xref: /linux/drivers/net/ethernet/intel/igb/igb_ethtool.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* ethtool support for igb */
25 
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38 
39 #include "igb.h"
40 
41 struct igb_stats {
42 	char stat_string[ETH_GSTRING_LEN];
43 	int sizeof_stat;
44 	int stat_offset;
45 };
46 
47 #define IGB_STAT(_name, _stat) { \
48 	.stat_string = _name, \
49 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 	.stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53 	IGB_STAT("rx_packets", stats.gprc),
54 	IGB_STAT("tx_packets", stats.gptc),
55 	IGB_STAT("rx_bytes", stats.gorc),
56 	IGB_STAT("tx_bytes", stats.gotc),
57 	IGB_STAT("rx_broadcast", stats.bprc),
58 	IGB_STAT("tx_broadcast", stats.bptc),
59 	IGB_STAT("rx_multicast", stats.mprc),
60 	IGB_STAT("tx_multicast", stats.mptc),
61 	IGB_STAT("multicast", stats.mprc),
62 	IGB_STAT("collisions", stats.colc),
63 	IGB_STAT("rx_crc_errors", stats.crcerrs),
64 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
65 	IGB_STAT("rx_missed_errors", stats.mpc),
66 	IGB_STAT("tx_aborted_errors", stats.ecol),
67 	IGB_STAT("tx_carrier_errors", stats.tncrs),
68 	IGB_STAT("tx_window_errors", stats.latecol),
69 	IGB_STAT("tx_abort_late_coll", stats.latecol),
70 	IGB_STAT("tx_deferred_ok", stats.dc),
71 	IGB_STAT("tx_single_coll_ok", stats.scc),
72 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
73 	IGB_STAT("tx_timeout_count", tx_timeout_count),
74 	IGB_STAT("rx_long_length_errors", stats.roc),
75 	IGB_STAT("rx_short_length_errors", stats.ruc),
76 	IGB_STAT("rx_align_errors", stats.algnerrc),
77 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
82 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83 	IGB_STAT("rx_long_byte_count", stats.gorc),
84 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85 	IGB_STAT("tx_smbus", stats.mgptc),
86 	IGB_STAT("rx_smbus", stats.mgprc),
87 	IGB_STAT("dropped_smbus", stats.mgpdc),
88 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 };
95 
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 	.stat_string = __stringify(_net_stat), \
98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 	IGB_NETDEV_STAT(rx_errors),
103 	IGB_NETDEV_STAT(tx_errors),
104 	IGB_NETDEV_STAT(tx_dropped),
105 	IGB_NETDEV_STAT(rx_length_errors),
106 	IGB_NETDEV_STAT(rx_over_errors),
107 	IGB_NETDEV_STAT(rx_frame_errors),
108 	IGB_NETDEV_STAT(rx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_fifo_errors),
110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112 
113 #define IGB_GLOBAL_STATS_LEN	\
114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN	\
116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 
122 #define IGB_QUEUE_STATS_LEN \
123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 	  IGB_RX_QUEUE_STATS_LEN) + \
125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 	  IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 
130 enum igb_diagnostics_results {
131 	TEST_REG = 0,
132 	TEST_EEP,
133 	TEST_IRQ,
134 	TEST_LOOP,
135 	TEST_LINK
136 };
137 
138 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
139 	[TEST_REG]  = "Register test  (offline)",
140 	[TEST_EEP]  = "Eeprom test    (offline)",
141 	[TEST_IRQ]  = "Interrupt test (offline)",
142 	[TEST_LOOP] = "Loopback test  (offline)",
143 	[TEST_LINK] = "Link test   (on/offline)"
144 };
145 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
146 
147 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
148 {
149 	struct igb_adapter *adapter = netdev_priv(netdev);
150 	struct e1000_hw *hw = &adapter->hw;
151 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
152 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
153 	u32 status;
154 	u32 speed;
155 
156 	status = rd32(E1000_STATUS);
157 	if (hw->phy.media_type == e1000_media_type_copper) {
158 
159 		ecmd->supported = (SUPPORTED_10baseT_Half |
160 				   SUPPORTED_10baseT_Full |
161 				   SUPPORTED_100baseT_Half |
162 				   SUPPORTED_100baseT_Full |
163 				   SUPPORTED_1000baseT_Full|
164 				   SUPPORTED_Autoneg |
165 				   SUPPORTED_TP |
166 				   SUPPORTED_Pause);
167 		ecmd->advertising = ADVERTISED_TP;
168 
169 		if (hw->mac.autoneg == 1) {
170 			ecmd->advertising |= ADVERTISED_Autoneg;
171 			/* the e1000 autoneg seems to match ethtool nicely */
172 			ecmd->advertising |= hw->phy.autoneg_advertised;
173 		}
174 
175 		ecmd->port = PORT_TP;
176 		ecmd->phy_address = hw->phy.addr;
177 		ecmd->transceiver = XCVR_INTERNAL;
178 	} else {
179 		ecmd->supported = (SUPPORTED_FIBRE |
180 				   SUPPORTED_1000baseKX_Full |
181 				   SUPPORTED_Autoneg |
182 				   SUPPORTED_Pause);
183 		ecmd->advertising = (ADVERTISED_FIBRE |
184 				     ADVERTISED_1000baseKX_Full);
185 		if (hw->mac.type == e1000_i354) {
186 			if ((hw->device_id ==
187 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
188 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
189 				ecmd->supported |= SUPPORTED_2500baseX_Full;
190 				ecmd->supported &=
191 					~SUPPORTED_1000baseKX_Full;
192 				ecmd->advertising |= ADVERTISED_2500baseX_Full;
193 				ecmd->advertising &=
194 					~ADVERTISED_1000baseKX_Full;
195 			}
196 		}
197 		if (eth_flags->e100_base_fx) {
198 			ecmd->supported |= SUPPORTED_100baseT_Full;
199 			ecmd->advertising |= ADVERTISED_100baseT_Full;
200 		}
201 		if (hw->mac.autoneg == 1)
202 			ecmd->advertising |= ADVERTISED_Autoneg;
203 
204 		ecmd->port = PORT_FIBRE;
205 		ecmd->transceiver = XCVR_EXTERNAL;
206 	}
207 	if (hw->mac.autoneg != 1)
208 		ecmd->advertising &= ~(ADVERTISED_Pause |
209 				       ADVERTISED_Asym_Pause);
210 
211 	switch (hw->fc.requested_mode) {
212 	case e1000_fc_full:
213 		ecmd->advertising |= ADVERTISED_Pause;
214 		break;
215 	case e1000_fc_rx_pause:
216 		ecmd->advertising |= (ADVERTISED_Pause |
217 				      ADVERTISED_Asym_Pause);
218 		break;
219 	case e1000_fc_tx_pause:
220 		ecmd->advertising |=  ADVERTISED_Asym_Pause;
221 		break;
222 	default:
223 		ecmd->advertising &= ~(ADVERTISED_Pause |
224 				       ADVERTISED_Asym_Pause);
225 	}
226 	if (status & E1000_STATUS_LU) {
227 		if ((status & E1000_STATUS_2P5_SKU) &&
228 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
229 			speed = SPEED_2500;
230 		} else if (status & E1000_STATUS_SPEED_1000) {
231 			speed = SPEED_1000;
232 		} else if (status & E1000_STATUS_SPEED_100) {
233 			speed = SPEED_100;
234 		} else {
235 			speed = SPEED_10;
236 		}
237 		if ((status & E1000_STATUS_FD) ||
238 		    hw->phy.media_type != e1000_media_type_copper)
239 			ecmd->duplex = DUPLEX_FULL;
240 		else
241 			ecmd->duplex = DUPLEX_HALF;
242 	} else {
243 		speed = SPEED_UNKNOWN;
244 		ecmd->duplex = DUPLEX_UNKNOWN;
245 	}
246 	ethtool_cmd_speed_set(ecmd, speed);
247 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
248 	    hw->mac.autoneg)
249 		ecmd->autoneg = AUTONEG_ENABLE;
250 	else
251 		ecmd->autoneg = AUTONEG_DISABLE;
252 
253 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
254 	if (hw->phy.media_type == e1000_media_type_copper)
255 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
256 						      ETH_TP_MDI;
257 	else
258 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
259 
260 	if (hw->phy.mdix == AUTO_ALL_MODES)
261 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
262 	else
263 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
264 
265 	return 0;
266 }
267 
268 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
269 {
270 	struct igb_adapter *adapter = netdev_priv(netdev);
271 	struct e1000_hw *hw = &adapter->hw;
272 
273 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
274 	 * cannot be changed
275 	 */
276 	if (igb_check_reset_block(hw)) {
277 		dev_err(&adapter->pdev->dev,
278 			"Cannot change link characteristics when SoL/IDER is active.\n");
279 		return -EINVAL;
280 	}
281 
282 	/* MDI setting is only allowed when autoneg enabled because
283 	 * some hardware doesn't allow MDI setting when speed or
284 	 * duplex is forced.
285 	 */
286 	if (ecmd->eth_tp_mdix_ctrl) {
287 		if (hw->phy.media_type != e1000_media_type_copper)
288 			return -EOPNOTSUPP;
289 
290 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
291 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
292 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
293 			return -EINVAL;
294 		}
295 	}
296 
297 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
298 		usleep_range(1000, 2000);
299 
300 	if (ecmd->autoneg == AUTONEG_ENABLE) {
301 		hw->mac.autoneg = 1;
302 		if (hw->phy.media_type == e1000_media_type_fiber) {
303 			hw->phy.autoneg_advertised = ecmd->advertising |
304 						     ADVERTISED_FIBRE |
305 						     ADVERTISED_Autoneg;
306 			switch (adapter->link_speed) {
307 			case SPEED_2500:
308 				hw->phy.autoneg_advertised =
309 					ADVERTISED_2500baseX_Full;
310 				break;
311 			case SPEED_1000:
312 				hw->phy.autoneg_advertised =
313 					ADVERTISED_1000baseT_Full;
314 				break;
315 			case SPEED_100:
316 				hw->phy.autoneg_advertised =
317 					ADVERTISED_100baseT_Full;
318 				break;
319 			default:
320 				break;
321 			}
322 		} else {
323 			hw->phy.autoneg_advertised = ecmd->advertising |
324 						     ADVERTISED_TP |
325 						     ADVERTISED_Autoneg;
326 		}
327 		ecmd->advertising = hw->phy.autoneg_advertised;
328 		if (adapter->fc_autoneg)
329 			hw->fc.requested_mode = e1000_fc_default;
330 	} else {
331 		u32 speed = ethtool_cmd_speed(ecmd);
332 		/* calling this overrides forced MDI setting */
333 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
334 			clear_bit(__IGB_RESETTING, &adapter->state);
335 			return -EINVAL;
336 		}
337 	}
338 
339 	/* MDI-X => 2; MDI => 1; Auto => 3 */
340 	if (ecmd->eth_tp_mdix_ctrl) {
341 		/* fix up the value for auto (3 => 0) as zero is mapped
342 		 * internally to auto
343 		 */
344 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
345 			hw->phy.mdix = AUTO_ALL_MODES;
346 		else
347 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
348 	}
349 
350 	/* reset the link */
351 	if (netif_running(adapter->netdev)) {
352 		igb_down(adapter);
353 		igb_up(adapter);
354 	} else
355 		igb_reset(adapter);
356 
357 	clear_bit(__IGB_RESETTING, &adapter->state);
358 	return 0;
359 }
360 
361 static u32 igb_get_link(struct net_device *netdev)
362 {
363 	struct igb_adapter *adapter = netdev_priv(netdev);
364 	struct e1000_mac_info *mac = &adapter->hw.mac;
365 
366 	/* If the link is not reported up to netdev, interrupts are disabled,
367 	 * and so the physical link state may have changed since we last
368 	 * looked. Set get_link_status to make sure that the true link
369 	 * state is interrogated, rather than pulling a cached and possibly
370 	 * stale link state from the driver.
371 	 */
372 	if (!netif_carrier_ok(netdev))
373 		mac->get_link_status = 1;
374 
375 	return igb_has_link(adapter);
376 }
377 
378 static void igb_get_pauseparam(struct net_device *netdev,
379 			       struct ethtool_pauseparam *pause)
380 {
381 	struct igb_adapter *adapter = netdev_priv(netdev);
382 	struct e1000_hw *hw = &adapter->hw;
383 
384 	pause->autoneg =
385 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
386 
387 	if (hw->fc.current_mode == e1000_fc_rx_pause)
388 		pause->rx_pause = 1;
389 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
390 		pause->tx_pause = 1;
391 	else if (hw->fc.current_mode == e1000_fc_full) {
392 		pause->rx_pause = 1;
393 		pause->tx_pause = 1;
394 	}
395 }
396 
397 static int igb_set_pauseparam(struct net_device *netdev,
398 			      struct ethtool_pauseparam *pause)
399 {
400 	struct igb_adapter *adapter = netdev_priv(netdev);
401 	struct e1000_hw *hw = &adapter->hw;
402 	int retval = 0;
403 
404 	/* 100basefx does not support setting link flow control */
405 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
406 		return -EINVAL;
407 
408 	adapter->fc_autoneg = pause->autoneg;
409 
410 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
411 		usleep_range(1000, 2000);
412 
413 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
414 		hw->fc.requested_mode = e1000_fc_default;
415 		if (netif_running(adapter->netdev)) {
416 			igb_down(adapter);
417 			igb_up(adapter);
418 		} else {
419 			igb_reset(adapter);
420 		}
421 	} else {
422 		if (pause->rx_pause && pause->tx_pause)
423 			hw->fc.requested_mode = e1000_fc_full;
424 		else if (pause->rx_pause && !pause->tx_pause)
425 			hw->fc.requested_mode = e1000_fc_rx_pause;
426 		else if (!pause->rx_pause && pause->tx_pause)
427 			hw->fc.requested_mode = e1000_fc_tx_pause;
428 		else if (!pause->rx_pause && !pause->tx_pause)
429 			hw->fc.requested_mode = e1000_fc_none;
430 
431 		hw->fc.current_mode = hw->fc.requested_mode;
432 
433 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
434 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
435 	}
436 
437 	clear_bit(__IGB_RESETTING, &adapter->state);
438 	return retval;
439 }
440 
441 static u32 igb_get_msglevel(struct net_device *netdev)
442 {
443 	struct igb_adapter *adapter = netdev_priv(netdev);
444 	return adapter->msg_enable;
445 }
446 
447 static void igb_set_msglevel(struct net_device *netdev, u32 data)
448 {
449 	struct igb_adapter *adapter = netdev_priv(netdev);
450 	adapter->msg_enable = data;
451 }
452 
453 static int igb_get_regs_len(struct net_device *netdev)
454 {
455 #define IGB_REGS_LEN 739
456 	return IGB_REGS_LEN * sizeof(u32);
457 }
458 
459 static void igb_get_regs(struct net_device *netdev,
460 			 struct ethtool_regs *regs, void *p)
461 {
462 	struct igb_adapter *adapter = netdev_priv(netdev);
463 	struct e1000_hw *hw = &adapter->hw;
464 	u32 *regs_buff = p;
465 	u8 i;
466 
467 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
468 
469 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
470 
471 	/* General Registers */
472 	regs_buff[0] = rd32(E1000_CTRL);
473 	regs_buff[1] = rd32(E1000_STATUS);
474 	regs_buff[2] = rd32(E1000_CTRL_EXT);
475 	regs_buff[3] = rd32(E1000_MDIC);
476 	regs_buff[4] = rd32(E1000_SCTL);
477 	regs_buff[5] = rd32(E1000_CONNSW);
478 	regs_buff[6] = rd32(E1000_VET);
479 	regs_buff[7] = rd32(E1000_LEDCTL);
480 	regs_buff[8] = rd32(E1000_PBA);
481 	regs_buff[9] = rd32(E1000_PBS);
482 	regs_buff[10] = rd32(E1000_FRTIMER);
483 	regs_buff[11] = rd32(E1000_TCPTIMER);
484 
485 	/* NVM Register */
486 	regs_buff[12] = rd32(E1000_EECD);
487 
488 	/* Interrupt */
489 	/* Reading EICS for EICR because they read the
490 	 * same but EICS does not clear on read
491 	 */
492 	regs_buff[13] = rd32(E1000_EICS);
493 	regs_buff[14] = rd32(E1000_EICS);
494 	regs_buff[15] = rd32(E1000_EIMS);
495 	regs_buff[16] = rd32(E1000_EIMC);
496 	regs_buff[17] = rd32(E1000_EIAC);
497 	regs_buff[18] = rd32(E1000_EIAM);
498 	/* Reading ICS for ICR because they read the
499 	 * same but ICS does not clear on read
500 	 */
501 	regs_buff[19] = rd32(E1000_ICS);
502 	regs_buff[20] = rd32(E1000_ICS);
503 	regs_buff[21] = rd32(E1000_IMS);
504 	regs_buff[22] = rd32(E1000_IMC);
505 	regs_buff[23] = rd32(E1000_IAC);
506 	regs_buff[24] = rd32(E1000_IAM);
507 	regs_buff[25] = rd32(E1000_IMIRVP);
508 
509 	/* Flow Control */
510 	regs_buff[26] = rd32(E1000_FCAL);
511 	regs_buff[27] = rd32(E1000_FCAH);
512 	regs_buff[28] = rd32(E1000_FCTTV);
513 	regs_buff[29] = rd32(E1000_FCRTL);
514 	regs_buff[30] = rd32(E1000_FCRTH);
515 	regs_buff[31] = rd32(E1000_FCRTV);
516 
517 	/* Receive */
518 	regs_buff[32] = rd32(E1000_RCTL);
519 	regs_buff[33] = rd32(E1000_RXCSUM);
520 	regs_buff[34] = rd32(E1000_RLPML);
521 	regs_buff[35] = rd32(E1000_RFCTL);
522 	regs_buff[36] = rd32(E1000_MRQC);
523 	regs_buff[37] = rd32(E1000_VT_CTL);
524 
525 	/* Transmit */
526 	regs_buff[38] = rd32(E1000_TCTL);
527 	regs_buff[39] = rd32(E1000_TCTL_EXT);
528 	regs_buff[40] = rd32(E1000_TIPG);
529 	regs_buff[41] = rd32(E1000_DTXCTL);
530 
531 	/* Wake Up */
532 	regs_buff[42] = rd32(E1000_WUC);
533 	regs_buff[43] = rd32(E1000_WUFC);
534 	regs_buff[44] = rd32(E1000_WUS);
535 	regs_buff[45] = rd32(E1000_IPAV);
536 	regs_buff[46] = rd32(E1000_WUPL);
537 
538 	/* MAC */
539 	regs_buff[47] = rd32(E1000_PCS_CFG0);
540 	regs_buff[48] = rd32(E1000_PCS_LCTL);
541 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
542 	regs_buff[50] = rd32(E1000_PCS_ANADV);
543 	regs_buff[51] = rd32(E1000_PCS_LPAB);
544 	regs_buff[52] = rd32(E1000_PCS_NPTX);
545 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
546 
547 	/* Statistics */
548 	regs_buff[54] = adapter->stats.crcerrs;
549 	regs_buff[55] = adapter->stats.algnerrc;
550 	regs_buff[56] = adapter->stats.symerrs;
551 	regs_buff[57] = adapter->stats.rxerrc;
552 	regs_buff[58] = adapter->stats.mpc;
553 	regs_buff[59] = adapter->stats.scc;
554 	regs_buff[60] = adapter->stats.ecol;
555 	regs_buff[61] = adapter->stats.mcc;
556 	regs_buff[62] = adapter->stats.latecol;
557 	regs_buff[63] = adapter->stats.colc;
558 	regs_buff[64] = adapter->stats.dc;
559 	regs_buff[65] = adapter->stats.tncrs;
560 	regs_buff[66] = adapter->stats.sec;
561 	regs_buff[67] = adapter->stats.htdpmc;
562 	regs_buff[68] = adapter->stats.rlec;
563 	regs_buff[69] = adapter->stats.xonrxc;
564 	regs_buff[70] = adapter->stats.xontxc;
565 	regs_buff[71] = adapter->stats.xoffrxc;
566 	regs_buff[72] = adapter->stats.xofftxc;
567 	regs_buff[73] = adapter->stats.fcruc;
568 	regs_buff[74] = adapter->stats.prc64;
569 	regs_buff[75] = adapter->stats.prc127;
570 	regs_buff[76] = adapter->stats.prc255;
571 	regs_buff[77] = adapter->stats.prc511;
572 	regs_buff[78] = adapter->stats.prc1023;
573 	regs_buff[79] = adapter->stats.prc1522;
574 	regs_buff[80] = adapter->stats.gprc;
575 	regs_buff[81] = adapter->stats.bprc;
576 	regs_buff[82] = adapter->stats.mprc;
577 	regs_buff[83] = adapter->stats.gptc;
578 	regs_buff[84] = adapter->stats.gorc;
579 	regs_buff[86] = adapter->stats.gotc;
580 	regs_buff[88] = adapter->stats.rnbc;
581 	regs_buff[89] = adapter->stats.ruc;
582 	regs_buff[90] = adapter->stats.rfc;
583 	regs_buff[91] = adapter->stats.roc;
584 	regs_buff[92] = adapter->stats.rjc;
585 	regs_buff[93] = adapter->stats.mgprc;
586 	regs_buff[94] = adapter->stats.mgpdc;
587 	regs_buff[95] = adapter->stats.mgptc;
588 	regs_buff[96] = adapter->stats.tor;
589 	regs_buff[98] = adapter->stats.tot;
590 	regs_buff[100] = adapter->stats.tpr;
591 	regs_buff[101] = adapter->stats.tpt;
592 	regs_buff[102] = adapter->stats.ptc64;
593 	regs_buff[103] = adapter->stats.ptc127;
594 	regs_buff[104] = adapter->stats.ptc255;
595 	regs_buff[105] = adapter->stats.ptc511;
596 	regs_buff[106] = adapter->stats.ptc1023;
597 	regs_buff[107] = adapter->stats.ptc1522;
598 	regs_buff[108] = adapter->stats.mptc;
599 	regs_buff[109] = adapter->stats.bptc;
600 	regs_buff[110] = adapter->stats.tsctc;
601 	regs_buff[111] = adapter->stats.iac;
602 	regs_buff[112] = adapter->stats.rpthc;
603 	regs_buff[113] = adapter->stats.hgptc;
604 	regs_buff[114] = adapter->stats.hgorc;
605 	regs_buff[116] = adapter->stats.hgotc;
606 	regs_buff[118] = adapter->stats.lenerrs;
607 	regs_buff[119] = adapter->stats.scvpc;
608 	regs_buff[120] = adapter->stats.hrmpc;
609 
610 	for (i = 0; i < 4; i++)
611 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
612 	for (i = 0; i < 4; i++)
613 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
614 	for (i = 0; i < 4; i++)
615 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
616 	for (i = 0; i < 4; i++)
617 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
618 	for (i = 0; i < 4; i++)
619 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
620 	for (i = 0; i < 4; i++)
621 		regs_buff[141 + i] = rd32(E1000_RDH(i));
622 	for (i = 0; i < 4; i++)
623 		regs_buff[145 + i] = rd32(E1000_RDT(i));
624 	for (i = 0; i < 4; i++)
625 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
626 
627 	for (i = 0; i < 10; i++)
628 		regs_buff[153 + i] = rd32(E1000_EITR(i));
629 	for (i = 0; i < 8; i++)
630 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
631 	for (i = 0; i < 8; i++)
632 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
633 	for (i = 0; i < 16; i++)
634 		regs_buff[179 + i] = rd32(E1000_RAL(i));
635 	for (i = 0; i < 16; i++)
636 		regs_buff[195 + i] = rd32(E1000_RAH(i));
637 
638 	for (i = 0; i < 4; i++)
639 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
640 	for (i = 0; i < 4; i++)
641 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
642 	for (i = 0; i < 4; i++)
643 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
644 	for (i = 0; i < 4; i++)
645 		regs_buff[223 + i] = rd32(E1000_TDH(i));
646 	for (i = 0; i < 4; i++)
647 		regs_buff[227 + i] = rd32(E1000_TDT(i));
648 	for (i = 0; i < 4; i++)
649 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
650 	for (i = 0; i < 4; i++)
651 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
652 	for (i = 0; i < 4; i++)
653 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
654 	for (i = 0; i < 4; i++)
655 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
656 
657 	for (i = 0; i < 4; i++)
658 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
659 	for (i = 0; i < 4; i++)
660 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
661 	for (i = 0; i < 32; i++)
662 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
663 	for (i = 0; i < 128; i++)
664 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
665 	for (i = 0; i < 128; i++)
666 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
667 	for (i = 0; i < 4; i++)
668 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
669 
670 	regs_buff[547] = rd32(E1000_TDFH);
671 	regs_buff[548] = rd32(E1000_TDFT);
672 	regs_buff[549] = rd32(E1000_TDFHS);
673 	regs_buff[550] = rd32(E1000_TDFPC);
674 
675 	if (hw->mac.type > e1000_82580) {
676 		regs_buff[551] = adapter->stats.o2bgptc;
677 		regs_buff[552] = adapter->stats.b2ospc;
678 		regs_buff[553] = adapter->stats.o2bspc;
679 		regs_buff[554] = adapter->stats.b2ogprc;
680 	}
681 
682 	if (hw->mac.type != e1000_82576)
683 		return;
684 	for (i = 0; i < 12; i++)
685 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
686 	for (i = 0; i < 4; i++)
687 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
688 	for (i = 0; i < 12; i++)
689 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
690 	for (i = 0; i < 12; i++)
691 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
692 	for (i = 0; i < 12; i++)
693 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
694 	for (i = 0; i < 12; i++)
695 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
696 	for (i = 0; i < 12; i++)
697 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
698 	for (i = 0; i < 12; i++)
699 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
700 
701 	for (i = 0; i < 12; i++)
702 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
703 	for (i = 0; i < 12; i++)
704 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
705 	for (i = 0; i < 12; i++)
706 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
707 	for (i = 0; i < 12; i++)
708 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
709 	for (i = 0; i < 12; i++)
710 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
711 	for (i = 0; i < 12; i++)
712 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
713 	for (i = 0; i < 12; i++)
714 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
715 	for (i = 0; i < 12; i++)
716 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
717 }
718 
719 static int igb_get_eeprom_len(struct net_device *netdev)
720 {
721 	struct igb_adapter *adapter = netdev_priv(netdev);
722 	return adapter->hw.nvm.word_size * 2;
723 }
724 
725 static int igb_get_eeprom(struct net_device *netdev,
726 			  struct ethtool_eeprom *eeprom, u8 *bytes)
727 {
728 	struct igb_adapter *adapter = netdev_priv(netdev);
729 	struct e1000_hw *hw = &adapter->hw;
730 	u16 *eeprom_buff;
731 	int first_word, last_word;
732 	int ret_val = 0;
733 	u16 i;
734 
735 	if (eeprom->len == 0)
736 		return -EINVAL;
737 
738 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
739 
740 	first_word = eeprom->offset >> 1;
741 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
742 
743 	eeprom_buff = kmalloc(sizeof(u16) *
744 			(last_word - first_word + 1), GFP_KERNEL);
745 	if (!eeprom_buff)
746 		return -ENOMEM;
747 
748 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
749 		ret_val = hw->nvm.ops.read(hw, first_word,
750 					   last_word - first_word + 1,
751 					   eeprom_buff);
752 	else {
753 		for (i = 0; i < last_word - first_word + 1; i++) {
754 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
755 						   &eeprom_buff[i]);
756 			if (ret_val)
757 				break;
758 		}
759 	}
760 
761 	/* Device's eeprom is always little-endian, word addressable */
762 	for (i = 0; i < last_word - first_word + 1; i++)
763 		le16_to_cpus(&eeprom_buff[i]);
764 
765 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
766 			eeprom->len);
767 	kfree(eeprom_buff);
768 
769 	return ret_val;
770 }
771 
772 static int igb_set_eeprom(struct net_device *netdev,
773 			  struct ethtool_eeprom *eeprom, u8 *bytes)
774 {
775 	struct igb_adapter *adapter = netdev_priv(netdev);
776 	struct e1000_hw *hw = &adapter->hw;
777 	u16 *eeprom_buff;
778 	void *ptr;
779 	int max_len, first_word, last_word, ret_val = 0;
780 	u16 i;
781 
782 	if (eeprom->len == 0)
783 		return -EOPNOTSUPP;
784 
785 	if ((hw->mac.type >= e1000_i210) &&
786 	    !igb_get_flash_presence_i210(hw)) {
787 		return -EOPNOTSUPP;
788 	}
789 
790 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
791 		return -EFAULT;
792 
793 	max_len = hw->nvm.word_size * 2;
794 
795 	first_word = eeprom->offset >> 1;
796 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
797 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
798 	if (!eeprom_buff)
799 		return -ENOMEM;
800 
801 	ptr = (void *)eeprom_buff;
802 
803 	if (eeprom->offset & 1) {
804 		/* need read/modify/write of first changed EEPROM word
805 		 * only the second byte of the word is being modified
806 		 */
807 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
808 					    &eeprom_buff[0]);
809 		ptr++;
810 	}
811 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
812 		/* need read/modify/write of last changed EEPROM word
813 		 * only the first byte of the word is being modified
814 		 */
815 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
816 				   &eeprom_buff[last_word - first_word]);
817 	}
818 
819 	/* Device's eeprom is always little-endian, word addressable */
820 	for (i = 0; i < last_word - first_word + 1; i++)
821 		le16_to_cpus(&eeprom_buff[i]);
822 
823 	memcpy(ptr, bytes, eeprom->len);
824 
825 	for (i = 0; i < last_word - first_word + 1; i++)
826 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
827 
828 	ret_val = hw->nvm.ops.write(hw, first_word,
829 				    last_word - first_word + 1, eeprom_buff);
830 
831 	/* Update the checksum if nvm write succeeded */
832 	if (ret_val == 0)
833 		hw->nvm.ops.update(hw);
834 
835 	igb_set_fw_version(adapter);
836 	kfree(eeprom_buff);
837 	return ret_val;
838 }
839 
840 static void igb_get_drvinfo(struct net_device *netdev,
841 			    struct ethtool_drvinfo *drvinfo)
842 {
843 	struct igb_adapter *adapter = netdev_priv(netdev);
844 
845 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
846 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
847 
848 	/* EEPROM image version # is reported as firmware version # for
849 	 * 82575 controllers
850 	 */
851 	strlcpy(drvinfo->fw_version, adapter->fw_version,
852 		sizeof(drvinfo->fw_version));
853 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
854 		sizeof(drvinfo->bus_info));
855 }
856 
857 static void igb_get_ringparam(struct net_device *netdev,
858 			      struct ethtool_ringparam *ring)
859 {
860 	struct igb_adapter *adapter = netdev_priv(netdev);
861 
862 	ring->rx_max_pending = IGB_MAX_RXD;
863 	ring->tx_max_pending = IGB_MAX_TXD;
864 	ring->rx_pending = adapter->rx_ring_count;
865 	ring->tx_pending = adapter->tx_ring_count;
866 }
867 
868 static int igb_set_ringparam(struct net_device *netdev,
869 			     struct ethtool_ringparam *ring)
870 {
871 	struct igb_adapter *adapter = netdev_priv(netdev);
872 	struct igb_ring *temp_ring;
873 	int i, err = 0;
874 	u16 new_rx_count, new_tx_count;
875 
876 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
877 		return -EINVAL;
878 
879 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
880 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
881 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
882 
883 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
884 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
885 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
886 
887 	if ((new_tx_count == adapter->tx_ring_count) &&
888 	    (new_rx_count == adapter->rx_ring_count)) {
889 		/* nothing to do */
890 		return 0;
891 	}
892 
893 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
894 		usleep_range(1000, 2000);
895 
896 	if (!netif_running(adapter->netdev)) {
897 		for (i = 0; i < adapter->num_tx_queues; i++)
898 			adapter->tx_ring[i]->count = new_tx_count;
899 		for (i = 0; i < adapter->num_rx_queues; i++)
900 			adapter->rx_ring[i]->count = new_rx_count;
901 		adapter->tx_ring_count = new_tx_count;
902 		adapter->rx_ring_count = new_rx_count;
903 		goto clear_reset;
904 	}
905 
906 	if (adapter->num_tx_queues > adapter->num_rx_queues)
907 		temp_ring = vmalloc(adapter->num_tx_queues *
908 				    sizeof(struct igb_ring));
909 	else
910 		temp_ring = vmalloc(adapter->num_rx_queues *
911 				    sizeof(struct igb_ring));
912 
913 	if (!temp_ring) {
914 		err = -ENOMEM;
915 		goto clear_reset;
916 	}
917 
918 	igb_down(adapter);
919 
920 	/* We can't just free everything and then setup again,
921 	 * because the ISRs in MSI-X mode get passed pointers
922 	 * to the Tx and Rx ring structs.
923 	 */
924 	if (new_tx_count != adapter->tx_ring_count) {
925 		for (i = 0; i < adapter->num_tx_queues; i++) {
926 			memcpy(&temp_ring[i], adapter->tx_ring[i],
927 			       sizeof(struct igb_ring));
928 
929 			temp_ring[i].count = new_tx_count;
930 			err = igb_setup_tx_resources(&temp_ring[i]);
931 			if (err) {
932 				while (i) {
933 					i--;
934 					igb_free_tx_resources(&temp_ring[i]);
935 				}
936 				goto err_setup;
937 			}
938 		}
939 
940 		for (i = 0; i < adapter->num_tx_queues; i++) {
941 			igb_free_tx_resources(adapter->tx_ring[i]);
942 
943 			memcpy(adapter->tx_ring[i], &temp_ring[i],
944 			       sizeof(struct igb_ring));
945 		}
946 
947 		adapter->tx_ring_count = new_tx_count;
948 	}
949 
950 	if (new_rx_count != adapter->rx_ring_count) {
951 		for (i = 0; i < adapter->num_rx_queues; i++) {
952 			memcpy(&temp_ring[i], adapter->rx_ring[i],
953 			       sizeof(struct igb_ring));
954 
955 			temp_ring[i].count = new_rx_count;
956 			err = igb_setup_rx_resources(&temp_ring[i]);
957 			if (err) {
958 				while (i) {
959 					i--;
960 					igb_free_rx_resources(&temp_ring[i]);
961 				}
962 				goto err_setup;
963 			}
964 
965 		}
966 
967 		for (i = 0; i < adapter->num_rx_queues; i++) {
968 			igb_free_rx_resources(adapter->rx_ring[i]);
969 
970 			memcpy(adapter->rx_ring[i], &temp_ring[i],
971 			       sizeof(struct igb_ring));
972 		}
973 
974 		adapter->rx_ring_count = new_rx_count;
975 	}
976 err_setup:
977 	igb_up(adapter);
978 	vfree(temp_ring);
979 clear_reset:
980 	clear_bit(__IGB_RESETTING, &adapter->state);
981 	return err;
982 }
983 
984 /* ethtool register test data */
985 struct igb_reg_test {
986 	u16 reg;
987 	u16 reg_offset;
988 	u16 array_len;
989 	u16 test_type;
990 	u32 mask;
991 	u32 write;
992 };
993 
994 /* In the hardware, registers are laid out either singly, in arrays
995  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
996  * most tests take place on arrays or single registers (handled
997  * as a single-element array) and special-case the tables.
998  * Table tests are always pattern tests.
999  *
1000  * We also make provision for some required setup steps by specifying
1001  * registers to be written without any read-back testing.
1002  */
1003 
1004 #define PATTERN_TEST	1
1005 #define SET_READ_TEST	2
1006 #define WRITE_NO_TEST	3
1007 #define TABLE32_TEST	4
1008 #define TABLE64_TEST_LO	5
1009 #define TABLE64_TEST_HI	6
1010 
1011 /* i210 reg test */
1012 static struct igb_reg_test reg_test_i210[] = {
1013 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1015 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1017 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1019 	/* RDH is read-only for i210, only test RDT. */
1020 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1021 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1022 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1024 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1025 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1026 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1027 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1028 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1029 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1030 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1031 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1032 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1033 						0xFFFFFFFF, 0xFFFFFFFF },
1034 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1035 						0x900FFFFF, 0xFFFFFFFF },
1036 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1037 						0xFFFFFFFF, 0xFFFFFFFF },
1038 	{ 0, 0, 0, 0, 0 }
1039 };
1040 
1041 /* i350 reg test */
1042 static struct igb_reg_test reg_test_i350[] = {
1043 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1045 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1046 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1047 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1048 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1049 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1050 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053 	/* RDH is read-only for i350, only test RDT. */
1054 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1055 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1057 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1059 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1063 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1064 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1065 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1068 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1069 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1070 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1071 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1072 						0xFFFFFFFF, 0xFFFFFFFF },
1073 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1074 						0xC3FFFFFF, 0xFFFFFFFF },
1075 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1076 						0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1078 						0xC3FFFFFF, 0xFFFFFFFF },
1079 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1080 						0xFFFFFFFF, 0xFFFFFFFF },
1081 	{ 0, 0, 0, 0 }
1082 };
1083 
1084 /* 82580 reg test */
1085 static struct igb_reg_test reg_test_82580[] = {
1086 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1088 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1089 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1091 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1092 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1093 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096 	/* RDH is read-only for 82580, only test RDT. */
1097 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1098 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1100 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1102 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1103 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1105 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1106 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1107 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1108 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1109 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1111 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1112 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1113 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1114 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1115 						0xFFFFFFFF, 0xFFFFFFFF },
1116 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1117 						0x83FFFFFF, 0xFFFFFFFF },
1118 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1119 						0xFFFFFFFF, 0xFFFFFFFF },
1120 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1121 						0x83FFFFFF, 0xFFFFFFFF },
1122 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1123 						0xFFFFFFFF, 0xFFFFFFFF },
1124 	{ 0, 0, 0, 0 }
1125 };
1126 
1127 /* 82576 reg test */
1128 static struct igb_reg_test reg_test_82576[] = {
1129 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1131 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1132 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1134 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1135 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1136 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1137 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1138 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1139 	/* Enable all RX queues before testing. */
1140 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1141 	  E1000_RXDCTL_QUEUE_ENABLE },
1142 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1143 	  E1000_RXDCTL_QUEUE_ENABLE },
1144 	/* RDH is read-only for 82576, only test RDT. */
1145 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1146 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1147 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1148 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1149 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1150 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1151 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1152 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1156 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1158 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1159 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1160 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1161 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1162 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1163 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1164 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1165 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1166 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 	{ 0, 0, 0, 0 }
1168 };
1169 
1170 /* 82575 register test */
1171 static struct igb_reg_test reg_test_82575[] = {
1172 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1174 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1175 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179 	/* Enable all four RX queues before testing. */
1180 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1181 	  E1000_RXDCTL_QUEUE_ENABLE },
1182 	/* RDH is read-only for 82575, only test RDT. */
1183 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1184 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1185 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1186 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1187 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1188 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1189 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1190 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1191 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1192 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1193 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1194 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1195 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1196 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1197 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1198 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1199 	{ 0, 0, 0, 0 }
1200 };
1201 
1202 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1203 			     int reg, u32 mask, u32 write)
1204 {
1205 	struct e1000_hw *hw = &adapter->hw;
1206 	u32 pat, val;
1207 	static const u32 _test[] = {
1208 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1209 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1210 		wr32(reg, (_test[pat] & write));
1211 		val = rd32(reg) & mask;
1212 		if (val != (_test[pat] & write & mask)) {
1213 			dev_err(&adapter->pdev->dev,
1214 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1215 				reg, val, (_test[pat] & write & mask));
1216 			*data = reg;
1217 			return true;
1218 		}
1219 	}
1220 
1221 	return false;
1222 }
1223 
1224 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1225 			      int reg, u32 mask, u32 write)
1226 {
1227 	struct e1000_hw *hw = &adapter->hw;
1228 	u32 val;
1229 
1230 	wr32(reg, write & mask);
1231 	val = rd32(reg);
1232 	if ((write & mask) != (val & mask)) {
1233 		dev_err(&adapter->pdev->dev,
1234 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1235 			reg, (val & mask), (write & mask));
1236 		*data = reg;
1237 		return true;
1238 	}
1239 
1240 	return false;
1241 }
1242 
1243 #define REG_PATTERN_TEST(reg, mask, write) \
1244 	do { \
1245 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1246 			return 1; \
1247 	} while (0)
1248 
1249 #define REG_SET_AND_CHECK(reg, mask, write) \
1250 	do { \
1251 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1252 			return 1; \
1253 	} while (0)
1254 
1255 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1256 {
1257 	struct e1000_hw *hw = &adapter->hw;
1258 	struct igb_reg_test *test;
1259 	u32 value, before, after;
1260 	u32 i, toggle;
1261 
1262 	switch (adapter->hw.mac.type) {
1263 	case e1000_i350:
1264 	case e1000_i354:
1265 		test = reg_test_i350;
1266 		toggle = 0x7FEFF3FF;
1267 		break;
1268 	case e1000_i210:
1269 	case e1000_i211:
1270 		test = reg_test_i210;
1271 		toggle = 0x7FEFF3FF;
1272 		break;
1273 	case e1000_82580:
1274 		test = reg_test_82580;
1275 		toggle = 0x7FEFF3FF;
1276 		break;
1277 	case e1000_82576:
1278 		test = reg_test_82576;
1279 		toggle = 0x7FFFF3FF;
1280 		break;
1281 	default:
1282 		test = reg_test_82575;
1283 		toggle = 0x7FFFF3FF;
1284 		break;
1285 	}
1286 
1287 	/* Because the status register is such a special case,
1288 	 * we handle it separately from the rest of the register
1289 	 * tests.  Some bits are read-only, some toggle, and some
1290 	 * are writable on newer MACs.
1291 	 */
1292 	before = rd32(E1000_STATUS);
1293 	value = (rd32(E1000_STATUS) & toggle);
1294 	wr32(E1000_STATUS, toggle);
1295 	after = rd32(E1000_STATUS) & toggle;
1296 	if (value != after) {
1297 		dev_err(&adapter->pdev->dev,
1298 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1299 			after, value);
1300 		*data = 1;
1301 		return 1;
1302 	}
1303 	/* restore previous status */
1304 	wr32(E1000_STATUS, before);
1305 
1306 	/* Perform the remainder of the register test, looping through
1307 	 * the test table until we either fail or reach the null entry.
1308 	 */
1309 	while (test->reg) {
1310 		for (i = 0; i < test->array_len; i++) {
1311 			switch (test->test_type) {
1312 			case PATTERN_TEST:
1313 				REG_PATTERN_TEST(test->reg +
1314 						(i * test->reg_offset),
1315 						test->mask,
1316 						test->write);
1317 				break;
1318 			case SET_READ_TEST:
1319 				REG_SET_AND_CHECK(test->reg +
1320 						(i * test->reg_offset),
1321 						test->mask,
1322 						test->write);
1323 				break;
1324 			case WRITE_NO_TEST:
1325 				writel(test->write,
1326 				    (adapter->hw.hw_addr + test->reg)
1327 					+ (i * test->reg_offset));
1328 				break;
1329 			case TABLE32_TEST:
1330 				REG_PATTERN_TEST(test->reg + (i * 4),
1331 						test->mask,
1332 						test->write);
1333 				break;
1334 			case TABLE64_TEST_LO:
1335 				REG_PATTERN_TEST(test->reg + (i * 8),
1336 						test->mask,
1337 						test->write);
1338 				break;
1339 			case TABLE64_TEST_HI:
1340 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1341 						test->mask,
1342 						test->write);
1343 				break;
1344 			}
1345 		}
1346 		test++;
1347 	}
1348 
1349 	*data = 0;
1350 	return 0;
1351 }
1352 
1353 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1354 {
1355 	struct e1000_hw *hw = &adapter->hw;
1356 
1357 	*data = 0;
1358 
1359 	/* Validate eeprom on all parts but flashless */
1360 	switch (hw->mac.type) {
1361 	case e1000_i210:
1362 	case e1000_i211:
1363 		if (igb_get_flash_presence_i210(hw)) {
1364 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1365 				*data = 2;
1366 		}
1367 		break;
1368 	default:
1369 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1370 			*data = 2;
1371 		break;
1372 	}
1373 
1374 	return *data;
1375 }
1376 
1377 static irqreturn_t igb_test_intr(int irq, void *data)
1378 {
1379 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1380 	struct e1000_hw *hw = &adapter->hw;
1381 
1382 	adapter->test_icr |= rd32(E1000_ICR);
1383 
1384 	return IRQ_HANDLED;
1385 }
1386 
1387 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1388 {
1389 	struct e1000_hw *hw = &adapter->hw;
1390 	struct net_device *netdev = adapter->netdev;
1391 	u32 mask, ics_mask, i = 0, shared_int = true;
1392 	u32 irq = adapter->pdev->irq;
1393 
1394 	*data = 0;
1395 
1396 	/* Hook up test interrupt handler just for this test */
1397 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1398 		if (request_irq(adapter->msix_entries[0].vector,
1399 				igb_test_intr, 0, netdev->name, adapter)) {
1400 			*data = 1;
1401 			return -1;
1402 		}
1403 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1404 		shared_int = false;
1405 		if (request_irq(irq,
1406 				igb_test_intr, 0, netdev->name, adapter)) {
1407 			*data = 1;
1408 			return -1;
1409 		}
1410 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1411 				netdev->name, adapter)) {
1412 		shared_int = false;
1413 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1414 		 netdev->name, adapter)) {
1415 		*data = 1;
1416 		return -1;
1417 	}
1418 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1419 		(shared_int ? "shared" : "unshared"));
1420 
1421 	/* Disable all the interrupts */
1422 	wr32(E1000_IMC, ~0);
1423 	wrfl();
1424 	usleep_range(10000, 11000);
1425 
1426 	/* Define all writable bits for ICS */
1427 	switch (hw->mac.type) {
1428 	case e1000_82575:
1429 		ics_mask = 0x37F47EDD;
1430 		break;
1431 	case e1000_82576:
1432 		ics_mask = 0x77D4FBFD;
1433 		break;
1434 	case e1000_82580:
1435 		ics_mask = 0x77DCFED5;
1436 		break;
1437 	case e1000_i350:
1438 	case e1000_i354:
1439 	case e1000_i210:
1440 	case e1000_i211:
1441 		ics_mask = 0x77DCFED5;
1442 		break;
1443 	default:
1444 		ics_mask = 0x7FFFFFFF;
1445 		break;
1446 	}
1447 
1448 	/* Test each interrupt */
1449 	for (; i < 31; i++) {
1450 		/* Interrupt to test */
1451 		mask = BIT(i);
1452 
1453 		if (!(mask & ics_mask))
1454 			continue;
1455 
1456 		if (!shared_int) {
1457 			/* Disable the interrupt to be reported in
1458 			 * the cause register and then force the same
1459 			 * interrupt and see if one gets posted.  If
1460 			 * an interrupt was posted to the bus, the
1461 			 * test failed.
1462 			 */
1463 			adapter->test_icr = 0;
1464 
1465 			/* Flush any pending interrupts */
1466 			wr32(E1000_ICR, ~0);
1467 
1468 			wr32(E1000_IMC, mask);
1469 			wr32(E1000_ICS, mask);
1470 			wrfl();
1471 			usleep_range(10000, 11000);
1472 
1473 			if (adapter->test_icr & mask) {
1474 				*data = 3;
1475 				break;
1476 			}
1477 		}
1478 
1479 		/* Enable the interrupt to be reported in
1480 		 * the cause register and then force the same
1481 		 * interrupt and see if one gets posted.  If
1482 		 * an interrupt was not posted to the bus, the
1483 		 * test failed.
1484 		 */
1485 		adapter->test_icr = 0;
1486 
1487 		/* Flush any pending interrupts */
1488 		wr32(E1000_ICR, ~0);
1489 
1490 		wr32(E1000_IMS, mask);
1491 		wr32(E1000_ICS, mask);
1492 		wrfl();
1493 		usleep_range(10000, 11000);
1494 
1495 		if (!(adapter->test_icr & mask)) {
1496 			*data = 4;
1497 			break;
1498 		}
1499 
1500 		if (!shared_int) {
1501 			/* Disable the other interrupts to be reported in
1502 			 * the cause register and then force the other
1503 			 * interrupts and see if any get posted.  If
1504 			 * an interrupt was posted to the bus, the
1505 			 * test failed.
1506 			 */
1507 			adapter->test_icr = 0;
1508 
1509 			/* Flush any pending interrupts */
1510 			wr32(E1000_ICR, ~0);
1511 
1512 			wr32(E1000_IMC, ~mask);
1513 			wr32(E1000_ICS, ~mask);
1514 			wrfl();
1515 			usleep_range(10000, 11000);
1516 
1517 			if (adapter->test_icr & mask) {
1518 				*data = 5;
1519 				break;
1520 			}
1521 		}
1522 	}
1523 
1524 	/* Disable all the interrupts */
1525 	wr32(E1000_IMC, ~0);
1526 	wrfl();
1527 	usleep_range(10000, 11000);
1528 
1529 	/* Unhook test interrupt handler */
1530 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1531 		free_irq(adapter->msix_entries[0].vector, adapter);
1532 	else
1533 		free_irq(irq, adapter);
1534 
1535 	return *data;
1536 }
1537 
1538 static void igb_free_desc_rings(struct igb_adapter *adapter)
1539 {
1540 	igb_free_tx_resources(&adapter->test_tx_ring);
1541 	igb_free_rx_resources(&adapter->test_rx_ring);
1542 }
1543 
1544 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1545 {
1546 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1547 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1548 	struct e1000_hw *hw = &adapter->hw;
1549 	int ret_val;
1550 
1551 	/* Setup Tx descriptor ring and Tx buffers */
1552 	tx_ring->count = IGB_DEFAULT_TXD;
1553 	tx_ring->dev = &adapter->pdev->dev;
1554 	tx_ring->netdev = adapter->netdev;
1555 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1556 
1557 	if (igb_setup_tx_resources(tx_ring)) {
1558 		ret_val = 1;
1559 		goto err_nomem;
1560 	}
1561 
1562 	igb_setup_tctl(adapter);
1563 	igb_configure_tx_ring(adapter, tx_ring);
1564 
1565 	/* Setup Rx descriptor ring and Rx buffers */
1566 	rx_ring->count = IGB_DEFAULT_RXD;
1567 	rx_ring->dev = &adapter->pdev->dev;
1568 	rx_ring->netdev = adapter->netdev;
1569 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1570 
1571 	if (igb_setup_rx_resources(rx_ring)) {
1572 		ret_val = 3;
1573 		goto err_nomem;
1574 	}
1575 
1576 	/* set the default queue to queue 0 of PF */
1577 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1578 
1579 	/* enable receive ring */
1580 	igb_setup_rctl(adapter);
1581 	igb_configure_rx_ring(adapter, rx_ring);
1582 
1583 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1584 
1585 	return 0;
1586 
1587 err_nomem:
1588 	igb_free_desc_rings(adapter);
1589 	return ret_val;
1590 }
1591 
1592 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1593 {
1594 	struct e1000_hw *hw = &adapter->hw;
1595 
1596 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1597 	igb_write_phy_reg(hw, 29, 0x001F);
1598 	igb_write_phy_reg(hw, 30, 0x8FFC);
1599 	igb_write_phy_reg(hw, 29, 0x001A);
1600 	igb_write_phy_reg(hw, 30, 0x8FF0);
1601 }
1602 
1603 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1604 {
1605 	struct e1000_hw *hw = &adapter->hw;
1606 	u32 ctrl_reg = 0;
1607 
1608 	hw->mac.autoneg = false;
1609 
1610 	if (hw->phy.type == e1000_phy_m88) {
1611 		if (hw->phy.id != I210_I_PHY_ID) {
1612 			/* Auto-MDI/MDIX Off */
1613 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1614 			/* reset to update Auto-MDI/MDIX */
1615 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1616 			/* autoneg off */
1617 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1618 		} else {
1619 			/* force 1000, set loopback  */
1620 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1621 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1622 		}
1623 	} else if (hw->phy.type == e1000_phy_82580) {
1624 		/* enable MII loopback */
1625 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1626 	}
1627 
1628 	/* add small delay to avoid loopback test failure */
1629 	msleep(50);
1630 
1631 	/* force 1000, set loopback */
1632 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1633 
1634 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1635 	ctrl_reg = rd32(E1000_CTRL);
1636 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1637 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1638 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1639 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1640 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1641 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1642 
1643 	if (hw->phy.type == e1000_phy_m88)
1644 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1645 
1646 	wr32(E1000_CTRL, ctrl_reg);
1647 
1648 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1649 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1650 	 */
1651 	if (hw->phy.type == e1000_phy_m88)
1652 		igb_phy_disable_receiver(adapter);
1653 
1654 	mdelay(500);
1655 	return 0;
1656 }
1657 
1658 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1659 {
1660 	return igb_integrated_phy_loopback(adapter);
1661 }
1662 
1663 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1664 {
1665 	struct e1000_hw *hw = &adapter->hw;
1666 	u32 reg;
1667 
1668 	reg = rd32(E1000_CTRL_EXT);
1669 
1670 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1671 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1672 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1673 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1674 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1675 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1676 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1677 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1678 			/* Enable DH89xxCC MPHY for near end loopback */
1679 			reg = rd32(E1000_MPHY_ADDR_CTL);
1680 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1681 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1682 			wr32(E1000_MPHY_ADDR_CTL, reg);
1683 
1684 			reg = rd32(E1000_MPHY_DATA);
1685 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1686 			wr32(E1000_MPHY_DATA, reg);
1687 		}
1688 
1689 		reg = rd32(E1000_RCTL);
1690 		reg |= E1000_RCTL_LBM_TCVR;
1691 		wr32(E1000_RCTL, reg);
1692 
1693 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1694 
1695 		reg = rd32(E1000_CTRL);
1696 		reg &= ~(E1000_CTRL_RFCE |
1697 			 E1000_CTRL_TFCE |
1698 			 E1000_CTRL_LRST);
1699 		reg |= E1000_CTRL_SLU |
1700 		       E1000_CTRL_FD;
1701 		wr32(E1000_CTRL, reg);
1702 
1703 		/* Unset switch control to serdes energy detect */
1704 		reg = rd32(E1000_CONNSW);
1705 		reg &= ~E1000_CONNSW_ENRGSRC;
1706 		wr32(E1000_CONNSW, reg);
1707 
1708 		/* Unset sigdetect for SERDES loopback on
1709 		 * 82580 and newer devices.
1710 		 */
1711 		if (hw->mac.type >= e1000_82580) {
1712 			reg = rd32(E1000_PCS_CFG0);
1713 			reg |= E1000_PCS_CFG_IGN_SD;
1714 			wr32(E1000_PCS_CFG0, reg);
1715 		}
1716 
1717 		/* Set PCS register for forced speed */
1718 		reg = rd32(E1000_PCS_LCTL);
1719 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1720 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1721 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1722 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1723 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1724 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1725 		wr32(E1000_PCS_LCTL, reg);
1726 
1727 		return 0;
1728 	}
1729 
1730 	return igb_set_phy_loopback(adapter);
1731 }
1732 
1733 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1734 {
1735 	struct e1000_hw *hw = &adapter->hw;
1736 	u32 rctl;
1737 	u16 phy_reg;
1738 
1739 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1740 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1741 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1742 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1743 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1744 		u32 reg;
1745 
1746 		/* Disable near end loopback on DH89xxCC */
1747 		reg = rd32(E1000_MPHY_ADDR_CTL);
1748 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1749 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1750 		wr32(E1000_MPHY_ADDR_CTL, reg);
1751 
1752 		reg = rd32(E1000_MPHY_DATA);
1753 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1754 		wr32(E1000_MPHY_DATA, reg);
1755 	}
1756 
1757 	rctl = rd32(E1000_RCTL);
1758 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1759 	wr32(E1000_RCTL, rctl);
1760 
1761 	hw->mac.autoneg = true;
1762 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1763 	if (phy_reg & MII_CR_LOOPBACK) {
1764 		phy_reg &= ~MII_CR_LOOPBACK;
1765 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1766 		igb_phy_sw_reset(hw);
1767 	}
1768 }
1769 
1770 static void igb_create_lbtest_frame(struct sk_buff *skb,
1771 				    unsigned int frame_size)
1772 {
1773 	memset(skb->data, 0xFF, frame_size);
1774 	frame_size /= 2;
1775 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1776 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1777 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1778 }
1779 
1780 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1781 				  unsigned int frame_size)
1782 {
1783 	unsigned char *data;
1784 	bool match = true;
1785 
1786 	frame_size >>= 1;
1787 
1788 	data = kmap(rx_buffer->page);
1789 
1790 	if (data[3] != 0xFF ||
1791 	    data[frame_size + 10] != 0xBE ||
1792 	    data[frame_size + 12] != 0xAF)
1793 		match = false;
1794 
1795 	kunmap(rx_buffer->page);
1796 
1797 	return match;
1798 }
1799 
1800 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1801 				struct igb_ring *tx_ring,
1802 				unsigned int size)
1803 {
1804 	union e1000_adv_rx_desc *rx_desc;
1805 	struct igb_rx_buffer *rx_buffer_info;
1806 	struct igb_tx_buffer *tx_buffer_info;
1807 	u16 rx_ntc, tx_ntc, count = 0;
1808 
1809 	/* initialize next to clean and descriptor values */
1810 	rx_ntc = rx_ring->next_to_clean;
1811 	tx_ntc = tx_ring->next_to_clean;
1812 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1813 
1814 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1815 		/* check Rx buffer */
1816 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1817 
1818 		/* sync Rx buffer for CPU read */
1819 		dma_sync_single_for_cpu(rx_ring->dev,
1820 					rx_buffer_info->dma,
1821 					IGB_RX_BUFSZ,
1822 					DMA_FROM_DEVICE);
1823 
1824 		/* verify contents of skb */
1825 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1826 			count++;
1827 
1828 		/* sync Rx buffer for device write */
1829 		dma_sync_single_for_device(rx_ring->dev,
1830 					   rx_buffer_info->dma,
1831 					   IGB_RX_BUFSZ,
1832 					   DMA_FROM_DEVICE);
1833 
1834 		/* unmap buffer on Tx side */
1835 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1836 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1837 
1838 		/* increment Rx/Tx next to clean counters */
1839 		rx_ntc++;
1840 		if (rx_ntc == rx_ring->count)
1841 			rx_ntc = 0;
1842 		tx_ntc++;
1843 		if (tx_ntc == tx_ring->count)
1844 			tx_ntc = 0;
1845 
1846 		/* fetch next descriptor */
1847 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1848 	}
1849 
1850 	netdev_tx_reset_queue(txring_txq(tx_ring));
1851 
1852 	/* re-map buffers to ring, store next to clean values */
1853 	igb_alloc_rx_buffers(rx_ring, count);
1854 	rx_ring->next_to_clean = rx_ntc;
1855 	tx_ring->next_to_clean = tx_ntc;
1856 
1857 	return count;
1858 }
1859 
1860 static int igb_run_loopback_test(struct igb_adapter *adapter)
1861 {
1862 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1863 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1864 	u16 i, j, lc, good_cnt;
1865 	int ret_val = 0;
1866 	unsigned int size = IGB_RX_HDR_LEN;
1867 	netdev_tx_t tx_ret_val;
1868 	struct sk_buff *skb;
1869 
1870 	/* allocate test skb */
1871 	skb = alloc_skb(size, GFP_KERNEL);
1872 	if (!skb)
1873 		return 11;
1874 
1875 	/* place data into test skb */
1876 	igb_create_lbtest_frame(skb, size);
1877 	skb_put(skb, size);
1878 
1879 	/* Calculate the loop count based on the largest descriptor ring
1880 	 * The idea is to wrap the largest ring a number of times using 64
1881 	 * send/receive pairs during each loop
1882 	 */
1883 
1884 	if (rx_ring->count <= tx_ring->count)
1885 		lc = ((tx_ring->count / 64) * 2) + 1;
1886 	else
1887 		lc = ((rx_ring->count / 64) * 2) + 1;
1888 
1889 	for (j = 0; j <= lc; j++) { /* loop count loop */
1890 		/* reset count of good packets */
1891 		good_cnt = 0;
1892 
1893 		/* place 64 packets on the transmit queue*/
1894 		for (i = 0; i < 64; i++) {
1895 			skb_get(skb);
1896 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1897 			if (tx_ret_val == NETDEV_TX_OK)
1898 				good_cnt++;
1899 		}
1900 
1901 		if (good_cnt != 64) {
1902 			ret_val = 12;
1903 			break;
1904 		}
1905 
1906 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1907 		msleep(200);
1908 
1909 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1910 		if (good_cnt != 64) {
1911 			ret_val = 13;
1912 			break;
1913 		}
1914 	} /* end loop count loop */
1915 
1916 	/* free the original skb */
1917 	kfree_skb(skb);
1918 
1919 	return ret_val;
1920 }
1921 
1922 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1923 {
1924 	/* PHY loopback cannot be performed if SoL/IDER
1925 	 * sessions are active
1926 	 */
1927 	if (igb_check_reset_block(&adapter->hw)) {
1928 		dev_err(&adapter->pdev->dev,
1929 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1930 		*data = 0;
1931 		goto out;
1932 	}
1933 
1934 	if (adapter->hw.mac.type == e1000_i354) {
1935 		dev_info(&adapter->pdev->dev,
1936 			"Loopback test not supported on i354.\n");
1937 		*data = 0;
1938 		goto out;
1939 	}
1940 	*data = igb_setup_desc_rings(adapter);
1941 	if (*data)
1942 		goto out;
1943 	*data = igb_setup_loopback_test(adapter);
1944 	if (*data)
1945 		goto err_loopback;
1946 	*data = igb_run_loopback_test(adapter);
1947 	igb_loopback_cleanup(adapter);
1948 
1949 err_loopback:
1950 	igb_free_desc_rings(adapter);
1951 out:
1952 	return *data;
1953 }
1954 
1955 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1956 {
1957 	struct e1000_hw *hw = &adapter->hw;
1958 	*data = 0;
1959 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1960 		int i = 0;
1961 
1962 		hw->mac.serdes_has_link = false;
1963 
1964 		/* On some blade server designs, link establishment
1965 		 * could take as long as 2-3 minutes
1966 		 */
1967 		do {
1968 			hw->mac.ops.check_for_link(&adapter->hw);
1969 			if (hw->mac.serdes_has_link)
1970 				return *data;
1971 			msleep(20);
1972 		} while (i++ < 3750);
1973 
1974 		*data = 1;
1975 	} else {
1976 		hw->mac.ops.check_for_link(&adapter->hw);
1977 		if (hw->mac.autoneg)
1978 			msleep(5000);
1979 
1980 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1981 			*data = 1;
1982 	}
1983 	return *data;
1984 }
1985 
1986 static void igb_diag_test(struct net_device *netdev,
1987 			  struct ethtool_test *eth_test, u64 *data)
1988 {
1989 	struct igb_adapter *adapter = netdev_priv(netdev);
1990 	u16 autoneg_advertised;
1991 	u8 forced_speed_duplex, autoneg;
1992 	bool if_running = netif_running(netdev);
1993 
1994 	set_bit(__IGB_TESTING, &adapter->state);
1995 
1996 	/* can't do offline tests on media switching devices */
1997 	if (adapter->hw.dev_spec._82575.mas_capable)
1998 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1999 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2000 		/* Offline tests */
2001 
2002 		/* save speed, duplex, autoneg settings */
2003 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2004 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2005 		autoneg = adapter->hw.mac.autoneg;
2006 
2007 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2008 
2009 		/* power up link for link test */
2010 		igb_power_up_link(adapter);
2011 
2012 		/* Link test performed before hardware reset so autoneg doesn't
2013 		 * interfere with test result
2014 		 */
2015 		if (igb_link_test(adapter, &data[TEST_LINK]))
2016 			eth_test->flags |= ETH_TEST_FL_FAILED;
2017 
2018 		if (if_running)
2019 			/* indicate we're in test mode */
2020 			igb_close(netdev);
2021 		else
2022 			igb_reset(adapter);
2023 
2024 		if (igb_reg_test(adapter, &data[TEST_REG]))
2025 			eth_test->flags |= ETH_TEST_FL_FAILED;
2026 
2027 		igb_reset(adapter);
2028 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2029 			eth_test->flags |= ETH_TEST_FL_FAILED;
2030 
2031 		igb_reset(adapter);
2032 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2033 			eth_test->flags |= ETH_TEST_FL_FAILED;
2034 
2035 		igb_reset(adapter);
2036 		/* power up link for loopback test */
2037 		igb_power_up_link(adapter);
2038 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2039 			eth_test->flags |= ETH_TEST_FL_FAILED;
2040 
2041 		/* restore speed, duplex, autoneg settings */
2042 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2043 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2044 		adapter->hw.mac.autoneg = autoneg;
2045 
2046 		/* force this routine to wait until autoneg complete/timeout */
2047 		adapter->hw.phy.autoneg_wait_to_complete = true;
2048 		igb_reset(adapter);
2049 		adapter->hw.phy.autoneg_wait_to_complete = false;
2050 
2051 		clear_bit(__IGB_TESTING, &adapter->state);
2052 		if (if_running)
2053 			igb_open(netdev);
2054 	} else {
2055 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2056 
2057 		/* PHY is powered down when interface is down */
2058 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2059 			eth_test->flags |= ETH_TEST_FL_FAILED;
2060 		else
2061 			data[TEST_LINK] = 0;
2062 
2063 		/* Online tests aren't run; pass by default */
2064 		data[TEST_REG] = 0;
2065 		data[TEST_EEP] = 0;
2066 		data[TEST_IRQ] = 0;
2067 		data[TEST_LOOP] = 0;
2068 
2069 		clear_bit(__IGB_TESTING, &adapter->state);
2070 	}
2071 	msleep_interruptible(4 * 1000);
2072 }
2073 
2074 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2075 {
2076 	struct igb_adapter *adapter = netdev_priv(netdev);
2077 
2078 	wol->wolopts = 0;
2079 
2080 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2081 		return;
2082 
2083 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2084 			 WAKE_BCAST | WAKE_MAGIC |
2085 			 WAKE_PHY;
2086 
2087 	/* apply any specific unsupported masks here */
2088 	switch (adapter->hw.device_id) {
2089 	default:
2090 		break;
2091 	}
2092 
2093 	if (adapter->wol & E1000_WUFC_EX)
2094 		wol->wolopts |= WAKE_UCAST;
2095 	if (adapter->wol & E1000_WUFC_MC)
2096 		wol->wolopts |= WAKE_MCAST;
2097 	if (adapter->wol & E1000_WUFC_BC)
2098 		wol->wolopts |= WAKE_BCAST;
2099 	if (adapter->wol & E1000_WUFC_MAG)
2100 		wol->wolopts |= WAKE_MAGIC;
2101 	if (adapter->wol & E1000_WUFC_LNKC)
2102 		wol->wolopts |= WAKE_PHY;
2103 }
2104 
2105 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2106 {
2107 	struct igb_adapter *adapter = netdev_priv(netdev);
2108 
2109 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2110 		return -EOPNOTSUPP;
2111 
2112 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2113 		return wol->wolopts ? -EOPNOTSUPP : 0;
2114 
2115 	/* these settings will always override what we currently have */
2116 	adapter->wol = 0;
2117 
2118 	if (wol->wolopts & WAKE_UCAST)
2119 		adapter->wol |= E1000_WUFC_EX;
2120 	if (wol->wolopts & WAKE_MCAST)
2121 		adapter->wol |= E1000_WUFC_MC;
2122 	if (wol->wolopts & WAKE_BCAST)
2123 		adapter->wol |= E1000_WUFC_BC;
2124 	if (wol->wolopts & WAKE_MAGIC)
2125 		adapter->wol |= E1000_WUFC_MAG;
2126 	if (wol->wolopts & WAKE_PHY)
2127 		adapter->wol |= E1000_WUFC_LNKC;
2128 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2129 
2130 	return 0;
2131 }
2132 
2133 /* bit defines for adapter->led_status */
2134 #define IGB_LED_ON		0
2135 
2136 static int igb_set_phys_id(struct net_device *netdev,
2137 			   enum ethtool_phys_id_state state)
2138 {
2139 	struct igb_adapter *adapter = netdev_priv(netdev);
2140 	struct e1000_hw *hw = &adapter->hw;
2141 
2142 	switch (state) {
2143 	case ETHTOOL_ID_ACTIVE:
2144 		igb_blink_led(hw);
2145 		return 2;
2146 	case ETHTOOL_ID_ON:
2147 		igb_blink_led(hw);
2148 		break;
2149 	case ETHTOOL_ID_OFF:
2150 		igb_led_off(hw);
2151 		break;
2152 	case ETHTOOL_ID_INACTIVE:
2153 		igb_led_off(hw);
2154 		clear_bit(IGB_LED_ON, &adapter->led_status);
2155 		igb_cleanup_led(hw);
2156 		break;
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 static int igb_set_coalesce(struct net_device *netdev,
2163 			    struct ethtool_coalesce *ec)
2164 {
2165 	struct igb_adapter *adapter = netdev_priv(netdev);
2166 	int i;
2167 
2168 	if (ec->rx_max_coalesced_frames ||
2169 	    ec->rx_coalesce_usecs_irq ||
2170 	    ec->rx_max_coalesced_frames_irq ||
2171 	    ec->tx_max_coalesced_frames ||
2172 	    ec->tx_coalesce_usecs_irq ||
2173 	    ec->stats_block_coalesce_usecs ||
2174 	    ec->use_adaptive_rx_coalesce ||
2175 	    ec->use_adaptive_tx_coalesce ||
2176 	    ec->pkt_rate_low ||
2177 	    ec->rx_coalesce_usecs_low ||
2178 	    ec->rx_max_coalesced_frames_low ||
2179 	    ec->tx_coalesce_usecs_low ||
2180 	    ec->tx_max_coalesced_frames_low ||
2181 	    ec->pkt_rate_high ||
2182 	    ec->rx_coalesce_usecs_high ||
2183 	    ec->rx_max_coalesced_frames_high ||
2184 	    ec->tx_coalesce_usecs_high ||
2185 	    ec->tx_max_coalesced_frames_high ||
2186 	    ec->rate_sample_interval)
2187 		return -ENOTSUPP;
2188 
2189 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2190 	    ((ec->rx_coalesce_usecs > 3) &&
2191 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2192 	    (ec->rx_coalesce_usecs == 2))
2193 		return -EINVAL;
2194 
2195 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2196 	    ((ec->tx_coalesce_usecs > 3) &&
2197 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2198 	    (ec->tx_coalesce_usecs == 2))
2199 		return -EINVAL;
2200 
2201 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2202 		return -EINVAL;
2203 
2204 	/* If ITR is disabled, disable DMAC */
2205 	if (ec->rx_coalesce_usecs == 0) {
2206 		if (adapter->flags & IGB_FLAG_DMAC)
2207 			adapter->flags &= ~IGB_FLAG_DMAC;
2208 	}
2209 
2210 	/* convert to rate of irq's per second */
2211 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2212 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2213 	else
2214 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2215 
2216 	/* convert to rate of irq's per second */
2217 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2218 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2219 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2220 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2221 	else
2222 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2223 
2224 	for (i = 0; i < adapter->num_q_vectors; i++) {
2225 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2226 		q_vector->tx.work_limit = adapter->tx_work_limit;
2227 		if (q_vector->rx.ring)
2228 			q_vector->itr_val = adapter->rx_itr_setting;
2229 		else
2230 			q_vector->itr_val = adapter->tx_itr_setting;
2231 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2232 			q_vector->itr_val = IGB_START_ITR;
2233 		q_vector->set_itr = 1;
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 static int igb_get_coalesce(struct net_device *netdev,
2240 			    struct ethtool_coalesce *ec)
2241 {
2242 	struct igb_adapter *adapter = netdev_priv(netdev);
2243 
2244 	if (adapter->rx_itr_setting <= 3)
2245 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2246 	else
2247 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2248 
2249 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2250 		if (adapter->tx_itr_setting <= 3)
2251 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2252 		else
2253 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 static int igb_nway_reset(struct net_device *netdev)
2260 {
2261 	struct igb_adapter *adapter = netdev_priv(netdev);
2262 	if (netif_running(netdev))
2263 		igb_reinit_locked(adapter);
2264 	return 0;
2265 }
2266 
2267 static int igb_get_sset_count(struct net_device *netdev, int sset)
2268 {
2269 	switch (sset) {
2270 	case ETH_SS_STATS:
2271 		return IGB_STATS_LEN;
2272 	case ETH_SS_TEST:
2273 		return IGB_TEST_LEN;
2274 	default:
2275 		return -ENOTSUPP;
2276 	}
2277 }
2278 
2279 static void igb_get_ethtool_stats(struct net_device *netdev,
2280 				  struct ethtool_stats *stats, u64 *data)
2281 {
2282 	struct igb_adapter *adapter = netdev_priv(netdev);
2283 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2284 	unsigned int start;
2285 	struct igb_ring *ring;
2286 	int i, j;
2287 	char *p;
2288 
2289 	spin_lock(&adapter->stats64_lock);
2290 	igb_update_stats(adapter, net_stats);
2291 
2292 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2293 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2294 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2295 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2296 	}
2297 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2298 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2299 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2300 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2301 	}
2302 	for (j = 0; j < adapter->num_tx_queues; j++) {
2303 		u64	restart2;
2304 
2305 		ring = adapter->tx_ring[j];
2306 		do {
2307 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2308 			data[i]   = ring->tx_stats.packets;
2309 			data[i+1] = ring->tx_stats.bytes;
2310 			data[i+2] = ring->tx_stats.restart_queue;
2311 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2312 		do {
2313 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2314 			restart2  = ring->tx_stats.restart_queue2;
2315 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2316 		data[i+2] += restart2;
2317 
2318 		i += IGB_TX_QUEUE_STATS_LEN;
2319 	}
2320 	for (j = 0; j < adapter->num_rx_queues; j++) {
2321 		ring = adapter->rx_ring[j];
2322 		do {
2323 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2324 			data[i]   = ring->rx_stats.packets;
2325 			data[i+1] = ring->rx_stats.bytes;
2326 			data[i+2] = ring->rx_stats.drops;
2327 			data[i+3] = ring->rx_stats.csum_err;
2328 			data[i+4] = ring->rx_stats.alloc_failed;
2329 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2330 		i += IGB_RX_QUEUE_STATS_LEN;
2331 	}
2332 	spin_unlock(&adapter->stats64_lock);
2333 }
2334 
2335 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2336 {
2337 	struct igb_adapter *adapter = netdev_priv(netdev);
2338 	u8 *p = data;
2339 	int i;
2340 
2341 	switch (stringset) {
2342 	case ETH_SS_TEST:
2343 		memcpy(data, *igb_gstrings_test,
2344 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2345 		break;
2346 	case ETH_SS_STATS:
2347 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2348 			memcpy(p, igb_gstrings_stats[i].stat_string,
2349 			       ETH_GSTRING_LEN);
2350 			p += ETH_GSTRING_LEN;
2351 		}
2352 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2353 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2354 			       ETH_GSTRING_LEN);
2355 			p += ETH_GSTRING_LEN;
2356 		}
2357 		for (i = 0; i < adapter->num_tx_queues; i++) {
2358 			sprintf(p, "tx_queue_%u_packets", i);
2359 			p += ETH_GSTRING_LEN;
2360 			sprintf(p, "tx_queue_%u_bytes", i);
2361 			p += ETH_GSTRING_LEN;
2362 			sprintf(p, "tx_queue_%u_restart", i);
2363 			p += ETH_GSTRING_LEN;
2364 		}
2365 		for (i = 0; i < adapter->num_rx_queues; i++) {
2366 			sprintf(p, "rx_queue_%u_packets", i);
2367 			p += ETH_GSTRING_LEN;
2368 			sprintf(p, "rx_queue_%u_bytes", i);
2369 			p += ETH_GSTRING_LEN;
2370 			sprintf(p, "rx_queue_%u_drops", i);
2371 			p += ETH_GSTRING_LEN;
2372 			sprintf(p, "rx_queue_%u_csum_err", i);
2373 			p += ETH_GSTRING_LEN;
2374 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2375 			p += ETH_GSTRING_LEN;
2376 		}
2377 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2378 		break;
2379 	}
2380 }
2381 
2382 static int igb_get_ts_info(struct net_device *dev,
2383 			   struct ethtool_ts_info *info)
2384 {
2385 	struct igb_adapter *adapter = netdev_priv(dev);
2386 
2387 	if (adapter->ptp_clock)
2388 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2389 	else
2390 		info->phc_index = -1;
2391 
2392 	switch (adapter->hw.mac.type) {
2393 	case e1000_82575:
2394 		info->so_timestamping =
2395 			SOF_TIMESTAMPING_TX_SOFTWARE |
2396 			SOF_TIMESTAMPING_RX_SOFTWARE |
2397 			SOF_TIMESTAMPING_SOFTWARE;
2398 		return 0;
2399 	case e1000_82576:
2400 	case e1000_82580:
2401 	case e1000_i350:
2402 	case e1000_i354:
2403 	case e1000_i210:
2404 	case e1000_i211:
2405 		info->so_timestamping =
2406 			SOF_TIMESTAMPING_TX_SOFTWARE |
2407 			SOF_TIMESTAMPING_RX_SOFTWARE |
2408 			SOF_TIMESTAMPING_SOFTWARE |
2409 			SOF_TIMESTAMPING_TX_HARDWARE |
2410 			SOF_TIMESTAMPING_RX_HARDWARE |
2411 			SOF_TIMESTAMPING_RAW_HARDWARE;
2412 
2413 		info->tx_types =
2414 			BIT(HWTSTAMP_TX_OFF) |
2415 			BIT(HWTSTAMP_TX_ON);
2416 
2417 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2418 
2419 		/* 82576 does not support timestamping all packets. */
2420 		if (adapter->hw.mac.type >= e1000_82580)
2421 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2422 		else
2423 			info->rx_filters |=
2424 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2425 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2426 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2427 
2428 		return 0;
2429 	default:
2430 		return -EOPNOTSUPP;
2431 	}
2432 }
2433 
2434 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2435 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2436 				     struct ethtool_rxnfc *cmd)
2437 {
2438 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2439 	struct igb_nfc_filter *rule = NULL;
2440 
2441 	/* report total rule count */
2442 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2443 
2444 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2445 		if (fsp->location <= rule->sw_idx)
2446 			break;
2447 	}
2448 
2449 	if (!rule || fsp->location != rule->sw_idx)
2450 		return -EINVAL;
2451 
2452 	if (rule->filter.match_flags) {
2453 		fsp->flow_type = ETHER_FLOW;
2454 		fsp->ring_cookie = rule->action;
2455 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2456 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2457 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2458 		}
2459 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2460 			fsp->flow_type |= FLOW_EXT;
2461 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2462 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2463 		}
2464 		return 0;
2465 	}
2466 	return -EINVAL;
2467 }
2468 
2469 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2470 				   struct ethtool_rxnfc *cmd,
2471 				   u32 *rule_locs)
2472 {
2473 	struct igb_nfc_filter *rule;
2474 	int cnt = 0;
2475 
2476 	/* report total rule count */
2477 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2478 
2479 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2480 		if (cnt == cmd->rule_cnt)
2481 			return -EMSGSIZE;
2482 		rule_locs[cnt] = rule->sw_idx;
2483 		cnt++;
2484 	}
2485 
2486 	cmd->rule_cnt = cnt;
2487 
2488 	return 0;
2489 }
2490 
2491 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2492 				 struct ethtool_rxnfc *cmd)
2493 {
2494 	cmd->data = 0;
2495 
2496 	/* Report default options for RSS on igb */
2497 	switch (cmd->flow_type) {
2498 	case TCP_V4_FLOW:
2499 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2500 		/* Fall through */
2501 	case UDP_V4_FLOW:
2502 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2503 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2504 		/* Fall through */
2505 	case SCTP_V4_FLOW:
2506 	case AH_ESP_V4_FLOW:
2507 	case AH_V4_FLOW:
2508 	case ESP_V4_FLOW:
2509 	case IPV4_FLOW:
2510 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2511 		break;
2512 	case TCP_V6_FLOW:
2513 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2514 		/* Fall through */
2515 	case UDP_V6_FLOW:
2516 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2517 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2518 		/* Fall through */
2519 	case SCTP_V6_FLOW:
2520 	case AH_ESP_V6_FLOW:
2521 	case AH_V6_FLOW:
2522 	case ESP_V6_FLOW:
2523 	case IPV6_FLOW:
2524 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2525 		break;
2526 	default:
2527 		return -EINVAL;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2534 			 u32 *rule_locs)
2535 {
2536 	struct igb_adapter *adapter = netdev_priv(dev);
2537 	int ret = -EOPNOTSUPP;
2538 
2539 	switch (cmd->cmd) {
2540 	case ETHTOOL_GRXRINGS:
2541 		cmd->data = adapter->num_rx_queues;
2542 		ret = 0;
2543 		break;
2544 	case ETHTOOL_GRXCLSRLCNT:
2545 		cmd->rule_cnt = adapter->nfc_filter_count;
2546 		ret = 0;
2547 		break;
2548 	case ETHTOOL_GRXCLSRULE:
2549 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2550 		break;
2551 	case ETHTOOL_GRXCLSRLALL:
2552 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2553 		break;
2554 	case ETHTOOL_GRXFH:
2555 		ret = igb_get_rss_hash_opts(adapter, cmd);
2556 		break;
2557 	default:
2558 		break;
2559 	}
2560 
2561 	return ret;
2562 }
2563 
2564 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2565 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2566 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2567 				struct ethtool_rxnfc *nfc)
2568 {
2569 	u32 flags = adapter->flags;
2570 
2571 	/* RSS does not support anything other than hashing
2572 	 * to queues on src and dst IPs and ports
2573 	 */
2574 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2575 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2576 		return -EINVAL;
2577 
2578 	switch (nfc->flow_type) {
2579 	case TCP_V4_FLOW:
2580 	case TCP_V6_FLOW:
2581 		if (!(nfc->data & RXH_IP_SRC) ||
2582 		    !(nfc->data & RXH_IP_DST) ||
2583 		    !(nfc->data & RXH_L4_B_0_1) ||
2584 		    !(nfc->data & RXH_L4_B_2_3))
2585 			return -EINVAL;
2586 		break;
2587 	case UDP_V4_FLOW:
2588 		if (!(nfc->data & RXH_IP_SRC) ||
2589 		    !(nfc->data & RXH_IP_DST))
2590 			return -EINVAL;
2591 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2592 		case 0:
2593 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2594 			break;
2595 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2596 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2597 			break;
2598 		default:
2599 			return -EINVAL;
2600 		}
2601 		break;
2602 	case UDP_V6_FLOW:
2603 		if (!(nfc->data & RXH_IP_SRC) ||
2604 		    !(nfc->data & RXH_IP_DST))
2605 			return -EINVAL;
2606 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2607 		case 0:
2608 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2609 			break;
2610 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2611 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2612 			break;
2613 		default:
2614 			return -EINVAL;
2615 		}
2616 		break;
2617 	case AH_ESP_V4_FLOW:
2618 	case AH_V4_FLOW:
2619 	case ESP_V4_FLOW:
2620 	case SCTP_V4_FLOW:
2621 	case AH_ESP_V6_FLOW:
2622 	case AH_V6_FLOW:
2623 	case ESP_V6_FLOW:
2624 	case SCTP_V6_FLOW:
2625 		if (!(nfc->data & RXH_IP_SRC) ||
2626 		    !(nfc->data & RXH_IP_DST) ||
2627 		    (nfc->data & RXH_L4_B_0_1) ||
2628 		    (nfc->data & RXH_L4_B_2_3))
2629 			return -EINVAL;
2630 		break;
2631 	default:
2632 		return -EINVAL;
2633 	}
2634 
2635 	/* if we changed something we need to update flags */
2636 	if (flags != adapter->flags) {
2637 		struct e1000_hw *hw = &adapter->hw;
2638 		u32 mrqc = rd32(E1000_MRQC);
2639 
2640 		if ((flags & UDP_RSS_FLAGS) &&
2641 		    !(adapter->flags & UDP_RSS_FLAGS))
2642 			dev_err(&adapter->pdev->dev,
2643 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2644 
2645 		adapter->flags = flags;
2646 
2647 		/* Perform hash on these packet types */
2648 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2649 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2650 			E1000_MRQC_RSS_FIELD_IPV6 |
2651 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2652 
2653 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2654 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2655 
2656 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2657 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2658 
2659 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2660 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2661 
2662 		wr32(E1000_MRQC, mrqc);
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2669 					struct igb_nfc_filter *input)
2670 {
2671 	struct e1000_hw *hw = &adapter->hw;
2672 	u8 i;
2673 	u32 etqf;
2674 	u16 etype;
2675 
2676 	/* find an empty etype filter register */
2677 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2678 		if (!adapter->etype_bitmap[i])
2679 			break;
2680 	}
2681 	if (i == MAX_ETYPE_FILTER) {
2682 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2683 		return -EINVAL;
2684 	}
2685 
2686 	adapter->etype_bitmap[i] = true;
2687 
2688 	etqf = rd32(E1000_ETQF(i));
2689 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2690 
2691 	etqf |= E1000_ETQF_FILTER_ENABLE;
2692 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2693 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2694 
2695 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2696 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2697 		& E1000_ETQF_QUEUE_MASK);
2698 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2699 
2700 	wr32(E1000_ETQF(i), etqf);
2701 
2702 	input->etype_reg_index = i;
2703 
2704 	return 0;
2705 }
2706 
2707 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2708 					    struct igb_nfc_filter *input)
2709 {
2710 	struct e1000_hw *hw = &adapter->hw;
2711 	u8 vlan_priority;
2712 	u16 queue_index;
2713 	u32 vlapqf;
2714 
2715 	vlapqf = rd32(E1000_VLAPQF);
2716 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2717 				>> VLAN_PRIO_SHIFT;
2718 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2719 
2720 	/* check whether this vlan prio is already set */
2721 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2722 	    (queue_index != input->action)) {
2723 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2724 		return -EEXIST;
2725 	}
2726 
2727 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2728 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2729 
2730 	wr32(E1000_VLAPQF, vlapqf);
2731 
2732 	return 0;
2733 }
2734 
2735 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2736 {
2737 	int err = -EINVAL;
2738 
2739 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2740 		err = igb_rxnfc_write_etype_filter(adapter, input);
2741 		if (err)
2742 			return err;
2743 	}
2744 
2745 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2746 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2747 
2748 	return err;
2749 }
2750 
2751 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2752 					u16 reg_index)
2753 {
2754 	struct e1000_hw *hw = &adapter->hw;
2755 	u32 etqf = rd32(E1000_ETQF(reg_index));
2756 
2757 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2758 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2759 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2760 
2761 	wr32(E1000_ETQF(reg_index), etqf);
2762 
2763 	adapter->etype_bitmap[reg_index] = false;
2764 }
2765 
2766 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2767 				       u16 vlan_tci)
2768 {
2769 	struct e1000_hw *hw = &adapter->hw;
2770 	u8 vlan_priority;
2771 	u32 vlapqf;
2772 
2773 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2774 
2775 	vlapqf = rd32(E1000_VLAPQF);
2776 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2777 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2778 						E1000_VLAPQF_QUEUE_MASK);
2779 
2780 	wr32(E1000_VLAPQF, vlapqf);
2781 }
2782 
2783 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2784 {
2785 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2786 		igb_clear_etype_filter_regs(adapter,
2787 					    input->etype_reg_index);
2788 
2789 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2790 		igb_clear_vlan_prio_filter(adapter,
2791 					   ntohs(input->filter.vlan_tci));
2792 
2793 	return 0;
2794 }
2795 
2796 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2797 					struct igb_nfc_filter *input,
2798 					u16 sw_idx)
2799 {
2800 	struct igb_nfc_filter *rule, *parent;
2801 	int err = -EINVAL;
2802 
2803 	parent = NULL;
2804 	rule = NULL;
2805 
2806 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2807 		/* hash found, or no matching entry */
2808 		if (rule->sw_idx >= sw_idx)
2809 			break;
2810 		parent = rule;
2811 	}
2812 
2813 	/* if there is an old rule occupying our place remove it */
2814 	if (rule && (rule->sw_idx == sw_idx)) {
2815 		if (!input)
2816 			err = igb_erase_filter(adapter, rule);
2817 
2818 		hlist_del(&rule->nfc_node);
2819 		kfree(rule);
2820 		adapter->nfc_filter_count--;
2821 	}
2822 
2823 	/* If no input this was a delete, err should be 0 if a rule was
2824 	 * successfully found and removed from the list else -EINVAL
2825 	 */
2826 	if (!input)
2827 		return err;
2828 
2829 	/* initialize node */
2830 	INIT_HLIST_NODE(&input->nfc_node);
2831 
2832 	/* add filter to the list */
2833 	if (parent)
2834 		hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2835 	else
2836 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2837 
2838 	/* update counts */
2839 	adapter->nfc_filter_count++;
2840 
2841 	return 0;
2842 }
2843 
2844 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2845 				     struct ethtool_rxnfc *cmd)
2846 {
2847 	struct net_device *netdev = adapter->netdev;
2848 	struct ethtool_rx_flow_spec *fsp =
2849 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2850 	struct igb_nfc_filter *input, *rule;
2851 	int err = 0;
2852 
2853 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2854 		return -EOPNOTSUPP;
2855 
2856 	/* Don't allow programming if the action is a queue greater than
2857 	 * the number of online Rx queues.
2858 	 */
2859 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2860 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2861 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2862 		return -EINVAL;
2863 	}
2864 
2865 	/* Don't allow indexes to exist outside of available space */
2866 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2867 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2868 		return -EINVAL;
2869 	}
2870 
2871 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2872 		return -EINVAL;
2873 
2874 	if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2875 	    fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2876 		return -EINVAL;
2877 
2878 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2879 	if (!input)
2880 		return -ENOMEM;
2881 
2882 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2883 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2884 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2885 	}
2886 
2887 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2888 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2889 			err = -EINVAL;
2890 			goto err_out;
2891 		}
2892 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2893 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2894 	}
2895 
2896 	input->action = fsp->ring_cookie;
2897 	input->sw_idx = fsp->location;
2898 
2899 	spin_lock(&adapter->nfc_lock);
2900 
2901 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2902 		if (!memcmp(&input->filter, &rule->filter,
2903 			    sizeof(input->filter))) {
2904 			err = -EEXIST;
2905 			dev_err(&adapter->pdev->dev,
2906 				"ethtool: this filter is already set\n");
2907 			goto err_out_w_lock;
2908 		}
2909 	}
2910 
2911 	err = igb_add_filter(adapter, input);
2912 	if (err)
2913 		goto err_out_w_lock;
2914 
2915 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2916 
2917 	spin_unlock(&adapter->nfc_lock);
2918 	return 0;
2919 
2920 err_out_w_lock:
2921 	spin_unlock(&adapter->nfc_lock);
2922 err_out:
2923 	kfree(input);
2924 	return err;
2925 }
2926 
2927 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2928 				     struct ethtool_rxnfc *cmd)
2929 {
2930 	struct ethtool_rx_flow_spec *fsp =
2931 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2932 	int err;
2933 
2934 	spin_lock(&adapter->nfc_lock);
2935 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2936 	spin_unlock(&adapter->nfc_lock);
2937 
2938 	return err;
2939 }
2940 
2941 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2942 {
2943 	struct igb_adapter *adapter = netdev_priv(dev);
2944 	int ret = -EOPNOTSUPP;
2945 
2946 	switch (cmd->cmd) {
2947 	case ETHTOOL_SRXFH:
2948 		ret = igb_set_rss_hash_opt(adapter, cmd);
2949 		break;
2950 	case ETHTOOL_SRXCLSRLINS:
2951 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2952 		break;
2953 	case ETHTOOL_SRXCLSRLDEL:
2954 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2955 	default:
2956 		break;
2957 	}
2958 
2959 	return ret;
2960 }
2961 
2962 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2963 {
2964 	struct igb_adapter *adapter = netdev_priv(netdev);
2965 	struct e1000_hw *hw = &adapter->hw;
2966 	u32 ret_val;
2967 	u16 phy_data;
2968 
2969 	if ((hw->mac.type < e1000_i350) ||
2970 	    (hw->phy.media_type != e1000_media_type_copper))
2971 		return -EOPNOTSUPP;
2972 
2973 	edata->supported = (SUPPORTED_1000baseT_Full |
2974 			    SUPPORTED_100baseT_Full);
2975 	if (!hw->dev_spec._82575.eee_disable)
2976 		edata->advertised =
2977 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2978 
2979 	/* The IPCNFG and EEER registers are not supported on I354. */
2980 	if (hw->mac.type == e1000_i354) {
2981 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2982 	} else {
2983 		u32 eeer;
2984 
2985 		eeer = rd32(E1000_EEER);
2986 
2987 		/* EEE status on negotiated link */
2988 		if (eeer & E1000_EEER_EEE_NEG)
2989 			edata->eee_active = true;
2990 
2991 		if (eeer & E1000_EEER_TX_LPI_EN)
2992 			edata->tx_lpi_enabled = true;
2993 	}
2994 
2995 	/* EEE Link Partner Advertised */
2996 	switch (hw->mac.type) {
2997 	case e1000_i350:
2998 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2999 					   &phy_data);
3000 		if (ret_val)
3001 			return -ENODATA;
3002 
3003 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3004 		break;
3005 	case e1000_i354:
3006 	case e1000_i210:
3007 	case e1000_i211:
3008 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3009 					     E1000_EEE_LP_ADV_DEV_I210,
3010 					     &phy_data);
3011 		if (ret_val)
3012 			return -ENODATA;
3013 
3014 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3015 
3016 		break;
3017 	default:
3018 		break;
3019 	}
3020 
3021 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3022 
3023 	if ((hw->mac.type == e1000_i354) &&
3024 	    (edata->eee_enabled))
3025 		edata->tx_lpi_enabled = true;
3026 
3027 	/* Report correct negotiated EEE status for devices that
3028 	 * wrongly report EEE at half-duplex
3029 	 */
3030 	if (adapter->link_duplex == HALF_DUPLEX) {
3031 		edata->eee_enabled = false;
3032 		edata->eee_active = false;
3033 		edata->tx_lpi_enabled = false;
3034 		edata->advertised &= ~edata->advertised;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 static int igb_set_eee(struct net_device *netdev,
3041 		       struct ethtool_eee *edata)
3042 {
3043 	struct igb_adapter *adapter = netdev_priv(netdev);
3044 	struct e1000_hw *hw = &adapter->hw;
3045 	struct ethtool_eee eee_curr;
3046 	bool adv1g_eee = true, adv100m_eee = true;
3047 	s32 ret_val;
3048 
3049 	if ((hw->mac.type < e1000_i350) ||
3050 	    (hw->phy.media_type != e1000_media_type_copper))
3051 		return -EOPNOTSUPP;
3052 
3053 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3054 
3055 	ret_val = igb_get_eee(netdev, &eee_curr);
3056 	if (ret_val)
3057 		return ret_val;
3058 
3059 	if (eee_curr.eee_enabled) {
3060 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3061 			dev_err(&adapter->pdev->dev,
3062 				"Setting EEE tx-lpi is not supported\n");
3063 			return -EINVAL;
3064 		}
3065 
3066 		/* Tx LPI timer is not implemented currently */
3067 		if (edata->tx_lpi_timer) {
3068 			dev_err(&adapter->pdev->dev,
3069 				"Setting EEE Tx LPI timer is not supported\n");
3070 			return -EINVAL;
3071 		}
3072 
3073 		if (!edata->advertised || (edata->advertised &
3074 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3075 			dev_err(&adapter->pdev->dev,
3076 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3077 			return -EINVAL;
3078 		}
3079 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3080 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3081 
3082 	} else if (!edata->eee_enabled) {
3083 		dev_err(&adapter->pdev->dev,
3084 			"Setting EEE options are not supported with EEE disabled\n");
3085 			return -EINVAL;
3086 		}
3087 
3088 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3089 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3090 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3091 		adapter->flags |= IGB_FLAG_EEE;
3092 
3093 		/* reset link */
3094 		if (netif_running(netdev))
3095 			igb_reinit_locked(adapter);
3096 		else
3097 			igb_reset(adapter);
3098 	}
3099 
3100 	if (hw->mac.type == e1000_i354)
3101 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3102 	else
3103 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3104 
3105 	if (ret_val) {
3106 		dev_err(&adapter->pdev->dev,
3107 			"Problem setting EEE advertisement options\n");
3108 		return -EINVAL;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 static int igb_get_module_info(struct net_device *netdev,
3115 			       struct ethtool_modinfo *modinfo)
3116 {
3117 	struct igb_adapter *adapter = netdev_priv(netdev);
3118 	struct e1000_hw *hw = &adapter->hw;
3119 	u32 status = 0;
3120 	u16 sff8472_rev, addr_mode;
3121 	bool page_swap = false;
3122 
3123 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3124 	    (hw->phy.media_type == e1000_media_type_unknown))
3125 		return -EOPNOTSUPP;
3126 
3127 	/* Check whether we support SFF-8472 or not */
3128 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3129 	if (status)
3130 		return -EIO;
3131 
3132 	/* addressing mode is not supported */
3133 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3134 	if (status)
3135 		return -EIO;
3136 
3137 	/* addressing mode is not supported */
3138 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3139 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3140 		page_swap = true;
3141 	}
3142 
3143 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3144 		/* We have an SFP, but it does not support SFF-8472 */
3145 		modinfo->type = ETH_MODULE_SFF_8079;
3146 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3147 	} else {
3148 		/* We have an SFP which supports a revision of SFF-8472 */
3149 		modinfo->type = ETH_MODULE_SFF_8472;
3150 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3151 	}
3152 
3153 	return 0;
3154 }
3155 
3156 static int igb_get_module_eeprom(struct net_device *netdev,
3157 				 struct ethtool_eeprom *ee, u8 *data)
3158 {
3159 	struct igb_adapter *adapter = netdev_priv(netdev);
3160 	struct e1000_hw *hw = &adapter->hw;
3161 	u32 status = 0;
3162 	u16 *dataword;
3163 	u16 first_word, last_word;
3164 	int i = 0;
3165 
3166 	if (ee->len == 0)
3167 		return -EINVAL;
3168 
3169 	first_word = ee->offset >> 1;
3170 	last_word = (ee->offset + ee->len - 1) >> 1;
3171 
3172 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3173 			   GFP_KERNEL);
3174 	if (!dataword)
3175 		return -ENOMEM;
3176 
3177 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3178 	for (i = 0; i < last_word - first_word + 1; i++) {
3179 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3180 					      &dataword[i]);
3181 		if (status) {
3182 			/* Error occurred while reading module */
3183 			kfree(dataword);
3184 			return -EIO;
3185 		}
3186 
3187 		be16_to_cpus(&dataword[i]);
3188 	}
3189 
3190 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3191 	kfree(dataword);
3192 
3193 	return 0;
3194 }
3195 
3196 static int igb_ethtool_begin(struct net_device *netdev)
3197 {
3198 	struct igb_adapter *adapter = netdev_priv(netdev);
3199 	pm_runtime_get_sync(&adapter->pdev->dev);
3200 	return 0;
3201 }
3202 
3203 static void igb_ethtool_complete(struct net_device *netdev)
3204 {
3205 	struct igb_adapter *adapter = netdev_priv(netdev);
3206 	pm_runtime_put(&adapter->pdev->dev);
3207 }
3208 
3209 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3210 {
3211 	return IGB_RETA_SIZE;
3212 }
3213 
3214 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3215 			u8 *hfunc)
3216 {
3217 	struct igb_adapter *adapter = netdev_priv(netdev);
3218 	int i;
3219 
3220 	if (hfunc)
3221 		*hfunc = ETH_RSS_HASH_TOP;
3222 	if (!indir)
3223 		return 0;
3224 	for (i = 0; i < IGB_RETA_SIZE; i++)
3225 		indir[i] = adapter->rss_indir_tbl[i];
3226 
3227 	return 0;
3228 }
3229 
3230 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3231 {
3232 	struct e1000_hw *hw = &adapter->hw;
3233 	u32 reg = E1000_RETA(0);
3234 	u32 shift = 0;
3235 	int i = 0;
3236 
3237 	switch (hw->mac.type) {
3238 	case e1000_82575:
3239 		shift = 6;
3240 		break;
3241 	case e1000_82576:
3242 		/* 82576 supports 2 RSS queues for SR-IOV */
3243 		if (adapter->vfs_allocated_count)
3244 			shift = 3;
3245 		break;
3246 	default:
3247 		break;
3248 	}
3249 
3250 	while (i < IGB_RETA_SIZE) {
3251 		u32 val = 0;
3252 		int j;
3253 
3254 		for (j = 3; j >= 0; j--) {
3255 			val <<= 8;
3256 			val |= adapter->rss_indir_tbl[i + j];
3257 		}
3258 
3259 		wr32(reg, val << shift);
3260 		reg += 4;
3261 		i += 4;
3262 	}
3263 }
3264 
3265 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3266 			const u8 *key, const u8 hfunc)
3267 {
3268 	struct igb_adapter *adapter = netdev_priv(netdev);
3269 	struct e1000_hw *hw = &adapter->hw;
3270 	int i;
3271 	u32 num_queues;
3272 
3273 	/* We do not allow change in unsupported parameters */
3274 	if (key ||
3275 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3276 		return -EOPNOTSUPP;
3277 	if (!indir)
3278 		return 0;
3279 
3280 	num_queues = adapter->rss_queues;
3281 
3282 	switch (hw->mac.type) {
3283 	case e1000_82576:
3284 		/* 82576 supports 2 RSS queues for SR-IOV */
3285 		if (adapter->vfs_allocated_count)
3286 			num_queues = 2;
3287 		break;
3288 	default:
3289 		break;
3290 	}
3291 
3292 	/* Verify user input. */
3293 	for (i = 0; i < IGB_RETA_SIZE; i++)
3294 		if (indir[i] >= num_queues)
3295 			return -EINVAL;
3296 
3297 
3298 	for (i = 0; i < IGB_RETA_SIZE; i++)
3299 		adapter->rss_indir_tbl[i] = indir[i];
3300 
3301 	igb_write_rss_indir_tbl(adapter);
3302 
3303 	return 0;
3304 }
3305 
3306 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3307 {
3308 	struct e1000_hw *hw = &adapter->hw;
3309 	unsigned int max_combined = 0;
3310 
3311 	switch (hw->mac.type) {
3312 	case e1000_i211:
3313 		max_combined = IGB_MAX_RX_QUEUES_I211;
3314 		break;
3315 	case e1000_82575:
3316 	case e1000_i210:
3317 		max_combined = IGB_MAX_RX_QUEUES_82575;
3318 		break;
3319 	case e1000_i350:
3320 		if (!!adapter->vfs_allocated_count) {
3321 			max_combined = 1;
3322 			break;
3323 		}
3324 		/* fall through */
3325 	case e1000_82576:
3326 		if (!!adapter->vfs_allocated_count) {
3327 			max_combined = 2;
3328 			break;
3329 		}
3330 		/* fall through */
3331 	case e1000_82580:
3332 	case e1000_i354:
3333 	default:
3334 		max_combined = IGB_MAX_RX_QUEUES;
3335 		break;
3336 	}
3337 
3338 	return max_combined;
3339 }
3340 
3341 static void igb_get_channels(struct net_device *netdev,
3342 			     struct ethtool_channels *ch)
3343 {
3344 	struct igb_adapter *adapter = netdev_priv(netdev);
3345 
3346 	/* Report maximum channels */
3347 	ch->max_combined = igb_max_channels(adapter);
3348 
3349 	/* Report info for other vector */
3350 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3351 		ch->max_other = NON_Q_VECTORS;
3352 		ch->other_count = NON_Q_VECTORS;
3353 	}
3354 
3355 	ch->combined_count = adapter->rss_queues;
3356 }
3357 
3358 static int igb_set_channels(struct net_device *netdev,
3359 			    struct ethtool_channels *ch)
3360 {
3361 	struct igb_adapter *adapter = netdev_priv(netdev);
3362 	unsigned int count = ch->combined_count;
3363 	unsigned int max_combined = 0;
3364 
3365 	/* Verify they are not requesting separate vectors */
3366 	if (!count || ch->rx_count || ch->tx_count)
3367 		return -EINVAL;
3368 
3369 	/* Verify other_count is valid and has not been changed */
3370 	if (ch->other_count != NON_Q_VECTORS)
3371 		return -EINVAL;
3372 
3373 	/* Verify the number of channels doesn't exceed hw limits */
3374 	max_combined = igb_max_channels(adapter);
3375 	if (count > max_combined)
3376 		return -EINVAL;
3377 
3378 	if (count != adapter->rss_queues) {
3379 		adapter->rss_queues = count;
3380 		igb_set_flag_queue_pairs(adapter, max_combined);
3381 
3382 		/* Hardware has to reinitialize queues and interrupts to
3383 		 * match the new configuration.
3384 		 */
3385 		return igb_reinit_queues(adapter);
3386 	}
3387 
3388 	return 0;
3389 }
3390 
3391 static const struct ethtool_ops igb_ethtool_ops = {
3392 	.get_settings		= igb_get_settings,
3393 	.set_settings		= igb_set_settings,
3394 	.get_drvinfo		= igb_get_drvinfo,
3395 	.get_regs_len		= igb_get_regs_len,
3396 	.get_regs		= igb_get_regs,
3397 	.get_wol		= igb_get_wol,
3398 	.set_wol		= igb_set_wol,
3399 	.get_msglevel		= igb_get_msglevel,
3400 	.set_msglevel		= igb_set_msglevel,
3401 	.nway_reset		= igb_nway_reset,
3402 	.get_link		= igb_get_link,
3403 	.get_eeprom_len		= igb_get_eeprom_len,
3404 	.get_eeprom		= igb_get_eeprom,
3405 	.set_eeprom		= igb_set_eeprom,
3406 	.get_ringparam		= igb_get_ringparam,
3407 	.set_ringparam		= igb_set_ringparam,
3408 	.get_pauseparam		= igb_get_pauseparam,
3409 	.set_pauseparam		= igb_set_pauseparam,
3410 	.self_test		= igb_diag_test,
3411 	.get_strings		= igb_get_strings,
3412 	.set_phys_id		= igb_set_phys_id,
3413 	.get_sset_count		= igb_get_sset_count,
3414 	.get_ethtool_stats	= igb_get_ethtool_stats,
3415 	.get_coalesce		= igb_get_coalesce,
3416 	.set_coalesce		= igb_set_coalesce,
3417 	.get_ts_info		= igb_get_ts_info,
3418 	.get_rxnfc		= igb_get_rxnfc,
3419 	.set_rxnfc		= igb_set_rxnfc,
3420 	.get_eee		= igb_get_eee,
3421 	.set_eee		= igb_set_eee,
3422 	.get_module_info	= igb_get_module_info,
3423 	.get_module_eeprom	= igb_get_module_eeprom,
3424 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3425 	.get_rxfh		= igb_get_rxfh,
3426 	.set_rxfh		= igb_set_rxfh,
3427 	.get_channels		= igb_get_channels,
3428 	.set_channels		= igb_set_channels,
3429 	.begin			= igb_ethtool_begin,
3430 	.complete		= igb_ethtool_complete,
3431 };
3432 
3433 void igb_set_ethtool_ops(struct net_device *netdev)
3434 {
3435 	netdev->ethtool_ops = &igb_ethtool_ops;
3436 }
3437