xref: /linux/drivers/net/ethernet/intel/igb/igb_ethtool.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 
41 #include "igb.h"
42 
43 struct igb_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int sizeof_stat;
46 	int stat_offset;
47 };
48 
49 #define IGB_STAT(_name, _stat) { \
50 	.stat_string = _name, \
51 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52 	.stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55 	IGB_STAT("rx_packets", stats.gprc),
56 	IGB_STAT("tx_packets", stats.gptc),
57 	IGB_STAT("rx_bytes", stats.gorc),
58 	IGB_STAT("tx_bytes", stats.gotc),
59 	IGB_STAT("rx_broadcast", stats.bprc),
60 	IGB_STAT("tx_broadcast", stats.bptc),
61 	IGB_STAT("rx_multicast", stats.mprc),
62 	IGB_STAT("tx_multicast", stats.mptc),
63 	IGB_STAT("multicast", stats.mprc),
64 	IGB_STAT("collisions", stats.colc),
65 	IGB_STAT("rx_crc_errors", stats.crcerrs),
66 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
67 	IGB_STAT("rx_missed_errors", stats.mpc),
68 	IGB_STAT("tx_aborted_errors", stats.ecol),
69 	IGB_STAT("tx_carrier_errors", stats.tncrs),
70 	IGB_STAT("tx_window_errors", stats.latecol),
71 	IGB_STAT("tx_abort_late_coll", stats.latecol),
72 	IGB_STAT("tx_deferred_ok", stats.dc),
73 	IGB_STAT("tx_single_coll_ok", stats.scc),
74 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
75 	IGB_STAT("tx_timeout_count", tx_timeout_count),
76 	IGB_STAT("rx_long_length_errors", stats.roc),
77 	IGB_STAT("rx_short_length_errors", stats.ruc),
78 	IGB_STAT("rx_align_errors", stats.algnerrc),
79 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
84 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85 	IGB_STAT("rx_long_byte_count", stats.gorc),
86 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87 	IGB_STAT("tx_smbus", stats.mgptc),
88 	IGB_STAT("rx_smbus", stats.mgprc),
89 	IGB_STAT("dropped_smbus", stats.mgpdc),
90 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95 
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 	.stat_string = __stringify(_net_stat), \
98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 	IGB_NETDEV_STAT(rx_errors),
103 	IGB_NETDEV_STAT(tx_errors),
104 	IGB_NETDEV_STAT(tx_dropped),
105 	IGB_NETDEV_STAT(rx_length_errors),
106 	IGB_NETDEV_STAT(rx_over_errors),
107 	IGB_NETDEV_STAT(rx_frame_errors),
108 	IGB_NETDEV_STAT(rx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_fifo_errors),
110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112 
113 #define IGB_GLOBAL_STATS_LEN	\
114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN	\
116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 
122 #define IGB_QUEUE_STATS_LEN \
123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 	  IGB_RX_QUEUE_STATS_LEN) + \
125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 	  IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 	"Register test  (offline)", "Eeprom test    (offline)",
132 	"Interrupt test (offline)", "Loopback test  (offline)",
133 	"Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136 
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139 	struct igb_adapter *adapter = netdev_priv(netdev);
140 	struct e1000_hw *hw = &adapter->hw;
141 	u32 status;
142 
143 	if (hw->phy.media_type == e1000_media_type_copper) {
144 
145 		ecmd->supported = (SUPPORTED_10baseT_Half |
146 				   SUPPORTED_10baseT_Full |
147 				   SUPPORTED_100baseT_Half |
148 				   SUPPORTED_100baseT_Full |
149 				   SUPPORTED_1000baseT_Full|
150 				   SUPPORTED_Autoneg |
151 				   SUPPORTED_TP);
152 		ecmd->advertising = (ADVERTISED_TP |
153 				     ADVERTISED_Pause);
154 
155 		if (hw->mac.autoneg == 1) {
156 			ecmd->advertising |= ADVERTISED_Autoneg;
157 			/* the e1000 autoneg seems to match ethtool nicely */
158 			ecmd->advertising |= hw->phy.autoneg_advertised;
159 		}
160 
161 		ecmd->port = PORT_TP;
162 		ecmd->phy_address = hw->phy.addr;
163 	} else {
164 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
165 				     SUPPORTED_FIBRE |
166 				     SUPPORTED_Autoneg);
167 
168 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
169 				     ADVERTISED_FIBRE |
170 				     ADVERTISED_Autoneg |
171 				     ADVERTISED_Pause);
172 
173 		ecmd->port = PORT_FIBRE;
174 	}
175 
176 	ecmd->transceiver = XCVR_INTERNAL;
177 
178 	status = rd32(E1000_STATUS);
179 
180 	if (status & E1000_STATUS_LU) {
181 
182 		if ((status & E1000_STATUS_SPEED_1000) ||
183 		    hw->phy.media_type != e1000_media_type_copper)
184 			ethtool_cmd_speed_set(ecmd, SPEED_1000);
185 		else if (status & E1000_STATUS_SPEED_100)
186 			ethtool_cmd_speed_set(ecmd, SPEED_100);
187 		else
188 			ethtool_cmd_speed_set(ecmd, SPEED_10);
189 
190 		if ((status & E1000_STATUS_FD) ||
191 		    hw->phy.media_type != e1000_media_type_copper)
192 			ecmd->duplex = DUPLEX_FULL;
193 		else
194 			ecmd->duplex = DUPLEX_HALF;
195 	} else {
196 		ethtool_cmd_speed_set(ecmd, -1);
197 		ecmd->duplex = -1;
198 	}
199 
200 	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201 	return 0;
202 }
203 
204 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 {
206 	struct igb_adapter *adapter = netdev_priv(netdev);
207 	struct e1000_hw *hw = &adapter->hw;
208 
209 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
210 	 * cannot be changed */
211 	if (igb_check_reset_block(hw)) {
212 		dev_err(&adapter->pdev->dev, "Cannot change link "
213 			"characteristics when SoL/IDER is active.\n");
214 		return -EINVAL;
215 	}
216 
217 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218 		msleep(1);
219 
220 	if (ecmd->autoneg == AUTONEG_ENABLE) {
221 		hw->mac.autoneg = 1;
222 		hw->phy.autoneg_advertised = ecmd->advertising |
223 					     ADVERTISED_TP |
224 					     ADVERTISED_Autoneg;
225 		ecmd->advertising = hw->phy.autoneg_advertised;
226 		if (adapter->fc_autoneg)
227 			hw->fc.requested_mode = e1000_fc_default;
228 	} else {
229 		u32 speed = ethtool_cmd_speed(ecmd);
230 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231 			clear_bit(__IGB_RESETTING, &adapter->state);
232 			return -EINVAL;
233 		}
234 	}
235 
236 	/* reset the link */
237 	if (netif_running(adapter->netdev)) {
238 		igb_down(adapter);
239 		igb_up(adapter);
240 	} else
241 		igb_reset(adapter);
242 
243 	clear_bit(__IGB_RESETTING, &adapter->state);
244 	return 0;
245 }
246 
247 static u32 igb_get_link(struct net_device *netdev)
248 {
249 	struct igb_adapter *adapter = netdev_priv(netdev);
250 	struct e1000_mac_info *mac = &adapter->hw.mac;
251 
252 	/*
253 	 * If the link is not reported up to netdev, interrupts are disabled,
254 	 * and so the physical link state may have changed since we last
255 	 * looked. Set get_link_status to make sure that the true link
256 	 * state is interrogated, rather than pulling a cached and possibly
257 	 * stale link state from the driver.
258 	 */
259 	if (!netif_carrier_ok(netdev))
260 		mac->get_link_status = 1;
261 
262 	return igb_has_link(adapter);
263 }
264 
265 static void igb_get_pauseparam(struct net_device *netdev,
266 			       struct ethtool_pauseparam *pause)
267 {
268 	struct igb_adapter *adapter = netdev_priv(netdev);
269 	struct e1000_hw *hw = &adapter->hw;
270 
271 	pause->autoneg =
272 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273 
274 	if (hw->fc.current_mode == e1000_fc_rx_pause)
275 		pause->rx_pause = 1;
276 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
277 		pause->tx_pause = 1;
278 	else if (hw->fc.current_mode == e1000_fc_full) {
279 		pause->rx_pause = 1;
280 		pause->tx_pause = 1;
281 	}
282 }
283 
284 static int igb_set_pauseparam(struct net_device *netdev,
285 			      struct ethtool_pauseparam *pause)
286 {
287 	struct igb_adapter *adapter = netdev_priv(netdev);
288 	struct e1000_hw *hw = &adapter->hw;
289 	int retval = 0;
290 
291 	adapter->fc_autoneg = pause->autoneg;
292 
293 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294 		msleep(1);
295 
296 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297 		hw->fc.requested_mode = e1000_fc_default;
298 		if (netif_running(adapter->netdev)) {
299 			igb_down(adapter);
300 			igb_up(adapter);
301 		} else {
302 			igb_reset(adapter);
303 		}
304 	} else {
305 		if (pause->rx_pause && pause->tx_pause)
306 			hw->fc.requested_mode = e1000_fc_full;
307 		else if (pause->rx_pause && !pause->tx_pause)
308 			hw->fc.requested_mode = e1000_fc_rx_pause;
309 		else if (!pause->rx_pause && pause->tx_pause)
310 			hw->fc.requested_mode = e1000_fc_tx_pause;
311 		else if (!pause->rx_pause && !pause->tx_pause)
312 			hw->fc.requested_mode = e1000_fc_none;
313 
314 		hw->fc.current_mode = hw->fc.requested_mode;
315 
316 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
318 	}
319 
320 	clear_bit(__IGB_RESETTING, &adapter->state);
321 	return retval;
322 }
323 
324 static u32 igb_get_msglevel(struct net_device *netdev)
325 {
326 	struct igb_adapter *adapter = netdev_priv(netdev);
327 	return adapter->msg_enable;
328 }
329 
330 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 {
332 	struct igb_adapter *adapter = netdev_priv(netdev);
333 	adapter->msg_enable = data;
334 }
335 
336 static int igb_get_regs_len(struct net_device *netdev)
337 {
338 #define IGB_REGS_LEN 739
339 	return IGB_REGS_LEN * sizeof(u32);
340 }
341 
342 static void igb_get_regs(struct net_device *netdev,
343 			 struct ethtool_regs *regs, void *p)
344 {
345 	struct igb_adapter *adapter = netdev_priv(netdev);
346 	struct e1000_hw *hw = &adapter->hw;
347 	u32 *regs_buff = p;
348 	u8 i;
349 
350 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351 
352 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353 
354 	/* General Registers */
355 	regs_buff[0] = rd32(E1000_CTRL);
356 	regs_buff[1] = rd32(E1000_STATUS);
357 	regs_buff[2] = rd32(E1000_CTRL_EXT);
358 	regs_buff[3] = rd32(E1000_MDIC);
359 	regs_buff[4] = rd32(E1000_SCTL);
360 	regs_buff[5] = rd32(E1000_CONNSW);
361 	regs_buff[6] = rd32(E1000_VET);
362 	regs_buff[7] = rd32(E1000_LEDCTL);
363 	regs_buff[8] = rd32(E1000_PBA);
364 	regs_buff[9] = rd32(E1000_PBS);
365 	regs_buff[10] = rd32(E1000_FRTIMER);
366 	regs_buff[11] = rd32(E1000_TCPTIMER);
367 
368 	/* NVM Register */
369 	regs_buff[12] = rd32(E1000_EECD);
370 
371 	/* Interrupt */
372 	/* Reading EICS for EICR because they read the
373 	 * same but EICS does not clear on read */
374 	regs_buff[13] = rd32(E1000_EICS);
375 	regs_buff[14] = rd32(E1000_EICS);
376 	regs_buff[15] = rd32(E1000_EIMS);
377 	regs_buff[16] = rd32(E1000_EIMC);
378 	regs_buff[17] = rd32(E1000_EIAC);
379 	regs_buff[18] = rd32(E1000_EIAM);
380 	/* Reading ICS for ICR because they read the
381 	 * same but ICS does not clear on read */
382 	regs_buff[19] = rd32(E1000_ICS);
383 	regs_buff[20] = rd32(E1000_ICS);
384 	regs_buff[21] = rd32(E1000_IMS);
385 	regs_buff[22] = rd32(E1000_IMC);
386 	regs_buff[23] = rd32(E1000_IAC);
387 	regs_buff[24] = rd32(E1000_IAM);
388 	regs_buff[25] = rd32(E1000_IMIRVP);
389 
390 	/* Flow Control */
391 	regs_buff[26] = rd32(E1000_FCAL);
392 	regs_buff[27] = rd32(E1000_FCAH);
393 	regs_buff[28] = rd32(E1000_FCTTV);
394 	regs_buff[29] = rd32(E1000_FCRTL);
395 	regs_buff[30] = rd32(E1000_FCRTH);
396 	regs_buff[31] = rd32(E1000_FCRTV);
397 
398 	/* Receive */
399 	regs_buff[32] = rd32(E1000_RCTL);
400 	regs_buff[33] = rd32(E1000_RXCSUM);
401 	regs_buff[34] = rd32(E1000_RLPML);
402 	regs_buff[35] = rd32(E1000_RFCTL);
403 	regs_buff[36] = rd32(E1000_MRQC);
404 	regs_buff[37] = rd32(E1000_VT_CTL);
405 
406 	/* Transmit */
407 	regs_buff[38] = rd32(E1000_TCTL);
408 	regs_buff[39] = rd32(E1000_TCTL_EXT);
409 	regs_buff[40] = rd32(E1000_TIPG);
410 	regs_buff[41] = rd32(E1000_DTXCTL);
411 
412 	/* Wake Up */
413 	regs_buff[42] = rd32(E1000_WUC);
414 	regs_buff[43] = rd32(E1000_WUFC);
415 	regs_buff[44] = rd32(E1000_WUS);
416 	regs_buff[45] = rd32(E1000_IPAV);
417 	regs_buff[46] = rd32(E1000_WUPL);
418 
419 	/* MAC */
420 	regs_buff[47] = rd32(E1000_PCS_CFG0);
421 	regs_buff[48] = rd32(E1000_PCS_LCTL);
422 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
423 	regs_buff[50] = rd32(E1000_PCS_ANADV);
424 	regs_buff[51] = rd32(E1000_PCS_LPAB);
425 	regs_buff[52] = rd32(E1000_PCS_NPTX);
426 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
427 
428 	/* Statistics */
429 	regs_buff[54] = adapter->stats.crcerrs;
430 	regs_buff[55] = adapter->stats.algnerrc;
431 	regs_buff[56] = adapter->stats.symerrs;
432 	regs_buff[57] = adapter->stats.rxerrc;
433 	regs_buff[58] = adapter->stats.mpc;
434 	regs_buff[59] = adapter->stats.scc;
435 	regs_buff[60] = adapter->stats.ecol;
436 	regs_buff[61] = adapter->stats.mcc;
437 	regs_buff[62] = adapter->stats.latecol;
438 	regs_buff[63] = adapter->stats.colc;
439 	regs_buff[64] = adapter->stats.dc;
440 	regs_buff[65] = adapter->stats.tncrs;
441 	regs_buff[66] = adapter->stats.sec;
442 	regs_buff[67] = adapter->stats.htdpmc;
443 	regs_buff[68] = adapter->stats.rlec;
444 	regs_buff[69] = adapter->stats.xonrxc;
445 	regs_buff[70] = adapter->stats.xontxc;
446 	regs_buff[71] = adapter->stats.xoffrxc;
447 	regs_buff[72] = adapter->stats.xofftxc;
448 	regs_buff[73] = adapter->stats.fcruc;
449 	regs_buff[74] = adapter->stats.prc64;
450 	regs_buff[75] = adapter->stats.prc127;
451 	regs_buff[76] = adapter->stats.prc255;
452 	regs_buff[77] = adapter->stats.prc511;
453 	regs_buff[78] = adapter->stats.prc1023;
454 	regs_buff[79] = adapter->stats.prc1522;
455 	regs_buff[80] = adapter->stats.gprc;
456 	regs_buff[81] = adapter->stats.bprc;
457 	regs_buff[82] = adapter->stats.mprc;
458 	regs_buff[83] = adapter->stats.gptc;
459 	regs_buff[84] = adapter->stats.gorc;
460 	regs_buff[86] = adapter->stats.gotc;
461 	regs_buff[88] = adapter->stats.rnbc;
462 	regs_buff[89] = adapter->stats.ruc;
463 	regs_buff[90] = adapter->stats.rfc;
464 	regs_buff[91] = adapter->stats.roc;
465 	regs_buff[92] = adapter->stats.rjc;
466 	regs_buff[93] = adapter->stats.mgprc;
467 	regs_buff[94] = adapter->stats.mgpdc;
468 	regs_buff[95] = adapter->stats.mgptc;
469 	regs_buff[96] = adapter->stats.tor;
470 	regs_buff[98] = adapter->stats.tot;
471 	regs_buff[100] = adapter->stats.tpr;
472 	regs_buff[101] = adapter->stats.tpt;
473 	regs_buff[102] = adapter->stats.ptc64;
474 	regs_buff[103] = adapter->stats.ptc127;
475 	regs_buff[104] = adapter->stats.ptc255;
476 	regs_buff[105] = adapter->stats.ptc511;
477 	regs_buff[106] = adapter->stats.ptc1023;
478 	regs_buff[107] = adapter->stats.ptc1522;
479 	regs_buff[108] = adapter->stats.mptc;
480 	regs_buff[109] = adapter->stats.bptc;
481 	regs_buff[110] = adapter->stats.tsctc;
482 	regs_buff[111] = adapter->stats.iac;
483 	regs_buff[112] = adapter->stats.rpthc;
484 	regs_buff[113] = adapter->stats.hgptc;
485 	regs_buff[114] = adapter->stats.hgorc;
486 	regs_buff[116] = adapter->stats.hgotc;
487 	regs_buff[118] = adapter->stats.lenerrs;
488 	regs_buff[119] = adapter->stats.scvpc;
489 	regs_buff[120] = adapter->stats.hrmpc;
490 
491 	for (i = 0; i < 4; i++)
492 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493 	for (i = 0; i < 4; i++)
494 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495 	for (i = 0; i < 4; i++)
496 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497 	for (i = 0; i < 4; i++)
498 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499 	for (i = 0; i < 4; i++)
500 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501 	for (i = 0; i < 4; i++)
502 		regs_buff[141 + i] = rd32(E1000_RDH(i));
503 	for (i = 0; i < 4; i++)
504 		regs_buff[145 + i] = rd32(E1000_RDT(i));
505 	for (i = 0; i < 4; i++)
506 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507 
508 	for (i = 0; i < 10; i++)
509 		regs_buff[153 + i] = rd32(E1000_EITR(i));
510 	for (i = 0; i < 8; i++)
511 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
512 	for (i = 0; i < 8; i++)
513 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514 	for (i = 0; i < 16; i++)
515 		regs_buff[179 + i] = rd32(E1000_RAL(i));
516 	for (i = 0; i < 16; i++)
517 		regs_buff[195 + i] = rd32(E1000_RAH(i));
518 
519 	for (i = 0; i < 4; i++)
520 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521 	for (i = 0; i < 4; i++)
522 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523 	for (i = 0; i < 4; i++)
524 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525 	for (i = 0; i < 4; i++)
526 		regs_buff[223 + i] = rd32(E1000_TDH(i));
527 	for (i = 0; i < 4; i++)
528 		regs_buff[227 + i] = rd32(E1000_TDT(i));
529 	for (i = 0; i < 4; i++)
530 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531 	for (i = 0; i < 4; i++)
532 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533 	for (i = 0; i < 4; i++)
534 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535 	for (i = 0; i < 4; i++)
536 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537 
538 	for (i = 0; i < 4; i++)
539 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540 	for (i = 0; i < 4; i++)
541 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542 	for (i = 0; i < 32; i++)
543 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544 	for (i = 0; i < 128; i++)
545 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546 	for (i = 0; i < 128; i++)
547 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548 	for (i = 0; i < 4; i++)
549 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550 
551 	regs_buff[547] = rd32(E1000_TDFH);
552 	regs_buff[548] = rd32(E1000_TDFT);
553 	regs_buff[549] = rd32(E1000_TDFHS);
554 	regs_buff[550] = rd32(E1000_TDFPC);
555 
556 	if (hw->mac.type > e1000_82580) {
557 		regs_buff[551] = adapter->stats.o2bgptc;
558 		regs_buff[552] = adapter->stats.b2ospc;
559 		regs_buff[553] = adapter->stats.o2bspc;
560 		regs_buff[554] = adapter->stats.b2ogprc;
561 	}
562 
563 	if (hw->mac.type != e1000_82576)
564 		return;
565 	for (i = 0; i < 12; i++)
566 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
567 	for (i = 0; i < 4; i++)
568 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
569 	for (i = 0; i < 12; i++)
570 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
571 	for (i = 0; i < 12; i++)
572 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
573 	for (i = 0; i < 12; i++)
574 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
575 	for (i = 0; i < 12; i++)
576 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
577 	for (i = 0; i < 12; i++)
578 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
579 	for (i = 0; i < 12; i++)
580 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
581 
582 	for (i = 0; i < 12; i++)
583 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
584 	for (i = 0; i < 12; i++)
585 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
586 	for (i = 0; i < 12; i++)
587 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
588 	for (i = 0; i < 12; i++)
589 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
590 	for (i = 0; i < 12; i++)
591 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
592 	for (i = 0; i < 12; i++)
593 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
594 	for (i = 0; i < 12; i++)
595 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
596 	for (i = 0; i < 12; i++)
597 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
598 }
599 
600 static int igb_get_eeprom_len(struct net_device *netdev)
601 {
602 	struct igb_adapter *adapter = netdev_priv(netdev);
603 	return adapter->hw.nvm.word_size * 2;
604 }
605 
606 static int igb_get_eeprom(struct net_device *netdev,
607 			  struct ethtool_eeprom *eeprom, u8 *bytes)
608 {
609 	struct igb_adapter *adapter = netdev_priv(netdev);
610 	struct e1000_hw *hw = &adapter->hw;
611 	u16 *eeprom_buff;
612 	int first_word, last_word;
613 	int ret_val = 0;
614 	u16 i;
615 
616 	if (eeprom->len == 0)
617 		return -EINVAL;
618 
619 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
620 
621 	first_word = eeprom->offset >> 1;
622 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
623 
624 	eeprom_buff = kmalloc(sizeof(u16) *
625 			(last_word - first_word + 1), GFP_KERNEL);
626 	if (!eeprom_buff)
627 		return -ENOMEM;
628 
629 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
630 		ret_val = hw->nvm.ops.read(hw, first_word,
631 					    last_word - first_word + 1,
632 					    eeprom_buff);
633 	else {
634 		for (i = 0; i < last_word - first_word + 1; i++) {
635 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
636 						    &eeprom_buff[i]);
637 			if (ret_val)
638 				break;
639 		}
640 	}
641 
642 	/* Device's eeprom is always little-endian, word addressable */
643 	for (i = 0; i < last_word - first_word + 1; i++)
644 		le16_to_cpus(&eeprom_buff[i]);
645 
646 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
647 			eeprom->len);
648 	kfree(eeprom_buff);
649 
650 	return ret_val;
651 }
652 
653 static int igb_set_eeprom(struct net_device *netdev,
654 			  struct ethtool_eeprom *eeprom, u8 *bytes)
655 {
656 	struct igb_adapter *adapter = netdev_priv(netdev);
657 	struct e1000_hw *hw = &adapter->hw;
658 	u16 *eeprom_buff;
659 	void *ptr;
660 	int max_len, first_word, last_word, ret_val = 0;
661 	u16 i;
662 
663 	if (eeprom->len == 0)
664 		return -EOPNOTSUPP;
665 
666 	if (hw->mac.type == e1000_i211)
667 		return -EOPNOTSUPP;
668 
669 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
670 		return -EFAULT;
671 
672 	max_len = hw->nvm.word_size * 2;
673 
674 	first_word = eeprom->offset >> 1;
675 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
676 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
677 	if (!eeprom_buff)
678 		return -ENOMEM;
679 
680 	ptr = (void *)eeprom_buff;
681 
682 	if (eeprom->offset & 1) {
683 		/* need read/modify/write of first changed EEPROM word */
684 		/* only the second byte of the word is being modified */
685 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
686 					    &eeprom_buff[0]);
687 		ptr++;
688 	}
689 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
690 		/* need read/modify/write of last changed EEPROM word */
691 		/* only the first byte of the word is being modified */
692 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
693 				   &eeprom_buff[last_word - first_word]);
694 	}
695 
696 	/* Device's eeprom is always little-endian, word addressable */
697 	for (i = 0; i < last_word - first_word + 1; i++)
698 		le16_to_cpus(&eeprom_buff[i]);
699 
700 	memcpy(ptr, bytes, eeprom->len);
701 
702 	for (i = 0; i < last_word - first_word + 1; i++)
703 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
704 
705 	ret_val = hw->nvm.ops.write(hw, first_word,
706 				     last_word - first_word + 1, eeprom_buff);
707 
708 	/* Update the checksum over the first part of the EEPROM if needed
709 	 * and flush shadow RAM for 82573 controllers */
710 	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
711 		hw->nvm.ops.update(hw);
712 
713 	kfree(eeprom_buff);
714 	return ret_val;
715 }
716 
717 static void igb_get_drvinfo(struct net_device *netdev,
718 			    struct ethtool_drvinfo *drvinfo)
719 {
720 	struct igb_adapter *adapter = netdev_priv(netdev);
721 	u16 eeprom_data;
722 
723 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
724 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
725 
726 	/* EEPROM image version # is reported as firmware version # for
727 	 * 82575 controllers */
728 	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
729 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
730 		"%d.%d-%d",
731 		(eeprom_data & 0xF000) >> 12,
732 		(eeprom_data & 0x0FF0) >> 4,
733 		eeprom_data & 0x000F);
734 
735 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
736 		sizeof(drvinfo->bus_info));
737 	drvinfo->n_stats = IGB_STATS_LEN;
738 	drvinfo->testinfo_len = IGB_TEST_LEN;
739 	drvinfo->regdump_len = igb_get_regs_len(netdev);
740 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
741 }
742 
743 static void igb_get_ringparam(struct net_device *netdev,
744 			      struct ethtool_ringparam *ring)
745 {
746 	struct igb_adapter *adapter = netdev_priv(netdev);
747 
748 	ring->rx_max_pending = IGB_MAX_RXD;
749 	ring->tx_max_pending = IGB_MAX_TXD;
750 	ring->rx_pending = adapter->rx_ring_count;
751 	ring->tx_pending = adapter->tx_ring_count;
752 }
753 
754 static int igb_set_ringparam(struct net_device *netdev,
755 			     struct ethtool_ringparam *ring)
756 {
757 	struct igb_adapter *adapter = netdev_priv(netdev);
758 	struct igb_ring *temp_ring;
759 	int i, err = 0;
760 	u16 new_rx_count, new_tx_count;
761 
762 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
763 		return -EINVAL;
764 
765 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
766 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
767 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
768 
769 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
770 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
771 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
772 
773 	if ((new_tx_count == adapter->tx_ring_count) &&
774 	    (new_rx_count == adapter->rx_ring_count)) {
775 		/* nothing to do */
776 		return 0;
777 	}
778 
779 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
780 		msleep(1);
781 
782 	if (!netif_running(adapter->netdev)) {
783 		for (i = 0; i < adapter->num_tx_queues; i++)
784 			adapter->tx_ring[i]->count = new_tx_count;
785 		for (i = 0; i < adapter->num_rx_queues; i++)
786 			adapter->rx_ring[i]->count = new_rx_count;
787 		adapter->tx_ring_count = new_tx_count;
788 		adapter->rx_ring_count = new_rx_count;
789 		goto clear_reset;
790 	}
791 
792 	if (adapter->num_tx_queues > adapter->num_rx_queues)
793 		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
794 	else
795 		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
796 
797 	if (!temp_ring) {
798 		err = -ENOMEM;
799 		goto clear_reset;
800 	}
801 
802 	igb_down(adapter);
803 
804 	/*
805 	 * We can't just free everything and then setup again,
806 	 * because the ISRs in MSI-X mode get passed pointers
807 	 * to the tx and rx ring structs.
808 	 */
809 	if (new_tx_count != adapter->tx_ring_count) {
810 		for (i = 0; i < adapter->num_tx_queues; i++) {
811 			memcpy(&temp_ring[i], adapter->tx_ring[i],
812 			       sizeof(struct igb_ring));
813 
814 			temp_ring[i].count = new_tx_count;
815 			err = igb_setup_tx_resources(&temp_ring[i]);
816 			if (err) {
817 				while (i) {
818 					i--;
819 					igb_free_tx_resources(&temp_ring[i]);
820 				}
821 				goto err_setup;
822 			}
823 		}
824 
825 		for (i = 0; i < adapter->num_tx_queues; i++) {
826 			igb_free_tx_resources(adapter->tx_ring[i]);
827 
828 			memcpy(adapter->tx_ring[i], &temp_ring[i],
829 			       sizeof(struct igb_ring));
830 		}
831 
832 		adapter->tx_ring_count = new_tx_count;
833 	}
834 
835 	if (new_rx_count != adapter->rx_ring_count) {
836 		for (i = 0; i < adapter->num_rx_queues; i++) {
837 			memcpy(&temp_ring[i], adapter->rx_ring[i],
838 			       sizeof(struct igb_ring));
839 
840 			temp_ring[i].count = new_rx_count;
841 			err = igb_setup_rx_resources(&temp_ring[i]);
842 			if (err) {
843 				while (i) {
844 					i--;
845 					igb_free_rx_resources(&temp_ring[i]);
846 				}
847 				goto err_setup;
848 			}
849 
850 		}
851 
852 		for (i = 0; i < adapter->num_rx_queues; i++) {
853 			igb_free_rx_resources(adapter->rx_ring[i]);
854 
855 			memcpy(adapter->rx_ring[i], &temp_ring[i],
856 			       sizeof(struct igb_ring));
857 		}
858 
859 		adapter->rx_ring_count = new_rx_count;
860 	}
861 err_setup:
862 	igb_up(adapter);
863 	vfree(temp_ring);
864 clear_reset:
865 	clear_bit(__IGB_RESETTING, &adapter->state);
866 	return err;
867 }
868 
869 /* ethtool register test data */
870 struct igb_reg_test {
871 	u16 reg;
872 	u16 reg_offset;
873 	u16 array_len;
874 	u16 test_type;
875 	u32 mask;
876 	u32 write;
877 };
878 
879 /* In the hardware, registers are laid out either singly, in arrays
880  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
881  * most tests take place on arrays or single registers (handled
882  * as a single-element array) and special-case the tables.
883  * Table tests are always pattern tests.
884  *
885  * We also make provision for some required setup steps by specifying
886  * registers to be written without any read-back testing.
887  */
888 
889 #define PATTERN_TEST	1
890 #define SET_READ_TEST	2
891 #define WRITE_NO_TEST	3
892 #define TABLE32_TEST	4
893 #define TABLE64_TEST_LO	5
894 #define TABLE64_TEST_HI	6
895 
896 /* i210 reg test */
897 static struct igb_reg_test reg_test_i210[] = {
898 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
899 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
900 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
901 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
902 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
904 	/* RDH is read-only for i210, only test RDT. */
905 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
906 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
907 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
908 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
909 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
910 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
912 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
913 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
915 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
916 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
917 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
918 						0xFFFFFFFF, 0xFFFFFFFF },
919 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
920 						0x900FFFFF, 0xFFFFFFFF },
921 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
922 						0xFFFFFFFF, 0xFFFFFFFF },
923 	{ 0, 0, 0, 0, 0 }
924 };
925 
926 /* i350 reg test */
927 static struct igb_reg_test reg_test_i350[] = {
928 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
929 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
930 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
931 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
932 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
933 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
935 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
936 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
937 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
938 	/* RDH is read-only for i350, only test RDT. */
939 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
940 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
941 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
942 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
943 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
944 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
945 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
947 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
948 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
949 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
950 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
951 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
952 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
954 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
955 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
956 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
957 						0xFFFFFFFF, 0xFFFFFFFF },
958 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
959 						0xC3FFFFFF, 0xFFFFFFFF },
960 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
961 						0xFFFFFFFF, 0xFFFFFFFF },
962 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
963 						0xC3FFFFFF, 0xFFFFFFFF },
964 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
965 						0xFFFFFFFF, 0xFFFFFFFF },
966 	{ 0, 0, 0, 0 }
967 };
968 
969 /* 82580 reg test */
970 static struct igb_reg_test reg_test_82580[] = {
971 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
973 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
974 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
975 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
976 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
977 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
978 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
979 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
980 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
981 	/* RDH is read-only for 82580, only test RDT. */
982 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
983 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
984 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
985 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
986 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
987 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
990 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
991 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
992 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
993 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
997 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
998 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
999 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1000 						0xFFFFFFFF, 0xFFFFFFFF },
1001 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1002 						0x83FFFFFF, 0xFFFFFFFF },
1003 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1004 						0xFFFFFFFF, 0xFFFFFFFF },
1005 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1006 						0x83FFFFFF, 0xFFFFFFFF },
1007 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1008 						0xFFFFFFFF, 0xFFFFFFFF },
1009 	{ 0, 0, 0, 0 }
1010 };
1011 
1012 /* 82576 reg test */
1013 static struct igb_reg_test reg_test_82576[] = {
1014 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1022 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1023 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1024 	/* Enable all RX queues before testing. */
1025 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1026 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1027 	/* RDH is read-only for 82576, only test RDT. */
1028 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1031 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1032 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1033 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1035 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1041 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1046 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1047 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1048 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1049 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050 	{ 0, 0, 0, 0 }
1051 };
1052 
1053 /* 82575 register test */
1054 static struct igb_reg_test reg_test_82575[] = {
1055 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1057 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062 	/* Enable all four RX queues before testing. */
1063 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1064 	/* RDH is read-only for 82575, only test RDT. */
1065 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1067 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1068 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1070 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1071 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1073 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1075 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1076 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1077 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1078 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1079 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1080 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081 	{ 0, 0, 0, 0 }
1082 };
1083 
1084 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1085 			     int reg, u32 mask, u32 write)
1086 {
1087 	struct e1000_hw *hw = &adapter->hw;
1088 	u32 pat, val;
1089 	static const u32 _test[] =
1090 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1091 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1092 		wr32(reg, (_test[pat] & write));
1093 		val = rd32(reg) & mask;
1094 		if (val != (_test[pat] & write & mask)) {
1095 			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1096 				"failed: got 0x%08X expected 0x%08X\n",
1097 				reg, val, (_test[pat] & write & mask));
1098 			*data = reg;
1099 			return 1;
1100 		}
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1107 			      int reg, u32 mask, u32 write)
1108 {
1109 	struct e1000_hw *hw = &adapter->hw;
1110 	u32 val;
1111 	wr32(reg, write & mask);
1112 	val = rd32(reg);
1113 	if ((write & mask) != (val & mask)) {
1114 		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1115 			" got 0x%08X expected 0x%08X\n", reg,
1116 			(val & mask), (write & mask));
1117 		*data = reg;
1118 		return 1;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 #define REG_PATTERN_TEST(reg, mask, write) \
1125 	do { \
1126 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1127 			return 1; \
1128 	} while (0)
1129 
1130 #define REG_SET_AND_CHECK(reg, mask, write) \
1131 	do { \
1132 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1133 			return 1; \
1134 	} while (0)
1135 
1136 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1137 {
1138 	struct e1000_hw *hw = &adapter->hw;
1139 	struct igb_reg_test *test;
1140 	u32 value, before, after;
1141 	u32 i, toggle;
1142 
1143 	switch (adapter->hw.mac.type) {
1144 	case e1000_i350:
1145 		test = reg_test_i350;
1146 		toggle = 0x7FEFF3FF;
1147 		break;
1148 	case e1000_i210:
1149 	case e1000_i211:
1150 		test = reg_test_i210;
1151 		toggle = 0x7FEFF3FF;
1152 		break;
1153 	case e1000_82580:
1154 		test = reg_test_82580;
1155 		toggle = 0x7FEFF3FF;
1156 		break;
1157 	case e1000_82576:
1158 		test = reg_test_82576;
1159 		toggle = 0x7FFFF3FF;
1160 		break;
1161 	default:
1162 		test = reg_test_82575;
1163 		toggle = 0x7FFFF3FF;
1164 		break;
1165 	}
1166 
1167 	/* Because the status register is such a special case,
1168 	 * we handle it separately from the rest of the register
1169 	 * tests.  Some bits are read-only, some toggle, and some
1170 	 * are writable on newer MACs.
1171 	 */
1172 	before = rd32(E1000_STATUS);
1173 	value = (rd32(E1000_STATUS) & toggle);
1174 	wr32(E1000_STATUS, toggle);
1175 	after = rd32(E1000_STATUS) & toggle;
1176 	if (value != after) {
1177 		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1178 			"got: 0x%08X expected: 0x%08X\n", after, value);
1179 		*data = 1;
1180 		return 1;
1181 	}
1182 	/* restore previous status */
1183 	wr32(E1000_STATUS, before);
1184 
1185 	/* Perform the remainder of the register test, looping through
1186 	 * the test table until we either fail or reach the null entry.
1187 	 */
1188 	while (test->reg) {
1189 		for (i = 0; i < test->array_len; i++) {
1190 			switch (test->test_type) {
1191 			case PATTERN_TEST:
1192 				REG_PATTERN_TEST(test->reg +
1193 						(i * test->reg_offset),
1194 						test->mask,
1195 						test->write);
1196 				break;
1197 			case SET_READ_TEST:
1198 				REG_SET_AND_CHECK(test->reg +
1199 						(i * test->reg_offset),
1200 						test->mask,
1201 						test->write);
1202 				break;
1203 			case WRITE_NO_TEST:
1204 				writel(test->write,
1205 				    (adapter->hw.hw_addr + test->reg)
1206 					+ (i * test->reg_offset));
1207 				break;
1208 			case TABLE32_TEST:
1209 				REG_PATTERN_TEST(test->reg + (i * 4),
1210 						test->mask,
1211 						test->write);
1212 				break;
1213 			case TABLE64_TEST_LO:
1214 				REG_PATTERN_TEST(test->reg + (i * 8),
1215 						test->mask,
1216 						test->write);
1217 				break;
1218 			case TABLE64_TEST_HI:
1219 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1220 						test->mask,
1221 						test->write);
1222 				break;
1223 			}
1224 		}
1225 		test++;
1226 	}
1227 
1228 	*data = 0;
1229 	return 0;
1230 }
1231 
1232 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1233 {
1234 	*data = 0;
1235 
1236 	/* Validate eeprom on all parts but i211 */
1237 	if (adapter->hw.mac.type != e1000_i211) {
1238 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1239 			*data = 2;
1240 	}
1241 
1242 	return *data;
1243 }
1244 
1245 static irqreturn_t igb_test_intr(int irq, void *data)
1246 {
1247 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1248 	struct e1000_hw *hw = &adapter->hw;
1249 
1250 	adapter->test_icr |= rd32(E1000_ICR);
1251 
1252 	return IRQ_HANDLED;
1253 }
1254 
1255 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1256 {
1257 	struct e1000_hw *hw = &adapter->hw;
1258 	struct net_device *netdev = adapter->netdev;
1259 	u32 mask, ics_mask, i = 0, shared_int = true;
1260 	u32 irq = adapter->pdev->irq;
1261 
1262 	*data = 0;
1263 
1264 	/* Hook up test interrupt handler just for this test */
1265 	if (adapter->msix_entries) {
1266 		if (request_irq(adapter->msix_entries[0].vector,
1267 		                igb_test_intr, 0, netdev->name, adapter)) {
1268 			*data = 1;
1269 			return -1;
1270 		}
1271 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1272 		shared_int = false;
1273 		if (request_irq(irq,
1274 		                igb_test_intr, 0, netdev->name, adapter)) {
1275 			*data = 1;
1276 			return -1;
1277 		}
1278 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1279 				netdev->name, adapter)) {
1280 		shared_int = false;
1281 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1282 		 netdev->name, adapter)) {
1283 		*data = 1;
1284 		return -1;
1285 	}
1286 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1287 		(shared_int ? "shared" : "unshared"));
1288 
1289 	/* Disable all the interrupts */
1290 	wr32(E1000_IMC, ~0);
1291 	wrfl();
1292 	msleep(10);
1293 
1294 	/* Define all writable bits for ICS */
1295 	switch (hw->mac.type) {
1296 	case e1000_82575:
1297 		ics_mask = 0x37F47EDD;
1298 		break;
1299 	case e1000_82576:
1300 		ics_mask = 0x77D4FBFD;
1301 		break;
1302 	case e1000_82580:
1303 		ics_mask = 0x77DCFED5;
1304 		break;
1305 	case e1000_i350:
1306 	case e1000_i210:
1307 	case e1000_i211:
1308 		ics_mask = 0x77DCFED5;
1309 		break;
1310 	default:
1311 		ics_mask = 0x7FFFFFFF;
1312 		break;
1313 	}
1314 
1315 	/* Test each interrupt */
1316 	for (; i < 31; i++) {
1317 		/* Interrupt to test */
1318 		mask = 1 << i;
1319 
1320 		if (!(mask & ics_mask))
1321 			continue;
1322 
1323 		if (!shared_int) {
1324 			/* Disable the interrupt to be reported in
1325 			 * the cause register and then force the same
1326 			 * interrupt and see if one gets posted.  If
1327 			 * an interrupt was posted to the bus, the
1328 			 * test failed.
1329 			 */
1330 			adapter->test_icr = 0;
1331 
1332 			/* Flush any pending interrupts */
1333 			wr32(E1000_ICR, ~0);
1334 
1335 			wr32(E1000_IMC, mask);
1336 			wr32(E1000_ICS, mask);
1337 			wrfl();
1338 			msleep(10);
1339 
1340 			if (adapter->test_icr & mask) {
1341 				*data = 3;
1342 				break;
1343 			}
1344 		}
1345 
1346 		/* Enable the interrupt to be reported in
1347 		 * the cause register and then force the same
1348 		 * interrupt and see if one gets posted.  If
1349 		 * an interrupt was not posted to the bus, the
1350 		 * test failed.
1351 		 */
1352 		adapter->test_icr = 0;
1353 
1354 		/* Flush any pending interrupts */
1355 		wr32(E1000_ICR, ~0);
1356 
1357 		wr32(E1000_IMS, mask);
1358 		wr32(E1000_ICS, mask);
1359 		wrfl();
1360 		msleep(10);
1361 
1362 		if (!(adapter->test_icr & mask)) {
1363 			*data = 4;
1364 			break;
1365 		}
1366 
1367 		if (!shared_int) {
1368 			/* Disable the other interrupts to be reported in
1369 			 * the cause register and then force the other
1370 			 * interrupts and see if any get posted.  If
1371 			 * an interrupt was posted to the bus, the
1372 			 * test failed.
1373 			 */
1374 			adapter->test_icr = 0;
1375 
1376 			/* Flush any pending interrupts */
1377 			wr32(E1000_ICR, ~0);
1378 
1379 			wr32(E1000_IMC, ~mask);
1380 			wr32(E1000_ICS, ~mask);
1381 			wrfl();
1382 			msleep(10);
1383 
1384 			if (adapter->test_icr & mask) {
1385 				*data = 5;
1386 				break;
1387 			}
1388 		}
1389 	}
1390 
1391 	/* Disable all the interrupts */
1392 	wr32(E1000_IMC, ~0);
1393 	wrfl();
1394 	msleep(10);
1395 
1396 	/* Unhook test interrupt handler */
1397 	if (adapter->msix_entries)
1398 		free_irq(adapter->msix_entries[0].vector, adapter);
1399 	else
1400 		free_irq(irq, adapter);
1401 
1402 	return *data;
1403 }
1404 
1405 static void igb_free_desc_rings(struct igb_adapter *adapter)
1406 {
1407 	igb_free_tx_resources(&adapter->test_tx_ring);
1408 	igb_free_rx_resources(&adapter->test_rx_ring);
1409 }
1410 
1411 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1412 {
1413 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1414 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1415 	struct e1000_hw *hw = &adapter->hw;
1416 	int ret_val;
1417 
1418 	/* Setup Tx descriptor ring and Tx buffers */
1419 	tx_ring->count = IGB_DEFAULT_TXD;
1420 	tx_ring->dev = &adapter->pdev->dev;
1421 	tx_ring->netdev = adapter->netdev;
1422 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1423 
1424 	if (igb_setup_tx_resources(tx_ring)) {
1425 		ret_val = 1;
1426 		goto err_nomem;
1427 	}
1428 
1429 	igb_setup_tctl(adapter);
1430 	igb_configure_tx_ring(adapter, tx_ring);
1431 
1432 	/* Setup Rx descriptor ring and Rx buffers */
1433 	rx_ring->count = IGB_DEFAULT_RXD;
1434 	rx_ring->dev = &adapter->pdev->dev;
1435 	rx_ring->netdev = adapter->netdev;
1436 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1437 
1438 	if (igb_setup_rx_resources(rx_ring)) {
1439 		ret_val = 3;
1440 		goto err_nomem;
1441 	}
1442 
1443 	/* set the default queue to queue 0 of PF */
1444 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1445 
1446 	/* enable receive ring */
1447 	igb_setup_rctl(adapter);
1448 	igb_configure_rx_ring(adapter, rx_ring);
1449 
1450 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1451 
1452 	return 0;
1453 
1454 err_nomem:
1455 	igb_free_desc_rings(adapter);
1456 	return ret_val;
1457 }
1458 
1459 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1460 {
1461 	struct e1000_hw *hw = &adapter->hw;
1462 
1463 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1464 	igb_write_phy_reg(hw, 29, 0x001F);
1465 	igb_write_phy_reg(hw, 30, 0x8FFC);
1466 	igb_write_phy_reg(hw, 29, 0x001A);
1467 	igb_write_phy_reg(hw, 30, 0x8FF0);
1468 }
1469 
1470 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1471 {
1472 	struct e1000_hw *hw = &adapter->hw;
1473 	u32 ctrl_reg = 0;
1474 	u16 phy_reg = 0;
1475 
1476 	hw->mac.autoneg = false;
1477 
1478 	switch (hw->phy.type) {
1479 	case e1000_phy_m88:
1480 		/* Auto-MDI/MDIX Off */
1481 		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1482 		/* reset to update Auto-MDI/MDIX */
1483 		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1484 		/* autoneg off */
1485 		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1486 		break;
1487 	case e1000_phy_82580:
1488 		/* enable MII loopback */
1489 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1490 		break;
1491 	case e1000_phy_i210:
1492 		/* set loopback speed in PHY */
1493 		igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1494 					&phy_reg);
1495 		phy_reg |= GS40G_MAC_SPEED_1G;
1496 		igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1497 					phy_reg);
1498 		ctrl_reg = rd32(E1000_CTRL_EXT);
1499 	default:
1500 		break;
1501 	}
1502 
1503 	/* force 1000, set loopback */
1504 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1505 
1506 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1507 	ctrl_reg = rd32(E1000_CTRL);
1508 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1509 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1510 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1511 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1512 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1513 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1514 
1515 	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1516 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1517 
1518 	wr32(E1000_CTRL, ctrl_reg);
1519 
1520 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1521 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1522 	 */
1523 	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1524 		igb_phy_disable_receiver(adapter);
1525 
1526 	udelay(500);
1527 
1528 	return 0;
1529 }
1530 
1531 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1532 {
1533 	return igb_integrated_phy_loopback(adapter);
1534 }
1535 
1536 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1537 {
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	u32 reg;
1540 
1541 	reg = rd32(E1000_CTRL_EXT);
1542 
1543 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1544 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1545 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1546 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1547 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1548 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1549 
1550 			/* Enable DH89xxCC MPHY for near end loopback */
1551 			reg = rd32(E1000_MPHY_ADDR_CTL);
1552 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1553 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1554 			wr32(E1000_MPHY_ADDR_CTL, reg);
1555 
1556 			reg = rd32(E1000_MPHY_DATA);
1557 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1558 			wr32(E1000_MPHY_DATA, reg);
1559 		}
1560 
1561 		reg = rd32(E1000_RCTL);
1562 		reg |= E1000_RCTL_LBM_TCVR;
1563 		wr32(E1000_RCTL, reg);
1564 
1565 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1566 
1567 		reg = rd32(E1000_CTRL);
1568 		reg &= ~(E1000_CTRL_RFCE |
1569 			 E1000_CTRL_TFCE |
1570 			 E1000_CTRL_LRST);
1571 		reg |= E1000_CTRL_SLU |
1572 		       E1000_CTRL_FD;
1573 		wr32(E1000_CTRL, reg);
1574 
1575 		/* Unset switch control to serdes energy detect */
1576 		reg = rd32(E1000_CONNSW);
1577 		reg &= ~E1000_CONNSW_ENRGSRC;
1578 		wr32(E1000_CONNSW, reg);
1579 
1580 		/* Set PCS register for forced speed */
1581 		reg = rd32(E1000_PCS_LCTL);
1582 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1583 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1584 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1585 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1586 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1587 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1588 		wr32(E1000_PCS_LCTL, reg);
1589 
1590 		return 0;
1591 	}
1592 
1593 	return igb_set_phy_loopback(adapter);
1594 }
1595 
1596 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1597 {
1598 	struct e1000_hw *hw = &adapter->hw;
1599 	u32 rctl;
1600 	u16 phy_reg;
1601 
1602 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1603 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1604 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1605 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1606 		u32 reg;
1607 
1608 		/* Disable near end loopback on DH89xxCC */
1609 		reg = rd32(E1000_MPHY_ADDR_CTL);
1610 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1611 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1612 		wr32(E1000_MPHY_ADDR_CTL, reg);
1613 
1614 		reg = rd32(E1000_MPHY_DATA);
1615 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1616 		wr32(E1000_MPHY_DATA, reg);
1617 	}
1618 
1619 	rctl = rd32(E1000_RCTL);
1620 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1621 	wr32(E1000_RCTL, rctl);
1622 
1623 	hw->mac.autoneg = true;
1624 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1625 	if (phy_reg & MII_CR_LOOPBACK) {
1626 		phy_reg &= ~MII_CR_LOOPBACK;
1627 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1628 		igb_phy_sw_reset(hw);
1629 	}
1630 }
1631 
1632 static void igb_create_lbtest_frame(struct sk_buff *skb,
1633 				    unsigned int frame_size)
1634 {
1635 	memset(skb->data, 0xFF, frame_size);
1636 	frame_size /= 2;
1637 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1638 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1639 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1640 }
1641 
1642 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1643 {
1644 	frame_size /= 2;
1645 	if (*(skb->data + 3) == 0xFF) {
1646 		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1647 		   (*(skb->data + frame_size + 12) == 0xAF)) {
1648 			return 0;
1649 		}
1650 	}
1651 	return 13;
1652 }
1653 
1654 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1655                                 struct igb_ring *tx_ring,
1656                                 unsigned int size)
1657 {
1658 	union e1000_adv_rx_desc *rx_desc;
1659 	struct igb_rx_buffer *rx_buffer_info;
1660 	struct igb_tx_buffer *tx_buffer_info;
1661 	struct netdev_queue *txq;
1662 	u16 rx_ntc, tx_ntc, count = 0;
1663 	unsigned int total_bytes = 0, total_packets = 0;
1664 
1665 	/* initialize next to clean and descriptor values */
1666 	rx_ntc = rx_ring->next_to_clean;
1667 	tx_ntc = tx_ring->next_to_clean;
1668 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1669 
1670 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1671 		/* check rx buffer */
1672 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1673 
1674 		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1675 		dma_unmap_single(rx_ring->dev,
1676 				 rx_buffer_info->dma,
1677 				 IGB_RX_HDR_LEN,
1678 				 DMA_FROM_DEVICE);
1679 		rx_buffer_info->dma = 0;
1680 
1681 		/* verify contents of skb */
1682 		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1683 			count++;
1684 
1685 		/* unmap buffer on tx side */
1686 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1687 		total_bytes += tx_buffer_info->bytecount;
1688 		total_packets += tx_buffer_info->gso_segs;
1689 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1690 
1691 		/* increment rx/tx next to clean counters */
1692 		rx_ntc++;
1693 		if (rx_ntc == rx_ring->count)
1694 			rx_ntc = 0;
1695 		tx_ntc++;
1696 		if (tx_ntc == tx_ring->count)
1697 			tx_ntc = 0;
1698 
1699 		/* fetch next descriptor */
1700 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1701 	}
1702 
1703 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1704 	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1705 
1706 	/* re-map buffers to ring, store next to clean values */
1707 	igb_alloc_rx_buffers(rx_ring, count);
1708 	rx_ring->next_to_clean = rx_ntc;
1709 	tx_ring->next_to_clean = tx_ntc;
1710 
1711 	return count;
1712 }
1713 
1714 static int igb_run_loopback_test(struct igb_adapter *adapter)
1715 {
1716 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1717 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1718 	u16 i, j, lc, good_cnt;
1719 	int ret_val = 0;
1720 	unsigned int size = IGB_RX_HDR_LEN;
1721 	netdev_tx_t tx_ret_val;
1722 	struct sk_buff *skb;
1723 
1724 	/* allocate test skb */
1725 	skb = alloc_skb(size, GFP_KERNEL);
1726 	if (!skb)
1727 		return 11;
1728 
1729 	/* place data into test skb */
1730 	igb_create_lbtest_frame(skb, size);
1731 	skb_put(skb, size);
1732 
1733 	/*
1734 	 * Calculate the loop count based on the largest descriptor ring
1735 	 * The idea is to wrap the largest ring a number of times using 64
1736 	 * send/receive pairs during each loop
1737 	 */
1738 
1739 	if (rx_ring->count <= tx_ring->count)
1740 		lc = ((tx_ring->count / 64) * 2) + 1;
1741 	else
1742 		lc = ((rx_ring->count / 64) * 2) + 1;
1743 
1744 	for (j = 0; j <= lc; j++) { /* loop count loop */
1745 		/* reset count of good packets */
1746 		good_cnt = 0;
1747 
1748 		/* place 64 packets on the transmit queue*/
1749 		for (i = 0; i < 64; i++) {
1750 			skb_get(skb);
1751 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1752 			if (tx_ret_val == NETDEV_TX_OK)
1753 				good_cnt++;
1754 		}
1755 
1756 		if (good_cnt != 64) {
1757 			ret_val = 12;
1758 			break;
1759 		}
1760 
1761 		/* allow 200 milliseconds for packets to go from tx to rx */
1762 		msleep(200);
1763 
1764 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1765 		if (good_cnt != 64) {
1766 			ret_val = 13;
1767 			break;
1768 		}
1769 	} /* end loop count loop */
1770 
1771 	/* free the original skb */
1772 	kfree_skb(skb);
1773 
1774 	return ret_val;
1775 }
1776 
1777 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1778 {
1779 	/* PHY loopback cannot be performed if SoL/IDER
1780 	 * sessions are active */
1781 	if (igb_check_reset_block(&adapter->hw)) {
1782 		dev_err(&adapter->pdev->dev,
1783 			"Cannot do PHY loopback test "
1784 			"when SoL/IDER is active.\n");
1785 		*data = 0;
1786 		goto out;
1787 	}
1788 	if ((adapter->hw.mac.type == e1000_i210)
1789 		|| (adapter->hw.mac.type == e1000_i210)) {
1790 		dev_err(&adapter->pdev->dev,
1791 			"Loopback test not supported "
1792 			"on this part at this time.\n");
1793 		*data = 0;
1794 		goto out;
1795 	}
1796 	*data = igb_setup_desc_rings(adapter);
1797 	if (*data)
1798 		goto out;
1799 	*data = igb_setup_loopback_test(adapter);
1800 	if (*data)
1801 		goto err_loopback;
1802 	*data = igb_run_loopback_test(adapter);
1803 	igb_loopback_cleanup(adapter);
1804 
1805 err_loopback:
1806 	igb_free_desc_rings(adapter);
1807 out:
1808 	return *data;
1809 }
1810 
1811 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1812 {
1813 	struct e1000_hw *hw = &adapter->hw;
1814 	*data = 0;
1815 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1816 		int i = 0;
1817 		hw->mac.serdes_has_link = false;
1818 
1819 		/* On some blade server designs, link establishment
1820 		 * could take as long as 2-3 minutes */
1821 		do {
1822 			hw->mac.ops.check_for_link(&adapter->hw);
1823 			if (hw->mac.serdes_has_link)
1824 				return *data;
1825 			msleep(20);
1826 		} while (i++ < 3750);
1827 
1828 		*data = 1;
1829 	} else {
1830 		hw->mac.ops.check_for_link(&adapter->hw);
1831 		if (hw->mac.autoneg)
1832 			msleep(4000);
1833 
1834 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1835 			*data = 1;
1836 	}
1837 	return *data;
1838 }
1839 
1840 static void igb_diag_test(struct net_device *netdev,
1841 			  struct ethtool_test *eth_test, u64 *data)
1842 {
1843 	struct igb_adapter *adapter = netdev_priv(netdev);
1844 	u16 autoneg_advertised;
1845 	u8 forced_speed_duplex, autoneg;
1846 	bool if_running = netif_running(netdev);
1847 
1848 	set_bit(__IGB_TESTING, &adapter->state);
1849 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1850 		/* Offline tests */
1851 
1852 		/* save speed, duplex, autoneg settings */
1853 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1854 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1855 		autoneg = adapter->hw.mac.autoneg;
1856 
1857 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1858 
1859 		/* power up link for link test */
1860 		igb_power_up_link(adapter);
1861 
1862 		/* Link test performed before hardware reset so autoneg doesn't
1863 		 * interfere with test result */
1864 		if (igb_link_test(adapter, &data[4]))
1865 			eth_test->flags |= ETH_TEST_FL_FAILED;
1866 
1867 		if (if_running)
1868 			/* indicate we're in test mode */
1869 			dev_close(netdev);
1870 		else
1871 			igb_reset(adapter);
1872 
1873 		if (igb_reg_test(adapter, &data[0]))
1874 			eth_test->flags |= ETH_TEST_FL_FAILED;
1875 
1876 		igb_reset(adapter);
1877 		if (igb_eeprom_test(adapter, &data[1]))
1878 			eth_test->flags |= ETH_TEST_FL_FAILED;
1879 
1880 		igb_reset(adapter);
1881 		if (igb_intr_test(adapter, &data[2]))
1882 			eth_test->flags |= ETH_TEST_FL_FAILED;
1883 
1884 		igb_reset(adapter);
1885 		/* power up link for loopback test */
1886 		igb_power_up_link(adapter);
1887 		if (igb_loopback_test(adapter, &data[3]))
1888 			eth_test->flags |= ETH_TEST_FL_FAILED;
1889 
1890 		/* restore speed, duplex, autoneg settings */
1891 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1892 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1893 		adapter->hw.mac.autoneg = autoneg;
1894 
1895 		/* force this routine to wait until autoneg complete/timeout */
1896 		adapter->hw.phy.autoneg_wait_to_complete = true;
1897 		igb_reset(adapter);
1898 		adapter->hw.phy.autoneg_wait_to_complete = false;
1899 
1900 		clear_bit(__IGB_TESTING, &adapter->state);
1901 		if (if_running)
1902 			dev_open(netdev);
1903 	} else {
1904 		dev_info(&adapter->pdev->dev, "online testing starting\n");
1905 
1906 		/* PHY is powered down when interface is down */
1907 		if (if_running && igb_link_test(adapter, &data[4]))
1908 			eth_test->flags |= ETH_TEST_FL_FAILED;
1909 		else
1910 			data[4] = 0;
1911 
1912 		/* Online tests aren't run; pass by default */
1913 		data[0] = 0;
1914 		data[1] = 0;
1915 		data[2] = 0;
1916 		data[3] = 0;
1917 
1918 		clear_bit(__IGB_TESTING, &adapter->state);
1919 	}
1920 	msleep_interruptible(4 * 1000);
1921 }
1922 
1923 static int igb_wol_exclusion(struct igb_adapter *adapter,
1924 			     struct ethtool_wolinfo *wol)
1925 {
1926 	struct e1000_hw *hw = &adapter->hw;
1927 	int retval = 1; /* fail by default */
1928 
1929 	switch (hw->device_id) {
1930 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1931 		/* WoL not supported */
1932 		wol->supported = 0;
1933 		break;
1934 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1935 	case E1000_DEV_ID_82576_FIBER:
1936 	case E1000_DEV_ID_82576_SERDES:
1937 		/* Wake events not supported on port B */
1938 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1939 			wol->supported = 0;
1940 			break;
1941 		}
1942 		/* return success for non excluded adapter ports */
1943 		retval = 0;
1944 		break;
1945 	case E1000_DEV_ID_82576_QUAD_COPPER:
1946 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1947 		/* quad port adapters only support WoL on port A */
1948 		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1949 			wol->supported = 0;
1950 			break;
1951 		}
1952 		/* return success for non excluded adapter ports */
1953 		retval = 0;
1954 		break;
1955 	default:
1956 		/* dual port cards only support WoL on port A from now on
1957 		 * unless it was enabled in the eeprom for port B
1958 		 * so exclude FUNC_1 ports from having WoL enabled */
1959 		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1960 		    !adapter->eeprom_wol) {
1961 			wol->supported = 0;
1962 			break;
1963 		}
1964 
1965 		retval = 0;
1966 	}
1967 
1968 	return retval;
1969 }
1970 
1971 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1972 {
1973 	struct igb_adapter *adapter = netdev_priv(netdev);
1974 
1975 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1976 	                 WAKE_BCAST | WAKE_MAGIC |
1977 	                 WAKE_PHY;
1978 	wol->wolopts = 0;
1979 
1980 	/* this function will set ->supported = 0 and return 1 if wol is not
1981 	 * supported by this hardware */
1982 	if (igb_wol_exclusion(adapter, wol) ||
1983 	    !device_can_wakeup(&adapter->pdev->dev))
1984 		return;
1985 
1986 	/* apply any specific unsupported masks here */
1987 	switch (adapter->hw.device_id) {
1988 	default:
1989 		break;
1990 	}
1991 
1992 	if (adapter->wol & E1000_WUFC_EX)
1993 		wol->wolopts |= WAKE_UCAST;
1994 	if (adapter->wol & E1000_WUFC_MC)
1995 		wol->wolopts |= WAKE_MCAST;
1996 	if (adapter->wol & E1000_WUFC_BC)
1997 		wol->wolopts |= WAKE_BCAST;
1998 	if (adapter->wol & E1000_WUFC_MAG)
1999 		wol->wolopts |= WAKE_MAGIC;
2000 	if (adapter->wol & E1000_WUFC_LNKC)
2001 		wol->wolopts |= WAKE_PHY;
2002 }
2003 
2004 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2005 {
2006 	struct igb_adapter *adapter = netdev_priv(netdev);
2007 
2008 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2009 		return -EOPNOTSUPP;
2010 
2011 	if (igb_wol_exclusion(adapter, wol) ||
2012 	    !device_can_wakeup(&adapter->pdev->dev))
2013 		return wol->wolopts ? -EOPNOTSUPP : 0;
2014 
2015 	/* these settings will always override what we currently have */
2016 	adapter->wol = 0;
2017 
2018 	if (wol->wolopts & WAKE_UCAST)
2019 		adapter->wol |= E1000_WUFC_EX;
2020 	if (wol->wolopts & WAKE_MCAST)
2021 		adapter->wol |= E1000_WUFC_MC;
2022 	if (wol->wolopts & WAKE_BCAST)
2023 		adapter->wol |= E1000_WUFC_BC;
2024 	if (wol->wolopts & WAKE_MAGIC)
2025 		adapter->wol |= E1000_WUFC_MAG;
2026 	if (wol->wolopts & WAKE_PHY)
2027 		adapter->wol |= E1000_WUFC_LNKC;
2028 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2029 
2030 	return 0;
2031 }
2032 
2033 /* bit defines for adapter->led_status */
2034 #define IGB_LED_ON		0
2035 
2036 static int igb_set_phys_id(struct net_device *netdev,
2037 			   enum ethtool_phys_id_state state)
2038 {
2039 	struct igb_adapter *adapter = netdev_priv(netdev);
2040 	struct e1000_hw *hw = &adapter->hw;
2041 
2042 	switch (state) {
2043 	case ETHTOOL_ID_ACTIVE:
2044 		igb_blink_led(hw);
2045 		return 2;
2046 	case ETHTOOL_ID_ON:
2047 		igb_blink_led(hw);
2048 		break;
2049 	case ETHTOOL_ID_OFF:
2050 		igb_led_off(hw);
2051 		break;
2052 	case ETHTOOL_ID_INACTIVE:
2053 		igb_led_off(hw);
2054 		clear_bit(IGB_LED_ON, &adapter->led_status);
2055 		igb_cleanup_led(hw);
2056 		break;
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 static int igb_set_coalesce(struct net_device *netdev,
2063 			    struct ethtool_coalesce *ec)
2064 {
2065 	struct igb_adapter *adapter = netdev_priv(netdev);
2066 	int i;
2067 
2068 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2069 	    ((ec->rx_coalesce_usecs > 3) &&
2070 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2071 	    (ec->rx_coalesce_usecs == 2))
2072 		return -EINVAL;
2073 
2074 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2075 	    ((ec->tx_coalesce_usecs > 3) &&
2076 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2077 	    (ec->tx_coalesce_usecs == 2))
2078 		return -EINVAL;
2079 
2080 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2081 		return -EINVAL;
2082 
2083 	/* If ITR is disabled, disable DMAC */
2084 	if (ec->rx_coalesce_usecs == 0) {
2085 		if (adapter->flags & IGB_FLAG_DMAC)
2086 			adapter->flags &= ~IGB_FLAG_DMAC;
2087 	}
2088 
2089 	/* convert to rate of irq's per second */
2090 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2091 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2092 	else
2093 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2094 
2095 	/* convert to rate of irq's per second */
2096 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2097 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2098 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2099 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2100 	else
2101 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2102 
2103 	for (i = 0; i < adapter->num_q_vectors; i++) {
2104 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2105 		q_vector->tx.work_limit = adapter->tx_work_limit;
2106 		if (q_vector->rx.ring)
2107 			q_vector->itr_val = adapter->rx_itr_setting;
2108 		else
2109 			q_vector->itr_val = adapter->tx_itr_setting;
2110 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2111 			q_vector->itr_val = IGB_START_ITR;
2112 		q_vector->set_itr = 1;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 static int igb_get_coalesce(struct net_device *netdev,
2119 			    struct ethtool_coalesce *ec)
2120 {
2121 	struct igb_adapter *adapter = netdev_priv(netdev);
2122 
2123 	if (adapter->rx_itr_setting <= 3)
2124 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2125 	else
2126 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2127 
2128 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2129 		if (adapter->tx_itr_setting <= 3)
2130 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2131 		else
2132 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static int igb_nway_reset(struct net_device *netdev)
2139 {
2140 	struct igb_adapter *adapter = netdev_priv(netdev);
2141 	if (netif_running(netdev))
2142 		igb_reinit_locked(adapter);
2143 	return 0;
2144 }
2145 
2146 static int igb_get_sset_count(struct net_device *netdev, int sset)
2147 {
2148 	switch (sset) {
2149 	case ETH_SS_STATS:
2150 		return IGB_STATS_LEN;
2151 	case ETH_SS_TEST:
2152 		return IGB_TEST_LEN;
2153 	default:
2154 		return -ENOTSUPP;
2155 	}
2156 }
2157 
2158 static void igb_get_ethtool_stats(struct net_device *netdev,
2159 				  struct ethtool_stats *stats, u64 *data)
2160 {
2161 	struct igb_adapter *adapter = netdev_priv(netdev);
2162 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2163 	unsigned int start;
2164 	struct igb_ring *ring;
2165 	int i, j;
2166 	char *p;
2167 
2168 	spin_lock(&adapter->stats64_lock);
2169 	igb_update_stats(adapter, net_stats);
2170 
2171 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2172 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2173 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2174 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2175 	}
2176 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2177 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2178 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2179 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2180 	}
2181 	for (j = 0; j < adapter->num_tx_queues; j++) {
2182 		u64	restart2;
2183 
2184 		ring = adapter->tx_ring[j];
2185 		do {
2186 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2187 			data[i]   = ring->tx_stats.packets;
2188 			data[i+1] = ring->tx_stats.bytes;
2189 			data[i+2] = ring->tx_stats.restart_queue;
2190 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2191 		do {
2192 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2193 			restart2  = ring->tx_stats.restart_queue2;
2194 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2195 		data[i+2] += restart2;
2196 
2197 		i += IGB_TX_QUEUE_STATS_LEN;
2198 	}
2199 	for (j = 0; j < adapter->num_rx_queues; j++) {
2200 		ring = adapter->rx_ring[j];
2201 		do {
2202 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2203 			data[i]   = ring->rx_stats.packets;
2204 			data[i+1] = ring->rx_stats.bytes;
2205 			data[i+2] = ring->rx_stats.drops;
2206 			data[i+3] = ring->rx_stats.csum_err;
2207 			data[i+4] = ring->rx_stats.alloc_failed;
2208 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2209 		i += IGB_RX_QUEUE_STATS_LEN;
2210 	}
2211 	spin_unlock(&adapter->stats64_lock);
2212 }
2213 
2214 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2215 {
2216 	struct igb_adapter *adapter = netdev_priv(netdev);
2217 	u8 *p = data;
2218 	int i;
2219 
2220 	switch (stringset) {
2221 	case ETH_SS_TEST:
2222 		memcpy(data, *igb_gstrings_test,
2223 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2224 		break;
2225 	case ETH_SS_STATS:
2226 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2227 			memcpy(p, igb_gstrings_stats[i].stat_string,
2228 			       ETH_GSTRING_LEN);
2229 			p += ETH_GSTRING_LEN;
2230 		}
2231 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2232 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2233 			       ETH_GSTRING_LEN);
2234 			p += ETH_GSTRING_LEN;
2235 		}
2236 		for (i = 0; i < adapter->num_tx_queues; i++) {
2237 			sprintf(p, "tx_queue_%u_packets", i);
2238 			p += ETH_GSTRING_LEN;
2239 			sprintf(p, "tx_queue_%u_bytes", i);
2240 			p += ETH_GSTRING_LEN;
2241 			sprintf(p, "tx_queue_%u_restart", i);
2242 			p += ETH_GSTRING_LEN;
2243 		}
2244 		for (i = 0; i < adapter->num_rx_queues; i++) {
2245 			sprintf(p, "rx_queue_%u_packets", i);
2246 			p += ETH_GSTRING_LEN;
2247 			sprintf(p, "rx_queue_%u_bytes", i);
2248 			p += ETH_GSTRING_LEN;
2249 			sprintf(p, "rx_queue_%u_drops", i);
2250 			p += ETH_GSTRING_LEN;
2251 			sprintf(p, "rx_queue_%u_csum_err", i);
2252 			p += ETH_GSTRING_LEN;
2253 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2254 			p += ETH_GSTRING_LEN;
2255 		}
2256 /*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2257 		break;
2258 	}
2259 }
2260 
2261 static int igb_ethtool_begin(struct net_device *netdev)
2262 {
2263 	struct igb_adapter *adapter = netdev_priv(netdev);
2264 	pm_runtime_get_sync(&adapter->pdev->dev);
2265 	return 0;
2266 }
2267 
2268 static void igb_ethtool_complete(struct net_device *netdev)
2269 {
2270 	struct igb_adapter *adapter = netdev_priv(netdev);
2271 	pm_runtime_put(&adapter->pdev->dev);
2272 }
2273 
2274 static const struct ethtool_ops igb_ethtool_ops = {
2275 	.get_settings           = igb_get_settings,
2276 	.set_settings           = igb_set_settings,
2277 	.get_drvinfo            = igb_get_drvinfo,
2278 	.get_regs_len           = igb_get_regs_len,
2279 	.get_regs               = igb_get_regs,
2280 	.get_wol                = igb_get_wol,
2281 	.set_wol                = igb_set_wol,
2282 	.get_msglevel           = igb_get_msglevel,
2283 	.set_msglevel           = igb_set_msglevel,
2284 	.nway_reset             = igb_nway_reset,
2285 	.get_link               = igb_get_link,
2286 	.get_eeprom_len         = igb_get_eeprom_len,
2287 	.get_eeprom             = igb_get_eeprom,
2288 	.set_eeprom             = igb_set_eeprom,
2289 	.get_ringparam          = igb_get_ringparam,
2290 	.set_ringparam          = igb_set_ringparam,
2291 	.get_pauseparam         = igb_get_pauseparam,
2292 	.set_pauseparam         = igb_set_pauseparam,
2293 	.self_test              = igb_diag_test,
2294 	.get_strings            = igb_get_strings,
2295 	.set_phys_id            = igb_set_phys_id,
2296 	.get_sset_count         = igb_get_sset_count,
2297 	.get_ethtool_stats      = igb_get_ethtool_stats,
2298 	.get_coalesce           = igb_get_coalesce,
2299 	.set_coalesce           = igb_set_coalesce,
2300 	.begin			= igb_ethtool_begin,
2301 	.complete		= igb_ethtool_complete,
2302 };
2303 
2304 void igb_set_ethtool_ops(struct net_device *netdev)
2305 {
2306 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2307 }
2308