1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 /* ethtool support for igb */ 5 6 #include <linux/vmalloc.h> 7 #include <linux/netdevice.h> 8 #include <linux/pci.h> 9 #include <linux/delay.h> 10 #include <linux/interrupt.h> 11 #include <linux/if_ether.h> 12 #include <linux/ethtool.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/highmem.h> 17 #include <linux/mdio.h> 18 19 #include "igb.h" 20 21 struct igb_stats { 22 char stat_string[ETH_GSTRING_LEN]; 23 int sizeof_stat; 24 int stat_offset; 25 }; 26 27 #define IGB_STAT(_name, _stat) { \ 28 .stat_string = _name, \ 29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \ 30 .stat_offset = offsetof(struct igb_adapter, _stat) \ 31 } 32 static const struct igb_stats igb_gstrings_stats[] = { 33 IGB_STAT("rx_packets", stats.gprc), 34 IGB_STAT("tx_packets", stats.gptc), 35 IGB_STAT("rx_bytes", stats.gorc), 36 IGB_STAT("tx_bytes", stats.gotc), 37 IGB_STAT("rx_broadcast", stats.bprc), 38 IGB_STAT("tx_broadcast", stats.bptc), 39 IGB_STAT("rx_multicast", stats.mprc), 40 IGB_STAT("tx_multicast", stats.mptc), 41 IGB_STAT("multicast", stats.mprc), 42 IGB_STAT("collisions", stats.colc), 43 IGB_STAT("rx_crc_errors", stats.crcerrs), 44 IGB_STAT("rx_no_buffer_count", stats.rnbc), 45 IGB_STAT("rx_missed_errors", stats.mpc), 46 IGB_STAT("tx_aborted_errors", stats.ecol), 47 IGB_STAT("tx_carrier_errors", stats.tncrs), 48 IGB_STAT("tx_window_errors", stats.latecol), 49 IGB_STAT("tx_abort_late_coll", stats.latecol), 50 IGB_STAT("tx_deferred_ok", stats.dc), 51 IGB_STAT("tx_single_coll_ok", stats.scc), 52 IGB_STAT("tx_multi_coll_ok", stats.mcc), 53 IGB_STAT("tx_timeout_count", tx_timeout_count), 54 IGB_STAT("rx_long_length_errors", stats.roc), 55 IGB_STAT("rx_short_length_errors", stats.ruc), 56 IGB_STAT("rx_align_errors", stats.algnerrc), 57 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 59 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 61 IGB_STAT("tx_flow_control_xon", stats.xontxc), 62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 63 IGB_STAT("rx_long_byte_count", stats.gorc), 64 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 65 IGB_STAT("tx_smbus", stats.mgptc), 66 IGB_STAT("rx_smbus", stats.mgprc), 67 IGB_STAT("dropped_smbus", stats.mgpdc), 68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 75 }; 76 77 #define IGB_NETDEV_STAT(_net_stat) { \ 78 .stat_string = __stringify(_net_stat), \ 79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \ 80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 81 } 82 static const struct igb_stats igb_gstrings_net_stats[] = { 83 IGB_NETDEV_STAT(rx_errors), 84 IGB_NETDEV_STAT(tx_errors), 85 IGB_NETDEV_STAT(tx_dropped), 86 IGB_NETDEV_STAT(rx_length_errors), 87 IGB_NETDEV_STAT(rx_over_errors), 88 IGB_NETDEV_STAT(rx_frame_errors), 89 IGB_NETDEV_STAT(rx_fifo_errors), 90 IGB_NETDEV_STAT(tx_fifo_errors), 91 IGB_NETDEV_STAT(tx_heartbeat_errors) 92 }; 93 94 #define IGB_GLOBAL_STATS_LEN \ 95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 96 #define IGB_NETDEV_STATS_LEN \ 97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 98 #define IGB_RX_QUEUE_STATS_LEN \ 99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 100 101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 102 103 #define IGB_QUEUE_STATS_LEN \ 104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 105 IGB_RX_QUEUE_STATS_LEN) + \ 106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 107 IGB_TX_QUEUE_STATS_LEN)) 108 #define IGB_STATS_LEN \ 109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 110 111 enum igb_diagnostics_results { 112 TEST_REG = 0, 113 TEST_EEP, 114 TEST_IRQ, 115 TEST_LOOP, 116 TEST_LINK 117 }; 118 119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 120 [TEST_REG] = "Register test (offline)", 121 [TEST_EEP] = "Eeprom test (offline)", 122 [TEST_IRQ] = "Interrupt test (offline)", 123 [TEST_LOOP] = "Loopback test (offline)", 124 [TEST_LINK] = "Link test (on/offline)" 125 }; 126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 127 128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = { 129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0) 130 "legacy-rx", 131 }; 132 133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings) 134 135 static int igb_get_link_ksettings(struct net_device *netdev, 136 struct ethtool_link_ksettings *cmd) 137 { 138 struct igb_adapter *adapter = netdev_priv(netdev); 139 struct e1000_hw *hw = &adapter->hw; 140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 142 u32 status; 143 u32 speed; 144 u32 supported, advertising; 145 146 status = pm_runtime_suspended(&adapter->pdev->dev) ? 147 0 : rd32(E1000_STATUS); 148 if (hw->phy.media_type == e1000_media_type_copper) { 149 150 supported = (SUPPORTED_10baseT_Half | 151 SUPPORTED_10baseT_Full | 152 SUPPORTED_100baseT_Half | 153 SUPPORTED_100baseT_Full | 154 SUPPORTED_1000baseT_Full| 155 SUPPORTED_Autoneg | 156 SUPPORTED_TP | 157 SUPPORTED_Pause); 158 advertising = ADVERTISED_TP; 159 160 if (hw->mac.autoneg == 1) { 161 advertising |= ADVERTISED_Autoneg; 162 /* the e1000 autoneg seems to match ethtool nicely */ 163 advertising |= hw->phy.autoneg_advertised; 164 } 165 166 cmd->base.port = PORT_TP; 167 cmd->base.phy_address = hw->phy.addr; 168 } else { 169 supported = (SUPPORTED_FIBRE | 170 SUPPORTED_1000baseKX_Full | 171 SUPPORTED_Autoneg | 172 SUPPORTED_Pause); 173 advertising = (ADVERTISED_FIBRE | 174 ADVERTISED_1000baseKX_Full); 175 if (hw->mac.type == e1000_i354) { 176 if ((hw->device_id == 177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) && 178 !(status & E1000_STATUS_2P5_SKU_OVER)) { 179 supported |= SUPPORTED_2500baseX_Full; 180 supported &= ~SUPPORTED_1000baseKX_Full; 181 advertising |= ADVERTISED_2500baseX_Full; 182 advertising &= ~ADVERTISED_1000baseKX_Full; 183 } 184 } 185 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) { 186 supported |= SUPPORTED_100baseT_Full; 187 advertising |= ADVERTISED_100baseT_Full; 188 } 189 if (hw->mac.autoneg == 1) 190 advertising |= ADVERTISED_Autoneg; 191 192 cmd->base.port = PORT_FIBRE; 193 } 194 if (hw->mac.autoneg != 1) 195 advertising &= ~(ADVERTISED_Pause | 196 ADVERTISED_Asym_Pause); 197 198 switch (hw->fc.requested_mode) { 199 case e1000_fc_full: 200 advertising |= ADVERTISED_Pause; 201 break; 202 case e1000_fc_rx_pause: 203 advertising |= (ADVERTISED_Pause | 204 ADVERTISED_Asym_Pause); 205 break; 206 case e1000_fc_tx_pause: 207 advertising |= ADVERTISED_Asym_Pause; 208 break; 209 default: 210 advertising &= ~(ADVERTISED_Pause | 211 ADVERTISED_Asym_Pause); 212 } 213 if (status & E1000_STATUS_LU) { 214 if ((status & E1000_STATUS_2P5_SKU) && 215 !(status & E1000_STATUS_2P5_SKU_OVER)) { 216 speed = SPEED_2500; 217 } else if (status & E1000_STATUS_SPEED_1000) { 218 speed = SPEED_1000; 219 } else if (status & E1000_STATUS_SPEED_100) { 220 speed = SPEED_100; 221 } else { 222 speed = SPEED_10; 223 } 224 if ((status & E1000_STATUS_FD) || 225 hw->phy.media_type != e1000_media_type_copper) 226 cmd->base.duplex = DUPLEX_FULL; 227 else 228 cmd->base.duplex = DUPLEX_HALF; 229 } else { 230 speed = SPEED_UNKNOWN; 231 cmd->base.duplex = DUPLEX_UNKNOWN; 232 } 233 cmd->base.speed = speed; 234 if ((hw->phy.media_type == e1000_media_type_fiber) || 235 hw->mac.autoneg) 236 cmd->base.autoneg = AUTONEG_ENABLE; 237 else 238 cmd->base.autoneg = AUTONEG_DISABLE; 239 240 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 241 if (hw->phy.media_type == e1000_media_type_copper) 242 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 243 ETH_TP_MDI; 244 else 245 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 246 247 if (hw->phy.mdix == AUTO_ALL_MODES) 248 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 249 else 250 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 251 252 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 253 supported); 254 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 255 advertising); 256 257 return 0; 258 } 259 260 static int igb_set_link_ksettings(struct net_device *netdev, 261 const struct ethtool_link_ksettings *cmd) 262 { 263 struct igb_adapter *adapter = netdev_priv(netdev); 264 struct e1000_hw *hw = &adapter->hw; 265 u32 advertising; 266 267 /* When SoL/IDER sessions are active, autoneg/speed/duplex 268 * cannot be changed 269 */ 270 if (igb_check_reset_block(hw)) { 271 dev_err(&adapter->pdev->dev, 272 "Cannot change link characteristics when SoL/IDER is active.\n"); 273 return -EINVAL; 274 } 275 276 /* MDI setting is only allowed when autoneg enabled because 277 * some hardware doesn't allow MDI setting when speed or 278 * duplex is forced. 279 */ 280 if (cmd->base.eth_tp_mdix_ctrl) { 281 if (hw->phy.media_type != e1000_media_type_copper) 282 return -EOPNOTSUPP; 283 284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 285 (cmd->base.autoneg != AUTONEG_ENABLE)) { 286 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 287 return -EINVAL; 288 } 289 } 290 291 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 292 usleep_range(1000, 2000); 293 294 ethtool_convert_link_mode_to_legacy_u32(&advertising, 295 cmd->link_modes.advertising); 296 297 if (cmd->base.autoneg == AUTONEG_ENABLE) { 298 hw->mac.autoneg = 1; 299 if (hw->phy.media_type == e1000_media_type_fiber) { 300 hw->phy.autoneg_advertised = advertising | 301 ADVERTISED_FIBRE | 302 ADVERTISED_Autoneg; 303 switch (adapter->link_speed) { 304 case SPEED_2500: 305 hw->phy.autoneg_advertised = 306 ADVERTISED_2500baseX_Full; 307 break; 308 case SPEED_1000: 309 hw->phy.autoneg_advertised = 310 ADVERTISED_1000baseT_Full; 311 break; 312 case SPEED_100: 313 hw->phy.autoneg_advertised = 314 ADVERTISED_100baseT_Full; 315 break; 316 default: 317 break; 318 } 319 } else { 320 hw->phy.autoneg_advertised = advertising | 321 ADVERTISED_TP | 322 ADVERTISED_Autoneg; 323 } 324 advertising = hw->phy.autoneg_advertised; 325 if (adapter->fc_autoneg) 326 hw->fc.requested_mode = e1000_fc_default; 327 } else { 328 u32 speed = cmd->base.speed; 329 /* calling this overrides forced MDI setting */ 330 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 331 clear_bit(__IGB_RESETTING, &adapter->state); 332 return -EINVAL; 333 } 334 } 335 336 /* MDI-X => 2; MDI => 1; Auto => 3 */ 337 if (cmd->base.eth_tp_mdix_ctrl) { 338 /* fix up the value for auto (3 => 0) as zero is mapped 339 * internally to auto 340 */ 341 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 342 hw->phy.mdix = AUTO_ALL_MODES; 343 else 344 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 345 } 346 347 /* reset the link */ 348 if (netif_running(adapter->netdev)) { 349 igb_down(adapter); 350 igb_up(adapter); 351 } else 352 igb_reset(adapter); 353 354 clear_bit(__IGB_RESETTING, &adapter->state); 355 return 0; 356 } 357 358 static u32 igb_get_link(struct net_device *netdev) 359 { 360 struct igb_adapter *adapter = netdev_priv(netdev); 361 struct e1000_mac_info *mac = &adapter->hw.mac; 362 363 /* If the link is not reported up to netdev, interrupts are disabled, 364 * and so the physical link state may have changed since we last 365 * looked. Set get_link_status to make sure that the true link 366 * state is interrogated, rather than pulling a cached and possibly 367 * stale link state from the driver. 368 */ 369 if (!netif_carrier_ok(netdev)) 370 mac->get_link_status = 1; 371 372 return igb_has_link(adapter); 373 } 374 375 static void igb_get_pauseparam(struct net_device *netdev, 376 struct ethtool_pauseparam *pause) 377 { 378 struct igb_adapter *adapter = netdev_priv(netdev); 379 struct e1000_hw *hw = &adapter->hw; 380 381 pause->autoneg = 382 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 383 384 if (hw->fc.current_mode == e1000_fc_rx_pause) 385 pause->rx_pause = 1; 386 else if (hw->fc.current_mode == e1000_fc_tx_pause) 387 pause->tx_pause = 1; 388 else if (hw->fc.current_mode == e1000_fc_full) { 389 pause->rx_pause = 1; 390 pause->tx_pause = 1; 391 } 392 } 393 394 static int igb_set_pauseparam(struct net_device *netdev, 395 struct ethtool_pauseparam *pause) 396 { 397 struct igb_adapter *adapter = netdev_priv(netdev); 398 struct e1000_hw *hw = &adapter->hw; 399 int retval = 0; 400 int i; 401 402 /* 100basefx does not support setting link flow control */ 403 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 404 return -EINVAL; 405 406 adapter->fc_autoneg = pause->autoneg; 407 408 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 409 usleep_range(1000, 2000); 410 411 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 412 hw->fc.requested_mode = e1000_fc_default; 413 if (netif_running(adapter->netdev)) { 414 igb_down(adapter); 415 igb_up(adapter); 416 } else { 417 igb_reset(adapter); 418 } 419 } else { 420 if (pause->rx_pause && pause->tx_pause) 421 hw->fc.requested_mode = e1000_fc_full; 422 else if (pause->rx_pause && !pause->tx_pause) 423 hw->fc.requested_mode = e1000_fc_rx_pause; 424 else if (!pause->rx_pause && pause->tx_pause) 425 hw->fc.requested_mode = e1000_fc_tx_pause; 426 else if (!pause->rx_pause && !pause->tx_pause) 427 hw->fc.requested_mode = e1000_fc_none; 428 429 hw->fc.current_mode = hw->fc.requested_mode; 430 431 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 432 igb_force_mac_fc(hw) : igb_setup_link(hw)); 433 434 /* Make sure SRRCTL considers new fc settings for each ring */ 435 for (i = 0; i < adapter->num_rx_queues; i++) { 436 struct igb_ring *ring = adapter->rx_ring[i]; 437 438 igb_setup_srrctl(adapter, ring); 439 } 440 } 441 442 clear_bit(__IGB_RESETTING, &adapter->state); 443 return retval; 444 } 445 446 static u32 igb_get_msglevel(struct net_device *netdev) 447 { 448 struct igb_adapter *adapter = netdev_priv(netdev); 449 return adapter->msg_enable; 450 } 451 452 static void igb_set_msglevel(struct net_device *netdev, u32 data) 453 { 454 struct igb_adapter *adapter = netdev_priv(netdev); 455 adapter->msg_enable = data; 456 } 457 458 static int igb_get_regs_len(struct net_device *netdev) 459 { 460 #define IGB_REGS_LEN 740 461 return IGB_REGS_LEN * sizeof(u32); 462 } 463 464 static void igb_get_regs(struct net_device *netdev, 465 struct ethtool_regs *regs, void *p) 466 { 467 struct igb_adapter *adapter = netdev_priv(netdev); 468 struct e1000_hw *hw = &adapter->hw; 469 u32 *regs_buff = p; 470 u8 i; 471 472 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 473 474 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id; 475 476 /* General Registers */ 477 regs_buff[0] = rd32(E1000_CTRL); 478 regs_buff[1] = rd32(E1000_STATUS); 479 regs_buff[2] = rd32(E1000_CTRL_EXT); 480 regs_buff[3] = rd32(E1000_MDIC); 481 regs_buff[4] = rd32(E1000_SCTL); 482 regs_buff[5] = rd32(E1000_CONNSW); 483 regs_buff[6] = rd32(E1000_VET); 484 regs_buff[7] = rd32(E1000_LEDCTL); 485 regs_buff[8] = rd32(E1000_PBA); 486 regs_buff[9] = rd32(E1000_PBS); 487 regs_buff[10] = rd32(E1000_FRTIMER); 488 regs_buff[11] = rd32(E1000_TCPTIMER); 489 490 /* NVM Register */ 491 regs_buff[12] = rd32(E1000_EECD); 492 493 /* Interrupt */ 494 /* Reading EICS for EICR because they read the 495 * same but EICS does not clear on read 496 */ 497 regs_buff[13] = rd32(E1000_EICS); 498 regs_buff[14] = rd32(E1000_EICS); 499 regs_buff[15] = rd32(E1000_EIMS); 500 regs_buff[16] = rd32(E1000_EIMC); 501 regs_buff[17] = rd32(E1000_EIAC); 502 regs_buff[18] = rd32(E1000_EIAM); 503 /* Reading ICS for ICR because they read the 504 * same but ICS does not clear on read 505 */ 506 regs_buff[19] = rd32(E1000_ICS); 507 regs_buff[20] = rd32(E1000_ICS); 508 regs_buff[21] = rd32(E1000_IMS); 509 regs_buff[22] = rd32(E1000_IMC); 510 regs_buff[23] = rd32(E1000_IAC); 511 regs_buff[24] = rd32(E1000_IAM); 512 regs_buff[25] = rd32(E1000_IMIRVP); 513 514 /* Flow Control */ 515 regs_buff[26] = rd32(E1000_FCAL); 516 regs_buff[27] = rd32(E1000_FCAH); 517 regs_buff[28] = rd32(E1000_FCTTV); 518 regs_buff[29] = rd32(E1000_FCRTL); 519 regs_buff[30] = rd32(E1000_FCRTH); 520 regs_buff[31] = rd32(E1000_FCRTV); 521 522 /* Receive */ 523 regs_buff[32] = rd32(E1000_RCTL); 524 regs_buff[33] = rd32(E1000_RXCSUM); 525 regs_buff[34] = rd32(E1000_RLPML); 526 regs_buff[35] = rd32(E1000_RFCTL); 527 regs_buff[36] = rd32(E1000_MRQC); 528 regs_buff[37] = rd32(E1000_VT_CTL); 529 530 /* Transmit */ 531 regs_buff[38] = rd32(E1000_TCTL); 532 regs_buff[39] = rd32(E1000_TCTL_EXT); 533 regs_buff[40] = rd32(E1000_TIPG); 534 regs_buff[41] = rd32(E1000_DTXCTL); 535 536 /* Wake Up */ 537 regs_buff[42] = rd32(E1000_WUC); 538 regs_buff[43] = rd32(E1000_WUFC); 539 regs_buff[44] = rd32(E1000_WUS); 540 regs_buff[45] = rd32(E1000_IPAV); 541 regs_buff[46] = rd32(E1000_WUPL); 542 543 /* MAC */ 544 regs_buff[47] = rd32(E1000_PCS_CFG0); 545 regs_buff[48] = rd32(E1000_PCS_LCTL); 546 regs_buff[49] = rd32(E1000_PCS_LSTAT); 547 regs_buff[50] = rd32(E1000_PCS_ANADV); 548 regs_buff[51] = rd32(E1000_PCS_LPAB); 549 regs_buff[52] = rd32(E1000_PCS_NPTX); 550 regs_buff[53] = rd32(E1000_PCS_LPABNP); 551 552 /* Statistics */ 553 regs_buff[54] = adapter->stats.crcerrs; 554 regs_buff[55] = adapter->stats.algnerrc; 555 regs_buff[56] = adapter->stats.symerrs; 556 regs_buff[57] = adapter->stats.rxerrc; 557 regs_buff[58] = adapter->stats.mpc; 558 regs_buff[59] = adapter->stats.scc; 559 regs_buff[60] = adapter->stats.ecol; 560 regs_buff[61] = adapter->stats.mcc; 561 regs_buff[62] = adapter->stats.latecol; 562 regs_buff[63] = adapter->stats.colc; 563 regs_buff[64] = adapter->stats.dc; 564 regs_buff[65] = adapter->stats.tncrs; 565 regs_buff[66] = adapter->stats.sec; 566 regs_buff[67] = adapter->stats.htdpmc; 567 regs_buff[68] = adapter->stats.rlec; 568 regs_buff[69] = adapter->stats.xonrxc; 569 regs_buff[70] = adapter->stats.xontxc; 570 regs_buff[71] = adapter->stats.xoffrxc; 571 regs_buff[72] = adapter->stats.xofftxc; 572 regs_buff[73] = adapter->stats.fcruc; 573 regs_buff[74] = adapter->stats.prc64; 574 regs_buff[75] = adapter->stats.prc127; 575 regs_buff[76] = adapter->stats.prc255; 576 regs_buff[77] = adapter->stats.prc511; 577 regs_buff[78] = adapter->stats.prc1023; 578 regs_buff[79] = adapter->stats.prc1522; 579 regs_buff[80] = adapter->stats.gprc; 580 regs_buff[81] = adapter->stats.bprc; 581 regs_buff[82] = adapter->stats.mprc; 582 regs_buff[83] = adapter->stats.gptc; 583 regs_buff[84] = adapter->stats.gorc; 584 regs_buff[86] = adapter->stats.gotc; 585 regs_buff[88] = adapter->stats.rnbc; 586 regs_buff[89] = adapter->stats.ruc; 587 regs_buff[90] = adapter->stats.rfc; 588 regs_buff[91] = adapter->stats.roc; 589 regs_buff[92] = adapter->stats.rjc; 590 regs_buff[93] = adapter->stats.mgprc; 591 regs_buff[94] = adapter->stats.mgpdc; 592 regs_buff[95] = adapter->stats.mgptc; 593 regs_buff[96] = adapter->stats.tor; 594 regs_buff[98] = adapter->stats.tot; 595 regs_buff[100] = adapter->stats.tpr; 596 regs_buff[101] = adapter->stats.tpt; 597 regs_buff[102] = adapter->stats.ptc64; 598 regs_buff[103] = adapter->stats.ptc127; 599 regs_buff[104] = adapter->stats.ptc255; 600 regs_buff[105] = adapter->stats.ptc511; 601 regs_buff[106] = adapter->stats.ptc1023; 602 regs_buff[107] = adapter->stats.ptc1522; 603 regs_buff[108] = adapter->stats.mptc; 604 regs_buff[109] = adapter->stats.bptc; 605 regs_buff[110] = adapter->stats.tsctc; 606 regs_buff[111] = adapter->stats.iac; 607 regs_buff[112] = adapter->stats.rpthc; 608 regs_buff[113] = adapter->stats.hgptc; 609 regs_buff[114] = adapter->stats.hgorc; 610 regs_buff[116] = adapter->stats.hgotc; 611 regs_buff[118] = adapter->stats.lenerrs; 612 regs_buff[119] = adapter->stats.scvpc; 613 regs_buff[120] = adapter->stats.hrmpc; 614 615 for (i = 0; i < 4; i++) 616 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 617 for (i = 0; i < 4; i++) 618 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 619 for (i = 0; i < 4; i++) 620 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 621 for (i = 0; i < 4; i++) 622 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 623 for (i = 0; i < 4; i++) 624 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 625 for (i = 0; i < 4; i++) 626 regs_buff[141 + i] = rd32(E1000_RDH(i)); 627 for (i = 0; i < 4; i++) 628 regs_buff[145 + i] = rd32(E1000_RDT(i)); 629 for (i = 0; i < 4; i++) 630 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 631 632 for (i = 0; i < 10; i++) 633 regs_buff[153 + i] = rd32(E1000_EITR(i)); 634 for (i = 0; i < 8; i++) 635 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 636 for (i = 0; i < 8; i++) 637 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 638 for (i = 0; i < 16; i++) 639 regs_buff[179 + i] = rd32(E1000_RAL(i)); 640 for (i = 0; i < 16; i++) 641 regs_buff[195 + i] = rd32(E1000_RAH(i)); 642 643 for (i = 0; i < 4; i++) 644 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 645 for (i = 0; i < 4; i++) 646 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 647 for (i = 0; i < 4; i++) 648 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 649 for (i = 0; i < 4; i++) 650 regs_buff[223 + i] = rd32(E1000_TDH(i)); 651 for (i = 0; i < 4; i++) 652 regs_buff[227 + i] = rd32(E1000_TDT(i)); 653 for (i = 0; i < 4; i++) 654 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 655 for (i = 0; i < 4; i++) 656 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 657 for (i = 0; i < 4; i++) 658 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 659 for (i = 0; i < 4; i++) 660 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 661 662 for (i = 0; i < 4; i++) 663 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 664 for (i = 0; i < 4; i++) 665 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 666 for (i = 0; i < 32; i++) 667 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 668 for (i = 0; i < 128; i++) 669 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 670 for (i = 0; i < 128; i++) 671 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 672 for (i = 0; i < 4; i++) 673 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 674 675 regs_buff[547] = rd32(E1000_TDFH); 676 regs_buff[548] = rd32(E1000_TDFT); 677 regs_buff[549] = rd32(E1000_TDFHS); 678 regs_buff[550] = rd32(E1000_TDFPC); 679 680 if (hw->mac.type > e1000_82580) { 681 regs_buff[551] = adapter->stats.o2bgptc; 682 regs_buff[552] = adapter->stats.b2ospc; 683 regs_buff[553] = adapter->stats.o2bspc; 684 regs_buff[554] = adapter->stats.b2ogprc; 685 } 686 687 if (hw->mac.type == e1000_82576) { 688 for (i = 0; i < 12; i++) 689 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 690 for (i = 0; i < 4; i++) 691 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 692 for (i = 0; i < 12; i++) 693 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 694 for (i = 0; i < 12; i++) 695 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 696 for (i = 0; i < 12; i++) 697 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 698 for (i = 0; i < 12; i++) 699 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 700 for (i = 0; i < 12; i++) 701 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 702 for (i = 0; i < 12; i++) 703 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 704 705 for (i = 0; i < 12; i++) 706 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 707 for (i = 0; i < 12; i++) 708 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 709 for (i = 0; i < 12; i++) 710 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 711 for (i = 0; i < 12; i++) 712 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 713 for (i = 0; i < 12; i++) 714 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 715 for (i = 0; i < 12; i++) 716 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 717 for (i = 0; i < 12; i++) 718 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 719 for (i = 0; i < 12; i++) 720 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 721 } 722 723 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) 724 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY); 725 } 726 727 static int igb_get_eeprom_len(struct net_device *netdev) 728 { 729 struct igb_adapter *adapter = netdev_priv(netdev); 730 return adapter->hw.nvm.word_size * 2; 731 } 732 733 static int igb_get_eeprom(struct net_device *netdev, 734 struct ethtool_eeprom *eeprom, u8 *bytes) 735 { 736 struct igb_adapter *adapter = netdev_priv(netdev); 737 struct e1000_hw *hw = &adapter->hw; 738 u16 *eeprom_buff; 739 int first_word, last_word; 740 int ret_val = 0; 741 u16 i; 742 743 if (eeprom->len == 0) 744 return -EINVAL; 745 746 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 747 748 first_word = eeprom->offset >> 1; 749 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 750 751 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 752 GFP_KERNEL); 753 if (!eeprom_buff) 754 return -ENOMEM; 755 756 if (hw->nvm.type == e1000_nvm_eeprom_spi) 757 ret_val = hw->nvm.ops.read(hw, first_word, 758 last_word - first_word + 1, 759 eeprom_buff); 760 else { 761 for (i = 0; i < last_word - first_word + 1; i++) { 762 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 763 &eeprom_buff[i]); 764 if (ret_val) 765 break; 766 } 767 } 768 769 /* Device's eeprom is always little-endian, word addressable */ 770 for (i = 0; i < last_word - first_word + 1; i++) 771 le16_to_cpus(&eeprom_buff[i]); 772 773 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 774 eeprom->len); 775 kfree(eeprom_buff); 776 777 return ret_val; 778 } 779 780 static int igb_set_eeprom(struct net_device *netdev, 781 struct ethtool_eeprom *eeprom, u8 *bytes) 782 { 783 struct igb_adapter *adapter = netdev_priv(netdev); 784 struct e1000_hw *hw = &adapter->hw; 785 u16 *eeprom_buff; 786 void *ptr; 787 int max_len, first_word, last_word, ret_val = 0; 788 u16 i; 789 790 if (eeprom->len == 0) 791 return -EOPNOTSUPP; 792 793 if ((hw->mac.type >= e1000_i210) && 794 !igb_get_flash_presence_i210(hw)) { 795 return -EOPNOTSUPP; 796 } 797 798 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 799 return -EFAULT; 800 801 max_len = hw->nvm.word_size * 2; 802 803 first_word = eeprom->offset >> 1; 804 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 805 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 806 if (!eeprom_buff) 807 return -ENOMEM; 808 809 ptr = (void *)eeprom_buff; 810 811 if (eeprom->offset & 1) { 812 /* need read/modify/write of first changed EEPROM word 813 * only the second byte of the word is being modified 814 */ 815 ret_val = hw->nvm.ops.read(hw, first_word, 1, 816 &eeprom_buff[0]); 817 ptr++; 818 } 819 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 820 /* need read/modify/write of last changed EEPROM word 821 * only the first byte of the word is being modified 822 */ 823 ret_val = hw->nvm.ops.read(hw, last_word, 1, 824 &eeprom_buff[last_word - first_word]); 825 if (ret_val) 826 goto out; 827 } 828 829 /* Device's eeprom is always little-endian, word addressable */ 830 for (i = 0; i < last_word - first_word + 1; i++) 831 le16_to_cpus(&eeprom_buff[i]); 832 833 memcpy(ptr, bytes, eeprom->len); 834 835 for (i = 0; i < last_word - first_word + 1; i++) 836 cpu_to_le16s(&eeprom_buff[i]); 837 838 ret_val = hw->nvm.ops.write(hw, first_word, 839 last_word - first_word + 1, eeprom_buff); 840 841 /* Update the checksum if nvm write succeeded */ 842 if (ret_val == 0) 843 hw->nvm.ops.update(hw); 844 845 igb_set_fw_version(adapter); 846 out: 847 kfree(eeprom_buff); 848 return ret_val; 849 } 850 851 static void igb_get_drvinfo(struct net_device *netdev, 852 struct ethtool_drvinfo *drvinfo) 853 { 854 struct igb_adapter *adapter = netdev_priv(netdev); 855 856 strscpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 857 858 /* EEPROM image version # is reported as firmware version # for 859 * 82575 controllers 860 */ 861 strscpy(drvinfo->fw_version, adapter->fw_version, 862 sizeof(drvinfo->fw_version)); 863 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 864 sizeof(drvinfo->bus_info)); 865 866 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN; 867 } 868 869 static void igb_get_ringparam(struct net_device *netdev, 870 struct ethtool_ringparam *ring, 871 struct kernel_ethtool_ringparam *kernel_ring, 872 struct netlink_ext_ack *extack) 873 { 874 struct igb_adapter *adapter = netdev_priv(netdev); 875 876 ring->rx_max_pending = IGB_MAX_RXD; 877 ring->tx_max_pending = IGB_MAX_TXD; 878 ring->rx_pending = adapter->rx_ring_count; 879 ring->tx_pending = adapter->tx_ring_count; 880 } 881 882 static int igb_set_ringparam(struct net_device *netdev, 883 struct ethtool_ringparam *ring, 884 struct kernel_ethtool_ringparam *kernel_ring, 885 struct netlink_ext_ack *extack) 886 { 887 struct igb_adapter *adapter = netdev_priv(netdev); 888 struct igb_ring *temp_ring; 889 int i, err = 0; 890 u16 new_rx_count, new_tx_count; 891 892 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 893 return -EINVAL; 894 895 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 896 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 897 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 898 899 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 900 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 901 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 902 903 if ((new_tx_count == adapter->tx_ring_count) && 904 (new_rx_count == adapter->rx_ring_count)) { 905 /* nothing to do */ 906 return 0; 907 } 908 909 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 910 usleep_range(1000, 2000); 911 912 if (!netif_running(adapter->netdev)) { 913 for (i = 0; i < adapter->num_tx_queues; i++) 914 adapter->tx_ring[i]->count = new_tx_count; 915 for (i = 0; i < adapter->num_rx_queues; i++) 916 adapter->rx_ring[i]->count = new_rx_count; 917 adapter->tx_ring_count = new_tx_count; 918 adapter->rx_ring_count = new_rx_count; 919 goto clear_reset; 920 } 921 922 if (adapter->num_tx_queues > adapter->num_rx_queues) 923 temp_ring = vmalloc(array_size(sizeof(struct igb_ring), 924 adapter->num_tx_queues)); 925 else 926 temp_ring = vmalloc(array_size(sizeof(struct igb_ring), 927 adapter->num_rx_queues)); 928 929 if (!temp_ring) { 930 err = -ENOMEM; 931 goto clear_reset; 932 } 933 934 igb_down(adapter); 935 936 /* We can't just free everything and then setup again, 937 * because the ISRs in MSI-X mode get passed pointers 938 * to the Tx and Rx ring structs. 939 */ 940 if (new_tx_count != adapter->tx_ring_count) { 941 for (i = 0; i < adapter->num_tx_queues; i++) { 942 memcpy(&temp_ring[i], adapter->tx_ring[i], 943 sizeof(struct igb_ring)); 944 945 temp_ring[i].count = new_tx_count; 946 err = igb_setup_tx_resources(&temp_ring[i]); 947 if (err) { 948 while (i) { 949 i--; 950 igb_free_tx_resources(&temp_ring[i]); 951 } 952 goto err_setup; 953 } 954 } 955 956 for (i = 0; i < adapter->num_tx_queues; i++) { 957 igb_free_tx_resources(adapter->tx_ring[i]); 958 959 memcpy(adapter->tx_ring[i], &temp_ring[i], 960 sizeof(struct igb_ring)); 961 } 962 963 adapter->tx_ring_count = new_tx_count; 964 } 965 966 if (new_rx_count != adapter->rx_ring_count) { 967 for (i = 0; i < adapter->num_rx_queues; i++) { 968 memcpy(&temp_ring[i], adapter->rx_ring[i], 969 sizeof(struct igb_ring)); 970 971 temp_ring[i].count = new_rx_count; 972 err = igb_setup_rx_resources(&temp_ring[i]); 973 if (err) { 974 while (i) { 975 i--; 976 igb_free_rx_resources(&temp_ring[i]); 977 } 978 goto err_setup; 979 } 980 981 } 982 983 for (i = 0; i < adapter->num_rx_queues; i++) { 984 igb_free_rx_resources(adapter->rx_ring[i]); 985 986 memcpy(adapter->rx_ring[i], &temp_ring[i], 987 sizeof(struct igb_ring)); 988 } 989 990 adapter->rx_ring_count = new_rx_count; 991 } 992 err_setup: 993 igb_up(adapter); 994 vfree(temp_ring); 995 clear_reset: 996 clear_bit(__IGB_RESETTING, &adapter->state); 997 return err; 998 } 999 1000 /* ethtool register test data */ 1001 struct igb_reg_test { 1002 u16 reg; 1003 u16 reg_offset; 1004 u16 array_len; 1005 u16 test_type; 1006 u32 mask; 1007 u32 write; 1008 }; 1009 1010 /* In the hardware, registers are laid out either singly, in arrays 1011 * spaced 0x100 bytes apart, or in contiguous tables. We assume 1012 * most tests take place on arrays or single registers (handled 1013 * as a single-element array) and special-case the tables. 1014 * Table tests are always pattern tests. 1015 * 1016 * We also make provision for some required setup steps by specifying 1017 * registers to be written without any read-back testing. 1018 */ 1019 1020 #define PATTERN_TEST 1 1021 #define SET_READ_TEST 2 1022 #define WRITE_NO_TEST 3 1023 #define TABLE32_TEST 4 1024 #define TABLE64_TEST_LO 5 1025 #define TABLE64_TEST_HI 6 1026 1027 /* i210 reg test */ 1028 static struct igb_reg_test reg_test_i210[] = { 1029 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1030 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1031 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1032 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1033 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1034 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1035 /* RDH is read-only for i210, only test RDT. */ 1036 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1037 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1038 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1039 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1040 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1041 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1042 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1043 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1044 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1045 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1046 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1047 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1048 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1049 0xFFFFFFFF, 0xFFFFFFFF }, 1050 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1051 0x900FFFFF, 0xFFFFFFFF }, 1052 { E1000_MTA, 0, 128, TABLE32_TEST, 1053 0xFFFFFFFF, 0xFFFFFFFF }, 1054 { 0, 0, 0, 0, 0 } 1055 }; 1056 1057 /* i350 reg test */ 1058 static struct igb_reg_test reg_test_i350[] = { 1059 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1060 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1061 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1062 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1063 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1064 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1065 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1066 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1067 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1068 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1069 /* RDH is read-only for i350, only test RDT. */ 1070 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1071 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1072 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1073 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1074 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1075 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1076 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1077 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1078 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1079 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1080 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1081 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1082 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1083 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1084 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1085 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1086 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1087 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1088 0xFFFFFFFF, 0xFFFFFFFF }, 1089 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1090 0xC3FFFFFF, 0xFFFFFFFF }, 1091 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1092 0xFFFFFFFF, 0xFFFFFFFF }, 1093 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1094 0xC3FFFFFF, 0xFFFFFFFF }, 1095 { E1000_MTA, 0, 128, TABLE32_TEST, 1096 0xFFFFFFFF, 0xFFFFFFFF }, 1097 { 0, 0, 0, 0 } 1098 }; 1099 1100 /* 82580 reg test */ 1101 static struct igb_reg_test reg_test_82580[] = { 1102 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1103 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1104 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1105 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1106 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1107 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1108 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1109 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1110 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1111 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1112 /* RDH is read-only for 82580, only test RDT. */ 1113 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1114 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1115 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1116 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1117 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1118 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1119 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1120 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1121 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1122 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1123 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1124 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1125 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1126 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1127 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1128 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1129 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1130 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1131 0xFFFFFFFF, 0xFFFFFFFF }, 1132 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1133 0x83FFFFFF, 0xFFFFFFFF }, 1134 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1135 0xFFFFFFFF, 0xFFFFFFFF }, 1136 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1137 0x83FFFFFF, 0xFFFFFFFF }, 1138 { E1000_MTA, 0, 128, TABLE32_TEST, 1139 0xFFFFFFFF, 0xFFFFFFFF }, 1140 { 0, 0, 0, 0 } 1141 }; 1142 1143 /* 82576 reg test */ 1144 static struct igb_reg_test reg_test_82576[] = { 1145 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1146 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1147 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1148 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1149 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1150 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1151 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1152 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1153 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1154 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1155 /* Enable all RX queues before testing. */ 1156 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1157 E1000_RXDCTL_QUEUE_ENABLE }, 1158 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 1159 E1000_RXDCTL_QUEUE_ENABLE }, 1160 /* RDH is read-only for 82576, only test RDT. */ 1161 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1162 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1163 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1164 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1165 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1166 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1167 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1168 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1169 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1170 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1171 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1172 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1173 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1174 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1175 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1176 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1177 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1178 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1179 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1180 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1181 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1182 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1183 { 0, 0, 0, 0 } 1184 }; 1185 1186 /* 82575 register test */ 1187 static struct igb_reg_test reg_test_82575[] = { 1188 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1189 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1190 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1191 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1192 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1193 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1194 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1195 /* Enable all four RX queues before testing. */ 1196 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1197 E1000_RXDCTL_QUEUE_ENABLE }, 1198 /* RDH is read-only for 82575, only test RDT. */ 1199 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1200 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1201 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1202 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1203 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1204 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1205 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1206 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1207 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1208 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1209 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1210 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1211 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1212 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1213 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1214 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1215 { 0, 0, 0, 0 } 1216 }; 1217 1218 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1219 int reg, u32 mask, u32 write) 1220 { 1221 struct e1000_hw *hw = &adapter->hw; 1222 u32 pat, val; 1223 static const u32 _test[] = { 1224 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1225 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1226 wr32(reg, (_test[pat] & write)); 1227 val = rd32(reg) & mask; 1228 if (val != (_test[pat] & write & mask)) { 1229 dev_err(&adapter->pdev->dev, 1230 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1231 reg, val, (_test[pat] & write & mask)); 1232 *data = reg; 1233 return true; 1234 } 1235 } 1236 1237 return false; 1238 } 1239 1240 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1241 int reg, u32 mask, u32 write) 1242 { 1243 struct e1000_hw *hw = &adapter->hw; 1244 u32 val; 1245 1246 wr32(reg, write & mask); 1247 val = rd32(reg); 1248 if ((write & mask) != (val & mask)) { 1249 dev_err(&adapter->pdev->dev, 1250 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 1251 reg, (val & mask), (write & mask)); 1252 *data = reg; 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 #define REG_PATTERN_TEST(reg, mask, write) \ 1260 do { \ 1261 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1262 return 1; \ 1263 } while (0) 1264 1265 #define REG_SET_AND_CHECK(reg, mask, write) \ 1266 do { \ 1267 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1268 return 1; \ 1269 } while (0) 1270 1271 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1272 { 1273 struct e1000_hw *hw = &adapter->hw; 1274 struct igb_reg_test *test; 1275 u32 value, before, after; 1276 u32 i, toggle; 1277 1278 switch (adapter->hw.mac.type) { 1279 case e1000_i350: 1280 case e1000_i354: 1281 test = reg_test_i350; 1282 toggle = 0x7FEFF3FF; 1283 break; 1284 case e1000_i210: 1285 case e1000_i211: 1286 test = reg_test_i210; 1287 toggle = 0x7FEFF3FF; 1288 break; 1289 case e1000_82580: 1290 test = reg_test_82580; 1291 toggle = 0x7FEFF3FF; 1292 break; 1293 case e1000_82576: 1294 test = reg_test_82576; 1295 toggle = 0x7FFFF3FF; 1296 break; 1297 default: 1298 test = reg_test_82575; 1299 toggle = 0x7FFFF3FF; 1300 break; 1301 } 1302 1303 /* Because the status register is such a special case, 1304 * we handle it separately from the rest of the register 1305 * tests. Some bits are read-only, some toggle, and some 1306 * are writable on newer MACs. 1307 */ 1308 before = rd32(E1000_STATUS); 1309 value = (rd32(E1000_STATUS) & toggle); 1310 wr32(E1000_STATUS, toggle); 1311 after = rd32(E1000_STATUS) & toggle; 1312 if (value != after) { 1313 dev_err(&adapter->pdev->dev, 1314 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1315 after, value); 1316 *data = 1; 1317 return 1; 1318 } 1319 /* restore previous status */ 1320 wr32(E1000_STATUS, before); 1321 1322 /* Perform the remainder of the register test, looping through 1323 * the test table until we either fail or reach the null entry. 1324 */ 1325 while (test->reg) { 1326 for (i = 0; i < test->array_len; i++) { 1327 switch (test->test_type) { 1328 case PATTERN_TEST: 1329 REG_PATTERN_TEST(test->reg + 1330 (i * test->reg_offset), 1331 test->mask, 1332 test->write); 1333 break; 1334 case SET_READ_TEST: 1335 REG_SET_AND_CHECK(test->reg + 1336 (i * test->reg_offset), 1337 test->mask, 1338 test->write); 1339 break; 1340 case WRITE_NO_TEST: 1341 writel(test->write, 1342 (adapter->hw.hw_addr + test->reg) 1343 + (i * test->reg_offset)); 1344 break; 1345 case TABLE32_TEST: 1346 REG_PATTERN_TEST(test->reg + (i * 4), 1347 test->mask, 1348 test->write); 1349 break; 1350 case TABLE64_TEST_LO: 1351 REG_PATTERN_TEST(test->reg + (i * 8), 1352 test->mask, 1353 test->write); 1354 break; 1355 case TABLE64_TEST_HI: 1356 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1357 test->mask, 1358 test->write); 1359 break; 1360 } 1361 } 1362 test++; 1363 } 1364 1365 *data = 0; 1366 return 0; 1367 } 1368 1369 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1370 { 1371 struct e1000_hw *hw = &adapter->hw; 1372 1373 *data = 0; 1374 1375 /* Validate eeprom on all parts but flashless */ 1376 switch (hw->mac.type) { 1377 case e1000_i210: 1378 case e1000_i211: 1379 if (igb_get_flash_presence_i210(hw)) { 1380 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1381 *data = 2; 1382 } 1383 break; 1384 default: 1385 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1386 *data = 2; 1387 break; 1388 } 1389 1390 return *data; 1391 } 1392 1393 static irqreturn_t igb_test_intr(int irq, void *data) 1394 { 1395 struct igb_adapter *adapter = (struct igb_adapter *) data; 1396 struct e1000_hw *hw = &adapter->hw; 1397 1398 adapter->test_icr |= rd32(E1000_ICR); 1399 1400 return IRQ_HANDLED; 1401 } 1402 1403 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1404 { 1405 struct e1000_hw *hw = &adapter->hw; 1406 struct net_device *netdev = adapter->netdev; 1407 u32 mask, ics_mask, i = 0, shared_int = true; 1408 u32 irq = adapter->pdev->irq; 1409 1410 *data = 0; 1411 1412 /* Hook up test interrupt handler just for this test */ 1413 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1414 if (request_irq(adapter->msix_entries[0].vector, 1415 igb_test_intr, 0, netdev->name, adapter)) { 1416 *data = 1; 1417 return -1; 1418 } 1419 wr32(E1000_IVAR_MISC, E1000_IVAR_VALID << 8); 1420 wr32(E1000_EIMS, BIT(0)); 1421 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1422 shared_int = false; 1423 if (request_irq(irq, 1424 igb_test_intr, 0, netdev->name, adapter)) { 1425 *data = 1; 1426 return -1; 1427 } 1428 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1429 netdev->name, adapter)) { 1430 shared_int = false; 1431 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1432 netdev->name, adapter)) { 1433 *data = 1; 1434 return -1; 1435 } 1436 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1437 (shared_int ? "shared" : "unshared")); 1438 1439 /* Disable all the interrupts */ 1440 wr32(E1000_IMC, ~0); 1441 wrfl(); 1442 usleep_range(10000, 11000); 1443 1444 /* Define all writable bits for ICS */ 1445 switch (hw->mac.type) { 1446 case e1000_82575: 1447 ics_mask = 0x37F47EDD; 1448 break; 1449 case e1000_82576: 1450 ics_mask = 0x77D4FBFD; 1451 break; 1452 case e1000_82580: 1453 ics_mask = 0x77DCFED5; 1454 break; 1455 case e1000_i350: 1456 case e1000_i354: 1457 case e1000_i210: 1458 case e1000_i211: 1459 ics_mask = 0x77DCFED5; 1460 break; 1461 default: 1462 ics_mask = 0x7FFFFFFF; 1463 break; 1464 } 1465 1466 /* Test each interrupt */ 1467 for (; i < 31; i++) { 1468 /* Interrupt to test */ 1469 mask = BIT(i); 1470 1471 if (!(mask & ics_mask)) 1472 continue; 1473 1474 if (!shared_int) { 1475 /* Disable the interrupt to be reported in 1476 * the cause register and then force the same 1477 * interrupt and see if one gets posted. If 1478 * an interrupt was posted to the bus, the 1479 * test failed. 1480 */ 1481 adapter->test_icr = 0; 1482 1483 /* Flush any pending interrupts */ 1484 wr32(E1000_ICR, ~0); 1485 1486 wr32(E1000_IMC, mask); 1487 wr32(E1000_ICS, mask); 1488 wrfl(); 1489 usleep_range(10000, 11000); 1490 1491 if (adapter->test_icr & mask) { 1492 *data = 3; 1493 break; 1494 } 1495 } 1496 1497 /* Enable the interrupt to be reported in 1498 * the cause register and then force the same 1499 * interrupt and see if one gets posted. If 1500 * an interrupt was not posted to the bus, the 1501 * test failed. 1502 */ 1503 adapter->test_icr = 0; 1504 1505 /* Flush any pending interrupts */ 1506 wr32(E1000_ICR, ~0); 1507 1508 wr32(E1000_IMS, mask); 1509 wr32(E1000_ICS, mask); 1510 wrfl(); 1511 usleep_range(10000, 11000); 1512 1513 if (!(adapter->test_icr & mask)) { 1514 *data = 4; 1515 break; 1516 } 1517 1518 if (!shared_int) { 1519 /* Disable the other interrupts to be reported in 1520 * the cause register and then force the other 1521 * interrupts and see if any get posted. If 1522 * an interrupt was posted to the bus, the 1523 * test failed. 1524 */ 1525 adapter->test_icr = 0; 1526 1527 /* Flush any pending interrupts */ 1528 wr32(E1000_ICR, ~0); 1529 1530 wr32(E1000_IMC, ~mask); 1531 wr32(E1000_ICS, ~mask); 1532 wrfl(); 1533 usleep_range(10000, 11000); 1534 1535 if (adapter->test_icr & mask) { 1536 *data = 5; 1537 break; 1538 } 1539 } 1540 } 1541 1542 /* Disable all the interrupts */ 1543 wr32(E1000_IMC, ~0); 1544 wrfl(); 1545 usleep_range(10000, 11000); 1546 1547 /* Unhook test interrupt handler */ 1548 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1549 free_irq(adapter->msix_entries[0].vector, adapter); 1550 else 1551 free_irq(irq, adapter); 1552 1553 return *data; 1554 } 1555 1556 static void igb_free_desc_rings(struct igb_adapter *adapter) 1557 { 1558 igb_free_tx_resources(&adapter->test_tx_ring); 1559 igb_free_rx_resources(&adapter->test_rx_ring); 1560 } 1561 1562 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1563 { 1564 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1565 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1566 struct e1000_hw *hw = &adapter->hw; 1567 int ret_val; 1568 1569 /* Setup Tx descriptor ring and Tx buffers */ 1570 tx_ring->count = IGB_DEFAULT_TXD; 1571 tx_ring->dev = &adapter->pdev->dev; 1572 tx_ring->netdev = adapter->netdev; 1573 tx_ring->reg_idx = adapter->vfs_allocated_count; 1574 1575 if (igb_setup_tx_resources(tx_ring)) { 1576 ret_val = 1; 1577 goto err_nomem; 1578 } 1579 1580 igb_setup_tctl(adapter); 1581 igb_configure_tx_ring(adapter, tx_ring); 1582 1583 /* Setup Rx descriptor ring and Rx buffers */ 1584 rx_ring->count = IGB_DEFAULT_RXD; 1585 rx_ring->dev = &adapter->pdev->dev; 1586 rx_ring->netdev = adapter->netdev; 1587 rx_ring->reg_idx = adapter->vfs_allocated_count; 1588 1589 if (igb_setup_rx_resources(rx_ring)) { 1590 ret_val = 3; 1591 goto err_nomem; 1592 } 1593 1594 /* set the default queue to queue 0 of PF */ 1595 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1596 1597 /* enable receive ring */ 1598 igb_setup_rctl(adapter); 1599 igb_configure_rx_ring(adapter, rx_ring); 1600 1601 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1602 1603 return 0; 1604 1605 err_nomem: 1606 igb_free_desc_rings(adapter); 1607 return ret_val; 1608 } 1609 1610 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1611 { 1612 struct e1000_hw *hw = &adapter->hw; 1613 1614 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1615 igb_write_phy_reg(hw, 29, 0x001F); 1616 igb_write_phy_reg(hw, 30, 0x8FFC); 1617 igb_write_phy_reg(hw, 29, 0x001A); 1618 igb_write_phy_reg(hw, 30, 0x8FF0); 1619 } 1620 1621 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1622 { 1623 struct e1000_hw *hw = &adapter->hw; 1624 u32 ctrl_reg = 0; 1625 1626 hw->mac.autoneg = false; 1627 1628 if (hw->phy.type == e1000_phy_m88) { 1629 if (hw->phy.id != I210_I_PHY_ID) { 1630 /* Auto-MDI/MDIX Off */ 1631 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1632 /* reset to update Auto-MDI/MDIX */ 1633 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1634 /* autoneg off */ 1635 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1636 } else { 1637 /* force 1000, set loopback */ 1638 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1639 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1640 } 1641 } else if (hw->phy.type == e1000_phy_82580) { 1642 /* enable MII loopback */ 1643 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); 1644 } 1645 1646 /* add small delay to avoid loopback test failure */ 1647 msleep(50); 1648 1649 /* force 1000, set loopback */ 1650 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1651 1652 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1653 ctrl_reg = rd32(E1000_CTRL); 1654 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1655 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1656 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1657 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1658 E1000_CTRL_FD | /* Force Duplex to FULL */ 1659 E1000_CTRL_SLU); /* Set link up enable bit */ 1660 1661 if (hw->phy.type == e1000_phy_m88) 1662 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1663 1664 wr32(E1000_CTRL, ctrl_reg); 1665 1666 /* Disable the receiver on the PHY so when a cable is plugged in, the 1667 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1668 */ 1669 if (hw->phy.type == e1000_phy_m88) 1670 igb_phy_disable_receiver(adapter); 1671 1672 msleep(500); 1673 return 0; 1674 } 1675 1676 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1677 { 1678 return igb_integrated_phy_loopback(adapter); 1679 } 1680 1681 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1682 { 1683 struct e1000_hw *hw = &adapter->hw; 1684 u32 reg; 1685 1686 reg = rd32(E1000_CTRL_EXT); 1687 1688 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1689 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1690 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1691 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1692 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1693 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1694 (hw->device_id == E1000_DEV_ID_I354_SGMII) || 1695 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) { 1696 /* Enable DH89xxCC MPHY for near end loopback */ 1697 reg = rd32(E1000_MPHY_ADDR_CTL); 1698 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1699 E1000_MPHY_PCS_CLK_REG_OFFSET; 1700 wr32(E1000_MPHY_ADDR_CTL, reg); 1701 1702 reg = rd32(E1000_MPHY_DATA); 1703 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1704 wr32(E1000_MPHY_DATA, reg); 1705 } 1706 1707 reg = rd32(E1000_RCTL); 1708 reg |= E1000_RCTL_LBM_TCVR; 1709 wr32(E1000_RCTL, reg); 1710 1711 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1712 1713 reg = rd32(E1000_CTRL); 1714 reg &= ~(E1000_CTRL_RFCE | 1715 E1000_CTRL_TFCE | 1716 E1000_CTRL_LRST); 1717 reg |= E1000_CTRL_SLU | 1718 E1000_CTRL_FD; 1719 wr32(E1000_CTRL, reg); 1720 1721 /* Unset switch control to serdes energy detect */ 1722 reg = rd32(E1000_CONNSW); 1723 reg &= ~E1000_CONNSW_ENRGSRC; 1724 wr32(E1000_CONNSW, reg); 1725 1726 /* Unset sigdetect for SERDES loopback on 1727 * 82580 and newer devices. 1728 */ 1729 if (hw->mac.type >= e1000_82580) { 1730 reg = rd32(E1000_PCS_CFG0); 1731 reg |= E1000_PCS_CFG_IGN_SD; 1732 wr32(E1000_PCS_CFG0, reg); 1733 } 1734 1735 /* Set PCS register for forced speed */ 1736 reg = rd32(E1000_PCS_LCTL); 1737 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1738 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1739 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1740 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1741 E1000_PCS_LCTL_FSD | /* Force Speed */ 1742 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1743 wr32(E1000_PCS_LCTL, reg); 1744 1745 return 0; 1746 } 1747 1748 return igb_set_phy_loopback(adapter); 1749 } 1750 1751 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1752 { 1753 struct e1000_hw *hw = &adapter->hw; 1754 u32 rctl; 1755 u16 phy_reg; 1756 1757 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1758 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1759 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1760 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1761 (hw->device_id == E1000_DEV_ID_I354_SGMII)) { 1762 u32 reg; 1763 1764 /* Disable near end loopback on DH89xxCC */ 1765 reg = rd32(E1000_MPHY_ADDR_CTL); 1766 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1767 E1000_MPHY_PCS_CLK_REG_OFFSET; 1768 wr32(E1000_MPHY_ADDR_CTL, reg); 1769 1770 reg = rd32(E1000_MPHY_DATA); 1771 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1772 wr32(E1000_MPHY_DATA, reg); 1773 } 1774 1775 rctl = rd32(E1000_RCTL); 1776 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1777 wr32(E1000_RCTL, rctl); 1778 1779 hw->mac.autoneg = true; 1780 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1781 if (phy_reg & MII_CR_LOOPBACK) { 1782 phy_reg &= ~MII_CR_LOOPBACK; 1783 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1784 igb_phy_sw_reset(hw); 1785 } 1786 } 1787 1788 static void igb_create_lbtest_frame(struct sk_buff *skb, 1789 unsigned int frame_size) 1790 { 1791 memset(skb->data, 0xFF, frame_size); 1792 frame_size /= 2; 1793 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1794 skb->data[frame_size + 10] = 0xBE; 1795 skb->data[frame_size + 12] = 0xAF; 1796 } 1797 1798 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1799 unsigned int frame_size) 1800 { 1801 unsigned char *data; 1802 bool match = true; 1803 1804 frame_size >>= 1; 1805 1806 data = kmap_local_page(rx_buffer->page); 1807 1808 if (data[3] != 0xFF || 1809 data[frame_size + 10] != 0xBE || 1810 data[frame_size + 12] != 0xAF) 1811 match = false; 1812 1813 kunmap_local(data); 1814 1815 return match; 1816 } 1817 1818 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1819 struct igb_ring *tx_ring, 1820 unsigned int size) 1821 { 1822 union e1000_adv_rx_desc *rx_desc; 1823 struct igb_rx_buffer *rx_buffer_info; 1824 struct igb_tx_buffer *tx_buffer_info; 1825 u16 rx_ntc, tx_ntc, count = 0; 1826 1827 /* initialize next to clean and descriptor values */ 1828 rx_ntc = rx_ring->next_to_clean; 1829 tx_ntc = tx_ring->next_to_clean; 1830 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1831 1832 while (rx_desc->wb.upper.length) { 1833 /* check Rx buffer */ 1834 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1835 1836 /* sync Rx buffer for CPU read */ 1837 dma_sync_single_for_cpu(rx_ring->dev, 1838 rx_buffer_info->dma, 1839 size, 1840 DMA_FROM_DEVICE); 1841 1842 /* verify contents of skb */ 1843 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1844 count++; 1845 1846 /* sync Rx buffer for device write */ 1847 dma_sync_single_for_device(rx_ring->dev, 1848 rx_buffer_info->dma, 1849 size, 1850 DMA_FROM_DEVICE); 1851 1852 /* unmap buffer on Tx side */ 1853 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1854 1855 /* Free all the Tx ring sk_buffs */ 1856 dev_kfree_skb_any(tx_buffer_info->skb); 1857 1858 /* unmap skb header data */ 1859 dma_unmap_single(tx_ring->dev, 1860 dma_unmap_addr(tx_buffer_info, dma), 1861 dma_unmap_len(tx_buffer_info, len), 1862 DMA_TO_DEVICE); 1863 dma_unmap_len_set(tx_buffer_info, len, 0); 1864 1865 /* increment Rx/Tx next to clean counters */ 1866 rx_ntc++; 1867 if (rx_ntc == rx_ring->count) 1868 rx_ntc = 0; 1869 tx_ntc++; 1870 if (tx_ntc == tx_ring->count) 1871 tx_ntc = 0; 1872 1873 /* fetch next descriptor */ 1874 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1875 } 1876 1877 netdev_tx_reset_queue(txring_txq(tx_ring)); 1878 1879 /* re-map buffers to ring, store next to clean values */ 1880 igb_alloc_rx_buffers(rx_ring, count); 1881 rx_ring->next_to_clean = rx_ntc; 1882 tx_ring->next_to_clean = tx_ntc; 1883 1884 return count; 1885 } 1886 1887 static int igb_run_loopback_test(struct igb_adapter *adapter) 1888 { 1889 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1890 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1891 u16 i, j, lc, good_cnt; 1892 int ret_val = 0; 1893 unsigned int size = IGB_RX_HDR_LEN; 1894 netdev_tx_t tx_ret_val; 1895 struct sk_buff *skb; 1896 1897 /* allocate test skb */ 1898 skb = alloc_skb(size, GFP_KERNEL); 1899 if (!skb) 1900 return 11; 1901 1902 /* place data into test skb */ 1903 igb_create_lbtest_frame(skb, size); 1904 skb_put(skb, size); 1905 1906 /* Calculate the loop count based on the largest descriptor ring 1907 * The idea is to wrap the largest ring a number of times using 64 1908 * send/receive pairs during each loop 1909 */ 1910 1911 if (rx_ring->count <= tx_ring->count) 1912 lc = ((tx_ring->count / 64) * 2) + 1; 1913 else 1914 lc = ((rx_ring->count / 64) * 2) + 1; 1915 1916 for (j = 0; j <= lc; j++) { /* loop count loop */ 1917 /* reset count of good packets */ 1918 good_cnt = 0; 1919 1920 /* place 64 packets on the transmit queue*/ 1921 for (i = 0; i < 64; i++) { 1922 skb_get(skb); 1923 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1924 if (tx_ret_val == NETDEV_TX_OK) 1925 good_cnt++; 1926 } 1927 1928 if (good_cnt != 64) { 1929 ret_val = 12; 1930 break; 1931 } 1932 1933 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1934 msleep(200); 1935 1936 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1937 if (good_cnt != 64) { 1938 ret_val = 13; 1939 break; 1940 } 1941 } /* end loop count loop */ 1942 1943 /* free the original skb */ 1944 kfree_skb(skb); 1945 1946 return ret_val; 1947 } 1948 1949 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1950 { 1951 /* PHY loopback cannot be performed if SoL/IDER 1952 * sessions are active 1953 */ 1954 if (igb_check_reset_block(&adapter->hw)) { 1955 dev_err(&adapter->pdev->dev, 1956 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1957 *data = 0; 1958 goto out; 1959 } 1960 1961 if (adapter->hw.mac.type == e1000_i354) { 1962 dev_info(&adapter->pdev->dev, 1963 "Loopback test not supported on i354.\n"); 1964 *data = 0; 1965 goto out; 1966 } 1967 *data = igb_setup_desc_rings(adapter); 1968 if (*data) 1969 goto out; 1970 *data = igb_setup_loopback_test(adapter); 1971 if (*data) 1972 goto err_loopback; 1973 *data = igb_run_loopback_test(adapter); 1974 igb_loopback_cleanup(adapter); 1975 1976 err_loopback: 1977 igb_free_desc_rings(adapter); 1978 out: 1979 return *data; 1980 } 1981 1982 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1983 { 1984 struct e1000_hw *hw = &adapter->hw; 1985 *data = 0; 1986 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1987 int i = 0; 1988 1989 hw->mac.serdes_has_link = false; 1990 1991 /* On some blade server designs, link establishment 1992 * could take as long as 2-3 minutes 1993 */ 1994 do { 1995 hw->mac.ops.check_for_link(&adapter->hw); 1996 if (hw->mac.serdes_has_link) 1997 return *data; 1998 msleep(20); 1999 } while (i++ < 3750); 2000 2001 *data = 1; 2002 } else { 2003 hw->mac.ops.check_for_link(&adapter->hw); 2004 if (hw->mac.autoneg) 2005 msleep(5000); 2006 2007 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 2008 *data = 1; 2009 } 2010 return *data; 2011 } 2012 2013 static void igb_diag_test(struct net_device *netdev, 2014 struct ethtool_test *eth_test, u64 *data) 2015 { 2016 struct igb_adapter *adapter = netdev_priv(netdev); 2017 u16 autoneg_advertised; 2018 u8 forced_speed_duplex, autoneg; 2019 bool if_running = netif_running(netdev); 2020 2021 set_bit(__IGB_TESTING, &adapter->state); 2022 2023 /* can't do offline tests on media switching devices */ 2024 if (adapter->hw.dev_spec._82575.mas_capable) 2025 eth_test->flags &= ~ETH_TEST_FL_OFFLINE; 2026 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 2027 /* Offline tests */ 2028 2029 /* save speed, duplex, autoneg settings */ 2030 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 2031 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 2032 autoneg = adapter->hw.mac.autoneg; 2033 2034 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 2035 2036 /* power up link for link test */ 2037 igb_power_up_link(adapter); 2038 2039 /* Link test performed before hardware reset so autoneg doesn't 2040 * interfere with test result 2041 */ 2042 if (igb_link_test(adapter, &data[TEST_LINK])) 2043 eth_test->flags |= ETH_TEST_FL_FAILED; 2044 2045 if (if_running) 2046 /* indicate we're in test mode */ 2047 igb_close(netdev); 2048 else 2049 igb_reset(adapter); 2050 2051 if (igb_reg_test(adapter, &data[TEST_REG])) 2052 eth_test->flags |= ETH_TEST_FL_FAILED; 2053 2054 igb_reset(adapter); 2055 if (igb_eeprom_test(adapter, &data[TEST_EEP])) 2056 eth_test->flags |= ETH_TEST_FL_FAILED; 2057 2058 igb_reset(adapter); 2059 if (igb_intr_test(adapter, &data[TEST_IRQ])) 2060 eth_test->flags |= ETH_TEST_FL_FAILED; 2061 2062 igb_reset(adapter); 2063 /* power up link for loopback test */ 2064 igb_power_up_link(adapter); 2065 if (igb_loopback_test(adapter, &data[TEST_LOOP])) 2066 eth_test->flags |= ETH_TEST_FL_FAILED; 2067 2068 /* restore speed, duplex, autoneg settings */ 2069 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2070 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2071 adapter->hw.mac.autoneg = autoneg; 2072 2073 /* force this routine to wait until autoneg complete/timeout */ 2074 adapter->hw.phy.autoneg_wait_to_complete = true; 2075 igb_reset(adapter); 2076 adapter->hw.phy.autoneg_wait_to_complete = false; 2077 2078 clear_bit(__IGB_TESTING, &adapter->state); 2079 if (if_running) 2080 igb_open(netdev); 2081 } else { 2082 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2083 2084 /* PHY is powered down when interface is down */ 2085 if (if_running && igb_link_test(adapter, &data[TEST_LINK])) 2086 eth_test->flags |= ETH_TEST_FL_FAILED; 2087 else 2088 data[TEST_LINK] = 0; 2089 2090 /* Online tests aren't run; pass by default */ 2091 data[TEST_REG] = 0; 2092 data[TEST_EEP] = 0; 2093 data[TEST_IRQ] = 0; 2094 data[TEST_LOOP] = 0; 2095 2096 clear_bit(__IGB_TESTING, &adapter->state); 2097 } 2098 msleep_interruptible(4 * 1000); 2099 } 2100 2101 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2102 { 2103 struct igb_adapter *adapter = netdev_priv(netdev); 2104 2105 wol->wolopts = 0; 2106 2107 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2108 return; 2109 2110 wol->supported = WAKE_UCAST | WAKE_MCAST | 2111 WAKE_BCAST | WAKE_MAGIC | 2112 WAKE_PHY; 2113 2114 /* apply any specific unsupported masks here */ 2115 switch (adapter->hw.device_id) { 2116 default: 2117 break; 2118 } 2119 2120 if (adapter->wol & E1000_WUFC_EX) 2121 wol->wolopts |= WAKE_UCAST; 2122 if (adapter->wol & E1000_WUFC_MC) 2123 wol->wolopts |= WAKE_MCAST; 2124 if (adapter->wol & E1000_WUFC_BC) 2125 wol->wolopts |= WAKE_BCAST; 2126 if (adapter->wol & E1000_WUFC_MAG) 2127 wol->wolopts |= WAKE_MAGIC; 2128 if (adapter->wol & E1000_WUFC_LNKC) 2129 wol->wolopts |= WAKE_PHY; 2130 } 2131 2132 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2133 { 2134 struct igb_adapter *adapter = netdev_priv(netdev); 2135 2136 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER)) 2137 return -EOPNOTSUPP; 2138 2139 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2140 return wol->wolopts ? -EOPNOTSUPP : 0; 2141 2142 /* these settings will always override what we currently have */ 2143 adapter->wol = 0; 2144 2145 if (wol->wolopts & WAKE_UCAST) 2146 adapter->wol |= E1000_WUFC_EX; 2147 if (wol->wolopts & WAKE_MCAST) 2148 adapter->wol |= E1000_WUFC_MC; 2149 if (wol->wolopts & WAKE_BCAST) 2150 adapter->wol |= E1000_WUFC_BC; 2151 if (wol->wolopts & WAKE_MAGIC) 2152 adapter->wol |= E1000_WUFC_MAG; 2153 if (wol->wolopts & WAKE_PHY) 2154 adapter->wol |= E1000_WUFC_LNKC; 2155 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2156 2157 return 0; 2158 } 2159 2160 /* bit defines for adapter->led_status */ 2161 #define IGB_LED_ON 0 2162 2163 static int igb_set_phys_id(struct net_device *netdev, 2164 enum ethtool_phys_id_state state) 2165 { 2166 struct igb_adapter *adapter = netdev_priv(netdev); 2167 struct e1000_hw *hw = &adapter->hw; 2168 2169 switch (state) { 2170 case ETHTOOL_ID_ACTIVE: 2171 igb_blink_led(hw); 2172 return 2; 2173 case ETHTOOL_ID_ON: 2174 igb_blink_led(hw); 2175 break; 2176 case ETHTOOL_ID_OFF: 2177 igb_led_off(hw); 2178 break; 2179 case ETHTOOL_ID_INACTIVE: 2180 igb_led_off(hw); 2181 clear_bit(IGB_LED_ON, &adapter->led_status); 2182 igb_cleanup_led(hw); 2183 break; 2184 } 2185 2186 return 0; 2187 } 2188 2189 static int igb_set_coalesce(struct net_device *netdev, 2190 struct ethtool_coalesce *ec, 2191 struct kernel_ethtool_coalesce *kernel_coal, 2192 struct netlink_ext_ack *extack) 2193 { 2194 struct igb_adapter *adapter = netdev_priv(netdev); 2195 int i; 2196 2197 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2198 ((ec->rx_coalesce_usecs > 3) && 2199 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2200 (ec->rx_coalesce_usecs == 2)) 2201 return -EINVAL; 2202 2203 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2204 ((ec->tx_coalesce_usecs > 3) && 2205 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2206 (ec->tx_coalesce_usecs == 2)) 2207 return -EINVAL; 2208 2209 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2210 return -EINVAL; 2211 2212 /* If ITR is disabled, disable DMAC */ 2213 if (ec->rx_coalesce_usecs == 0) { 2214 if (adapter->flags & IGB_FLAG_DMAC) 2215 adapter->flags &= ~IGB_FLAG_DMAC; 2216 } 2217 2218 /* convert to rate of irq's per second */ 2219 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2220 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2221 else 2222 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2223 2224 /* convert to rate of irq's per second */ 2225 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2226 adapter->tx_itr_setting = adapter->rx_itr_setting; 2227 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2228 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2229 else 2230 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2231 2232 for (i = 0; i < adapter->num_q_vectors; i++) { 2233 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2234 q_vector->tx.work_limit = adapter->tx_work_limit; 2235 if (q_vector->rx.ring) 2236 q_vector->itr_val = adapter->rx_itr_setting; 2237 else 2238 q_vector->itr_val = adapter->tx_itr_setting; 2239 if (q_vector->itr_val && q_vector->itr_val <= 3) 2240 q_vector->itr_val = IGB_START_ITR; 2241 q_vector->set_itr = 1; 2242 } 2243 2244 return 0; 2245 } 2246 2247 static int igb_get_coalesce(struct net_device *netdev, 2248 struct ethtool_coalesce *ec, 2249 struct kernel_ethtool_coalesce *kernel_coal, 2250 struct netlink_ext_ack *extack) 2251 { 2252 struct igb_adapter *adapter = netdev_priv(netdev); 2253 2254 if (adapter->rx_itr_setting <= 3) 2255 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2256 else 2257 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2258 2259 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2260 if (adapter->tx_itr_setting <= 3) 2261 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2262 else 2263 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2264 } 2265 2266 return 0; 2267 } 2268 2269 static int igb_nway_reset(struct net_device *netdev) 2270 { 2271 struct igb_adapter *adapter = netdev_priv(netdev); 2272 if (netif_running(netdev)) 2273 igb_reinit_locked(adapter); 2274 return 0; 2275 } 2276 2277 static int igb_get_sset_count(struct net_device *netdev, int sset) 2278 { 2279 switch (sset) { 2280 case ETH_SS_STATS: 2281 return IGB_STATS_LEN; 2282 case ETH_SS_TEST: 2283 return IGB_TEST_LEN; 2284 case ETH_SS_PRIV_FLAGS: 2285 return IGB_PRIV_FLAGS_STR_LEN; 2286 default: 2287 return -ENOTSUPP; 2288 } 2289 } 2290 2291 static void igb_get_ethtool_stats(struct net_device *netdev, 2292 struct ethtool_stats *stats, u64 *data) 2293 { 2294 struct igb_adapter *adapter = netdev_priv(netdev); 2295 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2296 unsigned int start; 2297 struct igb_ring *ring; 2298 int i, j; 2299 char *p; 2300 2301 spin_lock(&adapter->stats64_lock); 2302 igb_update_stats(adapter); 2303 2304 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2305 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2306 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2307 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2308 } 2309 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2310 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2311 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2312 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2313 } 2314 for (j = 0; j < adapter->num_tx_queues; j++) { 2315 u64 restart2; 2316 2317 ring = adapter->tx_ring[j]; 2318 do { 2319 start = u64_stats_fetch_begin(&ring->tx_syncp); 2320 data[i] = ring->tx_stats.packets; 2321 data[i+1] = ring->tx_stats.bytes; 2322 data[i+2] = ring->tx_stats.restart_queue; 2323 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 2324 do { 2325 start = u64_stats_fetch_begin(&ring->tx_syncp2); 2326 restart2 = ring->tx_stats.restart_queue2; 2327 } while (u64_stats_fetch_retry(&ring->tx_syncp2, start)); 2328 data[i+2] += restart2; 2329 2330 i += IGB_TX_QUEUE_STATS_LEN; 2331 } 2332 for (j = 0; j < adapter->num_rx_queues; j++) { 2333 ring = adapter->rx_ring[j]; 2334 do { 2335 start = u64_stats_fetch_begin(&ring->rx_syncp); 2336 data[i] = ring->rx_stats.packets; 2337 data[i+1] = ring->rx_stats.bytes; 2338 data[i+2] = ring->rx_stats.drops; 2339 data[i+3] = ring->rx_stats.csum_err; 2340 data[i+4] = ring->rx_stats.alloc_failed; 2341 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 2342 i += IGB_RX_QUEUE_STATS_LEN; 2343 } 2344 spin_unlock(&adapter->stats64_lock); 2345 } 2346 2347 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2348 { 2349 struct igb_adapter *adapter = netdev_priv(netdev); 2350 u8 *p = data; 2351 int i; 2352 2353 switch (stringset) { 2354 case ETH_SS_TEST: 2355 memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test)); 2356 break; 2357 case ETH_SS_STATS: 2358 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) 2359 ethtool_puts(&p, igb_gstrings_stats[i].stat_string); 2360 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) 2361 ethtool_puts(&p, igb_gstrings_net_stats[i].stat_string); 2362 for (i = 0; i < adapter->num_tx_queues; i++) { 2363 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 2364 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 2365 ethtool_sprintf(&p, "tx_queue_%u_restart", i); 2366 } 2367 for (i = 0; i < adapter->num_rx_queues; i++) { 2368 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 2369 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 2370 ethtool_sprintf(&p, "rx_queue_%u_drops", i); 2371 ethtool_sprintf(&p, "rx_queue_%u_csum_err", i); 2372 ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i); 2373 } 2374 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2375 break; 2376 case ETH_SS_PRIV_FLAGS: 2377 memcpy(data, igb_priv_flags_strings, 2378 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2379 break; 2380 } 2381 } 2382 2383 static int igb_get_ts_info(struct net_device *dev, 2384 struct ethtool_ts_info *info) 2385 { 2386 struct igb_adapter *adapter = netdev_priv(dev); 2387 2388 if (adapter->ptp_clock) 2389 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2390 else 2391 info->phc_index = -1; 2392 2393 switch (adapter->hw.mac.type) { 2394 case e1000_82575: 2395 info->so_timestamping = 2396 SOF_TIMESTAMPING_TX_SOFTWARE | 2397 SOF_TIMESTAMPING_RX_SOFTWARE | 2398 SOF_TIMESTAMPING_SOFTWARE; 2399 return 0; 2400 case e1000_82576: 2401 case e1000_82580: 2402 case e1000_i350: 2403 case e1000_i354: 2404 case e1000_i210: 2405 case e1000_i211: 2406 info->so_timestamping = 2407 SOF_TIMESTAMPING_TX_SOFTWARE | 2408 SOF_TIMESTAMPING_RX_SOFTWARE | 2409 SOF_TIMESTAMPING_SOFTWARE | 2410 SOF_TIMESTAMPING_TX_HARDWARE | 2411 SOF_TIMESTAMPING_RX_HARDWARE | 2412 SOF_TIMESTAMPING_RAW_HARDWARE; 2413 2414 info->tx_types = 2415 BIT(HWTSTAMP_TX_OFF) | 2416 BIT(HWTSTAMP_TX_ON); 2417 2418 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE); 2419 2420 /* 82576 does not support timestamping all packets. */ 2421 if (adapter->hw.mac.type >= e1000_82580) 2422 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL); 2423 else 2424 info->rx_filters |= 2425 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2426 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2427 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT); 2428 2429 return 0; 2430 default: 2431 return -EOPNOTSUPP; 2432 } 2433 } 2434 2435 #define ETHER_TYPE_FULL_MASK cpu_to_be16(FIELD_MAX(U16_MAX)) 2436 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter, 2437 struct ethtool_rxnfc *cmd) 2438 { 2439 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 2440 struct igb_nfc_filter *rule = NULL; 2441 2442 /* report total rule count */ 2443 cmd->data = IGB_MAX_RXNFC_FILTERS; 2444 2445 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2446 if (fsp->location <= rule->sw_idx) 2447 break; 2448 } 2449 2450 if (!rule || fsp->location != rule->sw_idx) 2451 return -EINVAL; 2452 2453 if (rule->filter.match_flags) { 2454 fsp->flow_type = ETHER_FLOW; 2455 fsp->ring_cookie = rule->action; 2456 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2457 fsp->h_u.ether_spec.h_proto = rule->filter.etype; 2458 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK; 2459 } 2460 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) { 2461 fsp->flow_type |= FLOW_EXT; 2462 fsp->h_ext.vlan_tci = rule->filter.vlan_tci; 2463 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK); 2464 } 2465 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) { 2466 ether_addr_copy(fsp->h_u.ether_spec.h_dest, 2467 rule->filter.dst_addr); 2468 /* As we only support matching by the full 2469 * mask, return the mask to userspace 2470 */ 2471 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest); 2472 } 2473 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) { 2474 ether_addr_copy(fsp->h_u.ether_spec.h_source, 2475 rule->filter.src_addr); 2476 /* As we only support matching by the full 2477 * mask, return the mask to userspace 2478 */ 2479 eth_broadcast_addr(fsp->m_u.ether_spec.h_source); 2480 } 2481 2482 return 0; 2483 } 2484 return -EINVAL; 2485 } 2486 2487 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter, 2488 struct ethtool_rxnfc *cmd, 2489 u32 *rule_locs) 2490 { 2491 struct igb_nfc_filter *rule; 2492 int cnt = 0; 2493 2494 /* report total rule count */ 2495 cmd->data = IGB_MAX_RXNFC_FILTERS; 2496 2497 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2498 if (cnt == cmd->rule_cnt) 2499 return -EMSGSIZE; 2500 rule_locs[cnt] = rule->sw_idx; 2501 cnt++; 2502 } 2503 2504 cmd->rule_cnt = cnt; 2505 2506 return 0; 2507 } 2508 2509 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2510 struct ethtool_rxnfc *cmd) 2511 { 2512 cmd->data = 0; 2513 2514 /* Report default options for RSS on igb */ 2515 switch (cmd->flow_type) { 2516 case TCP_V4_FLOW: 2517 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2518 fallthrough; 2519 case UDP_V4_FLOW: 2520 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2521 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2522 fallthrough; 2523 case SCTP_V4_FLOW: 2524 case AH_ESP_V4_FLOW: 2525 case AH_V4_FLOW: 2526 case ESP_V4_FLOW: 2527 case IPV4_FLOW: 2528 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2529 break; 2530 case TCP_V6_FLOW: 2531 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2532 fallthrough; 2533 case UDP_V6_FLOW: 2534 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2535 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2536 fallthrough; 2537 case SCTP_V6_FLOW: 2538 case AH_ESP_V6_FLOW: 2539 case AH_V6_FLOW: 2540 case ESP_V6_FLOW: 2541 case IPV6_FLOW: 2542 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2543 break; 2544 default: 2545 return -EINVAL; 2546 } 2547 2548 return 0; 2549 } 2550 2551 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2552 u32 *rule_locs) 2553 { 2554 struct igb_adapter *adapter = netdev_priv(dev); 2555 int ret = -EOPNOTSUPP; 2556 2557 switch (cmd->cmd) { 2558 case ETHTOOL_GRXRINGS: 2559 cmd->data = adapter->num_rx_queues; 2560 ret = 0; 2561 break; 2562 case ETHTOOL_GRXCLSRLCNT: 2563 cmd->rule_cnt = adapter->nfc_filter_count; 2564 ret = 0; 2565 break; 2566 case ETHTOOL_GRXCLSRULE: 2567 ret = igb_get_ethtool_nfc_entry(adapter, cmd); 2568 break; 2569 case ETHTOOL_GRXCLSRLALL: 2570 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs); 2571 break; 2572 case ETHTOOL_GRXFH: 2573 ret = igb_get_rss_hash_opts(adapter, cmd); 2574 break; 2575 default: 2576 break; 2577 } 2578 2579 return ret; 2580 } 2581 2582 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2583 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2584 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2585 struct ethtool_rxnfc *nfc) 2586 { 2587 u32 flags = adapter->flags; 2588 2589 /* RSS does not support anything other than hashing 2590 * to queues on src and dst IPs and ports 2591 */ 2592 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2593 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2594 return -EINVAL; 2595 2596 switch (nfc->flow_type) { 2597 case TCP_V4_FLOW: 2598 case TCP_V6_FLOW: 2599 if (!(nfc->data & RXH_IP_SRC) || 2600 !(nfc->data & RXH_IP_DST) || 2601 !(nfc->data & RXH_L4_B_0_1) || 2602 !(nfc->data & RXH_L4_B_2_3)) 2603 return -EINVAL; 2604 break; 2605 case UDP_V4_FLOW: 2606 if (!(nfc->data & RXH_IP_SRC) || 2607 !(nfc->data & RXH_IP_DST)) 2608 return -EINVAL; 2609 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2610 case 0: 2611 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2612 break; 2613 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2614 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2615 break; 2616 default: 2617 return -EINVAL; 2618 } 2619 break; 2620 case UDP_V6_FLOW: 2621 if (!(nfc->data & RXH_IP_SRC) || 2622 !(nfc->data & RXH_IP_DST)) 2623 return -EINVAL; 2624 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2625 case 0: 2626 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2627 break; 2628 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2629 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2630 break; 2631 default: 2632 return -EINVAL; 2633 } 2634 break; 2635 case AH_ESP_V4_FLOW: 2636 case AH_V4_FLOW: 2637 case ESP_V4_FLOW: 2638 case SCTP_V4_FLOW: 2639 case AH_ESP_V6_FLOW: 2640 case AH_V6_FLOW: 2641 case ESP_V6_FLOW: 2642 case SCTP_V6_FLOW: 2643 if (!(nfc->data & RXH_IP_SRC) || 2644 !(nfc->data & RXH_IP_DST) || 2645 (nfc->data & RXH_L4_B_0_1) || 2646 (nfc->data & RXH_L4_B_2_3)) 2647 return -EINVAL; 2648 break; 2649 default: 2650 return -EINVAL; 2651 } 2652 2653 /* if we changed something we need to update flags */ 2654 if (flags != adapter->flags) { 2655 struct e1000_hw *hw = &adapter->hw; 2656 u32 mrqc = rd32(E1000_MRQC); 2657 2658 if ((flags & UDP_RSS_FLAGS) && 2659 !(adapter->flags & UDP_RSS_FLAGS)) 2660 dev_err(&adapter->pdev->dev, 2661 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2662 2663 adapter->flags = flags; 2664 2665 /* Perform hash on these packet types */ 2666 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2667 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2668 E1000_MRQC_RSS_FIELD_IPV6 | 2669 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2670 2671 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2672 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2673 2674 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2675 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2676 2677 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2678 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2679 2680 wr32(E1000_MRQC, mrqc); 2681 } 2682 2683 return 0; 2684 } 2685 2686 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter, 2687 struct igb_nfc_filter *input) 2688 { 2689 struct e1000_hw *hw = &adapter->hw; 2690 u8 i; 2691 u32 etqf; 2692 u16 etype; 2693 2694 /* find an empty etype filter register */ 2695 for (i = 0; i < MAX_ETYPE_FILTER; ++i) { 2696 if (!adapter->etype_bitmap[i]) 2697 break; 2698 } 2699 if (i == MAX_ETYPE_FILTER) { 2700 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n"); 2701 return -EINVAL; 2702 } 2703 2704 adapter->etype_bitmap[i] = true; 2705 2706 etqf = rd32(E1000_ETQF(i)); 2707 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK); 2708 2709 etqf |= E1000_ETQF_FILTER_ENABLE; 2710 etqf &= ~E1000_ETQF_ETYPE_MASK; 2711 etqf |= (etype & E1000_ETQF_ETYPE_MASK); 2712 2713 etqf &= ~E1000_ETQF_QUEUE_MASK; 2714 etqf |= FIELD_PREP(E1000_ETQF_QUEUE_MASK, input->action); 2715 etqf |= E1000_ETQF_QUEUE_ENABLE; 2716 2717 wr32(E1000_ETQF(i), etqf); 2718 2719 input->etype_reg_index = i; 2720 2721 return 0; 2722 } 2723 2724 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter, 2725 struct igb_nfc_filter *input) 2726 { 2727 struct e1000_hw *hw = &adapter->hw; 2728 u8 vlan_priority; 2729 u16 queue_index; 2730 u32 vlapqf; 2731 2732 vlapqf = rd32(E1000_VLAPQF); 2733 vlan_priority = FIELD_GET(VLAN_PRIO_MASK, 2734 ntohs(input->filter.vlan_tci)); 2735 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK; 2736 2737 /* check whether this vlan prio is already set */ 2738 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) && 2739 (queue_index != input->action)) { 2740 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n"); 2741 return -EEXIST; 2742 } 2743 2744 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority); 2745 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action); 2746 2747 wr32(E1000_VLAPQF, vlapqf); 2748 2749 return 0; 2750 } 2751 2752 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2753 { 2754 struct e1000_hw *hw = &adapter->hw; 2755 int err = -EINVAL; 2756 2757 if (hw->mac.type == e1000_i210 && 2758 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) { 2759 dev_err(&adapter->pdev->dev, 2760 "i210 doesn't support flow classification rules specifying only source addresses.\n"); 2761 return -EOPNOTSUPP; 2762 } 2763 2764 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2765 err = igb_rxnfc_write_etype_filter(adapter, input); 2766 if (err) 2767 return err; 2768 } 2769 2770 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) { 2771 err = igb_add_mac_steering_filter(adapter, 2772 input->filter.dst_addr, 2773 input->action, 0); 2774 err = min_t(int, err, 0); 2775 if (err) 2776 return err; 2777 } 2778 2779 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) { 2780 err = igb_add_mac_steering_filter(adapter, 2781 input->filter.src_addr, 2782 input->action, 2783 IGB_MAC_STATE_SRC_ADDR); 2784 err = min_t(int, err, 0); 2785 if (err) 2786 return err; 2787 } 2788 2789 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2790 err = igb_rxnfc_write_vlan_prio_filter(adapter, input); 2791 2792 return err; 2793 } 2794 2795 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter, 2796 u16 reg_index) 2797 { 2798 struct e1000_hw *hw = &adapter->hw; 2799 u32 etqf = rd32(E1000_ETQF(reg_index)); 2800 2801 etqf &= ~E1000_ETQF_QUEUE_ENABLE; 2802 etqf &= ~E1000_ETQF_QUEUE_MASK; 2803 etqf &= ~E1000_ETQF_FILTER_ENABLE; 2804 2805 wr32(E1000_ETQF(reg_index), etqf); 2806 2807 adapter->etype_bitmap[reg_index] = false; 2808 } 2809 2810 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter, 2811 u16 vlan_tci) 2812 { 2813 struct e1000_hw *hw = &adapter->hw; 2814 u8 vlan_priority; 2815 u32 vlapqf; 2816 2817 vlan_priority = FIELD_GET(VLAN_PRIO_MASK, vlan_tci); 2818 2819 vlapqf = rd32(E1000_VLAPQF); 2820 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority); 2821 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority, 2822 E1000_VLAPQF_QUEUE_MASK); 2823 2824 wr32(E1000_VLAPQF, vlapqf); 2825 } 2826 2827 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2828 { 2829 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) 2830 igb_clear_etype_filter_regs(adapter, 2831 input->etype_reg_index); 2832 2833 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2834 igb_clear_vlan_prio_filter(adapter, 2835 ntohs(input->filter.vlan_tci)); 2836 2837 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) 2838 igb_del_mac_steering_filter(adapter, input->filter.src_addr, 2839 input->action, 2840 IGB_MAC_STATE_SRC_ADDR); 2841 2842 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) 2843 igb_del_mac_steering_filter(adapter, input->filter.dst_addr, 2844 input->action, 0); 2845 2846 return 0; 2847 } 2848 2849 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter, 2850 struct igb_nfc_filter *input, 2851 u16 sw_idx) 2852 { 2853 struct igb_nfc_filter *rule, *parent; 2854 int err = -EINVAL; 2855 2856 parent = NULL; 2857 rule = NULL; 2858 2859 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2860 /* hash found, or no matching entry */ 2861 if (rule->sw_idx >= sw_idx) 2862 break; 2863 parent = rule; 2864 } 2865 2866 /* if there is an old rule occupying our place remove it */ 2867 if (rule && (rule->sw_idx == sw_idx)) { 2868 if (!input) 2869 err = igb_erase_filter(adapter, rule); 2870 2871 hlist_del(&rule->nfc_node); 2872 kfree(rule); 2873 adapter->nfc_filter_count--; 2874 } 2875 2876 /* If no input this was a delete, err should be 0 if a rule was 2877 * successfully found and removed from the list else -EINVAL 2878 */ 2879 if (!input) 2880 return err; 2881 2882 /* initialize node */ 2883 INIT_HLIST_NODE(&input->nfc_node); 2884 2885 /* add filter to the list */ 2886 if (parent) 2887 hlist_add_behind(&input->nfc_node, &parent->nfc_node); 2888 else 2889 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list); 2890 2891 /* update counts */ 2892 adapter->nfc_filter_count++; 2893 2894 return 0; 2895 } 2896 2897 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter, 2898 struct ethtool_rxnfc *cmd) 2899 { 2900 struct net_device *netdev = adapter->netdev; 2901 struct ethtool_rx_flow_spec *fsp = 2902 (struct ethtool_rx_flow_spec *)&cmd->fs; 2903 struct igb_nfc_filter *input, *rule; 2904 int err = 0; 2905 2906 if (!(netdev->hw_features & NETIF_F_NTUPLE)) 2907 return -EOPNOTSUPP; 2908 2909 /* Don't allow programming if the action is a queue greater than 2910 * the number of online Rx queues. 2911 */ 2912 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) || 2913 (fsp->ring_cookie >= adapter->num_rx_queues)) { 2914 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n"); 2915 return -EINVAL; 2916 } 2917 2918 /* Don't allow indexes to exist outside of available space */ 2919 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) { 2920 dev_err(&adapter->pdev->dev, "Location out of range\n"); 2921 return -EINVAL; 2922 } 2923 2924 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW) 2925 return -EINVAL; 2926 2927 input = kzalloc(sizeof(*input), GFP_KERNEL); 2928 if (!input) 2929 return -ENOMEM; 2930 2931 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) { 2932 input->filter.etype = fsp->h_u.ether_spec.h_proto; 2933 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE; 2934 } 2935 2936 /* Only support matching addresses by the full mask */ 2937 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) { 2938 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR; 2939 ether_addr_copy(input->filter.src_addr, 2940 fsp->h_u.ether_spec.h_source); 2941 } 2942 2943 /* Only support matching addresses by the full mask */ 2944 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) { 2945 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR; 2946 ether_addr_copy(input->filter.dst_addr, 2947 fsp->h_u.ether_spec.h_dest); 2948 } 2949 2950 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) { 2951 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) { 2952 err = -EINVAL; 2953 goto err_out; 2954 } 2955 input->filter.vlan_tci = fsp->h_ext.vlan_tci; 2956 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2957 } 2958 2959 input->action = fsp->ring_cookie; 2960 input->sw_idx = fsp->location; 2961 2962 spin_lock(&adapter->nfc_lock); 2963 2964 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2965 if (!memcmp(&input->filter, &rule->filter, 2966 sizeof(input->filter))) { 2967 err = -EEXIST; 2968 dev_err(&adapter->pdev->dev, 2969 "ethtool: this filter is already set\n"); 2970 goto err_out_w_lock; 2971 } 2972 } 2973 2974 err = igb_add_filter(adapter, input); 2975 if (err) 2976 goto err_out_w_lock; 2977 2978 err = igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx); 2979 if (err) 2980 goto err_out_input_filter; 2981 2982 spin_unlock(&adapter->nfc_lock); 2983 return 0; 2984 2985 err_out_input_filter: 2986 igb_erase_filter(adapter, input); 2987 err_out_w_lock: 2988 spin_unlock(&adapter->nfc_lock); 2989 err_out: 2990 kfree(input); 2991 return err; 2992 } 2993 2994 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter, 2995 struct ethtool_rxnfc *cmd) 2996 { 2997 struct ethtool_rx_flow_spec *fsp = 2998 (struct ethtool_rx_flow_spec *)&cmd->fs; 2999 int err; 3000 3001 spin_lock(&adapter->nfc_lock); 3002 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location); 3003 spin_unlock(&adapter->nfc_lock); 3004 3005 return err; 3006 } 3007 3008 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 3009 { 3010 struct igb_adapter *adapter = netdev_priv(dev); 3011 int ret = -EOPNOTSUPP; 3012 3013 switch (cmd->cmd) { 3014 case ETHTOOL_SRXFH: 3015 ret = igb_set_rss_hash_opt(adapter, cmd); 3016 break; 3017 case ETHTOOL_SRXCLSRLINS: 3018 ret = igb_add_ethtool_nfc_entry(adapter, cmd); 3019 break; 3020 case ETHTOOL_SRXCLSRLDEL: 3021 ret = igb_del_ethtool_nfc_entry(adapter, cmd); 3022 break; 3023 default: 3024 break; 3025 } 3026 3027 return ret; 3028 } 3029 3030 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 3031 { 3032 struct igb_adapter *adapter = netdev_priv(netdev); 3033 struct e1000_hw *hw = &adapter->hw; 3034 u32 ret_val; 3035 u16 phy_data; 3036 3037 if ((hw->mac.type < e1000_i350) || 3038 (hw->phy.media_type != e1000_media_type_copper)) 3039 return -EOPNOTSUPP; 3040 3041 edata->supported = (SUPPORTED_1000baseT_Full | 3042 SUPPORTED_100baseT_Full); 3043 if (!hw->dev_spec._82575.eee_disable) 3044 edata->advertised = 3045 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 3046 3047 /* The IPCNFG and EEER registers are not supported on I354. */ 3048 if (hw->mac.type == e1000_i354) { 3049 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active); 3050 } else { 3051 u32 eeer; 3052 3053 eeer = rd32(E1000_EEER); 3054 3055 /* EEE status on negotiated link */ 3056 if (eeer & E1000_EEER_EEE_NEG) 3057 edata->eee_active = true; 3058 3059 if (eeer & E1000_EEER_TX_LPI_EN) 3060 edata->tx_lpi_enabled = true; 3061 } 3062 3063 /* EEE Link Partner Advertised */ 3064 switch (hw->mac.type) { 3065 case e1000_i350: 3066 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 3067 &phy_data); 3068 if (ret_val) 3069 return -ENODATA; 3070 3071 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3072 break; 3073 case e1000_i354: 3074 case e1000_i210: 3075 case e1000_i211: 3076 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 3077 E1000_EEE_LP_ADV_DEV_I210, 3078 &phy_data); 3079 if (ret_val) 3080 return -ENODATA; 3081 3082 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3083 3084 break; 3085 default: 3086 break; 3087 } 3088 3089 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 3090 3091 if ((hw->mac.type == e1000_i354) && 3092 (edata->eee_enabled)) 3093 edata->tx_lpi_enabled = true; 3094 3095 /* Report correct negotiated EEE status for devices that 3096 * wrongly report EEE at half-duplex 3097 */ 3098 if (adapter->link_duplex == HALF_DUPLEX) { 3099 edata->eee_enabled = false; 3100 edata->eee_active = false; 3101 edata->tx_lpi_enabled = false; 3102 edata->advertised &= ~edata->advertised; 3103 } 3104 3105 return 0; 3106 } 3107 3108 static int igb_set_eee(struct net_device *netdev, 3109 struct ethtool_eee *edata) 3110 { 3111 struct igb_adapter *adapter = netdev_priv(netdev); 3112 struct e1000_hw *hw = &adapter->hw; 3113 struct ethtool_eee eee_curr; 3114 bool adv1g_eee = true, adv100m_eee = true; 3115 s32 ret_val; 3116 3117 if ((hw->mac.type < e1000_i350) || 3118 (hw->phy.media_type != e1000_media_type_copper)) 3119 return -EOPNOTSUPP; 3120 3121 memset(&eee_curr, 0, sizeof(struct ethtool_eee)); 3122 3123 ret_val = igb_get_eee(netdev, &eee_curr); 3124 if (ret_val) 3125 return ret_val; 3126 3127 if (eee_curr.eee_enabled) { 3128 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 3129 dev_err(&adapter->pdev->dev, 3130 "Setting EEE tx-lpi is not supported\n"); 3131 return -EINVAL; 3132 } 3133 3134 /* Tx LPI timer is not implemented currently */ 3135 if (edata->tx_lpi_timer) { 3136 dev_err(&adapter->pdev->dev, 3137 "Setting EEE Tx LPI timer is not supported\n"); 3138 return -EINVAL; 3139 } 3140 3141 if (!edata->advertised || (edata->advertised & 3142 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) { 3143 dev_err(&adapter->pdev->dev, 3144 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n"); 3145 return -EINVAL; 3146 } 3147 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL); 3148 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL); 3149 3150 } else if (!edata->eee_enabled) { 3151 dev_err(&adapter->pdev->dev, 3152 "Setting EEE options are not supported with EEE disabled\n"); 3153 return -EINVAL; 3154 } 3155 3156 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 3157 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 3158 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 3159 adapter->flags |= IGB_FLAG_EEE; 3160 3161 /* reset link */ 3162 if (netif_running(netdev)) 3163 igb_reinit_locked(adapter); 3164 else 3165 igb_reset(adapter); 3166 } 3167 3168 if (hw->mac.type == e1000_i354) 3169 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee); 3170 else 3171 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee); 3172 3173 if (ret_val) { 3174 dev_err(&adapter->pdev->dev, 3175 "Problem setting EEE advertisement options\n"); 3176 return -EINVAL; 3177 } 3178 3179 return 0; 3180 } 3181 3182 static int igb_get_module_info(struct net_device *netdev, 3183 struct ethtool_modinfo *modinfo) 3184 { 3185 struct igb_adapter *adapter = netdev_priv(netdev); 3186 struct e1000_hw *hw = &adapter->hw; 3187 u32 status = 0; 3188 u16 sff8472_rev, addr_mode; 3189 bool page_swap = false; 3190 3191 if ((hw->phy.media_type == e1000_media_type_copper) || 3192 (hw->phy.media_type == e1000_media_type_unknown)) 3193 return -EOPNOTSUPP; 3194 3195 /* Check whether we support SFF-8472 or not */ 3196 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 3197 if (status) 3198 return -EIO; 3199 3200 /* addressing mode is not supported */ 3201 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 3202 if (status) 3203 return -EIO; 3204 3205 /* addressing mode is not supported */ 3206 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 3207 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 3208 page_swap = true; 3209 } 3210 3211 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 3212 /* We have an SFP, but it does not support SFF-8472 */ 3213 modinfo->type = ETH_MODULE_SFF_8079; 3214 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 3215 } else { 3216 /* We have an SFP which supports a revision of SFF-8472 */ 3217 modinfo->type = ETH_MODULE_SFF_8472; 3218 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 3219 } 3220 3221 return 0; 3222 } 3223 3224 static int igb_get_module_eeprom(struct net_device *netdev, 3225 struct ethtool_eeprom *ee, u8 *data) 3226 { 3227 struct igb_adapter *adapter = netdev_priv(netdev); 3228 struct e1000_hw *hw = &adapter->hw; 3229 u32 status = 0; 3230 u16 *dataword; 3231 u16 first_word, last_word; 3232 int i = 0; 3233 3234 if (ee->len == 0) 3235 return -EINVAL; 3236 3237 first_word = ee->offset >> 1; 3238 last_word = (ee->offset + ee->len - 1) >> 1; 3239 3240 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16), 3241 GFP_KERNEL); 3242 if (!dataword) 3243 return -ENOMEM; 3244 3245 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 3246 for (i = 0; i < last_word - first_word + 1; i++) { 3247 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2, 3248 &dataword[i]); 3249 if (status) { 3250 /* Error occurred while reading module */ 3251 kfree(dataword); 3252 return -EIO; 3253 } 3254 3255 be16_to_cpus(&dataword[i]); 3256 } 3257 3258 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 3259 kfree(dataword); 3260 3261 return 0; 3262 } 3263 3264 static int igb_ethtool_begin(struct net_device *netdev) 3265 { 3266 struct igb_adapter *adapter = netdev_priv(netdev); 3267 pm_runtime_get_sync(&adapter->pdev->dev); 3268 return 0; 3269 } 3270 3271 static void igb_ethtool_complete(struct net_device *netdev) 3272 { 3273 struct igb_adapter *adapter = netdev_priv(netdev); 3274 pm_runtime_put(&adapter->pdev->dev); 3275 } 3276 3277 static u32 igb_get_rxfh_indir_size(struct net_device *netdev) 3278 { 3279 return IGB_RETA_SIZE; 3280 } 3281 3282 static int igb_get_rxfh(struct net_device *netdev, 3283 struct ethtool_rxfh_param *rxfh) 3284 { 3285 struct igb_adapter *adapter = netdev_priv(netdev); 3286 int i; 3287 3288 rxfh->hfunc = ETH_RSS_HASH_TOP; 3289 if (!rxfh->indir) 3290 return 0; 3291 for (i = 0; i < IGB_RETA_SIZE; i++) 3292 rxfh->indir[i] = adapter->rss_indir_tbl[i]; 3293 3294 return 0; 3295 } 3296 3297 void igb_write_rss_indir_tbl(struct igb_adapter *adapter) 3298 { 3299 struct e1000_hw *hw = &adapter->hw; 3300 u32 reg = E1000_RETA(0); 3301 u32 shift = 0; 3302 int i = 0; 3303 3304 switch (hw->mac.type) { 3305 case e1000_82575: 3306 shift = 6; 3307 break; 3308 case e1000_82576: 3309 /* 82576 supports 2 RSS queues for SR-IOV */ 3310 if (adapter->vfs_allocated_count) 3311 shift = 3; 3312 break; 3313 default: 3314 break; 3315 } 3316 3317 while (i < IGB_RETA_SIZE) { 3318 u32 val = 0; 3319 int j; 3320 3321 for (j = 3; j >= 0; j--) { 3322 val <<= 8; 3323 val |= adapter->rss_indir_tbl[i + j]; 3324 } 3325 3326 wr32(reg, val << shift); 3327 reg += 4; 3328 i += 4; 3329 } 3330 } 3331 3332 static int igb_set_rxfh(struct net_device *netdev, 3333 struct ethtool_rxfh_param *rxfh, 3334 struct netlink_ext_ack *extack) 3335 { 3336 struct igb_adapter *adapter = netdev_priv(netdev); 3337 struct e1000_hw *hw = &adapter->hw; 3338 int i; 3339 u32 num_queues; 3340 3341 /* We do not allow change in unsupported parameters */ 3342 if (rxfh->key || 3343 (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && 3344 rxfh->hfunc != ETH_RSS_HASH_TOP)) 3345 return -EOPNOTSUPP; 3346 if (!rxfh->indir) 3347 return 0; 3348 3349 num_queues = adapter->rss_queues; 3350 3351 switch (hw->mac.type) { 3352 case e1000_82576: 3353 /* 82576 supports 2 RSS queues for SR-IOV */ 3354 if (adapter->vfs_allocated_count) 3355 num_queues = 2; 3356 break; 3357 default: 3358 break; 3359 } 3360 3361 /* Verify user input. */ 3362 for (i = 0; i < IGB_RETA_SIZE; i++) 3363 if (rxfh->indir[i] >= num_queues) 3364 return -EINVAL; 3365 3366 3367 for (i = 0; i < IGB_RETA_SIZE; i++) 3368 adapter->rss_indir_tbl[i] = rxfh->indir[i]; 3369 3370 igb_write_rss_indir_tbl(adapter); 3371 3372 return 0; 3373 } 3374 3375 static unsigned int igb_max_channels(struct igb_adapter *adapter) 3376 { 3377 return igb_get_max_rss_queues(adapter); 3378 } 3379 3380 static void igb_get_channels(struct net_device *netdev, 3381 struct ethtool_channels *ch) 3382 { 3383 struct igb_adapter *adapter = netdev_priv(netdev); 3384 3385 /* Report maximum channels */ 3386 ch->max_combined = igb_max_channels(adapter); 3387 3388 /* Report info for other vector */ 3389 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 3390 ch->max_other = NON_Q_VECTORS; 3391 ch->other_count = NON_Q_VECTORS; 3392 } 3393 3394 ch->combined_count = adapter->rss_queues; 3395 } 3396 3397 static int igb_set_channels(struct net_device *netdev, 3398 struct ethtool_channels *ch) 3399 { 3400 struct igb_adapter *adapter = netdev_priv(netdev); 3401 unsigned int count = ch->combined_count; 3402 unsigned int max_combined = 0; 3403 3404 /* Verify they are not requesting separate vectors */ 3405 if (!count || ch->rx_count || ch->tx_count) 3406 return -EINVAL; 3407 3408 /* Verify other_count is valid and has not been changed */ 3409 if (ch->other_count != NON_Q_VECTORS) 3410 return -EINVAL; 3411 3412 /* Verify the number of channels doesn't exceed hw limits */ 3413 max_combined = igb_max_channels(adapter); 3414 if (count > max_combined) 3415 return -EINVAL; 3416 3417 if (count != adapter->rss_queues) { 3418 adapter->rss_queues = count; 3419 igb_set_flag_queue_pairs(adapter, max_combined); 3420 3421 /* Hardware has to reinitialize queues and interrupts to 3422 * match the new configuration. 3423 */ 3424 return igb_reinit_queues(adapter); 3425 } 3426 3427 return 0; 3428 } 3429 3430 static u32 igb_get_priv_flags(struct net_device *netdev) 3431 { 3432 struct igb_adapter *adapter = netdev_priv(netdev); 3433 u32 priv_flags = 0; 3434 3435 if (adapter->flags & IGB_FLAG_RX_LEGACY) 3436 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX; 3437 3438 return priv_flags; 3439 } 3440 3441 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags) 3442 { 3443 struct igb_adapter *adapter = netdev_priv(netdev); 3444 unsigned int flags = adapter->flags; 3445 3446 flags &= ~IGB_FLAG_RX_LEGACY; 3447 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX) 3448 flags |= IGB_FLAG_RX_LEGACY; 3449 3450 if (flags != adapter->flags) { 3451 adapter->flags = flags; 3452 3453 /* reset interface to repopulate queues */ 3454 if (netif_running(netdev)) 3455 igb_reinit_locked(adapter); 3456 } 3457 3458 return 0; 3459 } 3460 3461 static const struct ethtool_ops igb_ethtool_ops = { 3462 .supported_coalesce_params = ETHTOOL_COALESCE_USECS, 3463 .get_drvinfo = igb_get_drvinfo, 3464 .get_regs_len = igb_get_regs_len, 3465 .get_regs = igb_get_regs, 3466 .get_wol = igb_get_wol, 3467 .set_wol = igb_set_wol, 3468 .get_msglevel = igb_get_msglevel, 3469 .set_msglevel = igb_set_msglevel, 3470 .nway_reset = igb_nway_reset, 3471 .get_link = igb_get_link, 3472 .get_eeprom_len = igb_get_eeprom_len, 3473 .get_eeprom = igb_get_eeprom, 3474 .set_eeprom = igb_set_eeprom, 3475 .get_ringparam = igb_get_ringparam, 3476 .set_ringparam = igb_set_ringparam, 3477 .get_pauseparam = igb_get_pauseparam, 3478 .set_pauseparam = igb_set_pauseparam, 3479 .self_test = igb_diag_test, 3480 .get_strings = igb_get_strings, 3481 .set_phys_id = igb_set_phys_id, 3482 .get_sset_count = igb_get_sset_count, 3483 .get_ethtool_stats = igb_get_ethtool_stats, 3484 .get_coalesce = igb_get_coalesce, 3485 .set_coalesce = igb_set_coalesce, 3486 .get_ts_info = igb_get_ts_info, 3487 .get_rxnfc = igb_get_rxnfc, 3488 .set_rxnfc = igb_set_rxnfc, 3489 .get_eee = igb_get_eee, 3490 .set_eee = igb_set_eee, 3491 .get_module_info = igb_get_module_info, 3492 .get_module_eeprom = igb_get_module_eeprom, 3493 .get_rxfh_indir_size = igb_get_rxfh_indir_size, 3494 .get_rxfh = igb_get_rxfh, 3495 .set_rxfh = igb_set_rxfh, 3496 .get_channels = igb_get_channels, 3497 .set_channels = igb_set_channels, 3498 .get_priv_flags = igb_get_priv_flags, 3499 .set_priv_flags = igb_set_priv_flags, 3500 .begin = igb_ethtool_begin, 3501 .complete = igb_ethtool_complete, 3502 .get_link_ksettings = igb_get_link_ksettings, 3503 .set_link_ksettings = igb_set_link_ksettings, 3504 }; 3505 3506 void igb_set_ethtool_ops(struct net_device *netdev) 3507 { 3508 netdev->ethtool_ops = &igb_ethtool_ops; 3509 } 3510