xref: /linux/drivers/net/ethernet/intel/igb/igb_ethtool.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 
41 #include "igb.h"
42 
43 struct igb_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int sizeof_stat;
46 	int stat_offset;
47 };
48 
49 #define IGB_STAT(_name, _stat) { \
50 	.stat_string = _name, \
51 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52 	.stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55 	IGB_STAT("rx_packets", stats.gprc),
56 	IGB_STAT("tx_packets", stats.gptc),
57 	IGB_STAT("rx_bytes", stats.gorc),
58 	IGB_STAT("tx_bytes", stats.gotc),
59 	IGB_STAT("rx_broadcast", stats.bprc),
60 	IGB_STAT("tx_broadcast", stats.bptc),
61 	IGB_STAT("rx_multicast", stats.mprc),
62 	IGB_STAT("tx_multicast", stats.mptc),
63 	IGB_STAT("multicast", stats.mprc),
64 	IGB_STAT("collisions", stats.colc),
65 	IGB_STAT("rx_crc_errors", stats.crcerrs),
66 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
67 	IGB_STAT("rx_missed_errors", stats.mpc),
68 	IGB_STAT("tx_aborted_errors", stats.ecol),
69 	IGB_STAT("tx_carrier_errors", stats.tncrs),
70 	IGB_STAT("tx_window_errors", stats.latecol),
71 	IGB_STAT("tx_abort_late_coll", stats.latecol),
72 	IGB_STAT("tx_deferred_ok", stats.dc),
73 	IGB_STAT("tx_single_coll_ok", stats.scc),
74 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
75 	IGB_STAT("tx_timeout_count", tx_timeout_count),
76 	IGB_STAT("rx_long_length_errors", stats.roc),
77 	IGB_STAT("rx_short_length_errors", stats.ruc),
78 	IGB_STAT("rx_align_errors", stats.algnerrc),
79 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
84 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85 	IGB_STAT("rx_long_byte_count", stats.gorc),
86 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87 	IGB_STAT("tx_smbus", stats.mgptc),
88 	IGB_STAT("rx_smbus", stats.mgprc),
89 	IGB_STAT("dropped_smbus", stats.mgpdc),
90 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95 
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 	.stat_string = __stringify(_net_stat), \
98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 	IGB_NETDEV_STAT(rx_errors),
103 	IGB_NETDEV_STAT(tx_errors),
104 	IGB_NETDEV_STAT(tx_dropped),
105 	IGB_NETDEV_STAT(rx_length_errors),
106 	IGB_NETDEV_STAT(rx_over_errors),
107 	IGB_NETDEV_STAT(rx_frame_errors),
108 	IGB_NETDEV_STAT(rx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_fifo_errors),
110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112 
113 #define IGB_GLOBAL_STATS_LEN	\
114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN	\
116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 
122 #define IGB_QUEUE_STATS_LEN \
123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 	  IGB_RX_QUEUE_STATS_LEN) + \
125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 	  IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 	"Register test  (offline)", "Eeprom test    (offline)",
132 	"Interrupt test (offline)", "Loopback test  (offline)",
133 	"Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136 
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139 	struct igb_adapter *adapter = netdev_priv(netdev);
140 	struct e1000_hw *hw = &adapter->hw;
141 	u32 status;
142 
143 	if (hw->phy.media_type == e1000_media_type_copper) {
144 
145 		ecmd->supported = (SUPPORTED_10baseT_Half |
146 				   SUPPORTED_10baseT_Full |
147 				   SUPPORTED_100baseT_Half |
148 				   SUPPORTED_100baseT_Full |
149 				   SUPPORTED_1000baseT_Full|
150 				   SUPPORTED_Autoneg |
151 				   SUPPORTED_TP |
152 				   SUPPORTED_Pause);
153 		ecmd->advertising = ADVERTISED_TP;
154 
155 		if (hw->mac.autoneg == 1) {
156 			ecmd->advertising |= ADVERTISED_Autoneg;
157 			/* the e1000 autoneg seems to match ethtool nicely */
158 			ecmd->advertising |= hw->phy.autoneg_advertised;
159 		}
160 
161 		if (hw->mac.autoneg != 1)
162 			ecmd->advertising &= ~(ADVERTISED_Pause |
163 					       ADVERTISED_Asym_Pause);
164 
165 		if (hw->fc.requested_mode == e1000_fc_full)
166 			ecmd->advertising |= ADVERTISED_Pause;
167 		else if (hw->fc.requested_mode == e1000_fc_rx_pause)
168 			ecmd->advertising |= (ADVERTISED_Pause |
169 					      ADVERTISED_Asym_Pause);
170 		else if (hw->fc.requested_mode == e1000_fc_tx_pause)
171 			ecmd->advertising |=  ADVERTISED_Asym_Pause;
172 		else
173 			ecmd->advertising &= ~(ADVERTISED_Pause |
174 					       ADVERTISED_Asym_Pause);
175 
176 		ecmd->port = PORT_TP;
177 		ecmd->phy_address = hw->phy.addr;
178 	} else {
179 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
180 				     SUPPORTED_FIBRE |
181 				     SUPPORTED_Autoneg);
182 
183 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
184 				     ADVERTISED_FIBRE |
185 				     ADVERTISED_Autoneg |
186 				     ADVERTISED_Pause);
187 
188 		ecmd->port = PORT_FIBRE;
189 	}
190 
191 	ecmd->transceiver = XCVR_INTERNAL;
192 
193 	status = rd32(E1000_STATUS);
194 
195 	if (status & E1000_STATUS_LU) {
196 
197 		if ((status & E1000_STATUS_SPEED_1000) ||
198 		    hw->phy.media_type != e1000_media_type_copper)
199 			ethtool_cmd_speed_set(ecmd, SPEED_1000);
200 		else if (status & E1000_STATUS_SPEED_100)
201 			ethtool_cmd_speed_set(ecmd, SPEED_100);
202 		else
203 			ethtool_cmd_speed_set(ecmd, SPEED_10);
204 
205 		if ((status & E1000_STATUS_FD) ||
206 		    hw->phy.media_type != e1000_media_type_copper)
207 			ecmd->duplex = DUPLEX_FULL;
208 		else
209 			ecmd->duplex = DUPLEX_HALF;
210 	} else {
211 		ethtool_cmd_speed_set(ecmd, -1);
212 		ecmd->duplex = -1;
213 	}
214 
215 	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
216 
217 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
218 	if (hw->phy.media_type == e1000_media_type_copper)
219 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
220 						      ETH_TP_MDI;
221 	else
222 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
223 
224 	if (hw->phy.mdix == AUTO_ALL_MODES)
225 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
226 	else
227 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
228 
229 	return 0;
230 }
231 
232 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
233 {
234 	struct igb_adapter *adapter = netdev_priv(netdev);
235 	struct e1000_hw *hw = &adapter->hw;
236 
237 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
238 	 * cannot be changed */
239 	if (igb_check_reset_block(hw)) {
240 		dev_err(&adapter->pdev->dev,
241 			"Cannot change link characteristics when SoL/IDER is active.\n");
242 		return -EINVAL;
243 	}
244 
245 	/*
246 	 * MDI setting is only allowed when autoneg enabled because
247 	 * some hardware doesn't allow MDI setting when speed or
248 	 * duplex is forced.
249 	 */
250 	if (ecmd->eth_tp_mdix_ctrl) {
251 		if (hw->phy.media_type != e1000_media_type_copper)
252 			return -EOPNOTSUPP;
253 
254 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
255 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
256 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
257 			return -EINVAL;
258 		}
259 	}
260 
261 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
262 		msleep(1);
263 
264 	if (ecmd->autoneg == AUTONEG_ENABLE) {
265 		hw->mac.autoneg = 1;
266 		hw->phy.autoneg_advertised = ecmd->advertising |
267 					     ADVERTISED_TP |
268 					     ADVERTISED_Autoneg;
269 		ecmd->advertising = hw->phy.autoneg_advertised;
270 		if (adapter->fc_autoneg)
271 			hw->fc.requested_mode = e1000_fc_default;
272 	} else {
273 		u32 speed = ethtool_cmd_speed(ecmd);
274 		/* calling this overrides forced MDI setting */
275 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
276 			clear_bit(__IGB_RESETTING, &adapter->state);
277 			return -EINVAL;
278 		}
279 	}
280 
281 	/* MDI-X => 2; MDI => 1; Auto => 3 */
282 	if (ecmd->eth_tp_mdix_ctrl) {
283 		/*
284 		 * fix up the value for auto (3 => 0) as zero is mapped
285 		 * internally to auto
286 		 */
287 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
288 			hw->phy.mdix = AUTO_ALL_MODES;
289 		else
290 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
291 	}
292 
293 	/* reset the link */
294 	if (netif_running(adapter->netdev)) {
295 		igb_down(adapter);
296 		igb_up(adapter);
297 	} else
298 		igb_reset(adapter);
299 
300 	clear_bit(__IGB_RESETTING, &adapter->state);
301 	return 0;
302 }
303 
304 static u32 igb_get_link(struct net_device *netdev)
305 {
306 	struct igb_adapter *adapter = netdev_priv(netdev);
307 	struct e1000_mac_info *mac = &adapter->hw.mac;
308 
309 	/*
310 	 * If the link is not reported up to netdev, interrupts are disabled,
311 	 * and so the physical link state may have changed since we last
312 	 * looked. Set get_link_status to make sure that the true link
313 	 * state is interrogated, rather than pulling a cached and possibly
314 	 * stale link state from the driver.
315 	 */
316 	if (!netif_carrier_ok(netdev))
317 		mac->get_link_status = 1;
318 
319 	return igb_has_link(adapter);
320 }
321 
322 static void igb_get_pauseparam(struct net_device *netdev,
323 			       struct ethtool_pauseparam *pause)
324 {
325 	struct igb_adapter *adapter = netdev_priv(netdev);
326 	struct e1000_hw *hw = &adapter->hw;
327 
328 	pause->autoneg =
329 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
330 
331 	if (hw->fc.current_mode == e1000_fc_rx_pause)
332 		pause->rx_pause = 1;
333 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
334 		pause->tx_pause = 1;
335 	else if (hw->fc.current_mode == e1000_fc_full) {
336 		pause->rx_pause = 1;
337 		pause->tx_pause = 1;
338 	}
339 }
340 
341 static int igb_set_pauseparam(struct net_device *netdev,
342 			      struct ethtool_pauseparam *pause)
343 {
344 	struct igb_adapter *adapter = netdev_priv(netdev);
345 	struct e1000_hw *hw = &adapter->hw;
346 	int retval = 0;
347 
348 	adapter->fc_autoneg = pause->autoneg;
349 
350 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
351 		msleep(1);
352 
353 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
354 		hw->fc.requested_mode = e1000_fc_default;
355 		if (netif_running(adapter->netdev)) {
356 			igb_down(adapter);
357 			igb_up(adapter);
358 		} else {
359 			igb_reset(adapter);
360 		}
361 	} else {
362 		if (pause->rx_pause && pause->tx_pause)
363 			hw->fc.requested_mode = e1000_fc_full;
364 		else if (pause->rx_pause && !pause->tx_pause)
365 			hw->fc.requested_mode = e1000_fc_rx_pause;
366 		else if (!pause->rx_pause && pause->tx_pause)
367 			hw->fc.requested_mode = e1000_fc_tx_pause;
368 		else if (!pause->rx_pause && !pause->tx_pause)
369 			hw->fc.requested_mode = e1000_fc_none;
370 
371 		hw->fc.current_mode = hw->fc.requested_mode;
372 
373 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
374 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
375 	}
376 
377 	clear_bit(__IGB_RESETTING, &adapter->state);
378 	return retval;
379 }
380 
381 static u32 igb_get_msglevel(struct net_device *netdev)
382 {
383 	struct igb_adapter *adapter = netdev_priv(netdev);
384 	return adapter->msg_enable;
385 }
386 
387 static void igb_set_msglevel(struct net_device *netdev, u32 data)
388 {
389 	struct igb_adapter *adapter = netdev_priv(netdev);
390 	adapter->msg_enable = data;
391 }
392 
393 static int igb_get_regs_len(struct net_device *netdev)
394 {
395 #define IGB_REGS_LEN 739
396 	return IGB_REGS_LEN * sizeof(u32);
397 }
398 
399 static void igb_get_regs(struct net_device *netdev,
400 			 struct ethtool_regs *regs, void *p)
401 {
402 	struct igb_adapter *adapter = netdev_priv(netdev);
403 	struct e1000_hw *hw = &adapter->hw;
404 	u32 *regs_buff = p;
405 	u8 i;
406 
407 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
408 
409 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
410 
411 	/* General Registers */
412 	regs_buff[0] = rd32(E1000_CTRL);
413 	regs_buff[1] = rd32(E1000_STATUS);
414 	regs_buff[2] = rd32(E1000_CTRL_EXT);
415 	regs_buff[3] = rd32(E1000_MDIC);
416 	regs_buff[4] = rd32(E1000_SCTL);
417 	regs_buff[5] = rd32(E1000_CONNSW);
418 	regs_buff[6] = rd32(E1000_VET);
419 	regs_buff[7] = rd32(E1000_LEDCTL);
420 	regs_buff[8] = rd32(E1000_PBA);
421 	regs_buff[9] = rd32(E1000_PBS);
422 	regs_buff[10] = rd32(E1000_FRTIMER);
423 	regs_buff[11] = rd32(E1000_TCPTIMER);
424 
425 	/* NVM Register */
426 	regs_buff[12] = rd32(E1000_EECD);
427 
428 	/* Interrupt */
429 	/* Reading EICS for EICR because they read the
430 	 * same but EICS does not clear on read */
431 	regs_buff[13] = rd32(E1000_EICS);
432 	regs_buff[14] = rd32(E1000_EICS);
433 	regs_buff[15] = rd32(E1000_EIMS);
434 	regs_buff[16] = rd32(E1000_EIMC);
435 	regs_buff[17] = rd32(E1000_EIAC);
436 	regs_buff[18] = rd32(E1000_EIAM);
437 	/* Reading ICS for ICR because they read the
438 	 * same but ICS does not clear on read */
439 	regs_buff[19] = rd32(E1000_ICS);
440 	regs_buff[20] = rd32(E1000_ICS);
441 	regs_buff[21] = rd32(E1000_IMS);
442 	regs_buff[22] = rd32(E1000_IMC);
443 	regs_buff[23] = rd32(E1000_IAC);
444 	regs_buff[24] = rd32(E1000_IAM);
445 	regs_buff[25] = rd32(E1000_IMIRVP);
446 
447 	/* Flow Control */
448 	regs_buff[26] = rd32(E1000_FCAL);
449 	regs_buff[27] = rd32(E1000_FCAH);
450 	regs_buff[28] = rd32(E1000_FCTTV);
451 	regs_buff[29] = rd32(E1000_FCRTL);
452 	regs_buff[30] = rd32(E1000_FCRTH);
453 	regs_buff[31] = rd32(E1000_FCRTV);
454 
455 	/* Receive */
456 	regs_buff[32] = rd32(E1000_RCTL);
457 	regs_buff[33] = rd32(E1000_RXCSUM);
458 	regs_buff[34] = rd32(E1000_RLPML);
459 	regs_buff[35] = rd32(E1000_RFCTL);
460 	regs_buff[36] = rd32(E1000_MRQC);
461 	regs_buff[37] = rd32(E1000_VT_CTL);
462 
463 	/* Transmit */
464 	regs_buff[38] = rd32(E1000_TCTL);
465 	regs_buff[39] = rd32(E1000_TCTL_EXT);
466 	regs_buff[40] = rd32(E1000_TIPG);
467 	regs_buff[41] = rd32(E1000_DTXCTL);
468 
469 	/* Wake Up */
470 	regs_buff[42] = rd32(E1000_WUC);
471 	regs_buff[43] = rd32(E1000_WUFC);
472 	regs_buff[44] = rd32(E1000_WUS);
473 	regs_buff[45] = rd32(E1000_IPAV);
474 	regs_buff[46] = rd32(E1000_WUPL);
475 
476 	/* MAC */
477 	regs_buff[47] = rd32(E1000_PCS_CFG0);
478 	regs_buff[48] = rd32(E1000_PCS_LCTL);
479 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
480 	regs_buff[50] = rd32(E1000_PCS_ANADV);
481 	regs_buff[51] = rd32(E1000_PCS_LPAB);
482 	regs_buff[52] = rd32(E1000_PCS_NPTX);
483 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
484 
485 	/* Statistics */
486 	regs_buff[54] = adapter->stats.crcerrs;
487 	regs_buff[55] = adapter->stats.algnerrc;
488 	regs_buff[56] = adapter->stats.symerrs;
489 	regs_buff[57] = adapter->stats.rxerrc;
490 	regs_buff[58] = adapter->stats.mpc;
491 	regs_buff[59] = adapter->stats.scc;
492 	regs_buff[60] = adapter->stats.ecol;
493 	regs_buff[61] = adapter->stats.mcc;
494 	regs_buff[62] = adapter->stats.latecol;
495 	regs_buff[63] = adapter->stats.colc;
496 	regs_buff[64] = adapter->stats.dc;
497 	regs_buff[65] = adapter->stats.tncrs;
498 	regs_buff[66] = adapter->stats.sec;
499 	regs_buff[67] = adapter->stats.htdpmc;
500 	regs_buff[68] = adapter->stats.rlec;
501 	regs_buff[69] = adapter->stats.xonrxc;
502 	regs_buff[70] = adapter->stats.xontxc;
503 	regs_buff[71] = adapter->stats.xoffrxc;
504 	regs_buff[72] = adapter->stats.xofftxc;
505 	regs_buff[73] = adapter->stats.fcruc;
506 	regs_buff[74] = adapter->stats.prc64;
507 	regs_buff[75] = adapter->stats.prc127;
508 	regs_buff[76] = adapter->stats.prc255;
509 	regs_buff[77] = adapter->stats.prc511;
510 	regs_buff[78] = adapter->stats.prc1023;
511 	regs_buff[79] = adapter->stats.prc1522;
512 	regs_buff[80] = adapter->stats.gprc;
513 	regs_buff[81] = adapter->stats.bprc;
514 	regs_buff[82] = adapter->stats.mprc;
515 	regs_buff[83] = adapter->stats.gptc;
516 	regs_buff[84] = adapter->stats.gorc;
517 	regs_buff[86] = adapter->stats.gotc;
518 	regs_buff[88] = adapter->stats.rnbc;
519 	regs_buff[89] = adapter->stats.ruc;
520 	regs_buff[90] = adapter->stats.rfc;
521 	regs_buff[91] = adapter->stats.roc;
522 	regs_buff[92] = adapter->stats.rjc;
523 	regs_buff[93] = adapter->stats.mgprc;
524 	regs_buff[94] = adapter->stats.mgpdc;
525 	regs_buff[95] = adapter->stats.mgptc;
526 	regs_buff[96] = adapter->stats.tor;
527 	regs_buff[98] = adapter->stats.tot;
528 	regs_buff[100] = adapter->stats.tpr;
529 	regs_buff[101] = adapter->stats.tpt;
530 	regs_buff[102] = adapter->stats.ptc64;
531 	regs_buff[103] = adapter->stats.ptc127;
532 	regs_buff[104] = adapter->stats.ptc255;
533 	regs_buff[105] = adapter->stats.ptc511;
534 	regs_buff[106] = adapter->stats.ptc1023;
535 	regs_buff[107] = adapter->stats.ptc1522;
536 	regs_buff[108] = adapter->stats.mptc;
537 	regs_buff[109] = adapter->stats.bptc;
538 	regs_buff[110] = adapter->stats.tsctc;
539 	regs_buff[111] = adapter->stats.iac;
540 	regs_buff[112] = adapter->stats.rpthc;
541 	regs_buff[113] = adapter->stats.hgptc;
542 	regs_buff[114] = adapter->stats.hgorc;
543 	regs_buff[116] = adapter->stats.hgotc;
544 	regs_buff[118] = adapter->stats.lenerrs;
545 	regs_buff[119] = adapter->stats.scvpc;
546 	regs_buff[120] = adapter->stats.hrmpc;
547 
548 	for (i = 0; i < 4; i++)
549 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
550 	for (i = 0; i < 4; i++)
551 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
552 	for (i = 0; i < 4; i++)
553 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
554 	for (i = 0; i < 4; i++)
555 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
556 	for (i = 0; i < 4; i++)
557 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
558 	for (i = 0; i < 4; i++)
559 		regs_buff[141 + i] = rd32(E1000_RDH(i));
560 	for (i = 0; i < 4; i++)
561 		regs_buff[145 + i] = rd32(E1000_RDT(i));
562 	for (i = 0; i < 4; i++)
563 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
564 
565 	for (i = 0; i < 10; i++)
566 		regs_buff[153 + i] = rd32(E1000_EITR(i));
567 	for (i = 0; i < 8; i++)
568 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
569 	for (i = 0; i < 8; i++)
570 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
571 	for (i = 0; i < 16; i++)
572 		regs_buff[179 + i] = rd32(E1000_RAL(i));
573 	for (i = 0; i < 16; i++)
574 		regs_buff[195 + i] = rd32(E1000_RAH(i));
575 
576 	for (i = 0; i < 4; i++)
577 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
578 	for (i = 0; i < 4; i++)
579 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
580 	for (i = 0; i < 4; i++)
581 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
582 	for (i = 0; i < 4; i++)
583 		regs_buff[223 + i] = rd32(E1000_TDH(i));
584 	for (i = 0; i < 4; i++)
585 		regs_buff[227 + i] = rd32(E1000_TDT(i));
586 	for (i = 0; i < 4; i++)
587 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
588 	for (i = 0; i < 4; i++)
589 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
590 	for (i = 0; i < 4; i++)
591 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
592 	for (i = 0; i < 4; i++)
593 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
594 
595 	for (i = 0; i < 4; i++)
596 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
597 	for (i = 0; i < 4; i++)
598 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
599 	for (i = 0; i < 32; i++)
600 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
601 	for (i = 0; i < 128; i++)
602 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
603 	for (i = 0; i < 128; i++)
604 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
605 	for (i = 0; i < 4; i++)
606 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
607 
608 	regs_buff[547] = rd32(E1000_TDFH);
609 	regs_buff[548] = rd32(E1000_TDFT);
610 	regs_buff[549] = rd32(E1000_TDFHS);
611 	regs_buff[550] = rd32(E1000_TDFPC);
612 
613 	if (hw->mac.type > e1000_82580) {
614 		regs_buff[551] = adapter->stats.o2bgptc;
615 		regs_buff[552] = adapter->stats.b2ospc;
616 		regs_buff[553] = adapter->stats.o2bspc;
617 		regs_buff[554] = adapter->stats.b2ogprc;
618 	}
619 
620 	if (hw->mac.type != e1000_82576)
621 		return;
622 	for (i = 0; i < 12; i++)
623 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
624 	for (i = 0; i < 4; i++)
625 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
626 	for (i = 0; i < 12; i++)
627 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
628 	for (i = 0; i < 12; i++)
629 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
630 	for (i = 0; i < 12; i++)
631 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
632 	for (i = 0; i < 12; i++)
633 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
634 	for (i = 0; i < 12; i++)
635 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
636 	for (i = 0; i < 12; i++)
637 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
638 
639 	for (i = 0; i < 12; i++)
640 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
641 	for (i = 0; i < 12; i++)
642 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
643 	for (i = 0; i < 12; i++)
644 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
645 	for (i = 0; i < 12; i++)
646 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
647 	for (i = 0; i < 12; i++)
648 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
649 	for (i = 0; i < 12; i++)
650 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
651 	for (i = 0; i < 12; i++)
652 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
653 	for (i = 0; i < 12; i++)
654 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
655 }
656 
657 static int igb_get_eeprom_len(struct net_device *netdev)
658 {
659 	struct igb_adapter *adapter = netdev_priv(netdev);
660 	return adapter->hw.nvm.word_size * 2;
661 }
662 
663 static int igb_get_eeprom(struct net_device *netdev,
664 			  struct ethtool_eeprom *eeprom, u8 *bytes)
665 {
666 	struct igb_adapter *adapter = netdev_priv(netdev);
667 	struct e1000_hw *hw = &adapter->hw;
668 	u16 *eeprom_buff;
669 	int first_word, last_word;
670 	int ret_val = 0;
671 	u16 i;
672 
673 	if (eeprom->len == 0)
674 		return -EINVAL;
675 
676 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
677 
678 	first_word = eeprom->offset >> 1;
679 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
680 
681 	eeprom_buff = kmalloc(sizeof(u16) *
682 			(last_word - first_word + 1), GFP_KERNEL);
683 	if (!eeprom_buff)
684 		return -ENOMEM;
685 
686 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
687 		ret_val = hw->nvm.ops.read(hw, first_word,
688 					    last_word - first_word + 1,
689 					    eeprom_buff);
690 	else {
691 		for (i = 0; i < last_word - first_word + 1; i++) {
692 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
693 						    &eeprom_buff[i]);
694 			if (ret_val)
695 				break;
696 		}
697 	}
698 
699 	/* Device's eeprom is always little-endian, word addressable */
700 	for (i = 0; i < last_word - first_word + 1; i++)
701 		le16_to_cpus(&eeprom_buff[i]);
702 
703 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
704 			eeprom->len);
705 	kfree(eeprom_buff);
706 
707 	return ret_val;
708 }
709 
710 static int igb_set_eeprom(struct net_device *netdev,
711 			  struct ethtool_eeprom *eeprom, u8 *bytes)
712 {
713 	struct igb_adapter *adapter = netdev_priv(netdev);
714 	struct e1000_hw *hw = &adapter->hw;
715 	u16 *eeprom_buff;
716 	void *ptr;
717 	int max_len, first_word, last_word, ret_val = 0;
718 	u16 i;
719 
720 	if (eeprom->len == 0)
721 		return -EOPNOTSUPP;
722 
723 	if (hw->mac.type == e1000_i211)
724 		return -EOPNOTSUPP;
725 
726 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
727 		return -EFAULT;
728 
729 	max_len = hw->nvm.word_size * 2;
730 
731 	first_word = eeprom->offset >> 1;
732 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
733 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
734 	if (!eeprom_buff)
735 		return -ENOMEM;
736 
737 	ptr = (void *)eeprom_buff;
738 
739 	if (eeprom->offset & 1) {
740 		/* need read/modify/write of first changed EEPROM word */
741 		/* only the second byte of the word is being modified */
742 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
743 					    &eeprom_buff[0]);
744 		ptr++;
745 	}
746 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
747 		/* need read/modify/write of last changed EEPROM word */
748 		/* only the first byte of the word is being modified */
749 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
750 				   &eeprom_buff[last_word - first_word]);
751 	}
752 
753 	/* Device's eeprom is always little-endian, word addressable */
754 	for (i = 0; i < last_word - first_word + 1; i++)
755 		le16_to_cpus(&eeprom_buff[i]);
756 
757 	memcpy(ptr, bytes, eeprom->len);
758 
759 	for (i = 0; i < last_word - first_word + 1; i++)
760 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
761 
762 	ret_val = hw->nvm.ops.write(hw, first_word,
763 				     last_word - first_word + 1, eeprom_buff);
764 
765 	/* Update the checksum over the first part of the EEPROM if needed
766 	 * and flush shadow RAM for 82573 controllers */
767 	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
768 		hw->nvm.ops.update(hw);
769 
770 	igb_set_fw_version(adapter);
771 	kfree(eeprom_buff);
772 	return ret_val;
773 }
774 
775 static void igb_get_drvinfo(struct net_device *netdev,
776 			    struct ethtool_drvinfo *drvinfo)
777 {
778 	struct igb_adapter *adapter = netdev_priv(netdev);
779 
780 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
781 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
782 
783 	/*
784 	 * EEPROM image version # is reported as firmware version # for
785 	 * 82575 controllers
786 	 */
787 	strlcpy(drvinfo->fw_version, adapter->fw_version,
788 		sizeof(drvinfo->fw_version));
789 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
790 		sizeof(drvinfo->bus_info));
791 	drvinfo->n_stats = IGB_STATS_LEN;
792 	drvinfo->testinfo_len = IGB_TEST_LEN;
793 	drvinfo->regdump_len = igb_get_regs_len(netdev);
794 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
795 }
796 
797 static void igb_get_ringparam(struct net_device *netdev,
798 			      struct ethtool_ringparam *ring)
799 {
800 	struct igb_adapter *adapter = netdev_priv(netdev);
801 
802 	ring->rx_max_pending = IGB_MAX_RXD;
803 	ring->tx_max_pending = IGB_MAX_TXD;
804 	ring->rx_pending = adapter->rx_ring_count;
805 	ring->tx_pending = adapter->tx_ring_count;
806 }
807 
808 static int igb_set_ringparam(struct net_device *netdev,
809 			     struct ethtool_ringparam *ring)
810 {
811 	struct igb_adapter *adapter = netdev_priv(netdev);
812 	struct igb_ring *temp_ring;
813 	int i, err = 0;
814 	u16 new_rx_count, new_tx_count;
815 
816 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
817 		return -EINVAL;
818 
819 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
820 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
821 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
822 
823 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
824 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
825 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
826 
827 	if ((new_tx_count == adapter->tx_ring_count) &&
828 	    (new_rx_count == adapter->rx_ring_count)) {
829 		/* nothing to do */
830 		return 0;
831 	}
832 
833 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834 		msleep(1);
835 
836 	if (!netif_running(adapter->netdev)) {
837 		for (i = 0; i < adapter->num_tx_queues; i++)
838 			adapter->tx_ring[i]->count = new_tx_count;
839 		for (i = 0; i < adapter->num_rx_queues; i++)
840 			adapter->rx_ring[i]->count = new_rx_count;
841 		adapter->tx_ring_count = new_tx_count;
842 		adapter->rx_ring_count = new_rx_count;
843 		goto clear_reset;
844 	}
845 
846 	if (adapter->num_tx_queues > adapter->num_rx_queues)
847 		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
848 	else
849 		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
850 
851 	if (!temp_ring) {
852 		err = -ENOMEM;
853 		goto clear_reset;
854 	}
855 
856 	igb_down(adapter);
857 
858 	/*
859 	 * We can't just free everything and then setup again,
860 	 * because the ISRs in MSI-X mode get passed pointers
861 	 * to the tx and rx ring structs.
862 	 */
863 	if (new_tx_count != adapter->tx_ring_count) {
864 		for (i = 0; i < adapter->num_tx_queues; i++) {
865 			memcpy(&temp_ring[i], adapter->tx_ring[i],
866 			       sizeof(struct igb_ring));
867 
868 			temp_ring[i].count = new_tx_count;
869 			err = igb_setup_tx_resources(&temp_ring[i]);
870 			if (err) {
871 				while (i) {
872 					i--;
873 					igb_free_tx_resources(&temp_ring[i]);
874 				}
875 				goto err_setup;
876 			}
877 		}
878 
879 		for (i = 0; i < adapter->num_tx_queues; i++) {
880 			igb_free_tx_resources(adapter->tx_ring[i]);
881 
882 			memcpy(adapter->tx_ring[i], &temp_ring[i],
883 			       sizeof(struct igb_ring));
884 		}
885 
886 		adapter->tx_ring_count = new_tx_count;
887 	}
888 
889 	if (new_rx_count != adapter->rx_ring_count) {
890 		for (i = 0; i < adapter->num_rx_queues; i++) {
891 			memcpy(&temp_ring[i], adapter->rx_ring[i],
892 			       sizeof(struct igb_ring));
893 
894 			temp_ring[i].count = new_rx_count;
895 			err = igb_setup_rx_resources(&temp_ring[i]);
896 			if (err) {
897 				while (i) {
898 					i--;
899 					igb_free_rx_resources(&temp_ring[i]);
900 				}
901 				goto err_setup;
902 			}
903 
904 		}
905 
906 		for (i = 0; i < adapter->num_rx_queues; i++) {
907 			igb_free_rx_resources(adapter->rx_ring[i]);
908 
909 			memcpy(adapter->rx_ring[i], &temp_ring[i],
910 			       sizeof(struct igb_ring));
911 		}
912 
913 		adapter->rx_ring_count = new_rx_count;
914 	}
915 err_setup:
916 	igb_up(adapter);
917 	vfree(temp_ring);
918 clear_reset:
919 	clear_bit(__IGB_RESETTING, &adapter->state);
920 	return err;
921 }
922 
923 /* ethtool register test data */
924 struct igb_reg_test {
925 	u16 reg;
926 	u16 reg_offset;
927 	u16 array_len;
928 	u16 test_type;
929 	u32 mask;
930 	u32 write;
931 };
932 
933 /* In the hardware, registers are laid out either singly, in arrays
934  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
935  * most tests take place on arrays or single registers (handled
936  * as a single-element array) and special-case the tables.
937  * Table tests are always pattern tests.
938  *
939  * We also make provision for some required setup steps by specifying
940  * registers to be written without any read-back testing.
941  */
942 
943 #define PATTERN_TEST	1
944 #define SET_READ_TEST	2
945 #define WRITE_NO_TEST	3
946 #define TABLE32_TEST	4
947 #define TABLE64_TEST_LO	5
948 #define TABLE64_TEST_HI	6
949 
950 /* i210 reg test */
951 static struct igb_reg_test reg_test_i210[] = {
952 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
953 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
954 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
955 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
956 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
957 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
958 	/* RDH is read-only for i210, only test RDT. */
959 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
960 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
961 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
963 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
964 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
965 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
966 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
967 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
968 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
969 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
970 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
971 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
972 						0xFFFFFFFF, 0xFFFFFFFF },
973 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
974 						0x900FFFFF, 0xFFFFFFFF },
975 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
976 						0xFFFFFFFF, 0xFFFFFFFF },
977 	{ 0, 0, 0, 0, 0 }
978 };
979 
980 /* i350 reg test */
981 static struct igb_reg_test reg_test_i350[] = {
982 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
983 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
984 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
985 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
986 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
987 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
988 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
989 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
990 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
992 	/* RDH is read-only for i350, only test RDT. */
993 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
996 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
998 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
999 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1000 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1001 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1002 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1003 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1004 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1005 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1006 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1007 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1008 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1009 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1010 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1011 						0xFFFFFFFF, 0xFFFFFFFF },
1012 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1013 						0xC3FFFFFF, 0xFFFFFFFF },
1014 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1015 						0xFFFFFFFF, 0xFFFFFFFF },
1016 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1017 						0xC3FFFFFF, 0xFFFFFFFF },
1018 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1019 						0xFFFFFFFF, 0xFFFFFFFF },
1020 	{ 0, 0, 0, 0 }
1021 };
1022 
1023 /* 82580 reg test */
1024 static struct igb_reg_test reg_test_82580[] = {
1025 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1026 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1027 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1029 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1032 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035 	/* RDH is read-only for 82580, only test RDT. */
1036 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1038 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1039 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1041 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1044 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1045 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1047 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1050 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1051 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1052 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1053 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1054 						0xFFFFFFFF, 0xFFFFFFFF },
1055 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1056 						0x83FFFFFF, 0xFFFFFFFF },
1057 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1058 						0xFFFFFFFF, 0xFFFFFFFF },
1059 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1060 						0x83FFFFFF, 0xFFFFFFFF },
1061 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1062 						0xFFFFFFFF, 0xFFFFFFFF },
1063 	{ 0, 0, 0, 0 }
1064 };
1065 
1066 /* 82576 reg test */
1067 static struct igb_reg_test reg_test_82576[] = {
1068 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1070 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1071 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1075 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1078 	/* Enable all RX queues before testing. */
1079 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1080 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1081 	/* RDH is read-only for 82576, only test RDT. */
1082 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1084 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1085 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1086 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1087 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1089 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1096 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1097 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1098 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1099 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1100 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1101 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1102 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1103 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104 	{ 0, 0, 0, 0 }
1105 };
1106 
1107 /* 82575 register test */
1108 static struct igb_reg_test reg_test_82575[] = {
1109 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1110 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1111 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1112 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1114 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1115 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1116 	/* Enable all four RX queues before testing. */
1117 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1118 	/* RDH is read-only for 82575, only test RDT. */
1119 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1120 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1121 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1122 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1124 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1127 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1128 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1129 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1130 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1131 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1132 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1133 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1134 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1135 	{ 0, 0, 0, 0 }
1136 };
1137 
1138 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1139 			     int reg, u32 mask, u32 write)
1140 {
1141 	struct e1000_hw *hw = &adapter->hw;
1142 	u32 pat, val;
1143 	static const u32 _test[] =
1144 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1145 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1146 		wr32(reg, (_test[pat] & write));
1147 		val = rd32(reg) & mask;
1148 		if (val != (_test[pat] & write & mask)) {
1149 			dev_err(&adapter->pdev->dev,
1150 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1151 				reg, val, (_test[pat] & write & mask));
1152 			*data = reg;
1153 			return 1;
1154 		}
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1161 			      int reg, u32 mask, u32 write)
1162 {
1163 	struct e1000_hw *hw = &adapter->hw;
1164 	u32 val;
1165 	wr32(reg, write & mask);
1166 	val = rd32(reg);
1167 	if ((write & mask) != (val & mask)) {
1168 		dev_err(&adapter->pdev->dev,
1169 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1170 			(val & mask), (write & mask));
1171 		*data = reg;
1172 		return 1;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 #define REG_PATTERN_TEST(reg, mask, write) \
1179 	do { \
1180 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1181 			return 1; \
1182 	} while (0)
1183 
1184 #define REG_SET_AND_CHECK(reg, mask, write) \
1185 	do { \
1186 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1187 			return 1; \
1188 	} while (0)
1189 
1190 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1191 {
1192 	struct e1000_hw *hw = &adapter->hw;
1193 	struct igb_reg_test *test;
1194 	u32 value, before, after;
1195 	u32 i, toggle;
1196 
1197 	switch (adapter->hw.mac.type) {
1198 	case e1000_i350:
1199 		test = reg_test_i350;
1200 		toggle = 0x7FEFF3FF;
1201 		break;
1202 	case e1000_i210:
1203 	case e1000_i211:
1204 		test = reg_test_i210;
1205 		toggle = 0x7FEFF3FF;
1206 		break;
1207 	case e1000_82580:
1208 		test = reg_test_82580;
1209 		toggle = 0x7FEFF3FF;
1210 		break;
1211 	case e1000_82576:
1212 		test = reg_test_82576;
1213 		toggle = 0x7FFFF3FF;
1214 		break;
1215 	default:
1216 		test = reg_test_82575;
1217 		toggle = 0x7FFFF3FF;
1218 		break;
1219 	}
1220 
1221 	/* Because the status register is such a special case,
1222 	 * we handle it separately from the rest of the register
1223 	 * tests.  Some bits are read-only, some toggle, and some
1224 	 * are writable on newer MACs.
1225 	 */
1226 	before = rd32(E1000_STATUS);
1227 	value = (rd32(E1000_STATUS) & toggle);
1228 	wr32(E1000_STATUS, toggle);
1229 	after = rd32(E1000_STATUS) & toggle;
1230 	if (value != after) {
1231 		dev_err(&adapter->pdev->dev,
1232 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1233 			after, value);
1234 		*data = 1;
1235 		return 1;
1236 	}
1237 	/* restore previous status */
1238 	wr32(E1000_STATUS, before);
1239 
1240 	/* Perform the remainder of the register test, looping through
1241 	 * the test table until we either fail or reach the null entry.
1242 	 */
1243 	while (test->reg) {
1244 		for (i = 0; i < test->array_len; i++) {
1245 			switch (test->test_type) {
1246 			case PATTERN_TEST:
1247 				REG_PATTERN_TEST(test->reg +
1248 						(i * test->reg_offset),
1249 						test->mask,
1250 						test->write);
1251 				break;
1252 			case SET_READ_TEST:
1253 				REG_SET_AND_CHECK(test->reg +
1254 						(i * test->reg_offset),
1255 						test->mask,
1256 						test->write);
1257 				break;
1258 			case WRITE_NO_TEST:
1259 				writel(test->write,
1260 				    (adapter->hw.hw_addr + test->reg)
1261 					+ (i * test->reg_offset));
1262 				break;
1263 			case TABLE32_TEST:
1264 				REG_PATTERN_TEST(test->reg + (i * 4),
1265 						test->mask,
1266 						test->write);
1267 				break;
1268 			case TABLE64_TEST_LO:
1269 				REG_PATTERN_TEST(test->reg + (i * 8),
1270 						test->mask,
1271 						test->write);
1272 				break;
1273 			case TABLE64_TEST_HI:
1274 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1275 						test->mask,
1276 						test->write);
1277 				break;
1278 			}
1279 		}
1280 		test++;
1281 	}
1282 
1283 	*data = 0;
1284 	return 0;
1285 }
1286 
1287 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1288 {
1289 	*data = 0;
1290 
1291 	/* Validate eeprom on all parts but i211 */
1292 	if (adapter->hw.mac.type != e1000_i211) {
1293 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1294 			*data = 2;
1295 	}
1296 
1297 	return *data;
1298 }
1299 
1300 static irqreturn_t igb_test_intr(int irq, void *data)
1301 {
1302 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1303 	struct e1000_hw *hw = &adapter->hw;
1304 
1305 	adapter->test_icr |= rd32(E1000_ICR);
1306 
1307 	return IRQ_HANDLED;
1308 }
1309 
1310 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1311 {
1312 	struct e1000_hw *hw = &adapter->hw;
1313 	struct net_device *netdev = adapter->netdev;
1314 	u32 mask, ics_mask, i = 0, shared_int = true;
1315 	u32 irq = adapter->pdev->irq;
1316 
1317 	*data = 0;
1318 
1319 	/* Hook up test interrupt handler just for this test */
1320 	if (adapter->msix_entries) {
1321 		if (request_irq(adapter->msix_entries[0].vector,
1322 		                igb_test_intr, 0, netdev->name, adapter)) {
1323 			*data = 1;
1324 			return -1;
1325 		}
1326 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1327 		shared_int = false;
1328 		if (request_irq(irq,
1329 		                igb_test_intr, 0, netdev->name, adapter)) {
1330 			*data = 1;
1331 			return -1;
1332 		}
1333 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1334 				netdev->name, adapter)) {
1335 		shared_int = false;
1336 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1337 		 netdev->name, adapter)) {
1338 		*data = 1;
1339 		return -1;
1340 	}
1341 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1342 		(shared_int ? "shared" : "unshared"));
1343 
1344 	/* Disable all the interrupts */
1345 	wr32(E1000_IMC, ~0);
1346 	wrfl();
1347 	msleep(10);
1348 
1349 	/* Define all writable bits for ICS */
1350 	switch (hw->mac.type) {
1351 	case e1000_82575:
1352 		ics_mask = 0x37F47EDD;
1353 		break;
1354 	case e1000_82576:
1355 		ics_mask = 0x77D4FBFD;
1356 		break;
1357 	case e1000_82580:
1358 		ics_mask = 0x77DCFED5;
1359 		break;
1360 	case e1000_i350:
1361 	case e1000_i210:
1362 	case e1000_i211:
1363 		ics_mask = 0x77DCFED5;
1364 		break;
1365 	default:
1366 		ics_mask = 0x7FFFFFFF;
1367 		break;
1368 	}
1369 
1370 	/* Test each interrupt */
1371 	for (; i < 31; i++) {
1372 		/* Interrupt to test */
1373 		mask = 1 << i;
1374 
1375 		if (!(mask & ics_mask))
1376 			continue;
1377 
1378 		if (!shared_int) {
1379 			/* Disable the interrupt to be reported in
1380 			 * the cause register and then force the same
1381 			 * interrupt and see if one gets posted.  If
1382 			 * an interrupt was posted to the bus, the
1383 			 * test failed.
1384 			 */
1385 			adapter->test_icr = 0;
1386 
1387 			/* Flush any pending interrupts */
1388 			wr32(E1000_ICR, ~0);
1389 
1390 			wr32(E1000_IMC, mask);
1391 			wr32(E1000_ICS, mask);
1392 			wrfl();
1393 			msleep(10);
1394 
1395 			if (adapter->test_icr & mask) {
1396 				*data = 3;
1397 				break;
1398 			}
1399 		}
1400 
1401 		/* Enable the interrupt to be reported in
1402 		 * the cause register and then force the same
1403 		 * interrupt and see if one gets posted.  If
1404 		 * an interrupt was not posted to the bus, the
1405 		 * test failed.
1406 		 */
1407 		adapter->test_icr = 0;
1408 
1409 		/* Flush any pending interrupts */
1410 		wr32(E1000_ICR, ~0);
1411 
1412 		wr32(E1000_IMS, mask);
1413 		wr32(E1000_ICS, mask);
1414 		wrfl();
1415 		msleep(10);
1416 
1417 		if (!(adapter->test_icr & mask)) {
1418 			*data = 4;
1419 			break;
1420 		}
1421 
1422 		if (!shared_int) {
1423 			/* Disable the other interrupts to be reported in
1424 			 * the cause register and then force the other
1425 			 * interrupts and see if any get posted.  If
1426 			 * an interrupt was posted to the bus, the
1427 			 * test failed.
1428 			 */
1429 			adapter->test_icr = 0;
1430 
1431 			/* Flush any pending interrupts */
1432 			wr32(E1000_ICR, ~0);
1433 
1434 			wr32(E1000_IMC, ~mask);
1435 			wr32(E1000_ICS, ~mask);
1436 			wrfl();
1437 			msleep(10);
1438 
1439 			if (adapter->test_icr & mask) {
1440 				*data = 5;
1441 				break;
1442 			}
1443 		}
1444 	}
1445 
1446 	/* Disable all the interrupts */
1447 	wr32(E1000_IMC, ~0);
1448 	wrfl();
1449 	msleep(10);
1450 
1451 	/* Unhook test interrupt handler */
1452 	if (adapter->msix_entries)
1453 		free_irq(adapter->msix_entries[0].vector, adapter);
1454 	else
1455 		free_irq(irq, adapter);
1456 
1457 	return *data;
1458 }
1459 
1460 static void igb_free_desc_rings(struct igb_adapter *adapter)
1461 {
1462 	igb_free_tx_resources(&adapter->test_tx_ring);
1463 	igb_free_rx_resources(&adapter->test_rx_ring);
1464 }
1465 
1466 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1467 {
1468 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1469 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1470 	struct e1000_hw *hw = &adapter->hw;
1471 	int ret_val;
1472 
1473 	/* Setup Tx descriptor ring and Tx buffers */
1474 	tx_ring->count = IGB_DEFAULT_TXD;
1475 	tx_ring->dev = &adapter->pdev->dev;
1476 	tx_ring->netdev = adapter->netdev;
1477 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1478 
1479 	if (igb_setup_tx_resources(tx_ring)) {
1480 		ret_val = 1;
1481 		goto err_nomem;
1482 	}
1483 
1484 	igb_setup_tctl(adapter);
1485 	igb_configure_tx_ring(adapter, tx_ring);
1486 
1487 	/* Setup Rx descriptor ring and Rx buffers */
1488 	rx_ring->count = IGB_DEFAULT_RXD;
1489 	rx_ring->dev = &adapter->pdev->dev;
1490 	rx_ring->netdev = adapter->netdev;
1491 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1492 
1493 	if (igb_setup_rx_resources(rx_ring)) {
1494 		ret_val = 3;
1495 		goto err_nomem;
1496 	}
1497 
1498 	/* set the default queue to queue 0 of PF */
1499 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1500 
1501 	/* enable receive ring */
1502 	igb_setup_rctl(adapter);
1503 	igb_configure_rx_ring(adapter, rx_ring);
1504 
1505 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1506 
1507 	return 0;
1508 
1509 err_nomem:
1510 	igb_free_desc_rings(adapter);
1511 	return ret_val;
1512 }
1513 
1514 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1515 {
1516 	struct e1000_hw *hw = &adapter->hw;
1517 
1518 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1519 	igb_write_phy_reg(hw, 29, 0x001F);
1520 	igb_write_phy_reg(hw, 30, 0x8FFC);
1521 	igb_write_phy_reg(hw, 29, 0x001A);
1522 	igb_write_phy_reg(hw, 30, 0x8FF0);
1523 }
1524 
1525 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1526 {
1527 	struct e1000_hw *hw = &adapter->hw;
1528 	u32 ctrl_reg = 0;
1529 
1530 	hw->mac.autoneg = false;
1531 
1532 	if (hw->phy.type == e1000_phy_m88) {
1533 		if (hw->phy.id != I210_I_PHY_ID) {
1534 			/* Auto-MDI/MDIX Off */
1535 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1536 			/* reset to update Auto-MDI/MDIX */
1537 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1538 			/* autoneg off */
1539 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1540 		} else {
1541 			/* force 1000, set loopback  */
1542 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1543 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1544 		}
1545 	}
1546 
1547 	/* add small delay to avoid loopback test failure */
1548 	msleep(50);
1549 
1550 	/* force 1000, set loopback */
1551 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1552 
1553 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1554 	ctrl_reg = rd32(E1000_CTRL);
1555 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1556 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1557 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1558 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1559 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1560 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1561 
1562 	if (hw->phy.type == e1000_phy_m88)
1563 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1564 
1565 	wr32(E1000_CTRL, ctrl_reg);
1566 
1567 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1568 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1569 	 */
1570 	if (hw->phy.type == e1000_phy_m88)
1571 		igb_phy_disable_receiver(adapter);
1572 
1573 	mdelay(500);
1574 	return 0;
1575 }
1576 
1577 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1578 {
1579 	return igb_integrated_phy_loopback(adapter);
1580 }
1581 
1582 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1583 {
1584 	struct e1000_hw *hw = &adapter->hw;
1585 	u32 reg;
1586 
1587 	reg = rd32(E1000_CTRL_EXT);
1588 
1589 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1590 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1591 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1592 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1593 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1594 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1595 
1596 			/* Enable DH89xxCC MPHY for near end loopback */
1597 			reg = rd32(E1000_MPHY_ADDR_CTL);
1598 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1599 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1600 			wr32(E1000_MPHY_ADDR_CTL, reg);
1601 
1602 			reg = rd32(E1000_MPHY_DATA);
1603 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1604 			wr32(E1000_MPHY_DATA, reg);
1605 		}
1606 
1607 		reg = rd32(E1000_RCTL);
1608 		reg |= E1000_RCTL_LBM_TCVR;
1609 		wr32(E1000_RCTL, reg);
1610 
1611 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1612 
1613 		reg = rd32(E1000_CTRL);
1614 		reg &= ~(E1000_CTRL_RFCE |
1615 			 E1000_CTRL_TFCE |
1616 			 E1000_CTRL_LRST);
1617 		reg |= E1000_CTRL_SLU |
1618 		       E1000_CTRL_FD;
1619 		wr32(E1000_CTRL, reg);
1620 
1621 		/* Unset switch control to serdes energy detect */
1622 		reg = rd32(E1000_CONNSW);
1623 		reg &= ~E1000_CONNSW_ENRGSRC;
1624 		wr32(E1000_CONNSW, reg);
1625 
1626 		/* Set PCS register for forced speed */
1627 		reg = rd32(E1000_PCS_LCTL);
1628 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1629 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1630 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1631 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1632 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1633 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1634 		wr32(E1000_PCS_LCTL, reg);
1635 
1636 		return 0;
1637 	}
1638 
1639 	return igb_set_phy_loopback(adapter);
1640 }
1641 
1642 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1643 {
1644 	struct e1000_hw *hw = &adapter->hw;
1645 	u32 rctl;
1646 	u16 phy_reg;
1647 
1648 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1649 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1650 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1651 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1652 		u32 reg;
1653 
1654 		/* Disable near end loopback on DH89xxCC */
1655 		reg = rd32(E1000_MPHY_ADDR_CTL);
1656 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1657 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1658 		wr32(E1000_MPHY_ADDR_CTL, reg);
1659 
1660 		reg = rd32(E1000_MPHY_DATA);
1661 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1662 		wr32(E1000_MPHY_DATA, reg);
1663 	}
1664 
1665 	rctl = rd32(E1000_RCTL);
1666 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1667 	wr32(E1000_RCTL, rctl);
1668 
1669 	hw->mac.autoneg = true;
1670 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1671 	if (phy_reg & MII_CR_LOOPBACK) {
1672 		phy_reg &= ~MII_CR_LOOPBACK;
1673 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1674 		igb_phy_sw_reset(hw);
1675 	}
1676 }
1677 
1678 static void igb_create_lbtest_frame(struct sk_buff *skb,
1679 				    unsigned int frame_size)
1680 {
1681 	memset(skb->data, 0xFF, frame_size);
1682 	frame_size /= 2;
1683 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1684 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1685 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1686 }
1687 
1688 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1689 {
1690 	frame_size /= 2;
1691 	if (*(skb->data + 3) == 0xFF) {
1692 		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1693 		   (*(skb->data + frame_size + 12) == 0xAF)) {
1694 			return 0;
1695 		}
1696 	}
1697 	return 13;
1698 }
1699 
1700 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1701                                 struct igb_ring *tx_ring,
1702                                 unsigned int size)
1703 {
1704 	union e1000_adv_rx_desc *rx_desc;
1705 	struct igb_rx_buffer *rx_buffer_info;
1706 	struct igb_tx_buffer *tx_buffer_info;
1707 	struct netdev_queue *txq;
1708 	u16 rx_ntc, tx_ntc, count = 0;
1709 	unsigned int total_bytes = 0, total_packets = 0;
1710 
1711 	/* initialize next to clean and descriptor values */
1712 	rx_ntc = rx_ring->next_to_clean;
1713 	tx_ntc = tx_ring->next_to_clean;
1714 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1715 
1716 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1717 		/* check rx buffer */
1718 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1719 
1720 		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1721 		dma_unmap_single(rx_ring->dev,
1722 				 rx_buffer_info->dma,
1723 				 IGB_RX_HDR_LEN,
1724 				 DMA_FROM_DEVICE);
1725 		rx_buffer_info->dma = 0;
1726 
1727 		/* verify contents of skb */
1728 		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1729 			count++;
1730 
1731 		/* unmap buffer on tx side */
1732 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1733 		total_bytes += tx_buffer_info->bytecount;
1734 		total_packets += tx_buffer_info->gso_segs;
1735 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1736 
1737 		/* increment rx/tx next to clean counters */
1738 		rx_ntc++;
1739 		if (rx_ntc == rx_ring->count)
1740 			rx_ntc = 0;
1741 		tx_ntc++;
1742 		if (tx_ntc == tx_ring->count)
1743 			tx_ntc = 0;
1744 
1745 		/* fetch next descriptor */
1746 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1747 	}
1748 
1749 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1750 	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1751 
1752 	/* re-map buffers to ring, store next to clean values */
1753 	igb_alloc_rx_buffers(rx_ring, count);
1754 	rx_ring->next_to_clean = rx_ntc;
1755 	tx_ring->next_to_clean = tx_ntc;
1756 
1757 	return count;
1758 }
1759 
1760 static int igb_run_loopback_test(struct igb_adapter *adapter)
1761 {
1762 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1763 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1764 	u16 i, j, lc, good_cnt;
1765 	int ret_val = 0;
1766 	unsigned int size = IGB_RX_HDR_LEN;
1767 	netdev_tx_t tx_ret_val;
1768 	struct sk_buff *skb;
1769 
1770 	/* allocate test skb */
1771 	skb = alloc_skb(size, GFP_KERNEL);
1772 	if (!skb)
1773 		return 11;
1774 
1775 	/* place data into test skb */
1776 	igb_create_lbtest_frame(skb, size);
1777 	skb_put(skb, size);
1778 
1779 	/*
1780 	 * Calculate the loop count based on the largest descriptor ring
1781 	 * The idea is to wrap the largest ring a number of times using 64
1782 	 * send/receive pairs during each loop
1783 	 */
1784 
1785 	if (rx_ring->count <= tx_ring->count)
1786 		lc = ((tx_ring->count / 64) * 2) + 1;
1787 	else
1788 		lc = ((rx_ring->count / 64) * 2) + 1;
1789 
1790 	for (j = 0; j <= lc; j++) { /* loop count loop */
1791 		/* reset count of good packets */
1792 		good_cnt = 0;
1793 
1794 		/* place 64 packets on the transmit queue*/
1795 		for (i = 0; i < 64; i++) {
1796 			skb_get(skb);
1797 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1798 			if (tx_ret_val == NETDEV_TX_OK)
1799 				good_cnt++;
1800 		}
1801 
1802 		if (good_cnt != 64) {
1803 			ret_val = 12;
1804 			break;
1805 		}
1806 
1807 		/* allow 200 milliseconds for packets to go from tx to rx */
1808 		msleep(200);
1809 
1810 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1811 		if (good_cnt != 64) {
1812 			ret_val = 13;
1813 			break;
1814 		}
1815 	} /* end loop count loop */
1816 
1817 	/* free the original skb */
1818 	kfree_skb(skb);
1819 
1820 	return ret_val;
1821 }
1822 
1823 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1824 {
1825 	/* PHY loopback cannot be performed if SoL/IDER
1826 	 * sessions are active */
1827 	if (igb_check_reset_block(&adapter->hw)) {
1828 		dev_err(&adapter->pdev->dev,
1829 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1830 		*data = 0;
1831 		goto out;
1832 	}
1833 	*data = igb_setup_desc_rings(adapter);
1834 	if (*data)
1835 		goto out;
1836 	*data = igb_setup_loopback_test(adapter);
1837 	if (*data)
1838 		goto err_loopback;
1839 	*data = igb_run_loopback_test(adapter);
1840 	igb_loopback_cleanup(adapter);
1841 
1842 err_loopback:
1843 	igb_free_desc_rings(adapter);
1844 out:
1845 	return *data;
1846 }
1847 
1848 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1849 {
1850 	struct e1000_hw *hw = &adapter->hw;
1851 	*data = 0;
1852 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1853 		int i = 0;
1854 		hw->mac.serdes_has_link = false;
1855 
1856 		/* On some blade server designs, link establishment
1857 		 * could take as long as 2-3 minutes */
1858 		do {
1859 			hw->mac.ops.check_for_link(&adapter->hw);
1860 			if (hw->mac.serdes_has_link)
1861 				return *data;
1862 			msleep(20);
1863 		} while (i++ < 3750);
1864 
1865 		*data = 1;
1866 	} else {
1867 		hw->mac.ops.check_for_link(&adapter->hw);
1868 		if (hw->mac.autoneg)
1869 			msleep(4000);
1870 
1871 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1872 			*data = 1;
1873 	}
1874 	return *data;
1875 }
1876 
1877 static void igb_diag_test(struct net_device *netdev,
1878 			  struct ethtool_test *eth_test, u64 *data)
1879 {
1880 	struct igb_adapter *adapter = netdev_priv(netdev);
1881 	u16 autoneg_advertised;
1882 	u8 forced_speed_duplex, autoneg;
1883 	bool if_running = netif_running(netdev);
1884 
1885 	set_bit(__IGB_TESTING, &adapter->state);
1886 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1887 		/* Offline tests */
1888 
1889 		/* save speed, duplex, autoneg settings */
1890 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1891 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1892 		autoneg = adapter->hw.mac.autoneg;
1893 
1894 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1895 
1896 		/* power up link for link test */
1897 		igb_power_up_link(adapter);
1898 
1899 		/* Link test performed before hardware reset so autoneg doesn't
1900 		 * interfere with test result */
1901 		if (igb_link_test(adapter, &data[4]))
1902 			eth_test->flags |= ETH_TEST_FL_FAILED;
1903 
1904 		if (if_running)
1905 			/* indicate we're in test mode */
1906 			dev_close(netdev);
1907 		else
1908 			igb_reset(adapter);
1909 
1910 		if (igb_reg_test(adapter, &data[0]))
1911 			eth_test->flags |= ETH_TEST_FL_FAILED;
1912 
1913 		igb_reset(adapter);
1914 		if (igb_eeprom_test(adapter, &data[1]))
1915 			eth_test->flags |= ETH_TEST_FL_FAILED;
1916 
1917 		igb_reset(adapter);
1918 		if (igb_intr_test(adapter, &data[2]))
1919 			eth_test->flags |= ETH_TEST_FL_FAILED;
1920 
1921 		igb_reset(adapter);
1922 		/* power up link for loopback test */
1923 		igb_power_up_link(adapter);
1924 		if (igb_loopback_test(adapter, &data[3]))
1925 			eth_test->flags |= ETH_TEST_FL_FAILED;
1926 
1927 		/* restore speed, duplex, autoneg settings */
1928 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1929 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1930 		adapter->hw.mac.autoneg = autoneg;
1931 
1932 		/* force this routine to wait until autoneg complete/timeout */
1933 		adapter->hw.phy.autoneg_wait_to_complete = true;
1934 		igb_reset(adapter);
1935 		adapter->hw.phy.autoneg_wait_to_complete = false;
1936 
1937 		clear_bit(__IGB_TESTING, &adapter->state);
1938 		if (if_running)
1939 			dev_open(netdev);
1940 	} else {
1941 		dev_info(&adapter->pdev->dev, "online testing starting\n");
1942 
1943 		/* PHY is powered down when interface is down */
1944 		if (if_running && igb_link_test(adapter, &data[4]))
1945 			eth_test->flags |= ETH_TEST_FL_FAILED;
1946 		else
1947 			data[4] = 0;
1948 
1949 		/* Online tests aren't run; pass by default */
1950 		data[0] = 0;
1951 		data[1] = 0;
1952 		data[2] = 0;
1953 		data[3] = 0;
1954 
1955 		clear_bit(__IGB_TESTING, &adapter->state);
1956 	}
1957 	msleep_interruptible(4 * 1000);
1958 }
1959 
1960 static int igb_wol_exclusion(struct igb_adapter *adapter,
1961 			     struct ethtool_wolinfo *wol)
1962 {
1963 	struct e1000_hw *hw = &adapter->hw;
1964 	int retval = 1; /* fail by default */
1965 
1966 	switch (hw->device_id) {
1967 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1968 		/* WoL not supported */
1969 		wol->supported = 0;
1970 		break;
1971 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1972 	case E1000_DEV_ID_82576_FIBER:
1973 	case E1000_DEV_ID_82576_SERDES:
1974 		/* Wake events not supported on port B */
1975 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1976 			wol->supported = 0;
1977 			break;
1978 		}
1979 		/* return success for non excluded adapter ports */
1980 		retval = 0;
1981 		break;
1982 	case E1000_DEV_ID_82576_QUAD_COPPER:
1983 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1984 		/* quad port adapters only support WoL on port A */
1985 		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1986 			wol->supported = 0;
1987 			break;
1988 		}
1989 		/* return success for non excluded adapter ports */
1990 		retval = 0;
1991 		break;
1992 	default:
1993 		/* dual port cards only support WoL on port A from now on
1994 		 * unless it was enabled in the eeprom for port B
1995 		 * so exclude FUNC_1 ports from having WoL enabled */
1996 		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1997 		    !adapter->eeprom_wol) {
1998 			wol->supported = 0;
1999 			break;
2000 		}
2001 
2002 		retval = 0;
2003 	}
2004 
2005 	return retval;
2006 }
2007 
2008 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2009 {
2010 	struct igb_adapter *adapter = netdev_priv(netdev);
2011 
2012 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2013 	                 WAKE_BCAST | WAKE_MAGIC |
2014 	                 WAKE_PHY;
2015 	wol->wolopts = 0;
2016 
2017 	/* this function will set ->supported = 0 and return 1 if wol is not
2018 	 * supported by this hardware */
2019 	if (igb_wol_exclusion(adapter, wol) ||
2020 	    !device_can_wakeup(&adapter->pdev->dev))
2021 		return;
2022 
2023 	/* apply any specific unsupported masks here */
2024 	switch (adapter->hw.device_id) {
2025 	default:
2026 		break;
2027 	}
2028 
2029 	if (adapter->wol & E1000_WUFC_EX)
2030 		wol->wolopts |= WAKE_UCAST;
2031 	if (adapter->wol & E1000_WUFC_MC)
2032 		wol->wolopts |= WAKE_MCAST;
2033 	if (adapter->wol & E1000_WUFC_BC)
2034 		wol->wolopts |= WAKE_BCAST;
2035 	if (adapter->wol & E1000_WUFC_MAG)
2036 		wol->wolopts |= WAKE_MAGIC;
2037 	if (adapter->wol & E1000_WUFC_LNKC)
2038 		wol->wolopts |= WAKE_PHY;
2039 }
2040 
2041 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2042 {
2043 	struct igb_adapter *adapter = netdev_priv(netdev);
2044 
2045 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2046 		return -EOPNOTSUPP;
2047 
2048 	if (igb_wol_exclusion(adapter, wol) ||
2049 	    !device_can_wakeup(&adapter->pdev->dev))
2050 		return wol->wolopts ? -EOPNOTSUPP : 0;
2051 
2052 	/* these settings will always override what we currently have */
2053 	adapter->wol = 0;
2054 
2055 	if (wol->wolopts & WAKE_UCAST)
2056 		adapter->wol |= E1000_WUFC_EX;
2057 	if (wol->wolopts & WAKE_MCAST)
2058 		adapter->wol |= E1000_WUFC_MC;
2059 	if (wol->wolopts & WAKE_BCAST)
2060 		adapter->wol |= E1000_WUFC_BC;
2061 	if (wol->wolopts & WAKE_MAGIC)
2062 		adapter->wol |= E1000_WUFC_MAG;
2063 	if (wol->wolopts & WAKE_PHY)
2064 		adapter->wol |= E1000_WUFC_LNKC;
2065 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2066 
2067 	return 0;
2068 }
2069 
2070 /* bit defines for adapter->led_status */
2071 #define IGB_LED_ON		0
2072 
2073 static int igb_set_phys_id(struct net_device *netdev,
2074 			   enum ethtool_phys_id_state state)
2075 {
2076 	struct igb_adapter *adapter = netdev_priv(netdev);
2077 	struct e1000_hw *hw = &adapter->hw;
2078 
2079 	switch (state) {
2080 	case ETHTOOL_ID_ACTIVE:
2081 		igb_blink_led(hw);
2082 		return 2;
2083 	case ETHTOOL_ID_ON:
2084 		igb_blink_led(hw);
2085 		break;
2086 	case ETHTOOL_ID_OFF:
2087 		igb_led_off(hw);
2088 		break;
2089 	case ETHTOOL_ID_INACTIVE:
2090 		igb_led_off(hw);
2091 		clear_bit(IGB_LED_ON, &adapter->led_status);
2092 		igb_cleanup_led(hw);
2093 		break;
2094 	}
2095 
2096 	return 0;
2097 }
2098 
2099 static int igb_set_coalesce(struct net_device *netdev,
2100 			    struct ethtool_coalesce *ec)
2101 {
2102 	struct igb_adapter *adapter = netdev_priv(netdev);
2103 	int i;
2104 
2105 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2106 	    ((ec->rx_coalesce_usecs > 3) &&
2107 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2108 	    (ec->rx_coalesce_usecs == 2))
2109 		return -EINVAL;
2110 
2111 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2112 	    ((ec->tx_coalesce_usecs > 3) &&
2113 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2114 	    (ec->tx_coalesce_usecs == 2))
2115 		return -EINVAL;
2116 
2117 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2118 		return -EINVAL;
2119 
2120 	/* If ITR is disabled, disable DMAC */
2121 	if (ec->rx_coalesce_usecs == 0) {
2122 		if (adapter->flags & IGB_FLAG_DMAC)
2123 			adapter->flags &= ~IGB_FLAG_DMAC;
2124 	}
2125 
2126 	/* convert to rate of irq's per second */
2127 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2128 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2129 	else
2130 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2131 
2132 	/* convert to rate of irq's per second */
2133 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2134 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2135 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2136 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2137 	else
2138 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2139 
2140 	for (i = 0; i < adapter->num_q_vectors; i++) {
2141 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2142 		q_vector->tx.work_limit = adapter->tx_work_limit;
2143 		if (q_vector->rx.ring)
2144 			q_vector->itr_val = adapter->rx_itr_setting;
2145 		else
2146 			q_vector->itr_val = adapter->tx_itr_setting;
2147 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2148 			q_vector->itr_val = IGB_START_ITR;
2149 		q_vector->set_itr = 1;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static int igb_get_coalesce(struct net_device *netdev,
2156 			    struct ethtool_coalesce *ec)
2157 {
2158 	struct igb_adapter *adapter = netdev_priv(netdev);
2159 
2160 	if (adapter->rx_itr_setting <= 3)
2161 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2162 	else
2163 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2164 
2165 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2166 		if (adapter->tx_itr_setting <= 3)
2167 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2168 		else
2169 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 static int igb_nway_reset(struct net_device *netdev)
2176 {
2177 	struct igb_adapter *adapter = netdev_priv(netdev);
2178 	if (netif_running(netdev))
2179 		igb_reinit_locked(adapter);
2180 	return 0;
2181 }
2182 
2183 static int igb_get_sset_count(struct net_device *netdev, int sset)
2184 {
2185 	switch (sset) {
2186 	case ETH_SS_STATS:
2187 		return IGB_STATS_LEN;
2188 	case ETH_SS_TEST:
2189 		return IGB_TEST_LEN;
2190 	default:
2191 		return -ENOTSUPP;
2192 	}
2193 }
2194 
2195 static void igb_get_ethtool_stats(struct net_device *netdev,
2196 				  struct ethtool_stats *stats, u64 *data)
2197 {
2198 	struct igb_adapter *adapter = netdev_priv(netdev);
2199 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2200 	unsigned int start;
2201 	struct igb_ring *ring;
2202 	int i, j;
2203 	char *p;
2204 
2205 	spin_lock(&adapter->stats64_lock);
2206 	igb_update_stats(adapter, net_stats);
2207 
2208 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2209 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2210 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2211 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2212 	}
2213 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2214 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2215 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2216 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2217 	}
2218 	for (j = 0; j < adapter->num_tx_queues; j++) {
2219 		u64	restart2;
2220 
2221 		ring = adapter->tx_ring[j];
2222 		do {
2223 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2224 			data[i]   = ring->tx_stats.packets;
2225 			data[i+1] = ring->tx_stats.bytes;
2226 			data[i+2] = ring->tx_stats.restart_queue;
2227 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2228 		do {
2229 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2230 			restart2  = ring->tx_stats.restart_queue2;
2231 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2232 		data[i+2] += restart2;
2233 
2234 		i += IGB_TX_QUEUE_STATS_LEN;
2235 	}
2236 	for (j = 0; j < adapter->num_rx_queues; j++) {
2237 		ring = adapter->rx_ring[j];
2238 		do {
2239 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2240 			data[i]   = ring->rx_stats.packets;
2241 			data[i+1] = ring->rx_stats.bytes;
2242 			data[i+2] = ring->rx_stats.drops;
2243 			data[i+3] = ring->rx_stats.csum_err;
2244 			data[i+4] = ring->rx_stats.alloc_failed;
2245 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2246 		i += IGB_RX_QUEUE_STATS_LEN;
2247 	}
2248 	spin_unlock(&adapter->stats64_lock);
2249 }
2250 
2251 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2252 {
2253 	struct igb_adapter *adapter = netdev_priv(netdev);
2254 	u8 *p = data;
2255 	int i;
2256 
2257 	switch (stringset) {
2258 	case ETH_SS_TEST:
2259 		memcpy(data, *igb_gstrings_test,
2260 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2261 		break;
2262 	case ETH_SS_STATS:
2263 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2264 			memcpy(p, igb_gstrings_stats[i].stat_string,
2265 			       ETH_GSTRING_LEN);
2266 			p += ETH_GSTRING_LEN;
2267 		}
2268 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2269 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2270 			       ETH_GSTRING_LEN);
2271 			p += ETH_GSTRING_LEN;
2272 		}
2273 		for (i = 0; i < adapter->num_tx_queues; i++) {
2274 			sprintf(p, "tx_queue_%u_packets", i);
2275 			p += ETH_GSTRING_LEN;
2276 			sprintf(p, "tx_queue_%u_bytes", i);
2277 			p += ETH_GSTRING_LEN;
2278 			sprintf(p, "tx_queue_%u_restart", i);
2279 			p += ETH_GSTRING_LEN;
2280 		}
2281 		for (i = 0; i < adapter->num_rx_queues; i++) {
2282 			sprintf(p, "rx_queue_%u_packets", i);
2283 			p += ETH_GSTRING_LEN;
2284 			sprintf(p, "rx_queue_%u_bytes", i);
2285 			p += ETH_GSTRING_LEN;
2286 			sprintf(p, "rx_queue_%u_drops", i);
2287 			p += ETH_GSTRING_LEN;
2288 			sprintf(p, "rx_queue_%u_csum_err", i);
2289 			p += ETH_GSTRING_LEN;
2290 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2291 			p += ETH_GSTRING_LEN;
2292 		}
2293 /*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2294 		break;
2295 	}
2296 }
2297 
2298 static int igb_get_ts_info(struct net_device *dev,
2299 			   struct ethtool_ts_info *info)
2300 {
2301 	struct igb_adapter *adapter = netdev_priv(dev);
2302 
2303 	switch (adapter->hw.mac.type) {
2304 #ifdef CONFIG_IGB_PTP
2305 	case e1000_82576:
2306 	case e1000_82580:
2307 	case e1000_i350:
2308 	case e1000_i210:
2309 	case e1000_i211:
2310 		info->so_timestamping =
2311 			SOF_TIMESTAMPING_TX_HARDWARE |
2312 			SOF_TIMESTAMPING_RX_HARDWARE |
2313 			SOF_TIMESTAMPING_RAW_HARDWARE;
2314 
2315 		if (adapter->ptp_clock)
2316 			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2317 		else
2318 			info->phc_index = -1;
2319 
2320 		info->tx_types =
2321 			(1 << HWTSTAMP_TX_OFF) |
2322 			(1 << HWTSTAMP_TX_ON);
2323 
2324 		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2325 
2326 		/* 82576 does not support timestamping all packets. */
2327 		if (adapter->hw.mac.type >= e1000_82580)
2328 			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2329 		else
2330 			info->rx_filters |=
2331 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2332 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2333 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2334 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2335 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2336 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2337 				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2338 
2339 		return 0;
2340 #endif /* CONFIG_IGB_PTP */
2341 	default:
2342 		return -EOPNOTSUPP;
2343 	}
2344 }
2345 
2346 static int igb_ethtool_begin(struct net_device *netdev)
2347 {
2348 	struct igb_adapter *adapter = netdev_priv(netdev);
2349 	pm_runtime_get_sync(&adapter->pdev->dev);
2350 	return 0;
2351 }
2352 
2353 static void igb_ethtool_complete(struct net_device *netdev)
2354 {
2355 	struct igb_adapter *adapter = netdev_priv(netdev);
2356 	pm_runtime_put(&adapter->pdev->dev);
2357 }
2358 
2359 static const struct ethtool_ops igb_ethtool_ops = {
2360 	.get_settings           = igb_get_settings,
2361 	.set_settings           = igb_set_settings,
2362 	.get_drvinfo            = igb_get_drvinfo,
2363 	.get_regs_len           = igb_get_regs_len,
2364 	.get_regs               = igb_get_regs,
2365 	.get_wol                = igb_get_wol,
2366 	.set_wol                = igb_set_wol,
2367 	.get_msglevel           = igb_get_msglevel,
2368 	.set_msglevel           = igb_set_msglevel,
2369 	.nway_reset             = igb_nway_reset,
2370 	.get_link               = igb_get_link,
2371 	.get_eeprom_len         = igb_get_eeprom_len,
2372 	.get_eeprom             = igb_get_eeprom,
2373 	.set_eeprom             = igb_set_eeprom,
2374 	.get_ringparam          = igb_get_ringparam,
2375 	.set_ringparam          = igb_set_ringparam,
2376 	.get_pauseparam         = igb_get_pauseparam,
2377 	.set_pauseparam         = igb_set_pauseparam,
2378 	.self_test              = igb_diag_test,
2379 	.get_strings            = igb_get_strings,
2380 	.set_phys_id            = igb_set_phys_id,
2381 	.get_sset_count         = igb_get_sset_count,
2382 	.get_ethtool_stats      = igb_get_ethtool_stats,
2383 	.get_coalesce           = igb_get_coalesce,
2384 	.set_coalesce           = igb_set_coalesce,
2385 	.get_ts_info            = igb_get_ts_info,
2386 	.begin			= igb_ethtool_begin,
2387 	.complete		= igb_ethtool_complete,
2388 };
2389 
2390 void igb_set_ethtool_ops(struct net_device *netdev)
2391 {
2392 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2393 }
2394