:
9162 		return igb_ptp_get_ts_config(netdev, ifr);
9163 	case SIOCSHWTSTAMP:
9164 		return igb_ptp_set_ts_config(netdev, ifr);
9165 	default:
9166 		return -EOPNOTSUPP;
9167 	}
9168 }
9169 
9170 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9171 {
9172 	struct igb_adapter *adapter = hw->back;
9173 
9174 	pci_read_config_word(adapter->pdev, reg, value);
9175 }
9176 
9177 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9178 {
9179 	struct igb_adapter *adapter = hw->back;
9180 
9181 	pci_write_config_word(adapter->pdev, reg, *value);
9182 }
9183 
9184 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9185 {
9186 	struct igb_adapter *adapter = hw->back;
9187 
9188 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9189 		return -E1000_ERR_CONFIG;
9190 
9191 	return 0;
9192 }
9193 
9194 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9195 {
9196 	struct igb_adapter *adapter = hw->back;
9197 
9198 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9199 		return -E1000_ERR_CONFIG;
9200 
9201 	return 0;
9202 }
9203 
9204 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9205 {
9206 	struct igb_adapter *adapter = netdev_priv(netdev);
9207 	struct e1000_hw *hw = &adapter->hw;
9208 	u32 ctrl, rctl;
9209 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9210 
9211 	if (enable) {
9212 		/* enable VLAN tag insert/strip */
9213 		ctrl = rd32(E1000_CTRL);
9214 		ctrl |= E1000_CTRL_VME;
9215 		wr32(E1000_CTRL, ctrl);
9216 
9217 		/* Disable CFI check */
9218 		rctl = rd32(E1000_RCTL);
9219 		rctl &= ~E1000_RCTL_CFIEN;
9220 		wr32(E1000_RCTL, rctl);
9221 	} else {
9222 		/* disable VLAN tag insert/strip */
9223 		ctrl = rd32(E1000_CTRL);
9224 		ctrl &= ~E1000_CTRL_VME;
9225 		wr32(E1000_CTRL, ctrl);
9226 	}
9227 
9228 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9229 }
9230 
9231 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9232 			       __be16 proto, u16 vid)
9233 {
9234 	struct igb_adapter *adapter = netdev_priv(netdev);
9235 	struct e1000_hw *hw = &adapter->hw;
9236 	int pf_id = adapter->vfs_allocated_count;
9237 
9238 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9239 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9240 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9241 
9242 	set_bit(vid, adapter->active_vlans);
9243 
9244 	return 0;
9245 }
9246 
9247 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9248 				__be16 proto, u16 vid)
9249 {
9250 	struct igb_adapter *adapter = netdev_priv(netdev);
9251 	int pf_id = adapter->vfs_allocated_count;
9252 	struct e1000_hw *hw = &adapter->hw;
9253 
9254 	/* remove VID from filter table */
9255 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9256 		igb_vfta_set(hw, vid, pf_id, false, true);
9257 
9258 	clear_bit(vid, adapter->active_vlans);
9259 
9260 	return 0;
9261 }
9262 
9263 static void igb_restore_vlan(struct igb_adapter *adapter)
9264 {
9265 	u16 vid = 1;
9266 
9267 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9268 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9269 
9270 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9271 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9272 }
9273 
9274 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9275 {
9276 	struct pci_dev *pdev = adapter->pdev;
9277 	struct e1000_mac_info *mac = &adapter->hw.mac;
9278 
9279 	mac->autoneg = 0;
9280 
9281 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9282 	 * for the switch() below to work
9283 	 */
9284 	if ((spd & 1) || (dplx & ~1))
9285 		goto err_inval;
9286 
9287 	/* Fiber NIC's only allow 1000 gbps Full duplex
9288 	 * and 100Mbps Full duplex for 100baseFx sfp
9289 	 */
9290 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9291 		switch (spd + dplx) {
9292 		case SPEED_10 + DUPLEX_HALF:
9293 		case SPEED_10 + DUPLEX_FULL:
9294 		case SPEED_100 + DUPLEX_HALF:
9295 			goto err_inval;
9296 		default:
9297 			break;
9298 		}
9299 	}
9300 
9301 	switch (spd + dplx) {
9302 	case SPEED_10 + DUPLEX_HALF:
9303 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9304 		break;
9305 	case SPEED_10 + DUPLEX_FULL:
9306 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9307 		break;
9308 	case SPEED_100 + DUPLEX_HALF:
9309 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9310 		break;
9311 	case SPEED_100 + DUPLEX_FULL:
9312 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9313 		break;
9314 	case SPEED_1000 + DUPLEX_FULL:
9315 		mac->autoneg = 1;
9316 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9317 		break;
9318 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9319 	default:
9320 		goto err_inval;
9321 	}
9322 
9323 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9324 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9325 
9326 	return 0;
9327 
9328 err_inval:
9329 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9330 	return -EINVAL;
9331 }
9332 
9333 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9334 			  bool runtime)
9335 {
9336 	struct net_device *netdev = pci_get_drvdata(pdev);
9337 	struct igb_adapter *adapter = netdev_priv(netdev);
9338 	struct e1000_hw *hw = &adapter->hw;
9339 	u32 ctrl, rctl, status;
9340 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9341 	bool wake;
9342 
9343 	rtnl_lock();
9344 	netif_device_detach(netdev);
9345 
9346 	if (netif_running(netdev))
9347 		__igb_close(netdev, true);
9348 
9349 	igb_ptp_suspend(adapter);
9350 
9351 	igb_clear_interrupt_scheme(adapter);
9352 	rtnl_unlock();
9353 
9354 	status = rd32(E1000_STATUS);
9355 	if (status & E1000_STATUS_LU)
9356 		wufc &= ~E1000_WUFC_LNKC;
9357 
9358 	if (wufc) {
9359 		igb_setup_rctl(adapter);
9360 		igb_set_rx_mode(netdev);
9361 
9362 		/* turn on all-multi mode if wake on multicast is enabled */
9363 		if (wufc & E1000_WUFC_MC) {
9364 			rctl = rd32(E1000_RCTL);
9365 			rctl |= E1000_RCTL_MPE;
9366 			wr32(E1000_RCTL, rctl);
9367 		}
9368 
9369 		ctrl = rd32(E1000_CTRL);
9370 		ctrl |= E1000_CTRL_ADVD3WUC;
9371 		wr32(E1000_CTRL, ctrl);
9372 
9373 		/* Allow time for pending master requests to run */
9374 		igb_disable_pcie_master(hw);
9375 
9376 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9377 		wr32(E1000_WUFC, wufc);
9378 	} else {
9379 		wr32(E1000_WUC, 0);
9380 		wr32(E1000_WUFC, 0);
9381 	}
9382 
9383 	wake = wufc || adapter->en_mng_pt;
9384 	if (!wake)
9385 		igb_power_down_link(adapter);
9386 	else
9387 		igb_power_up_link(adapter);
9388 
9389 	if (enable_wake)
9390 		*enable_wake = wake;
9391 
9392 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9393 	 * would have already happened in close and is redundant.
9394 	 */
9395 	igb_release_hw_control(adapter);
9396 
9397 	pci_disable_device(pdev);
9398 
9399 	return 0;
9400 }
9401 
9402 static void igb_deliver_wake_packet(struct net_device *netdev)
9403 {
9404 	struct igb_adapter *adapter = netdev_priv(netdev);
9405 	struct e1000_hw *hw = &adapter->hw;
9406 	struct sk_buff *skb;
9407 	u32 wupl;
9408 
9409 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9410 
9411 	/* WUPM stores only the first 128 bytes of the wake packet.
9412 	 * Read the packet only if we have the whole thing.
9413 	 */
9414 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9415 		return;
9416 
9417 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9418 	if (!skb)
9419 		return;
9420 
9421 	skb_put(skb, wupl);
9422 
9423 	/* Ensure reads are 32-bit aligned */
9424 	wupl = roundup(wupl, 4);
9425 
9426 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9427 
9428 	skb->protocol = eth_type_trans(skb, netdev);
9429 	netif_rx(skb);
9430 }
9431 
9432 static int igb_suspend(struct device *dev)
9433 {
9434 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9435 }
9436 
9437 static int __igb_resume(struct device *dev, bool rpm)
9438 {
9439 	struct pci_dev *pdev = to_pci_dev(dev);
9440 	struct net_device *netdev = pci_get_drvdata(pdev);
9441 	struct igb_adapter *adapter = netdev_priv(netdev);
9442 	struct e1000_hw *hw = &adapter->hw;
9443 	u32 err, val;
9444 
9445 	pci_set_power_state(pdev, PCI_D0);
9446 	pci_restore_state(pdev);
9447 	pci_save_state(pdev);
9448 
9449 	if (!pci_device_is_present(pdev))
9450 		return -ENODEV;
9451 	err = pci_enable_device_mem(pdev);
9452 	if (err) {
9453 		dev_err(&pdev->dev,
9454 			"igb: Cannot enable PCI device from suspend\n");
9455 		return err;
9456 	}
9457 	pci_set_master(pdev);
9458 
9459 	pci_enable_wake(pdev, PCI_D3hot, 0);
9460 	pci_enable_wake(pdev, PCI_D3cold, 0);
9461 
9462 	if (igb_init_interrupt_scheme(adapter, true)) {
9463 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9464 		return -ENOMEM;
9465 	}
9466 
9467 	igb_reset(adapter);
9468 
9469 	/* let the f/w know that the h/w is now under the control of the
9470 	 * driver.
9471 	 */
9472 	igb_get_hw_control(adapter);
9473 
9474 	val = rd32(E1000_WUS);
9475 	if (val & WAKE_PKT_WUS)
9476 		igb_deliver_wake_packet(netdev);
9477 
9478 	wr32(E1000_WUS, ~0);
9479 
9480 	if (!rpm)
9481 		rtnl_lock();
9482 	if (!err && netif_running(netdev))
9483 		err = __igb_open(netdev, true);
9484 
9485 	if (!err)
9486 		netif_device_attach(netdev);
9487 	if (!rpm)
9488 		rtnl_unlock();
9489 
9490 	return err;
9491 }
9492 
9493 static int igb_resume(struct device *dev)
9494 {
9495 	return __igb_resume(dev, false);
9496 }
9497 
9498 static int igb_runtime_idle(struct device *dev)
9499 {
9500 	struct net_device *netdev = dev_get_drvdata(dev);
9501 	struct igb_adapter *adapter = netdev_priv(netdev);
9502 
9503 	if (!igb_has_link(adapter))
9504 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9505 
9506 	return -EBUSY;
9507 }
9508 
9509 static int igb_runtime_suspend(struct device *dev)
9510 {
9511 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9512 }
9513 
9514 static int igb_runtime_resume(struct device *dev)
9515 {
9516 	return __igb_resume(dev, true);
9517 }
9518 
9519 static void igb_shutdown(struct pci_dev *pdev)
9520 {
9521 	bool wake;
9522 
9523 	__igb_shutdown(pdev, &wake, 0);
9524 
9525 	if (system_state == SYSTEM_POWER_OFF) {
9526 		pci_wake_from_d3(pdev, wake);
9527 		pci_set_power_state(pdev, PCI_D3hot);
9528 	}
9529 }
9530 
9531 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9532 {
9533 #ifdef CONFIG_PCI_IOV
9534 	int err;
9535 
9536 	if (num_vfs == 0) {
9537 		return igb_disable_sriov(dev, true);
9538 	} else {
9539 		err = igb_enable_sriov(dev, num_vfs, true);
9540 		return err ? err : num_vfs;
9541 	}
9542 #endif
9543 	return 0;
9544 }
9545 
9546 /**
9547  *  igb_io_error_detected - called when PCI error is detected
9548  *  @pdev: Pointer to PCI device
9549  *  @state: The current pci connection state
9550  *
9551  *  This function is called after a PCI bus error affecting
9552  *  this device has been detected.
9553  **/
9554 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9555 					      pci_channel_state_t state)
9556 {
9557 	struct net_device *netdev = pci_get_drvdata(pdev);
9558 	struct igb_adapter *adapter = netdev_priv(netdev);
9559 
9560 	if (state == pci_channel_io_normal) {
9561 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9562 		return PCI_ERS_RESULT_CAN_RECOVER;
9563 	}
9564 
9565 	netif_device_detach(netdev);
9566 
9567 	if (state == pci_channel_io_perm_failure)
9568 		return PCI_ERS_RESULT_DISCONNECT;
9569 
9570 	if (netif_running(netdev))
9571 		igb_down(adapter);
9572 	pci_disable_device(pdev);
9573 
9574 	/* Request a slot reset. */
9575 	return PCI_ERS_RESULT_NEED_RESET;
9576 }
9577 
9578 /**
9579  *  igb_io_slot_reset - called after the pci bus has been reset.
9580  *  @pdev: Pointer to PCI device
9581  *
9582  *  Restart the card from scratch, as if from a cold-boot. Implementation
9583  *  resembles the first-half of the __igb_resume routine.
9584  **/
9585 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9586 {
9587 	struct net_device *netdev = pci_get_drvdata(pdev);
9588 	struct igb_adapter *adapter = netdev_priv(netdev);
9589 	struct e1000_hw *hw = &adapter->hw;
9590 	pci_ers_result_t result;
9591 
9592 	if (pci_enable_device_mem(pdev)) {
9593 		dev_err(&pdev->dev,
9594 			"Cannot re-enable PCI device after reset.\n");
9595 		result = PCI_ERS_RESULT_DISCONNECT;
9596 	} else {
9597 		pci_set_master(pdev);
9598 		pci_restore_state(pdev);
9599 		pci_save_state(pdev);
9600 
9601 		pci_enable_wake(pdev, PCI_D3hot, 0);
9602 		pci_enable_wake(pdev, PCI_D3cold, 0);
9603 
9604 		/* In case of PCI error, adapter lose its HW address
9605 		 * so we should re-assign it here.
9606 		 */
9607 		hw->hw_addr = adapter->io_addr;
9608 
9609 		igb_reset(adapter);
9610 		wr32(E1000_WUS, ~0);
9611 		result = PCI_ERS_RESULT_RECOVERED;
9612 	}
9613 
9614 	return result;
9615 }
9616 
9617 /**
9618  *  igb_io_resume - called when traffic can start flowing again.
9619  *  @pdev: Pointer to PCI device
9620  *
9621  *  This callback is called when the error recovery driver tells us that
9622  *  its OK to resume normal operation. Implementation resembles the
9623  *  second-half of the __igb_resume routine.
9624  */
9625 static void igb_io_resume(struct pci_dev *pdev)
9626 {
9627 	struct net_device *netdev = pci_get_drvdata(pdev);
9628 	struct igb_adapter *adapter = netdev_priv(netdev);
9629 
9630 	if (netif_running(netdev)) {
9631 		if (igb_up(adapter)) {
9632 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9633 			return;
9634 		}
9635 	}
9636 
9637 	netif_device_attach(netdev);
9638 
9639 	/* let the f/w know that the h/w is now under the control of the
9640 	 * driver.
9641 	 */
9642 	igb_get_hw_control(adapter);
9643 }
9644 
9645 /**
9646  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9647  *  @adapter: Pointer to adapter structure
9648  *  @index: Index of the RAR entry which need to be synced with MAC table
9649  **/
9650 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9651 {
9652 	struct e1000_hw *hw = &adapter->hw;
9653 	u32 rar_low, rar_high;
9654 	u8 *addr = adapter->mac_table[index].addr;
9655 
9656 	/* HW expects these to be in network order when they are plugged
9657 	 * into the registers which are little endian.  In order to guarantee
9658 	 * that ordering we need to do an leXX_to_cpup here in order to be
9659 	 * ready for the byteswap that occurs with writel
9660 	 */
9661 	rar_low = le32_to_cpup((__le32 *)(addr));
9662 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9663 
9664 	/* Indicate to hardware the Address is Valid. */
9665 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9666 		if (is_valid_ether_addr(addr))
9667 			rar_high |= E1000_RAH_AV;
9668 
9669 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9670 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9671 
9672 		switch (hw->mac.type) {
9673 		case e1000_82575:
9674 		case e1000_i210:
9675 			if (adapter->mac_table[index].state &
9676 			    IGB_MAC_STATE_QUEUE_STEERING)
9677 				rar_high |= E1000_RAH_QSEL_ENABLE;
9678 
9679 			rar_high |= E1000_RAH_POOL_1 *
9680 				    adapter->mac_table[index].queue;
9681 			break;
9682 		default:
9683 			rar_high |= E1000_RAH_POOL_1 <<
9684 				    adapter->mac_table[index].queue;
9685 			break;
9686 		}
9687 	}
9688 
9689 	wr32(E1000_RAL(index), rar_low);
9690 	wrfl();
9691 	wr32(E1000_RAH(index), rar_high);
9692 	wrfl();
9693 }
9694 
9695 static int igb_set_vf_mac(struct igb_adapter *adapter,
9696 			  int vf, unsigned char *mac_addr)
9697 {
9698 	struct e1000_hw *hw = &adapter->hw;
9699 	/* VF MAC addresses start at end of receive addresses and moves
9700 	 * towards the first, as a result a collision should not be possible
9701 	 */
9702 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9703 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9704 
9705 	ether_addr_copy(vf_mac_addr, mac_addr);
9706 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9707 	adapter->mac_table[rar_entry].queue = vf;
9708 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9709 	igb_rar_set_index(adapter, rar_entry);
9710 
9711 	return 0;
9712 }
9713 
9714 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9715 {
9716 	struct igb_adapter *adapter = netdev_priv(netdev);
9717 
9718 	if (vf >= adapter->vfs_allocated_count)
9719 		return -EINVAL;
9720 
9721 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9722 	 * flag and allows to overwrite the MAC via VF netdev.  This
9723 	 * is necessary to allow libvirt a way to restore the original
9724 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9725 	 * down a VM.
9726 	 */
9727 	if (is_zero_ether_addr(mac)) {
9728 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9729 		dev_info(&adapter->pdev->dev,
9730 			 "remove administratively set MAC on VF %d\n",
9731 			 vf);
9732 	} else if (is_valid_ether_addr(mac)) {
9733 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9734 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9735 			 mac, vf);
9736 		dev_info(&adapter->pdev->dev,
9737 			 "Reload the VF driver to make this change effective.");
9738 		/* Generate additional warning if PF is down */
9739 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9740 			dev_warn(&adapter->pdev->dev,
9741 				 "The VF MAC address has been set, but the PF device is not up.\n");
9742 			dev_warn(&adapter->pdev->dev,
9743 				 "Bring the PF device up before attempting to use the VF device.\n");
9744 		}
9745 	} else {
9746 		return -EINVAL;
9747 	}
9748 	return igb_set_vf_mac(adapter, vf, mac);
9749 }
9750 
9751 static int igb_link_mbps(int internal_link_speed)
9752 {
9753 	switch (internal_link_speed) {
9754 	case SPEED_100:
9755 		return 100;
9756 	case SPEED_1000:
9757 		return 1000;
9758 	default:
9759 		return 0;
9760 	}
9761 }
9762 
9763 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9764 				  int link_speed)
9765 {
9766 	int rf_dec, rf_int;
9767 	u32 bcnrc_val;
9768 
9769 	if (tx_rate != 0) {
9770 		/* Calculate the rate factor values to set */
9771 		rf_int = link_speed / tx_rate;
9772 		rf_dec = (link_speed - (rf_int * tx_rate));
9773 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9774 			 tx_rate;
9775 
9776 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9777 		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9778 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9779 	} else {
9780 		bcnrc_val = 0;
9781 	}
9782 
9783 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9784 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9785 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9786 	 */
9787 	wr32(E1000_RTTBCNRM, 0x14);
9788 	wr32(E1000_RTTBCNRC, bcnrc_val);
9789 }
9790 
9791 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9792 {
9793 	int actual_link_speed, i;
9794 	bool reset_rate = false;
9795 
9796 	/* VF TX rate limit was not set or not supported */
9797 	if ((adapter->vf_rate_link_speed == 0) ||
9798 	    (adapter->hw.mac.type != e1000_82576))
9799 		return;
9800 
9801 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9802 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9803 		reset_rate = true;
9804 		adapter->vf_rate_link_speed = 0;
9805 		dev_info(&adapter->pdev->dev,
9806 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9807 	}
9808 
9809 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9810 		if (reset_rate)
9811 			adapter->vf_data[i].tx_rate = 0;
9812 
9813 		igb_set_vf_rate_limit(&adapter->hw, i,
9814 				      adapter->vf_data[i].tx_rate,
9815 				      actual_link_speed);
9816 	}
9817 }
9818 
9819 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9820 			     int min_tx_rate, int max_tx_rate)
9821 {
9822 	struct igb_adapter *adapter = netdev_priv(netdev);
9823 	struct e1000_hw *hw = &adapter->hw;
9824 	int actual_link_speed;
9825 
9826 	if (hw->mac.type != e1000_82576)
9827 		return -EOPNOTSUPP;
9828 
9829 	if (min_tx_rate)
9830 		return -EINVAL;
9831 
9832 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9833 	if ((vf >= adapter->vfs_allocated_count) ||
9834 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9835 	    (max_tx_rate < 0) ||
9836 	    (max_tx_rate > actual_link_speed))
9837 		return -EINVAL;
9838 
9839 	adapter->vf_rate_link_speed = actual_link_speed;
9840 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9841 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9842 
9843 	return 0;
9844 }
9845 
9846 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9847 				   bool setting)
9848 {
9849 	struct igb_adapter *adapter = netdev_priv(netdev);
9850 	struct e1000_hw *hw = &adapter->hw;
9851 	u32 reg_val, reg_offset;
9852 
9853 	if (!adapter->vfs_allocated_count)
9854 		return -EOPNOTSUPP;
9855 
9856 	if (vf >= adapter->vfs_allocated_count)
9857 		return -EINVAL;
9858 
9859 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9860 	reg_val = rd32(reg_offset);
9861 	if (setting)
9862 		reg_val |= (BIT(vf) |
9863 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9864 	else
9865 		reg_val &= ~(BIT(vf) |
9866 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9867 	wr32(reg_offset, reg_val);
9868 
9869 	adapter->vf_data[vf].spoofchk_enabled = setting;
9870 	return 0;
9871 }
9872 
9873 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9874 {
9875 	struct igb_adapter *adapter = netdev_priv(netdev);
9876 
9877 	if (vf >= adapter->vfs_allocated_count)
9878 		return -EINVAL;
9879 	if (adapter->vf_data[vf].trusted == setting)
9880 		return 0;
9881 
9882 	adapter->vf_data[vf].trusted = setting;
9883 
9884 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9885 		 vf, setting ? "" : "not ");
9886 	return 0;
9887 }
9888 
9889 static int igb_ndo_get_vf_config(struct net_device *netdev,
9890 				 int vf, struct ifla_vf_info *ivi)
9891 {
9892 	struct igb_adapter *adapter = netdev_priv(netdev);
9893 	if (vf >= adapter->vfs_allocated_count)
9894 		return -EINVAL;
9895 	ivi->vf = vf;
9896 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9897 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9898 	ivi->min_tx_rate = 0;
9899 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9900 	ivi->qos = adapter->vf_data[vf].pf_qos;
9901 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9902 	ivi->trusted = adapter->vf_data[vf].trusted;
9903 	return 0;
9904 }
9905 
9906 static void igb_vmm_control(struct igb_adapter *adapter)
9907 {
9908 	struct e1000_hw *hw = &adapter->hw;
9909 	u32 reg;
9910 
9911 	switch (hw->mac.type) {
9912 	case e1000_82575:
9913 	case e1000_i210:
9914 	case e1000_i211:
9915 	case e1000_i354:
9916 	default:
9917 		/* replication is not supported for 82575 */
9918 		return;
9919 	case e1000_82576:
9920 		/* notify HW that the MAC is adding vlan tags */
9921 		reg = rd32(E1000_DTXCTL);
9922 		reg |= E1000_DTXCTL_VLAN_ADDED;
9923 		wr32(E1000_DTXCTL, reg);
9924 		fallthrough;
9925 	case e1000_82580:
9926 		/* enable replication vlan tag stripping */
9927 		reg = rd32(E1000_RPLOLR);
9928 		reg |= E1000_RPLOLR_STRVLAN;
9929 		wr32(E1000_RPLOLR, reg);
9930 		fallthrough;
9931 	case e1000_i350:
9932 		/* none of the above registers are supported by i350 */
9933 		break;
9934 	}
9935 
9936 	if (adapter->vfs_allocated_count) {
9937 		igb_vmdq_set_loopback_pf(hw, true);
9938 		igb_vmdq_set_replication_pf(hw, true);
9939 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9940 					      adapter->vfs_allocated_count);
9941 	} else {
9942 		igb_vmdq_set_loopback_pf(hw, false);
9943 		igb_vmdq_set_replication_pf(hw, false);
9944 	}
9945 }
9946 
9947 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9948 {
9949 	struct e1000_hw *hw = &adapter->hw;
9950 	u32 dmac_thr;
9951 	u16 hwm;
9952 	u32 reg;
9953 
9954 	if (hw->mac.type > e1000_82580) {
9955 		if (adapter->flags & IGB_FLAG_DMAC) {
9956 			/* force threshold to 0. */
9957 			wr32(E1000_DMCTXTH, 0);
9958 
9959 			/* DMA Coalescing high water mark needs to be greater
9960 			 * than the Rx threshold. Set hwm to PBA - max frame
9961 			 * size in 16B units, capping it at PBA - 6KB.
9962 			 */
9963 			hwm = 64 * (pba - 6);
9964 			reg = rd32(E1000_FCRTC);
9965 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9966 			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
9967 			wr32(E1000_FCRTC, reg);
9968 
9969 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9970 			 * frame size, capping it at PBA - 10KB.
9971 			 */
9972 			dmac_thr = pba - 10;
9973 			reg = rd32(E1000_DMACR);
9974 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9975 			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
9976 
9977 			/* transition to L0x or L1 if available..*/
9978 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9979 
9980 			/* watchdog timer= +-1000 usec in 32usec intervals */
9981 			reg |= (1000 >> 5);
9982 
9983 			/* Disable BMC-to-OS Watchdog Enable */
9984 			if (hw->mac.type != e1000_i354)
9985 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9986 			wr32(E1000_DMACR, reg);
9987 
9988 			/* no lower threshold to disable
9989 			 * coalescing(smart fifb)-UTRESH=0
9990 			 */
9991 			wr32(E1000_DMCRTRH, 0);
9992 
9993 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9994 
9995 			wr32(E1000_DMCTLX, reg);
9996 
9997 			/* free space in tx packet buffer to wake from
9998 			 * DMA coal
9999 			 */
10000 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10001 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10002 		}
10003 
10004 		if (hw->mac.type >= e1000_i210 ||
10005 		    (adapter->flags & IGB_FLAG_DMAC)) {
10006 			reg = rd32(E1000_PCIEMISC);
10007 			reg |= E1000_PCIEMISC_LX_DECISION;
10008 			wr32(E1000_PCIEMISC, reg);
10009 		} /* endif adapter->dmac is not disabled */
10010 	} else if (hw->mac.type == e1000_82580) {
10011 		u32 reg = rd32(E1000_PCIEMISC);
10012 
10013 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10014 		wr32(E1000_DMACR, 0);
10015 	}
10016 }
10017 
10018 /**
10019  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10020  *  @hw: pointer to hardware structure
10021  *  @byte_offset: byte offset to read
10022  *  @dev_addr: device address
10023  *  @data: value read
10024  *
10025  *  Performs byte read operation over I2C interface at
10026  *  a specified device address.
10027  **/
10028 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10029 		      u8 dev_addr, u8 *data)
10030 {
10031 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10032 	struct i2c_client *this_client = adapter->i2c_client;
10033 	s32 status;
10034 	u16 swfw_mask = 0;
10035 
10036 	if (!this_client)
10037 		return E1000_ERR_I2C;
10038 
10039 	swfw_mask = E1000_SWFW_PHY0_SM;
10040 
10041 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10042 		return E1000_ERR_SWFW_SYNC;
10043 
10044 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10045 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10046 
10047 	if (status < 0)
10048 		return E1000_ERR_I2C;
10049 	else {
10050 		*data = status;
10051 		return 0;
10052 	}
10053 }
10054 
10055 /**
10056  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10057  *  @hw: pointer to hardware structure
10058  *  @byte_offset: byte offset to write
10059  *  @dev_addr: device address
10060  *  @data: value to write
10061  *
10062  *  Performs byte write operation over I2C interface at
10063  *  a specified device address.
10064  **/
10065 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10066 		       u8 dev_addr, u8 data)
10067 {
10068 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10069 	struct i2c_client *this_client = adapter->i2c_client;
10070 	s32 status;
10071 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10072 
10073 	if (!this_client)
10074 		return E1000_ERR_I2C;
10075 
10076 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10077 		return E1000_ERR_SWFW_SYNC;
10078 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10079 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10080 
10081 	if (status)
10082 		return E1000_ERR_I2C;
10083 	else
10084 		return 0;
10085 
10086 }
10087 
10088 int igb_reinit_queues(struct igb_adapter *adapter)
10089 {
10090 	struct net_device *netdev = adapter->netdev;
10091 	struct pci_dev *pdev = adapter->pdev;
10092 	int err = 0;
10093 
10094 	if (netif_running(netdev))
10095 		igb_close(netdev);
10096 
10097 	igb_reset_interrupt_capability(adapter);
10098 
10099 	if (igb_init_interrupt_scheme(adapter, true)) {
10100 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10101 		return -ENOMEM;
10102 	}
10103 
10104 	if (netif_running(netdev))
10105 		err = igb_open(netdev);
10106 
10107 	return err;
10108 }
10109 
10110 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10111 {
10112 	struct igb_nfc_filter *rule;
10113 
10114 	spin_lock(&adapter->nfc_lock);
10115 
10116 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10117 		igb_erase_filter(adapter, rule);
10118 
10119 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10120 		igb_erase_filter(adapter, rule);
10121 
10122 	spin_unlock(&adapter->nfc_lock);
10123 }
10124 
10125 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10126 {
10127 	struct igb_nfc_filter *rule;
10128 
10129 	spin_lock(&adapter->nfc_lock);
10130 
10131 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10132 		igb_add_filter(adapter, rule);
10133 
10134 	spin_unlock(&adapter->nfc_lock);
10135 }
10136 
10137 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10138 			  igb_runtime_suspend, igb_runtime_resume,
10139 			  igb_runtime_idle);
10140 
10141 static struct pci_driver igb_driver = {
10142 	.name     = igb_driver_name,
10143 	.id_table = igb_pci_tbl,
10144 	.probe    = igb_probe,
10145 	.remove   = igb_remove,
10146 	.driver.pm = pm_ptr(&igb_pm_ops),
10147 	.shutdown = igb_shutdown,
10148 	.sriov_configure = igb_pci_sriov_configure,
10149 	.err_handler = &igb_err_handler
10150 };
10151 
10152 /* igb_main.c */
10153